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OSCILLATIONS HAUTE FREQUENCE EN MILIEUX ELASTIQUES BORNES
Résumé

Cette these est consacrée a 1’étude haute fréquence de problemes de Dirichlet et Neumann
pour le systeme de élasticité. On y étudie le phénomene de réflexion au bord au moyen de
deux techniques : la sommation de faisceaux gaussiens et les mesures de Wigner.

Dans les chapitres 1 et 2, on commence par étudier le probléme plus simple de I’équation
des ondes scalaire a une vitesse. Sous certaines hypotheses sur les conditions initiales, on
construit des solutions approchées par superposition de faisceaux gaussiens. La justification de
I’asymptotique se fonde sur une estimation de normes de certains opérateurs intégraux a phases
complexes. Pour des conditions initiales plus générales, on utilise les mesures de Wigner pour
calculer la densité d’énergie microlocale. On calcule explicitement les transformées de Wigner
d’intégrales de faisceaux gaussiens. Le comportement de la densité d’énergie microlocale de la
solution exacte se déduit de celui établi pour la solution approchée.

Dans le chapitre 3, on utilise les résultats établis pour les sommes infinies de faisceaux
gaussiens pour construire une solution approchée pour les équations de ’élasticité et calculer
sa densité d’énergie microlocale. L’existence de deux vitesses différentes dans le systeme de
I’élasticité introduit de nouvelles difficultés qui sont traitées dans ce chapitre.

Mots-clefs : élasticité, équation des ondes, conditions de bord, réflexion, faisceaux gaussiens,
mesures de Wigner.

Abstract

This thesis is devoted to the study of the high frequency Dirichlet and Neumann problems
for the elasticity system. We study the reflection phenomenon at the boundary by means of
two techniques: Gaussian beams summation and Wigner measures.

In chapters 1 and 2, we start by studying the simpler problem of the scalar wave equation
with one speed. Under some hypotheses on the initial conditions, we build an approximate
solution by a Gaussian beams superposition. Justification of the asymptotics is based on norms
estimate of some integral operators with complex phases. For more general initial conditions,
we use Wigner measures to compute the microlocal energy density. We compute Wigner
transforms of Gaussian beams integrals in an explicit way. The behaviour of the microlocal
energy density for the exact solution is deduced from the one for the approximate solution.

In chapter 3, we use the established results on infinite sums of Gaussian beams to build an
approximate solution for the elasticity equations and to compute its microlocal energy density.
We treat new difficulties arising from the existence of two different speeds in the elasticity
System.

Keywords: elasticity, wave equation, boundary conditions, reflection, Gaussian beams,
Wigner measures.
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Introduction (french)



Position du probléme

De nombreux phénomeénes physiques sont modélisés par des équations d’onde. Dans un
milieu élastique, les équations du mouvement linéarisées dans le cas de petites pertur-
bations sont :

pdu = dive(u), (1)

ou u est le déplacement autour d’une configuration d’équilibre statique considérée comme
état de référence, p la densité, o(u) le tenseur des contraintes et divo(u) le vecteur de

3
composantes (divo(u)); = 3 Oy (u) pour 1 < j < 3. La surface de la terre en
k=1

sismologie, les organes humains en imagerie médicale, ainsi que de nombreuses structures
en mécanique industrielle peuvent étre considérés comme des milieux élastiques. Si les
propriétés du milieu sont les mémes dans toutes les directions, le milieu est dit isotrope,
et le tenseur des contraintes est donné par

o(u) = Adivuld + p (Dpu + dpu”)

ol (Oyu)jk = Oy, uj et A(x), pu(z) sont les coefficients de Lamé qui vérifient p(x) > 0 et
Az) + 2u(z) > 0. Les équations (1) s’écrivent alors

pdu — 0, (Adivu) — div (,uaxu + ,u@qu) = 0. (2a)

On supposera i1 # A + 2 et la densité et les coefficients du milieu réguliers. Dans le
cas d’un milieu homogene, la densité et les coefficients de Lamé ne dépendent pas de
la position x. La solution u de (2a) se décompose alors en une somme de deux termes
ur, et ur de rotationnel et de divergence nuls respectivement. Chacun de ces termes est
solution d’une équation d’onde a une vitesse

u=ur, + ur, 8t2uL — C%AUL =0, 8t2uT — CZTAUT =0,

avec

A+ 2u 1

et c%:—.
p

¢ =

Dans cette these, on s’intéresse aux problemes haute fréquence. Ce type de probleme
apparait dans plusieurs applications. L’étude des vibrations de structures industrielles,
quand la fréquence d’excitation est importante (chocs) est un exemple d’oscillation a
haute fréquence en milieu élastique. On peut également rencontrer ce type de probléeme
dans la propagation d’ondes sismiques quand la longueur d’onde est petite.

1,1

On complete ainsi 'équation (2a) par des conditions initiales (uf,v;)

U’t:o = Ug, 81&“’:::0 = vi, (2b)

qui dépendent d'un parametre haute fréquence ¢ < 1. La forme exacte des données
initiales n’a pas d'importance dans cette étude. Un exemple typique serait u! = cae'#0/
et v/ = beo/s. La solution du systéme de 1'élasticité avec ces conditions initiales
hautement oscillantes dépend désormais de e (et sera désignée par u.). On s’intéresse
au comportement de cette solution quand e est tres petit.

Pour les structures industrielles (aéronautiques, automobiles, ferroviaires, génie civil,
etc) comme en sismologie, les corps élastiques considérés occupent un domaine 2 avec



bord et les relations (2a)-(2b) doivent étre complétées par des conditions aux limites sur
0€2. La condition d’encastrement du bord ou condition de Dirichlet s’écrit

ug|ag = 0, (QC)
alors qu’'un bord libre se traduit par une condition de type Neumann
o(ue)v)ag = 0, (2¢”)

ou v est la normale extérieure au bord. On peut bien entendu imposer d’autres condi-
tions aux limites (mixtes, dérivées obliques, etc). Résoudre une équation aux dérivées
partielles hyperbolique ou un systeme d’équations avec des conditions initiales et des
conditions aux limites données s’appelle probleme mixte hyperbolique.

La structure de la solution exacte d’un probléme mixte pour les équations d’onde
dépend de la géométrie du bord. En effet ’énergie se propage a l'intérieur du domaine
le long des bicaractéristiques qui sont des courbes du fibré cotangent 7*(R x 2). Les
projections de ces courbes sur R x €2 sont les rayons optiques. Pour 'opérateur d’onde
A une vitesse constante c, ces rayons sont des courbes (¢,z') de R™™! qui se déplacent
de maniere rectiligne a la vitesse ¢ a l'intérieur de €. Lors d'un contact transverse
avec le bord, les rayons optiques se réfléchissent selon les lois de I'optique géométrique.
S’ils rencontrent le bord tangentiellement, ils peuvent donner naissance a des rayons
diffractifs qui frolent le bord sans étre déviés. Il peuvent aussi donner lieu a des rayons
glissants qui restent dans le bord 92, et qui sont les limites de rayons se rapprochant du
bord et se réfléchissant un grand nombre de fois. L’opérateur de I’élasticité lui possede
deux familles de rayons associées a chacune des deux vitesses ¢y, et ¢;. Au contact avec
le bord, les rayons associés a la vitesse ¢y, peuvent donner naissance a des rayons associés
a la vitesse cr et inversement.

On peut étudier les problemes haute fréquence en construisant des développements
asymptotiques de la solution, valides quand ¢ est tres petit. On approche alors la solution
au sens d’une norme bien choisie avec une précision qui augmente avec la fréquence. Il
existe également d’autres approches qui s’intéressent uniquement a la limite quand e — 0
de certaines quantités associées a la solution comme la densité d’énergie locale |u.|?, il
s’agit des approches type mesures de Wigner.

Dans cette these, nous nous intéressons au comportement des solutions haute
fréquence du probléeme mixte pour I’équation des ondes scalaire

83”5 — 0y - (CQ(x)amue) =0, u€|t=0 = U£, atueltzo = vgla
ue‘@Q =0 ou auus|6Q = 07

(3)

et le systeme de 1’élasticité (2). Le bord est supposé régulier et seul le phénomeéne de
réflexion est étudié. La démarche adoptée est la suivante. On commence par étudier le
probléme plus simple de ’équation des ondes scalaire a une vitesse, puis les techniques
utilisées sont adaptées a 1’élasticité. Sous certaines hypotheses sur les conditions ini-
tiales, on approche la solution & O(g") prés pour tout N € N en construisant une famille
de solutions asymptotiques. La construction est fondée sur une méthode performante
dont l'utilisation est bien maitrisée dans le cas du phénomene de réflexion au bord :
la sommation de faisceaux gaussiens. Pour des conditions initiales plus générales, on
utilise les mesures de Wigner pour calculer la densité d’énergie par vecteur d’onde. Le
comportement de cette quantité se déduit de celui établi pour la solution approchée par
des calculs explicites sur les transformées de Wigner.



Sommation de faisceaux gaussiens

Il existe plusieurs modeles mathématiques de solutions approchées des équations d’onde
quand la fréquence tend vers l'infini. Les solutions exactes pour ces équations sont
connues pour certaines configurations appelées probléemes canoniques. Dans un milieu
homogene a une vitesse, les solutions canoniques sont les ondes planes. Dans un milieu
ou la longueur d’onde est petite par rapport a ses hétérogénéités et aux distances de
propagation, cette forme des solutions exactes est valide a haute fréquence localement.
On peut alors intuiter les formes des solutions. C’est ce qu’on appelle un ansatz. L’étape
suivante est alors de trouver les conditions nécessaires pour que 'ansatz trouvé vérifie
effectivement 1’équation d’onde considérée.

Un ansatz tres simple est de la forme
ue = ag(t, x)e /e, (4)

ou ag est une amplitude scalaire ou vectorielle selon le probléme considéré, et v une phase
scalaire. On appelle cette méthode la méthode de 'optique géométrique, ou encore la
méthode WKB ou WKBJ [52], du nom des scientifiques Wentzel, Kramers, Brillouin
et Jeffreys qui 'ont indépendemment utilisée dans les années 1920. Pour décrire la
réflexion en présence d’un bord, des termes similaires avec des amplitudes et phases
réfléchies sont rajoutés dans I'ansatz précédent.

Dans le cas de I'équation des ondes a une vitesse ¢(x), on obtient en appliquant
Vopérateur 97 — 9, - (c*0,) & cet ansatz les termes suivants organisés selon les puissances
de €

e | 10wy — (0)*] ag + ie ™! [200hag — 262 0upDnto + (O — Oy - (P0t)))ac] + ...
En annulant le premier terme, on obtient une équation eikonale sur la phase
Cz‘@ﬂﬁﬁ - (aﬂ/})z =0.

Pour les équations de I’élasticité, ce type de calculs meéne a la méme équation eikonale
avec I'une des deux vitesses ¢y, ou cr, couplée avec une information sur la direction de
I’amplitude vectorielle ag.

Dans le cas d'une phase v réelle, cette équation de type Hamilton-Jacobi possede
deux solutions locales qui vérifient ¢|0,9| & Op = 0, pour une méme phase initiale
donnée 1y. La méthode traditionnelle pour calculer ces solutions est la méthode des
caractéristiques. Il s’agit, pour trouver par exemple la solution de c|0,¢| 4+ 0p = 0, de
résoudre le systeme Hamiltonien associé au symbole h (z,£) = c(z)[¢|

dxt gt dft B

at Ochy (2, ¢") = C(xt)@’ dat —phy(2',8") = —0pc(a’)|E']

avec comme direction initiale £° = 9,1y(2°), puis d’intégrer 1’équation % = Oy)+ 0,1 -

% avec la condition initiale (0, ) = 1)o(x), le long des courbes z*. Cependant la phase

1 trouvée n’est en général pas globale en temps. En effet Papplication 2° — 2! n’est
pas toujours bijective, et plusieurs rayons différents peuvent se croiser, formant ainsi ce

qu’on appelle une caustique. Il en résulte des fonctions WKB qui ne sont pas valables
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aux caustiques. D’autre part, la formation de caustiques est une situation récurrente
méme dans les modeles et structures les plus simples [17].

Si la phase ¥ a une partie imaginaire non nulle, la méthode des caractéristiques n’est
plus applicable. Cependant les propriétés de Im ) controlent ’enveloppe de la solution
asymptotique. En effet, si ¢ est réelle sur un rayon (¢, z") et que la partie imaginaire
de sa matrice Hessienne sur ce rayon 9%t (t, x') est définie positive, alors & tout instant
t la principale partie de la densité d’énergie de age’™/® est concentrée au voisinage du
point x = z' pour € petit. Il n’est plus nécessaire de vérifier I’équation eikonale de
fagon exacte mais seulement d’annuler la série de Taylor de ¢?|0,v¥]* — (9))? jusqu’a
un certain ordre R > 2 sur les rayons. On est alors ramené a la résolution de systemes
différentiels qui ont des solutions globales.

On obtient ainsi ce qu’on appelle des faisceaux gaussiens, ce nom provenant du fait
que leur densité d’énergie a un instant donné est une fonction gaussienne. Ces so-
lutions approchées, qui font partie de l'optique géométrique complexe (voir [56] pour
une comparaison entre les différentes méthodes d’optique géométrique complexe), appa-
raissent aussi sous le nom de "quasiphotons' car a chaque instant ¢ ils sont concentrés
au voisinage d’un point qui se déplace selon une certaine géodésique avec une vitesse
unitaire et possede plusieurs propriétés des particules (loi de conservation d’énergie,
réflexion au bord, etc). Certains auteurs distinguent ces faisceaux gaussiens dépendant
du temps et de la variable de I'espace de ceux qui ne dépendent que de la variable de
I’espace en les appelant faisceaux gaussiens en temps et en espace, faisceaux gaussiens
non-stationnaires ou encore paquets gaussiens et paquets d’onde gaussiens.

Historiquement, les faisceaux gaussiens apparaissent dans les travaux de V.M. Babich
dans les années 1960 [5] et sont généralisés dans les années 1980 par J. Ralston [84], V.M.
Babich et V.V. Ulin [8]. Ces solutions approchées ont été largement utilisées en élasticité
[6, 18, 53, 78], et pour les résonateurs optiques [7]. Les faisceaux gaussiens peuvent étre
adaptés naturellement a d’autres équations, comme les équations de Helmholtz et de
Schrodinger. Tout comme les différentes méthodes d’optique géométrique complexe,
ils constituent une alternative a l'optique géométrique traditionnelle pour décrire les
solutions au dela des caustiques, et ce de maniere globale en temps. Ils peuvent aussi étre
vus comme une base de solutions élémentaires pour la propagation d’ondes et permettre
ainsi d’étudier les solutions générales d’équations aux dérivées partielles [80, 84]. La
précision de ces solutions peut étre améliorée en rajoutant a I’amplitude ay des termes
supplémentaires de puissances de € supérieures ea; +¢c2as+. .. et en augmentant 'ordre
R jusqu’auquel ’équation eikonale est vérifiée sur le rayon.

Pour décrire un champ qui n’a pas de profil gaussien, on utilise la méthode de som-
mation de faisceaux gaussiens [18, 51, 54, 82]. Le champ initial est décomposé en une
somme de gaussiennes. Chaque faisceau gaussien individuel est calculé en résolvant les
systemes différentiels associés. Le champ est alors obtenu en un point d’observation en
superposant une sélection de faisceaux gaussiens. Les stratégies de sommation sont nom-
breuses. La somme peut étre discréte ou continue, la sélection des faisceaux gaussiens
a superposer peut se faire selon plusieurs criteres. On peut citer quelques orientations
récentes :

o la sélection des rayons de direction initiale 0,1 pour décrire une donnée initiale
WKB avec une phase 1 [63, 96].
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o l'utilisation de la transformée de Fourier [41, 97|

« l'utilisation de la transformée FBI (de Fourier-Bros-lagolnitzer) [88] définie de
L?*(R™) dans L?(R*") par

3n

T()(.8) = coe® [ )it @ I, o =278 ¥ powr f € (R

Les deuxiéme et troisieme méthodes permettent de se ramener a des données de la forme
amplitude multipliée par I’exponentielle d’'une phase.

Quelle que soit la méthode utilisée, il est important d’évaluer ses performances en
estimant l'erreur entre le champ théorique et le champ obtenu par la sommation de
faisceaux gaussiens. L’erreur de discrétisation d’'une intégrale de faisceaux gaussiens
pour l'élasticité a été analysée dans [55]. Récemment, la précision d’une superposition
continue de faisceaux gaussiens pour approcher la solution exacte d’une équation d’onde
acoustique a été étudiée dans [96, 63]. L’erreur relative a l'utilisation d’une série de
Taylor pour les phases et les amplitudes des faisceaux gaussiens a été quantifiée par [76]
pour I’équation de Helmholtz. Des études similaires ont été réalisées pour 1’équation de
Schrodinger dans [58, 64].

Dans le chapitre 1 on utilise la transformée FBI pour contruire une famille de so-
lutions du probléeme mixte (3) comme une intégrale de faisceaux gaussiens. On prouve
I’estimation d’erreur suivante :

Théoréme 1. [théoréme 1.1 du chapitre 1] Supposons vérifiées les hypothéses nécessaires
sur le domaine (B1-B3 p.33), notamment la transversalité au bord de tous les rayons
provenant de ). Supposons que les conditions initiales vérifient les hypothéses suivantes

Al. ul et vl sont uniformément bornées dans H'(2) et L?(Q) respectivement,

™
™

A2. u

™ ~

sont nulles en dehors d’un compact fize de €2,

A3. Toul(x, &) et Tovl(z,€) sont négligeables pour les & grands et les & proches de zéro
(voir p.28).

Alors on peut construire pour R € N, R > 2, une solution approchée u® du probléme
de Dirichlet ou de Neumann pour [’équation des ondes scalaire comme une intégrale de
faisceaur gaussiens. Cette solution vérifie pour tout T > 0

R-1
Sup ||uf(t7 D) —ue(t, ) my =0(E2),
t€[0,T]
R—1
et Sup Hﬁtuf(t, ) = Owue(t, )| 2@ = O(e 7).
te[0,7

La démarche est la suivante. On commence par décomposer les conditions initiales

en un point z sur la famille des fonctions (elf'(m_z)/ e=(z=2)*/ (25))( £eRen A un coeffi-
T, n

cient de normalisation pres, ceci est le noyau de I'adjoint de la transformée FBI qui
est une isométrie. Les conditions initiales s’écrivent alors comme une intégrale de
faisceaux gaussiens pondérés par leurs transformées FBI (a un coefficient pres). On
construit les faisceaux gaussiens individuels en suivant le formalisme de [84]. La su-
perposition de faisceaux dont les phases vérifient 1’équation eikonale a 1'ordre R donne
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une solution approchée uf. On estime alors les erreurs dans 1’équation a l'intérieur
(02 — 0, - (*(2)0,)) ult, la condition au bord et les conditions initiales ul*|;—g — u! et
Oyult|i—o — vl. Tous ces termes sont les résultats d’une famille d’opérateurs intégraux a
phase complexe appliqués aux transformées FBI des données initiales. Les normes de ces
opérateurs de L?(R*") dans H*(R™) sont calculées en utilisant la régularité des phases et
amplitudes des faisceaux gaussiens ainsi que les propriétés des phases. Une fois toutes
les erreurs estimées, la différence entre la solution approchée uf et la solution exacte
est controlée par I'estimation d’énergie du probléeme mixte. On obtient immédiatement
Pordre 7 pour la condition de bord de type Dirichlet. Pour prouver le méme ordre
pour le probléme de Neumann, on a recours a la solution approchée uf+! qu’on compare

3
a la solution exacte et a uf.

Ces idées s’adaptent naturellement au probleme de l'élasticité, en généralisant la

notion de transformée FBI aux fonctions vectorielles. On a alors 'estimation suivante
en élasticité tridimentionnelle :

Théoréme 2. [théoreme 1.1 du chapitre 3] Supposons vérifiées les hypothéses néces-
saires sur les conditions initiales et le domaine (voir p.100-101), excluant notamment
les rayons provenant de €2 qui touchent le bord tangentiellement ou a une incidence
supérieure ou égale a l’angle critique. On peut construire pour R € N, R > 2, une solu-
tion approchée ul* du probléme mixte pour ['élasticité comme une intégrale de faisceauz
gaussiens. Cette solution vérifie pour tout T > 0

R-1
Sup Huf(t, D) —ue(t, )|lmp =0 ),
te[0,T
R—1
et Sup |0l (t,.) — Dyua(t, )2 = OF),
te(0,7)

Mesures de Wigner

Les mesures de Wigner sont des mesures dans l'espace des phases qui permettent de
décrire le comportement asymptotique de quantités quadratiques telles que la densité
d’énergie locale. La fonction de Wigner a été utilisée en 1932 par E. Wigner [100]
en mécanique quantique. Depuis, elle a été appliquée dans divers autres domaines
comme l'optique et I'analyse du signal. Dans les années 90, plusieurs mathématiciens
s’intéressent aux mesures de Wigner, tels P.-L. Lions, T. Paul [62] et P. Gérard [35] (voir
aussi les articles [10, 28, 38] et I'exposé [12]). Les mesures de Wigner sont a rapprocher
des H-mesures et mesures de défaut microlocales, introduites par L. Tartar [98] et P.
Gérard [36] (voir aussi [33]).

A TO.N.E.R.A.! des travaux récents ont recours aux mesures de Wigner pour dé-
duire le comportement de 1’énergie vibratoire a haute fréquence dans un milieu élastique
[93] ou visco-élastique [2, 3]. Ces travaux rejoignent les "approches ingénieur" [40, 99|
qui constituent une alternative aux techniques habituellement utilisées pour étudier les
vibrations des structures a haute fréquence : I'analyse statistique énergétique (SEA)
[65, 66] et les modeles de diffusion d’énergie vibratoire [77, 90].

La SEA constitue une approche globale dans la mesure ou elle ne fournit que des es-
timations des énergies vibratoires moyennes par sous-systemes mécaniques. La difficulté

1Office National d’Etudes et de Recherches Aérospatiales
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principale de la méthode, encore tres heuristique, est la détermination des parametres
physiques qui interviennent : facteurs de perte par couplage entre sous-systemes, den-
sités modales, puissances injectées.

Les modeles de diffusion d’énergie vibratoire peuvent étre qualifiés de locaux car ils
fournissent des estimations des densités d’énergie et d’intensité vibratoire. Néanmoins
ils n'ont jusqu’a présent été mis en oeuvre que pour des structures simples (poutres,
plaques) car ils reposent sur des hypotheses fortes difficilement vérifiables - voire fausses
- pour des structures plus complexes. Ces modeles conduisent a une équation de diffusion
pour la densité d’énergie vibratoire. Or I'utilisation des solutions WKB traditionnelles
montre cependant que l’équation vérifiée par la densité d’énergie est une équation de
transport.

Le recours aux mesures de Wigner constitue une alternative rigoureuse pour parer a
ces difficultés. De plus cette méthode fournit la direction de propagation de 1’énergie.

Une mesure de Wigner w|f.] associée a la suite (f.) uniformément bornée dans
L*(R™)P est une limite faible de la suite des transformées de Wigner associées a f.
(quitte a extraire une sous-suite)

welf)(w,€) = @m) [ e L+ o) - So)do.

Moyennant certaines hypotheses, la limite (au sens des mesures) quand ¢ — 0 de la
densité d’énergie pour les solutions d’équations d’onde peut s’exprimer en terme de
mesures de Wigner. Ainsi, pour ’équation des ondes scalaire, la densité d’énergie a
I'instant ¢ converge vers

L w0, )z, de) + / Trw[cdu. (t, )] (z, dE).

2 RTL
En élasticité, elle converge vers

L Trw[Opue(t, .)](x, d§) + Z Trw@ () + 0 (ue);(t, )] (2, d€)

2 Jrn

+;\ wldivu,(t,.)](z, d§).

R7
Ces quantités ont été completement caractérisées pour les équations d’onde dans tout
I'espace [38, 79]. En présence d’un bord, I’étude des mesures de Wigner devient tech-
niquement plus difficile. La notion de mesure de Wigner a été utilisée dans le cas de
domaines bornés pour l'analyse des propriétés ergodiques des fonctions propres pour
les probleme de Dirichlet dans [37, 102], de Neumann et de Robin dans [13]. D’autres
études se sont intéressées aux mesures de Wigner dans un domaine borné ou avec une
interface, comme dans les articles [11, 74, 91] et les theses [25, 30]. Tous ces travaux se
fondent sur 'utilisation du calcul pseudo-différentiel semi-classique.

Dans le chapitre 2, le comportement de la densité d’énergie microlocale pour la
solution du probleme (3) est décrit en utilisant une autre approche similaire a [15, 8§]
fondée sur les faisceaux gaussiens. On prouve le théoreme suivant :

Théoréeme 3. [théoreme 1.1 du chapitre 2] Supposons vérifiées les hypothéses nécessaires
sur le domaine (B1-B3 p.61), notamment la transversalité au bord de tous les rayons
provenant de §). Supposons que les données initiales satisfont A1, A2 et également les
conditions suivantes (aprés extension par 0 en dehors de )
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C1. Les mesures de Wigner de vl et 0,,ul (b=1,...,n) sont uniques,
C2. vl et O,,ul (b=1,...,n) sont e-oscillantes (voir les équations (53),Chapitre 2),

C3. Les mesures de Wigner de vl et O,,ul (b =1,...,n) ne chargent pas l'ensemble
R™ x {¢ = 0}.

Alors la densité d’énergie par vecteur d’onde Jw[Oyu.(t, )]+ 3 Trw[cdu.(t,.)] s'écrit dans
Qx (R™"\{0}) comme la somme de deuz mesures de Wigner initiales transportées le long
du flot bicaractéristique brisé obtenu par réflexions successives des rayons au bord.

La démonstration se divise en deux étapes : on prouve d’abord le théoreme pour des
conditions initiales qui vérifient I’hypothese A3 puis on I’étend a des conditions initiales
plus générales. Sous I'hypothese A3, les mesures de Wigner associées aux dérivées
de la solution exacte u. et aux dérivées d'une solution approchée ul* sont les mémes.
On commence donc par calculer explicitement les transformées de Wigner associées
aux dérivées de uf dans le cas le plus simple R = 2. Pour cela on suit la démarche
de Robinson [88], qui a calculé des quantités similaires pour I’équation de Schrodinger
dans tout I'espace. Il a étudié la transformée de Wigner d’une superposition de faisceaux
gaussiens pondérés par une transformée FBI et I'a approchée par une intégrale faisant
apparaitre une quantité proche du carré du module de la transformée FBI transportée.
On calcule la limite de cette intégrale en utilisant le théoréeme de convergence dominée.
On prouve ainsi le théoréme 3 pour la solution approchée uff et par conséquent pour la
solution exacte du probléme (3) avec des conditions initiales qui vérifient les hypotheses
A1-A3 et C1. On veut ensuite s’affranchir de I’hypothese A3 qui est une hypothese
nécessaire a la sommation des faisceaux gaussiens et non au calcul des transformées de
Wigner, et la remplacer par les hypotheses classiques C2, C3 d’c-oscillation et de non
chargement de 'ensemble R" x {& = 0}. Pour cela, on construit une suite de données
initiales qui vérifient A3 et telles que les mesures de Wigner associées approchent celles
de ul et v!.

Pour le systeme de 1’élasticité les calculs sont au départ similaires mais il faut tenir
compte des changements de modes a la réflexion : les ondes qui se propagent a la vitesse
c;, donnent naissance a des ondes se propageant a la vitesse cr et inversement. La
décomposition de Helmholtz des conditions initiales

ul = f. + W, vl = g. + 6, avec rot f. = rotg. = 0 et divl, = divO, = 0,

permet d’identifier les quantités transportées selon les flots associés a chacune des
vitesses : les termes de rotationnel nul se propagent a la vitesse ¢y et les termes de
divergence nulle a la vitesse c¢y. Cependant des termes supplémentaires apparaissent
dans la transformée de Wigner. Il s’agit de termes croisés entre des quantités qui se
transportent selon les flots réfléchis associés a des vitesses différentes. On a alors besoin
d’une hypothese supplémentaire pour annuler la contribution de ces termes croisés. On
prouve le résultat suivant :

Théoréme 4. [théoreme 4.1 du chapitre 3] Supposons vérifiées les hypothéses nécessaires
sur les conditions initiales (voir p.100 et p.122) et le domaine (voir p.101), excluant
notamment les rayons provenant de §2 qui touchent le bord tangentiellement ou a une
incidence supérieure ou égale a l’angle critique. Supposons également que
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D1. Les mesures de Wigner associées a f. et W, sont singuliéres,

D2. Les mesures de Wigner associées a g. et ©. sont singuliéres.

Alors on peut calculer la densité d’énergie par vecteur d’onde §Trw[Opuc(t,.)|(x, &) +
3
%];1 Trw(0y,ue(t, ) + 0x(ue); (¢, )] (z, &) + Sw[divuc(t, .)](z, §) pour le probléme mizte (2)

en fonction des mesures de Wigner des conditions initiales.

Ce manuscrit comprend trois chapitres. Les chapitres 1 et 2 sont sous forme
d’articles??. Tous les deux traitent le probléme mixte de I’équation des ondes scalaire. Au
chapitre 1, une solution approchée est construite par sommation de faisceaux gaussiens.
Au chapitre 2, la densité d’énergie microlocale de la solution exacte est calculée au moyen
des mesures de Wigner. Le chapitre 3 utilise les mémes techniques pour 1'élasticité.

2Chapitre 1 : & paraitre dans Comm. Math. Sci.
3Chapitre 2 : Prépublication.
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Introduction
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Statement of the problem

Many physical phenomena are modelled by wave equations. In an elastic medium, the
equations of linearized motion in the case of small disturbances are:

pdiu = dive(u), (1)

where u is the displacement around a static equilibrium configuration considered as a
reference state, p is the density, o(u) is the stress tensor and dive(u) is the vector of

3
components (dive(u)); = 3 Oy0j,(u) for 1 < j < 3. Earth surface in seismology,
k=1

human organs in medical in;agery, as well as many structures in industrial mechanics
can be considered as elastic media. If the properties of the medium are the same in all
the directions, the medium is called isotropic, and the stress tensor is given by

o(u) = Mdivuld + p (@Cu + &cuT) )

where (Oyu); = Oyu; and A(z), p(x) are Lamé coefficients satisfying pu(xz) > 0 et
M) + 2u(z) > 0. Equations (1) read

pdu — 0, (Adivu) — div (,uaxu + ,u@qu) = 0. (2a)

We assume o # A + 2 and the density and the Lamé coefficients are smooth. In
a homogeneous medium, the density and the Lamé coefficients do not depend on the
position z. The solution u of (2a) can be written in this case as the sum of two terms
uy, and ur, which are curl-free and divergence-free respectively. Each one of these terms
is a solution of a wave equation

u=ur, + ur, 8t2uL - c%AuL =0, afuT - c%AuT =0,

with
A+ 2u

p
In this thesis, we are interested in high frequency problems which arise in several appli-
cations. The study of industrial structures vibrations, when the frequency of excitation
is important (shocks) is an example of high frequency oscillations in elastic media. One
can also encounter this kind of problem in seismic waves propagation when the wave-
length is small.

and ¢ = ay

&3 =

We thus complete equations (2a) with initial conditions (uf,v])

U|t:0 = Uéa atU|t:0 = U&{a (2b)

depending on a high frequency parameter ¢ < 1. The exact form of the initial data
is not important here. A typical example is u! = cae’®*/¢ and v! = be¥0/¢| then the
solution of the elasticity system with these highly oscillating initial conditions depends
on ¢ (and will be denoted by u.). We are interested in the behavior of this solution

when ¢ is very small.

For industrial structures (aerospace, automotive, railways, civil engineering, etc.) as
well as in seismology, the elastic bodies considered occupy a domain €2 with a boundary
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and the relations (2a)-(2b) must be supplemented by boundary conditions on 9. The
clamped boundary condition or Dirichlet condition reads

u5|8Q = 0, (QC)
whereas a free boundary results in a condition of the Neumann type
o(ue)v)ag = 0, (2¢”)

where v is the normal exterior to the boundary. One can of course impose other bound-
ary conditions (mixed, oblique derivatives, etc). The problem of solving a hyperbolic
partial differential equation or system of equations with given initial conditions and
boundary conditions is called a hyperbolic mixed problem.

The structure of the exact solution of a mixed problem for the wave equation depends
on the geometry of the domain. Indeed, in the interior of the domain, the energy is
propagated along bicharacteristics which are curves of the cotangent bundle 7*(R x 2).
Projections of these curves on R x €2 are the optical rays. For the wave operator with
a constant speed c, these rays are curves (¢, z) of R""! moving in a rectilinear way at
the speed c inside (). When striking the boundary transversally, the optical rays are
reflected according to geometrical optics laws. If they meet the boundary tangentially,
they may give rise to diffractive rays which hit the boundary without being deviated.
They can also give rise to gliding rays which remain on the boundary 02, and are limits
of rays approaching the boundary and reflected a large number of times. As regards the
operator of elasticity, it has two families of rays associated with each one of the speeds
cr, and cy. When striking the boundary, the rays associated to the speed ¢y can give
rise to rays associated to the speed cr and conversely.

One can study high frequency problems by building asymptotic developments of the
solution, valid when ¢ is very small. The solution is thus approximated for a suitable
norm with an accuracy increasing with the frequency. There exist also other approaches
which are focused only on the limit when ¢ — 0 of some quantities associated with
the solution such as the local energy density |u.|?, for example the Wigner measures
method.

In this thesis, we are interested in the high frequency solutions of mixed problems
for the scalar wave equation

agua - am : <C2($)8mu5) = 07 us't:O = U£, atuz-:ltzo = Ui;
Uc|aq = 0 or O,uclaq = 0,

(3)

and the system of elasticity (2). The boundary is assumed to be smooth and only the
reflection phenomenon is studied. The adopted strategy is the following. We start by
studying the simpler problem of the scalar wave equation, then the techniques used are
adapted to the elasticity system. Under some hypotheses on the initial conditions, we
approach the solution close to O(¢") for all N € N by building a family of asymp-
totic solutions. The construction is based on a powerful method well controlled for the
phenomenon of reflection at the boundary: the Gaussian beams summation method.
For more general initial conditions, we use Wigner measures to compute the microlo-
cal energy density. This quantity is characterized by analyzing the microlocal energy
density of the approximate solution by means of explicit computations on the Wigner
transforms.
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Gaussian beams summation

There exist several mathematical models of approximate solutions for wave equations
when the frequency grows to infinity. The exact solutions for these equations are known
for certain configurations called canonical problems. In a homogeneous medium with one
wave speed, the canonical solutions are plane waves. In a medium where the wavelength
is small compared to its heterogeneities and to the propagation distances, this form of
exact solutions is valid for high frequencies locally. One can then guess the shapes of
the solutions. This is what is called an ansatz. The following step is then to find some
conditions for the ansatz in order to satisfy effectively the considered wave equations.

A very simple ansatz is .
Uz ~ ag(t, x)eV /e, (4)

where aq is a scalar or vector amplitude according to the considered problem, and
a scalar phase. This method is called the geometrical optics method, or the WKB or
WKBJ method [52], for the scientists Wentzel, Kramers, Brillouin and Jeffreys who
independently introduced it in the 1920’s. To describe reflection in the case of a domain
with boundary, similar terms with reflected amplitudes and phases are added in the
previous ansatz. For the wave equation with speed c¢(z), one obtains by applying the
operator 92 — 9, - (c*0,) to this ansatz the following terms organized according to the
powers of

e | 10w — (0)*] ag + ie ™! [200hag — 262 0upDnap + (O — By - (P0t)))ac] + ...
Making the first term vanish, one gets an eikonal equation for the phase ¥
0,9 — (0p)? = 0.

For the elasticity system, similar computations lead to the same eikonal equation with
one of the two speeds ¢y or ¢y, coupled with an information on the direction of the
vectorial amplitude aqg.

In the case of a real phase v, this Hamilton-Jacobi type equation has two local
solutions which satisfy ¢|0,9| £+ 0y3p = 0, for one given initial phase 1. The traditional
method to compute these solutions is the method of characteristics. In order to find for
example the solution of ¢|0,1| 4+ 9;¢p = 0, it consists in solving the Hamiltonian system
associated with the symbol hy(z,&) = c(z)[¢|

dxt ft dft

= Ochy (a',€') = c(ast)‘f—q, — = —0hy (2, ') = —Ouc(a") [

with initial direction €% = 9,1y(z°), and then integrating the equation % = o +

t
01 - % with the initial condition (0, ) = 1y(z), along the curves z*. However the

phase ) is generally not global in time. Indeed the map z° +— 2 is not always one-to-
one, and several different rays can cross, yielding what is called a caustic. It results in
WKB solutions which are not valid at the caustics. On the other hand, the formation
of caustics is a recurring situation even in the simplest models and structures [17].

If the phase ¥ has a non zero imaginary part, the method of characteristics is no
more applicable. However the properties of Im 1) control the envelope of the asymptotic
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solution. Indeed, if ¢ is real on a ray (¢,z') and if the imaginary part of its Hessian
matrix on this ray 9% (t, x') is positive definite, then at any instant ¢ the principal part
of the energy density of age’™/® is concentrated in the vicinity of the point x = 2* for
small €. It is not necessary any more to satisfy the eikonal equation exactly but only to
make the Taylor series of ¢2|0,1|? — (9y1))? vanish up to a certain order R > 2 on the
ray. One has then to solve differential systems which have global solutions. This is what
is called Gaussian beams, which owe their name to the fact that their energy density
at a given instant is a Gaussian function. These approximate solutions, which belong
to complex geometrical optics (see [56] for a comparison between the various methods
of complex geometrical optics), also appear under the name of "quasiphotons" because
at every instant ¢ they are concentrated in the vicinity of a point which moves along
some geodesic line with a unit speed and has several properties of the particles (energy
conservation law, reflection at the boundary, etc.). Some authors distinguish these
Gaussian beams depending on the time and the space variable from those which depend
only on the space variable by calling them space-time Gaussian beams, nonstationary
Gaussian beams, or Gaussian packets and Gaussian wave packets.

Historically, Gaussian beams appear in the work of V.M. Babich in the 1960’s [5]
and are generalized in the 1980’s by J. Ralston [84], V.M. Babich and V.V. Ulin [8].
These approximate solutions were widely used in elasticity [6, 18, 53, 78], and for optical
resonators [7]. Gaussian beams can be adapted naturally to other equations, such as
the Helmholtz and Schrodinger equations. Just like the various methods of complex
geometrical optics, they constitute an alternative to traditional geometrical optics to
describe the solutions beyond the caustics, globally in time. They can also be seen as a
basis of elementary solutions for wave propagation, thus allowing to study the general
solutions of partial differential equations [80, 84]. The accuracy of these solutions can
be improved by adding to the amplitude ag further terms of higher powers of € of the
form ea; + c%as + ... and by increasing the order R up to which the eikonal equation is
satisfied on the ray.

To describe a field with non Gaussian profile, one uses the Gaussian beams summa-
tion method [18, 51, 54, 82]. The initial field is expanded as a sum of Gaussian beams.
Each individual Gaussian beam is computed by solving the associated differential sys-
tems. The field is then obtained at an observation point by superposing a selection of
Gaussian beams. The summation strategies are numerous. The sum can be discrete or
continuous, the selection of the Gaussian beams to be superposed can be done according
to several criteria. One can quote some recent orientations:

o selection of rays of initial direction 0,1 to describe WKB initial data with a phase

o use of the Fourier transform [41, 97];

o use of the FBI (Fourier-Bros-lTagolnitzer) transform [88] defined from L?*(R™) to
L2 (R2n) by

T(f)(z, &) = o f()e@=a)/e=e=2)/Ce) gy o = 2757 % for f € L*(R™).
Rn

The second and third methods allow to get data of the form of an amplitude multiplied
by the exponential of a phase.
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Whatever the method is, it is important to evaluate its performances by estimating
the error between the theoretical field and the field obtained by the Gaussian beams
summation. The discretization error of an integral of Gaussian beams for elasticity
was analyzed in [55]. Recently, the accuracy of a continuous superposition of Gaussian
beams to approach the exact solution of the acoustic wave equation was studied in
[96, 63]. The error related to the use of Taylor series for the phases and the amplitudes
of the Gaussian beams was quantified by [76] for the Helmholtz equation. Similar studies
were carried out for the Schrodinger equation in [58, 64]. In chapter 1 we use the FBI
transform to construct a family of solutions of the mixed problem (3) as an integral of
Gaussian beams. The following error estimate is proved:

Theorem 1. [theorem 1.1, chapter 1] Suppose fulfilled the required hypotheses on the
domain (B1-B3 p. 33), in particular transversality at the boundary of all rays originating
from ). Assume that the initial conditions satisfy the following assumptions

~

Al. ul and vl are uniformly bounded in H*(Q)) and L*(Q) respectively,
A2. ul and vl vanish outside a fized compact of €,

A3, Toul(x, &) and Tovl(x,€) are negligible for large € and € close to zero (see p. 28).

Then we can construct for R € N, R > 2, an approzimate solution uf of the Dirichlet
or Neumann problem of the scalar wave equation as an integral of Gaussmn beams. This
solution satisfies for all T > 0

SupHu( D)= u(t, Mo = O(7),

te[0,T

and Sup ||z (t,.) — Oue(t, )| 2@ = Oe 7).

t€[0,T]

The strategy is the following. One starts by decomposing the initial conditions at point
z over the family of functions (e’f'(“”_z)/ e=(@=2)*/ (25))(96 R’ Up to a scaling coefficient,
this is the kernel of the adjoint of the FBI transform; which is an isometry. The initial
conditions are then written as an integral of Gaussian beams weighted by their FBI
transforms (modulo a scaling coefficient). One builds the individual Gaussian beams
following the formalism of [84]. Superposition of beams of which phases satisfy the
eikonal equation up to order R gives an approximate solution u®. One then estimates
the errors in the interior equation (92 — 9, - (¢*(x)d,)) uf, the boundary condition and
the initial conditions uf|;—o — ul and dyul|,—o — vl. All these terms are the results of
a family of integral operators with a complex phase applied to the initial data’ FBI
transforms. The norms of these operators from L?*(R**) to H*(R") are computed by
using the smoothness of the Gaussian beams phases and amplitudes and the properties of
these phases Once all the errors are estimated, the difference between the approximate
solution u* and the exact solution is controlled by the mixed problem energy estimate.
One obtalns immediately the order ¢ “T* for the Dirichlet boundary condition. To prove
the same order for the Neumann problem, one resorts to the approximate solution u/*+

and compares it to the exact solution and to uZ.

These ideas can be naturally adapted to the elasticity problem, by generalizing the
concept of FBI transform to vector functions. We obtain the following estimate for
tridimentional elasticity:
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Theorem 2. [theorem 1.1, chapter 3| Suppose fulfilled the required assumptions on
the initial conditions and the boundary (see p.100-101), in particular excluding rays
originating from §2 which hit the boundary tangentially or with an incidence equal or
larger than the critical angle. One can build for R € N, R > 2, an approximate solution

R

uzt of the mized problem for elasticity as an integral of Gaussian beams. This solution

satisfies for all T > 0

R—-1
Sup uf(t,.) = uc(t, ) mi@p = O7),
te€[0,7
R—1
and Sup Hatuf(ta ) o atuf—:(t7 ')”L2(9)3 = O<8T)
te[0,7

Wigner measures

Wigner measures are phase space measures which allow to describe the asymptotic
behavior of quadratic quantities such as the local energy density. The Wigner function
was introduced in 1932 by E. Wigner [100] in quantum mechanics. Since then, it has
been applied in various other fields like optics and signal analysis. In the nineties,
many mathematicians became interested in Wigner measures, such as P.- L. Lions,
T. Paul [62] and P. Gérard [35] (see also the papers [10, 28, 38] and the talk [12]).
Wigner measures are related to H-measures and microlocal defect measures, introduced
by L. Tartar [98] and P. Gérard [36] (see also [33]). At Onera?, recent works resort to
Wigner measures to deduce the behavior of high frequency vibratory energy in an elastic
[93] or viscoelastic [2, 3] medium. These works agree with the engineering approaches
[40, 99] which constitute an alternative for the techniques usually used to study the high
frequency vibrations of structures: the statistical energy analysis (SEA) [65, 66] and the
power flow analysis [77, 90]. The SEA is a global approach insofar as it provides only
estimates of average vibratory energies for mechanical subsystems. The main difficulty
of the method, which is still very heuristic, is the derivation of the involved physical
parameters: subsystems coupling loss factors, modal densities, injected powers. The
power flow analysis is a local approach because it provides estimates of the energy
densities and the vibratory intensity. Nevertheless, it relies on strong assumptions that
can not easily be checked, or are even false for complex structures. That is why it is used
only for simple structures (beams, plates). This method leads to a diffusion equation for
the vibratory energy density. However the use of traditional WKB solutions shows that
the equation satisfied by the energy density is a transport equation. The use of Wigner
measures is a rigorous alternative to tackle these difficulties. Moreover this method
provides the energy propagation directions and paths.

A Wigner measure w|f.] for a sequence (f.) uniformly bounded in L?*(R")? is a weak
limit of the sequence of the Wigner transforms associated with f. (upon extracting a
subsequence)

w.[f(z, €) = (2m) 7" /R Rt ACE %v) Frla— %v)dv.

Under some assumptions, the limit (in the sense of measures) when € — 0 of the energy
density for wave equation solutions can be expressed in term of Wigner measures. For

4The French Aerospace Lab
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the scalar wave equation, the energy density at the instant ¢ converges to

; - w[Ouc(t, .)](x, d) + ; - Trw[cOuc(t,.)](z, d).

For the elasticity system, it converges to

£ ] Trofdu(t, ))(, dg) + Z  Trwl0;ue(t, ) + Do) (¢, )] (2, de)

]Rn

+5 [ wldiva(r, )], de).

These quantities were fully characterized for wave equations in the whole space domain
[38, 79]. In the presence of a boundary, the study of Wigner measures becomes techni-
cally more difficult. The concept of Wigner measures was used in bounded domains for
the analysis of the ergodic properties of the eigenfunctions for the Dirichlet problem in
[37, 102], or the Neumann and Robin problems in [13]. Other studies have been focused
on the Wigner measures in a bounded domain or with an interface, such as the papers
[11, 74, 91] and the theses [25, 30]. All these works are based on the use of semi-classical
pseudo-differential calculus.

In chapter 2, the microlocal energy density for the solution of the problem (3) is
described by using another approach similar to [15, 88] based on Gaussian beams. The
following theorem is proved:

Theorem 3. [theorem 1.1, chapter 2] Suppose fulfilled the required hypotheses on the
domain (B1-B3 p.61), in particular transversality at the boundary of all rays originating
from Q. Assume that the initial conditions satisfy A1, A2 together with the following
assumptions (after extension by zero outside )

C1. The Wigner measures of vl and d,ul (b=1,...,n) are unique,

C2. vl and O,ul (b=1,...,n) are e-oscillatory (see equations (53),chapter 2),

C3. The Wigner measures of vl and 9, ul (b=1,...,n) do not load the set R" x {£ =
0}.

Then the microlocal energy density w[Oyuc(t,.)] + s Trw[cduc(t,.)] is equal in Q X
(R™\{0}) to the sum of two initial Wigner measures transported along the broken bichar-
acteristic flow obtained by successively reflecting the rays at the boundary.

The proof is divided into two steps: the theorem is firstly proved for initial conditions
which satisfy the assumption A3 and then extended to more general initial conditions.
Under the assumption A3, Wigner measures associated with the derivatives of the exact
solution u. and with the derivative of an approximate solution u? are the same. One
thus starts by computing explicitly the Wigner transforms associated with the deriva-
tives of uf in the simple case R = 2. To do so one follows the ideas of Robinson [88], who
computed similar quantities for the Schrodinger equation in the whole space domain.
He analyzed the Wigner transform of a superposition of Gaussian beams weighted by a
FBI transform and approached it by an integral involving a quantity close to the square
modulus of the transported FBI transform. We compute the limit of this integral by



24

using the dominated convergence theorem. Theorem 3 is thus proved for the approxi-
mate solution u and consequently for the exact solution of the problem (3) with initial
conditions satisfying the assumptions A1-A3 and C1. One wants then to remove the
assumption A3 which is needed for the Gaussian beams summation but not for the
computation of the Wigner transforms, and to replace it by the traditional assumptions
C2, C3 of e-oscillation and unloading of the set R™ x {¢ = 0}. In order to do that, we
build a sequence of initial data which fulfill A3 and such that their associated Wigner
measures approach those of u! and v/,

For the system of elasticity computations are similar at the beginning but one has
to take into account the phenomenon of mode conversion at the reflections: the waves
propagating at the speed ¢, give rise to waves propagating at the speed ¢y and conversely.
Helmholtz decomposition of the initial conditions

ul = f. + V., 0! = g. + O, with rotf. = rotg. = 0 and divl, = divO, = 0,

allows to identify the quantities transported along the flows associated with each speed:
the curl-free terms propagate at the speed ¢;, and the divergence-free terms at the speed
cr. However additional cross terms between quantities transported along different flows
appear in the Wigner transform. One then needs a further assumption to cancel the
contribution of these cross terms. The following result is proved:

Theorem 4. [theorem 4.1, chapter 3] Suppose fulfilled the required assumptions on the
initial conditions (see p.100 and p.122) and the boundary (see p.101), in particular ez-
cluding rays originating from € which hit the boundary tangentially or with an incidence
equal or larger than the critical angle. Suppose furthermore that

D1. The Wigner measures associated with f. and V. are singular,

D2. The Wigner measures associated with g. and ©. are singular.

Then one can compute the microlocal energy density

gTrw[atue(t, ) (z, &) + %Z Tew(D,, ue(t, .) + O (u);(t, )] (2, €) + ;\w[divug(t, ) (z,€)

j=1
for the mized problem (2) by using the Wigner measures of the initial conditions.

This thesis contains three chapters. Chapters 1 and 2 are included in paper forms®°.

Both of them deal with the mixed problem of the scalar wave equation. In chapter 1,
an approximate solution is constructed by Gaussian beams summation. In chapter 2,
the microlocal energy density of the exact solution is computed by means of Wigner
measures. Chapter 3 uses the same techniques for elasticity.

SChapter 1: to appear in Comm. Math. Sci.
6Chapter 2: Preprint
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Chapter 1

Gaussian beams summation for the

wave equation in a convex domain
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1 Introduction

In this paper, our aim is to provide asymptotic solutions, in a sense to be precised later,
to the following initial-boundary value problem (IBVP) for the wave equation

Pu. = 0u. — 0, - (A(2)0pus) = 0in [0,T] x Q,
Ueltmo = ul, Opucli—o = vl in Q, (1)

Bu. =01in [0,T] x 09,
where B is a Dirichlet or Neumann type boundary operator.

Above, T' > 0 is fixed, and €2 is a bounded domain of R", with n = 2 or n = 3 for
important applications to acoustics or elastodynamics problems.

We assume the boundary 02 is C*° and the domain convex for the bicharacteristic
curves of P, see more precisely assumption Bl p.33 below. Furthermore, the coefficient
c is assumed to be in C*({2), though this assumption may be substantially relaxed.

Our initial data will depend on a small parameter € > 0, playing the role of a small
wavelength, and our main objective is to study the high frequency limit, corresponding
to e — 0, that is the construction of high frequency solutions. Moreover, we shall assume
that ul, vl are

A1l. uniformly bounded respectively in H'(Q2) and L*(Q),

A2. uniformly supported in a fixed compact set K C €.

The search for such approximate solutions and related notions of parametrices for the
wave equation and similar equations has been an intensive field of activities. A widely
used technique to produce such high frequency solutions is given by geometric optics,
also called WKB method [72]. This technique is well known in the Physics literature
[52]. Then, and in the full space case, approximate solutions are constructed under the
form

N . .
S elazeE, (2)
=0

with a real phase function ¥ and complex amplitudes functions a;. The presence of a
boundary may lead to further terms with reflected phases and amplitudes.

Typically, initial data should have the same form as in (2), but solutions for more
general initial conditions can be obtained by summing an infinite number of WKB
solutions. Mathematically, this technique relies on the well known theory of Fourier
Integral Operators (FIOs), see for instance [43], see also the earlier works of Maslov
and Fedoruk [72] and the recent lecture notes by Rauch and Markus [87]. In general,
the global construction of a FIO breaks down at some time, due to generic existence of
caustics, see [24].

The caustics problem is also linked to the local solvability of the eikonal equation for
the phase, which is derived by substituting the WKB ansatz in the partial differential
equation. Indeed, the eikonal equation is solved using the method of characteristics and



27

the phase therefore cannot be defined near every point of the domain, at the exception
of some very particular cases.

To overcome this difficulty, one either uses a collection of local FIOs or, more gen-
erally, constructs a global FIO. This is the way chosen by Chazarain to produce a
parametrix for the mixed problem of the wave equation in [20]. Though this method
is quite satisfying for the mathematical analysis of propagation of singularities, it does
not give approximate solutions directly. A computationally oriented alternative to this
mathematical elaborate method is the use of Gaussian beams summation.

Gaussian beams are high frequency asymptotic solutions to linear partial differential
equations that are concentrated on a single ray. In the mathematical literature, their
first use dates back to the 1960s, see [5]. Since then, they have been useful in a variety
of problems in mathematical physics such as modelling seismic [42] or electromagnetic
[27] wave fields. They also have been used in pure mathematics, such as propagation of
singularities [44, 84| and semiclassical measures [80], see [46] and [38] for other methods
concerning these problems.

One advantage of this method over the WKB precedure is that an individual Gaus-
sian beam has no singularities at caustics. Note that Gaussian beams summation is
naturally linked to FIOs with complex phases [43] (see [14, 57, 58, 95] for recent contri-
butions).

In a bounded domain of general geometry, both of the WKB and the Gaussian beams
ansatzs are inadequate to produce asymptotic solutions. Other models are needed to
describe the diffraction phenomena or the gliding of rays along the boundary, such as the
Fourier-Airy Integral Operators [73] or the gliding beams [86]. However, in our precise
setting of a convex domain with compactly supported initial data, only the reflection
effects at the boundary must be considered.

Dirichlet or Neumann boundary conditions can be taken into account by combining
a finite sum of successively reflected Gaussian beams [50, 67]. Using an infinite sum of
Gaussian beams, one can then match quite general initial conditions. This summation
can be achieved in different ways, see [18, 51, 54] and the recent [42, 49, 60, 63, 64, 76, 96].
In [63] and [96], superpositions of Gaussian beams are used to solve wave equations with
initial data of WKB form. In fact, see Theorem 1.1 below, more general initial conditions
are allowed through the use of their FBI transforms, which is also naturally linked with
the concept of a Gaussian beam.

The FBI or Fourier-Bros-lagolnitzer transform (see [23, 71, 94]) is, for a given scale
g, the operator T, : L*(R™) — L*(R?") defined by

3n

T.(a)(y,n) = cng’f/ a(w)e W=/ mw? /) gy, e — 27T a L*(R™). (3)

Its adjoint is the operator

T (f)w) = e [ flympen e Cayay, fe LR, (4)
R n

As the Fourier Transform, the FBI transform is an isometry, satisfying 77, = Id.
Its main property is to decompose an L2 function over the family of functions
(em-(@=v)/ e=(@=y)*/ (28))(yﬂ7)€R2n. For instance, FBI transformation was the method used
in [88] to construct an approximate solution for the Schrodinger equation with WKB
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initial conditions. The FBI transform is of course again connected with FIOs with com-
plex phases and an interesting result on their global L? boundedness has been proven
recently in [95], regarding the Hermann Kluck propagator.

In this paper, our approach to find asymptotic solutions to the problem (1) is to
achieve a superposition of incident and reflected Gaussian beams weighted by the FBI
transforms of the initial data, satisfying both the condition at the boundary and the
initial conditions. Our main result is given by

Theorem 1.1. Under assumptions A1 and A2, suppose the FBI transforms of the initial
data is infinitely small on the complement of some ring

Rn:{nEanrog |77| Sroo}a 0<T0<T‘oo,

in the sense that
A3 ||T5U/£||L2(RnXR$’) — O(gs) and ||T€U5{HL2(R"><R%) - 0(55)7 VS Z 0

Then for any integer R > 2, there is an asymptotic solution to (1) of the form

uf(t7 x) = % fR2n a/i"(t, x? y? ?77 R)@Zwk(tvmﬂyva)/sdydn’

where ake™*/¢ are Gaussian beams and the summation over k is finite.

ult is asymptotic to the exact solution of the IBVP (1) in the following sense

€

Sup ||u§(t7 ) - us(t7 )HHl(Q) = 0(5%)’
t€[0,T
and Sup H@tuf(t, ) = Owue(t, )| 220) = 0(5%),
te[0,7

Let us note that construction of asymptotic solutions such as a summation of Gaus-
sian beams is certainly not new, but rigorous justification is the main point of our work,
together with precise estimates.

This paper is organized as follows. In section 2 we recall the construction of Gaussian
beams for a strictly hyperbolic differential operator as achieved in [84]. Then, we study
the case of the wave equation and construct the incident and reflected beams, and in a
final step, we construct approximate solutions for (1) by a Gaussian beams summation.
Justification of the asymptotics is given in section 3. Therein, we introduce approxima-
tion operators acting from L*(R?") to L?(R") with a complex phase and compute their
norms. We apply these operators on FBI transforms of initial data, and estimate the er-
ror of the constructed asymptotic solutions near the boundary, thus taking into account
the precise boundary condition, and in the interior set. These estimates are combined
with the errors in the initial conditions and yield the justification of the asymptotics by
means of energy type estimates.

We close this introduction by a short discussion on the notations. Throughout this
paper, we will use standard multiindex notations. The inner product of two vectors
a,b € R? will be denoted by a - b. The transpose of a matrix A will be noted AT. If
E is a subset of R% we denote 1p its characteristic function. For a smooth function
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f € C*(R¢,C), we will use the notation 9, f to denote its gradient vector (9y, f)i<b<d,
02 f to denote its Hessian matrix (02, O f)1<be<a and 0L f, r > 2 to denote the family
(mel .. Oz, f)i<hy,..pp<d- For a vector function F' € C> (R4, CP), we denote its Jacobian
matrix by DF with (DF);, = O, F; and its second derivatives by D*F with (D*F); ., =
0,0k F;. For y.,z. € Ry, we use the notation y. < z. if there exists a constant ¢ > 0

~Y

mdependent of € such that y. < cz.. We write y. < e or y. = O(e™) if Vs > 0 there

exists ¢; > 0 s.t. y. < cse® for € small enough . Finally, the word cons denotes a positive
constant (different each time it appears).

2 Construction of the asymptotic solutions

In this section we first introduce the notion of Gaussian beams for strictly hyperbolic dif-
ferential operators, following the presentation of [84]. Then the construction of incident
and reflected Gaussian beams in the particular case of the wave equation is explained.
Finally, the approximate solution for the IBVP (1) is given in the last section as an
infinite sum of Gaussian beams.

2.1 Gaussian beams for stricly hyperbolic operators

This section follows basically the presentation of [84].

Let P(t,z,0;,0;) be a strictly hyperbolic differential operator of order mp and of
principal symbol p. That is, we suppose that the roots 7 of p(t,z,7,&) = 0 are simple
and real for all (t,z) and £ # 0. The symbol p is assumed real. A Gaussian beam for P
is a function of the form

Zsﬂ (t,z)e?ED/E N e N, (5)

satisfying
Im > 0 s.t. ||[Pwellz,. = O(E™).

Note that the above expansion is similar to the usual WKB expansion, but it is required
here that:

(i) the beam w, is concentrated on some fixed ray (¢(s), z(s)) associated to p. Here
s is the "time" parameter of this curve.

(ii) the phase 1) is a complex-valued function, but real-valued on the ray (¢(s), z(s)).

The exact definition of a ray (£(s),z(s)) is as follows. First of all, we introduce
the so-called null bicharacteristics, which are the curves, solutions of the Hamiltonian
equations

t(s) = 0:p(t(s), 2(s), 7(s),&(s)), 7(s) = =0p(t(s), z(s), 7(s), £(s)), (6)
(s) = Oep(t(s), x(s), 7(s),&(s)), §(s) = —0up(t(s), x(s),7(s),£(s)),

with initial conditions satisfying p(¢(0),z(0), 7(0),£(0)) = 0. Note that it follows that
p(t(s),z(s),7(s),&(s)) = 0, for all s. Then by definition, the projection on R;" of such
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a curve (t(s),x(s),7(s),&(s)), that is (t(s),x(s)), is called a ray. We suppose fulfilled
the conditions for local existence, uniqueness and smoothness with respect to initial
conditions of solutions to the Hamiltonian system (6), see [39].

The construction of a Gaussian beam w, is achieved by making Pw. vanish to a
certain order on a fixed and given ray (¢(s),z(s)). For this purpose, applying P to the
form (5) of a Gaussian beam, we obtain a similar form

Puw.= Y gimmp e, (7)
=0
where

Co = P(@%aﬂﬁ,aﬂﬁ)aoj
¢; = Laj_1+p(t,z,00,0,0)a; +g;, 7 > 1. (8)

Above, a; = 0 for j > N, g = 0 and g, is a function of ¥, ao,...,a;_o for j > 2.
Furthermore, L is a linear differential operator with coefficients depending on . Using
p’, the symbol of the terms of order mp — 1 of P, L can be written in an explicit way as

L= 20, eplt, 0,000, 0,0) - 0+ 5 Tr (O eplts 00, 0,0)08 ) 41/t 000, 0,0). (9)
For the construction of a Gaussian beam adapted to P, the first step, and by far the
most important one, is to build a phase 1) satisfying the eikonal equation
p(t, z, 0)(t, ), 0x0(t,x)) = 0 on (t,x) = (¢t(s),x(s)) up to order R only, (10)
with R > 2, which means
Oalp(t, 2, 00 (t, ), 0ot (L, )]l 1(s).0(s)) = O for |af < R.

Compare this with the usual eikonal equation p(t, z, 9y (t, x), 0,9 (t,x)) = 0 required
by the WKB method in full space.
Order 0 of eikonal (10)

p (t(s),2(s), 0p(t(s), x(s)), Dutp(t(s), x(s))) = 0,

is fulfilled by setting
(00, 0:9) oy atop = (7(5),€(5)) (P.a)

This constraint insures that £¢(¢(s), z(s)) is real, which leads by choosing
Y (t(0),2(0)) a real quantity,

to the required property
»(t(s), z(s)) is real. (P.b)

Replacing 0r¢p|(s),z(s),7(s).¢(s)) PY ((s),#(s)) yields in the differentiation of (10) to the
compatibility condition

i O '
Oyl (t(s) () ( xii)) ) =- ( 3357 ) [t(s),2(5),7()609)) = ( 28 ) : (11)
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It also gives for every function f € C*(R; x R?, C)

d
Oreplits)ats)r(s).66) * Oraflasratsn = - Flae)ae: (12)

Using this relation on J7, %, |a| = 2, we may write order 2 of eikonal (10) as

¢|(t ),z(s)) +H12(3) ¢| ),z(s)) _I' ¢| ),z(s)) Hl?( )
?/)| ),z(s)) HQQ( ) tw¢|(t ),z(s)) +H11(5) = 07

where Hy(s) = (93,xp|(t(s)w(s)x(s)@(s))a (Hi2)oe(s) = (0re)o(Ora)eplie) ate).rio).60) and
HQQ(S) = 72_,£p|(t(5)7x(5)77(3)7§(5)). One can subs‘pitute for E)t8x¢|(t(8) 5)) and (‘3 ¢| (s),z(s))
from the compatibility condition (11), since #(s) # 0 by the strict hyperbohclty of P.
The previous Riccati equation yields then a similar Riccati equation on 974|(1(s) x(s))- Al-
though non-linear, this equation has a unique global symmetric solution which satisfies
the fundamental property

Im 92| (1(s) x(s)) 18 positive definite, (P.c)

given an initial symmetric matrix az¢|(t(0),x(0)) with a positive definite imaginary part
(see the proof of Lemma 2.56 p.101 in [50]).

Higher order derivatives of the phase on the ray are determined recursively. For 3 < r <
R, order r of the eikonal equation (10) combined with the relation (12) leads to linear
inhomogeneous ordinary differential equations (ODEs) on 79| (s)x(s))- They have a
unique solution for a fixed initial condition 0%t ((0).(0))-

The second step of the construction is to make ¢;, for 1 < j < N + 1, vanish on the
ray up to the order R — 25. The choice of the order R — 2j is related to the quadratic
imaginary part in the phase and the study of estimates in Sobolev spaces. This will
appear clearly in the justification of the approximation in Lemma 2.2. In any case, the
equations on the amplitudes ¢; = 0 can be solved on the ray at most up to the order
R — 2, due to the term 07 ¢ in the operator L (9).

Taking into account the eikonal equation (10), one gets the following evolution equations
onaj, 0 <j <N

1 1
Orep(t, 2,000, 05) - Ort + | 5 Tr(O2pltx, 0000, 00) 07 )

+ 9/t 2,00, 000)|a; + gja1 =0
n (t,z) = (t(s), z(s)) up to order R —2j — 2. (13)
This equation uniquely determines the Taylor series of a; on (#(s), z(s)) up to the order

R — 2j — 2, given the values of their spatial derivatives at (£(0),2(0)) up to the same
order.

Remark 2.1. The number N of amplitudes in the ansatz (5) and the order R up to
which the eikonal equation (10) is solved are not independent. Indeed, the computations
of the amplitudes derivatives require

R—-2N—-22>0.

Another condition ([84] p.219) is assumed to insure that the remainder terms c;, N+2 <
Jj < N+mp, contribute with the right power of € (see [97] for an alternative justification)

R—2N —-3<0. (14)
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An essential point for the use of Gaussian beams is the smoothness of the phase
and the amplitudes with respect to (w.r.t.) (¢(0),2(0)). To this aim, the needed initial
values of the derivatives of the phase 9,1|w(0),2(0)), 2 < 7 < R, and of the amplitudes
95a;| 1(0),2(0)), 0 <7 < R—2j — 2, are chosen smooth w.r.t. (¢(0),2(0)). The phase and
the amplitudes are then prescribed to be equal to their Taylor developments (truncated
up to fixed orders) on the ray.

The final step of the construction is to multiply the amplitudes by a cutoff equal to
1 near the ray.

2.2 Incident and reflected beams for the wave equation

The preceeding results will now be applied and detailed for the particular case of the
wave equation and the construction of reflected beams. The computations rely on the
results of [67] and [84].

We extend ¢ in a smooth way outside Q. Let p(z,7,€) = (2)|¢|*> — 72 be the
principal symbol of the wave operator P = 92 — 0, - (¢*9;). Then 7(s) = 7(0) from the
Hamiltonian equations (6). Writing

p=—pyp_ with py(x,7,§) = c(x)|§| + 7 and p_(z, 7,§) = —c(x)|£] + T,

shows that null bicharacteristics s — (¢(s), z(s), 7(0),&(s)) for p s.t. 7(0) # 0 are either
null bicharacteristics for p, if 7(0) < 0 or for p_ if 7(0) > 0, by using the parametriza-
tion s’ = —27s.

Denote hy (x,&) = c(x)|¢| and let (zf(y,n), & (y,n)) (or simply (2§, L)) be the Hamilto-
nian flow for h, starting from the point (y,n), that is

d.Tt ft dé-t
— = Och (w0, §5) = clag) 2, P = —0nha (2, €5) = —Dac() 18],

t [Sol ™ dt (15)
oli=0 = ¥, &oli=o = n,m # 0.

Then the null bicharacteristic curve (¢(s), z(s), 7(s),&(s)) for p starting at s = 0 from

(0,y, Fc(y)|n|,n) is exactly (t,:poit(y,n),q:c(y)|n|,§3:t(y,n)) the null bicharacteristic
curve for p..

As in [92], one can prove that the Hamiltonian system (15) associated to hy has a
unique solution global in time (by Cauchy-Lipschitz theorem), which depends smoothly
on (t,y,n) € R x R" x R"\{0}.

The remainder of this section is organised as follows. In section 2.2.1, one explains
the construction of incident and reflected beams associated to p., then section 2.2.2 is
a simple repetition for p_ and finally in section 2.2.3 we give error estimates for the
individual beams gathered in (22).

2.2.1 Construction of beams associated to p,

For the ray (t,x}(y,n)) associated with p,, denote by w’(t,z,y,n) a Gaussian beam
concentrated on that ray, by (¢, x,y,n) and ag(t, x,y,n) its associated phase and am-
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plitudes. If no confusion is possible, symbols y,n and even t,z,y,n in the notations
above will be dropped.

The phase vy is determined by solving the eikonal equation (10) on the ray (¢, zf)
together with the conditions

6t¢0(t7 I'(t)) = _h-l—(x](t)) 68)7 ax¢0(ta IL‘E) = géa (PO'a)
and the choice of

(0, y) a real function ,
0*10(0,y) a symmetric matrix with a positive definite imaginary part,
0r1o(0,y), 3 <r < R, permutable families.

In particular vy satisfies the important properties
Po(t, xh) is real, (Py.b)
and
Im 924y (t, x) is positive definite. (Py.c)
The phase 1 is assumed to be equal to its Taylor series up to the order R on = = x},

bolt, ) = 5 (= ol o (t, ab). (16)

laj<r &

The amplitudes of w?(t, z) are also determined by the requirement that the ¢;, 1 <
J < N+1in (8) are null up to orders R — 2j on the ray (¢, x}), given their initial spatial
derivatives on the ray (9;(19-(0, y), r=0,...,R—2j — 2. We choose them as

1
a?(t7$> :Xd(z_xé) Z —'(x—xé)o‘ag‘a?(t,xé), j = 07--'aN7 (17)
la|<R-2j—2 "

where d > 0 and x4 is a cut-off of C§°(R™, [0, 1]) satisfying
xa(x) =11if |x] <d/2 and x4(z) =0 if |z| > d.

Throughout the paper, the parameter d will be adjusted to obtain requested estimates.

This construction leads to a beam w?(t, x,y,n) called an incident beam for p,, sat-
isfying
sup [|Pwl(t,.)|lr2@) = O(e™) for some m > 0.
te[0,7

Let T°Q = T*Q\{n = 0}. To study the reflection on the boundary, we make the
following assumptions

B1. The domain €2 is convex for the bicharacteristic curves of P, that is for every

(y,n) € T*Q, zf(y,n) cuts the boundary at only two times of opposite signs and
transversally,
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B2. For every (y,n) € T*Q, x}(y,n) does not remain in a compact of R™ when ¢ varies
in R,

B3. The boundary has no dead-end trajectories, that is infinite number of successive
reflections cannot occur in a finite time.

For (y,n) € T?‘Q, let T1(y,n) be the instant (that is the exit time) s.t.

x?(y’")(y, n) € 0 and Ty (y,n) > 0.

Note that T2 is an open set, and thanks to B1, the function (y,n) € T*Q — T (y,n)
is well-defined and C'*°, as follows from the implicit functions theorem. The reflection
involution associated to the considered symbol p is the map

R : YQ*Ran - f*Ran
(X,2) — (X, (Id—2v(X)v(X)HZ).

Above v denotes the exterior normal field to 9Q. Let ¢f = (xf, &) denote the incident
Hamiltonian flow solution of (15). We define the first reflected flow ¢! by the condition

o1t =Ropg,

that is the Hamiltonian flow for h, having at ¢t = T3, position z{!, the direction being
given by the reflected vector of £3'.

Then the broken flow is defined recursively after a finite number of successive reflec-
tions as follows (see fig.1): for k > 1, Ty and ¢}, = (a1, &) are determined by:

Ti(y,n) is the instant s.t. 21" (y,n) € 09 and Ti(y,n) > Th_1(y, ),

so;f’“ = 72030;‘551-

The convexity of the boundary B1 implies the non-grazing hypothesis

Y(y,n) € T"Qand k > 1, &*V" (y, ) - v(z " (y, 1)) > 0,

where @} _; denotes £} ;. Assumption B3 leads to

“+o0

It insures that for a fixed point (y,7n) in T2, there is a finite number ¢, (y,n) of reflec-
tions in [0, 7.

Following the method of Ralston in [84] p.220, we shall construct reflected beams

wl, ..., wi which satisfy the boundary estimate

/

Im’ >0 and s > 0 s.t. [|B(w? + -+ w™) || gsomxo0) = O(E™),

together with the interior estimates

sup ||[Pwt(t, )| sz = O(E™), 1 <k < gy4.
te[0,T]
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Figure 1: successive reflections.

For each 1 < k < ¢, the reflected beam wf will be written as
wf = €i¢k/6<alg + .. + ENCL{;;\[).

To insure the interior estimates, each phase ¢, and amplitudes a? (0 < j < N) must
satisfy equations (10) and (13) on the reflected ray (¢, z%).

As the beams vanish away from their associated rays, the contribution to the boundary
norm of w? + - - - +w? occurs when ¢ is close to some T} and then from the beams w*~*
and w®. The construction of the reflected beams is completed recursively. Assume that

the beam w?~! has been constructed and that its associated phase satisfies

Orth 1 (t, wh_y) = —hy ()1, §)s Outhra (b, 24 1) = &y, (Pi-1-a)
Ur—1(t, wp_y) is real, (Pr-1.b)
Im 0?1 (t, x}_,) is positive definite. (Py_1.0)

One may write on the boundary 02
Buwh™ 4 wk) = (e7medh ), 4 Vi) e/
+ (€_delimB T gNd’;V>€i¢k/5’
mp being the order of B (mp = 0 for Dirichlet and mp = 1 for Neumann).

In order to satisfy the boundary estimate, the first step is to impose on v, to have
the same time and tangential derivatives as 1,_, at (Th,z.*,), up to the order R.
More precisely, let us introduce boundary coordinates near ¢, = z;* as follows. We
partition 02 with a finite number of small open subsets U, ..., U, s.t. there exist C*

parametrizations
o N —=R" 1=1,...,L,

where N are open subsets of R"™!, ;(N;) = U; and 0; a diffeomorphism from A to U;.
Suppose that ¢, belongs to U, and denote z,*, = oy,(3). For € R” close to z;",,
we may write

T =0y (@) + Uny(glo (6))7
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with o € N, and v, € R. If we use the notation

Uf(t7@7 vn) = f<t7$)7

then we impose
01 k(T 21, 0) = 073 p—1 (T, 21, 0), |a| < R. (19)

Order 0 of (19) gives a real value for ¢y (T;, z;*,). Order 1 of this same constraint and
order 0 of the eikonal equation (10) on 1)y are both satisfied by setting

atwk<t7 ljl;) = —h+(l’};, gli)v azd%(t l’};) = é-ltc (Pk‘a’)
It follows that

U (t, 2t) is real. (Py.b)

Due to the non-grazing hypothesis, (19) and the compatibility condition resulting
from order 1 of the eikonal equation (10) provide with 92ty (Tk, z1*,). To solve the
Riccati equation on 0%y (t, z}) with its given value at ¢t = Ty, we need to study the
imaginary part of 921 (Ty, 21 ,). For k' = k — 1, k, one has

005 Wi (t,0,0) = Doy (0)" Dutho (£, ),
and
05 i (t,0,0) = D203, (0) (8x¢k'(ta 552/))
+ Doy, ()T 024w (t, 2, ) Doy (D).
Differentiating (Py_;.a) and (Py.a) yields
m 0,0, (t, @) = —Im ey (¢, i)

and
Im 831/114 (t, QZZ./> - :C};/ * Im a‘gwk/ (t, xl];/) x};/
Denote

My, = 3152717 -1 (T, 21, 0) = 3152,@ V(T 21, 0). (20)

One has therefore
T
m My, = (=@, Doy, () ) Tmd2w(Te,wf%y) (=2, Doy (%) ) -

The non-grazing hypothesis insures that the matrices ( —i1F, Doy, (%) ) are non sin-

gular. Since ITm 02ty_1(Th, 21F ) is positive definite by (Py_i.c), it follows that the
same property holds true for Im M}, and consequently for Tm 92ty (T}, x,{’“_ 1)- Hence, the
matrix 02 (¢, z1,) solution of a Riccati equation with its given value at ¢ = T}, satisfies

Im 0?1 (t, x%) is positive definite. (Py.c)
Higher order derivatives of the reflected phase on the associated ray are determined

recursively. For 3 < r < R, Ol (t,zt) satisfies linear ODEs with a given value at
t =Tj.
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The second step is to prescribe that @1 +d* vanish up to the order R—2j5—2

—mp+j —mp+j
at (Tk,argi 1)- These requirements provide with the derivatives of aé‘? up to the order
R—2j—2at (Tj, z}* ). Hence, for 0 <r < R—2j -2, 9,a (L, x},) satisfy linear systems
of ODEs with initial conditions given at ¢t = T}.

It follows from this construction that the choice of the (truncated up to fixed orders)
Taylor series of the phase and the amplitudes of the incident beam on the starting point
of the ray determines recursively the (truncated up to fixed orders) Taylor series of
successively reflected beams’ phases and amplitudes.

Finally, the amplitudes af are multiplied by a cutoff equal to 1 near 2. The reflected
phases and amplitudes have the same forms as the incident ones
1 [eATe?
77Z)k’(tvl‘) - Z ﬁ(x - "L‘Z) 8x’l7/)k(t,l‘i:),

laj<r &

and

1
af(t,x) :Xd(x_xll;) Z j(x_x§€>aa:?a;€(tax2)7j: 17’N
la|<R—2j—2 Y

2.2.2 Construction of beams associated to p_

For the symbol p_, the same construction applies for the associated incident and reflected
beams.

An incident beam for p_ is a beam concentrated on the ray (t,z5%), so it is

N+2 )

simply w?(—t,z). In fact, denoting Puw? = Y 69*20?6“1’0/5, one can notice that
j=0

Plwl(—t,z)] = [Pwl](—t,z), and the amplitudes J(—¢,z) vanish on 2 = 25" up to

the required orders.

Reflected beams for p_ are obtained by reflecting ¢f backwards. For (y,n) € T iZQ,

let T_1(y,n) < 0 be the instant s.t. xOT’l(y’n) (y,n) strikes the boundary 9€2. Denote by
¢' | the Hamiltonian flow for h, determined by the condition (see fig.1)

T T
p_1' =Ropy .
For £ > 1, one can define recursively the instants of reflections 7" and the Hamil-
tonians flows ', for h, as follows:
T 1(y,n) is the instant s.t. xi’ﬁ’m(y,n) € 0 and T (y,n) < T_k11(y,n),
Tk T
Y_x = Rop 4y
Assumption B3 implies that Ty (y,n) — —oo when k goes to —oo, and thus insures
a finite number ¢_(y,n) of reflections in [T, 0].

Then we build Gaussian beams w_* for p_ after 1 < k < ¢q_ backwards reflections,
by imposing ||B(w? + -+ + w79 )| gs(_r.0x00) = O(€™) for some m’ > 0 and s > 0.
We write these beams as

wok = V1 (agk 4 eNayh).
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In particular, for 1 < k£ < q_, the phase ¢ _; satisfies the following properties

atwfkof?xt_k) - _h+(x15_ka€t_k)7 &ﬂﬂ,k(t, :Ut_k) = St_ka (Pfk'a)
VY g (t, 2" ,) is real, (P_j.b)
Im 021_4(t, 2" ) is positive definite. (P_g.c)

Noting that (¢,2%,), k = 1,...,q_, are successively reflected rays for p_, the reflected
beam of p_ after k reflections is simply w_*(—t, ).

2.2.3 Error estimates for individual Gaussian beams

We fix (y,n) € TQQ and choose d sufficiently small s.t. for k =0,...,q4, t € [0,T] and
|17_‘$i2|§;d7
Im )y (£t, ) > cons(x — 21h)2. (21)

One can see that this choice is always possible by the properties (FPy.a)-(Pg.b)-(Pg.c) of
each phase ¥y, —q_ <k < q,.

For t € [0,7] and z € R", let

wt(t,z) = :f:o wh(t, ) and w (@) = 3 wit(~t,x). (22)

Then we have the following estimates on these constructed beams

Lemma 2.2. 1. |e i wE(t,)|me S 1 and ||e” 5T 0wE(t, )| 12y S 1 uniformly
w.r.t. t €[0,T],

2. |P (5_%“@?) (t Mz S e"s uniformly w.r.t. t € [0,T),

~Y

3. ||B (7 wk) | st

—€

He((0.T]x090) S € , 5> 0.

The proof of this Lemma and other results rely on this standard estimate for p € N
|z|Pe " fde < efe*/9) Yz € R™. (23)

For more details, we refer the interested reader to [84] or [67].

2.3 Gaussian beams summation

+

= are approximate solutions for the IBVP of the wave

The constructed functions e~ % 1w
equation with initial data

N q+
4]+ _ =0 i 0 itholt=o/c —Z41 +k
€ 1w, |t:0—5 4 E 5]a'j|t:06¢0‘t o/ +e 4 E W, |t:07
j=0 k=1

and
N+1

q+
o4l o+ o —n i 20 itpole—o/c -4 +k
Oy (6 W, )’t=0—ié‘ 1Y el fleteli=ole £ e i N G,
j=0 k=1
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where the f]Q are related to the phase and amplitudes of w?. One can show that the

assumptions B1-B2 imply that 2 ¢ Q for k # 0. The exponential decrease of the phases
away from their associated rays leads to

[wE ol iy S € and [|Gpw?|—o|| 120y S €, k # 0.

241, +

Modulo infinitely small remainders, the initial conditions of e~4 " w= are then

N N+1
(€_4+1 > elalimgel=0/" ke 5ny(‘]ez¢0t0/€) |

J=0 J=0

We wish to consider the IBVP (1) with general initial conditions (uf,v!) in

g e
HY(Q) x L*(). Note that 1|;—o has properties similar to ¢g, where ¢,e~ 1 ¢ido@ym)/e
denotes the kernel of T, see formula (4) in the introduction. The first step is to build,
for a fixed point (y,n) € T*(), asymptotic solutions with initial conditions close to
(7t leitolym/e 0) and (0, 700w /) in HY(Q) x L*(Q). Then one expects to fulfill

more general initial data (u/,v!) by decomposing u! on the family (¢~ 3+!ei%/ 5)( erfo
yn)eT™

o , indexed by (y,n).

d v! on the family (=% ei%0/
and v on the family (e~ 1e >(y,n)eT*Q

Let us recover the notation of the beams referring to the starting points of the inci-

dent flow. We fix (y,n) € T*Q and consider the incident beam w?(t, x,y,n) associated
to the ray (t,zf(y,n)) and the reflected beams wr*(t,z,y,n), k = 1,...,q+. Taylor
formulae (16) yields at t =0

G0, 5.0) = 30— = y)" (0., 9,).

lo]<R ™

If one chooses the following initial spatial derivatives on the ray for the incident beam’s
phase

%(0,3/,%77) = O:aa%?ﬁo(()?y,y’n) = 1ld and 8?%(07%%77) = 07 3 S ’05| S R7

then (Fp.a) implies

o0, 2,y,m) =n- (x —y) +ilx —y)*/2 = do(z,y,7m). (24)

We assume henceforth that the incident beam’s phase satisfies (24). Consider an ap-
proximate solution

1 .
557“(@; +w;).

Its initial data are

j=0

N
241 i 0 ipo /e
(5 Y el ag] e g0/ ,O),

with a redidue of order £ in H'(Q) x L?*(€2). To get the form (=7 %1€/ 0), one has
to make a suitable choice for the amplitudes. The expansion (17) at ¢ = 0 yields

1 . .
a?((),l‘ayﬂ?) —Xd(x—y)| | > a(m—y) arag((),y,y,n), j=0,...,N,
al<R-2j—2 ¥
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and one has full choice for the initial spatial derivatives of a? on the ray up to the order
R — 25 — 2. Under the assumptions

ad(0,y,y,m) =1, 0%a3(0,y,y,m) =0 for 1 <|a| < R — 2,
%a 0(0yy77)—0for|a|<R—2]—2 1<j<N,

one gets

Zeﬂ (0,7,9,m) = xa(z — y). (25)

Taking advantage of the exponentlal decrease of ¢ @¥m/c for |z —y| > d/2, one deduces
that

le” 4“Z€] 0, ., y,m)e'®0bwDIe — = AH LU ) < e
We keep the notations aj and w? to denote the amplitudes satisfying (25) and the
associated incident beam For 1 < k < ¢4, we denote by w="* the corresponding

reflected beams and by w® the sum of the incident and reflected beams for p..

Next, we shift to the initial condition on the time derivative, for which we construct
a new incident beam w! " with amplitudes a . Indeed, an approximate solution

1

& Tl —wl),
2
has initial data
N4 / / '
(O, e 4 Z g’ (’L'atwoa? + 5&&971 ) |t:0€l¢0/€) ,
j=0

modulo a remainder of order £* in H'(Q) x L*(Q), with a®," = a%_," = 0. In order
to approach the form (0,7 %¢/¢), we derive new initial Taylor series for the incident
beam’s amplitudes. As 0;¢0(0,y,y,n) = —c(y)|n|, we impose

0'(0 yy,m) =i (c(y)nl) ™", 95 (woal) (0,4,y,m) =0 for 1 < |a| < R =2,
(Zaﬂ/JoCL +ata] 1)(07yay777) = 0 for ‘Oél < R_2]_27 1 S] < N.

One gets
N+1 , ) N
Z 5J (iat,éboa? + 815@?—1 ) (Oa z,Y, 77) =1 + Z gj Z (I’ - y)azoz(x7 Y, 77)
§=0 J=0  |a|=R-2j-1

+ 5N+lata(]]\//(07xvyv’r/)v (26)

where z, are smooth remainders that vanish for |z —y| > d. Making use of (14) and
(23), one can show that
nN+1 . R—1
le”= Z gl (z@twoa + 8ta] 1 ) (0, ., v, n)e’¢°("y’”)/ — g deiolym /E“LQ Sez
=0
Let wsi’“/, 1 < k < g4, be the reflected beams associated to wg' and denote by wf’ the

sum of the so obtained incident and reflected beams for py. Hence, the approximate
solutions

1, 1,
& T (w! +wd)(t w,ym) and Sem T (wl —wl) (L 2, y,m),
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have the required initial data

(gf%ﬂei(bo(x,ym)/i()) and (0,57%61%(“/’77)/6),

modulo remainders of respective orders £ and e'z" in H Q) x LA(Q).

I 1

To fulfill general initial conditions (u_,v; ), the previous computations together with

the identity 171, = Id, suggest that we look for an approximate solution such as

Cn _3n _
5¢ ! / Teul (y,m) (wl (t,2,y,m) + wo (2, y,7m)) dydy
T*Q

Cn _3n

€ o eTel (wl'(t —w'(t dydn.
T of (w!'(t,z,y,m) — w'(t,2,9,m) ) dydn

Let us notice that it is not clear that the previous integral is well defined.

Firstly, the construction of @f(/)(t,x,y,n) breaks down when y approaches the
boundary 0f2 because the numbers of reflections in [0, £77] become infinitely large. Next

we need to tackle the problem of integration for large 7.

One way to overcome these two problems is to require that the initial FBI transforms
are compactly supported modulo small remainders. This requirement is in the spirit
of considering only compactly supported symbols in the study of the FIOs of [58].
Nevertheless, this restriction was removed recently by Rousse and Swart in [89]. In
particular, a general boundedness result of FIOs with complex phases for subquadratic
Hamiltonians was established therein. The proof is rather subtle and relies in particular
on Cotlar-Stein estimate. The same arguments can be used for the constant coefficient
wave equation but seem not to work for the general wave equation. In fact, in this case,
the second derivatives of the Hamiltonian are not bounded and thus the proof of [89]
needs to be adapted.

A last problem related to the wave equation is the integration for small 7.

In view of all these difficulties, this explains why we have made in the introduction
the assumptions A2 and A3 on the initial data, which we recall

ul and v! are supported in a fixed compact K C €,

||T5u£||L2(Ran%) = 0(e*) and ||Tgv£||Lz(Ran%) = 0(e™),

where R, = {n € R",ry < |n| < rx}, 0 < ry < roo. These assumptions are satisfied
for instance by a large class of WKB functions ae’®/¢, a € C°(€2). Indeed the non-
stationary phase lemma implies that the FBI transform of such a function is of order
O(e*) outside the compact set

A x B ={y € R" dist(y, suppa) < ¢} x {n € R", dist(n, 0,P(A)) < ¢}, ¢ > 0,

see Lemmas 4.2 and 4.3 of [88]. Thus ae’®/ satisfies assumption A3, provided that 9,®
does not vanish on suppa.

Remark 2.3. Another strateqy can be used to match initial conditions of WKB form
in a Gaussian beams summation [63, 96]. It consists of integrating the beams associ-
ated to rays that start from y € suppa with the direction n = 0,9(y). The accuracy
of such obtained solutions faces a damage caused by caustics, namely an extra factor
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et appears in the error estimate. This loss originates from the restriction to rays
i (y,0.9(y)) (k=0,...,Ni), which technically leads to considering the deformation
matrices O,[v 5t (y, 0. ®(y))] singular at caustics (see Lemma 5.1 of [63]). The summa-
tion over rays starting with general directions n independent of y uses the symplectic
maps gpi}i and thus provides a phase space description of the solution that TunfoldsT
the caustics.

Let p be a cut-off of Cj°(R™, [0, 1]) supported in a compact K, C 2 and satisfying
p(y) = 1if dist(y, K) < A for a small A > 0, (27)
and ¢ a cut-off of C5°(R", [0, 1]) supported in a compact K, C R"\{0} s.t. ¢ =1 on R,.
One can establish that the assumptions A2 and A3 imply
I (1= ply)o(n) Tewlllrz, S e and || (1 = p(y)o(n) Tevl]|sz, S ™.

y,m

In fact, viewing the FBI transform as the Fourier Transform of some auxiliary function
yields by Parseval equality the following result

Lemma 2.4. Let a be a positive real and G a measurable subset of R™ s.t. dist(G, K) >
a. If u € L*(R?) is supported in K then
Ia@) Tz, = cne™ 1o (y)u(w)e™ =5 C| < e/ 6 ]|,
On the other hand, if (y,7n) varies in K, x K,, then ¢, (y,n) is uniformly bounded.
In fact, for j > 1, the T} are positive, depend continuously on (y,n) and the property
(18) insures that 7; /" 400 when j — +oo. Thus they uniformly go to +o0o on the
compact K, x K,, by Dini’s theorem on the sequence (1/7});>1. As T,, < T, it follows

that sup ¢, < +o00. The same result holds true for ¢_. Denote N = sup q+. The
Kyx Ky KyxKy
construction of the reflected beams in section 2.2 may be continued up to N4 reflections.

The final result of the discussion above is an approximate solution proposed as

1 _sn Ny / N Y
uli(t.o) = 3eFeu [ pwom Loty (X vt (tayon) = X wrt (<, y.m)
k=0 k=0
Ny N_
+ Teul (y, ) (O wi(t,z,y,m) + > w ¥ (—t,2,y, n))} dydn.
k=0 k=0

(28)

This approximate solution is indexed by R, the order of vanishing of the eikonal equation
(10) on the ray. The incident beams’ phase fulfills the initial conditions (24) and their
amplitudes satisfy respectively (25) for w? and (26) for w?' for every (y,n) € suppp® ¢,.
The size d €]0, 1] of the support of the cut-offs multiplying the amplitudes no longer
depends on (y,n) and would be chosen sufficiently small to satisfy various constraints
we set out in the following section.

In the sequel, we prove that this family of functions (uff) indeed allows to approach

the exact solution of the IBVP problem (1) to any arbitrary power of € by choosing the
order R. The difference between the asymptotic solutions and the exact one is investi-
gated in C([0,T], H(R2)) x C*([0,T7], L*(£2)) by means of error estimates in the interior
equation, the boundary condition and the initial conditions. The only assumptions
needed on the initial data are A1, A2 and A3.
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3 Justification of the asymptotics

We aim to estimate [[uf(t,.) — u.(t,.)||m (o and ||Gul(t,.) — Quc(t,.)| 12 for
te[0,7].
It follows from standard results [21] that the IBVP for the wave equation is well-

posed, and furthermore one has the energy estimate (as a consequence of [59] p.185 for
the Dirichlet problem and of [9] p.224 for the Neumann problem)

Sup [[ufi(t,.) — uc(t, Y + Sup |uli(t,.) — duc(t, ) 2@ <
te[0,T) t€[0,T]
Sup || Pul||r20) + || Bu|
te[0,T]
+[uf(0,.) = ulll o) + [0l (0,.) = vll|r2),

H2([0,7]x2) (29)

where s = 1 for Dirichlet and s = % for Neumann.

The asymptotics will be proven by estimating each term of the r.h.s. of this energy
estimate.

Since the error estimates in the interior and near the boundary use similar compu-
tations, a unified framework will be used by considering the more general problem of
estimates linked with a suitable family of approximation operators O% in section 3.1.
Then in section 3.2 we use these estimates for the interior term || Puff||;2(o) in 3.2.1, the
boundary term || BuZ|| gs(o,r1xa0) in 3.2.2 and the initial conditions errors in 3.2.3. All
these estimates are gathered in section 3.3 to prove Theorem 1.1.

3.1 Approximation operators

Let K, be a compact of R*" and
E, ={(x,2,0) e R" x K,p, [t — 2| <r}, r>0.

Consider a complex phase function ® smooth on an open set containing E,, for some
ro €]0,1]. We assume, for (z2,0) € K,y ,that

0,P(z,2,0) =0,
®(z, z,0) is real, (Q1)

02®(z, z,0) has a positive definite imaginary part.

Taylor expansion of ® together with assumptions (Q1) imply the existence of some
constant r[®] €]0, o] s.t. for (x,2,0) € E,y

Im ®(z, z,0) > cons(x — 2)2.
Consider a sequence I. € C*°(R? x R2}, C). We assume that

lE(l’,Z,Q) =0if (3:7270) ¢ Er[q)}a (Q2)
l. is uniformly bounded in L*°(R3").

For a given multi-index a, let the operators O° (I, ®/¢) and O (I., ®/¢) be given by

0° (I, ®/2) h] () = / Wz, 0l (z, 2, 0)e’®@*D/eq2d0, h € L*(R*™),
RQn
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and
(0% (I, ®/e) h] () = / h(z,0)l.(z, 2,0)(x — 2)*e®@*D/5d2d0, h € L*(R®™),
RQn

with z € R™.

Let us show that these are operators from L*(R*") to L*(R"). For x € R™ we have

/ 115 |d2df < e—conse=2)/ g,

(Z,@)Eszg

and thus
/ 1./ |dzdf < €5

Similarly, for (z,0) € K, 4
/|lgei¢/€|dx <es.

It is then immediate by Schur’s lemma, that
||O0 (la, @/5) ||L2(R2n)_>L2(Rn) 5 E%.

Similar arguments lead to the estimate

lo]

||Oa (le, q)/éf) ||L2(R2")~>L2(R") 5 €%+T.

However, the use of the module inside the previous integrals makes one lose the highly
oscillatory character of e'®/¢, that is the contribution of e (*=2)/2. In fact, a better
estimate on the norms of these operators is available if a precise control on /. is assumed.
This is stated in the following lemma

Lemma 3.1. Assume that Egﬁfgbla (b=1,...,n) is uniformly bounded in L>*(R3"), at
any order k € N. Then, one has

1 0° (I, ®/¢) || 2 geny 2@y S €

lo]

2. ||OO‘ (la> @/6) ||L2(R2n)_>L2(Rn) < 537”""7,

Proof. 1. Let h € L*(R*"). We shall use the notations f(x) for f(x,z,0) and f’(z) for
f(x,2',0"). First of all, we explicit the L? norm of O° (I.,®/e) h as

7! i®(2)[e—i® (2') /e i(0' .2 —0.2) /e
e e e e (30

[/ . (x)zl (.Z')€i(979l)'I/E€i®(‘r’z’9’Z,’9l)/€d$} dzdz’d@d@',
R”

£

O(x,z,0,2',0) = (x —2) fy Z(1 = 8)0%® (2 + s(x — 2), 2,0)ds
- (z =2y 2(1—5)02®( + s(x — 2'), 2,0 )ds.

|a|=2
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Let I. denote the integral inside the brackets, that we begin to estimate. For 1 < b < n
and K € N, successive integrations by parts give

I(2,2,0,0)i" <" (0,-0;)" =

(_1>K Z ( g ) /n 61(079’).:1:/589]; [ei@/s]ag]c\i’ [lsl]d:r;,

N+N'=K

K : . : : ;
where N denotes the standard binomial coefficient. To estimate 8?2 [e?®/¢], N € N,
we use the following result, of which proof is postponed to the end of this section
Lemma 3.2. Let p € N* and consider a complex phase function F, of the form

Fp(xa Z) = Z (x - Z)afa(x>z)7

|a|=p

with f. smooth on some open set of R®*™ containing a subset S and 0% f, bounded on S
for any k > 0.
Then for (z,z) € S, |t — 2| <1, smalle, N € N andb=1,...,n, one has

N iF,/e s k k(.. _ _|kp—N —N/p \| iFp/e
O < mox (supld ful) (X e — sV 4 D e

0<s<N 7 ShsN 1<k<g
1<k<N

We write © = F, — F} with

Fy(z,2,0)= > (x—2)* /1 z(1 —5)03P(z + s(z — 2), z,0)ds,

=2 0o al
for (z,2,0) € Eyjg). By Leibnitz formula, 02 [¢"®/¢] is a sum of terms of the form
N [ F)0N2 e "], 0 < N1y Ny < N, Ny + Ny = .

Note that Im F, = Im ®. Lemma 3.2 yields for N; € N and (z, 2,0) € E,q]

| N1 [eiFQ/E]\ < Z €7k|1' . Z‘2ka1 + 87N1/2 efcons(xfz)Q/s.

Tp ~
M <k<ny

Hence N
|ai\£1 [eiFg/a” 5 E_Tle_cons(z_z)2/5.

A similar estimate may be obtained for |92 [e'F3/¢]| when (x,2,0) € E,g). 1t follows,

for (x,2,0),(z,2',0') € E,4], that

|aN1 [6iF2/€}8N2 [e—iﬁé/EH < g—we—cons(az—z)2/ee—cons(z—z’)2/e
Ty Ty ~

Y

and thus

|8:1E\/b [éi@/g” g 8—%e—cons(2x—z—z/)2/ee—cons(z—z/)Q/s7 N € N.
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Since £ OY'[IlL], N’ € N, is uniformly bounded

|ai\£ [ei®/€]8i\l/;/ [lszlg” 5 e NEN/ e—cons(Qx—z—z’)Z/se—cons(z—z’)2/€

)

and we deduce that

0, — 0\ . ,
‘IE(Zv 2,7 67 9/) < b\/_ b> ’ 5 gfeiconS(Z7z )2/57
g

forb=1,...,nand K € N.
Choosing K > n and coming back to (30) gives

Y

10° (I, ®/e) h||3. S e2 /R N || |e= =22 dzd2 (1 4 (0 — 0)% )™= dfde.
Upon using the change of variables:
(2,2") = (u+ Vev,u — /ev) and (0,0") = (0 + /€0, 0 — /),
we have
10° (s /)l s <% [ [ Jh(u+ VEv o+ VED) Ih(n = Vv, 0 = VED)|dudo
e (1 4 46) ™= duds,
from which, using Cauchy-Schwartz inequality for the first integral, we get
|0° (. ®/2) hll7> < ¥ A7
2. Arguments are similar to the previous case. For a multi-index o, we have
10 (I, ® /) h||2s = /RM W i ®(2)/e—i®! (') /2 i(0' 2/ ~0.2) /=
I¢(2,2',6,0)dzdz'dodd’,
where, forb=1,...,nand K € N
00— o) = C1F S () [ e
N+N'=K "
0N [(x — 2)(x — )N (11 ] da.
We note that 9 [(z — 2)*(z — 2/)*€'®/?] is a finite sum of terms of the form
(0 204 (= 2 [

where k., < oy, k+ 1+ m = N and e’ denotes the vector of R” s.t. eZ = Oup.
For (x,2,0), (x,2',0') € E,¢), it follows that

|ai\/b[<x _ Z)a<$ - Z/)aeiG/E” 5 €\a|—%e—cons(Qw—z—z’)Q/se—cons(z—z’)Q/s.

Since £ OY'[11] is uniformly bounded

O [( — 2)* (2 — )% ®#)0N [1.1L]| <

N+N'
8‘04_ z

—cons(2x—z—2")2 /e ,—cons(z—2")? /e
e e ,
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and thus

N\ K
120, 7.0.0) (2] | g et
£

and finally

Y

10 (I, ® /) h|[2. S %+l ||h)|2..
]

Similar computations can be carried out for a phase ® and a sequence of amplitudes
[ that depend on a parameter m € [0, M]. In this case, we consider for m € [0, M] a
compact K, g(m) C R** and denote for r > 0

E, = {(m,x,2,0) € [0, M] x R*, (2,0) € K_y(m), |z — 2| <r}.

We are interested in a phase function ® smooth on an open set containing F,, for some
ro €]0, 1]. We make the further assumption

L, is compact,

which is obviously fulfilled when no parameter m interferes. Assuming, for m € [0, M]
and (z,0) € K, y(m), that

0, ®(m, z,2,0) =0,
d(m, z, z,0) is real, (QL)
02®(m, z, z,0) has a positive definite imaginary part,

one can find r[®] €]0, o] s.t. for (m,z,z,0) € Eg
Im ®(m, x, z,0) > cons(z — 2)°.

Similarly, the sequence /. will be assumed to belong to C>°([0, M] x R? x R2%,C) and
to satisfy
for m € [0, M], I.(m,x,2,0) = 0 if (m,x,2,0) & E,a, Q2)
l. is uniformly bounded in L*([0, M] x R3").

One can then define, for every given m € [0, M] and « multiindex (Ja| > 0), the
operators O% (I.(m,.), ®(m,.)/e), for which the following estimate may be established

Lemma 3.3. Assume that Egﬁﬁble (b=1,...,n) is uniformly bounded in
L>=([0, M] x R3™), at any order k € N. Then, one has

lo]

0% (I(m,.), ®(m,.)/€) | L2@en)— 2y S et 2 | uniformly wrt. m € [0, M].

In fact, all the estimates used in the proof of Lemma 3.1 hold true with a parameter
m € [0, M], since E, ) is still compact, owing to the compactness of E,,.

We now give the proof of Lemma 3.2. Using the formula of composite functions’
high derivatives (see, e.g., [32] p.161), the N** partial derivative of e*»/¢ is

N _iFp/e NN N! gt Vi iFp /e *
8%[6 p ]:Z(€> H m@bepaszpe P ,NEN .

k=1 jl4etjk=N
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Each derivative %Fp is a linear combination of
(x — )‘”(83 o far laf =p,0< s <jand ap > j —s.
The product 8:{32 E,... QJEIZ F, is then a linear combination of
(l, _ )a Ly (st—jh)eb+tak+(sk—jk)eb as fa1 -aSkfa

where fori = 1,... k, |oi| =p, 0 < s < jPand o} > j' —s'. As ji+---+j¥ = N, then
for N/p <k < N and |r — z| <1 one has

[ R A PRl o
Thus for N € N*| (z,2) € S, |z — 2| <1 and small ¢

. k .
O < o (supldn, fol) (0 =N 3D e

N N
0<s<N FSkSN 1§k<;
1<k<N

which of course is also valid for N = 0.

3.2 Error estimates

The different terms of the energy estimate (29) will be estimated separately. Our main
interest is to prove that the interior and boundary errors given for individual beams
in Lemma 2.2 hold true for an infinite sum of beams, when the starting points of the
incident flow vary in the compact K, x K,. The control we have is that we can make
the Gaussian beams vanish outside the very neighbourhood of their associated rays, by
making the parameter d as small as needed.

3.2.1 The interior estimate of Pu”

In this section, we will prove that

R—1

Sup || Puf(t, Nz Se 2.

t€[0,T)
For 0 < k£ < N, , one has by construction

e o i)
i—2 ki
= Z el cietE,
=0

where c;? is null on (¢, z%), up to the order R —2j, for j =0,..., N + 1. One may write

N+1

Puwt(t,z) = > 5j_2( Y (x- xi)affy(tw)ew’“(t’x)/E) + éNcﬁch(t,x)ew’“(t@)/e,

7=0 |a|l=R—2j+1
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where 7% denotes the remainder in the Taylor formulae of cf near x}. Applying P to
(28) gives then terms of the form

PR = [ )by, n)

|o|=R—2j+1
(x — 2b)2rk (¢, 2, y, n)e Ve E2vnD/E dydn,

with 7 =0,...,N +1, and
_3n 7 T
péV+2,k(t’x) — Nt /RM p(y)gb(n)ha(y,n)c’fVJrQ(t,ZB,y,??)e Vi (t, ,ym)/adydn,

where h. is either e 'T.u! or T.v! and 0 < k < N,. Other terms of the same form come
from Pw?, 0 < k < N, and Plw*)(—t,.)], 0 < k < N_.

Let f(t,z,2,0) = f(t,z,{pt} " (2,0)). Using the volume preserving change of vari-
ables (z,0) = ¢! (y,n) in the definition of p?*(¢,r), 0 < j < N + 1, writes it as a sum of
terms of the form

P /2 M(t,z,e)ﬁe(t,z,ﬁ)(x — 2)%FR (¢, x, z,G)em’“(t’I’Z’(’)/Edsz,
R2n

with |a| = R —2j + 1. Similarly, pY*2*(¢,x) is a sum of terms of the form

6_%+N+1 /RQn p(gf?/é(tu 2, 9)%/6(757 2, 9>67V+2(t7 z,z, Q)eiik(t’x’z’e)/stde'

We want to estimate these integrals with the help of the operators O* applied to

L opoa(cn) h.. Clearly L pposaicn) T.vl(t,.) is uniformly bounded (w.r.t. ¢ and t) in

L*(R?*"). But more work is needed for estimating Efllsupp;gg(t ) ﬂg (t,.), which is
given in the following result

Lemma 3.4. [|e ' T ul||[2gen S 1.

Proof. Differentiating (3) w.r.t. yp, 1 < b < n, yields

3n

5%8% (Toul) = inbs_%Teug —cpe A / ug(w)s_%(yb — wy) W) /E= =)/ 22) gy,

The Lh.s. is bounded in L, because 0y, (Toul) = To(dy,ul). The second term of the

Wp e
r.h.s. is the Fourier transform of a bounded function in L2, thus it can be estimated

using Parseval equality. One gets

_3n 1 in.(y—w)/e—(y—w)?/(2e
le™ /}Rnui(wk 2 (yy — wy) e WTwIE T/ )dw“LgmeHug”Li'

Thus ||»5’%171)T51L£||L§777 < 1 and consequently ||5’%¢(17)T5u£||L5W < 1. Assumption A3
yields .
le™2Touzll e, < 1.

Hence ||ul||z: < /€. Reproducing the same arguments on the following equality
Oy, (Teul) = imye ™' Toul — Che™ T / (5_%u£) (w)s_%(yb — wp) e £y ae (ww) gy

leads to |lul||p: Se. O
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Let us now check if a family of operators O® may be used. First, each phase 1y, is
smooth on an open set containing

Ey ={(t,x,2,0) € [0,T] x R3", (2,0) € go’,;(Ky x K,),|r—z| <1}

E; is compact, since the map (¢,y,1) — (¢, ¢%(y,n)) is continuous. For t € [0, 7] and
(2,0) € (K, x K,), one has by (Py.a), (Py.b) and (Py.c)

6551&’6(75’ 2y 279) = 5]2(2,0) = 9,
Ui(t, 2, 2,0) is real,

O%i(t, 2, z,0) has a positive definite imaginary part.
Hence vy, satisfies properties (Q1’). We fix some 7[¢;] €]0, 1] so that
Im ¢y, (t, x, 2,0) > cons(z — 2)? for every (t,z,2,0) € E. i) (31)
Next, for R—2N — 1 < |a| < R+1, let
1°F(t,z,2,0) = p/&ﬁ(t,z,Q)fﬁ(t,x,zﬁ), t €[0,7T],
and

Ok (t,2,2,0) = p @ 6(L, 2,0)Th 1t 2, 2,0), L € [0,7].

Then the [*F |a| = R—2N —1,..., R+1, and [%F are smooth w.r.t. all their variables.
Assume that

d<r[t), k=0,...,N,. (32)

Because of the cut-offs x, in the beams’ amplitudes, it follows that
kot m,2,0) = 7 (t,2,2,0) = 0 if |[x — 2| > r[¢y]. Furthermore, p ® ¢(t, z,6) = 0 for
(2,0) ¢ o, (K, x K,). The [*F satisfy therefore assumptions (Q2’).

It follows that the operators O® can be used to obtain for ¢ € [0,7] and = € R"

p?k (t,x) = eIt Z {Oa (la’k (), ﬁk(tv '>/€) 1suppﬂ/®?$(tw) ﬁe (¢, )} (),

|a|=R—2j+1

with j =0,...N 4+ 1, and

_3n ~ =
pY (@) = e FINLO0 (1988, ), et ) Je) 1y mma, Be(t )] (@),
Applying Lemma 3.3 and making use of (14) yields

125, ) r2@) S g7, uniformly w.r.t. t € 0,7], for j=0,...,N +2.

3.2.2 The boundary estimate of Bul*

We will now estimate Bu%|sq, B = D or N standing for Dirichlet and Neumann oper-
ators respectively. We shall prove that

Bl R=2
IDuf|| i orcon) S 2 and |Nul|| gz reon S 2 - (33)
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To this end, we note that the boundary operator B applied to (28) is a sum of terms
arising from BwF, 0 < k < N, such as
bg(t x) = 5_7+1—mB+J /R2n p(y)qb(n)he(y, 77) Z d’imB—&-j (t7 ZL',7 Y, n)e“/’k(t,x ,yﬁl)/edydn7

k=0
(34)

with 7 =0,..., N+mpg, and others with the same form arising from Bwf', 0<k< Ny,
and Blw *O(—t,.)],0 <k < N_.

Above and as in the previous section, h. is either e 'T.ul or T.v! and thus is uni-
formly bounded in L?.

We first study the support of the amplitudes. Next we use local boundary coordinates
to expand the boundary phases and introduce a change of variables on (y,7n) that makes
the obtained phases satisfy properties (Q1). The previous results on the approximation
operators O% are then used to estimate the boundary norms.

Support of the amplitudes Due to assumptions B1-B2-B3, the rays stay away from
the boundary except for times near the instants of reflections. For (y,7n) € K, x K,, and
t € [0,T] near some Ti(y,n), 0 < k < Ny , only zt(y,n) and, if k& # 0, zt_,(y,n) ap-
proach the boundary. This suggests that the meaningful contributions to the boundary
norm of b/ are the quantities d*,) (., y,n)e™r-1tvm/e 4 d* iy, m)e e v/ near
Te(y,n), k=1,..., N.. Furthermore, for ¢ in the neighbourhood of Ty (y, n) and ' € 092,
one expects d’i;llBJrj(t, ' y,n) and d*,,  (t,2',y,n) to vanish away from a:;‘f’i(ly’") (y,m),
because of the cut-offs in the amplitudes. In the remainder, we show that these two

intuitive points are true. The key argument is that (¢,y,7n) vary in a compact set.

The first point is rather easy to see. For (y,n) € K, x K,, let us consider a pe-
riod smaller than any lapse of time between two successive reflections, say G(y,n) =

min  (Tx(y,n) — Tr-1(y,n)) /3, (To = 0), and define the intervals
0<k<N;

Io(y,n) =0, Ii(y,n) = [Te(y,n) — By, n), Te(y,n) + B(y,n)] for k=1,..., N,
and IN++1(y7 77) = @
For each £k =10,..., N, let

A ={(t,y,n) € [0,T) x Ky, x Ky, t & Ii.(y,n) U L1 (y,m)}

For (t,y,n) € Ay, dist(z%(y,n),092) > 0 and has then a positive lower bound by conti-
nuity on the compact Ag. One has by (31) and (32)

Yi(t,z,y,m) = cons(z — 2 (y,m))*,
for (t,z,y,n) € [0,T] x R* x K, x K, s.t. |x — z}(y,n)| < d. Thus
|d* (t, 2y, n)eVeEeym/e| < emeons/e for (t y 1) € Ay and 2’ € 9.

—mp+j
All we have to care about is then the contribution to the norm at the boundary of
d’i;llBHewk*l/E and cl’imBJrjeWk/E at times in the interval I}, k =1,..., N,. Let

gt = e HTmet /2 p & ph Ly (t)(dE,) e/
R n

—mp+j

+d® Jrjew’“/‘g)dydn.

mp
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Summing over kK =1,..., N, yields
. Ny o
16| L2 o,y x00) S P2 a2 (| L2 o,y xo0) + €% (35)

For the second point, we partition the set of starting points (y,n) according to
the part of the boundary the rays x}_,(y,n) reach at t = Ti(y,n). Let (u;) be a C*
partition of unity associated to the covering (i) introduced in subsection 2.2.1 and

m(y,n) = p(y)o(n)u(zg* 1 (y,m)). Then

L
la7* | 22qo1x00) S D 1M | 2 (o.yx00)
P

where

gkl 737n+17m3+j k—1 lwk71/5
mP™ =g o hem 1y, (t)(d2,, 4 €

+d"

—mb+J

e/ dydn. (36)

Wefix 1 <I<Land1<k<N,. For0<éd< min f, let

yX By

Bs ={(t,y,n) € [0,T] x suppm, t € L(y, )\|Tk(y, n) — &, Tu(y,n) + o[}

If (t,y,n) is in the compact set Bjs, then dist(zt(y,n),02) > 0. Let d(6) €]0,4] s.t

d(6) < min dist(zt(y,n),0) and consider the set
(t,ym)€Bs

Ss = {(t.2",y,n) € [0,T] x 09 x suppm, t € Iy(y,n) and |2" — 2 (y,n)| < d(0)}.
If (t,2',y,m) € Ss then t €|Ti(y,n) — 6, Tk(y,n) + 0] and consequently

&' — 2Oy )| < |’ — b (g, m)| + 1= Tely,m)| sup a5 (y, )]
se[thk(y7n)]

< (1+ lelloo)d,

which implies that 2’ € U; for sufficiently small 9, since x;‘:’“(y’") (y,m) varies in a compact

set of U;. Assume that d < d(d). Thus, supp ggrl(y )1y (E )d’imBﬂ(t,x’,y,n)) is
included in Ss. On the other hand, as o; is a diffeomorphism between N; and U, one
has

|0(0) — 0y(0")] > cons|d — ?'| for every 9,0" € N,.

Therefore, there exists k > 0 s.t.

(Y, ) Ly (1) 45 (8, 02(0), y,m) = O3 [t = Tily, m)| > 6 or [0 — Zx(y,m)| > w9,

where o1(2(y, 7)) = 24 (y, 7).
The same result holds true for 7,(y, 7)1z, (t)d*, (¢, 01(9),y,m), assuming that d <

d'(6) with d'(0) €]0, 0] and d'(0) < minB dist(z}_1(y,n),0Q). Furthermore
é

(t,yme

mIF(t 2"y = 0 if 2’ ¢ U,.
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Expansion of the boundary phases For simplicity of notation, we shall drop the
exponents and indexes . We expand the phase )1 on [0,7] x N x {0} near (T}, 2x)
Wp-1(t,0,0) = p_1(t, 0(0) + vnr(0(0))) lv,=0
= Wi—1(Th 2, 0) + (¢ = T, = 21) - (7, 61)

1
gt =T d = 2) - Mi(t = T, 0 — 2)

+ > (=T — 2)*

|ee|=3
13 . A
/0 5(1 — )07 k1 (Th + s(t — Ti), 2 + s(0 — 2),0)ds,

where 0, = Do (2,)7&*, and the matrix M, defined in (20) has a positive definite
imaginary part. Remember that all the quantities of the previous formulae depend on

(y,m) € (x*,)<"'> (U). For the purpose of obtaining a phase satistfying (Q1), the form

of g1y, =0 suggests the change of variables (C) : (z,0) = J(y,n), with
95 (y,m) € (2 ) "7 U) = (Th, 27 0r).
Because tangential rays are avoided, the function Tj € C®((zp* )< (U)) so O is C*.
Note that &7, = £(2)0 + (v(0(%)) - £%,)v(0(2)) with £ = Do (Do Do) . Hence
Y is bijective and its inverse is given by
I (T 2emy O) € 9((ah) S )
= e T 0 (), D0+ (/A (0(2) = [R(E)0) 7v(0(24))).

Y1 is C* on ¥ ((xfi ) (U)) because the square root in the previous expression
never vanish. Consequently, ¢ is a C*° diffeomorphism.

Let v = (t,0), z = (T}, ) and 6 = (7,0;) and denote f(v,z,0) = f(v,97'(z,0)).

We may write Wy _1]y,—0 as

r1(v,0,2,0) = WPpa(2,0,2,0) +0- (v —2) + 3(v = 2) My(2,60) (v — 2)
+ Y D= 2)0% (2,0, 2,0) + i (v, 2, 0)
3<]a|<R

= MNv,2,0) +7r_1(v, 2,0).
Since %, and “,_; have by construction the same derivatives w.r.t. v up to the order
R at (z,0), the expansion of “y|,, —¢ involves the same derivatives up to the order R
and a remainder 7 . .
WUr(v,0,2,0) = A(v, 2,0) + T, (v, 2,0).
With the change of variables (C'), “m#* may be written on [0,7] x N x {0} as

o gk _ —241-mp+j 7 o~ ogk—1  i(A+ip_1)/e
mlt =e o hemly (t)(%d2, 4 ¢

gt e OH/9) | det 0] dzdo,

—mp+j

where I, denotes [Tk — B, T+ B] We split the previous integral into two integrals which
can be estimated using the operators O

—3n41-m j I =~ o gk— ol
g 4 +1-mp+j oo hgﬂ'lfk(t)( d’imlB_,'_j +d

3n . ~ ]
—24+1-mp+j ~1 ok
g 4 Ran haﬂ-ljk (t) d_mB+j

)e!MTe-1)/¢| det 9|dzdf = @,

—mp+j

eNE i/ _ Tr1/9Y| det 9| dzdf = @.
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Estimate of @: The phase A + 7_; is smooth on an open set containing .
E,, = {(v,2,0) € R" x supp7, |v — 2| < o} for some ry €]0, 1]. Furthermore, A + 7},
satisfies the required properties (Q1). We fix 7]\ 4+ 7,_1] €]0, 7¢].

Since "dli;nlBH + "d’imBH is zero at v = z up to the order R —2j —2 by construction,
one has
(Udli;llBJrj +Udlim3+j) (v,z,@) = Z (U - Z)agl;(’v,z’@)’
la|=R—2j—1
where 3% are smooth remainders. Let

0¥ (v, 2,0) = 7(=,0)1;, (D5 (v, 2,0) | det (=, 0)|.

The a®* are smooth and a®*(t,, T}, 2, 0) = 0 if [t — T},| > 6 or |0 — 2| > kd or
(2,0) ¢ supp(7). Then the a®* satisfy the properties (Q2), assuming ¢ small enough to
insure |(d, k0)| < r[A + Fr_1].

Therefore

D = 6—37"+1—m13+j Z o0° (aa,k7 (:\ + fk—l)/5> 1supp7~rﬁs'

|o|=R—2j—1

One deduces
Rl .
Dl 2omxny S 2 " || el 2 (37)

Estimate of @: This is the term for which Lemma 3.1 is fully used. We write \ as
A = B+ 27y where

v = le(v — 2)M(2,0)(v — z) and = X — ;(v — 2)M(2,0)(v — 2).

The part 5 + v will play the role of the phase for the operators O%, while e7/¢ will be
enclosed in the amplitude to give it a good behavior. The phase (8 + ~ is smooth on an
open set containing £, and satisfies the properties (Q1). We associate to this phase
some constant 7[5 + | and impose on § to satisfy |(d, kd)| < r[G + 7).

Let
Ik = e R (1) dE L € (€T — €15 | det o).

(3 —mB+j

One has
. _R_l _ )2 . .~
|Cé,k:| S e T e cons(v—z) /£|ezr;€/a . 67'rk_1/€|.

If  is small enough,

_ _ 2 .~ .~ _ _ _ 2
e cons(v—z) /a‘ezrk/a . ezrk_l/al S c 1’,0 . Z’R—i—le cons(v—z) /(25)7

so that
P <1

Hence ¢2* is smooth and satisfies the properties (Q2):

c2*(v,2,0) = 0if jv — 2| > r[B+ 1] or (z,0) ¢ supp(7),
c2* is uniformly bounded in L>(R3").
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To make use of the estimates of Lemma 3.1, we aim to show that for N € N, e2 8{1 chk
(b=1,...,n) is uniformly bounded in L (R3”) For this purpose, we write
oy le W/‘E( infe _ gin- 1/%)] as a sum of terms of the form

a{i\bfl [ei'Y/E]a{Z2[eifk/€ o eifk—l/s]’ 0 S N17N2 S N, Nl +N2 = N.
As the remainders 7, and 7,_; are of order R + 1, Lemma 3.2 yields for N1, Ny € N,
(z,0) € supp7, |v — z| <|(d, k)| and d sufficiently small

’az])\bfl [ei’y/zs” S./ 8—%€—cons(v—z)2/a7

’az];\bb[eﬁk/a . 6“:’“*1/8” S < Z fkyv . z’k(RJrl)sz 4 Z € Iévfl)

2 <k<Ny 1<k< 2
(leiTk/E’ + yezrk,l/el) )

The second sum in the last inequality is zero when Ny/(R + 1) < 1. Remember that
R>2 If Ny/(R+1)>1then No(R—1)/(2(R+ 1)) > (R —1)/2 and consequently
“No/(R+1)> —Ny/2 + (R —1)/2. Thus

EXe [eif'k/s _ eifk,l/e” < Z e Fly — Zlk(RJrl)sz + 6N22+321>
b ~

No
yem <k<Ns

(|ez‘f«k/e| + |€ifk,1/s|) .

Hence, for (z,60) € supp7 and |v — z| < [(4, Kk9)|
Ny R—1

]Q]}Zl[e”/a]@é\f[em/a—e”’“—l/aﬂ < 6—7_74_

It follows that

N

o s =,

One can use the operator O to write

e P OO( ;’“,(ﬁ—kv)/s) suppi Nes

and thus .
1@l 20,7120y S €72 "5 [ 2 (38)
Using (37) and (38) yields
. Mfm
2™ 2o ryxon) S € Plhel| 2
One has a similar bound for ¢Z* by summing over [ = 1,..., L,

; B+l _
||qs’k||L2([o,T}xaﬂ) Se2 "B he]| e

Plugging this into (35) gives

”bgHL?([O,T}xaQ) Se
All in all, we have shown that

Rl
| Bull || r2qoryxony Se 2 ™2,
This result can be adapted to the integer Sobolev spaces as follows
Bil_ o
| Bulill s o,rixany) Se 2 ™%, s €N

An interpolation argument ([61], p.49) enables the same estimate for non integer Sobolev
spaces H*([0,T] x 092), s > 0. This proves (33).
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3.2.3 The initial conditions
In this section we estimate the difference between (uf|i—q, duf|;—0) and (ul,v!) in
H'(Q) x L*(Q).

By construction,

1 s Moo
uf0.0) = 5o e, /RQ"p(y)d)(n)&Tsvi(ym)[Zw?(O,x,y77 zw 0,79,

+p(y)p(n)Teul(y,n [Zw (0,2,y,m) +Zw (0,2,y, n)]dydn

k=0 k=0

As dist(2%,(y,1),Q) > 0 for (y,n) € K, x K, k = 1,..., Nx, f’“(/)(O T,y,n) are
uniformly exponentially decreasmg for z € Q and (y,7n) € K x K,. Thus, only the
incident beams contribute to (0, z) in  and

3n

ug (0,2) =e Ty /R% p(y)o(n)Tul(y, mwl(0, z,y,n)dydn + O(>),

uniformly w.r.t. x € €.

The initial values for the phase and the amplitudes of w? have been fixed in (24) and
(25). Hence

3n

uf(0,2) =< *e, /}R @) Teul (y, n)xal(x — y)e' =P/ dydn + O (),

uniformly w.r.t. = € Q.

It follows, uniformly for x € Q, that

uf(0,2) = T2 p @ Toul(x) + e ¥ ey /Rm p(y)o(m) Toul(y, n)(xa(z —y) — 1)
ewﬁo(aaz/,n)/edyd77 + O(e™).

One wants to get rid of the second integral by making use of the exponential decrease of
e'®o@ym/e for |z — y| > d/2. The following estimate is immediate by Cauchy-Schwartz
inequality:

Lemma 3.5. Let a be a positive real and h € L*(RY"). Then

| Wi, i, (9, m)e™ 0 B dydy | 7 S h]gg e,

lz—yl>a
The previous Lemma leads to
||u§|t=0 - Ts*p ® ¢T€u£||L2(Q) 5 8007

by using the boundedness of T* from L?(R*") to L*(R") (this result follows, e.g., from
[71] p.97). On the other hand, p ® ¢T.ul approaches T.ul up to a small remainder. In
fact, as p(y) = 1 if dist(y, K) < A, one has by Lemma 2.4 and assumption A3

|Teus — p® ¢Teuglrs, S e
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and consequently
[ulfi=o — ullli2(@) S €
Moving to the spatial derivatives of u%®, one has
3n

N
0 (0,2) = = F e | p()o) Tl (y,m) 3 /0%, [a5(0, 2,y m)e ™ /<] dyy
Jj=0

+0(£*), uniformly w.r.t. = € Q.

Plugging the initial condition (25) for the incident amplitudes into the previous equation
yields a simpler expression

3n

By, ulf(0,2) = T e, /R o) e Teul (y, 1), (Xalw — y)e @4/ ) dydy 4 O(£>),

uniformly w.r.t. x € Q.

Since 0y, (X(x - y)ei¢0/5) = -0, (X(x - y)ewo/a), integration by parts leads to

Oy ulf(0,2) =~ T, /]R2 Dy, (pTaug) dxa(z — 1)@V dydn + O(%),
uniformly w.r.t. x € €.

Application of Lemma 3.5 and then Lemma 2.4 shows that the term involving 9,, p has
an exponentially decreasing contribution in L?(£2). On the other hand, the y derivative
of the FBI transform is the FBI transform of the derivative. Thus

—3n 1o (x 00
100, ulli=0 — e~ T ey /R% p @ O (O,ul) xa(w — y)e B/ dydn]| 120y S e
Again, Lemmas 3.5-2.4 and assumption A3 imply

10, ulfli—0 — O, ulllL2() S €™

Time differentiation of ! is somewhat different. The contribution of reflected beams
is still uniformly exponentially decreasing for x € €2

Oultli—o(z) = 5_%%/ p(y) () Tevl (y, m)edw? (0, 2, y,n)dydn + O (™),

RQn
with
LN / o
68,521)2 = Z &’ (iatlbo(l? + 8ta2_1 ) givo/e,
§=0

The initial values (24) and (26) for the phase and amplitudes of w?’ yield

N
6atwg/(0> z,y, 77) - ei¢0(x,y,n)/a + Z e’ Z (3j - y)aza(% Y, U)ei¢°(x7y’")/5
j=0 |a|]=R-2j-1

+ N0y (0,2, y, m)et v/,

where z, are smooth remainders that vanish for |z — y| > d. We can use the operators
O“ to estimate the contribution of the terms (z — y)*z, to the norm of uf|,_g

—3n j «@ ) —3n44 e
le= A2np®¢Tev§€J(m—y) 2™ dydn||; = 0% (0 ® pza, /) Tev? |1z

< &%, forj=0,...,N.
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We also have
_3n [ €
I [ p® GTevle¥ 100y |i—oe™ *dydn)| o2

_3n
= VYO (p @ 90, om0, d0/€) Tev? Iz

< €N+1_
It follows, with the help of (14), that

10:ul im0 — T2 p @ ¢Tev! |12y S € 2,

~Y

and finally, from Lemma 2.4 and assumption A3,

R-1
H@Uf!t:o - UEIHL%Q) Ser.

Hence R
R-1
10cul =0 — VXl r2() + [ul im0 — wlll i) S .

3.3 Proof of the main theorem

Now we may collect the previous estimates in order to bound the difference between u.
the exact solution for (1) and uf the approximate solution of order R.

For the Dirichlet case, the errors in the interior, at the boundary and in the initial
conditions exhibit the same scale of €, and the energy estimate leads to

Sup |Juc(t,.) — uB(t, Mo S 7, Sup |Owue(t,.) — 0l (t, Ve Se7 . (39)

~Y

te[0,7] t€[0,77]

For the Neumann case, one looses an order /¢ in the boundary estimate, and thus
the energy estimate yields

R-2 R-—2
Sup ||ue(t,.) — ul(t, Mm@ Se 2, Sup ||Ouc(t,.) — dul(t, )2 Se 2 .

Y

te[0,T] te[0,T]

However, when comparing the ansatz at order R and R + 1 in the difference between
uf*! and uff, we can make use of further powers of ((x — 3.)*) =1 Petween the phases
and ((z — :Efc)a)wz R-2;—1 0 the amplitudes. Using the approximation operators yields

uniformly in time

R—1 R—1
[l 2t ) —uli @t M) Se 7, 10wl () = 0wl )l Se7 -

Y

Hence one may improve the estimate for the Neumann case by using the approximate
solution at the next order R + 1

lue(t, ) = w'(t, )l ) lue(t, ) = w™H (M + ud ™ () —uf (¢ )l e

This leads to the same estimate (39) for the Neumann case.
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Remark 3.6. The FBI transforms of ul and v! are uniformly locally infinitely small
outside the frequency sets Fs(ul) and Fs(v?l) respectively, as € tends to 0 (see [71] p.98).
These sets may be phase space submanifolds of lower dimensions. For instance, for WKB
initial data, Fs(ae’®®) = {(y,0,®(y)),y € suppa}. For numerical computations, one
has therefore to discretize neighbourhoods of (K, x K,)NFs(ul) and (K, x K,)NFs(v?).
Studying numerically the behaviour of FBI transforms in the associated computational
domains could lead to interesting results on the optimal mesh size. Details on numerical
FBI transforms are given in [60)].
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Chapter 11

Wigner measures for the wave
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1 Introduction

In this article, we are interested in the high frequency limit of the initial-boundary value
problem (IBVP) for the wave equation

Pu. = 0?u. — 0,.(c*(2)0,u.) = 0in [0, T] x Q, (1a)
Bu. = 0 in [0, T] x 99, (1b)
Ueli—o = ul, Dyucli—o = v] in Q, (Lc)

where B stands for a Dirichlet or Neumann type boundary operator.

Above, T' > 0 is fixed, and €2 is a bounded domain of R" with a C* boundary. The
coefficient ¢ is assumed to be in C*(£2), though this assumption may be relaxed.

Herein, the initial data depend on a small parameter € > 0, playing the role of a
small wavelength, the high frequency limit corresponding to ¢ — 0. In any case, we

shall assume that u!, v! are

Al. uniformly bounded respectively in H'(Q) and L?*(€),

A2. uniformly supported in a fixed compact set of 2.
We shall assume that the following hypotheses holds on the domain €2:

B1. € is convex with respect to the bicharacteristics of the wave operator, that is every
ray originating from (2 hits the boundary twice and transversally,

B2. No ray remains in a compact of R" for increasing times,

B3. The boundary has no dead-end trajectories, that is infinite number of successive
reflections cannot occur in a finite time.

These geometric hypotheses insure that the rays starting from the compact support of
the initial data do not face diffraction on the boundary, neither do they glide along 0f2.
The only phenomena occuring at the boundary is reflection according to geometrical
optics laws.

We investigate the high frequency limit in terms of Wigner measures. The Wigner
function is a phase space distribution introduced by E. Wigner [100] in 1932 to study
quantum corrections to classical statistical mechanics. In the 90’s, mathematicians
became increasingly interested by the Wigner transforms and related measures. In
(62, 68, 69, 70], those transforms are applied to the semiclassical limit of Schrodinger
equations. A general theory for their use in the homogenization of energy densities of
dispersive equations was laid out by Gérard et al. in [38], see also [34, 35]. Wigner
measures are related to the H-measures and microlocal defect measures introduced in
[98] and [36], see also [4, 12]. Whereas there is no notion of scale for the latter measures,
Wigner transforms are associated to a parameter ¢ — 0. In quantum mechanics, this
parameter is the rescaled Planck constant, while it will be the distance between two
points of the medium’s periodic structure for homogenisation problems.
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The Wigner transform, at the scale e, is defined for a given sequence (a.,b.) in
S'(R™)P x S'(R™)P by the duality weak formula

we(ag, be)(z, &) = (2m)™ /n e " Ca.(x + gv)b:(:z: — gv)dv.

If (a.) is uniformly bounded w.r.t. € in L*(R")?, then w.[a.] = w.(a., a.) converges as &
goes to 0 to a positive hermitian matrix measure in S'(R; x R¢) (modulo the extraction
of a subsequence). This measure is called a Wigner measure associated to (a.) and
denoted wla.]. The Wigner measures associated to the solution of the wave equation
(and hyperbolic problems in general, see e.g. [38],[79]) are related to the energy density
in the high frequency limit. More precisely, under suitable hypotheses, the density of
energy converges in the sense of measures to (proposition 1.7 in [38])

1
5 [ . de),

where
' = wldu (+..)] + Truledyu (1,.)]

Above, the involved Wigner measures are obtained after extending dyu. and c0,,u.,
b = 1,...,n, to functions of L*(R") by setting dyu_ = Lqdu., dpu, = lgdyu. and
extending c outside 2 in a smooth way.

Wigner measures for the wave equation have been studied by Miller [74] who proved
refraction results for sharp interfaces and Burq [11] who described their support for a
Dirichlet boundary condition. Similar results have been established for other problems
[26, 31], in particular eigenfunctions for the Dirichlet problem [37, 102] and for the
Neumann and Robin problems [13]. All these works are based on pseudo-differential
calculus.

In this paper, we shall investigate the Wigner measure by means of direct computa-
tions on an approximate solution of the IBVP for the wave equation. The approximate
or asymptotic solutions used here are obtained by superposition (or mixing) of Gaussian
beams, and more precisely by a weighted integral of Gaussian beams suitably designed
to fit initial data as in chapter 1.

Gaussian beams are waves with a Gaussian shape at any instant, localized near a
single ray [5, 84]. The summation of different beams allows to approach non localized
wave fields, see e.g. [18, 51, 54] and the recent [42, 64, 76, 96]. Gaussian beams (or
the related coherent states) can be treated as a basis of fundamental solutions of wave
motion and used to study general solutions of partial differential equations. They hence
allowed amongst others to describe propagation of singularities [84], to prove lack of
observability [67] and to study semiclassical measures [80] and trace formulaes [22, 101].

This feature seems to be very well suited for the study of Wigner measures. Indeed,
the Wigner transform of two different beams vanishes when ¢ goes to zero. Even better,
the Wigner measure of one individual Gaussian beam associated to the wave equation
is a Dirac mass localized on the corresponding bicharacteristic. Thus Gaussian beams
form a sort of an orthogonal family for the Wigner measure. The appealing to these
elementary solutions for studying Wigner measures is not new; they have been used in
the whole space domain by Robinson [88] for the Schrodinger equation and more recently
by Castella [15] who used a coherent states approach for the Helmholtz equation.
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In view of known results, one expects that the Wigner measure of a summation of
Gaussian beams would give easily that the associated weights are transported along the
broken bicharacteristic flow (see p.66 for the construction of reflected flows and p.90 for
the definition of the broken flow). Unfortunately this result is not immediate as even
different beams become infinitely close to each other.

We show however by elementary computations that this intuition is indeed true and
that the Wigner measure of the considered approximate solution is transported along
the broken bicharacterisitic flow. Since the asymptotic solution is close to the exact one,
we may deduce the same outcome for the Wigner measure ¢'. In particular, we shall
prove the following theorem

Theorem 1.1. Set vl = 1gv! and ul = 1qul. Assume the conditions Al and A2
fulfilled, and furthermore that:

C1. The Wigner measures of vl and d,,ul, b=1,... n, are unique,

C2. vl and O,ul, b=1,...,n are e-oscillatory (see equation (53)),

TpLe

C3. The Wigner measures of vl and d,,ul, b=1,...,n do not charge the set R" x {£ =
0}.

Let e* = wlv! +ic|D|ul], and denote by @f the broken bicharacteristic flow associated
to —i0; — c¢|D| obtained after successives reflections on the boundary 02. Then

¢ = S(eFoler) ! +eolel) ) in 9 x (RM\{0).

For general properties of Wigner measures and transforms, we will refer to the usual
framework [38]. The rest of the paper is organized as follows. In the first section, we re-
call the construction of first order Gaussian beams and the structure of the asymptotic
solutions obtained as an infinite sum of such beams. The derivatives of the asymp-
totic solutions are then expressed using what we call Gaussian integrals. We simplify
the expression of the Wigner transform of such integrals in section 3, following initial
computations of [88] in the Schrodinger case. We then compute the scalar Wigner mea-
sure for the asymptotic solution by exploiting the expressions of the beams’ phases and
amplitudes and using the dominated convergence theorem. Finally, we prove the prop-
agation of the Wigner measure along the broken flow for the exact solution of the IBVP
(1) with the help of assumptions C2 and C3 on the initial data.

A few useful notations will be used hereafter. The inner product of two vectors
a,b € R? will be denoted by a - b. The transpose of a matrix A will be noted AT. If E
is a subset of R? we denote E° its complementary and 1p its characteristic function.
For a function f € L*(Q), we denote f = 1of. For r > 0, x, denotes a cut-off of
Cse(R™, [0, 1)) satisfying

Xr(z) =11if |z] <7r/2 and x,(x) =0 if || > 7.
We use the following definition of the Fourier transform

Fou(é) = / u(z)e”™dx for u € L*(R?).

R4
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If no confusion is possible, we shall omit the reference to the lower index .
For a smooth function f € C*°(RY, C), we will use the notation 9, f to denote its gradient
vector (Oy, f)1<p<a and O2f to denote its Hessian matrix (9y, 0y, f)1<pe<a- For a function
F € C>*(R4,CP), the notation DF is used for its Jacobian matrix. We use the letter C
to denote a positive constant (different each time it appears). We specify the parameters
some constants depend on by denoting them C(V'), where V' may be a variable or a set
of R,
For y. and z. sequences of R, with € €]0, &g, we use the notation y. < z. if there exists
a constant C' > 0 independent of € such that y. < Cz. for £ small enough. We write
Y. S e or y. = O(e™) if for any s > 0 there exists ¢s > 0 s.t. for € small enough
Ye < csE°.
Finally, if F is in an open subset of R*" and v,, v/ are two distributions s.t.

lim(v. — ) =0 in E,

e—0
we shall write

ve &~ V. in E.

2 Asymptotic solution

In this section, we explain the notion of Gaussian beam for the wave equation focusing
on first order beams. We then construct the asymptotic solution as a superposition
of these beams and express its time and spatial derivatives with the help of Gaussian
integrals.

2.1 First order Gaussian beams

We recall the construction of individual first order Gaussian beams in section 2.1.1, and
apply it to describe the incident beam and the reflected beams in section 2.1.2. A useful
general relation linking reflected beams’ phases to the phase of an incident beam is given
for first order and higher order beams.

2.1.1 Beams in the whole space

Denote h(z,£) = c¢(z)|£| and let (2%, £") be a Hamiltonian flow for A, that is a solution
of the system

‘Z’: = Och (a',€") = C(xt)é;v Cilit = —0uhs (2, &) = —pc(a")[¢].

The curves (¢, z%') of R**! are called the rays of P.

An individual first order (Gaussian) beam for the wave equation associated to a ray
(t,2") has the following form

we(t,x) = ag(t, z)e™ )/, o
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with a complex phase function 1 real-valued on (¢,z") and an amplitude function ag
null outside a neighbourhood of (¢, z"). It satisfies

sup ||[Pw.(t,.)|| 12 = O(™),
te[0,7]

for some m > 0.
The construction is achieved by making the amplitudes of Pw. vanish on the ray up
to fixed suitable orders [50, 67, 84]
Pw. = (6_2]7(.1', O, 0p))ag + € 1i[20p0 0y a0 — 2¢%0pipOpag + Pipag) + h.o.t.)e“p/s, (3)

where p(z,7,£) = *()|€|* — 72 is the principal symbol of P. The first equation is then
the eikonal equation

p(x,atw(t,l’)ﬁxlﬁ(tﬁ)) = 07 (4)
on x = x' up to order 2 (see Remark 2.1 in chapter 1 for an explanation of the choice
of this specific order), which means

O p(xz, (L, ), 0pth(t, ))]|s=at = O for |a] < 2.
Orders 0 and 1 of the previous equation are fulfilled on the ray by setting
Op(t, x') = —h (2, &) and 9,4(t, 2") = €. (P.a)

It follows, by choosing
(0, 2°) a real quantity,
that
P(t, z') is real. (P.b)

Order 2 of eikonal (4) on the ray may be written as a Riccati equation

jtag (t, 33t) + H21(5Ut, ft)3§¢(ta 5Ut) + 8§¢(t, 33t)H12(33t, ft)

+ a§¢(t7 $t)H22(xt> 'ft)azw(t, xt) + Hll(mta ft) = Oa (5)
Hll H12
H21 H22

Riccati equation has a unique global symmetric solution which satisfies the fundamental
property

where H = ( ) is the Hessian matrix of h,.. Although non-linear, this

Im 9% (t, :ct) is positive definite, (P.c)

given an initial symmetric matrix 921 (0, z°) with a positive definite imaginary part (see
the proof of Lemma 2.56 p.101 in [50]).

The phase is defined beyond the ray as a polynomial of order 2 with respect to
(wr.t.) (z—2") [97]

Ut x) =P(ta") + & (v —a') + ;(ﬂf —a') - pu(t,2")(x — ). (6)

1

Next, we make the term associated to the power €' in the expansion (3) vanish on

(t,x")
20,0,a0 — 2c¢20,00,a0 + Pag = 0 on (¢, "), (7)
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which leads to a linear ordinary differential equation (ODE) on ag(¢, 2*). The amplitude
is then chosen under the form

ao(t, ) = xa(x — 2")ae(t, "),

where d > 0 will be fixed later. The constructed beams are thus defined for all (¢,z) €
R™! and they satisfy the estimate

le= i Pw.(t, ) || 12() = O(V/2) uniformly w.r.t. t € [0,7].

Gaussian beams for P associated to the ray (t,27") are w.(—t, ).

2.1.2 Incident and reflected beams in a convex domain

Construction of flows and beams We suppose c(z) constant for dist(x, Q) larger

than some D > 0. Given a point (y,n) in the phase space T*R™ where

T*U denotes U x (R™\{0}) if U is an open set of R",

an incident beam is a beam associated to the ray (¢, z}(y,n)) satisfying:

dxt ft dft
dito = C(xé)]?g!’ dito = — ()18,

$6|t:0 =Y, f(t)|t:0 =n,n#0.

The Hamiltonian flow ¢f = (xf, &) for hy is called an incident flow. The associated
beam is denoted w? and called an incident beam.
Since we have dependence w.r.t. the initial conditions (y,7), we shall write the incident
beam as

Wl(t,,y,n) = ao(t, x, y,n)e 0 tmvnle

Let R be the reflection involution
R: T*R"pe — T"R"p0
(X,2) — (X,(Id—2v(X)v(X))Z).
Above v denotes the exterior normal field to 9€). We restrain the study to starting

points (y,n) € B = Uwerph(T*2). Each associated flow ¢f(y,n) strikes the boundary
twice. Reflection of ¢f(y,n) at the exit time ¢t = Ti(y,n) s.t.

T (. T (y, T (y,
x01(y n)(ym) c 99 and xol(y n)(y’f,}) . V(gjol(y n)(y’n)) > 0,

gives birth to the reflected flow ! (y,n) = (2% (y,n), & (y,n)) defined by the condition

T 5 T )
P17 (y,m) = Rowg™ ™™ (y,1).

Similarly, we also define the reflection time T_;(y, n) and the flow ', (y,n) by reflecting
©5(y,n) as follows

x5 Y (y,m) € 00 and @ (y, ) - vz U (y,n)) <0,

T7 5 T7 b
eI (g, ) = Rogg ™ (y, n).
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We denote, for & = %1, the reflected beams by
WE(t 2,y m) = ali(t, @y, p)e v/

These beams are associated to the reflected bicharacteristics ¢f. Let us introduce, for

k = 0,%£1, the boundary amplitudes d_m +j St

—mp+;5€

mp
Buw = Z cmptigh  itk/e

Above, mp denotes the order of B (mp = 0 for Dirichlet and mp = 1 for Neumann).
The construction of the reflected phases and amplitudes is achieved by imposing that
the time and tangential derivatives of

Yy, equal at (T, zo*) those of 1 up to order 2, (8)
d,,, +d",, vanish at (Th, 20+, 9)
for k = +1. These constraints uniquely determine the reflected phases and amplitudes,
once the incident ones are fixed [84]. Moreover, if T' is sufficiently small, the reflected

rays is in the interior of the domain at the instant 7' (=7 (y,n) € Q), and the following
boundary estimates are satisfied [84]

i —st 3
IB(e 5w, y,m) +e i wl(,,y, )| s (o) xan) = O(e™™B™°%2),
and | B(e (. y,m) + e T W () s oropxon) = O(e7277F2) for s > 0.

Let us point out that the construction of the reflected beams is also valid for other
boundary conditions if the IBVP is well-posed ([84] p.221).

Remark 2.1. Higher order beams, possibly with more than one amplitude, can be con-
structed to satisfy better interior and boundary estimates. In this case, the eikonal equa-
tion (4) must be satisfied up to order larger that 2 on the rays. If r > 3, the equations
95 [p(x, 00, 0:9)] (t,2") = 0 for |af =1 give systems of linear ODEs on (93¢ (t,2%)) 4=,
with a second member involving lower order derivatives of the phase. The key observa-
tion to prove this statement is to replace each term

an(QOt)agatw(tv xt> + agp(got) ’ a;:laww(t? xt>> |a| =T,

by 2¢(at) |14 (094p(t,at)). We refer to [84] for further details.

2.1.3 General relation between incident and reflected beams’ phases

In this paragraph, we give a useful relation between an incident phase ;. and a reflected
phase 1.s for beams of any order. This relation provides with the derivatives of the
reflected phase up to order R, which may be useful in other applications of Gaussian
beams. Here we will apply the obtained results for first order beams to compute the
Hessian matrices of ¢4; on the rays. The matrices wﬂ(t,xfi) can also be computed
by solving the Riccati equations with the proper values at the instants of reflections
t =Ty (see eg. [78]).
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Consider the following auxiliary function linking ¢! to ¢ for any fixed time ¢

s1: B — B

_ Ty (y,
(y,m) — @ Hw)

B o Ro op @ (y, n).

For a given point (y,n) € B, s1(y,n) is its "image by the mirror" 0. For instance,
Chazarain used this type of auxiliary functions in [20] to show propagation of regularity
for wave type equations in a convex domain.

By the Implicit functions theorem, 77 is C* on the open set B and so is s;.

Since ¢} o s; satisfies the same Hamiltonian equations as ¢} and cpipl(y’")(y,n) =
wgl(y’n) 0 s1(y,n) for (y,n) € B, one has

Y1 = 95 0 51
Besides, noting that T7(¢}) = T1 — t, one also has

O = 51 0pp. (10)

o and ¢! are symplectic C* diffeomorphisms from B to B [48], and so is s;. One can
define a similar auxiliary function s_; : B — B s.t. '] = ¢ 0 s_1 and o' | = s_1 o}
for t € R.

Let us introduce the components of s; as
s1=(r, A).
For every functions f,g € C* (RZ x (RE\{0}), (Cp) and phase function V' € C*(Ry, Cy)
s.t. V(ug) € RE\{0}, we introduce the notation
flu,V(w) = glu,V(w),

U="Uy

to denote that the formal derivatives of f(u, V' (u)) and g(u, V' (u)) up to order m coincide
on ug. The derivation here is viewed formally, since V' may be complex valued out of uy,
which makes f(u,V(u)) and g(u,V(u)) not defined for u # uy. However, on the exact
point ug, one can always use the formulae of composite functions’ derivatives to get a
formal expression of the derivatives. We will use the same notation

f(t,z, V(t,z)) Qt g(t,x,V(t,x)),

T=T

for functions f,g € C* (Rt x R? x (R?\{O}),(Cp) and phase function V' € C*(R; x
Ry, C}) st. for t € R, V(t,2') € RE\{0} to denote that the formal derivatives of
f(t,z,V(t,z)) and g(t,z,V(t,x)) w.r.t. = up to order m coincide on (¢, z") for t € R.

In the following, we will be sloppy with respect to the notation of the dependence of
Oitbg and 0,1 on their variables (¢, ).

Since the reflection R conserves |Z|, one has for every (z,£) € B and 7 € R*

p(T(.ﬁE,g),T,)\(Qf,f)) :p(vavf)' (11)

Thus
p(?"(%, am¢0); aﬂ/’m )\(ZL’, ax¢0)) §t p(‘xa a152/}07 ax¢0)7

11:110
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which implies, by construction of v

0.

t
0

p(r(x, aﬁﬂo% Optbo, >\($, aqﬂ/’o))

T

N

Compare this with the equation

2

p(’f’(l‘, 81’¢0)7 at77ZJ1 (tv T(ZL’, aﬂch))a 8x¢1 (t’ r($a 8:c¢0))) = 07

—pt
T=T

resulting from the construction of ¥, and (10). This suggests the following Lemma

Lemma 2.2. Let R be an integer larger than 1 and ¥g,. and ), an incident and a
reflected phase of C*°(R; x R, C) satisfying

atwinC(ta ﬂfé) = _C<x6)‘€6| and 8twref(t, SL{) = —C(%i)lfﬂ,
axwinc(ta ZB%) = S(t) and a:cwref(tv Qfﬁ) = gia

p(% at¢incy ax,’l)mc) ﬁt 0 a'nd p(%, 8t¢ref7 8w¢1”€ ) 2 07

— et
T=T;

and having the same time and tangential derivatives at the instant and the point of
reflection (Tl,xOTl) up to the order R. Then Ouf(t, r(x, 0pthinc)) Rilt Oine and

_;pO

8m¢ref(t7 7’(17, aa:wmc)) R;\It )\(ZL’, a:v¢mc) .

$:Z'0

The proof is postponed to Appendix A. A similar result linking the reflected phase
associated to the ray (t,2-}) to the incident phase can be established.

2.2 Gaussian beams summation

We begin this section by a reminder of the construction of asymptotic solutions to the
IBVP (1a), (1b) with some initial conditions (1c’) (see below). These solutions are
obtained by a Gaussian beams summation as achieved in chapter 1. We focus on a
superposition of first order beams, for which exact expressions of the phases and am-
plitudes are displayed in 2.2.2. These beams lead to a first order approximate solution,
close to the exact one up to /. We end the section approaching the derivatives of the
first order solution by some Gaussian type integrals we introduce.

2.2.1 Construction of the approximate solution

In chapter 1, we have constructed a family of asymptotic solutions to the IBVP for
the wave equation for initial data satisfying A1, A2 and an additionnal hypothesis A3
concerning their FBI transforms.

Let us recall here that the FBI transform (see [71)) is, for a given scale ¢, the operator

T. : L*(R") — L?(R*") defined by

3n

T.(a)(y,n) = cpe + / a(:p)eé”'(y_””)_g(y_xydx, =271 q¢€ L*(R™).  (12)
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Its adjoint is the operator

* _on 2 (x— _k Tr— 2 n
L)) = s ® [ flymer e b ayay, £ e LA®M).(13)

As the Fourier Transform, the FBI transform is an isometry, satisfying 77, = Id. The
extra assumption needed in chapter 1 is

A3, || Tl || 2o xcrey = O(e) and || Tevl|| 2@ xrey = O(€™),
where R¢ denotes the complementary in R™ of some ring R = {n € R", 7y < |n| < rw},

0<rg<rs.

In general, this assumption may be not satisfied. We thus construct a family of initial

data (ul_,vl.) close to (ul,v!) that satisfy assumptions Al and A2 and furthermore

have FBI transforms small in L?(R" x R°). Letting ry go to 0 and ry go to +oo will

make these data approach (ul,v!) in a sense that will be specified in section 3.3. In any

case, the needed convergence is weaker than a L? convergence since we are interested in
the study of Wigner measures.

Let us first truncate T.u! and T.v! outside R by multiplying them by a cut-off
v € C5°(R™, [0,1]) supported in the interior of R

V= Xreo/2(1 = Xarg)- (14)
Lemma B.4 yields
| T-T2y () Tetil | 2 x ey = O(%) and | TLIZy () Tevsl 2o ey = O(€). (15)

In order to satisfy A2, we multiply (T¢y(n)T.ul, T*v(n)T.wl) by a cut-off p €
Cs°(R™, [0,1]) supported in €2, and consider

I * I I * I )

Uz = pTZv()Teus, vz, = pT2y(n)Tev:. (1)

ey £

We index this initial data by v because the parameters ry and r., will vary in section
3.3. We suppose that p(v) = 1 if dist(v,suppul U suppv!) < D for some D > 0. The
required estimate

A3’ ||T5ug’7||L2(RnXRc) = O(@OO) and ||TEU£7||L2(R"><RC) = O(goo),

is fulfilled since Lemma B.3 implies that
(1= T2y Tl ||z S e and [|(1 = p)TZy(n)Tevl ||z S e (16)
Using the boundedness of the operator TvT. from L*(R™) to L?*(R") and the relations
Oy, 1. = T.0,,, 0,1 =T.0,,, (17)

obtained by integrations by parts in the expressions of 7. and T, one can show that
the assumption Al is also fulfilled by these new initial data. Let p’ be a cut-off of
Cs°(R™, [0, 1]) supported in a compact K, C Q and satisfying

p'(y) = 1 if dist(y, suppp) < A for some A > 0,
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and 7" a cut-off of C3°(R™, [0, 1]) supported in K, C R"\{0} s.t. v/ =1 on R. Without
loss of generality, we assume that the reflected rays at the instant 7' (237 (y,7)) remain
in the interior of the domain when y varies in K, and n in R™\{0}. This is always
possible upon reducing T because the number of reflections for initial position and
speed varying in K, x (R"\{0}) is uniformly bounded (see section 2.3 of chapter 1
for similar arguments). Then, the IBVP (la), (1b) with initial conditions (1c’) has a
family of approximate solutions u???" in C°([0, T], H'(Q2)) NC*([0, T], L*(€2)) obtained as
a summation of first order beams. A general result using a superposition of beams of
any order was proven in chapter 1, and it reads for first order beams as follows

Proposition 2.3. [Theorem 1.1, chapter 1| Denote for t € [0,T] and x € R™ the
following superposition of Gaussian beams

u (, 3)
1 an / /
= 55 4 +1cn /]RQn P,(y>7,(77)TaU£7(ya 77) |: Z wf (t) x,Y, 77) - Z wf (_ta z,Y, 77)]

k=0,1 k=0,—1

+p’(y)v’(n)s‘lTeu{ﬁ,v(y’n)[Z Wtz yon) + > w?(—t,x,y,n)}dydn-
£=0,1 k=0,—1

Above, W, wg/ are incident Gaussian beams with the same phase 1y satisfying at t = 0

Yo(0,,9.m) = n- (v —y) + 5(z —y)*, (18)

and different amplitudes a3, a3 satisfying

ag(0,z,y,m) = xalz — y), [10:0a) (0,2, y,m) = xa(z — y) + O(jz — y|). (19)

wEl and wF denote the associated reflected beams. Then uct?" is asymptotic to ue - the

exact solution of (1a)-(1b) with initial conditions (1¢’) in the sense that

SUp [[te,—u?" || i) < C(v,Q,T) Ve and sup [|0yue y—0ul®?" || L2 < C(7,Q,T) VVe.
t€[0,T t€[0,T
Remark 2.4. The final error is obtained by summing the errors in the interior equation,
the boundary condition and the initial conditions. Note that the asymptotics is of the
same order /¢ for both Dirichlet and Neumann boundary conditions. More generally,
the construction may be achieved for any boundary condition if the IBVP is well-defined
in C°([0,T], HY(Q)) N C*([0,T], L*(?)) for second members, initial data and boundary
data in some Sobolev spaces C°([0,T], H**(2)) x H*2([0,T] x ) x (H*3(Q) x H*(Q))
(see e.g. [15] for boundary conditions with energy estimates in this type of spaces).
It may look surprising, but the asymptotics does not depend on the orders s; of these
Sobolev spaces. Indeed, using higher order beams increases the accuracy of the Gaussian
beams integral and for sufficiently high order, the error falls to O(\/2). On the other
hand, summation of higher order beams and summation of first order ones are close to
order \/e. So the error in the approzimate solution obtained by superposing first order
beams is at any case O(\/€).

The proof relies on the use of a family of approximate operators acting from L?(R?")
to L*(R™) (chapter 1). We recall a simple version of the estimate of the norm of these
operators established therein.
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For t € [0,T], let K,4(t) be a compact of R*" and consider the set
By ={(t,r,2,0) € [0,T] x R* (2,0) € K.4(t), |x — 2| < 1},

which we assume compact. Let ® be a phase function smooth on an open set containing
E, and satistying, for ¢t € [0, T and (z,6) € K, ¢(t)

0,®(t,2,2,0) =0,
O(t,z,2,0) is real, (20)
D2®(t, 2, z,0) has a positive definite imaginary part.

Then there exists r[®] €]0, 1] s.t.
Im®(t,7,2,0) > C(x — 2)* for t € [0,T], (2,0) € K.4(t) and |z — 2| < r[®].
Let I. € C*([0,T] x R3", C) satisfying
For t € [0,T),l.(t,z,2,0) = 0if (2,0) ¢ K,4(t) or |z — z| > r[P],
egﬁﬁbla is uniformly bounded in L>®([0, 7] x R3") for every 1 < b <n and k € N.
If O*(I.(t,.),®(t,.)/e) denotes, for a given multiindex v and ¢ € [0, T], the operator

(0% (l(, ), (2, ) /¢) h] ()
= h(z,0)l.(t, x, z,0)(x — 2)%®E220/202dh, h ¢ L*(R™),

R2n

then, under the previous hypotheses on ® and [., we have the following estimate

Proposition 2.5. [Lemma 3.3, chapter 1]
0% (I-(t,.), ®(t,.)/e) || L2men)— L2@n) S s uniformly w.r.t. t € [0,T7].

2.2.2 Expression of the phases

Incident beams’ phases By the requirement (P.a) for the incident phase, one has
Lapo(t, zh) = Optho(t, xh) + Outho(t, b)) - 2" = 0. Taking into account the initial null value
10(0,7) = 0 chosen in (18), one gets a null phase on the ray

Zl}o(t, 336) = O

With the aim of computing 9%ty (¢, z}), let us examine the Jacobian matrix of the
bicharacteristic Fj = Dpf. The matrix F{ satisfies the linear ODE

5 F6 = JH (wh, §6) Fg,
FY = 1Id,

Writing F{ as

Ft — < ayxg anxé )
0 aygé 87753 ’

leads to the following system of ODEs on (U¢, Vi) = (9,2f + i0,xl), 0,68 + i0,b)

d
aUS = Ho (), &) US + Hao(wg, E)Vy (21)
d
—Vi = —Hu (x4, &) Ug — Hia(24, &) Vy - (22)

dt
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Moreover, F{ is a symplectic matrix in that
(FEOYTJF, = J.
Due to the symetry of the following matrices
(ay$6)Tay€6> (3,751:6)T07756, 3y:1:6((9nx6)T, and 8yfé(an£é)T>
and the relations
(8y$6)T3nfé - (3y€6)T3nx6 = Id and 8yx6(8nfé)T - anx6(8y53>T = Id,

one has

Us)"Vy = (Vo) UG,

(Ve)"Us — (Ug)"Vy = 2ild, (23)

Ut is invertible.

Putting together (21), (22) and (23) shows that V{(U¢)™! is a symmetric matrix with
a positive definite imaginary part and fulfills the Riccati equation (5) with initial value
ild. Since this is the initial condition for 9%ty (t, z}) given by (18), it follows that

Oztbo(t, ) = Vo (Ug) ™"
Reflected beams’ phases The expression of the reflected phases v, kK = =+1, is
similar. In fact, since Lo (t,24) = 0 and ¥y(Ty, 24F) = 1o(Th, 24F) by (8), we get

Qﬁk(t, IZ) = 0

The relation connecting the incident and the reflected phases stated in Lemma 2.2 gives
at order one

020 (1.4 (D (ah, €0) + Oer (. €)% (1, 25)) = D, A (b, E0) + BeA(ah, )2l b,

and one has a similar relation for 9?¢»_;(¢,z' ;). One obtains by plugging the expression
of O%1y(t, xf) and using (10)

D2 (t, xh) = VH(UL) ™! where U}, = 9,2}, + i0,x} and V! = 9,1 + i0,£}.
As ¢l is symplectic, it follows that (Uf, V}) share the same properties (23) as (U¢, V)
(U Vi = (Vi)' Uy,

(VUL — (U)TViE = 2ild, (24)
U}l is invertible.

2.2.3 Expression of the amplitudes

Incident beams’ amplitudes Using (P.a) and the Hamiltonian system satisfied by
(xf, &), the equation (7) at order zero implies the following transport equation for the
value of the amplitude on the ray [50]

d o 1 '
a6 (6, 2h) + ST (Hon (wh, ) + Hoalah, €)0200(t, ab))ay (t,25) =0, (25)
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which may be written, using the matrices U} and V{, as

d o 1 (
b t,ah) + ST | (Han (o, )V + Haa(ah €)Y (U)o (1,0t = .

The time evolution for Uf, see (21), combined with the choice of the initial values
ag(0,y) = 1 and ag (0,y) = (—ic(y)[n|)~" from (19), yields
1

ad(t,z4) = [det Uf) ™2 and a) (¢, 2%) = i(c(y)|n|) " [det UZ] 2.

Above the square root is defined by continuity in ¢ from 1 at t = 0.

reflected beams’ amplitudes The first reflected amplitudes evaluated on the ray
satisfy a transport equation similar to (25), which may be written as

d

1
et a) + ST (Haa(al UL + Hanlal €0V U1 bt ) 0.

One can obtain a similar equation to (21) on U} involving Ha (%, &L) and Hao(zh, &),
by using the relation ¢} = ¢} 0 sx. On the whole

1

detU,’;}_2 b 41

det U/*

Ot = b (T, o) [

where the square root is obtained by continuity from 1 at ¢t = T,.
On the other hand, for k = +1

a2, +d",. = bz, 0uth)al + b(x, Dk )af,

where b denotes the principal symbol of B. Thus, the condition (9) required for the

construction of the reflected amplitudes implies that af (,)(Tk, zF) = sao( )(T b 2ok ), with
s = —1 for Dirichlet conditions and s = 1 for Neumann conditions.

In order to find the relationship between U/* and Uy* for k = +1, we differentiate
the equality ZBk = ZBO

Oyt + ik (8,Ti)T = Oy + ad* (0, Tr)", Oyat + &% (0,Te)" = Oyt + ik (9,Th)",
and compute the derivatives of T}, from the condition zg* € 9Q

_ 1 Ty, T,
ayﬂ?Tk - _(IIZOT’“ ] I/(Qfgk)) (8 R ) (xO )7

to get after elementary computations

Ut = (Id = 2v(ag" v (zg") ") Ug " (26)
Hence
ab(t,xt) = —si[det UY)"= and af (¢, 2%) = s(c|n|)"'[det U] "% for k = +1,

where the square root is defined by continuity from i[det Uy’ k’]‘% at t = Tj.

The previous form of the beams is summarized in the following result
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Lemma 2.6. For k = 0,+1, the incident and reflected beams wF have the form
(1, 2) = Bxale — at)al (e 7,
with
Bo=101=pP-1=~—
ai(t) = [det U{] 3, a;<t> = i(c(y)ln)) et U]z,

Ye =& (z— o) + 5 (@ —a) - Akt (@ — a), Ar(t) = =iV (Up) ™

DO | =.

2.2.4 Gaussian integrals

It follows that the approximate solution uZ??" has the form (recall the dependence of
Gaussian beams w.r.t. variables (y,7))

I s i T
wr(t,a) = L, [ (00 ) S vale — o) Bupe(t, g e
k=0,1
oWy () D Xalx — 25" Brger(—t,y, m)e™H HVDE) dyd,
k=0,—1

with

ps,k<t7 Y, 77) = &k(ta Y, n)gilTsué’y(ya 77) + a;c(ta Y, n)TEvi’y (y7 7])
and QS,k(t7 Y, 77) = Qg (ta Y, 77)5_1Teug,y(y7 77) - a’;ﬂ(t7 Y, n)Ta'Ua{ﬁ(yv 77) (27)

In the remainder of this section, we write the derivatives of the approximate solution
using Gaussian type integrals I.(h, ®) that we define by

I.(h,®)(t,z) = zs’:%lcn/2 h(t, z,0)e o209/ q,d0,
R2n

for phase functions ® € C*(R}f' x B,C) satisfying properties (20) and polynomial
of order 2 in  — z and amplitude functions h € C°([0,T], L*(R%})) supported for
every fixed ¢t € [0,7] in a compact of B. By Proposition 2.5, || fgen h(t,2,0)x(x —
2)etr20/Edzd) . < ||A(t, Jlzz,- Noting that the phase ® provides with an expo-

nentially decreasing function for |z — z| > 1, one can use the following crude estimate

I h(t, z,0)e" B2/ 0240 1 < e 97 ||hlt, Iz, for a >0, (28)

le—2|>a

to deduce that I.(h, ®)(t, .) is uniformly bounded in L2. The same notation I, will be also
used for vector valued functions h. For a function f depending on (¢, z, z,60) € R"™ x B
and k = 0, %1, denote

FE(t i, 2,0) = f(t, 25 {0} (2.0)).

Set K¥4(t) = ¢} (K, x K,). Let II;(t) be a cutoff of C2°(R?", [0, 1]) supported in B and
satisfying IT;(t) = 1 on K%4(t). We prove the following Lemma
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Lemma 2.7. 9u?"(t,.) is uniformly bounded in L*(R") and satisfies
1
Qu™" (t, ) = 5(1}?(75,35) — v, (—t,2)) + O(V/2) in L*(R™) uniformly w.r.t. t € [0,T],
where v;” and vy are uniformly bounded sequences of L*(R™) given by

= > Gil(— |9|Hkﬂ ®9 psk kb ),
k=0,1
= > Bel(—ic(z |9|Hkp ® 9 QEk Uy )-
k=0,—1
Likewise, 0,ul®P" (t,.) is uniformly bounded in L*(R™)" and satisfies
1
Qpugt" (t, ) = i(vj(t,x) + v, (=t, 7)) + O(vz) in L*(R™)™ uniformly w.r.t. t € [0,7T],

where v and v, are uniformly bounded sequences of L*(R™)™ given by

— Z 6k[5(291_[kp/®7/ ps,kkawk )7

k=0,1
Z ﬁkjs(lgﬂkp ®’7 Qe .k 7¢k )
k=0,—1

Proof. Because of (6), time derivative of uZ?”" may be written as a sum of integrals of
the form

e /R% W)Y () f-(y. )ity m) (@ — ) e 020 e dy dn,

with j,k = 0,1 and |a| < 2, arising from 9,w?(¢,.) and dw?(t,.). Other terms of the
same form come from the derivatives of w?(—t,.) and w '(—t,.) w.r.t. t. f. stands for
e 'Tul_ or T.v!_ and the r}, are smooth functions vanishing for |z — z}| > d.

The volume preserving change of variables

(Ck) : (2,0) = @i(y,m),

writes the previous integral as

—~—k

T [ 07 87 (1) (@ 2 e (29
R’Vl

Then, the transported phase @Dwkk is smooth and satisfies by (P.a)-(P.b)-(P.c) the following
properties, for ¢ € [0,T] and (z,0) € K% ,(t)

Jﬂbk (t z,2,0) =10,
wk (t z, z,0) is real,
agwk (t,z,2,0) has a positive definite imaginary part.

We fix some r[%k] €]0, 1] so that Im@k(t,x,zﬁ) > C(x —2)? for t € [0,T)], (2,0) €
KA () and o — 2| < rli ]



2.2 - Gaussian beams summation 77

—~——k
For ¢t € [0, 7], Ilxp' ® 7’ (t,z 9)( a) (t,z,z,0) depends smoothly on its variables and
vanishes for |z — z| > d or (2,0) ¢ K%,(t). Hence, upon choosing d < kr_nirillr[%k],

Nk

every phase wk and amplitude Hkp ® ' ( a) satisfy the properties formulated in

Proposition 2.5. Let us check if 15 fg is uniformly bounded in L*(R*"). Clearly T.v!_
is, and the property holds true for z—:*lT,gvgW by Lemma B.5. One can then use the
approximation operators O to write the integral (29) as

i [ ey L) (o 2 Fddd
o P @7 f (1) (@ —2)% z

=& 1O @ (rﬁa) (t,.),Yx (t,.)/e]1pf:
The estimate established in Proposition 2.5 yields
an —k —k k =k . la]
Je 49 o Tl @77 T () (2 — 2)ei® fedzdf| p S 75

——k

Hence, only (rf,) contributes to d,uf?", the residue being of order /z. Since

i ,
roo(t,z,y,n) = icnﬁkﬁtm(t 2 xa(z — ab)al (¢, y, )

7 /
—enbre(eh) 6 xalr — 2h)ay (t.y. ).

by (P.a), it follows that
1
Dl (t, ) = 5€ - cn/ > (=1)Bre(2)0)xalx — 2)Ik(2, 2, 0)p’ ®7 (t z,0)

k=0,1

@k(t 2, 9) iwk t,x,z,O)/stde

———k

+ E 4cn/ > iBke(2)|0]xa(z — 2)k(—t, 2,0)p' @ 4" (—t,2,0)
k=0,—1

Goxt(—t, 2,0)e i ( —t@20)/2) d2df

+0(Ve),

in L*(R™), uniformly for ¢ € [0,7]. Similar arguments apply to the spatial derivatives
of u”" and lead to

1 N

O, ue?" (t, ) *8 ey cn/ > 1B (), xa(z — 2)IL(t, 2, 0)pf (t,z,@)

k=0,1

mk(zﬁ z,0)e i (t2.20)/2 .40

+ E T / Z Zﬁk 9k Hk( tZQ) ®’y ( t,Z,e)

k=0,—1
@it (—t, 2, 0)e i ( —t2259)/€) d2df
+0(Ve)
in L*(R™), uniformly w.r.t. ¢t € [0, T].

One can get rid of the cutoff xq4(z — 2) appearing in Jyu?" (¢, z) and Oy, u?" (t, )

by using the estimate (28). O
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3 Wigner transforms and measures

In this section, we compute the scalar measures associated to 8tu§f”§””(t,.) and
cO,ul"(t,.). As [Bx] = 1, the Wigner transforms associated to vif (&t,.) are finite
sums of terms of the form

we(]e(ftk7 (I)k)(j:tﬂ ')7 Is(gfh Cb[)(:l:t, ))7

—~—%k —~—1 —~k
where k,l = 0,1, ff = c|0|ip/ @ poi”, gb = |0l ® v ¢=;'s ®x = 1 and
~1
®; = 9y . As regards the Wigner transforms associated to cvE(+t,.), since c is uniformly
continuous on R™, one has by a classical result ([38] p.8)

we(cvE(£t,.), cvE(£t,.)) = Aw.(vE(£t,.),vE(£t,.)) in R*™,
so that the involved quantities have the form

CQUJg(Ig(ff, (I)k)<:i:t7 -)7 Iz—:(glx7 (I)l)(:l:t7 ))7

with f& = 0l @ «/ ﬁ;kk and gt = 01, ® ' ’q}jl. Forgetting the powers of ¢ factors,
the involved Wigner transform integrals have the form

— k — 1 - 0 / 9/
Teke (2,0)Tir. (2,001 (2,0, 2,0, x,v)e 10020/ 02404 49 dadv, (30)

R6n

with k., 7. = e7'ul_,v!_ and k,1 = 0,=£1, or by expanding the FBI transforms

/8 boe (W) T (Wby (2,0, 2, 0, 2, v)e V2w 502020/ ! dzdfdz' df' dedv.  (31)
R8&n

Traditionally, this type of oscillating integrals is estimated by the stationary phase
theorem. This method was successfully used in [15] for the computation of a Wigner
measure for smooth data. The involved phase is complex and its Hessian restricted to the
stationary set is non-degenerate in normal direction to this set. In our case however, the
amplitude is not smooth because no such assumption was made on u! and v!. So we can
not estimate immediately the global integral (31) by the same techniques. One research
lead is to resort to the stationary phase theorem with a complex phase depending on
parameters for estimating [gen ba(2, 0, 2/, 0, x, v)e? V2w’ 20.2.0%20)/2 4240 d 2 A’ dadv.

An alternative method was used in [88], where an integral of the form (30) associated
to the Wigner transform for the Schrodinger equation with a WKB initial condition was
simplified by elementary computations into an integral over R*". However the method
faced difficulties in deducing the exact relation between the Wigner measure of the
solution and of the initial data.

We adapt the result of [88] to our problem in section 3.1 and complete the analysis to
prove the propagation of the microlocal energy density of uZ2" along the flow in section
3.2. The proof is simple and elementary and the computations are made in an explicit
way. Section 3.3 is devoted to the Wigner measures associated to the derivatives of the

exact solution wu. of (1).



3.1 - Wigner transform for Gaussian integrals 79

3.1 Wigner transform for Gaussian integrals

The functions ff, and g; , depend on € but they are uniformly bounded in L?(R*") and
their support is contained in a fixed compact. Slight modifications of the computations
of [88] lead to the following more general result

Lemma 3.1. Let f. and g. be sequences uniformly bounded in L*(R*") and supported
in compacts independent of €. Let ' be an open set containing supp f. U suppg. and P,
U be phase functions in C*° (R} x F,C) satisfying

O(x,2,0) =re(2,0)+60-(x—2)+ ;(x —2) - Ho(z,0)(x — z) for (z,2,0) € R" X F,
U(x, 20" =

ro(2,0)+6 - (x—2)+ %(m — 2 - Hy(Z,0)(x —2") for (z,2/,0') e R" x F,
where o,y € C°(F,R) and the matrices He, Hy € C*(F, M,,(C)) with positive defi-
nite real parts. Then for ¢ € C°(F,R)

< w(L(f., ®), I.(g., 0)), & >:/ (5, 0)A(D, )(s,0)

R4n

fo(s+er,o+e0)gl(s — er,o — VEd)e® (@D s0md) grdsdsdo + o(1),

where
5n

A(D, W) (s,0) = 225 12 (det[Ho(s,0) + Hy(s,0)]) 72,

=

and

O.(P,V)(s,0,7,0) = r8(s + Ver,o +eb)/e — ry(s — er,o — \/ed)/e
—20-1/\e+i(r,6) - Q(Hy(s, o), Hy(s,0))(r,0).

The matriz Q(Hg(s,0), Hy(s,0)) and the square root are defined in Lemma 3.2.

Proof. The proof is given in two steps. In a first time, the Fourier transform of a
Gaussian type function is computed explicitly. Then, in a second time, a Gaussian
approximation is used for several smooth functions appearing in the Wigner transform
integral.

For simplicity we denote u(z, z,6) by uw and u(x, z’,0") by ' when integrating w.r.t.
2,0,z 0'. We also omit the index € in the notation of f. and g..

Step 1. Fourier transform. Firstly, we note that the Wigner transform at point
(z,€) € R* may be written as

we(L(f,2), L(9. W))(w,§) = "che™ ¥ / _ fgrlefrelesiru/etin 0-0)/eti04~02)/c
R5n
fv[e—(’v-i-CC—Z)'Hcp(’U-‘rCC—Z)/(QE)—(U—I-i-ZI)'H(P(U—x-‘rz/)/(zf)]((2€ —h— 9/)/5)

dvdzdz'dodo’ .

The Fourier transform of Gaussian functions’ product is given by the following Lemma,
of which proof is postponed to the end of this section
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Lemma 3.2. Let a,b € R? and M, N € My(C) symmetric matrices with positive
definite real parts, then

fx[ef(acfa)-M(zfa)/Qef(mfb)-N(sz)/2] (g) _

d
2

(27)2 (det[M + N])~2e~ & (0Fa)/2o=(b-a8) QIMN)(b-a6)/4

)

where Q(M, N) is the symmetric symplectic matriz given by

QUi = (UL NN DR,

i(M+N)""(N—-M) 2(M+ N)™!

and the square root is defined as explained in section 3.4 of [45].  Moreover,
Q(M, NYA(M,N) = B(M,N) with A(M,N) — (fﬁN f;;) and B(M, N) —
( ]_V”d z]'\.fd ) , and Q(M, N) has a positive definite real part

ReN 0

ReQ(M,N) =2A(M,N)*! ( 0 Re M

) A(M,N)™.

Hence

we(L(f, @), I.(g,V))(x,§) = ciZ%W’%eS’Q”/4 fg*’(det[Hq>—i—H(I,])’%e"‘b/‘?’”’&'/8
R n
(640 —26)-(2—2) ) (22) +i(0—0 )z e+i0/-7' ~0-2) e

ef(Qxfzfz’,ngefﬁ’)-Q(Hq>,H\’I,)(2w7zfz/,257979’)/(45)dzdzldedel.
Making the change of variables
(2,2) = (s +Ver,s — Ver) and (0,0) = (0 + V&b, 0 — V/20),
and writing f, for f(s++/er,o + /20) and g_ for g(s — \/er,o — 1/20), leads to
wL(f.9), L(g. W)@, = c2¥r i [ fig' (det[Hoy + Hy]))

6’i7’q>+/6—i7\p_/E-‘r?i(s-(m—s)/\/g_Qz‘g.r/\/g
¢~ (o381 QU Hy ) (@=3=0)/2 44§ d s do.

Step 2. Gaussian approximations. Taking the duality product of the Wigner
transform with a test function ¢ € C§°(F, R), and after setting (2/,¢') = (x—s,—0)/ /2,
one has

5n _mn *
<w(L(f.9), L{gW)) 6 >= 2 %78 [ o(s +vEr' o+ VE) g
(det[Hq)Jr 4 H‘I} 7]>f%eirqw/efirq,,/szia-r/\ﬁJrZi(x/’é/).(57—1”)
e~ (@80 Qo My )@ go? 4! drdbdsdo. (32)

Let p'; and p, be cut-off functions supported in F s.t. p'; = 1 on a fixed compact
containing suppf and p’, = 1 on a fixed compact containing suppg, and consider

b.: (2, s,0,1,0) — [ﬁb(s +Vea' o+ Vel') — ¢(s, 0)}P’f+P,g,€_($/’5/)'Q(H‘I’*’HW e,
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The r.h.s. of (32) may then be written as
< wo(L(f, @), L(9.0)), ¢ >= 2% 77F [ 0(s,0)f1g"_(det[Ho, + Hy )7}
eirqur/sfirq,,/572io-r/\/5+2i(z/,§’)-(6,77')
e~ @) QU e 1 Hu 8D gt €' drdbdsdo
+c22%Fn73 /E£4n(det[H¢>+ +Hy ) 2 frg

eir¢+/s—ir\p,/a—2ia~r/\/5

f(m/é/)bg(—Q& 27’1, 3, O', 7”, 5)d7’d(5d8d0’
(33)

Leibnitz formula yields for o multi-index
O b (2", € 5,0,7,0) = )
B 1 by [0 + VET, 0+ VEE) = 0(5,0)| 08 ¢ [~ Qttally (@)

18] (! £ Ho (2 .&
+P/f+p/gﬁ 267&005,782(957£¢(3+\/§x/,0+\/55')8;,7§, [e=" € QU fly )]
+v=aq,

As (s 4 /er,o + /€0) varies in suppp’; and (s — \/er,0 — \/d) varies in suppp’,, one
can find by continuity a constant C' > 0 s.t.

Re Q(Hay, Hy -) > CId on supp(p'y, p'y ).

Since
(s,0) and v/2(r,d) are bounded on supp (o', 0y ), (34)

it follows that there exists a constant C’ > 0 s.t.
|05 (2, € s,0,7,0)] S Vee O for all (o, ¢ s, 0,1, 0),
which leads to
| Fr enbe(—28,2r,5,0,7,8)| S Vel + (r,8)%)™ " for all (s,0,1,0).

The second integral on the r.h.s. of (33) is then dominated by

VE [ g 0+ (6,0)) " drdbdsdo,

We deduce with Cauchy-Schwartz inequality w.r.t. s, o that

| < (L, ®), (g, ), 6> ~2% it [ ofs,0)(detlHa, + iy )4 frg

eire+/emiry_[e=2i0r/VE o= (6:=1) Qe Hy )7 67) g s d S do |
5 \/g||f||L2(]R2n)||g||L2(]R2n)7
where we have replaced det Q(Hg., Hy _) by 1 since Q(Ho., Hy _) is symplectic.

To go further, let us extend He and Hy as AHe + (1 — A)Id and AHy + (1 — N\)Id
by using a cut-off A € C*(R?",[0,1]) supported in F s.t. A = 1 on the compact set
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suppp’ ; Usuppp’, Usuppg. The extended matrices have positive definite real parts. The
smoothness of these matrices implies by the mean value theorem and (34) that

(det[Ho, + Hy _])"7 — (det[Ho (s, 0) + Hy(s,0)]) 2| < vE|(r,6)| on supp(ofig*).

Using the symplecticity and the symmetry of Q(Hs L, Hy ), its inverse is
—JQ(He,, Hy _)J. ] ]

Thus the quantity |e~ (&= QHeHy )71 (6-r) _ =(r0)-Q(Ha(s0). Hu(s0)(9)| is dominated
by

(r,0) - |Q(Ho 1. Hy ) = Q(Ha(s, 0), Hu(s, 0))]| (r,6)]

Sup |6_5(r75)'Q(H¢+7H\D ,)(T,(S)—(l—S)(T‘,(S)-Q(H(I) (S?U)vH\I/ (svg))(rvé) | .

s€[0,1]

The positivity of Re Q(Hs ., Hy -) and Re Q(Hs(s,0), Hy(s,0)) and the mean value
theorem for the matrix function Q(AHe + (1 — X\)Id, \Hy + (1 — X\)Id) give by (34)

|e—(5,—r)-Q(Hq>+,f_Iq, 7)71(5,—7")_6—(T,6)'Q(H@(S7U),H\p (s,0))(r,0) | ’S \/a (n 5) |3€—C'(r,6)2

for (s,0) € suppg, (s + \/er, 0 + /€d) € suppp’; and (s — \/er, 0 — \/ed) € suppy/,. Tt
follows that

| < wLL(f. @), L(9, W), 6 > —c2%7F [ o(s,0)(det[Ho + Ho)) 55, 0)frg"_
eirq,+/a—ir\p_/a—2ia~r/\@—(r,§)‘Q(Hq>7H\p)(s,a)(r,5)drd5d8da|

5 \/ngHLQ(R?") ”g”LZ(RZn).

Now we give the proof of the Lemma 3.2.

Proof. The matrix M + N has a positive definite real part and is then non-singular. By
elementary calculus we have
(x—a) M(z—a)+(x—0b)-Nx—b)=(b—a) - M(M+ N)"'N(b—a)
+ (x — (M + N)"'(Ma+ Nb)) - (M + N)(z — (M + N)"'(Ma + Nb)).

Thus, using the value of the Fourier transform of a Gaussian function (see Theorem
7.6.1 of [45]), it follows that

Folom o M@0 26N/ (6) = ()3 (det[M + N)~ 3o~ MOLN N G-
o~ (M+N) " (Ma+Nb)—&-(M+N)~'¢/2.

Writing M =1/2(M + N)+1/2(M — N)and N =1/2(M + N) —1/2(M — N), we get
the expression with the matrix Q(M, N) and the relation

Q(M, N)A(M, N) = B(M, N).
One can easily show that

0 i(M + N)

B(M, N)"JB(M, ) = ( LOEN) 0

) =A(M,N)"JA(M,N),
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from which follows the symplecticity of Q(M, N). We then write
Q(M,N) +Q(M,N)
= A(M,N)'[A(M,N)B(M,N) + B(M,N)"A(M,N)|A(M,N)™",
= A(M,N)*'A(M,N)™",
and obtain the value of Re Q(M, N). O
In the remainder of this paper we fix t € [0, 7] and apply Lemma 3.1 with F' = B to

(fF, @) and (g}, ®;) for the Wigner transforms associated with vi(%t,.), and (f*, ;)
and (gL, ®;) for the Wigner transforms associated with v (%, .).

3.2 Wigner measure for superposed Gaussian beams

In this section we prove that the cross Wigner transforms w. (1. (fF,, ®*), I.(g; ., ")) with

k # 1, do not contribute to w[Qul?"(t,.)] + Trw[0,u?" (t,.)] in 0. We compute
O. (P, i) and A(Py, Pr) and analyze the transported FBI transforms at points (s +
Ver,o+4/e0). This enables to complete the study of the Wigner measure for superposed
Gaussian beams.

It was pointed out in A3’ that T.u!_,T.v!_ have infinitely small contributions in

L*(R™ x supp(1 —7')). Besides, Lemma B.2 shows that T.u/_,T.v!_ have infinitely

£,7y?
small contributions in L*(supp(1 — p') x R™) because p’ = 1 on suppu; , and suppv! .

Therefore

wa([a(ftky @k,), ]E(gév (I)l))
~ Ay ®) [ (clolt), (c|o—|Hl[a§/) (O @e2) 4r 4§ in T*Q,

and a similar relation holds true for w.(I.(f¥, @), I.(g., ®;)).
We start by approaching (c(s)|al)., (c(s)|o]). by e(s)?lo]? in w.(L(fE, @), (g}, @)

i —
wolL(f B, gk ) & A@y, @)c() o [ (Mep) (T )
0= (@) drd§ in TgQ, (35)
and o,0* by oo* in w.(L.(f*, &), (gL, ®;))
ws<Is(fa]:7 (bk)a Is(ggcaq)l))
~ A(Py, P))oc” / (Hk@k>+ (Hl]z;l> ¢1®e(®h®) g ds in T,
(36)
These approximations result from the following Lemma

Lemma 3.3. Let &,V and f., g. satisfy the hypotheses of Lemma 3.1. If o and 3 are
in C*(F,C) then

we (I (af., ), I.(Bg., V)) ~ oszs(fs(fs,(I)),Ig(ge, W)) in F.
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Proof. The proof relies on the use of Taylor’s formula on p’;a and pf gB, where p’; and
¢, are the cut-offs used in the proof of Lemma 3.1 (supported in F' and equal to 1 on
suppf. and suppg. respectively). ]

It follows by (35) and (36) that

ATrw(L(f5, 1), L(gL, 1)) ~ w(L(fF, 1), L(gl, @) in T*Q,

which leads to

w. (vE(EL, ) wE (£, ))) = ETrw(vE(£t, ), vE (£t ),
and w. (vE (£, ), vF (Ft, ) ~ ATrw. (vE (£, .), vF (F,.)) in TQ. (37)

The standard estimate (see Proposition 1.1 in [38])

| < we(ae,be), ¢ > | S ||ael| 2@l be|| L2ny, for ac,be € L*(R™) and ¢ € C°(R*",R),
(38)

leads by using the approximations of the derivatives of uZ?" given in Lemma 2.7 to
A(we [P (t, )]+ Trwe [D,u?" (¢, .)))
~ welv) (t,)] + A Trwefvg (¢, )] + welvy (=8, )] + ¢ Trwe[v, (=, )]

t
—we (v (t,.), vy (—t,.)) + P Trwe (v (), v (=t )
—we(vy (—t,.), v (t,.) + Trw. (v, (—t,.), v (t ,)) in R?",

The cross terms between v+ and v~ cancel in T*Q from (37), leading to

1 1

we[OpuP (t, )] + A Trw. [D,ul?" (t, )] ~ 2w5[vt+(t, )+ iwa[vt_(—t, )] in Q. (39)

Thus, we are left with the computation of the Wigner measure associated with v,
computations being also similar for v; . One has

wfof]x 3 clsflofA@n @) [ (Mept),

k,1=0,1

(Hz 15;1> O @eP) gras in THQ.  (40)

Moreover the inverse of the reflected/incident flow in 7*Q is a reflected/incident flow
P} = k=01

Thus for (s,0) € T*Q, at most one of rays z~% (s, o) and 2~} (s, o) is in . Consequently,
the contribution of cross terms between different Gaussian beams in (40) vanishes in

o
T2, and we are left with the computation when € goes to zero of each of the following
two distributions

:U’i,k - C(S)2|U|2w6<I€(Hkﬁ;7€k7 (I)k)v ]€<Hkﬁ;€k7 q)k))v k= 0, 1. (41)
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——k

Remember that p. W= agte T, ul —|— ak T vl so ul, may be written as

gy
= A(s)|o|Pw.(I.(Myap e T, um,@k) L (a1, “ewq)k))

+w€( c(Myap ool @), L(Igan " Tl , @)

(I)k) [ (Hkak T’anq)k))

)

—ic(s)|o|w. (I.(Tyar"e 1Tum,

+ ic(s)|o|w. (L (Mpax " Tl , @), I (Ma e Toul ,, 1)) in TQ, (42)

In the remainder of this section we prove the following result

Proposition 3.4. Let k., 7. be unifromly bounded sequences in L*(R"). Then

wo (L (@i Torie, By, L (M Tore, ) ~ T, (s, 72) {0t} in T O,

Above ¢l is extended outside B as the identity.

Proof. Computation of the phase O.(®;, ®;) and the amplitude A(P, Oy).

We consider (s,o0) € T*Q and start from

0. (By, By (5,0,7,8) = —20 - 7/\/2 +i(r,0) - Q (A”,f(t, 5,00 Ap (1 3,0)) (r,8).

The particular form of Ay(t) = —iV{{(Uf)™!, see Lemma 2.6, induces a similar form for

the matrix Q (A”,f(t), Ef(t))

Q (A;’“(w, Ef(t)) UL = —iVL,

where U? and V£ are the 2n x 2n matrices

AL o
U, = Uk [ﬁ‘“‘k and V}, = _i/’}; Vik
Vk Vi Ug  —Ug

Replacing U} and Vi by their definitions links U}, and VY to the Jacobian matrix F}
~k( —Id Id ~k —1Id Id
t 1 A~
Vi=JE, ( iId z‘[d) and Uy = —ify J( iId z1d>’
so that
—~k —~k —~k —k\ 1
Q (Ak (1), Ax (t)) — _JF J(F,g ) .

As ¢l 0 ¢~h = Id, one has

~k

Fl F7 =1Id.
Combining this relation with the symplecticity of F{, one gets the following relation for

the matrix Q (]\ka(t), /:\ka(t)>
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Therefore
O (P, Py) = —20-r/\/§+i[F:,§(r, 6)]2. (43)

— —~k
Moving to the amplitude A(®, &) = 22% 72 (det[Akk + Ay ]) , one gets by using
(23) and (24)

N

An(t) + Aw(t) = 2(03) " (UR)

Hence

n —~k
A((I)k,q)k) = 072122”7'('5 det U}é .

Plugging the form of the indident and reflected amplitudes in Lemma 2.6 and using the
C! smoothness of a,(c) on B yields by Lemmas 3.1 and 3.3

w. (I (Mg " Tek®y), I (Mgarn Tor., 1))
n — "Vk‘ . ¢ 9
~ 22 / <HkTmf) (HkTgTE ) e 2o VL O g ds = JE (ke 7).
+ p—

It remains to analyze the most difficult terms in the amplitude, which involve transported
FBI transforms

(WTw") = [T, 007} (s+v/Er, o+ VED)

+
— &
<HkTng ) = [[I}, Terc 0p—t] (s — Ver, o — \/€d).

Analysis of the transported FBI transforms

Let ¥_} be a map of C2°(R*", R*") that coincides with ¢—; on KF¥,(t) Usuppg (see
Theorem 1.4.1 of [45]) and use Taylor’s formula for this map to get for (s £ \/er,o £
VES) € K1) and (s,) € supps

(#2h), = ok + VEDaTir £ VEQT] 8+ erlt,
(E4), = E&h £ VEETLr + VEDEL S +ertt,

with

(re= 85 (s, 0,m0) = j!(r, §)” /01(1 — )y, U7}, ((s, o) +uy/e (r, 5)) du.

jof=2

/

The change of variables ( g, ) = Fl(s,0) ( g ) in J!(ke,7:)(s,0) is appropriate.
Notice that for (s,0) € T “Q) one has the following relations [58]
Tk, (8,0) - E24(s,0) —o=0and a7} (s,0) - {24 (s,0) =0 for u € R.

In fact, one can show that the derivatives of the previous equations w.r.t. u are zero.
Besides, the equalities clearly hold true at w = 0 for £ = 0 and at u = Ty(s,0) for
k = =+1, as a consequence of (26). Hence, it follows that

o-r=E1(s,0) (Oyx_i(s,0)r + 0px"(s,0)0) = Eh(s,0) - 1,
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which leads in T to
JL (ke 72) =c29M 3 /(1’[,€)+T5/£5(:1c:’,5C +Ver' +ertt et 4\ ed + €r§+/)

(Hk)*TsTe(x:Z - \/g'r/ + 57’2:67/7 5:]1; - \/55/ + 57457/)
e—zigjz-r’/\/g—r’Q—(s'Qdrldéf7
where
/
(r? &) (s, 0,7, 0") = (r%,18)(s,0,7,0).

g1 e grte

Let ¢ be a test function of C°(R?*", R) supported in T"(‘)Q. We want to use the change of
variables (s,0) = ¢} (y,n) when computing < J¢, (k.,7.), ¢ >, so we extend ¢}, outside
B by the identity and still denote it ¢k, so that ¢! is now a one to one map from
R? to ¢! (R?"). Then II; ol and ¢ 0w} belong to C°(R?*",R) and are supported in B.
Expanding the FBI transforms gives

< Tplke )0 > = it ¥ [ pogl(y.n)

(I 00y (y + Ver' +eRZ*,n + /28’ + eREY)

(Tlx ot ) (y — Ver' +eR*™,n — /8 + RS
HE(z)i_s(Z/)ein-(Q\/Er’+6R?+—st_ —z+42") [e+id'-(2y—z—2' +eRET+eRE )/ /2

GRET (VBT + e REY —2) i RE (y— VB +eRE T —2)—(y+VEr +eREY —2)?/(22)

6—(y—ﬁr’+€R§7—z’)2/(25)—2in~r’/ﬁ—r’2—5’2dr/ddldzdzldych%

where
(R§7 R§)<y7 7, rla 5,) = (7’?/, 7’5)(8, g, T/, 5’)

We perform the following changes of variables

z+2 z2—2 z+ 2
(.T,U):( 9 ) c )and y/:(y_ 9 )/\/g

to obtain

< T (ke 7o), 0> = ctony /R% Ke(x + %u)ﬁ(m - gu)daei%_i”'udr'déldxdudy'dn,
where

de(x,y' m, 1", 0')

= dogh(x+ vy, n) (I opi) (w + VEy + Var +eRE i+ Ve + eREY)
(I opr)(z + VEy — VEr' + R — /28 + RS,

75(x7 ylv 777 T/75/7 U)
= - (RIY = R7) +6" - (20 + VERI 4+ VERIT)
+VERE - (y 1+ VERE - VED)
— VERS (= + VERY + \/E%) +ir'” + 00"

+i(y 4+ 7+ VeR™ — Veu/2)? /2 +i(y — ' + VERTT 4+ Veu/2)?/2,
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and
(R*, RE)(x,y,n, 1", 8") = (RZ, RE)(x + /ey, m, 7", ).

Notice that d.(z,y’,n,r’,d") converges when ¢ — 0 to
do(w,n) = ¢ o (. 1)(IT 00)* (w, ).

On the other hand, since er® are the remainder terms in the Taylor expansions of
27t (s++/er, 0+ /€6) at order 2, r®F —r®~ is of order /¢ and so is R**' — R*~’| leading
to
Yoz, yon, 1 ) = oy 1 ) =26y iy 4 2 16",
E—>
One has

| < Jl(Key72), 0 > —ch2P e //is(l' + gu)%s(x — gu)doeme”'"'“dr'dd’dudy’dxdn| <

5 5
L irele + Swlnl(e - Suwds
Fyldee™ — doe™)(x,y',u, ', 8 u) ‘dr’dé'dudy’. (44)

sup
€T

Cauchy-Schwartz inequality w.r.t. dz insures that the bracket integral is less than
|kell 2 || 72| 2. Let us examin the term

/ sup
xr

For fixed /', u,’,¢’, the functions d. and dy are compactly supported w.r.t. (z,7n) so

Fpldee™ — doe™)(x, ', u, ', 8 u) ‘dr’dé’dudy/.

sup|.7:n[dge”5 — doe™)(x, 9, u, ', 0", u)| < supl|[dee” — doe](x, 1y, n, 7, 8 u)l.
z (z,m)

Note that |d.e”= — dpe™| is dominated by |d. — do| + |do||e”= =" — 1|. The convergence
of d. when € — 0 to its limit dy is uniform w.r.t. (z,7n) and so is the convergence of .
to 7o on the support of dy. Thus d.e* converges to dpe”™® uniformly w.r.t. (z,n). It
follows that

sup|F, [dee — doe"](z, v, u, 1, &', u)| - 0 for every v/, u,r’,¢".
T e—s
On the other hand, successive integrations by parts give

d.eMe M dn = (1 + u2)’"/ L (dsem) e~ dn,

R

with L a differential operator w.r.t. 7, of order 2n. Thus,

sup|Fy[dee ] (' u, ', 6 u)| S (1 —{—uz)_"(sul;'nllg;( |0 (dge”g) (9 m,r", 8 u)], (45)
T z,m)lel<2n

for every y/,u,r’,0’. The quantities (x + \/ey’,n) and /e(r',d’) are bounded on the
support of d., so Rii/, Rgi/ and their derivatives w.r.t. n are dominated by (r’,4’)? and
for every multiindex «, there exists C' > 0 s.t.
Onde| < O, |Opyel < CO" 0N 1+ [l + 16| + (7, 8")?

+ |y + 7+ VER™ — \eu/2| + |y — 7' + VERT — Veu/2|)
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for all (x,y',n,1’",¢") € suppd. and u € R™. Thus, there exists C,C’ > 0 s.t.
10%]d.eMe]| < Clo—C' W/ +r'+VERET —/eu/2)2~C'(y —r'+VERE ™ +/eu/2)2 ~C'r'? -
n € =

< Ce_c/(2y/+\/gR:Ec+’+\/ER:EC—’)2_C/T/2_C/6/2

for all (2,5, n,7",8') € suppd. and u € R"™. On the support of d., \/2R** are dominated
by |(r’,6")|, which implies for some Cj > 0 that

2y + VERTY + ERT) > 4y® — Col(r!, )|y

. O (9a) z+/ z—'\2 a2 .
Hence, if |y| > Co| (1, 8")|, e~ "Gy +VERET +VERET)® < o=C"y"  Otherwise,
1,02 1512 1,12 11,12 11512 .
e OO < o CTYTECTT O T all cases, there exists C7, C" > 0 s.t.

|0]d.e"7]| < Cle=C"y* -0 -C"e”
i <
for every x,y',n,r',0’,u and € €], 0] with some gy > 0. Using this in (45) leads to

S| (o] (1,3, 8 )] S (14 ) O =0
x
and repeating the same arguments for sup|F,[doe""]| gives
€T

sup\}"n[dge”f — doe™)(z, v, u, ', 0 u)| < (1 + u2)_"e_cy/2_o’"/2_c‘5l2
x

for every z,y',n,r", 8, u and € €],e9]. By the dominated convergence theorem, one
obtains ' '
/sup|fn[d56”5 — doe"|(z, ¥, u, v’ 8 w)|dy' dudr’ do’ — 0.

From the inequality (44) concerning the distribution J! (k.,7.), one finally has by plug-
ging the expressions of dy and

< JL (e, T2), ¢ >= cronrs /RGn doke(T + %u)i’s(x — %u)
20"y =28 i gyt 51 s dudy dy + o(1).
Integration w.r.t. ', ',y yields
< Jg,k(lia,u), o >

=(2m)™" /R% Fy [HZ ogd;cgbogpff] (x,u)k:(z + %u)ﬁ(m - gu)dxdu +o(1).

The integral in the l.h.s. is exactly the Wigner transform of (k. 7.) tested on
11} o). o 0

One gets by using Proposition 3.4, Lemma B.6 and the expression (42) of u! ,

pty ~ 107 (w.[o! | —ic|Dlul ]} o{g}} ™" in T7Q.

Recalling the relation between the Wigner measure and the FBI transform (see Propo-
sition 1.4 of [37])

/]TEaEIQdedn = < wla.],0 >
for § € C°(R*",R) and (a.) uniformly bounded in L*(R™), (46)
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it follows that w.[v!  —ic|D|ul ] ~ 0 in (K, x K,)¢ or equivalently
welv! , —ic[Dlul ] o{pf} ™" = 0 in (KZ,(t))"

Since I = 1 on K¥4(t), one deduces

o
M;k A W, [UEI,7 — z'c|D]u£ﬁ] o{ot} !t in T*Q.

By summing over £ = 0,1 and letting ¢ — 0, we get the transport on the incident and
the reflected flows of p[v! , —ic|Dlu! ]

wlvf ()] = > plvl —ic[Dlul Jo{ph} ! in TQ,
k=0,1

For u € [-T,T] and (y,n) € K, x (R"\{0}), the incident and reflected flows are related
to the broken bicharacteristic flow associated to —id; + ¢|D| as follows

1(y,m) ifu<T4(y,n)
(ya 77) lf T—l(ya T]) <u< Tl <y7 77)
(y,m)

5l
o (y,m) =3 g
oY if u > Ti(y,n).

Y

We define ¢} in (Q\K,) x (R™\{0}) by successively reflecting the rays at the boundary.
We extend ¢} at times of reflections arbitrary. As only one incident /reflected ray can
be in the interior of the domain at a fixed time

popy = > poy in K, x R"\{0}.
k=0,1

It follows that

: -1, 0
wlvy (t,.)] = M[Ué’ﬁ - ZC|D|U£N] 0 (902) in T7Q.

The computations for v; are similar. One has just to replace the index k£ = 1 by
k= —1 and p.;" by ¢2" in equations (40), (41). Set
T+ = ! +ic|D|u! and Yo, =v! Fic/Dlul,.
One gets

wley (—t,)] = w(TJo(p?) " in T

Plugging these results in the expression (39) of the scalar Wigner measure associated to
uZ?" leads to

w0 (t, )]+ TrwlcOu?" (t,.)]
1

= JulTlo (o) + ;wmﬁ] o(@) im0 (47)
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3.3 Proof of the main theorem

A consequence of the estimate (38) is
| < wlae,b.),0 > | S Tl 2oyl [1c] 220, (48)
for a.,b. uniformly bounded in L*(R") and 6 € C°(T*Q, R).

Using this estimate (38) on the difference between the derivatives of the exact and
approximate solutions of the IBVP (1a)- (1b) with initial conditions (1c’), one deduces
the measures associated to dyu__ and Jyu__ and gets by (47)

1 -1 1 _ -1, 0
wOpu, (¢, )] + Trw[cdyu,_(¢,.)] = §w[T:ﬁ] 0 (gpb t) + iw[Tm] 0 (gpi) in T*Q.

Remark 3.5. Gaussian beams summation of first order beams allows to compute the
Wigner measure for the solution of the IBVP (1), under hypothesis (A1)-(A3) on initial
conditions. Summation of higher order beams may imply asymptotic formulas for the
Wigner transform. Higher order terms in the Wigner transform’s expansion were studied
for instance in [83] and [29] for WKB initial data.

Let us now study the scalar Wigner measure for the problem (1), by making the
data (ul_,v! ) approach (ul,v!). The contribution of the sets {n € R™ |n| > r./4}

e,y Ve ) Ve

and {n € R",|n| < 4ry} where v # 1 (remember the definition of 7 in (14)) is controlled
asymptotically by assumptions C2 and C3 respectively.
Denote ¢' = gop}, then ¢ € C:°(R*,R). One has

| < wld (¢, )] + Trwfedeu (1, )], 6 > —5 < wlTH],67 > — < wl¥;],6' > | <

| < Wl (1))~ wlou, (6 )]0 > | + 2| < wledou (£, )] — wledou,_(t,)],6>

b=1
+ < w[Ou,_(¢,.)] + Trwledpu, (¢, )], ¢ > — 1 <w[Yf ], ¢7" > —; <w[Y_,],¢" > |
ol <ulT5] ~wfXH]6 > |+ 1) < w[m ~[T].¢ > | (49)
We use (38) to get
| <w[T,] - w ¢ >3 EHTJr > R")m (||T+ |2 @ny + HTS_“LQ(RR))
< T ! — ! ooy + Il — Lo
Similarly, by (48)

| <wldu (t,.)] —wldu, _(t,)], 0> ]S
i {|Gyue (£, ) = Optie (L, )| p2() (Hm [|Orue (2, )l 2(@) + Hm [|Orue 5 (2, )| 2(ey)

and forb=1,...,n
| <w[Owu_(t,.)] = w[0pu__(t,.)],0> ]S

T 10y () = Doyt () ) (T 10y (0 )+ T 101 (8 2 ) -
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The solution of the IBVP for the wave equation is given by a continuous unitary evolution
group on the space H(§2,dx) x L*(Q, dz). Hence

10puc(t,.) = Ouie (L, )| 220y S 108 — v 2y + Jul — wl ),
:'7 "7

102, (t, ) = O e (8, M2 S N2 = viy Iz + lluz —ue, @, b=1,...,n

We then have by (47)

| < w[Oue] + Trw[c@a],gb > — ; <w[TI], 67t > —; <w[TI], ¢ > | <

11m||v — ! ez —|—11m||u —u! e (50)

We therefore need to estimate the difference between initial data (1c) and (1c’). We
start by the initial speed. By the exponential decrease of T*yT.v! on the support of
— p (16), one has

[k —U£,7||L2(Q) >+ |Jof = TEYTovl| 12y,
Because T is bounded on LQ(RQ") — LZ(R”) and T*T. = Id
vl — T ATl || p2ny < + _
) ) o ( ) II(l_XTOO/Q)TSQgHL2(R2n)IIXTOO/2X4T‘OTEE£IIL2(R27L)
@

()

Firstly, writing the expression of the FBI transform given in Lemma B.1 as the Fourier
transform of some auxiliary function, it follows by Parseval equality that

&% (1 = Xowy2(m) [ Ful(€)e v 00/ |3 gy =
e /Ié (1= )@ P e g

HEPeE [ (1 e ) (€ Pe e gy

[e€|>reo /4

The first integral in the r.h.s. is exponentially decreasing, which leads to

lim @ < hm(/|ag|zroo/4 \fyi(f)]Qd/f)%

e—0 ~ =0

Secondly, as dist(suppv!,supp(1 — p)) > 0, one gets [|(1 — p)Tev! || 2geny < e /¢ by
Lemma B.2 and thus
[1Xrae /2 (10) Xaro () T2 | L2 m2my S €% A4 1p(Y) X /2 (1) Xaro (1) Tl | 2 2y -

It results from the relation (46) applied to a. = v! that

(@ =< wltt]. st @ xdiys >

E—>

1

!] is a regular measure, assumption C3 yields

Because w[v
Va > 0,3o(a) > 0 s.t. wvl]({¢] <lh(a)}) < a. (51)

One deduces, for 4ry < ly(«), that

Tip @ 5 V.
E—
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which leads to

-

e—0

. - 2
lim 0! — v |2y S T | | Fol(©)Pde ) + V.
e=0 ’ le€|>7o0 /4

Moving to the difference between ul and ugﬁ in H'(Q2), we begin by estimating
the spatial derivatives of the difference. It follows, by the formula of the inverse FBI
transform’s derivative given in (17), that

ambug - ambug,w = aﬂﬂbug - (a$bp)T;7TEQ£ - st*’YabeEQé
The term involving the derivative of p is exponentially decreasing by Lemma B.3. Since
the FBI transform of a derivative is a derivative of the FBI transform by (17), one has
to estimate ||0,,ul — pT*yT.0,,ul || r2(). Employing the same previous techniques yields

Th e Tp—=€
forb=1,...,n

Jun

2

00t~ il ST ([ FOad(@Pde) 4 v

e—0

Tp—=¢

if 4rg < lp(a) and w[0,,ul]({|¢] < l(a)}) < a. Set 7y = ior%ig lp(c), then the Poincaré

inequality yields the same bound for |[ul —ul_|L2).
Coming back to (50) we deduce that

| < wld (¢, )] + Trufedeu, (1, )], 6 > —5 < wlTH],67 > — < w[1;],6' > |

S va+ (i | o FR©ra)

D=

e—0

+3- (i Lo Fl0mud] (©)de)*.
(52)

The assumption C2 of e—oscillation means by definition that

. I 2
ll—{% el€|>ro0 /4 |]:[Q€} (©)Fde Tooj—l-oo 0,
. 1 2 _
i | |00, ul] (6)dg o Oforb=1,...n.

(53)

Since the L.h.s. of (52) does not depend on « nor ., one deduces by passing to the
limits o — 0 and ro, — oo that

wlOyu_(t,.)] + Trwlcpu_(t,.)] = ;w[T:] 0 (901)—15)_1 + ;w[T;] 0 (goi)_l in T°Q.
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A  Proof of the relation between incident and re-
flected beams’ phases

Let Alt,z, &) = 0ur(z,&) + Oer(z,8)0*ine(t,x) and B(t,z,&) = N z,&) +
A(z,§) zwmc(t x). One can dispose of a phase function 0§ € C*(R; x R”, C) s.t.
0.0t (2, 0tine)) = A(@, Dthine), (A1)

if A(t,zf, &) is non singular and

B(t> x, axwinc)A(tv €, aﬂcwinc)_l R;i A(ta x, ax'lybinc)T_lB(ta x, axwinc)T- (A2)

o=a}
From (10) one gets

A(t, h, &) (0,xh + i0,xh) = 0,2} + i0,2}.
Oyt Oyt
Oy&1 On&y
On1(0y1)" = 0,€1(9ya)" = Id,

and the symmetry of 9,2 (9,2%)". Thus, ker(d,zt)" Nker(d,zt)" = {0} and at the same
time,

Since ¢} is symplectic, the matrix ( > is symplectic. This implies in par-

ticular the relation

(0} + i) (02} + i0y27)" = Dy (5’yx§)T + 0y} (&ﬂi)T.
This proves that d,z} + 0, is invertible and so is A(t, z}, ). On the other hand,

A Oy Ocr Id
B Op A OcA hine |-

Opr(x, &) Or(z,§)
Let M(z, &) = ( Oz £) aiA(:z:,g) ) Then

[ATB—BTA]:<M )TMTJM<M )

aiwinc 3§¢jnc
. 0 Id\ . . : : T
where is J = [ 1d 0 is the standard symplectic matrix. Since M*JM =
DsTJDsy, the symplecticity of s; leads to

MYJM = J.

T
Tn pra_ (| 1d Id -
[A B B A] N < agdjinc / azqujinc N 07
and the requirement (A.2) is fulfilled.

Hence

Using the compatibility conditions

o8 70, Ottt )] (1) )
= 007, [ (1w, Dutbine(t, )] (,5) + Du055, [ (1 2, Duthine ()] (8, 5
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on the maps (t,z,£) — 0,0(t,r(x,§)) and (z,§) — Az, &) yields recursively on |a| <
R—1

8tax9(t7 7"(33’, 8x¢1nc))+8§9(t7 7"(33’, 8x¢inc))8gr(xa 8x¢inc)atax¢inc R£2t 85)\(3:’ 8xwinc)at8x¢inc-
T=1x)

On the other hand

839(75, T'(ilf, aa:winc)) R::\/i [BAil} (t7 T'(.CL', 8xwinc))-
Using (A.2), one gets
atame(ta T(xaar¢inc))
R::<2t [05)\@, &Ewmc) - (AilTBT)@a T(LL’, axwinc))aﬁr(x; amwinc)]atamwin(y

Since

ATo\ — BT 9er = Id TMTJM 0 ) 2 14
¢ &7’ N agwinc ]d - ’
it follows that ho
8t810(t, T(l‘, 8zz/zinc))A(t, Z, azwinc) it 8tam¢mc.

Z':$0

Setting 9,0(t, r(xh, &) = Oythinc(t, 2) implies then that

ate(t? 70(1.7 axwinc)) Rilt atwinc- <A3)

:E:$0

Putting together (11),(A.1),(A.3) and the eikonal equation satisfied by .., the phase
0 satisfies
R-1
P(r (@, Osthine), OiB(t, 7(x, Dathine)), 0:0(t, 7(%, Dothine))) =, 0.
:c:xo
In fact, the relation holds true also at order R. To see this, let wu(t,x) =

p(x,00(t, x),0,0(t, x)). The formula of composite functions’ high derivatives yields for
ol = R

02 [ult, r(x, Outnc(t, 7)) = 3 Ou(t, r(x, Datbine(t, )))vs(t, 7) + 2a(t, ),

|8|=R

where z, depends on derivatives of u of order lower than R. By Remark 2.1, the terms
OPu(t,x!) involve partial derivatives of § of order at most R, so one can substitute for
them from (A.1) and (A.3) to obtain

P(T(% aa:winc)a 8t6(t7 7“<IE, aitwinc>>7 axe(t> 71<:U7 axwinc))) 2 O <A4)

— ot
.’L‘—$0

To compare time and tangential derivatives of 6 and vy, at (77, a:OTl), let us introduce a
C> parametrization of a neighbourhood U of z{* in 90

o: N —R",
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where N is an open subset R"™!, o(N) = U and o is a diffeomorphism from N to U.
For = € R™ close to zg, we maywrlte:vza( ) + v,v(0(0)), with & € N and v, € R.
Denote o () = 23" and set 0,(t,0) = 0(t,0(9)) and ine (¢, v) Yine(t, 0(0)) the phases

at the boundary near z". Since r(X,Z) = X for (X,Z) € T*Rn’ag, it follows that

o0

T<U(U>? a:B’Lpinc(t? U<U>)) (t7@):>(/\T1,@1) O'(’U),

which implies by (A.3) that

R-1

0,0 = 0, inch-
! b(t:@)=(T1,@1) Wincy

Similarly A(X,Z2) =2 - 2(2 - v(X))v(X) for (X,E) € T*%R"ng, leading to

[e9)

Do(5) - No(0). 2tbelt.0(0))) | = Do(9) - Ot (t,0(0).
Since 0y0,(t,0) = Do (v) - 0,0(t,0(?)) and a similar relation holds true for 9ytie;, one

t
gets from (A.1)

R
aﬁ eb = vwlncb

(t,0)=(T1,01)

Hence 0, and v, have the same time and tangential derivatives at (7}, 01) from order
1 to order R — 1.

If we add to the relation (A.1) the condition
9<T17 xgl> = winC(Tlu 33?)7

then the phase # satisfies the same requirements that uniquely determine the reflected
phase ¢ for a fixed phase 1y, (see Remark 2.1 for the uniqueness the spatial derivatives
involving a normal derivation being deduced from time and tangential derivatives). The
two phases are thus equal on (¢, %) up to the order R.

B Results related to the FBI and the Wigner trans-
forms

Lemma B.1. For u in L*(R")

Teuly,n) = Ef%cn(zw)*%/ Fu(€)efv(-s0/29) ge.

n

Proof. The equality is proven by Parseval formula. O]

Lemma B.2. Lemma 2.4 of chapter 1 Let a be a positive real and G a measurable subset
of R" s.t. dist(G, K) > a. If u € L*(R?) is supported in K then

e Tz, = cue ¥ 1a(y)u@)e DI < e/ u| .
Proof. The proof consists of writing the FBI transform as the Fourier Transform of some
auxiliary function and using Parseval equality. O
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Lemma B.3. Let 0 be a cut-off of R™ and u € L*(R"™) compactly supported. If E is a
measurable subset of R"™ s.t. dist(E,suppu) > 0, then

17200 Tow|| 20y S e~ ||ull 2@y

Proof. The kernel of T}0T is

3n

K.(z,2") = 5*7(;121/9(77)ein-(xfw’)/sf(yfw’)z/(2€)f(xfy)2/(2€)dydn
_ cn(2m) (T e ),
€
Cauchy-Schwartz inequality yields
T2 0Tl T2y < (QW)’”HJT@H%aRn)/IU(iv’)\21E(m)E’(xl’x’Q/(Qs)dxdw’ < € |-
O

Lemma B.4. Let 0 be a cut-off of R™ and u € L*(R™). If F is a measurable subset of
R™ s.t. dist(F,suppf) > 0, then

ITLTE0(m) Teul| 2y S €7 [[ull 2.

Proof. T¥0T.u may be written as acting on Fu, using the expression of the FBI trans-
form given in Lemma B.1

T20Tu(x) = 52 [ Fu(©)e"G.0(€)de,
where G, denotes the operator defined by
Goal) = / Cal€)e © g for a € IR,
It follows that
LI0Tuly,n) = < ¥ ci(2m)? [ Fu(@)es 0m0"/@g.0(cc)de,
By Parseval equality, one has
IO el = = 5 @M [ |F (@) 1e)e 07 F|G.0(c6) P
Let d = dist(F,suppf). If dist(ef, F) > d/2 then |1p(n)e”(1758%/¢| < e=C—e8)*/e=Cle,

If dist(e&, F) < d/2 then dist(e€,suppf) > d/2, and |G.0(c€)|? < e~/¢. Since G.0 is
bounded, integrating w.r.t. £ and n ends the proof. m

Lemma B.5. Lemma 3.4 of chapter 1 [|e™'Tou!_||12@eny S 1.

Proof. Derivating (12) w.r.t. yp, 0 < b < n, yields

5%8% (Tgug”y) = @’nbg_%Taug”y — Cng_%Tn /n ugﬁ(w)g_% (yb _ wb) ei’ﬂ.(y—w)/6—(y—w)2/(2€)dw.
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The Lh.s. is bounded in L7, because 9y, (Tou! ) = Te(Ow,ul ). The second term of the

Wy £,Y
r.h.s. is the Fourier transform of a bounded function in L2, thus it can be estimated

using Parseval equality. One gets

3n

_3n _1 . (y—w —(y—w
e /nuin(w>5 2 (g, — wp) €W/ )2/(25)dw||L§m§||U£,7||L?u-

Thus ||€_%77st%£7||@,7 < 1 and consequently Hs_%qﬁ(n)TgugﬁHLim < 1. A3 yields
le* Tl lug, S 1.

Hence [lu!_||z2 < /. Reproducing the same arguments on the following equality

Oy, (Tgugﬂ) = inbe_lTsug’,y — cne_% / (5_%u£77) (w)a_%(yb — wp) eén'(y_w)_%(y_’”)de,

leads to ||lul_||L2@m) S €. O

Lemma B.6. Let a. and b. two sequences uniformly bounded in L*(R"™) and H'(R")
respectively. If e~1b. is uniformly bounded in L*(R™), then

we(ae, | D|b.) =~ |€|we(az, e b)) on R™ x (R™\{0}).

Proof. We use another expression of the Wigner transform using the Fourier transform.
Let ¢ be a test function of C°(R™ x (R™\{0}),R) and denote ¢. = |D|b.. Then

< we(ae,c.), ¢ >= (2m)™" /RM Fep(x — %v, v)a.(x)c.(z — ev)dvdz.
Since Fe¢¢ is rapidly decreasing
sup| Feo( — ~v,v) = Fe(w,0)| S (140"
By Cauchy-Schwartz inequality
Lo (Feola = S0.0) = Feow,)) ac @)l — 0)| S ellacluzlec] o
It follows that

< we(ae, ce), ¢ >= (2#)_"/ o(x,&)e ™ a. (v)e.(z — ev)dvdadé + o(1).

R3n

Integrating w.r.t. v leads to

< wa(aaa Cs)a ¢ >= (27T>_n€_n /RQ" ¢(£If, f)e_m{/aaa(x)féa(—5/5)(11’(16 + O(l)a

and replacing Fc.(—¢/e) by e |¢|Fb.(—£ /<) ends the proof. O
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100 INTRODUCTION

1 Introduction

In this chapter, we focus on the elasticity equations for z € €2 a three dimensional
bounded domain and ¢ € [0, T

3
Eu, = pdiu, — 0,(\divu,) — Z O, (1002 (ue)p + pOxpus) = 0, (1a)
b—1

subject to the initial conditions
_ 0
Ueli—0 = Uz, Opie|i—0 = v, (1b)

and the boundary conditions
Bugloq =0, (1c)

where B is Dirichlet or Neumann operator. We construct asymptotic solutions for
the problem (1) and compute the associated scalar Wigner measure under suitable
assumptions on the geometry of the domain and the initial data.

We again use the Gaussian beams summation technique to produce our approximate
solutions. Gaussian beams for the elasticity system have the form

N

Jg . oW/E
25 a;e -,
Jj=0

with vector amplitudes a; and a complex phase 1. Individual beams in the whole space
domain have been constructed by Ralston in [85], and reflection of these beams has been
studied in [19, 78, 81]. Summation of Gaussian beams for the elasticity system has been
investigated in [16]. As for the scalar wave equations, different techniques may be used
to superpose an infinite number of beams. Here we use the same strategy we applied for
the scalar wave equation in chapter 1, appealing to the FBI transforms to fulfill general
initial data. Hypotheses similar to those we imposed on initial data for the scalar wave
equation are assumed

Al. u! and v! are uniformly bounded respectively in H*(Q2) and L*(Q)?,
A2. u! and v! are uniformly supported in a fixed compact set K C €,

A3. ||T5u£||L2(Rng%)3 = 0(800) and ||T6Ug||L2(R3xR%)3 = 0(800),

where R, = {n € R% ro < |n| <7rw}, 0 <79 < reo.

For our construction to work, we must avoid tangential rays. Since the elasticity
equations have two different wave speeds, a ray that emanates from the domain and
strikes the boundary transversally may give birth to a tangential ray. So we add a
further assumption

A4 ||T6u£||L2(TgC)3 = 0(500) and ||TEU5[”L2(TgC)3 = 0(500)7
where T'g C R?" denotes the set of points giving birth to rays having a transversal

contact with the boundary after one or more reflections on [0, 7']. As regards the domain,
we suppose that
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B2. No ray remains in a compact of R? for growing times,

B3. The boundary has no dead-end trajectories, that is infinite number of successive
reflections cannot occur in a finite time.

Under these assumptions on initial data and the domain €2, we prove the following
theorem

Theorem 1.1. For any integer R > 2, there is an asymptotic solution to (1) of the

form
uli(t,z) = 2 Jpe ak(t,x,y,n, R)e"rtavnR/E dydy,

where ake™r/¢ are Gaussian beams and the summation over k is finite.

ull is asymptotic to the exact solution of the IBVP (1) in the following sense

&€

R—1
Sup ||uf(t, D)= u(t, )mep =0 ),
te[0,7)
R—1
and Sup ”atusR(t? ) - atu5<t7 ')HLQ(Q)?’ = O(gT)
te(0,7)

As an application of this construction we compute the microlocal energy density
associated to the elasticity system [79]

3
e = gTrw[atuE] + % Z Trw[arbue + ax(”e)b] + ;U}[d’lU’U/E] (2)
b=1

The techniques used to describe the Wigner measures are an adaptation of chapter 2.
However a new difficulty arises due to the existence of two different families of rays.

This chapter is organised as follows. Section 2 is devoted to the construction of
individual beams for the elasticity equations and their reflection at the boundary. In
section 3 we superpose an inifinite number of these beams to construct asymptotic
solutions to the problem (1) and prove theorem 1.1. Computation of the Wigner measure
is achieved in section 4 through the first order asymptotic solution.

2 Gaussian beams for the elasticity equations

We search for a high frequency solution of (1a) under the form
N - .
W, = Z&?Jaje”ws.
=0

Applying the equations of elasticity to w. gives a function of the same form

N+2 '
Fuw, = Z ej_zcje””/a,
j=0
with ‘
C; = @'J(Jaj + Maj_l + Naj_g),
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J = plc} 0,00, -+ (|02 1d — 9,00.9-) — (O)?),

— pOi + Y + 9 N0pr) + (Do) 0t + (Dup - O0), (3)

and N a matrix differential operator of order 2 that we won'’t specify (see 2.4 in [7§]
for explicit expression). Above, ¢y and ¢, denote the speeds associated to the elasticity

system
A+ 2u
) C% = ) (4)
p
and a_; = a_o = anyy11 = ays2 = 0. As in [78, 85|, the construction of the Gaussian
beams consists in making the terms ¢; vanish up to the order R —2j on some fixed ray.
The elasticity operator has two families of rays : the rays assocaited to the speed cr

and those associated to the speed cy. In fact, the principal symbol of E is

PP (@)E]* = %) (ep(@)IEf* — 7).

2 2
cr = —
T

Each ray is a curve (¢, ') where 2! is the projection of a Hamiltonian flow (zf, &) either
associated to the symbol ¢y (z)[¢| or er(z)[€]

dot, _ oy & Aoy _ (ot &

at = ey A )
or

de! d&;

L er(a)lEL, Wr — _d,cr(ah)léh.

In the remainder, we build Gaussian beams associated to rays propagating in the positive
sense, that is (t, 27 7).

One can make ¢y = Jag vanish on some ray of one family of rays or the other by
imposing one of the following conditions

5 10,0* — (0,0)* and ag A 9,1) vanish up to the order R on (¢, ) = (¢,2%),
or
c20p10|* — (0p))? and ag - 0,1 vanish up to the order R on (t,z) = (t,2%),  (6)

where R is an integer larger than 1. The previous two constraints lead respectively
to Gaussian beams of type L or longitudinal beams and Gaussian beams of type T or
transversal beams.

The associated phases 17, and ¥ are thus constructed the same way the phase has
been in section 2 of chapter 1, that is by solving the eikonal equations

R R
C%lax'(ﬂﬂz — (aﬂ/}[,)z Xt 0 and c%|8mz/zT|2 — (8th)2 Xt 0.
=z =T

The notation = is used to denote that the spatial derivatives of the quantities at its

left and at its ri_ght match up to the order k on (¢,2"). We omit the indexes L and T for
relations that hold true for both of the two phases. From each eikonal equation results
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systems of ODEs on the spatial derivatives of the associated phase up to the order R

on the ray. As usual, we then set
1
(x — 2")*0%(t, 2").

w(tax) = Z 0

lal<r &

L & L T L

ay =, SPL for a beam L, a; =

L T

where p is a fixed complex unit vector (that is p - p = 1) satisfying p A 9,1 = 0 and
oriented like 0,1, and by orthogonal to p. The indexes/exponents L and T in p and b

The equations on the amplitudes in (6) may be written
Rt by for a beam T,

—~

indicate the associated phase (¢, or ¥r).
To make the terms ¢; for j > 0 vanish, let us analyse the action of the operator M

on vectors colinear and orthogonal to d,1. We start by computing M (ap), for a scalar
a € C. Focusing on the second and third operators in the sum (3), we note that

0:(0x0 - ap) = 0,(|0:0|)a + |0,0|0ra, 0p1p0, - (ap) = adptpOy - p + Opth(Dpa - p).
p- a:c<|az¢|) + |8m1/)|aﬂc P = A¢a

and thus
Therefore, the dot product of p with the second and third terms of M (ap) is
A+ wp - [0:(0:9 - ap) + 0:40; - (ap)] = (A + p) Apa + 2(A + )0t - Opa.  (7)

On the other hand, since p-d,p = 0 and

one gets
2pp - [0u0 - Oy (ap)] = 2p4(0¢ - Dra),
which is the dot product of p with the forth term in M (ap). Let

Lr,p(¥) = =2p0 00y + 2pc5, [ 021p0s,
a:]c : (C%La:p) and 6T,L(7vb> - _pPT,L¢ + C%“,L<amp ' axlp)

PT,L - 8252 -

Taking the dot product of M (ap) with p, (7) and (8) give
M(ap) = (Lr(¥)a+ Br(¥)a)p + T\ a,
with T, a differential operator of order 1 satisfying p-71, = 0.

Moving to vectorial amplitudes b s.t b- 0,9 = 0, one has

which may be written
Mb = Lr()b+ qib + Br ()b,

with ¢ a differential operator of order 1, colinear to p.
Let us decompose each amplitude tangentially and orthogonally to p as
a; = s;p + b;.

To make ¢; vanish up to the order R — 2, one plugs one of the forms of the amplitude

ao chosen in (6).
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2.1 Longitudinal beams

For a beam L, one obtains (equations (2.10), (3.3) in [78])

p(G — NP (1d — prpr-)al + [Lu(whn) + B (¥r))skpr + Tusk 20, (9)

$:$L

This equation determines st and (Id — prpr-)al up to order R — 2 at z = x%. Indeed,

starting by taking the dot product of (9) with pr, one gets an evolution equation on s

(Lo(dr) + B(vn))st "= 0. (10)

QJZZ'L

Compare this equation with the one satisfied by the amplitude of a first order beam for
the scalar wave equation (see (7) p.65). For a non constant density, it has an extra term

¢1.(Oup - Oztr). By writing 0,01 (t,27) = £ and Oy (t, 21) = —cr(a1)|¢L], one gets

(LL(wL)f) |(t,1’tL) - —Qp(l’tL)atQ/JL(t, ItL)fo(ta xtL) for f € Coo(Rt X Riv C)? (11>

so order 0 of (10) gives the transport equation

L ty 1 PLwL(tv'rIE) d t L t
ety = 5 | - Snotat)] st

The amplitude of a first order beam for the scalar wave equation is det(f, + izf,)] "2
up to a coefficient (see (25) p.73). Thus

N

p(x})

Above, the square root is obtained by continuity from 1 at ¢ = 0. This result is similar
to the formulae (3.28) in [78].

t
p(z .
(L) — sE(0,a) [ o — mm]

For |a| > 1,
Oy Lp(vr) = Lo(¢p)0y + Ry (12)

with R} a differential operator of order less than |a|. By (11), it follows that

d
07 (Lo (o) )] lay) = —%(%)@%(tﬂ?i)aaﬁf@,thL) + (RENat)

Thus, equation (10) gives at order 0 < k& < R a non-homogeneous transport equation
s§(t, o .
on (t,z%) are uniquely determined by (10) given their values on (0,2%). Now we choose

To summarize, the spatial derivatives of sf up to order R — 2

0%s5(0,2%) for |a| < R — 2 arbitrary permutable families,
sk (t,ah) for t € R, R — 2 < |a| < R arbitrary permutable families,

and set
1

ag(t,x) = xalw = 21) Y. — (o — )07 (sgpe) (¢, 2t), (13)

laj<r &
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Next, using the evolution equations (10), equation (9) becomes

R—2
p(ct — )|0utr?(Id — prpr-)ay + TJ_SOL = 0.

I':J)L

One obtains then bf = (Id—pppr-)al up to order R—2 on (¢, 2% ) by plugging the value
of sL’s derivatives on the ray. Similar results were obtained by [78] (see equations (6.6),

(6.7)).

For 1 < j < N, the amplitudes aJL are computed recursively as follows. Let us assume

that af, ..., aJL_l and b]L have been determined by the vanishing of ¢, .. ., C]L on the ray

up to orders R, ..., R — 27 under the choice of
9%sE(0,29) for |a| < R — 2k — 2 arbitrary permutable families,
st (t,xh) for t € R, R — 2k — 2 < |a| < R — 2k arbitrary permutable families,

and the setting of

1
aé(t fL’) = Xd(flf - xtL) Z a(l' - xtL)aag (SﬁpL + bé) (t7 xtL)a
la|<R—2k &

for k=0,...,7 — 1. By using the eikonal equation on v,

iy 2 plch = )lowvn b,
+ [(LLWL) + 5L(¢L))Sﬂ pL + TJ_SJL + (Lr(¢r) + 5T(¢L))bf + q||bf
+ Na*

j—1-

Making the dot product of CJL_H with py vanish up to the order R — 25 — 2 gives a

non-homogeneous evolution equation on st

R—2j-2
(L(bn) + Br(wr))sh + bt + (Lr(vr) + Br(vr))b + Naf 4]pr =70, (14)
Qf:ZEL
This equation determines 9% (t, z%) given 9357 (0,29) for |a| = 0,..., R—2j—2. Once

chosen

we set
1
L L L
af (t.o) = xalw —2}) >0 —lw—a})?0F (sype+bf) (¢ 2f),
ol <R-2j
R—2j-2
b%,, is then fully determined by the equation cf, ] f‘it 0. The system is closed, since
—"L

bn+1 = 0 and the vanishing of ¢%,, determines the spatial derivatives of s% on the ray.
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2.2 Transversal beams

The analysis for beams T is similar. One has

T2 (= &)00r)sTor + qbt + (Lr(vr) + Br(ibr))bT. (15)

— ot
T=Tp

Since pr - bt = 0, it follows that

pr - atboT = —Opr - boT and pr - azboT = —0.pr - bg~

Thus
pr - Le(vr)by = —(Le(Yr)pr) - by, (16)

which leads, by using (Id — prpr-)ct Ri? 0, to the following equation

T

R-2
(Lr(¢r) + Br(vr) by +pr(Lr(¥r)pr) - by =, 0. (17)
fB:fl'T
Let us write, for j = 0,..., N, b] =r]q], with ¢/ a unit vector. We first consider the

projection of (17) on ¢¢ and then on prAgd. Since (Lr(¢7)qd ) gt = 0, the dot product
of (17) with ¢l may be written

R-2

(Lr(¢r) + Br(dr))rg =] 0. (18)

$:[L'T

Thus we dispose of an evolution equation on 7 that determines its spatial derivatives
up to order R — 2 on the ray. In particular, replacing 0,9 (¢, %) by & and dybr(t, x%)
by —cr(xh)|&r| and using a similar relation to (11) with indexes T' give at order 0 the
following transport equation

d r t _1 PTwT(tvxtT)_i ¢ T ¢
pritat) = g | Prenleet) - Coniotaty| .o

Thus

det(xtTy + mtTn)] )

N

t
T t p(zr)
et - |
p(or)
where the square root is defined by continuity from 1 at ¢ = 0. rl is computed up to
the order R — 2 on the ray as s} and its spatial derivatives on the ray up to this order
are fully determined by their initial values.

On the other hand, taking the dot product of (17) with pr A ¢¢ leads to

(Le(@r)ad) - (or Nad) =20, (19)

ZD:(L'T

As ¢l is unit and orthogonal to pr, one can prove that this equation fully determines
the spatial derivatives of ¢l up to order R — 2 on the ray given their initial values. We
show this recursively on k =0,..., R — 2. At order 0, equation (19) reads

d d
%qg{th;} = %qg(t,ItT) -pr(t, @%) | pr(t, %),
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which is equivalent to the system of ODEs

d
—vr(t, 27) | g (¢, 27).

d
dtCIO (t xT) pT(t7 xT) dt

qt (t,2k) is thus determined modulo its initial value. Now suppose 0%¢l (¢, z%) deter-
mined for |3] < k. Since ¢¢ is unit and orthogonal to pr, 0%¢¢ (¢, 2%) - ¢f (t,2%) and
0%l (t, %) - pr can be determined for |a| < k + 1. The remaining unknowns are thus
0%ql(t, k) - (pr(t, o%) A ¢t (t,2%)) for |a| = k + 1. Using (11) and (12), the equation
(19) gives at order k + 1

d (0%

7 (0265 (t.2%) - (pr(t, o) A gg (1, 05))] + (Zag5 ) Lty = 0, la] =k +1,
with Z, a differential operator of order a. The latter equations provide the projections
of 9gqs (t, 2%) on pr(t, ) A gq (¢, 27).

Remark 2.1. A useful property of qt is determined by using the transverse vectors et
el defined by
et = cosf'n' +sin 00, e, = —sin 0'n’ + cos OV,
where n' and b* are the ray x%- normal and binormal, 0" = [ 7(s)ds +0° and 7(s) the
ot ¢
ray torsion. Indeed Cilt and diet have nonzero projections only on the vector pr(t, z%).
It follows that % {qo (t,xk) - eﬂ = (flltq(JT(t’xtT) el + ql(t, 2k) - %e’i is zero as well as

% [qg(t, k) - eé} and qt (t, zk) remains constant in the basis (e}, ¢eb) of the hyperplane

pr(t, b))t (see [18], section 4).
We choose

qt (0,29 arbitrary unit vector orthogonal to &2,

9%1r0(0,23.) for |a| < R — 2 and 0%¢1 (0, 2%.) - (éT| At (0,29)) for 1 < |B| < R—2
arbitrary permutable families, '
0%ro(t, 2k) and 0%ro(t, x) - (é;‘ Aqi(t,ah)) for t € R, R —2 < |a| < R arbitrary
permutable families, (20)
and set
o t) = vl =) 32 2o =03 () o) 1)

Finally, the spatial derivatives of sI on the ray are obtained up to order R — 2 by
plugging the values of rl and ¢l in (15).

For 0 < 7 < N, the eikonal equation on ¥y implies

R
C;FH =, (C%_CQT)WJJ@Z)TP SiPr
.Z'*LUT

+ o L) + Bur))sTor + qbf + (Lr(dr) + Br(r) + Tys?  (22)
+ NCLJT_1
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Assume that ag,...,a; ; and s] have been determined by the vanishing of ¢j, ..., ¢
on the ray up to the orders R, ..., R — 27, similar choices to (20) and the setting of
1
af(t,x) = xalw —ah) Y Si(x—ah)0 (sipr+ b)) (tah),
la|]<R—2k ¥
for k< j—1.
Roo;
Since pr - b;r_l = 0, a similar equation to (16) gives, by using (Id — prT-)c]T xi] 0
r=xl,
R—2j
(Lr(yr) + Br(r) by + [(Le(r)pr) - b]_Jpr + Tusy + (Id = prpr)Naj_, =< 0.
x:xT

Writing b?_l = ro_quT_l with qu_l a unit vector leads to ODEs on the spatial derivatives
of TjT_l and qu_l up to order R — 25 by taking the dot product of the previous equation
with ¢, and pr Aq] ;. We set

1
ay(ta) = xale —ah) Y (o —ah)*ds (s]upr +bjy) (tah).
la|<R—2j+2 Y

Next, s] is obtained by plugging the value of b, in (22) and making ¢] vanish up to
order R — 2j on (¢, z%). Hence, b]T , and sz are determined up to the orders R — 2j on

the ray (¢, zk) under the knowledge of b;‘-r_l up to the order R — 25 on (0, z%).

We end the construction of the beams’ amplitudes by expanding them for all (¢, x) €
R™*! as follows

a; =xa(z —2") > i'(x —2")*0%a;(t, xt).

laj<p—2j—2

2.3 Reflection of a beam L

The reflection of a beam L gives birth to two reflected beams : a beam L and a beam
T. After one reflection, we search for a solution of the form

J
w! + Refw! =" ejafeim/a + Eja]LLeiw“/‘E + SjaJLTeiwLT/E,
j=0
where the index LL denotes the reflected beam L and the index LT the reflected beam
T.

To fulfill the boundary condition, the reflected phases must have the same time
and tangential derivatives as the incident phase at the instant ¢; and the point z%*
of reflection, and this up to the order R. The phase ¢ is thus constructed like the
reflected phase for the scalar wave equation associated to the symbol 7+ ¢ |¢| (chapter

1).
The reflected bicharacteristic 7 is given by the following conditions at ¢t =t
:L‘ZLT = x%?
er(a ) €fh] = eu(at)Ie,
rr — (& vz )v(el) = &,
& v(al) <0,



2.3 - Reflection of a beam L 109

with & = €8 — (& - v(2'F))v(2!F). Carrying out elementary computations yields

xtLLT = xtLLv ) )
2 ~ lr try)? i /
(&T u(ap)))’ = H (i-vtoi) = (Y - Dl
=&, + (§LT v(zy))v(z)
fLT V<9UL ) <0.
Since cr < ¢,
A()

=g, — [y AR D)

cr(af) cr(af)
The reflected amplitudes are determined by the boundary condition. Let mpg be the
order of the boundary operator, that is mg = 0 or 1 for Dirichlet ou Neumann problem.
We adapt the method [84] p. 224 for a vector beam. To do this we introduce vector
amplitudes d_,,,; defined on the boundary 0f2 by

B(wr 4+ Refw?) = ( el 4t €Nd]LV>€wL/E
+ ( *deEﬁlB+...-|—5Nd%L)€wLL/E
+ ( “magll +5Nd§T)e“ﬁLT/€.

We impose on d*,, dE%Bﬂ +d"T, . to vanish on (, ) up to the order R—2j —2
for j =0,...,N+mg. For j =0, we plug the form of the reflected amplitudes af’ and
LT
ag” to get
dr,,, +don +dE = b(, 0ur)ag + b(x, Butbrr)sg prr + b(x, Dutbrr)bg . (23)

_mB —mpB —mpB

Taking the dot product of d*,, +d"E +d"? with the vector pyr(tr,27"), one obtains

R—2
b(z,0:0rr)(prr - prr)ss™ = —b(z, 0,01) (al - prr). (24)
(ta)=(tL,z;")
Here, we use the notation L to denote that both sides have the same time and

(t.2")=(ta, wa )
tangential derivatives at the instant ¢, and the boundary point x!* up to order k. If the
contact with the boundary is transversal, b(z'*,£/%) # 0 and

pro(te, zf) - por(te, ef)IEA NG = (6017 + (v(zf) - £ (w(ah) - Eur'™) > 0.

Therefore, (24) determines time and tangential derivatives of si* at (t;,z%) up to the
order R — 2. Once those values computed, we use them in (23) to get b5

L

R—2 al -

b(x, Opbrr)byT = b(x,0:r) [ —af + (OpLT)pLL}. (25)
(ta)=(tr,a") (pLL 'PLT)

Since b(z'%,£%) # 0 when the contact is non tangential, (25) determines time and
tangential derivatives of by” at (t7,x%") up to the order R — 2.
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For j > 0, we write the reflected amplitudes as af"‘ = S]LapLa +b§4"‘ with bfa “Pra =10
for a = L, T. It follows that

dL

—mp+j

+dt AR = bz, 0pp)al + (2,0, [sF pLL 4 bYY]

+ b(l‘, azwLT) [SprLT + bJLT] + gjLa

—mp+j

where gjL depends only on the amplitudes » < j. The constraint

R—2j—2
L 2
d—mB+J + d—mB+J + d—mB+J NPT 0
(ta")=(tr, )

may be written as

R—25-2
b(z, 8x¢LL)5jLLpLL + b(z, 3x¢LT)bJLT = . —b(z, 5z1/1L)aJL
(t.a")=(tp,, L) (26)

—b(x, Oubrr)bi" — b(x, Drr) st prr — g5 -

As pointed out in the eonstruction of the amplitudes of beams L, b]LL is fully determined

by the knowledge of af”,... af* . Likewise, for beams T, s/ is fully determined

) Hj— 1
once aéT, . have been computed. Thus, taking the dot product of (26) with

9 ] 1
prr(tr, ! 7), one can compute time and tangential derivatives of s¥* up to the order

j
R —2j —2at (ty,z%). We then use these values to determine bET

2.4 Reflection of a beam 7T

Reflection of a beam T' gives birth in general to a beam L and a beam T'. We search for
a solution of the form

J
wl + Refw! =" elaler/c 4+ elalbeVrr/c 4 dalTerr/e,
j=0
where the index T'L denotes a reflected beam L and the index T7T a reflected beam
T. The construction is similar to the reflection of a beam L. The reflected phase ¢pr

is built as the reflected phase for the scalar wave equation associated to the symbol
T+ cr(z)[¢].

The reflected bicharacteristic @7 is given by the following conditions at the instant
of reflection tr
xTL = xT 5
CL(%‘T)\f ol = er(x 7IEF |, (27)
(fTL V<IT ))V@tTT) =&,

fTL V(xTT) <0,

where & = &7 — (&F - v(aF))v(2F). Computations give
xtTL = .Z’?, ) ( ) ( )
2 tr tr trn ) 2
<€TL V(zT )) = (z%(iz) - >|€T|2 (.’L‘g:T)< T 'V(xT )) )

7L =&+ (fTL v(ag ))V@?)’
&y, - v(@f)) < 0.
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If the assumption

is satisfied, one has

H—&vquKﬁwm%f—Cigﬁ—m&H%%w (29

The needed hypothesis on &7 - v(24F) shows that there is a critical angle 6. between &
and the hyperplane tangent to 9Q at 2 defined by

singd. — (C%(iﬁ?) B )%|€'T|
-\ (2F) &r|’

for which &4, is tangential to the boundary [1]. In the sequel we assume that this critical
angle is not reached. The phase 17y, is constructed similarly to 7.

Let us compute the reflected amplitudes. We replace in the computations of the previous
section, the indexes L, LL and LT by T, T'L and T'T respectively. One gets

(29)

R-2j-2
b(z, awaL)S;erTL + b($,8I¢TT)b]TT Z

(, a:’)*(tT,a:tLT)

— b(z, @ﬂﬁT) — b(z, ax¢TL)bTL b(z, axleT)S]TTPTT - ng,
with gJ" depending only on the amplitudes a,, r < n and g9 = 0.

Taking the dot product With Pt gives time and tangential derivatives of STL up to

the order R — 2j — 2 at (tp, 7). We then use these values to compute bTT For j=0
one obtains

b(x, Dutbre)(pre - prr)sy = —b(x, 0xtr)(ag - prr),
(t.a")=(tr,z7")
and
TT R-2 v, (ag - prr)
b, Ouirr)by” X b, Optr) | — af + -
(t,z)=(tr,xf) (pre - prr)

3 Construction of the approximate solution

—1

In this section, we build uft, the approximate solution up to order O(e"2 ) and justify
the asymptotics.

3.1 Gaussian beams summation

The summation process based on the FBI technique consists of integrating over the
phase space domain Gaussian beams microlocalized at ¢t = 0 near (y, ), after weighting
them by some quantities related to the initial data’s FBI transforms at point (y,n). The
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very first step is then to generalize the notion of a FBI transform to vector functions.
This is done naturally by setting for u € L*(R?)3

3n

Tu(y,n) = cpe™ & /  ula)em D gy, (30)
R

One gets properties similar to the scalar case. In particular, T, is an isometry from
L*(R3)? — L*(R® x R?)3 and
X7, = 1d, (31)

where T is the adjoint of 7. and satisfies

T2 f(2) = cos™ ¥ /M [y, m)em I EmNC qydny = e /Re Fy,m)e'® D dydn,

Next we select beams with phases that coincide at ¢ = 0 with ¢

Loy (32)

P(0,2) = (5 —y)+ 5

We refer to the dependence of such beams on the starting point and direction of their
associated rays. We thus denote wX(t,z,y,n) an L-beam associated with the bicharac-
teristic (z%,£L) s.t. (29,€%) = (y,7n), and use a similar notation for a T-beam. Hence,
we consider only bicharacteristics satisfying

xoL: :yande—T:

Let us now examine the amplitudes of these beams at t = 0. The first term in the

Taylor series of ak (0, x) is s&(0, y) 1L ik As regards al (0, ), it is a unit vector orthogonal

to L multiplied by rI 0,y). We shall thus decompose the FBI transforms on the basis
] p y To \Us Y p

(ﬁﬁ,e?,eg) and fit each component by using three appropriate elementary solutions

based on Gaussian beams. So we aim to construct solutions ¢!, 2, /2 that equal at

t = 0 respectively lle"‘z’o/ e, e%'0/¢ and e9e’*/¢ modulo residues of order O(e?) with p

sufficiently large. For any two beams w’(.,y,n) and w!'(.,y,7) we may write
N .
wH(0,2,y,m) + ! (0,2,y,m) Z [af (0,2, y,m) + a] (0,z,y,m)] v/ (33)

We write 7“ qj =: TquS —I—erqZ for j =0,..., N where (pr, gs, qz) is a fixed orthonormal
¢

basis that coincides on (¢, z%.) with the basis (éf‘, et,eb) . One has by (13) and (21)
T

1
aé(oa l’) + ag(oa l’) - Xd(x - y) Z a(m - ?J)aaf? {SgpL + TE?QS + TOZQZ:| (07 y)
lo|<R

We set (so,ro,'r’o)(O y) equal to (1,0,0) for the construction of ¢!, (0,1,0) for the
construction of ¢ or (0,0, 1) for the construction of :2. We then impose that

oM | rd ||(0,y)=0for1<la|<R-2, (34)
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where M is the matrix (pr, ¢s, qz). Since the vectors py, ¢s and gz form at point (0,y)
an orthonormal basis, M(0,y) is invertible and the previous equations determine the
spatial derivatives of s&, r5 and rZ at (0,y) up to order R — 2. One gets

ab(0,2) + al (0,x) = xa(z — y) [55(0, y),Z| +75(0,y)el +r{ (0, y)egl

R
1
txalr—y) > (@ =)0 [spL+rias +1dqz] (0,y).
|a|=R—1
Recursively, for 7 =1,..., N, we impose that

o [spr + TSQS + TZqz} (0,y) = =0% [b’; + sTpL} (0,y) for |o| < R—25—2. (35)
The r.h.s. is known by the construction of the amplitudes af and af for k < j — 1.
Therefore, hypothesis (34) and (35) lead to

n

wWH(0,2) +w!'(0,2) = [xa(z — ) (sé<o,y>|n| + 750, y)el + 1 (0,)¢3)

R-2j

+ xa(zr — Z gy (z- y)aresﬂ eivol@ym/e,
7=0  |a|=R—2j—1

We thus succeeded in building the elementary solutions ¢!, (2 and ¢ as a sum of two
suitable beams of type L and T'. Similar ideas give elementary solutions Lg,, j=1,2,3,
s.t. their time derivatives at t = 0 approach respectively 5_1|4n7l|ei¢0/ e, e telei®/s and

e~ 1e9e’®/s modulo small residues.

Without loss of generality, one can choose T' sufficiently small so that at most one
reflection occurs for rays originating from some compact K, x K, C R*". Let o’ be a
cut-off of C5°(R?, [0, 1]) supported in a compact K, C Q and satisfying

p'(y) =1 if dist(y, K) < A for a small A > 0, (36)
and v a cut-off of C5°(R?, [0, 1]) supported in a compact K, C R*\{0} s.t. 7/ =1 on
R,

We search for an approximate solution such as

uf(t,:g):‘;e—?“”(z Retil(t,2)+ 3 Ref*(il(~t,2)))

k=0,1 k=0,—1 ’77‘

+ Z RefF2(t,z) + Y Ref"(:2(— tx)))eo

k=0,—1

(
+ ( > RefFfd(t,z) + > Ref*(2(—t x)))eg] : (8’1T5u£) prery
(

k=0,1 k=0,—1
L n
+ Ref ©.Y (¢, x) Ref *( ,x)))——
k=0,1 k zo,: 1 )CL |
1
+ Ref ©.2 (¢ — Y Ref¥( )))—e(l)
k=0, k=0,—1 cr
1 1
(Z Ref ©.%' (¢, x) Z Ref #( )))eg} : (iTgvg) P ®~'dydn,
k=0, k=0,—1 cr ‘77’

where «J and 7’ are the elemntary solutions constructed previously as sums of two beams
and Ref denotes the reflections of each one of these beams.
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3.2 Justification of the asymptotics

In this section we prove theorem 1.1. The initial boundary value problem (1) is well
posed and moreover we dispose of the following energy estimate as a consequence of e.g.

[47]
supllulf(t,.) = u(t, )@y + supl|dul(t,.) — duec(t, )| 2 S
0,7] 0,7]
180z (0, ) — vl (s + [ (0,) = ucll (e

+ [Sougl|EUf(t, M2y + [1Bu|

H#([0,T]x9)3

where s = % for Dirichlet boundary condition and 1/2 for Neumann. We estimate each
term of the r.h.s. of the previous inequality. The computations are based on the results
established in section 3 of chapter 1.

We start by estimating the error in the initial conditions. The phases ¥y and ¥r
satisfy by construction the fundamental estimate

Im(t,z) > |o — o' for |z — 2'| < d.

At t = 0, all of the rays created by reflection at the boundary are in the exterior of the
domain and their contribution to u% is then exponentially decreasing in L? as explained
in chapter 1 p.39.

Only elementary solutions weighted by T.u! have a non zero contribution initially.
Moreover, at t = 0, the contribution of x —y ¢ suppxq is then exponentielly decreasing.
Hence,

UE(O, x) = Cngf%i {|T]Hn| . +e(i)€(l) . —|—€8€[2) . }Tgugem'(m*y)/ff(x*yﬁ/(25)dyd77
nn

N R—2j
+ cne_%z ey /(:v — y)O‘resaTEuiem'(x_y)/E_(x_y)g/(za)dydn + O(e™).

7=0  |a|=R-2j-1
The estimates established in chapter 1 for similar quantities yield
ul|i—o = ul + O(E%) in L*(Q)3.
Similar arguments show that

Oyl im0 = Opul + O(e7 ) in L2(Q)*, b=1,2,3,

Tp e Ty e

and o
8ﬂl;§|t:0 = U&{ + O(ET) in LQ(Q)S

To estimate the interior equation, we note that by construction, Euf is a sum of terms
of the form

g a1t / c;e/e f.dydn,

.. _ . R—-2j C g
where f. denotes some projection of e T ul or i/(c|n|)Tov! and ¢; = 0, vanishing for
Tr=x

|z — 2| > d. For k = 1,2, 3, one may then write { Eu®}; as a sum of terms of the form

gm T /e?‘(x — 2t e™/E fodydn,
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with |a| = R —2j + 1 and ef vanish for |z — 2'| > d. Since f. is uniformly bounded in
L*(R?), the operators O% introduced in chapter 1 give the following estimate

1]

i 3n . lof
| [ 5w — oty fdydn| oo S =%

which leads to
R—1
sup||Euf(t,.)||Lz(Q)s Sez,
[0,T]

The estimate of the boundary conditions is similar to the scalar case. One obtains

Bl o

| Bul|| (o, 11x00) S €2

4 Wigner transforms and measures

In this section we compute the scalar Wigner measure e defined in (2) for initial data
satisfying A1-A4 by using the first order approximate solution obtained as a summation
of first order beams. We denote henceforth this asymptotic solution by uP".

4.1 First order beams

We give explicit expressions for the beams’ phases and the first term in the amplitudes
when R = 2. In this case, the phases are quadratic on (z — ') and may be written as

Y(t,z) =& (v —a') + ;(x — 1) - ({Z + 252) (mZ + ix;)_l (z — "),

Above the considered phases and flows may be incident or reflected ones.

Only the first terms in the Taylor expansion of the first amplitudes ay near the
ray contribute to u?P". The constraints on the beams used in the construction of the
elementary solutions lead to

t
ak(t,2h) = aL<t>f§|,
(Lg(t, xé‘) = aT(t)eiv ag<ta xiil“) = CLT(t)eé,

where ay, and ar denote the quantities associated to the flows ¢y and ¢ defined by

[NIE

= th) et(x! + il .
a(t) = p(y>dt(y+ )

After reflection, the beams of type T are projected on €} and e5. We then obtain the
scalar amplitudes 7$° and r§? defined as

by (¢, aly) = g (¢l ey + i (t ahr)eskr,

bgT(t7 ng) - rS“S(t, CCto‘zT)elg“T + T(C}Z(tv xto‘zT)€23“T7 a=3S5,7,
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We next define the coefficients of reflection linking the scalar amplitudes of the reflected
beams to the one of the incident beam at the instant of reflection

RZL RjgrL R}_L Sg(tLa xtLL) 0 . 0
Ris Ris Rys 0 ré (tr, o) 0 t =
Rzz Rgz RJZFZ 0 0 T()Z(tTa 517TT)
LL tr tr tr
=h) (tL7 xy, ) (tTa ) (tT7 T )
Tgs(tLv xtLL) (tT7 ) TO (tT> )
LZ(tLa xtLL) (tTa xT ) 7“ (tTa Tp )

Thus, the scalar reflected amplitudes satisfy at any time ¢

S(EL,(tvszL) = RéLaLL(t), sgf(t, ; L) = RiLaTL(t)
ro(t, xLs) = Risarr(t), 75°(t w44) = Rigarr(t),

where arr, arr, aryp and apr denote the scalar amplitudes associated to the flows ¢y,
orr, err and @pr respectively and &, & = S, Z. We also define R} = R{ = R}, =1 to
get similar expressions for the incident amplitudes. For beams assocaited to flows that
propagate in the positive sens, we associate reflection coefficients with an exponent —.

4.2 Wigner measures for the asymptotic solution

We denote the Gaussian beams used in u?" as w®* with
acT={L,S 7},
for the incident beams and
a€R={LL,LS LZ SL,SS,SZ,ZL,ZS,Z7},
for the reflected beams. For o € Z U R, we use the following notations

a:=a, d:=aifaeZ and a =ad if a € R,

[a] denotes the index of the associated flow, that is [L] = L, [S] = [Z] = T and for
aé € R, [0d] = [3](d],

@ is the initial unit vector associated with w™*. It may be 1/|n], J or €.
For example for a beam wX® that is a = LS, we have & = L, & = S, [a] = LT

and @ = €Y. Time and Spatlal derivatives of the asymptotic solution u?”" can then be
written using the integrals

IEe fov)(t2) = ™ fuulp @) of iy} (2.0)f: ook i} (2,0)
(REa®)(t, {plyy o} 1 (2, 0))e™ o Pl s GOV DEY (2 g)dzd,

where v is a vector smooth on {¢}, .} (K, x K;) and f. is uniformly bounded in
L*(R%)3, and the functions

1 n 1
’YaL = (Tﬁué + mTEUaI) ’ Wa (%9’75 = (Téug + ngvg) ’ (6(1)’ 68),
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i i
wl = (Tl — cL|77|T€U£) . |Z|, (K2, k%) = (Tl — cT|77|T€U“{) (€9, e).
In fact, as proven for the scalar wave equation in chapter 2, one has in L*()3, uniformly
for t € [0, 7]
20,uP" = v + v, + O(Ve),

with
UtJr = —”Zr(& ’yaLa CL??) - ZI;({':? 757 CL’n‘e(l)) - 212(87 7527 CL’77|6(2))
_ZféL(‘E?fY%’ CLTI) - ZIA?T_L(‘C:’V{::;J CL|77|62) - ZI?T_L(€77§7 CL‘T]|€%)
_Z.Iﬁ_S(gu IYEL’ CTU) - ?115(67 /yssu CT|77|61) - Z.]Z_‘_S(‘% rysza CT|77|€2) (37)
_ZILZ(ga Ve 7CT77\) - Z]SZ(‘% Ve 7CT|77|69) - ZIZZ(57 Ve 7CT|77|68)
= —i Z [;(577?70[64”7”52)7
acZUR
and
vp =10y I (e w2, e ln|d). (38)
a€TUR

Likewise, for b=1,2,3
20,,u”" = v + v, + O0(Ve),

with
v = I[(e %L,nbw)+I§(€»7§,me‘f)+I§(6,v§,nbeg)
+ I (et by ) L4 (e, 72 mel) + (.97 mves)
+ Iig(e,n: ﬂ?bw) + Ids(e,92 mel) + Ifs(e. 72 mues) (39)
+ Iigle v mny) + Ldz(e,2  med) + 172(e,7Z  1mbe3)
= X ili(e, e, md),
a€ZUR
and

Ub_: Z iIo?(gaﬁganb&)'

a€l R
We denote VJr the 3x 3 matrix (v{, v5, v; ) and compute the Wigner measures associated

to Trw,[vi"], Z Trw, [vif +VE - Ky, wg[z viF - k), as well as the cross measures involving
(v, v;) and (Ub ,v, ) for b=1,2,3. Here ky denotes the vector of R? s.t. (ky); = dy;.
One needs then to estimate

wa(lg<57 %?a b); ]g({f, %ﬁa d))a

for p,q = +, o, € ZT UR and b,d vector functions smooth respectively on
{Pfay o} (I, x K;)) and {ps .} (K, x K;). The previous analysis carried in chapter
2 for similar quantltles assomated to the scalar wave equation leads to

< wo(I2(e,92,0), I8(e, 2, d)), ) >= Jao (s, 0)b(s,0)d* (5, 0)
(0 @) ofelay,} (5,097 (s, 0) SRgp%vs) o{l,} (s, 0)
(0 @) o{ply 0t~ (5,0) (REp7.7) o{iplyy o}~ (5, 0)dsdor + o(1).
Let
Bl = (¢ @7) ofeluy,} o 2 (Rp2E) gy}

We may write the previous equation in the sense of distributions as

wo(I2 (2,742, 0), I%(e,72, ) ~ EPE%bd",
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and the trace measure satisfies then
Trw. (I2(e,72,b), I(e, 72, d)) =~ ELEL". (40)

We get
Trw:[vf ] = > c[d}cm]]n\QE;“Eg(d’. ).
a,BETUR

The terms coming from the cross Wigner measure between beams with different direc-
tions vanish and only the terms satisfying a = 5 contribute to Trw(v;]. On the other
hand, for s € Q, 0 € R"\{0}, ¢t € [0,T] and « € R, only one of the points z% (s, o) and
2! (s,0) may be in Q. Tt follows that

EfEY = EFET =0.

All in all, the cross terms that have a non-zero contribution to Trw[v;" | are associted to
reflected beams having the same direction. One has therefore

pTrwclvf] = P (GIESP + GIER e Y EIEf+ GBI+ Y EJEj).
CV,BER OK,BGR
G=F=e.e} a=f=1L
7]

From (39), one gets

vV k= Y ALt (e, 48, md + dyn). (41)

ac€ZUR

It follows, by using approximation (40), that the Wigner transform Trw.[v; + V. - k)
is a sum of terms of the form

EfES (md + am)(mB" + Bm’), a, B € TUR,

modulo a vanishing residue. Since
3 - 3 - ~
> Te[(np@ + @) (3" + Bun™)] = Y (100 + mBodar + Mmdsr + ab5bln|?)
b=1 =1

b
2|77|2(5aﬂ + 5L046L5)7

the cross terms between beams of different directions do not contribute to

3
> Trwe[v; + V' - k] and one obtains
b=1
3
S Trunlu 4V, -
b=1

%2In\2(z \EII2+2!EZ|2)+2\77|2( >, EJE;+2 X EIEE)-

a=S,7Z o,BER a,0€R
==l cf a=f=ry
Finally,
3
Souf k=Y If(eAin"a) = Y If (e 4% inl), (42)
b=1 a€TUR a=rk

n
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which implies, using approximation (40), that

3 —
weY v k] = [P ELP I Y] EIE;. (43)
b=1 BER
*8 In\

By replacing the speeds ¢y and ¢, by their values, it follows that

pTrw.[v]
~ P ESP+ GBS+ Y. EIEj+c|EfP+¢ Y. ETEf]
a,BER ﬁER
d=fi=e el G=f=py
3 3
~ gz Trw. (v + V5 - k] + Aw Do) - k). (44)
b=1 b=1

The analysis for v; and v, , b = 1,2,3, is similar. The only differences are that the
Hamiltonian flows propagate in the negative sense and that 7% is replaced by 2. One
has

Ub_ + ‘/m_ ’ kb ~ Z ’LJ;(E, ’i?7 771@ + O_an>a (45)
a€TUR
and ,
Soup ckvr Y I(e Y intd) = Y I (298 dn)). (46)
b=1 acTUR a=rk
Let

_ S R § — 1 4 —
E, = (p ®7)ofely } o 2 (Rap?rl) ofly )"

One may write a similar equation to (44)

pTrwe[v;]zInIQ(c%|E§|2+c%IE§|2+c2T > EE; +GlEP e Y E;EB)

a,BER ﬁER
&:ﬁ:e?,eg ﬁ In\
3 3
gz Trw.[v, +V, - k] + Awe| Z . (47)

3
It remains to estimate the cross terms Trw,(v;", v; ), E Trw. (v, + V- kp,v, + V. - k)

and w,( Z vy - ky, Z v, - kp). By (37) and (38) and approximation (40), one gets
=1

pTrw. (v, v,)

%—lle(c%EsTEﬁc%E;Eﬂc% >, EIE; +ciE[EL +c ) EJEE)'
ocLBER a,@eR
a=p=¢?,e &:ﬂ:‘%l

On the other hand, equations (41) and (45) lead to

3
> Trw.(vy + V.5 kyv, +V, - k)
b=1
~on* (Y EFE; +2BfEp)+ 2P Y EiE;+2 Y EiE;]
a=S,7 a,_‘,@ER ﬂGR
a=f=ef.e} d=f= In\
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and (42) and (46) imply

kb,va k) = In*EfE; + 0> Y. ETE;.
= oz@ER
a=f=14

HM@

Hence, the cross terms have a zero contribution to the measure e and one has

e:i(e++6_),
where
ey = |77!202T( > (ph2P) ofel 3
a=S,Z
+ Y (PRI ofel ! (p2R575)0{¢2,+}1)
Tk
+[nl? ((ph ?) ofeh 17 + Z (PP REA) of el 1 (02 REAY) ofly 4} )
and
— il ( T (plwcl?) ofet, )
+ X (PRowE) ol y (o R L) ol ) )
e
1P ((phAF)ofeh 17+ X (pFRan2) ofet, Y (0 R32) ofch 1 ):
el

For o € Z, {¢}, .} " = ¢}, . For &d € R, the inverse of @}, is @k, . Moreover, the
flows w7 and @rr keep cr|n| invariant and the flows ¢ and ¢ keep cp|n| invariant,
while for 7, and @7 one has

cr(zrr(y, M)&re(y, n)| = er(y)nl and cr(zrr(y, n)|Eer(y,m)| = cL(y)nl-
It follows that
2

s
er = |Vl < 32 ) o0l 4 VA F 2ulny L ogh,
R;S R}S /75 L t
+ ||| RY Rt 0y + | VA + 2un] 0P, —
sz gy )
- [\/ﬁw ( R§, Ry ) ( 35 )] oPLr, - + [V)‘+2 WRLL%} OSOtLL,—| :

2

£

(48)
A similar result can be established for e_. In order to understand the transported terms,
let us write the Helmholtz decomposition of the initial conditions as

ug = f.+ ¥, vg = ¢. + O, with f. = 0,a., g. = 0,b., div¥V, = 0 and divO, = 0.
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Since || T:0,u — inToul| 2reny S Vel ullr2@ny for u € H(R™), one has

I(1d — )T Gellz2reys S Ve (49)

|77|
On the other hand

—1eTedivOe = n - T:O, + /(w —y) - @J:{:)eén'(y_f”)—i(y—ﬂﬁ)Qdm_
Since ©, € L*(2)3, the integral term is of order /¢ in L*(R®). Thus

N - 1O 2R X E.
I - T=Oc|| S Ve

The same arguments hold true for e T u! because e 'ul € L*(Q)3, leading to

1(1d — )T Fell ooy < V7 and |- Tole|| 2wy S VE.

|77|

The Helmholtz decomposition of the initial data implies then a decomposition of their
FBI transforms tangentially and orthogonally to n as follows

T (7 fo+ilenln) o) =7E W +0(Ve),

and T. (710, + i(cr[n]) '0.) = 7€) + 77 + O(Ve),

in L?(R3)%. We deduce in the sens of measures that

VI~ T2 (67 e +ileninl) ~ ge) [P, _
WP+ WP & T (7L +i(er|nl) THO:) [

By Lemma B.1 in chapter 2, T.|D| = |n|T. and crude computations show that 7.9 ~ 9T
for functions v € C*. One obtains the following approximations in the sens of measures

A+ 2P EP ~ |T2 (/pge — ivVA+ 27 DI L) |7
ulnl? (WP + W2 P2) ~ |T. (pO- — iy/me | D|W. ) [

Similar results can be established for x. with a change of signs. Since the FBI transform
is related to the Wigner measure (see Lemma 1.2 of [37]) in that

|IT.z.|* ~ w|z] for z. uniformly bounded in L*(R"),

the first two terms of (48) may be written as transported Wigner measures of ,/pg. +
ipy/ A+ 2p|D|f; and /pO. + ip,/;i|D|V.. The four remaing terms in (48) are however

troublesome. Indeed, they exhibit cross quantities 7 of}, +}*17_55\ o{eh 17! with a #
(3, which quantities can not be interpreted as Wigner measures. However, if one assumes
the additionnal hypotheses

D1. The Wigner measures associated to f. and ¥, are singular,

D2. The Wigner measures associated to g. and O, are singular,
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which are commonly assumed hypotheses when studying the Wigner measure for a
system with two wave speeds at the boundary (or equivalently the problem of waves
refraction on an interface [74]), then the cross terms between v and (v2,~7Z) vanish.
In this case, (48) may be written in terms of transported initial Wigner measures as

€+ = w[\/ﬁgs - iv A+ QM‘D’]EE] o0PrL+ + w[\/ﬁ@s - Z\/ﬁ‘D‘qjs] oy,
+ wlRf, (Vg — VAT 20D L)) oprr,— + w7 (pge — iv/A+ 20l DI f.)] opre. -
+ w[Mity (/pO: — iy/HIDIV.)] oprr— + wlYyy (/0. —iy/alD|¥.)] oprr .,
(50)
with

n
Yir = (Rfge! + Rize9) ()", Vi = (Ripel + RZL€2)(

T )7,
ul l
and Mf, = (Rige] + Ried)(e))” + (Rgel + RE,e9)(ed)".

Above, the exponent T' denotes transposition. A similar expression can be obtained for
e

e- = wly/pge +ivVA+2ulD|f]opr— + w[/pO: + i/ D[V opr s
wlRp,, (v/pg: +ivA+ 2u|DIf.) oprr s + wlYip (/g: +ivA+ 20Dl f.)] opre,

w[Mzy (/5O: + i/l DIV ) oprr o + w]Yry, (6O: + i/l DIV ) oprr .
(51)

+
+
This leads to our final theorem

Theorem 4.1. Suppose that the initial conditions satisfy assumtions A1-A2 and D1-D2.
Assume the following further assumptions

C1. The Wigner measures of vl and d,,ul, b=1,2,3, are unique,

C2. v and O,

$b47

b=1,2,3 are e-oscillatory (see equation (53), chapter 2),

C3. The Wigner measures of vl and 0,,ul, b=1,2,3 do not charge the set R? x {£ =
0},
C4. The Wigner measures of vl and d,,ul, b =1,2,3 do not charge Tg.

Tp=e

Then the scalar Wigner measure e equals 7(6+ + e_) where ey and e_ depend on the

Wigner measures of the initial data and the reflection coefficients and are given by
formulas (50) and (51).
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