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Abstract

Molecular simulations have become an essential tool in biology, chemistry and physics. Un-
fortunately, they still remain computationally challenging.

In this dissertation, we propose algorithms that accelerate molecular simulations by clus-
tering particles into rigid bodies.

We first study several neighbor-search algorithms for large rigid bodies, and show that
hierarchy-based algorithms may provide significant speedups.

Accordingly, we propose a technique to build a hierarchical representation of an arbitrary
molecular graph. We show how this technique can be used in adaptive torsion-angle mechanics,
a simulation method that describes molecules as articulated rigid bodies.

Finally, we introduce ARPS – Adaptively Restrained Particle Simulations – a mathematical-
ly-grounded method able to switch positional degrees of freedom on and off. We propose two
switching strategies, and illustrate the advantages of ARPS on various examples. In partic-
ular, we show how ARPS allow us to smoothly trade between precision and speed, and to
efficiently compute correct static equilibrium properties on molecular systems.
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Résume

Les simulations moléculaires sont devenues un outil essentiel en biologie, chimie et physique.
Malheureusement, elles restent très coûteuses.

Dans cette thèse, nous proposons des algorithmes qui accélèrent les simulations molécu-
laires en regroupant des particules en plusieurs objets rigides.

Nous étudions d’abord plusieurs algorithmes de recherche de voisins dans le cas des grands
objets rigides, et démontrons que les algorithmes hiérarchiques permettent d’obtenir des ac-
célérations importantes.

En conséquence, nous proposons une technique pour construire une représentation hiérar-
chique d’un graphe moléculaire arbitraire. Nous démontrons l’usage de cette technique pour la
mécanique adaptative en angles de torsion, une méthode de simulation qui décrit les molécules
comme des objets rigides articulés.

Enfin, nous introduisons ARPS – Adaptively Restrained Particle Simulations (“Simula-
tions de particules restreintes de façon adaptative”) – une méthode mathématiquement fondée
capable d’activer et de désactiver les degrés de liberté en position. Nous proposons deux straté-
gies d’adaptation, et illustrons les avantages de ARPS sur plusieurs exemples. En particulier,
nous démontrons comment ARPS permet de choisir finement le compromis entre précision et
vitesse, ainsi que de calculer rapidement des proprietés statiques d’équilibre sur les systèmes
moléculaires.
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Chapter 1

Introduction (Français)

Les simulations moléculaires jouent un rôle de plus en plus important dans la recherche sur
la matière à l’échelle nanométrique. Elles permettent de comprendre de nombreux proces-
sus chimiques et biologiques dans différents matériaux [3, 4] et dans les cellules vivantes
[5, 6], d’observer de nouveaux phénomènes, de découvrir les caractéristiques de la matière
physique [7], ainsi que de prédire le comportement des systèmes à l’étude [8]. Les simulations
moléculaires peuvent également aider à tester de nouveaux modèles physiques et à expliquer
des phénomènes encore mal connus. Elles permettent la modélisation et la conception de
molécules aux propriétés voulues [9], la simulation sous des conditions et des états difficiles
à créer en laboratoire [10] tout en ajustant facilement les paramètres du système. En con-
séquence, les simulations moléculaires sont aujourd’hui largement utilisées dans de nombreux
domaines de recherche, par exemple la chimie, la physique et la biologie numériques, ainsi que
la science des matériaux. Les résultats obtenus peuvent avoir des applications directes dans
des domaines majeurs tels que la conception de médicaments [11, 12, 13, 14], les nanotech-
nologies [15], l’électronique [16], l’optique, etc.

Malgré cela, la simulation de nombreux problèmes importants de la chimie, la biologie et la
physique, comme par exemple le repliement de protéines [17, 18], la solvatation de molécules
[19], la diffusion à travers les membranes biologiques [20], les réactions chimiques [19], etc.
demeure un défi. Cette thèse décrit plusieurs algorithmes visant à accélérer la simulation
moléculaire pour résoudre ces problèmes.

Les simulations moléculaires consistent en la création d’une représentation (modèle) du
système moléculaire sur l’ordinateur et, ensuite, en la génération d’un certain nombre de con-
figurations réalistes de ce système. A partir de ces configurations, différents types d’informations
peuvent être extraites : les propriétés thermodynamiques, les propriétés dynamiques, les par-
ticularités structurelles, etc.

Nous présentons dans un premier temps plusieurs représentations possibles des systèmes
moléculaires.

1
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1.1 Représentation d’un système moléculaire

Il existe plusieurs façons de représenter un système moléculaire. La mécanique quantique, par
exemple, considère ce système comme une collection d’atomes et de particules subatomiques,
et décrit leurs propriétés par une fonction d’onde. À plus grande échelle, des atomes, des
groupes d’atomes ou des molécules peuvent être représentés comme des objets distincts qui
interagissent à travers une fonction (empirique) de potentiel. Enfin, un système pourrait être
modélisé comme une masse continue : fluide ou solide.

Dans cette thèse, nous nous intéressons à la représentation discrète des systèmes molécu-
laires dans le cadre de la mécanique classique, plus précisément les particules, les corps rigides
et les corps articulés, et nous envisageons leur dynamique.

1.1.1 Dynamique des particules

Un système moléculaire en 3D peut être considéré comme une collection de N particules (des
atomes par exemple) représentées par des masses ponctuelles. L’utilisation d’une fonction
hamiltonienne H(q,p), où q et p sont les vecteurs de dimension 3N de positions et moments
des particules respectivement, est une des approches possibles pour représenter un tel sys-
tème. Un hamiltonien est généralement exprimé comme la somme des énergies potentielle
et cinétique du système : H = K + V . La forme précise de ces énergies est choisie selon le
système à l’étude. Une forme répandue du hamiltonien est:

H(q,p) =
1
2pTM−1p + V (q),

où M est une matrice de masse diagonale de taille 3N×3N (qui peut dépendre de positions
q), et V (q) est un potentiel d’interaction.

Les équations du mouvement peuvent être déduites de ce hamiltonien:

ṗ = −
∂H(q,p)

∂q = −
∂V (q)
∂q ,

q̇ =
∂H(q,p)

∂p = M−1p.

1.1.2 Dynamique des corps rigides et articulés

Les corps rigides, contrairement aux particules, occupent un certain volume dans l’espace
et possèdent des propriétés géométriques comme, par exemple, un centre de masse ou des
moments d’inertie. Les corps rigides sont considérés comme non déformables. Alors qu’en
3D, les particules ont 3 degrés de liberté en translation, les corps rigides, eux, en ont 6
(translation et rotation).

Pour écrire les équations du mouvement d’un corps rigide, il est commode d’utiliser les
notations spatiales [21]. Ces notations décrivent la vitesse, l’accélération, l’inertie des corps
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rigides en utilisant des vecteurs et tenseurs en 6D. L’équation du mouvement d’un corps rigide
peut alors être écrite comme suit:

f =
d

dt
(Iv) = Ia + v× Iv,

où f est la force spatiale agissant sur un corps rigide, I est l’inertie spatiale du corps
rigide, v, Iv, et a sont sa vitesse spatiale, son moment spatial et son accélération spatiale
respectivement, et “×” représente un produit vectoriel spatial. Par conséquent, l’accélération
d’un corps rigide peut être écrite:

a = I−1f − I−1(v× Iv) = Φf + b,

où Φ est l’inertie spatiale inverse du corps rigide, et b est le biais d’accélération (c’est à
dire l’accélération du corps rigide lorsqu’aucune force ne lui est appliquée).

Les corps articulés, largement utilisés aussi en robotique et en infographie, sont des corps
rigides avec contraintes. Il a été démontré [21, 22] que la dynamique d’un corps articulé
peut être décrite par la même équation que pour les corps rigides, même si Φ et b ont des
expressions plus compliquées.

Différentes approches pour simuler un système moléculaire existent. Nous les décrivons
dans la section suivante.

1.2 Simulation de systèmes moléculaires

Lors d’une simulation moléculaire, nous ne sommes pas intéressés par une trajectoire partic-
ulière du système dans l’espace des phases, mais par les propriétés moyennes de ce système
(par exemple la température). Il y a plusieurs raisons pour cela. Tout d’abord, les valeurs
moyennes obtenues avec la simulation sont faciles à comparer avec des résultats expérimen-
taux, ce qui n’est pas vrai, par exemple, pour les valeurs exactes des positions ou moments
des particules. Ensuite, si nous simulons l’évolution du système moléculaire en temps, même
une petite différence dans les conditions initiales conduira à une différence exponentielle dans
les trajectoires au fil du temps [23, 24].

Les propriétés moyennes d’un système moléculaire sont normalement étudiées dans un
ensemble de configurations (ou d’états) du système qui correspondent à plusieurs critères.
L’ensemble des états possibles correspondant à certains critères s’appelle un ensemble statis-
tique. Les ensembles les plus fréquemment utilisés sont les suivants:

• l’ensemble microcanonique qui décrit le comportement d’un système isolé thermique-
ment (ensemble NVE, le nombre de particules N , le volume V et l’énergie E sont fixes);

• l’ensemble canonique qui a une température T bien définie (ensemble NVT, N et V
sont aussi des constantes);
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• l’ensemble isobarique-isothermique (NPT, un ensemble à température et pression
constantes);

• l’ensemble grand-canonique (µVT, ou µ est un potentiel chimique)1.

Les deux techniques standard pour effectuer des simulations moléculaires sont la dynamique
moléculaire (DM) et la méthode de Monte Carlo (MC) [23]. Ces deux approches sont très
différentes. La dynamique moléculaire consiste en l’intégration des équations du mouvement
du système pendant une certaine période de temps, et la moyenne des propriétés est faite au fil
du temps. La méthode de Monte Carlo peut utiliser un certain nombre de stratégies différentes
pour générer des configurations du système, sur lesquelles les propriétés sont moyennées.
L’“hypothèse ergodique” indique que, dans un calcul de statistiques, une moyenne sur une
période suffisamment longue (DM) est équivalente à la moyenne sur l’ensemble (MC). Cette
affirmation n’est pas toujours vraie en pratique. Ainsi, selon le problème, la technique la plus
appropriée doit être choisie.

Les simulations de DM et MC alternent une ou plusieurs itérations de deux étapes prin-
cipales: (i) calculer les forces et les énergies pour la configuration actuelle du système, et (ii)
avec ces informations, générer la configuration suivante. Nous allons maintenant décrire ces
deux étapes en détail.

1.2.1 L’énergie potentielle et les forces

Lors d’une simulation, un modèle doit être choisi pour représenter les interactions dans le
système. Précisément, une fonction d’énergie potentielle (ou un champ de force) doit être
précisée. De nombreux champs de force existent [26], obtenus à partir de calculs ab initio
et de différents types de données expérimentales. Une forme de base d’un champ de force
classique contient des termes liés, décrivant la connectivité des structures chimiques dans le
système (par exemple des liaisons ou des angles de liaison) et des termes non-liés, précisant
des interactions à courte portée (e.g. van der Waals) et à longue portée (e.g. électrostatique).

Les termes liés et non-liés sont souvent considérés comme ne dépendant que de quelques
degrés de liberté, et dans le cas le plus simple sont réduits à des interactions paires. Pour les
interactions de van der Waals, on considère souvent que le potentiel diminue rapidement, de
sorte que les particules ne sont pas censées interagir si la distance qui les sépare dépasse une
valeur prédéfinie – distance de coupure.

Les forces d’interaction peuvent être obtenues par le calcul du gradient de la fonction de
potentiel V :

F = −∇V.
Comme chaque particule dans le système interagit souvent avec plusieurs autres particules,

les calculs de forces représentent une partie importante de tous les calculs effectués lors d’une
simulation.

1La technique de “l’ensemble” de Gibbs [25] est souvent utilisée pour obtenir le comportement des phases
de fluides et de mélanges.
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1.2.2 Génération de configurations

Des stratégies différentes sont utilisées par la dynamique moléculaire et les méthodes de Monte
Carlo pour générer des configurations du système.

1.2.2.1 Dynamique moléculaire

Dans une simulation de dynamique moléculaire, les équations différentielles du mouvement
doivent être intégrées numériquement dans le temps pour obtenir l’état du système lors de
l’étape suivante. En général, l’état suivant yn+1 d’un système est une fonction de son état
actuel yn et du pas de temps h: yn+1 = F (yn, h). Par exemple, si nous discrétisons l’équation
différentielle ẏ = f(y) par la méthode des différences finies ẏ = (yn+1 − yn)/h, le schéma
d’intégration peut être yn+1 = yn + f(yn)h.

1.2.2.2 Monte Carlo

Les simulations de Monte Carlo peuvent utiliser plusieurs méthodes pour générer une con-
figuration d’essai d’un système (par exemple déplacer une ou plusieurs particules de manière
aléatoire), qui est acceptée ou rejetée avec une probabilité qui dépend de cette configuration
d’essai et de l’état du système actuel [27, 28, 29, 25].

1.3 Simulations efficaces

Les systèmes moléculaires présentant une utilité en physique, chimie et biologie sont souvent
constitués d’un grand nombre d’atomes. Par exemple, un ribosome (une partie importante
de la cellule, qui produit des chaines protéiques) se compose d’environ 100 000 atomes, et une
capside de virus peut contenir jusqu’à plusieurs millions d’atomes. La simulation d’un tel
système pendant une longue période (nécessaire pour observer certains phénomènes), ou la
collecte de statistiques complexes sur elle, devient un calcul coûteux en temps machine.

Dans cette section, nous examinons plusieurs approches (théorique et numérique) qui ont
été développées pour effectuer des simulations moléculaires efficaces, c’est à dire des simula-
tions qui montrent la meilleure performance pour un problème donné. Pour une simulation
efficace, la représentation du système (résolution, modèle d’interaction, système de coordon-
nées, etc) ainsi que la méthode de simulation et de mise en œuvre doivent être soigneusement
choisies.

1.3.1 Choix d’un modèle approprié

Le choix du modèle pour le système affecte à la fois la performance de la simulation et
l’ensemble des propriétés qui peuvent être récupérées à l’issue du calcul.

Examinons quelques représentations possibles des systèmes moléculaires et leurs domaines
d’application.



6 CHAPTER 1. INTRODUCTION (FRANÇAIS)

1.3.1.1 Représentation tout-atome

Cette représentation prend en compte tous les atomes dans un système moléculaire.
Dans ce cas, les simulations sont souvent effectuées dans l’espace cartésien: les coordon-

nées des atomes sont propagées dans le temps, par l’équation de Newton. Les coordonnées
cartésiennes sont faciles à définir et sont naturelles pour des interactions non-liées et à longue
portée. Cependant, les interactions liées sont décrites par des contraintes ou des termes
d’énergie [30, 31].

Il existe une grande variété de champs de force empiriques pour cette représentation. Ces
champs de force sont différents, d’abord, dans la forme fonctionnelle des termes liés et non-
liés. Par exemple, dans certains champs de force, des liaisons covalentes sont modélisées par
des oscillateurs harmoniques et ne peuvent pas être rompues lors de la simulation, mais il
existe aussi quelques champs de force réactifs [32, 33] qui permettent la rupture des liaisons.
En plus, les champs de force utilisent différents ensembles de paramètres pour chaque atome
(masse, charge, rayon de van der Waals, etc), ainsi que des valeurs d’équilibre pour, par
exemple, les longueurs et les angles des liaisons. En conséquence, il existe des champs de force
généraux, comprenant tous les types d’atomes [34], et des champs de force spécifiques, conçus
pour quelques types d’atomes uniquement [35, 33].

Il existe aussi des expressions ab initio d’énergie potentielle, basées sur les principes de
la mécanique quantique. Ces expressions sont coûteuses à évaluer et sont limitées aux petits
systèmes. Pour combiner les avantages des potentiels ab-initio et empiriques, des approches
mêlant les deux ont été créées (par exemple, la technique QM / MM [36]).

1.3.1.2 Représentation des atomes unifiés

Avec cette représentation, des atomes d’hydrogène sont parfois unis avec d’autres atomes pour
former de nouveaux sites d’interaction. Cela réduit le nombre de particules dans le système
et permet de simuler des systèmes plus grands.

Pour cette représentation, plusieurs champs de force ont été proposés [37, 38], y compris
des champs de force transférables (par exemple TRAPPE [39]) : les paramètres d’interaction
pour un site donné restent les mêmes pour les différentes molécules, et le champ de force est
transférable entre différents états du système (température, pression, etc.)

1.3.1.3 Représentation atomistique, réduction du nombre de degrés de liberté

Une autre façon de réduire le nombre de degrés de liberté dans le système consiste à fixer
certains d’entre eux (par exemple les longueurs de liaison) à des valeurs spécifiques.

Pour cela, des simulations en coordonnées internes [40, 41, 42, 43, 44, 45, 46, 47] sont
naturelles : dans ces simulations, les longueurs et angles de liaison, ainsi que les angles de tor-
sion, représentent directement les degrés de liberté et peuvent être facilement fixés à certaines
valeurs2. Le nombre de degrés de liberté dans le système est, par conséquent, considérable-

2D’habitude les vibrations des liaisons sont de haute fréquence mais de faible amplitude. Ces liaisons donc
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ment diminué (plus précisément, fixer les longueurs et angles de liaison dans une simulation
en coordonnées internes peut diviser le nombre de variables par six ; et imposer en plus une
géométrie plane covalente – par dix [48]), des pas de temps plus grands sont autorisés [49]
(comme les vibrations à haute fréquence pour les liaisons ne sont plus prises en compte) et
un échantillonnage plus rapide est possible [46]. La mécanique moléculaire en coordonnées
internes s’est révélée être utile dans plusieurs applications, y compris la modélisation molécu-
laire, l’assemblage moléculaire [44], la RMN [43], et est aussi employée par les algorithmes
diviser-pour-régner récursifs [21, 22].

Néanmoins, l’application directe des champs de force standards aux simulations avec des
contraintes (notamment, aux simulations en coordonnées internes avec des liaisons et des
angles fixes) est discutable, et une “projection” de tels champs de force pourrait être néces-
saire [48]. Cette “projection” est une tâche très difficile à réaliser, et tous les paramètres
d’interaction sont transférés uniquement pour une valeur fixe de température.

1.3.1.4 Représentation gros-grain et DPD

Dans le but de réduire considérablement le nombre de particules dans le système, des “pseudo-
atomes” peuvent être utilisés pour représenter des groupes d’atomes (molécules d’eau par
exemple), ce qui produit une représentation gros-grain [50, 51, 52].

Dans ce cas, de nouveaux modèles d’interaction (avec des potentiels qui échantillonnent
correctement l’espace de phase) doivent être développés, ce qui est un travail long et compliqué
[53, 54]. Ensuite, il peut être difficile de porter un champ de force à gros grains spécifique d’un
logiciel de simulation à un autre. En plus, les champs de force à gros grains sont généralement
obtenus à partir des champs de force tout-atome à une température fixe, et, par conséquent,
ne peuvent être utilisés que dans les simulations à cette température particulière. Cependant,
récemment, le champ de force à gros grains UNRES [55] a été introduit. L’expression de sa
fonction potentielle intègre des termes dépendants de la température, et il permet de calculer
les propriétés thermodynamiques aux différentes températures.

Pour la dynamique des fluides, la dynamique des particules dissipatives (DPD) [56, 57] a
été développée. Dans cette approche, les particules représentent des molécules ou des régions
de fluide.

1.3.1.5 Représentations hybrides

Récemment, des méthodes basées sur des représentations multi-résolution ont été proposées
pour coupler les niveaux tout-atome et gros-grain de la description du système [58, 59, 60, 61,
62, 63].

Dans ces méthodes, à l’échelle atomique les calculs sont exacts, mais lents. Habituellement,
un petit sous-système d’un grand intérêt est représenté à cette échelle. D’autre part, dans
la partie gros-grain de la simulation, la précision est faible, mais les calculs s’effectuent plus
rapidement. Les techniques les plus intéressantes sont décrites dans les Réfs [60, 61, 62, 63].

peuvent être facilement modélisées comme fixées à leurs valeurs d’équilibre.
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Ces méthodes sont basées sur l’interpolation des forces, des potentiels ou des lagrangiens
entre les deux résolutions, à travers une région de transition. Cependant, la combinaison
de niveaux de représentation différents est un problème difficile. Par conséquent, une autre
approche intéressante est la méthode multi-grains [64] : un algorithme pour la simulation
grain-fin et gros-grain simultanée des systèmes moléculaires.

Toutes les méthodes ci-dessus sont des méthodes de la mécanique classique.
Cependant, la mécanique classique des particules ou des corps rigides peut être combinée

avec d’autres échelles. Par exemple, il existe des méthodes éléments finis[65]/dynamique
moléculaire/mécanique quantique[66, 67, 68], une méthode hybride entre la dynamique molécu-
laire et la méthode Lattice Boltzmann [69], ainsi qu’une combinaison entre la méthode de
fluctuation hydrodynamique [70] et de dynamique moléculaire dans Réf. [71]. Des modèles
continus comme des modèles de solvants implicites [72] ou membranes implicites [73] peuvent
être couplés avec des représentations plus fines.

Une fois que la représentation d’un système moléculaire est choisie, une méthode de sim-
ulation appropriée doit être déterminée.

1.3.2 Calculs d’énergie et de forces

Comme indiqué précédemment, le calcul des forces représente une partie importante du temps
global de simulation. Effectuer un calcul de forces efficace est donc très important.

1.3.2.1 Approximation des forces

La complexité du calcul de la mise à jour des forces peut être améliorée en utilisant des ap-
proximations du potentiel, et, par conséquent, des forces. Par exemple, la méthode multipôle
rapide (FMM) [74] réduit le coût du calcul des interactions à longue portée de O(N2) à O(N)
pour un système de N particules. Une autre approche souvent utilisée est la méthode du
maillage des particules d’Ewald (Particle-Mesh Ewald method) [75] qui réduit le même coût
de O(N2) à O(N logN).

1.3.2.2 Mise à jour partielle

Parfois, seulement certaines forces du système doivent être mises à jour. Le temps de cette
mise à jour peut donc être amélioré, par exemple pour les systèmes présentant des symétries
[76], ou pour les systèmes dont les termes d’interactions à longue et courte portée sont séparés
[77], auquel cas les forces à longue portée peuvent être mises à jour non pas à chaque pas de
temps, mais tous les n pas.

Les algorithmes incrémentaux peuvent aussi accélérer la mise à jour des forces. Ces algo-
rithmes mettent à jour les propriétés du système en partant de sa configuration précédente
et en utilisant les informations sur les changements qu’il a subis, au lieu de les recalculer de
zéro.

Récemment, des algorithmes adaptatifs ont été introduits [78, 79, 41, 80]. Ces algorithmes
sont principalement utilisés pour la simulation adaptative et quasi-statique des corps articulés.
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Ils permettent de choisir le nombre de degrés de liberté actifs à chaque pas de temps (et ce
faisant, la précision de la simulation), c’est à dire effectuer une mise à jour partielle de l’état
du système à chaque pas de temps. Le compromis entre précision et temps de calcul peut
alors être arbitré de manière lisse, ce qui permet de diminuer significativement le nombre de
degrés de liberté tout en gardant la précision nécessaire à la description du mouvement, d’où
des accélérations de simulation importantes.

1.3.3 Génération de configurations

Une méthode de simulation appropriée doit être choisie en fonction de l’application.
Plusieurs auteurs ont comparé l’efficacité de la dynamique moléculaire et les méthodes

de Monte Carlo pour des applications spécifiques : simulations de protéines (DM a été plus
efficace dans la Réf. [81]), simulations de liquides (MC a été plus rapide dans la Réf. [82]),
simulations de repliement des protéines (MC a été plus rapide dans la Réf. [83]), etc.

Aujourd’hui cependant, la dynamique moléculaire et la méthode de Monte Carlo sont sou-
vent combinées pour effectuer des simulations efficaces : parfois, des pas de temps dynamiques
sont utilisés avec Monte Carlo, où un échantillonnage intelligent de l’espace des phases est
réalisé à l’aide d’une ou plusieurs simulations de dynamique moléculaire [84, 85, 86].

Dans ce qui suit, nous allons continuer d’associer l’intégration numérique à la dynamique
moléculaire, et de l’échantillonnage intelligent à la méthode de Monte Carlo, en n’oubliant
pas que pour une simulation efficace nous pourrions avoir besoin des deux.

1.3.3.1 Dynamique moléculaire et intégration efficace

Comme il est expliqué ci-dessus, la génération des configurations nouvelles dans une simulation
de dynamique moléculaire demande l’intégration des équations du mouvement dans le temps.

De nombreux schémas d’intégration possibles ont été proposés [87].

• Les schémas implicites et explicites peuvent être distingués : pour déterminer l’état
d’un système à l’étape suivante, les intégrateurs explicites utilisent uniquement l’état
actuel, alors que les méthodes implicites doivent résoudre une équation impliquant les
états actuel et suivant du système. Les intégrateurs explicites sont les plus simples, mais
pour certains problèmes les méthodes implicites sont préférables.

• L’ordre de l’intégrateur joue un rôle important. Plus il est grand, plus la solution au
problème est précise. En contrepartie, toutes les dérivées temporelles des coordonnées
de particules, jusqu’à l’ordre de l’intégrateur, doivent être calculées et stockées.

• Il existe des intégrateurs symplectiques qui préservent la structure géométrique du flux
hamiltonien [88]. Ces intégrateurs bornent les fluctuations d’énergie et permettent de
conserver l’énergie pendant de longues périodes pour les simulations en ensemble NVE.

• Certains intégrateurs sont réversibles dans le temps (c’est le cas des équations du mou-
vement de Newton). Une approche générale pour construire un intégrateur réversible
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utilise la factorisation de Trotter du propagateur de Liouville [77]. Des expériences
numériques montrent que certaines méthodes symétriques (réversibles) présentent des
propriétés similaires à celles des méthodes symplectiques pour certains systèmes [87].

• On oppose aussi les méthodes mono-étape aux méthodes multi-étapes. Dans le premier
cas, l’état du système à l’étape suivante ne dépend que de son état à l’étape précédente;
dans le second, il dépend de plusieurs étapes précédentes.

Le choix du pas d’intégration a une importance cruciale pour la méthode de simulation. En
pratique, le pas de temps doit être court par rapport à la plus petite période de vibration des
particules. Normalement, il est choisi environ 10 fois plus petit que la période de vibration
la plus courte dans la simulation. D’autre part, pour l’efficacité de la simulation, le pas de
temps doit être choisi le plus grand possible.

Il existe des méthodes qui augmentent le pas de temps [89, 90, 91, 92, 93, 94], permettant
ainsi d’accélérer les simulations et d’utiliser de plus grandes échelles de temps. Ceci peut
être réalisé, par exemple, en séparant les degrés de liberté lents et rapides dans le système
[89] (dans le cas général [77]), ou en changeant le tenseur de masse [90, 91, 94], ou encore en
utilisant un pas de temps adaptatif [92], etc.

Le pas de temps de la simulation peut également être augmenté en fixant les liaisons dans
le système pour supprimer les modes de haute fréquence. Cette idée est utilisée par exemple
dans les méthodes SHAKE [30] et RATTLE [31] (ainsi que leurs nombreuses variantes), dans
la méthode de la fonction de pénalité [95], et dans les méthodes qui modifie le potentiel [96].

1.3.3.2 Monte-Carlo et échantillonnage efficace

Une grande variété de techniques visant à accélérer l’échantillonnage d’espace des phases a
été développée [97, 85, 98].

Par exemple, plusieurs modifications de la méthode traditionnelle de Monte-Carlo existent
[99][29] [100, 101, 102]. Pour les évènements rares, la méthode de Monte Carlo cinétique peut
également être utilisée [103]. Certains algorithmes comme Monte Carlo hybride [84, 104]
essaient de combiner les avantages de DM et MC.

Certaines méthodes d’échantillonnage utilisent des simulations de dynamique moléculaire.
Par exemple, dans l’approche d’“échange des répliques” [85] plusieurs copies du système
d’origine sont simulées sans interactions entre elles, et à des températures différentes. Elles
sont régulièrement échangées avec une certaine probabilité qui dépend des énergies de chaque
copie. Les moyennes statistiques dans ce cas sont obtenues à partir des copies du système à la
température désirée. Cette méthode est largement utilisée pour les simulations du repliement
des protéines.

Avec la méthode LES [98] un petit sous-système d’intérêt est clôné, résultant en plusieurs
copies sans interaction entre elles, et le reste du système subit le potentiel moyen de ces copies.
L’espace de phase est donc mieux échantillonné qu’avec la DM traditionnelle.

La dynamique moléculaire accélérée [105, 97] permet d’augmenter l’échelle de temps des
simulations d’évènements rares en modifiant le potentiel.
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La dynamique moléculaire guidée (Steered molecular dynamics, SMD) [106] est une méth-
ode qui permet d’observer les processus biologiques à des échelles de temps accessibles par
des simulations moléculaires. L’idée générale de cette méthode consiste à appliquer des forces
extérieures sur un ou plusieurs atomes du système pour étudier sa réponse dans des conditions
variées. Par exemple, une interaction protéine-ligand peut être étudié en tirant sur le ligand
au niveau du site de liaison.

Les calculs d’une classe spécifique de propriétés thermodynamiques (celles qui ne peuvent
pas être obtenues par une simple moyenne d’une fonction des coordonnées et des moments sur
toutes les particules), par exemple l’énergie libre de Helmholtz et ses différences entre les divers
états, ont été largement étudiés [107]. En particulier, les calculs d’énergie libre de solvatation
[19, 108, 109] sont d’un grand intérêt, étant donné que souvent le solvant représente une part
indisponsable d’un système moléculaire.

1.3.4 Matériel informatique

Nous discutons maintenant de l’accélération des simulations moléculaires grâce à des tech-
niques matérielles.

Si un problème peut être facilement subdivisé en plusieurs petits problèmes qui peuvent
être résolus simultanément, le calcul parallèle est une technique d’accélération naturelle : les
calculs sont répartis entre plusieurs unités de traitement, puis les résultats sont réunis pour
fournir le résultat final. La première façon d’effectuer des simulations moléculaires en parallèle
est de séparer les calculs d’une seule simulation. Cette stratégie peut être appliquée à des
méthodes comme diviser-pour-régner [21] ou la décomposition de domaine [110, 111]. Une
autre option consiste à effectuer plusieurs simulations en parallèle, par exemple, la méthode
d’“échange des répliques” [85].

Le matériel moderne offre de nombreuses possibilités pour le calcul parallèle. Par exemple,
les processeurs multicœurs (CPU) sont maintenant très courants, et ce même pour les ordina-
teurs de bureau. Les unités de calcul graphiques peuvent aussi accélérer les simulations à N
corps [112, 113] ou les simulations de Monte Carlo [114]. Des calculs importants peuvent être
effectués sur des clusters ou des super-ordinateurs [115]. Il existe même des super-ordinateurs
spécialement conçus pour les simulations moléculaires [116, 117]. Les systèmes distribués,
qui se composent d’un grand nombre d’ordinateurs autonomes qui interagissent à travers un
réseau, peuvent aider à résoudre des problèmes importants, tels que le repliement des protéines
[118].

1.3.5 Logiciels

Plusieurs des méthodes abordées ci-dessus, combinées avec d’autres techniques d’optimisation,
sont intégrées dans une variété de champs de forces sophistiqués et de logiciels de simula-
tion qui ont été écrits pour effectuer des simulations classiques ou quantiques, par exemple
CHARMM [119], AMBER [120], ABINIT [121], Desmond [122], NAMD [123], GROMOS [124]
et GROMACS [125], LAMMPS, SIESTA, VASP, TINKER, YASARA, etc.
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Certains de ces outils sont libres de droits, tandis que d’autres sont disponibles dans le
commerce, parfois via l’intégration dans des applications: Discovery Studio, Matériaux Stu-
dio, Médée, ME, Designer Ascalaph, BOSS, Spartan, Maestro, NanoEngineer-1, etc. D’autres
outils sont essentiellement dédiés à la visualisation, mais peuvent parfois être liés aux logi-
ciels de simulation: VMD [2], PyMol [1], Zodiac, Avogadro, etc. Le réseau nanoHUB [126]
comprend également un ensemble complet d’outils de calcul liés à la nanoscience.

1.4 Contributions

L’objectif principal de cette thèse était de contribuer à l’accélération des simulations molécu-
laires. Précisément, nous avons considéré les algorithmes qui permettent de réduire le nombre
de degrés de liberté dans le système, tout en restant à la résolution des particules pour calculer
l’énergie potentielle et les forces. Dans ces algorithmes, certains blocs d’atomes se déplacent
ensemble en tant que corps rigides, ce qui réduit le nombre de forces à mettre à jour à chaque
pas de temps, puisque les forces à l’intérieur des corps rigides sont constantes et ne doivent pas
être mises à jour. Comme les calculs de force représentent une partie importante des calculs
de simulation moléculaire, cette approche peut résulter en une accélération significative.

Le processus d’évaluation des forces consiste typiquement en deux parties. Tout d’abord,
la recherche des voisins est effectuée : toutes les paires dont les atomes sont plus proches entre
eux que la distance de coupure sont considérées en interaction (pour plus de simplicité, nous
considérons les potentiels paires). Ces paires sont répertoriées et stockées dans une liste de
voisins. Ensuite, les forces correspondant à chaque paire de voisins sont calculées. Il se trouve
que si les grands blocs d’atomes se déplacent ensemble, l’étape de recherche des voisins peut
être accélérée. Dans la première partie de notre travail, nous présentons donc une étude qui
compare différentes méthodes pour effectuer une recherche de voisinage entre grands groupes
rigides d’atomes. Plus précisément, nous comparons l’algorithme traditionnel basé sur une
grille à une série d’algorithmes qui utilisent des volumes englobants pour éliminer rapidement
les grands groupes de paires d’atomes non pertinents lors de la recherche de voisins. Ces
derniers ont été utilisés en géométrie algorithmique, avec des applications en infographie,
robotique, réalité virtuelle, etc. Nous comparons les performances de ces algorithmes en
variant plusieurs paramètres : la taille des molécules, la distance moyenne entre elles, la
distance de coupure, ainsi que le type de volume englobant utilisé dans la hiérarchie (AABB,
OBB, 2 types de sphères). Nous démontrons que pour les systèmes de taille relativement
grande (>100000 atomes) l’algorithme fondé sur la hiérarchie des sphères montre les meilleurs
résultats, et l’algorithme traditionnel, utilisant la grille, donne les pires. Pour les petits
systèmes, cependant, l’algorithme avec une grille et celui de la hiérarchie de sphères sont les
plus efficaces. Ces résultats ont été publiés dans le Journal of Computational Chemistry [127].

Ayant remarqué que les approches hiérarchiques sont souvent bénéfiques pour les simula-
tions où les grands blocs d’atomes pourraient être considérés comme des corps rigides, nous
avons découvert qu’aucune méthode générale de construction d’une telle hiérarchie n’avait été
proposée. C’est pourquoi, dans la deuxième partie de cette thèse, nous présentons un algo-
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rithme rapide et général pour la construction complète d’une représentation hiérarchique d’un
système moléculaire. Cet algorithme en trois étapes traite le système d’entrée sous forme d’un
graphe moléculaire dans lequel les sommets représentent des atomes ou des pseudo-atomes,
et les arêtes représentent des liaisons covalentes. Nous démontrons la performance de notre
algorithme sur un ensemble de cas difficiles, ainsi que sur un grand sous-ensemble de graphes
moléculaires extrait de la Protein Data Bank [128]. Finalement, nous démontrons une appli-
cation de notre algorithme à la mécanique moléculaire adaptative en angles de torsion. Ces
résultats ont également été publiés dans le Journal of Computational Chemistry [129].

Les méthodes adaptatives basées sur des degrés de la liberté figés comme [78, 79, 41, 80]
n’ont jamais été complétées par une analyse des propriétés des simulations obtenues (par
exemple leur stabilité). Pour les applications en infographie ce n’est pas important, puisque
les simulations doivent être visuellement plausibles, mais pas nécessairement théoriquement
rigoureuses. Dans les simulations de dynamique moléculaire, cependant, il est crucial d’analyser
chaque nouvelle approche et de vérifier si elle produit des simulations qui échantillonnent cor-
rectement l’espace des phases.

C’est pourquoi, dans la troisième partie de cette thèse, nous présentons une nouvelle
méthode mathématiquement fondée et basée sur la dynamique hamiltonienne, qui active et
désactive des degrés de liberté en position, ce qui réduit le nombre de forces mis à jour à
chaque pas de temps, et peut considérablement accélérer les simulations. Cette méthode
est adaptée pour une classe plus générale de simulations qui est celle des simulations de
particules, et nous l’appelons donc ARPS: Simulations de Particules Restreintes de façon
Adaptative (ARPS: Adaptively Restrained Particle Simulations). Notre approche présente de
nombreux avantages. Par exemple, elle produit des simulations longues et stables. Pour des
simulations à énergie constante, elle permet aux utilisateurs de choisir de manière arbitraire
et lisse le compromis entre précision et vitesse de calcul, et ainsi d’obtenir rapidement des
trajectoires approximatives. Ce compromis entre précision et vitesse de calcul peut être choisi
pour chaque particule indépendamment, afin que les utilisateurs puissent concentrer ARPS
sur des régions spécifiques du système simulé (par exemple un polymère dans du solvant).
Un autre avantage important est que, lors de l’exécution d’ARPS dans l’ensemble canonique
(NVT), les propriétés statiques d’équilibre correctes peuvent être récupérées. Nous proposons
une approche générale fondée sur une modification de la matrice d’inertie inverse dans le
hamiltonien, ainsi qu’un choix particulier de cette matrice pour effectuer des simulations en
coordonnées cartésiennes, où des degrés de liberté en position des particules sont activés et
désactivés de manière indépendante. Pour effectuer des simulations efficaces, nous proposons
des algorithmes incrémentaux pour la mise à jour des forces. Nous illustrons ARPS sur
plusieurs expériences numériques, notamment (a) un exemple de cascade de collisions qui
montre comment ARPS permet de choisir finement le compromis entre précision et vitesse de
simulation, et (b) une étude de polymère solvaté qui montre comment il est possible d’obtenir
rapidement des propriétés statiques d’équilibre avec ARPS. Ces résultats ont été publiés dans
Physical Review Letters [130] et un brevet a été déposé.

Une façon naturelle de procéder était, alors, de développer une approche hiérarchique
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pour ARPS. Dans le dernier Chapitre de cette thèse, nous présentons une telle approche.
Précisément, nous introduisons un autre choix de la matrice d’inertie inverse et les simulations
correspondantes, approche appelée “Simulations hiérarchiques de particules restreintes de
façon adaptative” (ARPS hiérarchiques). Dans ce cas, nous activons et désactivons des degrés
de liberté relatifs du système (c’est à dire, nous groupons les particules dans les corps rigides),
et non pas simplement les degrés de liberté des particules individuelles. Un brevet est en train
d’être rédigé sur ce sujet.

Pour résumer, dans cette thèse nous proposons plusieurs nouveaux algorithmes généraux
qui accélèrent les simulations moléculaires ainsi qu’une comparaison des méthodes existantes
pour trouver la plus adaptée à des simulations spécifiques. Nous fournissons des méthodes
qui sont conçues exprès pour certains types de simulations, ainsi qu’une approche générale
pour effectuer des simulations de particules.

Cette thèse est organisée de la façon suivante. Tout d’abord, dans le Chapitre 2, nous
présentons l’étude comparative des méthodes de recherche des voisins pour les grandes molécules
rigides. Puis, dans le Chapitre 3, nous présentons un nouvel algorithme visant à construire
une représentation hiérarchique d’un graphe moléculaire général. Plus tard, dans le Chapitre
4, nous décrivons une approche totalement nouvelle pour accélérer les simulations moléculaires
(et, plus généralement, des particules) en activant et désactivant des degrés de liberté en po-
sition du système lors une simulation (ARPS). Puis, dans le Chapitre 5 nous proposons une
approche hiérarchique de cette nouvelle méthode (ARPS hiérarchiques). Enfin, au Chapitre
6 nous décrivons les conclusions et des perspectives sur les travaux futurs.



Chapter 1

Introduction

Molecular simulations play an increasingly important role in investigating matter at the
nanoscale. They allow to understand the nature of many chemical and biological processes
in various materials [3, 4] and in a living cell [5, 6], to observe new phenomena and discover
new characteristics of physical matter [7] and to predict the behavior of systems of interest
[8]. Molecular simulations may also help in testing and exploring new physical models, and
in explaining poorly understood phenomena. They can be used to model and design new
molecules with desired properties [9], to perform simulations under conditions and states that
are hard to create in a laboratory [10] while easily tuning the system’s parameters. Thus,
molecular simulations are nowadays widely used in many research fields, e.g. computational
chemistry, physics and biology, material science. The obtained results can have direct appli-
cations to such important technologies as drug design [11, 12, 13, 14], nanotechnology [15],
electronics [16], optics, etc.

Unfortunately, many important problems in chemistry, biology and physics, e.g. protein
folding [17, 18], molecular docking [5, 131, 132], molecular solvation [19], diffusion across
bio-membranes [20], simulating chemical reactions [19], etc. still remain challenging. This
dissertation describes several new algorithms aimed at accelerating molecular simulations.

A molecular simulation consists in creating a computer representation (model) for the
molecular system and, then, generating a number of realistic configurations of this system.
From these configurations, different types of information can be extracted: thermodynamical
properties, dynamical properties, structural particularities, etc.

Let us first discuss possible representations of molecular systems.

1.1 Representing a molecular system

There exist several ways to represent a molecular system. Quantum mechanics, for example,
considers this system as a collection of atoms and subatomic particles, and describes their
properties by a wavefunction. On a larger scale, atoms, groups of atoms, or molecules may
be represented as discrete objects interacting through some (empirical) potential function.

15
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Finally, a system might be modeled as a continuous mass: fluid or solid.
In this dissertation, we focus our attention on the discrete representation of molecular

systems subject to classical mechanics, namely particles, rigid bodies and articulated bodies,
and consider their dynamics.

1.1.1 Particle dynamics

A molecular system in 3D might be considered as a collection of N point-mass particles (e.g.
atoms). One way to describe the behavior of such system is through a Hamiltonian function
H(q,p), where q and p are 3N -vectors of particles positions and momenta respectively. A
Hamiltonian is usually expressed as a sum of kinetic and potential energies of the system:
H = K + V . The precise form of these energies, however, is chosen according to the system
under study. A widely-used form of the Hamiltonian is:

H(q,p) =
1
2pTM−1p + V (q),

where M is a 3N × 3N diagonal mass matrix (which might depend on positions q), and
V (q) is an interaction potential.

The equations of motion can be derived from this Hamiltonian:

ṗ = −
∂H(q,p)

∂q = −
∂V (q)
∂q ,

q̇ =
∂H(q,p)

∂p = M−1p.

1.1.2 Rigid-body/Articulated-body dynamics

Rigid bodies (in contrast with particles) occupy some volume in space and have geometrical
properties as, e.g. a center of mass and moments of inertia. They are considered to be
not deformable. While particles perform only translational motion in the directions of the
coordinate axes, 3D rigid bodies have 6 degrees of freedom (translation and rotation in the
directions of axes).

To write the equation of motion for a rigid body, it is convenient to use spatial notations
[21]. These notations describe rigid-body velocity, acceleration, inertia etc., using 6D vectors
and tensors. The equation of motion of a rigid body can then be written as follows:

f =
d

dt
(Iv) = Ia + v× Iv,

where f is the spatial force acting on the rigid body, I is the spatial inertia of the rigid
body, v, Iv, and a are its spatial velocity, momentum, and acceleration respectively, and “×”
stands for a spatial cross-product. Hence, the acceleration of a rigid body may be written:
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a = I−1f − I−1(v× Iv) = Φf + b,

where Φ is the spatial inverse inertia of the rigid body, and b is its bias acceleration (i.e.
the acceleration it has when no force is applied to it).

Articulated bodies, also widely-used in robotics and computer graphics, are rigid bodies
with constraints. It has been shown [21, 22] that the dynamics of an articulated body can
be described by the same equation as for rigid bodies, although Φ and b have more complex
expressions.

Different approaches to simulate molecular systems exist. We describe them in the next
section.

1.2 Simulating molecular systems

When performing a molecular simulation, we are not interested in one particular trajectory
of the system in phase space, but in the system’s average properties (e.g. temperature, heat
capacity, etc.). There are several reasons for this. First, average values obtained from the
simulation are easy to compare with experimental results, and this is not true for, e.g. exact
values of positions or momenta of the particles. Second, if we simulate the evolution of
the molecular system in time, even a small difference in initial conditions will result in an
exponential difference in trajectories over time [23, 24].

Average properties of a molecular system are normally studied in a set of system’s con-
figurations (or states) that correspond to several criteria. The set of all possible states corre-
sponding to these criteria is called a statistical ensemble. The most frequently-used ensembles
are:

• the microcanonical ensemble that describes the behavior of a thermally isolated
system (NVE ensemble, number of particles N , volume V and energy E are fixed);

• the canonical ensemble that has a well-defined temperature T (NVT ensemble, N ,
V and T are constant);

• the isobaric-isothermal ensemble (NPT, constant temperature and constant pres-
sure ensemble);

• the grand canonical ensemble (µVT, where µ stands for chemical potential)1.

Two standard techniques to perform molecular simulations are Molecular Dynamics (MD)
and the Monte Carlo (MC) method [23]. These are two very different approaches. Molecular
dynamics consists in integrating the equations of motion of the system for some period of

1The Gibbs “ensemble” technique [25] is also commonly used for obtaining the phase behavior of fluids and
mixtures.
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time, and averaging system’s properties over time. The Monte Carlo method may use a
number of different strategies to generate system configurations, over which the properties
are averaged. The “ergodic hypothesis” states that, for computing statistics in a many-body
system, averaging over a sufficiently long time (MD) is equivalent to the ensemble averaging
(MC). However, this statement is not always true in practice. Thus, according to the problem,
the most suitable technique should be chosen.

Both MD and MC simulations alternate one or several iterations of two major steps: (i)
compute inter-particle forces and energies for the current system configuration, and (ii) based
on this information, generate the next configuration. We now discuss these two steps in more
details.

1.2.1 Potential energy and forces

To perform a simulation, a model should be chosen to represent interactions within the system.
Precisely, a potential energy function (or a force field) should be specified. A large variety of
force fields exist [26], obtained from ab initio calculations and different types of experimental
data. A basic form of a classical force field contains bonded terms, related to the connectivity
of chemical structures in the system (e.g. bonds or bond angles), and non-bonded terms,
specifying short-range (e.g. van der Waals) and long-range (e.g. electrostatics) interactions.

Both bonded and non-bonded terms are often considered to only depend on a few relative
degrees of freedom, and in the simplest case are reduced to pairwise interactions. For van der
Waals interactions, the potential is often considered to be rapidly decaying, so that particles
are assumed not to interact if the distance between them exceeds some pre-defined distance
(also called cutoff distance).

Interaction forces can be obtained by computing the gradient of the potential function V :

F = −∇V.

As each particle in the system usually interacts with several particles, force computations
typically represent a significant part of all calculations performed during a simulation.

1.2.2 Generating configurations

Different strategies are used by molecular dynamics and Monte Carlo methods to generate
system configurations.

1.2.2.1 Molecular dynamics

In a molecular dynamics simulation, differential equations of motion should be numerically
integrated in time to obtain the state of the system at the next time step. In general, the next
state yn+1 of a system is a function of its current state yn and the time step h: yn+1 = F (yn, h).
For example, if we discretize the differential equation ẏ = f(y) by the finite difference method
ẏ = (yn+1 − yn)/h, then the integration scheme may be yn+1 = yn + f(yn)h.
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1.2.2.2 Monte Carlo

Monte Carlo simulations may use various methods to generate a trial system’s configuration
(e.g. by randomly moving one or more particles), which is accepted or rejected with a proba-
bility that depends on this trial configuration and the current system’s state [27, 28, 29, 25].
Random numbers generation plays an important role in Monte Carlo simulations, and numer-
ous methods exist to produce pseudo-random numbers [133, 134, 135].

1.3 Efficient simulations

Molecular systems of interest in physics, chemistry and biology often consist of a large number
of atoms. For example, a ribosome (an important part of the cell that produces protein chains)
consists of around 100 000 atoms, and a virus capsid can contain up to several millions of
atoms. Simulating such a system for a long time (necessary to observe certain phenomena),
or collecting complex statistics on it, becomes computationally costly.

In this section, we discuss several approaches (both theoretical and numerical) that have
been developed to perform efficient molecular simulations, i.e. simulations that show the
best performance for a given problem. To run an efficient simulation, the representation of
the system (resolution, interaction model, coordinate system, etc.) as well as the simulation
method and its implementation should be carefully chosen.

1.3.1 Choosing an appropriate model

The choice of the model for the system affects both the performance of the simulation and
the set of properties that can be retrieved from it.

Let us discuss some possible representations of molecular systems and their area of appli-
cation.

1.3.1.1 All-atom representation

This representation takes into account every atom in a molecular system.
In this case, simulations are often carried out in Cartesian space: the coordinates of all

atoms are propagated in time, following Newton’s equation. Cartesian coordinates are easy to
define and are natural for long-range non-bonded interactions. However, bonded interactions
should be described as constraints or energy terms [30, 31].

There exists a large variety of empirical force fields for this representation. These force
fields differ, first, in the functional form of the bonded and non-bonded terms. For example,
in some force fields, covalent bonds are modeled with harmonic oscillators and may not be
broken during simulation, but there also exist some reactive force fields [32, 33] that allow for
bond breaking. Force fields also use different sets of parameters for each atom (mass, charge,
van der Waals radius, etc.), as well as the equilibrium values for, e.g. bond lengths and angles.
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As a result, there exist general force fields including all types of atoms [34], and specific force
fields, designed for a few atom types only [35, 33].

There also exist ab-inito potential-energy expressions based on quantum mechanics prin-
ciples [136]. However, these expressions are expensive to evaluate and are limited to small
systems. To combine advantages of ab-initio and empirical potentials, approaches mixing
them have been developed (for example, the QM/MM technique [36]).

1.3.1.2 United-atom representation

In this representation, in some atom groups, hydrogen atoms are united with other atoms
into new interaction sites. This reduces the number of particles in the system and makes it
possible to simulate larger systems.

For this representation, several force-fields have been proposed [37, 38], including trans-
ferable force fields (e.g. TraPPE [39]): their interaction parameters for a given site stay
the same for different molecules, and the force field is transferable to different state points
(temperature, pressure, etc.).

1.3.1.3 Atomistic representation, reduced number of degrees of freedom

Another way to reduce the number of degrees of freedom in the system is to fix some of them
(e.g., bond lengths) to specific values.

For that, simulations in internal coordinates [40, 41, 42, 43, 44, 45, 46, 47, 137] are natural:
in these simulations, bond lengths, bond angles and torsion angles directly represent the
degrees of freedom and may be easily fixed to some values2. The number of degrees of
freedom in the system is, therefore, significantly decreased (precisely, simulations in internal
coordinates with fixed bond lengths and bond angles can divide the number of free variables by
six, and with additionally imposed planar covalent geometry – by ten [48]), larger simulation
time steps are allowed [49] (as high-frequency vibrations for the bonds are no more considered)
and faster conformational sampling is possible [46, 137]. Molecular mechanics in internal
coordinates has been shown to be a useful tool in several applications, including molecular
modeling, molecular docking [44], NMR [43], and is employed by the recursive divide-and-
conquer algorithms [21, 22].

However, the direct application of standard force fields to simulations with constraints
(namely, simulations in internal coordinates with fixed bonds and angles) is questionable and
a “projection” of such force field might be needed [48]. This “projection” is a highly time-
consuming and tedious task to perform, and all interaction parameters are then transferred
only for a fixed temperature value.

2As usually bond vibrations are of high frequency but low amplitude, they can be easily modeled as fixed
to their equilibrium values.
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1.3.1.4 Coarse-graining and DPD

To significantly reduce the number of particles in the system, “pseudo-atoms” may be used to
represent groups of atoms (e.g. water molecules), resulting in coarse-grained representations
[50, 51, 52].

In this case, however, new interaction models (potentials that correctly sample phase
space) have to be developed, and this is a complicated and time-consuming task [53, 54]. Then,
it might be difficult to port a specific coarse-grained force field from one simulation package to
another. Moreover, coarse-grained force fields are usually obtained from all-atom force fields
by integrating out certain degrees of freedom at a fixed temperature, and, therefore, may
only be used for simulations at this particular temperature. However, recently, the UNRES
coarse-grained force field [55] was introduced. It has temperature-dependent terms in the
potential function, and makes it possible to compute thermodynamic properties at several
temperatures.

For fluid dynamics, dissipative particle dynamics (DPD) [56, 57] has been developed. In
this approach, particles represent molecules or fluid regions, and an artificially-soft repulsive
inter-particle potential is introduced.

1.3.1.5 Mixing representations

Recently, methods relying on multiresolution representations have been proposed to couple
fine- (all-atom) and coarse-grained levels of system’s description [58, 59, 60, 61, 62, 63].

In these methods, at the atomistic scale, calculations are accurate but slow. Usually,
a sub-system of high interest is represented at this scale. On the other hand, in the coarse-
grained part of the simulation, the accuracy is low, but the methods perform faster. The most
interesting techniques are described in Refs. [60, 61, 62, 63]. These methods are based on in-
terpolating forces, potentials or Lagrangians between the two resolutions, through a transition
region. However, combining different levels of representation is a difficult problem. In par-
ticular, the so-called reverse-mapping problem arises when the coarse-grained representation
should be mapped back to its fine-grained level. Therefore, another interesting approach is
the multigraining method [64]: an algorithm for simultaneous fine-grained and coarse-grained
simulation of molecular systems.

All the methods above are classical-mechanics methods.
However, classical mechanics of particles or rigid bodies may be also combined with other

resolutions. For example, there exist Finite Element [65]/Molecular Dynamics/Quantum
Mechanics methods [66, 67, 68], a hybrid Molecular dynamics/Lattice Boltzmann method
[69], fluctuating hydrodynamics [70] combined with molecular dynamics in Ref. [71], etc.
Continuum models as, e.g. implicit solvent models [72] or implicit membranes [73] may be
coupled with finer representations.

Once the representation of a molecular system is chosen, a suitable simulation method
should be determined.
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1.3.2 Computing energies and forces

As mentioned before, computing forces represents a significant part of the overall simulation
time. Performing efficient force computations is, therefore, very important.

1.3.2.1 Approximating forces

The computational complexity of the force update may be improved by using approximations
of the potential function, and, therefore, of the particle forces. For example, the Fast Multipole
Method (FMM) [74] reduces the cost of computing long-range interactions from O(N2) to
O(N) for a system of N particles. Another widely-used approach is the Particle-Mesh Ewald
method [75] that reduces the same cost from O(N2) to O(N logN)3.

1.3.2.2 Partial update

Sometimes, not all forces in the system need to be updated. For example, the force update
time may be improved for systems with symmetries [76], or for systems with separated long-
range and short-range interactions [77], where long-range forces may be updated not at every
step, but every n steps.

Incremental algorithms may also accelerate updating forces. These algorithms use com-
putations from the previous system configuration and information about the changes in this
system to update forces instead of recomputing them from scratch.

Recently, adaptive algorithms have been introduced [78, 79, 41, 80]. They are mainly used
for adaptive simulation of articulated-body quasi-statics. These algorithms make it possible to
arbitrarily choose the number of active degrees of freedom at each time step (equivalently, the
precision of the simulation), i.e. perform a partial update of the system’s state at each time
step. The possibility of finely trading between precision and computational cost may result
in significant speedups when a lower number of degrees of freedom is sufficient to describe the
motion.

1.3.3 Generating configurations

An appropriate simulation method should be chosen depending on the application.
Several authors compared the efficiency of molecular dynamics and Monte Carlo methods

for specific applications: protein simulations (MD was found to be more efficient in Ref. [81]),
liquid simulations (MC performed faster in Ref. [82]), all-atom folding simulations (Monte
Carlo was faster in Ref. [83]), etc.

Nowadays, however, molecular dynamics and Monte Carlo methods are often combined
to perform efficient simulations: sometimes, dynamic steps are used in Monte Carlo simula-
tions, or smart phase-space sampling is performed using one or several molecular dynamics
simulations [84, 85, 86].

3Long-range interaction computations may additionally be accelerated by not recalculating them at all time
steps but estimating them on the basis of linear prediction of time series [138].
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In the following, we will continue associating molecular dynamics with integration and the
Monte Carlo method with smart sampling, keeping in mind that for an efficient simulation
we might need both.

1.3.3.1 Molecular dynamics and efficient integration

As explained above, new configurations in a molecular dynamics simulation are generated
while integrating the equations of motion in time.

Many possible integration schemes have been proposed [87]:

• Implicit and explicit schemes can be distinguished: to determine the state of a system
at the next step, explicit integrators only use its current state, while implicit methods
solve an equation involving both the current and the next states. Explicit integrators
are simpler, but for some problems implicit methods are preferable.

• The order of the integrator plays an important role. The higher the order of an in-
tegrator, the more precise the solution to the problem. However, higher-order time
derivatives of particle coordinates should be stored.

• There exist symplectic integrators preserving the geometric structure of the Hamiltonian
flow [88]. These integrators keep the fluctuations of energy bounded and allow for
long-term energy conservation for simulations in the NVE ensemble (short-term energy
conservation is unnecessary and sometimes results in a long-term energy drift).

• Some integrator schemes are time-reversible (as Newton’s equations of motion). A gen-
eral way to construct a reversible integrator uses the Trotter factorization of the Liou-
ville propagator [77]. Numerical experiments show that symmetric (reversible) methods
share similar properties with symplectic methods for certain systems [87].

• There exist single-step and multi-step methods. In a single-step method, the state of a
system at the next step only depends on the previous step’s state, while in a multi-step
method the next state depends on the states at several previous steps.

The choice of the integration step has a crucial importance for the simulation method. In
practice, the time step should be short compared to the vibration period of the particle.
Usually, it is chosen to be about 10 times smaller than the shortest vibration period in the
simulation. On the other hand, for the efficiency of the method, the time step should be
chosen as large as possible.

There exist methods that increase the time step of the simulation [89, 90, 91, 92, 93, 94],
allowing for faster simulations and larger time scales. This can be achieved, for example, by
separating fast and slow degrees of freedom in the system [89] (in the general case [77]), by
changing the mass tensor [90, 91, 94], by using an adaptive time step [92], etc. The internal
coordinate method (ICMD) [139] is sometimes used in DNA modeling studies to use larger
time steps.
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The simulation time step may also be increased by constraining bonds in the system to
remove high frequency modes. This idea is used in the SHAKE [30] and the RATTLE [31]
methods (and their numerous variants), the penalty function method [95], and the methods
modifying the potential [96].

1.3.3.2 Monte Carlo and efficient sampling

A large variety of techniques aimed at accelerating sampling has been developed [97, 85, 98].
For example, several modifications of the traditional Monte Carlo method exist: Gibbs

ensemble Monte Carlo [99], configurational bias Monte Carlo [29] and others [100, 101, 102],
as well as Monte Carlo methods for quantum computations [140]. For rare events, kinetic
Monte Carlo may also be used [103]. Some algorithms such as hybrid Monte Carlo [84, 104]
try to combine the advantages of MD and MC.

Some sampling methods use molecular dynamics simulations. For example, in the replica
exchange approach [85] (the generalized-ensemble algorithm [141]) several non-interacting
copies of the original system are simulated with different temperatures which are regularly
swapped with some probability dependent on the energies of these copies. Statistical averages
in this case are obtained from the system copies with the desired temperature. This method
is widely used in protein folding.

In the LES method [98] a small subsystem of interest is cloned, resulting in several non-
interacting copies, and the rest of the system feels an average potential from these copies.
Phase space is therefore better sampled than in traditional MD.

Accelerated molecular dynamics [105, 97] allows to increase the time scale of simulations
of rare events by modifying the potential (adding a term to it).

Steered molecular dynamics (SMD) [106] is a method that allows to observe biological
processes at time scales accessible by molecular simulations. The general idea of this method
is to apply external forces on one or more atoms to study the response of the system under
various conditions. For example, a ligand-protein interaction may be studied by pulling the
ligand out of the binding site.

The computations of a specific class of thermodynamical properties (those that cannot be
obtained by simple averaging of some function of coordinates and momenta over all particles),
e.g. the Helmholtz free energy and, more usefully, their differences between various states,
have been extensively studied [107]. In particular, solvation free energy [19, 108, 109] has been
of a high interest because the solvent often represents an indispensable part of a molecular
system.

1.3.4 Hardware

We now discuss accelerating molecular simulations on a hardware.
If a problem may be easily subdivided into several smaller problems that can be solved

simultaneously, parallel computing is a natural accelerating technique: calculations are split
between several processing units and then gathered to provide the final result. One way to
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perform molecular simulations in parallel is to separate computations inside a single simula-
tion. This strategy may be applied to the methods as divide-and-conquer algorithms [21] or
domain decomposition approach [110, 111]. Another option is to perform multiple simulations
in parallel as for, e.g, replica exchange method [85].

Modern hardware provides many possibilities for parallel computing. For example, multi-
core Central Processing Units (CPUs) are now common even for desktop computers. Graph-
ics Processing Units (GPUs) as well can accelerate N-body simulations [112, 113] or Monte
Carlo simulations [114]. Heavy computations may be carried out on clusters or supercom-
puters [115]. There even exist supercomputers specially designed for molecular simulations
[116, 117]. Distributed systems, that consist of a large number of autonomous computers
interacting through a network, may help to solve important problems, such as protein folding
[118].

1.3.5 Software

Many of the methods discussed above combined with other optimization techniques are in-
tegrated in a variety of sophisticated force fields and simulation packages that have been
produced for both classical and quantum simulation, including for example CHARMM [119],
AMBER [120], ABINIT [121], Desmond [122], NAMD [123], GROMOS [124] and GROMACS
[125], LAMMPS, SIESTA, VASP, TINKER, YASARA, etc.

Some of these tools are open source, while others are available commercially, sometimes
via integrating applications: Discovery Studio, Materials Studio, MedeA, MOE, Ascalaph
Designer, BOSS, Spartan, Maestro, NanoEngineer-1, etc. Several tools are mostly concerned
with visualization, but may sometimes be connected to simulation packages: VMD [2], PyMol
[1], Zodiac, Avogadro, etc. The nanoHUB network [126] also includes a rich set of tools related
to computational nanoscience.

To summarize, we illustrate molecular simulations on different time- and length-scales in
Fig. 1.3.1, taken from the Lecture Notes to MolSim 2012.

1.4 Contributions

The main goal of this thesis was to contribute to accelerating molecular simulations. Precisely,
in this work we considered algorithms that reduce the number of degrees of freedom in the
system, while staying at particle resolution to compute the potential energy and forces. In
these algorithms, some blocks of atoms are moving together as rigid bodies, which results in a
smaller number of forces to be updated at each time step, since forces inside rigid bodies are
constant and do not have to be updated. Since force computations represent an important
part of the molecular simulation calculations, this approach may result in significant speedups.

The force evaluation process typically consists in two parts (we consider the potential
to be pairwise for simplicity). First, neighbor search is performed: a neighbor list, i.e. a

http://molsim.chem.uva.nl/molsim2012/index.html
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Figure 1.3.1: Molecular simulations on different time-length scales. Picture taken from the
Lecture Notes to MolSim 2012.

list of all pairs of atoms that are closer than the predefined cutoff distance and are, thus,
considered interacting, is computed. Second, the forces corresponding to the pairs of atoms
in the neighbor list are calculated. It turns out that if large blocks of atoms are moving
together, the neighbor search step may be accelerated. In the first part of this work, we
present a study that compares different methods to perform neighbor search between large
rigid groups of atoms. More precisely, we compare the traditional grid-based algorithm to
a series of hierarchy-based algorithms that use bounding volumes to rapidly eliminate large
groups of irrelevant pairs of atoms during the neighbor search. The latter algorithms have
traditionally been used in computational geometry, with applications in computer graphics,
robotics, virtual reality, etc. We compare the performance of these algorithms when varying
several parameters: the size of the molecules, the average distance between them, the cutoff
distance, as well as the type of bounding volume used in the culling hierarchy (AABB, OBB,
wrapped or layered spheres). We demonstrate that for relatively large systems (>100 000
atoms) the algorithm based on the hierarchy of wrapped spheres shows the best results, and
the traditional grid-based algorithm gives the worst timings. For small systems, however, the
grid-based algorithm and the one based on the wrapped sphere hierarchy are beneficial. These
results have been published in the Journal of Computational Chemistry [127].

Having noticed that the hierarchical approaches are often beneficial for simulations where
large blocks of atoms might be considered rigid, we found out that no general method of
constructing of such a hierarchy was proposed. That is why, in the second part of this thesis,

http://molsim.chem.uva.nl/molsim2012/index.html
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we introduce such an algorithm. Precisely, we present a fast general algorithm for the complete
construction of a hierarchical representation of a molecular system. This three-step algorithm
treats the input molecular system as a graph in which vertices represent atoms or pseudo-
atoms, and edges represent covalent bonds. We demonstrate the performance of our algorithm
on a set of specifically tailored difficult cases, as well as on a large subset of molecular graphs
extracted from the Protein Data Bank [128]. Finally, we demonstrate an application of our
hierarchy construction algorithm to adaptive torsion-angle molecular mechanics. These results
have also been published in the Journal of Computational Chemistry [129].

The adaptive methods based on freezing some degrees of freedom as [78, 79, 41, 80] have
never been supplemented by an analysis of the properties of the obtained simulations (for
example the stability of such simulations). For applications to computer graphics, this was
not important, since simulations have to be visually plausible but not necessarily theoretically
rigorous. In molecular dynamics simulations, though, it is crucial to theoretically analyze
every new approach and check whether it produces simulations that sample correctly the
phase space.

That is why, in the third part of this thesis, we present a novel, mathematically-grounded
method based on Hamiltonian dynamics, that switches positional degrees of freedom on and
off, which reduces the number of forces to be updated at each time step, and may significantly
speed up simulations. This method is suitable for a more general class of simulations: particle
simulations, and we call it ARPS: Adaptively Restrained Particle Simulations. Our approach
has numerous advantages. For example, it is able to produce stable, energy-preserving sim-
ulations, and, when performing constant-energy simulations, it allows users to finely and
continuously trade between precision and computational cost, and rapidly obtain approxi-
mate trajectories. This trade-off between precision and cost may be chosen for each particle
independently, so that users may arbitrarily focus ARPS on specific regions of the simulated
system (e.g. a polymer in a solvent). Another important advantage is that, when performing
Adaptively Restrained Molecular Dynamics (ARMD) in the canonical (NVT) ensemble, cor-
rect static equilibrium properties can be computed. We propose a general approach based on
a modified inverse inertia matrix in the Hamiltonian, as well as a particular choice of this ma-
trix to perform simulations in Cartesian coordinates and freeze and release particle positions
independently. To perform efficient simulations, we propose incremental algorithms for the
force update. We illustrate ARPS on several numerical experiments, including (a) a collision
cascade example that demonstrates how ARPS make it possible to smoothly trade between
precision and speed, and (b) a polymer-in-solvent study that shows how one may efficiently
compute correct static equilibrium properties with ARPS. These results have been published
in Physical Review Letters [130].

A natural way to proceed was, then, to combine a hierarchical approach to ARPS. In the
last Chapter of the thesis we present such an approach. Precisely, we introduce another choice
of the inverse inertia matrix and the resulting simulations, called hierarchical Adaptively
Restrained Particle Simulations (hierarchical ARPS). In this case, the restraining function for
each particle depends not only on the properties of this particle but also on the properties of
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some other particles. Therefore, in this case, we switch on and off relative positional degrees
of freedom in the system (i.e. group particles together into rigid bodies), and not simply the
positional degrees of freedom of individual particles.

To summarize, in this thesis we propose several new general algorithms that speed up
molecular simulations as well as compare existing methods to find the most suitable for
particular simulations. We provide methods that are specifically designed for certain types of
simulations as well as a general approach to perform particle simulations.

This dissertation is organized as follows. First, in Chapter 2 we present the comparative
study of the methods performing neighbor search for large rigid molecules. Then, in Chapter
3 we present a novel algorithm aimed at constructing binary-tree representations of general
molecular graphs. Later on, in Chapter 4 we describe a new approach to accelerating molecular
(and, more generally, particle) simulations by switching partilce positional degrees of freedom
on and off during the simulation (ARPS). Then, in Chapter 5 we combine a hierarchical
approach to this novel method, which results in hierarchical ARPS. Finally, in Chapter 6 we
provide conclusions and possible future work.



Chapter 2

Comparison of neighbor search
algorithms for large rigid molecules

Comme indiqué dans l’Introduction, les calculs de force représentent une part significative
des calculs de simulation moléculaire. La détermination rapide des atomes voisins est une
étape essentielle dans les calculs de force, et il existe de nombreux algorithmes pour calculer
efficacement les listes de voisins. Cependant, la plupart de ces algorithmes sont généraux et ne
sont pas spécifiquement conçus pour un type d’application donné. En conséquence, bien que
leur performance moyenne soit satisfaisante, ils pourraient être inappropriés dans certains
domaines d’application spécifiques. Dans ce Chapitre, nous étudions le cas de la détection des
interactions entre les grandes molécules rigides, avec des applications, par exemple, pour le
docking moléculaire des objets rigides, les simulations Monte Carlo de l’auto-assemblage ou
de la diffusion moléculaire, ou encore la dynamique moléculaire des objets rigides.

Plus précisément, nous comparons l’algorithme traditionnel utilisant une grille à une série
d’algorithmes fondés sur la hiérarchie des volumes englobants, afin d’éliminer rapidement les
grands groupes de paires d’atomes non pertinents lors de la recherche des voisins. Nous
comparons les performances de ces algorithmes en variant plusieurs paramètres: la taille
des molécules, la distance moyenne entre elles, la distance de coupure, ainsi que le type de
volume englobant utilisé dans ladite hiérarchie (AABB, OBB, 2 types de sphères). Nous
démontrons que pour des systèmes relativement grands (>100 000 atomes) l’algorithme fondé
sur la hiérarchie des sphères montre les meilleurs résultats, et que l’algorithme traditionnel,
utilisant la grille, donne les pires. Pour les petits systèmes, cependant, l’algorithme avec une
grille et celui de la hiérarchie de sphères sont les plus efficaces.

29
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As discussed in the general Introduction, force computations represent a significant part
of molecular simulation calculations. Fast determination of neighboring atoms is an essential
step in force computations, and there exists a variety of algorithms to efficiently compute
neighbor lists. However, most of these algorithms are general, and not specifically designed
for a given type of application. As a result, although their average performance is satisfactory,
they might be inappropriate in some specific application domains. In this Chapter, we study
the case of detecting neighbors between large rigid molecules, which has applications in e.g.
rigid body molecular docking, Monte Carlo simulations of molecular self-assembly or diffusion,
and rigid body molecular dynamics simulations.

More precisely, we compare the traditional grid-based algorithm to a series of hierarchy-
based algorithms that use bounding volumes to rapidly eliminate large groups of irrelevant
pairs of atoms during the neighbor search. We compare the performance of these algorithms
varying several parameters: the size of the molecules, the average distance between them, the
cutoff distance, as well as the type of bounding volume used in the culling hierarchy (AABB,
OBB, wrapped or layered spheres). We demonstrate that for relatively large systems (>100 000
atoms) the algorithm based on the hierarchy of wrapped spheres shows the best results and the
traditional grid-based algorithm gives the worst timings. For small systems, however, the
grid-based algorithm and the one based on hierarchies of wrapped spheres are beneficial.
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2.1 Introduction

As discussed in the previous Chapter, force computations represent a significant part of molec-
ular simulation calculations. However, when large blocks of atoms are moving together as rigid
bodies, the force update may be accelerated. In this Chapter, we present a comparative study
on the methods designed for the first part of the force update procedure: neighbor search.
We show how these computations may be accelerated in the case of two large rigid molecules.

The first step of the force updating process is to determine all interacting atoms in the
system. Then, the corresponding interaction forces should be evaluated. Often, in potential
functions, only pairwise interactions are taken into account and a cutoff distance is introduced,
i.e. a maximum distance below which two atoms are considered to be interacting. Thus, to
determine all interacting atoms, one needs to compute a neighbor list, that is to find all pairs
of atoms that are closer than the predefined cutoff distance. This step may become the main
cost for some systems. This is the case e.g. for systems consisting of two large rigid molecules
with a small contact area, or when a small cutoff distance is used. For such systems, the time
spent on evaluating forces can be significantly smaller than the neighbor list construction
time.

Rapid construction of neighbor lists is a general problem that has been addressed in several
domains, including robotics, computer graphics, computational geometry, etc. [23, 142]. In
particular, it is a crucial step of the scoring phase of the computer-aided protein-protein
docking simulations [5, 131, 132]. During this phase, a large number of generated docked
conformations with favorable surface complementarity are ranked using a scoring function
that approximates the free energy.

Several classes of neighbor search algorithms exist. Space-partitioning algorithms use a
grid to detect collisions between two rigid bodies [143], deformable objects [144] or to simulate
particle-based fluids [145, 146]. Algorithms relying on polytrees [147, 74, 148, 149] or R-
trees [150] are also partially based on space partitioning. Object-partitioning algorithms use
hierarchies of bounding volumes (BV-hierarchies) [151] and binary space partitioning trees
(BSP-trees) [152]. Other algorithms have been specifically tailored for event-driven molecular
dynamics simulations [153, 154], collision detection and self-collision computations for highly
articulated macro-molecular systems [155, 156, 157, 158], and simulations of soft objects [159].

The performance of these algorithms may vary: some of them are slower to initialize, some
need to update their underlying data structures during the simulation, etc. As a result, some
algorithms may appear more suitable than others, depending on the application1.

In molecular simulations, popular neighbor search algorithms are based on grids or Verlet
lists [23, 161, 162, 163, 164, 165, 166, 167, 168]. However, to compute a list of interacting atoms
in rigid body molecular docking [132, 169, 170], one can benefit from algorithms designed for
collision detection between geometrical primitives [171, 172], which rely on hierarchies of
bounding volumes.

1For example, van Gunsteren et al. [160] discuss the choice of the best algorithm for nonrectangular periodic
systems.
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In this Chapter, we compare preprocessing times and computational performances of five
neighbor list construction algorithms. The first one is the grid-based method, and the four
others use hierarchies of three popular types of bounding volumes: axis-aligned bounding
volumes [173] (AABB), oriented bounding boxes [151][172] (OBB) and spherical bounding
volumes [174][175] 2. We perform the comparison for small biological complexes as well as
systems containing as much as a few million atoms (e.g. two virus capsids), depending on
several parameters (cutoff distance, intermolecular distance, etc.).

The rest of the Chapter is organized as follows. First, we describe all five algorithms to
be compared. Then, we present experimental results for the biomolecular systems described
above. Finally, we provide some conclusions on the performed comparison and discuss possible
extensions.

2.2 Neighbor-search algorithms

In this section we describe the five algorithms we compare: the grid-based algorithm and
the four algorithms relying on hierarchies of different types of bounding volumes. These
algorithms aim at determining all pairs of atoms such that (a) one atom belongs to the first
molecule and the other atom belongs to the second molecule, and (b) the distance between
the two atoms is less than the cutoff value.

2.2.1 Grid-based algorithm

The idea behind the grid-based algorithm is a traditional cell-list approach [23].
As an input of this algorithm we consider two molecules that we call receptor and ligand

(a 2D example is shown in Fig. 2.2.1, top figure).
To initialize this method, we first find the smallest axis-aligned parallelepiped enclosing

one of the molecules (usually the bigger one: the receptor), and enlarge it by the cutoff
distance in all directions of the outward normals to its faces. Then, this parallelepiped is
divided into cubic cells with an edge size equal to the cutoff distance3. Finally, the receptor
atoms are distributed to the grid cells (Fig. 2.2.1 A, bottom).

To compute a neighbor list, each atom of the other molecule (ligand) is examined. First,
we check whether this ligand atom may be mapped to some cell of the constructed grid or
it lies too far from the receptor molecule. If the ligand atom belongs to some grid cell, it is
checked for proximity with the receptor atoms in the current cell and those in the grid-cells
adjacent to the current cell (Fig. 2.2.1 B, bottom). Since the cell-size is equal to the cutoff
distance, exploring this set of cells is sufficient to find all receptor atoms interacting with the
current ligand atom.

2This can be extended to the approach using discretely oriented polytopes defined by k vectors (k-DOPs)
[171].

3It is not always possible to divide the parallelepiped into cubic cells with the predefined edge size. To solve
this problem, one can either slightly enlarge the parallelepiped in the necessary directions, or consider some
boundary cells as non-cubic.
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Algorithm 2.1 Algorithm for computing a neighbor list for two rigid bodies with a certain
cutoff distance using a grid.
PARAMETERS: rigid body transform T (translation and rotation), cutoff distance.

for (all atoms ai in the ligand molecule)
if (the transformed atom T (ai) can be mapped to some grid cell C)

for (all test cells: cell C and its neighbors)
for (all atoms bj inside a test cell)

if (distance between bj and T (ai) is less than cutoff)
add this pair of atoms to neighbor list

Due to the enlargement of the grid by the cutoff distance (by one-cell layer) in all axes
directions, every ligand atom that is closer than the cutoff to any receptor atom will be
mapped to some grid cell and checked for proximity with receptor atoms. Thus, the neighbor
list constructed with this method will be complete4.

Algorithm 2.1 describes the grid method in pseudo-code. It might be interesting for some
applications (e.g. conformational space search for protein docking) to perform neighbor search
between the receptor molecule and several different rigid body transformations (translation
and rotation) of the ligand molecule. Therefore, the first input parameter for the algorithm
is a rigid body transform. The second parameter is a cutoff distance.

2.2.2 Hierarchy-based algorithms

The general algorithm described in this section relies on hierarchical representations of molec-
ular systems: each of the two molecules is associated to a binary tree. In both trees, each
leaf node refers to a non-empty set of atoms, such that each atom in the molecule belongs
to exactly one leaf node, while each internal node represents the system that is obtained by
joining together the non-intersecting subsystems referred to by its children. Finally, each node
in the tree is associated to a bounding volume, i.e. a geometrical primitive which encloses all
atoms corresponding to the node.

An example of a binary hierarchy corresponding to a simple molecule is shown in Fig.
2.2.2.

2.2.2.1 Construction of the binary hierarchy

A binary decomposition of a molecule can be constructed in either a top-down or a bottom-
up manner. Top-down algorithms start from the whole set of atoms and split the system

4Note that we have not tested the grid-based method with other cell sizes, because we believe it would
not significantly speed up the results. Indeed, considering a grid with a larger cell size will result in more
unnecessary proximity queries between atoms (“false positives”). A smaller cell size, on the other hand, will
require exploring not only cells that are adjacent to the current cell, but also some that are farther apart.
This will reduce the number of false positives, but will lead to a larger number of memory accesses to the grid
structure, which is also costly.
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A. Init, receptor B. Map ligand atom C. Result

Figure 2.2.1: Grid-based algorithm for neighbor list construction in 2D. Top figure: method
overview. The receptor molecule is green (left molecule), the ligand molecule is brown (right
molecule). Bottom figure: the three main steps of the grid-based neighbor search algorithm.
A. Method initialization: receptor atoms (green or light grey circles) are distributed to the
grid. B. Each atom of the ligand molecule (brown or dark grey circle) is individually mapped
to the grid. Receptor atoms interacting with this ligand atom may only be situated in the
cells adjacent to the cell of the ligand atom (these cells to be examined are enclosed into the
red square). Receptor atoms interacting with the ligand atom are situated within the cutoff
distance circle (red circle). Pairs of atoms to be included into the neighbor list are marked
with grey dashed lines. C. Result of the algorithm’s execution: all ligand atoms are mapped
to the grid. All possible pairs to be included into the neighbor list are marked with grey
dashed lines.
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A B C D

Figure 2.2.2: Hierarchical representation of a molecule. A. The whole molecule and the
bounding volume enclosing it correspond to the root node of the tree. B. The two halves of
the initial molecule and the two boxes enclosing these halves correspond to the child nodes
of the root node. C. Halves of the halves of the initial molecule and their enclosing boxes
correspond to internal nodes of the tree. For visual clarity bounding boxes are not tight.

recursively into two subsystems according to some rule [172, 176]. Bottom-up algorithms,
on the contrary, group subsystems into one tree node starting from the individual atoms or
groups of atoms considered as leaves [177, 178].

As will be seen from the algorithms description below, hierarchy-based algorithms benefit
from a balanced tree, where the child nodes of each internal node are well-separated in space.
This kind of trees is usually produced by top-down algorithms [172]. Although these algo-
rithms result in O(n logn) time-complexity for a system of n atoms [172] (and the bottom-up
approaches can be linear in running time5), they are still preferable, because in rigid body
simulations, most hierarchy-based neighbor search algorithms are initialized only once, but
are launched several times.

Hence, we choose the following procedure of the tree construction: we recursively split the
system into two subsystems with an approximately equal number of particles inside, until the
number of atoms in the system is not larger than a pre-determined, user-defined threshold m
(main loop). We compute bounding volumes for the tree nodes at the same time.

Let us describe the splitting procedure in more detail.
At each iteration of the main loop, we divide a system into two subsystems by projecting

atoms along a direction chosen from a predefined set of candidate vectors6. To choose this
direction, we perform the same procedure for each candidate vector from the set. First, we
sort atoms according to their coordinates along the vector. The first n/2 ordered atoms are
assigned to the first subsystem and all the rest to the second subsystem. Then, we compute

5The simplest procedure would be pairwise assembling into the tree regardless of nodes properties.
6In our implementation, in this set we consider x, y and z axes, three eigenvectors of the covariance matrix

for the system, and eight other vectors that are obtained as combinations of extreme values of the atom’s
coordinates along these first six vectors.
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the tightest bounding volume enclosing each subsystem as follows:
• For axis-aligned bounding volumes we use minimal and maximal values of the atoms
coordinates along x, y and z axes to obtain the vertices of the box.

• For oriented bounding volumes we use the covariance matrix of the subsystem [151]:
axes of a new bounding volume are the eigenvectors of the covariance matrix for atoms
coordinates7 .

• For spherical bounding volumes we use the minimal enclosing sphere algorithm described
in Ref. [180] (and references therein): a pivoting scheme resembling the simplex method
for linear programming.

Finally, the direction that we choose to split the system is the candidate vector which results
in the smallest sum of the volumes of the two subsystems bounding volumes. These bounding
volumes are assigned to the child nodes of the current node (they become a part of the
hierarchy of bounding volumes). The bounding volume of the root node is computed as a
tightest bounding volume enclosing the whole set of atoms.

Please note that in our implementation, we used not the real volumes of the BV’s as
geometrical objects, but some functions that we will call volumes later in this Chapter: for
AABB’s we considered as volumes their 3D diagonals, for spheres – their radii, and for OBB’s
– sums of the squares of the projection lengths of their sides to the coordinate axes. However,
any other characteristic of the box may be used including its real volume.

Note also that, as a result, the topology of the binary tree may be different for each
bounding volume type, since the splitting will depend on the bounding volume choice. This
helps to produce bounding-volume hierarchies with good properties (balance and separation)
for any type of bounding volume.

Using the procedure described above we can obtain three types of hierarchies of bounding
volumes: AABB hierarchies, OBB hierarchies and so-called wrapped sphere hierarchy (WS
hierarchies). Fig. 2.2.3 shows planar examples of two levels of AABB and OBB hierarchies.
To construct layered sphere (LS) hierarchies [181]), however, we use the same tree topology as
for WS hierarchies, but modify the spheres of internal nodes. Traversing the tree bottom-up,
we compute for each internal node the smallest sphere bounding the spheres corresponding
to its children (and not the atoms inside the spheres). Fig. 2.2.4 shows a planar example
illustrating the difference between these two types of sphere hierarchies8.

2.2.2.2 Neighbor search algorithm

The hierarchy-based algorithm is the same for all types of bounding volumes, and consists in
a simultaneous traversal of the bounding-volume hierarchies corresponding to the two rigid

7Though, the method based on the covariance matrix is the most used, there exist other ways to compute
an OBB for a system, e.g. the one described in Ref. [179].

8In Ref. [156] it is shown that, in the worst case, for a given set of n points, a bounding sphere in the
layered hierarchy is at most a factor of

√
log n larger than the corresponding one in the wrapped hierarchy,

and this bound is tight.
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Figure 2.2.3: Two levels of the binary BV-hierarchy in 2D: for AABB’s (left) and OBB’s
(right). BV’s of a higher level of the hierarchy are shown with solid lines, child BV’s of a
lower level are represented by dashed lines.

Layered sphere hierarchy

Wrapped sphere hierarchy

Figure 2.2.4: Two levels of the binary spherical BV-hierarchy in 2D: two child spheres are
bounded (layered hierarchy) or the tightest bounding circle for the whole system is computed
(wrapped hierarchy). BV’s of a higher level of the hierarchy are shown with solid lines, child
BV’s of a lower level are represented by dashed lines.



38 CHAPTER 2. NEIGHBOR-SEARCH ALGORITHMS

molecules in a top-down fashion. The simultaneous traversal rapidly determines the pairs
of interacting leaf bounding volumes. When two leaf bounding volumes are found to be
interacting, pairwise distance queries between the atoms that they contain determine the
pairs of atoms that are closer than the cutoff distance.

Let us now describe the hierarchy-based algorithm in more detail. This algorithm inter-
nally uses a stack of pairs of bounding volumes that is initialized with the pair of root bounding
volumes of the BV-hierarchies. While this stack is not empty, we pop a pair of BV’s out of
the stack and perform a proximity query on this pair, i.e. compute the distance between
the two bounding volumes. If this distance is larger than the cutoff value, then there can
be no pairs of interacting atoms in the corresponding sub-trees, and we continue to the next
iteration of the loop. If the bounding volumes are sufficiently close to each other (i.e. the
distance between them is smaller than the cutoff distance), we refine the search as follows. If
both BV’s in the pair are hierarchy leaves, we compute distances between all pairs of atoms
corresponding to them (performing no more than m2 comparisons). Pairs of atoms closer
than the cutoff distance are added to the neighbor list. If only one of the BV’s in the pair is
a leaf, we put to the stack two new pairs: the pair composed of the leaf BV and the left child
of the non-leaf BV, and the pair composed of the leaf BV and the right child of a non-leaf
BV. If both BV’s are not leaves, we compare their volumes. Then, we put to the stack two
pairs: the smaller BV (the one with a smaller volume) with the left and the right child of the
larger BV (the one with a larger volume).

Algorithm 2.2 describes this method in pseudo-code. As for a grid-based method, two
input parameters must be provided: a rigid body transform for a ligand molecule and a cutoff
distance.

An example of a workflow of this algorithm with a zero cutoff (for visual clarity) for a
hierarchy of OBB’s is shown in Fig. 2.2.5.

2.2.2.3 Proximity queries for bounding volumes

The proximity query for a pair of bounding volumes mentioned in the algorithm determines
whether the distance between them is less than the cutoff. It is specific for each type of
bounding volumes.

• For two axis-aligned boxes this query performs as follows: both boxes are enlarged by
a half of the cutoff distance, then, all intervals describing these boxes are checked for
intersection. To optimize the calculation we enlarge all the AABB’s in receptor and
ligand by a half of the cutoff already while constructing the hierarchy.

• For two oriented bounding volumes this query is a slightly modified overlap test based
on the separating axis theorem and described in Ref. [151]. In the original theorem we
check along fifteen vectors (a sufficient set of axis tests) whether the sum of projections
of the boxes half-sizes exceeds the projection of the vector-difference between centers of
the boxes. In our case the first sum is compared to the vector-difference projection norm
plus the cutoff distance. This modification is not equivalent to the obvious enlarging of
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Algorithm 2.2 Algorithm for computing a neighbor list for two rigid bodies within a certain
cutoff distance using a corresponding hierarchy of axis-aligned, oriented or spherical bounding
volumes.
PARAMETERS: rigid body transform T (translation and rotation), cutoff distance.

clear stack S of pairs of BV’s
push a pair to S: (root BV of the receptor; root BV of the ligand)

while (stack S is not empty)
pop a pair of BV’s from stack S: (A; B)
if (distance between A and T (B) is less than cutoff)

if (A and B are leaf nodes of BV-hierarchies)
for (all atoms ai in A and all atoms bj in B)

if (distance between ai and T (bj) is less than cutoff)
add this pair of atoms to neighbor list

if (A is a leaf node and B is not a leaf node)
push pairs (A; left child of B) and (A; right child of B) to stack S

if (A is a not a leaf node and B is a leaf node)
push pairs (left child of A; B) and (right child of A; B) to stack S

if (neither A nor B is a leaf node)
if (volume of A is greater than volume of B)

push pairs (left child of A; B) and (right child of A; B) to stack S
else

push pairs(A; left child of B) and (A; right child of B) to stack S
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Figure 2.2.5: Neighbor search for two rigid bodies using a hierarchy of oriented bounding
volumes (zero cutoff). Algorithm stops when bounding volumes corresponding to different
rigid bodies do not overlap (level 4 on the picture), otherwise it goes down the hierarchy.
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Figure 2.3.1: Ribonuclease Sa complex with barstar (PDB code 1AY7, chain A is green, chain
B is yellow) and 70s ribosome (PDB codes 3MS1, yellow, and 3MR8, green). Images obtained
with PyMol [1].

one of the boxes by a cutoff along each axis and applying the original separating axis
theorem. In the latter case we would have unnecessarily enlarged (by the square root of
the cutoff) the box in the directions of the vectors connecting the center of the box with
its vertices. That would result in unnecessary pairs of interacting boxes, and, therefore,
in an increased number of algorithm’s operations.

• Two spherical bounding volumes are closer than the cutoff distance if the distance
between their centers is less than a sum of their radii and the cutoff distance.

2.3 Results

In this section, we compare preprocessing times and computational performances of all al-
gorithms described above: the grid method and the four methods based on hierarchies of
bounding volumes. More precisely, we compare algorithms performances on two categories of
benchmarks.

The first category of benchmark systems is a pair of biological complexes: a ribonuclease
Sa complex with barstar (PDB code 1AY7, 751 and 737 atoms without water molecules,
respectively), and a 70s ribosome (PDB codes 3MR8 and 3MS1, 56 047 and 91 063 atoms
respectively). Both complexes are shown in Fig. 2.3.1.



42 CHAPTER 2. NEIGHBOR-SEARCH ALGORITHMS

Name PDB code,
first

molecule

PDB code,
second
molecule

Number of
atoms, first
molecule

Number of
atoms, second

molecule

Autopsf
tool
used

Ribonuclease Sa
complex with

barstar

1AY7,
chain A

1AY7,
chain B

751 737 no

70s ribosome 3MS1 3MR8 91 063 56 047 no
Bluetongue
virus capsids

2BTV 2BTV 3 588 900 3 588 900 yes

Apoferritins 1AEW 1AEW 39 672 39 672 yes

Table 2.1: Comparing neighbor search algorithms for large rigid molecules. Summary of the
information on the benchmark systems.

The second category consists in two replicas of the same molecule: (1) a large virus capsid
(bluetongue virus, asymmetric unit PDB code 2BTV, Fig. 2.3.2 top left, 3 588 900 atoms in
the complete capsid, Fig. 2.3.2 top right), and (2) an apoferritin molecule (asymmetric unit
PDB code 1AEW, 39 672 atoms in the complete molecule, Fig. 2.3.2 bottom). For these
molecules we added missing hydrogens with the Automatic PSF Generation Plugin for the
VMD software [2](using CHARMM19 force-filed).

We chose these molecular systems for benchmarks to compare the algorithms performances
on well-studied (both experimentally and computationally) biological complexes of different
size.

Information about the benchmark systems is summarized in Table 2.1.
For all systems described above we ran two types of tests: a cutoff test and a distance test

introduced further.
All algorithms were implemented in C++ and (unless otherwise specified) run on an Intel

Xeon X5450 3GHz processor with 16 GB of RAM, on a Windows Vista 64-bit operating
system.

2.3.1 Basic operation time

Before comparing the overall performance of the five algorithms, we present a comparison of
the times required to perform basic operations in hierarchy-based algorithms in our imple-
mentation. As the timings of interest are very small, they were averaged over 1 000 000 of
identical tests.

The results for a BV-proximity query (i.e. a query to determine whether the distance
between two bounding volumes is smaller than the cutoff distance) with translation and
rotation of one of the bounding volumes are shown in Table 2.2.

The cost of the basic operation for the grid method (insertion of the atom to the grid)
depends on the size of the grid cell (and, therefore, on the cutoff distance), and on the number
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Figure 2.3.2: Top: Bluetongue virus capsid asymmetric unit (PDB code 2BTV) and the com-
plete virus capsid. Bottom: apoferritin molecule (asymmetric unit code PDB code 1AEW).
Images obtained with PyMol [1] and VMD [2].

Type of the BV BV-proximity query (s)
Axis-aligned BV 1.275× 10−7

Oriented BV 1.610× 10−7

Spherical BV 2.643× 10−8

Table 2.2: Timings necessary for hierarchy-based algorithms to perform a basic operation:
compare a distance between two bounding volumes with a cutoff value.
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of atoms in each grid cell (and, therefore, on the density of the system).
Finally, in our implementation, the time to check whether the distance between two atoms

is smaller than the cutoff distance is about 1.8× 10−8 seconds.

2.3.2 Preprocessing time

We first compare preprocessing times for all described algorithms. As indicated above, ini-
tialization of the grid-based algorithm consists in creating the grid and distributing atoms of
the receptor to the cells of this grid, while initialization of hierarchy-based algorithms consists
in constructing two hierarchies of bounding volumes.

We perform this test for an apoferritin molecule. We present the results only for one
molecule for the following reason. The so-called n-th element algorithm from the C++ Stan-
dard Template Library [182] (used to order the atoms according to their positions along some
axis) results in a O(n logn) time complexity for the tree construction, where n is the number
of atoms in the system. On the other hand, the running time of a grid construction algorithm
for a fixed cutoff depends linearly on n. Hence, for bigger systems the difference between the
timings for grid method and tree-based algorithms can only increase. Also, here we construct
only one BV-hierarchy, which is the case for the benchmarks with two identical molecules.

We measured preprocessing times for the five algorithms. We varied values of the upper
bound m on the number of atoms in the leaf node of the bounding-volume hierarchy (from 1
to 49 with a step of 3) and the cutoff distance for the grid algorithm (from 4 to 12.5 Angstroms
(Å) with a step of 0.25 Å). Here and further on we use cutoff distances from the range of 4 to
14 Å. We choose these values for several reasons. First, the standard cutoff distance values
in molecular dynamics simulations of biomolecules are about 12 Å. Second, knowledge-based
scoring functions for molecular docking typically use cutoff distances between 6 and 12 Å
[183].

The dependence of the grid algorithm’s preprocessing time on the value of the cutoff
distance is shown in Fig. 2.3.3 (left). We also plot the number of occupied cells in the
grid constructed with the specified cutoff distance, as only these cells were created. The time
decreases when the cutoff distance increases, because we have to create less grid cells. Average
number of atoms in occupied grid cells varies from 3.75 to 77 and scales cubically in cutoff
distance (Fig. 2.3.3, right).

The construction time for hierarchy-based algorithms depends on leaf size parameter m
as shown in Fig. 2.3.4. Similarly, the time decreases when this parameter increases, since for
larger values of m we perform less splittings of the system, which results in a smaller tree
depth. Note that the latter dependency is not regular (there are “steps” on the plot) as we
build the tree in a top-down manner, and it is not always possible to split the system into
blocks of size m (thus, in each leaf node the number of atoms is smaller than or equal to
m). As a result, the average number of atoms in the tree leaves remains the same for a range
of cutoff distances. To illustrate this, we plotted the true average number of atoms in the
leaf bounding volumes on the same figure. It can be clearly seen that construction times are
directly related to the average number of atoms in leaf nodes.
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Overall, for all combinations of values of the cutoff and leaf size parameter m indicated
above, the preprocessing time for the grid method is always less than preprocessing times of
all hierarchy-based algorithms.

It should be emphasized, however, that bounding-volume hierarchies associated to rigid
molecules have to be computed only once, and may be re-used when the relative position
between the two rigid molecules is changed. Therefore, preprocessing time is important, but
not crucial, and we now compare the query time of all described neighbor-search algorithms
on two types of tests.

2.3.3 Cutoff test

For the first test type (cutoff test) we do not change the distance between the molecules in
the system of interest but vary the cutoff distance (and, therefore, the number of the pairs in
the neighbor list).

2.3.3.1 Choice of leaf size parameter m

The running-time complexity of the hierarchy-based neighbor search algorithm depends on
the leaf size parameter m. Therefore, before running cutoff tests as described above for
all benchmark systems, we perform a test to numerically determine optimal values of this
parameter for different types of bounding-volume hierarchies. A more detailed analysis on
the choice of m is presented in the Appendix to this Chapter. We run a cutoff test for the
two molecules comprising the 70s ribosome, where the cutoff value was varied from 4 to 12
Å with a step of 4 Å, without altering the position of either molecule. The values of the leaf
size parameter m were also varied from 1 to 46 with a step of 3.

Figure 2.3.5 (left), shows the dependency of AABB- and OBB-based algorithms on m.
For these methods, it appears that the smaller timings correspond to values of m between 8
and 12. Figure 2.3.5 (right), shows the dependency of LS- and WS-based algorithms on m.
In this case, optimal values of m appear to be between 4 and 7. As a result, further on we
use the following values for m: 8 for hierarchies of AABB’s and OBB’s, and 4 for hierarchies
of spheres.

2.3.3.2 Biological complexes

We performed the cutoff test for the Sa-barstar complex and the 70s ribosome. We preserved
experimentally resolved coordinates of the molecules, fixed the leaf size parameter m = 8
for AABB and OBB hierarchies and m = 4 for both sphere hierarchies, and varied the
cutoff distance from 4 to 13.5 Å with a step of 0.5 Å. Results are shown in Fig. 2.3.6 on
the left and right plots, respectively. Dependencies of the total times for all algorithms on
the number of the pairs in the neighbor list N are well-fitted by the following functions:
ciN

ai + bi (ai < 1, i = 1..5). There is a non-zero coefficient bi, suggesting that even for
zero pairs of atoms in contact, the time of the algorithm execution will be positive. This
happens because we first need to reach a certain level down the BV-hierarchy to determine
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Figure 2.3.5: Cutoff test. Time dependence of AABB- and OBB-based algorithms (left) and
the two algorithms based on spheres (right) on the leaf size parameter m. Cutoff distances
expressed in Angstroms.

that there are no more bounding volumes within the cutoff distance and stop the algorithm.
This stopping level and, therefore, the coefficient bi will depend on the conformations of the
molecules, the distance between them and the cutoff value. Coefficient ci represents the costs
of elementary operations. Hence, these two parameters are different for different types of
bounding volumes. A more detailed complexity analysis for the neighbor list construction
algorithm using a AABB-hierarchy can be found in Ref. [76].

For the grid algorithm, the size of each grid cell and, therefore, the average number of atoms
in a cell, depends on the cutoff distance. Of course, the number of occupied cells in the grid
depends also on the shape of the molecule. Thus, the number of comparison operations, and
hence the total time, depends on the shape of the molecule. As can be seen on the plots (Fig.
2.3.6), for a relatively small complex, the grid algorithm performs better, but the timings
for the WS-based algorithm are very similar. For a larger molecule such as the ribosome,
however, the WS-based algorithm becomes beneficial. In this case, indeed, the ratio of the
contact area to the size of the molecules is smaller. Thus, pairs of large distant subsystems
are rapidly eliminated by the hierarchy-based algorithm, and the detailed neighbor search is
concentrated in a smaller area. For both complexes, among all hierarchy-based algorithms,
the one relying on the hierarchy of wrapped spheres has the best timings.

In some cases, the neighbor list construction time can be significantly more important
than the force evaluation time. For large rigid systems, the number of force evaluations is
roughly proportional to the contact area between the two molecules, whereas the complexity
of neighbor search using a grid is linear in the number of atoms. To experimentally compare
computational costs, we used a simple potential energy function: the Lennard-Jones potential,
for which a single force evaluation in our implementation takes about 8.3× 10−8 seconds.

For the two molecules comprising the 70s ribosome, there are 1 174 pairs of atoms in contact
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Figure 2.3.6: Cutoff test. Computational performances of all algorithms as functions of the
number of pairs in contact for Sa-barstar complex (left) and 70s ribosome (right). Solid lines
represent fitting curves.

within the cutoff distance 4 Å. Therefore, the force evaluation time is 1 174 × 8.3 × 10−8 ≈
1 × 10−4 seconds. The time to construct the neighbor list with a grid method is 0.011
seconds, whereas with a hierarchy of WS’s this time is 0.008 seconds. Thus, neighbor search
construction is about two orders of magnitude slower than force evaluation.

2.3.3.3 Two bluetongue virus capsids

We performed the cutoff test for two bluetongue virus capsids, one of them being shifted by
689 Å along the x-axis: an approximate diameter of the capsid’s enclosing sphere. This shift
eliminates steric clashes between the two molecules and results in a wide range of neighbor
list sizes as cutoff varies. We chose m = 8 (for AABB and OBB hierarchies) and m = 4 (for
LS and WS hierarchies), and varied the cutoff from 4 to 12 Å with a step 0.5 Å. The obtained
timings are displayed in Fig. 2.3.7 as functions of the number of pairs in contact. We plot
on the left, in the logarithmic scale, the results for all algorithms, and on the right, in linear
scale, the timings for hierarchy-based algorithms only. Again, functions of the form ciN

ai + bi
(ai < 1, i = 1..5) fit well all obtained timings. In this case, for two large rigid molecules with
a relatively small area of contact (a realistic situation for such large molecules), hierarchical
methods clearly outperform the grid method. Again, among all hierarchy-based algorithms
the one based on wrapped spheres shows the best results.

2.3.3.4 Two apoferritin molecules

Finally, we ran this test for a system of two apoferritin molecules, one of them shifted by 122
Å along the x-axis. This shift is an approximate diameter of the apoferritin’s enclosing sphere.
Again, the chosen shift eliminates steric clashes between the two molecules, and results in a
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wide range of neighbor list sizes as cutoff varies. The resulting timings for m = 8 (AABB,
OBB) and m = 4 (LS, WS), and cutoff varying from 4 to 13.5 Å with a step of 0.5 Å, are
shown in Fig. 2.3.8 (left). All hierarchy-based algorithms depend on the number of pairs in
the neighbor list in the same way as before. The grid method is outperformed by algorithms
based on hierarchies of spheres, although all timings are very similar.

We also modified the last test: for any given cutoff, we applied random rotations to the
second molecule. Running times of the algorithms are plotted as functions of the number of
contacting pairs in Fig. 2.3.8 (right). Here, timings for the AABB-based algorithm are very
dispersed (to show this, we plot average timings and indicate minimal and maximal values with
error bars). This happens because after an AABB is rotated, it must be made axis-aligned
again as described in Ref. [76], and sometimes the rotated AABB is being unnecessarily
enlarged. Moreover, all boxes were enlarged by the half of the cutoff distance during the
hierarchy construction, as described in Section 2.2.2. Therefore, a lot of unnecessary overlaps
between boxes occur, which results in larger timings.

2.3.4 Distance test

In the second type of tests (distance test) we place two molecules of interest at some distance,
and then move one of them towards the other in discrete steps. More precisely, we shift the
second molecule of the complex (Table 2.1) 20 times by the same value along the x-axis. The
cutoff is fixed for this type of tests.

To describe the benchmarks we define a separation distance between molecules as a min-
imal distance between all pairs of atoms such that one atom in this pair belongs to the first
molecule of the complex and the other atom belongs to the second molecule.
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Figure 2.3.8: Cutoff test. Computational performances of all algorithms as functions of the
number of pairs in contact without rotations (left) and with rotations (right) of one of the two
apoferritin molecules. Solid lines represent fitting curves, except for the one corresponding to
the grid algorithm timings on the left plot. Error bars on the right plot represent maximal
and minimal values.

2.3.4.1 Biological complexes

First, we performed the distance test as described above for the Sa-barstar complex and the
70s ribosome, so that the separation distance between molecules was changed from 6.88 Å
to 1.36 Å, and from 9.56 Å to 0.69 Å, respectively (m = 8 for AABB and OBB, m = 4 for
spheres, cutoff distance 12 Å). The results are demonstrated in Fig. 2.3.9 on the left and right
plots, respectively. As expected, timings for all algorithms based on the hierarchy of bounding
volumes depend on the number of pairs in the neighbor list N as ciNai + bi (ai < 1, i = 1..4).
The time for the grid method depends on the number of ligand atoms that are mapped to non-
empty grid-cells, on the number of atoms in each grid-cell to perform the comparison, etc. In
other words, it depends on the shape of the ligand and receptor molecules. This time increases
with the growing number of pairs in contact, because if the two molecules are closer in space,
then more atoms of the ligand are mapped to grid cells, and more queries for interactions in
neighbor cells and the current cell should be performed. It is clear from the plots that the
grid method is outperformed by the sphere-based algorithms for a small complex, and by all
hierarchy-based algorithms for a relatively large ribosome. The algorithm based on wrapped
spheres, again, shows the best timings among all hierarchy-based algorithms.

2.3.4.2 Two bluetongue virus capsids

Then, we performed the distance test for two bluetongue virus capsids (cutoff is 12 Å, m = 8
for AABB’s and OBB’s, m = 4 for spheres). The separation distance between two replicas of
the molecule was changed from 3.93 Å to 0.36 Å. The resulting timings as functions of the
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Figure 2.3.9: Distance test. Computational performances of all algorithms as functions of
the number of pairs in contact within the fixed cutoff for Sa-barstar complex (left) and 70s
ribosome (right). Solid lines represent fitting curves, except for the one corresponding to the
grid algorithm timings on the right plot.

number of pairs in contact are shown in Fig. 2.3.10: in the logarithmic scale, for all algorithms
on the left, and in the linear scale for only hierarchy-based algorithms on the right. All solid
lines on the plots represent fitting curves of the type ciNai + bi (ai < 1, i = 1..5). Again,
for a system of two large rigid molecules, hierarchy-based algorithms clearly outperform the
grid method. However, on the logarithmic scale we can see that at some point the lines have
to cross. To obtain such a high number of pairs in contact, though, the two molecules have
to interpenetrate significantly (which is a non-realistic molecular configuration) or the cutoff
has to be large (which is not reasonable: the choice of the cutoff was discussed above).

2.3.4.3 Two apoferritin molecules

Finally, as in the previous section, we demonstrated the test results obtained for an apoferritin
(Fig. 2.3.11, left), where we used two replicas of the same molecule. Solid lines on the plot
represent fitting curves. Here cutoff was set to 12 Å,m for AABB- and OBB-based algorithms
equal to 8, for sphere-based algorithms to 4. The separation distance between two replicas
of the molecule was changed from 14.43 Å to 0.30 Å. The grid method is outperformed by
hierarchy-based algorithms if the number of interacting pairs for two molecules is small. The
fastest algorithm between hierarchical algorithms is the one based on the wrapped sphere
hierarchy.

We can again slightly modify this test as follows. At each fixed distance (the cutoff is
still constant) we perform several random rotations of one of the molecule replicas. All the
algorithms are launched for each translation and rotation (described by a transform) and the
time is measured (Fig. 2.3.11, right). As for the cutoff test, for the same reason as explained
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Figure 2.3.10: Distance test. Computational performances of all algorithms as functions of
the number of pairs in contact for two bluetongue virus capsids in logarithmic scale (left), and
for only hierarchy-based algorithms in linear scale (right). Solid lines represent fitting curves.

above, timings for AABB-based algorithm are dispersed. We indicate minimal and maximal
values for these timings with error bars on the plot.

2.3.5 Remarks

It is important to mention that the exact timings will depend on the particular implementation
of the algorithms and on the computer used to run the tests. This happens due to different
strategies of memory allocations for different architectures, the cost of basic operations on the
computer of use, cache size, cache speed, etc.

For example, in Fig. 2.3.12 we display the results of the cutoff test for the system of
two apoferritin molecules without rotations with m = 1 for sphere-based algorithms, m =
8 for AABB- and OBB-based algorithms performed on Computer 1 (left plot, computer
characteristics already described) and Computer 2 (right plot, Intel 2.40 GHz processor with
4GB of RAM, Windows Vista 32-bit operating system).

The general tendency for the algorithms complexities, though, remains the same: the
complexity of hierarchy-based algorithms remains sublinear, the WS algorithm shows the
best timings among all hierarchy-based algorithms and often outperforms the grid method.

Cache-efficient algorithms [184] (cache-oblivious [185, 186] or cache-aware) give an im-
portant improvement in the performance of the hierarchy-based algorithms. For example,
some algorithms have been designed to compute cache-efficient layouts of bounding-volume
hierarchies [187] or store these hierarchies in a smart way [188, 189].
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Figure 2.3.11: Distance test. Computational performances of all algorithms as functions of
the number of pairs in contact without rotations of one of two apoferritin molecules (left)
and with rotations (right). Solid lines represent fitting curves. Error bars on the right plot
represent maximal and minimal values.
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Figure 2.3.12: Cutoff test. Computational performances of all algorithms as functions of the
number of pairs in contact for the system of two apoferritin molecules. Results obtained on
Computer 1 (left) and on Computer 2 (right). Solid lines represent fitting curves, except for
those for the grid algorithm.
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2.4 Conclusion
In this Chapter, we have investigated the use of several algorithms to efficiently determine
pairs of neighboring atoms within a certain cutoff distance when the molecules are rigid. More
precisely, we have compared the grid data structure to four different types of bounding-volume
hierarchies: the axis-aligned bounding box hierarchy, the oriented bounding box hierarchy, the
layered sphere hierarchy and the wrapped sphere hierarchy. We have analyzed the performance
of all these data structures based on several parameters: the size of the molecules, the average
distance between them, the cutoff distance, as well as the type of bounding volume used in the
culling hierarchy. We have demonstrated that, although slower to initialize, hierarchy-based
neighbor search algorithms may in several cases perform more efficiently than grid-based
algorithms for large rigid molecules. This happens, for example, if the number of pairs in
contact for these molecules is relatively small compared to the size of the molecules, or when
a small cutoff distance is considered.

In the future, we would like to study the possibility of designing a hybrid algorithm that
would combine grids and hierarchies of bounding volumes. For example, a hybrid algorithm
could first rapidly eliminate large irrelevant groups of atoms using hierarchies of bounding
volumes, and would then locate neighboring pairs in the refined search region using the grid
method.

Finally, we note that neighbor search for large rigid molecules may also be useful for
Monte Carlo simulations of molecular self-assembly [190] and rigid body molecular dynamics
simulations [191]. These applications could as well be investigated.
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Appendix

Here we provide an analysis on the choice of the optimal leaf size parameter m for neighbor
search algorithms based on hierarchies of bounding volumes. We present the results for a
simple case: a system with a constant density, where both molecules in the complex contain
N atoms and are in contact through their surfaces only.

Let us assume that the system configuration (i.e. molecular positions and orientations)
is fixed and the cutoff distance for neighbor search is chosen. The goal is to find a value
of parameter m that minimizes the time t of algorithms execution. This time contains two
contributions. The first contribution is the time to descend to a leaf level l = log2

N
m of the

hierarchy, i.e. to perform all necessary algorithm operations down to the level l. This time
increases with growing l as we perform more operations. The second contribution is a time
to compute distances for all pairs of atoms inside leaf bounding volumes that are closer than
the cutoff distance (BV’s in contact). This time is proportional to m2 and decreases with
increasing l (since the leaf bounding volumes fit more and more closely the molecules, the
number of pairs of atoms unnecessarily tested for proximity decreases). Therefore there may
be one or more values of the level l for which t is a local minimum.

Thus, to determine a good value of l, we express the derivative of l 7→ t(l) as a finite
difference t(l + 1)− t(l), and find its roots. In other words we set equal the two complexities
t(l) and t(l + 1). These are the algorithm’s time complexities for two pairs of hierarchies
constructed for the same system: in the first pair there are m atoms in each leaf node (hence,
the trees heights are equal to l = log2

N
m), and in the second pair there are m/2 atoms in each

leaf node (and the trees heights are equal to l + 1).
The algorithm traverses each pair of hierarchies in a top-down manner, and its workflow

is the same on both pairs until it reaches level l of the tree. Therefore, we will only compare
the algorithm’s costs after reaching this level. For the pair of trees with height l, this cost is
the one of computing distances for all pairs of atoms inside leaf bounding volumes that are
in contact (i.e. closer than the cutoff distance). For the pair of trees with height l + 1, this
cost is the sum of the cost of descending one more hierarchy level using the algorithm, plus
the cost of treating the leaf bounding volumes.

Let us denote by ca (resp. cbv) the cost of determining whether two atoms (resp. two
bounding volumes) are closer than the cutoff distance, and let P (l) (resp. P (l + 1)) be the
number of pairs of bounding volumes in contact at level l (resp. l + 1). Then, for the first
pair of hierarchies, the cost of determining pairs of neighboring atoms after reaching level l is
the following:

P (l)m2ca.

For the second pair of hierarchies, however, proceeding from level l to level l + 1 costs
4P (l) cbv, since each bounding volume in contact at level l is divided into two bounding
volumes, while treating the leaf bounding volumes at level l+ 1 costs P (l+ 1)

(
m2/4

)
ca. The

whole complexity in this case is:
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cutoff, Å AABB, average r value of m WS, average r value of m
4 1.66 6.96 1.74 3.23
6 1.81 7.19 1.82 3.28
8 1.93 7.4 1.91 3.35
10 2.03 7.58 1.99 3.42
12 2.13 7.78 2.07 3.49

Table 2.3: Experimentally obtained values for the average ratio r for different values of the
cutoff and two types of bounding volumes. Corresponding values of parameter m.

4P (l) cbv + P (l + 1) m
2

4 ca.

Thus, the equation t(l) = t(l + 1) can be written as follows:

P (l)m2ca = 4P (l) cbv + P (l + 1) m
2

4 ca. (2.4.1)

Let us now estimate the ratio r = P (l + 1) /P (l). Only some of the four possible pairs of
child bounding volumes for each pair in contact may remain closer than the cutoff. Therefore,
r is between zero and four.

In practice, this ratio depends on a large number of parameters (system’s characteristics,
tree properties, etc.), and it is difficult to describe it analytically. Thus, we experimentally
determined some average values for r. To do this, we constructed hierarchies of AABB’s and
WS’s with only one atom in each leaf node (which resulted in a maximal tree height) for the
70s ribosome (Fig. 2.3.1). Then, for both types of bounding volumes, and for cutoff values
varying from 4 to 12 Å with a step of 2 Å, we measured the ratios r(l) = P (l + 1)/P (l) and
averaged them over all hierarchy levels. The results are summarized in Table 2.3.

The ratio cbv/ca for AABB’s and WS’s (7.08 and 1.47, respectively) was computed using
the information from Section 2.2.2.

Substituting numerical values for these two ratios in equation (2.4.1), we find correspond-
ing values of m (also shown in Table 2.3). These numbers are in good agreement with the
numerical results obtained above: 8 and 4 for AABB’s and WS’s, respectively.



Chapter 3

Fast construction of hierarchical
representations for molecular
graphs

Comme nous l’avons démontré dans le Chapitre précédent, les algorithmes de recherche des
voisins qui sont fondés sur des représentations hiérarchiques peuvent être bénéfiques pour
certains systèmes moléculaires. Ces représentations sont également utilisées par d’autres al-
gorithmes de modélisation et simulation. Comme les topologies des systèmes moléculaires
peuvent être complexes, la construction automatique de ces décompositions hiérarchiques est
parfois difficile. Jusqu’à présent, aucune stratégie générale de construction n’a été proposée.

Dans ce Chapitre, nous présentons un algorithme rapide et général pour la construc-
tion complète d’une représentation hiérarchique d’un système moléculaire. Cet algorithme
en trois étapes traite le système moléculaire d’entrée comme un graphe dans lequel les som-
mets représentent des atomes ou des pseudo-atomes, et les arêtes des liaisons covalentes. La
première étape fusionne tous les cycles dans le graphe d’entrée. La seconde étape construit un
arbre à partir du graphe réduit. La troisième étape construit un arbre final à partir des arbres
représentant les composantes connexes du graphe.

Nous analysons la complexité de cet algorithme et démontrons ses performances sur un
ensemble de cas tests difficiles, ainsi que sur un grand sous-ensemble de graphes moléculaires
extraits de la Protein Data Bank. En particulier, nous démontrons expérimentalement que les
deux premières étapes sont linéaires en fonction du nombre d’arêtes dans le graphe d’entrée (le
facteur de branchement est fixé pour la deuxième étape). Nous démontrons aussi que pour les
systèmes répartis de manière homogène, la troisième étape est capable de construire un arbre
en temps linéaire en fonction du nombre de points d’entrée. Finalement, nous démontrons
une application de notre algorithme pour la mécanique moléculaire adaptative en angles de
torsion.

57
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As has been shown in the previous Chapter, neighbor search algorithms relying on hierar-
chical representations may be beneficial for some molecular systems. These representations are
also being used by other modeling and simulation algorithms. Given the potentially complex
topologies of a molecular system, though, automatically generating such hierarchical decompo-
sition may be difficult. Up to now, no general strategy of building a good tree was proposed.

In this Chapter, we present a fast general algorithm for the complete construction of a
hierarchical representation of a molecular system. This three-step algorithm treats the input
molecular system as a graph in which vertices represent atoms or pseudo-atoms, and edges
represent covalent bonds. The first step contracts all cycles in the input graph. The second
step builds an assembly tree from the reduced graph. The third step builds a final tree from
the trees representing connected components of the graph.

We analyze the complexity of this algorithm and demonstrate its performance on a set of
specifically tailored difficult cases, as well as on a large subset of molecular graphs extracted
from the Protein Data Bank. In particular, we experimentally show that the first and the
second steps behave linearly in the number of edges in the input graph (the branching factor
is fixed for the second step). We also experimentally show that for homogeneously distributed
systems, the third step is able to build a tree in linear time in the number of input points.
Finally, we demonstrate an application of our hierarchy construction algorithm to adaptive
torsion-angle molecular mechanics.
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3.1 Introduction
In the previous Chapter we have compared several neighbor search algorithms, and we have
demonstrated that for the simulations, where large rigid blocks of atoms (molecules) are
considered, the hierarchically-based approach is beneficial.

Although hierarchical representations are widely used by many other modeling and sim-
ulation algorithms as, for example, simulations in internal coordinates [40, 21, 22, 41, 42],
no efficient way to construct such a representation from an arbitrary molecular graph in the
general case has been proposed.

In this Chapter, we introduce a fast algorithm for building a hierarchical representation
(assembly tree) from a molecular graph. In this graph, vertices may be atoms, pseudo-atoms
or higher-level descriptions of molecular entities; graph edges, if present, may respectively
represent covalent bonds, pseudo-bonds or generic connections between graph vertices; and
graph connected components may be associated with distinct molecules. An example of a
molecular graph corresponding to a molecular system is shown in Fig. 3.1.1.

Figure 3.1.1: Example of a molecular system (left) and a corresponding molecular graph
(right). Graph vertices are atoms, graph edges are covalent bonds, graph connected compo-
nents are molecules.

By an assembly tree corresponding to a graph we denote a binary tree in which each leaf
node refers to an individual graph vertex, and each internal node represents a sub-graph that
is obtained by connecting together the sub-graphs referred to by its children. For example,
in Fig. 3.1.2 we display a simple graph and a tree corresponding to this graph.

For our purposes, we want the constructed assembly tree to possess two main properties:
(a) topologically-connected parts of the graph should be close in the tree; (b) the resulting
tree should be as balanced as possible. Both properties are crucial for e.g. neighbor-list
construction algorithms (see [76] and references therein) and balance is helpful when the algo-
rithm is implemented on a parallel architecture. We also obviously want the tree construction
algorithm to be fast and efficient.

The algorithm that we propose for constructing an assembly tree for a molecular graph
consists of three steps:

1. Cycle contraction: in the general case, the graphs we are dealing with may contain
cycles (e.g. aromatic rings), including cycles-within-cycles. To build a binary assembly
tree, the underlying graph needs to be acyclic: the cycles should be broken or contracted.
For simulations in internal coordinates and their applications, cycle contraction is prefer-
able. Therefore, the first step of the algorithm traverses the original molecular graph
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Figure 3.1.2: Assembly tree corresponding to a graph. Blue nodes represent vertices of the
input graph and the tree nodes corresponding to them (they have indices from 1 to 3). Yellow
nodes describe internal nodes of the tree. The red node is the root node of the tree. Internal
nodes and the root node are marked according to the content of the corresponding sub-graph:
for example, the node marked “1+2” corresponds to a sub-graph containing vertices 1 and 2.
Dashed grey arrows indicate sub-graphs corresponding to the internal node of the tree and
the root node.

and contracts all the cycles it contains, which produces a contracted graph. We let the
user decide to break some cycles before executing the algorithm if necessary, depending
on the application1.

2. Assembly tree construction for a connected component: the second step builds
an assembly tree for each contracted connected component of the graph.

3. Assembly tree construction for the whole molecular system: the third step
gathers all trees representing connected components to form a final tree.

The rest of the Chapter is organized as follows. First, we introduce some basic definitions
used throughout the Chapter and formalize the problem. Then we present our algorithm in
detail and analyze its properties. Finally, we provide experimental results, and show possible
applications of the algorithm.

3.2 Basic definitions and problem statement

Let us introduce some notations.
An undirected graph is an ordered pair G = (V,E), where V is a finite, non-empty set of

vertices, and E is a finite set of edges: pairs of vertices (edge ends). An edge and its ends
are incident to each other. Two ends of an edge are adjacent. The degree of a vertex is the
number of edges incident with it. Vertex of degree one is a pendant vertex, and its incident

1For example, the user will probably choose to model disulphide bonds by supplementary terms in the
potential energy function, and not with kinematic constraints (hard constraints on the distance), so that long
cycles that would result from disulphide bonds would not be contracted. Further discussion on how and when
to break cycles in the general case can be found in Section 3.5.



3.3. ALGORITHM DESCRIPTION 61

edge is a pendant edge. The branching factor of the graph is the biggest vertex degree among
all vertices.

A path is a sequence (v0; e0; . . . ; en−1; vn), where ei ∈ E for all i has ends vi and vi+1, and
all vertices (except perhaps the first and the last) are distinct. A cycle is a path of positive
length whose first and last vertices are equal. A loop is an edge whose two ends are equal. A
graph has multiple edges if it has two different edges with the same ends. A graph is connected
if there is a path from any one vertex to any other. An edge is called cycle’s external edge if
it does not belong to the cycle but is incident to some vertex from this cycle.

A connected component of a graph is a connected sub-graph of a graph.
Graph contraction is a procedure of substituting every cycle in the graph by a single

vertex (group vertex), so that graph connectivity is preserved: group vertex is incident with
all cycle’s external edges. After contraction, the graph becomes contracted.

Binary tree is a tree data structure in which each node (parent) has two children (left
and right) or no children at all. The root node of a tree has no parents. A leaf node has no
children. Nodes that have a parent and two children are called internal nodes. The depth of
a node is the length of the path from the root to the node through internal nodes. The set of
all nodes at a given depth is a level of the tree. The height of a tree is the length of the path
from the root to its deepest node.

We can now precisely formulate the Problem. Let G be a graph which may contain cycles
and multiple connected components, but neither loops nor multiple edges. The problem is to
build an assembly tree corresponding to the contracted input graph.

3.3 Algorithm description
The algorithm that we propose consists of three steps. The input and the output for the first
and the second steps of the algorithms are shown in Fig. 3.3.1: algorithm’s input is a graph
with cycles, the output of the first step is a contracted graph, and the output of the second
step is an assembly tree for the contracted graph. The structure of the complete three-step
algorithm is shown in Fig. 3.3.2. The output of the third step of the algorithm is a binary
tree, corresponding to the whole molecular graph comprising several connected components.

During the first and the second step of the algorithm, we might make several passes
through the graph, i.e. traverse the whole graph or its sub-graphs. Therefore, the graph
traversal should be efficient. To achieve this, the depth-first search algorithm is used [192]:
we only move forward along the edges that have a non-visited vertex on the other end. If
there are no such edges, we go backward, until we find a vertex with non-traversed edges. If
there are no such vertices, the algorithm terminates. Traversing a graph this way, each edge
is visited at most two times.

3.3.1 Contracting cycles

We start the algorithm description from its first step: detecting and contracting cycles in the
input graph.
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STEP 1 STEP 2

Figure 3.3.1: Workflow of the first and the second steps of the tree construction algorithm,
overview. Blue nodes represent vertices of the input graph (input for steps 1 and 2), and
tree nodes, corresponding to them (output of step 2); white nodes stand for group vertices
(output of step 1) and tree nodes, corresponding to them (output of step 2); yellow nodes
denote internal nodes of the final tree, the red node corresponds to the root node of the tree.
Dashed lines indicate the cycles to be contracted. Relationship between parent and child
nodes in a tree is indicated by arrows.

Several authors have addressed related problems. For example, Mateti et al. [193] give an
overview of the algorithms to enumerate all cycles in a graph. Of all the algorithms analyzed,
the asymptotically fastest algorithm has an upper bound of O((V + E)C) on the number of
operations (C is a number of so-called elementary circuits, V and E are numbers of vertices
and edges). For detecting all cycles in the graph parallel computing may be used [194]2.

The algorithm proposed here consists of two passes through the graph. First, we detect
and mark every edge that belongs to some cycle. We do it using the linear-time algorithm
by Tarjan [192]3. Then, we contract all marked connected components (i.e. sets of vertices
connected by marked edges only). We replace each marked connected component by a group
vertex. This group vertex will be incident with zero or more non-marked edges, having as their
ends the vertices from the marked connected component. We traverse all marked connected
components of the graph and make the contraction on the fly. Before starting the traversal
of the marked connected component, we create a new group vertex, which will represent this
component. Then, we begin a depth-first search for the graph from a randomly picked vertex
v∗ of this component. If an edge we picked next is marked, we move through it. If the next
edge is not marked, we connect it to the new group vertex: we assign the new group vertex

2Some authors have addressed the related contractability problem: a graph G is H-contractible if H can
be obtained from G by a sequence of edge contractions [195], [196]. This is not the problem we are studying,
although the input graph of this step is contractible to its output graph.

3Finding the set of edges that belong to at least one cycle is equivalent to finding the set of bridges (an
edge is called a bridge, if by removing it from the graph, we increase the number of connected components).
To do it we use the same data structures as described by Tarjan for finding the set of articulation points. An
edge traversed by depth-first search from vertex v1 to a vertex v2 is a bridge if and only if nums[v2]=lows[v2]
and lows[v1] < lows[v2].
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Figure 3.3.2: The workflow of the complete tree construction algorithm for the general molec-
ular graph containing several connected components. Blue nodes represent vertices of the
input graph (input for steps 1 and 2), and tree nodes, corresponding to them (output of step
2); white nodes stand for group vertices (output of step 1) and tree nodes, corresponding to
them (output of step 2); yellow nodes denote internal nodes of the final tree; red nodes rep-
resent root nodes of the trees corresponding to connected components of the graph (output
of step 2 and input for step 3). Relationship between parent and child nodes in a tree is
indicated by arrows.
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Figure 3.3.3: Workflow of the first step of the tree construction algorithm, example of a cycle
contraction.

as its appropriate end, and then we work with the next non-visited edge of the same vertex
v∗ (we do not traverse the non-marked edge).

This procedure produces a completely acyclic graph, where every marked connected com-
ponent is replaced by a single vertex. Description of this group vertex can contain a list of
vertices that the group vertex is representing. Contracted cycles will be represented in the
assembly tree by corresponding group vertices. Figure 3.3.3 gives an example of this algo-
rithm for a simple case. Please note that after the first step of the algorithm all connected
components of the graph remain connected.

3.3.2 Building assembly trees for connected components

We can now describe the second step of the algorithm: building an assembly tree for an acyclic
connected graph. Precisely, nodes in this tree represent parts of the connected component:
leaf nodes correspond to vertices, and internal nodes correspond to unions of two sub-graphs
connected by an edge. In this step group vertices will be treated as all other non-group graph
vertices.

We construct the assembly tree based on the graph connectivity. The most obvious proce-
dure would be the recursive splitting of the graph in halves. But to do that we have to traverse
the graph (or its sub-graphs) each time before splitting. That is why the whole algorithm
would have O(N logN) complexity, though the obtained tree would be well-balanced.

The basic idea behind our algorithm is very simple, and consists in repeating the following
two passes. First, we mark as many edges as we can during a graph traversal, such that no
marked edge shares a vertex with another marked edge. Second, we contract the ends of each
marked edge in parallel with gathering into a new tree node the tree nodes corresponding to
the edge ends. The iterations stop when only one vertex is left in the graph. This final vertex
corresponds to the root node of the assembly tree of the connected component.

The problem is that, in this case, we do not guarantee avoiding the situation4 like the
one shown in Fig. 3.3.4. Here, if at each iteration we traverse a graph in a specific order
(from vertex 1 to 5), one pendant edge is not contracted until the very end, which results in a

4That would be, for example, the case for every chain of length 2n + 1.
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Figure 3.3.4: The second step of the tree construction algorithm, construction of an unnec-
essarily unbalanced tree using non-modified algorithm. Blue nodes represent vertices of the
input graph and tree nodes, corresponding to them; white nodes stand for vertices repre-
senting contracted sub-graphs and correspond to the internal nodes of the tree; yellow nodes
denote internal nodes of the final tree; the red node represents the root node of the tree.
Dashed edges are the edges to be contracted during the next pass.

tree that could be better balanced5. That is why, to build a better balanced tree, we should
modify the algorithm so that pendant edges are contracted as soon as possible. Of course,
it is not possible to create a balanced tree for any input graph. For example, for a star-like
graph, the tree will always be unbalanced (see Fig. 3.3.5), but can be improved using a link
splitting technique described in Ref. [22].

Let us describe an iteration of the modified algorithm in more detail.
In the modified algorithm, at each iteration, we still perform two passes through the graph.

During the first one we mark not only all the edges that are marked in the basic version, but
also pendant edges. As a result, we have several marked connected components in a graph.
We will traverse and contract them during the second pass as we did in 3.3.1.

While traversing a marked connected component, we construct a corresponding sub-tree as
follows. From two nodes, corresponding to the first two visited vertices, a tree node is created,
called current node. Then, anytime we traverse a new vertex v, we gather the current node
with the node representing this vertex v into a new node. This new node becomes the current
node. Please note that, anytime we gather two nodes, the corresponding vertices have a
connecting edge. This guarantees that the sub-tree is valid. We show the workflow of the
modified algorithm in Fig. 3.3.6.

3.3.3 Building the assembly tree of the complete graph

The third step of the algorithm consists in building the final assembly tree from the output
of the second step: assembly trees associated with the connected components of the graph.

5Even if we start each graph traversal from a random vertex we cannot guarantee avoiding this case.
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Figure 3.3.5: The second step of the tree construction algorithm, a big branching factor
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and tree nodes, corresponding to them; yellow nodes describe internal nodes of the final tree;
the red node represents the root node of the tree.
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Figure 3.3.6: The second step of the tree construction algorithm, construction of an assembly
tree using modified algorithm. Blue nodes represent vertices of the input graph and tree
nodes, corresponding to them; white nodes stand for vertices representing contracted sub-
graphs and correspond to the internal nodes of the tree; yellow nodes denote internal nodes of
the final tree; the red node represents the root node of the tree. Dashed edges are the edges
to be contracted during the next pass.



3.3. ALGORITHM DESCRIPTION 67

From these trees, we only retain their root nodes, and characterize each root node by a
point in k-dimensional (k = 2, 3) space: a natural choice may be the geometric center (if
all vertices have identical weight) or some weighted average of the positions of vertices in
the initial graph (e.g. gravity center).6. The problem of tree construction for a geometrical
system is very important in N -body simulations including long-range interactions in molecular
simulations and celestial mechanics. It has already been studied by a number of authors in
different domains, for example, in Ref. [176, 197, 198], but the algorithms proposed there
have a O(N logN) best-case complexity in the number of bodies in the system. We propose
a novel, faster bottom-up algorithm that relies on space-filling curves.

Level m

Level m-1

Hierarchy of cells

0 1 2

1

2

0 1 2 3 4

1

2

3

4

Figure 3.3.7: Hierarchy of cells in 2D. Parent-
child relationship between cells. Detailed de-
scription in the text.

First, we determine the smallest axis-
aligned parallelepiped that bounds all nodes,
and associate a hierarchy of cells to it as fol-
lows. Along each dimension this bounding
parallelepiped is divided into p parts, so that
we obtain pk parallelepipedic cells of equal
dimensions. If 2h is the closest superior to
p power-of-two integer, then the height of
the hierarchy is h. The parent for the cur-
rent cell is a parallelepipedic cell of the up-
per layer, which has coordinates two times
smaller along each axis and which is twice
larger in all dimensions. The children of the
cell are all the cells that consider it as a par-
ent. For example, in Fig. 3.3.7 we show two
levels of the hierarchy of cells in 2D: m and
m− 1. Coordinates of the orange cell on the
level m are (1,1) (see the marks on the parallelepiped border, the smaller number is consid-
ered). Therefore, to obtain the coordinates of its parent cell we divide its coordinates by two:
1/2 = 0 as we search for integer numbers. Thus, the parent cell for the orange cell is the one
with coordinates (0,0) at the level m− 1 and it is colored in orange too. For the green cell at
the level m (coordinates (2,2)) the parent cell is the green one at the level m− 1 (coordinates
(1,1)).

Then, this hierarchy of cells is used to build the assembly tree as described below.
During the initialization step, we distribute all input nodes to the cells of the deepest

hierarchy layer (h-th layer) according to their position in k-space. These cells should contain
a small number of nodes (one or two is better). For each non-empty cell, we assemble the
nodes inside it into a random binary tree. For root node of this tree, we compute the space-
filling curve index (SFC index) i of the current parallelepiped (1 6 i 6 2k), obtained as

6The resulting trees may depend on this choice, and some may be more suitable than the others: for
example, for neighbor search problems the geometric center is preferable. We leave this decision based on the
particular application to the reader, as it is not a part of this study.
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Figure 3.3.8: The third step of the tree construction algorithm, algorithm iteration for a
non-empty cell in 2D. Red nodes represent root nodes of the sub-graphs corresponding to the
connected components of the input graph; yellow nodes describe internal nodes of the final
tree.

follows. If we take the (h − 1)-layer parent cell of the current cell, and we traverse its j
children (1 6 j 6 2k) along a space-filling curve in the k-dimensional space (e.g. a Peano
curve, [199, 200]), the SFC index of the current cell would be its position in this traversal
sequence. Finally, the obtained root node is put to the parent cell so that its children are
stored inside in the order of their SFC indices (see Fig. 3.3.8).

Then, the following iteration of the algorithm is repeated, until we have only one non-
empty cell for the current layer. If we worked with the m-th hierarchy layer, we move to layer
m−1. For each non-empty cell of this layer, we build a binary tree from the contained nodes,
respecting their order7. As before, the SFC index is calculated for the resulting node, and
this node is put to the parent cell. For the last cell we connect the nodes inside it according to
their SFC indices. The complete assembly tree has then been built. You can see an example
of an algorithm iteration on Fig. 3.3.8.

For convenience, we provide a summarized pseudo-code description of the complete algo-
rithm (see Algorithm 3.1).

3.4 Algorithm analysis

In this section, we analyze the complexity of the proposed algorithm and discuss properties
of the output of each step. We do not consider isolated graph vertices as input graphs: in
this case a constant computational effort is required per each such vertex.

7If nodes are stored in a list inside the cell, we repeat the following procedure until there is only one node
left in the current list. We assemble nodes in the current list pairwise (according to their order: the first node
with the second one, the third node with the forth, etc.) and put newly obtained nodes to a new list. If the
number of nodes in the current list is odd, the last node of this list is moved directly to the new list. Then the
new list becomes the current.
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Algorithm 3.1 Complete description of the algorithm for constructing an assembly tree from
a molecular graph in pseudo-code.
STEP 1 (cycle contraction):

a) pass 1, mark cycled edges
b) pass 2, contract edges in marked connected components

STEP 2 (creating assembly trees for all connected components):
current graph = contracted graph
while number of vertices in the current graph >1 do:

a) pass 1, mark every second edge and pendant edges
b) pass 2, traverse marked components and contract them,

make a subtree from nodes, corresponding to each marked component
c) current graph = contracted graph

STEP 3 (building of the final hierarchical representation):
a) find boundaries of the system, create hierarchy of cells
b) put nodes representing components to the lowest layer of the hierarchy of cells
c) while number of non-empty cells on current level > 1 do:

for each non-empty cell of this level
connect nodes inside cell, produce a subtree
put an obtained node to the upper-level cell

move to the upper level of the hierarchy of cells

3.4.1 Step 1: cycle contraction

The first step is straightforward. In this step, we perform two passes through the graph. The
first pass (as a depth-first search [192]) is linear in E + V , where E is the number of edges
and V is the number of vertices. The second pass is linear in Em + Vm, where Em and Vm
are numbers of edges and vertices in marked connected components, because we traverse only
them. Hence, the whole step has a linear complexity in the number of edges in the original
input graph:

f1(E) = O(E + V ) +O(Em + Vm) ≤ 2O(E) = O(E). (3.4.1)

3.4.2 Step 2: building an assembly tree for a connected component

In section 3.3.2, we saw that during the second step we perform several iterations on the
graph, each one consisting of two passes through it.

At this step, we do not have cycles in the graph anymore. Therefore, a depth-first search
at the first pass of each iteration is linear in the number of edges in the current graph. During
the second pass, the contraction of marked connected components is linear in the number
of edges they contain. This number is a sum of the numbers of directly marked edges and
pendant edges. The former is inversely related to the branching factor B (for each vertex we
mark only one incident edge). The latter is proportional to −1/B .
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Supposing the input graph has E edges, the total complexity can be written as follows:

f2(E) = O(E) +O(1/B). (3.4.2)

For a fixed value of the branching factor, the second step of the algorithm is linear in the
number of edges in the connected graph.

If we vary the branching factor of the system, the biggest running time corresponds to a
simple chain. It happens because in this case we delete approximately half of the edges during
each iteration, and strictly more than a half otherwise.

3.4.3 Step 3: building an assembly tree for the whole system

We now explore the third step of the algorithm.
Let us first analyze its time complexity and then its space complexity. Creating the lowest

layer of the hierarchy of cells (finding maximal and minimal values for all coordinates of the
nodes, dividing the total volume) and distributing nodes to these parallelepipeds is linear in
the number of nodes. Then, on each iteration, for each non-empty cell, we assemble nodes
inside the cell. Therefore, the overall complexity of the third step is dependent on the number
of iterations necessary for the algorithm, i.e. on the spatial distribution of input nodes for
this step. If this distribution is uniform or close to it, the number of iterations is log(N) and
each iteration decreases the number of nodes by a factor of 2k, so the whole algorithm is linear
in the number of connected components N in the graph (see experimental results below):

f3(N) = O(N). (3.4.3)

When the geometrical distribution is not uniform, the number of iterations is larger than
log(N) and the overall complexity may be as large as O(hN), where h is the height of the
hierarchy of cells.

In the worst case the amount of memory used by the algorithm is proportional to Nk, but
it normally depends on the number of cells in the lowest layer of the hierarchy. This can be
reduced if we do not allocate memory for all cells of each layer, but use a hash table and an
appropriate hashing function. However, the complexity of the algorithm becomes dependent
on the cost of inserting an element into the hash table.

Concerning the properties of the obtained tree, we do not guarantee the tree to be bal-
anced, but this actually reflects the potentially non-uniform distribution of nodes in space8.
Moreover, the nodes inside each cell are gathered according to a space-filling curve, so the
overall overlap of left and right sub-trees (i.e. the overlap between their axis-aligned bounding
boxes) is rather small. This is important for adaptive algorithms that rely (for efficiency) on
having little interaction between subsystems [79].

8If a tree is well-balanced, then the system distribution is close to uniform. If there is a large difference be-
tween heights of left and right sub-trees, then corresponding cell volumes contain different number of connected
components.
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Figure 3.4.1: The third step of the tree construction algorithm, planar example: the chosen
number of cells is too big. Red nodes represent root nodes of the sub-graphs corresponding
to the connected components of the input graph. Different types of lines (bold, dashed)
correspond to different levels of the hierarchy of cells.

Let us now discuss the choice of the number p of cells along each axis in the lowest layer
of the hierarchy. This choice depends on the application domain. In molecular biology, for
example, the fact that the length of the covalent bond cannot exceed 3.5 Angstroms may be
used (see below). For other applications, dividing the longest axis by the number of connected
components may be employed to obtain the required number of cells. That would be a good
solution for a system that is uniformly distributed in space. If the incorrectly chosen number
is too big, we can obtain a grid too fine as the one on the Fig. 3.4.1. In this 2D example,
we perform several unnecessary iterations. If the chosen number is too small, we will have
too many nodes randomly assembled into a tree during the initialization step. This problem
has been studied by several authors. For example, in Ref. [201] the spheres are considered
and they are inserted to the octree (top-down insertion) until there is the one sphere in the
containing cell, and from the beginning, the lowest layer of the hierarchy is correctly chosen.
In our applications, though, more complex structures are considered and bottom-up tree
construction is used, so this approach is not completely applicable.

3.5 Implementation and results

The complete algorithm has been implemented in C++ into the GofAsTr (Generator of As-
sembly Trees) library, which is available through the NANO-D group website, and it tested
(unless otherwise specified) on an Intel 2.40 GHz processor with 4GB of RAM, Windows Vista
32-bit operating system.

We used two categories of benchmarks to test our algorithm. The first category includes
specifically tailored difficult cases for each step of the algorithm. The second one is a large
subset of molecular graphs extracted from the Protein Data Bank [128].

3.5.1 Difficult cases

Let us first consider the benchmark comprising difficult cases for each step of the algorithm.

http://nano-d.inrialpes.fr/
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Figure 3.5.1: Computational performance of the algorithm’s first step on finite cubical 3D
lattices. Running time as a function of the number of edges in the input graph is plotted.
The solid line represents a linear fit.

3.5.1.1 Step 1

To test the linearity of the first step of the algorithm, we designed the following benchmark:
vertices are set to all node-points of a finite 3D cubical lattice, and every internal vertex of
this lattice is connected to its eight closest neighbors. We varied the size of the lattice, which
changed the number of edges in the graph, and measured the running time. As all edges here
belong to cycles, both passes are linear in the total number of edges, and so is the whole
algorithm. Fig. 3.5.1 plots the resulting timings as a function of the number of edges.

3.5.1.2 Step 2

The second step of the algorithm was tested on two types of graphs, and the running time
was measured.

In the first category of tests, graphs are simple chains of various length: each vertex there
has a degree of two, except for two boundary vertices, that have a degree of one. The linear
behavior of the algorithm’s second step can be seen in Fig. 3.5.2.

In the second category of tests (random graphs), graphs have a fixed number of edges, but
different branching factors, generated as follows. A fixed number of vertices is created. First,
we randomly select a vertex and choose an arbitrary number between one and the desired
branching factor (with equal probabilities). This integer determines a number of connections
added to this vertex with other untreated vertices of the system (if we have enough of them).
These added vertices (adjacent to the initial one) are memorized in an array. Then, we
repeat the same procedure for all vertices from this array (choose a number between one
and branching factor minus one, create connections, memorize to the new array), and work
with the new array. We continue while we have untreated vertices in the system. As can be
seen in Fig. 3.5.3, for a given number of edges, running time is inversely proportional to the
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Figure 3.5.2: Computational performance of the algorithm’s second step on unbranched
chains. Running time as a function of the number of edges in the graph is plotted. The
solid line represents a linear fit.

branching factor (solid lines on the figure are fitting curves): for a given number of edges, the
largest time corresponds to the unbranched chain tested above.

We also tested the balance-properties of the assembly tree in the following benchmark. For
the same branching factor and number of edges in one connected component we generated
several random graph configurations and measured the average depth of leaf nodes. Then
we varied the number of edges in the system. These results were compared to the the same
average for trees obtained by recursive splitting of a connected component in halves (which has
O(N logN) complexity and provides an almost perfectly balanced tree). Two corresponding
plots (branching factor is fixed to 4, number of configurations is 50) can be seen in Fig. 3.5.4.
They are very similar: maximal difference is 5%.

3.5.1.3 Step 3

The third step of the algorithm was run on systems with different number of points in 3D
space. These points are positioned to the nodes of a finite 3D cubical lattice, and are not
connected to each other (the random distribution is uniform). The linearity of this step can
be seen in Fig. 3.5.5. Results for tests on systems with non-uniformly distributed geometry
(biological systems) are presented below.

We also compared on the same benchmark the algorithm proposed here for the third step
with two O(N logN) algorithms: the first algorithm recursively uses the median of median
algorithm [202] to split the system along the longest axis so that there is almost the same
number of nodes in each subsystem, and the second algorithm splits the system in halves with
the help of the nth-element algorithm from the C++ Standard Template Library [182] (in the
worst case this splitting can have a O(N2) complexity but on average it is O(N)). These tests
were run on Intel Xeon X5450 3GHz processor with 16 GB of RAM (Windows Vista 64-bit



74 CHAPTER 3. FAST CONSTRUCTION OF ASSEMBLY TREES

 

T
im

e
, 
s
e
c
o
n
d
s

0

2

4

6

Branching factor
0 5 10 15 20 25 30

999

200799

800199

Number of edges

400599

600399

Figure 3.5.3: Running time dependence on the graph branching factor for the second step
of the new algorithm. Random graphs with different number of edges are considered and
correspond to solid lines (inverse law fits).

Figure 3.5.4: Average depth of the assembly tree leaf nodes for the second step of the new
algorithm, plotted as a function of number of edges in the input graph (random graphs with
a fixed branching factor were used). The black line corresponds to our algorithm, the grey
line to recursive splitting in halves.
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Figure 3.5.5: Computational performance of the algorithm’s third step on uniformly dis-
tributed systems in 3D. Running time as a function of the number of connected components
in the input graph is plotted. The solid line represents a linear fit.

operating system). The results of time comparison are depicted as functions of the number of
connected components in Fig. 3.5.6. Our algorithm significantly outperforms both of these
algorithms.

The comparison of the average depth of output-tree leaves and its standard deviations
as functions of the number of connected components for our algorithm and O(N logN) algo-
rithms can be found in Fig. 3.5.7.

3.5.2 Molecular graphs

We tested the first and the second steps of algorithm on a subset of the Protein Data Bank
files accessible on August, 20-th, 2010. The Protein Data Bank [128] (PDB) is a repository for
the 3D structural data of large biological molecules, such as proteins and nucleic acids. For
each structure, information is stored in a special PDB file format. In this format, several types
of records describe atoms (ATOM, HETATM), bonds (CONECT), chain breaks (TER), and
the file (END), store remarks (REMARK), etc. For example, an ATOM record contains the
identifier (ID), name, coordinates of the described atom, its occupancy, temperature factor,
the chain and the segment that it belongs to. The ATOM record type is used for all atoms in
the system, including solvent and ions. CONECT records add important connections inside
the structure which can be non-covalent bonds, etc. We provide an example of a simple PDB
file in Fig. 3.5.8.

The Protein Data Bank is a key resource in many areas of structural biology, and molecular
dynamics simulations are often performed based on structures contained in the PDB. As a
result, there is a strong need for fast algorithms which can generate data structures suitable
for these simulations, such as assembly trees that we consider in this Chapter.

The subset we chose was the set of files obtained by X-ray crystallography, having a
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Figure 3.5.6: The third step of the algorithm, comparison with O(N logN) algorithms on
uniformly distributed systems in 3D. Running time for all three algorithms is plotted as a
function of number of connected components in the input graph. Lines on the figures are
fitting curves, circles stand for our algorithm, triangles for the O(N logN) algorithm with
the nth-element used for splitting, squares for the O(N logN) algorithm with the median
of medians used for splitting. On the inset results are presented in logarithmic scale: the
firm line stands for our algorithm, the dotted line for the O(N logN) algorithm with the
nth-element used for splitting, the dashed line for the O(N logN) algorithm with the median
of medians used for splitting.

�
�
�
��
�
�
e�
�
�	
�

e
�
�e

�
�
�
e
�
�
�
�
�

��

��

��

��

������e��e������
��e��������
�

� ����� ����� ����� �����

Figure 3.5.7: The third step of the algorithm, comparison with O(N logN) algorithms on
uniformly distributed systems in 3D. Average depth of the assembly tree leaf nodes is plotted
as a function of number of connected components in the input graph. Circles stand for
our algorithm, squares for both O(N logN) algorithms (same results for the two versions of
splitting techniques).
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record type coordinates

atom name

residue ID occupancy

temperature factor

segment nameresidue name

atom ID chain name

Figure 3.5.8: PDB file, simple example.

resolution better than 2.5 Angstroms, released after the 1-st of January, 1990, and including
at least one ATOM record. These files contain less experimental errors for atom positions,
which we needed to generate the molecular graphs. The resulting number of files in the
benchmark subset was 46137 (out of 67313 files).

In general, cyclic patterns of molecular graphs that should be rigidified depend on the
application. For example, in biomolecular structures long cycles from cyclic peptides, cyclic
RNA strands, etc. cannot be modeled as rigid bodies. Hence, in order to use our algorithm, we
have to locate such cycles and break them. It is not an easy task as, for example, some cycles
might be included within larger cycles (as in Fig. 3.1.1), and removing just one edge can be
insufficient. Ultimately, we let the user choose which cycles should be broken (depending on
the application, because these cycles should not be modeled as rigid bodies), before running
our algorithm. Some edges can easily be removed automatically, though, as we describe below.

To have a plausible benchmark here, we use the following way of building molecular graphs
from the subset above. We consider atoms as vertices, and bonds as edges. To extract atoms
from a file we use ATOM records but not HETATM records. To obtain bonds we do not
consider CONECT records in PDB files, but compute covalent bonds based on the distance
between two atoms. The criterion for that is dist < 0.6(r1 + r2), where r1and r2 are atom
radii (they were taken from the VMD [2] periodic table) and dist is the distance between their
centers — this is why we chose to keep only high-resolution structures. We do not add edges
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for disulphide bonds, and we do not connect atoms from different molecular chains (different
molecules, including ligand-receptor connections), or non-consecutive residues, whatever the
distance between them. Alternate locations are not treated neither: if there are several, the
one marked with “A” or the one with an empty corresponding field is chosen. This way,
we avoid large cycles in our benchmark (the maximum cycle length was 47 for a replication
terminator protein in complex with DNA, pdb code 2EFW; an average cycle length was 8.692).
We found it acceptable to contract all remaining cycles because small cycles in amino acids
and nucleic acids are planar aromatic rings that can be modeled as rigid bodies.

We would like to emphasize that this is a very particular way of retrieving information
from the PDB file. However, one is free to choose any other suitable way of doing that (e.g.
calculate bonds between atoms using covalent radii instead of van der Waals radii). Also here
we contract only small cycles in amino acids, but it is possible to contract other subgraphs
that may be considered rigid according to the model or application.

For readability of the results, we present the obtained timings as follows. For each step
and pass of the algorithm, we first average timings for each distinct number of edges in the
molecular graph (on the figures x-axis, if this number is not equal to zero). Then, we average
all values in x-intervals of fixed width (for example, 3000 for the second step).

3.5.2.1 Step 1

The timings for the two passes of the first step are shown in Fig. 3.5.9. As expected, the
first pass is linear in the number of edges in the graph, and the second pass is linear in the
number of cycled edges. On these plots we also show the standard deviation for timings of
each interval with the error bars.

3.5.2.2 Step 2

The linear dependence of the running time of the second step of the algorithm on the number
of input edges is demonstrated in Fig. 3.5.10. In this case, the algorithm’second step is linear
because the branching factor is constant and small for molecular systems. Error bars are
again presented on the plot.

3.5.2.3 Step 3

We tested the third step of the algorithm on the full set of the Protein Data Bank files
accessible on March, 16-th 2009 (56365 files).

We obtained molecular graphs from the 56365 files by considering atoms as vertices, and
covalent bonds as edges, and we ran our algorithm on these graphs. We did not consider
CONECT records in PDB files, but we added covalent bonds based on the distance between
two atoms. For simplicity in this benchmark evaluating performance only, we rigidified all
cycles in molecular graphs and did not break any of them. As the 3D points characterizing
connected components, we used their geometric centers.
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Figure 3.5.9: Running time for passes one and two (left and right figures respectively) of the
algorithm’s first step on the subset of PDB molecular graphs is plotted as a function of the
number of edges in the input graph. Solid lines represent linear fits, error bars indicate the
standard deviation for timings in each interval.
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Figure 3.5.10: Running time of step two of the algorithm on the subset of PDB molecular
graphs is plotted as a function of the number of edges in the input graph. The solid line
represents a linear fit, error bars indicate the standard deviation for timings in each interval.
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Figure 3.5.11: Running time of the algorithm’s step three on the full set of PDB molecular
graphs is plotted as a function of the number of edges in the input graph. Solid lines represent
linear fits, error bars indicate minimum and maximum times in each interval.

The computational performance of the third step is shown to be a linear function of the
number of connected components in Fig. 3.5.11. On the plot for the third step we see a point
with a large deviation from the average value. This happens for files with large number of
isolated atoms (connected components) which are forming elongated structures in 3D space
(in this case, collagen fibers). The time dependence on the number of connected components
here is not strictly linear as we have a lot of structures with very different space conformations.

Two examples of assembly trees constructed for molecular graphs are shown in Fig. 3.5.12.
The first one (a) is a short poly-alanine with an alpha-helix structure (leaf nodes represent 48
atoms). It illustrates the first and the second steps of the algorithm (tree construction from a
single connected component). The second one (b) demonstrates a tree for a small water box
(leaf nodes represent 72 water molecules). It is an example of the third step of the algorithm
(tree construction from several connected components). Trees for larger molecules are too
complex to be visualized on paper, but we feel these two examples are representative.

3.6 Applications of the algorithm
We now give more details on an important application of our algorithm: adaptive torsion-
angle molecular quasi-statics. The section concludes with some remarks on other possible
uses of assembly trees.

3.6.1 Adaptive torsion-angle molecular quasi-statics

As it was mentioned in the introduction of this Chapter, molecular systems simulated in
internal coordinates [40, 41, 42, 43, 44, 45, 46, 47] might need a hierarchical representation.
Let us give more details on this application.
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a

b

Figure 3.5.12: Examples of assembly trees constructed for molecular graphs: a) the assembly
tree corresponding to a single connected component, a helix; b) the assembly tree correspond-
ing to a water box.
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Performing a simulation in internal coordinates requires to represent the molecular system
as a kinematic graph, i.e. a graph in which vertices correspond to one or several atoms forming
a rigid body, and where graph edges correspond to covalent bonds. Actually, articulated-body
representations are also widely used in robotics, biomechanics, modeling and engineering,
and a large number of other applications. In general, the vertices of the kinematic graph
represent rigid bodies, while its edges represent kinematic constraints between rigid bodies
(e.g. prismatic constraints, revolute joints, etc.).

The equations of motions in internal coordinates are more involved than their counterparts
in Cartesian coordinates. Therefore, it had long been believed that the computational cost
of performing a simulation in internal coordinates was approximately cubic in the number of
degrees of freedom, due to the cost of inverting the non-constant, dense inertia tensor of the
molecular system.

The discovery of recursive algorithms [21, 22, 40], i.e. algorithms which rely on a recursive
formulation of the equations of motion and scale linearly in the number of degrees of freedom
for acyclic kinematic graphs, has encouraged simulations of large molecules in internal co-
ordinates. For example, the divide-and-conquer algorithm (DCA) described in Featherstone
[21, 22] may be applied to perform molecular modeling and dynamics in internal coordinates
[79, 78].

Recently, Redon and Lin [78] and Redon et al. [79] have introduced algorithms for adaptive
simulation of articulated-body quasi-statics and dynamics. These algorithms make it possible
to arbitrarily choose the number of active degrees of freedom at each time step (equivalently,
the precision of the simulation), i.e. perform a partial update of the system’s state at each
time step. Precisely, active joints are joints whose position is updated, while rigid joints are
frozen: their position is not updated, even if their velocity or acceleration is non-zero. The
status of each joint may change at each time step, based on acceleration error metrics [41].
The set of active degrees of freedom (active region) is determined automatically at each time
step, based on rigorous error bounds on joint accelerations that can be obtained a priori,
before computing all joint accelerations. The possibility of finely trading between precision
and computational cost may result in significant speedups when a lower number of degrees of
freedom is sufficient to describe the motion.

Later on, Rossi et al. [41] have proposed an algorithm for incremental update of molecular
energies and forces, which relies on this adaptive articulated-body mechanics algorithm [79].
The result is an adaptive torsion-angle molecular quasi-statics algorithm [41], which enables
the user to choose the number of active torsion angles, and in which the computational cost
and precision are a function of the number of active degrees of freedom.

The adaptive simulation algorithms [78, 41, 79] rely on Featherstone’s DCA [21], and may
be seen as a generalization of it: the DCA corresponds to the adaptive algorithm with a zero
error tolerance. As a result, both the DCA and the adaptive algorithms need an assembly tree
to describe the system’s topology. In this case, the assembly tree is a binary tree in which each
leaf node represents an individual rigid body, and each internal node represents both the sub-
assembly obtained by connecting together the sub-assemblies corresponding to its children,
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and the joint (kinematic constraint) used to connect the two children. Therefore, the assembly
tree has to be based on the system’s topology9. In both versions, this decomposition is crucial
to perform all computations required to compute the motion (or approximate motion) of the
articulated bodies, as the assembly tree characterizes the order in which computations are
performed. In particular, computations at the same tree level may be performed in parallel,
and the tree should thus be as balanced as possible. Even on a single processor, the balance
of the tree is important for the adaptive approach, as a degree of freedom may be activated
only if all of its ancestors are active (in other words, the active region has to be a sub-tree of
the assembly tree).

Therefore, the algorithm that we provide can be very useful for the DCA-based and
adaptive schemes.

Let us give more details on the adaptive torsion-angle quasi-statics algorithm [41].
Precisely, Featherstone [21, 22] shows that the dynamics of an articulated body can be

described by the following articulated-body equation:

a = Φf + b, (3.6.1)

where a is the composite acceleration of the articulated body, Φ is the composite inverse
inertia of the articulated body, f is a composite kinematic constraint force and b is a composite
bias acceleration, due to external forces and torques. Then, assuming C denotes an articulated
body formed by assembling two articulated bodies A and B after computing the coefficients
of the leaf nodes (the rigid bodies) we can recursively (bottom-up) obtain the inverse inertia
and bias acceleration of C from those of A and B:

ΦC = ΦC
(
ΦA,ΦB

)
, bC = bC

(
bA,bB,QC

)
, (3.6.2)

where QC is a torque applied to the joint connecting A and B. Then (top-down), the
kinematic constraint forces fAand fB and the acceleration q̈C of the joint connecting A and
B can be calculated: (

fA, fB
)

= g
(
fC
)
, q̈C = q̈C

(
ΦA,ΦB, fC

)
, (3.6.3)

Redon and Lin [78] have shown that it is possible to determine a priori the subset of
largest joint accelerations, before computing all of them, which makes it possible to perform a
partial state update at each time step, and finely trade between precision and computational
cost. Precisely, the set of important accelerations is determined automatically based on an
acceleration metric (weighted sum of the joint accelerations in an articulated body C):

A(C) =
∑

q̈Ti Aiq̈i, (3.6.4)

which can be computed in constant time through
9However, spatial decomposition (i.e. grouping vertices based on spatial proximity) could be useful for some

other applications.
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Figure 3.6.1: Assembly tree of a short polypeptide. The left part (a) shows the assembly
tree of a tetra-alanine (CHARMM19 model). Colors indicate the correspondence between
leaf nodes and rigid bodies. The right part (b) shows a possible active region (green nodes)
produced by the adaptive algorithm during the simulation, when the user has allowed for
three simultaneously active joints only. This results in a partitioning of the molecule into four
rigid bodies (one color per rigid or rigidified body — colors also indicate the correspondence
between rigid bodies and leaf or internal nodes).

A(C) =
(
fC
)T

ΨCfC +
(
fC
)T

pC + ηC , (3.6.5)

since the coefficients ΨC ,pC , ηC can be recursively computed bottom-up, following the
tree structure [78].

The set of important accelerations is determined top-down and, as a result, the active
region (the set of simulated joints) is a sub-tree of the assembly tree (Fig. 3.6.1). The
active region is updated at each time step, based on a user-defined error tolerance on joint
accelerations, or a user-defined maximum number of active joints [78].

Two examples of the results of the adaptive torsion-angle quasi-statics algorithm are shown
in Fig. 3.6.2 and 3.6.3. Rigid body clusters are represented by different colors. When a force
is applied or the conformation of molecules change, the distribution of joint accelerations is
modified, and a different clustering is automatically determined by the adaptive algorithm.

In Fig. 3.6.2, on the left, a force is interactively applied by the user to the middle of a
poly-alanine, to modify its structure. The deformation occurs mostly in the neighborhood
of the point of application, and the degrees of freedom are activated around this point. To
maintain constant the total number of degrees of freedom in the molecule, some degrees of
freedom in the more stable ends of the molecule are frozen (this is made visible by the coloring
update). The same procedure is repeated for a bigger molecule (chain A of the complex with
a PDB code 1AC1) on the right figure.

In Fig. 3.6.3, a ditryptophan ligand is interactively docked to a monomer of a KcsA
potassium channel by the user. Before docking, the nine active degrees of freedom are ho-
mogeneously distributed within the monomer, since the structure is stable. During docking,
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Figure 3.6.2: Adaptivity example, the force is applied to a poly-alanine (left) and to a part
of a protein complex (PDB code 1AC1, right). Colors represent rigid body clusters (hence
show the location of active torsion angles). For the right molecule the point where the force
is applied is marked with a red circle.

Figure 3.6.3: Interactive docking example. Degrees of freedom are represented by different
colors.
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however, the interaction between the ligand and the monomer automatically produces a re-
distribution of the active degrees of freedom around the docking site, to better approximate
the interaction. In this case as well, the small number of active degrees of freedom allows us
to efficiently perform interactive flexible docking of the ligand into the protein.

3.6.2 Other applications

We would like to stress that our tree construction algorithm can be useful for any application
relying on the DCA algorithm or adaptive algorithms, or even other types of hierarchy-based
torsion-angle dynamics algorithms [203].

It has been also shown elsewhere that it can be employed in other applications, e.g.
minimization of symmetrical systems in internal coordinates [76].

3.7 Conclusion
We have presented a fast algorithm for building an assembly tree associated to a molecular
graph, which may contain cycles and multiple connected components. This data structure can
be useful in a number of applications using internal coordinates, including those performing
adaptive computations on such graphs [79, 78, 41]. More generally, we believe that our
algorithm might be useful for other algorithms (e.g. parallel ones) that rely on hierarchical
representations of molecular graphs.

Our algorithm consists of three main steps: (1) contracting cycles in the input graph; (2)
building an assembly tree for the acyclic connected graph; (3) building an assembly tree of the
complete graph comprising several connected components. We have studied the complexity of
each step of the algorithm both theoretically and experimentally on several sets of benchmarks.
The first step of our algorithm is linear in the number of edges in the input graph. The second
one is linear in the number of edges in the contracted graph, but also depends on the branching
factor of this graph. We also studied the balance properties of the obtained tree. The third
step is linear in the number of connected components for uniformly distributed systems and
is dependent on the system’s geometry in the general case. There are some limitations for the
algorithm proposed. For example, the choice of the auxiliary parameter (the number of cells
along each axis at the third step) can influence the result.

We have demonstrated applications of our algorithm to adaptive torsion-angle quasi-
statics.

In the future, we would like to study possible extensions, as well as other applications of
our algorithm. For example, it would be interesting to investigate the procedure of dynamic
tree updates after inserting or deleting elements from the graph, or when changing the graph
topology or geometry.



Chapter 4

ARPS: Adaptively Restrained
Particle Simulations

Les potentiels d’interaction utilisés dans les simulations de particules sont généralement écrits
comme une somme de termes qui dépendent seulement de quelques positions relatives de par-
ticules. Les méthodes de simulation traditionnelles déplacent toutes les particules à chaque
pas de temps, et peuvent donc dépenser beaucoup de temps pour mettre à jour toutes les forces
entre particules.

Dans le Chapitre précédent, nous avons parlé des algorithmes adaptatifs qui simplifient
les simulations en réduisant le nombre de degrés de liberté dans le système. Ces algorithmes
utilisent des méthodes incrémentales pour mettre à jour les forces entre particules et, par
conséquent, peuvent accélérer les simulations moléculaires. Dans ces méthodes, cependant,
l’énergie du système n’est pas conservée, et aucune correction théorique n’a été fournie pour
résoudre ce problème. Aucune étude sur les propriétés du système n’a été non plus réalisée.

C’est pour cela que, dans ce Chapitre, nous introduisons une méthode générale et math-
ématiquement fondée que nous appelons les Simulations de particules restreintes de façon
adaptative (ARPS, Adaptively Restrained Particle Simulations). Cette méthode accélére les
simulations de particules en activant et désactivant les degrés de liberté en positions du sys-
tème, tout en laissant les moments évoluer. Nous illustrons ARPS sur plusieurs expéri-
ences numériques, notamment (a) un exemple de cascade de collisions qui montre comment
ARPS permet de choisir finement le compromis entre précision et vitesse, et (b) une étude
de polymère solvaté qui montre comment il est possible de calculer rapidement des proprietés
statiques d’équilibre correctes avec ARPS.

87
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Interaction potentials used in particle simulations are typically written as a sum of terms
that depend on just a few relative particle positions. Traditional simulation methods move all
particles at each time step, and may thus spend a lot of time updating inter-particle forces.

In the previous Chapter, we have discussed adaptive algorithms that simplify simulations
by reducing the number of degrees of freedom in the system. These algorithms use incremental
methods to update inter-particle forces and, thus, may accelerate molecular simulations. In
these adaptive algorithms, however, the energy of the system is not conserved, and no theoret-
ical correction was provided to solve this problem. No further study on the system’s properties
was conducted either.

That is why, in this Chapter, we introduce a general, theoretically-grounded method to
speed up particle simulations that we call ARPS: Adaptively Restrained Particle Simulations.
This method adaptively switches on and off positional degrees of freedom, while letting mo-
menta evolve. We illustrate ARPS on several numerical experiments, including (a) a collision
cascade example that demonstrates how ARPS make it possible to smoothly trade between
precision and speed, and (b) a polymer-in-solvent study that shows how one may efficiently
compute static equilibrium properties with ARPS.
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4.1 Introduction

In the previous Chapter, as an application example, we have discussed adaptive algorithms
that simplify simulations by reducing the number of degrees of freedom in the system. These
algorithms use incremental methods to update inter-particle forces and, thus, may accelerate
molecular simulations. In these adaptive algorithms, however, the energy of the system is not
conserved, and no theoretical correction was provided to solve this problem. No further study
on the system’s properties was conducted either.

That is why we were interested in developing a general, theoretically-grounded method
that would accelerate simulations but would also sample the phase space correctly and allow to
collect exact statistical averages. As molecular systems are usually simulated through writing
a Hamiltonian function and deriving equations of motion from it, we have chosen Hamiltonian
dynamics for our approach. As a result, it can be applied to a broader type of simulations:
particle simulations.

Particle simulations are widely used not only in molecular dynamics, but also in fluid
dynamics (dynamics of liquid, gas and plasma), celestial mechanics [204, 205], and even in
computer graphics [206, 207]. In all of these fields, faster simulations may result in progress
on many challenging problems, e.g. protein folding [17, 18], molecular docking [5, 131, 132],
molecular solvation [19], diffusion across biomembranes [20], fracture in metals[208], ion im-
plantation [209], etc.

Novel, general approach to speed up particle simulations that we introduce in this Chapter
is called Adaptively Restrained Particle Simulations (ARPS). Our approach relies on an adap-
tively restrained (AR) Hamiltonian, and works by adaptively switching positional degrees of
freedom on and off repeatedly during a simulation, while letting momenta evolve. This is
achieved by making the inverse inertia of the particles a general function of phase-space coor-
dinates. Simulating the adaptively restrained Hamiltonian produces approximate trajectories
of the original system that depend on user-defined error thresholds. The main advantages of
our approach are that (a) it is mathematically grounded and is able to produce long, stable
simulations; (b) it does not require modifications to the simulated interaction potential, so
that any suitable existing force-field can be directly used with ARPS; (c) as the same potential
is used for the whole system, there is no resolution change, and, therefore, the reverse-mapping
problem (an important problem for many coarse-graining methods) does not arise (d) under
frequently-used assumptions on the interaction potential, ARPS make it possible to reduce
the number of forces that have to be updated at each time step, which may significantly speed
up simulations; (e) ARPS can be combined with numerous existing methods, such as fast al-
gorithms to compute long-range interactions [74, 75] (although incremental versions may have
to be designed), as well as techniques aimed at accelerating sampling [97, 85, 98]; (f) when
performing constant-energy simulations, ARPS allow users to finely and continuously trade
between precision and computational cost, and rapidly obtain approximate trajectories; (g)
most important, when performing Adaptively Restrained Molecular Dynamics (ARMD) in
the canonical (NVT) ensemble, correct static equilibrium properties can be computed.

In this Chapter we propose one specific choice of the inverse inertia matrix for simulations
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in Cartesian coordinates. In this case, positional degrees of freedom of individual particles
are switched on and off during the simulation, and the inverse inertia matrix is diagonal.
Moreover, the simplification threshold – hence the trade-off between precision and cost – may
be chosen for each particle independently, so that users may arbitrarily focus ARPS on specific
regions of the simulated system (e.g. a polymer in a solvent).

It is interesting to note that, in our approach, we may not specify the region of interest in
the simulation: the method will automatically determine the most relevant simulation parts
(it is demonstrated below in one of the examples: collision cascade study). However, with
an appropriate choice of the inverse inertia matrix it might be possible to impose a specific
region in space to be active all the time during the simulation. We do not fix either a level of
coarse-graining in the system, to e.g. water molecules. Depending on the conditions, larger
blocks may move together.

The rest of this Chapter is organized as follows. We first present the theoretical basis of
ARPS approach and discuss its properties. Then, we provide efficient integration algorithms
to perform AR simulations. Finally, ARPS is illustrated on several numerical experiments,
including (a) a collision cascade example that demonstrates how ARPS make it possible to
smoothly trade between precision and speed, and (b) a polymer-in-solvent study that shows
how one may efficiently compute static equilibrium properties with ARPS.

4.2 Theory

Let us now describe the theoretical aspects of our novel approach, ARPS.

4.2.1 General Hamiltonian

A classical way of studying a particle system is writing a Hamiltonian function and deriving
equations of motion from it. A Hamiltonian is usually expressed as a sum of kinetic and
potential energies of the system: H = K + V . The precise form of these energies, however, is
chosen according to the system under study.

Let H(q,p) denote the Hamiltonian commonly associated to a system of N particles in
3D [23]:

H(q,p) =
1
2pTM−1p + V (q), (4.2.1)

where a pair (q,p) is a vector of 6N phase-space coordinates, vector q represents general-
ized coordinates and p – generalized momenta, M is a 3N ×3N diagonal mass matrix (which
might depend on positions q), and V (q) is an interaction potential.

For example, in Cartesian coordinates, vector q represents positions of all particles, and
p – their momenta:
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q =



q1,x
q1,y
q1.z
...

qN,x
qN,y
qN,z


, p =



p1,x
p1,y
p1.z
...

pN,x
pN,y
pN,z


.

The first term of the sum in equation (4.2.1) is the most common form of the kinetic
energy for the system of N particles.

The second term, the interaction potential, is assumed to depend on positions of the par-
ticles but not on their momenta. Typically, this potential (derived from classical or quantum
computations) may be written as a sum of terms that depend on a few relative positional
degrees of freedom only [33, 50, 35]. Different potentials are adapted to different types of
atoms or interactions [33, 50, 35].

The equations of motion in this case take the form:

ṗ = −
∂H

∂q = −
∂V (q)
∂q ,

q̇ =
∂H

∂p = M−1p,
(4.2.2)

where q̇ and ṗ are time derivatives of particle positions and momenta, respectively.
In our approach, we introduce an Adaptively Restrained (AR) Hamiltonian, i.e. a Hamil-

tonian with a modified inverse inertia matrix Φ(q,p):

HAR(q,p) = 1
2pTΦ(q,p)p + V (q). (4.2.3)

We will show how, thanks to the matrix Φ(q,p), we will be able to switch positional
degrees of freedom on and off, with the help of two thresholds involved in the definition of
Φ(q,p). We note, however, that the potential V (q) does not need to be modified, so that any
suitable existing force-field can be directly used in ARPS.

The adaptive equations of motion may now be deduced from the AR Hamiltonian:

ṗ = −
∂HAR

∂q = −
∂V (q)
∂q −

1
2pT

∂Φ(q,p)
∂q p,

q̇ =
∂HAR

∂p = Φ(q,p)p +
1
2pT

∂Φ(q,p)
∂p p.

(4.2.4)

4.2.2 Statistics

We now specify our study for the case of molecular dynamics simulations. Our approach in
this case is called Adaptively Restrained Molecular Dynamics (ARMD).
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Statistical properties of a molecular system are studied in a statistical ensemble. In this
work, we will deal with two principal ensembles: microcanonical ensemble (NVE) and canon-
ical ensemble (NVT) [23].

The first one, NVE, is directly simulated by the Hamiltonian dynamics. This ensemble
describes the thermodynamical properties of an isolated system, and, thus, preserves the
energy of the system. In other words, it samples only one energy isoline in the phase space,
and this isoline is specified by the initial conditions. The second ensemble, NVT, passes
through all energy levels sampling a canonical measure. It has a well-defined temperature T .
One way to perform an NVT simulation is through Langevin dynamics. Langevin dynamics
is a stochastic dynamics that models a situation where a Hamiltonian system is coupled to a
thermostat.

To simulate the NVT ensemble we perform an adaptive Langevin dynamics simulation,
i.e. a Langevin dynamics simulation of the adaptively restrained Hamiltonian.

To do so, we consider the general form of Langevin equations [107]:

dqt = ∇pHAR(qt, pt)dt,
dpt = −∇qHAR(qt, pt)dt− γ∇pHAR(qt, pt)dt+ σdWt,

(4.2.5)

where t→ dWt is a 3N -dimensional standard Brownian motion, and σ and γ are 3N×3N
real matrices. The following fluctuation-dissipation relation should also be satisfied: σσT =
2γ/β for β = 1/kBT , where kB is a Boltzmann constant.

We now show how static equilibrium properties can be determined using AR simulations
in the NVT ensemble.

Due to the fact that we have an underlying Hamiltonian to perform AR simulations, we
can recover the original statistics by computations similar to those performed in importance
sampling [23]. Indeed, we can consider that the AR Hamiltonian (HAR) is a biased version of
the original one (H):

HAR =
1
2pTΦ(q,p)p + V (q) =

=
1
2pTM−1p + V (q) +

1
2pT (Φ(q,p)−M−1)p =

= H +
1
2pT (Φ(q,p)−M−1)p,

HAR = H + VAR(q,p).

(4.2.6)

Thus, to compute an average 〈A〉H :

〈A〉H =
´

A(q,p)e−
H(q,p)

kBT dqdp
´
e
−H(q,p)

kBT dqdp
, (4.2.7)

one may write the following:
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〈A〉H =
A(q,p) e−

HAR(q,p)−VAR(q,p)
kBT dqdp

´
e
−HAR(q,p)−VAR(q,p)

kBT dqdp
=

=
´

A(q,p)e
VAR(q,p)

kBT e
−HAR(q,p)

kBT dqdp
´
e

VAR(q,p)
kBT e

−HAR(q,p)
kBT dqdp

=
〈Ae

VAR(q,p)
kBT 〉HAR

〈e
VAR(q,p)

kBT 〉HAR

.

(4.2.8)

Therefore, phase-space samples generated according to the AR distribution are then
weighted (remark how the weight of a phase space sample is 1 if the system is completely
active, and smaller than 1 elsewhere).

When the variable of interest A only depends on positions and the Hamiltonian is sepa-
rable (e.g. the inverse mass matrix depends only on momenta) we can get the correct static
equilibrium property straight away (consider that H(q,p) = K(p) + V (q)):

〈A(q)〉HAR
=
´

A(q)e−
HAR(q,p)

kBT dqdp
´
e
−HAR(q,p)

kBT dqdp
=
´

A(q)e−
H(q,p)+VAR(p)

kBT dqdp
´
e
−H(q,p)+VAR(p)

kBT dqdp
=

=
´

A(q)e−
V (q)
kBT dq

´
e
−K(p)+VAR(p)

kBT dp
´
e
−V (q)

kBT dq
´
e
−K(p)+VAR(p)

kBT dp
=
´

A(q)e−
V (q)
kBT dq

´
e
−V (q)

kBT dq
=

=
´

A(q)e−
V (q)
kBT dq

´
e
−K(p)

kBT dp
´
e
−V (q)

kBT dq
´
e
−K(p)

kBT dp
=
´

A(q)e−
H(q,p)

kBT dqdp
´
e
−H(q,p)

kBT dqdp
= 〈A(q)〉H .

(4.2.9)

It is interesting to note that due to this representation of the Hamiltonian (4.2.1), one can
consider VAR(q,p) = 0.5 pT (Φ(q,p) −M−1)p as a modified potential, and not a modified
kinetic energy. Such potentials depending on particles momenta have been proposed before,
e.g. the Pauli potential [210].

4.2.3 Integration

To perform particle simulations, the equations of motion should be numerically integrated
in time [87]. We will now discuss a choice of an integration scheme for the AR simulations.

4.2.3.1 Integration in the NVE ensemble

For the microcanonical ensemble (NVE) simulation, we search for a symplectic integrator: it
is well-suited for long-term integrations of Hamiltonian systems, as it preserves the geometric
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structure of the Hamiltonian flow (the flow φt of a Hamiltonian system is the mapping that
advances the solution by time t). Let us explain what the symplectic integrator means.

Symplectic integrators A linear mapping X is symplectic if

XTJX = J with J =
(

0 I
−I 0

)
,

where I is an identity matrix.
In symplectic integrators every one-step mapping is symplectic.
As a result, symplectic integrators preserve volume in the phase space and keep the fluctu-

ations of energy bounded. The produced phase-space trajectories do not cross. A symplectic
integrator conserves the value of a modified, or shadow, Hamiltonian much better than the en-
ergy of the system (which might drift after a sufficient simulation time). Shadow Hamiltonian
is defined by th asymptotic expansion in powers of the integration step size [211].

Several symplectic integrators are compared in Ref. [212] and the progress on recent
efficient integrators can be found in Ref. [213].

Partitioned Euler method In our implementation, we use a so-called partitioned Euler
method, which for partitioned systems:

v̇ = b(u, v),
u̇ = a(u, v),

results in the following set of equations for a numerical integrator:

vn+1 = vn + b(un, vn+1)h,
un+1 = un + a(un, vn+1)h, (4.2.10)

where the lower indices stand for time step numbers and h is a time step size. This method
is symplectic [87] and is also called symplectic Euler method.

For this integrator, equations (4.2.4) become:

pn+1 = pn +
(
−
∂V (qn)
∂qn

−
1
2p
T
n+1

∂Φ(qn, pn+1)
∂qn

pn+1

)
h,

qn+1 = qn +
(

Φ(qn, pn+1)pn+1 +
1
2p
T
n+1

∂Φ(qn, pn+1)
∂pn+1

pn+1

)
h.

(4.2.11)

If the Hamiltonian is separable (i.e. when inverse mass matrix depends only on momenta),
a lot of simple integrators become symplectic and explicit (i.e. pn+1 does not appear on the
right side of the first equation anymore). Precisely, the partitioned Euler method in this case
takes the form:
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pn+1 = pn +
(
−
∂V (qn)
∂qn

)
h,

qn+1 = qn +
(

Φ(pn+1)pn+1 +
1
2p
T
n+1

∂Φ(pn+1)
∂pn+1

pn+1

)
h.

(4.2.12)

4.2.3.2 Integration in the NVT ensemble

For an NVT simulation, one possibility is to use the following splitting scheme [107]: a half
step for the Langevin part of the equations, a full time step for the Hamiltonian part, and
again a half step for the Langevin part:

pn+1/2 = pn −
(
∂HAR(qn, pn+1/2)

∂qn
+ γ

∂HAR(qn, pn+1/2)
∂pn+1/2

)
h

2 + σGn

√
h

2,

qn+1 = qn +
(
∂HAR(qn, pn+1/2)

∂pn+1/2

)
h,

pn+1 = pn+1/2 −
(
∂HAR(qn+1, pn+1)

∂qn+1
+ γ

∂HAR(qn+1, pn+1)
∂pn+1

)
h

2 + σGn+1/2

√
h

2,

(4.2.13)

where {Gk} is a sequence of i.i.d. Gaussian random vectors with zero mean and the
identity covariance matrix. In this case, two equations of three in (4.2.13) are implicit. To
solve an implicit equation pn+1 = g(pn+1), one may use a simple fixed-point algorithm: pk+1

n+1 =
g
(
pkn+1

)
, where the upper index k denotes the iteration number of this algorithm. For the

last equation in eq. (4.2.13) the fixed-point algorithm looks as follows:

pk+1
n+1 = pn+1/2 −

(
∂HAR(qn+1, p

k
n+1)

∂qn+1
+ γ

∂HAR(qn+1, p
k
n+1)

∂pkn+1

)
h

2 + σGn+1/2

√
h

2. (4.2.14)

In practice, we found that about 3 iterations were sufficient for the method to converge.

4.2.4 Choosing the inverse mass matrix

We will now describe how the matrix Φ(q,p) may be chosen to perform AR simulations. This
matrix must specify how and when positional degrees of freedom are switched on and off. We
now propose such a matrix for particle simulations in Cartesian coordinates.

4.2.4.1 How to switch

We choose to switch positional degrees of freedom on and off for each particle independently,
and, to do so, we use a diagonal matrix Φ(q,p). Each diagonal 3 × 3 block of this matrix
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Figure 4.2.1: Restraining function ρ as a function of particle’s kinetic energy K(p).

corresponds to a single particle, and is an identity matrix multiplied by the particle’s adaptive
inverse inertia φi(qi, pi). We choose φi(qi, pi) = m−1

i (1 − ρi(qi, pi)), 1 ≤ i ≤ N , where mi is
the particle’s mass, and ρi(qi, pi) ∈ [0, 1] is a twice-differentiable restraining function. When
ρi(qi, pi) = 0 (no restraining), φi(qi, pi) = m−1

i and the particle is following full dynamics
(the dynamics derived from the Hamiltonian (4.2.1)). When ρi(qi, pi) = 1 (full restraining),
φi(qi, pi) = 0 and the particle is not moving, whatever the force applied to it. When ρi(qi, pi) ∈
(0, 1), the particle smoothly switches between both behaviors.

4.2.4.2 When to switch

We make the restraining function of each particle i depend on its kinetic energy Ki(pi) =
p2

i /(2mi), so that ρi(qi, pi) = ρi(pi). Let εr
i and εf

i , εr
i < εf

i , respectively denote a restrained-
dynamics threshold and a full-dynamics threshold for particle i. We define ρi(pi) as:

ρi(pi) =

⎧⎪⎨
⎪⎩

1, if 0 � Ki(pi) � εr
i ,

0, if Ki(pi) � εf
i ,

s(Ki(pi)) ∈ [0, 1], elsewhere,
(4.2.15)

where s(ε) is a twice-differentiable function with respect to its argument and, therefore,
to pi, s(εr

i ) = 1, s(εf
i ) = 0. One possible choice for this function is an interpolation spline of

order five:

η =
ε − εr

i

δi
, s(ε) = −6η5 + 15η4 − 10η3 + 1, (4.2.16)

where δi = εf
i − εr

i is the width of the transition region.
Figure 4.2.1 plots the restraining function ρ as a function of particle’s kinetic energy K(p)

with the smoothing function s(ε) defined by eq. (4.2.16).
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The inverse mass-matrix is now completely defined. The AR Hamiltonian can then be
written as follows:

HAR(q,p) = 1
2pT (I− ρ(p))M−1p + V (q),

where I is a 3N × 3N identity matrix and ρ(p) is a 3N × 3N diagonal matrix combining
the individual ρ(pi). The equations of motion can be derived from the AR Hamiltonian for
each ith particle independently:

ṗi = −
∂HAR

∂qi
= −

∂V

∂qi
,

q̇i =
∂HAR

∂pi
=

pi

mi
(1− ρi(pi))−

1
2
p2
i

mi

∂ρi(pi)
∂pi

.

(4.2.17)

As can be seen from the equations, momenta are still propagated as in a full-dynamics
simulation (eq. 4.2.2), but positions evolve differently. In particular, when ρ(qi, pi) = 1, q̇i = 0
and the particle is not moving.

In other words, in an adaptively restrained particle simulation, when the module of a
particle’s momentum becomes small enough (without necessarily becoming zero), the parti-
cle’s position completely stops evolving. Even when a particle is fully restrained, though, its
momentum may continue to change, and its kinetic energy might become large enough again
for the particle to resume moving. In general, ARPS restrain and release particles repeatedly
over time.

Please note that when the inverse inertia matrix is chosen in the described way, the AR
Hamiltonian is separable. Therefore, the partitioned Euler integration scheme described above
becomes symplectic and explicit.

4.3 Discussion

We now discuss the properties of the AR simulations and illustrate some of them with simple
examples.

4.3.1 Phase portrait

Let us discuss in more detail how ARPS modifies the system’s trajectories in phase space.
For that, we consider a simple case: a single particle in 1D of mass 1 g/mol that is attached
with a spring of stiffness 1 kcal/(mol Å2) to a fixed point (particle with infinite mass). We
will then observe the trajectories of this particle in phase space.

We, first, show in Fig. 4.3.1 the phase-space portrait of this system in the full-dynamics
case.

Then, in Fig. 4.3.2 we show a phase-space portrait of this system simulated with the
AR Hamiltonian (εr1 = 0.5 kcal/mol, εf1 = 0.8 kcal/mol). Opal lines stand for isolines of this
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Figure 4.3.1: Phase portrait of the harmonic oscillator in 1D, full-dynamics simulation.

Hamiltonian, the thick black line – for a specific isoline of this Hamiltonian (HAR ≡ 1), the dot-
ted red circle represents the corresponding isovalue of the classical Hamiltonian (H ≡ 1). The
restrained-dynamics region (where the particle is fully-restrained) is blue, the full-dynamics
region (where the particle is not restrained) is green, and black dashed lines indicate the
boundaries of these two regions. The AR Hamiltonian has modified trajectories: in the
restrained-dynamics region positions are constant, but momenta change; in the transition
region trajectories smoothly switch between restrained dynamics and full dynamics. In the
full-dynamics region trajectories stay unperturbed. When p = 0, the AR trajectory is tan-
gential to the classical one.

We performed more AR simulations of this harmonic oscillator, varying the thresholds.
The results are shown in Fig. 4.3.3.

As is clear from the plots, the larger the width of the transition region δ, the bigger the
distance between dashed lines; the bigger the thresholds εr

1 and εf
1 , the larger the blue zone

on the plot.

4.3.2 Rescaling time

On the presented above phase portraits of the harmonic oscillator system we do not see
time. In reality, the period of the oscillation of the particle will be perturbed by ARPS. We
propose a solution to recover this period in this simple case, by considering an AR simulation
as a rescaling of time: in the restrained-dynamics part of the trajectory time stops, in the
full-dynamics region time is unperturbed, and in the transition region time is adjusted to
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Figure 4.3.2: Phase portrait of the adaptively restrained harmonic oscillator in 1D (εr
1 = 0.5

kcal/mol, εf
1 = 0.8 kcal/mol). Opal lines stand for isolines of this Hamiltonian, the thick

black line for a specific isoline of this Hamiltonian (HAR ≡ 1), the dotted red circle represents
the corresponding isovalue of the classical Hamiltonian (H ≡ 1). In the full-dynamics region,
trajectories remain unperturbed. In the restrained-dynamics region, positions are constant
although momenta evolve. In the transition region trajectories smoothly switch between
restrained dynamics and full dynamics.
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Figure 4.3.3: Phase portraits of the adaptively restrained harmonic oscillator for several sets
of thresholds, ε stands for εr1 (in kcal/mol), the width of the transition region δ expressed in
kcal/mol.



4.3. DISCUSSION 101

q 
n+1

q 
n

t 
n

t 
n+1

dt 

dt A

dq 

AR 

Full

dynamics 
dq

n

dt A dq
n

dt 
f

t 
n+1

A

Figure 4.3.4: Projection of the AR trajectory to the full-dynamics trajectory. Detailed de-
scription is provided in the text.

interpolate between both behaviors.
To rescale time we do the following. We examine two trajectories: the full-dynamics

trajectory – (tn, qnf ), and the AR one – (tn, qn) (upper indices stand for time steps, the
lower index f stands for full dynamics). These trajectories are shown as black and red lines,
respectively, in Fig. 4.3.4. We would like to “project” the AR trajectory to the full-dynamics
one. For each time step dt we will search for an adaptive time step dtA, so that, with a step of
a Verlet integrator, in the full-dynamics case, the point (tn, qnf ) would go to (tn+1, qn+1

f ) with
the help of momenta pn+1

f , and in AR simulation the point (tn, qn) would go to (tn+1
A , qn+1)

with the help of momenta pn+1. At time tn for any n, the positions qn and the displacements
dqn are the same for both trajectories.

As
dqn

dt
= (1 − ρ(pn))m−1pn −

1
2p
nT
∂ρ(pn)
∂pn

pn and
dqnf
dtA

= m−1pnf and dqn = dqnf then,
dtA(t) can be written as:

dtnA =
(1− ρ(pn))m−1pn −

1
2p
nT
∂ρ(pn)
∂pn

pn

m−1pnf
dt,

From this formula, at each time step we need to calculate pnf (the velocity at time tn on
the full-dynamics trajectory). One can do it by integrating the usual Hamiltonian H with
an adaptive time step: pn+1

f = pnf + fndtA, where fn is the current force. As, therefore, at
each integration point the positions qn are the same for both trajectories, we do not need
to recalculate forces for the full-dynamics trajectory at each time step, we just update the
full-dynamics momenta and store them.

We have applied this technique to the described harmonic oscillator to recover its oscil-
lation period: performed AR simulations with the rescaled time. The obtained results are
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shown in Fig. 4.3.5.
On the top picture of Fig. 4.3.5 we show the situation where the particle is not fully-

restrained at the beginning of AR simulation. In this case, we recovered completely the
oscillation period and the particle’s trajectory with the proposed technique. However, we
had to use a very small time step, as the points on the trajectory were no more regular, and
when the consecutive points were far from each other we could have lost precision, and the
trajectory would have diverged from the real one.

On the bottom picture of Fig. 4.3.5, we show the situation where, at the beginning of
the AR simulation, the particle is in the transition region. Thus, we recover only the particle
oscillation period, but not its trajectory, as in this case the trajectory does not reach some
full-dynamics values q. In this case, we initialize p0

f as if we were on a full-dynamics trajectory,

with which the kinetic energies are equal: 0.5
(
p0
f

)2
/m = 0.5

(
1− ρ

(
p0)) (p0) 2/m. Therefore,

p0
f = p0√1− ρ (p0).

4.3.3 Temperature in the NVT ensemble

Let us now discuss temperature in AR simulations. In this section we consider only separable
Hamiltonians HAR.

Let the NVT ensemble be sampled with the Langevin thermostat, and let the temperature
of the thermostat be set to a certain value T . We would like to determine the corresponding
temperature TAR in the AR simulation, which is defined by the formula [214]:

TAR =
1

DkB

〈
N∑
i=1

(
pi ·

∂HAR

∂pi

)〉
,

where D is the dimensionality of the system (e.g. 3N for N particles in three-dimensional
space) and the dot sign stands for the dot product. It is known that:

〈
N∑
i=1

(
pi ·

∂HAR

∂pi

)〉
=
〈

N∑
i=1

(
qi ·

∂HAR

∂qi

)〉
=
〈

N∑
i=1

(
qi ·

∂V (q)
∂qi

)〉
.

Thus, the temperature TAR may be represented as a variable that depends only on particle
positions. Therefore, it is conserved by AR simulations in NVT ensemble (eq. (4.2.9)) and,
as in the full-dynamics simulation, is equal to the thermostat temperature:

TAR = T.

It is also interesting to study the average of the quantity K∗ =
N∑
i=1

p2
i

2mi
( the kinetic energy

in a full-dynamics simulation) during an AR simulation. For that we introduce an average
T ∗:
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Figure 4.3.5: Period recovering for 1D harmonic oscillator. Top picture parameters: εf =
0.002 kcal/mol, δ = 0.0015 kcal/mol. Bottom picture parameters: εf = 0.005 kcal/mol,
δ = 0.0025 kcal/mol. Initial momentum of the particle was 0.089.
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Figure 4.3.6: Dependence of the temperature T ∗ (eq. 4.3.1) (in AR simulation εr = 1 kcal/mol,
εf = 2 kcal/mol) on the temperature of the thermostat T for a system of 1 particle (m = 1)
in 3D.

T ∗ =
2

DkB

´
K∗e−βHAR´
e−βHAR

=
2

DkB

´
K∗e−βKAR´
e−βKAR

. (4.3.1)

To demonstrate the dependence of T ∗ on the thermostat parameter T for fixed values of
both threshold parameters, we considered the following example: a single particle of mass 1
moving freely in 3D. We fixed the values of the thresholds to εr = 1 kcal/mol and εf = 2
kcal/mol and performed numerical integration of the equation (4.3.1) with Mathematica.
The result is displayed in Fig. 4.3.6. It can be seen from the picture, that T ∗ in this case
exceeds the temperature of the thermostat. It happens because even when the particle stops,
its momentum continues to evolve, and the quantity K∗ depends purely on the particle’s
momentum.

For the same example, we fixed the thermostat temperature T to 95 K, and varied the
values of the two threshold parameters (εf was always set to exceed εr). The obtained results
for T ∗ are shown in Fig. 4.3.7.

4.4 Algorithms

After having presented and discussed theoretical properties of ARPS, we proceed to a numer-
ical realization of AR simulations.

In this section, we describe an algorithm to integrate in time a set of equations (4.2.17)
to simulate a system of particles in the NVE ensemble.

The general scheme is presented in Algorithm 4.1. The function updateState() is called
every time step. In the Algorithm 4.1 we also provide the pseudo-code for the functions called
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Figure 4.3.7: System of 1 particle (m = 1) in 3D. Dependence of the temperature T ∗ (eq.
4.3.1) on the thresholds εr and εf for a fixed thermostat temperature T = 95 K.

by the updateState() function, except for the one that updates the forces. This function will
be discussed in more detail later.

The functions updateMomenta() and updatePositions() represent the symplectic Euler
integration scheme (eq. (4.2.12)) applied to the equations (4.2.17).

The function updatePositions() can be optimized as follows: qin+1 (and, therefore, related
quantities as, e.g. ∂ρi(pin+1)/∂pin+1) should be recomputed only for those particles for which
ρi(pin+1) is not equal to 1. In other words, for rigid nodes the position qin+1 = qin and does
not need to be updated.

Our approach may accelerate particle simulations due to the smaller number of forces that
have to be updated at each time step. This is possible if the interaction potential is written
as a sum of terms that depend only on a few relative positional degrees of freedom. This
is a frequently-used assumption, an example of such potential is any pairwise potential, e.g.
Lennard-Jones potential. In this case, the distance, and thus the forces between two fully-
restrained particles do not change and, as a result, these forces should not be recomputed.
Another common assumption that we consider further on is the fact that the potential is
rapidly decaying, in other words, a cutoff distance is introduced.

Further on, we describe two efficient force-update algorithms that benefit from the fact that
only some particles in the system are active, and may significantly speed up the calculations.
The potential energy can be calculated at the same time as the forces.
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Algorithm 4.1 ARPS, NVE ensemble, integration scheme. Lower indices stand for time step
numbers, the time step size is denoted by h.
updateState()

if (time step number 6 total number of steps)
updateForces()
updateMomenta()
updatePositions()

updateMomenta()
for (each particle ai)

pi
n+1 = pi

n + f i
n+1h

updatePositions()
for (each particle ai)

compute ρi(pi
n+1) according to equation (4.2.15)

qi
n+1 = qi

n +
(
pi

n+1
mi

(1− ρi(pi
n+1))−

1
2
‖pi

n+1‖2

mi

∂ρi(pi
n+1)

∂pi
n+1

)
h

4.4.1 Force update, first method

The first force-update method that we propose is based on the examination of the neighbor
lists constructed for the system at the current and at the previous time steps.

At each time step we construct a neighbor list for the system: a list of pair of particles being
closer than the cutoff distance and considered to be interacting (see Chapter 2). This neighbor
list can be constructed in a number of ways. In our implementation, we used an approach
described in Ref. [76]. This approach is based on a tree representation of the system and a
corresponding hierarchy of axis-aligned bounding volumes [173] (AABB’s). Recursively, the
left and right sub-trees of internal nodes are searched for interaction depending on the overlap
of the corresponding bounding volumes. This hierarchy of bounding volumes, therefore, should
be updated every time step.

At the first time step we evaluate all forces for all pairs of particles in the current neighbor
list. For any following time step, we examine two lists: the previous neighbor list (constructed
at the previous time step) and the current neighbor list. If an interaction is present in
the previous list only, then this interaction has disappeared, and we subtract the old force
(stored with the previous interaction pair) from the forces of both corresponding particles.
If an interaction is present only in the current list, this interaction has just appeared, and
we calculate the new force, save it and add it to both particles. If both lists contain an
interaction, we check if the radius-vector between the two particles has changed, and only if
so, we recalculate the force (subtract the old force and add the new one). This algorithm is
optimal in the number of updated forces and should be used if the force calculation is the
crucial time for the simulation.

We now give a detailed description of this method.
At each time step we use three lists: current neighbor list, previous neighbor list and a
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transition list. An element of any list is a structure (ai, aj , rij , f ij) containing pointers to
two particles ai and aj , a radius-vector between these two particles rij and a corresponding
vector-force f ij (let it be the force produced by particle aj on particle ai). For each particle in
the system we store a previous position (position at the previous time step). The total force
acting on any particle is the sum of the forces applied to it by all particles that are closer
than the cutoff distance to it. For example, for particle ai the force is:

f i =
∑

j,rij<cutoff

f ij .

These are the main steps of the algorithm.

1. We compute the current neighbor list. However, while constructing this list we memorize
only the distance between the interacting particles and do not compute the correspond-
ing force. As a result, the element of the current neighbor list looks like (ai, aj , rij ,
0).

2. We traverse the previous neighbor list. For each list element (ai, aj , rij , f ij), we
compare the radius-vector rij stored in this element to the current radius-vector between
the particles ai and aj (the difference between their current positions). If these radii
are equal (all elements of the vectors are equal, not just their norms), we put this list
element to the transition list. Otherwise (the interaction is broken or has changed), we
“subtract” from both particles forces corresponding to this interaction. Precisely, from
the force of the particle ai we subtract the force f ij stored in the list element, and we
add f ij to the force of the particle aj . As a result, the forces of particles ai and aj are
modified as if these particles were no more interacting.

3. We traverse the current neighbor list. For each list element (ai, aj , rij , 0), we compare
radius-vector rij stored in this element to the old radius-vector between the particles
ai and aj (the difference between the previous positions of these particles). If these
radii are not equal (interaction is new or has changed), we calculate the new force f ij
corresponding to the interaction between the two particles and add it to the force of
the particle ai and subtract it from the force acting on the particle aj . We, then, put
this list element with the computed force (ai, aj , rij , f ij) to the transition list. As a
result, in the transition list we have the elements from the current neighbor list where
the interaction has changed compared to the previous time step, and the elements from
the previous neighbor list where the interaction has not changed.

4. We swap previous and transition lists. As a result, at the next time step we will consider
the transition list produced at the current step as the “previous list”. Then current and
transition lists are cleared.

Let us now discuss the complexity of this method. Construction of the neighbor list at each
time step is linear [76] in time in the number of particles in the system and has a O(N logN)
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Algorithm 4.2 ARPS, the first method for incremental force update. Lower indices stand
for time step numbers, upper indices are particle indices, a denotes a particle, q denotes its
position, f its force, rij is a radius-vector connecting particles ai and aj , and the function
calculateForce() is specific for each potential.
updateForces_1()
construct a neighbor list, called Current
compare Current and Previous neighbor lists, update forces:

for (each element ek=(ai, aj , rij
n−1, f

ij
n−1) of the Previous neighbor list)

if (rij
n−1 = qj

n − qi
n )

put ek to the Transition list
else

// subtract interaction
f i = f i − f ij

n−1
f j = f i + f ij

n−1
for (each element ek=(ai, aj , rij

n , 0) of the Current neighbor list)
if (rij

n != qj
n−1 − qi

n−1)
f∗ = calculateForce(rij

n )
put (ai, aj , rij

n , f∗) to the Transition list
// add interaction
f i = f i + f∗

f j = f j − f∗

Previous neighbor list = Transition list
clear Current neighbor list and Transition list

(tree) memory complexity. But one is free to choose any other suitable algorithm for this part
of calculations. Force update based on the examination of the neighbor lists is linear in time
and memory in the neighbor list size (each time step we can reuse the same memory for the
lists). This method is optimal in the number of updated forces, but might be too expensive
when the cost of updating forces is low.

This method is summarized in pseudo-code in Algorithm 4.2.

If we have periodic boundary conditions for the system (PBC [23]), the algorithm may
be changed in its part where the neighbor list is constructed: we may use the algorithm
described in Ref. [76] as if the images of the cell were symmetrical replicas of the initial
system. Therefore, we have only one current interaction list at each time step. During the
examination of the lists, when two radii are being checked for equality, the one that does
not come from the neighbor list being traversed, should be recalculated using one-image
convention. We need to do this because this distance can be smaller than the cutoff with one
of the images of the particles but not with the particle itself. Thus, for PBC we require that
the box size is at least twice bigger than the cutoff distance.
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4.4.2 Force update, second method

The second method to perform the force update is based on a 3D grid.
To initialize this method, we first create the grid: find the smallest axis-aligned paral-

lelepiped enclosing all system particles, and divide it into cubic cells with an edge size equal
to or larger than the cutoff. Then, each particle of the system is mapped to some grid cell
according to its position. Each cell has a list of pointers to the particles, each particle stores
an index of the cell it belongs to. For each particle in the system we store its previous position
(position at the previous time step).

At the first time step we calculate forces for all particles in the system using the grid as
follows. Every particle ai is checked for the proximity with all particles from the current cell
and all surrounding cells (26 or less, depending on how close is the current cell to the grid
border). This is the sufficient set to find all particles interacting with a specific one. If particle
ai is closer than the cutoff to some particle aj and j > i we compute the forces acting on both
particles due to this interaction1.

At any other time step for the whole set of active particles (those that ρi < 1) we perform
the three following steps2, also illustrated in Fig. 4.4.1:

1. Force update: For each active particle ai, we find all particles from the current cell
and all surrounding cells, that at the previous time step were closer than the cutoff to
ai (using positions from the previous time step for all particles) and that have indices
superior to i or are fully-restrained (ρj = 1)3. Then, we calculate the interaction force
f ij for each pair that we found and subtract this interaction from the particles in the
pair (we subtract the force f ij from the force of particle ai, and we add f ij to the force
of particle aj). We did not lose any previous interaction, as the grid has not yet been
updated.

2. Grid update: Each active particle ai is assigned to another grid cell if necessary,
according to its current position. At this step the particles do not actually move (their
positions are updated in updatePositions() function): indices of the containing cells are
updated for particles and lists of pointers to particles are updated for grid cells.

3. Force update: For each active particle ai, we find all particles from the current cell
and all surrounding cells, closer to it than the cutoff distance and that have indices
superior to i or are fully-restrained (ρj = 1). Then, we calculate the interaction force
f ij for each pair that we found and add this interaction to the particles in the pair (we
add the force f ij to the force of the particle ai, and we subtract f ij from the force of
the particle aj).

1In the general case, any cell size can be chosen. In any case, all particles that interact with a specific
particle in cell c can be found in a limited number of cells around cell c.

2Only when the first step is performed for all active particles, the second step may be started, etc.
3This way, we update interactions between any two active particles ai and aj (i < j) only once, while

considering particle ai; and we update all interactions between active and fully-restrained particles while
considering active particles.
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1. Force update 

(subtract interactions)

Input

2. Grid update 3. Force update

(add interactions)

Figure 4.4.1: ARPS. Force update, second method. Top figure: an input for the force update
algorithm is the system configuration from the previous time step. The interactions between
the particles (interaction forces between pairs of atoms) at the previous time step are displayed
by arrows. The particles though, are colored according to the restraining function calculated
at the current time step: active particles are green (light grey), fully-restrained particles are
blue (dark grey). Bottom figure: the three main steps of the algorithm. 1. The first step
of the algorithm subtracts interactions from the two particles in each pair where at least one
particle is active (the corresponding arrows disappear). 2. The second step of the algorithm
updates the grid according to the positions of active particles at the current time step (only
these particles have moved). 3. The third step of the algorithm adds interactions due to the
new positions of the active particles to both particles in each pair where at least one particle
is active (new arrows corresponding to the new forces appear).
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Algorithm 4.3 ARPS, the second method for the incremental force update. In this Algorithm
a denotes a particle, q denotes its position, f its force, rijn is a radius-vector connecting particles
ai and aj at time step n, and the function calculateForce() is specific for each potential.
updateForces_2()
if (step =1)

create grid, distribute all particles to the grid cells
for (each particle ai)

for (each particle aj from the current cell and the surrounding cells)
if (rij 6 cutoff and i < j)

//add interaction
f∗ = calculateForce(rij)
f i = f i + f∗

f j = f j − f∗

else
for (each active particle ai)

for (each particle aj from the current cell and the surrounding cells)
if (rij

n−1 6 cutoff and (ρj
n = 1 or i < j))

//subtract previous interaction, previous time step positions are used
f∗ = calculateForce(rij

n )
f i = f i − f∗

f j = f j + f∗

for (each active particle ai)
if necessary, assign the particle to another grid cell

for (each active particle ai)
for (each particle aj from the current cell and the surrounding cells)

if (rij
n 6 cutoff and (ρj

n = 1 or i < j))
//add new interaction, current positions are used
f∗ = calculateForce(rij

n )
f i = f i + f∗

f j = f j − f∗

In this method we calculate more forces than in the first one (up to two times more), but
the time complexity is linear in the number of active particles in the system, which was more
adapted to the numerical examples that we provide. The memory complexity is the size of
the grid, and is thus linear in the number of particles in the system. The summary of this
method can be found in pseudo-code in Algorithm 4.3.

If periodic boundary conditions are required, the algorithm may be slightly modified. One
possibility (that we use in our implementation) is to create in the grid a surrounding layer of
empty cells (buffer cells), and pre-store an index of another grid cell which is a “mirror cell”
from the PBC point of view to this one (along the axis or axes where we crossed the border
of the simulation box, we subtract/add a box size). Then, for each cell we still examine all
surrounding cells, and if one of these surrounding cells is a buffer cell, when searching for
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1 23

Figure 4.4.2: Possible modification of a 2D-grid in the second force-update method to intro-
duce periodic boundary conditions. The green dashed line surrounds the grid cells that may
be occupied by the system’s particles, and the cells outside this line (buffer cells) are always
empty. Highlighted cells of the same color (red and blue) represent mutual mirror cells. If
during the algorithm’s execution, while examining neighboring cells of some cell (e.g. cell 1
on the figure), a buffer cell is found (cell 2), its mirror cell (cell 3) will be considered instead.

interactions, we will address particles from its “mirror cell”. A graphic explanation for this
phenomena in 2D is shown in Fig. 4.4.2.

4.5 Results

In this section, we provide several numerical experiments that illustrate ARPS and demon-
strate its advantages.

The ARPS method was implemented in C++ and tested either on Computer 1 (two Intel
Xeon X5450 3GHz quad-core processors, with 16 GB of RAM, on a Windows Vista 64-bit
operating system) or on Computer 2 (one Intel 2.40 GHz quad-core processor with 4GB of
RAM, on a Windows Vista 32-bit operating system). The implementation was serial, so that
each simulation only used one processing core at a time. For the force update, the second
method proposed in Section 4.4.2 was used. As a reference, full-dynamics simulation we
considered an AR simulation with both thresholds equal to 0.

4.5.1 Argon liquid

To show that ARPS is able to produce long stable trajectories, we simulated a periodic 3D
box of 21 952 Argon particles (box length 99.3048 Å, particle mass 39.95 g/mol) in the NVE
ensemble. A Lennard-Jones potential [215] was used:

VLJ(r) = 4ε

(σ
r

)12

−
(
σ

r

)6
 ,

where r is an inter-particle distance. The following parameters were used [215]: ε/kB = 120
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V(r)

1.0 1.5 2.0 2.5 3.0
0.0

-0.4

-0.8

r

r

Figure 4.5.1: Lennard-Jones potential, normal VLJ(r) (firm line) and truncated between 1.5
and 2 Å V tr

LJ(r) (dashed line).

K, kB = 0.00198721 kcal/mol/K, σ = 3.4Å, cutoff c = 8Å, and the potential was truncated
through a smoothing function applied between 7.5 and 8 Å (switching distance ds is, thus,
in this case equal to 0.5 Å). Precisely, the potential that we used was V tr

LJ(r) = VLJ(r)w(r),
where w(r) is a switching function:

c1 =
(
1/
(
c2 − d2

s

))3

c2(r) = c2 − r2, c3 = 3
(
c2 − d2

s

)
c4(r) = c2(r) (c3 − 2c2(r))

w(r) =


1, r2 < d2

s;
c2(r)c4(r)c1, d2

s ≤ r2 ≤ c2;
0, r2 ≥ c2.

Normal VLJ(r) and truncated V tr
LJ(r) Lennard-Jones potentials are shown in Fig. 4.5.1.

After a small period of equilibration, we launched four simulations: a reference (full-
dynamics) simulation, and three AR simulations with different thresholds (time step size
0.488 fs, 5 000 000 time steps, total simulation time 2.44 nanoseconds, Computer 1). Figure
4.5.2 shows, first, the system’s total adaptive energy for both AR simulations, i.e. the value
of HAR over time. These adaptive energies are stable, demonstrating that ARPS can produce
long trajectories. We would like to stress that we did not use any thermostat to prevent energy
drift. Adaptively restrained simulations in the NVE ensemble are stable because they derive
from a Hamiltonian, for which symplectic integrators are readily available (e.g. partitioned
Euler method that we use in the current implementation). Moreover, for the inverse inertia
matrix that we have chosen, the AR Hamiltonian is separable and, therefore, the partitioned
Euler method becomes explicit.

Note that even though the initial conditions are identical in all simulations, the adap-
tive Hamiltonians are different from the reference Hamiltonian, and are also different from
each other, because the modified inverse inertia matrices are not the same. As a result, the
conserved quantities (the values of the various Hamiltonians), i.e. the total energy in the
reference case, or the total adaptive energies in the AR cases, are different from each other.
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Figure 4.5.2: Four simulations of a periodic 3D box of 21 952 Argon particles (NVE ensemble):
reference simulation and 3 AR simulations with different pairs of thresholds (in kcal/mol).
We output total full-dynamics energy (in kcal/mol) for the reference simulation and total
adaptive energies for AR simulations.

In Fig. 4.5.3, for all four simulations we plot the number of the forces updated each time
step (top) and the number of active particles at each time step (down). They are stable during
all the simulations.

We were also interested in the evolution of the system’s linear momenta during the sim-
ulation. To study that, in Fig. 4.5.4 we output the momenta along each axis (px =

∑N
i=1 p

i
x,

py and pz) and the total momenta (ptot = px + py + pz) for the full-dynamics simulation (top)
and one AR simulation (down). One can see that AR simulation did not perturb this linear
momenta a lot compared to the full-dynamics one.

The information about the simulations is summarized in Table 4.1. For each AR simula-
tion, we report the thresholds that were used, the average number of updated forces 〈NF 〉 and
its percentage relatively to the reference simulation, the average number of active particles
〈Nact〉 and this number as a percentage of the total number; the average computation time
〈t〉 per time step in ms, and the total speedup (due to the reduction in 〈NF 〉) with respect to
the reference simulation (which took about 10 CPU days).

4.5.2 Collision cascade

To demonstrate how AR particle simulations allow us to smoothly trade between computa-
tional cost and precision, we simulated the collision cascade in 1D, 2D and 3D.
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Figure 4.5.3: Four simulations of a periodic 3D box of 21 952 Argon particles, with differ-
ent pairs of thresholds (in kcal/mol) for AR simulations (NVE ensemble): number of forces
updated each time step (top) and number of active particles at each time step (down).
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Figure 4.5.4: Simulations of a periodic 3D box of 21 952 Argon particles (NVE ensemble): lin-
ear momenta evolution for the full-dynamics simulation (top) and one AR simulation (down).
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Simulation Threshold,
kcal/mol

〈NF 〉 Speedup,
NF

〈Nact〉 〈t〉,
ms

Speedup,
time

Reference —— 537 186 —— 21 952 180 ——
ARPS 1 εf = 2.5,

εr = 1.5
365 942
(68%)

≈ 1.5x 4116.2
(19%)

89 ≈ 2x

ARPS 2 εf = 3.5,
εr = 2.5

211 682
(39%)

≈ 2.5x 2272.3
(10%)

57 ≈ 3x

ARPS 3 εf = 10,
εr = 9

43 203
(8%)

≈ 12.5x 434.5(2%) 15 ≈ 12x

Table 4.1: Summary of the information on four simulations of a periodic 3D box of 21 952
Argon particles, with different pairs of thresholds for AR simulations (NVE ensemble). Aver-
age number of forces updated each time step 〈NF 〉, average number of active particles 〈Nact〉,
average wall-clock time per time steps 〈t〉 may be significantly reduced.

4.5.2.1 Collision cascade in 1D

First, we simulated a 1D collision cascade in the system of 100 particles of equal mass (1
g/mol) in the NVE ensemble. Precisely, into a freely evolving system, at some time step, we
injected kinetic energy: increased the momenta of the most left particle. We, then, measured
the shock front at each time step – the sequence number (from the left) of the particle with
the largest velocity (time derivative of the position) among all particles in the system.

This test was performed on Computer 2, with a time step of 0.048 fs, until the shock
reached the most right particle. Particles were considered interacting through a Lennard-
Jones potential (σ = 1, 4ε = 0.001, cutoff = 5.25 Å). We performed a full-dynamics simulation
and two AR simulations with different sets of thresholds. Initial temperature before shock
in the full-dynamics simulation was 3.73 K. The shock was applied at time step 1000. We
considered two cases: a relatively large shock (Fig. 4.5.5, top) so that the temperature became
620 K on average in the full-dynamics simulation and a relatively small shock (Fig. 4.5.5,
down) so that the temperature became 8 K on average in the full-dynamics simulation.

As can be seen in Fig. 4.5.5, the shock front in AR simulations was propagated very
accurately, especially in the one with the large shock. When a small shock is considered, at
the end of simulation, we can see slight differences between the reference simulation and the
AR simulations.

The information about these three simulations is summarized in Tables 4.2 and 4.3, for the
large and the small shock respectively. As can be seen, the simulation time can be significantly
reduced with ARPS, as this is the case where ARPS is beneficial: a small part of the system
is more active than all the rest at each time step.

However, we can obtain even bigger acceleration of the simulation in 2D.
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Figure 4.5.5: Simulating a collision cascade in the 1D system of 100 particles in the NVE
ensemble (thresholds in kcal/mol). Shock front for a large shock (top) and a small shock
(down).
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Simulation Thresholds,
kcal/mol

〈Nact〉 〈NF 〉 Total wall-clock
time, s

Reference —– 100 435 0.36
ARPS 1 ε = 0.03, δ = 0.015 21.5 324 0.27 (1.3x)
ARPS 2 ε = 0.1, δ = 0.05 1.37 24 0.15 (2.4x)

Table 4.2: Summary of the information on three simulations of the collision cascade in 1D,
NVE ensemble. Large shock.

Simulation Thresholds,
kcal/mol

〈Nact〉 〈NF 〉 Total wall-clock
time, s

Reference —– 100 421 1.92
ARPS 1 ε = 0.03, δ = 0.015 21 272 1.35 (1.4x)
ARPS 2 ε = 0.1, δ = 0.05 1.25 21 0.28 (6.9x)

Table 4.3: Summary of the information on three simulations of the collision cascade in 1D,
NVE ensemble. Small shock.

4.5.2.2 Collision cascade in 2D

We then simulated a collision cascade in a 2D system composed of N = 5 930 particles with
mass 1 g/mol in the NVE ensemble, using again the Lennard-Jones potential (ε/kB = 120 K,
σ = 3.4Å, cutoff = 8 Å, the potential was truncated through a smoothing function applied
between 7.5 and 8 Å). We performed four simulations of the shock induced by a particle
launched at high velocity towards the initially static 2D system: a reference (full-dynamics)
simulation, and three AR simulations with varying degrees of precision (time step size 0.0488
fs, 7 000 time steps, total simulation time 342 fs, Computer 2). Figure 4.5.6 compares the
final configurations reached by the four simulations. For each AR simulation, we output
the maximal absolute displacement of the particles ∆qmax = maxi ‖qi − qfi ‖ (where qi is a
vector of coordinates of particle i at the last time step of the AR simulation and qfi is the
vector of coordinates of this particle at the last time step of the reference simulation) and the
root-mean-square deviation (RMSD):

RMSD =

√∑N
i=1 ‖qi − q

f
i ‖2

N
.

In this example, AR simulations allow for large speedups (up to 10x) while preserving the
features of the shock extremely well.

The video showing the four complete simulations in wall-clock time can be found on the
NANO-D group website or by following the link. This video demonstrates how AR simulations
accelerate the collision cascade in the described system, and, in particular, one can see that
AR simulations are very efficient at the beginning of the test, when only few particles are

http://nano-d.inrialpes.fr/
http://www.youtube.com/watch?v=lrI5tXFM5Ro
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Figure 4.5.6: Simulating a collision cascade in 2D in the NVE ensemble with controlled
precision (thresholds in kcal/mol). Adaptively restrained simulations allow us to smoothly
trade between precision and speed. Even for large speedups (up to 10x) the features of the
shock are extremely well preserved.
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reached by the shock, and all simulations have quite a similar speed when almost all the
particles in the system are activated by the shock.

Error analysis. We will now discuss the error provided by ARPS due to the simplification.
Already in Fig. 4.5.6 we output RMSD and ∆qmax for the AR simulations. However, it might
be interesting to analyze the distribution of the error in space. For that, in the middle picture
of Fig. 4.5.7, for each AR simulation, we output in color the absolute displacement Ai of the
particles from their final positions in the reference simulation:

Ai =


‖qi − qfi ‖

σ
, if ‖qi − qfi ‖ < σ;

σ, else.

For visual clarity at the top picture of Fig. 4.5.7 we display particle displacements in the
same format. It can be seen that the error appears as in the zones were the particles move
the most, as on the border of the shock wave.

In the bottom figure of Fig. 4.5.7 we output in color the relative error, error in percents
Ri, of the particle displacement in AR simulations relative to its displacement in the reference
simulation:

Ri =


‖q − qfi ‖
‖qfi − q0

i ‖
× 100%, if

‖q − qfi ‖
‖qfi − q0

i ‖
< 0.01;

1%, else,

where q0
i is the initial position of the particle i. As can be seen, few particles have the

relative error exceeding 1% even for the fastest simulation.
In this example, the 2D plane was static before the shock. Note however that, even if

the plane particles had been initially moving, we could have chosen threshold values that
would have allowed us to freeze a significant number of these particles, and speed up the
simulation. What is important, in order to obtain a large speedup while preserving well the
shock features, is that in the system of interest a small part of the system is moving relatively
rapidly compared to the rest of the system.

We now increase even more the dimensionality of the simulation and consider a 3D system.

4.5.2.3 Collision cascade in 3D

In this test, we simulated a 3D system of 138 916 particles of mass 1 g/mol, interacting through
the same Lennard-Jones potential as in the previous example, in the NVE ensemble. This
system was pre-minimized as a parallelepiped of dimensions: 201.842 × 103.6 × 234.374 Å.
One particle was then set apart and, given some initial momenta, launched in the direction
of the initially static parallelepiped. We performed four simulations for 48.88 fs with the
time step 0.000488 fs on Computer 2: one reference simulation and three AR simulations.
We present the results in Fig. 4.5.8 (top), drawing only a part (approximately a half) of
particles in the 3D parallelepiped for visual clarity. We again output the RMSD and ∆qmax
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Reference simulation ARPS - Speedup 5x

RMSD=0.0612σ   Δq     =1.3σ

ARPS - Speedup 2.5x

RMSD = 0.0114σ  Δq     =0.18σ

ARPS - Speedup 10x

RMSD=0.359σ  Δq     =13.94σ

Particle 

displacement
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 reference

>σ

0

max max max

Reference simulation ARPS - Speedup 5x

RMSD=0.0612σ   Δq     =1.3σ

ARPS - Speedup 2.5x

RMSD = 0.0114σ  Δq     =0.18σ

ARPS - Speedup 10x

RMSD=0.359σ  Δq     =13.94σmax max max

Relative 

particle 

displacement

>1%

0%

Figure 4.5.7: Simulating a collision cascade in a 2D system in the NVE ensemble, error
analysis: particle displacements Ai (top), particle displacements relative to reference (middle);
particle displacements Ri relative to the displacements in the reference simulation(bottom).
Thresholds are expressed in kcal/mol. Error appears as in the zones were the particles move
the most, as on the border of the shock wave.
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Reference simulation ARPS - Speedup 10x

RMSD=0.132σ, Δq     =3.59σ

ARPS - Speedup 7.5x

RMSD = 0.121σ Δq     =5.59σmax max

Particle

displacement

σ

0

ARPS - Speedup 25x

RMSD=7.255σ, Δq     =623.1σmax

Reference simulation ARPS - Speedup 10x

RMSD=0.132σ, Δq     =3.59σ

ARPS - Speedup 7.5x

RMSD = 0.121σ Δq     =5.59σmax max

Particle

displacement

error
3σ

0

ARPS - Speedup 25x

RMSD=7.255σ, Δq     =623.1σmax

Figure 4.5.8: Collision cascade in a 3D system of 138 916 particles in the NVE ensemble. For
visual clarity only a half of the particles is displayed. Adaptively restrained simulations allow
us to smoothly trade between precision and speed. Thresholds for AR simulations from left
to right (in kcal/mol): εr = 0, εf = 0.01 (speedup 7.5); εr = 0.01, εf = 0.02 (speedup 10);
εr = 99, εf = 100 (speedup 25).

for each simulation to estimate the produced error. Figure 4.5.8 (bottom) shows, as in the
previous example, the absolute displacement Ai of the particles from their final positions in
the reference simulation.

As can be seen from the figure, big speedups can be achieved but, as before, for larger
accelerations of the simulation, the error increases as well.

To summarize, even though with ARPS the dynamics of the system is modified and
system’s static equilibrium properties can not be easily corrected with unbiasing techniques
in NVE ensemble, ARPS allow users to smoothly trade between the simulation’s speed and
precision and to obtain approximate results faster, e.g. the main features of the collision
cascade are preserved with ARPS while simulation time is significantly reduced.

We will now discuss several tests performed in the canonical (NVT) ensemble.

4.5.3 Radial distribution function

We first show that ARPS may be used to obtain correct statistical properties in the NVT
ensemble. We consider a statistics dependent only on positions, so we do not have to unbias it:
the Radial Distribution Function g(r) (RDF). In statistical mechanics, a radial distribution
function in a system of particles describes how the particle density varies as a function of
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the distance from a reference particle. This function plays an important role in molecular
simulations because macroscopic thermodynamic quantities can be calculated using RDF.

The radial distribution function, i.e. the probability to find some particle in the shell dr
at the distance r of a reference particle, may be written as follows:

g(r) =
dn(r)

4πr2ρ dr
, (4.5.1)

where dn(r) is the number of particles at a distance between r and r+dr from the reference
particle, and ρ = N/V is the density of the system.

In practice, we were computing distances rij between all particles closer than 20 Å and
putting values 1/‖rij‖2 to a histogram. This histogram was normalized by the value 4πρdN/2,
where d is the width of the histogram bin (the multiplier 4πρd comes directly from the formula
(4.5.1), and N/2 comes from the fact that, in this case, we had N reference particles and
counted each distance between the particles twice).

We performed Langevin simulations of a system of 343 Argon particles interacting in a
3D periodic box through a Lennard-Jones potential used in the Argon liquid example but
with the cutoff 8.2 Å, and the potential was truncated through a smoothing function applied
between 7.7 and 8.2 Å (box length 25.56 Å, Langevin friction coefficient γ = 1, T = 94.4 K).
The particles were initially far from equilibrium, positioned at the nodes of a 3D cubical lat-
tice (to make the comparison meaningful: if the system is pre-equilibrated, the RDF obtained
with an AR simulation is good anyway since we stay for long periods in correct conformations
and average them). We launched a full-dynamics simulation and an AR simulation (εf = 40
kcal/mol, δ = 0.5 kcal/mol) and computed the RDF g(r) in each case (time step size 0.488
fs, 150 000 time steps, total simulation length 73.2 ps, Computer 2). For both simulations, we
started collecting statistics when the number of updated forces in the AR simulation became
non-zero (t=4.88 ps). Otherwise we accumulate too much non-significant initial configura-
tions for AR simulations. Figure 4.5.9 plots the results: even though the AR simulation has
significantly modified the system’s dynamics (only 3% of the particles were moving on aver-
age at each time step), the curves coincide, demonstrating that the equilibrium statistics have
been preserved.

The AR simulation modifies the system’s dynamics significantly. As a result, convergence
to the correct radial distribution function g(r) is slower in the AR simulation than in the
full-dynamics simulation for a given number of time steps. To illustrate this, we plot in Fig.
4.5.10 the reference and the AR radial distribution functions obtained after 50 000 steps. As
can be seen, RDF obtained with the AR simulation is noisier than the reference one for this
number of time steps – precisely, because particle positions haven’t been sufficiently sampled,
the plotted AR RDF keeps traces of the original cubical lattice used as initial configuration.
Thanks to the reduced number of moving particles, though, the computational cost of an AR
time step is significantly reduced: AR simulation is about 8 times faster than the reference
one.

The goal was, however, to show that the AR RDF converges exactly to the reference RDF.
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Figure 4.5.9: Radial distribution functions for an Argon system (periodic 3D box, 343 parti-
cles, NVT ensemble). Even though the AR simulation has significantly modified the system’s
dynamics (see 〈Nact〉), the curves coincide.
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Figure 4.5.10: Radial distribution functions of an Argon system obtained with full-dynamics
and AR simulations (periodic 3D box, 343 particles, NVT ensemble). After 50 000 simulation
steps RDF in the AR simulation is noisier than the reference one.
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Note, that for an AR simulation in the NVE ensemble, the correct RDF would in general
not be obtained, since the system is being simplified and some distances between the particles
in the system may become inaccessible.

4.5.4 Polymer in solvent

Finally, to show how ARPS may be used to obtain static properties faster than with full-
dynamics simulations, we performed Langevin simulations of a toy polymer in the small
solvent box, in order to predict the polymer’s hydrodynamic radius:

1
RH

= 1
N2

〈∑
i6=j

1
rij

〉
H

,

where N is the number of monomers in a polymer, rij is the distance between the i-th and
j-th monomers, and 〈. . . 〉H is the ensemble average (i.e. the average of the values obtained
at each step of one simulation). Please note that 〈. . . 〉H = 〈. . . 〉HAR

in this case as the
hydrodynamic radius depends only on particles positions:

1
RH

= 1
N2

〈∑
i6=j

1
rij

〉
H

= 1
N2

〈∑
i6=j

1
rij

〉
HAR

.

This numerical experiment is representative of numerous applications of particle simula-
tions in physics, chemistry, biology, etc., where information is collected about a small part of
the particle system, but where the rest of the system is required so that the collected infor-
mation is realistic (e.g. simulating an active site in an enzyme, a solute passing through a
membrane channel, a defect in a graphene sheet, a crack in a material, etc.).

We modeled the solvent as 343 Argon particles in a 3D box of length 25.56 Å interacting
through Lennard-Jones potential with the same set of parameters as for the Argon liquid
example, and represented the polymer as 5 particles of mass 40 g/mol each, connected by
springs (stiffness k = 30 000ε/σ2, equilibrium length d0 = 0.7071 × σ = 2.4Å). The solvent
interacted with the polymer through the same Lennard-Jones potential. Since we wanted to
obtain statistics on the polymer, we only restrained the solvent particles (εr = 18 kcal/mol,
εf = 20 kcal/mol).

We then compared the rate of convergence of the polymer’s hydrodynamic radius RH
to its average value 〈RH〉 in full-dynamics simulations and AR simulations. To achieve this
despite the intrinsic stochasticity of Langevin simulations, we performed 90 day-long full-
dynamics simulation and 90 day-long AR simulations (time step size 0.488 fs, Langevin friction
coefficient γ = 1, T = 350 K, a total of 6 CPU months, Computer 1), and compared the
variance of RH in both cases. The obtained 〈RH〉 values are very close (4.459, and 4.462
respectively).

Figure 4.5.11 plots the variance of RH in full-dynamics simulations and AR simulations,
first as a function of simulation time (top) and then as a function of wall-clock time (bottom).
In simulation time (i.e. per time step), the full-dynamics variance decreased faster than
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Figure 4.5.11: Computing the hydrodynamic radius RH of a solvated polymer, NVT ensem-
ble. Full-dynamics simulations reduce the variance more at each time step (top), but AR
simulations perform many more time steps, so that they reduce the variance faster in wall-
clock time (bottom). For any target precision, AR simulations compute the hydrodynamic
radius four times faster than full-dynamics simulations.

the AR variance. Since solvent particles, which influence the polymer conformations, were
sometimes immobile in the AR simulations (2% of active particles on average), full-dynamics
simulations sampled phase space more efficiently at each time step. The computational cost of
AR time steps, however, was significantly reduced, so that AR simulations allowed for about
7x more time steps in the same wall-clock duration (3 645 000 versus 495 000). As a result,
the AR variance decreased faster than the full-dynamics variance per wall-clock second. To
estimate the speedup, we fitted the curves with functions of the form: a/

√
x + b (thin grey

lines on the plots). We obtained a = 0.0029 (b = −0.484) for the reference simulations and
a = 0.0015 (b = −0.065) for the AR simulations, indicating that the speedup permitted by
AR simulations to reach a specific precision was around 4x.

The variance of the hydrodynamic radius does not converge exactly to the zero value,
because of the error occurring due to the finite time step size.

Simulating polymer in solvent in NVT ensemble, we observed not just the hydrodynamic
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Average over
90 simulations

Reference ARPS Error Speedup

〈∆rmax〉 3.77258 3, 77688 0.1% 4x
〈RG〉 2.77471 2.7776 0.1% 4x
〈RE〉 6.82529 6.83596 0.2% 4x
〈RH〉 4.45913 4.46185 0.06% 4x

Table 4.4: Average values of the polymer parameters over reference and AR simulations,
relative errors for these parameters, and the speedups. For each parameter the speedup was
computed, as described in the text, from the coefficients a of the fitting functions of the form
a/
√
x+ b.

radius RH , but also the average maximal distance of a monomer from the polymer’s center
of mass 〈∆rmax〉H = 〈∆rmax〉HAR

, the radius of gyration RG:

RG =
√

1
N

∑
i

〈
(ri −R)2

〉
H

=
√

1
N

∑
i

〈
(ri −R)2

〉
HAR

,

where ri is the position of the i-th monomer and R =
∑
i ri/N is the polymer’s center of

mass, and the end-to-end distance RE :

RE =
√〈

(rN − r1)2
〉
H

=
√〈

(rN − r1)2
〉
HAR

.

In Table 4.4 we output average values of the variables of interest, where this average is
taken over 90 simulations, and also the relative error: the difference between the full-dynamics
and AR values divided by the reference value.

Therefore, we have shown that our method is able to obtain unbiased positional static
properties, and does it faster than full-dynamics simulations4

The video corresponding to this numerical experiment can be found on the NANO-D
group website or by following the link. It shows the full-dynamics simulation of the described
system and several AR simulations with different sets of thresholds.

Active density Simulating a toy polymer in a solvent, we saw that, at the beginning of
the simulation, active particles were mostly concentrated around the moving protein. This
happened because the protein was put into the solvent unfolded, and it was tending to fold.
To determine whether this phenomena persists in long term, we studied system’s active den-
sity, the percentage of particles that are active around the polymer. In practice, for each
solvent particle we measured its distance to the polymer’s center of mass, and added to a cor-
responding histogram bin the degree of restraining (the value ρi ∈ [0, 1]) for this particle. The

4Implicit solvent methods would probably still be faster, but would probably produce significant changes
in, e.g. gyration radius [93].

http://nano-d.inrialpes.fr/
http://nano-d.inrialpes.fr/
http://www.youtube.com/watch?v=XV_XAJEpR48
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Figure 4.5.12: Active density of the solvent for the cases of 2,3 and 5 monomers in a polymer
(NVT ensemble). The solid line stands for 2 monomers, the dashed line for 3 monomers, the
dotted line for 5 monomers.

histogram was then normalized. The results for the solvent composed of 343 Argon particles
(same parameters for the solvent and the simulation, total simulation steps 13 000), and the
polymer with 2, 3 and 5 monomers (same parameters as above), respectively, are shown in
Fig. 4.5.12.

We also performed an AR simulation of the same system (εf = 4 kcal/mol, δ = 0.5
kcal/mol). We observed that the active densities in the full-dynamics case coincide with the
those obtained with ARPS. Therefore, the probability of the solvent particle to be active does
not depend on its distance from the polymer center of mass, there are no more active particles
around the polymer than somewhere else in the simulation box.

Let us give an explanation for this effect. We can write the active density Nact(r, dr) at
the spherical volume situated between r and r + dr from the polymer’s center of mass as
follows:

Nact(r, dr) =
ˆ
I(r, dr)ρ(p)e−βHAR(q,p)dp dq,

where I(r, dr) is the indicator function saying whether the particle is situated in the
interval [r, r + dr) of distances from the polymer’s center of mass.

As the AR Hamiltonian is separable, we can write:

Nact(r, dr) = N(r, dr)〈ρ〉,

where N(r, dr) is the number of particles in the spherical volume bounded by [r, r + dr),
where 〈ρ〉 is the average value of the restraining function among all the particles in this
volume. This 〈ρ〉 does not depend on r as it was integrated separately, and the histogram
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was normalized. This is the reason why the active density is the same for the AR and the
reference simulation, even though 〈ρ〉 might be different for these simulations.

4.6 Conclusion
In conclusion, we proposed a novel general algorithm accelerating particle simulations due
to the smaller number of forces to be updated at each time step. It is based on a new,
adaptively restrained Hamiltonian that switches positional degrees of freedom on and off
during the simulation. We have shown, in the case of AR molecular dynamics, how NVE and
NVT simulations may be performed, and how static equilibrium properties can be obtained.
We believe our approach may be extended in numerous directions, since the inverse mass
matrix Φ(q,p) can be chosen according to the specific needs of different types of simulations.
Moreover, with any such matrix, ARPS can be coupled to numerous other complementary
methods (e.g. those including long-range interactions [74, 75]). New incremental algorithms
for the force update may have to be designed for them. It can also directly use numerous
existing accelerating techniques [97, 85, 98].

In the future we would like to study more possible applications of this approach, e.g.
studying mixtures, phase transitions, etc. We also want to explore several theoretical aspects
of ARPS: the choice of thresholds, their influence on the system’s dynamical properties,
connections to Monte Carlo methods, etc. Analytical solutions for some parts of the simulation
might be obtained and multiple-time-stepping techniques [77] may be applied.



Chapter 5

Hierarchical adaptively restrained
particle simulations

Dans le Chapitre précédent, nous avons présenté une nouvelle approche générale qui accélère
les simulations moléculaires: les simulations de particules restreintes de façon adaptative.
Cette approche est fondée sur un Hamiltonien restreint de façon adaptative à l’aide d’une
matrice d’inertie inverse modifiée. Nous avons proposé un choix particulier de cette matrice,
et nous avons démontré plusieurs avantages des simulations adaptatives produites sur quelques
exemples.

Dans ce Chapitre, nous continuons à travailler sur cette approche, et nous proposons un
autre choix de la matrice d’inertie inverse dans le Hamiltonien HAR. Cette matrice active
et désactive les degrés de liberté positionnels relatifs dans le système, et se prête bien aux
systèmes représentés sous forme d’arbre binaire (l’utilité de cette représentation et des algo-
rithmes se fondant sur elle ont été abordés en détail au Chapitre 3). Nous appelons cette
approche “Simulations hiérarchiques de particules restreintes de façon adaptative” (ARPS
hiérarchiques).

Nous proposons un algorithme d’intégration efficace pour une simulation de particules dans
ce cas, et démontrons cette approche sur plusieurs exemples numériques.

131
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In the previous Chapter, we have presented a novel general approach that accelerates molec-
ular simulations: Adaptively Restrained Particle Simulations. This method relies on an adap-
tively restrained Hamiltonian, i.e. a Hamiltonian with a modified inverse inertia matrix. We
have proposed one particular choice of this matrix and have demonstrated several advantages
of the obtained simulations on several examples.

In this Chapter, we continue to work on this approach, but we propose an alternative choice
for the inverse inertia matrix in the AR Hamiltonian. This matrix adaptively turns on and off
relative positional degrees of freedom in the system (and not the positional degrees of freedom
of individual particles), and is designed to simulate the systems represented hierarchically,
e.g. as binary trees (the use of such representations, as well as some algorithms relying on
them, were discussed in detail in Chapter 3). We call this approach hierarchical Adaptively
Restrained Particle Simulations (hierarchical ARPS).

After introducing theoretical aspects of hierarchical ARPS, we propose an integration
scheme to perform efficient particle simulations in this case, and provide several numerical
examples illustrating this approach.
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5.1 Introduction

In the previous Chapter, we have introduced a novel general approach to speed up particle
simulations. This approach relies on an adaptively restrained (AR) Hamiltonian, and the
equations of motion for a system of particles may be derived from this function. The AR
Hamiltonian involves a modified inverse inertia matrix, which allows us to switch positional
degrees of freedom on and off repeatedly during the simulation. This inverse inertia matrix
can be chosen in a number of ways to suit various applications and particularities of the
system of interest.

In the previous Chapter, we have proposed one specific choice of the inverse inertia matrix:
this matrix was designed to produce simulations in Cartesian coordinates, where particles
stopped and resumed moving repeatedly over time, and the decision about the switch was
taken for each particle independently. This inverse inertia matrix was, therefore, diagonal,
and easy to store and manipulate.

The restraining function for each particle (the function that determined whether this
particle should be moving or not) was chosen to be dependent on the particle’s momenta
or, more precisely, its kinetic energy. This function had as its parameters two user-defined
thresholds to regulate the amount of simplification of the particle’s motion. It was possible to
use different thresholds for different particles, or for different groups of particles. In particular,
we could force a part of the system to stay permanently active and the rest of the system to
follow AR dynamics with a user-defined amount of simplification (as in the polymer-in-solvent
study described in Section 4.5.4).

In this Chapter, we introduce an alternative choice for the inverse inertia matrix in the AR
Hamiltonian. This matrix is designed to simulate systems that may naturally be represented as
a hierarchy, and precisely, as a binary tree (the use of such representations and the algorithms
relying on them were discussed in detail in Chapter 3). In this new approach that we call
hierarchical Adaptively Restrained Particle Simulations (hierarchical ARPS), we switch on
and off relative positional degrees of freedom in the system, and not just the positional degrees
of freedom of individual particles. This results in large blocks of particles being restrained
together, moving together and being split repeatedly during the simulation. The forces inside
rigid blocks do not need to be recomputed at each time step. This inverse inertia matrix is,
however, no more diagonal in general case, and might be dense.

The restraining function for each particle in this case depends not only on the properties
of this particle, but also on the properties of some other particles. As in classical ARPS, two
thresholds are used to tune the simplification of the system’s motion, and a subsystem may
be forced to stay permanently active during the simulation.

The rest of this Chapter is organized as follows. First, we present the theoretical aspects
of the new approach and discuss its properties. Then, we propose an efficient integration
algorithm to perform hierarchical AR simulations. Finally, hierarchical ARPS is illustrated
on several numerical examples.
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5.2 Theory

Let us now describe the theoretical basis of the hierarchical ARPS approach.
As in the previous Chapter, we consider that in the reference full-dynamics simulation,

the system of N particles in 3D is associated to a Hamiltonian H(q,p):

H(q,p) =
1
2pTM−1p + V (q). (5.2.1)

Correspondingly, the evolution of positions q and momenta p of the particles in a reference
simulation is described by the following equations:

ṗ = −
∂H

∂q = −
∂V

∂q ,

q̇ =
∂H

∂p = M−1p.
(5.2.2)

We, again, consider the adaptively restrained Hamiltonian HAR for the system of particles
in its general form:

HAR(q,p) = 1
2pTΦ(q,p)p + V (q), (5.2.3)

where the modified inverse inertia, 3N × 3N matrix Φ(q,p) adaptively switches system
degrees of freedom on and off. The precise form of this matrix should be chosen.

5.2.1 Choice of inverse mass matrix

We now describe the choice of matrix Φ(q,p) in the hierarchical ARPS approach.
To choose this matrix, as before, we have to answer two main questions regarding the

desired simulation: how to switch the degrees of freedom on and off in the system, and when
to do so.

5.2.1.1 How to switch

As in ARPS, we want to remove positional degrees of freedom in the system. However,
these are not individual degrees of freedom of each particle, but relative positional degrees of
freedom. In other words, we do not restrain and release particles independently, but consider
blocks of particles being restrained together. For example, when two particles are merged
together, they form a single rigid body. In our case, these two merged particles move together
translationally, but no rotational motion is performed. Then, when this rigid body is split,
each particle starts following its full-dynamics motion. Again, a continuous transition between
these two behaviors should be provided1.

1Merging and splitting of particles to simulate particle-based fluid dynamics has been used in Ref. [216].
A sampling method, that allows focusing computational resources in geometrically complex regions, has been
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The problem of choosing which groups of rigid bodies should be considered for merging is
combinatorial, and may thus be too slow in practice.

One possible solution is to impose constraints on pairs of rigid bodies that may be con-
sidered as candidates for merging events. For example, denoting A1, ..., An a set of indexed
rigid bodies, we may organize the indices into a binary tree, so that A1 may only be merged
with A2 (when a speciifc merging condition is satisfied), A3 may only be merged with A4,
etc., and, at higher levels in the binary tree, (A1 +A2) may only be merged with (A3 +A4),
etc.

Another possibility would be to consider the graph deduced from proximity queries (graph
nodes are particles or rigid bodies, and an edge describes the fact that the two nodes are
closer than a certain cutoff distance). Then, graph edges are considered as candidates for
possible “collapse”, to produce a hierarchical graph which represents the hierarchy of merging
operations.

In our implementation, we preferred to use a tree structure, since this allows for incre-
mental updates of the decision metrics for the internal nodes in the hierarchy, as well as
incremental updates of the corresponding partial energies and forces (corresponding algo-
rithms will be described further). In this tree, each leaf node refers to a single particle, and
each internal node represents a group of particles composed of the particles referred to by its
children.

If a body C (internal tree node C) is composed of two bodies A and B (has two child
nodes A and B), we define the inverse inertia matrix ΦC corresponding to this node with a
recursive formula:

ΦC = ρC
mC

E + (1− ρC)
[

ΦA 0
0 ΦB

]
. (5.2.4)

In this formula, the matrix E = {eij} is a 3nC×3nC matrix, where eij = I, i = 1 . . . nC , j =
1 . . . nC , I is a 3×3 identity matrix, nC is the number of leaves of node C, mC is the classical
mass of this node (the sum of the masses of its leaves), and ρC is the restraining function for
this node. It is clear that the inverse inertia matrix in this case is no more diagonal as in
classical ARPS, and may even be dense. For the leaf nodes, this matrix Φ is set to the inverse
mass of the corresponding particle multiplied by a 3× 3 identity matrix.

5.2.1.2 When to switch

We consider merging two rigid bodies A and B into a rigid body C (and splitting C back
into A and B) based on the restraining function ρC mentioned above. Precisely, an internal
node C is considered to be rigid if ρC is equal to 1, and is called non-rigid otherwise. All
tree leaves are rigid by definition (they correspond to individual particles), and remain rigid
throughout the whole simulation. If ρC is equal to 0, node C is called a free node.

introduced. In our approach, we merge the dynamics of the particles, but preserve their geometrical details,
as well as the interaction potential.
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In this Chapter, we choose the restraining function in the following recursive form:

ρC =
{

1, if C is a leaf node,
µ(εC)ρAρB, otherwise,

(5.2.5)

where µ ∈ [0, 1] is a twice-differentiable function of ε:

µ(ε) =


1, if 0 6 ε 6 εr,
0, if ε > εf ,
s(ε) ∈ [0, 1], elsewhere,

(5.2.6)

and s(ε) is a twice-differentiable function with respect to its argument and, therefore, to
pi, satisfying s(εri ) = 1, s(εfi ) = 0. Again, as in the case of classical ARPS, a possible choice
for this function is an interpolation spline of order five: s(ε) = −6η5 + 15η4− 10η3 + 1, where
η = (ε− εr) /δ and δ = εf − εr is the width of the transition region. As a result, body C
corresponding to an internal node can be rigid only if both of its children are rigid.

In this implementation, we choose εC to be dependent on the relation between the mo-
menta of the two bodies A and B as follows2:

εC(pC) =
1
2
‖pA‖2

mA
+

1
2
‖pB‖2

mB
−

1
2
‖pA + pB‖2

mC
=

=
1
2
‖pAmB − pBmA‖2

mAmBmC
,

(5.2.7)

where pC is a 3D vector, which is a sum of momenta of all leaf nodes corresponding to
node C:

pC = pA + pB =
nA∑

i∈A,i=1
pi +

nB∑
i∈B,i=1

pi =
nC∑

i∈C,i=1
pi,

where nA, nB and nC correspond to the number of leaves descending from nodes A, B
and C respectively. We can now define a hierarchical AR Hamiltonian:

HAR(q,p) = 1
2pTΦR(p)p + V (q), (5.2.8)

where the inverse inertia matrix ΦR(p) is the matrix defined by (5.2.5) for the root node of
the binary tree representing the whole system of particles. The hierarchical AR Hamiltonian
is separable, as this matrix only depends on particle momenta. We remind that in this case
(see Section 4.2.2), correct static equilibrium properties of the system in the NVT ensemble
may be computed, and the quantities that only depend on particle positions can be obtained
straight away: 〈A(q)〉HAR

= 〈A(q)〉H (an example of such quantity is the temperature of the
simulation).

2Another criteria for merging and splitting of tree nodes in application to the computer graphics (hair
motion) have been described in Ref. [217].
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The equations of motion of the system in this case, can be written as follows:

ṗ = −
∂HAR

∂q = −
∂V (q)
∂q ,

q̇ =
∂HAR

∂p = ΦR(p)p +
1
2pT

∂ΦR(p)
∂p p.

(5.2.9)

It is clear from equation (5.2.4) that if node C is free (ρC = 0), then matrix ΦC consists
of two diagonal blocks corresponding to nodes A and B. In this case, equations (5.2.9) may
be written separately for the subsystems corresponding to these child nodes. That is why in
practice, we perform the depth-first search of the binary tree representing the system until
we reach a non-rigid node C (ρC 6= 0). We then obtain the following equations for the
corresponding leaves:

ṗC = −
∂V (qC)
∂qC

,

q̇C = ΦC(pC)pC +
1
2pTC

∂ΦC(pC)
∂pC

pC ,
(5.2.10)

where qC is the vector composed of positions of the leaf nodes corresponding to the node
C and pC is the vector of their momenta. The vector pC combines vectors pA and pB of the
child nodes A and B:

pC =
[

pA
pB

]
.

Please note that it is possible to make a sub-system of the whole system permanently
active in hierarchical AR simulations: all particles of this subsystem should be put in a
separate sub-tree, the metrics ρ should be set to 0 for all internal nodes an the root node in
this sub-tree, and this metrics should never be updated during the simulation. However, if
the sub-system of interest changes, the whole tree might need to be rebuilt.

Please note that this approach can be easily extended for the systems represented not as
a binary tree, but as a tree with more child nodes, for example, k nodes.

5.3 Discussion
We provide a simple example describing changes in the motion of the system in a hierarchical
AR simulation. We considered the following system in 1D: two particles of mass 1 connected
by a spring of stiffness 1. The binary tree corresponding to the system is a root node with two
children corresponding to these two particles. Given some initial momenta, the two particles
were oscillating in space with time, and we were observing their trajectories. The trajectories
obtained with a full-dynamics simulation are shown in Fig. 5.3.1.

The trajectories of the particles obtained with hierarchical AR simulations (four different
sets of thresholds were used) are shown in Fig. 5.3.2.
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Figure 5.3.1: Trajectories in space of the two particles connected by a stiff spring in 1D during
a full-dynamics simulation.
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Figure 5.3.2: Trajectories of two particles connected by a stiff spring in 1D during hierarchical
AR simulations with different sets of thresholds.
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Algorithm 5.1 Hierarchical ARPS. General integration scheme for simulations in the NVE
ensemble.
updateState()

treeRoot->updateForces()
treeRoot->updateMomenta()
treeRoot->updateMetrics()
treeRoot->updatePositions()

It can be seen from the pictures, that:

• At some moment of the simulation (in some cases, at the beginning), the momenta of
the two particles become close according to the metrics (5.2.7). In general, this happens
when the two particles perform close translational motions (or do not move much). Here,
merging happens when the spring is “almost” stretched or “almost” compressed. As a
result, the root tree node becomes rigid and both particles stop (in the general case,
they would start preforming translational motion together, but in this example due to
the law of preservation of momenta, they just freeze). Even when the two particles stop,
though, their momenta continue evolving, breaking at some other moment the merging
condition. Then, the two particles resume moving.

• For the same value of εf , with bigger δ, the transition region on the trajectory is wider.

• For the same value of δ, with bigger εf , the fully-restrained region is longer and flatter.

• For hierarchical ARPS, as for classical ARPS, the period of oscillation for the system is
perturbed.

5.4 Algorithms
After having introduced and discussed hierarchical AR simulations, we can proceed to the
numerical realization.

To perform a hierarchical AR simulation in the NVE ensemble, a set of equations (5.2.9)
should be integrated in time. As the hierarchical AR Hamiltonian is separable, many inte-
gration schemes become symplectic and explicit as for classical ARPS.

The general scheme of the integration algorithm that we have used in our implementation
for simulations in the NVE ensemble is shown in pseudo-code in Algorithm 5.1. This is a
symplectic Euler scheme that is described in eq. (4.2.12). The updateState() function is
called every time step. All functions mentioned in Algorithm 5.1 are called from the root
node of the tree. We will now give more details on the functions mentioned in this algorithm.

5.4.1 Updating forces

We now describe in more detail the force update procedure.
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As classical ARPS in the previous Chapter, hierarchical ARPS may speed up force compu-
tations due to the fact that interaction forces only depend on a few relative positional degrees
of freedom. Under this assumption, in hierarchical ARPS, we do not need to recompute forces
inside rigid bodies – i.e. the groups of particles in a sub-tree with a root node considered as
rigid according to the decision metrics (5.2.7).

Further on we also suppose that the interaction potential is rapidly decaying (a cutoff
distance is introduced).

To efficiently update forces without recomputing them inside rigid bodies, we used an
algorithm proposed in Ref. [41]. This force update algorithm, relying on a binary tree
representation of the system, uses a corresponding hierarchy of bounding volumes (see Chapter
2, one BV per tree node) to compute partial interaction lists. In our implementation, we chose
to use axis-aligned bounding volumes (AABB’s) because of their low update cost.

This algorithm is also using partial force tables – special structures that should be stored
in all internal nodes. For each leaf node, a partial force table is a zero 3D vector. For each
internal node C a partial force table is an array of 3D vectors, and the array’s length is equal
to the number of leaves descending from this internal node. Each array element corresponds
to a certain leaf node. Precisely, this array element is the force acting on the leaf particle
produced by all other leaf nodes of C. Each element of the root partial force table corresponds
to the total force acting on a particle.

The force update procedure at each time step consists in three main steps (the potential
energy can be updated at the same time).

1. The hierarchy of AABB’s is updated bottom-up for the whole tree. For leaf nodes, an
updated box coincides with the particle’s position. The box of any internal node is
obtained by bounding the boxes of its two child nodes.

2. Interaction (or neighbor) lists (see Chapter 2) are recursively constructed for as de-
scribed in Ref. [76]. This means that for node C, which has child nodes A and B, the
interaction list contains all pairs of particles such that one particle belongs to A and
the other belongs to B. As in the rigid nodes, relative particle positions do not change,
corresponding interaction lists do not change either. Therefore, these lists are computed
only for non-rigid internal nodes of the tree. During the first time step, since only leaf
nodes are rigid, we update interaction lists for all internal nodes.

3. Partial force tables are incrementally updated in a bottom-up manner. In rigid nodes,
forces between particles do not change. Therefore, we update the partial force tables for
non-rigid nodes only. For each non-rigid node C, we copy to the first half of its partial
force table the elements of the partial force table of the node A, and to the second half,
the elements of the partial force table of the node B. Then, for each element (pair of
particles) of the interaction list of the node C, we calculate the interaction forces and
add them to the corresponding elements of the partial force table, as if we added them
to the particle’s forces. Finally, forces corresponding to all particles will be stored in
the partial force table of the tree root node.
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Algorithm 5.2 Hierarchical ARPS. Main steps of the force-update algorithm.
updateForces()

update AABB hierarchy:
recursively, bottom-up, recompute boxes for every tree node;

update interaction lists using AABB hierarchy:
recursively, update lists for every non-rigid internal node;

update partial force tables and potential energies:
recursively, bottom-up, update information for every non-rigid internal node.

Algorithm 5.3 Hierarchical ARPS. Algorithm for the particle momenta update. Lower
indices stand for time step numbers, the time step size is denoted by h.
updateMomenta()

for (each particle ai)
pi

n+1 = pi
n + f i

n+1h

This is, however, not the optimal version of the algorithm: in the third step, copying of the
child force tables to the parent one may be long and can be avoided. For more details on this
method and its complexity analysis one can refer [41] and references therein.

We provide a schematic description of the this force-update method in Algorithm 5.2.

5.4.2 Updating momenta

A simple procedure of particles momenta update is performed for each particle of the system.
It is described in pseudo-code in Algorithm 5.3.

5.4.3 Updating positions

We now discuss in more detail the procedure of updating particle positions.
In the general case, the complexity to evaluate at each time step the following equation:

q̇ = Φ(p)p +
1
2pT

∂Φ(p)
∂p p, (5.4.1)

is cubic in the number of particles in the system (O(N3)) because of the term
∂Φ(p)
∂p .

This term is a derivative of a matrix with respect to a vector, thus, a 3−dimensional object,
where:

∂Φ
∂pi

=


∂Φ11

∂pi
· · ·

∂Φ1N

∂pi
... . . . ...

∂ΦN1

∂pi
· · ·

∂ΦNN

∂pi

 . (5.4.2)
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Fortunately, we can still achieve O(N logN) complexity in time, updating some special
structures recursively. For example, for an internal node C with child nodes A and B we can
write:

QC = Φ (pC) pC =

=
(
ρC (pC)
mC

E + (1− ρC (pC))
[

ΦA (pA) 0
0 ΦB (pB)

])
pC =

=
ρC (pC)
mC

{
nC∑

i∈C, i=1
pi

}
+ (1− ρC (pC))

[
ΦA (pA) pA
ΦB (pB) pB

]
=

=
ρC (pC)
mC

pC + (1− ρC (pC))
[

QA

QB

]
,

(5.4.3)

where{
∑nC
i=1 pi} is a vector of length nC and each component of this vector is equal to∑nC

i=1 pi.
In a similar way, we obtain another expression for node C:

RC =
∂ρC (pC)
∂pC

=


∂ρC (pC)
∂pA

∂ρC (pC)
∂pB

 = {ρC = µ(εC)ρAρB} =

=


ρB (pB)

(
µ(εC)

∂ρA (pA)
∂pA

+ ρA (pA)
∂µ(εC)
∂εC

∂εC

∂pA

)

ρA (pA)
(
µ(εC)

∂ρB (pB)
∂pB

+ ρB (pB)
∂µ(εC)
∂εC

∂εC

∂pB

)
 =

=


ρB (pB)

(
µ(εC)RA + ρA (pA)

∂µ(εC)
∂εC

(
pA

mA
−
pC

mC

)
∂pA

∂pA

)

ρA (pA)
(
µ(εC)RB + ρB (pB)

∂µ(εC)
∂εC

(
pB

mB
−
pC

mC

)
∂pB

∂pB

)
 =

=
{
pA =

nA∑
i=1

pi,
∂pA

∂pi
= 1

}
=

=


ρB (pB)

(
µ(εC)RA + ρA (pA)

∂µ(εC)
∂εC

{
pA

mA
−
pC

mC

})

ρA (pA)
(
µ(εC)RB + ρB (pB)

∂µ(εC)
∂εC

{
pB

mB
−
pC

mC

})
 .

(5.4.4)
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Finally, we can recursively update the last expression from equation (5.4.3), using the
previous equation (5.4.4):

SC = pTC
∂ΦC (pC)
∂pC

pC =

= pTC

(
∂

∂pC

(
ρC (pC)

(
1
mC

E −
[

ΦA 0
0 ΦB

]))
+ (1− ρC (pC))

∂

∂pC

[
ΦA 0
0 ΦB

])
pC =

= pTC

(
∂

∂pC

(
ρC (pC)

(
1
mC

E −
[

ΦA 0
0 ΦB

])))
pC+

+ (1− ρC (pC)) pTC

(
∂

∂pC

[
ΦA 0
0 ΦB

])
pC =

=
∂ρ (pC)
∂pC

(
pTC

(
1
mC

E −
[

ΦA 0
0 ΦB

])
pC

)
+ (1− ρC (pC))


pTA

∂Φ (pA)
∂pA

pA

pTB
∂Φ (pB)
∂pB

pB

 =

=
∂ρC (pC)
∂pC

(
pC ·

(
1
mC

{
nC∑

i∈C, i=1
pi

}
−
[

QA

QB

]))
+ (1− ρC (pC))

[
SA
SB

]
=

= RC

(
pC ·

(
pC

mC
−
[

QA

QB

]))
+ (1− ρC (pC))

[
SA
SB

]
,

(5.4.5)
where the dot sign stands for the dot product.
In Algorithm 5.4 we describe in pseudo-code functions that modify structures QC , RC

and SC : init() sets them up at the beginning of the simulation, updateMetrics() updates them
according to equations (5.4.3-5.4.5) and should be called before updating positions.

In Algorithm 5.5 we describe in pseudo-code the function updating particles positions.
The space complexity of updating positions is, therefore, O(N logN): for each internal

tree node we store four vectors of length equal to the number of underlying leaves. These
vectors are QC , RC , SC and a partial force table. The time complexity is also O(N logN)
since these structures need to be updated at each time step, and QC is always updated for all
nodes, including leaves.

We remind that the integration scheme for the simulations in the NVT ensemble described
in Section 4.2.3 may be also used for hierarchical ARPS.
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Algorithm 5.4 Hierarchical ARPS. Updating structures QC , RC and SC . Each internal
node C is considered to have two child nodes A and B.
init()

for (each internal node C)
ρC = 0, QC .setZero(), RC .setZero(), SC .setZero()

for (each leaf node)
ρ = 1, Q = p/m, R = 0, S = 0

updateMetrics()
if (this node C is internal)

A->updateMetrics()
B->updateMetrics()
update εC (eq. 5.2.7)
updateρC : ρC = µ(εC)ρAρB

if (ρC > 0) a

update QC (eq. 5.4.3), RC (eq. 5.4.4), SC (eq. 5.4.5)
else // this node is a leaf corresponding to a particle

Q = p/m

aThis is an optimization: since we do not use any metrics for free nodes, we do not update the
metrics here.

Algorithm 5.5 Hierarchical ARPS. Updating positions. Each internal node C is considered
to have two child nodes A and B. Lower indices stand for time step, upper indices are particles
indices, q denotes particles positions, h denotes the time step size.
updatePositions()

if (ρC = 0)
// node C is a free node
A->updatePositions()
B->updatePositions()

else // node C
for (each leaf li)

qi
n+1 = qi

n + (QC [i] + 0.5SC [i])h
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Figure 5.5.1: Hierarchical ARPS. Simulating a collision cascade with controlled precision.
Hierarchical adaptively restrained simulations allow us to smoothly trade between precision
and speed. The main features of the shock are preserved. The binary tree representation was
constructed top-down.

5.5 Results
The hierarchical ARPS method was implemented in C++ and tested on an Intel 2.40 GHz
quad-core processor with 4GB of RAM, on a Windows Vista 32-bit operating system.

In this section, we illustrate the hierarchical ARPS approach with several numerical ex-
amples, designed for molecular dynamics simulations.

5.5.1 Collision cascade in 2D

We first simulated a collision cascade in a 2D system composed of 5 930 particles with mass
1 g/mol in the NVE ensemble, using Lennard-Jones potential (ε/kB = 120 K, σ = 3.4 Å,
cutoff = 8 Å, the potential was truncated through a smoothing function applied between 7.5
and 8 Å). We performed four simulations of the shock induced by a particle launched at high
velocity towards the initially static 2D system: a reference (full-dynamics) simulation, and
three hierarchical AR simulations with varying degrees of precision (time step size 0.0488 fs,
7 000 time steps, total simulation time 342 fs). Figure 5.5.1 compares the final configurations
reached by the four simulations. For each hierarchical AR simulation, the Root-Mean-Square
Deviation (RMSD) from the reference final configuration is given, as well as the maximum
particle displacement error ∆qmax.

The parameters of the hierarchical AR simulations that we launched in this test were the
following:

• hARPS 1: εr = 0.01 kcal/mol, εf = 1.01 kcal/mol (δ = 1 kcal/mol);

• hARPS 2: εr = 1 kcal/mol, εf = 2 kcal/mol (δ = 1 kcal/mol);

• hARPS 3: εr = 3 kcal/mol, εf = 4 kcal/mol (δ = 1 kcal/mol).

For hierarchical AR simulations, the results depend on the tree representation of the
system. For example, for the results demonstrated in Fig. 5.5.1 the tree was constructed in
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Reference simulation hARPS 2 

Speedup 1.25x

RMSD=0.3σ   Δq     =2.95σ

hARPS 1

Speedup 1.2x 

RMSD = 0.48σ  Δq     =2.15σ
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Figure 5.5.2: Hierarchical ARPS. Simulating a collision cascade with controlled precision.
Hierarchical adaptively restrained simulations allow us to smoothly trade between precision
and speed. The main features of the shock are preserved. The binary tree representation was
constructed bottom-up.

a top-down manner by recursive dividing of the system in halves as described in 2.2.2.1 and,
therefore, the squares of different levels are being activated by the shock.

To clearly demonstrate the effect of the tree, we provide the results for the same four
simulations with another tree built in a bottom-up manner by grouping the particles pairwise
according to their sequence number (they were enumerated, first, along the y-axis, vertically,
and then, along the x-axis, horizontally). These results are shown in Fig. 5.5.2, and are rather
different from those in Fig. 5.5.1: vertical lines are being activated when the central part of
the plane is reached by the shock.

Speedup for the hierarchical AR simulations in this study is not big and this is relative to
the reference simulation, which was an AR simulation with both thresholds εf and εr equal to
zero (still performing the update of AABB-hierarchy, etc). The real full-dynamics simulation,
just following equations (5.2.2) is more rapid than our reference simulation (about 2 times
faster for this simulation). Note, however, that we are not using the most optimal version of
the force update algorithm.

We do not achieve significant speedups in this example because this is not the best case
for the hierarchical ARPS: a lot of particles become active, making big sub-trees active as
well. This is not the system requiring the hierarchical representation.

5.5.2 Radial distribution function

We, then, demonstrate the ability of hierarchical ARPS to collect unbiased statistics in the
NVT ensemble. For that, as in Chapter 4, we performed Langevin simulations of a system of
343 Argon particles interacting in a 3D periodic box through Lennard-Jones potential with the
same parameters as in the previous example (box length 25.56 Å, Langevin friction coefficient
γ = 1, T = 94.4 K). The particles were initially positioned at the nodes of a 3D cubical
lattice, far from equilibrium. We launched a full-dynamics simulation and a hierarchical AR
simulation (180 rigid bodies on average at each time step, εr = 1 kcal/mol and εf = 2
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Figure 5.5.3: Hierarchical ARPS. Radial distribution functions for an Argon system (periodic
3D box, 343 particles, NVT ensemble). The curves corresponding to the reference and the
AR simulations coincide.

kcal/mol) and computed the Radial Distribution Function (RDF) g(r) in each case (time step
size 0.488 fs, 150 000 time steps, total simulation length 73.2 ps). Figure 5.5.3 plots the results:
the curves coincide, demonstrating that the equilibrium statistics have been preserved.

5.5.3 Discussion on stability

From the numerical experiments that we performed, we concluded that the hierarchical ARPS
method is less stable than the classical ARPS method. For example, we noticed that, to obtain
a NVE simulation with similar energy oscillations, we had to choose a smaller time step in
hierarchical AR simulations.

We believe this happens because when a lot of particles are merged into a single rigid body
and this body moves, the larger the body, the more it perturbs the energy of the system. A
solution to this instability problem might be to introduce softer potentials for larger rigid
bodies. However, as it was discussed before, the parametrization of a potential function is
not an easy task.

5.6 Conclusion

In this Chapter, we have introduced an alternative choice of the inverse inertia matrix in an
adaptively restrained Hamiltonian, different from the one described in the previous Chapter.
The inverse inertia matrix that we have proposed is designed for systems represented as a
binary hierarchy, and we call the corresponding approach hierarchical Adaptively Restrained
Particle Simulations.
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Hierarchical ARPS may be useful to simulate systems for which a hierarchical representa-
tion is natural (such as articulated-body systems, although we will need a more sophisticated
inverse inertia, that will depend on positions, since this is already the case in non-adaptive
articulated-body dynamics). Simulations that do not require frequent tree rebuilding are also
preferable.

In the future, it might be interesting to study coarse-graining in the traditional sense
with this method: to fix a specific coarse-graining level, e.g., water molecules, and, therefore,
the corresponding level in a tree. The advantage of our method is that we can choose any
coarse-graining level without changing the potential function.



Chapter 6

Conclusions and outlook

To conclude this disseration, we now briefly describe its main contributions and provide several
possible directions of the future research.

In this thesis, we have reviewed numerous algorithms designed to perform efficient molec-
ular simulations. Being widely used in many research domains, including e.g. computational
chemistry, physics and material science, molecular simulations still need to be accelerated to
help us to better understand chemical reactions and various processes at the atomistic level,
and to solve many challenging problems, for example protein folding or molecular docking.
This work contains three main contributions aiming at making molecular simulations more
efficient. The first one compares various methods for neighbor list construction, while the
two other contributions describe novel algorithms. While the first two contributions concern
only molecular simulations, and, moreover, specific types of such simulations, the last part
of this thesis (its major contribution) was designed for particle simulations, a larger class of
simulations having application in numerous research fields.

The first part of this dissertation is devoted to accelerating an important part of a molec-
ular simulation: neighbor list construction for the force computation. Precisely, we have
proposed to apply to molecular simulations an algorithm that is typically used in computa-
tional geometry and its applications (robotics, virtual reality, etc.). We have compared several
modifications of this hierarchy-based algorithm to the algorithm classically used in molecu-
lar simulations and relying on a grid. We showed that, for large rigid molecules interacting
through a small contact area, as in e.g. rigid-body docking, the hierarchy-based approach is
beneficial.

Several directions might thus be interesting to explore in the future:

• The two neighbor search methods, the hierarchical approach and the grid-based method,
might be combined as follows. First, a hierarchical approach might be used to eliminate
large irrelevant groups of atoms. Then, a grid method should locate neighboring pairs
in the refined search region. The study on the size of the former region should also be
performed.

149
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• The hierarchy-based algorithm may be combined with the method described in Ref.
[166]. The latter algorithm finds interactions between two groups of particles, avoiding
unnecessary distance computations, and might be used to inspect the particles of the
two leaf hierarchy nodes.

• Shortly after our paper [127] was published, a new method has been proposed for neigh-
bor search for large rigid molecules: a rigid cell linked-list algorithm [218]. It would be
interesting to compare it to the hierarchy-based approach.

In the second part of this thesis, we have presented a fast algorithm for building a binary
hierarchy associated to a molecular graph that may contain cycles and multiple connected
components. This algorithm consists in three steps. The first and the second steps are based
on the system’s topology, and result in a binary tree for each graph connected component.
The third step relies on the system’s geometry, and gathers the trees corresponding to all
connected components into a final tree. We applied this algorithm to systems simulated in
torsion-angle coordinates for adaptive quasi-statics of biomolecules.

The tree-construction algorithm mainly concerns the offline part of the simulation: its
initialization. However, when the tree needs to be recomputed several times during the
simulation, its fast re-building or update can play an important role. This recomputing may
be necessary to better reflect the geometrical properties of the system: for example, when the
relative positions of the molecules in the system change.

The following possible research directions should be indicated:

• A study of several extensions, including e.g. dynamic tree updates after insertions in,
or deletions from, the molecular graph, or when the graph’s topology has been changed.

• The binary tree for the hierarchy-based method described in Chapter 2 might be con-
structed with the third step of the proposed algorithm. The quality of the trees and,
therefore, the speed of obtaining neighbor lists should be compared.

• More applications of the tree construction algorithm (those relying on hierarchical rep-
resentations or those using torsion-angle dynamics) should be studied in other research
domains as, e.g. robotics or computer graphics.

In the third part of this work (Chapters 4 and 5), we have introduced a novel general approach
to particle (and, in particular, molecular) simulations that we call Adaptively Restrained
Particle Simulations. This approach accelerates dynamics of the particle system by adaptively
switching positional degrees of freedom on and off during a simulation. This switching is done
with the help of a modified inverse inertia matrix in the original Hamiltonian. As a result,
for most potentials, a smaller number of forces may be computed at each time step.

We described two possible choices of the inverse inertia matrix for simulations in Cartesian
coordinates. In the first case, each particle is restrained and released independently, according
to its kinetic energy. In the second case, particles are organized in a binary tree, and can
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be merged together and released according to this structure when a condition based on their
relative momenta is satisfied.

This method has numerous advantages and we demonstrated on several examples its ability
to produce long stable simulations and efficiently compute statistics.

The work on this very general approach should be continued. The fact that the inverse
inertia matrix can be chosen according to the needs of a specific problem opens a way to a
large number of applications in various research fields. That brings us to numerous possible
directions of the future research:

• New applications should be examined, and new specific inverse inertia matrices should be
constructed. Among these applications might be crack propagation, fracture in metals
[208], ion implantation, channels in membrane proteins, molecular docking, protein
folding, molecular solvation, conformational sampling, free energy computations, etc.
In general, we believe that this method will be beneficial for the simulations, where the
statistics are computed only for a local part of the molecular system.

• An inverse inertia matrix imposing an “active region” on the system may be developed:
in this region of the highest interest in the system, the particles will never be restrained.
The properties of the produced simulations should be studied.

• ARPS should be applied to well-known interaction potentials (CHARMM, AMBER,
GROMOS, etc.), and larger problems.

• Theoretical properties of ARPS should be studied in more detail: for example, dynamical
properties of the simulated system, the choice of the threshold parameters and the
influence of their difference (the width δ) on the stability of the simulation, etc.

• An analytical solution for some parts of the AR simulations should be obtained. For
example, it might be possible to compute in advance the time at which some particles
will be released (in particular when the force applied to these particles is constant), and
not update their momenta in between. This might change the computational complexity
of the approach, and may result in faster time steps.

• The results of AR simulations in the polymer-in-solvent study should be compared to
existing implicit methods, as this is done in Ref. [98].

• An interesting study might be to combine hierarchical ARPS with the tree construction
algorithm from Chapter 3: testing ARPS on a tree built by the GofAsTr library, and
comparing the results to those obtained with an arbitrarily constructed tree.

• The method should be combined with other existing methods, such as fast algorithms
to compute long-range interactions [74, 75] (although incremental versions may have to
be designed), as well as techniques aimed at accelerating sampling [97, 85, 98].

• We should test ARPS for free energy computations, still a significant challenge in many
cases.
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Software availability

The software will be made available through SAMSON (Software for Adaptive Modeling and
Simulation Of Nanosystems), developed in the NANO-D group (http://nano-d.inrialpes.fr/).

http://nano-d.inrialpes.fr/


Chapter 6

Conclusions et perspectives
(Français)

Dans ce Chapitre nous présentons les conclusions sur les travaux effectués, et suggérons
quelques travaux futurs.

Dans cette thèse, nous avons examiné de nombreux algorithmes créés pour effectuer des
simulations moléculaires efficaces. Les simulations moléculaires sont largement utilisées dans
de nombreux domaines de recherche, y compris la chimie et la physique numériques ainsi que la
science des matériaux. Pour résoudre beaucoup de problèmes difficiles dans ces domaines leurs
performances doivent être encore améliorées. Ce travail contient trois contributions principales
visant à rendre les simulations moléculaires plus efficaces. La première contribution consiste
à comparer les différentes méthodes de construction de la liste des voisins, tandis que les
deux autres décrivent de nouveaux algorithmes. Alors que les deux premières contributions
ne concernent que les simulations moléculaires, la dernière partie de la thèse (sa plus grande
contribution) peut être utilisée pour une classe plus large de simulations, appliquée dans divers
domaines de recherche : les simulations de particules.

La première partie de la thèse est consacrée à l’accélération d’une partie importante des
simulations moléculaires qui est la construction de la liste des voisins pour le calcul des forces.
Précisément, nous avons proposé d’appliquer aux simulations moléculaires un algorithme fondé
sur la représentation hiérarchique. Cet algorithme est typiquement utilisé dans la géométrie
numérique et ses applications (robotique, réalité virtuelle, etc.) Nous avons comparé plusieurs
modifications de cet algorithme à celui, basé sur une grille, qui est traditionnellement utilisé
dans les simulations moléculaires. Nous avons démontré que, pour les molécules rigides et rela-
tivement grandes interagissant à travers une petite surface de contact (c’est le cas par exemple
de l’assemblage des corps rigides), l’approche basée sur la hiérarchie est plus avantageuse.

Plusieurs directions pourraient être intéressantes à explorer dans le futur :

• Les deux méthodes de recherche des voisins, l’approche hiérarchique et la méthode
basée sur une grille, pourraient être combinées comme suit. D’abord, une approche
hiérarchique pourrait être utilisée pour éliminer les grands groupes pertinents d’atomes.
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Ensuite, une méthode avec grille devrait retrouver les paires voisines dans la zone de
recherche raffinée.

• L’algorithme basé sur la hiérarchie peut être combiné avec la méthode décrite dans la
Réf. [166].

• Peu de temps après que le papier [127] ait été publié, une nouvelle méthode a été
proposée pour la recherche des voisins dans les grandes molécules rigides [218]. Il serait
intéressant de la comparer à l’approche hiérarchique.

Dans la deuxième partie de cette thèse, nous avons proposé un algorithme rapide pour con-
struire une hiérarchie binaire, associé à un graphe moléculaire pouvant contenir des cycles et
plusieurs composantes connexes. Cet algorithme consiste en trois étapes. La première et la
deuxième étapes sont basées sur la topologie du système, et produisent un arbre binaire pour
chaque composante connexe. La troisième étape utilise la géométrie du système, et rassemble
dans un arbre final les arbres correspondant à toutes les composantes connexes. Nous avons
appliqué cet algorithme aux simulations en angles de torsion.

L’algorithme de construction d’arbre concerne principalement la partie “hors ligne” de
la simulation : l’initialisation. Toutefois, lorsque l’arbre a besoin d’être recalculé plusieurs
fois au cours de la simulation, la rapidité de sa reconstruction ou sa mise à jour peut jouer
un rôle important. Cette reconstruction peut être nécessaire afin de mieux refléter les pro-
priétés géométriques du système : par exemple, lorsque les positions relatives des molécules
du système ont été modifiées de manière importante.

Les travaux futurs sont par exemple :

• Plusieurs extensions d’algorithme peuvent être considérées, par exemple la mise à jour
dynamique de l’arbre après insertion ou suppression d’un sommet du graphe moléculaire,
ou lorsque la topologie du graphe a été changée.

• L’arbre binaire de la méthode hiérarchique du Chapitre 2 pourrait être construit avec
la troisième étape de l’algorithme proposé.

• D’autres applications potentielles de l’algorithme devraient être étudiées dans d’autres
domaines de recherche, par exemple la robotique ou l’infographie.

Dans la troisième partie de ce travail (Chapitres 4 et 5), nous avons introduit une nouvelle
approche générale pour les simulations de particules (et, notamment, des simulations molécu-
laires) que nous avons appelé ARPS: Simulations de Particules Restreintes de façon Adaptative
(ARPS: Adaptively Restrained Particle Simulations). Cette approche active et désactive les
degrés de liberté en position du système lors d’une simulation, grâce à une modification de
la matrice d’inertie inverse dans le hamiltonien original. En conséquence, pour la plupart des
potentiels, moins de forces doivent être calculées à chaque pas de temps et la dynamique du
système de particules est accélérée.

Nous avons décrit deux choix possibles de la matrice d’inertie inverse pour les simulations
en coordonnées cartésiennes. Dans le premier cas, chaque particule est indépendamment figée
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et libérée dans l’espace, en fonction de son énergie cinétique. Dans le second cas, les particules
sont organisées dans un arbre binaire, et peuvent être fusionnées ensemble ou libérées selon
la structure de l’arbre, lorsqu’une condition sur leurs moments relatives est satisfaite.

Cette méthode présente de nombreux avantages et nous avons démontré sur plusieurs
exemples sa capacité à produire des simulations longues et stables ainsi qu’à collecter les
propriétés statiques d’équilibre correctement.

Le travail sur cette approche très générale doit être poursuivi. Le fait que la matrice
d’inertie inverse puisse être adaptée à chaque problème spécifique ouvre la voie à un grand
nombre d’applications dans divers domaines de recherche. Cela nous amène à de nombreux
axes de recherche possibles :

• De nouvelles applications d’ARPS devraient être examinées : par exemple la rupture
dans les métaux [208], l’implantation ionique, l’assemblage moléculaire, le repliement
des protéines, la solvatation moléculaire, les calculs d’énergie libre, etc. De nouvelles
matrices d’inertie inverse devraient être construites pour cela.

• Une matrice d’inertie inverse qui impose une “région active” sur le système peut être
introduite : dans cette région de plus haut intérêt du système, des particules ne seraient
jamais fixées. Les propriétés des simulations obtenues par ce biais doivent être étudiées.

• La méthode doit être appliquée à des potentiels d’interaction connus (e.g. CHARMM,
AMBER, Gromos, etc).

• Les propriétés théoriques de ARPS devraient être étudiées plus en détail : par exem-
ple, le choix des paramètres de seuil, l’influence de leur différence sur la stabilité de
la simulation. Les propriétés dynamiques du système simulé doivent également être
examinées.

• Les solutions analytiques pour certaines parties des simulations AR doivent être obtenues.
Par exemple, il pourrait être possible de calculer à l’avance le moment auquel certaines
particules seraient libérées. Cela pourrait accélérer les calculs.

• Les résultats de l’étude du polymère solvaté doivent être comparés à des méthodes
implicites existantes, comme cela se fait dans la Réf. [98].

• Il pourrait être intéressant de combiner ARPS hiérarchiques avec l’algorithme de con-
struction de l’arbre de Chapitre 3.

• La méthode doit être combinée avec d’autres méthodes existantes, telles que des al-
gorithmes rapides pour calculer les interactions à longue portée [74, 75] (bien que des
versions incrémentales puissent être nécessaires), ainsi que des techniques accélérant
l’échantillonnage [97, 85, 98].

• Nous devrions appliquer ARPS aux calculs d’énergie libre.
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Disponibilité

Les méthodes développées dans cette thèse seront mises à disposition via SAMSON (Sys-
tème Adaptatif pour la Modélisation et la Simulation d’Objets Nanoscopiques — Software
for Adaptive Modeling and Simulation Of Nanosystems), développé dans l’equipe NANO-D
(http://nano-d.inrialpes.fr/).

http://nano-d.inrialpes.fr/
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