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A 

 

Abstract 

 

Deinococcus radiodurans is a Gram-positive bacterium known for its extreme resistance 

to a broad variety of DNA damaging agents. Among these, Ionizing Radiations and 

desiccation are the most harmful for the cell, since they introduce breaks in the genome. 

Double Strand Breaks (DSB) are particularly hazardous for the cell and they need to be 

repaired very efficiently, in order to avoid mutations leading to altered, if not lethal, 

phenotypes. Homologous Recombination (HR) is the most efficient mechanism by which 

DSBs are repaired. D. radiodurans is able to completely restore its genome in only 3 hours, 

and it accomplishes the entire process through the RecFOR pathway.  

 In order to be repaired, DSBs first need to be recognized. The protein believed to be 

responsible for this important step that takes place soon after the damage occurs in the cell, is 

RecN. RecN is recruited at the early stages of DNA repair and in vivo studies have 

demonstrated its propensity to localize to discrete foci. In vitro studies also suggest that RecN 

possesses a DNA end-joining activity previously observed for SMC proteins (such as 

cohesin), which are structurally related to RecN. Several structural studies have been carried 

out on the SMC-like protein, Rad50, but so far no structural information is available for 

RecN.  

 The work presented here focused on the structural characterization of RecN and its 

constitutive domains. We obtained crystal structures of three partially overlapping constructs 

of RecN and Small Angle X-ray Scattering was performed on the individual domains and the 

full-length protein. The study of RecN in solution complemented our crystallographic study 

and enabled us to build a reliable, atomic model of the full-length protein. Mutations were 

designed and the mutant RecN proteins were produced in order to characterize the ATP 

hydrolysis activity of RecN, which is a conserved feature of this family of proteins. Extensive 

biochemical studies were carried out on wild-type and mutants of both the full-length protein 

and the single domains, in order to determine the role and function of each of the domains. 

Our results led us to propose a model for how RecN might recognize DSBs, tether two broken 

DNA ends and prepare the DNA for subsequent repair by the RecFOR machinery. 
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Résumé de thèse en français 

 

 Deinococcus radiodurans est une bactérie à gram-positive connue pour son extrême 

résistance à une grande variété d'agents endommageant l'ADN. Parmi ces derniers, les 

rayonnements ionisants et la dessiccation sont les plus nocifs pour la cellule, car ils 

introduisent des cassures dans le génome. Les cassures double brin (CDB) sont 

particulièrement dangereuses et doivent être réparées de façon très efficace, afin d'éviter 

l’apparition de mutations pouvant mener à la mort de la cellule ou de l’organisme. La 

recombinaison homologue (RH) est le mécanisme le plus efficace pour la réparation des 

CDBs. D. radiodurans est capable de restaurer entièrement son génome en à peine 3 heures, 

et elle accomplit la totalité du processus par la voie RecFOR.  

 Afin d'être réparées, les CDBs doivent d'abord être reconnu. Cette étape importante, qui a 

lieu peu de temps après l’apparition du dommage dans la cellule, implique la protéine RecN. 

RecN est recrutée dès les premières étapes de la réparation de l'ADN et des études in vivo ont 

démontré qu’elle avait tendance à se localiser dans des foyers discrets. Des études in vitro 

suggèrent également que RecN favorise l’assemblage de fragments d’ADN, une fonction 

décrite précédemment pour les protéines SMC (telle que cohesin), qui sont structurellement 

similaires à RecN. De nombreuses études structurales ont été effectuées sur la protéine de 

type SMC, Rad50, alors qu’à présent aucune information structurale n’est disponible pour 

RecN.  

 Le travail présenté ici a porté sur la caractérisation structurale de RecN et de ses 

domaines. Nous avons obtenu les structures cristallines de trois constructions (se chevauchant 

partiellement) de RecN et une étude de diffusions des rayons X aux petits angles a été 

effectuée sur les domaines séparés de RecN et sur la protéine entière. Les données obtenues 

en solution ont complété notre étude cristallographique et nous ont permis de construire un 

modèle atomique de la protéine entière. Des mutations ont été conçues et les protéines mutées 

ont été produites et utilisées pour la caractérisation de l'activité d'hydrolyse de l’ATP 

caractéristique de cette famille de protéines. Des études biochimiques approfondies ont été 

effectuées sur les différentes constructions et mutants de RecN afin de déterminer le rôle de 

chacun des ses domaines. Nos résultat nous ont permis de proposer un modèle qui explique 

comment RecN reconnaît les CDB, maintient les deux extrémités de l’ADN, et prépare 

l’ADN pour la réparation par les protéines RecFOR.  
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Summary of chapter 1 

 

 This first chapter provides a thorough introduction to the main topic of this work. DNA 

lesions need to be repaired in order to avoid mutations and cell death. Causes of DNA damage 

and processes involved in the repair of such lesions are discussed in this chapter. Moreover, a 

presentation of the process of Homologous Recombination in eukaryotes and prokaryotes, 

which involves the RecN protein, is provided.  

 A paragraph describes the extreme radiation-resistant bacterium Deinococcus 

radiodurans and the principal mechanism underlying its extraordinary ability to efficiently 

repair its DNA. The role of Mre11-Rad50 complex in the repair of double-strand breaks is 

also discussed, together with an overview of the Structural Maintenance of Chromosomes 

proteins involved in DNA cohesion. Finally, this chapter presents our current knowledge 

regarding bacterial RecN proteins. 

 

 

Résumé du chapitre 1 

 

 Ce premier chapitre propose une présentation complète du sujet principal de ce travail. 

Les lésions de l'ADN doivent être réparées afin d'éviter les mutations et la mort cellulaire. Les 

causes de ces dommages et les processus impliqués dans la réparation de ceux-ci sont discutés 

dans ce chapitre. Par ailleurs, une présentation du processus de recombinaison homologue 

chez les eucaryotes et procaryotes, ce qui implique la protéine RecN, est proposée. 

 Un paragraphe décrit la bactérie, Deinococcus radiodurans, connue pour sa haute 

résistance aux rayonnements et le mécanisme principal lui permettant de réparer efficacement 

son ADN. Une discussion du rôle du complexe Mre11-Rad50 dans la réparation de cassures 

double-brin et une description générale des protéines de la famille SMC (Structural 

Maintenance of Chromosomes) impliquées dans la cohésion de l’ADN sont également 

proposées. Pour finir, ce chapitre présente les connaissances actuelles concernant les protéines 

bactériennes, RecN. 
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1.1. DNA Damage and Health 

 1.1.1. Structure of DNA   

 DNA is the molecule encoding all the genetic information of an organism. Its double 

helical arrangement was discovered by Watson and Crick in the 1950’s (Watson & Crick, 

1953). DNA is a polymer of nucleotides, which in turn are made up of a deoxyribose, a 

phosphate group and one of the four nitrogenous bases: Adenine (A), Thymine (T), Cytosine 

(C) or Guanine (G). Since all the necessary information for synthesising RNA and proteins is 

codified in a single DNA strand, it is not surprising that protection of the genome is a real 

priority for both eukaryotic and prokaryotic cells. Every event that causes modification to the 

DNA should therefore be avoided. The consequences of DNA damage are rather diverse: 

short-term effects arise from disturbed DNA metabolism, triggering cell-cycle arrest or cell 

death. Long-term effects result from irreversible mutations contributing to oncogenesis 

(Hoeijmakers, 2001). 

The intrinsic structure of DNA as a double helix has provided, throughout living 

organisms’ evolution, a suitable substrate for the storage of the genetic information. As a 

consequence of this structural organization, DNA always carries a backup copy of its genetic 

information on the opposite strand, so when one strand is damaged, the other one can, when 

necessary, serve as template for repair. Only a few viruses use single stranded DNA or RNA 

for storing genetic information. The size of these genomes, most probably, is not big enough 

for being targeted by the DNA damaging agents (Alberts et al, 2008).  

 

 1.1.2.  Lesions in DNA 

 DNA damage occurs in all living cells and in huge amounts, i.e. on average 1 million 

lesions per human cell per day (Alberts et al, 2008). Such damage might occur at the level of 

the DNA structure, through a chemical change in the encoded base (Figure 1) or by inducing 

single or Double Strand Breaks (DSB), or at the level of the genetic code, through alteration 

of the genetic message due to mutations. Eukaryotic and prokaryotic cells have therefore 

developed DNA repair mechanisms that efficiently remove the lesions. 

Endogenous and exogenous DNA damage (Table 1) play a crucial role in mutagenesis, 

carcinogenesis and aging (Best, 2009; De Bont & van Larebeke, 2004). While the former can 

arise as product of conventional cellular metabolism, exogenous damage is produced by 

external agents. Both types of damage need to be efficiently and rapidly repaired in order to 

avoid changes in the information encoded in the genome. 
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Figure 1: Summary of the modifications that can occur to DNA nucleotides. Arrows indicate the possible sites of 

attack of oxidative damage (red), hydrolysis (blue) and methylation (green)  "Copyright 2008 from Molecular 

Biology of the Cell by B. Alberts et al. Reproduced by permission of Garland Science/Taylor & Francis, LLC." 

 

Despite its very high stability, the structure of DNA can be affected by hydrolysis, 

oxidation, alkylation (Figure 1) and base pair mismatches. Endogenous, spontaneous 

hydrolysis leads to the cleavage of the glycosidic bond linking the deoxyribose to the nitrogen 

base and to the formation of an abasic site (commonly named AP, apurinic/apyrimidinic) 

(Table 1). This occurs very frequently (50,000-200,000 per genome per day in humans) 

(Nakamura & Swenberg, 1999). AP sites trigger substitutions of base pairs (Lawrence et al, 

1990) and can also result in frameshift mutations along the genome (Jackson et al, 1998). 

Reactive oxygen species (ROS), such as O2
--, H2O2, OH- and O2

●, resulting from metabolic 

reactions can, in addition to modifying the chemical properties of the DNA bases, also cleave 

the phosphodiester backbone of the DNA and introduce single- and DSB (De Bont & van 

Larebeke, 2004). Such damage can also be initiated by radiolysis of DNA. Direct and indirect 

formation of single strand breaks can occur on the DNA (Figure 2). In the first case the 

hydrogen abstraction by OH● causes the solvolysis of the 5’- and 3’- phosphates. In the 

indirect mechanism, damage to the nitrogen base results in a spontaneous or enzymatic 

hydrolysis of the glycosidic bond, which produce an AP site (Figure 2). A specific lyase will 

then cleave the phosphate from the nucleotide (Ordoukhanian & Taylor, 2000).  
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Figure 2: Single strand breaks are the result of hydrolysis. This can be direct (top) or indirect (bottom). Figure 

taken from (Ordoukhanian & Taylor, 2000). 

 

 X-rays, Ultra-Violet (UV) radiation and a broad variety of chemicals represent a source 

of serious damage to the cellular structure (Hoeijmakers, 2009). One of the most hazardous 

sources of DNA damage is UV-radiation, which leads to the formation of highly toxic 

molecules, such as cyclobutane-pyrimidine dimers (CPDs) and 6-4 photoproduct (6-4PP) 

(Sinha & Hader, 2002). The most dangerous type of DNA lesion is represented by the DSBs, 

which occur to both DNA strands, therefore leaving no intact genetic template for accurate 

repair. DSBs, if not properly repaired, can lead to chromosome fragmentation and, finally, to 

loss of gene structure during cell division (Alberts et al, 2008). Table 1 also reports some of 

the most common sources of DNA damage and the number of lesions per day/cell is very high 

for sunlight exposure, which is one of the best examples of how environmental conditions can 

affect human disease (melanoma in this particular case).    
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Endogeneous DNA 

damage 

Dose exposure (Gy) DNA lesions 

generated 

Number 

Lesions/Cell/Day 

Depurination n/a AP site 10,000 

Cytosine deamination n/a Base transition 100-500 

Oxidation n/a 8oxoG 400-1,500 

SAM-induced 

methylation 

n/a 7meG 4,000 

Exogenous DNA 

damage 

Dose exposure (Gy) DNA lesions 

generated 

Number 

Lesions/Cell/Day 

Peak hr sunlight n/a Pyrimidine dimers, (6-

4) photoproduct 

100,000 

Cigarette smoke  Aromatic DNA 

adducts 

50-1,000 

Dental X-rays 0.005 DSBs 0.0002 

131I treatment 70-150 DSBs 2.8-6 

Airline travel 0.005/hr DSBs 0.005 

Chernobyl accident 300 DSBs 12 

Hiroshima atomic 

bombs 

5-4000 DSBs 0.2-160 

 

Table 1: Endogenous and exogenous DNA damage occurring in eukaryotes. The type and number of lesions per 

cell are reported (Ciccia & Elledge, 2010). 

 

 1.1.3.  DNA damage and Disease  

 It has been estimated that fewer than one in 1,000 base changes result in a permanent 

mutation (Alberts et al, 2008). DNA damage is of particular interest in the field of oncology, 

since genomic alterations and mutations can lead to cancer and other diseases (a short list is 

presented in Table 2). Moreover, cellular DNA repair pathways (§ 2) are starting to be viewed 

as new targets for drug discovery, since the inhibition of such mechanisms can improve the 

efficacy of current chemotherapeutic drugs that target the replication of cancerous cells 

(Helleday et al, 2008).  
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Name Phenotype Enzyme or process affected 

Xeroderma pigmentosum 

(XP) 

Skin cancer, UV sensitivity, 

neurological abnormalities 

Nucleotide Excision Repair 

XP variant UV sensitivity, skin cancer Translesion synthesis by DNA 

polymerase η 

Ataxia telangiectasia (AT) Leukaemia, lymphoma, γ-ray 

sensitivity, genome instability 

ATM protein, a protein kinase 

activated by DSBs 

BRCA2 Breast, ovarian and prostate 

cancer 

Repair by Homologous 

Recombination (HR)  

Fanconi anemia groups A-G Congenital abnormalities, 

leukaemia, genome instability 

DNA interstrand cross-link 

repair 

46 BR patient Hypersensitivity to DNA-

damaging agents, genome 

instability 

DNA ligase I 

 

Table 2: List of some of the diseases associated with mutations in DNA repair proteins (Alberts et al, 2008). 

 

 1.2.  DNA repair pathways 

 1.2.1.  DNA Damage Response  

 In order to maintain the integrity of genetic information, cells have developed multi-

protein complexes able to recognize and repair lesions to DNA while, at the same time, 

stalling the machinery involved in cell cycle progression. The mechanisms deployed are 

components of the DNA Damage Response (DDR) (Figure 3). DDR involves a complex 

kinase signalling cascade, which is very conserved and elaborate in eukaryotes (Harper & 

Elledge, 2007) and recognizes and repairs all types of DNA lesions, especially DSBs. 

Detection of DNA damage is a crucial step for repair initiation and in higher eukaryotes, the 

ataxia telangiectasia mutated (ATM) kinase is one of the leading proteins involved in this 

process together with the Mre11-Rad50-Nbs1 mediator complex (MRN), which will be 

described later. 
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Figure 3: Cellular pathways induced by the DNA Damage Response pathway. Figure taken from (Harper & 

Elledge, 2007). 

 

 1.2.2.  Multiple DNA repair pathways  

 Specific mechanisms have evolved in order to repair different types of DNA damage. 

Single base mutations are managed by the Base Excision Repair (BER) pathway; mismatches 

deriving from errors in DNA replication are taken care of by the Mismatch Repair system 

(MMR); pyrimidine dimers, created by photochemical reactions occurring on the DNA 

(Goodsell, 2001), are recognized and repaired by the Nucleotide Excision Repair (NER) 

pathway (Ciccia & Elledge, 2010).  

 BER and NER (Figure 4), involve the excision of the damage, followed by 

replacement of the missing nucleotides through DNA polymerase activity that uses the 

undamaged DNA strand as a template (Alberts et al, 2008). BER, as shown in Figure 4A, 

recognizes the modified base through the action of specific DNA glycosylases, which create 

an AP site at the site of base damage. Specific endonucleases then cleave the phosphodiester 

backbone, leaving a gap to be filled by DNA polymerase. NER (Figure 4B), in contrast, 

repairs more extensively damaged regions, such as that resulting from excessive exposure to 

sunlight (causing pyrimidine dimers) or of covalent interaction with carcinogenic 

hydrocarbons. These kinds of damage lead to distortions in the double strand DNA (dsDNA) 

structure. Once NER has sensed the topological change, the mechanism of repair begins with 

a nuclease that cleaves the bulky lesion. The unwanted fragment is then removed, as a 

consequence of the action of a specific DNA helicase, and the gap refilled by a DNA 

polymerase (Fuss & Cooper, 2006). 
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Figure 4: Example of BER (left) and NER (right) pathways. A) In BER a single damaged base is cleaved by the 

concerted action of specific glycosylases. Once the phosphodiester moiety has been removed, DNA polymerase 

can fill the gap of the single nucleotide. B) In NER, excision of the damaged site is achieved by cutting the DNA 

on either sides of the lesion. Helicases unwind the DNA duplex locally and DNA polymerases fill the extended 

gap (~30 nucleotides). "Copyright 2008 from Molecular Biology of the Cell by B. Alberts et al. Reproduced by 

permission of Garland Science/Taylor & Francis, LLC." 

 

 1.2.3.  DSB repair pathways  

 Breaks occurring in the phosphodiester backbones of both DNA strands are particularly 

hazardous for cells, because they can leave no intact template available in order to repair the 

DNA by NER or BER (Alberts et al, 2008) (Figure 4). DSBs need to be repaired very 

efficiently in order to avoid cell-cycle checkpoint arrest, which can in some cases be lethal 

(Kinoshita et al, 2009) and to avoid breakage of the chromosomes into small fragments 

leading to loss of gene organization (Alberts et al, 2008). DSBs are processed by two different 

pathways: Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) 

(Figure 5). The main difference between these two mechanisms resides in the fact that NHEJ 

alters the original DNA sequence (causing either deletions or short insertions), while HR 

restores the full integrity of the damaged DNA, with no loss of genetic information (Alberts et 

al, 2008).  
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 1.2.3.1. Non homologous end-joining repair pathway  

 NHEJ (Figure 5A) is particularly important in repairing DNA that then undergoes 

DNA replication, since homologous substrate for HR (Figure 5B) is not yet available at this 

step (Wang et al, 2003). NHEJ has been suggested to be the main DSB repair pathway during 

the G1 phase of the mammalian cell-cycle (Burma et al, 2006). It acts by bringing together the 

broken DNA ends and then inducing strand ligation by a DNA ligase. The full process takes 

place very rapidly following DNA damage, but, unfortunately, is error-prone (Burma et al, 

2006). NHEJ can repair DNA breaks with little or no homology in cases where there are no 

repeat regions flanking the DSBs, and as a result may lead to possible insertions or deletions 

in the genome (Wyman et al, 2009). During NHEJ DNA ends are ligated without any 

requirement for strand exchange or the availability of homologous duplex DNA. In eukaryotic 

cells, NHEJ is carried out by the Ku  complex (formed by Ku70 and Ku80), possessing DNA 

end-bridging activity, a protein kinase (DNA-PK ) which signals the damage for recruitment 

of the repair machinery, a potential DNA-end processing enzyme (Artemis) and, finally, a 

ligase complex (XRCC4-Ligase IV in mammals) (Burma et al, 2006).  
 

 
 

Figure 5: Comparison of NHEJ and HR. A) NHEJ quickly joins broken DNA ends, occasionally removing 1-2 

nucleotides, thus leading to mutations. However, this is tolerated by the cell since NHEJ preferably occurs in 

somatic cells. B) HR, in contrast, repairs the damage with no loss of information from the DNA. "Copyright 

2008 from Molecular Biology of the Cell by B. Alberts et al. Reproduced by permission of Garland 

Science/Taylor & Francis, LLC."    

 

 In Saccharomyces cerevisiae, based on mutational studies that led to impaired end-

joining activity, the Mre11-Rad50-Xrs2 complex (MRX)  is also thought to be involved in 

NHEJ, (Moore & Haber, 1996). In bacteria, recent findings regarding homologues of the Ku 
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protein complex and of a mechanism involving a DNA-ligase (DNA ligase D) (Della et al, 

2004) have started to shed light on the role of NHEJ in repair of bacterial chromosomes 

(Shuman & Glickman, 2007).  

 

 1.2.3.2.  Homologous Recombination pathways  

 DSBs can result in genome rearrangements that initiate carcinogenesis or cell 

apoptosis (Hoeijmakers, 2001). However, controlled induction of DSBs can also be beneficial 

in the case of events that demand genome rearrangement, such as the development of the 

immune system (V(D)J recombination) or during meiosis (Schatz & Spanopoulou, 2005; 

Yabuki et al, 2005). As seen above (Figure 4 and 5), living organisms have therefore 

developed efficient mechanisms in order to counteract the hazardous effects of adverse DSBs 

and, in parallel, promote the favorable effects of controlled DNA rearrangement (Schatz & 

Spanopoulou, 2005; Yabuki et al, 2005). 
 

 
 

Figure 6: DSB repair by HR. This process takes place when the sister chromatids are still close to each other in 

order to allow strand invasion to occur. Once the undamaged strand is available, the DNA polymerase can start 

synthesising new, intact DNA. "Copyright 2008 from Molecular Biology of the Cell by B. Alberts et al. 

Reproduced by permission of Garland Science/Taylor & Francis, LLC." 
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 Homologous Recombination (Figure 5B and 6) is of fundamental importance in three 

processes: the accurate repair of DSBs, the bypass replication fork arrest caused by the 

presence of nicks or gaps on ssDNA and, finally, the exchange of genetic information during 

meiosis (Alberts et al, 2008). Despite the diversity among all kingdoms of life, it has been 

demonstrated that HR processes are common to all cells (Wyman et al, 2004).  

 

 1.3.  Homologous Recombination 

 1.3.1.  HR in eukaryotes  

 A schematic of the HR process is shown in Figure 6. The first step of HR involves the 

tethering of broken DNA ends, necessary for initiating the subsequent processing of such 

ends into single-stranded tails with 3’-hydroxyl overhangs (resection process). These 

overhangs are required for strand invasion (Figure 6). The Mre11-Rad50-Nsb1 (MRN) 

complex, in humans, or the MRX complex, in yeast, are responsible for creating these 3’-

overhangs suitable for HR (Longhese et al, 2010). Mre11 has both single strand endonuclease 

and 3’→5’ double strand exonuclease activity and it can therefore process the 5’-DNA strand 

for generation of the required overhang (Williams et al, 2008). The Mre11-Rad50 (MR) 

complex is one of the first factors detected at DNA DSBs (Lisby et al, 2004). In humans the 

MR complex forms oligomeric architectures (notably a M2:R2 heterotetrameric arrangement) 

that bind to different DNA molecules, taking advantage of a very long coiled-coil structure 

(150-600 Å long) (de Jager et al, 2001; Hopfner et al, 2002; van Noort et al, 2003). DNA 

binding then acts as a conformational switch in the MR complex that favors interaction 

between coiled-coil apexes (Figure 7) of different complexes and thus enhances DNA 

tethering as could be shown by single-molecule imaging experiments (Moreno-Herrero et al, 

2005). A more detailed description of the MR complex will be given in § 5.5. 

 Base pairing between the damaged DNA strand and the homologous strand is the major 

requirement for HR to act efficiently. To fulfil this requisite, it is important that the “afflicted” 

strand does not base-pair with the complementary “healthy” one, but only with a second DNA 

molecule (Alberts et al, 2008). In eukaryotes the recombinase Rad51 protein is loaded onto 

the ssDNA in order to avoid the self base-pairing of the damaged strand with the 

complementary one. Functional Rad51 nucleoprotein filament is essential to allow the 

formation of a hybrid DNA through the pairing of the damaged ssDNA with the 

complementary strand in a different homologous dsDNA molecule. This strand invasion 

process is carried out by Rad54 and other recombinases (Heyer et al, 2010). In eukaryotic 

cells the process, which involves formation of the Rad51 protein nucleo-filament, has inverted 
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polarity compared to that in bacteria (Murayama et al, 2008) and occurs in 3’ → 5’ direction. 

Branch migration is the next step of the HR process. An unpaired region of the ssDNA 

(coloured in green in Figure 6) invades the undamaged duplex DNA and base pairs with the 

homologous sequence, constituting a branch point. Afterwards, the branch point can move 

along the DNA, displacing the resident strand, either spontaneously in both directions or in 

one specific direction, through a protein-directed mechanism (Alberts et al, 2008). The last 

step, before the DNA polymerase fills the remaining gap and a DNA ligase catalyses the 

phosphodiester bond formation, involves the resolution process. During this step, a four DNA 

stranded cross-shaped architecture, known as Holliday junction (Holliday, 1964), is cleaved 

by specific enzymes, which are called resolvases. In eukaryotic cells, several proteins are 

known to act in resolution of Holliday junctions, including Mus81, Yen1 and Slx1-Slx4 

(Svendsen & Harper, 2010) (Table 3). 
 

 
 

Figure 7: Different models proposed for the interaction of the MR complex with the dsDNA. The architecture of 

the tail-to-tail MR complexes can suggest a mechanism for bridging sister chromatids. Alternatively, the head 

domains of two MR complexes can bind separate broken DNA ends, inducing a structural re-arrangement which 

allows them to be tethered. Finally, circularization of a single MR complex (as supported by electron microscopy 

studies) could contribute to productive repair of broken DNA ends. DNA tethering is mediated by the coiled-coil 

domain, which could form a dimeric structure with length up to 1200 Å. Figure taken from (Hopfner et al, 2002). 
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 1.3.2.  HR in prokaryotes 

1.3.2.1.  A stepwise process  

 In bacteria, once the DSB is recognized, RecQ helicase and RecJ 5’→ 3’ 

exonuclease resections the DNA ends in order to create the 3’ overhangs (Amundsen & 

Smith, 2003). After these processes take place, the loading of a recombinase protein onto 

processed DNA ends, which catalyzes the exchange of base-paired partners between two 

DNA molecules, represents the second step of HR (Kim & Cox, 2002). The bacterial 

homologue of the eukaryotic Rad51 protein is RecA, which binds tightly to ssDNA in a 

cooperative manner, giving rise to a filament of proteins along the strand (Figure 8). Cycles of 

association/dissociation from the DNA are regulated by ATP hydrolysis, which also confers 

to RecA the capacity to topologically modify the DNA around it (Cox, 2007). RecA has more 

than one DNA-binding site and, can therefore bind both the single-stranded and duplex DNA 

(Figure 8) required for initiating the strand-invasion process (Lusetti & Cox, 2002). A 

heteroduplex DNA molecule is formed that can be further extended in size by DNA helicases 

through a process called branch migration, which gives rise to Holliday junctions. As in 

eukaryotes, specific proteins cleave these junctions and the DNA gap can then be filled.  
 

 
 

Figure 8: Representation of bacterial RecA, homologous to eukaryotic Rad51 protein, forming nucleoprotein 

filaments wrapping around the damaged ssDNA and dsDNA of the sister chromatids. The entire process is 

regulated by ATP hydrolysis. "Copyright 2008 from Molecular Biology of the Cell by B. Alberts et al. 

Reproduced by permission of Garland Science/Taylor & Francis, LLC." 

 

 The HR pathway in E. coli comprises three important steps: (1) the pre-synapsis, 

where DNA ends are processed for proficient recombination to occur; (2) the synapsis, 

leading to the formation of a joint DNA molecule between the newly created DNA end (step 

1) and the homologous dsDNA template; (3) the post-synapsis and resolution, where DNA is 

repaired and the resolution of the Holliday junctions occurs (Wyman et al, 2004). The 

proteins participating in these processes in E. coli are listed in Table 3. 
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Stage of HR 
 

Process mediated 
Proteins 

  E.coli 

Pre-synapsis End-processing 

Negotiating ssDNA 

Recombinase loading 

RecBCD, RecQ, RecJ 

SSB 

RecBCD, RecFOR 

Synapsis Joint molecule formation by strand 

invasion 

RecA 

Post-synapsis Branch migration 

Resolution of crossed DNA strands 

RuvAB 

RuvC 
 

Table 3: Proteins participating in the various stages of HR, as identified by biochemical studies in bacterial cells 

(E. coli) (Wyman et al, 2004). 

 

1.3.2.2.  RecBCD vs. RecF pathway   

 DSB response in bacteria is rather diverse. In E. coli, for instance, two pathways are 

activated in response to DSBs: RecBCD and, in the case of RecBCD failure, RecF (Spies & 

Kowalczykowski, 2004). RecBCD is a helicase-nuclease complex in charge of initiation of 

DSB repair by HR and is regulated by a cis-acting DNA sequence named Chi (crossover 

hotspot instigator) (Figure 9). The mechanism by which RecBCD initiates DSB repair has 

been proposed to occur in a stepwise fashion (Dillingham & Kowalczykowski, 2008; 

Singleton et al, 2004): RecB starts to translocate along the DNA duplex to unwind the double 

strand. The nascent ssDNA subsequently passes through RecC before exiting for being 

digested by RecB nuclease domain. In RecC a helicase-like domain constitutes the Chi-

scanning site, which can recognize this characteristic sequence produced after a DSB occurs. 

Once the RecC subunit encounters the Chi sequence, further translocation into the nuclease 

domain is prevented while an attenuation of the nucleolytic activity takes place. RecBCD, 
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however, continues to translocate along the DNA upon Chi detection (Figure 9), leading to 

the formation of a ssDNA loop downstream of the recognition sequence. 

 

 
 

Figure 9: RecBCD catalyzed Homologous Recombination pathway in E. coli (Dillingham & Kowalczykowski, 

2008). RecBCD activity is stimulated by recognition of the χ sequence.  

 

 The holoenzyme complex can then begin the loading of RecA protein. RecB needs to 

be displaced from the surface of RecC, event that leaves the ssDNA loop available for RecA 

interaction. The newly generated ssDNA will then constitute the platform for RecA nucleo-

protein filament formation (Figure 9). Thus, the function of each subunit can be summarized 

as follows: RecB is a 3’-5’ helicase and a multifunctional nuclease, RecC is involved in Chi 

sequence recognition and RecD is a 5’- 3’ helicase (Dillingham & Kowalczykowski, 2008; 

Singleton et al, 2004; Spies & Kowalczykowski, 2004; Taylor & Smith, 1999).     

 The RecF pathway, on which more attention will be focused later, plays a role as a 

backup mechanism to the RecBCD pathway in some bacteria, such as E. coli, while it 

represents the major DSB repair pathway in others, such as Deinococcus radiodurans (Rocha 

et al, 2005). Both the RecBCD and RecF mechanisms contribute to the loading of RecA onto 
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the 3’ ssDNA overhang in order to create the nucleoprotein filament, which is then used for 

strand exchange in the HR process (Figure 9) (Morimatsu & Kowalczykowski, 2003; Savir & 

Tlusty, 2010). In E. coli, the resolution process is carried out by RuvABC complex (Table 3), 

which is also present in Deinococcus radiodurans (Sharples et al, 1999). 

 

 1.4.  Deinococcus radiodurans 

1.4.1.  A radiation-resistant bacterium  

 Deinococcus radiodurans (DR) is an extremophilic bacterium able to tolerate hundreds 

of DSBs in its genome. It has been classified as the “world’s toughest bacterium” by the 

Guinness Book of World Records (http://www.guinnessworldrecords.com) and nicknamed as 

“Conan the bacterium” (Huyghe, 1998). DR was first discovered in 1956 during attempts to 

sterilize canned meat using very high doses of γ-radiation (Anderson et al, 1956). The meat 

spoiled despite this treatment and the researchers decided to isolate and characterize the 

bacterium responsible for the spoiling. This was found to be able to survive extremely high 

doses of radiation (cells in exponential phase survived exposure to doses up to 15 kGy) and 

was named as Deinococcus radiodurans (Battista, 1997). DR has also been shown to 

withstand desiccation and the attack of chemical agents that damage the DNA. Because of its 

extraordinary resistance to harsh environmental conditions DR was considered to be of 

particular interest as a detoxifying agent for digesting toxic inorganic materials, such as 

mercury and solvent (toluene for instance) in highly radioactive sites (Brim et al, 2000). 

DR is a Gram-positive bacterium, even though it shows a similar cellular envelope to 

those of Gram-negative bacteria, with the presence of an outer membrane after the 

peptidoglycan layer (Battista, 1997). Its genome was sequenced in 1999 (White et al, 1999) 

and is composed of 2 chromosomes (2,648,638 and 412,348 base pairs), a megaplasmid 

(177,466 base pairs) and a small plasmid (45,704 base pairs) and contains approximately 3200 

genes encoding ~2000 proteins.  

 DR is widespread in the natural environment, but is especially found in soils rich in 

organic nutrients or in very dry areas. The resistance of DR to prolonged periods of 

dehydration is very important since, like exposure to high doses of radiation, desiccation can 

lead to a broad variety of DNA damage (Bauermeister et al, 2011). The ability of DR to 

withstand very high doses of irradiation (5-6 kGy) with no loss of viability (Figure 10) has 

much intrigued the scientific community, since there is no obvious reason, from the 

evolutionary point of view, why a living organism should have evolved such resistance. DR’s 

extreme resistance to Ionizing Radiation (IR) has been proposed to have evolved as a side 
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effect of its ability to tolerate prolonged periods of lack of water in its environment 

(Mattimore & Battista, 1996).  

 

 

Figure 10: Kinetics of DSB repair in DR exposed to 6,800 Gy γ-irradiation. The full genome is restored 3 hours 

after exposure to Ionizing Radiation. Figure taken from (Blasius et al, 2008).                                                                                     

 

 DR has developed very efficient mechanisms for maintaining the integrity of its 

genome, including the very accurate RecF recombinational repair pathway (Bentchikou et al, 

2010), which will be discussed in more detail later (§ 1.5.1-2). A number of hypotheses have 

been proposed to explain the extremophilic nature of DR: highly redundant genetic 

information may have a pivotal role for a successful genome restoration. In the log phase, DR 

exhibits 4-10 copies of its genome (Battista, 1997): possessing multiple copies of genetic 

information ensures the presence of intact DNA at all times for use as template for repair 

(Daly & Minton, 1995; Daly & Minton, 1997). DR’s genome also exhibits a tight structural 

organization and is condensed as a nucleoid, forming a ring-like structure. Such an 

architecture is believed to aid the repair of DNA damage caused by irradiation, by, in 

particular, arresting diffusion of DNA fragments generated by DSBs away from the genome 

(Zimmerman & Battista, 2005). DR is also able to efficiently export damaged DNA fragments 

out of the cell through the cell membrane. Exporting damaged fragments may reduce the risk 

of mutations arising from the reincorporation of damaged bases during DNA synthesis and 

fragments of DNA may also function as signal molecules for recruitment of the DNA repair 
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machinery (Battista, 1997). Finally, a high intracellular concentration of Mn2+ ions may 

provide a suitable scavenger for highly reactive oxygen species and free radicals (Slade & 

Radman, 2011), but its mechanism of action is still only poorly understood.  

 

1.4.2.   DSB repair in Deinococcus radiodurans  

 It was previously mentioned (Table 1) that IR introduces hundreds of DSBs into the 

chromosomes of living organisms, no matter whether these are bacteria, yeast or humans. In 

DR, DSBs are repaired and the integrity of its genome is restored in a just few hours (Cox et 

al, 2010) (Figure 10). UV irradiation causes the transcriptional induction of ~60 genes in DR 

(Tanaka et al, 2004). However, expression of a majority of proteins involved in DSB repair is 

not induced by irradiation of DR cells, suggesting that constitutive concentrations are 

sufficient for repairing the DNA damage (Liu et al, 2003; Tanaka et al, 2004).  

 

 
 

Figure 11: Representation of the DNA repair pathways used by D. radiodurans to reassemble its genome 

following exposure to IR. HR and ESDSA are the most important mechanisms for DSB repair. Single-strand 

annealing and NHEJ can replace the main HR pathway when this fails. Figure taken from (Blasius et al, 2008). 

 

Two principal mechanisms (Figure 11) are implicated in recognition and repair of DSBs 

in DR: Extended Synthesis-Dependent Strand Annealing (ESDSA) (Radman et al, 2009) 

and HR (Cox et al, 2010; Zahradka et al, 2006). ESDSA has unique features and requires two 

broken chromosomal copies and a single-round multiplex PCR-like step for production of 

long overhang fragments suitable for precise annealing (Zahradka et al, 2006). The entire 
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ESDSA pathway includes resection of DNA broken ends, RecA-mediated strand invasion and 

abundant DNA synthesis prior to the annealing step. The goal of ESDSA is to start the 

reassembly of “shattered chromosomes” into larger DNA fragments in order to provide 

suitable substrates for completion of DNA repair by HR (Zahradka et al, 2006). 

 

 1.4.2.1.  The RecF pathway  

 As described above, in E. coli, HR is accomplished by the RecBCD complex (Figure 

9). In DR, however, there are no homologues of RecB or RecC and the RecF pathway is the 

principal actor in HR (Bentchikou et al, 2010; Saikrishnan et al, 2009; Wang & Julin, 2004). 

Indeed, DR cells carrying knockouts of the recFOR (individual knockouts �recF, �recO and 

�recR) and recA (�recA) genes display an increased sensitivity to γ-irradiation (four orders of 

magnitude), implying that both the RecF complex and RecA are crucial for the viability of 

DR cells (Bentchikou et al, 2010). However, in the three knockout mutants targeting the 

RecFOR complex, it was found that the kinetics of DSB repair was comparable to that of the 

∆recA mutant, supporting a slow and progressive chromosome reassembly compared to wild-

type DR. As a result, DR cells devoid of RecF, RecO or RecR proteins likely repair damage 

using a RecA-independent mechanism, such as single-strand annealing or NHEJ (§ 3.2). 

Irradiation studies conducted on recFOR and recA mutant cells also highlighted a decrease of 

the fragmentation of DNA, suggesting an active role of these proteins in controlling nucleases 

for DSB repair. The similarity of the phenotypes of ∆recFOR and ∆recA mutants suggests the 

RecF pathway is largely dependent on RecA activity (Bentchikou et al, 2010).   

 

 1.4.2.2.  RecA loading onto stalled replication forks 

 While the mechanism of action of the RecF pathway is still only poorly understood, 

current evidence suggests that it is centered on the formation of two principal complexes: 

RecOR and RecFR, both involved in guiding RecA protein targeting to ssDNA (Figure 12). 

RecOR is thought to help RecA loading onto ssDNA binding protein (SSB)-coated ssDNA, 

with RecO displacing SSB from the DNA. RecFR, in contrast, is suggested to be involved in 

RecA loading onto ssDNA at ssDNA-dsDNA junctions (Bentchikou et al, 2010). A possible 

model (Figure 12) can be proposed from published results in which RecF binds first to the 

DNA, possibly in complex with RecR. RecO would then associate with the DNA and 

facilitate the loading of RecA onto the DNA, through interaction with RecR (Inoue et al, 

2008; Sakai & Cox, 2009). 
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Figure 12: Model of the initiation of DNA DSB repair involving the RecFOR complex in DR. The first step of 

DSB repair is accomplished by the ESDSA pathway. RecJ begins ssDNA resection in 5’ → 3’ direction, 

resulting in a 3’-overhanging ssDNA, as it occurs in E. coli (Chow & Courcelle, 2007). DdrA and DdrB proteins, 

highly induced upon irradiation, are involved in protection and binding of the 3’-ssDNA end, respectively. 

RecFOR presents the coated-ssDNA to RecA in order to form the nucleoprotein filament, which then triggers 

strand invasion and subsequent HR steps. Figure taken from (Bentchikou et al, 2010).    

 

 1.5.  SMC and SMC-like proteins 

Structural Maintenance of Chromosomes (SMC) proteins are widespread in all kingdoms 

of life (Figure 13) and are recognized as a fundamental class of proteins, acting as cohesins or 

condensins (§ 5.3), that regulate the structural and functional organization of chromosomes. In 

eukaryotic cells there are at least six members of the SMC family, SMC1-SMC6 (Figure 13), 

which assemble as heterodimers, while in prokaryotes and archaea there is only one SMC, 

which assembles as a homodimer (Hirano & Hirano, 1998). In bacteria, additional SMC-like 

proteins, such as MukB, SbcC and YhaN, are also found. There have been proposed to be 

involved in chromosome segregation and DNA repair (Graumann & Knust, 2009; Niki et al, 
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1992). However, it is still an open question whether bacterial SMCs can be considered as the 

functional counterparts of the eukaryotic condensin and cohesin proteins (Hirano, 2005).  
 

 
 

Figure 13: Phylogenetic tree of SMC protein family. Proteins cited in this work are indicated with black arrows. 

Figure taken from (Cobbe & Heck, 2004). 

 

1.5.1.  Architecture of SMC proteins 

 SMC proteins are related to the ATP-Binding Cassette (ABC) protein family (Hirano, 

2002) (Figure 14). However, while most ABC proteins are involved in importing and 
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exporting ions or small molecules (Jones & George, 2004), SMCs are implicated in DNA 

repair and cell-cycle checkpoint regulation. Both families of proteins share a globular 

Nucleotide Binding Domain (NBD), known as the head domain, which has been shown to 

bind and hydrolyze ATP (Hollenstein et al, 2007). The NBD of ABC and SMC proteins is 

principally formed by two motifs, called the Walker-A and Walker-B motifs (Walker et al, 

1982), which will be described in detail later (§ 5.4), that form the suitable pocket for ATP 

binding. In SMC proteins, the two conserved Walker motifs are connected by two long 

coiled-coils interconnected through a non-helical sequence (hinge domain) (Figure 15). The 

same structural organization is also exhibited by SMC-like proteins, of which Rad50, 

component of the MR complex (§ 5.5), is one of the most representative members. Structural 

information on SMC and SMC-like proteins is available (Griese & Hopfner, 2011; Lammens 

et al, 2004; Li et al, 2010; Lowe et al, 2001) (Figure 14), but at present a complete structure of 

a member of this protein family has not been obtained. 
 

 
 

Figure 14: Crystal structures of Pyrococcus furiosus Rad50 (pfRad50), Thermotoga maritima SMC (tmSMC) 

and Salmonella typhimurium HisP ATPase domains. The three structures are shown in the same orientation with 

their associated PDB codes. 

 

Based on the structural information available, it has been proposed that a SMC 

monomer folds back on itself, forming an anti-parallel arrangement of the coiled-coil and, 

more importantly, leading to the creation of the ATP-binding head domain (Hirano & Hirano, 

2002; Hirano, 2006) (Figure 15). In eukaryotes SMCs are mainly assembled as heterodimers: 

cohesins, for instance, are formed upon interaction of SMC1 and SMC3 and the entire process 

is regulated by ATP-binding and hydrolysis (Figure 15). Specific interaction partners, such as 
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Scc1 and Scc3, can afterwards lead to the formation of a functional DNA-binding complex 

(Gruber et al, 2003). 
 

 
 

Figure 15: Assembly of an active SMC protein complex in eukaryotic cells (in this particular case, cohesin). 

Once the heterodimer of SMC is formed, specific protein partners interact with the SMC1-SMC3 structure to 

constitute an active cohesin complex. Figure taken from (Wong, 2010). 

 

An extensive multi-approach study of SMCs highlighted the highly dynamic and plastic 

nature of this class of proteins (Hirano, 2005). Cycles of ATP binding and hydrolysis induce 

engagement or disengagement of the head domains (Figure 15), in order to recycle protein for 

the next round of DNA-binding (Hirano, 2005).  

 

 1.5.2.  SMCs and DNA binding  

 Interactions between SMC head domains can take place either through cycles of ATP-

binding and hydrolysis or mediated in an ATP-independent fashion. It has been speculated 

that eukaryotic SMC proteins are functionally differentiated in order to be involved in 

different aspects of the cell-cycle. This leads to the formation of various structural 

architectures like double-sized rings, filaments and rosette-like structures (Hirano, 2006) 

(Figure 16). However, only double-sized rings have been proposed for cohesins (Figure 17A-

B), while the other organizations are likely to be implicated in chromatin condensation 

(mediated by SMCs known as condensins). A detailed model of the putative SMC-DNA 

interaction is shown in Figure 16. It has been proposed that SMC dimers are initially present 

in a closed state in which two ATP molecules are bound to the head domains (step 1). 

Hydrolysis of ATP induces the disengagement of the head domains and can result in either 

hinge opening (step 2) or head flipping (step 3). A new cycle of ATP-binding could promote 
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intramolecular (steps 4 and 6) or intermolecular head domains association (steps 5 and 7). 

This can result in the formation of multiple possible modes of SMC–DNA interactions via 

‘ topological trapping’ (steps 4 and 6) (Hirano, 2005). Higher-order nucleoprotein complexes 

can be also generated by ATP-independent SMC-SMC interactions (steps 8–10). Cohesins, 

for instance, may hold two sister chromatids together (steps 4, 5 and 8), while condensins may 

organize DNA by one of the mechanisms shown in steps 6, 7, 9 and 10 (Hirano, 2005) (Figure 

16). 
 

 
 

Figure 16: SMCs interact with DNA in a highly dynamic manner. ATP hydrolysis regulates the head-head 

engagement and subsequent DNA interaction cycles. Inter- and intra-molecular engagement of the head domain 

of SMC lead to the formation of DNA rosette-like structures, which are essential for cohesion and condensing 

processes. Figure taken from (Hirano, 2005). 

 

 1.5.3.  SMC proteins and DNA cohesion  

 Cohesion is a crucial process involved in the regulation of chromatid separation during 

meiosis and mitosis. Proteins responsible for holding the sister chromatids together are called 
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cohesins and they are positioned on many locations along the length of the newly replicated 

DNA. Eukaryotic cohesin proteins consist of a heterodimer of two SMC proteins, SMC1 and 

SMC3 (Figure 15), which interact in an ATP-dependent fashion in order to wrap around the 

DNA, and form ring-like structures (Figure 17). Cohesins are also involved in HR where they 

are believed to interact simultaneously with the two sister chromatids required in the repair 

process. Experiments performed in different organisms have shed light on the role of cohesins 

in providing proximity between the sister chromatids and in stabilizing chromosomes when 

DSBs cause lack of continuity in the DNA backbone (Watrin & Peters, 2006). However, there 

are still many open questions regarding the mechanisms of action of cohesins. In particular, 

the role of ATP hydrolysis is not fully understood (Shintomi & Hirano, 2007).  
 

 
 

Figure 17: Proposed models of DNA cohesion mechanism. A) Suggested models for the interaction of SMC 

proteins with DNA (Feeney et al, 2010). The “handcuff” and “ring” models are shown and, so far, there is no 

clear evidence that favours one model rather than the other. B) Different models of the possible interaction of 

cohesins with sister chromatids. Figures taken from (Feeney et al, 2010) and (Hirano, 2006), respectively. 

 

There are currently two proposed models describing the possible mode of DNA-binding 

by SMC proteins, known as the ring (intramolecular) and the handcuff (intermolecular) 

models (Hirano, 2006) (Figure 17), both of which are supported by in vitro studies (Feeney et 

al, 2010). In the ring model two DNA molecules are encircled by a single SMC dimer. 
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Evidence for this model comes from Fluorescence Resonance Energy Transfer (FRET) 

measurements and co-immunoprecipitation experiments during which multiple cohesin 

complexes were not detected after DNA binding, suggesting that only a single ring is wrapped 

around the two duplex DNAs (Feeney et al, 2010). The two-ring “handcuff” model, in 

contrast, proposes that each sister chromatid is encircled by one cohesin-ring and is supported 

by experiments which revealed self-interaction of Scc1 protein. This would lead to a higher 

order organization such as a tetrameric assembly in which SMCs can then interact through 

ATP-binding and, thus, associate two DNA duplexes (Feeney et al, 2010). 

 Cohesin proteins are loaded onto DNA in an ATP-dependent fashion (Figure 16-17). 

Dissociation occurs, once the mitosis process takes place, through phosphorylation of one of 

the interaction partners, notably Scc1, which induces opening of the cohesin ring (Hauf et al, 

2005). However, the hinge domain has also been suggested as a potential site of regulation of 

the opening/closing of the long cohesin arms (Shintomi & Hirano, 2007), leaving even more 

uncertainty regarding the details of the full process (Figure 17B). 

 

 1.5.4.  Rad50, a well studied SMC-like protein 

 ABC transporter and SMC NBDs are characterized by two well conserved motifs, the 

Walker-A and –B (Figure 18A), and by a specific sequence involved in ATP binding, named 

the signature sequence (Altenberg, 2003; Davidson et al, 2008). The Walker-A motif contains 

the typical GXXXXGK(T/S) sequence, where X can be any amino acid. The Walker-B motif 

was originally predicted to be (R/K)XXXXGXXXXLhhhhD (Walker et al, 1982), but has 

recently been revised to the more common hhhhDE primary structure (Hanson & Whiteheart, 

2005), where h denotes any hydrophobic residue. The overall arrangement of the NBD 

architecture is similar to a Rossmann fold (Figure 14), with six parallel β-strands linked to 

two pairs of α-helices (Hirano et al, 2001; Hirano & Hirano, 2004; Hirano, 2005; Rao & 

Rossmann, 1973). The Q-loop (coloured in turquoise in Figure 18B) is also involved in 

coordination of the Mg2+ atom. 
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Figure 18: Close-up view of the ATP-binding site of Pyrococcus furiosus Rad50. A) ATP analog, AMP-PNP, is 

shown in density, with the conserved Walker and signature motifs labeled. B) Residues interacting with AMP-

PNP are shown as sticks. Mg2+ ion is shown as a ball (green). C) Details of the most relevant residues involved 

in Mg2+ coordination (Q-loop and Walker-B motif) and ATP-binding (Walker-A motif and signature sequence). 

D) Representation of the localization of the two AMP-PNP molecules in the arrangement of Rad50 dimeric state. 

Figures A, B and D taken from (Mockel et al, 2011).  

 

 ATP hydrolysis is important in many processes in which energy is required to achieve 

protein function. The γ-ortho-phosphate of the ATP is cleaved by nucleophilic attack of a 

water molecule (Figure 18C), producing ADP and free inorganic phosphate. SMC proteins 

use ATP binding to induce head-head engagement (Hirano, 2002). Structural studies have 

confirmed that ATP binding induces the dimerization of NBDs (Figure 18D), a process 

required to form the full nucleotide-binding pocket (Hopfner et al, 2000; Lim et al, 2011; 

Williams et al, 2011). The ATP binding and hydrolysis cycle of SMC proteins has been 

dissected through site-directed mutagenesis of residues from the conserved Walker-A, 

Walker-B motifs and the signature sequence (Hirano et al, 2001; Hirano & Hirano, 2004; 

Lammens et al, 2004). The conserved lysine residue from the Walker-A motif and the 

signature sequence are responsible for nucleotide recognition and binding (Hanson & 

Whiteheart, 2005). The Walker-B motif is characterized by the presence of a glutamate 

residue located close to the lysine of the Walker-A motif, which catalyzes the nucleophilic 

C 
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attack of a water molecule on the γ-phosphate of ATP. Mutating this conserved glutamate to 

glutamine in the conserved Walker-B motif, for example, disrupts the ATPase activity of 

SMC proteins (Lammens et al, 2004; Schwartz & Shapiro, 2011) and can result in inhibition 

of chromosome segregation or, more generally, interfere with stable association with DNA. 

This could be due to the induced “stickiness” of these mutated head domains, which trap the 

ATP in their binding pockets (Hirano, 2005). The effects of mutations occurring in the 

Walker-A motif and involving the ATP-induced protein dimerization (Koroleva et al, 2007) 

are not fully understood. 

 

 1.5.5.  The MRN complex 

 As mentioned previously (§ 3.1), the MRN complex, consisting of Mre11, Rad50 and 

Nsb1 proteins, is involved in various aspects of DSB repair in eukaryotes (D'Amours & 

Jackson, 2002; Kanaar & Wyman, 2008; Wyman et al, 2009). Rad50 and Mre11 are 

suggested to interact with the damaged DNA, while Nbs1 (Xrs2 in yeast) associates with the 

MR complex, in a stoichiometry M2:R2 (Figure 19), upon activation of the cell-cycle 

checkpoint (Assenmacher & Hopfner, 2004; Dupre et al, 2006). Chromosomal aberrations can 

derive from abnormal regulation of MRN complex signalling pathway, which is mediated by 

ATM. Besides HR, the MR complex is also involved in other DNA repair pathways, like 

NHEJ (§ 2.3.1) and repair of interstrand cross-links. 

 Rad50 is a member of the SMC protein family and contains an ABC-like head domain, 

which can bind and hydrolyse ATP (Assenmacher & Hopfner, 2004). The head domain of 

Rad50 binds and hydrolyses ATP in order to drive the DNA-binding and processing activities 

of the MR complex (Mockel et al, 2011) (Figure 19-20). A rather flexible (van Noort et al, 

2003) and extended coiled-coil domain (~50nm in length) protrudes out of the head domain 

and allows for intramolecular association of the NBDs on one end, while forming a hook 

motif on the opposite end (Figure 19). DNA is bound by the globular NBD domains with the 

coiled-coils on either side of them (de Jager et al, 2001; Hopfner et al, 2001; Lim et al, 2011; 

Williams et al, 2011; Williams et al, 2008) (Figure 7). ATP binding to the NBD stimulates 

engagement of the two head domains and repositioning of the coiled-coil domains (Figure 

20). Extensive studies have been performed on the MRN complex over the past decade. These 

include structural studies on the archaeal Rad50 protein from Pyrococcus furiosus alone and 

in complex with the Mre11 nuclease (Hopfner et al, 2002; Hopfner et al, 2001; Hopfner et al, 

2000; Lammens et al, 2011; Lim et al, 2011; Mockel et al, 2011; Williams et al, 2011).  
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Figure 19: Dimerization process of Rad50 protein. A) Crystal structure of P. furiosus M2R2 complex. Front view 

is shown. B) View from the top is shown, with the Mre11 molecules indicated. C) Proposed model of interaction 

of the MR complex with an ATM dimer and sister chromatids. Figure taken from (Assenmacher & Hopfner, 

2004).                        

 

 The crystal structure of the Thermotoga maritima MR complex (tmMR) (Lammens et 

al, 2011) provided a model for the interplay of Mre11 and Rad50 in bridging dsDNA 

molecules (Williams et al, 2011). Entrance of ATP in the conserved binding pocket leads to a 

higher affinity DNA binding site. Mre11 dimers can tether and process both DNA duplexes 

(Figure 20) arising from either IR damage or in the case of fork collapse during DNA 

C 
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replication (Williams et al, 2008). Interaction of the damaged DNA with the sister chromatid 

is mediated by the Rad50 hook, through binding of Zn2+ ions (Hopfner et al, 2002). 

  Recent published work allowed the proposal of an atomic level model of the ATP-

dependent cycle of tmMR (Figure 20). A large transition is induced by ATP-binding, 

demonstrating that the tmMR is capable of adopting a closed state, even in the absence of 

dsDNA (Mockel et al, 2011). The proposed model (Figure 20) suggests a cooperative switch, 

driven by ATP, of Mre11 from the open to the closed state. The model could explain the 

entire mechanism of DNA tethering by the MR complex, since it has already been proven that 

Rad50 head domains, engaging in an ATP-dependent manner, can assemble DNA fragments 

(Bhaskara et al, 2007). 
 

 
 

Figure 20: Hypothetical model for ATP-dependent tethering of dsDNA ends by the tmMR (Mockel et al, 2011). 

A) Conformational changes of the MR module could be responsible for the unwinding of dsDNA and promote 

endonucleolytic cleavage of ssDNA. B) The extended coiled-coil of Rad50 undergoes an extensive 

conformational reorientation, which could prevent intramolecular MR interactions upon ATP-dependent 

engagement from occurring. As a consequence, MR intermolecular interactions are the most favoured. Figure 

taken from (Mockel et al, 2011).  

 

 1.6.  RecN: an unusual SMC-like protein 

 1.6.1.  RecN domain organization 

 The bacterial RecN protein, like Rad50, is involved in DSB repair and belongs to the 

SMC protein family with which it shares a number of common structural and functional 

features (Ayora et al, 2011; Graumann & Knust, 2009; Reyes et al, 2010). Phylogenetic 

analysis (Figure 13) highlights how MukB, Rad50 and RecN are related both to each other 

and to other SMC proteins (Cobbe & Heck, 2004). A schematic model of RecN has been 

Rad50 Rad50 Rad50 Rad50 
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proposed (Figure 21) in which the protein adopts the same architecture as other bacterial SMC 

proteins (Graumann & Knust, 2009).   
  

 
 

Figure 21: Schematic models of the structures of SMC and SMC-like proteins. The head domains form globular 

architectures, which have been shown to be responsible for ATP-binding and hydrolysis. These catalytic head 

domains are connected by a long coiled-coil in the case of SMC, SbcC and YhaN proteins. In RecN the length of 

the coiled-coil is much shorter. It is not known yet the reason for such a difference. Moreover, the mode of 

dimerisation of RecN is also not known (indicated as a question mark in the figure). Experimental evidence and 

bio-informatics studies reveal that all SMCs have interaction partners that are implicated in protein function 

(Graumann & Knust, 2009). An interaction partner (PNPase protein) has recently been proposed also for RecN 

(Cardenas et al, 2011). Figure taken from (Graumann & Knust, 2009). 

 

 Sequence alignment of the most studied bacterial RecN proteins shows that they possess 

highly conserved regions, which are predicted to be related to ATP hydrolysis activity 

(Funayama et al, 1999) (Figure 21). D. radiodurans RecN presents a unique N-terminal 

extension (Figure 22). This feature is not unusual in DR, since a number of other proteins of 

the recombinational repair pathway also have unusual extensions (Cox & Battista, 2005). 

However, it is unclear whether this extension affects the function of the protein. 
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Figure 22: Amino acid sequence alignment of bacterial RecN. RecN proteins from D. radiodurans (dr), E. coli 

(ec), B. subtilis (bs), N. gonorrhoeae (ns), H. influenzae (hi), B. fragilis (bf), A. aeolicus (aa) and H. pylori (hp) 

were aligned. This and all other sequence alignments shown in this work were made using ClustalW (Goujon et 

al, 2010) and ESPript (Gouet et al, 1999). 

Putative N-terminal head domain 

Putative coiled-coil domain 

Putative C-terminal head domain 
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 The N- and C-terminal regions of SMC and SMC-like proteins, forming the NBDs and 

containing the major functional motifs, are particularly conserved. This is also the case for 

RecN (Figures 22-23). 
 

 

 

Figure 23: Amino acid sequence alignment of the putative head domain of RecN with those of T. maritima SMC, 

P. furiosus Rad50 and P. furiosus SMC.  

 

Secondary structure prediction analysis of the RecN amino acid sequence highlighted 

the presence of a long α-helical central region, which likely represents a characteristic 

conserved structural feature of SMC-like proteins: the coiled-coil domain. This kind of 

architectural organization is a remarkable feature of all proteins belonging to the SMC family. 

It adopts a typical anti-parallel helical arrangement (de Jager et al, 2001) and has been 

suggested to contain local regions of flexibility (van Noort et al, 2003). In Rad50 and all 

bacterial and eukaryotic SMC proteins, the coiled-coil has a rather conserved length, between 

900 and 1250 amino-acid residues, corresponding to a ~50 nm long structure. A dimerization 
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interface in the form of a hinge or hook domain (Hopfner et al, 2002; Li et al, 2010; Nasmyth 

et al, 2002) characterizes the region where the coiled-coil turns in order to form the anti-

parallel filament. These regions drive dimer formation, which is needed to open/close the 

coiled-coil arms for holding DNA (Hirano, 2002). In RecN, however, the anti-parallel helical 

architecture and the dimerization interface, for which very little is known so far, is proposed 

to be much shorter than for SMC proteins (Graumann & Knust, 2009; Lowe et al, 2001) 

(Figure 21, 22). 

 

1.6.2.  RecN and DSB repair 

 HR has been presented as the most efficient pathway used by DR to restore its genome 

integrity after being exposed to harsh conditions. Involvement of RecN in the early steps of 

DSB recognition was revealed by in vivo studies conducted on Bacillus subtilis during which 

fluorescent labelled RecN was shown to localize to discrete foci following exposure to UV-

irradiation or chemical agents causing DNA damage (Kidane et al, 2004; Sanchez & Alonso, 

2005). RecN was therefore proposed to act as a sensor for DSBs. 

The response of DR to IR is rather complex and involves the transcription of essential 

genes, a number of which encode for DNA repair proteins. However, recN gene is 

constitutively expressed in DR and its transcription is not upregulated in response to DSBs 

(Tanaka et al, 2004). In this way, the protein is always readily available at an early stage after 

induction of DNA damage. In B. subtilis, RecN has been shown to bind and protect 3’-ssDNA 

tails of duplex DNA (Sanchez & Alonso, 2005), while in DR, RecN displays preference for 

dsDNA (Reyes et al, 2010). Its ATP hydrolysis activity is also stimulated by addition of 

dsDNA. In addition, DR RecN shows cohesin-like activity (Rees et al, 2009; Reyes et al, 

2010), which implies a putative role in tethering DNA ends, as suggested for Rad50 (§ 5.5).  

In fact, RecN promotes dsDNA-tethering in a similar way to SMC cohesins, regardless 

of the type of DNA ends (blunt or overhangs). This lack of specificity suggests that RecN 

may carry out a structural role in tethering two DNA duplexes for subsequent repair by the 

HR machinery. 
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Objectives of the thesis  

 

 The aim of this PhD project was to gain a detailed understanding of the mechanisms 

underlying DSB recognition in D. radiodurans, which are thought to be regulated by RecN.  

 At the beginning of the project no structural information was available for DR RecN 

and very little was known in the literature about its function. The main goal was therefore to 

obtain structural information using X-ray crystallography, Small Angle X-ray Scattering or 

Electron Microscopy techniques. A second goal was the characterization of the role of RecN 

in DSB repair in DR, with a particular focus on the relationship between DNA-binding and 

ATP hydrolysis. 

 The achievements obtained at the end of this PhD work are presented here and have also 

been the subject of three manuscripts, included in Appendix-II: 

I. Pellegrino S., Radzimanowski J., McSweeney S., Timmins J., Expression, purification 

and preliminary structural analysis of the head domain of Deinococcus radiodurans 

RecN (2012) Acta Crystallographica section F, 68, pag. 81-84 

II. Pellegrino S., de Sanctis D., McSweeney S., Timmins J., Expression, purification and 

preliminary structural analysis of the coiled-coil domain of Deinococcus radiodurans 

RecN (2012) Acta Crystallographica section F, 68, pag. 218-221. 

III.  Pellegrino S., Radzimanowski J., de Sanctis D., McSweeney S., Timmins J., Structural 

and functional characterization of RecN: New insights into double-strand break repair 

(2012) Nucleic Acids Research, (submitted). 
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Summary of chapter 2 

 

 This chapter describes the principal protocols used in this thesis work: from DNA 

amplification to cloning, from protein expression to crystallization to ultimately finish with a 

section dedicated to X-ray diffraction, data processing and protein structure determination.  

 

 

Résumé du chapitre 2 

 

 Ce chapitre décrit les principaux protocoles utilisés dans ce travail de thèse : de 

l'amplification de l’ADN au clonage, de l'expression des protéines à la cristallisation pour 

finalement terminer avec une section dédiée à la diffraction aux rayons X, au traitement de 

données et à la détermination de structure des protéines. 
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2.1. Gene amplification 

 DNA fragments codifying for the proteins of interest were amplified by Polymerase 

Chain Reaction (PCR), using either DR genomic DNA (method described in paragraph 1) or 

plasmid DNA. The full recN gene was amplified in order to produce the full-length protein. 

Later, other constructs were designed and the relevant DNA sequences were amplified for 

subsequent cloning into a suitable vector for protein expression (§ 2). Primers used in this 

study are listed in Table 4. 
 

Construct Forward primer sequence Reverse primer sequence 

RecN 5’−CACCATGCGCAAGGCC 
CGTA−3’ 

5’−TTAGCCAGCCAGCAACTC 
GC−3’ 

RecNhead N-terminus  5’−CACCATGACCCGCAAG 
GCCCGTA−3’ 

5’−CACAAGCGACGTTGGATG 
CTTGCTCGACTCGCTGGCCT 
GGAGGCGCTCC−3’ (Rev_1) 

RecNhead C-terminus  5’−GCCAGCGAGTCGAGCAA 
GCATCCAACGTCGCTTGTG 
CCACGAG−3’ (For-2) 

5’−CCAACGTCGCTTGTGCCA 
CGAGGCAGCGTGGACGCCC 
TGCACGCCG−3’  (For-1) 

5’−TTAGCCAGCCAGCAACTC 
GC−3’ 

RecNcc domain 5’−CACCCAGCGCGAGCGGG 
CGCGG–3’ 

5’−TTACACATCGGCTTGCAG 
GCTGCCCG−3’ 

RecN Coiled-coil 240-387 5’−CACCGCGCAAGCGGCGGC 
GGGC−3’ 

5’−TTAGGCCTCGCGTTCGCG 
GGCG−3’ 

RecN�dd N-terminus 5’−CACCATGACCCGCAAG 
GCCCGTA−3’ 

5’−CACAAGCGACGTTGGATG 
CTTGCTCGACTCGTGGAGGT 
TGGAAAGG−3’ (Rev_1) 

RecN�dd C-terminus 5’−CGCGGCGGAGTCGAGCA 
AGCATCCAACGTCGCTTGTG 
CCACGAG−5’ (For-2) 

5’−CCAACGTCGCTTGTGCCA 
CGAGGCAGCGTGCAGGCCA 
TCGCGG−3’ (For-1) 

5’−TTAGCCAGCCAGCAACTC 
GC−3’ 

RecN34 5’−CACCATGCTCTCGCGGC 
TGGAAATTCGCAACC−3’ 

5’−TTAGCCAGCCAGCAACTC 
GC−3’ 

RecN∆47 5’−CACCATGCGCAAGGCC 
CGTA−3’ 

5’−TTATTCCACCTTGTAGTGG 
TGGTGG−3’ 

 

Table 4: List of the  DNA oligonucleotide primers used for PCR amplification of the various RecN  constructs 

(reported on the left) which were further characterized in this work. The vector-specific sequence (CACC) 

required for TOPO-cloning is indicated in red. 
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 PCR reactions were prepared as follows, in a final volume of 25 µl:  

� Primer forward: 1 µl (20 µM stock) 

� Primer reverse: 1 µl (20 µM stock) 

� dNTP mix: 1 µl (10 mM stock concentration) 

� Buffer High Fidelity Polymerase: 2.5 µl (10X) 

� High Fidelity Polymerase enzyme mix: 0.25 µl (100 units) 

� Genomic DNA: 0.5 µl genomic or plasmid DNA (~100 ng/µl) 

� DMSO: -/+ 1.25 µl (final concentration 5%) 

� H2O: 19.75 (18.5) µl 

 

 Reactions were carried out in a Thermocycler (Eppendorf) using the following steps: 

1. 95  ºC  for 5 minutes 

2. 95  ºC  for 1 minute 

3. 50-58  ºC  for 1 minute  

4. 72  ºC  for 1-2 minute 

5. 72  ºC  for 10 minutes 

6. 4    ºC HOLD 

  

 The temperature of annealing (TA; step 3) varied depending on the melting temperature 

and the length of the primers. The elongation time (step 4) changed according to the length of 

the sequence to be amplified since the High Fidelity (HF) polymerase can synthesise ~1000 

nucleotides per minute.  

 Amplification of the DNA fragment codifying for RecNhead was particularly 

complicated, since a peptide linker of 14 residues, with amino acid sequence 

ESSKHPTSLVPRGS, was designed to join the N- and C-termini of RecN. Two different 

PCRs were set up for amplification of the single N- and C-termini fragments using the 

primers listed in Table 4. A third reaction was performed using the original forward and 

reverse primers used for full-length RecN amplification. The N- and C-termini of the 

construct codifying for the RecNhead domain contain an overlapping region, which was 

accounted for in the design of the primers (Figure 24). This is shown schematically in Figure 

24. 

 

 

30-35 cycles 
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Figure 24: Schematic of the N- and C-terminal fragment amplification of RecNhead protein. A) Schematic 

diagram of the N-terminal fragment for the RecNhead domain. B) Schematic diagram of the primers designed 

for creation of the C-terminal region of RecNhead construct. The N-terminal portion will have an overlapping 

sequence (contained in the so called Rev_1) complementary to For_2 primer. 

 

 The two overlapping forward primers, in the case of C-terminal DNA amplification, 

were mixed at different ratios. The “For_1” was included at a concentration 10 times lower 

than “For_2”. The first 5 cycles of PCR (with a TA offset at 58 °C) used the fragment specific 

forward primer (“For_1”) for creating the first part of the overlapping region with the second 

forward primer. After the first cycles, the primer “For_2” will be the only forward primer 

available (given the higher concentration), together with the reverse primer, and the complete 

fragment will be amplified. The TA was decreased to 55 °C for the last 30 PCR cycles. The 

two resulting DNA fragments corresponding to the N- and C-termini of RecN were purified 

and then mixed at equivalent concentrations for the next amplification. The original N-

terminal forward primer and the C-terminal reverse primer for the full-length RecN were used 

at this stage. The first 5 cycles of PCR were performed in the absence of both primers, in 

order to stimulate annealing and extension of the overlapping region of the two fragments 

(For_2 with Rev_1). Once this step occurred, samples were placed on ice and supplemented 

with primers at the concentrations previously reported, and returned to the thermocycler to 

complete the remaining 30 cycles of PCR.  The same principle was adapted for the 

amplification of the construct codifying for the deletion mutant, namely RecN�dd, which also 

contained the linker peptide of 14 residues. 

(A) 

(B) 
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 All the PCR products were run on a 1% agarose gel (Figure 25) prepared in a solution 

0.5X TBE (10x Stock: 108 g Tris base, 55 g Boric acid, 40 ml 0.5 M EDTA pH 8.0 for 1 L) 

containing SYBR Safe (Invitrogen). DNA bands were excised and purified using the 

QIAquick Gel Extraction kit (QIAGEN) and finally eluted in 30 µl of EB buffer (10mM Tris-

HCl pH 8.5). 
 

 

 

 2.2.  Cloning 

 Amplified DNA fragments coding for the target proteins were sub-cloned into a 

specialized vector for transformation into E. coli cells. The forward primers all included a 

characteristic nucleotide sequence, namely CACC, upstream of the gene specific sequence 

(Table 4). This is a feature required for directional cloning into pET151 with TOPO 

technology (Invitrogen). The principle of directional cloning, through a selective DNA 

topoisomerase, of the target fragment into the TOPO vector is summarized in the figure below 

(Figure 26): 

 

 
 

Figure 26: Schematic diagram of the directional cloning that occurs in pET-TOPO vectors. 

 

Map of pET151-TOPO vector is shown in Figure 27. The poly-histidine tag (6xHis) together 

with the TEV cleavage site, are present upstream the gene insertion site. This vector contains 

the resistance for Ampicillin.    

Figure 25: Purified fragments of RecNhead domain 
and RecN34 constructs (on the right). Different DNA 
starting materials were tried (plasmid and genomic 
DNA) for RecNhead and in absence or presence of 
5% DMSO. M: 1kb ladder (Fermentas). 

M 
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Figure 27: Schematic map of the pET151-TOPO vector used for cloning all the different constructs used during 

this work. The gene insertion site is indicated (TOPO), together with the poly-histidine tag (6xHis) and the TEV 

cleavage site (TEV). Figure taken from http://www.invitrogen.com/site/us/en/home.html 

 

The reaction is carried out at Room Temperature (RT) for 5-30 minutes (depending on the 

length of the insert of interest) and then the entire reaction mix is used for the following step 

of transformation into E. coli cells. 

 

2.3. Transformation of competent cells and control digestion of the plasmid 

 The products of the cloning reactions were then used for transformation of competent E. 

coli TOP10 cells (Invitrogen). For each transformation, 50 µl of cells were incubated on ice 

with 6 µl of the cloning reaction for 30 minutes. A heat shock of 45 seconds at 42 ºC was used 

for relaxing the cell membrane and allowing the vector to enter. Cells were placed 5 minutes 

on ice and then supplemented with 500 µl of SOC medium (2% Bacto-tryptone, 0.55% yeast 

extract, 10 mM NaCl, 10 mM KCl, and after autoclaving add 10 mM MgCl2, 10 mM MgSO4, 

20 mM glucose). All the cells were plated on LB-agar plates with the appropriate selective 

antibiotic (in this specific case, ampicillin at 0.1 mg ml-1) to allow for selection of 

recombinant clones. The plates were incubated at 37°C for at least 12 hours, until separate 

colonies could be picked and tested for the presence of the gene of interest. Single colonies 

were grown in 5 ml of LB supplemented with 1/1000 ampicillin (stock concentration: 100 mg 

ml-1) and then used for extraction of the plasmid containing the insert of interest. A Miniprep 

kit (QIAGEN) was used for extracting and purifying plasmid DNA, which was finally eluted 

in 30 µl of buffer EB. Digestion of a small aliquot (10 µl) with the restriction enzymes SacI 
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and NcoI (New England Biolab) allowed to detect whether the desired insert was present. 

Digestion reactions showing the presence of a DNA band of the right size (Figure 28) were 

sent for DNA sequencing to check the correctness of the DNA sequence 
 

 

 

2.4. Expression and protein purification 

The constructs amplified and cloned in the pET151 vector were all transformed into E. 

coli cells, strain BL21 Star (DE3) using the protocol described in § 3. Cells were grown at 37 

ºC for 2.5-3 hours, until Optical Density at 600 nm (OD600) reached 0.6-0.9. At this point, 

isopropyl-b-D-thiogalactopyranoside (IPTG) was supplemented at a final concentration of 1 

mM in order to induce protein expression. 

 Lysis of the proteins was achieved by mechanical force either in a cell disrupter 

(CONSTANT SYSTEMS Ltd.) operating at 195 MPa at 4°C or with a French press (SLM 

Instruments, maximum pressure achieved 1000 psi). The composition of the buffer used for lysis 

was 50 mM Tris-HCl pH 7.5 (RecN), 1 M NaCl, 5 mM MgCl2, 5% glycerol and 5 mM β-

mercaptoethanol (β-ME) for RecN (L-1) or 50 mM Tris-HCl pH 8, 1M NaCl, 5mM MgCl2 

and 5 % glycerol for RecNhead, RecNcc and RecN�dd (L-2). The resulting lysate was 

centrifuged at 48,384 g at 4°C and the supernatant collected and loaded onto a 5 ml 

HisTrap™ HP column (GE Healthcare), previously equilibrated in buffer A-1 containing 50 

mM Tris pH 7.5 (pH 8.0 for RecNhead, RecNcc and RecN�dd, named as A-2), 1 M NaCl 

(300 mM for RecNhead, RecNcc and RecN�dd), 5 mM MgCl2, 5mM imidazole. A wash with 

at least 5 column volumes of buffer A was done before starting the elution step. When the 

absorbance reading was stabilized, protein was eluted either with a linear gradient, from 0 to 

100% over 40ml, or by steps of buffer B-1 containing 50 mM Tris pH 7.5 (pH 8.0 for 

RecNhead, RecNcc and RecN�dd and named as B-2), 1 M NaCl (300 mM for RecNhead, 

RecNcc and RecN�dd), 5 mM MgCl2 and 500 mM Imidazole. RecN was eluted in two steps: 

one at 4% of buffer B (20 mM imidazole) for removal of most of the contaminants, and the 

second at 100% of buffer B, which strips the protein of interest from the affinity-column. All 

Figure 28: Digestion control for some of the colonies grown 
in LB+agar supplemented with the appropriate antibiotic. 
On the top of the gel the vector alone is visible, while the 
lower bands correspond to the desired fragments (black 
arrows). M: DNA ladder (100 bp, Fermentas). 

M M 
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the other constructs, in contrast, were eluted using a linear gradient of imidazole. RecNhead, 

RecNcc and RecN�dd eluted at 30-35 % of buffer B, that is approximately 150-180 mM of 

imidazole. Fractions containing the target protein were analyzed by SDS-PAGE (described in 

the next section), pooled and dialyzed overnight at 4°C in buffer C-1 containing 50 mM Tris 

pH 7.5 (pH 8.0 for RecNhead, RecNcc and RecN�dd, named as C-2), 1 M NaCl (300 mM for 

RecNhead, RecNcc and RecN�dd) and 5 mM MgCl2. At the same time His-tag cleavage was 

performed by addition of tobacco etch virus (TEV) protease (at a final concentration of 0.1 

mg ml-1), 0.5 mM EDTA and 1 mM DTT to the protein solution. 

 A second affinity chromatography (through a gravity-flow Ni2+-column) was performed 

using Ni-Sepharose Fast-Flow (GE Healthcare) in order to remove the 6xHis-tag and the TEV 

protease from the protein solution prior to size-exclusion chromatography (SEC). Proteins 

were loaded onto the column and then extensively washed with buffer C, until no more 

protein was detected (by using the Bradford solution). A second wash was performed with a 

few milliliters of buffer A. Elution with buffer B was performed for stripping all the species 

specifically bound to the column. Samples were collected at each step and were then analyzed 

by SDS-PAGE.  

 Proteins were then concentrated to 10-15 mg ml-1 by ultrafiltration (Amicon Ultracel 

10-30K cutoff, depending of the protein) for being injected onto a Gel Filtration (GF) column. 

Superdex 200 (GE Healthcare) columns (analytical or prep grade) were pre-equilibrated with 

buffer D-1 containing 50 mM Tris pH 7.5 (pH 8.0 for RecNhead, RecNcc and RecN�dd, 

named as D-2), 1 M NaCl (300 mM for RecN) and 5 mM MgCl2. Proteins were then 

separated according to their molecular weight but also influenced by the shape they adopt in 

solution. Fractions containing the main elution peak were collected, verified by SDS-PAGE 

and then concentrated for further biophysical or crystallization experiments. 

At the end of each step of purification, protein concentration was measured. The 

Nanodrop 1000 spectrophotometer (Thermo scientific) was used in the case of RecN protein: 

it measures the absorbance of the sample in the range of the visible-UV (750-220 nm) and 

calculates the concentration of the sample using the Lambert-Beer law: 

lCA ε=                  (Eq. 1) 

where A is the absorption measured at 280 nm, ε the molar absorption coefficient (M-1cm-1), l 

the pathlength (cm) and C the protein concentration (M). Concentration measurements for the 

head and coiled-coil domains were performed using the Bradford assay (Biorad). 1 µl of the 

sample was diluted in 999 µl of Bradford solution (red-brown colour), which is pre-diluted in 
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distilled H2O (1:5). The solution turns blue in the presence of protein and the absorbance at 

595 nm is then measured. A standard curve created using bovine serum albumin (BSA) was 

then used to convert the absorbance measurement into protein concentration. 

 

2.5. Mutations of the conserved functional residues 

Selected point mutations were introduced into full-length RecN and RecNhead in order 

to disrupt ATP-binding and hydrolysis ability. Single point mutations at the Walker-A motif, 

namely K67A, and at the Walker-B motif, namely E472A and E472Q, were introduced using 

the QuickChange Site-directed Mutagenesis kit (Agilent Technologies), while double point 

mutations, namely K67A/E472Q and K67A/E472A, were introduced with the QuikChange 

Multi Site-Directed Mutagenesis Kit (Agilent Technologies). These protocols introduce the 

desired mutation through a one step PCR reaction. Following digestion of the methylated, 

non-mutated DNA plasmid with a specific restriction enzyme (DpnI), the recovered plasmid 

carrying the mutation can be transformed into supercompetent E. coli cells (XL1-Blue). The 

vector is then amplified, extracted and purified as previously described (§ 3) and then used for 

transformation into competent cells for protein expression (BL21 Star).  

Mutants were then expressed and purified accordingly to the protocols described above 

(§ 4) for RecN and RecNhead domain in order to compare the behavior of the different 

proteins in solution. Elution volumes and hydrodynamic radii were used as means for 

estimating changes in the properties of these proteins in solution. 

 

 2.6. SDS and Native PAGE 

Purification of the proteins of interest required regular analysis of the resulting fractions 

in denaturing conditions through sodium dodecyl sulfate (SDS) polyacrylamide gel 

electrophoresis (PAGE). 10 to 15% gels were prepared as described in (Sambrook et al, 

1989). Biorad mini-Protean II gel systems were used to run gels at 150-200 V. The solutions 

were prepared as follows: 

� Running buffer (10X) pH 8.3: 30 g/l Tris base, 144 g/l glycine and 10 g/l SDS 

� SDS sample buffer (4X) for 8 ml: 3.8 ml H2O, 1 ml 0.5 M Tris-HCl pH 6.8, 0.8 ml 

glycerol, 1.6 ml 10% (w/v) SDS, 0.4 ml β-mercaptoethanol and 0.4 ml 1% (w/v) 

bromophenol blue. 

 Under denaturing conditions, the proteins are separated and migrate only accordingly to 

their respective sizes, since the SDS masks their overall protein charge. 10% acrylamide gels 

were prepared for RecN, containing, for a 5 ml final solution, 1.98 ml H2O, 1.67 ml 
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Acrylamide 30%, 1.25 ml Tris 1.5M at pH 8.8, 50 µl of SDS 10%, 50 µl of APS 10% and 2 µl 

TEMED. 15% acrylamide gels were instead prepared for RecNhead and RecNcc proteins and 

here water was replaced by acrylamide (2.5 ml) while keeping constant the amount of all the 

other reagents. 

To separate proteins according to their charge, instead, 5% native TBE gels at pH 8.3 

were prepared and run in non-denaturing conditions. SDS, therefore, was omitted in the 

preparation of the gel mix and the running buffer. Sample buffer was replaced by supplying 1 

µl of glycerol 100% to the aliquot to load.  

To visualise the proteins on either SDS or Native-PAGE, the gels were stained with a 

coomassie staining solution (containing 0.1% coomassie blue, 40% ethanol and 10% acetic 

acid) for 10-15 minutes and then incubated in a destaining solution (containing 5% acetic acid 

and 7% ethanol) until protein bands were clearly visible. 

 

 2.7.  Limited proteolysis 

 The protein of interest (10 µg per well) was incubated with different proteases (Trypsin, 

Subtilisin, Proteinase K, Chymotrypsin) at a 1:5000 ratio. Samples were taken at different 

time points, such as 0, 1, 5, 10, 15 and 30 minutes in order to observe the degradation pattern 

of the target protein. Proteases cleave more easily residues present in exposed and flexible 

regions, like loops or linkers between domains. Samples corresponding to the different time 

points were then run on a 15 % SDS-PAGE gel. For N-terminal sequencing, the gel was 

electroblotted onto a polyvinylidene difluoride (PVDF) membrane. The membrane was 

stained and the bands resistant to protease cleavage were excised and sent for N-terminal 

sequencing analysis to identify the first 5 amino acid residues at the N-terminus of each band.  

 

 2.8. Production of seleno-methionine derivatives of RecNhead and RecNcc  

E. coli strain BL21 Star cells containing the plasmid (pET151-TOPO) with the gene 

encoding for the target protein were grown at 37ºC in a minimal medium composed as follows 

(for 1 liter culture): 200 ml M9 (stock 5X), 800 ml autoclaved H2O, 2 ml MgSO4 1M 

(autoclaved), 0.1 ml CaCl2 1M (autoclaved), 20 ml glucose 20% (w/v) filtered. After the 

OD600 reached a value of 0.6-0.8, single amino acids were supplemented in order to inhibit the 

metabolic pathway for the usual synthesis of methionine. L-lysine (100 mg/l), L-

phenylalanine (100 mg/l), L-isoleucine (50 mg/l), L-leucine (50 mg/l), L-valine (50 mg/l) 

were added to the cell culture. Finally, instead of methionines, Se-methionines (Se-Met) (60 

mg/l) were added in order to be incorporated into the newly synthesized protein (Doublie, 
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1997). After incubation for 15 minutes in order to start Met synthesis, protein expression was 

induced upon addition 1mM IPTG for 16 hours at 20 ºC. Cells were then centrifuged at 7,548 

g for 30 minutes, as for all the proteins characterized in this work, and then frozen at -80 ºC if 

not freshly used for protein purification.  

Cell lysis and purification were carried out according to the protocols used for the 

respective native proteins. Once sufficient amounts of purified protein were obtained (~15-20 

mg final), crystallization drops were set up using the same conditions as for the native proteins 

and then crystals were used in order to perform anomalous dispersion experimental phasing 

(SAD). 

 Composition of the media M9 (5X): 30 g Na2HPO4, 15 g KH2PO4, 5 g NH4Cl, 2.5 g 

NaCl, water to 1 liter volume. The buffer is then autoclaved.  

 

2.9. Multi-Angle Laser Light Scattering 

 SEC combined with Multi-Angle Laser Light Scattering (SEC-MALLS) and 

refractometry (RI) is a powerful method for measuring the absolute molecular mass of 

macromolecules. SEC experiments were performed on a Superdex 200 column (GE 

Healthcare) equilibrated in a buffer containing 50mM Tris-HCl pH 7.5, 5mM MgCl2 and 

either 1M NaCl or 150mM NaCl in the case of RecN analysis. Buffer containing 50 mM Tris-

HCl pH 8, 300 mM NaCl and 5 mM MgCl2 was, instead, used for analysis of RecNhead, 

RecNcc and RecN�dd. Prior to sample injection, the SEC column was calibrated using bovine 

serum albumin, which has a Stoke’s radius of 3.4 nm. On-line MALLS detection was 

performed using a DAWN-EOS detector (Wyatt Technology Corp., Santa Barbara, CA) 

equipped with a laser emitting at 690 nm and a RI2000 detector (Schambeck SFD) for 

refractive index analysis. Light-scattering intensities were measured at different angles 

relative to the incident beam and weight averaged molar masses (Mw) were calculated using 

the ASTRA software (Wyatt Technology Corp., Santa Barbara, CA).  

 

2.10. Dynamic Light Scattering 

 DLS measurements were performed using a fixed scattering angle Zetasizer Nano 

(Malvern Instruments) and quartz cuvette. The polydispersity index (pdI) was calculated as 

the square of the normalized standard deviation of an underlying Gaussian size distribution. 

All experiments were performed at 20 °C. The Stokes-Enstein equation (Nobbman et al, 2007) 

can be applied for conversion of the diffusion coefficient into the hydrodynamic coefficient 

“dH”  which ideally represents the size of a sphere with the same diffusion properties.  
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In the case of the analysis of hydrodynamic radii of RecN and RecNhead proteins upon 

ATP addition, samples at a concentration of 80-150 µM of protein were used.  Measurements 

were recorded after incubation for 30 minutes at 18 ºC, either in absence or in presence of 2 

mM ATP.  

 

2.11. Small Angle X-ray Scattering 

 SAXS experiments were all performed on ID14-3 at the ESRF (Pernot et al, 2010). Full-

length RecN in high salt conditions (1M NaCl), RecNhead, RecNcc, RecN∆dd and 

RecNheadE67A/E472Q were measured. Data were collected at 0.931Å using a Pilatus 1M 

detector (Dectris, Switzerland) which is positioned 2.4 meters away from the sample capillary. 

The homogeneity of protein samples was previously checked by DLS. Three different protein 

concentrations were measured together with their corresponding buffers. Samples were flown 

while exposed to X-rays in order to avoid radiation damage and thus 10 frames of 10 seconds 

duration each were collected. Buffer subtraction and data processing were performed using 

PRIMUS (Konarev et al, 2003), which also allowed to estimate the radius of gyration (Rg) 

through Guinier approximation, which is reproducible among all the different measurements. 

Estimation of the MW was determined either from the scattering intensity at zero angle (I0) 

directly from PRIMUS or from the Porod volume, using AUTOPOROD (Petoukhov et al, 

2007). When the subtracted curves corresponding to the three different protein concentrations 

superposed well, inter-particle effects could be excluded and the data could be used for further 

analysis. Scattering of the buffer was measured before and after the protein sample and then 

subtracted from the protein in order to maximize the signal/noise ratio of the sample. 

 The curves corresponding to the highest and the lowest protein concentrations were then 

merged together and used as input file for GNOM (Svergun, 1992) for determination of the 

distance distribution function (P(r)). The output files were subsequently used for ab initio 

model reconstruction. Data were submitted to DAMMIN (Svergun, 1999) (for RecN, 

RecNhead, RecNcc and RecN�dd) in order to perform model building cycles using the 

EMBL BioSAXS web server (EMBL, Hamburg). In the case of RecNheadE67A/E472Q, the 

program GASBOR (Svergun et al, 2001b) was instead used for ab initio model building. In all 

cases, several models were produced, analyzed and subsequently aligned, averaged and 

filtered using the DAMAVER package (Volkov & Svergun, 2003). 

Comparison of experimental and theoretical scattering curves for RecN and 

RecNheadE67A/E472Q was performed using CRYSOL (Svergun et al, 1995), which also enabled 
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to determine the goodness-of-fit (GOF) between the data through Chi-squared calculation (χ2). 

A suitable model of the RecNheadE67A/E472Q was obtained using MASSHA (Svergun et al, 

2001a), which allows to move the atomic coordinates file in order to fit the experimental 

scattering curve. The ab initio envelopes of RecN, RecNhead, RecNcc and 

RecNheadE67A/E472Q were subsequently superimposed to their respective atomic models by 

running SUPCOMB (Svergun & Kozin, 2001), through an energy minimization calculation of 

the fit. 

 

2.12. Crystallization 

 Initial crystallization screening for all RecN proteins was performed at 20 °C using 

sitting-drop vapor diffusion Greiner Crystal Quick plates. A Cartesian PixSys 4200 

crystallization robot (High Throughput Crystallization Laboratory at EMBL Grenoble) was 

used in order to test 576 different crystallization conditions (method described in (Dimasi et 

al, 2007)). The following commercial screens (Hampton Research) were set-up: Crystal 

Screen I & II, Crystal Screen Lite, PEG/Ion, MembFac, Natrix, QuickScreen, Grid Screens 

(Ammonium Sulfate, Sodium Malonate, Sodium Formate, PEG 6K, PEG/LiCl, MPD) and 

Index Screen. 

 Crystals were obtained for many of the constructs used in this work, such as RecNhead, 

RecNcc, RecN�dd. Some of the mutants produced for biochemical characterization, such as 

RecNheadE472Q and RecNheadK67A/E472Q were also crystallized. Once initial conditions were 

defined, manual optimization was carried out by setting up hanging drop plates (Hampton 

Research). Different buffers, pH, PEG concentrations, PEG sizes, additives (from the Additive 

Screen, Hampton Research), and protein concentrations were assayed in order to establish the 

conditions that gave the best crystals.  

 RecNhead and RecNcc were crystallized as described in paper I (Pellegrino et al, 

2012b) and paper II (Pellegrino et al, 2012a) respectively, and the conditions for the native 

proteins were suitable also for the Se-Met substitutes.  

 RecN�dd was also initially crystallized using the robot at the High Throughput 

Crystallization (HTX) laboratory (EMBL, Grenoble). Crystals were reproducible but the best 

data set (4 Å resolution) was collected directly from crystals coming from the robot plates. 

Manual optimization did not improve the quality and, therefore, higher resolution data was not 

achievable.  
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 RecNheadE472Q and RecNheadK67A/E472Q mutants were also crystallized using the robot at 

the HTX laboratory. Crystals of RecNheadK67A/E472Q were also reproducible after manual 

optimization of the initial conditions (chapter 5) in hanging drop plates. 

 

 

2.13. X-ray diffraction data 

 Crystals of native and Se-Met derivatives of RecNhead and RecNcc were obtained and 

X-ray diffraction data was collected at the European Synchrotron Radiation Facility (ESRF) 

protein crystallography beamlines ID14-4 (McCarthy et al, 2009), ID23-1 (Nurizzo et al, 

2006) and ID23-2 (Flot et al, 2010) as described in (Pellegrino et al, 2011). Diffraction data 

suitable for further analysis was collected for  RecNhead, RecNcc and RecN�dd protein 

crystals at 100 K. Data were subsequently processed either using iMOSFLM (Battye et al, 

2011) (RecNhead and RecNcc) or XDS (Kabsch, 2010) in the case of RecN�dd. Full 

redundant data sets were collected for the native and substituted Se-Met proteins (RecNhead 

and RecNcc). Single-wavelength Anomalous Dispersion (SAD) experiments were performed 

on Se-Met substituted protein crystals and for this purpose the energy of the X-ray beam was 

moved to the value corresponding to the absorption K-edge of the Selenium atoms (peak). 

Data were then processed and the intensities scaled using SCALA (Evans, 2006) where 

anomalous pairs were separated (I+ ≠ I-), since Friedel’s Law is broken in the presence of 

anomalous scatterers. Structure factors were then generated and the output file used either for 

Molecular Replacement (Mol.R.) in the case of RecN�dd or for experimental phase 

determination and model building (RecNhead and RecNcc). 

 

2.14.  Structure determination and refinement  

The RecNhead and RecNcc crystal structures were solved to resolutions of 3.0 and 2.0 

Å respectively, by the SAD method using Se-Met derivative crystals produced as described in 

Materials & Methods and in paper I and II (Pellegrino et al, 2012a; Pellegrino et al, 2012b). 

The Phenix suite for RecNhead (Adams et al, 2010) and Auto-rickshaw for RecNcc (Panjikar 

et al, 2005) were used for location of heavy atoms, phase determination, density modification 

and initial model building (ARP-wARP was used in the case of RecNcc). Multiple cycles of 

manual model building using COOT (Emsley & Cowtan, 2004) interspersed with refinement 

were then performed to complete the models. Statistics of the crystallographic and refinement 

data are reported later in chapters 4 and 5 and also in paper I and II (Pellegrino et al, 2012a; 

Pellegrino et al, 2012b). 
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The RecNhead crystal structure was refined using phenix.refine (Afonine et al, 2010), 

applying non-crystallographic symmetry (NCS) during the early steps of refinement in order 

to improve the electron density map and tightening the weighted X-ray/stereochemistry scale. 

Occupancies and B-factors were also refined for each atom.   

The RecNcc crystal structure was instead refined using Refmac5 (Murshudov et al, 

1997) and phenix.refine as last step, using the same reflections as test sets. 

Translation/Libration/Screw (TLS) groups, which were treated as independent rigid bodies 

during the refinement steps, were determined using TLS Motion Determination (TLSMD) 

server (Painter & Merritt, 2006). Optimization of the stereochemistry and final round of 

simulated annealing resulted in reasonable statistics with good geometry (data shown in 

chapter 5). 

The structure of RecN∆dd was instead solved by Molecular Replacement with the 

program PHASER (McCoy et al, 2007), which produced a single solution with good statistics 

RFZ (rotation function Z-score): 14.3, TFZ (translation function Z-score): 12.7 and LLG (log-

likelihood-gain): 438. A truncated form (containing residues 196-238 and 306-364) of RecNcc 

and the entire RecNhead domain structures were used as search models. Model building was 

carried out in COOT (Emsley & Cowtan, 2004) and the atomic positions and TLS parameters 

initially refined using Refmac5 (Murshudov et al, 1997). Jelly-body refinement, Babinet 

scaling, map sharpening and the use of a weighting term which gives more weight to the 

stereochemistry, were used to refine the data at 4 Å resolution (Murshudov et al, 2011). For 

the final cycles of refinement phenix.refine (Afonine et al, 2010) was used instead. Tight 

stereochemistry weight scale, simulated annealing, secondary structure restraints and a higher 

resolution reference structure (RecNhead refined at 3 Å resolution) were used as sources of 

restraints for improving the low-resolution refinement. B-factors were not refined due to the 

low resolution of the data and were instead fixed to the Wilson B-factor value (70 Å2).  

The final Rwork/Rfree values for RecNhead, RecNcc and RecN∆dd were respectively of 

21/24.9%, 20.3/25.1% and 32.5/34.7%. Final structure evaluation was performed by 

submitting the models to MolProbity server (Chen et al, 2010), which resulted in acceptable 

Ramachandran statistics in all three cases: the percentage of allowed/outliers is 96.78/0.3 % 

for RecNhead, 98.78/0 % for RecNcc and 92.4/1.4 % for RecN∆dd. Crystal structures were 

finally deposited at the PDBe database with the following codes: RecNhead (4aby), RecNcc 

(4abx), RecN�dd (4ad8).  
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Illustrations of protein structures were created using Pymol (Molecular Graphics 

System, Schrödinger, LLC). Electrostatic surface potential was calculated with PDB2PQR 

tool (Dolinsky et al, 2007) and then visualized using the plugin APBS developed by Michael 

Lerner and Heather A. Carlson.  

 

2.15. ATPase assay 

 ATP hydrolysis of RecN, RecNhead and their respective mutants was measured using 

the Malachite green assay (Baykov et al, 1988). Malachite green is a reagent that, together 

with molybdate, reacts with the ortho-phosphate released in solution upon ATP hydolysis. The 

assay was carried out at 37°C in buffer containing 50 mM Tris pH 7.5, 1 M NaCl and 5 mM 

MgCl2 using 2 µM of protein. A sample with no protein was used as a blank. Reactions were 

started by addition of 0.5 mM ATP. 100 µl aliquots were collected at different time points: 0, 

3, 5, 10, 15, 30, 45 and 60 minutes. The hydrolysis reaction was stopped by placing the tubes 

immediately on ice for 5 minutes. Samples were subsequently loaded on a 96-well plate and 

thoroughly mixed with 25 µl of malachite green reagent (Sigma). Complex formation between 

phosphomolybdate and malachite green was measured at 630 nm using an EPOCH microplate 

spectrophotometer (BioTek Instruments Inc.). The absorbance readings were converted to 

phosphate concentrations using a standard curve established with a series of sodium phosphate 

monobasic (NaH2PO4) solutions. The rates of phosphate release (in µmol min-1) were 

determined from the slopes of the resulting curves. The plotted values correspond to the 

average of three independent measurements. Standard deviations were also calculated. 

Furthermore wild-type RecN and RecNhead were tested in low salt condition. Concentrated 

protein (10 mg ml-1) was diluted in buffer containing 50 mM Tris pH 7.5, 100mM NaCl and 

5mM MgCl2 and measured as previously described. 50-mer dsDNA (Eurofins MWG) at a 

final concentration of 0.2 µM was supplemented in order to see any difference in ATPase rate 

induced by the oligonucleotide.  

 Earlier experiments for testing ATPase activity of RecN were performed using a 

spectrophotometric assay, which couples ATP hydrolysis to the synthesis of pyruvate from 

phosphoenolpyruvate (PEP)(Kiianitsa et al, 2003).  
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Figure 29: Schematic diagram of the reaction that regenerates ATP through the oxidation of NADH, measured as 

a decrease of the absorbance at 340 nm.   

 

 The assay was not used for investigation of RecN hydrolytic activity since the 

regeneration system (Figure 29), composed of pyruvate kinase (PK) and lactate 

dehydrogenase (LDH), was affected by the buffer used in the experiment. It is crucial that 

measurements of the blank (with no ATPase) are basically flat, with no detectable decrease in 

the absorbance at 340 nm. In the conditions tested, however, the blank measurement was not 

reliable, since a considerable slope was observed and all the other measurements were, 

therefore, invalidated. 

 

2.16. Plasmid multimerization assay 

 DNA substrates were prepared by digesting pUC19 (Thermo Fischer Scientific Inc.) 

with three different restriction enzymes (Fermentas): (i) SspI produces DNA blunt ends, (ii) 

EcoRI creates 5’overhangs and (iii) SacI gives rise to 3’overhangs. The plasmid was digested 

at 37°C for 1.5 hours and then enzymes were inactivated by heating to 65°C for 20 minutes. 

The plasmid multimerization assay was carried out in buffer E containing 25 mM Tris-HCl 

pH 7.5, 1mM DTT, 17.5 mM Mg(OAc)2, 40 mM KOAc, 5% (v/v) glycerol and 2.5% PEG 8K 

(Reyes et al, 2010). An ATP regenerating system (2.5 mM PEP and 10 units of PK / LDH) 

was supplemented to the sample reactions. RecN and RecNhead samples were diluted in 

buffer E to reach final concentrations of 0.05, 0.1, 0.5, 1, 2 and 4 µM. Samples were mixed 

with the ATP regenerating system and 3 µM bp (200 ng) of DNA substrate. ATP at a 

concentration of 3 mM was then added and reaction mixtures were incubated at 37°C for 30 

minutes. Subsequently 5X DNA ligase buffer and 0.5 µl of T4 DNA Ligase (5u/µl) was added 

to each reaction and the samples were incubated for an additional 30 minutes at 25°C. To stop 

the reaction, 80 µl of solution S (20 mM Tris-HCl pH 7.5, 20 mM EDTA and 0.5% SDS) was 

added. Complete enzyme inactivation was achieved by addition of 25 µg of proteinase K and 

incubation at 25°C for 15 minutes. Samples were subsequently purified using the QIAquick 
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Gel Extraction Kit (QIAGEN) and finally resuspended in 35 µl of 10 mM Tris-HCl pH 8.5. 10 

µl of each sample was loaded onto a 0.5% agarose gel containing Ethidium Bromide (EtBr). 

Gels were run at 55 Volts for 70 minutes and DNA bands were visualized using an UV 

imager.     

 

2.17. DNA-bandshift assay  

Electrophoretic Mobility Shift Assays (EMSAs) were performed in order to test the 

DNA-binding ability of RecN. Purified proteins were diluted in buffer D (50 mM Tris-HCl 

pH 8, 100 mM NaCl and 5 mM MgCl2) to a final concentration of 5, 20 and 50 µM. Two 

different DNA oligonucleotides were used, both at a final concentration of 0.2 µM: a 50-mer 

dsDNA and another oligonucleotide of the same length and sequence in which the thymine at 

position 26 is labeled with a fluorescein moiety (Eurofins MWG). Samples were incubated at 

18°C for 15 minutes and then loaded onto a 5% native polyacrylamide gel prepared by mixing 

30% acrylamide with the desired buffer, either Tris-Borate-EDTA (TBE), Tris-Borate (TB) or 

Tris-HCl at different pH values. Electrophoresis was finally performed at 4 °C and the gel was 

prepared and run in TB (pH 8.3) buffer for 70 minutes at 65 volts. A Typhoon 8600 Variable 

Mode Imager (GE Healthcare) was used to detect and quantify the fluorescently-labeled and 

EtBr stained DNA (unlabeled oligonucleotides). The fraction of free DNA was determined by 

quantifying the amount of bound and free DNA at each protein concentration. The 

experiments were carried out in triplicate. In the case of full-length RecN, the gels were not 

suitable for DNA quantification due to the significant amount of protein that remained in the 

wells. Attempts to improve the fraction of protein that entered the gel, using different EMSA 

protocols and gel types, failed most likely as a result of the very elongated shape of RecN and 

its tendency to form large oligomeric structures in the presence of DNA. 
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Chapter 3: 

Biophysical characterization of full-length 

RecN in solution 
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Summary of chapter 3 

 

 RecN was cloned in a suitable vector, overexpressed and purified to homogeneity for 

further analysis. Characterization of RecN protein was performed taking advantage of the 

numerous biophysical methods available. Multi-Angle Laser Light Scattering and Small 

Angle X-ray Scattering were particularly useful for assessing the oligomeric state of the 

protein in solution and they both led to the conclusion that RecN is a dimer.  

 Crystallization trials, however, were not successful and therefore new constructs were 

designed. Bioinformatic tools and limited proteolysis allowed to identify the two principal 

domains, which make up RecN: a Nucleotide Binding Domain and a coiled-coil region. The 

study of these two constructs will be thoroughly discussed in the following chapters. 

 

 

Résumé du chapitre 3 
 

 RecN a été cloné dans un vecteur approprié, surexprimé et purifié à l'homogénéité pour 

des analyses ultérieures. La caractérisation de RecN a été réalisée en profitant des nombreuses 

méthodes biophysiques disponibles. Les techniques de diffusion de lumière laser multi-angles 

et de diffusion de rayons X aux petits angles ont été particulièrement utiles pour évaluer l'état 

oligomérique de la protéine en solution, et menèrent toutes deux à la conclusion que RecN est 

un dimère. 

Nos essais de cristallisation, cependant, n’ont pas produit de cristaux, et donc de 

nouvelles constructions furent conçues. Les outils bioinformatiques et la protéolyse limitée 

ont permis d'identifier les deux principaux domaines qui constituent RecN: un domaine de 

fixation du nucléotide et une région formant un faisceau d’hélices (coiled-coil). La 

caractérisation de ces deux constructions sera décrite en détails dans les chapitres suivants. 
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3.1.    Cloning, expression and purification of RecN 

 DR RecN is a protein of 564 amino acids, with a theoretical molecular weight (MW) of 

59.8 kDa and a theoretical pI of 4.83, as calculated by ProtParam (Wilkins et al, 1999). The 

sequence encoding DR RecN was amplified and cloned into a suitable vector for expression 

in E. coli BL21 Star cells.  

Cells were resuspended in (25 ml / L culture) lysis buffer L-1 (described in Materials & 

Methods). The soluble fraction was loaded onto a Ni2+-affinity column (Ni-chelating 

sepharose, GE Healthcare) in order to specifically separate proteins containing His-tags from 

the ensemble of other proteins contained in the cell. Buffer A-1 was used to equilibrate the 

Ni2+-column while buffer B-1 was used for elution of the protein, given the competitive 

properties of the imidazole ring with the His-tag. One first wash step at 4% B, corresponding 

to 20mM imidazole, was necessary to remove most of the contaminants. However, a large 

amount of RecN (15%) (Figure 30), was also eluting at low imidazole concentration 

indicating that the tag was weakly bound to the column. Once the first peak eluted and the 

absorbance was again stabilized, a final step at 100% B-1 (containing 500 mM imidazole) was 

introduced to elute RecN protein, mostly in pure form (Figure 30).  
 

    
 

Figure 30: Affinity chromatography profile (at 280 nm) for full-length RecN protein. The first peak, eluting at 

4% B-1, contained most of the contaminants but also a fraction of the target protein (as seen in the gel on the 

right). The peak eluting at 100% B-1, however, yielded ~15 mg of almost pure RecN for each liter of culture. 

The SDS-PAGE gel with the fractions corresponding to the main and secondary peaks is shown on the right. 

MWs are reported in kDa. P: pellet; S: soluble fraction; FT: flow-through. 
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 RecN containing fractions were analyzed by running SDS–PAGE on the fractions 

corresponding to the main and also the minor peaks resulting from the chromatogram. For 

RecN, 10% polyacrylamide gels were prepared and then run at 200V for 45 minutes. 

The pooled RecN fractions were subsequently dialyzed against buffer D-1 (described in 

Materials & Methods). His-tag cleavage was performed overnight at 4 ºC, at the same time as 

the dialysis, using the TEV protease. 0.5mM EDTA was added in order to remove traces of 

Ni2+ ions. SDS-PAGE confirmed that the tag was fully cleaved and then RecN was 

concentrated to a concentration of ~10 mg ml-1 and finally loaded onto a Superdex 200 Size 

Exclusion Chromatography (SEC) column (GE Healthcare), previously equilibrated in buffer 

D-1. RecN eluted as a single peak at 54 ml on a Superdex 200 16/60 column (GE Healthcare) 

(Figure 31). A low amount of contamination absorbing at 254 nm, most probably DNA, is 

present eluting at the void volume. Previous trials to further purify RecN using an ion 

exchange column (MonoQ, GE Healthcare), led to a dramatic decrease in the amount of 

purified protein. In the present protocol, however, the contamination is easily excluded from 

the pooled fraction containing RecN (Figure 31). 
 

             
 

Figure 31: SEC (Superdex 200) profile of RecN in 1M NaCl condition. Protein absorbance at 280 nm is reported 

in blue, while nucleotide absorbance at 254 nm is in red. The protein eluted as a single, almost symmetrical peak, 

indicating it is largely a single species present in solution. The acrylamide gel also confirmed the purity of the 

protein batch. The red arrows (1, 2 and 3) are indicative of the presence of some contaminants, consisting mostly 

of DNA (10 µl of each fraction were loaded, while for the main peak 1-2 µl were sufficient to check the purity of 

the RecN elution fractions). MWs are reported in kDa.  
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 RecN was shown to be crucial for IR sensitivity of DR, since a truncation at its C-

terminal caused the decrease of the cells tolerance to irradiation (Funayama et al, 1999). We 

wanted to investigate at the level of the protein why the C-terminal truncation would be so 

relevant for the protein function. A construct lacking the last 47 amino acid residues was 

therefore prepared. However, we encountered some problems in purifying such a C-terminally 

truncated RecN. Expression tests and initial affinity chromatography steps yielded a mostly 

insoluble protein (Figure 32). A plausible explanation for this behavior could be that this 

deletion disrupts the correct folding of the globular domain. Our structural studies will reveal 

that this is indeed the case, as discussed later (chapter 4).    
 

 

                

 

3.2.    Biophysical characterization of RecN 

 Purified RecN was used for SEC-MALLS analysis, which characterized the sample in 

the presence of high (1M) and low (150 mM) salt content (Figure 33). A clear shift in the 

elution volume from the GF column (Figure 33) highlighted the different behavior of RecN in 

these two conditions. RecN elutes as a heterogeneous mix of species in low salt buffer while 

in presence of 1 M NaCl, RecN elutes in a dimeric form as a single species with a molecular 

mass of 108 kDa (Figure 33).  

 

Figure 32: Affinity chromatography of 
RecN∆47, which gave rise to a mostly 
insoluble protein (considerable amount 
present in the pellet). MWs are reported. P: 
pellet; S: soluble fraction; FT: flow-
through. 
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Figure 33: SEC-MALLS analysis performed on full-length RecN. Two different buffer conditions revealed that 

the oligomeric state of RecN is sensitive to salt concentration. A stable dimer is formed in 1 M NaCl. Averaged 

MW are indicated close to the respective curves and reported, in the form of a table, in paper III (Pellegrino et al, 

2012 submitted). 

 

 The purified RecN in 1M NaCl was used for further biophysical analysis, since it 

appeared to be the most homogeneous sample. Production of a highly pure protein is 

fundamental in order to perform Small Angle X-ray Scattering (SAXS) studies and for 

obtaining protein crystals (Putnam et al, 2007). Homogeneity of our protein solution was 

assessed by DLS (§ Materials & Methods) prior to SAXS measurement, resulting in a 

polydispersity index (pdI) of 0.16, which is indicative of a highly homogeneous sample.   

 SAXS studies were performed on RecN (Figure 34). The data collected on full-length 

RecN were highly reproducible at the three different concentrations measured: 2.5, 1.25 and 

0.5 mg ml-1. The scattering profiles of the three measurements superimposed well, indicating 

that there was no inter-particle effect due to the concentration of the macromolecules in 

solution. The curve corresponding to the lowest concentration (red) is noisy at high q values, 

which correspond to the high resolution portion of the curve, but superpose very well at low 

q, where the Guinier region is being used for RG estimation (Putnam et al, 2007), which was 

found to be ~9.5 nm. The I0 value was in agreement with a dimeric assembly of full-length 

RecN and the profile of the calculated Pair distribution function (Figure 34), characterized by 

a long tail at higher DMAX  values (Putnam et al, 2007), clearly indicates that full-length RecN 

is elongated in solution. The shape of the P(r) shown in Figure 34 and also in paper III 

(Pellegrino et al, 2012 submitted) suggests that RecN is likely to be fairly elongated, as would 

be expected for an SMC-like protein (Hirano, 2002).  
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Figure 34: RecN has been proven to be a suitable sample for SAXS. A) Scattering curves were collected at three 

different concentrations and used for further evaluation analysis. The scattering curve corresponding to the 

lowest concentration adopts the same characteristic shape as the other two, but is more noisy and slightly shifted 

at high scattering angles. B) Pair distribution function derived from the experimental scattering curve of RecN 

using GNOM. The characteristic shape of this curve, with a narrow peak with an extended tail at high DMAX  

values (reported in nm), indicates that the macromolecule in solution could be rather elongated. The RG value 

was at the limit of the detector set up, so some errors need to be taken into account. 

 

 The first part of the curve at low angles was used for further analysis, since our interest 

focused primarily on the overall shape determination for this protein. An ab initio 

reconstruction gave rise to the envelope proposed in Figure 35, with the presence of two 

bulky regions at either ends. The envelope is 315 Å in length. No symmetry or prior 

information was used for the reconstruction calculations. This work represents the first 

structural study of a RecN protein.  

 

A) B) 
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Figure 35: Ab initio envelope of RecN obtained by SAXS. DAMMIN was used for generating the dummy sphere 

model using the low q region of the SAXS curves, as previously described. The envelope is very elongated (315 

Å long). 

 

Full-length RecN was found to be a very challenging protein for crystallization and no 

crystals have so far been obtained. Protein in 1M NaCl, which appeared to be the most 

homogeneous and stable sample, was used for setting-up drops manually and with the 

crystallization robot (HTX EMBL-Grenoble). Drops were set up as described in Materials & 

Methods and then controlled once a week for several months but the drops did not give rise to 

any interesting hits: mostly precipitation was formed after addition of the precipitant solution, 

although some drops with promising phase separation (Figure 36) did show up after 

approximately 1 week in a few conditions. These, however, did not produce any crystalline 

material after manual optimization in hanging drop plates (Hampton Research). Drops were 

set up using different protein:reservoir ratios, in order to play with the final concentration of 

the protein.  

 

315 Å 
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3.3.  Towards a high resolution structure of RecN 

 DR RecN was found to be fairly soluble and easy to work with compared to its E. coli 

homologue (Grove et al, 2009). Initial purification was optimized in order to stabilize the 

protein in solution. High salt concentration in the buffer was crucial for protein homogeneity, 

as seen by its low polydispersity index (DLS) or by its estimated MW by SEC-MALLS (the 

measure was constant through the entire elution peak) (Figure 33). SAXS analysis of RecN 

led to the reconstruction of an ab initio model (Figure 35), which provided some new insights 

into the overall shape of the full-length protein. RecN was characterized using various 

biophysical methods, each of which resulted in new findings. 

 However, the main goal of this first part of the project was not achieved, since 

crystallization studies of RecN did not succeed in producing any crystalline material. We, 

therefore, decided to focus on the study of single domains, since structural information of 

homologous proteins, such as SMC, Rad50 and MukB, was available. New constructs of 

RecN were therefore designed corresponding to the predicted domains. In literature, in fact, 

the NBD of homologous proteins have been extensively studied, together with the 

dimerization interface of the coiled-coil (Hopfner et al, 2002; Hopfner et al, 2000; Lammens 

et al, 2004; Li et al, 2010; Lowe et al, 2001).  

 Limited proteolysis can also aid in defining the portion or domains of the protein that 

are more compact and, therefore, stable than other regions that are, in contrast, more flexible 

and exposed to the solvent. Such an experiment was performed on full-length RecN and the 

results, together with secondary structure prediction (PsiPred) and the available literature, 

were used to define putative domain boarders (Figure 37). N-terminal sequencing (Edman, 

1949) resulted in the identification of residues that likely reside in flexible or exposed regions, 

and therefore prone to attack by proteases (to Proteinase K in our specific case).  

Figure 36: Example of the drop of RecN in condition 10 

of MembFac screen (Hampton Research). Manual 

optimization did not lead to improvement. Different 

ratios of protein:reservoir were used but were not 

successful in giving rise to crystals. 
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 N-terminal sequencing allowed the determination of the first five amino acid residues 

placed at the N-terminus of each characteristic fragment generated by proteolysis (indicated 

by black arrows). Once the sequence of these were known, amplification and subsequent 

cloning of the gene codifying for the single domains of RecN was performed as described in 

Materials & Methods. 

 Several constructs were designed (Table 5) and in the end, two of them resulted to be 

very successful: the globular NBD, referred to as RecNhead, in which the N- and C-terminal 

domains were linked by a 14-amino acid linker and the coiled-coil region, referred to later as 

RecNcc. In the table below, a list of the constructs amplified, cloned in pET-151 TOPO and 

expressed in E. coli BL21 Star is provided (Table 5). In some cases, the cloning was 

unsuccessful, particularly when trying to engineer a short (8 amino acid) linker between the 

N- and C-terminal domains. 

 

 

 

 

 

 

 

 

 

 

Figure 37: Limited proteolysis performed using RecN 
purified protein (marked as 0) and incubating it with 
1/5000 ratio of Proteinase K (Sigma Aldrich). 
Aliquots at different time points (1-30 minutes) were 
collected and finally loaded onto a 12% denaturing 
acrylamide gel. MWs are reported in kDa. 
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Constructs Cloning Expression test 

N-term 1-196 Yes Insoluble 

N-term 20-196 Yes Insoluble 

CC 196-365 Yes Soluble 

CC 196-387 Yes No expression 

CC 240-365 No  

CC 240-387 Yes Soluble 

C-term 366-564 Yes Insoluble 

C-term 388-564 Yes Insoluble 

N+C-term 1-564 linker 8 residues No  

N+C-term 20-564 linker 8 residues No  

N+C term 1-564 linker 14 residues Yes Soluble 

N+C-term 20-564 linker 14 residues No  

RecN34 (N-terminal truncation) Yes Soluble 

 

Table 5: List of the constructs designed to be cloned in pET-151 TOPO vector for expression and solubility tests 

in E. coli cells, strain BL21 Star.  

 

 Attempts with the single N- or C-terminal domains of RecN produced only insoluble 

protein. Cells expressing the two single domains alone were also mixed together prior to cell 

lysis, but this was also unsuccessful. The purpose of this experiment was to reconstitute the 

putative NBD within E. coli. Large-scale expression was therefore performed for the 

constructs that best behaved in the expression tests. 
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Figure 38: Schematic diagram of the constructs used for structural, biophysical and biochemical analysis of 

RecN. The different domains, as predicted by secondary structure prediction analysis, are colored differently: the 

N-terminal NBD fragment in orange, the C-terminal NBD fragment in green and the coiled-coil in yellow. The 

RecNhead domain is represented with a peptide linker that fuses the N and C-termini (Pellegrino et al, 2012c). 

   

 We were particularly interested in two of them, notably the construct that codified for 

the N- and C-terminal domains fused by a 14-residue linker peptide (RecNhead) and the 

coiled coil domain (Figure 38). The latter corresponding to residues 196-365 (RecNcc) was of 

particular interest because it represented the region that we had removed from the RecNhead 

construct. Together, these two constructs would reconstitute the full-length protein. RecNhead 

and RecNcc were amplified, cloned and expressed as described in Materials & Methods 

section and in (Pellegrino et al, 2012a; Pellegrino et al, 2012b).  
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Chapter 4: 

Structural and biochemical characterization 

of RecNhead domain 
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Summary of chapter 4 
 

 The head domain of RecN is relatively conserved and similar to that of SMC or SMC-

like proteins, such as Rad50 for instance. We successfully cloned, expressed and purified a 

construct containing the N- and C-termini of RecN fused by a short peptide linker, which we 

referred to as RecNhead. We successfully crystallized this protein and collected diffraction 

data to a maximum resolution of 3 Å. Se-Met derivatives were needed in order to solve the 

phase problem by the Single-wavelength Anomalous Dispersion method. The crystal structure 

is presented here, together with Multi-Angle Laser Light Scattering and Small Angle X-ray 

Scattering studies of the protein behavior in solution. The crystal structure fitted very well 

with the ab initio model reconstructed by Small Angle X-ray Scattering and we could 

conclude that RecNhead shares common structural features with homologous proteins 

belonging to the SMC family.  

 The crystal structure of RecNhead domain represented the first high-resolution 

structural information known for a RecN protein. 

 

 

Résumé du chapitre 4 

 

 Le domaine globulaire de RecN, nommé ‘head’, est relativement conservé et semblable 

à ceux des protéines de la famille SMC, telle que Rad50 par exemple. Nous avons réussi à 

cloner, exprimer et purifier une construction que nous appellons RecNhead comportant les 

domaines N- et C-terminaux de RecN fusionnés par une courte chaine peptidique. Nous avons 

réussi à cristalliser cette protéine et à recueillir des clichés de diffraction à une résolution 

maximale de 3 Å. Des dérivés contenant des méthionines séléniées ont été nécessaires afin de 

résoudre le problème de phase par la méthode de dispersion anomale à une longueur d’onde 

unique. La structure cristalline de RecNhead est présentée ici, accompagnée des études de 

RecNhead en solution par diffusion aux petits angles (SAXS) et diffusion de lumière laser 

multi-angles. La structure cristalline est en accord avec le modèle ab initio reconstruit par 

SAXS et nous pouvions en conclure que RecNhead partage de nombreuses caractéristiques 

structurelles avec les protéines homologues appartenant à la famille SMC. 

 La structure cristalline du domaine RecNhead représentait les premières données 

structurelles connues à haute résolution pour une proteine RecN. 
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 4.1. Purification of RecNhead domain protein   

 The RecNhead construct was designed to reconstitute the complete NBD of RecN (see 

Materials & Methods). The purification protocol of RecNhead domain was established and 

resulted in a homogeneous and pure protein (as assessed by DLS, SEC-MALLS and SAXS). 

The amount of protein obtained for 1 litre of cell culture was approximately 75-100 mg. 

Buffers A-2 and B-2 used for the Ni-affinity purification step (Figure 39) and buffer C-2 for 

the SEC step are the following:  

 

A)  50mM Tris-HCl pH 8  B) 50mM Tris-HCl pH 8      C) 50mM Tris-HCl pH 8 

 300mM NaCl 300mM NaCl    300mM NaCl 

 5mM MgCl2 5mM MgCl2   5mM MgCl2 

 5mM imidazole pH 8 500mM imidazole pH 8 

 

Affinity chromatography was performed as described in Materials & Methods. An imidazole 

gradient was used for elution of the target protein. The buffer composition is reported in 

Materials & Methods section. 
 

    
 

Figure 39: Metal affinity chromatography profile of the RecNhead domain. Protein absorbance at 280 nm is 

shown in blue. Protein eluted at a concentration of 170 mM imidazole, corresponding to 33% of the buffer B 

gradient. The denaturing gel with the fractions corresponding to the main peak is shown. MWs are reported in 

kDa. P: pellet; S: soluble fraction; FT: flow-through. 

 

 The SEC step (Figure 40) yielded a single peak and only the purest fractions, 

corresponding to the center of the peak, were pooled and used for further experiments. An 
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aliquot of the pooled fractions was used for DLS (Zetasizer Nano, Malvern) measurements 

and was found to have a pdI of 0.21. The hydrodynamic radius (rh) was estimated to be 

approximately 3.3 nm (Pellegrino et al, 2012b), corresponding to a MW of 55 (assuming the 

protein is perfectly globular). 
 

 
 

Figure 40: SEC profile of RecNhead domain. SEC was performed using a Superdex 200 column (GE 

Healthcare). Protein absorbance at 280 nm is reported in blue, while nucleotide absorbance at 254 nm is in red. 

The presence of a little shoulder before the elution volume corresponding to the main, symmetric, peak may be 

due to the presence of some contaminants, as it is possible to see from the SDS-PAGE gel (indicated by arrows). 

MWs are reported in kDa. Inj: injection. 

 

4.2. RecNhead domain is a monomer in solution    

 SEC-MALLS experiments were performed on RecNhead domain (Figure 41), in order 

to evaluate the oligomeric state of the protein. The method is described in the Materials & 

Methods section. The elution volume from SEC indicated that RecNhead may form a higher 

MW assembly (approximately 90 kDa when comparing it to a standard curve), but the SEC-

MALLS analysis clearly showed that the RecNhead domain is a monomer in solution (Figure 

41). 
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Figure 41: SEC-MALLS profile of RecNhead. The averaged MW suggested that this chimeric construct is a 

monomer in solution. The refractive index has been plotted and the resulting single symmetric peak is, together 

with the stability of the calculated MW, index of homogeneity of the sample. Thin line: refractive index 

recorded; thick line: averaged MW estimation from different scattering angles. 

 

 4.3.  SAXS analysis of RecNhead domain 

 SAXS measurements on the wild-type RecNhead domain were performed as described 

in Materials & Methods section and allowed to build an ab initio model (Pellegrino et al, 

2012b). Measurements were performed at three different concentrations, 3.43, 2.34 and 1.12 

mg ml-1, to exclude any inter-particle effect (Figure 42). Processing of the data was performed 

as described in Materials & Methods section. GNOM was used for estimation of the DMAX  

and the pair distribution function (P(r)) (Figure 42). The output file was then submitted to the 

model building program DAMMIN. Prior to determining the structure of RecNhead domain, 

Rad50 ATP-free ATPase domain (PDB code:1II8) was used as template for superimposition 

with the ab initio envelope. The overlay suggested that RecNhead probably adopts a similar 

overall fold. MW estimation was calculated from the scattering at zero angle (I0) and resulted 

to be ~34 kDa. The discrepancy with the theoretical MW of monomeric RecNhead (43 kDa) 

was too high, therefore a calculation with AUTOPOROD (Petoukhov et al, 2007) was 

performed to have a better estimation of the value. The expected MW at the end of the 

calculation resulted to be ~46.5 kDa, more in agreement with the theoretical value of the 

monomer. 
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Figure 42: Superposition of the X-ray scattering curves (left) collected for RecNhead domain at three different 

protein concentrations: 3.43 (red), 2.34 (blue) and 1.12 mg ml-1 (black). The pair distribution function (P(r)) is 

shown on the right, with a DMAX  value of 10.2 nm. Data were collected on ID14-3 at the ESRF (Grenoble). 

 

Ab initio modelling was performed using DAMMIN (Svergun, 1999). The overall 

envelope was produced after averaging and filtering of the multiple models created, as shown 

in paper I (Pellegrino et al, 2012b). 

 

4.4.  Crystallization of the head domain of RecN 

 RecNhead was used for crystallization experiments. Initial screening of a broad range of 

conditions was carried out with the crystallization robot at the HTX laboratory (Dimasi et al, 

2007). Crystals were first obtained in condition 44 of the Index screen (Hampton Research) 

and then manually optimized by using hanging drop plates, which resulted in crystals of 

suitable size and diffracting at a maximum resolution of 3 Å. The final condition, which gave 

the best diffraction pattern, was 100mM Tris-HCl pH 7.5 and PEG3350 25%. 

 Diffraction experiments of RecNhead native protein were performed on ID23-2 (Flot et 

al, 2010). A full data set was collected and processed with iMOSFLM (Battye et al, 2011) and 

the intensities were then scaled. Molecular Replacement (Mol.R.) programs, notably 

PHASER and MOLREP (McCoy et al, 2007; Vagin & Teplyakov, 1997), were run in order to 

solve the protein structure. Different search models were used, like Pyrococcus furiosus 

Rad50 (pfRad50) and Thermotoga maritima SMC (tmSMC) head domains and Deinococcus 

radiodurans RecF (drRecF). Poly-alanine chains of these structures were also used as models, 

but all trials failed to give reasonable solutions.  
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Figure 43: SEC profile of the Se-Met derivative of RecNhead domain. Protein absorbance at 280 nm is reported 

in blue, while nucleotide absorbance at 254 nm is in red. The elution profile of the protein is similar to that 

obtained for the native protein (~74 ml). A little shoulder containing small amount of contaminants is indicated 

by a black arrow. SDS gel of the fractions eluting from the SEC column is shown on the right, with the mean 

peak’s fractions indicated. MWs are reported in kDa. Inj: injection. 

 

 Since Mol.R. failed to find a good solution, Se-Met derivatives were produced (Figure 

43) as described in the Materials & Methods section. Once the derivative protein was purified 

and crystallized, using the same protocols as for the RecNhead native protein, the Single-

wavelength Anomalous Dispersion (SAD) method was applied for calculating experimental 

phases. An X-ray fluorescence scan was performed to determine the wavelength 

corresponding to the absorption peak of the anomalous scatterers (Se atoms). A full redundant 

anomalous data set was collected at the peak wavelength and the processed data were 

submitted to Phenix AutoSol (Terwilliger et al, 2009) for localization of heavy atom positions 

and subsequent phase determination. Selenium atom positions were successfully determined 

(FOM Phaser: 0.278) and then used for calculation of a new set of phases which gave rise to a 

new electron density map (Figure 44). Phenix AutoBuild (Terwilliger et al, 2008) was used for 

model building, while refining the nascent electron density map, resulting in a reasonable 

starting model. Further cycles of manual building were performed using Coot (Emsley & 

Cowtan, 2004), employing a 2Fo-Fc and Fo-Fc (difference map) electron density maps. 

Refinement was performed using phenix.refine (Afonine et al, 2010).  
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Figure 44: Fourier electron density map contoured at 1.7σ with anomalous difference density (coloured in green) 

contoured at 3.5σ.  PHASER was run to calculate the heavy atom location and, therefore, the anomalous map of 

the Se atoms. This map has been superposed to the one used for initial model building (after density modification 

performed by RESOLVE (Terwilliger, 2003)). Se-Met residues built as part of the initial model are shown as 

sticks. 

  

 4.5. Structural analysis of RecNhead domain 

 Although the RecNhead construct was designed to reconstitute the complete NBD of 

RecN, structural analysis revealed that this construct also included some additional regions 

(Figure 45): the coiled-coil anchor motif, the beginning of the predicted coiled-coil region 

and a short C-terminal helix-turn-helix (HTH) motif, which is unusual for Rad50 and SMC 

proteins. The coordinates of RecNhead were submitted to DALI server (Holm et al, 2008) for 

3D structural search and the best hits were found to be Saccharomyces cerevisiae SMC, 

tmSMC and pfRad50. The overall structural organization of the NBD of RecNhead is very 

similar to the head domains of S. cerevisiae SMC (PDB: 1W1W), tmSMC (PDB: 1E69), P. 

furiosus SMC (PDB: 1XEX) and pfRad50 (PDB: 1F2T) proteins with an RMS of 1.38Å over 

148 Cα, 1.57Å over 122 Cα, 1.39Å over 155 Cα and an RMS of 1.61Å over 121 Cα 

respectively. Sequence alignment of the NBDs of RecN with some of the above-mentioned 

proteins is shown in Figure 23. RecNhead also exhibited some structural differences when 

compared to Rad50, notably in the architecture of its signature sequence, responsible for 

ATP recognition, suggesting that the nucleotide binding pocket may be altered compared to 
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other SMC-like proteins, such as Rad50 (Hopfner et al, 2000; Hopfner & Tainer, 2003; 

Mockel et al, 2011; Paull et al, 2004). 

The NBD of RecNhead consists of two lobes (Figure 45-A), in which lobe I, formed 

primarily by the N-terminal domain of RecN, adopts a typical Rossmann fold (Rao & 

Rossmann, 1973), consisting of a six-stranded anti-parallel β-sheet (strands β1-β2 and β4-β7) 

wrapping around the Walker A containing α-helix 1 (Figure 45-A). Lobe I also contains the 

Walker-B motif involved, as reported in the literature (Haering et al, 2004; Hopfner et al, 

2000), in the coordination of the water molecule necessary for hydrolysis of the γ-phosphate 

of ATP (Figure 18). Lobe II consists mostly of the C-terminal region of RecN and contains 

the ABC-like signature sequence, crucial for binding ATP. This C-terminal domain folds as a 

β-α-β sandwich in which helices α10-α12 pack against a mixed β-sheet (β3, β8, β12-β15). The 

N and C-terminal domains are held together by hydrogen-bonding interactions between β3 

and β8 strands from the N-terminal domain and β12-β14 strands located in the C-terminal 

domain. The Walker-B motif is located on strand β12 while helix α10 contains the signature 

sequence, important for driving ATP-dependent NBD dimerization (Altenberg, 2003). A 

structural alignment of the NBDs of RecN and other SMC or SMC-like proteins (Figure 23) 

revealed that these domains only share a low overall sequence conservation (14% identity 

between RecN and pfRad50), but the residues responsible for ATP-binding (K67 in the 

Walker-A motif) and hydrolysis (D471 and E472 in the Walker-B motif) are strictly 

conserved and are located at similar positions. The signature sequence is also highly 

conserved, but unlike the Walker-A and B motifs, adopts a very different orientation, as a 

result of the rotation of the coiled-coil anchor motif relative to the NBD. This overall 

architecture gives rise to half of the functional nucleotide-binding pocket (Hopfner et al, 

2000) (Figure 45-B and C).  

The anchor motif is primarily composed of a three-stranded anti-parallel β-sheet (β9-

β11), helix α4 and two flexible linkers connecting β8 to α4, through a short helical turn (α3), 

and β11 to α11. Comparison with pfRad50 head domain (Figure 45-B) reveals that the region 

connecting α2 to α4 including β8, which is substituted by a short helix in Rad50 (Hopfner et 

al, 2000), is poorly conserved. As a result the entire coiled-coil anchor motif, along with the 

signature sequence of RecNhead, undergo a ~60° rotation relative to their position in pfRad50 

(Figure 45-C). The anchor domain in RecNhead is also longer than in pfRad50, being 

respectively 38 and 31 Å. Helix α4 plays an essential role in guiding the positioning of the 

helices belonging to the coiled-coil region (α5 and α10) so as to be roughly orthogonal to the 
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NBD (Figure 45-A). Hydrogen bonding between Y175 on helix α5 and the backbone of A419 

situated in the β-sandwich of the anchor motif contributes to stabilize this conformation.   

RecNhead also has an extra HTH-like motif at its C-terminus (α14 and α15), which is 

present in all RecN proteins (Figure 45-A), but is entirely missing in Rad50 and partially so in 

SMC proteins, where only α14 is present in the case of yeast SMC (Haering et al, 2004). The 

function of this structural motif is unknown. Cells expressing a C-terminally truncated form 

of RecN (missing residues 518-564, which includes β14-15 in addition to α14-15) were 

reported to exhibit an increased sensitivity to irradiation and DNA-damaging agents like 

mitomycin C (Funayama et al, 1999). In view of the structure of RecNhead, removal of these 

residues would most likely disrupt the hydrogen-bonding network between β2 and β14 strands 

and destabilize the β-sheet, yielding an inactive and unfolded RecN protein. Trials to express 

such a protein only yielded insoluble protein (Figure 32), strengthening this hypothesis. 
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Figure 45: RecNhead domain crystal structure. A) RecNhead domain crystal structure adopts a Rossman fold, 

typical for nucleotide binding proteins, and shares structural similarity with the SMC and SMC-like proteins. B) 

Superposition of RecNhead domain (colored as shown in A) with pfRad50 head domain (grey) also referred to 

as the ATPase domain. An HTH at the C-terminus of RecNhead, which is not conserved in pfRad50, represented 

a unique feature. C) Different orientation of the RecN-Rad50 overlay, with the coiled-coil anchor motif (in red) 

and the signature sequence (in blue) of RecNhead domain rotated ~60 degrees to respect to their corresponding 

in Rad50. The different orientation of the signature sequence, crucial for ATP-binding, might reflect differences 

in nucleotide binding mechanism between these two homologous proteins. 

 

 The sequence alignment shown in Figure 46 comparing RecNhead domain sequence 

with the head domains of SMC and Rad50 proteins, highlighted the high level of sequence 

Lobe I 

Lobe II 

A 
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conservation within the ATP binding/hydrolysis motifs. With the crystal structure of 

RecNhead protein now available, a more detailed structural sequence alignment could be 

performed in order to compare the structures of RecNhead and Rad50 (Hopfner et al, 2000). 

Walker-motifs and signature sequence are highly conserved (represented in black squares) 

and the secondary structure elements show a high level of similarity. Helix α1 containing the 

Walker-A motif is longer than the one carrying the same conserved motif in Rad50, but it is 

not fully understood if this difference could affect the functional activity of RecN. A few 

differences were observed, such as β8 and β11 elements of RecNhead (Figure 46) which are 

not present in pfRad50. 
 

 
 

Figure 46: Sequence alignment of RecNhead domain for comparison of structural features to homologous 

proteins. The three conserved motifs, Walker-A, signature sequence and Walker-B respectively (indicated by 

closed black boxes), are highly conserved among the different head domains used for alignment. Secondary 

structure elements of RecNhead and pfRad50 head domain are presented for comparison.  

  

 RecN and consequently RecNhead have an N-terminal extension and an HTH motif at 

its C-terminus (Figures 45 and 46), which are not present in other bacterial RecN proteins 

(Figure 22). The flexibility of the N-terminal insertion was confirmed in the RecNhead crystal 

structure since there was no clear electron density for the first 31 amino acids. The role of this 
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extension is not understood yet. The presence of a Proline-rich region suggests that it might 

be involved in protein-protein interactions (Williamson, 1994).  

  

 4.6.  Crystal structure vs. ab initio model of RecNhead 

 An ab initio model of RecNhead domain was built using DAMMIN (Svergun, 1999) 

and was presented in paper I (Pellegrino et al, 2012b). 15 models were obtained and then the 

electron density averaged and filtered in order to reconstruct a more consistent envelope. A 

picture of the superposition of the refined crystal structures with the overall shape resulting 

from the ab initio calculation is shown (Figure 47) and indicated that the overall shape 

adopted by RecNhead domain in solution is consistent to that seen in the crystal structure.  
 

 
 

Figure 47: Overlay of the crystal structure of RecNhead with the averaged ab initio envelope obtained from 

SAXS data. Superposition was performed using SUPCOMB20 (Kozin & Svergun, 2001). 

 

 4.7.  Nucleotide Binding Domain in detail 

 Structural analysis of RecNhead domain highlights the presence of conserved residues 

in both the Walker motifs. These residues, notably K67 in the Walker-A and D471 and E472 

in the Walker-B motif, are essential for ATP-binding, Mg2+ coordination and ATP hydrolysis 

respectively by mediating cleavage of γ-orthophosphate by a water molecule. Together with 

the signature sequence located on the same head domain molecule they give rise to half of the 

ATP binding pockets. Structural comparison of RecNhead with pfRad50 head domain has 

shown a different positioning of the signature sequence: it is situated only 6.8Å away from 

Walker-B motif, while in Rad50 the same distance increases up to 13.6Å, indicating a bigger 

spatial separation between the two binding pockets. In the ABC protein, UvrA2 (PDB code: 
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2VF8), the functional and conserved motifs are placed closer, as seen in the case of RecNhead 

crystal structure (as discussed in paper III (Pellegrino et al, 2012 submitted) and also shown in 

Figure 48). 
 

 

 

Figure 48: Representation of half of the functional NBD pocket. In the picture RecNhead domain (grey) is 

superimposed to ADP-bound UvrA2 NBD2 (sand) (Timmins et al, 2009). The position of the three most 

conserved residues (Lys at the Walker-A, Ser in the signature sequence and Glu in the Walker-B motif) is highly 

conserved. ADP (crystallized together with drUvrA2 protein) is shown for clarity and represented as sticks.  

 

 As discussed in the introduction (§ 1.5.5) ATP has been shown to induce major 

conformational re-arrangements of the NBD, leading to head–head engagement (Hopfner et 

al, 2000; Mockel et al, 2011; Paull et al, 2004). 5mM nucleotides (ATP, ADP and the non-

hydrolysable form AMP-PCP) were supplemented to wild-type RecN and RecNhead proteins 

prior to carrying out biophysical measurements: SEC and SAXS studies for RecN and SEC- 

MALLS (Figure 41) and SAXS experiments for RecNhead domain. Unfortunately, no 

obvious changes were observed and, therefore, no additional information was gained using 

these techniques. Co-crystallization experiments using RecNhead domain and the mentioned 

nucleotides gave rise to nice crystals with different morphology after 8-10 days in conditions 

very similar to those in which the RecNhead domain crystallized. However, these crystals 

diffracted only very poorly, as it will be discussed later (chapter 5). 

 

4.8. Summary of the results on RecNhead domain 

 RecNhead domain was purified to homogeneity and successfully crystallized. 

Biophysical and diffraction analysis resulted in the definition of a low, obtained by SAXS, 

and a relatively high (3 Å) resolution model, obtained by X-ray diffraction experiments. 
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Analysis of the ab initio envelope showed that RecNhead domain might adopt a similar 

structural organization to Rad50 protein (Pellegrino et al, 2012b). 

Structural analysis of RecNhead crystal structure, in addition, confirmed that RecN 

shares an analogous fold to SMC and Rad50 proteins, as also predicted by secondary structure 

prediction’s tools. The crystal structure contained the well-characterized NBD, typical of 

ABC and ABC-like proteins, but also a portion of the nascent coiled-coil domain and an extra 

HTH motif at the C-terminus. The ATP-binding pocket is contained in the NBD and the 

functional residues of the Walker-A and Walker-B motifs are positioned similarly to those in 

the ABC proteins pfRad50 and drUvrA2 (Figure 48).   

The crystal structure of RecNhead also highlighted several differences within the 

nucleotide binding pocket which may affect ATP-binding and hydrolysis. The signature 

sequence, particularly, was shown to adopt a different position, closer to the Walker motifs 

than in Rad50 and SMC proteins. This is probably due to differences in the mechanism of 

recognition and binding of the nucleotide to accomplish the hydrolytic function.  

RecNhead was the first crystal structure obtained for bacterial RecN proteins and 

therefore could represent the starting point for the understanding of the DSB recognition 

pathway.    
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Chapter 5: 

ATP-binding properties of RecNhead domain 

and their structural and biochemical 

implications 
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Summary of chapter 5 

 

 RecN contains a NBD and is therefore expected to bind and hydrolyze nucleotides, such 

as ATP. Co-crystallization experiments using different nucleotides (ATP/ADP/AMP-PNP) 

were performed in order to obtain the crystal structure of RecNhead domain in complex with 

its cofactor, but the crystals obtained diffracted only very poorly. 

 Dissection of the ATP-binding mechanism was undertaken through the mutation of key 

residues potentially involved in this process. A double mutant with mutations in both the 

Walker-motifs was of particular interest since it formed a stable dimer (as assessed by Multi-

Angle Laser Light Scattering and Small Angle X-ray Scattering studies). The scattering curve 

allowed to build a model illustrating how two RecNhead domains interact upon ATP-binding, 

providing the first low resolution model of dimeric RecNhead. 

 

 

Résumé du chapitre 5 
 

 RecN contient un domaine de fixation de nucléotide, appelé NBD, et par conséquent, il 

devrait lier et hydrolyser les nucléotides, tel que l'ATP. Des expériences de co-cristallisation 

utilisant différents nucléotides (ATP / ADP / AMP-PNP) ont été réalisées afin d'obtenir la 

structure cristalline du domaine RecNhead en complexe avec son cofacteur, mais les cristaux 

obtenus ne diffractaient que faiblement. 

 La dissection du mécanisme de liaison de l'ATP a été entreprise par la mutation des 

résidus clés potentiellement impliqués dans ce processus. Un double mutant avec des 

mutations dans les deux motifs Walker était tout particulièrement intéressant car il formait un 

dimère stable (évalué par diffusion aux petits angles et diffusion de lumière laser multi-

angles. La courbe de diffusion obtenu par SAXS permit de construire un modèle illustrant la 

manière dont les deux domaines RecNhead interagissent lors de la fixation de l’ATP, offrant 

le premier modèle basse résolution d’un dimère de RecNhead. 
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5.1.  Co-crystallization trials of RecNhead domain with nucleotides 

 ATP is known to induce a major conformational re-arrangement of the NBD, leading to 

head-head engagement (Hopfner et al, 2000; Mockel et al, 2011; Paull et al, 2004). RecNhead 

was analysed by SEC, SEC-MALLS and SAXS in the presence of a large excess of different 

nucleotides (ATP/ADP/AMP-PCP) but no significant changes were observed. The crystal 

structure of RecNhead domain does not contain a bound nucleotide. Co-crystallization 

experiments were therefore performed using RecNhead protein at 9.6 mg ml-1 and nucleotides 

(ATP, ADP or AMP-PCP) at a final concentration of 5mM. Crystals of different morphology 

(Figure 49) appeared after 8-10 days in conditions containing 100mM Tris-HCl pH 8-8.5 and 

22.5-27.5% PEG 6000. Crystals were tested at Room Temperature (RT) on ID14-1 at the 

ESRF (Wakatsuki et al, 1998) using the humidity control device (HC1) developed jointly by 

ESRF and EMBL (Russi et al, 2011). The crystals showed very poor diffraction. With the use 

of the humidifier control device it was not possible to improve the resolution limit beyond the 

6.8 Å (Table 6) obtained at 99.5 % of humidity. These crystals belonged to space group I4 

with cell parameters a,b = 128.4 Å, c = 314.3 Å. Unfortunately it was not possible to 

extrapolate any useful structural information, since the experiment was carried out at RT and 

the crystals suffered from severe radiation damage already after just a few images. 

 

Humidity (%)  Space group Resolution (Å) Cell parameters (Å, °) 

99.5 I4 6.8 a,b=128.4, c=314.3 

98.5 C2 7.5 a=182.6, b=181.2, c=182.3    β=120.6 

97.5 Failed 8.3  

96.5 C2 8 a=184.9, b=306.5, c=191.2    β=85.2 

95.5 C2 10 a=309.4, b=179.7, c=181.9    β=89.0 

94.5  20  

87.5  >20  
 

Table 6: Summary of the integration of the two images collected for the crystal tested at different humidity 

conditions. Experiments were performed on ID14-1 (ESRF) at RT using the humidifier device HC1.  
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              Diffraction pattern at 99.5% humidity                              Diffraction pattern at 98.5% humidity                                            
 

                   
               Diffraction pattern at 87.5% humidity                         Picture of crystals of RecNhead domain 

                                                                                                           co-crystallized with nucleotide 
 

Figure 49: Images collected at different humidity concentrations (the values are indicated). Circles indicating the 

resolution limit are also shown for clarity. B) Crystals of RecNhead domain in presence of nucleotides. 

Morphology of the crystals is completely different from what was seen for the RecNhead apo-protein (Pellegrino 

et al, 2012c). 

 

5.2. Mutations of the conserved functional residues 

 Characterization of the ATP-binding site was of particular interest for the understanding 

of the role of ATP hydrolysis in the putative DNA end-joining activity of RecN (Reyes et al, 

2010). Single and double amino acids substitutions were introduced into the Walker A and B 

motifs: K67A, E472Q, E472A, K67A/E472Q, K67A/E472A and D471A. The mutant proteins 

were successfully expressed and purified as described in Materials & Methods. 

 

6.8 Å 7.5 Å 

20 Å 

B) 
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5.3. Purification and preliminary analysis of RecNheadK67A/E472Q 

 The double mutant, RecNheadK67A/E472Q, in which the Walker A lysine was mutated to 

alanine and the Walker B glutamate was mutated to glutamine, was purified to homogeneity. 

The first affinity chromatography step produced a huge amount of protein (~200 mg of 

protein from 1 liter of cell culture). Subsequently, a SEC column was run to further purify the 

protein. The mutant protein eluted as a single peak, but its elution volume (12.5 ml) was 

considerably smaller than the RecNhead domain (14.1 ml). Interestingly, during the SEC step, 

the main protein peak exhibited an unusually high 254 / 280nm absorption ratio, indicating 

that a molecule absorbing at 254 nm may be bound to RecNheadK67A/E472Q. The ratio was 

maintained even after performing an ion exchange chromatography prior to injection on the 

SEC column, confirming that the species present is tightly bound to RecNheadK67A/E472Q. We 

speculate that it may be an ADP or ATP molecule that could have co-purified with 

RecNheadK67A/E472Q (Pellegrino et al, 2012 submitted). The protocol used for purification of 

RecNheadK67A/E472Q involved the same two-steps procedure used for RecNhead domain. 

Affinity chromatography (Figure 50), followed by thorough dialysis and the inclusion of a 

SEC as final step (Figure 51), yielded a highly pure protein suitable for biophysical analysis 

like SEC-MALLS (Figure 52) and SAXS. 
 

    
 

Figure 50: Affinity chromatography profile of RecNheadK67A/E472Q. Protein absorbance at 280 nm is shown in 

blue. The protein eluted at 35 % of buffer B-2, corresponding to approximately 170mM imidazole. SDS-PAGE 

gel with the main peak fractions is presented on the right. MWs are reported in kDa. P: pellet; S: soluble 

fraction; FT: flow-through. 
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Buffer C-2, as for RecNhead, represented the optimal buffer for elution and allowed also to 

compare the behavior of this mutant with the wild-type protein. 
 

  
   

Figure 51: SEC chromatography profile of RecNheadK67A/E472Q. The ratio between the absorbance at 280 nm 

(blue), corresponding to protein, and at 254nm (red), corresponding to nucleotide absorption, is approximately 1. 

This result suggests the presence of tightly bound nucleotide to the protein (Pellegrino et al, 2012 submitted). 

SDS-PAGE gel with the main peak fractions is presented on the right. MWs are reported in kDa. 

 

 5.4. SEC-MALLS confirmed the dimeric state of RecNheadK67A/E472Q 

 Comparison of the SEC-MALLS profiles of RecNhead and RecNheadK67A/E472Q 

constructs demonstrated that the mutant is double the size of the native protein, suggesting 

that the specific mutations induced a structural rearrangement that favored a dimeric assembly 

(Figure 52).  
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Figure 52: SEC-MALLS profiles of RecNhead domain and RecNheadK67A/E472Q. Comparison of the two curves 

evidenced that the double mutant is a stable dimer in solution. Experiments were conducted in the same buffer 

conditions: 50mM Tris-HCl pH 8, 300 mM NaCl and 5 mM MgCl2. Thin line: refractive index recorded; thick 

line: averaged MW estimation from different scattering angles. 

 

 5.5.  SAXS studies of RecNheadK67A/E472Q  

 SAXS experiments were performed on ID14-3 at the ESRF and scattering curves were 

collected on RecNheadK67A/E472Q (Figure 53). SAXS data could provide us with more 

information regarding the overall envelope adopted by RecNhead domain when nucleotide 

enters and binds to the ATP-binding site.  
 

 

 

 

 

 

 

 



 

92 

 

 
 

Figure 53: SAXS measurements were performed on RecNheadK67A/E472Q protein. Three different concentrations 

(3.5, 1.7 and 0.8 mg ml-1) were measured in order to check for any inter-particle effect. The curves 

corresponding to the lowest (red) and highest (black) protein concentrations were merged and used for ab initio 

model reconstruction by using GASBOR (Svergun et al, 2001b). 

 

 The scattering curves (Figure 53) obtained from three different protein concentrations 

(3.5, 1.7 and 0.8 mg ml-1) were used to successfully reconstruct an ab initio envelope (Figure 

54). The Guinier approximation estimated the radius of gyration (Rg) to be 3.45 nm and the 

molecular weight (~70 kDa) derived from the scattering at zero angle (I0) was in agreement 

with the size of a dimer. Taking advantage of the available knowledge regarding ATP-binding 

sites (Hopfner & Tainer, 2003) and our overall envelope, we manually built a model of the 

putative RecNhead dimer using our recently obtained crystal structure (Figure 45). The 

calculated theoretical scattering curve derived from this model was superimposed on the 

experimental SAXS curve. The excellent fit with a χ2 value of 1.56 over the entire curve 

indicates that this model describes very well the behavior of the protein in solution (Figure 

55).  
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Figure 54: SAXS envelope (on the left) and model built using the RecNhead domain crystal structure (on the 

right) are shown. All pictures are shown 90 degrees apart in order to view the orientation of the coiled-coil 

helices, which point out in the same direction. The envelope is the averaged results of several runs of ab initio 

modeling using DAMMIN (Svergun, 1999). In the model built form the RecNhead crystal structure one 

monomer is colored accordingly to the colors used in chapter 4, while the other monomer is colored in grey for 

clarity. 

 

 In the model proposed in Figure 54, the coiled-coil domains are located on either side 

of the two RecNhead monomers (MolA and MolB), that come together in a head-to-tail 

orientation to form two functional ATP-binding pockets as observed previously for 

dimerization of NBDs (Hopfner et al, 2000; Lammens et al, 2004). Each RecNhead monomer 

contains all the conserved motifs necessary for the formation of the functional ATP binding 

pocket. As in Rad50 and other ABC proteins, the Walker motifs of one RecNheadK67A/E472Q 

molecule and the signature sequence of a second molecule come together to form a functional 

nucleotide binding pocket (Hopfner et al, 2000; Timmins et al, 2009). In the crystal structure 

of RecNhead, the signature sequence is located only 9 Å away from the Walker-B motif, 

while this distance increases up to ~20Å for SMC or Rad50 head domains, suggesting that the 

two ATP binding pockets at the NBD dimerization interface would be much closer together in 

the case of RecN. The arrangement of the Walker-A, -B and signature sequence motifs in 

RecN are more similar to that found in the C-terminal NBD2 of UvrA2 (RMSD: 1.54 Å over 

116 Cα) in its ADP-bound form (Figure 47).  
 

 

MolA 

MolB 
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Figure 55: Overlay of the experimental SAXS curve (in red), created by merging highest and lowest 

concentrations scattering curves, with the theoretical curve (in blue) calculated from the manually built model of 

RecNheadK67A/E472Q. The dimeric model of RecNhead double mutant approaches very well the behavior of this 

construct in solution. Goodness-of-fit (χ2) is reported. 

 

 The ab initio envelope resulting from this SAXS study was used as a template for 

superposition with the built model, proposed in Paper III (Pellegrino et al, 2012 submitted). 

The coiled-coil α-helices are pointing out at the same direction, suggesting a model similar to 

what has been proposed for Rad50 while interacting with Mre11 (Mockel et al, 2011). The 

finding that RecN head-head engagement shares a number of conserved features with Rad50, 

suggests that the molecular mechanisms underlying DSB recognition might also be conserved. 

 

5.6. Crystallization trials on RecNhead domain mutants 

 To clarify the contribution of the signature motif rearrangement on the nucleotide 

binding properties of RecN (Pellegrino et al, 2012 submitted), atomic resolution data was 

desirable. Crystallization trials on RecNheadK67A/E472Q were carried out in parallel to the 

SAXS study. Crystals were obtained from the crystallization robot screening (Figure 56). 

Initial conditions were nº 20 of the PEG/Ion Screen, containing 0.2 M,magnesium formate pH 

5.9 and 20 %w/v PEG 3350. Crystals appeared also in the condition nº 22 of the Crystal 

Screen I, containing 0.2 M sodium acetate trihydrate, 0.1 M Tris-HCl pH 8.5 and 30 %w/v 

PEG 4000 (Hampton Research). Despite the fact that crystals were obtained and were also 

reproducible, diffraction spots were not visible on the processed image.  
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 Instead, spectroscopy was used to compare these crystals to those of the native protein 

(paragraph 5.7).  

 

                       
 

Figure 56: Crystals of RecNheadK67A/E472Q were obtained after initial screening using the crystallization robot at 

the EMBL-Grenoble (Dimasi et al, 2007). The conditions at which these appeared were nº 20 of the PEG/Ion 

Screen (left) and nº 36 of the Crystal Screen I (right) (Hampton Research). Crystals were tested at ID23 and 

ID29 (ESRF) but diffraction was very poor. 

 

 Crystallization trials were also set up for the RecNheadE472Q mutant and crystals 

diffracting to 3.5 Å were obtained (Figure 57). The purpose of this experiment was to improve 

our understanding, at an atomic level, of the mechanism by which ATP is hydrolyzed and, in 

addition, to understand why the activity of this mutant is so much higher than that of the wild-

type protein (chapter 8). Crystals belonged to space group P212121 with cell parameters a = 

63.7 Å, b = 121.8 Å, c = 161.7 Å. An almost complete data set was collected (~87 % 

completeness) because the crystal suffered from radiation damage. Mol.R. was performed 

using PHASER (McCoy et al, 2007) and a reasonable solution was found with a likelihood 

gain (LLG) of 1508. Analysis of the resulting electron density map at the ATP-binding pocket 

site revealed no difference in the orientation of the Walker-A and –B conserved residues, 

notably K67 and E472. As with the wild-type protein, these crystals were obtained in the 

absence of nucleotide and most likely, further information would be gained by co-

crystallizing the mutant protein with ATP or AMP-PNP (non-hydrolyzable form).  
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Figure 57: Crystal of RecNheadE472Q construct. On the left: crystals obtained in drops using the crystallization 

robot at the HTX laboratory (EMBL-Grenoble) and grown in condition nº 21 of the PEG-Ion screen (Hampton 

Research). These crystals diffracted to 3.5Å on ID29 at the ESRF. On the right: crystal obtained after 3 weeks 

equilibration. The condition in which this crystal appeared was the nº 29 of the Index Screen (Hampton 

Research). 

 

5.7. Spectroscopic measurements in crystallo 

 Steady-state fluorescence emission spectra were carried out on ID29-S at the Cryo-

Bench at the ESRF (Royant et al, 2007). Spectra were recorded on crystals of RecNhead and 

RecNheadK67A/E472Q domains. Since X-ray diffraction data were not available for 

RecNheadK67A/E472Q, the aim of these measurements was to further characterize the 

unidentified, bound ligand. Spectra were recorded on each of the two crystals over the full 

UV-visible wavelength range and then compared. 

 At wavelengths approaching those where protein (280 nm) and nucleotides (254 nm) 

absorb, the spectra of the two crystals present slightly different features (Figure 58). This 

result confirmed, first of all, that the crystals tested were indeed protein crystals of 

RecNheadK67A/E472Q. However, unfortunately these spectra were not sufficient to allow us to 

discriminate between ADP and ATP, given the similar chemical properties of the two 

nucleotides. 
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Figure 58: Comparison of spectra taken from crystals of wild-type RecNhead domain (in black) and crystals of 

RecNheadK67A/E472Q (in red), in which a nucleotide is suggested to be trapped from the early purification steps. 

Data were recorded at the Cryo-Bench at ID29 (ESRF).   

 

5.8. Summary of the structural changes of RecNhead induced by ATP   

A double mutant of RecNhead domain, namely RecNheadK67A/E472Q, provided us with a 

model of the possible dimeric organization that occurs upon ATP-binding. An ab initio 

envelope reconstructed from SAXS data allowed to define the probable nucleotide-bound 

form of RecNhead. In this model the coiled-coil domains are oriented in a similar way and 

point out in the same direction from the globular region. The dimeric assembly proposed in 

this work and built considering the position of the conserved functional residues fitted very 

well with the experimental scattering curve (Figure 55). However, the low-resolution nature 

of SAXS did not allow us to determine if local conformational re-arrangements took place in 

the ATP-binding pocket of RecNhead in preparation to receive ATP. Crystals of 

RecNheadK67A/E472Q were obtained but unfortunately no diffraction was visible. A 

comparative spectroscopic study provided a spectrum in the UV-Vis range, which at least 

excluded the possibility that we were working with salt crystals. Comparison with wild-type 

RecNhead crystals highlighted a difference in the spectra, especially in the region between 

250-300 nm (Figure 58).  

 More efforts need to be made to improve the quality of the RecNheadK67A/E472Q 

crystals in order to better understand the ATP-binding and hydrolysis mechanisms. 
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Biochemical experiments could also provide new insights into the effects of single amino acid 

substitutions on the ATP release. 
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Chapter 6: 

Structural investigation of the coiled-coil 

domain of RecN 
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Summary of chapter 6 
 

 RecN also possesses a central coiled-coil domain, interconnecting the N- and C-termini. 

In RecN, this domain is particularly short compared to the other members of the SMC family, 

such as SMCs, Rad50 or MukB. We successfully expressed and purified two different 

constructs corresponding to residues 240-387 and 196-365 (RecNcc). Both of them were 

characterized by Multi-Angle Laser Light Scattering, which highlighted the different 

oligomerization state of these two constructs. While the former was a monomer in solution, 

the latter adopted a dimeric state in solution (as seen also by Small-Angle X-ray Scattering 

analysis) suggesting that this region could be responsible for RecN dimerization.  RecNcc was 

also successfully crystallized and the structure solved by Single-wavelength Anomalous 

Dispersion (using Se-Met derivatives) at a maximum resolution of 2 Å. The dimerization 

interface is formed through a network of van der Walls interactions. 

 A deletion mutant (RecN�dd), lacking this dimerization interface, was also expressed, 

purified and characterized by SEC-MALLS, SAXS and X-ray diffraction. In the crystal 

structure (resolution 4 Å) RecN�dd is a monomer, confirming our previous observations. 

 

 

Résumé du chapitre 6 
 

 RecN est également constitué d’un domaine central formant un faisceau d’hélices 

(coiled-coil), connectant les régions N- et C-terminales. Pour RecN ce domaine est 

particulièrement court par rapport à ceux des autres membres de la famille SMC, tels que 

SMC, Rad50 ou MukB. Nous avons réussi à exprimer et purifier deux constructions 

différentes, correspondant aux résidus 240-387 et 196-365 (RecNcc). Toutes deux ont été 

caractérisées par la diffusion de lumière laser multi-angles (MALLS), qui met en évidence des 

états d'oligomérisation différents pour les deux protéines. Alors que le premier est un 

monomère en solution, le deuxième adopte un état dimérique en solution (confirmé par 

l'analyse de diffusion aux petits angles, SAXS), suggérant que cette région pourrait être 

responsable de la dimérisation de RecN. RecNcc a également été cristallisée et sa structure 

résolue par dispersion anomale à une longueur d’onde (en utilisant une protéine séléniée) à 

une résolution maximale de 2 Å. L'interface de dimérisation est formée par un réseau 

d'interactions Van der Walls. 
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 Un mutant de délétion (RecN∆dd), manquant cette interface de dimérisation, a 

également été exprimé, purifié et caractérisé par MALLS, SAXS et diffraction aux rayons X. 

Dans la structure cristalline (résolution 4 Å), RecN∆dd est un monomère, confirmant ainsi nos 

précédentes observations. 
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6.1.    Expression and purification of coiled-coil domain of RecN 

 Different constructs (Table 5) were designed for the coiled-coil domain but most of our 

attention focused on the one including residues 196 to 365 (RecNcc). Another construct, 

corresponding to residues 240-387 of RecN, was also successfully expressed and was 

characterized by SEC-MALLS studies (§ 6.3).  

 The DNA codifying for RecNcc protein was amplified by PCR, cloned in pET151-

TOPO vector and transformed into E. coli cells BL21* as for the other constructs. RecNcc 

was subsequently purified according to the protocol described in Materials & Methods section 

and in (Pellegrino et al, 2012a). A two-step purification (Figures 59 and 60) was performed 

using the same buffer solutions as for RecNhead protein purification and yielded pure protein, 

suitable for further structural (X-ray crystallography and SAXS) and biophysical analysis by 

DLS and SEC-MALLS (Figure 60).  
 

    
 

Figure 59: Affinity chromatography profile of RecNcc. Protein absorbance at 280 nm is shown in blue. The main 

peak eluted at 32 % of buffer B-2, which corresponds to approximately 165 mM imidazole. 10µl of fractions 

corresponding to the main peak were loaded onto a 15% SDS-PAGE gel in order to check the purity of the 

fractions. The gel with the main peak fractions is presented on the right. MWs are reported in kDa. P: pellet; S: 

soluble fraction; FT: flow-through. 

 

 SEC was performed using buffer C-2 (Materials & Methods) and the RecNcc eluted as a 

single peak from the Superdex 200 column, which was used for comparison with the other 

constructs used in this work. Protein purity was then checked by SDS-PAGE: there are two 

bands of lower MW (Figure 60) under the band corresponding to RecNcc. This could be due 

to minor degradation of the construct target.   
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Figure 60: SEC of RecNcc. The protein eluted as a single peak, with a small tail before the main symmetrical 

peak. Protein absorbance at 280 nm is reported in blue, while nucleotide absorbance at 254 nm is in red. A small 

amount of degradation is visible (red arrows). The protein fractions were checked by DLS and the ones with a 

low pdI(0.18) were pooled for further analysis. SDS-PAGE gel with the main peak fractions is presented on the 

right. MWs are reported in kDa.  

  

6.2.    SEC-MALLS measurements on RecNcc domain 

 SEC-MALLS measurements (Figure 61) were performed on purified RecNcc and 

resulted in an averaged molecular mass of ~32 kDa, which clearly corresponded to a dimeric 

state of the coiled-coil domain (theoretical MW of the monomer is 18 kDa as calculated by 

ProtParam). This finding was the first clear indication of the possible location of the 

dimerization interface in RecN, as also suggested by a previously published paper (Graumann 

& Knust, 2009). The RecN dimerization process is therefore most likely achieved through the 

coiled-coil region. Information is available for the dimerization interfaces of homologous 

proteins, such as Rad50, SMC and MukB, but there is not a common architecture for these. 

The question was now, how does the dimerization process take place in RecN? 
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Figure 61: SEC-MALLS measurements performed on RecNcc for determination of the absolute MW. 

Experiments displayed that RecNcc is a stable dimer in solution, supporting what is suggested in the literature 

(Graumann & Knust, 2009). Thin line: refractive index recorded; thick line: averaged MW estimation from 

different scattering angles. The averaged MW is reported. 

 

 6.3.    Investigation of the overall shape of RecNcc by SAXS 

 SAXS measurements on RecNcc were performed on ID14-3 at the ESRF, using the 

experimental set-up described in (Pellegrino et al, 2012a). Three different protein 

concentrations were measured and inter-particle effects were not detectable when comparing 

the three scattering curves (Figure 62). Data were then truncated for ab initio model 

reconstruction, since there were different features appearing at q values higher than 3 Å-1. The 

intensity at zero angle (I0) allowed the estimation of the MW of RecNcc, which resulted to be 

~37 kDa, corresponding to the size of a dimer. AUTOPOROD (Petoukhov et al, 2007) was 

also run for estimation of the Porod volume and the MW, a method that is, unlike the I0, 

independent of concentration measurements and their associated errors. The expected MW 

calculated by Porod volume resulted to be ~40 kDa, which is in agreement with the value 

calculated by I0.  
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Figure 62: Overlay of the three scattering curves (left) corresponding to three different RecNcc concentrations: 

6.0 (black), 2.9 (blue) and 1.5 mg ml-1 (red). The curves superpose very well at low q angles values. The data 

was truncated at q of 3Å-1 for following ab initio modelling. The pair distribution function (P(r)) is shown on the 

right and the long tail is characteristic for elongated macromolecules. 

 

 The resulting ab initio envelope was presented in (Pellegrino et al, 2012a). The 

characteristic profile of the P(r) was indicative of the presence of a rather elongated molecule 

in solution and the model building confirmed this hypothesis. Further details will be provided 

by the crystal structure of RecNcc. 

 

 6.4.  Crystallization of the RecNcc and structure determination 

 RecNcc was expressed, purified and crystallized as described in Materials & Methods 

section and in (Pellegrino et al, 2012a). RecNcc was characterized in solution (SEC-MALLS 

and SAXS) and by X-ray diffraction experiments. Optimization of the crystals was carried out 

in hanging drop plates (Hampton Research, Aliso Viejo, CA) and drops were set-up mixing 1 

µl of protein at either 14.82 or 7.7 mg ml-1 and 1 µl of reservoir. Manual optimization of the 

initial conditions was achieved using the Additive Screen (Hampton Research, Aliso Viejo, 

CA): 1,2,3-heptantriol gave rise to better diffraction quality and final concentration of 3% 

produced crystals that diffracted to 2.04 Å. To solve the crystal structure of RecNcc 

experimental phases were determined by the SAD method using a Se-Met derivative crystal, 

since Mol.R. failed due to the lack of prior structural information. Data were integrated and 

processed with iMOSFLM (Battye et al, 2011) and then submitted to Auto-Rickshaw 

(Panjikar et al, 2005). Heavy atoms (one Se for each chain) were localized and a new set of 
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phases calculated using SHELX (Sheldrick, 2010). An initial chain tracing was performed 

using SHELXE. The nascent map was then run through DM for density modification (Figure 

63) in order to improve the quality through several cycles. Extensive model building was 

performed using ARP-wARP, which resulted in an almost complete model of the 4 molecules 

of the asymmetric unit (over 75 % of the main chain was built). Several cycles of manual 

model building using COOT (Emsley et al, 2010) and refinement using REFMAC5 

(Murshudov et al, 2011) allowed completion of the crystal structure with good final statistics 

(Pellegrino et al, 2012 submitted).  

 

 
 

Figure 63: Detail of the Fourier electron density map for RecNcc contoured at 1.5 σ after density modification 

(DM). The α-helical arrangement is clearly visible and the backbone can be traced: 75% of the model was 

initially built from ARP/wARP {Langer, 2008 #1312}. 

 

 6.4.1. The coiled-coil domain showed a new interaction interface  

 The central region of RecN proteins is predicted to be a coiled-coil and to be 

involved in dimer formation (Graumann & Knust, 2009). This domain is conserved in length 

but shows very low sequence identity (Figure 22). The crystal structure of RecNcc is 

composed of 6 α-helices (named α5-α10) of varying lengths (ranging from 17 to 29 residues 

long), which follow an anti-parallel arrangement. The RecNcc was found to form a stable 

dimer with a clear two-fold symmetry (Figure 64). The dimer interface is formed by residues 

located on helices α6-α8 interacting with their equivalent residues from the second molecule 

through an extended network of van der Waals interactions. The buried interface covers an 
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area of ~1400 Å2 and involves 34 residues altogether. The anti-parallel arrangement of each 

RecNcc monomer is favored by dipole and hydrogen-bonding interactions (Figure 64, 

magnification): in particular the highly conserved E222 and R319 form a salt bridge that 

stabilizes the packing of helix α6 against helix α9. As a result, the overall structure of RecNcc 

appears to be very rigid. Several loops located between helices α5-α6, α8-α9 and α9-α10 

confer some degrees of freedom to the entire rod-like structure, as displayed by the analysis of 

the B-factor distribution per residue (see § 6.5 and paper III (Pellegrino et al, 2012 

submitted)). 
 

  
 

Figure 64: RecNcc is a dimer. Extensive inter-molecular interactions between helices α6-α7-α8 contribute to the 

formation of the dimerization interface. In total 34 residues (magnification below on the left) are responsible for 

creating an extended hydrophobic buried area (~1400 Å2) which holds together the RecNcc monomers. In the 

other magnification (on the right) a detail of the intra-molecular polar interactions is shown. We suggested these 

interactions are involved in the process of folding of RecNcc. 

 

 The crystal structure of the coiled-coil domain presents an anti-parallel α-helical 

arrangement (Figure 64 and 65), similar to the E.coli MukB (PDB code: 3IBP) (Li et al, 

2010), with an RMS of 1.33Å over 61 Cα. The main difference was found to be the mode of 

dimerization: in MukB, like in SMC proteins, the monomers interact through an extended 

(2930 Å2) hinge domain mediated by dipole interactions (Griese & Hopfner, 2011; Li et al, 

2010). In the case of Rad50, the dimerization process takes place through a different kind of 

interface and, precisely, a Zn-hook domain (Hopfner et al, 2002). The entire process is 

stimulated by the presence of a pocket, created by four cysteines, which allows for a Zn2+ ion 

to bind. 
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Figure 65: Comparison of ecMukB (Li et al, 2010) (on the top) and RecNcc domain. The structural organization 

between the two proteins is very conserved and it is characterized by the presence of an anti-parallel arrangement 

of the coiled-coil region. The hinge domain, which is involved in SMC and SMC-like proteins dimer formation 

and, in a few cases, in DNA-binding, is totally missing in RecN. The two structures are coloured in rainbow in 

order to distinguish the anti-parallel arrangement. 

 

 In conclusion the crystal structure of RecNcc revealed that the coiled-coil regions of 

SMC and SMC-like proteins share an anti-parallel helical arrangement, but differ in their 

mode of dimerization. RecNcc utilizes a novel means of dimerization involving an extended 

hydrophobic interface that has not been previously reported in the literature for similar 

interaction interfaces of coiled-coil domains (Griese & Hopfner, 2011; Griese et al, 2010; 

Hopfner et al, 2002; Li et al, 2010). 

 

 6.4.2.  Are loops in between the coiled-coil helices involved in flexibility? 

 In view of the particular structural organization adopted by RecNcc, the coiled-coil 

domain appears to be a mostly rigid, rod-like structure. In SMC proteins, however, flexibility 

of this region is expected to be crucial in order to allow the “closure” of two NBDs for the 

formation of an active ATP-binding pocket. In RecN, in contrast, the coiled-coil does not 

allow the NBDs at either ends of the coiled-coil to engage and therefore form the typical 

ABC-like pocket. Limited flexibility is nevertheless possible and the main candidates for 

coiled-coil movements are the loops connecting the α-helices, particularly those connecting 

α6 to α7 and α8 to α9 (Figure 66). A graph reporting the B-factors of the two chains, A and 

B, constituting the RecNcc dimer, was created using BAVERAGE (Dodson, 1991) and showed 

a clear increase in thermal motion of the Cα of each chain in between the helices.  
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Figure 66: The trend of B-factors in MolA and MolB of RecNcc is represented. BAVERAGE was used to 

extrapolate B-factor statistics from the PDB file, while R was used to build the graph (Gentleman & Ihaka, 

2000). The values were lower in correspondence of the secondary structure elements, while increasing in 

correspondence of the loops, which are more flexible. Red circles: MolA. Blue lines: MolB. 

 

 6.5.  SAXS vs crystal structure of RecNcc 

 SAXS experiments were performed on RecNcc and described in paper II (Pellegrino et 

al, 2012a). An ab initio model of RecNcc was built using DAMMIN (Svergun, 1999) and the 

crystal structure was subsequently overlayed with the overall envelope of the coiled-coil 

domain (Figure 67) using SUPCOMB (Petoukhov et al, 2007). 
 

 

 

Figure 67: Superposition of RecNcc domain crystal structure with the ab initio model obtained by SAXS. Model 

is averaged after several runs of ab initio modeling. Superposition was performed using SUPCOMB20 (Kozin & 

Svergun, 2001). 
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 The overlay (Figure 67) showed a close similarity between the low- and high-resolution 

structures indicating that the coiled-coil domain of RecN most likely adopts the same 

architecture both in solution and in crystals. 

 

 6.6.    Characterization of a shorter coiled-coil construct 

 The gene codifying for a shorter coiled-coil construct (residues 240-387) was amplified 

by PCR and subsequently cloned into pET151-TOPO vector for expression in E. coli, strain 

BL21 Star cells. Purified RecN coiled-coil 240-387 construct was obtained following the two 

steps purification described for RecNcc (Pellegrino et al, 2012a). The Immobilized Metal ion 

Affinity Chromatography (IMAC) step was similar to RecNcc purification, with protein 

eluting at approximately 34 % of the imidazole gradient. Dialysis and TEV cleavage allowed 

removal of the imidazole and the 6xHis-tag from the protein and the resulting sample was 

further purified by SEC. It typically eluted around ~81 ml (Figure 68), which is later than 

with RecNcc (73.8 ml). The elution peak also exhibited a significant shoulder, indicating that 

the sample was not apparently very homogeneous, despite the pdI value of 0.18 suggested that 

the sample was homogeneous.  

 

   
 

Figure 68: SEC of the shorter coiled-coil construct (res. 240-387). The main peak is less symmetric than 

RecNcc. Protein absorbance at 280 nm is reported in blue, while nucleotide absorbance at 254 nm is in red. The 

SDS-PAGE, however, showed that the purity of the protein was suitable for further biophysical experiments. 

SDS-PAGE gel with the main peak fractions is presented on the right. MWs are reported in kDa. Inj: injection. 

 

 SEC-MALLS analysis of the shorter coiled-coil construct (240-387) indicated that it 

behaved differently from RecNcc in solution and estimated the molecular mass to be 14.7 
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kDa, which was more consistent with a monomer in solution (Figure 69). The theoretical MW 

for this construct is 15.3 kDa, as calculated by ProtParam (Wilkins et al, 1999). A possible 

explanation for this behavior could be that the correct anti-parallel folding of the protein is 

being disrupted. In this shorter construct, α5 and part of α6 are missing and as a result a 

number of stabilizing intramolecular interactions, in particular the salt bridges between E212 

and K329 and E222 and R319, are lost. The disruption of the correct interaction pattern may 

interfere with the proper anti-parallel fold and consequently lead to inappropriate formation of 

the dimerization interface.    
 

 
 

Figure 69: SEC-MALLS measurement of the coiled-coil domain of RecN, residues range 240-387. This 

construct elutes as a monomer, indicating that the dimerization interface is no longer functional.  Thin line: 

refractive index recorded; thick line: averaged MW estimation from different scattering angles. 

 

6.7. Deletion of the hydrophobic interface favors a monomeric arrangement of 

RecNcc 

 In order to characterize the role of this newly identified dimerization interface in the 

oligomerization of full-length RecN, a construct in which the dimerization domain (residues 

237-291) was deleted was designed giving rise to a deletion mutant (RecN∆dd) (Figure 70). 

This construct was also cloned into pET151-TOPO after PCR amplification of the gene 

encoding for this construct. The primers used for PCR are listed following Table 5 (see 

Materials & Methods section).  
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Figure 70: Schematic representation of the deletion mutant of RecN. Conserved motifs and domains are colored 

according to the scheme proposed for the other constructs designed as single domains of RecN. 

 

 6.7.1. Purification of RecN�dd 

 RecN∆dd was expressed and purified according to the protocol used for RecNhead 

(Pellegrino et al, 2012b). The same peptide linker (amino-acid sequence 

ESSKHPTSLVPRGS) used for the design of the RecNhead was used to fuse the N- and C-

terminal domains. A two-step purification (IMAC and SEC) was established in order to obtain 

a pure protein sample (Figure 71 and 72) in order to perform SEC-MALLS (Figure 73), DLS 

and SAXS experiments.  

 

 
 

Figure 71: Affinity chromatography profile of RecN∆dd. A gradient of buffer B (50mM Tris-HCl pH 8, 300mM 

NaCl, 5mM MgCl2) was used for protein elution from a Ni-NTA column. The main peak was eluting at 40 % of 

buffer B, corresponding to 205 mM imidazole. Protein absorbance at 280 nm is shown in blue. SDS-PAGE gel 

with the main peak fractions is presented on the right. MWs are reported in kDa. P: pellet; S: soluble fraction; 

FT: flow-through. 

 

 SEC step was performed on a Superdex 200 column (GE Healthcare) in order to 

compare the resulting elution volume with the other purified constructs. RecN∆dd in solution 

adopts an intermediate behavior in between the RecNhead and the full-length RecN. The 

single symmetric peak resulting from SEC elutes at 12.5 ml, in between RecN (10.8 ml) and 
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RecNhead (14 ml). DLS was performed to check the homogeneity of the sample. The pdI was 

found to be 0.073 indicating that the sample was homogeneous and suitable for further 

analysis by SAXS.  
 

  
 

Figure 72: SEC profile of RecN∆dd in the same buffer condition as for RecNhead domain protein. Protein 

absorbance at 280 nm is reported in blue, while nucleotide absorbance at 254 nm is in red. SDS-PAGE gel with 

the main peak fractions is presented on the right. MWs are reported in kDa.  

 

 6.7.2. RecN�dd elutes as a monomer from a GF column 

 SEC-MALLS analysis (Figure 73) revealed that this construct elutes as a monomer 

in solution, confirming our finding that RecN dimerization is induced by interactions between 

helices α6-α7-α8 of the coiled-coil domain.  
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Figure 73: SEC-MALLS analysis of RecN�dd protein. The deletion mutant construct is a monomer in solution 

and eluted as a single peak. Thin line: refractive index recorded; thick line: averaged MW estimation from 

different scattering angles. The MW is reported in kDa. 

 

 6.7.3. Low resolution study of RecN�dd by SAXS 

 SAXS measurements were performed on RecN�dd. Data collected on ID14-3 

(ESRF) showed a discrepancy at low angles between the highest and lowest concentration 

scattering curves (Figure 74), indicating some interparticle effects. This also made data 

analysis more complicated.  
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Figure 74: SAXS measurements carried out on RecN∆dd purified protein (described earlier). Three different 

concentrations (6.3, 3.0 and 1.4 mg ml-1) were measured to check for any inter-particle effect. The three curves 

almost superpose, but the lowest (in red) concentration showed a different behaviour at very low angles 

(indicated by the black arrow), crucial for determination of the protein envelope (Putnam et al, 2007). The 

highest concentration is represented in black, the middle in blue. 

 

 The three scattering curves (sample concentrations: 6.3, 3.0 and 1.4 mg ml-1) match 

quite well, except at low q values, which is very important for ab initio shape determination. 

An averaged model is shown in Figure 75. In addition the MW estimated by I0 and the one 

estimated by Porod volume were very different: in the first case the value was closer to the 

size of a monomer, while the second value indicated a dimeric assembly, as calculated by 

AUTOPOROD (Petoukhov et al, 2007). 
 

 
 

Figure 75: Ab initio model of RecN�dd resulting from envelope reconstruction using DAMMIN. The views, 90º 

apart, are represented. The envelope does not look like an elongated structure, as we speculated RecN�dd to be. 
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 6.7.4. Crystallization and structural analysis of RecN�dd 

 Crystals of RecN�dd were obtained (Figure 76) by using the crystallization robot 

(HTX laboratory, EMBL Grenoble) and a full data set at a maximum resolution of 4 Å was 

collected. The crystal used for data collection was fished from the robot plates and flash-

frozen directly on the beamline (ID23-2) adding 25 % glycerol to the reservoir solution. The 

crystal structure was solved as described in paper III (Pellegrino et al, 2012 submitted) by 

Mol.R. using RecNhead and a modified coordinates file of RecNcc containing only residues 

196-238 and 306-364 as search models.  

 

           
 

Figure 76: crystals were obtained in several conditions, with the best conditions being nº 18 of the Crystal Screen 

Lite (left) and nº 7 of the PEG-Ion Screen (Hampton Research). Crystals were tested on ID23-2 (ESRF) and 

diffracted to a maximum resolution of 4 Å. 

 

 The crystal structure of RecN∆dd solved at 4 Å resolution provided valuable 

information concerning the organization of the coiled-coil in the full-length RecN. The 

electron density map allowed to extend helices α5 and α10 (Figure 77), belonging to the 

coiled-coil domain, that are only partially present in the RecNhead structure (Figure 45). 

These two very long and kinked helices make up the beginning of the coiled-coil domain 

(Figure 77), and confer extreme rigidity to the coiled-coil protrusions. Short loops between 

the helices contribute to the possible quaternary rearrangement, by providing small degrees of 

freedom to the entire RecN architecture. 
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Figure 77: Crystal structure of RecN�dd. This construct contains an overlapping region with RecNhead and 

RecNcc crystal structures. The beginning of the coiled-coil is formed by two long helices that protrude out from 

the globular domain (containing the NBD). In helix α5, a kink allows the helix to bend in order to wrap around 

α10 in an anti-parallel fashion. It is possible now to have a better understanding of the arrangement of the coiled-

coil domain. In the magnification a detailed view of the electron density map contoured at 1.5 σ is shown.  

 

6.8. Summary of the results on RecNcc and RecN�dd            

The RecNcc crystal structure represents the first complete structure of a coiled-coil from 

an SMC or SMC-like protein. This is most likely related to the fact that the coiled-coil region 

in RecN is considerably shorter than the ones present in homologous proteins, such as Rad50, 

SMC and MukB. 

 RecNcc and RecN�dd were designed and purified to homogeneity as described in 

Materials & Methods section and in (Pellegrino et al, 2012a; Pellegrino et al, 2012 submitted). 

The coiled-coil domain was crystallized as a dimeric anti-parallel assembly (Figure 64), a 

finding that was also confirmed by analysis of the protein in solution (Figure 67). 

Dimerization is driven by the formation of a large hydrophobic area between two RecNcc 

monomers.  

 Removal of this interacting interface (to form the RecN�dd protein) favored the 

monomeric form instead of the dimeric assembly, as confirmed by the SEC-MALLS analysis 

(Figure 73) and the crystal structure solved by Mol.R. (Figure 77). Due to difficulties in data 

processing, the SAXS experiments performed on RecN�dd did not provide a reliable ab initio 

model of the protein in solution. It is indeed not clear whether disruption of the dimeric 

interface, leaving most of the coiled-coil intact, might lead to artefacts that produce oligomers 
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More accurate SAXS data collection and processing might provide more useful information 

regarding the structure of RecN�dd in solution.  
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Chapter 7: 

A quasi-atomic model of RecN provides new 

insights into DSB repair 
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Summary of chapter 7 

 

 A quasi-atomic model of full-length RecN is proposed in this work, based on the three 

crystal structures obtained for RecNhead, RecNcc and RecN�dd. RecN is very elongated, as 

speculated by previous studies. The constructed model fits very well with the ab initio model 

reconstructed from the Small Angle X-ray Scattering data, indicating that this model reliably 

describes the behavior of the protein in solution. 

 

 

Résumé du chapitre 7 

 

 Un modèle quasi-atomique de la protéine RecN entière est proposé dans ce travail, à 

partir des trois structures cristallines de RecNhead, RecNcc et RecN∆dd. RecN est très 

allongée, comme prédit par les études antérieures. Le modèle obtenu est en parfait accord 

avec le modèle reconstruit ab initio à partir des données de diffusion des rayons X aux petits 

angles. Ce modèle décrit donc correctement le comportement de la protéine en solution. 
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7.1. Building a reliable model of RecN 

 Detailed information regarding the structure of full-length RecN could now be derived 

from the analysis of the crystal structures of RecNhead, RecNcc and RecN�dd (Figures 45, 

64 and 77). A model of the entire protein (Figure 78) could be assembled using these three 

overlapping fragments. The structure of RecN∆dd was used as a template for superposition of 

the RecNhead and RecNcc structures. The final RecN monomer is 190 Å long, with the 

coiled-coil that protrudes out of the NBD (Figure 78).  
 

 
 

Figure 78: Monomeric state of RecN. This model was built by superimposing the three crystal structures 

obtained in this work and colored differently for clarity. The overlapping region in RecN�dd allowed to 

superimpose well the RecNhead and RecNcc crystal structures and have a full picture of the very elongated full-

length RecN. 

 

A complete model of dimeric RecN (Figure 79) was produced using the model of 

monomeric RecN (Figure 78) and the dimeric interface of RecNcc (Figure 65). In this model, 

the two head domains are located ~300 Å apart at the two extremities of the dimer and are 

twisted 180˚ apart (Figure 79). Such an elongated structure of RecN is supported by literature 

(Graumann & Knust, 2009) and by all our biophysical experiments performed so far on RecN 

(chapter 3).  
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Figure 79: Dimeric assembly of DR RecN. One monomer is coloured in grey and the second in rainbow colours, 

for clarity. The distance between the two NBD is ~300 Å, confirming the DMAX  value of the ab initio envelope 

determined by SAXS (315 Å, § 3.2). 

 

 This model could then be compared to the SEC-MALLS and SAXS data previously 

performed (§ 3.3) that indicated that RecN adopts a dimeric assembly in solution. The 

experimental SAXS curve could now be fitted to the theoretical curve derived from the 

assembled, quasi-atomic model, as described in (Pellegrino et al, 2012 submitted). The fit was 

very good, with a χ2 value of 3.44 over the whole scattering curve (Figure 80). The good fit of 

the two curves is indicative that the model describes well the structural organization of RecN 

in solution.  
 

 
 

Figure 80: Overlay of the experimental (in red) and theoretical (in blue) scattering curve of RecN. The 

theoretical curve was derived from the quasi-atomic model proposed in this chapter. The goodness-of-fit is 

reported as χ2 value. 
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 The dimeric model of RecN is shown in Figure 80. A rather elongated structure 

(approximately 300 Å) confirmed the hypothesis found in the literature (Graumann & Knust, 

2009) and was in agreement with the experiments performed so far on DR RecN (chapter 3). 

 Overlay of the quasi-atomic model of RecN with the ab initio envelope (Figure 81) 

obtained by shape reconstruction from the SAXS data shows that these two models are in very 

good agreement. Movements within the more flexible regions, such as the loops 

interconnecting the α-helices of the coiled-coil domain or the linker between the NBD and the 

anchor motif, could allow the NBD to move a little with respect to the entire structure.  
 

 
 

Figure 81: The proposed model of RecN reflects the behavior of the protein in solution. Ab initio model obtained 

after SAXS measurements (Figure 34) was superimposed to the quasi-atomic model of RecN built from the 

crystal structures of its constitutive domains. The two head domains fits with the bulky regions at each side of 

the ab initio envelope. 

 

7.2. ATP-induced structural re-organization 

 DLS measurements were performed on the different full-length RecN mutants and 

compared with the data obtained for the wild-type protein. The full-length RecN displayed the 

same hydrodynamic radius (rh) both in presence and absence of 2mM ATP. The Walker A 

and B mutants, in contrast, showed a different behavior than the wild-type and their 

hydrodynamic radii increased upon addition of ATP. Moreover, in the absence of ATP, these 

mutants also showed a smaller hydrodynamic radius compared to wild-type RecN (Table 7). 

At present, it is not clear what this is due to. No changes in the hydrodynamic radius of 
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RecN∆dd were observed upon ATP addition, in conformity with the wild type RecN and 

RecNhead domain. 
 

RecN DLS (w/o ATP)  (rh) DLS (with ATP)   (r h) 

RecNWT 10.22 nm (0.156) 10.26 nm (0.137) 

RecNE472Q 7.5 nm (0.31) 9.5 nm (0.22) 

RecNK67A/E472Q 7.5 nm (0.29) 9.5 nm (0.44) 

RecNK67A/E472A n/a n/a 

RecNK67A 7.6 nm (0.3) 8.5 nm (0.23) 

RecNE472A 8.40 (0.33) 12.56 (0.2) 

RecND471A 7.45 (0.14) 18.01 (0.25) 

RecNheadWT 3.2 (0.25) 3.2 (0.1) 

RecNheadK67A/E472Q 4.0 (0.13) 4.2 (0.13) 

RecN∆dd 4.66 (0.07) 4.60 (0.22) 
 

Table 7: List of the hydrodynamic radii prior and after addition of 2 mM ATP. Poly-dispersity value (pdI) 

estimated by DLS is reported in parentheses.  

 

7.3. Summary of RecN modeling 

 The quasi-atomic model of RecN, built from the three single crystal structures of its 

constitutive domains, revealed that RecN is an elongated, dimeric protein with its NBDs 

located at each of its extremities, almost 300 Å apart. This model is consistent (Figure 81) 

with our SAXS data obtained in solution on a sample in high salt (1 M NaCl) and shown 

initially in Figure 35. The dimeric assembly of RecN provided the first complete model for an 

SMC-like protein and is of interest also for the understanding of the role of RecN. In a model 

in which the two NBDs are located at either ends of the dimer it is unclear how such an 

assembly might interact with DNA to trigger DSB repair. 

  The model we proposed is very elongated and displays limited flexibility located 

principally at the level of the loops connecting the different helices of the coiled-coil domain. 

This could be a reason why crystallization of full-length was not successful. However, our 

quasi-atomic model supported by our SAXS study represents a very good approximation of 

the architecture of RecN. Further SAXS studies in the presence of ATP/ADP/AMP-PNP 
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could provide additional information regarding the conformational re-arrangements that occur 

upon nucleotide-binding. 
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Chapter 8: 

Biochemical activities of RecN, RecNhead 

and their respective mutants 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

128 

 

Summary of chapter 8 

 

 Biochemical studies were performed on full-length RecN and RecNhead, since this last 

construct was designed so as to conserve the integrity of the NBD. RecN was shown to have 

both ATPase and DNA end-joining activities, confirming previously work on RecN and 

homologous proteins, such as Rad50. DNA-binding activity was also assayed and a ladder-

like band-shift pattern was observed suggesting that RecN might form oligomers along the 

dsDNA. In contrast, RecNhead domain displayed strongly reduced activity for both activity 

assays and a very different DNA binding pattern.  

 Mutants of RecN and RecNhead domain that had previously been expressed and 

purified were also characterized biochemically. ATP hydrolysis, DNA end-joining and DNA 

band-shift assays were performed and the results of the two different constructs compared. 

 

 

Résumé du chapitre 8 

 

 Des études biochimiques ont été effectuées sur RecN entiere et RecNhead, puisque 

cette construction avait été conçue afin de conserver l'intégrité du domaine de fixation de 

nucleotide. Nous avons démontré que RecN possède à la fois une activité ATPase et une 

activité de liaison d’ADN confirmant ainsi des travaux précédant sur RecN et des protéines 

homologues, telle que Rad50. L’interaction de RecN avec de l’ADN double brin a également 

été testée, produisant plusieurs bandes de tailles variables (telle une échelle) sur le gel, ce qui 

suggère que RecN pourrait former des oligomères le long de l'ADN double brin. Le domaine 

RecNhead quant à lui affichait des activités ATPase et liaison de l’ADN fortement réduites et 

un mode d’interaction avec l’ADN double brin très diffèrent. 

 Des mutants de RecN et RecNhead qui avait précédemment été exprimés et purifiés ont 

également été caractérisés au niveau biochimique. L’hydrolyse de l'ATP, la capacité à joindre 

deux extrémités d’ADN et des tests d’interaction avec l’ADN ont été effectués et les résultats 

des deux constructions furent comparés. 
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 8.1.  ATP hydrolysis activity is disrupted in RecNhead domain  

 A weak ATPase activity was detected for full-length RecN and it was shown to be in the 

range of what is reported in the literature (Pellegrino et al, 2012 submitted). The Malachite 

Green (Baykov et al, 1988) method was used for quantifying ATP hydrolysis and a detailed 

protocol is described in the section of Materials and Methods. 

 RecNhead domain was designed in order to reconstitute the active NBD, typical of 

SMC and SMC-like proteins (Hopfner et al, 2000; Lammens et al, 2011; Lowe et al, 2001) 

and, we therefore expected the ATPase activity to be retained in such a construct. The 

RecNhead domain, however, showed a severely reduced activity (Pellegrino et al, 2012 

submitted), suggesting the coiled-coil region is essential for the in vitro ATPase activity 

(Figure 82 and Table 8).  

Mutagenesis is a powerful tool for dissecting the ATP-hydrolysis mechanism and its 

influence on the structural rearrangement of SMC-like proteins. The activities of Walker A 

and B mutants were also measured and compared to the activities of their respective wild-type 

proteins. For both RecN and RecNhead, single and double mutations of K67 (Walker-A) and 

E472 (Walker-B) resulted in a severely reduced ATPase activity. Exception comes from the 

E472Q mutation that leads to a 2-fold increase in the ATPase rate of RecN and a dramatic 

increase (approximately 25-fold) in the activity of RecNhead domain (Figure 82).  Such a 

mutation is expected to mimic a transition state and therefore facilitate head-head 

engagement, but block ATP hydrolysis. Previous studies have indeed reported that this 

mutation leads to impaired hydrolysis activity of SMC proteins (Lammens et al, 2004). In 

RecN, however, mutant E472Q displays an increased rate of ATP hydrolysis (from ~2-fold in 

RecN to ~25-fold for RecNhead domain). This may be an additional indication that the 

nucleotide-binding pocket of RecN is slightly different from those of other SMC and SMC-

like proteins.  

 Furthermore we tested the ATPase activity of RecN and RecNhead in the presence of an 

excess of dsDNA substrate (50-mer). An increased activity was observed for RecNhead 

(Figure 82), while in the case of full-length RecN, its ATPase activity was unchanged (Table 

8). Low salt conditions were used in order to stimulate DNA binding, which would otherwise 

have been inhibited if the high salt conditions, required for RecN solubility, had been 

maintained. 
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Wild-type 

K67A 

RecN 

351.7 ± 19.8 

101.1 ± 13.6 

RecNhead 

49.7 ± 14 

27.0 ± 7.6 

E472A 

E472Q 

60.4 ± 20.9 

760.0 ± 32.4 

50.5 ± 1.8 

1206.3 ± 101.9 

K67A / E472A 22.9 ± 5.0 20.3 ± 2.9 

K67A / E472Q 59.8 ± 12.2 4.4 ± 2.5 

D471A 349.3 ± 9.84 n/a 

Wild-type in low salt 

buffer 

258.7 ± 24.5 53.9 ± 6.65 

WT + dsDNA 50mer 157.2 ± 13.8 197.7 ± 33.2 
 

Table 8: ATP hydrolysis rates of RecN and RecNhead are displayed as (nmol Pi released / min). Activities of 

mutants of both protein constructs are also shown.  
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Figure 82: ATP hydrolysis activity of RecN, RecNhead domain and their respective mutants. The RecNhead 

domain showed reduced activity compared to RecN. The mutants (K67A, E472A, K67A/E472Q, K67A/E472A) 

of both construct displayed reduced or abolished activity, as reported in the previous literature. The mutant 

E472Q, in contrast, showed an increased ATPase rate where, in the literature, is reported to inhibit the activity. 

 

8.2.   DNA-end joining activity 

 Previous work has shed light on the possible functions of RecN in cells and, 

particularly, in DNA damage recognition. DNA end-joining activity has recently been 

reported for DR RecN (Reyes et al, 2010). In this study, RecN was shown to promote the 

tethering of two DNA ends for subsequent ligation by a DNA ligase. The protocol was fully 

described in (Reyes et al, 2010) and, adapted for our specific case, in (Pellegrino et al, 2012 

submitted).  

 RecN displayed DNA end-joining activity (Figure 83), while as in the case of the 

ATPase activity, RecNhead was largely inactive (Figure 84) probably as a result of the loss of 

the coiled-coil domain. RecN mutants showed reduced activity and a behavior that was 

largely reminiscent of that of RecN in the presence of the non-hydrolysable analogue of ATP, 

ATPγS (Reyes et al, 2010). 
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Figure 83: DNA end-joining activity of RecN protein and its mutants. pUC19 plasmid was linearized using the 

restriction enzyme SspI, which creates blunt DNA ends, and used as substrate for performing the in vitro assay 

(3 µM bp). Three concentrations (0.1, 1, 4 µM) are reported, but a broader range of concentrations were tested in 

order to have a better understanding of the effect of concentration on the DNA end-joining activity. MWs are 

reported in kDa. B: blank; S: supercoiled; L: linearized. 

 

 Experiments performed on Walker-A and B mutants of RecNhead revealed that mutated 

RecNhead domains showed restored ability to induce DNA end-ligation (Figure 84), but the 

activity appeared to be less regulated and yielded very high-molecular weight DNA species 

(Pellegrino et al, 2012 submitted). We speculate that these mutations affect the release of the 

nucleotide from the ATP-binding pocket and thus favor ATP-dependent dimerization, which 

seems to be essential for this DNA-end-joining activity.  
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Figure 84: DNA end-joining activity of RecNhead domain and its mutants. pUC19 plasmid was linearized using 

the restriction enzyme SspI, which creates blunt DNA ends, and used as substrate for performing the in vitro 

assay (3 µM bp). Three concentrations (0.1, 1, 4 µM) are reported, but a broader range of concentrations were 

tested. The mutants displayed restored activity compared to the wild-type RecNhead, suggesting that the 

mechanism could not be related to ATP hydrolysis activity. MWs are reported in kDa. B: blank; S: supercoiled; 

L: linearized. 

 

 RecN was previously shown (Reyes et al, 2010) to have no preference for the dsDNA 

substrate. This finding was also confirmed by our DNA end-joining experiments performed 

on RecN using 5’-overhang (created by EcoRI, Fermentas) and 3’-overhang dsDNA (created 

by SacI, Fermentas). Figure 85 represents a DNA end-joining assay performed on RecN using 

the 3’-overhang dsDNA. 
 

 



 

134 

 

 

 

Figure 85: DNA end-joining assay performed on RecN wild-type protein, using 3’-overhanged dsDNA 

previously digested with SacI. The pattern of DNA end-joining activity is similar to what seen previously using 

dsDNA with blunt ends. MWs are reported in kDa. B: blank. 

 

8.3.   Band-shift assay for detection of RecN binding to DNA  

 Our in vitro studies (§ 8.2) had previously highlighted the capacity of RecN to stimulate 

intermolecular ligation of DNA linear molecules (Figure 83). In order to further characterize 

RecN’s ability to interact with DNA we performed Electrophoretic Mobility Shift Assay 

(EMSA) as described in Materials & Methods. The results are presented here and in 

(Pellegrino et al, 2012 submitted). 50-mer dsDNA was used and 5 % non-denaturing 

acrylamide gels were run in order to detect possible shifts of the DNA. Detection of DNA 

bandshifts with full-length RecN proved to be very difficult since the protein alone did not 

enter such gels. This is most likely a consequence of its elongated shape, which prevents the 

protein from running smoothly into the gel matrix. Different native gel systems (acrylamide, 

agarose and mixed acrylamide/agarose) and buffers (TBE pH 8.3 and Tris-HCl pH 8.0) were 

tried in order to improve the protocol, but at best, only a small fraction of the protein entered 

the gels. In these conditions it was impossible to carry out a quantitative study of RecN 

binding to DNA. 

RecNhead domain, in contrast to full-length RecN, is more globular (chapter 5) and 

entered the native gels without the problems experienced for RecN protein. In the conditions 

tested, notably in 50 mM Tris-HCl pH 7.5, 150 mM NaCl and 5 mM MgCl2, wild-type 
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RecNhead domain displayed a clear capacity to bind dsDNA (Figure 86). The presence of 

ATP did not significantly affect DNA binding.  

 

 
 

Figure 86: EMSA performed on RecNhead domain. A DNA smear is visible for the wild-type protein while for 

the mutants did not show a detectable binding. Experiments were carried out in presence or absence of 1 mM 

ATP and using a 50-mer dsDNA with a fluorescein inserted on the middle.   

 

Full-length RecN was also found to interact with dsDNA. However, more than one form 

was favored and a ladder-like pattern was generated (Figure 86). This result suggested that 

RecN could form oligomers upon DNA interaction, leading to the formation of different 

forms of DNA:protein complexes. The mechanism underlying the DNA-binding of RecN, 

however, remains an open question and data obtained so far do not allow us to clearly define 

how the process takes place. Our results, nonetheless, suggest that RecN binds to dsDNA non-

specifically (Figure 87) most likely by sensing DNA ends rather than a particular sequence 

and shows a tendency to polymerize on the DNA. This ability to form protein filaments along 

the DNA seems to be regulated by ATP, since the presence of ATP in the EMSA assay 

interfered with the formation of a ladder-like pattern. 
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Figure 87: EMSA on the full-length RecN protein. The characteristic pattern is indicative of the presence of 

multiple forms of protein:DNA assemblies, which ultimately lead to a ladder-like profile on the native gel. In 

presence of ATP the effect seems to be reduced, suggesting that in presence of nucleotide RecN might have a 

different mechanism of interaction with DNA. 

 

8.4. Summary of the biochemical characterization of RecN and RecNhead  

 Our biochemical data confirmed what was proposed in the literature for proteins 

homologous to RecN. The ATP hydrolytic activity is weak (approximately 350 nmol ATP 

hydrolyzed min-1) as reported for ABC and ABC-like proteins (Hopfner et al, 2000). DNA 

end-joining activity of DR RecN was also confirmed (Reyes et al, 2010). RecNhead domain 

was also tested and its behavior was very different compared to full-length RecN. RecNhead 

displayed a strongly reduced ATPase activity and no DNA end-joining activity.  

 Extensive study of the different mutants produced both for RecN and RecNhead 

proteins led to the conclusion that the mutated residues were crucial for ATP-binding and 

hydrolysis. Only the E472Q mutant was found to behave in an unexpected way: this mutant 

displayed a remarkably increased ATP hydrolysis rate, instead of a reduced activity as 

reported in the literature (Lammens et al, 2004). The reason for this is not clear, since in SMC 

and SMC-like proteins this mutation, that mimics a transition state, reduces considerably the 

ATPase activity.  

 The DNA end-joining assay was reproduced (Reyes et al, 2010) and the results were 

very similar. RecNhead domain was also assayed and it was found to be deficient in DNA 

end-joining activity. The coiled-coil domain thus appears to be needed for RecN’s role in 
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stimulating the oligomerization of the DNA substrate. Mutants were also tested both for RecN 

and RecNhead proteins: in the first case (Figure 84) the results were comparable to that seen 

when ATPγS was added instead of ATP (Reyes et al, 2010). Monomers and dimers were the 

most favored species especially at high protein:DNA ratios. However for the RecNhead 

mutants, the presence of the altered ATP-binding site allowed an increased head-head 

engagement and this stimulated the production of higher order MW DNA bands.  

 In conclusion the mutations introduced in the functionally conserved Walker-motifs of 

RecN led to a decrease of the activity compared to the wild-type protein (Figure 83). Removal 

of the coiled-coil domain caused the loss of the regulation of DNA end-joining activity, as 

demonstrated by the marked decrease of the multimerization pattern seen by RecNhead 

domain. On the other hand, mutations introduced in RecNhead protein led to increased 

formation of higher order DNA bands, stimulated by more favorable head-head engagements. 

 In order to further dissect the mechanisms of DNA binding and end-joining by RecN, it 

would be particularly interesting to prepare constructs carrying mutations in the residues 

actively involved in DNA-binding, once identified. The use of FRET technology could also 

help in understanding the preference of RecN for DNA substrates, labeling different ends with 

different dyes and then measuring the fluorescence transferred between the two labels. Crystal 

structures of RecN or RecNhead domain in complex with DNA would of course be of major 

relevance for a more detailed understanding of the interactions occurring during DSB 

recognition and repair.  
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Chapter 9: 

 Discussion 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  140 

Summary of chapter 9 

 

 In this chapter an extensive discussion of the results obtained during this work is 

presented. The model of the full-length RecN built from the crystal structures of RecNhead, 

RecNcc and RecN�dd and the Small Angle X-ray Scattering envelope is discussed. 

 Biochemical results are also discussed and a model of the mechanism underlying the 

Double Strand Break recognition step in DNA repair is proposed. Furthermore, future 

experiments are suggested in order to gain a deeper understanding of the role of RecN in this 

essential cellular process of DNA repair. 

 

 

Résumé du chapitre 9 

 

 Dans ce chapitre, une discussion approfondie des résultats obtenus au cours de ce 

travail est présentée. Le modèle de la protéine RecN entière construite à partir des structures 

cristallines de RecNhead, RecNcc et RecN�dd et de l'enveloppe obtenue par diffusion des 

rayons X aux petits angles est discuté. 

 Les données biochimiques sont également discutées et un modèle du mécanisme de 

reconnaissance des cassures double brin lors de la réparation de l’ADN est proposé. Par 

ailleurs, des expériences complémentaires sont proposées afin d’approfondir notre 

compréhension du rôle de RecN dans cet important processus cellulaire qu’est la réparation de 

l’ADN. 
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9.1. Structural characterization of RecN  

 The crystal structures obtained in this work revealed that RecN consists of two major 

domains: a globular region containing the NBD, which we referred to as RecNhead (Figure 

45) and a coiled-coil region, which we referred to as RecNcc (Figure 64). The NBD is typical 

of ABC-like proteins, such as SMC or Rad50, and is involved in binding and hydrolysis of tri-

phosphate nucleotides, particularly ATP. Comparative structural analysis of the head domain 

of RecN showed that the fold of the ATP-binding pocket was conserved. However, there were 

small differences in the orientation of the active site residues involved in binding and 

hydrolysis, even though the location of the Walker A and B motifs was relatively conserved 

(Figure 45). The signature sequence displayed a different orientation in RecN compared to 

Rad50 (Figure 45-B and C) with a ~60 degree rotation, which also greatly affected the 

positioning of the anchor motif (Figure 45-C) and its associated coiled-coil domain. The 

crystal structure of RecNhead confirmed our previous low-resolution studies performed by 

SAXS (Figure 47), suggesting that the behavior in solution is very close to what was seen in 

the crystal.  

 The crystal structure of RecNcc, on the other hand, was found to form a stable ATP-

independent dimer, through extensive hydrophobic interactions between the α6-α7-α8 helices 

of the two monomers (Figure 64). The coiled-coil in SMC proteins is thought to be very 

flexible and allow the NBDs of the two units constituting the functional dimer to interact upon 

ATP-binding. In RecN, in contrast, the extended dimerization region and the intrinsic 

architecture (Figure 64) of the coiled-coil domain confer rigidity to this rod-like structure. It is 

therefore very unlikely that two RecN monomers from a given dimer interact with each other 

via their head domains. This finding is also consistent with our SAXS data, which resulted in 

the reconstruction of an envelope that fitted well with the crystal structure obtained (Figure 

67). Comparison of RecNcc with other crystal structures of SMC or SMC-like dimerization 

domains was discussed thoroughly in (Pellegrino et al, 2012 submitted). 

 The crystal structure of a deletion mutant of RecN (Figure 77), which we referred to as 

RecN�dd, allowed to better define the orientation and the organization of the coiled-coil, 

especially in the region which was missing in the crystal structures of RecNhead and RecNcc. 

The resolution of the data (4 Å) was sufficient to trace with good approximation the main 

chain of the protein and several cycles of refinement allowed to describe the kink present on 

helix α5 needed to induce the torsion of the coiled-coil in order to form the characteristic anti-

parallel architecture.  
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 In addition to these crystallographic models, a low resolution SAXS study of a double 

mutant of RecNhead domain, named RecNheadK67A/E472Q, also provided a model of the large-

scale conformational rearrangements of the RecNhead domain upon nucleotide binding 

(Figure 54). The envelope clearly showed the orientation and positioning of helices α5-α10, 

which correspond to the beginning of the coiled-coil domain. The helices pointed out in the 

same direction suggesting that the two NBDs interact in a head-to-tail orientation in order to 

reconstitute the two nucleotide binding pockets at their interface. However, the resolution of 

the envelope was not high enough to gain a full understanding of the local structural re-

arrangements occurring at the level of the ATP-binding pockets. Higher resolution data, 

through improvement of the initial crystallization conditions (Figure 56), would provide a 

better understanding of the detailed molecular mechanism underlying nucleotide binding and 

hydrolysis by RecN. 
 

 
 

Figure 88: Possible model for the tetrameric form of DR RecN. ATP stimulates the interaction of two NBDs, as 

seen from the SAXS data on RecNheadK67A/E472Q; the other two NBDs, in contrast, are free to interact with the 

NBDs from nearby molecules or, alternatively, may induce dissociation of the first two head domains, upon ATP 

hydrolysis. This suggests a dynamic role of RecN in DSB repair. 

 

 All our structural information could be brought together in order to define a quasi-

atomic model of the monomeric, dimeric and also tetrameric arrangements of RecN. RecN 

monomer and dimer were discussed thoroughly in this work and also in paper III (Pellegrino 
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et al, 2012 submitted), and led to the definition of a 300 Å long structure, which we proposed 

could bind DNA via each of its head domains, with the coiled-coil region acting as a spacer 

between the two DNA fragments. A tetrameric arrangement (Figure 88), however, could 

provide a possible explanation for the dynamics of DSB recognition and repair initiation by 

RecN. 

 

 9.2. ATP hydrolysis: a regulatory mechanism? 

 Full-length RecN was found to possess both ATPase (Figure 82) and DNA-end joining 

activities (Figure 83). Its weak ATPase rate was consistent with what was previously 

published for ABC-like proteins such as Rad50 (Holland & Blight, 1999; Hopfner et al, 

2000). ATP binding and hydrolysis is crucial for modulation of the putative activity; therefore 

the ATP binding pockets have evolved to avoid uncontrolled ATP hydrolysis (Pellegrino et al, 

2012 submitted).  

 Biochemical characterization of RecNhead protein revealed that its ATPase activity 

was strongly reduced compared to full-length RecN, indicating that head-head engagement is 

very inefficient in the absence of the coiled-coil domain (Figure 82 and Table 8). This may 

result from the increased degree of freedom of the NBD in RecNhead compared to full-length 

RecN, which would allow the head domain to adopt alternative conformations that may not be 

functional.  

Mutations were introduced into both RecN and RecNhead proteins in order to dissect 

the ATP binding and hydrolysis processes. Most of the mutants displayed very little or 

completely abolished ATPase activity, confirming that the mutated residues are actively 

involved in hydrolysis (Figure 82). The E472Q mutant, however, did not behave as previously 

reported in the literature (Hirano & Hirano, 2004; Lammens et al, 2004). This is a common 

mutation introduced into Walker-B motifs, which is suggested to favor head-head engagement 

and mimic a transition state, leading to the inhibition of the activity. In the biochemical 

studies we performed, the ATP hydrolysis rate measured for this particular mutant showed a 

remarkable increase. The unexpected trend of the E472Q mutant may result from the 

increased head-head engagement together with a local rearrangement of the nucleotide-

binding pocket allowing for a neighboring residue (D471 would be a good candidate for such 

a role) to compensate for the E/Q mutation. Crystallographic data collected on crystals of this 

mutant did not reveal any remarkable differences in the ATP-binding pocket. Improvement of 

the diffraction quality (3.5 Å was the maximum resolution achieved) and co-crystallization 
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with different nucleotides might lead to a better in-depth view of the mechanism underlying 

such an increased hydrolytic activity. 

The tight regulation of the ATPase activity of RecN may be disrupted by the introduced 

mutation. In DR, recN gene is constitutively expressed (Tanaka et al, 2004) and this could 

represent one of the reasons for keeping the basal hydrolytic activity of RecN low. In the 

presence of DNA the ATPase activity increases, by a yet unknown mechanism (Figure 82) 

(Pellegrino et al, 2012 submitted; Reyes et al, 2010; Sanchez & Alonso, 2005). DR 

engineering with the cited mutations might be used for in vivo studies in order to see whether 

these substitutions occurring at the Walker-motifs influence the entire DSB recognition 

mechanism, thus leading to different DR phenotypes.   

 

9.3. DNA end-joining activity of RecN 

 DNA end-joining activity has been reported for human cohesins, yeast Rad50 and DR 

RecN proteins (Losada & Hirano, 2001; Reyes et al, 2010; Tomkinson et al, 2005). Activity 

was found to be independent of ATP hydrolysis (Tomkinson et al, 2005) and the studies 

performed on RecN and RecNhead domain confirmed this finding (Figures 83 and 84). RecN 

did not display a particular preference for DNA ends (both overhang (Figure 85) and blunt 

ends were processed) suggesting that the protein might recognize topological features of DNA 

rather than specific sequences. We would therefore expect that residues in the putative DNA-

binding site would interact preferentially with the DNA backbone. The results obtained from 

the DNA end-joining assay (chapter 8) showed that the DNA oligomerization pattern 

resulting from the activity of the RecN mutants was similar to experiments performed on the 

wild-type but in the presence of ATPγS, a non-hydrolyzable ATP analogue. In these 

experimental conditions monomers and dimers were the most favored species (Reyes et al, 

2010). These findings suggest that the DNA end-joining is also promoted in the absence of an 

efficient ATP hydrolysis activity.  

 The mutated RecN constructs might therefore be unable to release the DNA and be 

recycled so as to promote the ligation of additional DNA molecules into high molecular 

weight forms. Wild-type RecNhead domain, in contrast to its mutants, displayed a 

characteristic DNA-end joining pattern in which plasmid DNA monomers were the only 

species produced, suggesting that the head domain alone was unable to promote inter-

molecular DNA ligation, while at the same time inhibiting re-circularization of the plasmid 

DNA (Figure 84). The presence of the coiled-coil therefore appears to play a pivotal role in 

the capacity of RecN to stimulate DNA end-joining activity (discussed in § 8.2).   
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These results indicate that head-head engagement, which is ineffective in RecNhead but 

favored in RecNhead mutants, is essential for the DNA end-joining activity of RecN. This 

finding is supported by the SAXS study of RecNheadK67A/E472Q in which head-head 

engagement was found to be induced by introducing the double mutation K67A / E472Q.  

 

9.4. DNA binding ability of RecN 

DNA binding studies showed that RecNhead was able to interact weakly with a dsDNA 

oligonucleotide (50-mer) (Figure 84), even though the RecNhead protein was found to be 

deficient in DNA end-joining activity. This suggested that engagement of the head domains 

and a functional ATPase activity are not necessarily required for DNA binding. The DNA-

binding ability of RecNhead domain was also not improved after addition of ATP (Figure 86), 

confirming the hypothesis mentioned above. In addition to this finding, no detectable DNA 

binding was observed for the ATPase deficient mutants of RecNhead, which means that 

single head domains interact more tightly with DNA than ATP-dependent dimers. A crystal 

structure of RecNhead domain in complex with DNA would be a priority in order to 

understand the driving mechanism of DSB recognition.  

The DNA binding pattern of full-length RecN, in contrast, reflected a controlled 

assembly on the DNA (Figure 85). Binding to DNA was observed as a ladder-like pattern and 

not as smear as in the case of RecNhead domain, indicating that the coiled-coil may here 

again be playing a central role in regulating specific protein:DNA interactions. Here again, a 

crystal structure of RecN in complex with DNA would be of great benefit in order to gain 

further insight into the process of protein:DNA interaction. SAXS coupled to SANS 

experiments would also provide low-resolution information regarding the architecture and 

overall shape of protein:DNA complexes. SANS would be particularly useful to identify the 

region of RecN that interacts with DNA, by taking advantage of the difference in scattering of 

DNA compared to protein (method known as contrast variation).   

 Calculation of the electrostatic surface potential of RecN revealed that its surface is 

largely dominated by negatively charged residues, especially concentrated in the coiled-coil 

region (Figure 89). In contrast, a few patches of positive charges are detectable and all of 

them are located on the globular region, suggesting that the head domain represents a good 

candidate as a potential DNA binding domain (Figure 90). This would suggest a difference in 

the mechanism compared to SMC proteins, for which the hinge domain, involved in protein 

dimerization, has also been reported to be involved in DNA binding (Griese & Hopfner, 2011; 

Griese et al, 2010). 
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Figure 89: Electrostatic surface representation of dimeric RecN protein. The coiled-coil domain is mainly 

negatively charged, so it is unlikely to be the putative DNA binding site. This contrasts with SMC hinge 

domains, for which DNA-binding activity has been reported (Griese & Hopfner, 2011; Griese et al, 2010). 

Positive charges are represented in blue while negative are represented in red. 

 

 This positively charged patch consists of three arginine residues (R81, R120 and R133), 

two of which are highly conserved within the RecN protein family (Figure 22). 
 

 
 

Figure 90: Positively charged patch on the surface of the globular head domain of full-length RecN. The R120 

residue that points out to the solvent is shown as sticks and indicated by a black arrow. Positive charges are 

represented in blue while negative are represented in red. 

 

 These residues are respectively located on β7, α2 and the loop connecting α1 to β4 of 

the NBD (Figure 45) and all of them point out towards the solvent area and are therefore 

ideally positioned to interact with the negatively charged DNA backbone (Pellegrino et al, 

2012 submitted) (Figure 91). Identification of the DNA-binding site (Figure 90 and 91) might 

R120 
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be dissected through specific mutations, but prior to this the DNA-binding conditions need to 

be improved in order to obtain reliable band-shifts.  
 

 
 

 Figure 91: Model of DNA binding proposed on the basis of the results obtained in this work. DNA could find 

place at the top of the dimeric structure of RecNhead, where the two R120 point out in the minor groove of 

DNA. Positive charges are represented in blue while negative are represented in red. DNA is represented as a 

cartoon. 

 

 Finally, we speculate that RecNhead domain, through ATP-induced dimerization, might 

regulate the interaction of RecN with a molecule of double stranded DNA (Pellegrino et al, 

2012 submitted) (Figure 91). The R120 belonging to each RecNhead monomers nicely fits 

into two consecutive grooves of the DNA structure (Figure 92). 

 Alternatively, dimeric RecNhead protein might bind simultaneously to two different 

dsDNA molecules (Figure 92A), which would then face each other adopting a yet unknown 

orientation. 
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Figure 92: Representation of DNA interaction with RecNhead domain. A) Detail of the conserved arginine 

residues, namely R81, R120 and R133, putatively involved into DNA-binding. B) Alternative model 

representing the RecNheadK67A/E472Q, in which nucleotide has been suggested to be trapped into the ATP-binding 

cleft (black arrow). Structural re-arrangement of the pocket is expected in view of the highly negative character 

of the pocket (from the top view of the cleft). Positive charges are represented in blue while negative are 

represented in red. DNA is represented as a cartoon. 

 

9.5. DSB repair initiation 

 The mechanism of action of RecN is still only poorly understood, but in view of our 

structural and biochemical results we can speculate on how RecN may function in DSB 

recognition and repair (Figure 93). We propose that DSBs in the DNA are recognized by a 

single head domain of a RecN dimer. The second monomer would then interact with the 

homologous strand. In this way the coiled-coil domain acts as a spacer, maintaining the 

homologous strands far apart, before the DNA repair machinery intervenes. Binding of the 

single NBDs to DNA would then favor nucleotide (ATP) binding, leading to the formation of 

a dimer of RecNhead domains between two dimeric RecN assemblies. Eventually, this would 

promote polymerization of RecN along the DNA.  
   

Location of ATP molecules is 
indicated. Structural re-arrangement is 
expected, in order to create the 
functional nucleotide-binding pocket. A) B) 
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Figure 93: Model for RecN DSB recognition and HR initiation. RecN was speculated to bind both to damaged 

and “healthy” homologous DNA and thus induce the recruitment of the repair machinery on specific sites of 

DSB, as supported by in vivo studies on B. subtilis, where RecN was recruited to distinct DSB repair foci. Once 

RecN binds to the damaged DNA, the presence of ATP allow the formation of tetramers of RecN, which then 

polymerises along the DNA. This probably induces a variation in the DNA conformation which recruits the 

DNA repair machinery to restore the integrity of the DNA.  

 

Once RecN has assembled on either sides of the DSB, the terminal NBDs associated with the 

DNA ends may also engage so as to tether the two broken ends (Figure 93). The arrival of the 
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DNA repair machinery would then stimulate ATP hydrolysis and disassembly of RecN from 

the DNA to be recycled for a new round of repair. This model is similar to the one proposed 

for cohesin proteins (Hirano, 2006) but the chain-like structural organization of RecN 

revealed by our quasi-atomic structure of RecN is the first experimental evidence supporting 

such a model. Electron microscopy (EM) studies might represent a suitable tool for 

investigation of the polymerization state of RecN induced by the presence of ATP and DNA 

substrate. 

 

9.6. Conclusion 

 The results obtained during this work were discussed thoroughly in the three 

manuscripts (Pellegrino et al, 2012a; Pellegrino et al, 2012 submitted; Pellegrino et al, 2012b) 

and enabled us to draw a schematic model of DSB recognition in Deinococcus radiodurans, 

in which we speculate on the putative function of RecN in DSB repair. The crystal structures 

of RecNhead, RecNcc and RecN�dd were solved to resolutions of 3.0, 2.0 and 4.0 Å 

respectively and together provided a quasi-atomic resolution model of the full RecN protein. 

This model represents the first complete model of a member of the SMC protein family. This 

model of RecN along with all our crystallographic data were supported by solution scattering 

studies, which indicated that the structures seen in our crystals were maintained in solution. 

Moreover, in cases when protein crystals were not obtained, SAXS data were very valuable 

and provided further insight into the shape and architecture of the assemblies. This was 

notably the case for the study of the dimeric, nucleotide-bound RecNheadK67A/E472Q mutant. 

Our structural work together with our in-depth biochemical characterization of RecN’s 

in vitro activities have greatly contributed to a better understanding of the role and mode of 

action of RecN in DSB repair. But more broadly, our work has also provided valuable 

experimental evidence in support of a model for the function of SMC and SMC-like proteins 

in the numerous cellular processes involving DNA tethering and cohesion activities. 
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Application of synchrotron radiation to 
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Summary of Appendix-I 

 

 A basic presentation of synchrotron radiation and how this is routinely used for 

Structural Biology purposes is presented in this chapter. The protein crystallization process is 

also discussed and the phase diagram is described. 

 In order to solve a protein structure, it is necessary to solve the phase problem, since the 

diffraction experiment performed on a protein crystal only provides information about the 

amplitudes of the diffracted photons and not about the phases. There are three methods for 

solving such a problem: Molecular Replacement, Isomorphous Replacement and Anomalous 

Dispersion. 

 Small Angle X-ray Scattering (SAXS) is nowadays extensively used as a technique for 

overall envelope reconstruction and visualization of conformational rearrangements induced 

by specific cofactors or substrates. Basic theory of SAXS is presented in this chapter. 

 

 

Résumé de l'annexe 
 

 Ce chapitre présente brièvement le rayonnement synchrotron et comment cela est 

couramment utilisé en Biologie Structurale. Le processus de cristallisation des protéines est 

également discuté et le diagramme de phase est décrit. 

 Afin de résoudre la structure cristalline d’une protéine, il est nécessaire de résoudre le 

problème de phase, puisque seules les amplitudes des photons diffractés et non leurs phases 

peuvent être extraites des expériences de diffraction effectuée sur un cristal de protéine. Il 

existe trois méthodes pour résoudre un tel problème: le remplacement moléculaire, le 

remplacement isomorphe et la dispersion anomale. 

 La diffusion des rayons X aux petits angles est aujourd'hui largement utilisée comme 

technique pour la reconstruction d’enveloppe globale et la visualisation de changements 

conformationnels induits par des cofacteurs ou des substrats. La théorie de base du SAXS est 

présentée dans ce chapitre. 
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 1. Generation of synchrotron radiation 

 In the last two decades synchrotron radiation (SR) has become very important in Structural 

Biology.  

A synchrotron is a cyclic particle accelerator in which charged particles travel very close to 

the speed of light (Helliwell, 1992). When high-energy particles, including electrons, are in 

rapid motion and are forced to travel in a curved path by a magnetic field, SR is produced. To 

produce SR (Figure A1), electrons are injected through a linear accelerator (Linac) into a 

small ring, called a booster synchrotron. Here the electrons are accelerated to nearly the speed 

of light and, then, injected into the storage ring. The synchrotron light is produced at each 

bending event of the electrons: magnetic elements, which induce a curvature in the trajectory, 

are placed along the path in the storage ring. The synchrotron light is produced tangentially to 

the direction of the travelling electrons (Figure A1) (Elder et al, 1947).  
 

 
 

1. Electron Gun: produces electrons.  

2. Linear Accelerator (LinAc): accelerates electrons to near the speed of light. 

3. Booster Ring: further increases the energy of the electrons.  

4. Storage Ring: maintains the electron energy and produces radiation. 

5. Beamline: set up of radiation for experiments. 

6. Experimental Hutch: User area. 
 

Figure A1: A general view of how SR is generated. All the steps necessary to produce the synchrotron light are 

described. Figure taken from http://shelx.uni-ac.gwdg.de/~tg/teaching/seminars. 
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1.1. Properties of synchrotron radiation in relation to Structural Biology 

 Synchrotron radiation can be used for a broad variety of experiments, from Physics to 

Chemistry and, ultimately, Biology. The main properties of SR which are of importance for 

Structural Biology experiments are: 

• High brilliance. 

• Tunable over a wide range of different wavelengths, usually in the range of 5 to 20 

keV. The shorter the wavelength of the beam, the lower the absorption of the 

protein crystal will be (Helliwell, 1992). 

 Protein crystals are difficult to study due to their intrinsic properties. First of all, 

scattering from such crystals is weak due to the constitutive light atoms, mostly carbon (C), 

oxygen (O), nitrogen (N) and hydrogen (H). Large solvent regions, together with the 

flexibility and disorder that can occur in the crystals, can be factors that reduce the scattering 

into the Bragg reflections. The high brightness of the SR beam allows a collimated beam to 

hit a small cross-section area of the crystal, maximizing the signal to noise ratio (Helliwell, 

1992). This can improve the resolution of the data obtained, even in protein crystals, as long 

as the radiation damage is taken into account. The use of high doses of IR can lead to the 

creation of photoelectrons, which result when high-energy photons are absorbed by light 

atoms (Garman & Nave, 2009). The principal consequence of such an event is the creation of 

secondary electrons, which cause further excitation and ionization inside the protein crystal. 

This process ultimately creates free radicals (mainly from water molecules) that may lead to 

decarboxylation, disulphide bond breakage, cleavage of C-S bonds in methionines, in addition 

to the crystal lifetime decay (Burmeister, 2000; Ravelli & McSweeney, 2000). In order to 

avoid the above-mentioned serious problems, cryo-cooling of protein crystals has been 

introduced (Garman & Owen, 2006). The use of short wavelength SR X-rays reduces also the 

amount of absorbed X-rays and, by consequence, the damage to the crystal. 

  

2. Protein crystallization 

 Crystalline material is an ordered and repeated array of atoms or molecules. In Structural 

Biology single crystals of proteins can be used to perform X-ray diffraction experiments, 

which ultimately lead to the determination of the atomic structure of the protein.    

Supersaturation is the driving force in the crystallization process: it is only when this 

situation is achieved that crystalline nuclei are produced (Figure A2) (Kashchiev, 2000). 

However, too much supersaturation can lead to precipitation and formation of aggregates, 
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therefore finding the best nucleation condition is a crucial step. Once crystal nuclei have been 

formed, the system moves, in principle, to the metastable zone (Figure A2). Here, no more 

nuclei are produced and crystal growth is stimulated. 
 

 
 

Figure A2: The crystallization process can be explained by the following phase diagram. During the 

crystallization process the protein moves towards supersaturation. Crystal nuclei are only produced in the 

nucleation zone. Finding the right condition, which maximizes the relation between protein concentration and 

other adjustable parameters are essential for the crystal nuclei to move into the metastable zone. Here, protein 

crystals can grow, with no more nuclei formation. Figure taken from (Chayen & Saridakis, 2008) 

 

 Vapor diffusion is the most common technique used in protein crystallization. Two 

methods are prevalently used: hanging and sitting drops. In both cases (Figure A3) a droplet 

containing the protein solution is mixed with the same volume of a reservoir solution, which 

contains a precipitant solution. The resulting droplet is then left to equilibrate against a much 

larger volume of the reservoir solution. This induces the transfer of water from the drop to the 

reservoir. This will increase the level of saturation of the protein sample in the drop thus, 

(hopefully) triggering the production of single crystals. The quality of the crystals can then be 

defined by: 

o Size, crystal habit or shape 

o Mosaicity: crystals are made up of “building” blocks (unit cells), which are 

angularly misaligned, deviating from the ideal behavior. Mosaicity is also affected 

by the crystal-freezing step. 
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o Resolution limit: depends mostly on the amount of solvent in the crystal and the 

flexibility of the protein in arrangement of the unit cells. 

o Radiation lifetime (Helliwell, 1992). 

 

Like all crystals, those of protein molecules act as diffraction gratings for X-rays with 

the analysis of the resulting diffraction pattern allowing the determination of the structure of 

the protein molecule contained in the crystals. 
 

            
 

Figure A3: Hanging and sitting drops. Both protocols are used for protein crystallogenesis and ttake advantage of 

vapor diffusion technique (Li et al, 2001). Figures taken from http://hamptonresearch.com. 

 

3. X-ray diffraction and application to protein crystallography 

 X-rays were discovered by Wilhelm von Rontgen in the late 19th century. X-rays are a 

form of electromagnetic radiation with a wavelength in the range of 0.01 to 10 nm, which 

corresponds to an energy range between 120 eV and 120 keV. They are called “soft X-rays” 

when they have a wavelength of more than 2Å and interact strongly with air (absorption 

phenomenon) and water. X-rays with a shorter wavelength are much more penetrating and, 

especially when in the range of 0.5-1.6Å, can be suitable for protein crystallography.  

 In order to determine the crystal structure of a protein we need to perform an 

experiment of X-ray diffraction. Interaction of incident waves with the crystalline sample 

results in the generation of a diffracted beam (Figure A4), only if the scattered rays of each 

repeating unit are all in phase. If we consider that a crystal comprises layers of lattice points, 

acting as mirrors, we can hypothesize that X-rays will be scattered by the first plane, while 

other rays will pass through and will be scattered by the second layer and so on. The two 

mirrors will scatter in phase only if the difference in path length of the beams reflected from 

the various layers is an integer number of wavelength (nλ) (Figure A4). It is thus possible to 
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define the condition for diffraction to occur from any given plane, as defined by the Bragg’s 

law:  

                                           θλ sin2dn =                                                                     (Eq. A1) 
 

 

 
 

Figure A4: Bragg’s reflections generated by a three-dimensional lattice. Figure taken from 

http://photonicswiki.org 

  

 Scattering of incident radiation from atoms in a crystal can be mathematically described 

by the structure factor (Coppens, 2006): 
 

( )[ ]∑ 
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where fi is the atomic scattering factor of the ith atom, B is the Debye-Waller factor, 

accounting for the thermal motion of the atoms and xi, yi and zi are the positional coordinates 

of the ith atom. The structure factor (Fhkl) contains information about the unit cell contents 

and about the amplitude │Fhkl│ and phase of the scattered wave (Blow, 2002).  

 Structure factors are related to the electron density function ρ(x), by applying a Fourier 

transform (Aubert & Lecomte, 2007): 
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,,                                                                  (Eq. A3) 

An electron density map can thus be reconstructed and the crystal structure “solved” once in 

possession of both amplitude and phase information for each structure factor.  

 

3.1. The phase problem 

 The photons diffracted from a protein crystal are recorded on a detector, which is able to 

measure the intensity of each diffracted beam (Ihkl). To solve a crystal structure we need 
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information about both the amplitudes and the phases of the diffracted waves in order to 

reconstruct the exact position of the scattering atoms. The amplitudes (│Fhkl│) are known, 

since they can be derived directly from the measured intensities │Ihkl│: 
 

hklhkl IF ∝            (Eq. A4) 

 

 In contrast, phase information is lost and we need to derive this for each structure factor 

in order to reconstruct the molecular structure. In Structural Biology the so-called phase 

problem is generally solved in one of three ways: 

• Molecular Replacement 

• Single/multiple isomorphous replacement 

• Anomalous dispersion 

 

3.1.1. Molecular Replacement 

 Molecular Replacement (Mol.R.) is a phasing technique, which takes advantage of 

the prior knowledge of a known crystal structure (model), suggested to share a relatively high 

degree of similarity with an unknown crystal structure (target). The Mol.R. method is based 

on the correlation of the Patterson map generated from the model crystal structure with the 

Patterson function derived from the data collected from the target structure. The Patterson 

function (Equation 5) produces an inter-atomic vector map. 
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 The crystal structure of the target molecule can be solved when the Patterson map for 

the model crystal structure superposes well with the map generated from the target structure. 

Two functions are crucial for the superposition of the two Patterson maps: the rotation 

function, which determines the orientation of the model in the new unit cell (target), and the 

translation function, which searches for the right translation, with respect to the origin of the 

new unit cell, of the correctly oriented model (Taylor, 2010). Once the best model has been 

found, Mol.R. programs, like Phaser (McCoy et al, 2007), AMoRe (Navaza, 1994), MolRep 

(Vagin & Teplyakov, 1997) for instance, try several possible orientations and positions in 

order to match the observed diffraction (experiment) with the predicted diffraction (model) 

(Figure A5). Phases are then taken from the rotated and translated model structure and used in 



 

IX 

 

combination with the observed structure factor amplitudes for the calculation of an initial 

electron density map (Evans & McCoy, 2008). 
 

 
 

Figure A5: Process of how Mol.R. works for placing a similar crystal structure in the right position in order to 

have a good set of phases for a target crystal structure. Figure taken from (Taylor, 2010). 

 

 3.1.2. Isomorphous replacement 

 The isomorphous replacement method is based on the comparison of different data 

from two crystals, one that carries one or more heavy atoms (called “derivative”), which 

therefore scatter X-rays more than light atoms, and one crystal that does not contain such 

heavy atom scatterers (called “native”). Heavy atoms can be incorporated chemically (i.e. by 

iodination of phenylalanine residues (Xie et al, 2004)), by soaking the crystals in a solution 

containing the heavy atoms (Carvin et al, 2001), or by genetic engineering (i.e. seleno-

methionine incorporation (Doublie, 1997)). However, these incorporations can cause changes 

in the crystal properties meaning that native and derivative crystals are no longer 

isomorphous. Such non-isomorphism can lead to inaccuracy of the phase determination. 

 The Harker construction (Figure A6) provides the phases for the native protein 

structure. When one data set for the native and one for the derivative form are collected, the 

Patterson map allows determining the heavy atom positions. This means that both amplitudes 

and phases for the heavy atom are determined. Since the structure factor of the heavy atom 

derivative (│FPH│) is the vector sum of the structure factor of the heavy atom alone (│FH│) 



 

X 

 

and the structure factor of the native protein crystal (│FP│), the possible phases can be drawn 

geometrically, using the mentioned Harker construction (Figure A6).  

 Both Single (SIR) / Multiple (MIR) Isomorphous Replacement can be used as 

methods for phase determination (Figure A6-A). SIR requires only one derivative in addition 

to the native crystal but results in a phase ambiguity, in which two equivalent solutions are 

possible (Figure A6-A) (Taylor, 2010). In the case of MIR the phase ambiguity is, in 

principle, resolved (Figure A6-B). However, more than one derivative crystal is needed.  
 

      

 

Figure A6: Harker construction for isomorphous replacement case. A) Harker diagram for Single Isomorphous 

Replacement (SIR) where two possible phases can be drawn. B) Harker construction for Multiple Isomorphous 

Replacement method (MIR). Figures taken from (Taylor, 2003). 

  

3.1.3. Anomalous dispersion 

  When we perform a diffraction experiment on a protein crystal, we normally assume 

that, for reflections related by a centre of inversion, Friedel’s law is true (Friedel, 1913): 
 

hklhkl FF =          and        
hklhkl ϕϕ −=                                                 (Eq. A6-A7) 

 

 However, if there is an anomalous scatterer (a heavy atom for instance present in the 

crystal), then this is no longer the case and __
hklhkl FF ≠   (Figure A7). 

 

(A) (B) 
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Figure A7: Representation of the breakdown of Friedel’s law when an anomalous scatterer is present in a crystal. 

Figure taken from (Taylor, 2010). 

 

  One of the most widely used techniques for phase determination is the anomalous 

dispersion method, which takes advantage of structure factor differences when anomalous 

scatterers are present in a crystal. Anomalous scattering takes place when incident photon 

energy is closed to the transition energy of an atom, bringing it to an excited state (Taylor, 

2003). In this particular case, the radiated energy has a different phase and the intensity of 

scattering is also reduced. Modified methionine residues, in which the S atom is substituted 

by a Se (heavier than the sulphur), are largely used for anomalous experimental phasing 

(Doublie, 1997).  
 

        

 

Figure A8: Representation of the theoretical anomalous scattering of Selenium atoms around the K absorption 

edge. Absorption and dispersive terms are indicated. Figure taken from (Taylor, 2010).  
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When taking into account anomalous scattering, the atomic scattering vector is defined as:  
 

( ) ( ) ( ) ( )λλθλθ ''', 0 iffff ++=                                                                                   (Eq. A8)  

 

where f0 is the atomic scattering vector, f’(λ) is the factor representing the amount of normal 

scattering reduced at λ and f’’( λ) is the amount of 90º out-to-phase scattering at λ (Blow, 

2002) (Figure A8). The advent of tunable beamlines have made the anomalous scattering 

technique more powerful and suitable for the analysis of a broad range of heavy atoms, 

avoiding also the need for several crystals and thus overcoming non-isomorphism problems. 

Anomalous dispersion can overcome the non-isomorphism problem. Data are collected from a 

single crystal at several, typically three, wavelengths (Multi-wavelength Anomalous 

Dispersion, MAD (Figure A9-A)) or only one (Single-wavelength Anomalous Dispersion, 

SAD (Figure A9-B)).  
 

 

(A)                                                               (B) 
 

Figure A9: Harker constructions for anomalous dispersion case. A) Harker construction for Multi-wavelength 

Anomalous Dispersion (MAD). Three different data sets are collected from the same crystals, at three different 

wavelengths. The signal extrapolated from the three data sets allows unambiguous determination of the phase 

angle. B) Harker construction for Single-wavelength Anomalous Dispersion (SAD). Possible phases are 

indicated with red circles. Figures taken from (Taylor, 2010). 

 

 3.1.3.1. MAD phasing: principles 

 In order to maximize the absorption and dispersive effects (Equation A8), three 

data sets are collected at three chosen wavelengths: one is collected at the absorption (f″) peak 
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(λ1) corresponding to the absorption K-edge of the anomalous scatterer; one at the inflection 

point (λ2) where the dispersive term f′ reaches its minimum; the last one is collected at a 

remote wavelength (λ3 and/or λ4) in order to maximize the dispersive difference to λ2 (Taylor, 

2010) (Figure A10). Figure A9-A represents the Harker construction for a MAD experiment 

which yield a unique solution for the phase. 
 

 
 

Figure A10: MAD phasing. Experimentally measured absorption edge for an anomalous scatterer, showing the 

wavelengths at which data are collected for maximization of the anomalous signal. Figure taken from (Taylor, 

2010). 

 

 Radiation damage, however, needs to be taken into account, since fully redundant and, 

in the case of MAD, more than one complete data set needs to be collected. 

 

 3.1.3.2. SAD phasing: principles 

 SAD experimental phasing is becoming more and more powerful, since only one 

data set may be sufficient to solve the phase problem. However, compared to MAD, in which 

data are collected at three different wavelengths from the same crystal (in correspondence of 

the absorption peak, inflection point and high/low energy remote), phase ambiguity needs to 

be resolved (Figure A9-B). This issue is overcome by employing density modification tools, 

like DM (Cowtan, 2010; Cowtan & Zhang, 1999), RESOLVE (Terwilliger, 2000) etc., which 

use solvent flattening, histogram matching and NCS-averaging for modifying an initial 

electron density map to generate a new set of phases. These are then combined with the 

experimental phases to calculate a new electron density map, possibly suitable for model 
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building programs, such as ARP/wARP (Langer et al, 2008), BUCCANEER (Cowtan, 2006) 

or Phenix_AutoBuild (Terwilliger et al, 2008). 

 

4. Small Angle X-ray Scattering 

 Small Angle X-ray Scattering (SAXS) is a technique widely used to obtain low-resolution 

information on protein structures. Scattering of the sample is measured at very low angles 

(0.1-10°) resulting in the determination of the overall protein shape and size, gain of 

information regarding protein folding/unfolding/aggregation and finally conformational 

changes (Putnam et al, 2007). In a SAXS experiment, what is measured is the difference in 

average electron density of the solute 






→
rρ  (protein molecules in our case) and the 

surrounding liquid phase sρ  (the buffer in which the protein is resuspended): 

 

srr ρρρ −






=






∆
→→

          (Eq. A9)
 

  

 In SAXS the scattering curve I(q), once the buffer has been subtracted, is isotropic (the 

scattering is symmetric) due to the randomly-oriented distribution of the molecules in 

solution. I(q) is measured as a function of the momentum transfer: 
 

( )
λ

θπ sin4=q
                  (Eq. A10)

 

 

where 2θ is the scattering angle and λ the wavelength of the incident X-rays. The scattering 

curve of a mono-disperse sample, essential conditions in SAXS, can be derived from the P(r) 

(pair distribution) function: 
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                  (Eq. A11)
 

 

where Dmax is the maximum dimension of the scattering particle. The pair-distribution 

function P(r) in Small Angle Scattering is considered to correspond to the Patterson function 

in X-ray crystallography (Figure A11).  

 

 

 

 4.1. The Pair Distribution function 
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 The pair distribution function provides direct information about the distances between 

electrons in the scattering particles in the sample (Putnam et al, 2007) (Figure A11).  The Pair 

distribution function can be used for calculation of radius of gyration (RG) and the scattering 

intensity at zero angle (I0) and does not only take into account the region of the direct beam, 

as the Guinier approximation does. Calculation of molecular weight is much more accurate if 

the P(r) is taken rather than the Guinier region, especially where the latter is affected by 

partial inter-particle effects. I0 is evaluated from the lowest q value and is represented as the 

square of the number of electrons in the scatterer and, therefore, is unaffected by particle 

shape (Putnam et al, 2007). 
 

 
 

Figure A11: Comparison of the Patterson autocorrelation and the pair-distribution autocorrelation functions. A 

theoretical two-dimensional molecule of four atoms is placed in an arbitrary two-dimensional crystal in solution. 

The Patterson function contains cross peaks for every interatomic distance in the crystal and these crosspeaks in 

the u, v plane, are indicated by circles and retain directional information about their positions in the crystal. The 
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pair-distribution function, on the other hand, resolves distances but not directions within each scattering unit. 

Thus, all equivalent distances in the four-atom molecule add-up. Figure taken from (Putnam et al, 2007). 

 

 Globular macromolecules have a P(r) function with a single peak, while elongated 

macromolecules have a longer tail at large r and can have multiple peaks (Figure A12). The 

maximum length in the particle, DMAX , is the position where the P(r) function returns to zero 

at large values of r. 
 

 

 

Figure A12: Pair distribution function profiles of proteins with different quaternary structures. Figure taken from 

(Putnam et al, 2007). 

 

 Disagreements for values of RG and I0 calculated from the P(r) function and from the 

Guinier plot can indicate small amounts of aggregation that primarily affect the low resolution 

data and the accuracy of the Guinier plot. Guinier approximation uses the Small Angle q 

values for estimation of the RG, following the formula in Table A1 (Putnam et al, 2007).  

 SAXS experiment can also provide clues regarding the folding state of the
 
sample 

(Figure A13). Extrapolation of data at higher q value provides information concerning the 

molecular shape. For folded molecules, the intensity of scattering can be described as follows 

(Porod’s law, (Glatter & Kratky, 1982)): 
 

( ) 4−∝ qqI                      (Eq. A12) 
 

 This is directly calculated from the scattering curve and plotted as q2I(q) as
 
a function of 

q, named as
 
Kratky plot (Kratky & Porod, 1949). 
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Figure A13: Kratky plot for protein in folded, partially folded and unfolded state. Figure taken from (Putnam et 

al, 2007). 

 

 The Kratky plot identifies unfolded samples. Globular macromolecules follow Porod's 

law and have bell-shaped curves (Figure A13). Extended molecules, such as unfolded 

peptides, lack this peak and have a plateau or are slightly increasing in the larger q range. In 

the presence of elongated proteins, the Debye approximation is more appropriate (Debye, 

1947):  
 

Parameter Formula Range of Data used and variable 
definitions 

Radius of 
Gyration (RG): 

Guinier 
approximation  

( )[ ] ( )[ ]
3

0lnln
22
GRq

IqI −=  
qRg<1.3 in case of globular, 
qRg<0.8 in case of elongated 

molecules 

Radius of 
Gyration (RG): 

Debye 
approximation 

( ) ( ) ( )22

1
02 22

44
GRq

G
G

eRq
Rq

I
qI −+−=  

qRg<1.4 for elongated molecules 

Formulas for elongated or flexibly linked linear macromolecules  

Radius of 
Gyration of 

cross-section 
(RXC) 

( )[ ] ( )[ ]
2

0lnln
22
XCRq

qIqqI −=  
Intermediate q values 

Length (L) ( )( )2

1
2212 XCG RRL −=  

See RG and RXC 
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Table A1: Basic formulas for Small Angle Scattering. Radius of gyration RG is calculated considering the 

formulas above, which take into account different approximations related to the particular shape of the 

macromolecules. 

 

 SAXS data are really useful for the determination of the so-called ab initio envelope, 

which can be extrapolated from the scattering curve of a macromolecule in solution. Tools 

like DAMMIN, GASBOR, DAMMIF (Svergun, 1999; Svergun et al, 2001b) allow to 

determine the overall shape of a target molecule, through mathematical algorithms that 

randomly place “dummy” spheres, or residues, in a DMAX  defined volume and, finally, refine 

them against the scattering curve.  

 Comparing crystallographic models to Small Angle Scattering curves is very useful for 

understanding the influences of the crystal lattice on the atomic structure. The crystal 

structure is likely the lowest energy state under crystallization conditions; however, it is not 

necessarily the lowest energy state in solution. Many studies have suggested that the effects of 

the crystal lattice do not alter the folding of domains, but rather influence the conformations 

adopted by flexible termini or linkers between domains (Putnam et al, 2007). SAXS tools are 

readily available for comparing experimental curves obtained from protein in solution with a 

theoretical scattering curve derived from a model built starting from a crystallography 

structure (CRYSOL, (Svergun et al, 1995)). Formulation of the χ2 value (Eq. A13) has been 

introduced for evaluation of the goodness of fit: 
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ABC: ATP-Binding Cassette 

ADP: Adenosine 5’-Diphosphate 

ATM: Ataxia Telangiectasia Mutated 

ATP: Adenosine 5’-Triphosphate 

ATPase: ATP hydrolase 

BER: Base Excision Repair 

bp: base pair 

kDa: kilo Dalton 

DDR: DNA Damage Response 

DLS: Dynamic Light Scattering 

DMSO: Dimethyl sulfoxide 

DNA: Deoxyribonucleic Acid 

dNTPs: Deoxyribonucleoside triphosphates 

dsDNA: double strand DNA 

ssDNA: single strand DNA 

DR: Deinococcus radiodurans 

DSB: Double Strand Break  

DTT: 1,4-Dithio-DL-threitol  

EB: Elution Buffer 

EDTA: Ethylene diamine tetra-acetic acid 

EMSA: Electrophoretic Mobility Shift Assay 

ESDSA: Extended Synthesis DNA Strand Annealing 

EtBr: Ethidium Bromide 

FRET: Fluorescence Resonance Energy Transfer 

mg: milligram 

µg: microgram 

GF: Gel Filtration 

h: hour 

HF: High Fidelity 

His: Histidine 
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HR: Homologous Recombination 

IMAC: Immobilized Metal ion Affinity Chromatography  

IPTG: Isopropyl-b-D-thiogalactopyranoside 

IR: Ionizing Radiation 

LB: Lysogenic Broth 

LDH: lactate dehydrogenase 

LLG: Log Likelihood Gain 

M: Molar 

mM: Millimolar 

µM: Micromolar 

nM: Nanomolar 

pmol: Picomoles 

MAD: Multi-wavelength Anomalous Dispersion 

SEC-MALLS: Size Exclusion Chromatography coupled to Multi-Angle Laser Light 

Scattering 

min : minutes 

ml: Millilitre 

µl: Microlitre  

nm: Nanometre 

MMR: Mismatch Repair 

Mol.R: Molecular Replacement 

MR: Mre11-Rad50 

MRN: Mre11-Rad50-Nbs1 

MRX: Mre11-Rad50-Xrs2 

MW: Molecular Weight 

NBD: Nucleotide Binding Domain 

NER: Nucleotide Excision Repair 

NHEJ: Non Homologous End-Joining 

NTA: Nitrilotriacetic acid 

OD: Optical Density 

PCR: Polymerase Chain Reaction 

pdI: polydispersity index 

PEG: Polyethylene glycol 
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PEP: Phosphoenolpyruvate 

PK: Pyruvate kinase 

rpm: revolutions per minute 

Rec: Recombinase 

RFZ: Rotation Function Z-score 

RT: Room Temperature 

SAD: Single-wavelength Anomalous Dispersion 

SAXS: Small Angle X-ray Scattering 

SDS-PAGE: Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 

SEC: Size Exclusion Chromatography 

Se-Met: Selenium Methionine 

SMC: Structural Maintenance of Chromosomes 

SSB: Single Strand DNA-Binding protein 

N-terminus: Amino-terminus 

C-terminus: Carboxyl-terminus 

TEV: Tobacco Etch Virus 

TFZ : Translation Function Z-score 

TLS : Translation/Libration/Screw 

TOPO : DNA Topoisomerase 

UV: Ultra-violet 

 

 

 

 

 

 

 

 

 

 

 

 



 

d 

 

 

List of Tables & Figures 

 

 

� Tables: 
 

Table 1: Endogenous and exogenous DNA damage occurring in eukaryotes........................................................ 6 

Table 2: List of some of the diseases associated with mutations in DNA repair proteins...................................... 7 

Table 3: Proteins participating in the various stages of HR, as identified by biochemical studies in bacteria (E. 

coli) and eukaryotic cells........................................................................................................................................ 15 

Table 4: List of the DNA oligonucleotide primers used for PCR amplification of the various RecN                    

constructs ............................................................................................................................................................... 39 

Table 5: List of the constructs designed to be cloned in pET-151 TOPO vector for expression and solubility tests 

in E. coli cells, strain BL21 Star............................................................................................................................ 67 

Table 6: Summary of the integration of the two images collected for the crystal tested at different humidity 

conditions…………………………………………………………………………………………....................... 87 

Table 7: List of the hydrodynamic radii prior and after addition of 2 mM ATP………………………............... 124 

Table 8: ATP hydrolysis rates of RecN and RecNhead are displayed………………………………….............. 128 

Table A1: Basic formulas for Small Angle Scattering………………………………………………………….. XVII 

 

 

� Figures: 
 

Figure 1: Summary of the modifications that can occur to DNA nucleotides…………………………............. 4 

Figure 2: Single strand breaks are the result of hydrolysis.................................................................................. 5 

Figure 3: Cellular pathways induced by the DNA Damage Response pathway ………………………............... 8 

Figure 4: Comparison of BER and NER……………………………………………………………………….. 9 

Figure 5: Comparison of NHEJ and HR............................................................................................................... 10 

Figure 6: DSB repair by HR ................................................................................................................................. 11 

Figure 7: Proposed mechanism of action of MR complex.................................................................................... 13 

Figure 8: Representation of bacterial RecA, homologous to eukaryotic Rad51 protein, forming nucleoprotein 

filaments wrapping around the damaged ssDNA and dsDNA of the sister 

chromatids............................................................................................................................................................. 14 

Figure 9: RecBCD catalyzed Homologous Recombination pathway in E. coli...................................................... 16 

Figure 10: kinetics of DSB repair in DR exposed to 6,800 Gy γ-irradiation........................................................ 18 

Figure 11: Representation of the DNA repair pathways used by D. radiodurans to ressamble its genome 

following exposure to ionizing radiation............................................................................................................. 19 

Figure 12: Model of the initiation of DNA DSB repair involving the RecFOR complex in DR......................... 21 



 

e 

 

Figure 13: Phylogenetic tree of SMC protein family.......................................................................................... 22 

Figure 14: Crystal structures of Pyrococcus furiosus Rad50, Thermotoga maritima SMC and Salmonella 

typhimurium HisP ATPase domains.................................................................................................................... 23 

Figure 15: Assembly of an active SMC protein complex in eukaryotic cells...................................................... 24 

Figure 16: SMCs interact with DNA in a highly dynamic manner...................................................................... 25 

Figure 17: Proposed models of DNA cohesion mechanism................................................................................. 26 

Figure 18: Close-up view of the ATP-binding site of Pyrococcus furiosus Rad50.............................................. 28 

Figure 19: Dimerization process of Rad50 protein............................................................................................... 30 

Figure 20: Hypothetical model for ATP-dependent tethering of dsDNA ends by the MR complex.................... 31 

Figure 21: Models proposed for the structures of SMC and SMC-like proteins.................................................. 32 

Figure 22: Amino acid sequence alignment of bacterial RecN............................................................................. 33 

Figure 23: Amino acid sequence alignment of RecN putative head domain with T. maritima SMC head domain, 

P. furiosus Rad50 ATPase domain and P. furiosus SMC head domain............................................................... 34 

Figure 24: Schematic of the N- and C-terminal fragment amplification of RecNhead protein........................... 41 

Figure 25: Purified fragments of RecNhead domain and RecN34 constructs...................................................... 42 

Figure 26: Schematic diagram of the directional cloning that occurs in pET-TOPO vectors.............................. 42 

Figure 27: Schematic map of the pET151-TOPO vector used for cloning all the different 

constructs.............................................................................................................................................................. 43 

Figure 28: Digestion control for some of the colonies grown in LB+agar supplemented with the appropriate 

antibiotic................................................................................................................................................................ 44 

Figure 29: Schematic diagram of the reaction that regenerates ATP through the oxidation of NADH, measured as 

a decrease of the absorbance at 340 nm............................................................................................................... 53 

Figure 30: Affinity chromatography profile for full-length RecN protein........................................................... 59 

Figure 31: SEC profile of RecN in 1M NaCl condition....................................................................................... 60 

Figure 32: Affinity chromatography of RecN∆47................................................................................................ 61 

Figure 33: SEC-MALLS analysis performed on full-length RecN...................................................................... 62 

Figure 34: RecN has been proven to be a suitable sample for SAXS.................................................................. 63 

Figure 35: Ab initio envelope of RecN obtained by SAXS.................................................................................. 64 

Figure 36: Example of the drop of RecN in condition 10 of MembFac screen.................................................... 65 

Figure 37: Limited proteolysis performed using RecN purified protein............................................................... 66 

Figure 38: Schematic diagram of the constructs used for structural, biophysical and biochemical analysis of 

RecN...................................................................................................................................................................... 68 

Figure 39: Metal affinity chromatography profile of the RecNhead domain........................................................ 71 

Figure 40: SEC profile of RecNhead domain........................................................................................................ 72 

Figure 41: SEC-MALLS profile of RecNhead ..................................................................................................... 73 

Figure 42: Superposition of the X-ray scattering curves collected for RecNhead domain at three different protein 

concentrations......................................................................................................................................................... 74 

Figure 43: SEC profile of the Se-Met derivative of RecNhead domain................................................................. 75 

Figure 44: Electron density map contoured at 1.7σ with anomalous difference density contoured at 

3.5σ......................................................................................................................................................................... 76 



 

f 

 

Figure 45: RecNhead domain crystal structure .................................................................................................... 79 

Figure 46: Sequence alignment of RecNhead domain for comparison of structural features to homologous 

proteins.................................................................................................................................................................. 80 

Figure 47: Overlay of the crystal structure of RecNhead with the ab initio model obtained by 

SAXS.................................................................................................................................................................... 81 

Figure 48: Representation of half of the functional NBD pocket........................................................................ 82 

Figure 49: Images collected at different humidity concentrations....................................................................... 88 

Figure 50: Affinity chromatography profile of RecNheadK67A/E472Q.................................................................... 89 

Figure 51: SEC chromatography profile of RecNheadK67A/E472Q.......................................................................... 90 

Figure 52: SEC-MALLS profiles of RecNhead domain and RecNheadK67A/E472Q............................................... 91 

Figure 53: SAXS measurements were performed on RecNheadK67A/E472Q protein............................................... 92 

Figure 54: SAXS models and models built using the RecNhead domain crystal 

structure................................................................................................................................................................ 93 

Figure 55: Overlay of the experimental SAXS curve with the theoretical curve................................................. 94 

Figure 56: Crystals of RecNheadK67A/E472Q obtained after screening with the crystallization robot at the EMBL-

Grenoble............................................................................................................................................................... 95 

Figure 57: Crystal of RecNheadE472Q construct................................................................................................... 96 

Figure 58: Comparison of spectra taken from crystals of wild-type RecNhead domain and crystals of 

RecNheadK67A/E472Q.............................................................................................................................................. 97 

Figure 59: Affinity chromatography profile of RecNcc...................................................................................... 102 

Figure 60: SEC of RecNcc................................................................................................................................... 103 

Figure 61: SEC-MALLS measurements performed on RecNcc ......................................................................... 104 

Figure 62: Overlay of the three scattering curves corresponding to three different RecNcc 

concentrations....................................................................................................................................................... 105 

Figure 63: Detail of the electron density map contoured at 1.5 σ after density modification.............................. 106 

Figure 64: RecNcc is a dimer............................................................................................................................... 107 

Figure 65: Comparison of ecMukB and RecNcc domain.................................................................................... 108 

Figure 66: The trend of B-factors in MolA and MolB of RecNcc is represented................................................ 109 

Figure 67: Superposition of RecNcc domain crystal structure with the ab initio model obtained by 

SAXS................................................................................................................................................................... 109 

Figure 68: SEC of the shorter coiled-coil construct (res. 240-387)..................................................................... 110 

Figure 69: SEC-MALLS measurement of the coiled-coil domain of RecN, residues range 240-387................ 111 

Figure 70: Schematic representation of the deletion mutant of RecN…………………………………………. 112 

Figure 71: Affinity chromatography profile of RecN∆dd……………………………………………………… 112 

Figure 72: SEC profile of RecN∆dd in the same buffer condition as for RecNhead domain protein…………. 113 

Figure 73: SEC-MALLS analysis of RecN�dd protein…………………………………………….................... 114 

Figure 74: SAXS measurements carried out on RecN∆dd purified protein……………………………………. 115 

Figure 75: Ab initio model of RecN�dd resulting from envelope reconstruction using DAMMIN…………… 115 

Figure 76: Crystal of RecN�dd………………………………………………………………………………… 116 

Figure 77: Crystal structure of RecN�dd……………………………………………………………………….. 117 



 

g 

 

Figure 78: Monomeric state of RecN…………………………………………………………………………...  121 

Figure 79: Dimeric assembly of DR RecN……………………………………………………………………... 122 

Figure 80: Overlay of the experimental and theoretical scattering curve of RecN…………………………….. 122 

Figure 81: The proposed model of RecN reflects the behaviour of the protein in solution…………………….  123 

Figure 82: ATP hydrolysis activity of RecN, RecNhead domain and their respective mutants………………..  131 

Figure 83: DNA end-joining activity of RecN protein and its mutants………………………………………… 132 

Figure 84: DNA end-joining activity of RecNhead domain and its mutants…………………………………… 133 

Figure 85: DNA end-joining assay performed on full-length RecN, using 5’-overhanged dsDNA previously 

digested with SacI………………………………………………………………………………………………. 134 

Figure 86: EMSA performed on RecNhead domain…………………………………………………………… 135 

Figure 87: EMSA on the full-length RecN protein…………………………………………………………….. 136 

Figure 88: Possible model for the tetrameric form of DR RecN……………………………………………….. 142 

Figure 89: Electrostatic surface representation of dimeric RecN protein………………………………………. 146 

Figure 90: Positively charged patch on the surface of the globular head domain of full-length RecN………… 146 

Figure 91: Model of DNA binding proposed on the basis of the results obtained in this work………………... 147 

Figure 92: Representation of DNA interaction to RecNhead domain ………………………………………… 148 

Figure 93: Model for RecN DSB recognition and HR initiation………………………………………………. 149 

Figure A1: A general view of how SR is generated. All the steps necessary to produce the synchrotron light III 

Figure A2: The crystallization process................................................................................................................. V 

Figure A3: Hanging and sitting drops.................................................................................................................. VI 

Figure A4: Bragg’s reflections generated by a three-dimensional lattice............................................................ VII 

Figure A5: Mol.R. process................................................................................................................................... IX 

Figure A6: Harker construction for isomorphous replacement case.................................................................... X 

Figure A7: Representation of the breakdown of Friedel’s law............................................................................ XI 

Figure A8: Representation of the theoretical anomalous scattering of Selenium atoms around the K absorption    

edge....................................................................................................................................................................... XI 

Figure A9: Harker constructions for anomalous dispersion case......................................................................... XII 

Figure A10: MAD phasing................................................................................................................................... XIII 

Figure A11: Comparison of the Patterson autocorrelation and the pair-distribution autocorrelation functions.. XV 

Figure A12: Pair distribution function profiles of proteins with different quaternary structures........................ XVI 

Figure A13: Kratky plot for protein in folded, partially folded and unfolded state............................................. XVII 

 

 

 

 

 

 





 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Acknowledgements 


