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Soutenue le : 16 novembre 2012

Après avis des rapporteurs :
Chi-Wang Shu Professeur, George Brown University
Bruno Desprès Professeur, Université Paris VI
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Résumé

Le travail de thèse présenté ici a été financé par le CEA (Commissariat à l’énergie atom-
ique et aux énergies alternatives), et fait partie intégrante du très grand projet qui tend à
maitriser l’énergie produite par la fusion nucléaire. Parmi les différentes approches permettant
le déclenchement de ce phénomène physique extrême, la Fusion par Confinement Inertiel (FCI)
repose sur l’utilisation de LASER intenses et dérive du confinement hydrodynamique obtenu
grâce à l’implosion à très grande vitesse d’un matériau fusible. Les phénomènes physiques
résultant de l’implosion d’une cible FCI sont nombreux et extrêmement complexes. On pour-
rait par exemple citer

• l’interaction entre le LASER et la cible, avec création de plasma,

• le transport d’énergie par conduction électronique et par radiation,

• l’ablation du matériau,

• la formation d’ondes de choc et de détentes très intenses, et accélération de la cible,

• la focalisation du matériau au centre de la cible,

• la propagation d’ondes thermonucléaires divergentes.

Il est très difficile d’étudier expérimentalement ces phénomènes physiques, les expériences étant
extrêmement onéreuses et les résultats expérimentaux complexes à analyser. C’est l’une des
raisons pour laquelle la simulation numérique est si importante dans la physique actuelle, et
plus particulièrement l’étude numériques des équations de la dynamique des gaz dans le cadre
de la FCI.

L’écoulement résultant de l’implosion d’une cible FCI est la source d’ondes de choc et de détente
très intenses. La taille du domaine va varier considérablement au cours du temps, provoquant
ainsi l’apparition de très grands rapports d’aspect. De plus, la cible étant constituée de plusieurs
matériaux distincts, l’écoulement va généralement contenir un certain nombre d’interfaces qu’il
va falloir suivre avec précision durant l’explosion. Toutes ces raisons motivent le choix d’un for-
malisme Lagrangien plutôt qu’Eulérien. Dans le formalisme Eulérien, les lois de conservation de
la dynamique des fluides sont écrites sur un référentiel fixe alors que dans la description Lagrang-
ienne elles sont écrites sur un référentiel mobile se déplaçant avec le fluide. La représentation
Lagrangienne est donc particulièrement bien adaptée à la description de l’évolution temporelle
d’écoulements fluides présentant d’importants changements aspects dus à de fortes compressions
ou dilatations. De plus, dans cette représentation il n’a pas de flux de masse à travers les sur-
faces aux bords du volume de contrôle se déplaçant avec la vitesse du fluide. Par conséquent, le
formalisme Lagrangien fournit un cadre naturel au suivit avec précision des interfaces présentes
dans les écoulements compressibles multimatériaux. Il permet également de s’affranchir de la
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diffusion numérique inhérente à la discrétisation des termes de convection présent dans le for-
malisme Eulérien.

Au CELIA (Centre Lasers Intenses et Applications), un code FCI a été développé dont la base
hydrodynamique est un schéma Volumes Finis d’ordre 2 sur maillage mobile nommé EUC-
CLHYD (Explicit Unstructured Lagrangian HYDrodynamics). Le but de cette thèse a alors été
d’étendre ce schéma aux ordres de précision très élevés. Pour ce faire, une méthode Volumes
Finis d’ordre 3 n’étant pas aisée à mettre en place, le choix s’est porté sur les schémas Galerkin
discontinues (GD). À cette fin, une démarche progressive a été utilisée afin d’étudier étape par
étape les difficultés numériques inhérentes à la discrétisation GD, ainsi qu’aux équations de la
dynamique des gaz Lagrangienne. Par conséquent, nous avons développé dans un premier temps
des schémas de type Galerkin discontinu jusqu’à l’ordre trois pour la résolution des lois de con-
servation scalaires mono-dimensionnelles et bi-dimensionnelles sur des maillages déstructurés.
La particularité principale de la discrétisation GD présentée ici est l’utilisation des bases poly-
nomiales de Taylor. Ces dernières permettent, dans le cadre de maillages bi-dimensionnels
déstructurés, une prise en compte globale et unifiée des différentes géométries. Une procédure
de limitation hiérarchique, basée aux noeuds et préservant les extrema réguliers a été mise en
place, ainsi qu’une forme générale des flux numériques assurant une stabilité globale L2 de la
solution. La robustesse et la précision des schémas mis en place sont illustrées à l’aide de cas
tests pertinents, voir Figures 1.
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Figure 1: Solutions numériques obtenues par des schémas GD, avec limiteurs de pente, pour des
lois de conservation scalaires 1D et 2D sur une grille destructuré constitué de mailles polygonales.

Ensuite, nous avons tâché d’appliquer la discrétisation Galerkin discontinue développée aux
systèmes mono-dimensionnels de lois de conservation comme celui de l’acoustique, de Saint-
Venant et de la dynamique des gaz Lagrangienne. Nous avons noté au cours de cette étude
que l’application directe de la limitation mise en place dans le cadre des lois de conserva-
tion scalaires, aux variables physiques des systèmes mono-dimensionnels étudiés provoquait
l’apparition d’oscillations parasites. En conséquence, une procédure de limitation basée sur
les variables caractéristiques a été développée. Dans le cas de la dynamique des gaz, les flux
numériques ont été construits afin que le système satisfasse une inégalité entropique globale.
À nouveau, la pertinence du schéma est démontrée à l’aide de cas test pertinents, voir Figures 2.
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Figure 2: Solution numériques obtenues avec un schéma GD d’ordre 3 avec limiteurs de pente
pour des problèmes de la dynamique des gaz Lagrangienne 1D.

Fort de l’expérience acquise, nous avons appliqué la discrétisation Galerkin discontinue mise
en place aux équations bi-dimensionnelles de la dynamique des gaz, écrites dans un formal-
isme Lagrangien total. Pour ce faire, il faut alors développer les opérateurs différentiels que
sont le gradient et la divergences sur les coordonnées initiales appelées coordonnées Lagrang-
ienne. Dans ce cadre, le domaine de référence est fixe. Cependant, il est nécessaire de suivre
l’évolution temporelle de la matrice jacobienne associée à la transformation Lagrange-Euler de
l’écoulement, à savoir le tenseur gradient de déformation. Dans le travail présent, la transforma-
tion résultant de l’écoulement est discrétisée de manière continue à l’aide d’une base Éléments
Finis. Cela permet une approximation du tenseur gradient de déformation assurant une conti-
nuité de la géométrie dans la configuration Eulérienne, et vérifiant l’identité essentielle de Piola.
Cette condition de Piola assure la compatibilité entre les configurations initiale et actuelle. La
discrétisation des lois de conservation physiques sur le volume spécifique, la quantité de mouve-
ment et l’énergie totale repose sur une méthode Galerkin discontinu. Le schéma est construit de
sorte à satisfaire de manière exacte la loi de conservation géométrique (GCL). Il faut alors que le
volume d’une cellule dans la configuration actuelle soit rigoureusement le même que celui obtenu
par discrétisation de l’équation sur le volume spécifique. Pour ce faire, une intégration analy-
tique des termes liées aux flux aux interfaces est réalisée. Dans le cas du schéma d’ordre trois,
la transformation Euler-Lagrange liée à l’écoulement du fluide étant quadratique, la géométrie
doit pouvoir se courber. À cette fin, des courbes de Bézier sont utilisées pour la paramétrisation
des bords des cellules du maillage. Les variables du système que sont le volume spécifique, la
quantité de mouvement et l’énergie totale seront alors discrétisés sur les mailles polygonales
à l’aide de functions quadratiques continues par morceaux, tandis que le tenseur gradient de
déformation sera lui approché sur les cellules triangulaires par des functions linéaires continues
par morceaux. Nous illustrons la robustesse et la précision des schémas mis en place à l’aide
d’un grand nombre de cas tests pertinents, voir Figure 3 et Figure 4, ainsi que par une étude
de taux de convergence, Table 1.
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(a) Schéma d’ordre 3 - champ de densité.
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Figure 3: Tube à choc de Sod polaire. Solution obtenue avec le schéma GD d’ordre 3 sans
limitation sur un domaine défini en coordonées polaires par (r, θ) ∈ [0, 1]× [0, π2 ] et constitué de
100× 3 mailles non-uniformes.

L1 L2 L∞
h EhL1

qhL1
EhL2

qhL2
EhL∞ qhL∞

1
10 2.67E-4 2.96 3.36E-7 2.94 1.21E-3 2.86
1
20 3.43E-5 2.97 4.36E-5 2.96 1.66E-4 2.93
1
40 4.37E-6 2.99 5.59E-6 2.98 2.18E-5 2.96
1
80 5.50E-7 2.99 7.06E-7 2.99 2.80E-6 2.99
1

160 6.91E-8 - 8.87E-8 - 3.53E-7 -

Table 1: Taux de convergence du schéma d’ordre 3 calculés sur un vortex TG à t = 0.1.
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Figure 4: Vortex de TG - déformation d’une grille Cartésienne 10× 10 à t = 0.75.
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Introduction

My thesis took place both in the CELIA laboratory (Centre Lasers Intenses et Applications)
at Bordeaux University and at the CEA-CESTA (Commissariat à l’Energie Atomique et aux
énergies alternatives - Centre d’Etudes Scientifiques et Techniques d’Aquitaine) research center,
under the co-supervision of Dr. Pierre-Henri Maire and Pr. Rémi Abgrall.

The research covered during the three years of this Ph.D was part of the huge project willing to
domesticate the energy generated by the nuclear fusion. One of the possible means to ignite this
extreme physical phenomenon relies on the the use of high power laser facility. This approach
is called the Inertial Confinement Fusion (ICF), stemming from the hydrodynamic confinement
obtained by high velocity implosion of fusible material. The physical phenomena involved in
the implosion of an ICF target are plentiful and extremely complex, we give hereafter a non-
exhaustive list of such phenomena:

• interaction between the LASER and the target and creation of a plasma,

• energy transport by electronic conduction and by radiations,

• material ablation,

• formation of very intense shock waves and acceleration of the target,

• focalization of the material at the target center,

• propagation of a diverging thermonuclear wave.

It is very difficult to study these physical processes experimentally, the experiments being very
expensive and the results quite difficult to analyze. This is one of the reason why the numerical
simulation is so important in nowadays physical research, so is the numerical analysis in this
ICF case of the compressible gas dynamics equations.

The hydrodynamic flow resulting from the implosion of an ICF target is a source of very intense
shock and rarefaction waves. The size of the domain occupied by the fluid strongly varies over
time. Furthermore, the target being composed of several distinct materials, the type of flow
generally contains several interfaces that need to be followed with accuracy during the implo-
sion. All these constraints incite the use of the Lagrangian description instead of the Eulerian
one. In the Eulerian formalism, the fluid dynamics conservation laws are written using a fixed
reference frame whereas in the Lagrangian description they are written through the use of a
moving reference frame that follows the fluid motion. Lagrangian representation is particularly
well adapted to describe the time evolution of fluid flows contained in regions undergoing large
shape changes due to strong compressions or expansions. Moreover, in this representation, there
is no mass flux across the boundary surface of a control volume moving with the fluid velocity.
Therefore, Lagrangian formalism provides a natural framework to accurately track material
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interfaces present in multi-material compressible fluid flows. It also avoids the accuracy loss of
the numerical schemes due to the numerical diffusion inherent to the advection terms present
in the Eulerian formalism.

Concerning the purpose of my thesis, the subject has been motivated by the work of Pierre-Henri
Maire on the development of cell-centered Lagrangian schemes. His work on sub-cell force-based
discretization for cell-centered Lagrangian hydrodynamics on polygonal grids, or in the frame of
Arbitrary Lagrangian-Eulerian (ALE) method and Reconnection Arbitrary Lagrangian-Eulerian
method (ReALE), with an extension to multi-material flows using Volume Of Fluid (VOF) and
Moment Of Fluid (MOF) interface reconstruction has permitted significant scientific innova-
tions and progresses in the area of the numerical simulation related to the ICF physics. This
scientific research, done with researchers as Rémi Abgrall, Mikhail Shashkov, Raphaël Loubère,
Jérome Breil, Stéphane Galéra and others, led to the publication of significant articles in inter-
national scientific journals, see [75, 76, 78, 74, 73, 80, 38, 79]. Thus, the aim of this thesis is
to investigate the possibility of the extension of the cell-centered Lagrangian scheme developed
by Pierre-Henri Maire at the CELIA laboratory to a scheme with a higher order of accuracy.
To this end, we have chosen to assess the capability of the discontinuous Galerkin discretization.

The discontinuous Galerkin (DG) methods are locally conservative, stable and high-order accu-
rate. They represent one of the most promising current trends in computational fluid dynamics
[26, 27]. They can be viewed as a natural high-order extension of the classical Finite Volume
methods. This extension is constructed by means of a local variational formulation in each cell,
which makes use of a piecewise polynomial approximation of the unknowns.

The intent of this work was to present a high-order discontinuous Galerkin scheme for solving
the gas dynamics equations written under total Lagrangian form on two-dimensional unstruc-
tured grids. Thus, it can be seen as the natural extension of the research presented by Raphël
Loubère during his Ph.D thesis, supervised by Rémi Abgrall and Jean Ovadia [70]. To achieve
the implementation of a high-order DG scheme solving Lagrangian hydrodynamics, we have de-
veloped a progressive approach to study the inherent numerical difficulties step by step. Thus,
the remaining of this document is organized as follows.

In Chapter 1, we firstly describe discontinuous Galerkin methods up to third-order for one and
two-dimensional scalar conservation laws on general unstructured grids. The main feature of
the presented DG scheme lies on the use of a polynomial Taylor basis [71]. This particular
choice allows in the two-dimensional case to take into general unstructured grids account in a
unified framework. In this frame, a vertex-based hierarchical limitation which preserves smooth
extrema has been implemented [60, 109]. A generic form of numerical fluxes ensuring the global
stability of our semi-discrete discretization in the L2 norm has also been designed, following
[52, 24, 98, 49].

Then, we present in Chapter 2 the application of this DG discretization to the one-dimensional
system of conservation laws such as the acoustic system, the shallow-water one and the gas
dynamics equations system written in the Lagrangian form. Noticing that the application of
the limiting procedure, developed for scalar equations, to the physical variables leads to spu-
rious oscillations, we have described a limiting procedure based on the characteristic variables
following [29]. In the case of the one-dimensional gas dynamics case, numerical fluxes have been
designed so that our semi-discrete DG scheme satisfies a global entropy inequality.
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In Chapitre 3, we start by briefly recalling the evolution of the researches based on the imple-
mentation of numerical schemes for the Lagrangian hydrodynamics, as well as the important
concepts related to kinematics of fluid motion such as the Lagrangian and Eulerian formalisms.
Then, we concisely present the classical Finite Volume EUCCLHYD scheme (Explicit Unstruc-
tured Lagrangian HYDrodynamics) [76], which has been the corner stone of our DG formulation.
We emphasize that in its first-order version, our DG method naturally recovers the first-order
EUCCLHYD scheme.

Finally, in Chapter 4, we apply all the knowledge gathered to the case of the two-dimensional
gas dynamics equation written under total Lagrangian form. First, we present the general
framework of the discontinuous Galerkin discretization of the gas dynamics equations in the
Lagrangian formalism, written using the Lagrangian coordinates. In this framework, the com-
putational grid is fixed, however one has to follow the time evolution of the Jacobian matrix
associated to the Lagrange-Euler flow map, namely the gradient deformation tensor. The flow
map is discretized by means of continuous mapping, using a finite element basis. This provides
an approximation of the deformation gradient tensor which satisfies the important Piola iden-
tity. The discretization of the physical conservation laws for specific volume, momentum and
total energy relies on a discontinuous Galerkin method. The scheme is built to satisfying exactly
the Geometric Conservation Law (GCL). At the end, the particular cases of the second-order
and third-order schemes are detailed. In this last case, the velocity field being quadratic we
allow the geometry to curve. To do so, a Bezier representation is employed to define the mesh
edges. We illustrate the robustness and the accuracy of the implemented schemes using several
relevant test cases and performing rate convergences analysis.

Our work during these three years on the discontinous Galerkin discretization in the frame
of scalar conservation laws and the Lagrangian hydrodynamics led to the publication of two
articles in international journals and one in preparation.

Publications

• F. Vilar, P.-H. Maire and R. Abgrall, Third order Cell-Centered DG scheme
for Lagrangian hydrodynamics on general unstructured Bezier grids. Journal of Compu-
tational Physics. Article in preparation.

• F. Vilar, Cell-Centered Discontinuous Galerkin discretization for two-dimensional La-
grangian hydrodynamics. Computers and Fluids, 64:64-73, 2012. Available from
http://www.celia.u-bordeaux1.fr/~vilar/Telechargement/CCDG-2012.pdf

• F. Vilar, P.-H. Maire and R. Abgrall, Cell-centered discontinuous Galerkin
discretizations for two-dimensional scalar conservation laws on unstructured grids and
for one-dimensional Lagrangian hydrodynamics. Computers and Fluids, 46(1):498-504,
2011. Available from http://www.celia.u-bordeaux1.fr/~vilar/Telechargement/

CCDG-2010.pdf
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Résumé iii

Introduction vii

1 High-order discretizations of scalar conservation laws 1
1.1 One-dimensional scalar conservation laws . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 First-order Finite Volume discretization . . . . . . . . . . . . . . . . . . . 2
1.1.2 First-order numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Second-order Finite Volume discretization . . . . . . . . . . . . . . . . . . 6
1.1.4 Slope limiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.6 Discontinuous Galerkin discretization . . . . . . . . . . . . . . . . . . . . 14
1.1.7 Numerical flux and L2 stability . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.8 Taylor basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.1.9 Slope limiters for high-order DG methods . . . . . . . . . . . . . . . . . . 22
1.1.10 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.2 Two-dimensional scalar conservation laws . . . . . . . . . . . . . . . . . . . . . . 32
1.2.1 Discontinuous Galerkin discretization . . . . . . . . . . . . . . . . . . . . 32
1.2.2 Numerical flux and L2 stability . . . . . . . . . . . . . . . . . . . . . . . . 34
1.2.3 Two-dimensional Taylor basis . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.2.4 Two-dimensional hierarchical vertex-based slope limiter . . . . . . . . . . 41
1.2.5 Numerical results for two-dimensional scalar conservations laws . . . . . . 47

2 High-order DG discretization of one-dimensional systems of conservation
laws 57
2.1 Linear acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.1.1 DG discretization of the linear acoustics . . . . . . . . . . . . . . . . . . . 58
2.1.2 Linear Riemann problem and numerical fluxes for linear acoustics . . . . 59
2.1.3 Limiting procedure based on the characteristic variables . . . . . . . . . . 60
2.1.4 Numerical results for linear acoustics . . . . . . . . . . . . . . . . . . . . . 61

2.2 Shallow water equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.2.2 Lagrangian form of the shallow water equations . . . . . . . . . . . . . . . 64
2.2.3 DG discretization of the shallow water equations . . . . . . . . . . . . . . 66
2.2.4 Approximate Riemann solver and numerical fluxes for the shallow water

equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.2.5 Limiting procedure based on the characteristic variables . . . . . . . . . . 69
2.2.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.3 Lagrangian gas dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.3.1 Discontinuous Galerkin discretization of Lagrangian gas dynamics equations 74

xi



2.3.2 Taylor basis modification for Lagrangian gas dynamics . . . . . . . . . . . 75

2.3.3 Entropy inequality and numerical fluxes . . . . . . . . . . . . . . . . . . . 76

2.3.4 Limiting procedure based on the characteristic variables for the Lagrangian
gas dynamics equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3 Cell-centered Finite Volume Lagrangian scheme on moving mesh 87

3.1 Cell-Centered Lagrangian scheme overview . . . . . . . . . . . . . . . . . . . . . . 87

3.2 Lagrangian and Eulerian descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2.2 Material time derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.2.3 Deformation gradient tensor . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.2.4 Transformation formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.2.5 Reynolds transport formula . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.2.6 Eulerian and Lagrangian form of the gas dynamics equations . . . . . . . 98

3.3 First-order cell-centered Lagrangian scheme: EUCCLHYD . . . . . . . . . . . . . 102

3.3.1 Control volume form of the gas dynamics equations . . . . . . . . . . . . 102

3.3.2 Compatible cell-centered discretization . . . . . . . . . . . . . . . . . . . . 102

3.3.3 Sub-cell force-based discretization . . . . . . . . . . . . . . . . . . . . . . 107

3.3.4 Thermodynamic consistency of the semi-discrete scheme . . . . . . . . . . 109

3.3.5 Summary of the semi-discrete scheme . . . . . . . . . . . . . . . . . . . . 110

3.3.6 Node-centered solver for the grid velocity . . . . . . . . . . . . . . . . . . 111

3.3.7 Second-order MUSCL scheme . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.3.8 Time step control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4 High-order DG Cell-centered Lagrangian schemes 121

4.1 DG discretization general framework . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.1.1 Variational formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.1.2 Deformation gradient tensor discretization . . . . . . . . . . . . . . . . . . 126

4.1.3 Entropic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.1.4 Limiting procedure based on the characteristic variables . . . . . . . . . . 131

4.2 Second-order DG scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.2.1 Deformation gradient tensor discretization . . . . . . . . . . . . . . . . . . 135

4.2.2 Variational formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.2.3 Nodal solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.2.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.3 Third-order DG scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.3.1 Geometric consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.3.2 Deformation gradient tensor discretization . . . . . . . . . . . . . . . . . . 161

4.3.3 Variational formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.3.4 Nodal solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.3.5 Deformed initial mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

4.3.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5 Conclusion and perspectives 183

xii



A Notations and reminders related to vectors and tensors 185
A.1 Introduction to second-order tensors . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
A.1.2 Properties of the dyadic product of two vectors . . . . . . . . . . . . . . . 187
A.1.3 Inner product of second-order tensors . . . . . . . . . . . . . . . . . . . . 187

A.2 Eigenvalues and eigenvectors of a tensor . . . . . . . . . . . . . . . . . . . . . . . 188
A.3 Tensor analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.3.1 Derivative of tensor with respect to a scalar . . . . . . . . . . . . . . . . . 188
A.3.2 Derivative of scalar valued functions of vectors . . . . . . . . . . . . . . . 188
A.3.3 Derivative of vector valued functions of vectors . . . . . . . . . . . . . . . 189
A.3.4 Derivative of scalar valued functions of second-order tensors . . . . . . . . 189
A.3.5 Derivative of the determinant of a tensor . . . . . . . . . . . . . . . . . . 189
A.3.6 Divergence of a vector and a tensor . . . . . . . . . . . . . . . . . . . . . . 190
A.3.7 Tensor identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.4 Integral transformation formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Bibliography 193

xiii



xiv



Chapter 1

High-order discretizations of scalar
conservation laws

The aim of this chapter is to introduce high-order discretizations for linear and non-linear scalar
conservation laws. First, in Section 1.1, we start by recalling the classical second-order Finite
Volume scheme devoted to the numerical discretization of one-dimensional scalar conservation
laws, which can be found in many textbooks [65, 42, 31]. In this well known approach, the
numerical solution is described by a piecewise constant approximation. The time rate of change
of the cell-averaged value is balanced by the difference of the cell interfaces numerical fluxes.
At each cell interface the numerical flux is expressed in terms of the left and right cell-averaged
values on both sides of the interface by means of an approximate Riemann solver. The second-
order extension is achieved by performing a piecewise linear reconstruction of the numerical
solution from the cell-averaged values. The numerical flux at the cell interface is computed by
utilizing the extrapolated values on both sides of the interface coming from the piecewise linear
reconstruction. The monotonicity of the piecewise linear reconstruction is achieved thanks to
a slope limiter of minmod type. The second-order time discretization is obtained employing a
two-step predictor-corrector scheme.

To achieve a higher order accuracy, we pursue by presenting the discontinuous Galerkin (DG)
discretization of the one-dimensional scalar conservation laws. Theoretically, DG methods allow
to reach any arbitrary order of accuracy. Since their introduction in 1973 by Reed and Hill [90]
in the framework of neutron transport (steady state linear hyperbolic equations), the discon-
tinuous Galerkin methods turn out to be particularly well adapted to solve system of scalar
conservation laws with a high order of accuracy. A major development of the DG method
was carried out by Cockburn, Shu et al. in a series of papers [28, 27, 26, 25, 29], in which
they established a framework to easily solve nonlinear time dependent hyperbolic conservation
laws (1.1) using explicit, nonlinear but stable high-order Runge-Kutta time discretizations [99]
and DG discretization in space with exact or approximate Riemann solvers as interface fluxes.
A total variation bounded (TVB) limiter [97] is used to achieve non-oscillatory properties for
strong shocks. These schemes are termed RKDG methods. More recently, Zhang and Shu [110]
have constructed uniformly high-order accurate schemes satisfying a strict maximum principle
for scalar conservation laws. They proposed a general framework to construct limiter for DG
methods with first order Euler forward in time discretization solving one-dimensional scalar
conservation laws. Strong stability preserving high-order time discretizations are employed to
assure preservation of the maximum principle. A pedagogical presentation of the DG discretiza-
tion can be found in [24, 98]. A numerical study for the performance of the RKDG method
based on different numerical fluxes is performed in [88]. The extension of the local discontin-

1



uous Galerkin methods to high-order time-dependent partial differential equations is described
in the review paper [108] wherein one can find a complete set of references on this topic. It is
worth mentioning that the DG methods combine noteworthy advantages from the Finite Ele-
ment methods and the Finite Volume ones. On the one hand, the high accuracy comes from the
high-order polynomial approximation of the solution. This approximation results from a local
variational formulation on each cell. On the other hand, this polynomial description of the so-
lution being discontinuous from one cell to another, the fluxes at the interfaces are evaluated by
means of numerical flux functions similar to the ones used in the Finite Volume method frame.
Thus, the DG discretization can be viewed as an extension of the Finite Volume method to an
arbitrary order of accuracy, wherein a piecewise polynomial approximation of the unknown is
used.

1.1 One-dimensional scalar conservation laws

This section is devoted to the description of numerical methods for solving the following problem.
Let u = u(x, t), for x ∈ C, where C ⊂ R, and t ∈ [0, T ], be the solution of the following one-
dimensional scalar conservation law

∂ u

∂t
+
∂ f(u)

∂x
= 0, (1.1a)

u(x, 0) = u0(x), (1.1b)

where u0 is the initial data and f(u) is the flux function. For the subsequent discretizations, let
us introduce the following notation. Let

⋃
i=1,I Ci be a partition of the computational domain

C. Here, Ci = [xi− 1
2
, xi+ 1

2
] denotes a generic computational cell of size ∆xi. We also introduce

a partition of the time domain 0 = t1 < t2 < ... < tn < ... < tN = T and the time step
∆tn = tn+1 − tn.

1.1.1 First-order Finite Volume discretization

The Finite Volume discretization is based on the integration of the concerned equation (1.1a)
in space and time on Ci × [tn, tn+1]

∫ tn+1

tn

∫

Ci

(
∂ u

∂t
+
∂ f(u)

∂x

)
dx dt = 0.

Immediately, this equation rewrites

∫

Ci

(
u(x, tn+1)− u(x, tn)

)
dx+

∫ tn+1

tn

(
f(u(xi+ 1

2
, t))− f(u(xi− 1

2
, t))

)
dt = 0.

Let us introduce uni = 1
∆xi

∫
Ci
u(x, tn) dx the mean value of our unknown over the cell Ci at

time tn, and F i+ 1
2

= 1
∆tn

∫ tn+1

tn f(u(xi+ 1
2
, t)) dt with f(u) the numerical flux. The Finite Volume

scheme obtained writes

∆xi (un+1
i − uni ) + ∆tn (F i+ 1

2
− F i− 1

2
) = 0. (1.2)

The principle of the Finite Volume methods, and from a more general point of view of the
discontinuous Galerkin methods (see Section 1.1.6), is the use of a piecewise approximation of
the unknown over the cells of the mesh. More precisely, the piecewise approximation of the
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unknown would be discontinuous at the interfaces between cells, for example at interface xi+ 1
2
.

These discontinuities and the conservation property over the domain impose to the single value
F i+ 1

2
to be shared by the two cells Ci and Ci+1 surrounding the interface xi+ 1

2
and so to be

calculated from the values of the two cells

F i+ 1
2

=
1

∆tn

∫ tn+1

tn
h(ui, ui+1) dt,

where h is the numerical flux characterizing the approximation. The evaluation of this time
integral can be performed exactly. Another alternative is the use of a quadrature rule in
accordance to the expecting accuracy order. For the first-order, the simple left rectangle rule
will be used to get an explicit method

F i+ 1
2

= h(uni , u
n
i+1).

The approximation flux h is consistent with the physical flux f(u) if it satisfies the property

h(u, u) = f(u). (1.3)

With this property, the numerical flux reduces to f(u) in the case of a constant solution where
u(x, t) = u. We also make the assumption that the numerical flux function h is a Lipschitz
continuous function with respect to its arguments at point u, i.e., ∃ K > 0 such as

|h(v, w)− f(u)| ≤ K max(|v − u|, |w − u|), (1.4)

for all v and w with |v − u| and |w − u| small enough. This last property implies that when
the two arguments of the numerical flux function tend toward the value u then h tends toward
f(u) smoothly. Moreover, we suppose that the numerical flux function, h, is non-decreasing in
the first argument and non-increasing in the second argument. These assumptions leads to a
numerical flux which belongs to the class of monotone flux, refer to [42]. In what follows, we
shall use the well known Local Lax-Friedrichs flux which satisfies the aforementioned properties.
This numerical flux is defined by

h(u, v) =
1

2
[f(u) + f(v)− β (v − u)]. (1.5)

Here, β > 0 is a parameter which has the dimension of a velocity. Introducing the charac-
teristic speed as a(u) = df

du leads to define the Lax-Friedrichs flux by β = max (|a(w)|) for
w ∈ [inf(u0(x)), sup(u0(x))] whereas the Local Lax-Friedrichs flux is given by

β = max (|a(w)|) for w ∈ [min(u, v),max(u, v)].

In the case of a convex flux function, β expression boils down to β = max (|a(u)|, |a(v)|). We
notice that in the linear case, i.e., f(u) = au, where a is the constant convection speed, the
Local Lax-Friedrichs flux is nothing but the classical upwind flux since in this case β = |a|.
Finally, we recall that the stability of the explicit Finite Volume scheme (1.2) is ensured provided
that the time step satisfies the following Courant-Friedrichs-Levy (CFL) condition [42]

∆tn ≤ min
i

∆xi
|a(uni )| . (1.6)

In this section, the first-order Finite Volume discretization of the one-dimensional scalar con-
servation law (1.1) has been briefly recalled. It appears to be very simple to implement. In the
next subsection, we are going to verify the robustness of this scheme and to assess its accuracy
on different test cases.
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1.1.2 First-order numerical results

To assess the accuracy of a numerical scheme, we evaluate the difference between the numerical
solution and the analytical solution employing a sequence of successively refined grids charac-
terized by a uniform mesh spacing h = ∆x. Let unh be the numerical solution obtained from
the numerical scheme at time tn, i.e., unh(x) = uni for x ∈ Ci. Denoting by uex = uex(x, tn) the
analytical solution, we define the numerical error at time tn as

ELα = ||unh − uex||Lα , (1.7)

where ‖ · ‖Lα is a given norm characterized by the subscript α. We will assess the numerical
errors for the three following classical norms: L1, L2 and L∞. For these norms the corresponding
numerical errors read

EL1 =
∑

i

∫

Ci

|uni − uex(x, tn)|dx. (1.8)

EL2 =

√∑

i

∫

Ci

[uni − uex(x, tn)]2 dx. (1.9)

EL∞ = max
i

[max
x∈Ci

(|uni − uex(x, tn)|)]. (1.10)

For a grid characterized by the constant mesh spacing ∆x, we postulate that the numerical
error ELα has the following behavior

E∆x
Lα = D (∆x)qLα , (1.11)

where D is a non-negative constant independent of ∆x and qLα is a real which corresponds to
the rate of convergence of the numerical scheme. The value qLα = 1 characterizes a first-order
numerical scheme, for which the error decreases linearly with respect to the mesh spacing. To
compute the rate of convergence, we evaluate the numerical errors corresponding to two grids
characterized by ∆x1 and ∆x2 with ∆x1 > ∆x2. Using the relation (1.11) yields

qLα =
log(E∆x1

Lα
)− log(E∆x2

Lα
)

log(∆x1)− log(∆x2)
. (1.12)

For the numerical applications, we consider two classical test cases. The computational domain
is C = [0, 1] and we prescribe periodic boundary conditions. The first test case corresponds
to a linear conservation law characterized by the initial condition u0(x) = sin(2πx) and the
linear flux f(u) = au, where the constant velocity a is given by a = 1. For this case, the
analytical solution reads uex(x, t) = u0(x − at). The second test case corresponds to a non-
linear conservation law characterized by the initial condition u0(x) = sin(2πx), the non-linear

flux f(u) = u2

2 and the characteristic speed a(u) = u. With this flux, the conservation law (1.1)
is called the Burgers equation. In this case, it is possible to compute the analytical solution up
to a critical time by means of the method of characteristics. This critical time, tc, is the time
at which the characteristics first cross and a shock forms as it can be seen in Figure 1.1, refer
to [65]. For the initial data under consideration the critical time is given by tc = 1

2π . Let us
point out that before this critical time, the analytical solution is smooth.
We have displayed in Table 1.1 the convergence results for the first test case. The results show
clearly a first-order convergence rate.
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L1 L2 L∞
∆x EL1 qL1 EL2 qL2 EL∞ qL∞

1
100 6.09E-2 0.96 6.77E-2 0.97 9.69E-2 0.97
1

200 3.12E-2 0.98 3.46E-2 0.98 4.96E-2 0.98
1

400 1.58E-2 0.99 1.75E-2 0.99 2.51E-2 0.99
1

800 7.94E-3 1.00 8.82E-3 1.00 1.26E-2 1.00
1

1600 3.98E-3 - 4.42E-3 - 6.33E-3 -

Table 1.1: Rate of convergence for the first-order FV scheme in the case of linear advection
with the smooth initial condition u0(x) = sin(2πx) on the [0, 1] domain, at time t = 1 with a
CFL= 0.5.

-1
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 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

t=0
t=0.04

t=0.1
t=tc

t=0.2

Figure 1.1: Shock formation for the Burgers equation for the smooth initial condition u0(x) =
sin(2πx). The numerical solutions have been obtained using the first-order scheme with a very
fine grid.

L1 L2 L∞
∆x EL1 qL1 EL2 qL2 EL∞ qL∞

1
200 6.08E-3 1.00 8.49E-3 0.98 4.16E-2 0.97
1

400 3.05E-3 1.00 4.31E-3 0.99 2.20E-2 0.98
1

800 1.53E-3 1.00 2.17E-3 0.99 1.13E-2 0.99
1

1600 7.65E-4 1.00 1.09E-3 1.00 5.73E-2 1.00
1

3200 3.83E-4 - 5.46E-4 - 2.87E-3 -

Table 1.2: Rate of convergence for the first-order Finite Volume scheme used in the case of
Burgers equation with the smooth initial condition u0(x) = sin(2πx) on the [0, 1] domain, at
time t = tc

2 with a CFL= 0.5.
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We have also performed the convergence analysis for the non-linear Burgers problem. The
results are displayed in Table 1.2. As expected, we clearly observe a first-order rate of conver-
gence. Let us point out that to assess more precisely the order of the numerical scheme, we
keep refining the mesh until asymptotic regime is reached.

The results presented in the above Tables show that the Finite Volume scheme previously
described has a first-order accuracy. From a general point of view, the first-order schemes are
generally robust and easy to implement. The problem is the low accuracy of these methods.
After a while, the numerical dissipation is so huge that the obtained solution does not correspond
anymore to the expected solution. To cure this problem, we derive in the next section a classical
second-order extension of the present Finite Volume discretization.

1.1.3 Second-order Finite Volume discretization

In the previous section, the first-order Finite Volume scheme wherein a piecewise constant
approximation of the solution is used has been presented. In this case, the numerical flux
h(uL, uR) is computed by means of the mean values uL and uR of the solution on the cells
located on both sides of the interface. Here, the aim is to decrease the dissipation and to
increase the accuracy of the numerical solution by constructing a second-order extension. The
method consists in computing a piecewise linear approximation of the solution over each cell.
In the numerical flux evaluation, instead of defining the left and right states as the averaged cell
values, one computes uL and uR as the extrapolated values at the interface, using the piecewise
linear approximation of the solution, on both sides of the interface. This procedure leads to
decrease the jump (uR − uL) in the smooth parts of the solution and thus decrease the viscous
contribution of the numerical flux which is proportional to (uR − uL). This approach yields a
second-order space discretization. The global second-order accuracy requires also a second-order
time discretization by means of a classical predictor-corrector scheme.
Let us point out that there exists a huge literature about second-order Finite Volume schemes
for conservation laws. The interested reader could refer to the pioneering works of van Leer
[101] and Kolgan [102, 58] and also to text books [42, 43, 65, 6].

Piecewise linear reconstruction

Being given uni , the mean value of the solution on the cell Ci, we define the piecewise linear
approximation as

ũi(x) = uni + δi (x− xi), x ∈ Ci (1.13)

where xi = 1
2(xi− 1

2
+xi+ 1

2
) is the midpoint of the cell and δi represents the slope of the solution.

We notice that this linear reconstruction is conservative since it conserves the solution mean
value, i.e.,

1

∆xi

∫

Ci

ũi(x) dx = uni .

The slope δi is an approximation of the solution derivative ∂ u
∂x inside cell Ci. The slope recon-

struction could be obtained from different methods. Here, following [72], we present a slope
computation based on a least squares algorithm, which has the advantage of preserving lin-
ear fields on non-uniform meshes. The slope δi in cell Ci is computed imposing the following
conditions

ũi(xi−1) = uni−1 and ũi(xi+1) = uni+1,
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which amounts to seek the best linear fit for (xi−1, u
n
i−1), (xi, u

n
i ) and (xi+1, u

n
i+1). For this

purpose, we minimize the corresponding cost function

L(δi) =
1

2

[
ũi(xi−1)− uni−1

]2
+

1

2

[
ũi(xi+1)− uni+1

]2
.

=
1

2

[
uni + δi (xi−1 − xi)− uni−1

]2
+

1

2

[
uni + δi (xi+1 − xi)− uni+1

]2
.

The derivative of the cost function reads

L′(δi) = (xi−1 − xi)
[
uni + δi (xi−1 − xi)− uni−1

]
+ (xi+1 − xi)

[
uni + δi (xi+1 − xi)− uni+1

]
.

The minimum is reached for L′(δi) = 0. This gives us the expression of the slope

δi =
(uni − uni−1)(xi − xi−1) + (uni+1 − uni )(xi+1 − xi)

(xi − xi−1)2 + (xi+1 − xi)2
. (1.14)

In the case of uniform mesh of space step ∆x, the slope expression deriving from a least squares
algorithm reduces to

δi =
uni+1 − uni−1

2 ∆x
,

which is nothing but the centered approximation of ∂u
∂x . For the computation of the numerical

flux h(uL, uR) at the interface xi+ 1
2
, the left and right states, uL and uR, are evaluated as the

extrapolated values on both sides of the interface

uL = ũi(xi+ 1
2
) = uni +

1

2
∆xi δi,

uR = ũi+1(xi+ 1
2
) = uni+1 −

1

2
∆xi+1 δi+1.

This extrapolation is depicted on Figure 1.2. We note that if the slope is set to zero, uL and
uR correspond to the mean values on both sides of the interface.

xi+ 3
2

xi− 1
2

xi+ 1
2

uni+1

uL = uni +
1
2
∆xi δi

uni
uR = uni+1 − 1

2∆xi+1 δi+1

xi xi+1

Figure 1.2: Extrapolation values at the interface xi+ 1
2

resulting from the linear reconstructions

in cells Ci and Ci+1.

In what follows, we identify u−,n
i+ 1

2

and u+,n

i+ 1
2

to the extrapolated values ũi(xi+ 1
2
) and ũi+1(xi+ 1

2
)

expressed before.
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Time discretization

We recall the Finite Volume scheme introduced in the previous section

∆xi (un+1
i − uni ) + ∆tn (F i+ 1

2
− F i− 1

2
) = 0.

This time, the numerical flux is not computed with the mean values of the function on the cells
surrounding the selected interface but with the extrapolated values of the linear reconstruction
on the cells located at the interface. The corresponding Finite Volume scheme reads

∆xi (un+1
i − uni ) + ∆tn

(
h(u−,n

i+ 1
2

, u+,n

i+ 1
2

)− h(u−,n
i− 1

2

, u+,n

i− 1
2

)

)
= 0, (1.15)

where h(u−,n
i+ 1

2

, u+,n

i+ 1
2

) refers to the approximation of the time integrated term F i+ 1
2
. Proceeding

like this, the scheme (1.15) would be second-order accurate in space, but only first-order accurate
in time. To reach a global second-order accuracy, we have to use at least a second-order
quadrature rule in the evaluation of the time integral. Using the midpoint approximation leads
to the Predictor-Corrector scheme

∆xi (u
n+ 1

2
i − uni ) +

∆tn

2

(
h(u−,n

i+ 1
2

, u+,n

i+ 1
2

)− h(u−,n
i− 1

2

, u+,n

i− 1
2

)

)
= 0, predictor (1.16a)

∆xi (un+1
i − uni ) + ∆tn

(
h(u
−,n+ 1

2

i+ 1
2

, u
+,n+ 1

2

i+ 1
2

)− h(u
−,n+ 1

2

i− 1
2

, u
+,n+ 1

2

i− 1
2

)

)
= 0, corrector (1.16b)
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Figure 1.3: Linear advection (a = 1) for the initial condition u0(x) = sin(2πx), x ∈ [0, 1] with
periodic boundaries. Results at the end of ten periods with a CFL=0.5 and a grid with 100
equally spaced cells. Comparison between the analytical solution and the numerical results
obtained with the first-order and second-order Finite Volume schemes.

This so called unlimited MUSCL scheme (Monotone Upstream-centered Schemes for Conser-
vation Laws) is second-order accurate and is consequently more accurate than the first-order

8



-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

solution
finite volumes

MUSCL

Figure 1.4: Linear advection (a = 1) for the discontinuous initial condition u0(x) = 1 if x ∈
[0.4, 0.6] and null anywhere else, with periodic boundaries. Results at the end of one period
with a CFL=0.5 and a grid with 100 equally spaced cells. Comparison between the analytical
solution and the numerical results with the Finite Volume scheme and the MUSCL scheme.

Finite Volume scheme presented before, as show Figure 1.3 and Figure 1.4. The numerical flux
being computed by means of the extrapolated values at the interface, using the piecewise linear
approximation of the solution, the viscous contribution of the numerical flux generating dissi-
pation decreases. However, we clearly observe the apparition of oscillations on the second-order
solution in the discontinuous case. To correct this flaw and restore monotonicity, we introduce
slope limiters.

1.1.4 Slope limiters

The piecewise linear reconstruction over cell Ci reads

ũi(x) = uni + δi (x− xi),
where xi is the midpoint of the cell Ci and δi is the slope obtained by the least squares approach.
The modification of the slopes to ensure monotonicity is implemented following [6]. Geometri-
cally speaking, the limitation procedure consists of the minimal change of the slope needed to
ensure the following “five-point monotonicity”: If {uni−1, u

n
i , u

n
i+1} form a monotonic sequence,

then so must the five values {uni−1, u
+,n

i− 1
2

, uni , u
−,n
i+ 1

2

, uni+1}. This monotonicity condition applied

to the piecewise linear reconstruction leads to a limitation of the slope δi. Let us investigate the
two different cases wherein the sequence {uni−1, u

n
i , u

n
i+1} is either increasing or decreasing. In

the first case, we seek a condition on δi imposing that the sequence {uni−1, u
+,n

i− 1
2

, uni , u
−,n
i+ 1

2

, uni+1}
is also increasing. Introducing αi ∈ [0, 1], this condition amounts to impose

uni −
1

2
∆xi δi ≥ (1− αi)uni + αiu

n
i−1,

uni +
1

2
∆xi δi ≤ (1− αi)uni + αiu

n
i+1.

9



Hence, we deduce

δi ≤ 2αi
uni − uni−1

∆xi
and δi ≤ 2αi

uni+1 − uni
∆xi

.

Consequently, the limited slope δlim
i is defined as

δlim
i = min(δi, 2αi

uni − uni−1

∆xi
, 2αi

uni+1 − uni
∆xi

),

where αi ∈ [0, 1].
In the second case, where the sequence {uni−1, u

n
i , u

n
i+1} is decreasing (δi ≤ 0), the same reasoning

yields

δlim
i = max(δi, 2αi

uni − uni−1

∆xi
, 2αi

uni+1 − uni
∆xi

).

The last case to investigate results from a non-monotonic sequence {uni−1, u
n
i , u

n
i+1}. Here, we

set the slope to zero. For the sake of conciseness, we introduce the minmod function

minmod(x, y, z) = min(0,max(x, y, z)) + max(0,min(x, y, z)). (1.17)

Thus, the limited slope writes

δlim
i = minmod(δi, 2αi

uni − uni−1

∆xi
, 2αi

uni+1 − uni
∆xi

). (1.18)

After limitation, the linear reconstruction on the cell Ci reads

ũlim
i (x) = uni + δlim

i (x− xi).

The limited linear reconstruction is used to compute the extrapolated values at the interfaces
needed by the numerical flux. The role of the slope limiter is displayed in Figure 1.5 for αi = 1.

xi+ 3
2

xi+ 1
2

xi− 3
2

uni

uni−1

uni+1

u−,n
i+1

2

u+,n
i−1

2

ũi(x)

ũlimi (x)

xi− 1
2

xi

Figure 1.5: Extrapolation values at the interface xi+ 1
2

of the linear reconstructions in the cells

Ci and Ci+1.

Let us point out that the choice αi = 0 sets the limited slope to zero and thus we recover the first-
order scheme. In the numerical applications, we will set αi = 1. This particular value allows to

10



preserve the linear fields [72]. This is the less diffusive limitation. However, this choice allows for
a non-monotonic behavior of the set of values {uni−1, u

−,n
i− 1

2

, u+,n

i− 1
2

, uni , u
−,n
i+ 1

2

, u+,n

i+ 1
2

, uni+1}. Choosing

αi = 1
2 yields a more restrictive limiter which is easily seen to lead to the monotonicity of the

previous seven-point sequence. In this case, we recover the classical limitation which ensures
that the second-order Finite Volume scheme is TVD, that is its total variation is non-increasing
as time evolves, refer to [65, 42].
The efficiency of the limitation procedure for αi = 1 is displayed in Figure 1.6 wherein are
compared the solutions with and without the use of slope limiter for linear advection.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

solution
MUSCL

MUSCL limited

Figure 1.6: Linear advection (a = 1) for the discontinuous initial condition u0(x) = 1 if x ∈
[0.4, 0.6] and null anywhere else, with periodic boundaries, at the end of one period with a
CFL=0.5 and a mesh characterized by 100 uniformly spaced cells. Comparison between the
analytical solution and the numerical results obtained with the second-order scheme with and
without the use of slope limiter.

We observe in Figure 1.6 that all the spurious oscillations have disappeared. In order to confirm
that the MUSCL scheme presented in this section is characterized by a second-order accuracy,
and that the limitation does not spoil this accuracy, we perform a numerical convergence analysis
using the same test cases than before.

1.1.5 Numerical results

We have already observe the gain in accuracy with the linear reconstruction presented in the
previous section on Figure 1.3 and Figure 1.4. Now, we perform the same rate convergence anal-
ysis than for the Finite Volume scheme, to the linear advection problem, refer to the Table 1.3,
and to the non-linear Burgers problem, refer to Table 1.4.
The results presented in these Tables confirm that the MUSCL scheme is indeed second-order
accurate. We note in the previous section the apparition of oscillations on the MUSCL scheme
solutions, and the necessity of a limitation procedure to force the monotonicity. The efficiency
of the previously described slope limiter on the undesirable oscillations has been depicted on
Figure 1.6. To assess the accuracy of the MUSCL scheme with limitation, we firstly confront a

11



L1 L2 L∞
∆x EL1 qL1 EL2 qL2 EL∞ qL∞

1
100 2.01E-3 2.00 2.23E-3 2.00 3.19E-3 2.00
1

200 5.01E-4 2.00 5.57E-4 2.00 7.95E-4 2.00
1

400 1.25E-4 2.00 1.39E-4 2.00 1.98E-4 2.00
1

800 3.13E-5 2.00 3.47E-5 2.00 4.96E-5 2.00
1

1600 7.82E-6 - 8.68E-6 - 1.24E-5 -

Table 1.3: Rate of convergence for the second-order MUSCL scheme computed in the case of
linear advection with the smooth initial condition u0(x) = sin(2πx) on the [0, 1] domain, at
time t = 1 with a CFL= 0.5.

L1 L2 L∞
∆x EL1 qL1 EL2 qL2 EL∞ qL∞

1
200 1.07E-4 1.99 1.34E-4 2.00 3.65E-4 2.05
1

400 2.70E-5 2.00 3.36E-5 1.99 8.82E-5 2.02
1

800 6.77E-6 2.00 8.43E-6 2.00 2.18E-5 2.01
1

1600 1.69E-6 2.00 2.11E-6 2.00 5.41E-6 2.00
1

3200 4.23E-7 - 5.28E-7 - 1.35E-6 -

Table 1.4: Rate of convergence for the second-order MUSCL scheme computed in the case of
Burgers equation with the smooth initial condition u0(x) = sin(2πx) on the [0, 1] domain, at
time t = tc

2 with a CFL= 0.5.

solution obtained with the first-order Finite Volume scheme and the limited MUSCL scheme.
We still see on Figure 1.7 the important gain of accuracy between those two.

To end with this accuracy study, we perform the rates of convergence for the limited MUSCL
scheme. The results are gathered in Table 1.5 and Table 1.6. We observe that the rates of
convergence are close to 2, even if there are slightly inferior. Indeed, if we confront the numeri-
cal errors obtained with the MUSCL scheme with and without slope limiter, we note a slightly
loss of accuracy. We end up telling that the slope limiter correctly prevent the apparition of
oscillations even though a slightly decrease of accuracy is observed.

L1 L2 L∞
∆x EL1 qL1 EL2 qL2 EL∞ qL∞

1
100 3.64E-3 1.93 4.68E-3 1.70 1.74E-2 1.30
1

200 9.63E-4 1.95 1.44E-3 1.71 7.08E-3 1.34
1

400 2.49E-4 1.97 4.41E-4 1.70 2.79E-3 1.47
1

800 6.37E-5 1.97 1.36E-4 1.69 1.01E-3 1.26
1

1600 1.62E-7 - 4.21E-5 - 4.22E-4 -

Table 1.5: Rate of convergence for the second-order MUSCL scheme with limitation computed
in the case of linear advection with the smooth initial condition u0(x) = sin(2πx) on the [0, 1]
domain, at time t = 1 with a CFL= 0.5.
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Figure 1.7: Linear advection (a = 1) of the discontinuous initial condition u0(x) = 1 if x ∈
[0.4, 0.6] and null anywhere else, with periodic boundaries, at the end of one period with a
CFL= 0.5 and on 100 cells: comparison between the analytical solution and those obtained
with the Finite Volume scheme and the MUSCL scheme with slope limiter.

L1 L2 L∞
∆x EL1 qL1 EL2 qL2 EL∞ qL∞

1
200 1.36E-4 1.96 2.20E-4 1.79 1.03E-3 0.95
1

400 3.49E-5 1.97 6.36E-5 1.77 5.35E-4 1.61
1

800 8.91E-6 1.97 1.86E-5 1.74 1.75E-4 1.21
1

1600 2.27E-6 1.98 5.58E-6 1.72 7.56E-5 1.30
1

3200 5.75E-7 - 1.69E-6 - 3.07E-5 -

Table 1.6: Rate of convergence for the second-order MUSCL scheme with limitation computed
in the case of Burgers equation with the smooth initial condition u0(x) = sin(2πx) on the [0, 1]
domain, at time t = tc

2 with a CFL= 0.5.

Achieving a higher order of accuracy, let say third-order for instance, would require to perform
a piecewise polynomial reconstruction from the cell-averaged values supplemented by a high-
order time discretization. One possible solution to this problem consists in using the primitive
function for u(x, t). This approach was first introduced by Collela and Woodward in their PPM
[30](Piecewise Parabolic Method) and has since been employed in a variety of other methods,
particularly the ENO [99](Essentially Non Oscillatory) methods developed by Chakravarthy,
Enquist, Harten and Osher and its numerous variants. Here, we shall follow another approach
by employing the discontinuous Galerkin (DG) method. This is the topic of the next section.
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1.1.6 Discontinuous Galerkin discretization

In this section we recall the DG discretization of the one-dimensional conservation law (1.1)
following the classical approach introduced by Cockburn and Shu [27]. Our presentation slightly
differs from the previous one in the sense that the piecewise polynomial space we are employing is
spanned by a Taylor basis instead of a Legendre basis. This particular choice has no importance
for solving one-dimensional conservation laws. We are making this choice, following [71], in the
perspective of the two-dimensional extension. In this case, the choice of a Taylor basis is justified
by the fact that this basis will be independent of the cell form. Namely, we shall employ the
same basis regardless the shape of the cell: triangular quadrangular, polygonal. This choice
will allow to treat general unstructured grids with the same framework. The price to pay will
be that we will have to cope with non-orthogonal basis and thus non-diagonal mass matrix on
general polygonal grids. In what follows, we will present DG discretization up to third-order.
To preserve the monotonicity of the numerical solution and at the same time its accuracy, we
will utilize the vertex-based limiter described in [60]. This vertex-based limiter belongs to the
class of moment limiter, initially introduced by Biswas et al. [8], which is itself a generalization
of the second-order accurate minmod limiter of van Leer [101].

Variational formulation

Our starting point is the one-dimensional scalar conservation law

∂ u

∂t
+
∂ f(u)

∂x
= 0, (1.19)

where u = u(x, t) for x ∈ R and t ∈ [0, T ].
Let us recall that Ci = [xi− 1

2
, xi+ 1

2
] a is generic cell of size ∆xi and let PK(Ci) be the set of

polynomials of degree up to K. If uh denotes the polynomial approximation of the solution, let
uih be the restriction of uh, over the cell Ci

uih(x, t) =
K∑

k=0

uik(t)σ
i
k(x), x ∈ Ci (1.20)

where uik are the successive moments of uh and {σik}k=0,...,K is a basis of PK(Ci). The coefficients
uik(t) present in (1.20) are determined by writing the local variational formulation of (1.19), for
q = 0, . . . ,K

∫

Ci

∂ u

∂t
σiq dx = −

∫

Ci

σiq
∂ f(u)

∂x
dx,

=

∫

Ci

f(u)
dσiq
dx

dx− [f(u)σiq]
x
i+1

2
x
i− 1

2

.

Here, [f(u)σiq]
x
i+1

2
x
i− 1

2

= f i+ 1
2
σiq(x

−
i+ 1

2

) − f i− 1
2
σiq(x

+
i− 1

2

) where f i+ 1
2

is, as in the Finite Volume

method, the numerical flux which is a single valued function defined at the cell interfaces
and in general depends on the trace of the numerical solution on both sides of the interface.
Interchanging the function u by its polynomial approximation uh leads to K + 1 semi-discrete
equations for the same number of unknowns

K∑

k=0

(∫

Ci

σik σ
i
q dx

)
duik
dt

=

∫

Ci

f(uih)
dσiq
dx

dx− [f(u)σiq]
x
i+1

2
x
i− 1

2

. (1.21)
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Before going any further, let U i = (ui0, ..., u
i
l, ..., u

i
K)t be the unknown vector and Mi

qk =∫
Ci
σik σ

i
q dx be the mass matrix coefficients. We notice that this mass matrix is locally de-

fined on each cell and is time independent. The introduction of the scalar product

〈u, v〉 =

∫

Ci

u(x) v(x) dx, , (1.22)

allows the following mass matrix coefficients definition

Mi
qk =

〈
σiq, σ

i
k

〉
.

This notation shows that Mi is the Gram matrix associated to the chosen polynomial basis and
to the scalar product defined previously. Hence, this matrix is symmetric positive definite and
thus invertible. Moreover, this matrix being time independent, it can be computed once for all,
stored and re-used during the calculation. The choice of an orthogonal basis, i.e.,

〈
σiq, σ

i
k

〉
= 0

for q 6= k, leads to a diagonal mass matrix which simplifies greatly the scheme and leads to
have all the moments uik equations being independent of each others. With this notation, the

left-hand side of (1.21) can be identified as the qth row of the matrix-vector product Mi d

dt
U i.

Projection onto the approximation space

Being given a function φ = φ(x), we compute its polynomial approximation restricted to the
cell Ci as φih(x) =

∑K
k=0 φ

i
k σ

i
k. To this end we define the projection operator Π as

Π : L1(Ci) −→ PK(Ci)

φ −→ Π(φ) = φih,

where the polynomial approximation Π(φ) is defined by its successive moments φik as

∫

Ci

Π(φ)σiq dx =

∫

Ci

φσiq dx, for q = 0, . . . ,K. (1.23)

Let us note that (1.23) is equivalent to minimizing the cost function ‖Π(φ) − Φ‖2 where ‖ · ‖
refers to the norm induced by the scalar product (1.22). Substituting Π(φ) by φih =

∑K
k=0 φ

i
k σ

i
k,

leads to a linear system of size K + 1. The qth row of this linear system reads

K∑

k=0

(∫

Ci

σik σ
i
q dx

)
φik =

∫

Ci

φσiq dx, for q = 0, . . . ,K. (1.24)

The function φ being known at each point of Ci, the right hand-side of (1.24) can be evaluated
with an adapted quadrature formula, which can be of Gauss-Legendre type, refer to [27]. In-
troducing the vectors Φi = (φi0, . . . , φ

i
K)t and Φ̃i = (

〈
φ, σi0

〉
, . . . ,

〈
φ, σiK

〉
)t, system (1.24) can

be written under the compact form

Mi Φi = Φ̃i. (1.25)

The mass matrix being invertible, this system always admits a unique solution. Moreover,
Mi being symmetric positive definite, one can use the Cholesky decomposition algorithm to
compute its inverse.
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This projection operator is also used to construct the polynomial approximation of the initial
data u0(x)

u0,i
h =

K∑

k=0

u0,i
k σk,

where the u0,i
k coefficients are obtained by solving the linear system

MiU0,i = Ũ0,i.

In the same spirit, we develop the internal term
∫
Ci
f(uih)

dσiq
dx dx, to get a compact form of the

K + 1 semi-discrete equations.

Compact form of the semi-discrete equations

Knowing the polynomial approximation (1.20) of the function u in the cell Ci, we are able to
evaluate at each point of the cell the function f(uih(x, t)). The use of the previous projection
algorithm with an appropriate quadrature formula leads to set

f ih(x, t) = Π(f(uih)) =
K∑

k=0

f ik(t)σ
i
k(x),

where the f ik coefficients are obtained solving the system

Mi F i = F̃ i.

Here, the vectors F i ∈ RK+1 and F̃ i ∈ RK+1 are given by

F i = (f i0, . . . , f
i
K)t,

F̃ i = (
〈
f(uih), σi0

〉
, . . . ,

〈
f(uih), σiK

〉
)t.

Consequently, with these definitions, the internal term rewrites

∫

Ci

f(uih)
dσiq
dx

dx =

K∑

k=0

(∫

Ci

σik
dσiq
dx

dx

)
f ik.

Introducing the matrix Di defined as

Diqk =

∫

Ci

σik
dσiq
dx

dx,

the internal term can been identified as the qth row of the matrix-vector product Di F i. And
finally, the K + 1 semi-discrete equations (1.21) can be written in the following compact form

Mi d

dt
U i = Di F i −

[
f i+ 1

2
σi(x−

i+ 1
2

)− f i− 1
2
σi(x+

i− 1
2

)

]
, (1.26)

where σi(x) = (σi0(x), . . . , σiK(x))t.
This compact semi-discrete discretization has a theoretical (K+1)th order of accuracy in space.
In the same way that for the MUSCL scheme, we have to apply a time discretization accurate
enough to have a global (K + 1)th order of accuracy.
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Time discretization

The above semi-discrete DG scheme corresponds to a system of ordinary differential equations
which writes

duh
dt

= L(uh, t), (1.27)

where L(uh, t) is the operator corresponding to the space discretization, which is generally non-
linear. Thus, to solve (1.27), we have to implement a time discretization remaining explicit
and with an accuracy adapted to the space discretization. Those reasons conduce us to choose
a Runge-Kutta time discretization. On the time interval [tn, tn+1], knowing unh the piecewise
polynomial solution at time tn, the general algorithm reads

1. Initialize uh0 = unh.

2. For j = 1, . . . , J perform the intermediary states

u
(j)
h =

j−1∑

l=0

[
αjl u

(l)
h + βjl ∆t

n L(u
(l)
h , t

n + dl ∆t
n)
]
.

3. Increment un+1
h = u

(J)
h .

The coefficients αjl, βjl and dl will be given subsequently. The index J refers to the order of
the time discretization. The TVD Runge-Kutta method under consideration is characterized
by the following properties given by [24]

αjl ≥ 0,

J−1∑

l=0

αjl = 1,

If βjl 6= 0 thus αjl 6= 0.

With these properties, this class of Runge-Kutta methods corresponds to the convex combi-
nation of first-order explicit Euler time discretizations. Therefore, the explicit Euler stability
would be automatically transported to the high-order time discretization. Besides, for a (K+1)th

space and time discretization in the linear advection case f(u) = a u, a von Neumann stability
analyze leads to the following time step limitation [24]

∆tn ≤ min
i

∆xi
|a|(2K + 1)

. (1.29)

For the sake of clearness, let us explicit the time discretization schemes for J = 1, 2, 3

• First-order

un+1
h = unh + ∆tn L(unh, t

n).

• Second-order

u
(1)
h = unh + ∆tn L(unh, t

n),

un+1
h =

1

2
(unh + u

(1)
h ) +

∆tn

2
L(u

(1)
h , tn + ∆tn),
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• Third-order

u
(1)
h = unh + ∆tn L(unh, t

n),

u
(2)
h =

1

4
(3unh + u

(1)
h ) +

∆tn

4
L(u

(1)
h , tn + ∆tn),

un+1
h =

2

3
(unh + 2u

(2)
h ) +

2 ∆tn

3
L(u

(2)
h , tn +

∆tn

2
),

To complete our scheme, the numerical fluxes at the interfaces f i+ 1
2

have to be determined.

This task will be achieved in the next section by studying the L2 stability of the semi-discrete
DG scheme.

1.1.7 Numerical flux and L2 stability

In this part, following [52, 24, 98, 49], we want to design a generic form of numerical fluxes
which ensures the global stability of our semi-discrete discretization in the L2 norm. To this
end, let us consider the local variational formulation written using uih as a test function

∫

Ci

uih
∂ uih
∂t

dx =

∫

Ci

f(uih)
∂ uih
∂x

dx− [f(u)uih]
x
i+1

2
x
i− 1

2

.

We can immediately infer

1

2

d

dt

∫

Ci

(uih)2 dx =

∫

Ci

f(uih)
∂ uih
∂x

dx− [f(u)uih]
x
i+1

2
x
i− 1

2

. (1.30)

Here, we make use of the function F which denotes a primitive of the flux function defined as

F (u) =
∫ u

0 f(s) ds. Noticing that
∂ F (uih)
∂x =

dF (uih)
du

∂ uih
∂x = f(uih)

∂ uih
∂x , equation (1.30) writes

1

2

d

dt

∫

Ci

(uih)2 dx = [F (uih)]
x
i+1

2
x
i− 1

2

− [f(u)uih]
x
i+1

2
x
i− 1

2

. (1.31)

Let us set Ri = [f(u)uih]
x
i+1

2
x
i− 1

2

− [F (uih)]
x
i+1

2
x
i− 1

2

. For periodic boundary conditions, the sum of (1.31)

over all the cells writes

1

2

d

dt
‖uh‖2L2

=
1

2

d

dt

∑

i,cells

∫

Ci

(uih)2 dx = −
∑

i,cells

Ri. (1.32)

At this point, we claim that the global stability in L2 norm for our semi-discrete scheme amounts
to impose

∑

i,cells

Ri ≥ 0. (1.33)

Next, we determine the form of the numerical flux so that (1.33) is enforced. By interchanging
the sum from cells to nodes, (1.33) rewrites

∑

i,cells

Ri =
∑

i,cells

[
f i+ 1

2
uih(x−

i+ 1
2

, t)− f i− 1
2
uih(x+

i− 1
2

, t)− F (uih(x−
i+ 1

2

, t)) + F (uih(x+
i− 1

2

, t))

]
,

=
∑

i,nodes

[
f i+ 1

2
(uih(x−

i+ 1
2

, t)− ui+1
h (x+

i+ 1
2

, t))− F (uih(x−
i+ 1

2

, t)) + F (ui+1
h (x+

i+ 1
2

, t))

]
,

=
∑

i,nodes

[
f i+ 1

2
(uL − uR)− F (uL) + F (uR)

]
. (1.34)
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where uL and uR denote the extrapolated values at the interface of the left and right states
on both sides of the interface, i.e., uL = uih(x−

i+ 1
2

, t) and uR = ui+1
h (x+

i+ 1
2

, t). Recalling the

definition of the primitive function F (u) =
∫ u

0 f(s) ds, equation (1.34) yields

∑

i,cells

Ri =
∑

i,nodes

(uL − uR)

(
f i+ 1

2
− 1

uR − uL

∫ uR

uL

f(s) ds

)
. (1.35)

Finally, the global stability of the semi-discrete scheme in L2 norm is ensured provided that the
numerical flux is written

f i+ 1
2

=
1

uR − uL

∫ uR

uL

f(s) ds− Ci+ 1
2
(uR − uL), (1.36)

where Ci+ 1
2

is a non-negative scalar characterizing the numerical viscosity of the scheme. Finally,

the sufficient condition used to determine the numerical flux (1.36) gives the global L2 stability
of the semi-discrete scheme

1

2

d

dt
‖uh‖2L2

= −
∑

i,nodes

Ci+ 1
2
(uR − uL)2 ≤ 0. (1.37)

The numerical dissipation of the semi-discrete discontinuous Galerkin scheme is directly related
to the square of the polynomial approximation jumps located at the interfaces. Thanks to
this dissipation, we can hope that the scheme will remain L2 stable (with a correct time dis-
cretization). An obvious dimensional analysis of (1.37), shows that Ci+ 1

2
has the dimension of

a velocity.
In the linear case, f(u) = a u, where a is the constant advection velocity. Recalling (1.36) in
this case, one gets

f i+ 1
2

=
a

2
(uL + uR)− Ci+ 1

2
(uR − uL) (1.38)

We recognize two different parts in this flux, the centered one a
2 (uL + uR), and the viscous

one Ci+ 1
2
(uR − uL) which brings dissipation and consequently stability. Moreover, if we set

Ci+ 1
2

=| a | in the above formula, we recover the well known upwind flux.

In the non-linear case, we can use a quadrature formula to evaluate
∫ uR
uL

f(s) ds. If we choose the

trapezoidal rule and take Ci+ 1
2

= 1
2 max(|f ′(uL)|, |f ′(uR)|), we recover the local Lax-Friedrichs

flux

f i+ 1
2

=
f(uL) + f(uR)

2
−max(|f ′(uL)|, |f ′(uR)|)(uR − uL

2
). (1.39)

The use of this centered term f(uL)+f(uR)
2 instead of 1

uR−uL
∫ uR
uL

f(s) ds modifies very slightly
the numerical solution, the dissipative error coming from the viscous term. For instance, in the
case of the Burgers equation with the initial data u0(x) = sin(2πx), the relative error difference
between the two numerical solutions obtained with the first-order scheme is about 0.032%.

Comment 1 Let us point out that there is a strong link between the L2 stability and the entropy
inequality. As noticed in [98], the weak solutions of the one-dimensional scalar conservation laws
(1.19) may not be unique, and the unique, physically relevant weak solution, named entropy so-
lution, satisfies an entropy inequality, refer to [43, 6]. It is very important to design numerical
scheme that mimics at the discrete level an entropy inequality. In the framework of DG dis-
cretization, it is possible to prove that the DG scheme satisfies a cell entropy inequality, refer to
[98, 52]. This result does not depend on the accuracy of the scheme. Moreover, it is shown in
[98] that the cell entropy inequality trivially implies an L2 stability of the numerical solution.
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1.1.8 Taylor basis

Following [71] we have made the choice to use a Taylor basis to construct the polynomial
approximation of our numerical solution. The main interest of this basis lies in the fact that for
two-dimensional extension it does not depend of the shape of the cell. Namely, we shall employ
the same basis for triangular and quadrangular cells. Moreover, with this basis, we will be able
to construct DG discretization over general polygonal grids. The Taylor basis is constructed by
means of the Taylor expansion at the centroid of the cells. Let us consider a function u : R→ R
be K times differentiable at point xi, the centroid of the cell Ci. Under this hypothesis, we can
write the Taylor expansion of u at xi up to Kth order for all x ∈ Ci.

u(x) = u(xi) + u′(xi)(x− xi) +
u′′(xi)

2
(x− xi)2 + · · ·+ u(K)(xi)

K!
(x− xi)K + o((x− xi)K),

=

K∑

k=0

u(k)(xi)

k!
(x− xi)k + o((x− xi)K), (1.40)

where u(K) is Kth derivative of the function u. If we set the polynomial function uih to be
∑K

k=0
u(k)(xi)

k! (x− xi)k, this approximation would be Kth order accurate. We can immediately
identify the basis functions and the successive moments of the polynomial approximation func-
tion uih associated to this definition

uik = u(k)(xi) (∆xi)
k and σik =

1

k!

(
x− xi
∆xi

)k
, for k = 0, . . . ,K, ∀x ∈ Ci.

Here, the coefficient ∆xi is utilized to normalize the basis functions. In this approximation, the
first moment associated to the first basis function 1 is equal to u(xi). We introduce 〈u〉i, the
mean value of the function u over the cell Ci

〈u〉i =
1

∆xi

∫

Ci

u(x) dx.

The integration of (1.40) leads to

〈u〉i =
K∑

k=0

u(k)(xi)

k!

〈
(x− xi)k

〉
i
+
〈
o((x− xi)K)

〉
i
,

=

K∑

k=0

u(k)(xi) (∆xi)
k 1

k!

〈(
x− xi
∆xi

)k〉

i

+ o((x− xi)K). (1.41)

Performing the difference between (1.40) and (1.41), one gets

u(x)− 〈u〉i =

K∑

k=0

u(k)(xi) (∆xi)
k 1

k!

[(
x− xi
∆xi

)k
−
〈(

x− xi
∆xi

)k〉

i

]
+ o((x− xi)K),

=
K∑

k=1

u(k)(xi) (∆xi)
k 1

k!

[(
x− xi
∆xi

)k
−
〈(

x− xi
∆xi

)k〉

i

]
+ o((x− xi)K), (1.42)

because 〈1〉i = 1 and so 1− 〈1〉i = 0.
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Thanks to relation (1.42), we can define a new Kth order polynomial approximation uih of the
function u

uih(x) =
K∑

k=0

uik σ
i
k,

= 〈u〉i +

K∑

k=1

u(k)(xi) (∆xi)
k 1

k!

[(
x− xi
∆xi

)k
−
〈(

x− xi
∆xi

)k〉

i

]
.

This leads to the space approximation PK(Ci) to be spanned by the basis {σck}k=0...K , where

σik =
1

k!

[(
x− xi
∆xi

)k
−
〈(

x− xi
∆xi

)k〉

i

]
. (1.43)

This is the chosen Taylor basis. The moment related to the first basis function 1 corresponds
to 〈u〉i, the mean value of the function u over cell Ci. If we do not go any further in the
approximation, we recover the classical Finite Volume discretization. In the case of higher
order schemes, the successive moments correspond to the successive derivatives of the function
u located at the centroid Ci, times a normalizing factor (∆xi)

k. From (1.43), it immediately
comes that, for k = 0, . . . ,K

Mi
0k = Mi

k0 =

∫

Ci

σi0 σ
i
k dx =

∫

Ci

σik dx = ∆xi δ0k,

where δij , the Kronecker symbol, is equal to 1 if i = j and is null if i 6= j. Consequently,
the equation corresponding to the function mean value ui0 = 〈u〉i is independent of the other
polynomial basis components equations.

In what follows, we describe the numerical schemes we have developed, using a DG discretiza-
tion, up to the third-order. We explicit now the polynomial basis functions for the third-order
scheme, i.e., for K = 2

σi0 = 1, σi1 =
x− xi
∆xi

, σi2 =
1

2

[(
x− xi
∆xi

)2

− 1

12

]
. (1.44)

These functions are depicted on Figure 1.8.

xixi− 1
2

0

1

-
1
2

σi
2

-
1
24

σi
1

σi
0

1
2
1
12

xi+ 1
2

Figure 1.8: Taylor basis of PK(Ci) over the cell Ci, in the third-order case.
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We point out that the only geometry contributions present in (1.43) and (1.44) are the centroid
position xi and the scaling factors ∆xi. This remark will have a huge importance regarding the
two-dimensional extension.

So far, we have made explicit the DG space discretization with the use of the Taylor basis, the
Runge-Kutta time discretization and the numerical flux formula to impose a global L2 stability
to the solution. Thus, we are now able to completely implement this RKDG scheme and observe
the accuracy gain between schemes ranging from first-order to third-order, refer to Figure 1.9.
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 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

solution
3rd order
2nd order
1st order

Figure 1.9: Linear advection (a = 1) with the discontinuous initial condition u0(x) = 1 if
x ∈ [0.4, 0.6] and null anywhere else, with periodic boundaries, at the end of ten periods with
a CFL=0.2 and grid characterized by 100 uniformly spaced cells. Comparison between the
analytical solution and the numerical solutions obtained with the first, second and third-order
DG schemes.

Observing Figure 1.9, we clearly see the huge gain of accuracy between the three different
solutions. Nevertheless, as for the second-order MUSCL scheme, spurious oscillations are lo-
cated in the vicinity of the discontinuity points, for the numerical solutions obtained with the
second-order DG scheme and the third-order DG scheme. To restore monotonicity, we have to
implement a high-order generalization of the slope limiter method presented in Section 1.1.4.

1.1.9 Slope limiters for high-order DG methods

In this paragraph we describe a slope limiter for the DG method that retains as high an order
as possible and does not automatically reduce to first-order in case of smooth extrema. This
slope limiter, which belongs to the class of moment limiter has been adapted from the works
described in [60, 109]. It has the main feature to preserve the smooth extrema for parabolic
approximations. Moreover, its extension to two-dimensional unstructured grids is feasible, as it
will be shown later. Bearing this in mind, we start by recalling the classical limitation procedure
originally introduced by Cockburn and Shu [27].
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The generalized slope limiter of Cockburn and Shu

Knowing the third order polynomial development of the solution in cell Ci at time t

uih(x, t) = ui0 + ui1

(
x− xi
∆xi

)
+ ui2

1

2

[(
x− xi
∆xi

)2

− 1

12

]
,

we deduce the extrapolated values at the interfaces of the cell Ci, i.e., u
+
i− 1

2

= uih(xi− 1
2
, t) and

u−
i+ 1

2

= uih(xi+ 1
2
, t), which write

u+
i− 1

2

= ui0 −
1

2
ui1 +

1

12
ui2,

u−
i+ 1

2

= ui0 +
1

2
ui1 +

1

12
ui2.

To ensure the monotonicity of the solution, we seek a limitation of the development coefficients
so that

{
u+
i− 1

2

∈ [min(ui−1
0 , ui0),max(ui−1

0 , ui0)],

u−
i+ 1

2

∈ [min(ui0, u
i+1
0 ),max(ui0, u

i+1
0 )].

(1.45)

To this end, we introduce ũi and ˜̃ui defined as




u+
i− 1

2

= ui0 − ˜̃ui,
u−
i+ 1

2

= ui0 + ũi.
(1.46)

And to satisfy (1.45), we limit using the minmod function as

˜̃ulim

i = minmod(˜̃ui, ui0 − ui−1
0 , ui+1

0 − ui0),

ũlim
i = minmod(ũi, u

i
0 − ui−1

0 , ui+1
0 − ui0).

By means of these quantities, we rebuild the extrapolated values at the interfaces setting

u+
i− 1

2

= ui0 − ˜̃u
lim

i ,

u−
i+ 1

2

= ui0 + ũlim
i .

According to (1.46), we have

˜̃ulim

i =
1

2
ui1 −

1

12
ui2,

ũlim
i =

1

2
ui1 +

1

12
ui2.

And finally, we are able to deduce the limited values of the polynomial components

ui, lim1 = ũlim
i + ˜̃ulim

i ,

ui, lim2 = 6 (ũlim
i − ˜̃u

lim

i ).

This limitation is easy to set up and efficient. As it is shown in [27], it ensures that the resulting
DG scheme is TVDM, that is the scheme is characterized by a total variation diminishing in the
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means. However, like any other TVD scheme, accuracy degenerates to first-order at extrema
regardless its smoothness. We can observe the impact of this limitation procedure on smooth
extrema in Figure 1.10, where the definition of the convected parabolic signal is given in the
equation (1.58) presented in the next section devoted to the numerical results. To overcome this
difficulty, Shu has proposed a modification of the minimod function which requires a knowledge
of the bounds of the second derivative of the initial data. This modification, which we will not
develop here, is described in details in [27].
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Figure 1.10: Linear advection (a = 1) of a parabolic signal, with periodic boundary conditions,
at the end of ten periods with a CFL=0.2 and on grid characterized by 100 uniformly spaced
cells. Comparison between the analytical solution and the numerical solution obtained with the
third-order DG scheme without and with the Cockburn and Shu limitation.

Hierarchical vertex-based slope limiter

We now describe a hierarchical vertex-based slope limiter which is an adaptation of the works
presented in [60, 109]. For our third-order DG discretization, this method has the main feature
to preserve the local smooth extrema of the numerical solution. Being based on a hierarchical
procedure limitation of the polynomial components of the solution, this method is theoretically
generalizable to an arbitrary order of accuracy, refer to [60]. In the following paragraph, we
start by introducing this limitation procedure in the frame of second-order DG discretization.
First, let us recall that the second-order polynomial development of the solution over the cell
Ci at time t reads

uih(x, t) = ui0 + ui1

(
x− xi
∆xi

)
.

To succeed in limiting this polynomial function to ensure its monotonicity we introduce the
limitation coefficient αi(1) ∈ [0, 1] such as the limited solution writes

ui, limh (x, t) = ui0 + αi(1) u
i
1

(
x− xi
∆xi

)
.
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Let us set umin
i± 1

2

= min(ui0, u
i±1
0 ) and umax

i± 1
2

= max(ui0, u
i±1
0 ), which correspond to the minimum

and maximum mean values of the solution, in the cells surrounding the interfaces xi− 1
2

and xi+ 1
2
.

With these definitions, we seek for limitation imposing the extrapolated value of the solution
at an interface to be bounded by the minimum and maximum mean values surrounding this
interface, i.e.,

{
umin
i− 1

2

≤ u+
i− 1

2

≤ umax
i− 1

2

,

umin
i+ 1

2

≤ u−
i+ 1

2

≤ umax
i+ 1

2

,
(1.47)

with the same definitions of u+
i− 1

2

= uih(xi− 1
2
, t) and u−

i+ 1
2

= uih(xi+ 1
2
, t) given previously.

To satisfy (1.47), we introduce the coefficient α
i,i− 1

2

(1) defined by

α
i,i− 1

2

(1) =





min


1,

umax
i− 1

2

− ui0
u+
i− 1

2

− ui0


 if u+

i− 1
2

− ui0 > 0,

1 if u+
i− 1

2

= ui0,

min


1,

umin
i− 1

2

− ui0
u+
i− 1

2

− ui0


 if u+

i− 1
2

− ui0 < 0,

(1.48)

and the coefficient α
i,i+ 1

2

(1) defined by

α
i,i+ 1

2

(1) =





min


1,

umax
i+ 1

2

− ui0
u−
i+ 1

2

− ui0


 if u−

i+ 1
2

− ui0 > 0,

1 if u−
i+ 1

2

= ui0,

min


1,

umin
i+ 1

2

− ui0
u−
i+ 1

2

− ui0


 if u−

i+ 1
2

− ui0 < 0.

(1.49)

Thus, using (1.48) and (1.49) the slope limiter coefficient writes

αi(1) = min(α
i,i− 1

2

(1) , α
i,i+ 1

2

(1) ). (1.50)

Under this condition, the limited function ui, limh respects constraint (1.47). We can also prove
that this limitation preserves the linear fields. Thereby, if the function u(x) = ax + b is linear
over the domain, the slope limiter satisfies αi(1) = 1 for i = 1, . . . , I.

Now, to limit third or even higher order schemes, the previous procedure is adapted to limit
the successive components of the polynomial solution. Let us explicit this method for the third-
order DG scheme. After recalling the polynomial development of the solution over the cell Ci
at time t

uih(x, t) = ui0 + ui1

(
x− xi
∆xi

)
+ ui2

1

2

[(
x− xi
∆xi

)2

− 1

12

]
, (1.51)

we introduce the limitation coefficients αi(1) ∈ [0, 1] and αi(2) ∈ [0, 1] such as the limited solution
writes

ui, limh (x, t) = ui0 + αi(1) u
i
1

(
x− xi
∆xi

)
+ αi(2) u

i
2

1

2

[(
x− xi
∆xi

)2

− 1

12

]
.
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The coefficients αi(2) and αi(1) are successively determined using the previous second-order DG
scheme limitation procedure applied on the following linear reconstructions

˜̃uh = ui1 + ui2

(
x− xi
∆xi

)
, (1.52)

ũh = ui0 + ui1

(
x− xi
∆xi

)
. (1.53)

We firstly note that ũh is the linear restriction of the polynomial development (1.51). Secondly,

deriving equation (1.51) with respect to the variable x we directly identify ˜̃uh to ∆xi
∂ uih
∂x . Hence,

˜̃uh corresponds to the partial derivative of the polynomial function uih(x, t) with respect to x.
We apply the previous limitation procedure setting

˜̃ulim

h = ui1 + αi(2) u
i
2

(
x− xi
∆xi

)
, (1.54)

ũlim
h = ui0 + αi(1) u

i
1

(
x− xi
∆xi

)
. (1.55)

With the use of (1.48), (1.49) and (1.50) we firstly compute αi(2) substituting in these equations

the mean value ui0 for the scaled derivative ui1. Afterward, we evaluate αi(1) by means of (1.48),

(1.49) and (1.50) on the linear reconstruction ũlim
h . Finally, we impose

αi(1) = max(αi(1), α
i
(2)). (1.56)

This last condition is fundamental because it ensures the preservation of smooth extrema.
Indeed, the function being approximated by quadratic functions on each cell, this function
derivative approximation is linear. Knowing that the limitation procedure defined by (1.48),
(1.49) and (1.50) preserves the linear fields, it is clear that αi(2) = 1 and according to (1.56)

αi(1) = 1. This slope limiter method preserves the quadratic fields. Indeed, if a function is

quadratic and its derivative linear the slope limiter coefficients given by (1.48) and(1.49) are
equal to one. This procedure can be generalized to q+1 arbitrary order DG scheme. As we did in
the case of the second order DG scheme, we apply the limitation characterized by (1.48), (1.49)

and (1.50) to the successive linear restrictions corresponding to (∆xi)
p ∂

puih
∂xp where p = 0, . . . , q,

starting with the higher order. The procedure consists in constructing a nondecreasing sequence
of correction factors αi(p). And finally, we impose for p = 1, . . . , q

αi(p) = max
p≤l≤q

αi(l). (1.57)

As soon as αi(l) = 1 is encountered, no further limiting is required. In principle, this hierarchical

limitation should preserve qth order polynomial fields.
To assess the efficiency of the limitation procedure, we apply this method to the third-order DG
scheme in the case of the linear advection of a parabolic signal, as we did with the Cockburn
and Shu limitation. We note that the solution is perfectly monotonic and, this time, preserves
the smooth extremum better than the Cockburn and Shu limitation did, refer to Figure 1.11.
Finally, we have obtained a discontinuous Galerkin discretization of one-dimensional scalar
conservation laws, up to the third-order provided with a hierarchical vertex-based slope limiter
that preserves smooth extrema. Now, we are able to perform a numerical analysis of these DG
schemes beginning with the second-order one to compare it with the MUSCL scheme presented
previously. Then, we compute the rates of convergence for the third-order scheme to confirm
numerically its accuracy.
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Figure 1.11: Linear advection (a = 1) of a parabolic signal, with periodic boundary conditions,
at the end of ten periods with a CFL=0.2 using a grid characterized by 100 uniformly spaced
cells. Comparison between the analytical solution and the numerical solutions obtained with the
third-order DG scheme without limitation and with the hierarchical vertex-based slope limiter.

1.1.10 Numerical results

Firstly, we compare the second-order DG scheme with the second-order MUSCL scheme to put
in evidence the accuracy difference between these two methods. This difference is depicted in
Figure 1.12. We observe that even if we are in the presence of two second-order schemes, the
results are noticeably different the DG scheme being closer to the analytical solution.

To measure the accuracy difference, we compute the numerical errors in the linear case of the
advection of a smooth signal with the two second-order schemes presented in the exactly same
conditions, meaning at the same final time, with the same CFL condition and without slope
limiter.

L1 L2 L∞
∆x EL1 qL1 EL2 qL2 EL∞ qL∞

1
100 1.44E-3 2.00 1.60E-3 2.01 2.29E-3 2.01
1

200 3.58E-4 2.00 3.98E-4 2.00 5.69E-4 2.00
1

400 8.95E-5 2.00 9.94E-5 2.00 1.42E-4 2.00
1

800 2.24E-5 2.00 2.48E-5 2.00 3.54E-5 2.00
1

1600 5.59E-6 - 6.21E-6 - 8.84E-6 -

Table 1.7: Rate of convergence for the second-order MUSCL scheme computed in the case of
linear advection with the smooth initial condition u0(x) = sin(2πx) on the [0, 1] domain, at
time t = 1 with a CFL= 0.2 without slope limiter.

Firstly, Table 1.8 shows that the second-order DG scheme has the expected accuracy. Secondly,
comparing the results gathered in Table 1.7 and in Table 1.8, we can conclude that the second-
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Figure 1.12: Linear advection (a = 1) of the discontinuous initial condition u0(x) = 1 if x ∈
[0.4, 0.6] and null anywhere else, with periodic boundary conditions, at the end of ten periods
with a CFL=0.2 and using a grid characterized by 100 uniformly spaced cells. Comparison
between the analytical solution and the numerical solutions obtained with the second-order
MUSCL scheme with minmod slope limiter and the second-order DG scheme with the vertex-
based slope limiter.

L1 L2 L∞
∆x EL1 qL1 EL2 qL2 EL∞ qL∞

1
100 1.81E-4 2.01 2.07E-4 2.00 3.98E-4 1.96
1

200 4.47E-5 2.01 5.16E-5 2.00 1.02E-4 1.98
1

400 1.11E-5 2.00 1.29E-5 2.00 2.59E-5 1.99
1

800 2.77E-6 2.00 3.22E-6 2.00 6.52E-6 2.00
1

1600 6.91E-7 - 8.06E-7 - 1.63E-6 -

Table 1.8: Rate of convergence for the second-order DG scheme computed in the case of linear
advection with the smooth initial condition u0(x) = sin(2πx) on the [0, 1] domain, at time t = 1
with a CFL= 0.2 without slope limiter.

order DG scheme is more accurate than the MUSCL scheme, five to eight times more in this
case.

Now, we perform the convergence analysis for the third-order DG scheme.

Observing Table 1.9, we note the huge gap between the numerical errors obtained with the
second-order DG scheme and the third-order DG scheme. We also note that the third-order
scheme reaches exactly the expected numerical order. Table 1.10 presents the same results with
this difference that the asymptotic regime where the numerical orders for the three norms are
equal to 3.00 is reached with more refined meshes (∆x1 = 1

6400 and ∆x2 = 1
12800).

We end up this numerical results section and this 1D scalar conservation laws part measuring
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L1 L2 L∞
∆x EL1 qL1 EL2 qL2 EL∞ qL∞

1
100 6.73E-7 3.00 7.50E-7 3.00 1.16E-6 3.00
1

200 8.41E-8 3.00 9.37E-8 3.00 1.45E-7 3.00
1

400 1.05E-8 3.00 1.17E-8 3.00 1.81E-8 3.00
1

800 1.31E-9 3.00 1.46E-9 3.00 2.26E-9 3.00
1

1600 1.64E-10 - 1.83E-10 - 2.83E-10 -

Table 1.9: Rate of convergence for the third-order DG scheme without slope limiter computed
in the case of linear advection with the smooth initial condition u0(x) = sin(2πx) on the [0, 1]
domain, at time t = 1 with a CFL= 0.2.

L1 L2 L∞
∆x EL1 qL1 EL2 qL2 EL∞ qL∞

1
200 1.77E-7 2.91 3.17E-7 2.85 1.67E-6 2.89
1

400 2.35E-8 2.95 4.38E-8 2.90 2.25E-7 2.97
1

800 3.05E-9 2.97 5.84E-9 2.94 2.88E-8 2.93
1

1600 3.90E-10 2.98 7.59E-10 2.97 3.78E-9 2.95
1

3200 4.74E-11 - 9.72E-11 - 4.89E-10 -

Table 1.10: Rate of convergence for the third-order DG scheme without slope limiter computed
in the case of Burgers equation with the smooth initial condition u0(x) = sin(2πx) on the [0, 1]
domain, at time t = tc

2 with a CFL= 0.2.

the influence of the presented limitations over the numerical schemes. In order to confront
the Cockburn and Shu limitation and the hierarchical vertex-based limitation presented before,
we apply our third-order DG scheme on the linear advection with the following initial condi-
tion taken from [109], which corresponds to the succession of smooth and non-smooth signals
(Gaussian, rectangular, triangular and parabolic signals)

u0(x) =





(G(x, β, z − δ) +G(x, β, z + δ) + 4G(x, β, z))/6 if x ∈ [−0.8,−0.6],
1 if x ∈ [−0.4,−0.2],
1− |10(x− 0.1)| if x ∈ [0, 0.2],
(F (x, α, aa− δ) + F (x, α, aa+ δ) + 4F (x, α, aa))/6 if x ∈ [0.4, 0.6],
0 else.

(1.58)

The parameter values are given by aa = 0.5, z = −0.7, δ = 0.005, α = 10, β = log 2/(36δ2),
and the F and G functions are defined as

G(x, β, z) = exp(−β(x− z)2),

F (x, α, aa) =
√

max(1− α2(x− aa)2, 0).

We have run the third-order DG scheme with the two different limitation in the case of the
linear advection of the signal described below. The results are displayed in Figure 1.13. Both
solutions are monotonic but we clearly see the difference in the accuracy preservation between
these two slope limiter, the solution corresponding to the hierarchical vertex-based limitation
being more close to the analytical solution.
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Figure 1.13: Linear advection (a = 1) of the composite signal, with periodic boundary condi-
tions, at the end of ten periods with a CFL=0.2 and on [−1, 1] using a grid characterized by 200
uniformly spaced cells. Comparison between the analytical solution and the numerical solutions
obtained with the third-order DG scheme with the Cockburn and Shu limitation and with the
hierarchical vertex-based limitation.

To confirm the efficiency of the hierarchical vertex-based limitation procedure, we compute the
rates of convergence reusing the same test cases than previously, namely, a linear advection
case and the Burgers case. In both cases, the numerical orders computed are close to three as
expected, the asymptotic regime being reached with more refined meshes. Comparing Table 1.9
and Table 1.10 with Table 1.11 and Table 1.12, we can also note that a small loss of accuracy.
This comes from the initial condition which is a sinus function and not a quadratic function.
Consequently, the limitation spoils slightly the solution.

L1 L2 L∞
∆x EL1 qL1 EL2 qL2 EL∞ qL∞

1
100 6.31E-6 3.33 1.68E-5 2.97 7.58E-5 2.51
1

200 6.26E-7 3.36 2.14E-6 3.00 1.32E-5 2.53
1

400 6.07E-8 3.35 2.69E-7 3.03 2.28E-6 2.55
1

800 5.95E-9 3.37 3.30E-8 3.06 3.89E-7 2.61
1

1600 5.75E-10 - 3.96E-9 - 6.39E-8 -

Table 1.11: Rate of convergence for the third-order DG scheme with hierarchical vertex-based
slope limiter computed in the case of linear advection with the smooth initial condition u0(x) =
sin(2πx) on the [0, 1] domain, at time t = 1 with a CFL= 0.2.

Finally, to assess the accuracy of the high-order discretization, we have plotted in Figure 1.14
the numerical solutions obtained using respectively the first, second and third order DG dis-
cretization for the linear advection test case characterized by the initial condition (1.58).
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L1 L2 L∞
∆x EL1 qL1 EL2 qL2 EL∞ qL∞

1
200 2.72E-7 3.21 9.95E-7 3.40 1.07E-5 3.00
1

400 2.94E-8 3.10 9.43E-8 3.32 1.34E-6 3.00
1

800 3.42E-9 3.05 9.41E-9 3.23 1.68E-7 3.00
1

1600 4.13E-10 3.02 1.00E-9 3.15 2.10E-8 3.00
1

3200 5.09E-11 - 1.13E-10 - 2.63E-9 -

Table 1.12: Rate of convergence for the third-order DG scheme with hierarchical vertex-based
slope limiter computed in the case of Burgers equation with the smooth initial condition u0(x) =
sin(2πx) on the [0, 1] domain, at time t = tc

2 with a CFL= 0.2.

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

solution
3rd order
2nd order
1st order

Figure 1.14: Linear advection (a = 1) of the composite signal (1.58), with periodic boundary
conditions, at the end of ten periods with a CFL=0.2 and on [−1, 1] with a grid characterized
by 200 uniformly spaced cells. Comparison between the analytical solution and the numerical
solutions obtained with the first, second and third-order DG schemes with the hierarchical
vertex-based slope limiter.

31



1.2 Two-dimensional scalar conservation laws

This section aims at describing the two-dimensional extension on unstructured grids of the DG
discretization presented in the last section. In [25] Cockburn and Shu introduced the two-
dimensional extension of their RKDG methods to hyperbolic scalar conservation laws. The
main difficulty lies in the fact that, on the contrary to the one-dimensional case, it is impossible
to devise high-order accurate schemes with the TVD (total variation diminishing) property.
Therefore, they content themselves in deriving maximum principles for the RKDG methods
which is even a very attractive property for this kind of problems. Moreover, they show that
their method does not destroy the high-order accuracy of the scheme and preserves local maxi-
mum principle.

In what follows, we shall describe DG discretizations for solving two-dimensional hyperbolic
conservation laws on general unstructured grids. The main feature of our DG discretization
lies in the use of a polynomial space approximation spanned by a Taylor basis. This type of
basis allows to cope with general unstructured grids made of polygonal cells. However, this
polynomial basis is in general non-orthogonal and thus leads to a non-diagonal mass matrix but
still invertible. We enforce the monotonicity by extending the hierarchical vertex-based slope
limiter that has been introduced in the one-dimensional case. Finally, we assess the robustness
and the accuracy of our DG discretization by means of various demanding test cases taken from
the literature.

We start by introducing some notation. Let ω be an open subset of R2 and u = u(x, t) be
the solution of the following two-dimensional scalar conservation law for x = (x, y)t ∈ R2 and
t ∈ [0, T ]

∂ u

∂t
+∇ � f(u) = 0, (1.59a)

u(x, 0) = u0(x), (1.59b)

where u0 is the initial data and f(u) = (f1(u), f2(u))t with f1(u) and f2(u) are the two direc-
tional fluxes. For the subsequent discretization, let {ωc}c denotes a partition of the domain ω
into non-overlapping polygonal cells. Let also {tn}n be a partition of [0, T ] and ∆tn = tn+1− tn
the time step.

1.2.1 Discontinuous Galerkin discretization

The DG scheme applied to the two-dimensional scalar conservation laws equation is obtained
following the same procedure than the one used in the one-dimensional case. Thus, we perform
a local variational formulation of the equation (1.59a). As for the one-dimensional case, we want
to develop our function u onto Pα(ωc), the set of polynomials of degree up to α. This space
approximation leads to a (α+ 1)th order accurate scheme in space. Let uch be the restriction of
uh, the polynomial approximation of the function u, to cell ωc at time t

uch(x, t) =

K∑

k=0

uck(t)σ
c
k(x), x ∈ ωc, (1.60)

where the uck are the K + 1 successive components of uch over the polynomial basis, and σck
the polynomial basis functions. Recalling that the dimension of the polynomial space Pα(ωc)

is (α+1)(α+2)
2 , we have to determine the set of the (α+1)(α+2)

2 = K + 1 polynomial function
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components. These coefficients uck(t) are determined by writing the local variational formulation
of (1.59a) with the test function σcq chosen into the basis, for q = 0, . . . ,K

∫

ωc

∂ u

∂t
σcq dv = −

∫

ωc

σcq ∇ � f dv,

=

∫

ωc

f(u) �∇σcq dv −
∫

∂ωc

σcq f(u) � nds.

Here, f(u) is the numerical flux which is a function defined at the cell interfaces and in general
depends on the values of the numerical solution from both sides of the interface. Interchanging
the function u by its polynomial approximation uch on the cell ωc leads to K + 1 semi-discrete
equations for the same number of unknowns

K∑

k=0

(∫

ωc

σck σ
c
q dv

)
duck
dt

=

∫

ωc

f(uch) �∇σcq dv −
∫

∂ωc

σcq f(u) � nds. (1.61)

In equations (1.61), we identify (
∫
ωc
σck σ

c
q dv) as the coefficients of the local mass matrix Mc. For

the same reasons than in the one-dimensional discretization part, the mass matrix is symmetric
positive definite and thus invertible. We notice that this mass matrix is locally defined over
each cell and is time independent.

To get a compact form of the K + 1 semi-discrete equations (1.61), we firstly rewrite these
equations separating the two directions x and y of the flux function f(u) = (f1(u), f2(u))t

K∑

k=0

M c
qk

duck
dt

=

∫

ωc

f1(uch)
∂ σcq
∂x

dv +

∫

ωc

f2(uch)
∂ σcq
∂y

dv −
∫

∂ωc

σcq f(u) � nds. (1.62)

The next step towards a compact form is the use of the projection operator Π over Pα defined
in Section 1.1.6 by the equation (1.23), (1.24) and (1.25), i.e.,

Π : L1(ωc) −→ Pα(ωc)

φ −→ Π(φ) = φch.

The components of the polynomial approximation, φch, are the solution of the linear system

Mc Φc = Φ̃c, (1.63)

where Φc = (φc0, . . . , φ
c
K)t and Φ̃c = (〈φ, σc0〉 , . . . , 〈φ, σcK〉)t. The mass matrix being invertible,

this system always possesses a unique solution. As we did in the implementation of the one-
dimensional DG scheme, we define the polynomial flux functions approximations f c1,h and f c2,h
by projecting onto the polynomial approximation space the functions f1(uch) and f2(uch). We
set the vectors F c

1 ∈ RK+1 and F c
2 ∈ RK+1 solutions of the systems

Mc F c
j = F̃ c

j ,

where j = 1 or j = 2, and the vectors F c
j and F̃ i

j are defined as

F c
j = (f cj,0, . . . , f

c
j,K)t,

F̃ c = (〈f(uch), σc0〉 , . . . , 〈f(uch), σcK〉)t.
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Consequently, with these definitions, the internal terms rewrite

∫

ωc

f1(uch)
∂ σcq
∂x

dv +

∫

ωc

f2(uch)
∂ σcq
∂y

dv =

K∑

k=0

[(∫

ωc

σck
∂ σcq
∂x

dv

)
f c1,k +

(∫

ωc

σck
∂ σcq
∂y

dv

)
f c2,k

]
.

Introducing the matrices Dc1 and Dc2 defined as

Dc1,qk =

∫

ωc

σck
∂ σiq
∂x

dv and Dc2,qk =

∫

ωc

σck
∂ σiq
∂y

dv,

the internal term can be identified as the sum of the qth row of the matrix-vector product Dc1 F
c
1

and Dc2 F
c
2 . And finally, the K+1 semi-discrete equations (1.61) can be written in the following

compact form

Mc d

dt
U c = Dc1 F

c
1 + Dc2 F

c
2 −

∫

∂ωc

σc(x)
(
f(u) � n

)
ds, (1.64)

where σc(x) = (σc0(x), . . . , σcK(x))t.

To complete our scheme, the numerical fluxes along the interfaces f(u) have to be defined. To
do so, we use the same procedure that in the one-dimensional frame imposing the global L2

stability to the solution.

1.2.2 Numerical flux and L2 stability

Following the approach described in [24], we investigate if it is possible to define the numerical
flux in such a way as to ensure the global L2 stability of our semi-discrete DG method. First,
we perform a local variational formulation using uch as the test function

∫

ωc

uch
∂ uch
∂t

dv =

∫

ωc

f(uch) �∇uch dv −
∫

∂ωc

uch f(u) � nds.

We can immediately infer

1

2

d

dt

∫

ωc

(uch)2 dv =

∫

ωc

f(uch) �∇uch dv −
∫

∂ωc

uch f(u) � nds. (1.65)

Here, we make use of the function F (u) which denotes a primitive of the flux function defined as

F (u) =
∫ u

0 f(s) ds = (
∫ u

0 f1(s) ds,
∫ u

0 f2(s) ds)t. And noticing∇�F (u) = dF (u)
du �∇u = f(u)�∇u,

equation (1.65) writes

1

2

d

dt

∫

ωc

(uch)2 dv =

∫

∂ωc

(
F (uch)− uch f(u)

)
� nds. (1.66)

Introducing Rc =

∫

∂ωc

(
uch f(u)− F (uch)

)
� nds and summing over all the cells, one gets

1

2

d

dt
‖uh‖2L2

=
1

2

d

dt

∑

c

∫

ωc

(uch)2 dv = −
∑

c

Rc. (1.67)
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At this point, we claim that the global stability in L2 norm for our semi-discrete scheme amounts
to impose

∑

c

Rc =
∑

c

∑

fe∈F(c)

∫

fe

(
uch f(u)|fe − F (uch)

)
� nfeds ≥ 0, (1.68)

where F(c) is the set of faces of the cell ωc, f(u)|fe the numerical flux defined on face fe and
nfe the unit outward normal of face fe.

Next, we determine the form of the numerical flux so that (1.68) is enforced. By interchanging
the sum from cells to faces as in Figure 1.15, (1.68) rewrites

∑

c

Rc =
∑

fe

∫

fe

[
f(u)|fe (uL − uR)− (F (uL)− F (uR))

]
� nfeds ≥ 0. (1.69)

where uL and uR denote the extrapolated values at the interface fe of the variable uh on both
sides of the interface. Namely, if xfe denotes a point located on fe, then uL = lim

λ→0+
uh(xfe −

λnfe) and uR = lim
λ→0+

uh(xfe + λnfe).
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Figure 1.15: Interchange of the sum from cells to faces.

Recalling the definition of the primitive function F (u) =
∫ u

0 f(s) ds, equation (1.69) yields

∑

c

Rc =
∑

fe

∫

fe

(uL − uR)

(
f(u)|fe −

1

uR − uL

∫ uR

uL

f(s) ds

)
� nfeds. (1.70)

Finally, the global stability of the semi-discrete scheme in L2 norm is ensured provided that the
numerical flux is written

f(u)|fe =
1

uR − uL

∫ uR

uL

f(s) ds− (uL − uR)Mfenfe , (1.71)

where Mfe is a positive definite matrix which has the physical dimension of a velocity and
which characterizes the numerical viscosity of the scheme. Finally, the sufficient condition
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used to determined the numerical fluxes (1.71) gives the global L2 stability of the semi-discrete
scheme

1

2

d

dt
‖uh‖2L2

= −
∑

fe

(uR − uL)2(Mfenfe � nfe) ≤ 0. (1.72)

The numerical dissipation of the semi-discrete discontinuous Galerkin scheme is directly related
to the squares of the polynomials approximations jumps located at the interfaces.

In the linear case, f(u) = Au, where A is the constant advection velocity. Recalling (1.71) in
this case, one gets

f(u)|fe =
uL + uR

2
A− (uR − uL)Mfenfe . (1.73)

Again, we are able to identify two different parts in this flux, the centered one uL+uR
2 A, and

the viscous one (uR − uL)Mfenfe which brings dissipation and consequently stability. We also

note that by setting Mfe = M
(1)
fe

= 1
2 |A � nfe | Id, we recover the classical upwind scheme.

The choice of the matrix Mfe enables us to build a large family of schemes respecting the
global L2 stability of the solution. And according to this matrix, the scheme will be more or

less accurate. For example, setting Mfe = M
(2)
fe

= 1
2 |A �nfe |

A⊗A
‖A‖2 , we define a less dissipative

scheme since its dissipative contribution is less important than the one resulting from the upwind
scheme since

M
(2)
fe
nfe � nfe

M
(1)
fe
nfe � nfe

= (cos θ)2 ≤ 1,

where θ is the angle between the advection velocity A and the normal nfe . This scheme also
preserves the non-dissipative property in orthogonal directions to the advection velocity of the
upwind scheme.

To compare the two first-order schemes constructed respectively with the matrices M
(1)
fe

and

M
(2)
fe

, we shall compute the numerical solution of the linear advection equation characterized

by A = (1, 1)t and the initial condition u0(x, y) = sin(2π(x+ y)) during one period We clearly
observe in Figure 1.16, Figure 1.17 and Figure 1.18 that the scheme resulting from the second
dissipation matrix is less diffusive and thus more accurate than the classical upwind scheme.

Let us analyze the results obtained in the frame of this numerical fluxes study. As expected, the

scheme characterized by M
(2)
fe

is less diffusive and consequently more accurate than the classical
upwind scheme. The outstanding difference in the scatter plots Figure 1.17 and Figure 1.19
depicts very well this phenomenon. We could also notice that the accuracy difference between
the two schemes is less relevant on the polygonal grid than on the Cartesian grid. The explana-
tion is simple, in the case where the Cartesian grid would be aligned with the linear advection
direction the results obtained with the two different schemes would be identical. Here, the angle
between the advection velocity A and the grid direction is optimal to observe the difference
of the diffusive contribution of the two numerical fluxes, refer to Figure 1.16. In the case of
a totally unstructured polygonal grid, refer to Figure 1.18, the diffusive error being uniformly
distributed through the mesh the results obtained with the two different schemes are closer than
in the previous case. Obviously, other possible choices for the viscous matrix would leads to
different results.
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(b) First-order scheme using M
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(c) Exact solution.

Figure 1.16: Linear advection (A = (1, 1)t) of the smooth signal u0(x) = sin(2π(x+ y)) where
x = (x, y)t ∈ [0, 1]2, with periodic boundary conditions, at the end of a period on a Cartesian
grid made of 40 × 40 cells. Comparison between the analytical solution and the numerical

solutions obtained with the first-order discretization and the numerical fluxes based on M
(1)
fe

and M
(2)
fe

.
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Figure 1.17: Scatter plots of the solutions (ordinate) of the linear advection of the smooth signal
u0(x) = sin(2π(x+ y)) versus the cumulated coordinate x+ y (abscissa). Comparison between
the analytical solution and the numerical solutions obtained with the first-order discretization

and the numerical fluxes based on M
(1)
fe

and M
(2)
fe

.
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(b) First-order scheme using M
(2)
fe
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(c) Exact solution.

Figure 1.18: Linear advection (A = (1, 1)t) of the smooth signal u0(x) = sin(2π(x + y))
where x = (x, y)t ∈ [0, 1]2, with periodic boundary conditions, at the end of a period on an
unstructured grid made of 1600 polygonal cells. Comparison between the analytical solution
and the numerical solutions obtained with the first-order discretization and the numerical fluxes
based on M

(1)
fe

and M
(2)
fe

.
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Figure 1.19: Scatter plots of the solutions (ordinate) of the linear advection of the smooth signal
u0(x) = sin(2π(x+ y)) versus the cumulated coordinate x+ y (abscissa). Comparison between
the analytical solution and the numerical solutions obtained with the first-order discretization

and the numerical fluxes based on M
(1)
fe

and M
(2)
fe

.
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In the general non-linear case, as in the one-dimensional study, a quadrature formula can be
used to evaluate the integral

∫ uR
uL
f(s) ds. Taking the same trapezoidal rule, setting the viscous

matrix to Mfe = 1
2 max (|A(uL) � nfe |, |A(uR) � nfe |) we recover the local Lax-Friedrichs scheme

f(u)|fe � nfe =
1

2
(f(uL) + f(uR)) � nfe −max(|A(uL) � nfe |, |A(uR) � nfe |)(

uR − uL
2

). (1.74)

where A(u) = df
du (u) = (f ′1(u), f ′2(u))t.

Due to the simplicity of its implementation, we made the choice of the local Lax-Friedrichs flux
for the numerical applications. Again, we notice that if f(u) = Au, where A is a constant
velocity, the local Lax-Friedrichs flux reduces to the classical upwind flux.

1.2.3 Two-dimensional Taylor basis

For each cells ωc we want to develop our unknowns onto Pα(ωc), the set of polynomials of degree
less than α. This space approximation leads to a (α+ 1)th space order accurate scheme. Let uch
be the restriction of uh, the polynomial approximation of the function u, over the cell ωc

uch(x, t) =
K∑

k=0

uck(t)σ
c
k(x),

where the uck are the K + 1 successive components of uh over the polynomial basis, and σck the
polynomial basis functions. Recalling that the dimension of the polynomial space Pα(ωc) is
(α+1)(α+2)

2 , we have to determine the set of the (α+1)(α+2)
2 = K + 1 basis functions. We make

the choice of the two-dimensional extension of the Taylor basis defined in Section 1.1.8, which
comes from a Taylor expansion on the cell, located at the centroid xc of the cell ωc defined as
following

xc =
1

|ωc|

∫

ωc

xdv, (1.75)

where |ωc| is the volume of the cell ωc.

We set the first basis element to 1, i.e., σc0 = 1. Going further in space discretization, the q+ 1
basis functions of degree q, with 0 < q ≤ α, write

σcq(q+1)
2

+j
=

1

j!(q − j)!

(
x− xc
∆xc

)q−j (y − yc
∆yc

)j
, for j = 0 . . . q. (1.76)

Here, we have introduced the scaling factors ∆xc and ∆yc in the definition of the polynomial
basis in order to improve the condition number of the associated mass matrix. These scaling
factors are defined by ∆xc = xmax−xmin

2 and ∆yc = ymax−ymin
2 where

xmax /min = max / min
p∈P(c)

{xp},

ymax /min = max / min
p∈P(c)

{yp},

knowing that P(c) is the set of vertices of the cell ωc. Let us point out that the subscript which

corresponds to the numbering of the basis function in (1.76) is equal to q(q+1)
2 +j for j = 0, . . . , q

since the number of polynomial basis functions of degree strictly less than q is equal to q(q+1)
2 .
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Let us introduce 〈u〉c, the mean value of u over the cell ωc

〈u〉c =
1

|ωc|

∫

ωc

u(x) dv, (1.77)

and the associated scalar product

〈u, v〉c =

∫

ωc

u(X) v(X) dv. (1.78)

In our polynomial discretization, we want the mean value to be preserved. Consequently, we
identify the first component of uch to 〈u〉c, i.e., uc0 = 〈u〉c. This definition leads to a particular
constraint on the successive basis functions writing

uc0 =
1

|ωc|

∫

ωc

uch dv,

=
1

|ωc|
K∑

k=0

uck

∫

ωc

σck dv,

= uc0 +

K∑

k=1

uck
1

|ωc|

∫

ωc

σck dv,

= uc0 +

K∑

k=1

uck 〈σck〉c . (1.79)

To satisfy equation (1.79), we impose 〈σck〉c = 0, ∀k 6= 0. Consequently, we set a new definition
of the q + 1 basis functions of degree q, with 0 < q ≤ α

σcq(q+1)
2

+j
=

1

j!(q − j)!

[(
x− xc
∆xc

)q−j (y − yc
∆yc

)j
−
〈(

x− xc
∆xc

)q−j (y − yc
∆yc

)j〉

c

]
. (1.80)

For the third-order scheme, α = 2 and K = (α+1)(α+2)
2 − 1 = 5

σc0 = 1, σc1 =
x− xc
∆xc

, σc2 =
y − yc
∆yc

,

σc3 = 1
2

[(
x− xc
∆xc

)2

−
〈(

x− xc
∆xc

)2
〉

c

]
,

σc4 =
(x− xc)(y − yc)

∆xc ∆yc
−
〈

(x− xc)(y − yc)
∆xc ∆yc

〉

c

,

σc5 = 1
2

[(
y − yc
∆yc

)2

−
〈(

y − yc
∆yc

)2
〉

c

]
,

(1.81)

since by definition of the centroid, 〈x− xc〉c = 0 and 〈y − yc〉c = 0.

We point out that the only geometry contributions contained in (1.80) and (1.81) are the centroid
position xc and the scaling factors ∆xc and ∆yc. Thus, regardless the shape of the cell, we
could use the same class of basis functions. We also note that the first moment u0 associated to
the first basis element 1 is the mean value of the function u over the cell ωc. If the discretization
ends here, the scheme would correspond to the classical Finite Volume method. Going further,
the successive moments can be identified as the successive derivatives of the function expressed
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at the centroid of the cell. Namely, for the third-order case, we have the following relationships
between the components and the derivatives

uc1 → ∆xc
∂

∂x
uch(xc), uc2 → ∆yc

∂

∂y
uch(xc),

uc3 → (∆xc)
2 ∂

2

∂x2
uch(xc), uc4 → ∆xc∆yc

∂2

∂x∂y
uch(xc), uc5 → (∆yc)

2 ∂
2

∂y2
uch(xc).

Mimicking the one-dimensional case, from (1.80), it immediately comes that, for k = 0, . . . ,K

〈σc0, σck〉c =

∫

ωc

σc0 σ
c
k dv =

∫

ωc

σck dv = |ωc| δ0k,

where δij the Kronecker symbol is equal to 1 if i = j and 0 if i 6= j. The equation corresponding
to the mean value uc0 = 〈u〉c is independent of the other equations of the polynomial basis
components.

We have described the (α + 1)th order accurate semi-discrete DG scheme with the use of the
Taylor basis and the numerical flux formula enforcing a global L2 stability. To reach a (K+1)th

global accuracy order we shall use the explicit (K + 1)th order Runge-Kutta time discretization
presented in Section 1.1.6. We are now able to completely implement this RKDG scheme and
assess the accuracy gain between first-order, second-order and third-order, refer to Figure 1.20.

We clearly see on Figure 1.20 and Figure 1.21 a huge gain of accuracy between the three different
solutions. Nevertheless, as for the one-dimensional DG schemes, we observe the occurrence
of spurious oscillations in the neighborhood of the discontinuities. To cure this problem, we
present in the next section a hierarchical vertex-based limitation, which corresponds to the
two-dimensional extension of the limitation procedure presented in Section 1.1.9.

1.2.4 Two-dimensional hierarchical vertex-based slope limiter

In this section, we aim at describing the two-dimensional hierarchical vertex-based slope limiter
that we use to enforce the monotonicity of our high-order DG scheme. As in the one-dimensional
case, we first introduce this slope limiter applied to the second-order DG scheme. In this case
the polynomial development of the function u on the cell ωc at time t reads

uch(x, t) = uc0 + uc1
x− xc
∆xc

+ uc2
y − yc
∆yc

.

If αc(1) ∈ [0, 1] denotes the slope limiter coefficient then the limited solution writes

uch(x, t) = uc0 + αc(1)

(
uc1
x− xc
∆xc

+ uc2
y − yc
∆yc

)
.

Barth and Jespersen [5] define the coefficient αc(1) so that the extrapolated values of uch at the

cell vertex p ∈ P(c), are bounded by umax
c and umin

c which are the maximum and minimum of
the cell mean values taken over the neighbors of ωc sharing a common edge with itself

umin
c ≤ uch(xp) ≤ umax

c , ∀p ∈ P(c),

where xp is the position vector of the vertex p.
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(a) First-order scheme.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Second-order scheme.
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(c) Third-order scheme.
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(d) Exact solution.

Figure 1.20: Linear advection (A = (1, 1)t) of the discontinuous signal u0(x) = 1 if (x + y) ∈
[0, 0.5] ∪ [1.5, 2] and null anywhere else, where x = (x, y)t ∈ [0, 1]2, with periodic boundary
conditions, at the end of five periods on an unstructured grid made of 1600 polygonal cells.

Knowing that it is a linear function with respect to the space variable, the solution uh reaches
its local extrema values at the vertices p of ωc. Hence, a vertex-based limiting strategy is
appropriate. This amounts to define the elementwise bounds umax

c and umin
c locally at the cell

vertex p. To this end, let us define umax
p and umin

p being the maximum and minimum mean
values in C(p) the set of the cells surrounding the vertex p

umax
p = max

c∈C(p)
uc0,

umin
p = min

c∈C(p)
uc0.

Bearing this modification in mind, we define αc(1) in such a way that

umin
p ≤ uch(xp) ≤ umax

p , ∀p ∈ P(c),
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Figure 1.21: Scatter plots of the solutions (ordinate) of the linear advection of the discontinuous
signal u0(x) = 1 if (x + y) ∈ [0, 0.5] ∪ [1.5, 2] and null anywhere else, versus the cumulated
coordinate x + y (abscissa). Comparison between the analytical solution and those obtained
with the first, the second and the third-order DG schemes on an unstructured grid made of
1600 polygonal cells at the end of five periods.

this leads to the formula which is the two-dimensional counterpart of (1.48), (1.49) and (1.50)
which reads

αc(1) = min
p∈P(c)





min

(
1,

umax
p − uc0

uch(xp)− uc0

)
if uch(xp)− uc0 > 0,

1 if uch(xp) = uc0,

min

(
1,

umin
p − uc0

uch(xp)− uc0

)
if uch(xp)− uc0 < 0.

(1.82)

Let us point out that the only difference compared to the classical Barth-Jespersen limiter is
the use of umax

p and umin
p in place of umax

c and umin
c .

Having defined the slope limiter for the second-order DG method, we pursue by presenting its
extension to third-order DG method. Following [109], we multiply all derivatives of order q by
a common coefficient αc(q). For instance, the limited counterpart of the third-order polynomial
expansion of the solution reads

uch(x, t) = uc0 + αc(1) (uc1 σ
c
1 + uc2 σ

c
2) + αc(2) (uc3 σ

c
3 + uc4 σ

c
4 + uc5 σ

c
5) ,

where αc(1) and αc(2) are respectively the limiting coefficients for the first and second-order
derivatives. Knowing that uch is a quadratic function with respect to the space variables, its
gradient is a linear function with respect to the space variables. Moreover, the components of
the gradient of the resulting linear function are nothing but the second-order derivatives of the

43



initial function

∆xc
∂ uch
∂x

= uc1 + αc(x)

(
uc3
x− xc
∆xc

+ uc4
y − yc
∆yc

)
, (1.83)

∆yc
∂ uch
∂y

= uc2 + αc(y)

(
uc4
x− xc
∆xc

+ uc5
y − yc
∆yc

)
. (1.84)

Here, the limiting coefficients αc(x) and αc(y) are determined according to formula (1.82). We
notice that we obtain two limiting coefficients for the second-order derivative. Taking the
minimum value between these two coefficients leads to define the limiting coefficient as

αc(2) = min(αc(x), α
c
(y))

Regarding the limiting coefficient of the first-order derivatives, αc(1), we compute it by enforcing
the monotonicity of the linear function

u(1) = uc0 + αc(1)

(
uc1
x− xc
∆xc

+ uc2
y − yc
∆yc

)
. (1.85)

To this end, we apply once more formula (1.82). Finally, to ensure the preservation of smooth
extrema, we modify this coefficient as follows

αc(1) = max(αc(1), α
c
(2))

The key point to go to high-order limitation is to implement the limiter as a hierarchical
algorithm. In general, we begin with the highest order derivatives and calculate a nondecreasing
sequence of correction factors

αc(m) = max
m≤q

αc(q), ∀m ≥ 1. (1.86)

As soon as αc(q) = 1 is encountered, no further limiting is required since definition (1.86) implies
that αc(m) = 1 for all m ≤ q.

Comment 2 Let us remark that the definition of the correction factor, αc(2), for the limited

quadratic reconstruction is probably too much restrictive. By defining αc(2) = min(αc(x), α
c
(y)),

we determine a unique correction factor for the three components of the Hessian matrix of uch,

that is the three second-order derivatives ∂2

∂x2
uch, ∂2

∂x∂yu
c
h and ∂2

∂y2
uch. Doing so, we are completely

ignoring the vectorial structure of the gradient of uch. Indeed, the gradient of uch is a vector valued
function which is linear with respect to the space variables. Moreover, its Taylor representation
contains a tensor gradient which is nothing but the Hessian matrix of uch evaluated at the centroid
xc. Bearing this in mind, it would be interesting to investigate a limiting procedure which takes
into account this vectorial structure, refer to [81]. This may improve the accuracy of the high-
order DG method particularly in the case of unstructured grids.

To conclude this section devoted to the hierarchical vertex-based slope limiter, let us investigate
its impact on some numerical experiments. We note on Figure 1.22 and Figure 1.23 that with
the use of the slope limiter described in this section the solution is perfectly monotonic and
preserves the high accuracy of the scheme.

We also compare the Barth-Jespersen limitation and the presented vertex-based hierarchical
limitation using a linear advection test case characterized by a velocity field corresponding to a
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(a) Without limitation. (b) With limitation. (c) Exact solution.

Figure 1.22: Linear advection (A = (1, 1)t) of the discontinuous signal u0(x) = 1 if (x + y) ∈
[0, 0.5]∪ [1.5, 2] and null anywhere else, where x = (x, y)t ∈ [0, 1]2, with periodic boundary con-
ditions, at the end of a period on an unstructured grid made of 6400 polygonal cells. Comparison
between the analytical solution and the numerical solutions obtained with the third-order DG
scheme with and without limitation.
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Figure 1.23: Scatter plots of the solutions (ordinate) of the linear advection of the discontinuous
signal u0(x) = 1 if (x+ y) ∈ [0, 0.5]∪ [1.5, 2] and null anywhere else, versus the cumulated coor-
dinate x+y (abscissa). Comparison between the analytical solution and the numerical solutions
obtained with the third-order DG scheme with and without limitation, on an unstructured grid
made of 6400 polygonal cells at the end of a period.

rigid rotation defined by A = (0.5− y, x− 0.5)t. We apply this solid body rotation to a smooth
hump displayed in Figure 1.24 and defined by

u0(x) =
1

4
(1 + cos(πr(x))), (1.87)

where r(x) = min(1,

√
(x−x0)2+(y−y0)2

r0
).
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Figure 1.24: Smooth hump signal on a Cartesian grid made of 40× 41 cells.
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Figure 1.25: Scatter plots of the solutions (ordinate) of the solid body rotation (A = (0.5 −
y, x − 0.5)t) of a smooth hump signal, versus the coordinate x (abscissa) for a fixed y = 0.5.
Comparison between the analytical solution and the numerical solutions obtained with the
third-order DG schemes with Barth-Jespersen and vertex-based slope limiters on a Cartesian
grid made of 40× 40 cells.
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For the computation we use x0 = y0 = 0.5 and r0 = 0.25, and tf = 3T , where tf is the final
time and T = 2π is the period of the rotation.

The comparison of the numerical errors shows that the scheme utilizing the vertex-based slope
limiter is more accurate than the one using the Barth-Jespersen slope limiter, the errors be-
ing respectively EL1 = 6.31 10−4, EL2 = 1.55 10−3, EL∞ = 7.26 10−3 and EL1 = 4.78 10−3,
EL2 = 8.95 10−3, EL∞ = 4.92 10−2. Moreover, we can observe in Figure 1.25 that the vertex-
based slope limiter preserves quite well the smooth extremum.

Finally, we have obtained a DG discretization of two-dimensional scalar conservation laws, up
to the third order which employs a hierarchical vertex-based slope limiter. In the next section,
we shall perform a convergence analysis of this DG discretization to investigate its accuracy.

1.2.5 Numerical results for two-dimensional scalar conservations laws

Linear test cases

To investigate the accuracy of our third-order DG discretization, we perform various convergence
analysis studying the linear advection of the smooth initial condition u0(x) = sin(2π(x + y))
with the velocity field A = (1, 1)t. We begin this accuracy study on Cartesian grids such as the
ones displayed in Figure 1.26.
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(a) 3rd order scheme.
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(b) Exact solution.

Figure 1.26: Linear advection (A = (1, 1)t) of the smooth initial condition u0(x) = sin(2π(x+y))
where x = (x, y)t ∈ [0, 1]2, with periodic boundary conditions, at the end of a period on a
Cartesian grid made of 40× 40 cells.

Observing Table 1.13, we note that our DG scheme reaches exactly the expected order, namely
it is characterized by a third-order rate of convergence. Keeping the same test case, we pursue
by investigating the accuracy of our DG discretization on unstructured grids made of triangular
and polygonal cells, refer respectively to Figure 1.27, and Figure 1.28. The unstructured grids
made of triangular cells used in the accuracy analysis not being paved uniformly, the rate of
convergence calculation could be less pertinent. It would also depends on the quality of the
different meshes. Nevertheless, considering Table 1.14, we clearly see that our DG scheme is
numerically third-order accurate, the rates of convergence being very close to three.
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L1 L2 L∞
Nc EL1 qL1 EL2 qL2 EL∞ qL∞

10× 10 3.19E-3 3.30 4.09E-3 3.10 1.52E-2 2.92

20× 20 3.35E-4 3.04 4.77E-4 3.01 2.01E-3 2.99

40× 40 4.08E-5 3.01 5.93E-5 3.00 2.53E-4 3.00

80× 80 5.07E-6 3.00 7.41E-6 3.00 3.16E-5 3.00

160× 160 6.34E-7 - 9.26E-7 - 3.95E-6 -

Table 1.13: Rate of convergence for the third-order DG scheme computed in the case of the
linear advection (A = (1, 1)t) of the smooth initial condition u0(x) = sin(2π(x + y)) where
x = (x, y)t ∈ [0, 1]2, with periodic boundary condition, at the end of a period on Cartesian
grids with a CFL= 0.1.
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(a) 3rd order scheme.
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(b) Exact solution.

Figure 1.27: Linear advection (A = (1, 1)t) of the smooth initial condition u0(x) = sin(2π(x+y))
where x = (x, y)t ∈ [0, 1]2, with periodic boundary conditions, at the end of a period on a
unstructured grid made of 3860 triangular cells.

L1 L2 L∞
Nc EL1 qL1 EL2 qL2 EL∞ qL∞
230 1.01E-3 3.27 1.28E-3 3.15 4.62E-3 2.61

972 1.05E-4 3.04 1.44E-4 3.08 7.57E-4 2.72

3860 1.28E-5 2.85 1.70E-5 2.85 1.15E-4 3.15

14920 1.77E-6 3.01 2.36E-6 3.01 1.30E-5 2.93

59796 2.19E-7 - 2.93E-7 - 1.71E-6 -

Table 1.14: Rate of convergence for the third-order DG scheme computed in the case of the
linear advection (A = (1, 1)t) of the smooth initial condition u0(x) = sin(2π(x + y)) where
x = (x, y)t ∈ [0, 1]2, with periodic boundary conditions, at the end of a period on triangular
grids with a CFL= 0.1.
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(a) 3rd order scheme.
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(b) Exact solution.

Figure 1.28: Linear advection (A = (1, 1)t) of the smooth initial condition u0(x) = sin(2π(x+y))
where x = (x, y)t ∈ [0, 1]2, with periodic boundary condition, at the end of a period on an
unstructured grid made of 1600 polygonal cells.

L1 L2 L∞
Nc EL1 qL1 EL2 qL2 EL∞ qL∞
100 1.76E-3 3.12 2.27E-3 3.10 1.14E-2 2.92

400 2.06E-4 3.06 2.65-4 3.05 1.51E-3 3.08

1600 2.44E-5 2.97 3.19E-5 2.97 1.79E-4 2.96

6400 3.12E-6 3.00 4.07E-6 3.00 2.30E-5 2.93

25600 3.91E-7 - 5.09E-7 - 3.02E-6 -

Table 1.15: Rate of convergence for the third-order DG scheme computed in the case of the
linear advection (A = (1, 1)t) of the smooth initial condition u0(x) = sin(2π(x + y)) where
x = (x, y)t ∈ [0, 1]2, with periodic boundary conditions, at the end of a period on unstructured
polygonal grids with a CFL= 0.1.

Finally, we perform the convergence analysis of our DG scheme using unstructured grids made
of general polygonal cells. For polygonal grids, we could make the same remark than previously
concerning the impact of the meshes regularity on the computation of the rate of convergence.
Table 1.15 confirms the high-order accuracy of our DG scheme. Comparing Table 1.13 and
Table 1.15, we notice that for the same number of cells, the third-order DG scheme seems to be
more accurate on polygonal cells than on Cartesian cells.This is probably due to the number of
faces and thus to the numerical error done on the flux between cells, the polygonal cells having
generally more neighbors than the Cartesian cells.

We have confirmed the high accuracy of our DG scheme for both structured and unstructured
grids in the case of the linear advection of the smooth initial condition u0(x) = sin(2π(x+ y)).
This computations have been made without limitation. Now, we will assess the accuracy of our
DG scheme using an other linear advection test case characterized by the smooth initial con-
dition u0(x) = sin(2πx) sin(2πy). The numerical results obtained on a Cartesian grid without
limitation are displayed in Figure 1.29.

49



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(a) 3rd order scheme.
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(b) Exact solution.

Figure 1.29: Linear advection (A = (1, 1)t) of the smooth initial condition u0(x) =
sin(2πx) sin(2πy) where x = (x, y)t ∈ [0, 1]2, with periodic boundary conditions, at the end
of a period on a Cartesian grid made of 40× 40 cells.

L1 L2 L∞
Nc EL1 qL1 EL2 qL2 EL∞ qL∞

10× 10 1.96E-3 3.14 2.55E-3 3.09 8.07E-3 2.90

20× 20 2.22E-4 3.01 3.00E-4 3.01 1.08E-3 3.02

40× 40 2.75E-5 3.00 3.73E-5 3.00 1.33E-4 3.01

80× 80 3.43E-6 3.00 4.67E-6 3.00 1.65E-5 3.01

160× 160 4.29E-7 - 5.83E-7 - 2.05E-6 -

Table 1.16: Rate of convergence for the third-order DG scheme computed in the case of the
linear advection (A = (1, 1)t) of the smooth initial condition u0(x) = sin(2πx) sin(2πy) where
x = (x, y)t ∈ [0, 1]2, with periodic boundary conditions, at the end of a period on Cartesian
grids with a CFL= 0.1.

The results of the convergence analysis performed in the absence of slope limiter are displayed
in Table 1.16. They clearly show that the expected rate of convergence is reached. The impact
of the hierarchical vertex-based slope limiter is displayed in Table 1.17. Comparing Table 1.16
(without limitation) and Table 1.17 (with limitation), we clearly observe that the limitation
procedure decreases the accuracy without destroying the rate of convergence.

To allow the comparison of our DG discretization to other existing methods, we use the classical
test case taken from [66], which corresponds to the two-dimensional extension of the composite
signal (1.58) presented in Section 1.1.10, refer to Figure 1.13. We use a velocity field corre-
sponding to a rigid rotation defined previously by A = (0.5 − y, x − 0.5)t, and we apply this
solid body rotation to the initial data displayed in Figure 1.30, which includes both a slotted
disk, a cone and a smooth hump of the form (1.87). The results displayed in Figure 1.30 show
the noteworthy gain in accuracy between the different DG schemes, as well as their robustness.
Observing the solutions plotted in Figure 1.30 and the values of the L2 errors, we can conclude
that we obtain similar results to those presented in [60].
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L1 L2 L∞
Nc EL1 qL1 EL2 qL2 EL∞ qL∞

10× 10 1.99E-2 3.50 2.49E-2 3.12 8.19E-2 3.00

20× 20 1.76E-3 3.84 2.87E-3 3.26 1.03E-2 2.44

40× 40 1.23E-4 3.79 2.99E-4 3.31 1.90E-3 2.44

80× 80 8.90E-6 3.61 3.00E-5 3.34 3.51E-4 2.48

160× 160 7.30E-7 - 2.95E-6 - 6.28E-5 -

Table 1.17: Rate of convergence for the third-order DG scheme with the hierarchical vertex-
based slope limiter computed in the case of the linear advection (A = (1, 1)t) of the smooth
initial condition u0(x) = sin(2π(x + y)) where x = (x, y)t ∈ [0, 1]2, with periodic boundary
conditions, at the end of a period on Cartesian grids with a CFL= 0.1.

(a) Exact solution. (b) First-order, EL2 = 1.80 10−1.

(c) Second-order, EL2 = 7.19 10−2. (d) Third-order, EL2 = 6.61 10−2.

Figure 1.30: Solid body rotation (A = (0.5 − y, x − 0.5)t) of a composite signal, at the end
of a period (tf = 2π) on a Cartesian grid made of 128 × 128 cells. Comparison between the
analytical solution and the numerical solutions obtained with the first, second and third-order
DG schemes with the vertex-based slope limiter.
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Non-linear problems

Burgers problem Here, we consider the inviscid Burgers problem in two space dimensions.
In this problem the flux function reads

f(u) = (f1(u), f2(u))t,

=
(

1
2u

2, 1
2u

2
)t
.

(1.88)

Let us point out that this problem corresponds to the two-dimensional extension of the one pre-
sented in the one-dimensional case, i.e., f(u) = 1

2u
2. Here, we compute the test case described

in [46, 47] for which the initial data is composed of four different constant states

u0(x) =





−0.2 if x < 0.5 and y > 0.5,
−1 if x > 0.5 and y > 0.5,
0.5 if x < 0.5 and y < 0.5,
0.8 if x > 0.5 and y < 0.5.

(1.89)

We compute the solution on the domain [0, 1]2 until tf = 1
2 , refer to Figure 1.31.

We observe the displacement of three shock waves over the domain and a rarefaction wave in
the bottom right corner. Our results are in good agreement with the numerical results displayed
in [47].

KPP problem We now turn our attention to nonlinear conservation laws with non-convex
flux. To this end we consider the KPP problem which has been proposed by Kurganov, Petrova
and Popov [59] to test the convergence properties of some WENO schemes. For this particular
non-linear problem, the fluxes are are given by

f(u) = (f1(u), f2(u))t,

= (sin(u), cos(u))t .

The initial condition is defined by

u0(x) =





7π

2
if
√
x2 + y2 ≤ 1,

π

4
if
√
x2 + y2 > 1.

(1.90)

The computational domain, [−1.55, 1.65] × [−2.05, 1.15], is paved using a 320 × 320 Cartesian
grid made of equally spaced cells, which corresponds to a mesh spacing ∆x = ∆y = 1

100 .
The computation is run until the stopping time tf = 1. As noticed in [47], this test was
proposed since it is challenging to many high-order numerical schemes because the solution has
a two-dimensional composite wave structure. The numerical result displayed in Figure 1.32 and
obtained , with our third-order DG limited scheme, is quite similar to the results displayed in
[59, 47]. It exhibits a quite correct rotating composite wave structure.

Buckley-Leverett problem We consider the classical Buckley-Leverett equation. It cor-
responds to a simplified model for describing two-phase fluid flow in a porous medium. This
example is considered in [47]. As for the KPP problem, the fluxes of this particular non-linear
problem are non-convex. There are defined by

f(u) = (f1(u), f2(u))t,

=

(
u2

u2 + (1− u)2
, f1(u)(1− 5(1− u)2)

)t

.
(1.91)
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The computational domain is [−1, 1.2]2 and the final time is tf = 0.5. The initial condition is
defined by

u0(x) =





1 if
√
x2 + y2 ≤ 0.5,

0 if
√
x2 + y2 > 0.5.

(1.92)

The numerical result displayed in Figure 1.33 and obtained using a general unstructured grid
made of 10000 polygonal cells, with the third-order DG limited scheme, is quite similar to the
result presented in [47].

In this Chapter, we have described the high-order discontinuous Galerkin discretization of the
one and two-dimensional scalar conservation laws on general unstructured grids. The main
feature of the presented DG scheme lies on the use of a polynomial Taylor basis. This particular
choice allows in the two-dimensional case to take into general unstructured grids account in a
unified framework. In this frame, a vertex-based hierarchical limitation which preserves smooth
extrema has been implemented. A generic form of numerical fluxes ensuring the global stability
of our semi-discrete discretization in the L2 norm has also been designed. We have illustrated
the robustness and the accuracy of the implemented schemes using several relevant test cases
and performing rate convergences analysis. In the next Chapter, we present the application of
this DG discretization to the one-dimensional system of conservation laws.
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(a) Initial time.

(b) Final time.

Figure 1.31: Solution of the two-dimensional inviscid Burgers problem using the third-order DG
scheme with the vertex-based slope limiters on an unstructured grid made of 10000 polygonal
cells.
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(a) Initial time.

(b) Final time.

Figure 1.32: Solution of the KPP problem using the third-order DG scheme with the hierarchical
vertex-based slope limiter on a 320× 320 Cartesian grid.
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(a) Initial time.

(b) Final time.

Figure 1.33: Solution of the Buckley-Leverett problem using the third-order DG scheme with
the hierarchical slope limiter on an unstructured grid made of 10000 polygonal cells.
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Chapter 2

High-order DG discretization of
one-dimensional systems of
conservation laws

This chapter aims at describing the extension of the high-order discontinuous Galerkin dis-
cretization presented in Chapter 1 to one-dimensional systems of scalar conservation laws. To
this end, we develop a step by step approach, starting from the study of the simple case of
linear acoustics to end up with the nonlinear system of gas dynamics equations. In Section 2.1,
we introduce the DG discretization of the linear acoustics. We present the construction of
the numerical fluxes based on the solution of the Riemann problem. We also describe a limi-
tation procedure which relies on the characteristic variables following the approach originally
introduced by Cockburn, Lin and Shu in [26]. In this paper, the authors develop a high-order
DG method for one-dimensional conservation laws. Their method applied to linear systems is
characterized by a total variation bounded estimate (TVB). Moreover, they clearly show the
superiority of a limiting procedure based on the characteristic fields compared to a component-
wise-based limiting procedure. Bearing this in mind, we consider in Section 2.2, the extension
of our DG scheme to the nonlinear shallow-water system with no source term. After having
briefly introduce the concept of Eulerian and Lagrangian description, we write the shallow wa-
ter equations under the Lagrangian formalism, and discretized it by means of a discontinuous
Galerkin procedure. We describe the limitation procedure based on the characteristic variables.
Gathering these knowledges, we conclude this chapter by discretizing in Section 2.3 the one-
dimensional system of gas dynamics equations. The basic notions related to the kinematics
of fluid motion such as the Lagrangian and Eulerian descriptions, are employed to transform
the gas dynamics equations and write them under Lagrangian form. The numerical fluxes at
the cell interface are defined by means of the classical Godunov acoustic solver [44, 31]. We
prove that the semi-discrete scheme with these numerical fluxes satisfies an entropy inequality
which ensures a consistent thermodynamic behavior regarding the second law of thermody-
namic. Namely, this entropy inequality will ensure that the dissipation of kinetic energy into
internal energy throughout irreversible process such as shock waves. Last, the limitation proce-
dure based on the characteristic fields is applied to the Lagrangian gas dynamics system. In the
three sections of this chapter, the DG method is implemented up to third-order. Its robustness
and its accuracy are assessed by computing the numerical solutions corresponding to various
analytical test cases.
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2.1 Linear acoustics

In general, one can always obtain a linear system from a nonlinear problem by linearizing it
around some given state. It gives a mathematically simpler problem that is useful in some
situation, particularly when the interest is in studying small perturbations about some constant
state. In this section, we focus on the discretization of the equations of the linear acoustics
system. This system results from the linearization of the gas dynamics equations around a
background flow. The method to derive the linear acoustics equations is detailed for instance
in [67]. Considering the motionless background state characterized by the velocity U0 = 0, the
pressure, P , and the velocity, U , perturbations satisfy the linear acoustics system

∂ P

∂t
+ ρ0a

2
0

∂ U

∂x
= 0, (2.1a)

∂ U

∂t
+

1

ρ0

∂ P

∂x
= 0, (2.1b)

where ρ0 and a0 are the density and the sound speed characterizing the background flow. In
what follows, we assume that these quantities are constant non-negative values.

2.1.1 DG discretization of the linear acoustics

The discontinuous Galerkin discretization of the one-dimensional acoustics system is obtained
following the same procedure than the one used in the one-dimensional scalar conservation laws
case, refer to Section 1.1.6. Let us introduce Ci = [xi− 1

2
, xi+ 1

2
] a generic cell of size ∆xi and

PK(Ci) the set of polynomials of degree up to K. Let P ih and U ih be the restrictions of Ph and
Uh to Ci. These functions are the polynomial approximations of the functions P and U over
the cell Ci and they are given by

P ih(x, t) =
K∑

k=0

P ik(t)σ
i
k(x), (2.2)

U ih(x, t) =

K∑

k=0

U ik(t)σ
i
k(x), (2.3)

where P ik and U ik are the successive moments of P ih and U ih, and {σik}k=0,...,K is a basis of PK(Ci).
The coefficients P ik(t) and U ik(t) present in (2.2) and (2.3) are determined by writing the local
variational formulation of the equations (2.1a) and (2.1b). We firstly consider the equation
corresponding to the pressure

∫

Ci

∂ P

∂t
σiq dx = −

∫

Ci

ρ0a
2
0σ

i
q

∂ U

∂x
dx,

= ρ0a
2
0

(∫

Ci

U
dσiq
dx

dx−
[
U σiq

]x
i+1

2
x
i− 1

2

)
,

where σcq is a function picked into the chosen basis. The velocity field being discontinuous at
the cell interfaces, the scheme conservation is ensured by defining a continuous numerical flux,
U , at each cell interface. Interchanging in the previous equations the functions P and U by
their polynomial approximations over the cell Ci, respectively P ih and U ih, provides the K + 1
semi-discrete equations of the successive moments of the pressure

K∑

k=0

(∫

Ci

σik σ
i
q dx

)
dP ik
dt

= ρ0a
2
0

(
K∑

k=0

U ik

∫

Ci

σik
dσiq
dx

dx−
[
U σiq

]x
i+1

2
x
i− 1

2

)
. (2.4)
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Recalling the notation introduced for the scalar conservation laws in Section 1.1.6, we set
P i =

(
P i0, . . . , P

i
l , . . . , P

i
K

)t
and U i =

(
U i0, . . . , U

i
l , . . . , U

i
K

)t
the unknowns vectors. Thus,

the K + 1 semi-discrete equations (2.4) rewrite in the compact form

Mi d

dt
P i = ρ0a

2
0

(
DiU i −

[
U σi(x)

]x
i+1

2
x
i− 1

2

)
, (2.5)

where the definitions of Mi, Di and σi(x) are the same than those given in Section 1.1.6.
Applying the same procedure to the velocity equation, one gets

Mi d

dt
U i =

1

ρ0

(
DiP i −

[
P σi(x)

]x
i+1

2
x
i− 1

2

)
, (2.6)

where P is the numerical flux corresponding to the pressure value at the interfaces between
cells. To complete the scheme, it remains to determine the numerical fluxes P and U in terms
of the left and right states on both sides of the cell interface.

2.1.2 Linear Riemann problem and numerical fluxes for linear acoustics

A solution to define the numerical fluxes consists in computing P and U as the solutions of the
Riemann problem characterized by the initial condition

P 0(x) =

{
PL for x < 0
PR for x > 0

and U0(x) =

{
UL for x < 0
UR for x > 0

. (2.7)

To solve exactly this Riemann problem, we need to diagonalize the linear acoustics system (2.1)
to recover two standard decoupled advection equations. Let V = (P,U)t be the vector whose
components are the pressure and the velocity perturbations. The system (2.1) can be rewritten
as the linear system

∂V

∂t
+ A

∂V

∂x
= 0, (2.8)

where the matrix A reads

A =




0 ρ0a
2
0

1

ρ0
0


 .

This matrix admits two real and distinct eigenvalues: −a0 and a0. Thus, system (2.8) is
hyperbolic and its diagonalization yields

∂ α+

∂t
+ a0

∂ α+

∂x
= 0, (2.9a)

∂ α−
∂t
− a0

∂ α−
∂x

= 0, (2.9b)

where α± = P ±ρ0a0U are the characteristic variables conserved along the characteristic curves
(C±) defined by y(x, t) = x ± a0 t. The variables α+ and α− are the Riemann invariants.
Knowing that the Riemann invariants are constant along the characteristic curves, refer to
Figure 2.1, leads to the following relationships

P + ρ0a0U = PL + ρ0a0UL,

P − ρ0a0U = PR − ρ0a0UR.
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x = −a0 t x = a0 t

Figure 2.1: Riemann problem in the (x, t)-plan: apparition of two waves of velocity ±a0.

The solution of the previous system gives the expressions of the numerical fluxes

P =
PL + PR

2
− ρ0a0

2
(UR − UL), (2.10)

U =
UL + UR

2
− 1

2ρ0a0
(PR − PL). (2.11)

We use this Riemann problem solution to define the numerical fluxes required by our DG scheme
setting PL\R and UL\R as the extrapolated values of the functions Ph and Uh on both sides of
the interface.

To complete the implementation of our DG scheme we make use of the Taylor basis and of a
TVD Runge-Kutta time discretization. The last point which remains to explain is the limitation
procedure to enforce the monotonicity of the solutions and avoid the apparition of spurious
oscillations, refer to Figure 2.2.

2.1.3 Limiting procedure based on the characteristic variables

In the first chapter, we have presented an high-order limitation procedure preserving smooth
extrema. Thus, we can easily apply this procedure to the pressure and velocity polynomial
approximations, respectively Ph and Uh. Doing so, the equations not being independent, some
oscillations are still visible, refer to Figure 2.3. The results obtained for the scalar conservation
laws have motivated our choice of working with the diagonalized form of the linear acoustics
system. Hence, the slope limiters are applied on the characteristic variables following the
approach given by B. Cockburn and C.-W. Shu [29]. Let us introduce αi±,h the polynomial
approximation on the cell Ci of the Riemann invariants α±

αi±,h =

K∑

k=0

αi±,k σ
i
k, (2.12)

where αi±,k are the successive moments of αi±,h. Using the definitions of the Riemann invariants,
we get

αi±,k = P ik ± ρ0a0 U
i
k. (2.13)
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(d) t = 0.25.

Figure 2.2: Solution obtained with the third-order DG scheme for a rectangular initial pressure
and with a null initial velocity over 100 cells. Apparition of the two acoustic waves: pressure
field.

The chosen procedure consists in limiting the polynomial approximations of the Riemann in-
variants. Then, solving the 2 × 2 linear system of equations (2.13), we recover the limited
coefficients corresponding to P ih and U ih

P ik =
αi+,k + αi−,k

2
and U ik =

αi+,k − αi−,k
2ρ0a0

.

This limitation procedure avoids the apparition of spurious oscillations and enforces correctly
the monotonicity of the pressure and the velocity functions, refer to Figure 2.4.

Now, we briefly presents some results for the one-dimensional linear acoustics to assess the
numerical accuracy of the DG scheme presented based on a Runge-Kutta time discretization
and the vertex-based slope limiter.

2.1.4 Numerical results for linear acoustics

First, to depict the good behavior of our DG scheme, we compute a similar discontinuous test
case than the one used in Section 2.1.3. We initialize the problem on the domain [−1, 1]. At
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Figure 2.3: Solution obtained with the third-order DG scheme with the limitation procedure on
the pressure and the velocity, for a rectangular initial pressure and with a null initial velocity
over 100 cells at time t = 0.05: pressure field.
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Figure 2.4: Solution obtained with the third-order DG scheme with the limitation procedure on
the Riemann invariants, for a rectangular initial pressure and with a null initial velocity over
100 cells at time t = 0.05: pressure field.

the initial time, the velocity perturbation is null, and the pressure perturbation consists in a
rectangular function between [−0.2, 0.2]. The density and sound speed, ρ0 and a0, characterizing
the background are equal to 1. We display in Figure 2.5 the results obtained by the third-
order DG scheme using the vertex-based limiter, at the final time t = 0.5 on 200 cells. The
limitation of the polynomial approximation based on the characteristic variables suppresses
spurious oscillations. Now, to assess the accuracy of the third-order DG scheme, we perform
a convergence analysis. The numerical errors are computed for the smooth case wherein the
initial pressure and velocity values write P 0(x) = (sin(πx))2 and U0(x) = (sin(πx))2. The
results obtained with the third-order scheme are displayed in Table 2.1. We note that the results
totally confirm the high-order of accuracy of the DG scheme applied to the linear acoustics. We
also notice considering the results gathered in Table 2.2 that even if the limitation spoils a little
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Figure 2.5: Solution computed with the third-order DG scheme with the limitation on the
Riemann invariants, for a rectangular initial pressure and with a null initial velocity over 200
cells.

bit the accuracy of the scheme, it remains third-order accurate.

L1 L2 L∞
∆x EL1 qL1 EL2 qL2 EL∞ qL∞

1
100 3.19E-7 3.00 4.28E-7 3.00 9.47E-7 3.00
1

200 3.98E-8 3.00 5.36E-8 3.00 1.18E-7 3.00
1

400 4.98E-9 3.00 6.70E-9 3.00 1.48E-8 3.00
1

800 6.22E-10 3.00 8.37E-10 3.00 1.85E-9 3.00
1

1600 7.79E-11 - 1.05E-10 - 2.32E-10 -

Table 2.1: Rate of convergence on the pressure for the third-order DG scheme without slope
limiters computed in the smooth case where P 0(x) = U0(x) = (sin(πx))2 on the [0, 1] domain,
at time t = 1 with a CFL= 0.1.

L1 L2 L∞
∆x EL1 qL1 EL2 qL2 EL∞ qL∞

1
100 3.43E-6 3.33 9.11E-6 2.95 4.03E-5 2.49
1

200 3.41E-7 3.32 1.18E-6 3.23 7.15E-6 2.50
1

400 3.42E-8 3.33 1.26E-7 2.70 1.26E-6 2.54
1

800 3.40E-9 3.33 1.94E-8 3.00 2.16E-7 2.53
1

1600 3.37E-10 - 2.42E-9 - 3.73E-8 -

Table 2.2: Rate of convergence on the pressure for the third-order DG scheme with slope limiters
on the Riemann invariants, computed in the smooth case where P 0(x) = U0(x) = (sin(πx))2

on the [0, 1] domain, at time t = 1 with a CFL= 0.1.
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2.2 Shallow water equations

2.2.1 Governing equations

According to [67] the one-dimensional shallow water equations are derived by considering a
fluid in a channel of unit width and assuming that the vertical velocity of the fluid is negligible
and the horizontal velocity U is roughly constant throughout any cross section of the channel.
Moreover, supposing that the fluid is incompressible, its height, H, is allowed to vary. Writing
down the conservation of mass and momentum leads to the following system of equations

∂ H

∂t
+

∂

∂x
(HU) = 0, (2.14a)

∂ HU

∂t
+

∂

∂x
(HU2 +

1

2
gH2) = 0, (2.14b)

where H(x) > 0 is the water height, U(x) the velocity averaged on the water height and g the
strength of the gravitational field which is considered as constant. Introducing the pressure,
P = 1

2gH
2, we observe that the above system is equivalent to the isentropic equations of gas

dynamics with the value of polytropic index γ = 2.
Let us recall that the ultimate goal of this chapter is the implementation of a high-order DG
scheme for the one-dimensional Lagrangian gas dynamics equations. The study of the shallow
water equations corresponds to a first step in achieving this goal, knowing that the shallow
water system is a particular case of the gas dynamics equations. Before describing the DG
discretization, we first rewrite the shallow water equations under the Lagrangian formalism.
To this end, we shall recall briefly the relationships between the Lagrangian and the Eulerian
descriptions of a fluid flow.

2.2.2 Lagrangian form of the shallow water equations

Considering a moving fluid, its flow is described mathematically by the function Φ

Φ : X −→ x = Φ(X, t). (2.15)

This function, is a one-to-one transformation that maps the initial configuration of the fluid to
its actual configuration at time t > 0. Here, X is called the Lagrangian coordinate and denotes
the initial position of a fluid particle. Its image by the flow map, x = Φ(X, t), is the position of
the same fluid particle at time t > 0, it is called the Eulerian coordinate. The flow map, Φ, is
characterized by its Jacobian J = J(X, t)

J =
∂ Φ

∂X
=
∂ x

∂X
. (2.16)

Knowing that J(X, 0) = 1, and assuming by continuity that J(X, t) > 0 for all t > 0 ensures
the existence of the inverse of the flow map for all times. If f denotes a fluid variable, it can
be expressed either in terms of the Lagrangian coordinate or in terms of the Eulerian one,
that is f(X, t) = f(x, t), knowing that x = Φ(X, t). We introduce the material derivative of
f = f(X, t), which measures the rate of change of f following a fluid particle along its motion
as

d f

dt
≡ ∂

∂t
f(X, t). (2.17)

Let us note that it corresponds to the partial time derivative in the Lagrangian description.
Now, considering the fluid variable, f = f(x, t), expressed in terms of the Eulerian coordinate,
x = Φ(X, t), and using the chain rule leads to write its material derivative as

d f

dt
=
∂

∂t
f(x, t) +

dx

dt

∂

∂x
f(x, t). (2.18)
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Here, the time derivative of the Eulerian coordinate, which corresponds to the velocity of the
fluid particle is defined by the trajectory equation

d

dt
x(X, t) = U(x, t), x(X, 0) = X, (2.19)

where U denotes the velocity of the fluid particle. Bearing this in mind, the material derivative
of the fluid variable, f , expressed in terms of the Eulerian coordinate writes

d f

dt
=
∂ f

∂t
+ U

∂ f

∂x
. (2.20)

Now, utilizing the trajectory equation and the Jacobian definition, one can easily show that the
time rate of change of the Jacobian writes

∂ J

∂t
− ∂ U

∂X
= 0. (2.21)

In terms of the Eulerian coordinate and using the Jacobian definition, the above equation
rewrites

d J

dt
− J ∂ U

∂x
= 0. (2.22)

Finally, combining (2.22) and (2.20) leads to the following important relationship

d fJ

dt
= J

[
∂ f

∂t
+
∂ fU

∂x

]
. (2.23)

This identity allows to express the shallow water equations under the Lagrangian formalism.
Applying (2.23) to H and using (2.14a) yields

dHJ

dt
= 0.

The time integration of this equation, knowing that J(X, 0) = 1 leads to the mass conservation
equation

H(X, t)J(X, t) = H0(X), (2.24)

where H0 denotes the initial water height. Finally, applying (2.23) respectively to the Jacobian
equation (2.22) and to the momentum equation (2.14b) leads to the Lagrangian form of the
shallow water equations

H
d

dt
(

1

H
)− ∂ U

∂x
= 0, (2.25a)

H
dU

dt
+
∂ P

∂x
= 0. (2.25b)

This Lagrangian form is called Lagrangian updated since the spatial derivative are still expressed
in terms of the Eulerian coordinate which is updated by means of the trajectory equation.
Finally, substituting (2.24) into the above system and employing the definition of the Jacobian
leads to the Lagrangian form of the shallow water equations

H0 d

dt
(

1

H
)− ∂ U

∂X
= 0, (2.26a)

H0 dU

dt
+
∂ P

∂X
= 0. (2.26b)

Let us point out that this time the spatial derivative is expressed in terms of the Lagrangian
coordinate.
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2.2.3 DG discretization of the shallow water equations

The DG discretization of the one-dimensional shallow-water equations is obtained following the
same procedure than for the linear acoustic system. Let ( 1

H )ih and U ih be the restrictions of
( 1
H )h and Uh, the polynomial approximations of the functions 1

H and U , over cell Ci at time t

(
1

H

)i

h

(X, t) =

K∑

k=0

(
1

H

)i

k

(t)σik(X), (2.27)

U ih(X, t) =
K∑

k=0

U ik(t)σ
i
k(X), (2.28)

where ( 1
H )ik and U ik are the successive moments of ( 1

H )ih and U ih, and {σik}k=0,...,K is a basis of
PK(Ci). As before, these successive moments are determined by writing the local variational
formulation of the equations (2.26a) and (2.26b). Here, we make use of similar definitions than
the ones used in Section 2.1.1

(
1

H

)i
=

((
1

H

)i

0

, . . . ,

(
1

H

)i

l

, . . . ,

(
1

H

)i

K

)t

and U i =
(
U i0, . . . , U

i
l , . . . , U

i
K

)t
. (2.29)

With these definitions, applying the local variational formulation to the equation (2.26a) leads
to the semi-discrete equation

Mi d

dt

(
1

H

)i
= −DiU i +

[
U σi(X)

]Xi+1
2

X
i− 1

2

, (2.30)

where the Di and σi(x) correspond to the definitions introduced in Section 1.1.6. However,
a slightly difference lies in the definition of Mi. This time, regarding the system of equations
(2.26), the mass matrix is weighted by the initial water height H0

Mi
qk =

∫

Ci

H0(X)σik(X)σiq(X) dX.

Thus, we make use of an alternative version of the Taylor basis (1.43). This time, the polynomial
basis is constructed by means of the Taylor basis expansion at the center of mass Ξi defined as
follows

Ξi =
1

mi

∫

Ci

H0(X)X dX,

where mi =
∫
Ci
H0dX. This Taylor basis modification will be detailed in the gas dynamics

Section 2.3.2.
Employing exactly the same approach for the momentum equation (2.26b) leads to

Mi d

dt
U i = DiP i −

[
P σi(X)

]Xi+1
2

X
i− 1

2

, (2.31)

where P i =
(
P i0, . . . , P

i
l , . . . , P

i
K

)t
, denotes the vector of the successive moments of the polyno-

mial approximation of the pressure P = 1
2gH

2. This approximation is obtained by projecting
the function P over the polynomial approximation space defined on the cell Ci.

In the semi-discrete equations (2.30) and (2.31), U and P are the numerical fluxes corresponding
to the velocity and the pressure values at the cell interfaces.
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2.2.4 Approximate Riemann solver and numerical fluxes for the shallow wa-
ter equations

We define the numerical fluxes, U and P , by means of an approximate Riemann solver. To
this end, let us recall some classical results regarding the mathematical structure of the shallow
water system [67]. First, by definition of the pressure we get

dP = gH dH = −gH3 d

(
1

H

)
. (2.32)

Assuming the fluid variables are sufficiently smooth and interchanging d
dt(

1
H ) by dP

dt in equation
(2.25a) leads to the non-conservative form of the shallow-water system

dP

dt
+ gH2∂ U

∂x
= 0, (2.33a)

dU

dt
+

1

H

∂ P

∂x
= 0. (2.33b)

Let us point out that the above system is very close to the linear acoustics system. Now,
introducing the vector V = (P,U)t, we rewrite the above system under the compact form

d V

dt
+ A

∂V

∂X
= 0, (2.34)

where the matrix A is defined by

A =

(
0 gH2

1

H
0

)
.

This matrix admits the two real eigenvalues λ± = ±√gH. Thus, the shallow water system is
hyperbolic. Its diagonalization (2.33) leads to the following system

dα+

dt
+ λ+

∂ α+

∂x
= 0, (2.35a)

dα−
dt

+ λ−
∂ α−
∂x

= 0, (2.35b)

where α± are the characteristic variables or Riemann invariants conserved along the two char-
acteristic curves (C±) defined by d y

dt (x, t) = λ±, y(x, 0) = x. The Riemann invariants are
characterized by the differential relationships

dα± = dP ±H
√
gHdU. (2.36)

The solution of the Riemann problem for the shallow water consists of the combination of two
waves: either shock or rarefaction waves, originating from the interface, refer to Figure 2.6.

The direct solution to determine the numerical fluxes consists in studying all the waves com-
binations and solve exactly the Riemann problem, refer for instance to [67]. Here, we shall
adopt a simpler point of view by employing an approximate Riemann solver which is easier to
implement. This approximate solver is obtained by linearizing the differential Riemann invari-
ants. Practically, for a Riemann problem defined by the left and right initial states respectively
(PL, UL) and (PR, UR), we linearize dα± around the initial data, meaning that at the left side
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(d) Leftward and rightward shock waves.

Figure 2.6: Solution obtained with the third-order DG scheme without limitation on 100 cells
for the four different Riemann problems: water height.

of the interface α± = P ±HL
√
gHL U whereas at the right side α± = P ±HR

√
gHR U . This

leads to a linear system whose solution writes

P =
ZR PL + ZL PR

ZL + ZR
− ZL ZR
ZL + ZR

(UR − UL), (2.37)

U =
ZL UL + ZR UR

ZL + ZR
− 1

ZL + ZR
(PR − PL). (2.38)

where Z = H
√
gH. This is the classical Godunov acoustic solver.

This approximate Riemann solver provides the numerical fluxes required by our DG discretiza-
tion. The linearization procedure of the differential Riemann invariants around the initial
condition would correspond to linearize these quantities around the mean values in the cells,
evaluated at the previous time, for the calculation of the numerical fluxes. Practically, PL\R
and UL\R would be computed as the extrapolated values of the functions Ph and Uh on both

sides of the interface, and the acoustic impedances, ZL and ZR by the mean values ( 1
H )

L\R
0 in

the cells CL and CR surrounding the interface.
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2.2.5 Limiting procedure based on the characteristic variables

The results obtained for the system of linear acoustics in Section 2.1.3 show that the slope
limiters have to be applied to the polynomial approximation of the Riemann invariants. This
important fact is also confirmed in the case of the shallow water equations. Indeed, if we
apply the limitation procedure componentwise to the physical variables 1

H and U some spurious
oscillations occur as it is displayed in Figure 2.7.
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Figure 2.7: Solution obtained with the third-order DG scheme with the limitation procedure
on the water height inverse and the velocity, for a dam break problem (defined in Section 2.2.6)
over 100 cells: water height.

Here, we shall develop a vertex-based limiting procedure which applies to the characteristic
variables. Considering the Riemann invariants definition (2.36), the first step is to combine
these expressions to recover easily the water height, ( 1

H )h, and the velocity Uh. Thanks to the
relation (2.32), we redefine the two differential Riemann invariants as follows

dα± = d(
1

H
)± ( 1

H )
3
2

√
g

dU. (2.39)

To find the link with ( 1
H )h and Uh we linearize dα± on each cell around the mean cell value.

To this end, let us introduce αi±,h the polynomial approximation on the cell Ci of the Riemann
invariants α±

αi±,h =

K∑

k=0

αi±,k σ
i
k, (2.40)

where αi±,k are the successive moments of αi±,h which write

αi±,k = (
1

H
)ik ±

(
( 1
H )i0

) 3
2

√
g

U ik. (2.41)

Thus, the chosen procedure consists in limiting the polynomial approximations of the Riemann
invariants. Solving the 2 × 2 linear system of equations (2.41) allows to recover the limited
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coefficients corresponding to the polynomial approximations of the original physical variables
( 1
H )ih and U ih

(
1

H
)ik =

αi+,k + αi−,k
2

,

U ik =
αi+,k − αi−,k
2
(
( 1
H )i0

) 3
2

√
g.

This linearized Riemann invariants limitation avoids the apparition of oscillations and enforces
perfectly the monotonicity of the water height and the velocity functions, as we can observe in
Figure 2.8.
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Figure 2.8: Solution obtained with the third-order DG scheme with the limitation procedure
on the Riemann invariants, for a dam break problem (defined in Section 2.2.6) over 100 cells:
water height .

Now, we briefly present some numerical results to assess the accuracy of our third-order DG
discretization.

2.2.6 Numerical results

Dam break problem

We illustrate the high accuracy of the DG scheme presented on the dam break test case [67].
We initialize the problem on the domain [0, 1] with an interface located at X = 0.5. At the
initial time, the states on the left and the right sides of the interface are constant. The left
state is characterized by a high water height (HL, UL) = (1, 0), the right by a low water height
(HR, UR) = (0.5, 0). We display in Figure 2.9 the results obtained with the third-order scheme
with the Riemann invariant limitation procedure, on 100 cells at the stopping time t = 0.075.

We clearly see on this problem the ability of our DG scheme to track accurately the rarefaction
wave and the shock wave, refer to Figure 2.9. We also note that the limitation procedure per-
fectly enforces the monotonicity of the solutions. To quantify the numerical accuracy observed
in the numerical results we perform a convergence analysis. For that purpose, we develop a
smooth analytical solution.
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Figure 2.9: Solution obtained for a dam break problem over 100 cells: comparison between the
analytical solution and the numerical solutions obtained with the third-order DG scheme.

Smooth analytical solution for the shallow water equations and convergence analysis

This solution is constructed through the use of the Riemann invariants of the shallow water
equations written under the Eulerian form. Integrating the differential expressions (2.36) leads
to the expression of the characteristic variables

α± = U ± 2
√
gH. (2.42)

These quantities are conserved along the characteristic curves (C±) which write in the Eulerian
framework

(C±)

{
d y

dt
(x, t) = U ±

√
gH,

y(x, 0) = x.
(2.43)

Using the Riemann invariants expression (2.42), the characteristic curves equations rewrite

(C±)





d y

dt
(x, t) =

(2± 1)α+ + (2∓ 1)α−
4

,

y(x, 0) = x.
(2.44)

Here, we have expressed the slopes of the characteristic curves in terms of the Riemann invari-
ants. In the special case where α− = 0, we get U = 2

√
gH and the shallow water equations boil

down to the following non-linear conservation law equation

∂ U

∂t
+

3

2
U
∂ U

∂x
= 0.

This equation is quite close to the Burgers equation and it is easy to construct an analytical
solution. For the numerical applications, we initialize the problem with a constant velocity
perturbed by a sinusoidal signal U0(X) = 1+0.1 sin(2πX). In this case, the initial water height

reads H0(X) = (U0)2

4g . We run this test case with the third-order scheme on 100 cells on the
domain [0, 1], up to the stopping time t = 0.3 with a CFL= 0.1. The results are plotted in
Figure 2.10. Using this analytical solution we compute the global truncation error corresponding
to the third-order DG scheme scheme and display it in Table 2.3.
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Figure 2.10: Solution obtained for the smooth problem over 100 cells: comparison between the
analytical solution and the numerical solutions obtained with the third-order DG scheme.

L1 L2 L∞
∆X EL1 qL1 EL2 qL2 EL∞ qL∞

1
100 3.23E-9 3.00 5.40E-9 3.00 3.02E-8 2.98
1

200 4.03E-10 3.00 6.76E-10 3.00 3.83E-9 2.99
1

400 5.04E-11 2.99 8.46E-11 3.00 4.82E-10 2.99
1

800 6.33E-12 3.00 1.06E-11 3.00 6.05E-11 3.00
1

1600 7.90E-13 - 1.33E-12 - 7.58E-12 -

Table 2.3: Rate of convergence on the water height for the third-order DG scheme without slope
limiter computed using the smooth initial condition, on the domain [0, 1], at time t = 0.3 with
a CFL= 0.1.

Considering the values of numerical errors, the results gathered in Table 2.3 confirm the high
performance of our DG scheme.

In the previous section dealing with the limitation, we have shown that applying the slope
limiters to the polynomial approximations of the Riemann invariants perfectly enforces the
monotonicity. We still have to verify if this procedure does not decrease the order of accuracy
of the scheme. To do so, we perform a convergence rate study with the third-order DG scheme
using the limitation based on the characteristic variables, with similar conditions to the ones
used before. Considering Table 2.4, we note that the scheme remains third-order accurate.
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L1 L2 L∞
∆X EL1 qL1 EL2 qL2 EL∞ qL∞

1
100 9.32E-9 3.41 2.79E-8 3.22 2.26E-7 2.81
1

200 8.78E-10 3.56 2.99E-9 3.66 3.23E-8 3.11
1

400 7.47E-11 3.56 2.37E-10 4.48 3.73E-9 2.62
1

800 6.33E-12 3.00 1.06E-11 3.00 6.05E-11 3.00
1

1600 7.90E-13 - 1.33E-12 - 7.58E-12 -

Table 2.4: Rate of convergence on the water height for the third-order DG scheme with slope
limiter based on the characteristic variables, computed in the smooth case on the domain [0, 1],
at time t = 3 with a CFL= 0.1.

2.3 Lagrangian gas dynamics

The aim of this section is to describe the high-order DG discretization of the gas dynamics
equations written under the Lagrangian form. Before we proceed any further, we start by
recalling the Eulerian form of the gas dynamics equations

∂ ρ

∂t
+

∂

∂x
(ρU) = 0, (2.45a)

∂

∂t
(ρU) +

∂

∂x
(ρU2 + P ) = 0, (2.45b)

∂

∂t
(ρE) +

∂

∂x
(ρUE + PU) = 0. (2.45c)

The above equations express respectively the conservation of the mass, the momentum and the
total energy of a fluid particle. Here, ρ > 0 is the density, U the velocity, P the pressure and E
the specific total energy. The thermodynamical closure of this system is obtained through the
use of an equation of state, which writes P = P (ρ, ε), where ε is the specific internal energy,
ε = E − 1

2U
2. For numerical applications, we use a gamma gas law, i.e., P = ρ(γ − 1)ε, where

γ is the polytropic index of the gas. Following the developments made in Section 2.2 for the
shallow-water equations, we transform system (2.45) to write it under the Lagrangian formalism.

To this end, let us recall that the fluid flow is described mathematically by the continuous
transformation Φ(X, t) = x, where t denotes the time, x the Eulerian coordinate, that is the
position at time t of a fluid particle initially located at X, the Lagrangian coordinate. The
Jacobian of the transformation is denoted by J = J(X, t) = ∂x

∂X . Using the notions introduced
in Section 2.2, and considering a fluid variable, f = f(x, t) expressed in terms of the Eulerian
coordinate, one can show that the following identity holds

d fJ

dt
= J

[
∂ f

∂t
+
∂ fU

∂x

]
,

where d f
dt = ∂ f

∂t + U ∂ f
∂x denotes the material derivative of f , that to say the time derivative

along the fluid particle trajectory. Applying the above identity to f = ρ and using the mass
conservation equation yields

d ρJ

dt
= 0.

This is the Lagrangian form of mass conservation. Time integrating this equation leads to the
other form of the mass conservation

ρ(X, t)J(X, t) = ρ0(X),
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where ρ0 denotes the initial density. Now, applying the above identity to f = (1, ρU, ρE) and
using the equation of momentum and total energy conservation leads to the updated Lagrangian
form of the gas dynamics equations

ρ
d

dt
(
1

ρ
)− ∂ U

∂x
= 0, (2.46a)

ρ
dU

dt
+
∂ P

∂x
= 0, (2.46b)

ρ
dE

dt
+

∂

∂x
(PU) = 0. (2.46c)

Let us notice that in this Lagrangian system, the differential operators ∂
∂x are expressed with

respect to the Eulerian coordinate. Thus, a discretization of this system would lead to a
numerical scheme based on a moving mesh, the motion of the mesh points being governed by
the trajectory equation

d

dt
x(X, t) = U(x, t), x(X, 0) = X.

Finally, recalling that ρJ = ρ0 and employing the Jacobian definition allows to transform the
updated Lagrangian form into the total Lagrangian form

ρ0 d

dt
(
1

ρ
)− ∂ U

∂X
= 0, (2.47a)

ρ0 dU

dt
+
∂ P

∂X
= 0, (2.47b)

ρ0 dE

dt
+

∂

∂X
(PU) = 0. (2.47c)

Here, the spatial derivatives are expressed in terms of the Lagrangian coordinate which does
not depend on time. This is why, this Lagrangian form is named total Lagrangian form. We
are now in position to construct a high-order Galerkin discretization to solve the above system.

2.3.1 Discontinuous Galerkin discretization of Lagrangian gas dynamics equa-
tions

The DG discretization of the Lagrangian gas dynamics equations is quite similar to the one
described previously for the shallow water equations. Let us introduce (1

ρ)ih, U ih, P ih and Eih the

polynomial approximations in the cell Ci, at time t, of the functions 1
ρ , U , P and E. To de-

termine the successive moments composing these polynomial approximations, we perform local
variational formulations on the equations of system (2.47). Here, to simplify the notation, we
identify the functions 1

ρ , U , P and E to their polynomial approximation over the considered cell.

The volume equation discretization over cell Ci writes

∫

Ci

ρ0 d

dt
(
1

ρ
)σiq dX =

K∑

k=0

d

dt
(
1

ρ
)ik

∫

Ci

ρ0σqσk dX,

= −
∫

Ci

U
∂ σ

∂X

i

q
dX +

[
U σiq

]Xi+1
2

X
i− 1

2

, (2.48)

where σiq is a function picked into the chosen basis {σik}k=0,...,K of PK(Ci). The numerical flux

U corresponds to the function defining the velocity of the cell interfaces. Here, we identify∫
Ci
ρ0σqσk dX as the generic coefficient of the mass matrix which is symmetric positive definite.
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For the momentum equation, the procedure is similar. Local variational formulation of equation
(2.47b) on Ci leads to

∫

Ci

ρ0 dU

dt
σiq dX =

K∑

k=0

dU ik
dt

∫

Ci

ρ0σqσk dX,

=

∫

Ci

P
∂ σ

∂X

i

q
dX −

[
P σiq

]Xi+1
2

X
i− 1

2

, (2.49)

where P is the numerical flux corresponding to the pressure function and P ih the polynomial
approximation of the pressure obtained by projecting it onto the approximation space the cell
Ci. Applying once more the local variational formulation to the equation (2.47c) on Ci, one
gets

∫

Ci

ρ0 dE

dt
σiq dX =

K∑

k=0

dEik
dt

∫

Ci

ρ0σqσk dX,

=

∫

Ci

PU
∂ σ

∂X

i

q
dX −

[
PU σiq

]Xi+1
2

X
i− 1

2

. (2.50)

where PU is the numerical flux corresponding to the pressure work.

In the end, the DG discretization of the gas dynamics equation is given by the 3 × (K + 1)
semi-discrete equations (2.48), (2.49) and (2.50) where the three numerical fluxes U , P and PU
remain to be defined. We have also to recall the definition of the Taylor basis which spans the
polynomial space approximation. The Taylor basis for the Lagrangian gas dynamics requires
some modifications compared to the Taylor basis defined by (1.43) in Section 1.1.8. These
modifications essentially comes from the fact that this time the mass matrix is weighted by the
initial density.

2.3.2 Taylor basis modification for Lagrangian gas dynamics

Knowing that the mass matrix is weighted by the initial density, we introduce an alternative
version of the Taylor basis. In the basis definition (1.43) in Section 1.1.8, we replace the centroid
Xi by the center of mass Xi defined by

Xi =
1

mi

∫

Ci

ρ0(X)X dX, (2.51)

where mi =
∫
Ci
ρ0dX is the constant mass of the cell Ci. Let us point out that in case of

a uniform initial density, the center of mass and the centroid coincide. Let 〈φ〉i be the mass
averaged value of φ over the Ci

〈φ〉i =
1

mi

∫

Ci

ρ0(X)φ(X) dX. (2.52)

Knowing that we want our polynomial representation to preserve the mass averaged values leads
to define the Taylor basis as follows

σik =
1

k

[(
X −Xi

∆Xi

)k
−
〈(

X −Xi
∆Xi

)k〉

i

]
. (2.53)
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This definition of the Taylor basis leads to a new relation on φi0, the first component of the
polynomial approximation function φih

〈
φih
〉
i

=
1

mi

∫

Ci

ρ0 φih dX,

=
1

mi

K∑

k=0

φik

∫

Ci

ρ0 σik dX,

= φi0 +
∑

k=1

φik

∫

Ci

ρ0 σik dX

︸ ︷︷ ︸
=0

,

= φi0.

Consequently, we identify the first component of φih to the mass averaged value 〈φ〉i. Concerning
the definition of the mass matrix, we point out that it is characterized by the following property

Mi
0k = Mi

k0 =

∫

Ci

ρ0σi0 σ
i
k dX =

∫

Ci

ρ0σik dX = mi δ0k.

Thus, in (2.48), (2.49) and (2.50) the equations corresponding to the first moment are indepen-
dent of the equations corresponding to the moments of high-order.

We also introduce the scalar product weighted by the initial density

〈u, v〉 =

∫

Ci

ρ0(X)u(X) v(X) dX. (2.54)

This new definition of the scalar product has to be included in the projection procedure, applied
to the initial conditions and the pressure function, to lead to the polynomial approximations
expected.

2.3.3 Entropy inequality and numerical fluxes

The aim of this section is to design numerical fluxes so that our semi-discrete DG scheme satisfies
a global entropy inequality. First, we recall the main features of the mathematical structure of
the one-dimensional gas dynamics system. Let us assume that the fluid variables are sufficiently
smooth to compute their partial derivatives. Dot-multiplying the momentum equation (2.46b)
by the velocity and subtracting it from the total energy equation (2.46c) leads to

ρ
d ε

dt
+ P

∂ U

∂x
= 0.

Now, substituting the volume equation (2.46b) in the above equation leads to

ρ
d ε

dt
+ P ρ

d

dt
(
1

ρ
) = 0.

Recalling the definition of the specific entropy, η, thanks to the Gibbs formula

θdη = dε+ P d(
1

ρ
),
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where θ denotes the temperature, allows to write the time rate of change of the specific entropy
as

d η

dt
= 0. (2.55)

This equation shows that the specific entropy is conserved along the trajectory equation. Thanks
to this result and expressing the pressure in terms of the density and the entropy, P = P (ρ, η),
yields

dP = (
∂ P

∂ρ
)η dρ+ (

∂ P

∂η
)ρ dη. (2.56)

Introducing the thermodynamic sound speed a2 = (∂P∂ρ )η > 0 and knowing that d
dtη = 0 leads

to the following relation between the pressure and the density material derivatives

dP

dt
= −ρ2a2 d

dt
(
1

ρ
). (2.57)

Gathering the previous results, we obtain the non-conservative form of the gas dynamics equa-
tions

dP

dt
+ ρa2∂ U

∂x
= 0, (2.58a)

dU

dt
+

1

ρ

∂ P

∂x
= 0, (2.58b)

d η

dt
= 0. (2.58c)

Setting V = (P,U, η)t, we can rewrite system (2.58) as

d V

dt
+ A

∂V

∂x
= 0, (2.59)

where the matrix A is defined by

A =




0 ρ a2 0
1
ρ 0 0

0 0 0


 .

This matrix admits three real eigenvalues: λ1 = 0, λ2 = a, λ3 = −a and thus the above system is
hyperbolic [43]. Its diagonalization leads to three scalar conservation equations of the Riemann
invariants αl, where l = 1, 2, 3, writing

dαl
dt

+ λl
∂ αl
∂x

= 0, (2.60)

Let us recall that the λl correspond to the slopes of the characteristic curves along which the
Riemann invariants are conserved. From an Eulerian point of view, equations (2.60) rewrite

∂ αl
∂t

+ (U + λl)
∂ αl
∂x

= 0, (2.61)

and in this case, the slopes of the characteristic curves are given by U , U + a and U − a.
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System (2.46) being non-linear, its diagonalization leads to the definition of dαl, the differential
of the Riemann invariants

dα1 = dη, (2.62)

dα2 = dP + ρadU, (2.63)

dα3 = dP − ρadU. (2.64)

These quantities will be used in the limitation procedure presented in the next section to enforce
the monotonicity of the solutions. They can also be used to construct an approximate Riemann
solver similar to the one described in the context of the shallow water equations.

Next, we investigate if it is possible to define the numerical fluxes in such a way that our
semi-discrete DG scheme satisfies an entropy inequality. This inequality is very important to
ensure that the semi-discrete scheme has a correct behavior from a thermodynamical point of
view. Namely, we want our semi-discrete formulation to correctly dissipate kinetic energy into
specific energy through irreversible processes such as shock waves. To this end, we construct a
semi-discrete equation satisfied by the specific entropy, we multiply respectively (2.47a), (2.47b)
and (2.47c) by the test functions P ih, U ih and 1 and integrate over Ci. As in the previous section,
for the sake of conciseness we use the same notations for the functions 1

ρ , U , P and E than for

their polynomial approximation (1
ρ)ih, U ih, P ih and Eih over the considered cell Ci

∫

Ci

ρ0P
d

dt
(
1

ρ
)dX = [PU ]

X
i+1

2
X
i− 1

2

−
∫

Ci

U
∂ P

∂X
dX, (2.65a)

∫

Ci

ρ0U
dU

dt
dX = −[PU ]

X
i+1

2
X
i− 1

2

+

∫

Ci

P
∂ U

∂X
dX, (2.65b)

∫

Ci

ρ0 dE

dt
dX = −[PU ]

X
i+1

2
X
i− 1

2

. (2.65c)

The combination (2.65c)−(2.65b)+(2.65a) leads to
∫

Ci

ρ0

[
d

dt
(E − 1

2
U2) + P

d

dt
(
1

ρ
)

]
dX = [PU + PU − PU ]

X
i+1

2
X
i− 1

2

−
∫

Ci

(
P
∂ U

∂X
+ U

∂ P

∂X

)
dX,

= [PU + PU − PU − PU ]
X
i+1

2
X
i− 1

2

.

Recalling that specific internal energy writes as ε = E − 1
2U

2, and specific entropy is expressed
according to the Gibbs formula as θdη = dε+ P d(1

ρ), we deduce
∫

C
ρ0 θ

d η

dt
dX =

∑

i,cells

Ri,

where Ri = [PU + PU − PU − PU ]
X
i+1

2
X
i− 1

2

.

At this point, it remains to express the numerical fluxes in such a way that an entropic inequality
is satisfied. To this end, we first make the following fundamental assumption

PU = P U. (2.66)

This assumption allows to factorize Ri and to write it as Ri = [(P − P )(U − U)]
X
i+1

2
X
i− 1

2

. Thus,

the entropy production related to the semi-discrete scheme writes
∫

C
ρ0 θ

d η

dt
dX =

∑

i,cells

[(P − P )(U − U)]
X
i+1

2
X
i− 1

2

. (2.67)
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We want our DG formulation to satisfy the second law of thermodynamics, that is we want it
to convert kinetic energy into internal energy through shock waves. This amounts to design
numerical fluxes so that

∑
iRi ≥ 0. Interchanging the sum from cells to nodes and setting

φh(X−
i+ 1

2

) = φL and φh(X+
i+ 1

2

) = φR yields

∑

i,cells

Ri =
∑

i,nodes

[
(PL − P i+ 1

2
)(U i+ 1

2
− UL)− (PR − P i+ 1

2
)(U i+ 1

2
− UR)

]
.

Here, we note that the previous equation has been obtained using periodic boundary conditions.
We claim that a sufficient condition to satisfy

∑
iRi ≥ 0 consists in setting

P i+ 1
2

= PR − ZR(UR − U i+ 1
2
), (2.68)

P i+ 1
2

= PL + ZL(UL − U i+ 1
2
), (2.69)

where ZL/R are positive scalars which have the physical dimension of a density times a velocity.
The numerical fluxes at node Xi+ 1

2
are obtained by solving the previous linear system

P i+ 1
2

=
ZLPR + ZRPL
ZL + ZR

− ZLZR
ZL + ZR

(UR − UL), (2.70)

U i+ 1
2

=
ZLUL + ZRUR
ZL + ZR

− 1

ZL + ZR
(PR − PL). (2.71)

In the non-periodic boundary conditions case, we would have relation (2.68) on the first cell at
the first node, and relation (2.69) on the last cell located at the last node. In these two relations
we would impose either the velocity or the pressure on the boundary in order to recover both
numerical fluxes. In (2.70) and (2.71), by taking Z = ρ a, we recover the classical acoustic
Godunov solver [44, 31] and Z corresponds to the acoustic impedance.

In this section, we have presented a procedure to design numerical fluxes ensuring an entropy
inequality. For more details, the interested reader may refer to [31]. To achieve the DG dis-
cretization of the Lagrangian gas dynamics equations, we apply the TVD Runge-Kutta time
discretization described in Section 1.1.6 to the semi-discrete equations (2.48), (2.49) and (2.50).
In Figure 2.11, we have displayed the results obtained for the Sod shock tube problem. We
clearly observe the accuracy of the third-order scheme. More precisely, the shock as well as
the rarefaction wave are well captured. However, spurious oscillations are visible on the shock
plateau. This non monotonic behavior will be cured in the next section by developing a limiting
procedure based on the characteristic variables.

2.3.4 Limiting procedure based on the characteristic variables for the La-
grangian gas dynamics equations

In the case of discontinuous problem, without a specific treatment, high-order numerical schemes
produce solutions containing spurious oscillations, refer to Figure 2.11. On the other hand, if we
apply a limiting procedure directly to the polynomial approximation of the physical variables
(1
ρ)h, Uh and Eh, we cannot enforce totally the monotonicity of the solutions, refer to Figure 2.12.

To correct this flaw, as we did for the shallow water equations, we construct a limiting procedure
based on the Riemann invariants. To this end, we need to derive relationships between the
physical variables and the Riemann invariants. First, let us recall that for an isentropic flow
the differential of the pressure expresses as

dP = −ρ2a2 d(
1

ρ
).
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Figure 2.11: Solution obtained with the third-order DG scheme for the shock Sod tube problem
over 100 cells without limitation: density field.
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Figure 2.12: Solution obtained with the third-order DG scheme with the limiting based on the
physical variables, for the Sod shock tube problem over 100 cells: density field.

Thus, interchanging dP and d(1
ρ) in the Riemann invariant differentials (2.63) and (2.64), we

are able to redefine dα2 and dα3 as follows

dα2 = d(
1

ρ
) +

(1
ρ)

a
dU, (2.72)

dα3 = d(
1

ρ
)−

(1
ρ)

a
dU. (2.73)

In order to limit the total energy polynomial representation we need to have access to dE in
the Riemann invariant differentials. To do so, using the Gibbs formula, the definition of the
remained equation (2.62) yields

dα1 = dE − UdU + Pd(
1

ρ
). (2.74)
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We get new expressions of the three Riemann invariants. We linearize these dαl quantities on
each cell around the mean values of the cell. Let us introduce αil,h the polynomial approximation
on cell Ci of the Riemann invariants αl as

αil,h =
K∑

k=0

αil,k σ
i
k, (2.75)

where αil,k are the successive moments of αil,h and write

αi1,k = Eik − U i0 U ik + P i0 (
1

ρ
)ik, (2.76)

αi2,k = (
1

ρ
)ik +

(1
ρ)i0

ai0
U ik. (2.77)

αi3,k = (
1

ρ
)ik −

(1
ρ)i0

ai0
U ik. (2.78)

Hence, the chosen procedure is again to limit the polynomial approximations of the Riemann
invariants and solving the 3× 3 linear system of equations (2.76), (2.77) and (2.78) we recover
the limited coefficients corresponding to the physical variables polynomial approximations (1

ρ)ih,

U ih and Eih

(
1

ρ
)ik =

αi2,k + αi3,k
2

,

U ik =
αi2,k − αi3,k

2(1
ρ)i0

ai0.

Eik = αi1,k +
1

2
αi2,k

(
P i0 + U i0a

i
0

)
+

1

2
αi3,k

(
P i0 − U i0ai0

)
.

As we can see in the results displayed in Figure 2.13, the limiting procedure based on the char-
acteristic variables avoids the apparition of spurious oscillations and enforce the monotonicity
of the solutions. The undershoot visible in Figure 2.13 is independent of the limitation. This
phenomenon is inherent to the Lagrangian formalism, and is due to the strong difference in the
cell aspect ratio before and after the contact discontinuity. Next, we present some numerical
results to assess the accuracy of our high-order DG discretization.

2.3.5 Numerical results

To demonstrate the accuracy and the robustness of our scheme solving we have run test cases
taken from the literature. These results, displayed in Figure 2.14, have been obtained with
our third-order scheme with slope limiters. In Figure 2.14(a), our scheme performs on the Shu
oscillating shock tube problem, presented by Chi-Wang Shu and Stanley Osher in [99]. Despite
the strong perturbations, we note that the numerical solution is very close to the reference
solution. In Figure 2.14(b), the run test case is the uniformly accelerated piston problem,
defined by Pierre-Henri Maire in [74]. For this smooth solution, we notice once more, how
accurate the numerical solution is. Next, we perform a convergence analysis of our DG scheme
using a smooth solution of the gas dynamics equations.
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Figure 2.13: Solution obtained with the third-order DG scheme with the limiting procedure
based on the linearized Riemann invariants, for the Sod shock tube problem over 100 cells:
density field.
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(a) Shu oscillation shock tube with 200 cells.
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Figure 2.14: Numerical solutions for gas dynamics with limitation for the third-order DG
method: density field.

Smooth solution and rates of convergence

Here, we construct a smooth solution of the gas dynamics equations by means of the Riemann
invariants. Among all the possible formulas expressing the Riemann invariant differentials
presented in the previous sections, we introduce dα± corresponding to the former dα2 and dα3

and defined by

dα± = dU ± a

ρ
dρ. (2.79)

In case of an isentropic fluid flow and for a gamma gas law, the pressure writes

P

P 0
=

(
ρ

ρ0

)γ
. (2.80)
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Recalling that the sound speed writes a2 = γ P
ρ and using (2.80) yields

a

a0
=

(
ρ

ρ0

) γ−1
2

. (2.81)

We are now able to integrate analytically the Riemann invariants of equation (2.79)

α± = U ± 2

γ − 1
a. (2.82)

The Riemann invariants are constant along the characteristic curves, these curves (C±) being
defined by the differential equations

(C±)

{
d y

dt
(x, t) = U ± a,

y(x, 0) = x.
(2.83)

Using the Riemann invariants definitions (2.82), the characteristic curves equations rewrite

(C±)





d y

dt
(x, t) =

(2± (γ − 1))α+ + (2∓ (γ − 1))α−
4

,

y(x, 0) = x.
(2.84)

Here, we have expressed the slopes of the characteristic curves in terms of the Riemann invari-
ants. In the general case, these curves are not straight lines because even if α± is constant
along (C±), it is not the case for α∓. Nevertheless, in the particular case where γ = 3 the
characteristic curves are straight lines defined by

(C±)

{
d y

dt
(x, t) = α±,

y(x, 0) = x.
(2.85)

Hence, the gas dynamics equations are equivalent to the two following Burgers equations

∂ α±
∂t

+ α±
∂ α±
∂x

= 0,

for which an analytical solution is easy to construct.

For the numerical simulations, we initialize the problem with a constant density perturbed by
a sinusoidal signal ρ0(X) = 1 + 0.1 sin(2πX), an initial pressure given by the isentropic relation
(2.80) P 0(X) =

(
ρ0
)γ

and a null initial velocity U0(X) = 0. We run our third-order scheme on
this test case with 100 cells on the [0, 1] domain, at time t = 0.8 with a CFL= 0.1. The results
are displayed in Figure 2.15. Using this analytical solution we compute the global truncation
error corresponding to the third-order DG scheme and display it in Table 2.5. These results
confirm the high accuracy of this scheme.

In the previous section dealing with the limitation, we have shown that applying the slope
limiters to the polynomial approximations of the Riemann invariants enforces perfectly the
monotonicity. We still have to verify if this procedure does not decrease the order of accuracy
of the scheme. To do so, we perform a convergence analysis with the third-order limited DG
scheme using once more the previous smooth test case. Observing Table 2.6, we note that even
if the slope limiter spoils the accuracy of the scheme, it remains third-order accurate, the rate
of convergence being close to three.
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Figure 2.15: Solution obtained for the smooth test case over 100 cells: comparison between the
analytical solution and the solution obtained with the third-order DG scheme

L1 L2 L∞
∆X EL1 qL1 EL2 qL2 EL∞ qL∞

1
50 9.09E-5 3.01 3.40E-4 2.87 2.20E-3 2.79
1

100 1.13E-5 3.58 4.64E-5 3.28 3.17E-4 2.70
1

200 9.40E-7 3.30 4.79E-6 3.34 4.89E-5 2.64
1

400 9.57E-8 3.03 4.74E-7 3.07 7.85E-6 2.91
1

800 1.17E-8 - 5.63E-8 - 1.04E-6 -

Table 2.5: Rate of convergence on the velocity for the third order DG scheme without slope
limiters computed in the smooth case on the [0, 1] domain, at time t = 0.8 with a CFL= 0.1.

Kidder isentropic compression

Now, we make use of the Kidder isentropic compression introduced in [54], to ensure once again
that the high accuracy order of our scheme is reached. This test case will be more detailed in the
next Chapter 4 Section 4.2.4. It corresponds to an isentropic compression of a shell filled with
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L1 L2 L∞
∆X EL1 qL1 EL2 qL2 EL∞ qL∞

1
50 3.44E-4 2.19 1.07E-3 1.80 5.63E-3 1.55
1

100 7.53E-5 2.68 3.09E-4 2.31 1.92E-3 1.97
1

200 1.18E-5 2.99 6.22E-5 2.65 4.96E-4 2.40
1

400 1.48E-6 3.22 9.94E-6 2.82 9.23E-5 2.25
1

800 1.59E-7 - 1.40E-6 - 1.95E-5 -

Table 2.6: Rate of convergence on the velocity for the third-order DG scheme with slope limiter
computed in the smooth case on the [0, 1] domain, at time t = 0.8 with a CFL= 0.1.

perfect gas, initially located at [0.9, 1] and which collapses at time t = τ . This problem admits
an analytical self-similar solution and thus we can compare the numerical solution computed
by our DG scheme and the analytical solution, refer to Figure 2.16.

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.78  0.79  0.8  0.81  0.82  0.83  0.84  0.85  0.86  0.87

solution

3rd order

(a) Density field.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.78  0.79  0.8  0.81  0.82  0.83  0.84  0.85  0.86  0.87

solution

3rd order

(b) Pressure field.

-71

-70

-69

-68

-67

-66

-65

-64

-63

 0.78  0.79  0.8  0.81  0.82  0.83  0.84  0.85  0.86  0.87

solution

3rd order

(c) Velocity field.

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 0.78  0.79  0.8  0.81  0.82  0.83  0.84  0.85  0.86  0.87

solution

3rd order

(d) Total energy field.

Figure 2.16: Solution obtained for the Kidder isentropic compression over 100 cells on the [0.9, 1]
domain at time t = τ

2 : comparison between the analytical solution and the solution obtained
with the third-order DG scheme.

Using this analytical solution we compute the global truncation error corresponding to the
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L1 L2 L∞
∆X EL1 qL1 EL2 qL2 EL∞ qL∞

1
50 1.04E-5 3.62 1.94E-4 3.73 6.71E-3 3.52
1

100 8.46E-7 3.33 1.46E-5 3.44 5.87E-4 3.38
1

200 8.38E-8 3.17 1.34E-6 3.23 5.64E-5 3.23
1

400 9.33E-9 3.08 1.43E-7 3.12 6.00E-6 3.13
1

800 1.10E-9 - 1.64E-8 - 6.85E-7 -

Table 2.7: Rate of convergence on the velocity for the third-order DG scheme, computed in
the case of the Kidder isentropic compression, on the [0.9, 1] domain, at time t = τ

2 with a
CFL= 0.1.

third DG scheme scheme and display in Table 2.7. These results confirm the high accuracy of
the considered scheme. Concerning the limitation, in this particularly smooth isentropic case,
we note that the numerical errors are almost identical, see Table 2.8. The scheme remains
third-order accurate.

L1 L2 L∞
∆X EL1 qL1 EL2 qL2 EL∞ qL∞

1
50 9.81E-6 3.54 1.89E-4 3.69 6.72E-3 3.52
1

100 8.46E-7 3.33 1.46E-5 3.44 5.87E-4 3.38
1

200 8.38E-8 3.17 1.34E-6 3.23 5.64E-5 3.23
1

400 9.33E-9 3.08 1.43E-7 3.12 6.00E-6 3.13
1

800 1.10E-9 - 1.64E-8 - 6.85E-7 -

Table 2.8: Rate of convergence on the velocity for the third-order DG scheme with slope limiter
based on the linearized Riemann invariants, computed in the case of the Kidder isentropic
compression, on the [0.9, 1] domain, at time t = τ

2 with a CFL= 0.1.

In the two first chapters, we have presented a DG discretization using Taylor basis for solving
one and two-dimensional scalar conservations laws on general unstructured grids and also one-
dimensional gas dynamics equations written under Lagrangian form. Numerical flux has been
designed to enforce L2 stability and an entropy inequality in the case of gas dynamics equations.
A robust and accurate limitation procedure has been constructed, based on the polynomial
representation of the linearized Riemann invariants in the non-linear case. All these results have
been summarized in our article entitled Cell-centered discontinuous Galerkin discretizations
for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional
Lagrangian hydrodynamics, published in Computers & Fluids, refer to [104].
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Chapter 3

Cell-centered Finite Volume
Lagrangian scheme on moving mesh

This Chapter is dedicated to the study of multidimensional Lagrangian hydrodynamics. In the
first Section 3.1, we briefly recall the evolution of the researches based on the implementation of
numerical schemes for the Lagrangian hydrodynamics. In Section 3.2, we describe the important
concepts related to kinematics of fluid motion such as the Lagrangian and Eulerian formalisms
briefly introduced in the second chapter. Then in Section 3.3, we recall the first order cell-
centered EUCCLHYD scheme (Explicit Unstructured Lagrangian HYDrodynamics) developed
by Pierre-Henri Maire and Jérome Breil, which is a Lagrangian Finite Volume scheme on moving
mesh. This particular scheme in its first-order version is the corner stone of our DG formulation.
Let us emphasize that in its first-order version our DG method naturally recovers the first-order
EUCCLHYD scheme.

3.1 Cell-Centered Lagrangian scheme overview

Fluid dynamics can be described by two different formalisms: the Eulerian description and the
Lagrangian description. In the former, the conservation laws are written using a fixed reference
frame whereas in the latter they are written through the use of a moving reference frame that
follows the fluid motion. Lagrangian representation is particularly well adapted to describe
the time evolution of fluid flows contained in regions undergoing large shape changes due to
strong compressions or expansions. Moreover, in this representation, there is no mass flux
across the boundary surface of a control volume moving with the fluid velocity. Therefore, La-
grangian formalism provides a natural framework to track accurately material interfaces present
in multi-material compressible fluid flows. All these reasons lead to the use of the Lagrangian
description to model the compressible flows encountered in the context of Inertial Confinement
Fusion. Indeed, the hydrodynamic flow resulting from the implosion of an ICF target is a source
of very intense shock and rarefaction waves. The size of the domain occupied by the fluid varies
strongly over time. Furthermore, the target being composed of several distinct materials, this
type of flow generally contains several interfaces that need to be followed with accuracy during
implosion. Bearing this context in mind, our main motivation consists in deriving a robust and
accurate numerical method that solves the compressible gas dynamics equations written under
Lagrangian form. Before we proceed any further in the description of this method, we start by
presenting a brief historical overview about Lagrangian numerical methods. For a thoroughly
presentation of the classical computational methods in Lagrangian and Eulerian hydrocodes,
the interested reader may refer to the review paper of Benson [7].
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In contrast to Eulerian methods, classical Lagrangian methods are characterized by a moving
computational grid. Thus, in the Lagrangian framework, one has to discretize not only the
physical conservation laws but also the mesh motion. Moreover, the numerical fluxes of the
physical conservation laws must be determined in a compatible manner with the cell deforma-
tion. More precisely, the zone volume that is computed directly from its coordinates must be
equal to the zone volume that is deduced from solving the discrete volume equation, otherwise
called the Geometric Conservation Law (GCL). This critical requirement related to the GCL is
the cornerstone on which any proper multi-dimensional Lagrangian scheme should rely.

The most natural method to fulfill this requirement consists in employing a staggered discretiza-
tion wherein the velocity is located at the nodes whereas the thermodynamic variables (density,
pressure and specific internal energy) are defined at the cell center. This choice leads to solve
a partial differential equation for the specific internal energy. Although it is written under a
non-conservative form, the adding of an artificial viscosity term renders this equation compat-
ible with the Second Law of thermodynamics. This term, that mimics the physical viscosity,
ensures a proper transformation of kinetic energy into internal energy through shock waves.
The first staggered scheme has been introduced for one-dimensional flows by von Neumann and
Richtmyer during the 40’s in Los Alamos and published later in their seminal paper [105]. The
bi-dimensional extension to elastic-plastic flows has been derived by Wilkins in [107]. In its
initial version, this scheme did not conserve the total energy, in addition it was sensitive to
numerical spurious modes. Since two decades, many improvements have been done in order to
solve theses flaws. In their paper [19], Caramana and Shashkov show that with an appropriate
discretization of the subzonal forces resulting from subzonal pressures, hourglass motion and
spurious vorticity can be eliminated. The introduction of a compatible discretization of the
divergence and gradient operators leads to a compatible staggered scheme which conserves the
total energy [14, 18]. Regarding the artificial viscosity, its discretization has also been consid-
erably improved. First, by introducing formulations for multidimensional shock wave compu-
tations in [17] and then by using a discretization based on mimetic finite difference method in
[15, 68]. With all these improvements, staggered Lagrangian schemes are accurate and robust
numerical methods, which can produce impressive results, even on unstructured polygonal grids
[16]. We want also to mention the recent papers [13, 81] wherein two-dimensional staggered
discretizations are developed by constructing artificial viscosities which relies on the use of an
approximate Riemann solver.

Up to our knowledge, the interpretation of the staggered schemes of Wilkins and Goad [107, 41]
by means of the finite element method has been initially introduced by Lascaux at the be-
ginning of the 70’s in [61, 62]. This finite element interpretation has been further developed
producing various interesting staggered schemes. In [3], Barlow presents a compatible finite
element Lagrangian hydrodynamics algorithm used in a multi-material Arbitrary Lagrangian
Eulerian (ALE) strategy. We also note the development of a variational multi-scale stabilized
approach in finite element computation of Lagrangian hydrodynamics, where a piecewise linear
approximation was adopted for the variables [93, 92]. The case of Q1/P0 finite element is stud-
ied in [95], where the kinematic variables are represented using a piecewise linear continuous
approximation, while the thermodynamic variables utilize a piecewise constant representation.
More recently, a high-order extension of the staggered discretization based on a curvilinear fi-
nite element method has been derived in [34, 35]. The corresponding artificial viscosity being
described in [57]. This particular scheme has proved to be highly capable producing impressive
results.
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As motioned by Barlow in [4], the staggered grid schemes employed in most hydro-codes have
been remarkably successful over the past decades in solving complex multi-dimensional com-
pressible fluid flows. However, they clearly have some theoretical and practical deficiencies.
Mesh imprinting and symmetry breaking are important examples. The need to use artificial
viscosities, hourglass filters and sub-zonal pressure schemes is also undesirable. A staggered
scheme is also inelegant as all variables are not conserved over the same space. High resolution
cell-centered Lagrangian Godunov schemes can overcome some of these problems. In contrast
to staggered approach, these conservative schemes are based on a cell-centered placement of all
the fluid variables and solve the total energy equation. The numerical face fluxes are determined
by means of one-dimensional approximate Riemann solvers in the direction normal to the cell
interface. The main difficulty lies in the definition of consistent Lagrangian nodal velocities
with which to move the computational mesh. This probably explains why progress has been
slow in extending these ideas to Lagrangian schemes, while Eulerian Godunov methods have
been well established for a long time.

A first attempt has been done by Dukowicz and co-workers while developing CAVEAT code in
Los Alamos during the 80’s. In [2] they proposed to use a weighted least squares algorithm to
compute the vertex velocity by requiring that the vertex velocity projected in the direction of a
face normal should equal the normal velocity resulting from the approximate Riemann solver.
It turns out that this algorithm is capable of generating additional spurious components in the
vertex velocity field. Thus, it leads to an artificial grid motion which requires a very expensive
treatment [36]. This flaw follows from the fact that the volume flux is not compatible with the
node motion in the sense that the GCL is not satisfied.

A solution to circumvent this problem consists in deriving cell-centered discretizations based on
a total Lagrangian formulation of the gas dynamics equations. That it is, a formulation wherein
the divergence and gradient operators are expressed in terms of the Lagrangian coordinates. In
this framework, the computational grid is fixed, however one has to follow the time evolution of
the Jacobian matrix, also called deformation gradient tensor, associated to the Lagrange-Euler
flow map. In addition, a new difficulty arises due to the fact that the gas dynamics system
written under total Lagrangian form is only weakly hyperbolic [50, 70, 83, 33, 31]. This loss of
strict hyperbolicity is related to the supplementary conservation law that results from the time
evolution of the deformation gradient tensor. Following this approach, a Lagrangian Discontin-
uous Galerkin-type method has been successfully developed in [1, 70]. The research presented
in the present manuscript was strongly inspired by the work done by Loubère during his PhD
thesis, supervised by Abgrall and Ovadia, and can be viewed as its natural extension. However,
the use of this method is limited to a representation in the initial configuration since it cannot
be rigorously interpreted as a moving mesh method. This was due to the loss of compatibil-
ity between the two configurations based on Eulerian and Lagrangian coordinates. This issue
has been addressed by Després and Mazeran in their seminal paper [33] where they propose
a first-order cell-centered discretization of the gas dynamics equations that can be written in
both total and updated Lagrangian forms thus leading to a moving mesh finite volume scheme
which satisfies exactly the GCL. The numerical fluxes are defined at the node in the following
manner: there is a unique nodal velocity and one nodal pressure per each cell surrounding the
node. These fluxes are computed through the use of a node-centered approximate Riemann
solver. This scheme conserves the momentum and the total energy and also satisfies an entropy
inequality. It has been called GLACE in [20] where a high-order multi-dimensional extension
is provided, the acronym GLACE being shorthand for Godunov-type LAgrangian scheme Con-
servative for total Energy. A thorough study of the properties of the GLACE node-centered
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solver reveals a strong sensitivity to the cell aspect ratio which can leads to severe numer-
ical instabilities [89]. This problem is critical for ICF Lagrangian simulations characterized
by computational grids that frequently contain very high aspect ratio cells. To overcome this
difficulty, Maire, Abgrall and Breil have proposed an alternative scheme [78] that successfully
solves the cell aspect ratio problem and keeps the compatibility between fluxes discretization
and vertices velocity computation. This first-order scheme is also characterized by node-based
fluxes, it conserves the momentum and the total energy, and fulfills a local entropy inequality.
Its main feature lies in the discretization of the pressure gradient, which is designed using two
pressures at each node of a cell, each nodal pressure being associated with the direction of the
unit outward normals related to the edges originating from the node. These nodal pressures are
linked to the nodal velocity thanks to approximate Riemann invariants. This scheme, which
is called EUCCLHYD (Explicit Unstructured Cell-Centered Lagrangian HYDrodynamics), has
been extended to higher order using first a classical MUSCL-type approach [79], and then a pro-
longation of works initiated by Ben-Artzi and Falcovitz [6] concerning the Generalized Riemann
Problem [74]. The application of this scheme to the tri-dimensional geometry is presented in
[82]. The extension to the bi-dimensional axisymmetric geometry is described in [73]; this latter
version being absolutely necessary for simulations of a spherical ICF target implosion. More
recently, the concept of sub-cell forces which has been initially introduced in the context of stag-
gered discretization [18] has been extended to cell-centered schemes. This formulation covers
different centered schemes proposed previously and is described in [75, 76]. This framework,
adapted here to cell-centered discretization, should provide deeper understanding of relations
between cell-centered and staggered Lagrangian schemes. Note that this formulation has quite
a lot in common with the approach taken very recently in [4]. In this work, the author also
draws an analogy between forces and the momentum fluxes in the momentum equation and
uses this to produce a total energy conservation equation expressed in work form as it is has
been done in [75], which allows the total energy to be evolved for forces which include terms
that appear as a pressure average and a linear vector artificial viscosity.

In [55, 56], Kluth and Després have developed a cell-centered Lagrangian scheme on unstructured
mesh for hyperelasticity. This method is based on the GLACE scheme [20] for compressible gas
dynamics. They make use of the multiplicative decomposition of the gradient of deformation
and the entropy property to derive their scheme. They also prove the compatibility of this dis-
cretization with the discretization of the specific volume. The present work on the discretization
of the flow map and of the deformation gradient tensor has also been motivated by the research
made by Kluth and Després. Thus, the development of our high-order cell-centered DG schemes
presents a lot of similarities with the work presented in [55, 56].

Following the approach described in [1, 70], a high-order discontinuous Galerkin spectral fi-
nite element method has been developed for solving the gas dynamics equations under total
Lagrangian formalism [51]. The nodal solver uses the HLLC approximate Riemann solver to
compute the velocities of the vertex, and a HWENO (Hermite WENO) reconstruction algo-
rithm is developed and used as limiters for the RKDG time discretization. However, the Piola
compatibility condition is not ensured properly. This is due to the loss of consistency in the
definition of the deformation gradient tensor in the cells and on the boundaries of the cells.
Moreover, the deformation tensor being discretized by means of a Finite Volume method over
the cells, this scheme is limited to the representation of computational meshes with straight-line
edges. Last, it is worth pointing out the recent work presented in [87, 10] which consists in a
high-order curvilinear finite volume method that solves the Lagrangian gas dynamics. In [10],
a first-order Finite Volume scheme has been developed on total unstructured meshes wherein
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the cell interfaces are parametrized by conicals. This original GCL satisfying approach relies
on a weak formulation to compute the nodal velocity using an acoustic Riemann solver approx-
imation. Let us emphasize that in its first-order version this method naturally recovers the
first-order EUCCLHYD scheme.

In parallel, other type of Lagrangian schemes have been developed by Cheng and Shu during
the past years. In [21], they present Lagrangian type schemes for solving the Euler equations
of compressible gas dynamics both in the Cartesian and in the cylindrical coordinates. These
schemes are based on high-order ENO reconstruction. In these particular schemes, the physical
variables are computed through the use of a high-order ENO conservative reconstruction wherein
the fluxes are evaluated by means of three different typical numerical fluxes (Godunov flux, LF
flux and HLLC flux). The determination of the vertex velocity is obtained from the conserved
variables. The time discretization is performed through a TVD Runge-Kutta type method. In
[22], they demonstrate that the accuracy degeneracy phenomenon observed for the high-order
Lagrangian type scheme is due to the error from the quadrilateral mesh with straight-line edges,
which restricts the accuracy of the resulting scheme to at most second-order. Thus, in [22] they
extend the discretization presented in [21] to the third-order on curvilinear meshes. The accu-
racy test given in this paper shows that the third-order Lagrangian type scheme can actually
obtain uniformly third-order accuracy even on distorted meshes by using curvilinear meshes.
These particular Lagrangian type schemes have proved their high capability over a large number
of test cases. However, the GCL inherent to the Lagrangian formalism is not taken into account
in the discretization of physical variables. In [69], they present the Lax-Wendroff (LW) type
time discretization applied on their high-order ENO Lagrangian type scheme. Comparing with
the Runge-Kutta time discretization procedure, an advantage of the LW time discretization is
the apparent saving in computational cost and memory requirement. They also described in [23]
an extension of their scheme to cylindrical geometry through a discretization on the true volume.

We conclude this review by saying that cell-centered finite volume schemes [20, 74] that fulfill the
GCL compatibility requirement seem to be a promising alternative to the usual staggered finite
difference discretizations [18] for compressible Lagrangian hydrodynamics. These cell-centered
Godunov-type discretizations exhibit the good property of being naturally conservative. This
point is of great importance since convergent conservative schemes are known to converge to
weak solutions in the presence of shocks by the Lax-Wendroff theorem [63]. Furthermore, they
do not require the use of an artificial viscosity since the numerical dissipation built in the ap-
proximate Riemann solver automatically converts kinetic energy into internal energy through
shock waves. Last, these cell-centered schemes allow a straightforward implementation of con-
servative remapping methods when they are used in the context of the Arbitrary Lagrangian
Eulerian (ALE) strategy.
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3.2 Lagrangian and Eulerian descriptions

The aim of this section is to recall briefly the main notions of kinematics required to introduced
the Lagrangian and Eulerian descriptions, see [48].

3.2.1 Notations

Let us introduce the d-dimensional Euclidean space Rd, where d is an integer ranging from 1 to
3. Let D be a region of Rd filled by a moving fluid. The fluid flow is described mathematically
by the continuous transformation, Φ, of D into itself as

Φ : X −→ x = Φ(X, t). (3.1)

Here, t, which is a non-negative real number, denotes the time and X = (X,Y, Z) is the position
a time t = 0 of a particle moving with the fluid which occupies the position x at time t > 0. It
turns out that x is determined as a function of X and t, and the fluid flow is represented by
the transformation x = Φ(X, t). By definition Φ satisfies Φ(X, 0) = X. For a fixed X, the
time evolution of (3.1) describes the trajectory of a fluid particle initially located at X. Let us
consider ω = ω(t) a moving sub-region of D at time t. ω corresponds to the image of a fixed
sub-region Ω in the flow map with ω = {x = Φ(X, t)|X ∈ Ω}. The boundaries of ω and Ω are
respectively ∂ω and ∂Ω, and their unit outward normals are n and N , refer to Figure 3.1.
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x = Φ(X, t)
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X

N

Ω

ω

∂Ω ∂ω
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Figure 3.1: Notation for the flow map.

At this point, we can introduce the two usual descriptions of the flows, namely the Lagrangian
description and the Eulerian description. The Lagrangian description, otherwise called material
description, consists in observing the fluid by following the motion of fluid particles from their
initial location. The independent variables used for this description are (X, t). On the other
hand the Eulerian description, otherwise called spatial description, consists in observing the
fluid at fixed locations in the space. The independent variables used for this description are
(x, t). We notice that through the use of the transformation (3.1) any fluid quantity f which
is expressed in terms of Eulerian variables (x, t) can also be expressed in terms of Lagrangian
variables (X, t) and conversely. To emphasize the used variables and for the sake of conciseness,
the same notation is used to denote the value of the physical quantity regardless the employed
description

f = f(x, t) = f(Φ(X, t), t) = f(X, t). (3.2)
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To be more precise, f(X, t) is the value of the physical quantity experienced at time t by the
fluid article initially located at X whereas f(x, t) is the value of f experienced by the fluid
particle which is located at position x at time t.

3.2.2 Material time derivative

Let f be a fluid variable with a sufficient smoothness to allow the computation of its first
partial derivatives with respect to both Lagrangian and Eulerian variables. First, we introduce
the material derivative of f which measures the rate of change of f following a fluid particle
along its motion as

d f

dt
≡ ∂

∂t
f(X, t). (3.3)

Note that it corresponds to the partial time derivative in the Lagrangian description. The
velocity of a fluid particle is denoted U and is defined as the material derivative of the position
vector x

U(X, t) =
dx

dt
. (3.4)

As defined, U is a function of the Lagrangian variables, however it is possible to also express it
in terms of the Eulerian variables writing U = U(x, t). Knowing the velocity field expressed in
terms of the Eulerian coordinates, it is thus possible to determine the fluid flow by solving the
system of ordinary differential equations

dx

dt
= U(x, t), x(X, 0) = X, (3.5)

which corresponds to the trajectory equations of the fluid flow. Considering the physical quan-
tity f expressed in terms of the Eulerian variables, that is f = f(x, t), we compute its material
derivative employing (3.2) and the chain rule of composite derivative to get

d f

dt
=
∂ f

∂t
+

(
dx

dt

)
�∇xf, (3.6)

where ∇x denotes the gradient operator with respect to Eulerian coordinates, which writes in
the chosen coordinate system as ∇xf = ( ∂

∂xf,
∂
∂yf,

∂
∂zf)t. Substituting the velocity definition

into (3.6) leads to

d f

dt
=
∂ f

∂t
+U �∇xf. (3.7)

This last equation may be interpreted as expressing the time rate of change of an arbitrary
physical quantity f = f(x, t) apparent to a observer located on the moving particle instanta-
neously at the position x. Let f denotes a vector valued function, we compute its material
derivative applying (3.7) componentwise to finally get

df

dt
=
∂ f

∂t
+ (∇xf)U , (3.8)

where ∇xf represents the gradient tensor defined by (A.25).
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3.2.3 Deformation gradient tensor

Let X0 be the initial position vector of a specific fluid particle. Its image in the fluid flow
transformation writes x0 = Φ(X0, t). Let x = Φ(X, t) denotes the vector position of a fluid
particle at time t which was initially located in the vicinity ofX0. A first-order Taylor expansion
of the transformation Φ in Lagrangian variables yields

x = Φ(X0 +X −X0, t),

= Φ(X0) +∇XΦ(X0)(X −X0) +O(|X −X0|2).

Here, ∇XΦ denotes the gradient tensor of Φ with respect to the Lagrangian coordinates, it
represents the Jacobian matrix of the transformation characterizing the fluid flow. This Jacobian
matrix is also named the deformation gradient tensor and is defined as

F = ∇XΦ = ∇Xx. (3.9)

With the use of the trajectory equation (3.5), the deformation gradient tensor definition (3.9)
yields an equation on time rate of change of F

dF

dt
= ∇XU . (3.10)

This equation characterizes the time evolution of the Jacobian matrix. Now, we compute the
material time derivative of the determinant of this Jacobian matrix. Knowing that J = detF ,
we make use of the chain rule of composed derivatives (A.27) in the following manner

d J

dt
=

∂

∂F
(detF) :

dF

dt
,

= (detF)F−t :
dF

dt
, thanks to (A.28)

= JF−t :
dF

dt
. (3.11)

Let us point out that if S and T are two arbitrary second-order tensors, their inner product is
defined by S : T = tr(StT), refer to Appendix A.1.3. This relation expresses the time evolution
of the Jacobian J by means of the material derivative of the deformations gradient tensor. Using
(3.10), this relations yields

d J

dt
= JF−t : ∇XU ,
= JF−t : (∇xU) (∇Xx) ,

= JF−tFt : ∇xU , thanks to (3.9) and (A.18a)

= J tr(∇xU).

Noticing that the right-hand side of the last line in the previous equation is proportional to the
trace of the velocity gradient tensor which is nothing but the divergence of the velocity field
(refer to (A.30)), material derivative of the determinant of the Jacobian matrix finally reads

d J

dt
= J∇x �U . (3.12)

Here ∇x �U denotes the divergence of the velocity with respect to Eulerian coordinates, which
writes in the chosen coordinate system ∇x � U = ∂u

∂x + ∂v
∂y + ∂w

∂z , where (u, v, w) denote the
components of the velocity field.
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3.2.4 Transformation formulas

Let dV and dX denote a Lagrangian volume element and an infinitesimal displacement, and
dv and dx their corresponding quantities in the Eulerian space through the transformation of
the flow. These volumes and displacements can be related through the following formulas

dv = JdV, (3.13)

dx = FdX. (3.14)

These formulas show that the Jacobian is a measure of the volume change, and the deformation
gradient tensor quantifies the change of shape of infinitesimal vectors through the fluid motion.
Knowing that the Eulerian and Lagrangian volume elements are related by (3.13), we introduce
the Nanson formula which relates Eulerian and Lagrangian area elements.

dx
dX dV

dv
nds

NdS
Φ

Figure 3.2: Area elements transformation.

Let us consider the volume element dV , refer to Figure 3.2, computed as the infinitesimal volume
corresponding to the cylinder characterized by the base dS and the displacement vector dX

dV = dX �NdS. (3.15)

Using the same reasoning, the corresponding volume element in the Eulerian space writes as

dv = dx � nds. (3.16)

Substituting dv = JdV and dx = FdX in equations (3.15) and (3.16), we obtain

JNdS � dX = FdX � nds,

= Ftnds � dX.

Since this equality holds for an arbitrary displacement vector dX, we obtain

nds = JF−tNdS. (3.17)

This formula expresses the transport of an oriented area element through the flow deformation.
It is known as the Nanson formula and is one of the main ingredient to derive the Lagrangian
forms of the conservation laws of fluid mechanics. The integration of the left-hand side of
equation (3.17) over the boundary of a Lagrangian fluid volume gives the well known geometric
interpretation following

∫

∂ω
nds = 0,
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which means that the integral of the unit outward normal over a close surface is equal to zero.
Substituting (3.17) in this last formula yields

∫

∂Ω
JF−tNdS =

∫

Ω
∇X � (JF−t) dV = 0. (3.18)

Since this relation holds for any Lagrangian fluid volume Ω, this geometric interpretation
rewrites

∇X � (JF−t) = 0. (3.19)

This is the Piola identity which is well known in continuum mechanics [84, 94]. It ensures the
compatibility between the two configurations based on Eulerian and Lagrangian coordinates.

3.2.5 Reynolds transport formula

Let ω = ω(t) denotes an arbitrary moving volume and let f(x, t) be a scalar valued function
representing some physical quantity. Transport formula consists in expressing the time rate of
change of the integral of the physical quantity f over the moving volume ω, i.e,

d

dt

∫

ω(t)
f(x, t) dv. (3.20)

Here, we derive the Reynolds transport formula which corresponds to a volume moving with
the fluid velocity. We consider f = f(x, t) as a continuously differentiable function over the
region ω moving with the fluid velocity U . Since ω is time-dependent, we cannot compute the
time derivative (3.20) directly. To do so, we shall use the following change of variables

∫

ω
f(x, t) dv =

∫

Ω
f(X, t)J dV. (3.21)

In writing this equality, we have introduced the fixed Lagrangian coordinate, X, as new variable
of integration and used the fact that for this change of variable the change of volume element is
ruled by (3.13). The initial volume occupied by the fluid, Ω is mapped into ω at time t through
the flow transformation, i.e., ω = Φ(Ω, t). Thanks to the above change of variables, we can
compute the time derivative (3.20) as follows

d

dt

∫

ω
f(x, t) dv =

∫

Ω

(
J

d f

dt
+ f

d J

dt

)
dV,

=

∫

Ω
J

(
d f

dt
+ f∇x �U

)
dV, thanks to (3.12)

=

∫

ω

(
d f

dt
+ f∇x �U

)
dv. thanks to (3.13)

Substituting the definition of the material derivative (3.7) in the right-hand side of the last line
leads to the transport theorem otherwise named the Reynolds transport formula

d

dt

∫

ω
f(x, t) dv =

∫

ω

(
∂ f

∂t
+∇x � (fU)

)
dv. (3.22)

Through the use of the divergence theorem (A.34b), Reynolds transport formula can also be
written under the following form

d

dt

∫

ω
f(x, t) dv =

∫

ω

∂ f

∂t
dv +

∫

∂ω
fU � nds, (3.23)
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where n denotes the outward unit normal to the boundary ∂ω. This equation states that the
rate of increase of the total amount of f attached to the moving volume ω is balanced by the rate
of increase of the total amount of f inside ω plus the net rate of outward flux of f transferred
by the fluid through the boundary ∂ω.

To extend the Reynolds transport formula to the vector valued function f , we proceed with the
computation of the time derivative of its volume integral as before

d

dt

∫

ω
f(x, t) dv =

∫

Ω
J

(
df

dt
+ f∇x �U

)
dV,

=

∫

ω

(
df

dt
+ f∇x �U

)
dv,

=

∫

ω

(
∂ f

∂t
+ (∇xf)U + f∇x �U

)
dv. thanks to (3.8)

The use of tensor identity (A.32b) in the right-hand side of the last line yields the vector form
of the transport formula

d

dt

∫

ω
f(x, t) dv =

∫

ω

(
∂ f

∂t
+∇x � (f ⊗U)

)
dv, (3.24)

where symbol ⊗ denotes the tensor product of two vectors defined by (A.1) and (A.2). Pro-
ceeding with the divergence theorem (A.34a) as before yields

d

dt

∫

ω
f(x, t) dv =

∫

ω

∂ f

∂t
dv +

∫

∂ω
f(U � n) ds. (3.25)

A straightforward application of the Reynolds transport formula consists in deriving the conti-
nuity equation from the principle of mass conservation. This fundamental principle corresponds
to the postulate that the mass of fluid in a material volume ω does not change as ω moves with
the fluid. Let ρ = ρ(x, t) denotes the mass density of the fluid, i.e., the mass per unit volume.
Mass conservation writes as

d

dt

∫

ω
ρ(x, t) dv = 0. (3.26)

Expressing the integrand in terms of the Lagrangian coordinate and integrating between initial
and final time yields

∫

ω
ρ(x, t) dv =

∫

Ω
ρ(X, t)J dV,

=

∫

Ω
ρ0(X) dV,

where ρ0 is the initial density field. From this equation, it follows easily that

d

dt
(ρJ) = 0, (3.27a)

ρJ = ρ0. (3.27b)

Here, we have derived two forms of the Lagrangian equation of continuity. Combining (3.22)
for f = ρ and (3.26), we derive the Eulerian equation of continuity in its integral form

∫

ω

(
∂ ρ

∂t
+∇x � (ρU)

)
dv = 0.
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Since ω is an arbitrary volume, this last equation implies

∂ ρ

∂t
+∇x � (ρU) = 0, (3.28)

which is the local form of the Eulerian equation of continuity. It is a necessary and sufficient
condition for a motion to conserve the mass of each moving fluid volume. A by-product of the
transport theorem and mass conservation is obtained by computing the time rate of change of
the integral over a moving volume of the density times an arbitrary function

d

dt

∫

ω
ρf dv =

d

dt

∫

Ω
ρJf dV

=

∫

Ω
ρJ

d f

dt
dV. thanks to (3.27a)

Coming back to the Eulerian coordinates in the right-hand side of the last line, we finally get

d

dt

∫

ω
ρf dv =

∫

ω
ρ

d f

dt
dv. (3.29)

This formula, which is also valid for vector valued function, will be of great interest in the
development of the gas dynamics equations in Lagrangian integral form.

3.2.6 Eulerian and Lagrangian form of the gas dynamics equations

Here, we summarize the conservation laws which govern the time evolution of mass, volume,
momentum and total energy of a moving fluid domain. The gas dynamics equations, otherwise
named Euler equations, characterize fluids in which viscous stress and heat conduction are
negligible. Here we recall the integral Eulerian form of the gas dynamics equations

d

dt

∫

ω
ρdv = 0, (3.30a)

d

dt

∫

ω
dv −

∫

∂ω
U � nds = 0, (3.30b)

d

dt

∫

ω
ρU dv +

∫

∂ω
Pnds = 0, (3.30c)

d

dt

∫

ω
ρE dv +

∫

∂ω
PU � nds = 0. (3.30d)

We point out that this Eulerian integral form of the gas dynamics conservation laws is also re-
ferred as to the integral updated Lagrangian formulation. Knowing that the previous equations
hold for any arbitrary moving fluid volume, we deduce that the local form of the gas dynamics
equations with respect to the spatial (Eulerian) configuration writes

∂ ρ

∂t
+∇x � (ρU) = 0, (3.31a)

∂

∂t
(ρU) +∇x � (ρU ⊗U) + ∇xP = 0, (3.31b)

∂

∂t
(ρE) +∇x � (ρEU) +∇x � (PU) = 0, (3.31c)

where ρ is the density of the fluid, U its velocity and E its total energy.
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The thermodynamic closure of this system is obtained through the use of an equation of state,
which writes P = P (ρ, ε) where ε is the specific internal energy, ε = E − U2

2 . For numerical
application, again we use a gamma gas law, i.e., P = ρ(γ − 1)ε where γ is the polytropic index
of the gas.

Now, if we want to write the gas dynamics equations in the Lagrangian form, we make use
of the material derivative definition (3.7) to rewrite the equations of (3.31). For smooth fluid
variables, gas dynamics equations can also be written under the non-conservative form

ρ
d

dt
(
1

ρ
)−∇x �U = 0, (3.32a)

ρ
dU

dt
+ ∇xP = 0, (3.32b)

ρ
dE

dt
+∇x � (PU) = 0, (3.32c)

This Lagrangian gas dynamics system of equations is written using the Eulerian coordinates
x. Thus, this Lagrangian form of the conservation laws are based on the moving configura-
tion of the flow. Recalling the mass conservation (3.27b), we remark that the equation on the
specific volume (3.32a) reduces to the equation of the material derivative of the Jacobian (3.12).

Another Lagrangian form of the gas dynamics equations comes from the development of the
differential operators on the Lagrangian coordinates X. In this frame, the system variables are
expressed in terms of Lagrangian coordinates, and thus are based on the initial configuration of
the flow. To obtain this local Lagrangian form of the conservation laws, we have to transform
the divergence and gradient operators between Eulerian and Lagrangian configurations. Let us
consider a vector U = U(x, t) and a scalar function P = P (x, t) which are expressed in terms
of the spatial coordinates. Let us recall the definition of the divergence and gradient operators
with respect to Eulerian coordinates

∇x �U =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
, ∇xP = (

∂P

∂x
,
∂P

∂y
,
∂P

∂z
)t.

where (u, v, w) denotes the components of the velocity field in the orthogonal coordinate sys-
tem (x, y, z). Here, subscript x emphasizes the fact that the divergence and gradient operators
are expressed with respect to Eulerian coordinates. Now, if we consider U and P as func-
tions expressed in terms of Lagrangian coordinates, then we define the divergence and gradient
operators with respect to Lagrangian coordinates as follows

∇X �U =
∂u

∂X
+
∂v

∂Y
+
∂w

∂Z
, ∇XP = (

∂P

∂X
,
∂P

∂Y
,
∂P

∂Z
)t.

Divergence operator transformation. We investigate how the divergence operator trans-
forms when pulling back to the Lagrangian configuration. To this end, we apply the divergence
theorem twice as follows∫

ω
∇x �U dv =

∫

∂ω
U � nds

=

∫

∂Ω
U � JF−tN dS thanks to (3.17)

=

∫

∂Ω
JF−1U �N dS

=

∫

Ω
∇X � (JF−1U) dV.
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Coming back to the Lagrangian coordinates in the left-hand side of the previous equation, one
gets

∫

ω
∇x �U dv =

∫

Ω
J∇x �U dV.

The combination of the previous results leads to

∫

Ω
J∇x �U dV =

∫

Ω
∇X � (JF−1U) dV.

Since this formula is valid for any arbitrary volume Ω, we deduce the final formula which
expresses the transformation of the divergence operator into the Lagrangian configuration

∇x �U =
1

J
∇X � (JF−1U). (3.33)

Now, developing the right-hand side of (3.33) through the use of identity (A.32a) yields

∇x �U =
1

J
∇X � (JF−t) �U + F−1 : ∇XU .

If U is an arbitrary constant vector, the previous identity yields

∇X � (JF−t) = 0,

which is nothing but the Piola identity (3.19).

Gradient operator transformation. We express the relation between the gradient operator
expressed in terms of Eulerian coordinates and its counterpart expressed in terms of Lagrangian
coordinates. To this end, we apply an identical procedure to the one used for the divergence

∫

ω
∇xP dv =

∫

∂ω
Pnds,

=

∫

∂Ω
P JF−tN dS, thanks to (3.17)

=

∫

Ω
∇X � (P JF−t) dV.

Recalling that dv = JdV , we finally obtain

∇xP =
1

J
∇X � (P JF−t). (3.34)

Developing the right-hand side, employing tensor identity (A.32d) and the Piola identity (3.19),
we finally obtain the following variant of (3.34) which relates the gradient operator in both
configuration as

∇xP = F−t∇XP. (3.35)

Note this last result could have been obtained employing the chain rule of composed derivatives.
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Local Lagrangian gas dynamics system. At this time, using the definitions of the diver-
gence (3.33) and gradient (3.34) operators expressed with respect to the Lagrangian coordinates,
it is possible to write (3.32) in its total Lagrangian form

dF

dt
= ∇XU , (3.36a)

ρ0 d

dt
(
1

ρ
)−∇X � (JF−1U) = 0, (3.36b)

ρ0 dU

dt
+∇X � (P JF−t) = 0, (3.36c)

ρ0 dE

dt
+∇X � (JF−1PU) = 0, (3.36d)

where J = detF is the Jacobian of F.

Remark 1 The gas dynamics system written under total Lagrangian form (3.36) is only weakly
hyperbolic [50, 70, 83, 33, 31]. This loss of strict hyperbolicity is related to the supplementary
conservation law that results from the time evolution of the deformation gradient tensor (3.36a).
We also note that (3.36b) derives from equation (3.36a) by means of equation (3.11).

Working with the initial position of fluid particles, the analysis is done on the fixed initial
domain. However, the informations concerning the domain displacement and deformation are
contained in the tensor F. The deformation gradient tensor is the geometry contribution to this
gas dynamics system. It helps us to pass from the initial configuration of the flow to the actual
one. To ensure the compatibility between these two configurations, the following relation must
hold

∇X × F = 0, (3.37)

where ∇X× denotes the curl operator. This relation ensures that the deformation gradient
tensor derived from a gradient.

In the next section, we present the two-dimensional Lagrangian hydrodynamics cell-centered
scheme EUCCLHYD on unstructured grids which meets the compatibility GCL requirement.
For a general polygonal grid, the discrete equations that govern the time rate of change of
volume, momentum and total energy are obtained by means of a control volume formulation
of the gas dynamics equations written using a cell-centered placement of the physical variables.
The motion of the vertices of the grid is deduced from the trajectory equations, once the
vertex velocity is defined. The general formalism presented relies on a sub-cell force-based
discretization wherein the sub-cell force form is determined in such a manner that the resulting
scheme satisfies an entropy inequality. Invoking the fundamental conservation principles of
the momentum and the total energy leads to the construction of a node-centered solver that
determines the nodal velocity. This particular scheme in its first-order version is the corner
stone of our DG formulation presented in Chapter 4, our DG method naturally recovering the
first-order EUCCLHYD scheme.
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3.3 First-order cell-centered Lagrangian scheme: EUCCLHYD

This section aims at providing a finite volume discretization of the system of gas dynamics
equations (3.32) using the concepts of sub-cell force and compatible discretization which have
been initially introduced in [18] for Lagrangian hydrodynamics in the framework of staggered
discretization.

3.3.1 Control volume form of the gas dynamics equations

Let D be an open set of R2, filled with an inviscid fluid and equipped with the orthonormal
frame (0, x, y) and the orthonormal basis (ex, ey) which is naturally completed by the unit
vector ez = ex × ey. We want to develop a finite volume discretization of the gas dynamics
equations (3.30). This formulation of the equations, which consists in following a control volume
moving with the material velocity, writes

d

dt

∫

ω(t)
dv −

∫

∂ω(t)
U � nds = 0, (3.38a)

d

dt

∫

ω(t)
ρU dv +

∫

∂ω(t)
Pnds = 0, (3.38b)

d

dt

∫

ω(t)
ρE dv +

∫

∂ω(t)
PU � nds = 0. (3.38c)

Here, ω(t) is the moving control volume and ∂ω(t) its boundary surface, whose unit outward
normal is n. Equations (3.38a)-(3.38c) express the conservation of volume, momentum and
total energy. Obviously, the mass of the control volume ω(t) is conserved

d

dt

∫

ω(t)
ρdv = 0. (3.39)

We note that first equation of system (3.38) expresses the time rate of change of the volume of
the fluid and is often named Geometric Conservation Law (GCL). It is strongly linked to the
trajectory equation

dx

dt
= U(x(t), t), x(0) = X, (3.40)

where x = x(t) is the position vector of a material point at time t > 0, which was initially
located at X.

Let us remark that the integral form of the conservation laws (3.38) has been obtained utiliz-
ing the transport relation (3.29),i.e., d

dt

∫
ω ρf dv =

∫
ω ρ

d f
dt dv, which is a consequence of the

Reynolds transport relation [48] and mass conservation.

3.3.2 Compatible cell-centered discretization

We discretize the previous set of equations over a domain which is paved using a set of polygonal
cells without gaps or overlaps. Let us introduce the notation and the assumptions that are
necessary to develop our cell-centered discretization.
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Figure 3.3: Notation for a polygonal cell.

Notation and assumptions

Each polygonal cell is assigned a unique index ωc and is denoted by ωc(t). A generic point
(vertex) is labeled by the index p, its corresponding position vector is xp. For a cell ωc, we
introduce the set P(c) which is the counterclockwise ordered list of points of cell ωc. Conversely,
for a given point p, we introduce the set C(p) containing the cells that surround point p. Being
given p ∈ P(c), p− and p+ are the previous and next points with respect to p in the ordered list
of vertices of cell ωc. The length and the unit outward normal related to the edge [p, p+] are
lpp+ and npp+ , refer to Fig. 3.3. The control volume formulation (3.38) applied to the polygonal
cell ωc(t) leads to

mc
d

dt
(

1

ρc
)−

∫

∂ωc(t)
U � n ds = 0, (3.41a)

mc
dUc
dt

+

∫

∂ωc(t)
Pn ds = 0, (3.41b)

mc
dEc
dt

+

∫

∂ωc(t)
PU � nds = 0. (3.41c)

Here, ∂ωc(t) is the boundary of the cell ωc(t) and mc denotes the mass of the polygonal cell,
which is constant according to (3.39). For a flow variable φ, we have defined its mass averaged
value over the cell ωc(t) as

φc =
1

mc

∫

ωc(t)
ρφ dv.

We notice that the first equation corresponds to the GCL since mc = ρcvc where vc is the
volume of cell ωc. We have obtained a set of semi-discrete evolution equations for the primary
variables ( 1

ρc
,Uc, Ec) whose thermodynamic closure is given by the equation of state

Pc = P (ρc, εc), where εc = Ec −
1

2
U2
c . (3.42)

The motion of the grid is ruled by the semi-discrete trajectory equation written at each point

dxp
dt

= Up(xp(t), t), xp(0) = Xp. (3.43)
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Figure 3.4: Triangulation of the polygonal cell ωc.

To achieve the discretization, it remains not only to compute the numerical fluxes related to
volume, momentum and total energy but also to determine the nodal velocity to compute the
grid motion.

Geometric Conservation Law compatibility

Here, the expression GCL compatibility means that we are deriving a discrete divergence oper-
ator for the volume equation (3.38a) by requiring consistency of the divergence of the velocity
field with the time rate of change of volume of a cell [32]. Noticing that mc = ρcvc, equation
(3.41a) rewrites

d vc
dt

=

∫

∂ωc(t)
U � n ds. (3.44)

This equations states that the time rate of change of the cell volume vc must be equal to the
volume swept by the element boundary during its displacement with the flow velocity. Assuming
that the volume vc(t) in the left-hand side can be computed exactly, this amounts to requiring
the exact computation of the volume flux in the right-hand side also. In this manner, we obtain
a compatible discretization of the volume flux. Using the triangulation displayed in Fig. 3.4,
the polygonal cell volume writes

vc(t) =
1

2

∑

p∈P(c)

[
xp(t)× xp+(t)

]
� ez. (3.45)

We remark that the volume is expressed as a function of the position vectors of its vertices.
Using the chain rule derivative, time differentiation of equation (3.45) yields

d vc
dt

=
∑

p∈P(c)

∇xpvc �
d

dt
xp,

where ∇xpvc is the gradient of the cell volume according to the position vector xp. This gradient
is computed directly through the use of (3.45)

∇xpvc =
1

2
∇xp

[
(xp+ − xp−)× ez � xp

]

=
1

2
(xp+ − xp−)× ez.
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We define the normal vector at corner pc by setting

lpcnpc = ∇xpvc =
1

2
(xp+ − xp−)× ez, (3.46)

where the length, lpc, is determined knowing that n2
pc = 1. We notice that this corner vector

can be expressed in terms of the two outward normals impinging at node p as

lpcnpc =
1

2
(lp−pnp−p + lpp+npp+), (3.47)

where lp−p and np−p are the length and the unit outward normal related to the edge [p−, p]
whereas lpp+ and npp+ are the length and the unit outward normal related to the edge [p, p+],
refer to Fig. 3.3. It turns out that the corner vector lpcnpc is the fundamental geometric object
that allows to define uniquely the time rate of change of cell volume as

d vc
dt

=
∑

p∈P(c)

lpcnpc �Up. (3.48)

Here, we have used the trajectory equation (3.43), i.e.
d

dt
xp = Up. The corner vector lpcnpc

satisfies the fundamental geometrical identity

∑

p∈P(c)

lpcnpc = 0, (3.49)

which is equivalent, using (3.47), to the well known result that the summation of the outward
normals to a closed polygonal contour is equal to zero. This also involves that the volume of a
Lagrangian cell in Cartesian geometry moving in a uniform flow does not change. We claim that
with this purely geometric derivation we have completely defined the volume flux. Moreover,
this definition is by construction compatible with mesh motion. We also remark that this result
can be used to derive the discrete divergence operator, DIVc over cell ωc as

DIVc(U) =
1

vc

∫

∂ωc(t)
U � n ds.

Now, combining (3.44) and (3.48) we get

DIVc(U) =
1

vc

d

dt
vc =

1

vc

∑

p∈P(c)

lpcnpc �Up. (3.50)

Let us remark that property (3.49) shows that the null space of the discrete divergence operator
is spanned by the set of constant vectors. We recover the compatible discretization of the
divergence operator currently used in the derivation of staggered grid Lagrangian schemes for
compressible hydrodynamics [14, 106, 18].

Comment 3 We want to mention that the above discrete divergence operator could have been
derived utilizing an alternative approach which relies on the approximation of the surface inte-
gral,

∫
∂ωc(t)

U � n ds, wherein a piecewise linear distribution of the velocity over each edge is
assumed; this piecewise linear distribution being determined from the knowledge of the nodal
velocity. Let us notice that this approach has been introduced a long time ago in [86] to compute
the difference approximation for partial derivatives over an arbitrary region.
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Using the same approach, it is straightforward to define the discrete gradient operator, GRADc,
over cell ωc. Let Q be a scalar valued function over cell ωc, we define it as

GRADc(Q) =
1

vc

∫

∂ωc(t)
Qn ds.

The corresponding practical formula writes

GRADc(Q) =
1

vc

∑

p∈P(c)

Qplpcnpc. (3.51)

where Qp is the value taken by Q at the node p. We claim that the above formula is exact for
linear functions. To demonstrate this result, let us introduce the useful geometrical identity

∑

p∈P(c)

lpc(npc ⊗ xp) = vcId. (3.52)

This result can be demonstrated directly using simple algebra [77] or applying the divergence
theorem as follows [48]

vcId =

∫

ωc

∇x dv =

∫

∂ωc

x⊗ nds.

Bearing this in mind, we can demonstrate that (3.51) is exact for linear functions. To this end,
let us consider the linear function, Q = A +B � x, where A and B are a constant scalar and
a constant vector. Obviously the nodal value of Q reads Qp = A +B � xp. Substituting this
expression into (3.51) leads to

vcGRADc(Q) =
∑

p∈P(c)

(A+B � xp)lpcnpc

= A
∑

p∈P(c)

lpcnpc +
∑

p∈P(c)

lpc(npc ⊗ xp)B, recalling that (u⊗ v)w = u(v �w)

= vcIdB, thanks to (3.49) and (3.52)

= vcB.

Compatible discretization of a vector identity

In this paragraph, in view of the subsequent spatial discretization, we shall investigate the
compatible discretization of the following vector identity

∇ � (QU) = U �∇Q+Q∇ �U , (3.53)

where Q is an arbitrary real valued function and U an arbitrary vector. Let us note that this
identity, when applied to the real valued function, Q = P and the velocity field U , enables to
derive the specific internal energy equation by subtracting the kinetic energy equation to the
total energy equation. Knowing that the kinetic energy equation results from dot multiplying
the momentum equation by the velocity vector.
We refer to Qpc as the pointwise value of Q at the node p of cell ωc. Let us consider the product
QU , which is a vector, and let us define its pointwise value at node p by (QU)p = QpcUp where
Up is the pointwise value of the vector U at node p. Employing the definition of the discrete
divergence operator for a vector field (3.50) leads to

DIVc(QU) =
1

vc

∑

p∈P(c)

lpc(QpcUp) � npc.
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Figure 3.5: Sub-cell ωpc related to polygonal cell ωc and point p.

Now, combining the above formula, the discrete divergence operator for vector fields (3.50) and
the discrete gradient operator for scalar fields (3.51) yields

vc [DIVc(QU)−Uc �GRADc(Q)−QcDIVc(U)] =
∑

p∈P(c)

lpc [(Qpc −Qc)(Up −Uc)] �npc. (3.54)

Here, Qc and Uc denote the mean values of Q and U over cell ωc. This result has been obtained
using the geometric identity (3.49). Formula (3.54) consists of the discrete counterpart of the
identity (3.53). The right-hand side can be viewed as a residual term, which cancels only for
uniform scalar and vector fields.

3.3.3 Sub-cell force-based discretization

It remains to discretize momentum and total energy equations. To this end, we utilize the
fundamental concept of sub-cell force initially introduced in [18] in the context of staggered
discretization. Let us introduce some notations. Being given a polygonal cell, ωc, for each
vertex p ∈ P(c), we define the sub-cell ωpc by connecting the centroid of ωc to the midpoints of
edges [p−, p] and [p, p+] impinging at node p, refer to Fig. 3.5. In two dimensions the sub-cell, as
just defined, is always a quadrilateral regardless of the type of cells that compose the underlying
grid. Using the sub-cell definition, cell ωc and its boundary ∂ωc can be decomposed as

ωc =
⋃

p∈P(c)

ωpc, ∂ωc =
⋃

p∈P(c)

∂ωpc ∩ ∂ωc. (3.55)

This decomposition allows to rewrite the momentum flux as a summation of contributions
coming from each sub-cell boundary

∫

∂ωc

Pn ds =
∑

p∈P(c)

∫

∂ωpc∩∂ωc
Pn ds.

Hence, we define the sub-cell force related to cell ωc and point p

Fpc =

∫

∂ωpc∩∂ωc
Pn ds. (3.56)
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This definition enables us to rewrite momentum equation (3.41b) as

mc
dUc
dt

+
∑

p∈P(c)

Fpc = 0,

which is the Newton law applied to a particle of mass mc moving with velocity Uc. We also use
the sub-cell-based decomposition to write the total energy flux

∫

∂ωc

PU � n ds =
∑

p∈P(c)

∫

∂ωpc∩∂ωc
PU � n ds.

The contribution of the sub-cell, ωpc to the total energy flux is expressed in terms of sub-cell
force, Fpc, by means of the approximation

∫

∂ωpc∩∂ωc
PU � n ds =

(∫

∂ωpc∩∂ωc
Pn ds

)
�Up

= Fpc �Up, using sub-cell force definition (3.56).

Here, we have made the assumption that the velocity field over the outer sub-cell boundary,
∂ωpc∩∂ωc is constant and equal to the nodal velocity, Up. Finally, total energy equation (3.41c)
rewrites

mc
d

dt
Ec +

∑

p∈P(c)

Fpc �Up = 0.

This leads to the mechanical interpretation that the time variation of total energy results from
the summation over the sub-cell of the rate of work done by sub-cell force Fpc applied on each
vertex p. Combining the previous results, system (3.41) becomes

mc
d

dt
(

1

ρc
)−

∑

p∈P(c)

lpcnpc �Up = 0, (3.57a)

mc
dUc
dt

+
∑

p∈P(c)

Fpc = 0, (3.57b)

mc
dEc
dt

+
∑

p∈P(c)

Fpc �Up = 0. (3.57c)

The cell-centered discrete unknowns ( 1
ρc
,Uc, Ec) satisfy a system of semi-discrete evolution

equations wherein the numerical fluxes are expressed as functions of the nodal velocity, Up, and
the sub-cell force Fpc. Let us recall that thermodynamic closure is given by the equation of
state (3.42) and the grid motion is governed by the semi-discrete trajectory equation (3.43).
We conclude this section by giving an interpretation of the above sub-cell force-based discretiza-
tion in terms of the discrete divergence and gradient operators previously introduced. Applying
the definitions (3.50), (3.51) of the discrete divergence and gradient operators for vectors and
scalars to the system (3.41) directly yields

mc
d

dt
(

1

ρc
)− vcDIVc(U) = 0, (3.58a)

mc
dUc
dt

+ vcGRADc(P ) = 0, (3.58b)

mc
dEc
dt

+ vcDIVc(PU) = 0. (3.58c)
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Thanks to (3.51), the discrete gradient of the pressure reads

GRADc(P ) =
1

vc

∑

p∈P(c)

lpcPpcnpc,

where Ppc is the pointwise value of P at point p of cell ωc. Bearing this in mind, the comparison
between (3.58b) and (3.57b) shows that the sub-cell force, Fpc, and the pointwise pressure value,
Ppc, are linked by

Fpc = lpcPpcnpc. (3.59)

To complete the discretization, it remains to compute the nodal velocity and construct an
approximation of the sub-cell force. This goal will be achieved by investigating the properties
of the scheme regarding its thermodynamic consistency and its conservation for momentum and
total energy.

3.3.4 Thermodynamic consistency of the semi-discrete scheme

We derive a general form of the sub-cell force requiring that the semi-discrete scheme (3.57)
satisfies a semi-discrete entropy inequality within cell ωc

mcθc
d ηc
dt
≥ 0, (3.60)

where θc > 0 denotes the averaged temperature and ηc the specific entropy within cell ωc.
This semi-discrete entropy inequality by mimicking its continuous counterpart, will ensure that
kinetic energy will be dissipated into internal energy through irreversible processes such as shock
waves. We compute the time rate of change of ηc utilizing the Gibbs fundamental relation which
writes

mcθc
d ηc
dt

= mc

[
d εc
dt

+ Pc
d

dt
(

1

ρc
)

]
. (3.61)

Now, it remains to express the right hand-side if the above equation by means of the semi-
discrete equations of system (3.57). First, we compute the semi-discrete version of the time rate
of change of specific internal energy within cell ωc. Recalling that the specific internal energy
within cell ωc is given by εc = Ec − 1

2U
2
c , we get

mc
d εc
dt

= mc
dEc
dt
−mcUc �

dUc
dt

.

Bearing this in mind, we dot multiply the momentum equation (3.58b) by Uc and subtract it
to the total energy equation (3.58c) to obtain

mc
d εc
dt

+ vc [DIVc(PU)−Uc �GRADc(P )] = 0. (3.62)

Then, we compute the pressure rate of work by multiplying (3.58a) by Pc

mcPc
d

dt
(

1

ρc
)− vcPcDIVc(U) = 0. (3.63)

Summing equations (3.62) and (3.63), we get

mc[
d εc
dt

+ Pc
d

dt
(

1

ρc
)] + vc [DIVc(PU)−Uc �GRADc(P )− PcDIVc(U)] = 0.
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Finally, using the Gibbs relation, the above equation rewrites

mcθc
d ηc
dt

= −vc [DIVc(PU)−Uc �GRADc(P )− PcDIVc(U)] .

Expressing the right hand-side by means of the vectorial identity (3.54) leads to

mcθc
d ηc
dt

= −
∑

p∈P(c)

lpc [(Ppc − Pc)(Up −Uc)] � npc. (3.64)

Utilizing the definition (3.59), the rate of entropy production can also be expressed in terms of
the sub-cell force, Fpc, as follows

mcθc
d ηc
dt

= −
∑

p∈P(c)

(Fpc − lpcPcnpc) � (Up −Uc). (3.65)

To be consistent with the second law of thermodynamics, the rate of entropy production of
the semi-discrete scheme has to be non-negative, a sufficient condition to obtain this consists
in defining the sub-cell force so that the residual term in the right-hand side of (3.65) remains
always non-negative. To this end, we set

Fpc = lpcPcnpc −Mpc(Up −Uc), (3.66)

where Mpc is a sub-cell-based 2× 2 matrix which must satisfy the following properties

• Mpc is positive semi-definite, i.e. MpcU �U ≥ 0, ∀U ∈ R2.

• Mpc has a physical dimension equal to a length times a mass density times a velocity, i.e.
[Mpc] = L ρ U .

Substituting (3.66) into (3.65) leads to

mcθc
d ηc
dt

=
∑

p∈P(c)

Mpc (Up −Uc) � (Up −Uc) ≥ 0. (3.67)

We remark that the numerical dissipation rate within cell ωc is directly governed by the positive
semi-definite sub-cell matrix Mpc and the velocity jump between the nodal and the cell-centered
velocity, ∆Upc = Up −Uc.

3.3.5 Summary of the semi-discrete scheme

Having determined the generic sub-cell force form consistent with the entropy inequality in-
equality (3.60), we present a summary of the semi-discrete equations that govern the evolution
of the primary variables ( 1

ρc
,Uc, Ec)

mc
d

dt
(

1

ρc
)−

∑

p∈P(c)

lpcnpc �Up = 0,

mc
dUc
dt

+
∑

p∈P(c)

Fpc = 0,

mc
dEc
dt

+
∑

p∈P(c)

Fpc �Up = 0.
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Here, the sub-cell force reads

Fpc = lpcPcnpc −Mpc(Up −Uc),
where Mpc is a positive semi-definite matrix. The thermodynamical closure of the above system
is ensured by means of the following equation of state

Pc = P (ρc, εc), where εc = Ec −
1

2
U2
c .

We have derived a compatible semi-discrete cell-centered Lagrangian scheme by means of a sub-
cell force formalism. This scheme satisfies a semi-discrete local dissipation inequality consistent
with the second law of thermodynamics. To achieve the discretization it remains to compute
the nodal velocity Up and also to provide an expression for the sub-cell matrix Mpc which is the
cornerstone of the scheme.

3.3.6 Node-centered solver for the grid velocity

Total energy and momentum conservation

We investigate the conservation of our cell-centered scheme regarding total energy and mo-
mentum. Total energy over the whole grid is defined as E(t) =

∑
cmcEc(t), its conservation

involves
d E
dt

= −
∫

∂D
PU � nds,

where the right-hand side expresses the time rate of pressure work on the boundary, ∂D, of the
domain, D, occupied by the fluid. By definition of total energy, this last equation rewrites

∑

c

mc
dEc
dt

= −
∫

∂D
PU � nds. (3.68)

Before proceeding further, we discretize the right-hand side. To this end, let us introduce some
specific notations, assuming that the boundary is a closed contour. Let p be a node located
on the boundary ∂D, we denote by p− and p+ the previous and next points on the boundary
with respect to p in the counterclockwise ordered list of points located on ∂D. The curvilinear
boundary ∂D is discretized using the decomposition ∂D = ∪p∂Dp. Here, ∂Dp = [i−, p]∪ [p, i+],
where i± is the midpoint of the segment [p±, p]. Using this decomposition, boundary term
contribution is discretized as∫

∂D
PU � nds =

∑

p∈∂D

∫

∂Dp
PU � nds

=
∑

p∈∂D

(∫

∂Dp
Pnds

)
�Up.

The term between parentheses in the right-hand side of the second line represents a corner force
that acts from the exterior boundary onto boundary points. Then, it is natural to set

F ?
p =

∫

∂Dp
Pnds, (3.69)

where F ?
p is the boundary corner force acting onto point p. Combining the previous notations

and substituting the specific total energy equation (3.57c) into (3.68) yields the balance of total
energy over the entire domain

∑

c

∑

p∈P(c)

Fpc �Up =
∑

p∈∂D
F ?
p �Up.
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Interchanging the order in the double sum in the left-hand side yields

∑

p


 ∑

c∈C(p)
Fpc


 �Up =

∑

p∈∂D
F ?
p �Up,

where C(p) is the set of cells surrounding point p. Finally, left-hand side of the above equation
is divided into two parts depending on the points location

∑

p∈Do


 ∑

c∈C(p)
Fpc


 �Up +

∑

p∈∂D


 ∑

c∈C(p)
Fpc


 �Up =

∑

p∈∂D
F ?
p �Up, (3.70)

where Do is the interior of the domain D. Knowing that the total energy balance (3.70)
must hold whatever point velocity is, total energy conservation is ensured if and
only if

∀ p ∈ Do,
∑

c∈C(p)
Fpc = 0, (3.71a)

∀ p ∈ ∂D,
∑

c∈C(p)
Fpc = F ?

p . (3.71b)

It remains to check that the previous conditions also lead to momentum conservation. Let Q
denotes the total momentum over the entire domain, i.e. Q =

∑
cmcUc. We compute its time

rate of change

dQ
dt

=
∑

c

mc
dUc
dt

= −
∑

c

∑

p∈P(c)

Fpc, thanks to (3.57b)

= −
∑

p∈Do

∑

c∈C(p)
Fpc −

∑

p∈∂D

∑

c∈C(p)
Fpc, by interchanging the double sum

= −
∑

p∈∂D
F ?
p , thanks to (3.71)

= −
∑

p∈∂D

∫

∂Dp
Pnds, thanks to (3.69).

We conclude that up to the boundary terms contribution, momentum is conserved over the
entire domain. Hence, conditions (3.71a) and (3.71b) turn out to ensure not only total energy
but also momentum conservation. Moreover, as we shall show it in next section, they also
provide a vectorial equation that enables us to determine the nodal velocity.

Comment 4 The fundamental equation (3.70) can be interpreted as discrete variational for-
mulation wherein the point velocity Up is a test function.

Generic formulation of the nodal solver

Remembering that the general sub-cell force form reads Fpc = lpcPcnpc −Mpc(Up −Uc), where
Mpc is a 2× 2 positive semi-definite matrix, and using the conservation condition (3.71), we are
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now in position to write the 2× 2 system that solves the nodal velocity Up. In the general case
this system writes

∀ p ∈ Do, MpUp =
∑

c∈C(p)
(lpcPcnpc + MpcUc) , (3.72a)

∀ p ∈ ∂D, MpUp =
∑

c∈C(p)
(lpcPcnpc + MpcUc)− F ?

p , (3.72b)

where Mp denotes the 2× 2 node-centered matrix defined as

Mp =
∑

c∈C(p)
Mpc. (3.73)

We emphasize that we have divided the nodal velocity determination into two cases depending
on the node location. As Mpc is positive semi-definite, Mp also shares the same property. To
enforce the solvability of equation (3.72a) and equation (3.72b), we assume that the matrix
Mpc is positive definite. This yields to a Mp matrix which is always invertible. Therefore,
provided that the Mpc matrix is defined, the nodal velocity, Up is always uniquely determined
by inverting equations (3.72a) and (3.72b). We recall that Mpc has the physical dimension of
a length times a density times a velocity. If Mpc does not depend on the nodal velocity, hence
(3.72a) and (3.72b) are linear equations whose solutions are easily obtained.

Boundary conditions

In this section, we describe briefly boundary conditions implementation for the gas dynamics
equations. In Lagrangian formalism, this task is quite simple as we have to consider only two
types of natural boundary conditions. Namely, on the boundary of the domain, ∂D, either the
pressure or the normal component of the velocity is prescribed. Let us point out that we present
a boundary conditions implementation which is fully compatible with the node-centered solver
previously developed. To this end, let us consider a generic point p located on the boundary,
we denote p− and p+ its previous and next neighbor with respect to p in the counterclockwise
ordered list of boundary points. Without loss of generality we make the assumption that ∂D is a
closed contour. The two outward normals to the edges located on the boundary and connected
to point p are l−p n

−
p and l+p n

+
p , where l±p denotes one half of the length of the segment [p, p±],

refer to Fig. 3.6. These outward normals are linked to the corner vectors lpcnpc as follows
∑

c∈C(p)
lpcnpc = l−p n

−
p + l+p n

+
p . (3.74)

This result is due to the fact that the dual cell contour (red dashed line in Fig. 3.6) is closed .
Now, let us investigate the two following cases.

Prescribed pressure. The boundary corner force acting onto point p defining by (3.69)
writes

F ?
p = l−p Π−,?p + l+p Π+,?

p ,

where Π±,?p are the prescribed pressures on the two half-edges impinging at point p. Substituting
this expression of the boundary corner force into (3.72b) leads to

MpUp =
∑

c∈C(p)
(lpcPcnpc + MpcUc)−

(
l−p Π−,?p n−,?p + l+p Π+,?

p n+,?
p

)
. (3.75)

Due to (3.74), we note that this formula preserves uniform fluid flows. Namely, if (Pc,Uc) =
(P 0,U0), ∀ c, and Π±,?p = P 0n±p , ∀ p, then Up = U0.
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Figure 3.6: Fragment of a polygonal grid in the vicinity of point p located on the boundary ∂D.

Prescribed normal velocity. Let V±,∗p denotes the prescribed normal velocity on sides of
point p, that is (U � n±p ) = V±,∗p . Let us note that the nodal velocity, Up, satisfies (3.72b)

MpUp =
∑

c∈C(p)
(lpcPcnpc + MpcUc)− F ?

p ,

where F ?
p is an unknown pressure force acting at node p. We point out that the nodal velocity

is constrained by the normal velocity boundary conditions as follows

(
l−p n

−
p + l+p n

+
p

)
�Up = l−p V−,∗p + l+p V+,∗

p . (3.76)

It remains to determine the expression of the boundary force F ?
p . Recalling that we want

to ensure total energy conservation (3.70) leads to propose the following expression for the
boundary corner force, F ?

p ,

F ?
p = (l−p n

−
p + l+p n

+
p )Π?

p,

where Π?
p stands for an averaged pressure acting onto point p. Substituting this expression into

(3.72b) and making use of (3.76) leads to

MpUp + (l−p n
−
p + l+p n

+
p )Π?

p =
∑

c∈C(p)
lpcPcnpc + MpcUc. (3.77)

Thanks to the above equation, we express the nodal velocity in terms of the pressure Π?
p, then

dot multiplying this resulting equation by the corner normal np = l−p n
−
p + l+p n

+
p , and using the

boundary condition (3.76), we finally get the equation satisfied by the pressure, Π?
p

(M−1
p np � np)Π

?
p = −

(
l−p V−,∗p + l+p V+,∗

p

)
+
∑

c∈C(p)
M−1
p (lpcPcnpc + MpcUc) � np. (3.78)

It is clear that this equation has always a unique solution provided that M−1
p is positive definite.

Computing Π?
p by means of (3.78), it remains to obtain Up by solving

MpUp =
∑

c∈C(p)
(lpcPcnpc + MpcUc)−Π?

pnp,

At this point, we can conclude that the sub-cell force formalism provides a general framework
that allows to construct a family of compatible cell-centered schemes that share good physical
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Figure 3.7: Notation related to the corner of a polygonal cell.

properties such as thermodynamic consistency and conservation. The numerical fluxes and
the nodal velocity are computed in a compatible manner by means of a node-centered solver
which enables us to consistently derive boundary conditions. The key point in designing these
schemes lies in constructing the corner matrix Mpc. We shall investigate this latter point in the
next paragraph, by presenting one example of such a construction and making the link with
approximate Riemann solvers.

Definition of the corner matrix

The definition of the corner matrix is based on a methodology that has been developed initially
in [78] and revisited in [74, 82]. Let us recall that the abstract formulation of the sub-cell force
reads

Fpc = lpcPcnpc −Mpc(Up −Uc),

where Mpc must be a 2 × 2 positive semi-definite matrix that remains to express. First, let us
introduce Π−pc and Π+

pc the two nodal pressures located at node p within cell ωc. Using this
notation, the sub-cell force, Fpc, writes

Fpc = l−pcΠ
−
pcn
−
pc + l+pcΠ

+
pcn

+
pc,

where l−pcn
−
pc and l+pcn

+
pc are the outward normals to edges [p−, p], [p, p+]. Let us note that l±pc are

one half of the length of the corresponding edges, refer to Fig. 3.7. These two nodal pressures
are expressed as functions of the cell pressure and the jump between cell and node velocity by
means of the two following Riemann invariants written along each half-edge normal directions

Π−pc − Pc = −zc(Up −Uc) � n−pc,
Π+
pc − Pc = −zc(Up −Uc) � n+

pc,

where zc = ρcac denotes the acoustic impedance, knowing that ac is the thermodynamical sound
speed computed from the equation of state of the material as

a2
c =

(
∂P

∂ρ

)

ε

+
P

ρ2

(
∂P

∂ε

)

ρ

.
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Noticing that l−pcn
−
pc + l+pcn

+
pc = lpcnpc and combining the two above equations leads to the

following expression of the sub-cell force

Fpc = lpcPcnpc − zc
[
l−pc(n

−
pc ⊗ n−pc) + l+pc(n

+
pc ⊗ n+

pc)
]

(Up −Uc).

From the comparison between this last expression and the generic form of the sub-cell force, we
deduce that the corner matrix writes

Mpc = zc
[
l−pc(n

−
pc ⊗ n−pc) + l+pc(n

+
pc ⊗ n+

pc)
]
. (3.79)

The corner matrix defined by (3.79) is symmetric definite positive and has been initially intro-
duced in [75, 76, 77].

Now, we present a second-order extension of the scheme presented. Firstly, we describe the
classical second-order MUSCL method. Then, we present an alternative procedure allowing the
reconstruction of the slopes, using the nodal solvers defined previously.

3.3.7 Second-order MUSCL scheme

Pierre-Henri Maire and Jérome Breil presented in [79] a second-order extension of the EUC-
CLHYD scheme, using classical MUSCL-type approach. In this frame, the procedure consists
in a least square procedure minimizing the jump between the extrapolated values of the linear
reconstruction in the cell at the centroid of the cells surrounding the considered one, and the
mean values in these cells [5]. After having briefly introduce this procedure, we present an
alternative MUSCL method [20]. Instead of using the mean values of the neighboring cells we
make use of Up and Fpc, defined previously, to evaluate the approximate gradients needed in
the linear reconstruction.

Let recall the first-order discretization (3.57) of the Lagrangian integral gas dynamics equation
(3.38) presented before. The mass averaged values of the volume, velocity and total energy
respectively ρc, Uc and Ec at time t on the moving cell ωc are governed by the following semi-
discrete equations

mc
d

dt
(

1

ρc
)−

∑

p∈P(c)

Up � lpcnpc = 0,

mc
dUc
dt

+
∑

p∈P(c)

Fpc = 0,

mc
dEc
dt

+
∑

p∈P(c)

Up � Fpc = 0,

where Up are the node velocity and Fpc the nodal subcell forces.

Classical MUSCL method

Being given φc the mass averaged value of the function φ over the cell ωc, we define its linear
reconstruction as

φ̃c(x) = φc + (∇xΦ)c � (x− xc), (3.80)
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where xc is the centroid of the cell ωc and (∇xφ)c represents the gradient of the solution. In
the case of a vector valued function Φ, the linear reconstruction reads

Φ̃c(x) = Φc + (∇xΦ)c(x− xc), (3.81)

where (∇xΦ)c represents the gradient tensor of Φ.

The least square procedure compute (∇xφ)c and (∇xΦ)c imposing the following conditions

φd = φ̃c(xd), ∀ωd ∈ N (c), (3.82)

Φd = Φ̃c(xd), ∀ωd ∈ N (c), (3.83)

where φd and Φd are the mass averaged value of the function φ and Φ over the cell ωd, xd is
the centroid of this cell and N (c) is the set of the neighboring cells of ωc. The neighborhood set
N (c) of the cell ωc could be defined in different manners. We decide to select the cells sharing
a common face with ωc. An alternative solution is to extend the stencil to the cells surrounding
each nodes of P(c), the node set of ωc.

Condition (3.82) or (3.83) is satisfied in a least squares sense by minimizing the cost function

Lc =
∑

d∈N (c)

1

2

(
φ̃c(xd)− φd

)2
=

∑

d∈N (c)

1

2
[φc − φd + (∇xφ)c � (xd − xc)]2 ,

where φd is the mass averaged value of the function φ over the cell ωd. And the minimum cost
is reached for


 ∑

d∈N (c)

(xd − xc)⊗ (xd − xc)


 (∇xφ)c =

∑

d∈N (c)

(xd − xc)(φd − φc). (3.84)

The matrix
∑

d∈N (c)(xd−xc)⊗(xd−xc) being symmetric positive definite, it is thus invertible.
This formula gives us a definition of the approximate gradient (∇xφ)c. Applying this procedure
to the pressure and on the two components of the velocity vector, one gets the piecewise linear
reconstructions in the cells of the considered variables. In the second-order scheme, the nodal
solvers Up and Fpc are computed by means of the extrapolated values located at the node p
of these linear approximations, the aim being to decrease the dissipation and to increase the
accuracy of the scheme. This approach has the main feature to preserve linear fields regardless
the shape of the cell. However, the treatment of the boundary conditions is not obvious and one
must introduce ghost cells to take them into account properly. A more straightforward approach
consists in using a Green-Gauss based approach to derive the gradients approximations, as it
been described in [20].

Alternative MUSCL method

This time, in order to define (∇xψ)c and (∇xΨ)c, we use a similar approach to the one presented
in Section 3.3.2. Considering the function ψ, we recall the discrete gradient operator GRADc(ψ)c
definition (3.51)

GRADc(ψ) =
1

vc

∑

p∈P(c)

ψp lpcnpc. (3.85)
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Here, ψp is a single value function derived from the numerical solvers. Using this definition to go
to second-order, the stencil is reduced to the considered cell. The linear reconstruction is local.
The information coming from the neighboring cells or the boundary conditions consideration as
well are naturally contained in the nodal solvers. We are also able to derive a gradient definition
of a vector valued function Ψ

GRADc(Ψ) =
1

vc

∑

p∈P(c)

Ψp ⊗ lpcnpc. (3.86)

We make use of these gradient definitions in the slope reconstruction of variables. Thus, we
identify the pressure gradient vector (∇xP )c to GRADc(P ), and the velocity gradient matrix
(∇xU)c to GRADc(U)

(∇xP )c =
1

vc

∑

p∈P(c)

Pp lpcnpc, (3.87)

(∇xU)c =
1

vc

∑

p∈P(c)

Up ⊗ lpcnpc, (3.88)

where Up is the velocity of the moving node p, and Pp is the single node pressure computed
with the use of the sub-cell forces. It remains to determine the nodal pressure Pp knowing Fpc.
Firstly, we recall the sub-cell force into a left and a right contributions

Fpc = l−pcΠ
−
pcn
−
pc + l+pcΠ

+
pcn

+
pc, (3.89)

where Π−pc and Π+
pc are the two nodal pressure, refer to Figure 3.7. Equation (3.89) defines a

2× 2 linear system on the nodal pressures which leads to following solution

Π−pc = Fpc �
n−pc − cos θpcn

+
pc

l−pc sin2 θpc
,

Π+
pc = Fpc �

n+
pc − cos θpcn

−
pc

l+pc sin2 θpc
,

where θpc denotes the measure of the angle between the two half-edges of sub-cell ωpc, refer to
Figure 3.8.

p

θpc

l+pc

l−pc

n−
pc

p−

p+

ωc

n+
pc

Figure 3.8: Corner angle of a polygonal cell.

We end up defining the single nodal pressure Pp as the average of all the sub-cell nodal pressures
Π±pc in the cell surrounding the node p

Pp =
1

Np

∑

c∈C(p)

1

2
(Π−pc + Π+

pc).
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where Np is the number of cell surrounding the node p.

As previously, the linear reconstruction of the velocity and pressure are used in the construction
of the nodal solvers. Up and Fpc are computed by means of the extrapolated values located at
the node p through these linear approximations. A convergence analysis has been performed on
this particular method, in the smooth case of a Taylor-Green vortex. The results are displayed
in Section 4.2.4 in Table 4.3, and compared with the ones obtained with our second-order DG
scheme.

To reach a global second-order accuracy, we have to use a second-order time discretization. We
could use for example, the classical second-order TVD Runge-Kutta discretization. An alter-
native choice is the second-order one-step time discretization, described by Maire in [74]. This
time discretization derives from a prolongation of works initiated by Ben-Artzi and Falcovitz [6]
concerning the Generalized Riemann Problem. Now, we briefly described the time step control
to ensure the stability of the scheme. Finally, the robustness and the accuracy of these Finite
Volume schemes have been assessed using several test cases taken from the literature. The
interested reader may refer to the following papers [78, 79, 74, 73, 75, 76] presenting numerical
results obtained with the Finite Volume EUCCLHYD scheme over a large number of test cases.

3.3.8 Time step control

For numerical applications, the time step is evaluated following two criteria. The first one is
a standard CFL criterion [31]. The second one is more intuitive, but reveals very useful in
practice: we limit the variation of the volume of cells over one time step.

CFL criterion. We introduce a CFL like criterion in order to ensure a positive entropy
production in cell ωc during the time step. At time tn, for each cell ωc we denote by λnc the
minimal value of the distance between two points of the cell. We define

∆te = Ce min
c

λnc
anc
,

where Ce is a strictly positive coefficient and ac is the sound speed in the cell. The coefficient
Ce is computed heuristically and we provide no rigorous analysis which allows such formula.
However, extensive numerical experiments show that Ce = 0.25 is a value which provides stable
numerical results in the second-order case. A rigorous derivation of this criterion can be obtained
by computing the time step which ensures a positive entropy production in cell ωc during the
time interval [tn, tn+1]. Note that in [31], an optimization of the time step is performed to
ensure a positive entropy dissipation at the discrete level.

Criterion on the volume variation. We estimate the volume of cell ωc at t = tn+1 using
the Taylor expansion

vn+1
c = vnc +

d

dt
vc(t

n)∆t.

Here, the time derivative
d

dt
vc is computed by using (3.48) page 105. Let Cv be a positive

coefficient, Cv ∈]0, 1[. We look for ∆t such that

|vn+1
c − vnc |
vnc

≤ Cv.
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To this end, let us define

∆tv = Cv min
c





vnc

| d
dt
vc(tn)|




.

For numerical applications, we choose Cv = 0.1. Last, the estimation of the next time step
∆tn+1 is given by

∆tn+1 = min (∆te,∆tv, Cm∆tn) , (3.90)

where ∆tn is the current time step and Cm is a multiplicative coefficient which allows the time
step to increase. We generally set Cm = 1.01.

In this section, we have recalled the cell-centered first and second-order EUCCLHYD schemes.
The scheme was the starting point of the implementation of high-order DG schemes. One of
the main objective was to recovers the EUCCLHYD scheme in the first-order case. In the next
chapter, conserving the same notations, we present the general framework of the high-order DG
discretization for the Lagrangian gas dynamics system of equations written using the Lagrangian
coordinates. In the end, we emphasize that in its first-order version, our DG method naturally
recovers the first-order EUCCLHYD scheme.
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Chapter 4

High-order DG Cell-centered
Lagrangian schemes

This Chapter aims at describing high-order DG schemes for the resolution of the Lagrangian
hydrodynamics written under the Lagrangian coordinates. The choice of working on the initial
configuration has been made in order to avoid the consideration of curve geometries. How-
ever, one has to follow the time evolution of the gradient deformation tensor associated to the
Lagrange-Euler flow map. A fundamental requirement is the satisfaction of the Piola com-
patibility condition. Loubère in [1, 70] has successfully developed a high-order Discontinuous
Galerkin Lagrangian method. Nevertheless, the use of this method is limited to a representation
in the initial configuration. It was due to the loss of compatibility between the two configura-
tions based on Eulerian and Lagrangian coordinates. Following the approach used by Loubère,
a high-order discontinuous Galerkin spectral finite element method has been developed by Jia
and Zhang [51]. However, the Piola compatibility condition is not ensured properly. This is due
to the loss of consistency in the definition of the deformation gradient tensor in the cells and
on the boundaries of the cells. Moreover, the deformation tensor being discretized by means of
a Finite Volume method over the cells, this scheme is limited to the representation of compu-
tational meshes with straight-line edges. In [22] Cheng and Shu demonstrate that the accuracy
degeneracy phenomenon observed for the high order Lagrangian type scheme is due to the error
from the quadrilateral mesh with straight-line edges, which restricts the accuracy of the result-
ing scheme to at most second order. In [22] they present a third-order Lagrangian scheme for
solving the Euler equations of compressible gas dynamics on curvilinear meshes. This scheme
is based on a high order ENO reconstruction. In this particular scheme, the physical variables
are computed through the use of a high order ENO conservative reconstruction. The determi-
nation of the vertex velocity is obtained by means of the conserved variables. Here, we present
cell-centered DG schemes solving the gas dynamics equation in a total Lagrangian formalism.
The flow map is discretized by means of continuous mapping, using a finite element basis. This
provides an approximation of the deformation gradient tensor which satisfies the Piola iden-
tity. The discretization of the physical conservation laws for the specific volume, the momentum
and the total energy relies on a discontinuous Galerkin method ensuring the respect of the GCL.

In the Section 4.1, we present the general framework of the DG discretization of the gas dynamics
equations in the total Lagrangian formalism. Then, in Section 4.2, the particular second order
case is detailled. Several results are displayed assessing the robustness and the accuracy of the
second order DG scheme. Finally, in Section 4.3, we extend the methodology presented in the
former sections to the third-order. In this case, the Lagrangian-Eulerian map is spanned by a
P2 Finite Element representation. Thus, the velocity field is quadratic with respect to the space
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variables. The mesh edges in the actual configuration are parametrized by means of Bezier
curves. In this case, a particular treatment of the GCL is required.

4.1 DG discretization general framework

In this section, we intend to solve the gas dynamics equations in its local Lagrangian form
written using the Lagrangian coordinates presented in Section 3.2

dF

dt
= ∇XU , (4.1a)

ρ0 d

dt
(
1

ρ
)−∇X � (JF−1U) = 0, (4.1b)

ρ0 dU

dt
+∇X � (P JF−t) = 0, (4.1c)

ρ0 dE

dt
+∇X � (JF−1PU) = 0, (4.1d)

where J = detF is the Jacobian of F. The thermodynamical closure of this system is obtained
through the use of an equation of state, which writes P = P (ρ, ε), where ε is the specific internal
energy, ε = E − 1

2U
2. These equations are valid provided that the Lagrangian-Eulerian flow

map exists, that is J > 0. Here, we introduce G the cofactor matrix of F, i.e., G = JF−t.
Through the use of this new definition, system (4.1) rewrites

dF

dt
= ∇XU , (4.2a)

ρ0 d

dt
(
1

ρ
)−∇X � (GtU) = 0, (4.2b)

ρ0 dU

dt
+∇X � (P G) = 0, (4.2c)

ρ0 dE

dt
+∇X � (GtPU) = 0. (4.2d)

In this framework, the computational grid is fixed, however one has to follow the time evolution
of the Jacobian matrix associated to the Lagrange-Euler flow map. We made the choice of
working on the initial configuration of the flow to avoid some difficulties inherent to the moving
mesh scheme, as dealing with curvilinear geometries, in the case of third-order scheme. Fur-
thermore, in this frame the basis function are time independent and defined on the initial mesh.
This mesh being perfectly known, geometrical quantities required by the DG discretization can
be computed and stored initially and used during the whole calculation.

Let {Ωc}c be a partition of the domain Ω into non-overlapping polygonal cells. We also parti-
tionate the time domain in intermediate times (tn)n with ∆tn = tn+1 − tn the nth time step.
We use a DG discretization in order to develop on each cells our unknowns onto Pα(Ωc), the
set of polynomials of degree up to α. This space approximation leads to a (α+ 1)th space order
accurate scheme. Let φch be the restriction of φh, the polynomial approximation of the function
φ, over the cell Ωc

φch(X, t) =
K∑

k=0

φck(t)σ
c
k(X), (4.3)

where the φck are the K + 1 successive components of φh over the polynomial basis, and σck
the polynomial basis functions. Recalling that the dimension of the polynomial space Pα(Ωc) is
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(α+1)(α+2)
2 , we have to determine the set of the (α+1)(α+2)

2 = K+1 basis functions. We make the
choice of the two-dimensional extension of the basis (2.53) introduced in the one-dimensional
gas dynamics Section 2.3.2. These particular basis functions comes from a Taylor expansion on
the cell, located at the center of mass X c = (Xc,Yc)t of the cell Ωc defined as follows

X c =
1

mc

∫

Ωc

ρ0(X)X dV, (4.4)

where mc is the constant mass of the cell Ωc.

We set the first basis element to 1, i.e., σc0 = 1. Going further in space discretization, the q+ 1
basis functions of degree q, with 0 < q ≤ α, write

σcq(q+1)
2

+j
=

1

j!(q − j)!

(
X −Xc

∆Xc

)q−j (Y − Yc
∆Yc

)j
, (4.5)

where j = 0 . . . q, ∆Xc = Xmax−Xmin
2 and ∆Yc = Ymax−Ymin

2 are the scaling factors where

Xmax /min = max / min
p∈P(c)

{Xp} and Ymax /min = max / min
p∈P(c)

{Yp},

knowing that P(c) is the set of vertices of the cell ωc. The starting index q(q+1)
2 in (4.5)

corresponds to the number of polynomial basis functions of degree strictly inferior to q. Let us
introduce 〈φ〉c, the mean value of φ over the cell Ωc weighted by the initial density

〈φ〉c =
1

mc

∫

Ωc

ρ0(X)φ(X) dV, (4.6)

and the associated scalar product

〈φ, ψ〉c =

∫

ωc

ρ0(X)φ(X)ψ(X) dV. (4.7)

This particular scalar product is the one used in the projection procedure, refer to 1.1.6, re-
quired by the initialization of the functions.

In our polynomial discretization, we want the mass averaged value to be preserved. Conse-
quently, we identify the first component of φch with 〈φ〉c, i.e., φc0 = 〈φ〉c. This definition leads
to a particular constraint on the successive basis functions writing

φc0 =
1

mc

∫

Ωc

ρ0 φch dV,

=
1

mc

K∑

k=0

φk

∫

Ωc

ρ0 σck dV,

= φc0 +
K∑

k=1

φk
1

mc

∫

Ωc

ρ0 σck dV,

= φc0 +

K∑

k=1

φk 〈σck〉c . (4.8)
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In order to satisfy equation (4.8), we impose 〈σck〉c = 0, ∀k 6= 0. Consequently, we set a new
definition of the q + 1 basis functions of degree q, with 0 < q ≤ α

σcq(q+1)
2

+j
=

1

j!(q − j)!

[(
X −Xc

∆Xc

)q−j (Y − Yc
∆Yc

)j
−
〈(

X −Xc
∆Xc

)q−j (Y − Yc
∆Yc

)j〉

c

]
. (4.9)

We point out that the only geometry contributions presents in (4.9) are the center of mass
position and the scaling factors. Consequently, regardless the shape of the cell is, we could use
the same class of basis functions. We also note that the first moment φ0 associated to the first
basis element 1 is the mass averaged value of the function φ over the cell Ωc. If the discretization
ends here, the scheme would correspond to the Finite Volumes method. Going further, the
successive moments can be identified as the successive derivatives of the function expressed at
the center of mass of the cell. Here, to simplify the notation, we identify the functions 1

ρ , U , E

and P to their polynomial approximations over the considered cell Ωc, respectively (1
ρ)ch, U c

h,
Ech and P ch.

4.1.1 Variational formulations

The discontinuous Galerkin discretization of the gas dynamics equations results from a local
variational formulation on each cell of equations (4.2b), (4.2c) and (4.2d)

∫

Ωc

ρ0 d

dt
(
1

ρ
)σcq dV =

K∑

k=0

d

dt
(
1

ρ
)ck

∫

Ωc

ρ0σcqσ
c
k dV = −

∫

Ωc

U � G∇Xσ
c
q dV +

∫

∂Ωc

U � σcq GNdS,

(4.10)

∫

Ωc

ρ0 dU

dt
σcq dV =

K∑

k=0

dU c
k

dt

∫

Ωc

ρ0σcqσ
c
k dV =

∫

Ωc

P G∇Xσ
c
q dV −

∫

∂Ωc

P σcq GNdS, (4.11)

∫

Ωc

ρ0 dE

dt
σcq dV =

K∑

k=0

dEck
dt

∫

Ωc

ρ0σcqσ
c
k dV =

∫

Ωc

PU � G∇Xσ
c
q dV −

∫

∂Ωc

PU � σcq GNdS,

(4.12)

where σcq is a function picked into the chosen basis {σck}k=0...K of PK , and U , P and PU
are the continuous numerical flux functions defined at cell interfaces. Here, we can identify∫

Ωc
ρ0σcqσ

c
k dV =

〈
σcq, σ

c
k

〉
c

as the generic coefficient of the symmetric positive definite mass ma-

trix. Recalling that
∫

Ωc
ρ0 σck dV = 0, ∀k 6= 0, the equations corresponding to mass averaged

values are independent of the other polynomial basis components equations.

These variational formulations are written on the initial configuration. Thanks to the identities
presented in Section 3.2, dv = JdV and nds = JF−tNdS, we are able to write (4.10), (4.11)
and (4.12) over the actual configuration ωc = Φ(Ωc, t), at time t > 0

∫

ωc

ρ
d

dt
(
1

ρ
)σcq dv = −

∫

ωc

U �∇xσ
c
q dv +

∫

∂ωc

U � σcq nds, (4.13)

∫

ωc

ρ
dU

dt
σcq dv =

∫

ωc

P ∇xσ
c
q dv −

∫

∂ωc

P σcq nds, (4.14)

∫

ωc

ρ
dE

dt
σcq dv =

∫

ωc

PU �∇xσ
c
q dv −

∫

∂ωc

PU � σcq nds. (4.15)
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Remark 2 The equation (4.13) has an interesting interpretation. Rewriting it for σc0 = 1, one
gets

∫

ωc

ρ
d

dt
(
1

ρ
) dv =

∫

∂ωc

U � nds.

And thanks to (3.29), the left-hand side of this last equations yields

∫

ωc

ρ
d

dt
(
1

ρ
) dv =

d

dt

∫

ωc

ρ(
1

ρ
) dv =

∫

ωc

dv.

Consequently, equation (4.13) is equivalent to the following equation

∫

ωc

dv =

∫

∂ωc

U � nds,

which is nothing but the geometrical conservation law (3.44). Thus, (4.13) in the general case
can be viewed as an extension of the GCL that is strongly linked to the Reynolds transport
theorem. Indeed, let us note that equation (4.13) is equivalent to

∫

ωc

ρ
d

dt
(
1

ρ
)σcq dv =

∫

ωc

σcq∇x �U dv. (4.16)

Using the fact that d
dt(

1
ρ)σcq = d

dt(σ
c
q(

1
ρ)) − (1

ρ)
dσcq
dt and again relation (3.29), equation (4.16)

rewrites

d

dt

∫

ωc

σcq dv =

∫

ωc

(
dσcq
dt

+ σcq∇x �U
)

dv, (4.17)

which is nothing but the Reynolds transport formula. Hence (4.13) is equivalent to (4.17), where
σcq is a polynomial function picked into the chosen basis {σck}k=0...K .

Remark 3 Let us recall that in the particular case of an uniform flow, meaning the pressure
and the velocity fields are constant, the gas dynamics equations reduce to the simple advection of
the density field. Considering (4.13), (4.14) and (4.15), in the uniform flow case the left-hand
side of these equations must be equal to zero. This means that the following relationship must
hold for all basis functions

∫

ωc

∇xσ
c
q dv =

∫

∂ωc

σcq nds. (4.18)

This above equation is nothing but a consequence of the Green-Gauss formula. It is clear that
to ensure relation (4.18), the quadrature formulas employed to discretize interior and boundary
terms must be compatible in the sense that they ensure the identity (4.18) at the discrete level.
This compatibility requirement has a strong impact on the ability of the numerical scheme to
preserve uniform flows.

B. Cockburn, S. Hou and C.-W. Shu demonstrate in their article [25] that to design a (α+ 1)th

order numerical scheme, a quadrature rule over the faces being exact for polynomials of degree
2α + 1 is needed, as a quadrature rule over the elements being exact for polynomials of degree
2α. For the numerical applications, to evaluate properly the interior terms we make use of the
two-dimensional quadrature formula defined on triangles, found in [37]. This quadrature is exact
for polynomials up to degree 5. Thus, this formula is accurate enough for the implementation
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quad. points quad. weights

(1
3 ,

1
3) 9

80
(a−, a−) w−

(a−, 1− 2a−) w−
(1− 2a−, a−) w−

(a+, a+) w+

(a+, 1− 2a+) w+

(1− 2a+, a+) w+

Table 4.1: Quadrature points and weights of the chosen two-dimensional quadrature rule, where

a± = 6±
√

15
21 and w± = 155±

√
15

2400 .

of a third-order scheme where α = 2. This quadrature rule defined by its quadrature points and
weights write as following on the reference triangle ((0, 0), (1, 0), (0, 1)), refer to Table 4.1.
Concerning the boundary terms, we perform a special treatment on the face integrals enforcing
relation (4.18). This point will be detailed in the second-order and third-order cases.

Identity (4.18) on the actual configuration corresponds to the following equation on the initial
configuration

∫

Ωc

G∇Xσ
c
q dV =

∫

∂Ωc

σcq GNdS, (4.19)

which is nothing but a generalization of the weak form of the Piola compatibility condition which
writes

∫

Ωc

σcq (∇X � G) dV = 0. (4.20)

Considering identity (4.19), we clearly see that some consistency is required on the discretiza-
tion of the deformation gradient tensor F inside the cell and on the boundaries. Moreover, one
knows that the vector GN , where N is the unit outward normal of an edge in the initial con-
figuration, corresponds to the outward normal n in the actual configuration. Thus, to maintain
the coherence between the two configurations and ensure the geometry continuity, the vector GN
has to be continuous at the interfaces of the cells. These are the reasons that have motivated
our choice of discretizing the tensor F by means of a mapping using a Finite Element basis on
triangular cells.

4.1.2 Deformation gradient tensor discretization

Let Ωc be a generic polygonal cell in the initial configuration, partitioned into non-overlapping
triangles T ci as Ωc =

⋃ntri
i=1 T ci , refer to Figure 4.1. Now, recalling the mapping formulation

expressed in (3.1), we develop Φ on the Finite Element basis functions λp

Φi
h(X, t) =

∑

p

λp(X) Φp(t),

where the points p are control points including vertices in a generic triangle Ti. We identify
Φp(t) = Φ(Xp, t) as the position at time t of the control point initially located at Xp. The
functions λp are the Finite Element basis functions. Thus, they identify with the P1 barycentric
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coordinate basis functions in the case of our second-order scheme. For the third-order scheme,
we make use of the P2 Finite Elements basis functions.

Ωc

T c
i

Figure 4.1: Triangular subdivision of a generic polygonal cell Ω.

Using this continuous polynomial mapping approximation and the definition (3.9) of F leads to
the expression of this tensor in the triangle Ti

Fi(X, t) =
∑

p

Φp(t)⊗∇Xλp(X). (4.21)

Let us check that this definition of the discrete deformation gradient tensor satisfies the Piola
condition which ensures the compatibility between the initial and the actual configuration.
Here, we recall that G is the cofactor matrix of F, i.e., G = JF−t. In the two-dimensional case,
the use of (4.21) to express Gi yields

Gi =




∑

p

ΦY
p ∂Y λp −

∑

p

ΦY
p ∂Xλp

−
∑

p

ΦX
p ∂Y λp

∑

p

ΦX
p ∂Xλp


 =

∑

p

(
ΦY
p ∂Y λp −ΦY

p ∂Xλp
−ΦX

p ∂Y λp ΦX
p ∂Xλp

)
. (4.22)

Taking the divergence of equation (4.22), one gets

∇X � Gi =
∑

p

(
ΦY
p (∂Y Xλp − ∂XY λp)

ΦX
p (∂XY λp − ∂Y Xλp)

)
= 0. (4.23)

This equation shows that the Piola compatibility condition is satisfied by construction. This
result can be generalized to the three dimensional case with a similar procedure. If Fjk is the
(j, k)th entry of matrix Fi, we compute the cofactor of F starting with the diagonal elements

Gjj = FkkFll − FklFlk,

where j, k and l are an ordered set of the integers 1, 2 and 3, corresponding to the three
directions eX , eY and eZ . For the off-diagonal entries, Gjk and Gkj write

Gjk = FljFkl − FllFkj ,

Gkj = FlkFjl − FllFjk.
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Inserting in these elements formulas the development of the tensor F (4.21), the Gi matrix
entries rewrite

Gjj =
∑

p,q

(
Φk
p∂kλp Φl

q∂lλq − Φk
p∂lλp Φl

q∂kλq

)
,

=
∑

p,q

Φk
pΦ

l
q (∂kλp ∂lλq − ∂lλp ∂kλq) ,

=
∑

p,q

Φk
pΦ

l
q (∇Xλp ×∇Xλq)j ,

where
∑

p,q is a double sum on the control points, Φj
p corresponds to jth component of the

vector Φp and (∇Xλp)j = ∂jλp. Likewise for the off-diagonal entries, one gets

Gjk =
∑

p,q

Φk
pΦ

l
q (∇Xλp ×∇Xλq)k ,

Gkj =
∑

p,q

Φj
pΦ

l
q (∇Xλp ×∇Xλq)j .

Thus, we can express the cofactor matrix Gi in the following matricial form

Gi =
∑

p,q

Ψpq ⊗ (∇Xλp ×∇Xλq) , (4.24)

where the vector Ψpq is defined such as its jth component reads Ψj
pq = Φk

pΦ
l
q. Taking the

divergence of equation (4.24) yields

∇X � Gi =
∑

p,q

(∇X � (∇Xλp ×∇Xλq)) Ψpq,

=
∑

p,q


∇Xλq � (∇X ×∇Xλp)︸ ︷︷ ︸

=0


 Ψpq,

= 0. (4.25)

Again the Piola compatibility condition is satisfied by construction of the scheme.

Now the use of the trajectory equation d
dtΦp = Up leads to a semi-discrete equation of the

deformation gradient tensor

d

dt
Fi(X, t) =

∑

p

Up(t)⊗∇Xλp(X), (4.26)

where Up is the velocity of the control point p. This is the chosen semi-discrete equation we
use to determine the deformation gradient tensor on the triangles constituting the polygonal
cells. The deformation gradient tensor is discretized through the same equation in [56], in their
cell-centered Lagrangian scheme for the hyperelasticity.

At this point, we did not make any assumption on the order of the discretization. The numeri-
cal accuracy deriving from equation (4.26) depends on the choice of the Finite Element basis.
Regarding (3.10), we make the assumption that the spatial approximation order of the deforma-
tion gradient tensor could be one less than the velocity, and consequently than the polynomial
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approximation coming from the DG discretization. Consequently, F would be piecewise con-
stant over the triangles for a second-order scheme, and piecewise linear for a third-order scheme.

Now, we want to show that the discretization of F ensures the continuity of GN at cell inter-
faces, where N is the interface unite outward normal in the initial configuration. But first,
we prove that the properties of the GN are equivalent to the ones of FT , where T is the unit
tangent vector, orthogonal to N . Let us introduce the infinitesimal displacement in the actual
configuration dx corresponding through the flow motion to dX in the initial configuration. We
define the two tangent vectors t and T such as dx = t dl and dX = TdL. We have dx = FdX
by definition of F (3.14), and hence

t dl = FTdL. (4.27)

This is another form of the Nanson formula, expressing the transport of a tangent vector through
the flow motion of the fluid. Now, in the two-dimensional particular case, one knows that

ndl = (tdl)⊥,

where a⊥ = (a2,−a1)t with a = (a1, a2)t. Finally, using the classical Nanson relation (3.17) in
this last identity yields

GN = (FT )⊥ . (4.28)

This relation ensures the equivalency between the properties of GN and (FT )⊥.

Remark 4 In some numerical applications, the positivity assumption on the Jacobian, J > 0,
may not be satisfied. Indeed, in strong shock regime and vortices, the Jacobian J may become
negative. In this method we compute the tensor F, although the one used is G, the cofactor
matrix. The question of the invertibility of F in the calculation of G is not crucial because the
function F −→ JF−t is continuous (linear in two-dimensions and quadratic in three-dimensions
regarding its components). That is the reason why the numerical calculation would not stop in
this extreme case. But obviously, to work on the fixed initial mesh does not solve the problem of
mesh entangling, since the difficulty is then transferred to the numerical solution of F. Thus, in
some extreme cases, an ALE approach could be needed, not regarding the shape of the moving
mesh but its deformation gradient tensor.

Now, we want demonstrate that the deformation gradient tensor discretization respects the
transport formulas (3.17) and (4.27). In the case of infinitesimal displacements, the Eulerian
tangent tdl writes

tdl = dx = dΦ,

= d

(∑

p

λp(X) Φp

)

=
∑

p

(∇Xλp � dX) Φp

=
∑

p

(Φp ⊗∇Xλp) dX

= Fi dX = Fi T dL. (4.29)

Finally, the discretization (4.21) of the tensor F preserves the transport relations (4.27).
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Finally, we set up the general framework of the discretization of the deformation gradient tensor
using Finite Element basis functions. We partitionate our polygonal cells Ωc into ntri triangles
T ci with i = 1, . . . , ntri and make use of the semi-discrete equation (4.26). Now, coming back
to the discontinuous Galerkin discretization of the specific volume, the velocity and the total
energy equations, we derive the numerical fluxes in order to ensure a local entropy inequality.

4.1.3 Entropic analysis

Let η be the specific entropy and θ the absolute temperature defined by means of the Gibbs
identity as follows

θdη = dε+ Pd(
1

ρ
),

= dE −U � dU + Pd(
1

ρ
). (4.30)

We are going to write the time rate of change of the specific entropy. Here, we remind that we
identify the functions 1

ρ , U , E and P to their polynomial approximation over the considered

cell Ωc, respectively (1
ρ)ch, U c

h, Ech and P ch. The method is quite similar to the one used in the
one-dimensional case, refer to Section 2.3.3. We perform variational formulations on the gas
dynamics equations (4.2b),(4.2c) and (4.2d) with respectively P , U and 1 as test functions

∫

Ωc

ρ0 P
d

dt
(
1

ρ
) dV =

∫

∂Ωc

P U � GNdS −
∫

Ωc

U � G∇XP dV, (4.31a)

∫

Ωc

ρ0U �
dU

dt
dV = −

∫

∂Ωc

P U � GNdS +

∫

Ωc

P (G : ∇XU) dV, (4.31b)

∫

Ωc

ρ0 dE

dt
dV = −

∫

∂Ωc

PU � GNdS. (4.31c)

We identify these equations respectively to the pressure work, the kinetic energy and the
total energy semi-discrete equations. Making use of the Gibbs formula (4.30), the (4.31c)-
(4.31b)+(4.31a) combination leads to

∫

Ωc

ρ0 θ
d η

dt
dV =

∫

∂Ωc

[
P U + P U − PU

]
� GNdS

−
∫

Ωc

[P (G : ∇XU) +U � G∇XP ]︸ ︷︷ ︸
A

dV.

The use of the Piola compatibility condition gives us

∇X � (GtP U) = U � G∇XP + P ∇X � (GtU),

= U � G∇XP + P U � (∇X � G)︸ ︷︷ ︸
=0 Piola

+P (G : ∇XU) ,

= A.

We finally get an expression of the time rate of change of the specific entropy

∫

Ωc

ρ0 θ
d η

dt
dV =

∫

∂Ωc

[
P U + P U − PU − P U

]
� GNdS. (4.32)

130



At this point, it remains to express the numerical fluxes in such way that an entropy inequality
is satisfied. To this end, we first make the following fundamental assumption

PU = P U . (4.33)

This assumption allows to factorize the right-hand side of equation (4.32)

∫

Ωc

ρ0 θ
d η

dt
dV =

∫

∂Ωc

(P − P )(U −U) � GNdS. (4.34)

This relation transforms into the following expression when coming back to the actual configu-
ration

∫

ωc

ρ θ
d η

dt
dv =

∫

∂ωc

(P − P )(U −U) � nds. (4.35)

To enforce a local entropy inequality at the semi-discrete level, we set the following sufficient
condition on the numerical fluxes

P − P = −Z (U −U) � n,

= −Z (U −U) �
GN

‖GN‖ , (4.36)

where Z is a positive constant with a physical dimension of a density times a velocity. For the
numerical applications, we use Z = ρ a which corresponds to the acoustic impedance.

Finally, we have derived a particular form of the numerical fluxes ensuring a local entropy
inequality for the semi-discrete scheme. We have now identified most of the difficulties and
presented the main ingredients inherent of the DG discretization of the Lagrangian gas dynamics
equations written using the Lagrangian coordinates. Before detailing the two cases of the second-
order and the third-order schemes, we present the two-dimensional extension of the limitation
presented in Section 2.3.4.

4.1.4 Limiting procedure based on the characteristic variables

In the case of discontinuous problem, without a specific treatment, high-order numerical schemes
produce solutions containing spurious oscillations. On the other hand, if we apply a limiting
procedure directly to the polynomial approximation of the physical variables (1

ρ)h, Uh and
Eh, we cannot enforce totally the monotonicity of the solutions. To correct this flaw, as we did
in the one-dimensional case, we construct a limiting procedure based on the Riemann invariants.

Let us assume that the fluid variables are sufficiently smooth to compute their partial derivatives.
Here, we recall the Lagrangian gas dynamics equations written under the non-conservative form

ρ
d

dt
(
1

ρ
)−∇x �U = 0, (4.37a)

ρ
dU

dt
+ ∇xP = 0, (4.37b)

ρ
dE

dt
+∇x � (PU) = 0. (4.37c)
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Dot-multiplying the momentum equation (4.37b) by the velocity and subtracting it from the
total energy equation (4.37c) leads to

ρ
d ε

dt
+ P∇x �U = 0,

where ε is the specific internal energy. Now, substituting the volume equation (4.37a) in the
above equation leads to

ρ
d ε

dt
+ P ρ

d

dt
(
1

ρ
) = 0.

Recalling the definition of the specific entropy, η, thanks to the Gibbs formula

θdη = dε+ P d(
1

ρ
),

where θ denotes the temperature, allows to write the time rate of change of the specific entropy
as

d η

dt
= 0. (4.38)

This equation shows that the specific entropy is conserved along the trajectory equation. Thanks
to this result, one gets the following relation between the pressure and the density material
derivatives

dP

dt
= −ρ2a2 d

dt
(
1

ρ
). (4.39)

Gathering the previous results, we obtain the new non-conservative form of the gas dynamics
equations

dP

dt
+ ρa2∇x �U = 0, (4.40a)

dU

dt
+

1

ρ
∇xP = 0, (4.40b)

d η

dt
= 0. (4.40c)

Expanding the above system in the two dimensional Cartesian frame yields

∂ P

∂t
+ U

∂ P

∂x
+ V

∂ P

∂y
+ ρa2(

∂ U

∂x
+
∂ V

∂y
) = 0, (4.41a)

∂ U

∂t
+ U

∂ U

∂x
+ V

∂ U

∂y
+

1

ρ

∂ P

∂x
= 0, (4.41b)

∂ V

∂t
+ U

∂ V

∂x
+ V

∂ V

∂y
+

1

ρ

∂ P

∂y
= 0, (4.41c)

∂ η

∂t
+ U

∂ η

∂x
+ V

∂ η

∂y
= 0, (4.41d)

where U and V are respectively the x and y components of U . Setting W = (P,U, V, η)t, we
can rewrite system (4.40) as

∂W

∂t
+ Ax

∂W

∂x
+ Ay

∂W

∂y
= 0, (4.42)
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where the matrix 4× 4 matrices Ax and Ay are given by

Ax =




U ρa2 0 0
1
ρ U 0 0

0 0 U 0
0 0 0 U


 and Ay =




V 0 ρ a2 0
0 V 0 0
1
ρ 0 V 0

0 0 0 V


 .

If n denotes a unit vector, we define A(n) = Axnx + Ayny

A(n) =




U � n ρ a2 nx ρ a2 ny 0
1
ρ nx U � n 0 0
1
ρ ny 0 U � n 0

0 0 0 U � n


 . (4.43)

This matrix admits four real eigenvalues: λ1 = U � n − a, λ2 = λ3 = U � n, λ4 = U � n + a.
One knows that the system of equations (4.41) is hyperbolic if for all n, A(n) admits four real
eigenvalues. Consequently, the above system is hyperbolic. Now, we are able to introduce the
four differential Riemann invariants associated to unit direction n

dαE = dE −U � dU + P d(
1

ρ
), (4.44)

dα− = dP − ρa dU � n, (4.45)

dα+ = dP + ρa dU � n, (4.46)

dα0 = dU � t, (4.47)

where t = n⊥. Recalling that for an isentropic flow the differential of the pressure expresses as
dP = −ρ2a2 d(1

ρ), the Riemann invariants differentials definitions rewrite

dαE = dE −U � dU + P d(
1

ρ
), (4.48)

dα− = d(
1

ρ
)− 1

ρa
dU � n, (4.49)

dα+ = d(
1

ρ
) +

1

ρa
dU � n, (4.50)

dα0 = dU � t. (4.51)

Following the same procedure than in the one-dimensional case, we define the polynomial ap-
proximation of the Riemann invariants by linearizing equations (4.48), (4.49), (4.50) and (4.51)
on each cells around the mean values in the cells

αcE,h =
K∑

k=0

αcE,kσ
c
k = Ech −U c

0 �U c
h + P c0 (

1

ρ
)ch, (4.52)

αc−,h =

K∑

k=0

αc−,kσ
c
k = (

1

ρ
)ch −

1

Zc
U c
h � n, (4.53)

αc+,h =
K∑

k=0

αc+,kσ
c
k = (

1

ρ
)ch +

1

Zc
U c
h � n, (4.54)

αc0,h =

K∑

k=0

αc0,kσ
c
k = U c

h � t, (4.55)
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where φih is the polynomial approximation of φ on the cell Ωc and φc0 its mass averaged value.
Zc = ac0ρ

c
0 is the acoustic impedance. This procedure is equivalent to linearize the gas dynamics

equations, on each cells, around a mean state. Applying the hierarchical high-order limitation
procedure used in the previous cases, we obtain the limiting coefficients for the Riemann in-
variants polynomials. Hence, using definitions (4.52), (4.53), (4.54) and (4.55), we recover the
limiting coefficients corresponding to the system variables polynomial approximations

(
1

ρ
)ck =

1

2
(αc+,k + αc−,k),

U c
k =

1

2
Zc(α

c
+,k − αc−,k)n+ αc0,kt,

Eck = αcE,k +
1

2
Zc(α

c
+,k − αc−,k)U c

0 � n+ αc0,kU
c
0 � t− 1

2
P c0 (αc+,k + αc−,k).

Concerning the unit vector n and t, we could define these projection vectors as the two orthog-
onal directions eX and eY . This option in the choice of n and t would not ensure symmetry
preservation in the case of radial flows on polar grids. Finally, we decided to use the ve-
locity mean value direction over the cell and its orthogonal vector, i.e., n = U c

0\||U c
0 || and

t = (U c
0)⊥\||U c

0 ||. We numerically demonstrate in the numerical results Section 4.2.4 that this
limitation procedure allows to preserve the cylindrical symmetry and of the apparition of most
of the oscillations.

The discretization of the equations (4.2b), (4.2c) and (4.2d) by means of piecewise polynomials
and of the deformation gradient tensor equation (3.10) by means of a mapping using Finite
Element basis presented up to now is valid for any order of accuracy. From now on, we specify
the proper implementation of our DG scheme in the two special cases of the second and third
order of accuracy.
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4.2 Second-order DG scheme

In this section, we present the second-order application of the general DG discretization pre-
sented previously. In this case, we consider that the continuous mapping characterizing the flow
motion of the fluid is linear. Thus, the edges remain straight lines through the flow deformation.
We start this part detailing the discretization of the deformation gradient tensor recalling that
F would be piecewise constant in this second-order case.

4.2.1 Deformation gradient tensor discretization

The tensor F being piecewise constant over the triangles, we use the P1 barycentric coordinate
basis functions which write in a generic triangle Ti

λp(X) =
1

2|Ti|
[X(Yp+ − Yp−)− Y (Xp+ −Xp−) +Xp+Yp− −Xp−Yp+ ], (4.56)

where p, p+ and p− are the counterclockwise ordered triangle nodes and |Ti| the triangle volume,
see Figure 4.2.

Lp+p−N p+p−

p

p−

p+

LpiN pi

Ti

Figure 4.2: Generic triangle.

In this configuration, the gradient tensor definition (4.21) and the semi-discrete equation (4.26)
rewrites

Fi(t) =
1

|Ti|
∑

p∈P(Ti)
xp(t)⊗ LpiNpi, (4.57)

d

dt
Fi(t) =

1

|Ti|
∑

p∈P(Ti)
Up(t)⊗ LpiNpi, (4.58)

where P(Ti) is the node set of Ti, and LpiNpi is the corner normal at node p in the initial
configuration, see Figure 4.2, since

∇Xλp(X) =
1

2|Ti|

(
Yp+ − Yp−
Xp− −Xp+

)
,

=
1

2|Ti|
(Lp−pNp−p + Lpp+Npp+),

=
LpiNpi

|Ti|
. (4.59)
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This form of deformation gradient tensor discretization has also been presented by G. Kluth and
B. Després in [56]. The difference lies in the reference configuration. In [56], they developed
a cell-centered Lagrangian scheme on moving mesh for the hyperelasticity equations. Thus,
they compute the flow deformation from the previous time step geometry. In our case, the
whole scheme is developed on the initial configuration. Consequently, the flow deformation is
computed from the initial geometry.

Recalling that the integral of the unit outward normal over a closed surface is equal to zero,
the relation Lp−pNp−p + Lpp+Npp+ + Lp+p−Np+p− = 0, holds in the case of a triangular cell.
Hence, a new relation on the corner normals immediately comes

LpiNpi =
1

2

(
Lp−pNp−p + Lpp+Npp+

)
,

= −1

2
Lp+p−Np+p− . (4.60)

This relation means that in a triangular cell the corner normal at a specific node is colinear
with the opposite face normal. A major problem inherent to the deformation gradient tensor
discretization lies in the continuity of the geometry. We made the choice of discretizing the
deformation gradient tensor by means of a mapping using Finite Element basis to assure conti-
nuity of the normal GN through the flow deformation. This continuity property as well as the
respect of the Piola condition come from the mapping discretization using the P1 barycentric
coordinate basis functions. Now, we can ensure this result from the discretized form of the
deformation gradient tensor. Obviously, regarding (4.57) tensor F is piecewise constant on the
triangular cells over the domain. Hence F is discontinuous. Nevertheless, FTdL and GNdL,
corresponding to tdl and ndl the Eulerian tangent and normal, have to be continuous on the
boundaries of the triangular cells.

Continuity of the normals. Let TL and TR be two neighbor triangles sharing the face fpp+ ,
refer to Figure 4.3. A correct discretization of the deformation tensor would lead to have the
normal and tangent continuity on the face ,i.e., FL Lpp+Tpp+ = FR Lpp+Tpp+ = lpp+tpp+ .

p+

p

TL
TR
N pp+

T pp+

p−

N p−L

Figure 4.3: Neighbor triangles.

Considering the triangle TL, we know that Tpp+ is orthogonal toNpp+ and consequently toNp−L.
This relation means that in the computation of the Eulerian normal of a mesh face, there is
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no contribution of the opposite node. Hence, the transported Lagrangian normal FL Lpp+Tpp+
writes

FL Lpp+Tpp+ =
1

|TL|
∑

q∈P(TL)

Φq

(
LqLNqL � Lpp+Tpp+

)
,

=
1

|TL|
(
Φp

(
LpLNpL � Lpp+Tpp+

)
+ Φp+

(
Lp+LNp+L � Lpp+Tpp+

))
. (4.61)

Recalling the corner normals definitions LpLNpL = 1
2(Lp−pNp−p+Lpp+Lpp+) and Lp+LNp+L =

1
2(Lpp+Npp+ + Lp+p−Lp+p−), expression (4.61) rewrites

FL Lpp+Tpp+ =
1

2|TL|
(
Φp

(
Lp−pNp−p � Lpp+Tpp+

)
+ Φp+

(
Lp+p−Np+p− � Lpp+Tpp+

))
,

= Φp+ −Φp = xp+ − xp = lpp+tpp+ . (4.62)

Again, it confirms that the initial tangent transported through the flow deformation definitively
corresponds to the tangent into the actual configuration. Obviously, regarding (4.28), this
relation holds considering the normals. The use of a similar process in the neighbor triangle TR
leads to an identical result. Consequently, we do have the required continuity

FL Lpp+Tpp+ = FR Lpp+Tpp+ = lpp+tpp+ . (4.63)

Deformation gradient tensor initialization. Concerning the initialization of the deforma-
tion gradient tensor, one knows that initially, Φ(X, 0) = X and F(X, 0) = Id. Let us recall the
geometrical identity (3.52) in the particular case of t = 0

∑

p∈P(Ti)
Lpi(Npi ⊗Xp) = |Ti|Id.

Recalling the definition of the discretized deformation gradient tensor (4.57), it immediately
comes that

Fi(0) =
1

|Ti|
∑

p∈P(Ti)
Xp ⊗ LpiNpi =

|Ti|
|Ti|

Id = Id.

This result shows that the deformation gradient tensor discretization ensures a correct initial-
ization of the tensor. Now, with the help of (3.11) we want to derive a semi-discrete equation
on the Jacobian.

Compatibility of tensor Fi discretization. Actually, substituting the tensor Fi semi-
discrete equation (4.58) into d Ji

dt = Gi : dFi
dt yields

d Ji
dt

=
1

|Ti|
∑

p∈P(Ti)
Gi : (Up ⊗ LpiNpi) ,

=
1

|Ti|
∑

p∈P(Ti)
Up � GiLpiNpi, thanks to (A.18c)

where Ji is the constant Jacobian over the triangle Ti. At the end, reminding the previous
relations (4.28) and (4.63), the Jacobian semi-discrete equation writes

d Ji
dt

=
1

|Ti|
∑

p∈P(Ti)
Up � lpinpi =

d

dt

( |τi|
|Ti|

)
, (4.64)
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where |τi| is the volume of the triangle τi, which corresponds to the transport of Ti trough
the flow motion of the fluid. We will see in the next Section 4.2.2 that considering (4.64) the
discretization of F is consistent with the discretization of the volume equation.

4.2.2 Variational formulations

In the previous general framework section, we make explicit the variational formulation of the
system equations required by the DG discretization. As we already said, the interior terms are
evaluated by means of the quadrature rule defined in Table 4.1. Here, we detail the specific
treatment of the boundary terms ensuring the respect of the GCL condition.

Specific volume equation discretization. Let us recall the variational formulation over
the cell Ωc of the specific volume equation

∫

Ωc

ρ0 d

dt
(
1

ρ
)σcq dV =

K∑

k=0

d

dt
(
1

ρ
)ck

∫

Ωc

ρ0σcqσ
c
k dV,

= −
∫

Ωc

U � G∇Xσ
c
q dV +

∫

∂Ωc

U � σcq GNdL, (4.65)

With the chosen polynomial basis (4.9) presented, the first moment of the specific volume reads

(
1

ρ
)c0 =

1

mc

∫

Ωc

ρ0

ρ
dV =

1

mc

∫

Ωc

JdV =
1

mc

∫

ωc

dv =
|ωc|
mc

=
1

ρc
,

where ρc is the density mean value defined in EUCCLHYD scheme Section 1.2. This relation
of the first moment (1

ρ)c0 of the specific volume rewrites

(
1

ρ
)c0 =

|ωc|
mc

=
1

mc

ntri∑

i=1

|τ ci |,

where |τ ci | is the new volume at time t of the triangle in the initial configuration T ci . Now, with
a proper time integration of the Jacobian equation (4.64), the previous relation on (1

ρ)c0 yields

(
1

ρ
)c0 =

|ωc|
mc

=
1

mc

ntri∑

i=1

|T ci | Jci . (4.66)

This identity ensures the compatibility between the geometric discretization and the DG reso-
lution of the specific volume.

For the second-order scheme the deformation gradient tensor F and so G are piecewise constants
over the triangles T ci , and ∇Xσ

c
q are piecewise constants over the polygonal cells Ωc. Thus, the

previous equation (4.65) rewrite

∫

Ωc

ρ0 d

dt
(
1

ρ
)σcq dV = −

ntri∑

i=1

Gci ∇Xσ
c
q �
∫

T ci
UdV +

∫

∂Ωc

U � σcq GNdL,

Here, the main difficulty lies in the evaluation of the boundary term. We know that in second-
order scheme case the mapping characterizing the flow motion of the fluid is linear over the
domain. Consequently, we define a parametric representation of the edge velocity which is
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consistent with the Finite Element mapping. Then, the continuous velocity U reads as follows
on face fpp+

U |pp+ (ζ) = Up (1− ζ) +Up+ ζ, (4.67)

where ζ ∈ [0, 1] is the linear abscissa, Up and Up+ are the velocity of the nodes p and p+ initially
located at Xp and Xp+ . Here, the linear functions 1 − ζ and ζ correspond to the trace of the
P1 barycentric coordinate functions (4.56) on the triangle edges.

In the second-order case, the polynomial basis functions σcq are piecewise linear over the polyg-
onal cells and thus piecewise linear on both sides of the mesh edges. Consequently, on the face
fpp+ the function σcq can be defined by means of the linear abscissa and of its extrapolated
values at the nodes p and p+ as

σcq|pp+ (ζ) = σcq(Xp) (1− ζ) + σcq(Xp+) ζ. (4.68)

Combining the two definitions (4.67) and (4.68), we are able to express on face fpp+ the product
Uσcq as

Uσcq|pp+ (ζ) = Upσ
c
q(Xp) (1− ζ)2 +Up+σ

c
q(Xp+) ζ2 + (Up+σ

c
q(Xp) +Upσ

c
q(Xp+)) (1− ζ)ζ.

(4.69)

Now, to evaluate the boundary term in (4.65), we analytically integrate the function defined in
(4.69)

∫

∂Ωc

Uσcq � GNdL =
∑

p∈P(c)

∫ p+

p
Uσcq � GNdL,

=
∑

p∈P(c)

(∫ 1

0
Uσcq|pp+ (ζ) dζ

)
� G|pp+Lpp+Npp+ , (4.70)

where G|pp+ is the constant value of the cofactor tensor G on face fpp+ . Thanks to the discretiza-

tion of the deformation gradient tensor described previously, we know that G|pp+Lpp+Npp+

strictly corresponds to the Eulerian normal lpp+npp+ in the actual configuration. Thus, analyt-
ically integrating equation (4.70), one gets

∫

∂Ωc

Uσcq � GNdL =
∑

p∈P(c)

(∫ 1

0
Uσcq|pp+ (ζ) dζ

)
� lpp+npp+ ,

=
∑

p∈P(c)

1

6
[Up � (2σcq(Xp) + σcq(Xp+))lpp+npp+

+Up+ � (2σcq(Xp+) + σcq(Xp))lpp+npp+ ].

Finally, performing an index permutation on this last equation leads to

∫

∂Ωc

Uσcq � GNdL =
∑

p∈P(c)

Up � [
1

3
(2σcq(Xp) + σcq(Xp+))l+pcn

+
pc +

1

3
(2σcq(Xp) + σcq(Xp−))l−pcn

−
pc],

where l−pcn
−
pc = 1

2 lp−pnp−p and l+pcn
+
pc = 1

2 lpp+npp+ are the half-left and half-right Eulerian
corner normals. Now, for the sake of conciseness in the development of our DG scheme, let us
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introduce the weighted lengths l±,qpc , balanced by the basis functions extrapolations and defined
as

l±,qpc =

(
2σcq(Xp) + σcq(Xp±)

3

)
l±pc. (4.71)

Hence, the boundary term of the equation (4.65) finally writes

∫

∂Ωc

Uσcq � GNdL =
∑

p∈P(c)

Up � l
q
pcn

q
pc, (4.72)

where lqpcn
q
pc = l−,qpc n−pc + l+,qpc n+

pc. The first moment of this relation, i.e., q = 0, confirms the
respect of the GCL condition which reads

∫

∂Ωc

U � GNdL =

∫

∂ωc

U � ndl =
∑

p∈P(c)

Up � lpcnpc.

Finally, we have derived the semi-discrete equations on the specific volume successive moments,
in respect with the GCL and with an analytical integration of the boundary term. The semi-
discrete equations writes

∫

Ωc

ρ0 d

dt
(
1

ρ
)σcq dV = −

ntri∑

i=1

Gci∇Xσ
c
q �
∫

T ci
UdV +

∑

p∈P(c)

Up � l
q
pcn

q
pc. (4.73)

For the first moment, we exactly recover the EUCCLHYD scheme presented in Section 3.2

mc
d

dt
(
1

ρ
)c0 =

∑

p∈P(c)

Up � lpcnpc, (4.74)

where lpcnpc = l0pcn
0
pc.

For the momentum discretization, we use a similar procedure as the one presented for the specific
volume equation, with a noteworthy difference on the property of the pressure numerical flux.

Momentum discretization. For the momentum equation, the local variational formulation
of (4.2c) on Ωc leads to

∫

Ωc

ρ0 dU

dt
σcq dV =

ntri∑

i=1

Gci∇Xσ
c
q

∫

T ci
PdV −

∫

∂Ωc

Pσcq GNdL. (4.75)

To evaluate the boundary term of (4.75), we use a similar procedure as one presented for the
specific volume equation, considering that the pressure numerical flux P is piecewise linear on
the edges of the cell Ωc. For the edge velocity U , we imposed this quantity to be continuous
between cells and to be single valued at the nodes of the mesh. This hypothesis is strongly
needed, the velocity being a kinematic variable deriving from the continuous mapping. But this
time, the pressure being a thermodynamical variable, nothing impose to P to be continuous
between neighboring cells. Thus, we generalize the study setting the edge pressure in the cell
Ωc as

P
c
|pp+ (ζ) = P+

pc (1− ζ) + P−
p+c

ζ, (4.76)
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where P+
pc and P−

p+c
are respectively the right and left nodal pressures in the cell Ωc at the nodes

p and p+. These nodal pressures correspond to the Π+
pc and Π−

p+c
introduced in Section 3.3.

After an analytical integration, the boundary term of (4.75) writes
∫

∂Ωc

Pσcq GNdL =
∑

p∈P(c)

(
P−pc l

−,q
pc n

−
pc + P+

pc l
+,q
pc n

+
pc

)
. (4.77)

Finally, we have derived the semi-discrete equations on the successive moments of the velocity,
with an analytical integration of the boundary term. The semi-discrete equations writes

∫

Ωc

ρ0 dU

dt
σcq dV =

ntri∑

i=1

Gci∇Xσ
c
q

∫

T ci
PdV −

∑

p∈P(c)

F q
pc, (4.78)

where F q
pc = P−pc l

−,q
pc n−pc + P+

pc l
+,q
pc n+

pc identifies with the qth moment of the subcell forces. For
the first moment, corresponding to q = 0, we again recover the EUCCLHYD scheme

mc
dU c

0

dt
= −

∑

p∈P(c)

Fpc, (4.79)

where Fpc = F 0
pc.

Total energy discretization. The procedure to discretize the total energy equation (4.2d)
is identical as the one used for the momentum equation. Let us recall the local variational
formulation of (4.2d) on Ωc

∫

Ωc

ρ0 dE

dt
σcq dV =

ntri∑

i=1

Gci∇Xσ
c
q �
∫

T ci
P UdV −

∫

∂Ωc

PU � σcqGNdL. (4.80)

At this point, we assume that the numerical flux inherent to the total energy equation, PU , has
the same linear property than the other numerical fluxes U and P . Thus, we consider that the
polynomial degree of PU is equivalent to the one of the total energy polynomial approximation
Eh. Following the procedure used in the momentum equation discretization, the function PU
writes on the face fpp+ as

PU
c
|pp+ (ζ) = (PU)+

pc (1− ζ) + (PU)−
p+c

ζ. (4.81)

The analytical integration of the expression in the evaluation of the boundary term of (4.144)
leads to the following semi-discrete equations for the total energy

∫

Ωc

ρ0 dE

dt
σcq dV =

ntri∑

i=1

Gci∇Xσ
c
q �
∫

T ci
P UdV −

∑

p∈P(c)

(
(PU)−pc � l

−,q
pc n

−
pc + (PU)+

pc � l
+,q
pc n

+
pc

)
.

(4.82)

At this point, we make the same fundamental assumption on the numerical flux PU than the
one used in the semi-discretization of the local entropy inequality (4.33)

PU = P U . (4.83)

This relation immediately yields

(PU)−pc = P−pcUp and (PU)+
pc = P+

pcUp. (4.84)
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With the use of this fundamental assumption, the semi-discrete equations on the moments of
the total energy finally write

∫

Ωc

ρ0 dE

dt
σcq dV =

ntri∑

i=1

Gci∇Xσ
c
q �
∫

T ci
P UdV −

∑

p∈P(c)

Up � F
q
pc (4.85)

For the first moment, we can identify the EUCCLHYD scheme

mc
dEc0
dt

= −
∑

p∈P(c)

Up � Fpc. (4.86)

Assumption (4.83) allows us to uncouple the different nodes contributions. This is the only
solution to recover the EUCCLHYD for the first moments of these DG polynomial discretiza-
tions, and also to avoid the need for a global linear system on the nodal velocity. That is we
keep local nodal solvers. In the end, we have 3× (K + 1) semi-discrete equations for the same
number of unknowns. For q = 0 . . .K

K∑

k=0

d

dt
(
1

ρ
)k

∫

Ωc

ρ0σcqσ
c
k dV = −

ntri∑

i=1

Gci∇Xσ
c
q �
∫

T ci
UdV +

∑

p∈P(c)

Up � l
q
pcn

q
pc,

K∑

k=0

dUk
dt

∫

Ωc

ρ0σcqσ
c
k dV =

ntri∑

i=1

Gci∇Xσ
c
q

∫

T ci
PdV −

∑

p∈P(c)

F q
pc,

K∑

k=0

dEk
dt

∫

Ωc

ρ0σcqσ
c
k dV =

ntri∑

i=1

Gci∇Xσ
c
q �
∫

T ci
P UdV −

∑

p∈P(c)

Up � F
q
pc.

To complete the scheme construction, we need to define the nodal solvers to compute Up and
F q
pc. For that purpose, we make use of the entropy analysis done in the general framework

Section 4.1.3, to ensure that the kinetic energy is correctly dissipated in internal energy through
a shock.

4.2.3 Nodal solvers

The entropic analysis done in the previous general framework section gives us a specific relation
between the numerical fluxes P and U ensuring a local entropy inequality. Let us recall this
fundamental identity on the boundaries of cell Ωc

P = P ch − Zc (U −U c
h) � n, (4.87)

where Zc = ρc ac is the acoustic impedance. The use of this expression to calculate F q
pc yields

F q
pc = P−pc l

−,q
pc n

−
pc + P+

pc l
+,q
pc n

+
pc,

= P ch(X, t) lqpcn
q
pc −Zc

[
(Up −U c

h(Xp, t)) � n−pc
]
l−,qpc n−pc

−Zc
[
(Up −U c

h(Xp, t)) � n+
pc

]
l+,qpc n+

pc.

Finally, the qth moment of the subcell force writes

F q
pc = P ch(Xp, t) l

q
pcn

q
pc −Mq

pc (Up −U c
h(Xp, t)), (4.88)
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where the Mq
pc matrices are defined as

Mq
pc = Zc

(
l−,qpc n

−
pc ⊗ n−pc + l+,qpc n

+
pc ⊗ n+

pc

)
.

Similarly to the EUCCLHYD scheme development, refer to Section 3.3.6, the total energy
conservation imposes, in the simple case with no boundary contribution that

∑

c

∫

Ωc

ρ0 dE

dt
dV = −

∑

c

∑

p∈P(c)

Up � Fpc,

=
∑

p

Up �
∑

c∈C(p)
Fpc

= 0,

where C(p) is the set of cells surrounding the p node. Since this result holds for any velocity
field, total energy conservation implies

∑

c∈C(p)
Fpc = 0. (4.89)

This constraint also enforce the momentum conservation because

∑

c

∫

Ωc

ρ0 dU

dt
dV = −

∑

c

∑

p∈P(c)

Fpc,

=
∑

p∈P(Ω)

∑

c∈C(p)
Fpc

= 0.

Thanks to (4.89), we finally have an explicit expression of the nodal velocity Up

(
∑

c∈C(p)
Mpc)Up =

∑

c∈C(p)
[P ch(Xp, t) lpcnpc + MpcU

c
h(Xp, t)] , (4.90)

where Mpc = Zc (l+pcn
+
pc⊗n+

pc + l−pcn
−
pc⊗n−pc) are positive semi-definite matrices with a physical

dimension of a density times a velocity. This node velocity definition is nothing but the nodal
solver derived in the previous EUCCLHYD Section 3.3. Thus, the boundary conditions are
identical to the one used in the first-order scheme.

In the end, we obtain a second-order semi-discrete scheme respecting by construction the Piola
compatibility condition and assuring the GCL, the momentum conservation and the total energy
conservation. Finally, we apply to all these semi-discretized equations a classical second-order
TVD Runge-Kutta time discretization scheme [27]. The time step is evaluated following the
same criteria than in the first-order Section 3.3.8. The choice of the coefficient Ce is constrained
by the condition introduced by B. Cockburn and C.-W. Shu in [27]. Thus, in this second-order
frame, Ce reads

Ce =
1

2α+ 1
=

1

3
.

Here, the second-order DG scheme robustness and accuracy will be assessed using several rele-
vant test cases taken from the literature.
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4.2.4 Numerical results

To demonstrate the accuracy and the robustness of our scheme on the gas dynamics system,
we have run test cases taken from the literature. During the whole calculation we are working
on the fixed initial grid. However, plotting final solutions on the initial mesh, the results
are difficult to analyze. Luckily, knowing the deformation gradient tensor everywhere and at
anytime, we are able to observe the solution on the actual, deformed, mesh. For a better
understanding of the results, all the problem solutions are displayed on the final mesh. For
the numerical applications, the initial functions are projected over the polynomial space P1 on
the cells. The slope limitation is performed using the Riemann invariants limitation procedure,
refer to Section 4.1.4.

Polar Sod shock tube problem. Here, we consider the extension of the classical Sod shock
tube [100] to the case of polar geometry. The present problem consists of a cylindrical shock
tube of unity radius. The interface is located at r = 0.5. At the initial time, the states on
the left and on the right sides of the interface are constant. The left state is a high pressure
fluid characterized by (ρ0

L, P
0
L,U

0
L) = (1, 1,0), the right state is a low pressure fluid defined by

(ρ0
R, P

0
R,U

0
R) = (0.125, 0.1,0). The gamma gas law is defined by γ = 7

5 . The computational
domain is defined in polar coordinates by (r, θ) ∈ [0, 1] × [0, π4 ]. The boundary conditions are
symmetric for θ = 0 and θ = π

4 , and wall, i.e., the normal velocity is set to zero, at r = 1. The
aim of this test case is to assess the scheme accuracy and the scheme symmetry preservation
ability, refer Figure 4.4-(a). On Figure 4.4-(b), we note the strong accuracy difference between
the first and the second-order. In this case, the limited solution is perfectly monotonic.
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(a) Second-order DG scheme with limitation.
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Figure 4.4: Sod shock tube problem on a polar grid made of 100× 5 cells.

A variant of the Gresho vortex problem. We propose a variant of the initial vortex
problem defined by Gresho in [45]. The analytical solution is obtained by considering a steady
vortex which is solution of the incompressible Euler equations. This solution is characterized
by a balance between inertia and pressure gradient into the momentum equation. We recall
hereafter the procedure to derive such a solution. Before proceeding any further we start by
recalling the writing of the differential operators using cylindrical polar coordinates.
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Let (x, y, z) denote the usual Cartesian coordinates and (ex, ey, ez) the Cartesian orthogonal
basis. The polar cylindrical coordinates are (r, θ, z) where r ≥ 0 and θ ∈ [0, 2π[, and the
corresponding basis in cylindrical polar geometry is (er, eθ, ez). For P = P (r, θ, z) and U =
ur er+uθ eθ+uz ez, the gradient and divergence operators are expressed as follows in cylindrical

∇P =
∂P

∂r
er +

1

r

∂P

∂θ
eθ +

∂P

∂z
ez,

∇ �U =
1

r

∂(r ur)

∂r
+

1

r

∂uθ
∂θ

+
∂uz
∂z

.

The curl of the velocity field U is given by

∇×U = (
1

r

∂uz
∂θ
− ∂uθ

∂z
)er + (

∂ur
∂r
− ∂uz

∂r
)eθ +

1

r
(
∂(r uθ)

∂r
− ∂ur

∂θ
)ez. (4.91)

Let ψ = ψ(r, θ, z, t) be a physical variable attached to the fluid, its material derivative writes as

dψ

dt
=
∂ ψ

∂t
+U �∇ψ =

∂ ψ

∂t
+ ur

∂ψ

∂r
+

1

r
uθ
∂ψ

∂θ
+ uz

∂ψ

∂z
.

Being given the velocity vector, U , the acceleration reads as

dU

dt
=
∂U

∂t
+

(
ur

∂

∂r
+
uθ
r

∂

∂θ
+ uz

∂

∂z

)
U . (4.92)

Now, let us assume that the fluid flow obeys the following properties:

• The velocity field is orthoradial and its component depends only on the radius r

U = uθ(r)eθ. (4.93)

• The thermodynamics variables, ρ and P are scalar valued functions which depends on r.

• The thermodynamical closure is provided by a gamma as law, P = (γ − 1)ρε.

Using the previous assumptions, we readily obtain

∇ρ =
dρ

dr
er, ∇P =

dP

dr
er, ∇ε =

dε

dr
er. (4.94)

We also point out that the flow is incompressible since from (4.93) we deduce that ∇ �U = 0.
Moreover, the material derivative of a physical variable such that ψ = ψ(r, t) coincides with its
time derivative since the velocity is orthogonal to the gradient of this variable, dψ

dt = ∂ ψ
∂t . These

points involve that the internal energy and the mass continuity equations are automatically
satisfied. Replacing the velocity field into (4.92) leads to following expression for the acceleration

dU

dt
= −u

2
θ

r
er.

In writing this equation, we have used the fact that d eθ
dt = −er. Finally, the momentum equation

reduces to the ordinary differential equation

dP

dr
= −ρu

2
θ

r
. (4.95)
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The time evolution of the specific kinetic energy, k = 1
2U

2, reads as

ρ
d k

dt
+ ∇P �U = 0. (4.96)

Knowing that k = k(r) and ∇P ⊥ U leads to the conservation of the kinetic energy. Finally,
using (4.91) and the previous assumptions, the curl of the velocity field reduces to

∇×U = (
uθ
r

+
duθ
dr

)ez. (4.97)

Being given ρ = ρ(r) and uθ = uθ(r), the pressure field is obtained by solving the differential
equation (4.95). Now, we propose to derive a smooth vortex solution by setting ρ = ρ0 and

uθ(r) =

{
22nU0 (

r

rv
)n(1− r

rv
)n if r ∈ [0, rv],

0 if r ∈]rv, 1].
(4.98)

Here, rv denotes the radius of so vortex and n is a integer such that n > 1. The factor 22n is a
normalization factor chosen such that the maximum of the orthoradial velocity is equal to one.
Choosing the above form for the orthoradial velocity ensures that it is a smooth function with
a compact support over [0, 1]. The integration of the momentum equation (4.95) gives

P (r) =

{
P (0) + 24nρ0U

2
0 h(

r

rv
) if r ∈ [0, rv],

P (0) + 24nρ0U
2
0 h(1) if r ∈]rv, 1].

(4.99)

where P (0) is an arbitrary integration constant and h is the real valued function defined by

h(ξ) =

∫ ξ

0
s2n−1(1− s)2n ds, for ξ ∈ [0, 1]. (4.100)

For numerical applications, we define the analytical solution setting the parameters to the fol-
lowing values: U0 = 1, ρ0 = 1, P (0) = 5, rv = 0.4 and n = 6. The corresponding curves are
displayed in Figure 4.6.

This variant of the Gresho problem is an interesting validation test case to assess the robustness
and the accuracy of a Lagrangian scheme. On the first hand, the vorticity leads to a strong
mesh rotation which can cause some problems as negative Jacobian determinants or negative
densities. On the other hand, if the numerical diffusion is too important the flow motion stops
very early. We run this Gresho problem on a polar grid made of 40 × 18 cells with our first
and second-order DG schemes. The computational domain is defined in polar coordinates by
(r, θ) ∈ [0, 1]× [0, 2π]. For the two-dimensional visualization, the solutions are displayed with a
zoom in the zone (r, θ) ∈ [0, 0.5]× [0, 2π], refer to Figure 4.5.
Firstly, we note that in two cases of first and second-order the symmetry is very well preserved.
The second-order DG scheme being a lot less diffusive, the mesh is more deformed at the end
than in the first-order case. We also notice that the incompressibility assumption is well satisfied
in the second-order case, the density error being less than 1.3%. We have also displayed the
pressure and velocity plots in the case of a polar grid made of 80× 18 cells, refer to Figure 4.6.
On Figure 4.6, we note the strong accuracy difference between the first and the second-order.
This result confirms the very low diffusive contribution present in the second-order DG scheme
in comparison to the first order. The small difference between the analytical solution and the
second-order one shows the high accuracy of the numerical scheme. In Figure 4.7, we display
the values the Jacobian of the second-order solution, on the subdivided triangular cells.
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Figure 4.5: Gresho problem variant on a polar grid made of 40 × 18 cells at the final time
t = 0.36: density map.
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(b) Velocity profile.

Figure 4.6: Gresho problem variant on a polar grid made of 80 × 36 cells at the final time
t = 0.36: comparison between the analytical solution and those obtained with the first and
second-order numerical schemes.

We note that in this extreme vortex case, the Jacobian remains positive. This demonstrate
the high robustness of the second-order scheme. If we perform the calculation further in time,
the first-order solution stops very early. For the second-order DG scheme, the distortion of the
mesh get even more important, refer to Figure 4.8.

We have run this variant of the Gresho problem with the second-order DG scheme until the final
time t = 2, refer to Figure 4.8. We note that at the end of the calculation, the mesh is strongly
deformed and presents some cross points and negative Jacobians. Anyway, as we are working
on the initial configuration, the calculation does not stop. This shows the high robustness of
our second-order scheme.
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Figure 4.7: Gresho problem variant on a polar grid made of 40 × 18 cells at the final time
t = 0.36 with our second-order DG scheme without limitation: Jacobian.
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(b) Jacobian.

Figure 4.8: Gresho problem variant on a polar grid made of 40× 18 cells with our second-order
DG scheme at the final time t = 2.

Noh problem. The Noh problem [85] is a well known test case used to validate Lagrangian
schemes in the regime of infinite strength shock wave. In this test case, a cold gas with unit
density is given an initial inward radial velocity of magnitude 1. The initial pressure is given
by P 0 = 10−6 and the polytropic index is equal to 5

3 . A diverging cylindrical shock wave
is generated which propagates at speed D = 1

3 . The density plateau behind the shock wave
reaches the value 16. The initial computational domain is defined by (X,Y ) = [0, 1] × [0, 1].
The boundary conditions on the X and Y axis are wall boundary conditions whereas a pressure
given by P ? = P 0 is prescribed at X = Y = 1. We run the Noh problem on a 50× 50 Cartesian
grid. This configuration leads to a severe test case since the mesh is not aligned with the flow.
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Figure 4.9: Second-order DG scheme with limitation for a Noh problem on a 50× 50 Cartesian
grid: density map.
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Figure 4.10: Density profiles comparison for a Noh problem on a 50 × 50 Cartesian grid with
the second-order DG scheme with limitation.

We note that we have a very smooth and cylindrical solution, and that the shock is located at a
circle whose radius is approximately 0.2, refer Figure 4.9. On Figure 4.10, we observe that the
second-order plot is very sharp at the shock wave front and very similar to the one-dimensional
cylindrical solution. Moreover the density at the shock plateau is not far from the analytical
value.

Sedov point blast problem. We consider the Sedov problem for a point-blast in a uniform
medium. An exact solution based on self-similarity arguments is available, see for instance
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[53]. The initial conditions are characterized by (ρ0, P 0,U0) = (1, 10−6,0), and the polytropic
index is equal to 7

5 . We set an initial delta-function energy source at the origin prescribing the

pressure in the cell containing the origin as follows, Por = (γ − 1)ρor
ε0

vor
, where vor denotes the

volume of the cell containing the origin and ε0 is the total amount of release energy. By choosing
ε0 = 0.244816, as suggested in [53], the solution consists of a diverging infinite strength shock
wave whose front is located at radius r = 1 at t = 1, with a peak density reaching 6. First,
we run Sedov problem with the second-order DG scheme with a 30× 30 Cartesian grid on the
domain (X,Y ) = [0, 1.2]× [0, 1.2], refer to Figure 4.11-(a). Then, keeping the same conditions,
we make use of an unstructured grid made of 1110 triangular cells, refer to Figure 4.12-(a),
and an another unstructured grid 775 polygonal cells produced by Voronoi tessellation, as
depicts Figure 4.13-(a). We point out that the triangular grid is made of completely anisotropic
elements.
In the three cases, the numerical solution is very close to the one-dimensional analytical solu-
tion, see Figure 4.11-(c), 4.12-(c) and 4.13-(c). At the end of the computation, the shock wave
front is correctly located at the end of the computation and is cylindrical, see Figure 4.11-(b),
4.12-(b) and 4.13-(b). And the density peak almost reaches 6. These results demonstrate the
robustness and the accuracy of this scheme.

One knows that the presence of shocks and large deformations must affect the convergence
rates. Nevertheless, plotting the numerical solutions obtained on different refined meshes, refer
to Figure 4.14, we observe the positive impact of our high-order DG formulation. We also note
that the solution correctly converges to the analytical solution meaning the shock front being
well located at radius equal to 1 with a density reaching 6.

Saltzman problem. This test case taken from [36] is a well known difficult problem that
allows to evaluate the robustness of Lagrangian schemes. It consists of a strong piston-driven
shock wave calculated using an initially nonuniform mesh. The computational domain is defined
by (X,Y ) ∈ [0, 1] × [0, 0.1]. The skewed initial mesh, displayed in Figure 4.15, is obtained
transforming a uniform 100× 10 Cartesian grid with the mapping

{
Xsk = X + (0.1− Y ) sin(πX),
Ysk = Y.

The initial conditions are (ρ0, ε0,U0) = (1, 10−6,0), and the polytropic index is γ = 5
3 . At

X = 0, a unit inward normal velocity is prescribed, the other boundaries are reflective walls.
The analytical solution is a one-dimensional infinite strength shock wave that moves at speed
D = 4

3 in the right direction. Thus, the shock wave hits the face x = 1 at time t = 0.75. Behind
the shock, the density is equal to 4.
We have displayed in Figure 4.16 the grid at time t = 0.75 which corresponds to the first
bounce of the shock wave. We remark that the one-dimensional solution is very well preserved.
Moreover, the location of the shock wave and the shock plateau are in good agreement with the
analytical solution, refer to Figure 4.16. In Figure 4.17, we have plotted the grid and the density
map at time t = 0.9, which corresponds to the time of the second bounce of the shock wave.
Although the mesh is more wavy than before, it still exhibits a good quality. These results, in
which no spurious modes appear, show the robustness of our second-order DG scheme.
To assess the accuracy of our DG scheme we compute the convergence order for the smooth
solution of the Taylor-Green vortex test case, as in [35].

Taylor-Green vortex problem. We make use of the smooth Taylor-Green vortex test case
in order to perform a convergence analysis on our DG scheme. This problem is derived by
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(b) Density map.
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(c) Density profile.

Figure 4.11: Point blast Sedov problem on a Cartesian grid made of 30 × 30 cells with the
second-order DG scheme with limitation: density map.

considering an analytical solution of the incompressible Navier-Stokes equations, modify to the
case of compressible Euler equations. The Taylor-Green vortex is characterized by the following
conditions. The computational domain is defined by (X,Y ) = [0, 1]× [0, 1]. The initial density
is uniform and denoted by ρ0. The initial velocity field is divergence-free and reads

U0 = U0

(
sin(πx) cos(πy)
− cos(πx) sin(πy)

)
.

Let us point that with these two fields, the volume equation (3.31a) is automatically satisfied.
Now, satisfying momentum equation (3.31b), P 0 is obtained by balancing the inertia term as

∇xP
0 = −ρ0 dU0

dt
. (4.101)
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(b) Second-order DG scheme with limitation.
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(c) Density profiles comparison.

Figure 4.12: Point blast Sedov problem on a unstructured grid made of 1110 triangular cells
with the second-order DG scheme with limitation: density map.

After some computations, we finally obtain

P 0 =
1

4
ρ0(U0)2[cos(2πx) + cos(2πy)] + C0,

where C0 is a constant that allows to define a non-negative pressure. Using these definitions of
the density, velocity and pressure, the volume equation and the momentum equation are auto-
matically satisfied. However, since we are computing this solution by solving the compressible
Euler equations, it remains to check whether or not the total energy equation (3.31c) is satisfied.
To this end, let us investigate the time rate of change of the specific internal energy ε

ρ0 d ε0

dt
+ P 0∇x �U0 =

1

γ − 1
U0 �∇xP

0,
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(b) Second-order scheme with limitation.
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(c) Density profiles comparison.

Figure 4.13: Point blast Sedov problem on a unstructured grid made of 775 polygonal cells with
the second-order DG scheme with limitation: density map.

since ε0 = P 0

(γ−1)ρ0
and ∇x � U0 = 0. Replacing U0 and P 0 by their analytical expressions, we

finally obtain

ρ0 d ε0

dt
+ P 0∇x �U0 =

π

4

ρ0(U0)3

γ − 1
[cos(3πx) cos(πy)− cos(3πy) cos(πx)]. (4.102)

Finally, adding the kinematic energy equation to the previous equation leads to the total energy
equation

ρ0 dE0

dt
+∇x � (P 0U0) =

π

4

ρ0(U0)3

γ − 1
[cos(3πx) cos(πy)− cos(3πy) cos(πx)]. (4.103)

Finally, the numerical simulation of this test case solving the Lagrangian hydrodynamics equa-
tions requires the addition of the above source term in the energy (total or internal) equation.
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Figure 4.14: Second-order DG scheme with limitation for a point blast Sedov problem on
Cartesian grids made of 10 × 10, 20 × 20 and 40 × 40, with the second-order DG scheme with
limitation: density profiles.
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Figure 4.15: Initial computational domain for the Saltzman problem.
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Figure 4.16: Saltzman problem. Grids and density map at time t = 0.75. Solution obtained
with the second-order DG scheme with limitation.

For the numerical applications, we set ρ0 = 1, C0 = 1, U0 = 1 and γ = 7
5 .

The results displayed in Figure 4.18 have been obtained by our first and second-order schemes
on a 20× 20 Cartesian grid.
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(a) Grids and density map.

 0

 5

 10

 15

 20

 0.9  0.91  0.92  0.93  0.94  0.95  0.96  0.97  0.98  0.99  1

solution
2nd order

(b) Density in the cells as function of the cell center x-coordinate versus
analytical solution.

Figure 4.17: Solution of the Saltzman problem at time t = 0.9 obtained with the second-order
DG scheme with limitation.

Using the analytical solution, we compute the global truncation error corresponding to our
second DG scheme scheme and display it in Table 4.2. These results confirm the high accuracy

155



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

(a) First-order scheme.
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(b) Second-order DG scheme without limitation.

Figure 4.18: Taylor-Green vortex problem on a 20×20 Cartesian grid at time t = 0.75: pressure
map.

of this scheme.

L1 L2 L∞
h EhL1

qhL1
EhL2

qhL2
EhL∞ qhL∞

1
10 2.50E-2 1.48 3.71E-2 1.30 1.72E-1 1.35
1
20 8.98E-3 1.88 1.51E-2 1.75 6.73E-2 1.27
1
40 2.44E-3 1.94 4.48E-3 1.95 2.79E-2 1.68
1
80 6.36E-4 2.00 1.16E-3 2.00 8.68E-3 1.95
1

160 1.59E-4 2.01 2.90E-4 2.01 2.24E-3 2.01
1

320 3.94E-5 - 7.18E-5 - 5.54E-4 -

Table 4.2: Rate of convergence computed on the pressure in the case of the Taylor-Green vortex,
with the second-order DG scheme without limitation.

We also compare these numerical errors with those obtained with the alternative second-order
MUSCL method presented in the previous Section 3.3.7. As expected, the DG scheme presented
is more accurate than the MUSCL scheme, refer to Table 4.3.

Now, we assess the accuracy of the limited DG scheme. Considering the results gathered in
Table 4.4, we note that even if the slope limiters decrease somewhat the accuracy of the scheme,
it remains second-order accurate, the rate of convergence being close to two.

Kidder isentropic compression. In [54], Kidder has constructed an analytical solution of
the self-similar isentropic compression of a shell filled with perfect gas. Following [12, 77], we
recall the main features of this solution in order to define the set up of the test case. Initially,
the shell has the internal (resp. external) radius Ri (resp. Re). Let Pi, Pe, ρi and ρe be the
pressures and densities located at Ri and Re. Since the compression is isentropic, we define

s = Pe
ργe

, and we have ρi = ρe

(
Pi
Pe

) 1
γ
. Let r(R, t) be the radius at time t > 0 of a fluid particle
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L1 L2 L∞
h EhL1

qhL1
EhL2

qhL2
EhL∞ qhL∞

1
10 3.58E-2 1.44 5.08E-2 1.37 1.67E-1 1.17
1
20 1.32E-2 1.78 1.96E-2 1.56 7.41E-2 1.03
1
40 3.84E-3 1.93 6.66E-3 1.89 3.63E-2 1.58
1
80 1.01E-3 1.99 1.80E-3 1.98 1.21E-2 1.87
1

160 2.55E-4 2.00 4.57E-4 2.00 3.31E-3 1.97
1

320 6.38E-5 - 1.14E-4 - 8.47E-4 -

Table 4.3: Rate of convergence computed on the pressure in the case of the Taylor-Green vortex,
with the second-order MUSCL scheme without limitation.

L1 L2 L∞
h EhL1

qhL1
EhL2

qhL2
EhL∞ qhL∞

1
10 5.80E-2 1.54 7.22E-2 1.31 2.24E-1 1.44
1
20 1.99E-2 2.33 2.92E-2 2.03 8.27E-2 1.34
1
40 3.96E-3 2.25 7.16E-3 2.20 3.26E-2 1.61
1
80 8.31E-4 2.17 1.56E-3 2.15 1.07E-2 1.52
1

160 1.85E-4 2.11 3.52E-4 2.14 3.73E-3 2.41
1

320 4.28E-5 - 8.01E-5 - 7.01E-4 -

Table 4.4: Rate of convergence computed on the pressure in the case of the Taylor-Green vortex,
with the second-order DG scheme with limitation.

initially located at radius R. Looking for a solution of the gas dynamics equation under the
form r(R, t) = h(t)R, using the isentropic feature of the flow and setting γ = 1 + 2

ν , where
ν = 1, 2, 3 indicates planar, cylindrical or spherical symmetry, we finally get the self-similar
analytical solution for t ∈ [0, τ [

ρ(r(R, t), t) = ρ0(R)h(t)
− 2
γ−1 ,

U(r(R, t), t) = R
dh(t)

dt
,

P (r(R, t), t) = P 0(R)h(t)
− 2γ
γ−1 .

Here, τ denotes the focusing time of the shell which is written

τ =

√
γ − 1

2

R2
e −R2

i

a2
e − a2

i

,

where a2 = sγργ−1 is the square of the isentropic sound speed. The particular form of the

polytropic index enables us to get the analytical expression h(t) =
√

1−
(
t
τ

)2
, which is valid

for any t ∈ [0, τ [. Note that h(t) goes to zero when t goes to τ , hence τ corresponds to the
collapse of the shell on itself. for R ∈ [Ri, Re], the initial density and pressure, ρ0 and P 0, are
defined by

ρ0(R) =

(
R2
e −R2

R2
e −R2

i

ργ−1
i +

R2 −R2
i

R2
e −R2

i

ργ−1
e

) 1
γ−1

,

P 0(R) = s (ρ0(R))γ .
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Note that the initial velocity is equal to zero since the shell is assumed to be initially at rest.
The isentropic compression is obtained imposing the following pressure laws at the internal and
external faces of the shell:

P (r(Ri, t), t) = Pi h(t)
− 2γ
γ−1 ,

P (r(Re, t), t) = Pe h(t)
− 2γ
γ−1 .

We point out that the velocity field is a linear function of the radius r which is a typical property
of self-similar isentropic compression. For numerical applications, we consider the cylindrical
shell characterized by Ri = 0.9 and Re = 1. We set Pi = 0.1, Pe = 10 and ρe = 10−2. Due to
the cylindrical symmetry we have ν = 2, hence γ = 2. The previous values lead to ρi = 10−3,
s = 105 and τ ' 7.265 10−3. The initial computational domain is defined in polar coordinates by
(r, θ) ∈ [0.9, 1]× [0, π2 ]. This analytical solution is useful in order to assess the scheme accuracy
and the ability of a Lagrangian scheme to properly compute an isentropic compression with
radial symmetry.
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Figure 4.19: Second-order DG scheme without limitation for a Kidder isentropic compression
problem on a polar grid made of 20× 18 cells: pressure map.

The results displayed in Figure 4.19 show that the symmetry is perfectly preserved, and those
in Table 4.5 that the correct order is reached.
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L1 L2 L∞
Nr ×Nθ EhL1

qhL1
EhL2

qhL2
EhL∞ qhL∞

10× 9 3.92E-2 1.82 1.55E-1 1.89 1.22E0 1.97

20× 18 1.11E-2 1.95 4.18E-2 1.97 3.12E-1 1.98

40× 36 2.88E-3 1.98 1.07E-2 1.99 7.92E-2 1.99

80× 72 7.28E-4 1.99 2.69E-3 2.00 2.00E-2 1.99

160× 144 1.83E-4 2.00 6.74E-4 2.00 5.03E-3 1.99

320× 288 4.58E-5 - 1.69E-4 - 1.27E-3 -

Table 4.5: Rate of convergence computed on the pressure in the case of the Kidder isentropic

compression, with the second-order DG scheme without limitation, at time t =
τ

2
.

4.3 Third-order DG scheme

In this section, we present the third-order extension of the DG scheme described in Section 4.2.
Here, we consider that the continuous mapping characterizing the flow motion of the fluid is
quadratic with respect to the space variables. Thus, the edges of the mesh could curve through
the flow deformation. We start this section by introducing the main features related to the
curvilinear geometry.

4.3.1 Geometric consideration

We assume that the flow motion of the fluid is characterized by a quadratic mapping function.
We remind that in the second-order case, the chosen basis functions used to develop the linear
mapping were the P1 barycentric coordinate functions, defined in (4.56). Thus, naturally we
use the quadratic P2 Finite Element basis functions. The notions and definitions inherent to
this P2 representation are taken from [39].

Now, characterizing the flow of the motion fluid by means of a quadratic mapping, we consider
that the reference triangle Ti corresponds to the triangle in its initial position. We identify τi
as the transformation of Ti at time t through the flow motion, refer to Figure 4.20.

p−
m−

Q−

p

m+

Q+

p+

m
Q

τi

p

p+

p−

Q+

Q−

Q

Φ

Ti

Figure 4.20: Transformation of Ti into τi.
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We assume that the initial triangle is defined by the coordinate X, while x characterizes the
Bezier triangle τi at time t. In this frame, the quadratic mapping function writes

x = Φ(X, t) =
∑

p

xp(t)µp(X), (4.104)

where the points p are the triangular nodes and the control points Q of the Bezier edges. Let
us recall the definition of the P2 barycentric coordinate functions µp

µp = (λp)
2, µp+ = (λp+)2, µp− = (λp−)2,

µQ = 2λpλp+ , µQ+ = 2λp+λp− , µQ− = 2λp−λp,

where the functions λl, with l ∈ {p, p+, p−}, are the P1 Finite Elements linear basis functions
defined in (4.56). Finally, the quadratic mapping expresses as

Φ(X, t) =
∑

p∈P(Ti)

[
xp(t) (λp(X))2 + 2xQ(t)λp(X)λ+

p (X)
]
. (4.105)

Here, we emphasize that the trace of these P2 Finite Elements functions over ∂Ti defines Bezier
curves. Thus, we start by recalling the main features relative to the Bezier curves.

Bezier curves. Given the three control points p, Q and p+, and a curvilinear parameter ζ in
[0, 1], we define the parametric representation of the curve Cpp+ , depicted in Figure 4.21, as

x(ζ) = (1− ζ)2xp + 2ζ(1− ζ)xQ + ζ2xp+ . (4.106)

This curve passes through the points p, m and p+. The point x(1
2) = xm is called the midpoint

of the curve and corresponds by definition to

xm = x(
1

2
) =

2xQ + xp + xp+

4
. (4.107)

p

p+

m

Q

x(ζ)

Figure 4.21: Bezier curve Cpp+ defined by the three control points p, Q and p+, and its midpoint
m.
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This relation means that the m point is the middle of the respective middle points of segments
pQ and Qp+. Conversely, the control point Q expression is

xQ =
4xm − xp − xp+

2
. (4.108)

In the case where the control point Q is not aligned with p and p+, the edge is necessarily a
curve. On the contrary, if xQ = xm, the edge remains a straight line. Using the definition of
the midpoint (4.107), the curve equation rewrites

x(ζ) = (1− ζ)(1− 2ζ)xp + 4ζ(1− ζ)xm + ζ(2ζ − 1)xp+ , (4.109)

where ζ ∈ [0, 1]. Now, we aim at expressing the tangent of the curve Cpp+ . Recalling that
tdl = dx, the tangent tdl of a Bezier curve writes as follows

tdl =
dx

dζ
dζ = 2

(
(1− ζ)(xQ − xp) + ζ(xp+ − xQ)

)
dζ. (4.110)

Introducing the tangents lpQtpQ = xQ − xp and lQp+tQp+ = xp+ − xQ in the last formula, one
gets

tdl = 2
(
(1− ζ)lpQtpQ + ζ lQp+tQp+

)
dζ, (4.111)

which means that the tangent vector is a convex combination of the vectors lpQtpQ and lQp+tQp+ .
Thus, the tangent of the curve evaluated at the nodes p and p+ is respectively collinear with
tpQ and tQp+ . We notice that the curve tangent at the midpoint is collinear with the vector tpp+ .

Here, we introduce the functions λp and λp+ in [0, 1] such as λp(ζ) + λp+(ζ) = 1. These
definitions lead to a new expression of equation (4.106)

x(ζ) = λ2
p(ζ)xp + 2λp(ζ)λp+(ζ)xQ + λ2

p+(ζ)xp+ . (4.112)

This is the Bernstein (or Bezier) well-known representation. The linear functions λp and λp+
write λp(ζ) = (1 − ζ) and λp+ = ζ, and identify with the restriction on the curve of the P1

barycentric coordinate functions (4.56). We define the curve restriction of the P2 functions, µp,
µQ and µp+ , as follows

µp = λ2
p, µQ = 2λpλp+ , µp+ = λ2

p+ . (4.113)

Thus, the Bezier curve definition (4.112) rewrites

x(ζ) = µp(ζ)xp + µQ(ζ)xQ + µp+(ζ)xp+ . (4.114)

4.3.2 Deformation gradient tensor discretization

Thanks to the previous section, we define the mapping function x = Φ(X, t) describing the
flow motion, at time t in the triangle Ti as

Φ(X, t) =
∑

p∈P(Ti)

[
xp(t) (λp(X))2 + 2xQ(t)λp(X)λ+

p (X)
]
, (4.115)

where the position of the control point Q is constrained by the definition (4.108). In this frame,
the deformation gradient tensor is piecewise linear over the triangles, and writes

Fi(X, t) =
1

|Ti|
∑

p∈P(Tc)

[
2xp(t)⊗ λp(X)LpcNpc + 2xQ(t)⊗

(
λp(X)Lp+cNp+c + 2λ+

p (X)LpcNpc

)]
.
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Performing an index permutation on this last equation, one gets

Fi(X, t) =
1

|Tc|
∑

p∈P(Ti)
2λp(X)

(
xp(t)⊗ LpcNpc + xQ(t)⊗ Lp+cNp+c + x−Q(t)⊗ Lp−cNp−c

)
.

Finally, the deformation gradient tensor derived from a quadratic mapping writes

Fi(X, t) =
∑

p∈P(Ti)
λp(X) Fip(t), (4.116)

where the tensors Fip are defined as follows

Fip(t) =
2

|Tc|
(
xp(t)⊗ LpcNpc + xQ(t)⊗ Lp+cNp+c + x−Q(t)⊗ Lp−cNp−c

)
. (4.117)

In equation (4.116), the Jacobian tensor F is expressed by means of the continuous P1 Finite
Element basis functions. Nonetheless, considering the definition of the corner contributions Fip,
the deformation gradient tensor is discontinuous between triangles. Concerning the initializa-
tion of the deformation gradient tensor, we recall that

∑
Ti λp(X) = 1. Thus, at the initial time

t = 0, Fip is equal to the identity matrix.

Regarding the continuity of the tangent FiTdL, where T is the unit tangent of an edge of Ti,
we process identically to the second-order case. The computation of FiTdL on the face fpp+
leads to

Fi T dL|pp+ =
2 dL

Lpp+

(
λp(X) (xQ − xp) + λp+(X) (xp+ − xQ)

)
,

=
2 dL

Lpp+

(
λp(X) lpQtpQ + λp+(X) lQp+tQp+

)
, (4.118)

which is nothing but the Bezier curve tangent definition (4.111). The Eulerian normal is con-
structed with the only contribution of the points on the considered edge. This property ensures
the continuity of the tangent and hence the continuity of the normals thanks to (4.28).

Finally, thanks to equation (3.10), the semi-discrete equation of tensor F reads

d

dt
Fi(X, t) =

2

|Ti|
∑

p∈P(Ti)
λp(X)

[
Up(t)⊗ LpcNpc +UQ(t)⊗ Lp+cNp+c +U−Q (t)⊗ Lp−cNp−c

]
,

=
∑

p∈P(Tc)
λp(X)

d

dt
Fip(t). (4.119)

In this expression, the velocity UQ would not correspond to the velocity of a material point. The
control point Q is a geometric entity required by the characterization of edges Bezier functions.
Thus, assuming that through the flow transformation, a Bezier curve remains a Bezier curve,
the control point velocity is constrained by the definition (4.108) and writes

UQ =
4Um −Up −Up+

2
, (4.120)

where Up, Up+ and Um are the nodal and midpoint velocities advecting the mesh.
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4.3.3 Variational formulations

Here, we aim at developing a third-order discontinuous Galerkin discretization of the Lagrangian
gas dynamics equations. In this Bezier cell frame, an accurate integration of the boundary terms
in the cell is needed. This requirement is due to the geometric conservation law. In [10], B.
Boutin and his co-workers have developed a first-order Finite Volume scheme on unstructured
conical meshes satisfying the GCL. The Bezier curves being a particular case of the conical,
the treatment of the GCL in the first-order case is done similarly than in [10]. One has to
compute

∫
ωc
U � ndl in a compatible manner with the rate of change of the volume of cell ωc.

Nonetheless, as for the second-order DG scheme, we consider an high-order extension of this
GCL consideration. It consists in computing the time rate of change of a curvilinear cell volume.

Geometric conservation law. Let us consider a polygonal cell ωc deformed through the
quadratic flow motion of the fluid. In this case, the edges of ωc are nothing but Bezier curves
presented above, refer to Figure 4.22. Through the use of the divergence theorem (A.34b), we
can easily define the volume of the Bezier cell ωc as

|ωc| =
∫

ωc

dω =
1

2

∫

ωc

∇x � xdV =
1

2

∫

∂ωc

x � ndl. (4.121)

p−

p+

p
m−

m

ωc

Figure 4.22: Image of a polygonal cell Ωc in the actual configuration: ωc = Φ(Ωc, t)

The analytical integration of this expression using the definitions (4.109) and (4.111) gives

|ωc| =
1

2

∑

p∈P(c)

1

3
xp � lQ−QnQ−Q +

1

2

∑

m∈M(c)

2

3
xm � lpp+npp+ , (4.122)

where P(c) is the node set of cell ωc andM(c) the set constituted of the midpoints of the Bezier
edges. This formula computes the volume of a polygonal cell wherein the edges are characterized
by Bezier curves. Now, to determine the time rate of change of the volume |ωc|, we compute
the material derivative of (4.122). In the end, one gets

d

dt
|ωc| =

∑

p∈P(c)

1

3
Up � lQ−QnQ−Q +

∑

m∈M(c)

2

3
Um � lpp+npp+ . (4.123)
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In [10], in the particular case of Bezier curves, the volume of a cell and its time evolution
reduce to the previous results (4.122) and (4.123). Furthermore, in the special case of straight
edges, one knows that the geometric point Q and the midpoint m coincide. Considering a linear
velocity field, we set the midpoint velocity as the average value of the edge nodes p and p+, i.e.,
Um = 1

2(Up +Up+). Under these assumptions, the results presented in the case of a Bezier cell
reduce to the formulas (3.45) and (3.48) exhibited in Section 3.3.2.

Specific volume equation discretization. Let us recall the variational formulation over
the cell Ωc of the specific volume equation

∫

Ωc

ρ0 d

dt
(
1

ρ
)σcq dV =

K∑

k=0

d

dt
(
1

ρ
)ck

∫

Ωc

ρ0σcqσ
c
k dV,

= −
ntri∑

i=1

∫

T ci
U � G∇Xσ

c
q dV +

∫

∂Ωc

U � σcq GNdL. (4.124)

Again, the main difficulty lies in the evaluation of the boundary term. The fundamental as-
sumption considering that through the flow motion a Bezier curve remains a Bezier curve gives
a definition of the edges velocity

U|pp+ (ζ) = (1− ζ)(1− 2ζ)Up + 4ζ(1− ζ)Um + ζ(2ζ − 1)Up+ , (4.125)

where U|pp+ is the quadratic velocity of the face fpp+ , and ζ ∈ [0, 1] is the curvilinear abscissa.

Similarly to the second-order discretization, we want to integrate analytically the boundary
terms. Here, the polynomial basis function are piecewise quadratic. Thus, on the face fpp+ the
function σcq can be defined by means of the curvilinear abscissa and of its extrapolated values
at the nodes p, p+ and at the midpoint m as

σcq|pp+ (ζ) = (1− ζ)(1− 2ζ)σcq(Xp) + 4ζ(1− ζ)σcq(Xm) + ζ(2ζ − 1)σcq(Xp+). (4.126)

This time, the deformation gradient tensor F, and hence the G matrix, are piecewise linear over
the triangle. But thanks to equations (4.110) and (4.118), we are able to express GNdL on face
fpp+ as

GN dL|pp+ = 2
(
(1− ζ) lpQnpQ + ζ lQp+nQp+

)
dζ. (4.127)

Substituting (4.127) in the definition of the boundary term leads to

∫

∂Ωc

Uσcq � GNdL =
∑

p∈P(c)

∫ p+

p
Uσcq � GNdL,

=
∑

p∈P(c)

[(∫ 1

0
Uσcq|pp+ (ζ) 2(1− ζ) dζ

)
� lpQnpQ

+

(∫ 1

0
Uσcq|pp+ (ζ) 2ζ dζ

)
� lQp+nQp+

]
.

(4.128)

Combining this last expression with (4.125) and (4.126), we are able to analytically evaluate
(4.128). At the end, one gets

∫

∂Ωc

Uσcq � GNdL =
∑

p∈P(c)

1

3
Up � l

q
pcn

q
pc +

∑

m∈M(c)

2

3
Um � lqmcn

q
mc, (4.129)
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where the corner normals lqpcn
q
pc, weighted by the basis function σcq, write

lqpcn
q
pc = l−,qpc n

−,q
pc + l+,qpc n

+,q
pc , (4.130)

l−,qpc n
−,q
pc =

1

10

[
(6σcq(Xp) + 4σcq(Xm−))lQ−pnQ−p + (σcq(Xp)− σcq(Xp−))lp−pnp−p

]
, (4.131)

l+,qpc n
+,q
pc =

1

10

[
(6σcq(Xp) + 4σcq(Xm))lpQnpQ + (σcq(Xp)− σcq(Xp+))lpp+npp+

]
, (4.132)

and the weighted midpoint normals lqmcn
q
mc express as follows

lqmcn
q
mc = l−,qmc n

−
mc + l+,qmc n

+
mc, (4.133)

l−,qmc n
−
mc =

1

5

(
4σcq(Xm) + σcq(Xp)

)
lpQnpQ, (4.134)

l+,qmc n
+
mc =

1

5

(
4σcq(Xm) + σcq(Xp+)

)
lQp+nQp+ . (4.135)

In the particular case of q = 0, these normals reduce to

lpcnpc = lQ−QnQ−Q, (4.136)

lmcnmc = lpp+npp+ . (4.137)

Thus, the first moment of equation (4.129) reads
∫

∂Ωc

U � GNdL =

∫

∂ωc

U � ndl =
∑

p∈P(c)

1

3
Up � lQ−QnQ−Q +

∑

m∈M(c)

2

3
Um � lpp+npp+ . (4.138)

Considering (4.123), this result ensures the respect of the GCL condition. Finally, we have
derived the semi-discrete equations on the specific volume successive moments, in respect with
the GCL. The semi-discrete equations write

∫

Ωc

ρ0 d

dt
(
1

ρ
)σcq dV = −

ntri∑

i=1

∫

T ci
U � G∇Xσ

c
qdV +

∑

p∈P(c)

1

3
Up � lQ−QnQ−Q +

∑

m∈M(c)

2

3
Um � lpp+npp+ .

(4.139)

For the momentum discretization, we use a similar procedure as the one presented in the second-
order section, extended to the quadratic case.

Momentum discretization. For the momentum equation, the local variational formulation
of (4.2c) on Ωc leads to

∫

Ωc

ρ0 dU

dt
σcq dV =

ntri∑

i=1

∫

T ci
P G∇Xσ

c
q dV −

∫

∂Ωc

Pσcq GNdL. (4.140)

To evaluate the boundary term of (4.140), we set the edge pressure in the cell Ωc as

P
c
|pp+ (ζ) = (1− ζ)(1− 2ζ)P+

pc + 4ζ(1− ζ)Pmc + ζ(2ζ − 1)P−
p+c

, (4.141)

where P+
pc and P−

p+c
are respectively the right and left nodal pressures at the nodes p and p+,

and Pmc the midpoint pressure in the cell Ωc. The analytical integration of the cell boundary
term of (4.140) writes

∫

∂Ωc

Pσcq GNdL =
∑

p∈P(c)

1

3

(
P−pc l

−,q
pc n

−,q
pc + P+

pc l
+,q
pc n

+,q
pc

)
+

∑

m∈M(c)

2

3
Pmc l

q
mcn

q
pc. (4.142)
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Finally, we have derived the semi-discrete equations on the successive moments of the velocity,
with an analytical integration of the numerical flux. The semi-discrete equations write

∫

Ωc

ρ0 dU

dt
σcq dV =

ntri∑

i=1

∫

T ci
PG∇Xσ

c
qdV −

∑

p∈P(c)

1

3
F q
pc −

∑

m∈M(c)

2

3
F q
mc, (4.143)

where F q
pc = P−pc l

−,q
pc n−pc + P+

pc l
+,q
pc n+

pc and F q
mc = Pmc l

q
mcn

q
pc identify with the qth moment of

the subcell forces.

Total energy discretization. The procedure to discretize the total energy equation (4.2d)
is identical as the one used for the momentum equation. Let us recall the local variational
formulation of (4.2d) on Ωc

∫

Ωc

ρ0 dE

dt
σcq dV =

ntri∑

i=1

∫

T ci
P U � Gci∇Xσ

c
qdV −

∫

∂Ωc

PU � σcqGNdL. (4.144)

Now, we make equivalent assumptions on the numerical flux PU to the one used in the second-
order section. In this similar frame, the semi-discrete equations of the total energy write

∫

Ωc

ρ0 dE

dt
σcq dV =

ntri∑

i=1

∫

T ci
P U � G∇Xσ

c
qdV −

∑

p∈P(c)

1

3
Um � F q

pc −
∑

m∈M(c)

2

3
Um � F q

mc. (4.145)

At the end, we have 3× (K + 1) semi-discrete equations for the same number of unknowns. To
complete our scheme, we need to define our nodal solvers and midpoints solvers to compute Up,
Um, F q

pc and F q
mc. For that purpose, we make use of the entropy analysis done in the general

framework Section 4.1.3, to ensure that the kinetic energy is correctly dissipated in internal
energy through a shock. This will provide an expression of each subcell forces.

4.3.4 Nodal solvers

The entropic analysis done in the general framework section gives us a specific relation between
the numerical fluxes P and U ensuring a local entropy inequality. Let us recall this fundamental
identity on the cell Ωc

P = P ch − Zc (U −U c
h) � n, (4.146)

where Zc = ρc ac is the acoustic impedance. The use of this expression to calculate F q
pc yields

F q
pc = P−pc l

−,q
pc n

−
pc + P+

pc l
+,q
pc n

+
pc,

= P ch(Xp, t) l
q
pcn

q
pc −Zc

[
(Up −U c

h(Xp, t)) � n−pc
]
l−,qpc n−pc

−Zc
[
(Up −U c

h(Xp, t)) � n+
pc

]
l+,qpc n+

pc.

Finally, the qth moment of the nodal subcell force writes

F q
pc = P ch(Xp, t) l

q
pcn

q
pc −Mq

pc (Up −U c
h(Xp, t)), (4.147)

where the Mq
pc matrices are defined as

Mq
pc = Zc

(
l−,qpc n

q,−
pc ⊗ n−pc + l+,qpc n

q,+
pc ⊗ nq,+pc

)
. (4.148)
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Now, regarding the midpoint subcell forces, substituting (4.146) in the definition of F q
mc leads

to

F q
mc = Pmc l

q
mcn

q
mc,

= P ch(Xm, t) l
q
mcn

q
mc − Zc ((Um −U c

h(Xm, t)) � nmc) l
q
mcn

q
mc.

At the end, the qth moment of the midpoint subcell force can write as follows

F q
mc = P ch(Xm, t) l

q
mcn

q
mc −Mq

mc (Um −U c
h(Xm, t)), (4.149)

where the Mq
mc matrices are defined as

Mq
mc = Zc l

q
mcn

q
mc ⊗ nmc. (4.150)

The total energy conservation impose, in the simple case with no boundary contribution
∑

c

∫

Ωc

ρ0 dE

dt
dV = −

∑

c

∑

p∈P(c)

1

3
Up � Fpc −

∑

c

∑

m∈M(c)

2

3
Um � Fmc,

=
∑

p

1

3
Up �

∑

c∈C(p)
Fpc +

∑

m

2

3
Um � (FmL + FmR) ,

= 0,

where C(p) is the set of cells surrounding the p node, and ΩL and ΩR the two cells surrounding
the midpoint m, refer to Figure 4.23.

p+

p

mp

ωc3

ωc4

ωc2

ωc5
ωc1

ωL

ωR

Node ell set Middle point ell set

Figure 4.23: Node and midpoint cell set in the actual configuration.

To impose a total energy conservation, we set the following sufficient condition
∑

c∈C(p)
Fpc = 0, (4.151)

FmL + FmR = 0. (4.152)

This constraint also enforces the momentum conservation
∑

c

∫

Ωc

ρ0 dU

dt
dV = −

∑

c

∑

p∈P(c)

1

3
Fpc −

∑

c

∑

m∈M(c)

2

3
Fmc,

=
∑

p∈P(Ω)

1

3

∑

c∈C(p)
Fpc +

∑

m∈M(Ω)

2

3
(FmL + FmR) ,

= 0.
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Thanks to (4.151), we finally have an explicit expression of the nodal velocity Up

(
∑

c∈C(p)
Mpc)Up =

∑

c∈C(p)
[P ch(Xp, t) lpcnpc + MpcU

c
h(Xp, t)] , (4.153)

where Mpc = Zc (l+pcn
+
pc⊗n+

pc + l−pcn
−
pc⊗n−pc) are positive semi-definite matrices with a physical

dimension of a density times a velocity.

Regarding the midpoint solver, the condition (4.152) imposes the midpoint pressure to be shared
by the two surrounding cells ΩL and ΩR. This continuity property comes from the normal
continuity. An identical procedure than the one used for the nodal solver leads the following
definition of the midpoint velocity

Mm Um = Mm

(
ZLU

L
h (Xm) + ZRU

R
h (Xm)

ZL + ZR

)
− PRh (Xm)− PLh (Xm)

ZL + ZR
lpp+npp+ , (4.154)

where the matrix Mm = 1
ZL

MmL = 1
ZR

MmR, using the definition (4.150) in the case q = 0,
writes

Mm = lpp+npp+ ⊗ npp+ . (4.155)

Obviously, the matrix is singular. The equation (4.154) gives the normal contribution of the
midpoint velocity, such as

(Um � npp+) =

(
ZLU

L
h (Xm) + ZRU

R
h (Xm)

ZL + ZR

)
� npp+ −

PRh (Xm)− PLh (Xm)

ZL + ZR
. (4.156)

This is nothing but the solution of the Riemann problem at the cell interface located at the
midpoint m. Regarding the tangential contribution, we make the choice of

(Um � tpp+) =

(
ZLU

L
h (Xm) + ZRU

R
h (Xm)

ZL + ZR

)
� tpp+ , (4.157)

where tpp+ is the tangent vector located at the midpoint. This definition of the midpoint
tangential velocity corresponds to the centered part of the midpoint normal definition (4.156).
This definition ensures the continuity of the tangential velocity at the cell interfaces. Using
(4.156) and (4.157), the midpoint velocity finally writes

Um =
ZLU

L
h (Xm) + ZRU

R
h (Xm)

ZL + ZR
− PRh (Xm)− PLh (Xm)

ZL + ZR
npp+ . (4.158)

This is the midpoint velocity definition used for the numerical application. In [10], they make
use of an upwind kind scheme on the tangential component of the velocity as follows

if (Um � tpp+ > 0) Um � tpp+ = UL(m) � tpp+ ,
else if (Um � tpp+ < 0) Um � tpp+ = UR(m) � tpp+ ,

else Um � tpp+ =
(
ZLUL

h (Xm)+ZRUR
h (Xm)

ZL+ZR

)
� tpp+ .

This midpoint pressure continuity comes naturally from the parametrization of the pressure on
the edge (4.141). An alternative procedure would be to consider the midpoint as a corner node.
In this frame, we split the midpoint point force Fmc into two subcell forces F−mc and F+

mc as
follows

Fmc = P−mcl
−
pQn

−
pQ + P+

mcl
+
Qp+

n+
Qp+

, (4.159)
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where P−mc and P+
mc are the two midpoint pressures. This particular treatment of the pressure

leads to a new definition of the matrix Mm writing

Mm = lpQnpQ ⊗ npQ + lQp+nQp+ ⊗ nQp+ . (4.160)

This matrix is invertible in the case where the control point Q is not aligned with the nodes p
and p+. Thus, a particular treatment is required on the straight edges of the mesh.

Stéphane Del Pino led to the same conclusion in his work on curvilinear Finite Volume method
to solve compressible gas dynamics in semi-Lagrangian coordinates. In [87], he presents a Fi-
nite Volume method to solve compressible gas dynamics in semi- Lagrangian coordinates on
curvilinear grids. His approach relies on a Finite Elements method based on the grid edges
to compute the mesh velocity using an acoustic Riemann solver approximation. He concludes
that this global continuous problem admits a unique solution if and only if the mesh does not
present any straight-line edge.

Regarding the semi-discrete equation of the deformation gradient tensor in the triangles con-
stituting the cells (4.119), we obviously need to define the velocity of the interior points, refer
to Figure 4.24. Any linear assumption on the definition of these interior points velocity will
lead to a second-order order scheme. Consequently, we set the velocity of an interior point q of
cell Ωc to the extrapolated value at this point of the polynomial approximation of the velocity
inside the cell, i.e., Uq = U c

h(Xq) where Xq is the initial position of point q.
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Figure 4.24: Transformation of Ωc to ωc through the flow. • boundary cell nodes, � boundary
cell midpoints, • interior cell nodes, � interior cell midpoints.

The third-order scheme development is still under investigation. Some improvements would
certainly lie in the definition of the node and midpoint solvers, or in the definition of the
interior points velocity. A solution could be the use of the kinematic jump condition deriving
from the Rankine-Hugoniot relation through a discontinuity of the deformation gradient tensor
equation (4.2a). This jump relation writes

wJFK + JUK⊗Nw = 0, (4.161)

where JFK is the jump of the deformation gradient tensor through a discontinuity. JUK corre-
sponds to the velocity jump, Nw is the normal discontinuity and w its normal velocity. This is
the so-called Hadamard compatibility condition [48]. This relation could possibly gives a new
definition of the points velocity by means of the jump of the deformation gradient tensor.
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In this whole scheme implementation, we have considered a null deformation of the initial mesh
at time t = 0. Now, we present the procedure allowing the take into account of curve initial
geometries.

4.3.5 Deformed initial mesh

Let Ωc be a cell of the initial configuration mesh Ω at time t = 0, and ωc its corresponding cell
in the actual configuration domain ω at time t. We assume that the initial mesh presents curve
geometries. In that case, the scheme discretization remain correct, one just has to initialize
correctly the deformation gradient tensor and the mass matrix. Let the straight polygonal cell
Ωr
c be the referential cell of Ωc, in the referential domain Ωr, refer to Figure 4.25.

ΦH(X, t)

Φ0(Xr, t)

ΦT (Xr, t)

Ωc

ωc

Ωr
c

Xr

X

x

Figure 4.25: Reference, initial and actual configuration.

X denotes the initial position of the moving point located at time t at the position x. The
mathematical transformation ΦH(X, t) represents the displacement due to the flow motion of
the fluid. Xr is the referential position of the point initially located at X. Φ0(Xr) represents
the initial transformation of the domain and ΦT (Xr, t) corresponds to the total deformation
mapping, refer to Figure 4.25. We rewrite these definition with the use of the mathematical
relation ΦT (Xr, t) = ΦH(X, t) ◦Φ0(Xr).

The use of the chain rule of composed derivatives and of the deformation gradient tensor defi-
nition gives the following relation

FT = ∇XrΦT (Xr, t),

= ∇XΦH(X, t) ◦ ∇XrΦ0(Xr),

= FH F0, (4.162)
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where F0 = ∇XrΦ0(Xr) and FH = ∇XΦH(X, t). Taking the determinant of the tensors on
both sides of (4.162), this last formula yields

JT (Xr, t) = JH(X, t)J0(Xr), (4.163)

where JT = detFT , JH = detFH and J0 = detF0.
To recover the Lagrangian equation of continuity, we recall the mass conservation principle

∫

Ωc

ρ0(X) dΩ =

∫

ωc

ρ(x, t) dω.

Expressing the integrands in terms of the referential coordinate yields

∫

Ωrc

ρ0(Φ0(Xr)) J0(Xr) dΩr =

∫

Ωrc

ρ(ΦT (Xr, t), t) JT (Xr, t) dΩr.

From this equation, it follows easily that

ρ0 J0 = ρ JT . (4.164)

This new continuity equation only affects the construction of the mass matrix. Indeed, trying
to calculate

∫
ωc
ρ dψ

dt σq dω, the time rate of change of the successive moments of the function
ψ, one gets

∫

ωc

ρ
dψ

dt
σq dω =

∫

Ωrc

ρ JT
dψ

dt
σcq dΩr,

=

∫

Ωrc

ρ0 J0
dψ

dt
σcq dΩr.

And interchanging the function ψ by its polynomial approximation, ψch(Xr, t) =
∑K

k=0 ψ
c
k(t)σ

c
k(Xr),

one gets

∫

ωc

ρ
dψch
dt

σq dω =
K∑

k=0

dψk
dt

∫

Ωrc

ρ0 J0 σq σk dΩr. (4.165)

Finally, in equation (4.165) we identify
∫

Ωrc
ρ0 J0 σq σk dΩr as the coefficients of the mass ma-

trix. In the case of non-deformed initial geometry, J0(Xr) = 1. Thus, we recover the former
discretization. Regarding the deformation gradient tensor related to the initial deformation,
the piecewise linear matrix function F0 is defined using (4.116). We give an example of initial
curve meshes in the case of the Polar Sod shock tube problem, refer to Figure 4.26-(a), 4.27-(a)
and 4.28-(a).

To complete the scheme development, we apply to all these semi-discretized equations a classical
third-order TVD Runge-Kutta time discretization scheme [27]. The time step is evaluated
following [27]. Thus, in this third-order frame, Ce = 1

5 . The slope limitation is performed
using the Riemann invariants limitation procedure, refer to Section 4.1.4. Now, we present the
preliminary results of validation.
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4.3.6 Numerical results

Polar Sod shock tube problem. Here, we present the numerical solutions performed with
our third-order DG scheme on the polar Sod shock tube problem described in 4.2.4. Thanks to
Section 4.3.5, we start the computations with deformed initial meshes, refer to Figure 4.26-(a),
4.27-(a) and 4.28-(a).
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(a) Initial grid.
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(b) Density map.
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(c) Density profile.

Figure 4.26: Polar Sod shock tube problem. Grids and density map. Solution obtained with
the third-order DG scheme without limitation on the domain defined in polar coordinates by
(r, θ) ∈ [0, 1]× [0, π2 ] made of 100× 1 cells.

In the first case, the domain defined in polar coordinates by (r, θ) ∈ [0, 1] × [0, π2 ] is made of
100 cells in the radial direction but only 1 cell in the angular direction, refer to Figure 4.26-
(a). Obviously, the mesh edges being parametrized by Bezier curves, the gird is not perfectly
circular. Nevertheless, at the end of the computation, the numerical solution performed by the
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third-order DG scheme exhibits a very good preservation of the polar criteria of the grid, refer
to Figure 4.26-(b). We also note on Figure 4.26-(c) that the numerical solution is very similar to
the one-dimensional cylindrical solution. This result proves the strong accuracy and robustness
of the third-order scheme without limitation in this particular case of a grid made of only one
cell in the radial direction.
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(a) Initial grid.
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(b) Density map.
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(c) Density profile.

Figure 4.27: Polar Sod shock tube problem. Grids and density map. Solution obtained with
the third-order DG scheme without limitation on the domain defined in polar coordinates by
(r, θ) ∈ [0, 1]× [0, π2 ] made of 100× 3 cells.

In the second case, the domain defined in polar coordinates by (r, θ) ∈ [0, 1] × [0, π2 ] is made
of 100 cells in the radial direction and 3 in the angular direction, refer to Figure 4.27-(a).
Refining the mesh in the angular direction allows a better representation of circular meshes. In
this case, we observe the perfect preservation of the symmetry at the end of the computation,
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refer Figure 4.27-(b). Moreover, the results displayed in Figure 4.27-(c) again assure the strong
accuracy and robustness of the third-order scheme presented. Now, we present the same problem
in the case of a non-uniform polar grid, refer to Figure 4.28-(a).
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(b) Density map.
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(c) Density profile.

Figure 4.28: Polar Sod shock tube problem. Grids and density map. Solution obtained with
the third-order DG scheme without limitation on the domain defined in polar coordinates by
(r, θ) ∈ [0, 1]× [0, π2 ] made of 100× 3 non-uniform cells.

In this case, the domain defined in polar coordinates by (r, θ) ∈ [0, 1] × [0, π2 ] is made of 100
uniform cells of length 1

100 in the radial direction and 3 non-uniform cells of length Π
20 , 7Π

60 and
Π
3 in the angular direction, refer to Figure 4.28-(a). This non-uniformity in the mesh could
cause serious problems in the preservation of the symmetry. However, the third-order scheme
exhibits excellent results, refer to Figure 4.27-(b) and 4.28-(c). The symmetry preservation is
due to the high accuracy of the third order scheme. Indeed, performing the same problem, on
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the same initial mesh, with our first and second-order schemes, we clearly observe the loss of
symmetry, refer to Figure 4.29-(a) and 4.29-(b).
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(a) First-order scheme.
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(b) Second-order scheme.
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(c) First-order scheme.
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(d) Second-order scheme.

Figure 4.29: Polar Sod shock tube problem.Density maps and profiles. Solutions obtained
with the first and second-order DG schemes on the domain defined in polar coordinates by
(r, θ) ∈ [0, 1]× [0, π2 ] made of 100× 3 non-uniform cells.

Variant of the Gresho vortex problem. Here, we display the numerical solutions com-
puted for the alternative Gresho problem, refer to Section 4.2.4. The computational domain is
defined in polar coordinates by (r, θ) ∈ [0, 1] × [0, 2π]. As we did in the second-order section,
the solutions are displayed with a zoom in the zone (r, θ) ∈ [0, 0.5]× [0, 2π]. Here, we compare
the efficiency of the first-order and second-order scheme presented in the Section 4.2 and the
third-order scheme presented in this section. We know that if we run this Gresho problem far
in time, some important difficulties will occur. On the one-hand, if the numerical scheme is too
diffusive, the computation stops very early, and thus the final solution has nothing in common
with the expected one. On the other hand, if the computation does not stop, grid deformation
gets more and more important. At the end, the mesh is strongly deformed, and may present
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some cross points or negative Jacobians. To point out these phenomena, we run this Gresho
problem until the final time t = 1, with our DG schemes with three different orders of accuracy.
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(a) Grid deformation.
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Figure 4.30: Gresho problem variant on a polar grid made of 40×18 cells at the final time t = 1
with the first-order scheme.

We start with the first-order scheme. On Figure 4.30-(a), we note that the grid is barely
deformed. Comparing this result with the one obtained for a final time t = 0.36, see Figure 4.5-
(a), we clearly see that these two results are identical. This means that at the time t = 0.36, the
computation already stopped. This is due to the too important numerical diffusion. Obviously,
the grid being slightly deformed, the mesh does not present any cross point, neither than
negative Jacobian in the triangular cells, see Figure 4.30-(b).
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Figure 4.31: Gresho problem variant on a polar grid made of 40×18 cells at the final time t = 1
with the second-order scheme without limitation.
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Now, with our second-order DG scheme, the solution presents another problem. This time, the
computation does not stop before the final time. At the end of the computation, the grid is
strongly deformed, and one can see the vortex structure inherent of this Gresho problem, refer
to Figure 4.31-(b). However, the linear approximation as well as the straight-line representation
do not allow us to follow properly the deformation. We note on Figure 4.31-(b) that the final
solution presents cross points and negative Jacobians in some cells.
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Figure 4.32: Gresho problem variant on a polar grid made of 40×18 cells at the final time t = 1
with the third-order scheme without limitation.
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Figure 4.33: Exact solution of the Gresho problem variant on a polar grid made of 40× 18 cells
at the final time t = 1.

Finally, we perform this Gresho vortex problem with our third-order DG scheme on a curved
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polar grid made of 40× 18 as well. We also display in Figure 4.33 the exaction motion of this
mesh to compare it with our numerical solutions.

First, we note that as in the first-order and second-order cases, the third-order scheme preserves
symmetry. This scheme being very few diffusive, the gird is extremely deformed at the end of
the computation, more than in the second-order case, refer to Figure 4.32-(a). But thanks to
the scheme properties and to the Bezier representation, the solution is very close to the ex-
pected one, see Figure 4.33-(a). Furthermore, the grid does not present any cross point, and
the Jacobian of the triangular cells remain positive, see Figure 4.32-(b).

We have also displayed the plots corresponding to the pressure, the velocity and the density
expressed at the centroid of the cells, in the three different cases presented, refer to Figure 4.34.
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Figure 4.34: Gresho problem variant on a polar grid made of 40 × 18 cells at the final time
t = 1: comparison between the analytical solution and those obtained with the first, second and
third-order numerical schemes, plotted at the centroid of the cells.

We note on Figure 4.34-(a) and 4.34-(b) that the numerical solutions corresponding to the first-
order schemes are totally dissipated. We also observe the huge gain in accuracy between the
second-order and the third-order DG scheme. Despite the extreme deformation of the grid, the
numerical solutions obtained by the third-order scheme are very close to the exact solutions.
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This confirm the high accuracy and robustness of the designed scheme. Now, regarding the
incompressibility assumption, this test case deriving from a solution of the incompressible Euler
equations, the density must remain equal to 1 during the calculation. We note on Figure 4.34-
(c) that the result obtained with the third-order scheme is a lot better than the ones obtained
with the first-order and second-order numerical schemes. At the end of the computation, even if
the mesh is highly deformed, the incompressibility assumption is very well satisfied, the density
being bounded in ρ ∈ [0.9992, 1.0012].

Sedov point blast problem. We run the Sedov problem described in Section 4.2.4, with
the third-order DG scheme with the limitation procedure based on the Riemann invariants
polynomial approximation, described in the Section 4.1.4. The initial computational domain is
defined by (X,Y ) = [0, 1.2]× [0, 1.2] and paved by a 30× 30 Cartesian grid.
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Figure 4.35: Point blast Sedov problem on a Cartesian grid made of 30 × 30 cells with the
third-order scheme with limitation.

We note on Figure 4.35-(b) that the numerical solution is very close to the one-dimensional
analytical solution. And despite the presence of cross edges, we see that the shock wave front
is cylindrical and well located at the end of the computation, see Figure 4.35-(a). These results
also demonstrate the robustness and the accuracy of this scheme. The overlapping of cells in the
final mesh must derive from the midpoint velocity definition. Some improvements are certainly
needed on this point.

We clearly see the mesh edges curving during the computation, refer to Figure 4.35-(a). This
cells overlapping phenomenon may result from several reasons. The first one is the local criteria
of our discretization. The scheme has been built such as the normals in the actual configuration
are continuous on cells sharing a common face. But there is no continuity in the normals nor
in the tangents between neighboring edges. The choice of Bezier curves to parametrize the
mesh edges has been done to be consistent with the definition of the mapping using P2 Finite
Elements basis functions, these curves being the trace of the P2 polynomials functions on the
edges. It is clear that in some cases, this representation is not accurate enough, and thus bring
geometric discontinuities. Considering the polar mesh depicted in Figure 4.27-(a), the Bezier
representation does not allow us to obtain a circular mesh. The normals are discontinuous
between edges in the angular direction. In [10], they use conics to parametrize their cells.
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These functions allows a perfect representation of circular meshes, and the normals would be
continuous in this case. However, these functions not corresponding to the trace of the P2 Finite
Elements basis functions of the edges, another discretization of the mapping and thus of the
deformation gradient tensor is needed. This phenomenon could also derive from the limitation
procedure. A better take into of curve geometries is probably required. Another possible
explanation of this phenomenon may come from the midpoint velocity definition. The use of
the Hadamard compatibility condition (4.161) and helped by the fact that the deformation
gradient tensor is discontinuous between triangles inside the polygonal cells could bring more
diffusion and thus more stability in the definition of the interior points velocity. At the end, an
ALE approach may also be needed.

Taylor-Green vortex problem. We make use of the smooth Taylor-Green vortex test case
described in Section 4.2.4, in order to perform a convergence analysis on our third-order DG
scheme. But first, we compare the solutions obtained with our first-order, second-order and
third-order discontinuous Galerkin schemes with the exact solution, on a Cartesian grid made
of 10 × 10 cells. The results displayed in Figure 4.36 clearly show the huge gain in accuracy
between the three numerical schemes, the numerical solution corresponding to the third-order
scheme being very similar to the exact solution.

Now, knowing the analytical solution of this Taylor-Green problem, we compute the global
truncation error corresponding to our second-order and third-order DG schemes and display it
in Tables 4.6 and 4.7.

L1 L2 L∞
h EhL1

qhL1
EhL2

qhL2
EhL∞ qhL∞

1
10 2.50E-2 1.48 3.71E-2 1.30 1.72E-1 1.35
1
20 8.98E-3 1.88 1.51E-2 1.75 6.73E-2 1.27
1
40 2.44E-3 1.94 4.48E-3 1.95 2.79E-2 1.68
1
80 6.36E-4 2.00 1.16E-3 2.00 8.68E-3 1.95
1

160 1.59E-4 - 2.90E-4 - 2.24E-3 -

Table 4.6: Rate of convergence computed on the pressure in the case of the Taylor-Green vortex
at time t = 0.6, with the second-order DG scheme without limitation.

L1 L2 L∞
h EhL1

qhL1
EhL2

qhL2
EhL∞ qhL∞

1
10 4.39E-3 3.00 7.73E-3 2.68 3.90E-2 1.93
1
20 5.50E-4 3.04 1.21E-3 3.10 1.03E-2 2.98
1
40 6.68E-5 2.91 1.40E-4 2.87 1.30E-3 2.66
1
80 8.90E-6 2.89 1.92E-5 2.83 2.11E-4 2.74
1

160 1.20E-6 - 2.70E-6 - 3.16E-5 -

Table 4.7: Rate of convergence computed on the pressure in the case of the Taylor-Green vortex
at time t = 0.6, with the third-order DG scheme without limitation.

Comparing the results gathered in Tables 4.6 and 4.7, we conclude that as expected, the third-
order scheme is a lot more accurate than the second-order scheme. We notice that in the case
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(a) First-order scheme.
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(b) Second-order scheme without limitation.
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(c) Third-order scheme without limitation.
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(d) Exact solution.

Figure 4.36: Taylor-Green vortex deformation of a Cartesian grid made of 10× 10 cells, at time
t = 0.75.

of the third-order scheme, the rate of convergences are close to three. These results confirm
that our DG scheme reaches the correct order of accuracy. Now, performing the same rate of
convergence analysis, for a lower final time corresponding to a less deformed final configura-
tion, the results are even more relevant, the asymptotic regime being reached, refer to Table 4.8.

In this chapter, we have presented cell-centered DG discretizations using Taylor basis for solving
two-dimensional gas dynamics equations on general unstructured grids, using the Lagrangian
coordinates related to the initial configuration of the flow. In this frame, the mesh displace-
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L1 L2 L∞
h EhL1

qhL1
EhL2

qhL2
EhL∞ qhL∞

1
10 2.67E-4 2.96 3.36E-7 2.94 1.21E-3 2.86
1
20 3.43E-5 2.97 4.36E-5 2.96 1.66E-4 2.93
1
40 4.37E-6 2.99 5.59E-6 2.98 2.18E-5 2.96
1
80 5.50E-7 2.99 7.06E-7 2.99 2.80E-6 2.99
1

160 6.91E-8 - 8.87E-8 - 3.53E-7 -

Table 4.8: Rate of convergence computed on the pressure in the case of the Taylor-Green vortex
at time t = 0.1, with the third-order DG scheme without limitation.

ment and deformation are followed by the deformation gradient tensor we chose to discretize
on triangles with the use of finite element basis functions. The GCL and the Piola compati-
bility condition are satisfied by construction of the scheme. We build our nodal solvers, and
midpoint solvers in the third-order case, imposing a correct entropy production and total en-
ergy conservation. Having developed properly and in a continuous manner the geometry, we
can observe and display the solutions on the actual mesh. A robust and accurate limitation
procedure on the polynomial approximation of the Riemann invariants has been constructed.
The strong scheme robustness and accuracy have been assessed using several relevant test cases.

Now, in the case of very strong shock wave, some improvements on the limitation procedure
could be needed to avoid the cross edges phenomenon observed in the Sedov test case, see
Figure 4.35-(a). In future, we may be also interesting to investigate the extension of the present
DG discretization to a higher geometric representation as the conics or P3 Finite Elements basis
functions, or to an ALE approach.
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Chapter 5

Conclusion and perspectives

The aim of this work was to present a high-order discontinuous Galerkin scheme for solving the
gas dynamics equations written under total Lagrangian form on two-dimensional unstructured
grids. To this end, we have developed a progressive approach to study the numerical difficulties
inherent step by step.

First, we have investigated the development of a third-order DG method applied to scalar con-
servation laws in one and two dimensions. The main feature of the presented DG scheme lies on
the use of a Taylor basis [71]. This particular choice allows in the two-dimensional case to take
into account in a unified framework general unstructured grids. In this frame, a vertex-based
hierarchical limitation which preserves smooth extrema has been implemented [60, 109]. A
generic form of numerical fluxes ensuring the global stability of our semi-discrete discretization
in the L2 norm has also been designed, following [52, 24, 98, 49].

Second, we applied this approach to the case of one-dimensional systems. Noticing that the
application of the limiting procedure, developed for scalar equations, to the physical variables
leads to spurious oscillations, we have described a limiting procedure based on the characteris-
tic variables following the approach given by B. Cockburn and C.-W. Shu [29]. In the case of
the one-dimensional gas dynamics case, numerical fluxes have been designed so that our semi-
discrete DG scheme satisfies a global entropy inequality. The work done on the development
of DG scheme for one and two-dimensional scalar conservations laws and for one-dimensional
systems led to the publication of an article [104].

Then, after having briefly described the important concepts related to kinematics of fluid mo-
tion such as the Lagrangian and Eulerian formalisms, we have recall the classical Finite Volume
EUCCLHYD scheme [78, 79, 74, 73, 75, 76]. This particular scheme in its first-order version is
the corner stone of our DG formulation presented. We emphasize that in its first-order version,
our DG method naturally recovers the first-order EUCCLHYD scheme.

Afterwards, gathering this knowledge we apply this methodology to the case of the two-
dimensional gas dynamics equation written under total Lagrangian form. This work can be
seen as the natural extension of [70, 1]. In this particular framework, the computational grid
is fixed, however one has to follow the time evolution of the Jacobian matrix associated to the
Lagrange-Euler flow map namely the gradient deformation tensor [56, 55]. In a first time, we
present the general framework of the discontinuous Galerkin discretization of the gas dynamics
equations in the Lagrangian formalism, written using the Lagrangian coordinates. Here, the
flow map is discretized by means of continuous mapping, using a finite element basis. This
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provides an approximation of the deformation gradient tensor which satisfies the Piola identity.
The discretization of the physical conservation laws for the momentum and the total energy
relies on a discontinuous Galerkin method. Then, the particular cases of the second-order and
third-order schemes are detailed.

In the former, the mapping deriving from the flow motion of the fluid is discretized by means of
P1 barycentric coordinate basis functions. This particular description of the flow mapping leads
to have the Piola compatibility condition and the geometry continuity ensured by construction
of the scheme. The physical conservation laws are discretized through the use of a DG formu-
lation wherein as specific treatment of the boundary terms is performed ensuring the respect of
the GCL condition. The second-order DG scheme robustness and accuracy have been assessed
using several relevant test cases taken from the literature. This particular scheme has proved to
be highly accurate, exhibiting good results on a large number of test cases. It also appears to
be more accurate than the second-order Finite Volume scheme. This second-order cell-centered
DG scheme was the purpose of a second article [103].

Finally, we extend the second-order DG scheme presented to the third-order of accuracy. In this
particular description, the flow mapping is discretized by means of P2 Finite Elements basis
functions. Thus, the geometry in the actual configuration is parametrized by Bezier curves.
This time, the DG discretization of the physical variables requires a midpoint solver in addition
to the nodal solver [10, 87]. This scheme is constructed ensuring the respect of the GCL. This
third-order development being still under investigation, only early results are presented. Nev-
ertheless, the first results confirm the very high accuracy of the implemented scheme. And the
rate of convergence analysis done in the smooth case of a Taylor-Green vortex assures that the
correct order of accuracy is reached.

In future, it would be interesting to investigate further a proper limitation procedure on generic
Bezier cells. Alternative velocity solvers could also be designed using the jump of deformation
gradient tensor between triangles, through the use of the Hadamard compatibility condition
(4.161). And finally, the next step may certainly be an ALE approach, not regarding the shape
of the moving mesh but its deformation gradient tensor F.
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Appendix A

Notations and reminders related to
vectors and tensors

In this appendix, we aim at recalling notation and formulas related to vectors and tensors
which are required to derive the mathematical modeling of fluid mechanics. We do not intend
to present the complete rigorous tensor theory, which is beyond the scope of the present chapter,
but rather introduce useful formulas. The present description has been constructed collecting
materials from [9, 96, 11, 91, 40, 64].
In all what follows, we consider Rd the d-dimensional Euclidean space, where d is a nonnegative
integer ranging from 1 to 3. Namely, Rd is a d-dimensional vector space equipped with an inner
product and an orthonormal basis (e1, e2, . . . , ed). An arbitrary vector in Rd, x, is defined by
its coordinates, (x1, x2, . . . , xd), as x =

∑d
i=1 xiei. The inner product of two vectors x and x′

is defined by x � x′ =
∑d

i=1 xix
′
i. The inner product of x with itself is always nonnegative and

allows us to define the Euclidean norm on Rd as

‖x‖ =
√
x � x =

√√√√
d∑

i=1

x2
i .

A.1 Introduction to second-order tensors

A.1.1 Definitions

Let a and b be two vectors of Rd. The tensor product, otherwise named dyadic product, of a
and b is denoted by a⊗ b and defined as

∀x ∈ Rd , (a⊗ b)x = (b � x)a. (A.1)

This relation defines a linear transformation of Rd which is characterized by a matrix whose
components are written

(a⊗ b)ij = aibj , (i, j = 1, 2 . . . , d). (A.2)

Having in mind the notion of tensor product of two vectors, we define a second-order tensor
on Rd as the sum of tensor products of vectors in Rd. This definition involves that the set of
second-order tensors defined on Rd is a d2-dimensional vector space equipped with the basis
ei ⊗ ej (i, j = 1, 2 . . . , d). This definition involves that an arbitrary tensor, T, can be written

T =
d∑

i=1

d∑

j=1

Tijei ⊗ ej , (A.3)
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where Tij are components of the tensor T. Let us remark that to any second-order tensor T
corresponds the linear transformation of Rd defined by

x′ = Tx, x′i =
d∑

j=1

Tijxj .

Note that the second-order tensor T corresponds either to the previous linear transformation
or to the matrix defined by its components Tij in an orthonormal basis. We conclude this
paragraph recalling the following basic definitions which coincide with the classical definition
of linear algebra for matrices.

• Zero tensor: this tensor, which is denoted by O, maps every vector x into the zero vector

Ox = 0. (A.4)

• Identity or unit tensor: this tensor, which is denoted by Id, maps every vector into itself

Idx = x. (A.5)

The components of the matrix associated to the unit tensor are given by Iij = δij , where
δij stands for the Kronecker symbol which takes the values δij = 1 if i = j and δij = 0 if
i 6= j.

• Transpose of a tensor: the transpose of the tensor T is the unique tensor Tt defined by

Tx � x′ = x � Ttx′. (A.6)

Components of transpose of T are given by T tij = Tji.

• Symmetric and skew tensors: a tensor T is symmetric if Tt = T, it is skew if Tt = −T.
Every tensor can expressed uniquely as the sum of a symmetric tensor and a skew tensor
as

T =
1

2
(T + Tt) +

1

2
(T− Tt). (A.7)

• Trace of a tensor: the trace of a tensor T is the scalar denoted by tr(T) and defined as

tr(T) =

d∑

i=1

Tii. (A.8)

If S and T are two second-order tensors, it is straightforward to check that

tr(ST) = tr(TS). (A.9)

• Determinant of a tensor: the determinant of a tensor T is the scalar denoted by detT and
defined as the determinant of its corresponding matrix. It is computed by means of the
following formula

detT =

d∑

i=1

Tij(−1)i+jMij =

d∑

j=1

Tij(−1)i+jMij , (A.10)

where Mij denote the minors of matrix T, that is the determinant formed by omitting the
ith row and jth column of T.
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• Cofactor of a tensor: the cofactor matrix of a tensor T is denoted by cof(T) and defined
as

cof(T) = JT−t, (A.11)

where j is the determinent of T, i.e., J = detT.

• Inverse of a tensor: the inverse of a tensor T is the tensor denoted by T−1. It is defined
provided that detT 6= O. It satisfies TT−1 = Id and its components are given by

T−1
ij =

1

detT
(−1)i+jMji. (A.12)

• Positive definite tensor: a tensor T is positive definite if for an arbitrary vector x the
following property holds

Tx � x > 0. (A.13)

A.1.2 Properties of the dyadic product of two vectors

The dyadic product of two vectors satisfies the following important properties

tr(a⊗ b) =a � b, (A.14a)

(a⊗ b)t =b⊗ a, (A.14b)

T(a⊗ b) =(Ta)⊗ b, (A.14c)

(a⊗ b)T =a⊗ (Ttb), (A.14d)

(x⊗ x′)(a⊗ b) =(x′ � a)x⊗ b, (A.14e)

The demonstration of these properties can be found in [48].

A.1.3 Inner product of second-order tensors

Let S and T be two second-order tensors. The inner product of S and T is a scalar denoted by
S : T and defined as

S : T = tr(StT). (A.15)

The inner product can also be expressed in terms of the tensor components as

S : T =
∑

i

∑

j

SijTij . (A.16)

We note that S : T = T : S and S : Id = tr(S). This inner product defines a scalar product over
the space of second-order tensor. The corresponding norm is the Frobenius norm defined as

‖T‖ =
√

tr(TtT) =

√∑

i

∑

j

T 2
ij . (A.17)

Using the previous definition, one can show easily the following identities

L : (ST) = (StL) : T = (LTt) : S, (A.18a)

(x⊗ x′) : (a⊗ b) = (x � a)(x′ � b), (A.18b)

L : (a⊗ b) = a � (Lb) = (a⊗ b) : L. (A.18c)

Let T be a symmetric second-order tensor and S be an arbitrary second-order tensor, then their
inner product satisfies the following identity

T : S = T :
1

2
(S + St). (A.19)

This results from the symmetry of T and property of the trace operator (A.9).
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A.2 Eigenvalues and eigenvectors of a tensor

Let T be a second-order tensor. Let λ be a scalar and U a vector such that TU = λU .
Then λ is called an eigenvalue and U and eigenvector. Note that the eigenvalues and the
eigenvectors are independent of the choice of the basis, that is they are invariant under change
of basis. Eigenvalues are computed by finding the roots of the characteristic polynomial equation
PT(λ) = 0, where PT(λ) = det(T−λId). A second-order tensor can have at most d eigenvectors
and eigenvalues since the space is d-dimensional. We note that if a tensor is positive definite,
then its eigenvalues are positive, since by definition TU �U = λ‖U‖2 > 0. If a tensor T admits
d real eigenvalues, λi, i = 1 . . . d, then its trace and its determinant can be expressed in terms
of these eigenvalues as

tr(T) =

d∑

i=1

λi, detT = Πd
i=1λi. (A.20)

Therefore, the trace and the determinant are scalar invariants of a tensor.

We conclude this section by recalling the fundamental property satisfies by symmetric tensors.
If T is symmetric, it admits d real eigenvalues, λi, i = 1 . . . d, whose corresponding eigenvectors
are mutually orthogonal. Therefore, the normalized eigenvectors, Ui, i = 1 . . . d, form the
orthonormal basis of the spectral decomposition which writes as

T =
d∑

i=1

λiUi ⊗Ui. (A.21)

This expression is the spectral decomposition of the symmetric tensor T.

A.3 Tensor analysis

In this section, we recall the definition of the divergence and the gradient of a vector and a
second-order tensor. It is assumed that the functions employed here are sufficiently smooth so
that the limits and derivatives taken are always defined.

A.3.1 Derivative of tensor with respect to a scalar

Let L = L(t) be a tensor function of scalar t. The derivative of L with respect to t is the
second-order tensor defined by

d

dt
L = lim

h→0

L(t+ h)− L(t)

h
. (A.22)

Using this definition, the derivative of the dyadic product of the two vectors a = a(t) and
b = b(t) is given by

d

dt
(a⊗ b) =

da

dt
⊗ b+ a⊗ db

dt
. (A.23)

A.3.2 Derivative of scalar valued functions of vectors

Let f = f(x) be a real valued function of the vector x. Then, the derivative of f(x) with
respect to x in the direction a is the vector ∇f defined as

∇f � a = lim
h→0

f(x+ ha)− f(x)

h
. (A.24)
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The vector ∇f is the gradient of f , which writes with respect to the orthonormal basis

∇f =

d∑

i=1

∂f

∂xi
ei.

A.3.3 Derivative of vector valued functions of vectors

Let f = f(x) be a vector valued function of the vector x. Then, the derivative of f(x) with
respect to x in the direction a is the second-order tensor ∇f defined as

(∇f)a = lim
h→0

f(x+ ha)− f(x)

h
. (A.25)

On the orthonormal basis, the gradient tensor ∇f read as

∇f =
d∑

i=1

d∑

j=1

∂fi
∂xj

(ei ⊗ ej).

A.3.4 Derivative of scalar valued functions of second-order tensors

Let f = f(S) be a scalar valued function of the second-order tensor S. Then, the derivative of
f(S) with respect to S in the direction of the second-order tensor T is the second-order tensor
∂f
∂S defined as

∂f

∂S
: T = lim

h→0

f(S + hT)− f(S)

h
. (A.26)

On the orthonormal basis, this second-order tensor writes as

∂f

∂S
=

d∑

i=1

d∑

j=1

∂f

∂Sij
(ei ⊗ ej).

Let us consider the composed scalar valued function f = f(S(t)), then its derivative with respect
to the scalar variable t is given by

df

dt
=
∂f

∂S
:
dS

dt
. (A.27)

A.3.5 Derivative of the determinant of a tensor

The derivative of the determinant of a second-order tensor T with respect to itself is the second-
order tensor

∂

∂T
(detT) = T−t detT, (A.28)

where T−t denotes the transpose of the inverse of T. The proof of this result consists in
computing the partial derivative of the determinant with respect to its component through the
use of (A.10)

∂

∂Tij
(detT) =

d∑

i=1

(−1)i+jMij .

Then, comparing this result with the definition of the inverse (A.12) it is clear that

∂

∂Tij
(detT) = T−1

ji detT,

which ends the proof.
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A.3.6 Divergence of a vector and a tensor

Let U = U(x) be a vector function of x, its divergence is a scalar denoted by ∇ �U and defined
as

∇ �U =

d∑

i=1

∂Ui
∂xi

. (A.29)

Let us remark that the divergence of a vector can also be defined as

∇ �U = tr(∇U). (A.30)

This alternative definition is more intrinsic since it does not require the use of the components
of U provided that the tensor gradient of U is well defined.

Let T be a second-order tensor, its divergence is a vector denoted by ∇ � T whose components
are expressed in terms of the tensor components as follows

(∇ � T)i =
∑

j

∂Tij
∂xj

. (A.31)

A.3.7 Tensor identities

Having in mind the previous notation and definitions it is straightforward to demonstrate the
following important identities.

∇ � (TU) = ∇ � (Tt) �U + Tt : ∇U , (A.32a)

∇ � (U ⊗ V ) = (∇U)V +U∇ � V , (A.32b)

∇(ρU) = ρ∇U +U ⊗∇ρ, (A.32c)

∇ � (ρT) = ρ∇ � T + T∇ρ, (A.32d)

where ρ, U , V and T are respectively arbitrary scalar, vectors and second-order tensor.

Comment 5 Let us remark that tensor identity (A.32a) allows to propose the following intrin-
sic definition of the divergence of a tensor. Let T be a second-order tensor and U a constant
arbitrary vector. The divergence of T is the vector denoted ∇ � T such as

(∇ � T) �U = ∇ � (TtU), ∀U . (A.33)

A.4 Integral transformation formulas

The Green formula, otherwise named divergence formula, states that the volume integral of the
divergence of a function is equal to the total flux of this function through the surface enclosing
the volume. We recall its formulations for vectors and second-order tensors. All the real, vector
and tensor valued functions are assumed to be continuously differentiable with respect to the
spatial variables. Let ω be a domain of the d-dimensional space enclosed by a surface ∂ω, then
for arbitrary second-order tensor T and vector U

∫

ω
∇ � T dv =

∫

∂ω
Tnds, (A.34a)

∫

ω
∇ �U dv =

∫

∂ω
U � nds, (A.34b)
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where n denotes the unit outward normal to the enclose surface ∂ω. Let f denotes a scalar
valued function, then using the previous results it is straightforward to demonstrate the following
useful formulas

∫

ω
∇U dv =

∫

∂ω
U ⊗ nds, (A.35a)

∫

ω
∇f dv =

∫

∂ω
fnds. (A.35b)

We conclude this section by extending the divergence theorem to the case of piecewise continu-
ously differentiable functions. To this end, we assume that ω is divided into two non-overlapping
volumes ω1 and ω2 over which U and T are continuously differentiable. Let σ be the intersection
surface of ω1 and ω2, i.e. σ = ω1 ∩ ω2, refer to Figure A.1. This is the surface of discontinuity
for functions U and T. Let xσ be the position vector of a point located on this surface and nσ
the unit normal to σ located at xσ and pointing in the direction of ω2.

nσ

∂ω2∂ω1

ω1

ω2

σ

ω = ω1 ∪ ω2 ∪ σ

Figure A.1: Volume ω is split into two sub-volumes ω1 and ω2 by the discontinuity surface σ.

The jumps of the functions U and T through the discontinuity surface σ are defined as

JUK =U2 −U1,

JTK =T2 − T1,

where for an arbitrary xσ ∈ σ

U1 = lim
h→0+

U(xσ − hnσ), U2 = lim
h→0+

U(xσ + hnσ),

T1 = lim
h→0+

T(xσ − hnσ), T2 = lim
h→0+

T(xσ + hnσ).

U being continuously differentiable separately over ω1 and ω2, application of divergence formula
(A.34b) yields

∫

ω1

∇ �U dv =

∫

∂ω1\σ
U � nds+

∫

σ
U1 � nσ ds,

∫

ω2

∇ �U dv =

∫

∂ω2\σ
U � nds−

∫

σ
U2 � nσ ds.
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The sum of the two previous equations leads to

∫

ω1∪ω2

∇ �U dv +

∫

σ
JUK � nσ ds =

∫

∂ω
U � nds. (A.36)

This equation consists of a generalization of divergence formula (A.34b) to piecewise continu-
ously differentiable vector function. The second term in the left-hand side corresponds to the
flux through σ resulting from the jump across this surface. We notice that this term cancels
when JUK→ 0. Proceeding with the tensor valued function as before yields

∫

ω1∪ω2

∇ � Tdv +

∫

σ
JTKnσ ds =

∫

∂ω
Tnds. (A.37)

Applying the same reasoning formulas (A.35a) and (A.35b) transform into

∫

ω1∪ω2

∇U dv +

∫

σ
JUK⊗ nσ ds =

∫

∂ω
U ⊗ nds, (A.38a)

∫

ω1∪ω2

∇f dv +

∫

σ
JfKnσ ds =

∫

∂ω
fnds. (A.38b)
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