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Introduction (french)

Le cadre général de ce travail de thèse est celui des atomes froids, qui sont des systèmes
isolés composés de quelques atomes à quelques milliards d’atomes, et dont la température est
suffisamment basse pour que le régime de dégénérescence quantique soit atteint. Le domaine
des atomes froids a connu un développement rapide depuis les années 90, et s’est divisé en
différents sous-domaines, suivant l’utilisation qui a été faite du système. Parmi les différentes
applications possibles, citons notamment la métrologie, l’information quantique, ou encore la
simulation de modèles utilisés pour décrire des systèmes condensés. En effet, l’un des intérêts
majeur des atomes froids réside dans le contrôle que l’on peut avoir sur leur hamiltonien, ainsi
que sur leur environnement grâce à des potentiels de diverses géométries créés par des champs
magnétiques ou bien des lasers. De plus, un grand nombre d’observables sont accessibles à
l’expérimentateur [Cirac 12, Bloch 12]. Les atomes froids sont des systèmes isolés à N corps,
parfaitement contrôlés, dont le hamiltonien est connu, et dont on sait faire varier les différents
paramètres. Une alternative à la résolution numérique du problème, dont la complexité croît
exponentiellement avec le nombre de particules considérées, est donc d’effectuer directement
une mesure sur le système. Ce type d’approche, introduite par Richard Feynman en 1982
[Feynman 82], se nomme « simulation quantique ». Notons tout de même que depuis les années
80, les méthodes numériques se sont fortement améliorées, et permettent aujourd’hui d’obtenir
de bons résultats. Néanmoins, elles se limitent essentiellement à la description de l’équilibre
thermodynamique. Or, de nombreux systèmes de la matière condensée que l’on cherche à mieux
cerner sont bien souvent des systèmes hors d’équilibre. En outre, la physique est une science
expérimentale, et les expériences réservent parfois des surprises : il n’est jamais impossible
d’obtenir un autre résultat que celui que l’on cherchait.

Depuis un dizaine d’années, les atomes froids permettent d’obtenir des systèmes à N corps
fortement corrélés, décrits par des modèles simplifiés de systèmes de matière condensée. Ci-
tons par exemple la transition superfluide/isolant de Mott [Greiner 02] décrite par le hamil-
tonien de Bose-Hubbard, au cours de laquelle l’évolution temporelle de chaque atome peut
être observée avec des atomes froids [Bakr 10, Sherson 10, Endres 11]. De même, l’effet Hall
quantique peut être simulé avec des atomes froids en utilisant des champs de jauge artificiels
[Lin 11]. Pour ce qui est des gaz de bosons unidimensionnels homogènes décrits par le hamil-
tonien de Lieb et Liniger, il existe une phase fortement corrélée : la phase de Tonks-Girardeau
[Paredes 04]. Par ailleurs, en interactions faibles, l’ajout d’un potentiel périodique longitudinal
permet d’explorer les propriétés du hamiltonien de Bose-Hubard à une dimension [Sapiro 08],
et, dans le régime d’interactions fortes, du hamiltonien de sine-Gordon, pour lequel la tran-
sition superfluide/isolant de Mott peut se produire pour un potentiel périodique d’amplitude
arbitrairement faible [Stöferle 04, Haller 10a]. Pour ce qui est de la physique hors d’équilibre,
une proposition [Unruh 81] visant à simuler des trous noirs en créant des gaz de bosons super-
fluides supersoniques à l’intérieur desquels seraient piégés les phonons a été réalisée [Lahav 10].
Il est également question de simuler le rayonnement de Hawking [Balbinot 08]. Dans ce cas
précis, la simulation quantique est incontournable, étant donnée la difficulté que présente la
l’observation ou encore la réalisation d’un trou noir.

Dans cette thèse nous nous intéressons particulièrement au modèle de Lieb et Liniger, dé-
crivant un gaz de bosons unidimensionnel avec interactions à deux corps de contact. Ce modèle
a été introduit dans les années 60, bien avant toute idée de simulation quantique, pour tester la
théorie perturbative existante développée par Bogoliubov. De plus, son intérêt pour les théo-
riciens est notable, puisqu’il fait partie des rares modèles solubles exactement. En outre, les
systèmes unidimensionnels sont très présents en matière condensée. Citons par exemple l’hé-
lium superfluide en milieu poreux, les réseaux de jonctions Josephson, ou encore les nanotubes
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de carbone (voir [Cazalilla 11b]). Dans un tel système, il y a quatre ingrédients essentiels (voir
Fig. 2). D’abord, les interactions, dont le rôle est décuplé par le caractère unidimensionnel
du système. Une image simple de cette affirmation consiste à dire qu’à une dimension, deux
particules sont obligées d’interagir fortement, n’ayant aucune possibilité de s’éviter. Puis, la
statistique quantique (dans notre cas, celle de Bose-Einstein), dont l’effet est moins dominant
que dans un système 3D, à cause de l’importance des interactions. Viennent ensuite les fluctua-
tions thermiques et les fluctuations quantiques, qui sont une génération aléatoire d’excitations
dans le système. Les premières sont dues à l’énergie thermique, et les secondes au principe
d’incertitude d’Heisenberg. Les fluctuations jouent un rôle très important à une dimension,
dans la mesure où, à température non nulle, les fluctuations thermiques de grandes longueurs
d’onde sont responsables de l’absence d’ordre à longue portée quelle que soit la température.
Ce résultat, valable pour tous les systèmes unidimensionnels à température finie, est connu
sous le nom de théorème de Mermin-Wagner-Hohenberg [Mermin 66], et découle du théorème,
dit « k−2 », dû à Bogoliubov. De plus, même à température nulle, l’ordre à longue portée est
cassé par les fluctuations quantiques. De fait, il ne peut donc pas y avoir de brisure spontanée
de symétrie continue dans un tel système 1 (par contre il peut y avoir des brisures spontanées
de symétries discrètes). Seuls deux paramètres permettent de contrôler l’importance de chacun
des ingrédients, il s’agit de la température, mesurée par le paramètre sans dimension t, et des
interactions à deux corps, mesurées par le paramètre sans dimension γ.

Statistique quantique Interaction à deux corps

Fluctuations quantiques

Fluctuations thermiques

Figure 1 – Image des quatre ingrédients du gaz de bosons unidimensionnel avec interaction
de contact.

Même si un gaz de bosons unidimensionnel ne peut subir de transition de phase, avec
apparition d’un paramètre d’ordre, il change néanmoins de propriétés lorsque l’on varie la tem-
pérature et les interactions. Ces changements dans les observables sont suffisamment notables
pour que l’on définisse tout de même des régimes du système, celui-ci passant de manière conti-
nue d’un régime à un autre, au cours de « transitions molles ». Les régimes sont au nombre de
trois : la régime de gaz de Bose idéal dans lequel les interactions ne jouent qu’un rôle très faible,
le régime de quasi-condensat dans lequel les fluctuations thermiques sont fortement réduites,
à cause des interactions, et enfin le régime d’interactions fortes, dit de « Tonks-Girardeau »,
dans lequel l’effet de la statistique bosonique sur certaines observables est occulté par celui des
interactions.

Une particularité du gaz de bosons unidimensionnel avec interactions de contact à deux
corps, est qu’on peut trouver une solution exacte pour l’état fondamental du système [Lieb 63b],

1. Pour un gaz de bosons unidimensionnel dans un potentiel désordonné, il a néanmoins été prédit une
transition de phase entre un état fluide et un état isolant [Aleiner 10].
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ainsi que pour les excitations [Lieb 63a]. La thermodynamique du système peut même être
calculée exactement grâce aux travaux de C.P. Yang et C.N. Yang [Yang 69].

Au cours de ce travail de thèse, nous avons réalisé expérimentalement des gaz de bosons
unidimensionnels ultra-froids, piégés à la surface d’une micro-structure. Nous utilisons pour
cela le refroidissement laser et le piégeage par des champs magnétiques produits par des cou-
rants circulant dans des micro-fils déposés sur un substrat. Un piège magnétique DC, nous a
permis d’obtenir des gaz unidimensionnels dans le régime d’interactions faibles, et un second
piège magnétique AC, plus élaboré, nous a permis d’atteindre le régime d’interactions fortes.
Ce dernier piège offre la caractéristique remarquable de découplage total entre potentiels trans-
verse et longitudinaux, ainsi que la possibilité de réaliser diverses géométries longitudinales.
En particulier, nous obtenons des pièges longitudinaux harmoniques et quartiques. En analy-
sant des images de nuages, nous extrayons des fluctuations in situ de nombre d’atomes. Nous
montrons comment ces fluctuations sont reliées aux corrélations à deux corps, via une règle de
somme, et comment elles sont par ailleurs reliées à l’équation d’état du système via le théorème
de fluctuation-dissipation. Dans le régime d’interactions faibles nous observons des fluctuations
sub-poissoniennes pour les densités élevées. Ce résultat [Jacqmin 11] constitue la première ob-
servation du sous-régime du régime de quasi-condensat dans lequel la fonction de corrélation à
deux corps est dominée par les fluctuations quantiques. Nous montrons que nos résultats sont
bien décrits par la thermodynamique de Yang et Yang. Par ailleurs, dans le régime d’inter-
actions fortes, nous observons des fluctuations de nombre d’atomes sub-poissoniennes quelle
que soit la densité atomique, comportement similaire à celui d’un gaz de fermions. Ce résul-
tat [Jacqmin 11] constitue la première observation d’un unique gaz de bosons dans le régime
d’interactions fortes. Nous nous sommes également intéressés à la fonction de corrélation à un
corps, qui est la transformée de Fourier de la distribution en impulsion du gaz. Nous avons uti-
lisé une méthode de lentille magnétique permettant de mesurer cette distribution en impulsion.
Nous obtenons des résultats dans le régime d’interactions faibles : sur l’aile gaz de Bose idéal
de la transition molle entre les régimes de gaz de Bose idéal et de quasi-condensat, et sur l’aile
quasi-condensat de cette même transition molle. Nos données se situant dans un régime où les
différentes théories existantes ne donnent pas de suffisamment bons résultats, nous les compa-
rons avec des calculs Monte-Carlo quantiques. La température extraite de l’ajustement de nos
données par ces simulations numériques est en bon accord avec celle extraite des fluctuations
in situ de nombre d’atomes. Ce résultat [Jacqmin 12] constitue la première mesure de distri-
bution en impulsion de gaz de bosons purement unidimensionnel dans le régime d’interactions
faibles. Enfin, nous avons développé une méthode qui permet d’augmenter considérablement
la résolution en impulsion de la lentille magnétique.

Ce manuscrit est divisé en quatre chapitres. Dans le premier chapitre, nous donnons tous
les outils théoriques nécessaires à la compréhension des expériences. Dans le second chapitre,
nous décrivons l’expérience qui nous a permis d’obtenir et d’observer des gaz de 87Rb ultra-
froids et unidimensionnels. Le troisième chapitre est consacré aux corrélations à deux corps,
et plus particulièrement à la présentation des résultats [Jacqmin 11] de fluctuations de densité
sub-poissoniennes obtenues dans le régime d’interactions faibles et dans le régime d’interactions
fortes. Enfin, le quatrième chapitre s’intéresse aux corrélations à un corps : nous y discutons
des mesures de distributions en impulsion [Jacqmin 12] dans le régime d’interactions faibles.



17

Introduction (english)

The general framework of this thesis is that of cold atoms, which are isolated systems com-
posed of a few to billions of atoms, and whose temperature is low enough so that the regime of
quantum degeneracy is reached. The field of cold atoms has been developing rapidly since the
90s, and can now be divided into several sub-domains, depending on the use that was made
of the system. Among the various possible applications, there are metrology, quantum infor-
mation, or the simulation of models used to describe condensed-matter systems. Indeed, one
of the major interests of cold atoms is the control that one can have on their Hamiltonian, on
their environment through various potential geometries created by magnetic fields or lasers, as
well as the large number of observables accessible to the experimentalist [Cirac 12, Bloch 12].
Cold atoms are isolated many-body systems, that are perfectly controlled, whose Hamiltonian
is known, and whose parameters can be varied at will. An alternative to the numerical resolu-
tion of the problem, whose complexity grows exponentially with the number of particles, is to
directly perform a measurement on the system. This approach, introduced by Richard Feyn-
man in 1982 [Feynman 82], is called “quantum simulation”. Note however that since the 80s,
numerical methods have greatly improved and now allow to obtain good results. Nevertheless,
they are mainly limited to the description of thermal equilibrium properties, whereas many
systems in condensed matter that we seek to understand better are out of equilibrium systems.
In addition, physics is an experimental science, and experiments reserve some surprises: it is
never impossible to get a different result than the one we were looking for.

For a decade, the cold atoms allow one to obtain strongly correlated many-body systems
that are described by simplified models of condensed-matter systems. An example is the
superfluid/Mott insulator transition [Greiner 02] described by the Bose-Hubbard Hamiltonian,
in which the temporal evolution of each atom can be monitored with cold atoms [Bakr 10,
Sherson 10, Endres 11]. Similarly, the quantum Hall effect can be simulated with ultracold
atoms using artificial gauge fields [Lin 11]. Regarding gas of bosons described by the one-
dimensional homogeneous Lieb and Liniger Hamiltonian, there exists a strongly correlated
phase: the Tonks-Girardeau phase [Paredes 04]. Moreover, in the weakly interacting limit,
the addition of a longitudinal periodic potential allow to explore the properties of the Bose-
Hubbard Hamiltonian in one dimension [Sapiro 08], and in the strongly interacting regime,
of the sine-Gordon Hamiltonian, for which the superfluid/Mott insulator transition can occur
for an arbitrarily small periodic potential amplitude [Stöferle 04, Haller 10a]. Regarding out-
of-equilibrium physics, a proposal [Unruh 81] was made to simulate black holes by creating
supersonic superfluid gas of bosons, within which phonons would be trapped. This proposal was
realized recently [Lahav 10]. Simulating the Hawking radiation is also considered [Balbinot 08].
In this case, the quantum simulation is very useful, given the difficulty of implementation and
observation of a black hole.

In this thesis we are particularly interested in the Lieb and Liniger model describing a
one-dimensional gas of bosons with two-body contact interactions. This model was introduced
in the 60s, long before any notion of quantum simulation, to test the existing perturbation
theory developed by Bogoliubov. In addition, it was a very interesting model for theorists,
as it is one of the few exactly solvable problems. One-dimensional systems are ubiquitous in
condensed-matter. For instance, we can mention superfluid helium in porous media, networks
of Josephson junctions, or carbon nanotubes (see [Cazalilla 11b]). In such a system, there
are four essential ingredients (see Fig. 2). First, interactions, whose role is enhanced by the
one-dimensional character of the system. A simple image of this statement is to say that
in one dimension two particles are forced to strongly interact, since they have no chance to
avoid each other. Then, the quantum statistics (in our case, the Bose-Einstein statistics),
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which effect is less dominant than in a 3D system, because of the importance of interactions.
Finally, thermal fluctuations and the quantum fluctuations, which are random generation of
excitations in the system. The former is due to the thermal energy, and the latter to the
Heisenberg uncertainty principle. Fluctuations play a very important role in one dimension,
in so far as at finite temperature, long-wavelength thermal fluctuations are responsible for
the absence of long-range order, regardless of the temperature. This result, valid for any
one-dimensional systems at finite temperature, is known as the Mermin-Wagner-Hohenberg
theorem [Mermin 66], and derives from the Bogoliubov “k−2” theorem. In addition, even at
zero temperature, the long-range order is broken by quantum fluctuations. In fact, there can
not be any spontaneous continues symmetry breaking in such a system 2 (note however that
spontaneous discrete symmetries can be broken). Only two parameters are used to control the
amount of each ingredient, that are the temperature, measured by the dimensionless parameter
t, and the two-body interaction, measured by the dimensionless parameter γ.

Quantum statistics Two-body interaction

Quantum fluctuations

Thermal fluctuations

Figure 2: Picture of the one-dimensional gas of bosons interacting via contact interactions.

Although a one-dimensional gas of bosons can not undergo a phase transition, with the
appearance of an order parameter, it changes properties when temperature and interactions are
varied. These changes in the observables are sufficiently notable for regimes of the system to be
defined, the latter passing continuously from one regime to another during smooth crossovers.
The three main regimes are: the ideal Bose gas regime, in which interactions play only a very
little role, the quasi-condensate regime, in which thermal fluctuations are reduced because of
interactions, and finally the regime of strong interactions, also called “Tonks-Girardeau” regime,
in which the effect of quantum statistics on some observables is eclipsed by interactions.

A striking feature of one-dimensional gas of bosons with two-body contact interactions is
that an exact solution for the ground state of the system can be found [Lieb 63b], as well
as excitations [Lieb 63a]. Additionally, the equation of state of the system can be calculated
exactly [Yang 69].

In this thesis, we realized experimentally one-dimensional gases of ultracold bosons, that
are trapped in the vicinity of a micro-structure. For this purpose, we used laser cooling and
magnetic trapping, magnetic fields being produced by currents flowing in micro-wires deposited
on a substrate. With a DC magnetic trap, we were able to obtain a one-dimensional gas in the
weakly interacting regime, and with an AC magnetic trap, we were able to reach the regime
of strong interactions. This trap has the remarkable feature of decoupling between transverse

2. For a gas of bosons in a one-dimensional disordered potential, it was nevertheless predicted a phase
transition between a fluid and an insulator [Aleiner 10].
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and longitudinal potentials, as well as the possibility of various longitudinal geometries. In
particular, we obtain longitudinal harmonic and quartic traps. By analyzing images of clouds,
we extract in situ atom number fluctuations. We show how these fluctuations are related to the
two-body correlations via a sum rule, and how they are also related to the equation of state
of the system via the fluctuation-dissipation theorem. In the weakly interacting regime, we
observe sub-Poissonian fluctuations for high densities. This result [Jacqmin 11] is the first ob-
servation of the sub-regime of the quasi-condensate regime, in which the two-body correlation
function is dominated by quantum fluctuations. We show that our results are well described
by the Yang and Yang thermodynamics. Moreover, in the strongly interacting regime, we
observe sub-Poissonian in situ atom numbers fluctuations whatever the atomic density, a be-
havior similar to that of a gas of fermions. This result [Jacqmin 11] is the first observation of
a single one-dimensional gas of bosons in the strongly interacting regime. We have also been
interested in the one-body correlation function, which is the Fourier transform of the momen-
tum distribution of the gas. We used a technique called “magnetic focusing” to measure the
momentum distribution. We get results in the regime of weak interactions both on the ideal
Bose gas side of the crossover between the regimes of ideal Bose gas and quasi-condensate, and
on the condensate side of the same crossover. Our data lie in a region of the phase diagram,
where the existing theories do not give sufficiently good results. Thus, we compared them with
exact quantum Monte-Carlo calculations. The temperature extracted from the fit of our data
by these simulations is in good agreement with that extracted from the in situ atom number
fluctuations. This result [Jacqmin 12] is the first measurement of momentum distributions of a
purely one-dimensional gas of bosons in the regime of weak interactions. Finally, we developed
a method that can significantly increase the momentum resolution of the magnetic lens.

This manuscript is divided into four chapters. In the first chapter, we provide all the the-
oretical tools that are necessary to understand the experiments. In the second chapter, we
describe the experiment that we have used to realize and probe an ultracold one-dimensional
gas of 87Rb. The third chapter is devoted to the two-body correlations, especially to the pre-
sentation of results [Jacqmin 11] of sub-Poissonian in situ atom number fluctuations obtained
in the weakly and in the strongly interacting regimes. The fourth chapter focuses on the one-
body correlations: we discuss the measurement of momentum distributions [Jacqmin 12] in the
weakly interacting regime.
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Part I

Theoretical background
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In this part, we introduce the simple theoretical tools we are going to use in Part III and
Part IV. We first introduce the Lieb-Liniger model, and its exact solution. We also recall the
exact thermodynamic results. We then discuss the general properties of the first and second
order correlation functions. We also show their specific behaviors in the various regimes of
one-dimensional Bose gases, that are: the ideal Bose gas regime, the quasi-condensate regime,
the crossover between these two regimes, and finally, the strongly interacting regime.

1 The one dimensional Bose gas at thermal equilibrium

1.1 Two bosons scattering in one dimension

In a one-dimensional gas, energy and momentum conservation ensure that when two par-
ticles collide, they can only keep or exchange their initial momenta. Therefore, interactions
between atoms result only in a phase shift between the wavefunctions of colliding particles. In
the case of low energy scattering, that is to say if the wavelength associated to the particles
is larger than the range of the potential, this phase shift is related to one length scale: the
scattering length, which contains the relevant information about the interaction potential at
distances larger than the interaction range. This potential can be approximated by a delta
potential V (r) = g1Dδ(r) whose amplitude g1D can be determined experimentally.

Let us have a closer look at the problem of two particles scattering in one dimension
(1D). We consider two particles of mass m interacting with a repulsive delta potential, so that
g1D > 0. In the center of mass frame, the wavefunction of the relative motion is given by the
Schrödinger equation

[−~2

2M

∂2

∂z2
+ g1Dδ(z)

]
Ψ(z) = EΨ(z), (1)

whereM = m/2 is the mass of the fictitious particle, and E is the energy of the relative motion.
Solutions of Eq. 1 are sinusoidal, and must be even for bosons. The scattering solution (E>0)
can be written

Ψ(z) = sin(k|z|+ Φ), (2)

where k =
√
mE/~. The delta potential is equivalent to the following continuity condition for

the wavefunction 3

∂Ψ

∂z

∣∣∣∣
z=0+

− ∂Ψ

∂z

∣∣∣∣
z=0−

=
mg1D

~2
Ψ(0). (3)

Eq. 2 and Eq. 3 give the expression of Φ for g1D > 0,

tan Φ =
2~2k

mg1D
=

√
2E

Eg
= 2klg, (4)

where we have introduced the intrinsic energy scale

Eg =
mg2

1D

2~2
, (5)

3. Eq. 3 is obtained by integrating Eq. 1 over [−ε, ε] and then make ε→ 0.
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Figure 3: Wavefunction Ψ(z) of the reduced particle in the center of mass frame. The interac-
tion term in the Hamiltonian produces a kink in the derivative of Ψ(z) at z = 0. The slope of
the tangent at z = 0 is inversely proportional to g1D, the strength of the interaction.

and the intrinsic length scale

lg =
~2

mg1D
. (6)

We then use the same definition of the 1D scattering length as in the three-dimensional (3D)
case [Pethick 01],

a1D = − dΦ

dk

∣∣∣∣
k→0

= − 2~2

mg1D
. (7)

In this expression, we see that a1D and g1D have opposite signs. Therefore, in the case of
repulsive interactions a1D < 0. The relative wavefunction is plotted in Fig. 3, repulsive
interactions result in a discontinuity of the derivative at z = 0. The interaction strength is
related to the slope of the wavefunction at z ' 0. If interactions are weak, Φ ' π/2 so that
the wavefunction is almost a pure sinusoid. In the case of strong interactions, Φ ' 0 and the
wavefunction has a node at z = 0. This makes one think of non-interacting fermions, whose
wavefunction also has a node at z = 0, stemming from the Pauli principle.

1.2 Link between g1D and the 3D scattering length

Quantifying the interaction strength requires the knowledge of g1D, or equivalently a1D. In
cold atoms experiments, the 3D scattering length a3D was measured. In 1.2.1, we show that
in the weakly interaction regime, g1D can be related to a3D by a mean field approximation. In
1.2.2, we also mention the existence of a general formula, valid for any strength of interactions.

1.2.1 Mean field regime

In second quantization, the interaction energy of the 1D problem writes

E1D
int =

g1D

2

∫
dz 〈Ψ̂†(z)Ψ̂†(z)Ψ̂(z)Ψ̂(z)〉. (8)

If we consider a homogeneous gas of density ρ1D in a box of length L such that spatial corre-
lations between atoms are very small, we have
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〈Ψ̂†(z)Ψ̂†(z)Ψ̂(z)Ψ̂(z)〉 ' 〈Ψ̂†(z)Ψ̂(z)〉2 = ρ2
1D. (9)

Within this approximation, the interaction energy of the 1D problem writes

E1D
int '

1

2
g1Dρ

2
1DL. (10)

Now, we consider a 3D gas, that is homogeneous in one direction and condensed in the
ground state of a harmonic potential of frequency ω⊥/2π in the two other directions. The
interaction energy of this 3D system writes

E3D
int =

g3D

2

∫
d3r 〈Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)〉. (11)

Neglecting correlations between atoms, we find

E3D
int '

1

2
g3D

∫
d3r〈ρ3D(r)〉2. (12)

Moreover, the 3D density writes

ρ3D(r) = ρ1Dρ⊥(x, y) =
ρ1D

πl2⊥
e−(x2+y2)/l2⊥ . (13)

where l⊥ =
√

~/mω⊥ is the transverse ground-state width. Substituting Eq. 13 into Eq. 12,
gives

E3D
int '

g3D

2

1

2πl2⊥
ρ2

1DL, (14)

so that g3D is related to a3D via [Pethick 01]

g3D =
4π~2a3D

m
. (15)

Finally, writing E3D
int = E1D

int leads to

g1D ' 2~ω⊥a3D, and a1D = − l2⊥
a3D

. (16)

Thus, interactions can be tuned by varying the transverse oscillation frequency. The value
of a3D has been measured for 87Rb in the ground state |F = 2,mF = 2〉 in many experiments
[Buggle 04, van Kempen 02]. The most precise determination we could find in the literature
[van Kempen 02] is

a3D = 5.238(1) nm. (17)

1.2.2 General formula

By considering the full 3D scattering problem, the following formula has been derived
[Olshanii 98],
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g1D =
2~ω⊥a3D

1− C a3D
l⊥

, (18)

where 4 C = 1.0326. If a � l⊥, Eq. 16 is recovered. In addition to the weakly interacting
behavior, we see the appearance of a resonance for l⊥ = Ca3D, which is named “confinement
induced resonance”. It is a means to reach high values of g1D. However in the case of 87Rb,
the resonance occurs for ω⊥/2π ' 4 MHz, which cannot be obtained with usual trapping
techniques. This resonance has been observed with Cesium [Haller 10b], which has a 3D
scattering length that can be easily brought to a few hundreds times the Bohr radius by means
of a Feshbach resonance. In [Haller 10b], the confinement induced resonance is brought down
to ω⊥/2π ' 20 kHz.

In all this thesis, we will use the convention a ≡ a3D, and g ≡ g1D.

1.3 The Lieb-Liniger model

We have seen that short range interaction potentials can be treated as a contact interaction.
Thus, the simplest physically realistic model of interacting bosons in 1D is described by the
Hamiltonian

Ĥ = − ~2

2m

N∑
i=1

∂2

∂z2
i

+ g
N∑
i<j

δ(zi − zj) (19)

in first quantization. In second quantization, it writes

Ĥ = − ~2

2m

∫
dz Ψ̂†(z)

∂2

∂z2
Ψ̂(z) +

g

2

∫
dz Ψ̂†(z)Ψ̂†(z)Ψ̂(z)Ψ̂(z). (20)

This Hamitonian was introduced by Lieb and Liniger in 1963. In this model, we can identify
the length scale lg and the energy scale Eg already defined by Eq. 6 and 5. This model has
the outstanding property of being exactly solvable: in 1963, Lieb and Liniger showed that the
ground state of this Hamiltonian has the form of the Bethe ansatz 5 [Lieb 63b].

1.4 Solution of the Lieb-Liniger model at T=0

In this section, we first give the idea of the Bethe ansatz for a two-particle model, and show
how it generalizes to a system of N particles.

1.4.1 Two-particle Bethe ansatz

For simplicity, we explain the principle of the Bethe Ansatz for two bosons in a box of
length L with periodic boundary conditions. In 1.1, we have already found a solution of the
Lieb-Liniger Hamiltonian, by solving the Schrödinger equation for the relative wavefunction of
two bosons. We have seen that the wavefunction has a discontinuity in the derivative when the
two particles are at the same position. It is then natural to write the many-body wavefunction
as

4. Our value of C differs from the one of [Olshanii 98] because we did not use the same definition of l⊥.
5. It was proven later that in fact, any eigenstate of the Lieb-Liniger Hamiltonian has the form of the Bethe

ansatz [Dorlas 93].
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Ψ(z1, z2) = f(z1, z2)Θ(z2 − z1) + f(z2, z1)Θ(z1 − z2), (21)

where Θ(z) is the Heaviside step function. In other words, we have split the wavefunction
into two terms, corresponding to the two configurations z1 < z2 and z1 > z2. By looking for
plane wave solutions for the function f(z1, z2) as

f(z1, z2) = Aei(k1z1+k2z2) +Bei(k1z2+k2z1), (22)

we find that the Schrödinger equation is satisfied only if

A

B
=
i(k1 − k2) + 1/(2lg)

i(k1 − k2)− 1/(2lg)
= eiθ(k1−k2), (23)

where the function θ(k) is given by

θ(k) = 2Φ(k/2) + π. (24)

Here Φ(k) is the phase-shift of the relative wavefunction defined by Eq. 4. One can check that
in the center of mass frame, the results of 1.1 are recovered.

1.4.2 N-particle Bethe ansatz

The results of 1.4.1 can be generalized to the problem of N particles in a box of length L.
Since we are considering only bosons, the many-body wavefunction must be even. Therefore,
we restrict ourselves to the sub-space z1 < ... < zN in which we write the Bethe ansatz

Ψ(z1 < ... < zN ) =
∑
P

AP e
i(kP (1)z1+...+kP (N)zN ). (25)

The solution in other sub-spaces can then be deduced by a permutation of the quasi-momenta
{ki}. This wavefunction is an eigenvector of the Lieb-Liniger Hamilonian with the eigenenergy
E = (~2/2m)

∑
j k

2
j . It is also an eigenvector of the momentum operator P̂ = −i~∑j ∇zj

with the eigenmomentum ~
∑

j kj . Therefore, the sum of the k’s is the total momentum of the
system and the sum of the k2 is the total energy of the system. However, note that as Eq. 25
defines the wavefunction only in the sub-space z1 < ... < zN , the k’s are not the true momenta
of the system.

Two simultaneous permutations P and P ′, interchanging two quasi-momenta k and k′

correspond to a two body scattering process. Therefore, like in 1.4.1, we have

AP
AP ′

= eiθ(k−k
′). (26)

Using Eq. 23, we get

AP = α
∏
n<j

(i(kPn − kPj ) + 1/(2lg)) (27)

where α is a constant. Now, we determine the k’s by putting the system on a ring of length
L, that is to say we assume periodic boundary conditions. By driving one particle along the
circle, it will acquire a phase 2π, and it will scatter across all other particles. This introduces
a set of quantum numbers Ij , defined by the set of equations
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2πIj = Lkj +
N∑
n

(θ(kj − kn)− π), (28)

which are known as the Bethe equations. Because θ−π is an odd function, the total momentum
writes (2π/L)

∑
j Ij : it is quantized and independent on g.

In the thermodynamic limit (L→ +∞), the distribution of quasi-momenta and the ground
state energy can be derived [Lieb 63b]. It can be proven that the ground state corresponds
to the zero momentum configuration where the Ij ’s are all different (and so are the k’s) and
symmetrically distributed around zero. This configuration resembles that of a Fermi sea.

Moreover, in the limit g → +∞, the distribution of quasi-momenta is found to converge
towards the momentum distribution of a uniform gas of free fermions. Indeed, taking the limit
of g → +∞ in Eq. 28, we find kj = 2πIj/L, that is to say the Lieb-Liniger quasi-momenta
coincide with free fermions momenta. In Fig. 4 (a), the distribution of quasi-momenta is
plotted for various values of the interaction strength. At large g, it becomes Fermi-like.

This method only provides implicit expressions for the wavefunction, which makes correla-
tion functions very difficult to compute. However, as presented in the following, the spectrum
of excitations can be computed.

1.4.3 Elementary of excitations

Elementary excitation within the Lieb-Liniger model have been investigated in [Lieb 63a].
In this subsection, we explain the origin of those excitations and present their spectrum.

We have seen that the Lieb-Liniger distribution for the ground state {Ij} is the symmetri-
cally distributed set of quantum numbers 6

{Ij} =

{
−N − 1

2
, ...,

N − 1

2

}
. (29)

By making the analogy with a Fermi system, we can think of two different types of excitations.
The first one which is called Type 1 corresponds to taking one particle on the surface of the
Fermi sea (of quasi-momentum K) and promote it to a momentum state q > K. For low
values of k, it can be shown that those collective modes have sound-wave like linear dispersion,
which becomes quadratic at higher k’s. In the case of weak interactions, the Type 1 excitations
coincide with the Bogoliubov modes which will be studied in 4.2.

The second type of excitations is called Type 2 and corresponds to taking a particle inside
the Fermi sea, thus creating a hole, and promote it just above the Fermi surface. It can be
shown that if weak interactions are considered, those modes are solitons [Ishikawa 80]. Other
excitations one can think of, such as promoting one particle from the inside to the outside of
the Fermi sea can be seen as combinations of the Type 1 and Type 2 excitations. The spectrum
of excitation ε(k) is shown in Fig. 4(b).

1.5 Yang-Yang thermodynamics

At finite temperature, and at thermal equilibrium, when particle and hole excitations are
thermally generated, C.P. Yang and C.N. Yang derived the equation of state of the system

6. Integers if N is odd and half integers if N is even.
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Figure 4: (a) Distribution of the Lieb-Liniger quasi-momenta for various interaction strengths
(adapted from [Lieb 63a]). The distributions are peaked at low values of γ and Fermi-like at
high values of γ. (b) Spectrum of excitation within the Lieb-Liniger model for γ = 0.787,
adapted from [Lieb 63a]. The vertical axis is ε(p)/(~2ρ2/2m) Type 1 excitation show a linear
dispersion at momenta lower than ρ and a parabolic dispersion at higher momenta, similar to
the Bogoliubov dispersion. Type 2 excitations also show a linear dispersion at low momenta,
but they have a different behaviour at large momenta. The curve bends down and eventually
reaches zero, indicating a solitonic behavior.
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[Yang 69]. In order to do that, the partition function of the system needs to be computed. In
the canonical ensemble, it writes

Z =
1

N !

∑
{Ij}

e
−
E{Ij}
kBT , (30)

where E{Ij} = (~2/2m)
∑

j k
2
j is the total energy of the configuration of quasi-momenta {Ij}.

Yang and Yang related this partition function to the densities of quasi-momenta ν(k) and of
hole excitations νh(k). Defining the energy spectrum ε(k) as

νh(k)

ν(k)
= eε(k)/kBT , (31)

they found an integral equation for ε(k), known as the Yang-Yang equation, which is obtained
by minimizing the action of the system. With the partition function known, any thermody-
namic quantity can be computed. For instance, the exact equation of state ρ = ρ(µ, T ) can
be computed numerically for any value of the chemical potential µ and of the temperature T .
This was done [Kheruntsyan 03] in 2003 to investigate the phase diagram of 1D Bose gases.

1.6 Phase diagram

At thermal equilibrium, the state of the system is defined by a given density ρ and a
given temperature T , which can be rescaled by the 1/lg and Eg, respectively, thus defining the
interaction parameter

γ =
mg

~2ρ
, (32)

and the temperature parameter

t =
2~2kBT

mg2
. (33)

In the parameter space (γ, t), the phase diagram of the one dimensional Bose gas is plotted in
Fig. 5. In the following, we give the main properties of the different regimes, which will be
studied in more details in 3, 4, 5 and 6 by looking at the behavior of correlation functions.

1.6.1 Weakly and strongly interacting regimes

To quantify the interaction energy with respect to the kinetic energy, we return to the
problem of two bosons that we put in a box of length L with periodic boundary conditions.
The density of the system is ρ = 2/L, and the quantum numbers are I1 = −1/2 and I2 = 1/2.
The Bethe equations (Eq. 25) write

−π = Lk1 − 2 arctan[(k2 − k1)lg], (34)
π = Lk2 + 2 arctan[(k2 − k1)lg], (35)

which give
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Figure 5: (a) Phase diagram of the one dimensional Bose gas at thermal equilibrium, in the
parameter space (γ = mg/~2ρ, t = 2~2kBT/mg

2). The white area shows the ideal Bose gas
regime, where interactions are negligible. The light gray area is the quasi-condensate regime,
where density fluctuations are suppressed because of weak interactions. The dark gary area is
the strongly interacting regime, where fermionization takes place. (b) and (c): wavefunction of
two particles in a box of length L with periodic boundary conditions. (b): weakly interacting
case. (c): strongly interacting case.

0 = k1 + k2, (36)
π

2
=

k2

ρ
+ arctan(2k2lg). (37)

The two-body wavefunction writes

Ψ(z1, z2) = α(k1)D(k1, L)
√
ρ/2 sin[k1|z2 − z1|+ Φ(k1)], (38)

where α(k1) is a phase term andD(k1, L) =
(

1 + sin k1L
k1L

)−1/2
. Averaging the interaction energy

operator over Eq. 38 gives the interaction energy

Eint ∝ gρ sin2 Φ(k1), (39)

and the total energy writes

E =
~2k2

1

m
. (40)

Two limiting cases can be identified.

Weakly interacting limit

The first case corresponds to the situation where L � |a1D| (see Fig. 5 (b)). This is
equivalent to saying that the phase shift Φ defined by Eq. 4 is very close to π/2, so that the
wavefunction is almost a pure cosine. This happens when

kilg � 1. (41)
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From Eq. 37, we see that in this limit the typical Lieb-Liniger k’s are 7

|ki| '
kilg�1

√
ρ

2lg
. (42)

If we compute the ratio between the total energy and the interaction energy, we find

E

Eint
'

kilg�1
1, (43)

so that interaction energy dominates over kinetic energy. The condition of Eq. 41 and Eq. 42
are equivalent to

γ � 1. (44)

Here, we have derived this criterion at T=0. At finite temperature, and for γ � 1, interactions
are weak if the total energy of the gas is larger than Eg. In the ideal Bose gas regime, the total
energy is kBT , so that this condition writes kBT � Eg, which is equivalent to

t� 1. (45)

Therefore in the phase diagram of Fig. 5, the weakly interacting regime is the region
{γ � 1 or t� 1} (white area and light gray area). It is divided in two sub-regimes: the ideal
Bose gas regime where the temperature is sufficiently high so that interactions can be completely
neglected (white area), and the quasi-condensate regime, where interactions, although weak,
are sufficient to modify the correlation properties of the gas.

Strongly interacting limit

The second limiting case corresponds to L� |a1D|, so that the phase shift is almost equal
to 0 (see Fig. 5 (c)). This happens when

kilg � 1. (46)

In this limit, Eq. 37 gives

|ki| '
kilg�1

πρ

2
. (47)

The total energy reads

E

Eint
'

kilg�1

1

(kilg)2
, (48)

Thus in the strongly interacting regime, the energy of the system is dominated by the kinetic
energy. The condition Eq. 46 and Eq. 47 are equivalent to

γ � 1. (49)

At finite temperature, interactions are strong if the condition kBT � Eg, or equivalently

t� 1 (50)

7. Here we have used the fact that ∀x > 0, arctanx+ arctan 1/x = π/2
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Figure 6: Exact energy per particle normalized with kBT , computed from the Yang-Yang
thermodynamics versus γ, for t = 0.1. Dashed line : kinetic energy per particle, dashed-dotted
line: interaction energy per particle, solid line: total energy per particle.

is satisfied. Therefore in the phase diagram of Fig. 5(a), the strongly interacting regime is the
region {γ � 1 and t� 1} (dark grey area).

1.6.2 Kinetic energy versus interaction energy

To emphasize the fact that the weakly interacting regime is the regime where interaction
energy dominates and the strongly interacting regime is the regime where kinetic energy dom-
inates, we plot the kinetic energy and interaction energy per particle versus γ in Fig. 6 for
t = 0.1. Those graphs are obtained with the exact Yang-Yang theory 8. The dashed line shows
the normalized kinetic energy per particle, the dashed-dotted line shows the normalized inter-
action energy per particle, and the solid line is the normalized total energy per particle. We
see that for γ < 3, in the weakly interacting regime, the main contribution to the total energy
is the interaction energy, whereas for γ > 3, it is the kinetic energy. Note that in the large γ
limit, the total energy is constant due to the finite temperature, whereas for a zero temperature
gas it would be an increasing function of γ [Lieb 63b].

2 Correlation functions

The many-body wavefunction contains all the information about the system. However,
most of the time 9, this information is not readable. Correlation functions are powerful tools
that allow us to extract targeted information from the many-body wavefunction, such as the
phase coherence, the density fluctuations, etc. Moreover, in field theory, correlation functions
express naturally in terms of path integral that can be efficiently calculated using diagrams,
and for which powerful numerical methods exist.

In this section, we define the one and two-body correlation functions we use to describe the
1D Bose gas at thermal equilibrium. We also give some general properties of those correlation

8. All thermodynamic quantities can be computed from the Yang-Yang theory. For instance the total energy
per particle. Moreover, as will be developed in 2.2.4, the pair correlation g(2)(0) is linked to the free energy of
the system so that the interaction energy per particle which is 1/2gρg(2)(0) can also be computed. Then, the
kinetic energy is just the difference between the total energy and the interaction energy.

9. We will see a counterexample of this statement in 2.1.4.
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functions.

2.1 First order correlation function

2.1.1 Definition

Let us consider a one-dimensional system described by the field operator Ψ̂(r). The first
order correlation function of the field Ψ̂(r) is defined by G(1)(r, r′) = 〈Ψ̂†(r)Ψ̂(r′)〉, where
Ψ̂†(r) is the hermitian conjugate of Ψ̂(r). Subsequently, we define the normalized first order
correlation function as

g(1)(r, r′) =
〈Ψ̂†(r)Ψ̂(r′)〉
〈Ψ̂†(r)〉〈Ψ̂(r′)〉

. (51)

If we consider a uniform system at thermal equilibrium, the translational invariance of the
density operator implies that g(1)(r, r′) ≡ g(1)(|r − r′|) so that we can change variable and set
z = |r − r′|. The first order correlation function then writes

g(1)(z) =
〈Ψ̂†(z)Ψ̂(0)〉

ρ
, (52)

where we have introduced ρ, the density of the system, defined by 〈Ψ̂†(r)〉〈Ψ̂(r′)〉 = ρ.

2.1.2 Equivalence to momentum distribution

Let us consider a one-dimensional gas of length L, described by the field operator Ψ̂(z).
The operator which annihilates one particle in the mode k is

âk =
1√
L

∫
dz Ψ̂(z)eikz, (53)

so that the momentum distribution 10 of the gas writes

ν(k) = 〈â†kâk〉 =
1

L

∫∫
dz1dz2 〈Ψ̂†(z2)Ψ̂(z1)〉eik(z1−z2). (54)

Thus, the momentum distribution of a 1D gas is the two-dimensional Fourier transform of
G(1)(z1, z2) = 〈Ψ̂†(z2)Ψ̂(z1)〉, the non-normalized first order correlation function.

If we now consider a uniform system, Eq. 54 reduces to

ν(k) = ρ

∫ +∞

−∞
dz g(1)(z)eikz. (55)

Thus, the normalized first order correlation function of a uniform gas can be deduced from its
momentum distribution and vice versa thanks to a Fourier transform.

10. In all this thesis, we will call momentum both k and p = ~k.
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2.1.3 Kinetic energy

The total kinetic energy K of a gas of particles of mass m, with the momentum distribution
ν(k) is proportional to the mean square of the momentum distribution. Indeed

K =

∫ +∞

−∞
dk

~2k2

2m
ν(k) =

~2〈k2〉
2m

. (56)

In a gas at thermal equilibrium, the mean value of the momentum vanishes, so that the total
kinetic energy is proportional to the variance of the momentum distribution.

In addition, observing Eq. 56, we see that the integral is convergent only if k2ν(k) is
integrable. This imposes the condition

ν(k) = o
k→+∞

(
1

k3

)
. (57)

Therefore, the momentum distribution must converge towards zero faster than 1/k3 so that
the kinetic energy remains finite. In the following subsection, we show that the tails of the
momentum distribution scale as 1/k4 due to interactions.

2.1.4 Short-distance properties of g(1)(z)

For the two-particle problem, we have seen that the relative wavefunction is

Ψ(z) = sin (k|z|+ Φ). (58)

Taking the Fourier transform, we get the momentum distribution 11

|Ψ̃(κ)|2 ∝ cos2 Φ/k2[
1−

(
κ
k

)2]2 , (59)

where the divergence in the limit κ→ k comes from the fact that we have considered an infinite
system. At large κ, the momentum distribution scales as

|Ψ̃(κ)|2 ∝
κ→+∞

(
k

κ

)4

. (60)

Therefore, 1/κ4 tails are expected in the momentum distribution. Those tails stem from the
singularity in the derivative of the wavefunction.

In fact, in the case of a uniform gas of N bosons, at any temperature, Maxime Olshanii
showed that [Olshanii 03]

ρ|Ψ̃(κ)|2 →
κ→+∞

g(2)(0)

2π

γ2

πρ

(πρ
κ

)4
, (61)

where g(2)(0) is the normalized probability of finding two bosons at the same position. His-
torically, this result was obtained first for a strongly interacting gas in the Tonks limit by

11. Note that here, “k” denotes the Lieb-Liniger momentum, and “κ” denotes the true momentum of the
system.



34 Correlation functions

[Minguzzi 02]. Also, it was shown to be included in the Bogoliubov theory [Mora 03]. The am-
plitude of the tails, sometimes referred to as “contact”, is a related to the equation of state (see
subsection 2.2.2). Note that 1/k4 tails were also predicted in a 3D Fermi gas [Viverit 04]. Their
amplitude was also connected to thermodynamics [Tan 08], and recently measured [Wild 12].

2.2 Second order correlation function

2.2.1 Definition

The second order correlation function is the probability to detect a particle at position r,
and another particle at position r′ simultaneously. Following 3.2.1, the second order correlation
function writes G(2)(r, r′) = 〈Ψ̂†(r)Ψ̂†(r′)Ψ̂(r)Ψ̂(r′)〉. Subsequently, we define the normalized
second order correlation function as

g(2)(r, r′) =
〈Ψ̂†(r)Ψ̂†(r′)Ψ̂(r)Ψ̂(r′)〉
|〈Ψ̂†(r)〉|2|〈Ψ̂(r′)〉|2

, (62)

If uniform systems are considered, g(2)(r, r′) ≡ g(2)(|r−r′|), and the second order correlation
function reduces to

g(2)(z) = 〈Ψ̂†(z)Ψ̂†(0)Ψ̂(z)Ψ̂(0)〉/ρ2. (63)

In the following, we show that just like for the one-body correlation functions, general
properties of g(2)(z) can be derived.

2.2.2 Link to density fluctuations

In experiments, we have access to the density. Since we can repeat the same experiment
many times, we have also access to spatial density fluctuations. In this subsection, we show
how density fluctuations are linked to g(2)(z).

The average correlation between the density ρ at the position z and 0 is

〈ρ(z)ρ(0)〉 = 〈Ψ̂†(z)Ψ̂(z)Ψ̂†(0)Ψ̂(0)〉. (64)

Using the commutation relation

[
Ψ̂(z), Ψ̂†(z′)

]
= δ(z − z′), (65)

we see that Eq. 64 is related to g(2)(z) in the following manner:

〈ρ(z)ρ(0)〉 = ρδ(z) + ρ2g(2)(z). (66)

Rewriting Eq. 66 in terms of the density fluctuation δρ(z) = ρ(z)− 〈ρ(z)〉 gives

〈δρ(z)δρ(0)〉 = ρδ(z) + ρ2(g(2)(z)− 1). (67)

In experiments, the density is integrated over a cell of size ∆ defined by the imaging system
(pixel of the camera). If we integrate Eq. 67 over ∆ we obtain an expression for the variance
of the atom number in the cell
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〈δ2N〉 =

∫ ∆

0
dz 〈δρ(z)δρ(0)〉 = 〈N〉+ ρ2

∫ ∆

0
dz (g(2)(z)− 1), (68)

where 〈N〉 = ρ∆ is the average atom number in the cell. 〈δ2N〉 is of great interest since it is
accessible in the experiment. The first term of the right hand side of Eq. 68 is proportional to
the average atom number in the cell: it is the noise associated to a Poissonian process, which
is due to the corpuscular nature of matter. In this thesis we will refer to it as shot noise 12.
The second term depends on two body correlations, that can bring the atom number variance
above or below the Poissonian level depending on the sign of (g(2)(z)− 1).

In the following, we show that the measurement of 〈δ2N〉 can be used as a thermometer,
since it is related to the equation of state of the gas.

2.2.3 The fluctuation dissipation theorem

At thermal equilibrium a system of Hamiltonian Ĥ is completely defined by its partition
function. In the grand canonical ensemble, the partition function is

Z(β, µ, V ) =
∑
i

exp [−β(Ei − µni)], (69)

where β = 1/kBT , i labels the eigenstates of energy Ei of the Hamiltonian, µ is the chemical
potential of the system, and ni is the total number of particles in the state i.

Let us compute the moments of the atom number distribution N . The probability for the
system to be in the state i is Pi = exp [−β(Ei − µni)]/Z, leading to

〈N〉 =
1

βZ

∂Z

∂µ
, (70)

〈N2〉 =
1

β2Z

∂2Z

∂µ2
, (71)

so that the variance is given by

〈δN2〉 = 〈(N − 〈N〉)2〉 =
1

β

∂〈N〉
∂µ

. (72)

The right hand side of Eq. 72 is proportional to the isothermal compressibility

κT =
1

V

∂〈N〉
∂µ

∣∣∣∣
T

. (73)

Eq. 72 is an expression of the fluctuation-dissipation theorem, which states that the response
κT of the system to a small excitation is related to the spontaneous thermal fluctuations of the
system. This result is very useful as it relates the equation of state to the density fluctuations.
Therefore, measuring density fluctuations in a gas is a means of determining its equation of
state.

In addition, an argument by induction shows that any moment of N can be expressed as a
function of 〈N〉 and its derivatives with respect to µ. More precisely, for any integer j > 2,

12. Note that in some other fields of Physics the expression “shot noise” can include many other kind of noise.
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〈δN j+1〉 = 〈(N − 〈N〉)j+1〉 =
1

βj
∂j〈N〉
∂µj

+ j〈δN2〉〈δN j−1〉. (74)

For instance, the third moment of the fluctuations is given by

〈δN3〉 =
1

β2

∂2〈N〉
∂µ2

. (75)

The last three years, we have been using measurements of 〈δN2〉 and 〈δN3〉 as an evidence
of two body and three body correlations 13 in a 1D Bose gas. Moreover, with the exact Yang-
Yang theory, we know the equation of state for any γ and t, which enables us to use 〈δN2〉 as
a thermometer.

2.2.4 Link to free energy

In 2.2.3 we have seen that the integral of g(2)(z) is known exactly through the combination
of the fluctuation-dissipation theorem and the Yang-Yang theory. In this subsection, we show
that the local pair correlation g(2)(0) is also a thermodynamic quantity.

We consider an eigenstate |Ψ(λ)〉 of a system described by the Hamiltonian Hλ, which
depends on the parameter λ. Differentiating the normalization relation of the state with
respect to λ gives

d

dλ
〈Ψ(λ)|Ψ(λ)〉 = 0. (76)

We want to compute the derivative of the total energy Eλ of the system with respect to the
parameter λ. It writes

dEλ
dλ

=
d

dλ
〈Ψ(λ)|Hλ|Ψ(λ)〉. (77)

Developing this expression and using Eq. 76, we find

dEλ
dλ

= 〈Ψ(λ)|dHλ

dλ
|Ψ(λ)〉. (78)

This relation is known as the Hellman-Feynman theorem. It can be applied [Kheruntsyan 03]
to the equilibrium of a system of size L in the canonical ensemble defined by the partition
function

Z = Tr[e−βHλ ] =
∑
n

e−βEλ,n , (79)

where {Eλ,n} are the eigenenergies of Hλ corresponding to the eigenfunctions {|φλ,n〉}. Differ-
entiating the free energy F = −kBT lnZ with respect to λ and applying the Hellmann-Feynman
theorem to the set of eigenfunctions {|φλ,n〉} leads to the relation

dF

dλ
=

1

Z

∑
n

〈φλ,n|
dHλ

dλ
|φλ,n〉 =

〈dHλ

dλ

〉
. (80)

13. We have measured 〈δN3〉 in a weakly interacting one-dimensional gas. This quantity is related to the third
order spatial correlation function g(3)(r). Those results are reported in [Armijo 10], and will not be presented
in this thesis. For more informations, see [Armijo 11a].
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If H is the Lieb-Liniger Hamiltonian (Eq. 20) and if λ ≡ g, we find

dF

dg
=

1

2

∫
dz 〈Ψ̂†(z)Ψ̂†(z)Ψ̂(z)Ψ̂(z)〉 =

Lρ2

2
g(2)(0). (81)

Thus, the local pair correlation is related to the equation of state of the gas and can be
computed exactly at any temperature with the Yang-Yang equation of state. It was used by
[Kinoshita 05] to compare the measured values of the local pair correlation in the crossover
from the weakly to strongly interacting regime to the exact Yang-Yang theory.

3 The ideal Bose gas regime

Now that we have defined the correlation functions g(1)(z) and g(2)(z), and presented their
general behavior, we discuss how they behave specifically in the different regimes.

When the temperature is high enough, interactions have negligible effects, and the system
can be described by the ideal Bose gas theory. In the following we give the main results of this
theory.

3.1 Ideal Bose gas in a box

We consider N bosons in a box of length L at thermal equilibrium with the chemical
potential µ and at the temperature T . The occupation number of the mode k, or equivalently
the momentum distribution of the gas is given by the Bose law

νBk =
1

e(Ek−µ)/kBT − 1
, (82)

where Ek = ~2k2/2m is the energy of a free particle. Note that in this regime 14 µ < 0.

3.1.1 Equation of state

The equation of state ρ = f(µ, T ), where ρ = N/L, is obtained by summing the contribu-
tions of all k’s in Eq. 82. In the thermodynamic limit (L→ +∞), it writes

ρ =
1

λdB
g1/2(f), (83)

where f = eµ/kBT is the fugacity of the gas, λdB = ~
√

2π/mkBT is the de Broglie wavelength

and g1/2(z) =
+∞∑
j=1

zj√
j
is a Bose function. Here, we see that unlike the 3D case [Pethick 01], ρ

diverges when µ approaches zero. Thus, as |µ| is lowered, no saturation of the excited states
occurs, and no phase transition driven by degeneracy happens.

3.1.2 Maxwell-Boltzmann limit: |µ| � kBT

In the limit |µ| � kBT , Eq. 82 simplifies to the Boltzmann factor

14. The energy being defined up to a constant, we chose to set the energy of the ground state to 0.
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Figure 7: Phase diagram of the 1D Bose gas, where the dashed line corresponds to γd = t−1/2.

νBk ' νMBk = e−(Ek−µ)/kBT = e−λ
2
dBk

2/4πeµ/kBT , (84)

and the equation of states is simply

ρMB =
1

λdB
eµ/kBT . (85)

If we introduce the degeneracy parameter d = ρλdB, which quantifies the average population
per state, we see that d� 1.

3.1.3 Degenerate limit: |µ| � kBT

In the limit |µ| � kBT and for k � 1/λdB, Eq. 82 simplifies 15 to

νBk ' νdeg
k =

1

k2 λ
2
dB
4π + |µ|

kBT

. (86)

The corresponding equation of state is

ρdeg =
1

λdB

√
πkBT

|µ| . (87)

In this sub-regime d� 1, so that the gas is degenerate.

3.1.4 From the non degenerate to the degenerate regime

The crossover from the Maxwell-Boltzmann regime to the very degenerate regime happens
in the region around µ ' kBT . Using Eq. 87, this condition gives the typical crossover density
ρd =

√
π/λdB which in terms of γ and t writes

γd = t−1/2. (88)

This line is shown in Fig. 7 as a dashed line.

15. Note that for k � 1/λdB, a Gaussian shape is recovered.
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3.2 Correlation functions

3.2.1 First order correlation function

The first order correlation function can be computed by taking the Fourier transform of
Eq. 82, but in general no analytical expression can be found. However, approximate expressions
can be determined in the two sub-regimes.

In the case γ � γd, the momentum distribution of the gas is a Gaussian (see Eq. 84), so
that g(1)(z) is

g
(1)
MB(z) = e

− x2

2l2MB . (89)

It is a Gaussian, of RMS width

lMB =
λdB√

2π
. (90)

In the case γ � γd, the momentum distribution is a Lorentzian (see Eq. 86) so that g(1)(z)
is the exponential

g
(1)
deg(z) = e

− |z|
ldeg (91)

of typical decay length

ldeg =
~2ρ

mkBT
=
ρλ2

dB

2π
, (92)

When decreasing T while keeping ρ constant, the coherence length of the gas increases, and
contrary to the density, which diverges when T → 0, we see that g(1)(z) does not diverge in this
limit. Note that Eq. 91 breaks down at small distances, and in fact, there is no discontinuity
in the derivative. This will be explained in more details in Part IV.

3.2.2 Second order correlation function

In the ideal Bose gas model, the Hamiltonian is quadratic in Ψ̂(z), so that we can use the
Wick theorem. The two body correlation function reduces to

ρ2g(2)(z) = 〈Ψ̂†(z)Ψ̂(z)〉〈Ψ̂†(z)Ψ̂(z)〉+ 〈Ψ̂†(z)Ψ̂†(z)〉〈Ψ̂(z)Ψ̂(z)〉. (93)

Recognizing the expression of g(1)(z) in the right hand side, we finally have

g(2)(z) = 1 + |g(1)(z)|2, (94)

which is equivalent to the intensity correlation with time of a source of thermal photons. The
second term in the right hand side is the so called bunching term. The effect of this term is
to enhance the probability of detecting two bosons at a distance of the order of the typical
width of g(1)(z). At zero distance in all the ideal Bose gas regime, because g(1)(0) = 1, the
pair correlation g(2)(0) = 2.

For a uniform gas in a box of size ∆, substituting Eq. 94 into Eq. 68, we get
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〈δ2N〉 = 〈N〉+ ρ2

∫ ∆

0
dz |g(1)(z)|2. (95)

In the Maxwell-Boltzmann regime where the gas is not degenerate so that ρλdB � 1, if ∆ �
λdB, we find

〈δ2N〉MB ' 〈N〉. (96)

The dominant contribution to density fluctuations is the Poissonian noise. In the degenerate
regime, if ∆� λdB, we get

〈δ2N〉deg ' ρ2∆ldeg. (97)

In this case, because ρldeg � 1, the density fluctuations can rise well above the Poissonian
noise.

This shows that in an ideal Bose gas, correlations between atoms induced by the quantum
statistics rise the atom number fluctuations well above the Poissonian level. This phenomenon,
analog to the Hanbury-Brown and Twiss effect for photons is called bosonic bunching. It is
not specific to 1D systems, and has been observed in a neon beam [Yasuda 96], with ultracold
atoms in 3D geometries [Schellekens 05, Fölling 05]. In 1D, it was observed in our group in
2006 [Esteve 06].

3.2.3 Domain of validity

The behavior of g(2)(0) at a fixed temperature when γ is reduced can be computed exactly
[Kheruntsyan 03] using the Yang-Yang theory (see 2.2.4). For a given t� 1, when one increases
the interactions, at some point, the ideal Bose gas treatment starts to be wrong, and one
enters into the so-called quasi-condensate regime (see Fig. 5(a)). In this regime interactions
reduce g(2)(0) from 2 to 1. It stems from the fact that when interactions come into play, the
density fluctuations that are due to the bosonic bunching cost energy. There is a competition
between interactions which tend to put particles away from each other and the Bose statistics
which tends to bring them together. In the ideal gas regime, the Bose statistics dominates,
and density fluctuations rise well above the Poissonian level, whereas in the quasi-condensate
regime, interactions dominate and reduce the density fluctuations. In Fig. 8, we show the
Yang-Yang expectation for g(2)(0) versus γ, at t = 1000. As γ is decreased, g(2)(0) goes from
2 in the ideal Bose gas regime to 1 in the quasi-condensate regime. The crossover takes place
on one order of magnitude in γ.

The ideal Bose gas theory fails when gρ, the typical interaction energy per particle in the
weakly interacting regime (see Eq. 10), starts to be of the order of the chemical potential |µ|.
Using Eq. 87, we find that this happens when

γ ' γco = t−2/3, (98)

so that the ideal Bose gas treatment is valid for γ � γco. In Fig. 7, the line γco = t−2/3 is the
limit between the white area and the light green area.

This rough criterion can be checked on Fig. 8, where t = 1000. In this situation, γco = 10−2,
similar to the value read on the graph. This criterion, derived with the equation of state of
the degenerate gas, assumes that degeneracy is reached before interactions start to play a role.
This assumption should be valid for high enough t, where γco � γd. This has been observed in
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Figure 8: (a) Evolution of the pair correlation g(2)(0) at t = 1000 when γ is varied. At high γ
the gas lies in the ideal Bose gas regime, where the bunching phenomenon raises g(2)(0) to 2. At
low γ, g(2)(0) is brought down to 1 due to interactions. (b) Density fluctuations in a 1D Bose gas
versus density (adapted from [Esteve 06]). Two sets of data are shown. The white circles show
the fluctuations measured at high temperature, when the gas is not degenerate. They follow
the Poissonian prediction. The black dots are the results for a temperature ten times lower.
When the density is increased (γ is lowered), the dots first follow the Poissonian prediction,
but then rise well above the Poissonian level, following the ideal Bose gas prediction shown as
a dashed-dotted line. Finally, it saturates because of interactions for a density corresponding
to γco.

[Esteve 06] by monitoring density fluctuations versus density, at a fixed temperature. In Fig.
8(b), we show their results. Two sets of data are shown. The white circles show the fluctuations
measured at high temperature, when the gas is not degenerate. They follow the Poissonian
prediction. The black dots are the results for a temperature ten times lower. When the density
is increased (γ is lowered), the dots first follow the Poissonian prediction, but then rise well
above the Poissonian level, following the ideal Bose gas prediction shown as a dashed-dotted
line. Finally, it saturates because of interactions for a density corresponding to γco.

4 The quasi-condensate regime

In a three-dimensional Bose gas, when ρλ3
dB � 1, the system is in the condensate phase

where the system can be describe by a classical field which has the properties of a coherent
state: it is coherent with respect to g(1)(z): there are no phase fluctuations, and g(2)(z): density
fluctuations above Poissonian noise are absent. In a one-dimensional gas, long-wavelength phase
fluctuations prevent long range order to appear in the system, so that it is never coherent with
respect to g(1)(z). However, when interactions start to play a role, they can suppress density
fluctuations and make the system coherent with respect to g(2)(z). This state, which has half
the coherence properties of a 3D condensate is called a quasi-condensate.

4.1 Gross-Pitaevskii equation

In this section, we consider that the gas is not homogeneous, but trapped in a potential
V (z). In this case, the Hamiltonian of Eq. 20 must be modified in order to take into account
the external potential V (z). In the grand canonical ensemble, if µ is the chemical potential of
the system, it writes
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Ĥ =

∫
dz Ψ̂†

(
− ~2

2m

∂2

∂z2
+ (V (z)− µ) +

g

2
Ψ̂†Ψ̂

)
Ψ̂. (99)

In 3D, where a true condensate exists, it is possible [Pethick 01] to find an equation de-
scribing the ground state of the equivalent 3D Hamiltonian by splitting the quantum field Ψ̂
into two contributions as

Ψ̂ = Ψ0 + δΨ̂, (100)

where Ψ0 is a complex field describing the condensate wavefunction and δΨ̂ accounts for thermal
and quantum fluctuations. Within the assumption of |δΨ̂| � Ψ0, at thermal equilibrium, an
equation for Ψ0 can be found

(
− ~2

2m

∂2

∂z2
+ V (z) +

g

2
|Ψ0|2

)
Ψ0 = µΨ0, (101)

which is the so-called Gross-Pitaevskii equation, describing the ground state of a Bose-Einstein
condensate.

However, in 1D, there exists no true condensate, so that this treatment is wrong. Never-
theless, in the case where the density fluctuations are very small, this idea has been adapted
[Mora 03] by using a phase-density representation, that is to say by writing the field operator

Ψ̂(z) =
√
ρ̂(z)eiθ̂(z), (102)

where ρ̂ and θ̂ are two conjugate variables, and then split the density operator into two contri-
butions as

ρ̂ = ρ0 + δρ̂, (103)

where ρ0 is a complex field and δρ̂ accounts for density fluctuations. In the quasi-condensate
regime we have seen that |δρ̂| � ρ0. A similar treatment than above can then be applied. In
the following we give the main results of this treatment.

The dynamics of the system is given by the Heisenberg equation of motion for the field
operator Ψ̂

i~
dΨ̂

dt
= [Ψ̂, Ĥ]. (104)

Substituting Eq. 102 in Eq. 104 gives the so-called quantum hydrodynamic equations

~∂tρ̂ = −~2

m
∇2
z(θρ), (105)

~∂tθ̂ = − ~2

2m
(∇zθ)2 +

~2

2m

∇2
z
√
ρ

√
ρ
− gρ, (106)

or equivalently

0 = ∂tρ+∇z(ρv), (107)

0 = m∂tv +∇z
(

1

2
mv2 +

P

ρ
+ V

)
, (108)
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where the local fluid velocity v and the pressure P are given by

v =
~
m
∇zθ (109)

P = ρ

[
gρ− ~2

2m

∇2
z
√
ρ

√
ρ

]
. (110)

Eq. 107 is the equation of matter conservation, and Eq. 108 is the Euler equation. The pressure
given by Eq. 110 is the sum of two terms, the first one being related to the interaction energy,
and the second one being the so-called quantum pressure. The solution of Eq. 106 for which
v = 0 gives the Gross-Pitaevskii equation

− ~2

2m
∇2
z

√
ρ0 + gρ0 + V = µ, (111)

where we have identified µ ≡ ~∂tθ. In the Thomas Fermi limit (neglecting the quantum pressure
term) we find that the equilibrium density profile of a quasi-condensate is given by

ρ0 = (µ− V )/g. (112)

For small density fluctuations, we can linearize Eq. 107 and 108 in δρ̂ and ∇θ. We get the
equations for density and phase fluctuations

~∂tδ̂ρ = 2
√
ρ0

(
− ~2

2m
∇2
z + gρ0 − µ+ V

)
θ̂
√
ρ0, (113)

~∂tθ̂ = − 1

2
√
ρ0

(
~2

2m
∇2
z + 3gρ0 − µ+ V

)
δρ̂√
ρ0
. (114)

Eq. 114 shows that the equation of state of Eq. 112 is valid up to second order in δρ̂.

In the following, we show how the spectrum of excitations can be derived from Eq. 113 and
114, when we restrict ourselves to the uniform case.

4.2 Bogoliubov transformation

We go back to the case of a homogeneous gas in a box of length L. Eq. 113 and 114 are
the Heisenberg equation of motion associated to a Hamiltonian which can be diagonalized with
the Bogoliubov procedure. This amounts to finding the creation and annihilation operators â†k
and âk such that Ĥ =

∑
k

εkâ
†
kâk. This is achieved by the transformation

δρ̂ =
√

ρ0

L

∑
k

f−k (âke
ikz + â†ke

−ikz),

θ̂ = 1
2i
√
ρ0L

∑
k

f+
k (âke

ikz − â†ke−ikz),
(115)

where we have introduced the functions f+
k and f−k such that

f+
k = [Ek/(Ek + 2µ)]1/4 , (116)
f−k = 1/f+

k , (117)
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Ek =
~2k2

2m
(118)

being the energy of a free particle. With this procedure, the dispersion of the Bogoliubov
quasi-particles is found to be

εk =
√
Ek(Ek + 2µ). (119)

It is linear for k � 1/ξ and quadratic for k � 1/ξ: excitations with k � 1/ξ are phonons, and
excitations with k � 1/ξ are free particles. Here we have introduced the healing length

ξ = ~/
√
mµ, (120)

which separates those two regimes.

4.3 Phase and density fluctuations

In this section we give a flavor of the behavior of the correlation functions in the quasi-
condensate regime, which will be investigated in more details in Part III and IV.

4.3.1 Thermal density fluctuations

Excitations can be divided in two groups: phonons that have k � 1/ξ and particle ex-
citations that have k � 1/ξ. We first compute the contribution of phonons to g(1)(z). The
Hamiltonian describing those phonon modes is obtained from Eq. 114 and 113, neglecting the
quantum pressure. It writes

Ĥ =

∫
dz

[
~2ρ

2m
(∇z θ̂)2 +

g

2
(δρ̂)2

]
. (121)

In the limit kBT � µ the population of those phonon modes is large, so that a classical field
approximation where θ̂ and δρ̂ are treated as real functions is valid. We consider a uniform gas
in a box of length L. One can carry out the Fourier decomposition of θ and δρ as

θ(z) =
√

2
∑
k>0

θk1 cos (kz) + θk2 sin (kz), (122)

δρ(z) =
√

2
∑
k>0

δρk1 cos (kz) + δρk2 sin (kz), (123)

where {θk1, δρk1} and {θk2, δρk2} are two pairs of conjugate variables. Using the fact that
phonons are uncorrelated, the mean value of the Hamiltonian of Eq. 121 can be written as
〈Ĥ〉 =

∑
k

(Hk1 +Hk2), where

Hki = L
~2k2ρ

2m
〈θ2
ki〉+ L

g

2
〈δρ2

ki〉, i ∈ {1, 2} (124)

For such a quadratic Hamiltonian, we can use the equipartition theorem, which states that the
mean energy per quadratic degree of freedom is kBT/2. This gives

〈δρ2
ki〉 =

kBT

Lg
, i ∈ {1, 2} (125)
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The contribution to δρ of the phonon modes writes

〈δρ2〉 =
kBT

Lg

1/ξ∑
k=1/L

1, (126)

where we sum over momenta smaller than 1/ξ since we are considering phonons, and larger
than 1/L because wavelengths larger than the box length are not allowed. In the case where
L� ξ, we get

〈δρ2〉
ρ2
∝ kBT

gξρ2
∝ tγ3/2 =

(
γ

γco

)3/2

. (127)

This formalism is not appropriate to account for the particle-like excitations. These exci-
tations are plain waves of energy Ek and population kBT/Ek. If kBT � Ek, the population
of those modes is large so that a classical field approximation where the annihilation and cre-
ation operators in Eq. 115 can be replaced by the conjugate complex numbers ak and a∗k, with
〈|ak|2〉 = kBT/Ek. From Eq. 115, we get

δρk =

√
ρ0

L
f−k

(
ake

ikz + a∗ke
−ikz

)
. (128)

In the limit k � 1/ξ, f−k ' 1, so that

〈δρ2
k〉

ρ2
' 4

Lldegk2
. (129)

This can be understood in the following manner: the particle field akeikz/
√
L interferes with

the long-wavelength field (associated to phonons), which amplitude is of the order of √ρ0,
leading to density fluctuations δρk =

√
ρ0(ake

ikz + a∗ke
−ikz), from which Eq. 129 is recovered.

From Eq. 125 and 129, we see that for k � 1/ξ, 〈δρ2
k〉 does not depend on k, but for k � 1/ξ,

it scales as 1/k2. Thus, ξ must be the correlation length of density fluctuation. From Eq. 129,
we can compute the contribution of particle excitation to density fluctuations. It writes

δρ2

ρ2
=

+∞∑
1/ξ

dk
〈δρ2

k〉
ρ2

=
tγ3/2

π
'
(
γ

γco

)3/2

. (130)

Considering Eq. 127 and 130, we verify a posteriori that as long as γ � γco, density
fluctuations can be neglected, and the Bogoliubov treatment is valid.

4.3.2 Thermal phase fluctuations

The Hamiltonian of Eq. 121 being quadratic, the equipartition theorem applies and we have

〈θ2
ki〉 =

mkBT

L~2nk2
=

1

Lldegk2
, i ∈ {1, 2} (131)

The contribution to θ of the phonon modes writes

〈θ2〉 =
1

πldeg

1/ξ∑
k=1/L

dk

k2
. (132)
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Since we are computing the contribution of phonons, we integrate over momenta smaller than
1/ξ. In addition, momenta smaller than the inverse system size cannot contribute. If L is
chosen much larger than ξ, we find 16

〈θ2〉 ∝ L

ldeg
, (133)

which diverges with the system size. This is a manifestation of the fact that no long range
order can exist in 1D, due to the long wavelength phase fluctuations.

Let us compute the contribution of phonons to g(1)(z). In phase-density representation and
neglecting density fluctuations, the first order correlation function reads

g(1)(z) = 〈ei(θ(z)−θ(0))〉. (134)

Since the Hamiltonian is quadratic, we can use the Wick theorem and g(1)(z) simplifies to

g(1)(z) = e−
1
2
〈(θ(z)−θ(0))2〉. (135)

Substituting Eq. 123 and 131 into Eq. 135 gives

〈(θ(z)− θ(0)2〉 =
z

ldeg
, (136)

so that the first order correlation function writes

g(1)(z) = e
− |z|

2ldeg . (137)

To compute this expression, we have neglected the quantum pressure, that is to say we have
neglected quantum fluctuations 17. It is interesting to notice that g(1)(z) has the same ex-
pression as that for the degenerate ideal Bose gas. It only differs by a factor of two in the
correlation length. This can be understood by means of the following hand-waving argument:
in the ideal Bose gas regime, both phase and density fluctuations contribute to g(1)(z), whereas
in the quasi-condensate regime, density fluctuations are suppressed and only phase fluctuations
contribute to g(1)(z). Here, we see that long range order is killed by long-wavelength phase
fluctuations.

Note that the contribution of particle excitations to g(1)(z) can be computed similarly to
the contribution of density fluctuations. It gives

〈θ2
k〉 =

1

2Lldegk2
, (138)

which leads to an expression of 〈θ2〉 that scales as (γ/γco)3/2. We recover here the fact that
in the quasi-condensate regime, only long wave-length excitations are responsible for phase
fluctuations.

4.4 Equation of state of a quasi-condensate

We have seen that up to second order in δρ̂, the equation of state of the purely 1D quasi-
condensate is given by Eq. 112. However, in experiments, the gas lies in a transverse harmonic

16. Here we write kL = 2πn, where n is an integer. Then, the sum is just
∑
n 1/n2 = π2/6.

17. The effect of quantum fluctuations on g(1)(z) will be discussed in more details in Part 4.
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trap. At large density, the transverse wavefunction inflates with respect to the ground state of
the harmonic oscillator, which changes the chemical potential. A modified equation of state,
interpolating between 1D and 3D mean field theory, has been proposed by [Fuchs 03], and then
derived by [Mateo 08]. It reads

µ = ~ω⊥(
√

1 + 4ρa− 1). (139)

For low values of ρa, the equation of state of the quasi-condensate µ = gρ derived from
Bogoliubov is recovered.

4.5 Expression of correlation functions

In this part, we give the expression of correlation functions, derived from the Bogoliubov
theory [Mora 03], where neither quantum fluctuations nor density fluctuations are neglected.

4.5.1 First order correlation function

The logarithm of the first order correlation function reads

ln g(1)(z) = − 1

πρ

∫ +∞

0
dk
[
(u2
k + v2

k)αk + v2
k

]
(1− cos(kz)), (140)

where we have introduced

uk = (f+
k + f−k )/2,

vk = (f+
k − f−k )/2,

(141)

and

αk =
1

e
εk
kBT − 1

(142)

is the occupation number of the mode k. The term that is proportional to αk in the right hand
side of Eq. 140 accounts for thermal fluctuations, whereas, the second one which remains at
T = 0 accounts for quantum fluctuations. The behavior of g(1)(z) will be discussed in more
details in Part 4, where we will see that it is a power law at T = 0, and is exponential at
T 6= 0. Moreover, in this expression, the first order derivative vanishes as |z| → 0, contrary
to the third order derivative, which leads to a 1/k4 behavior of the momentum distribution at
large k.

4.5.2 Second-order correlation function

The second order correlation function reads

g(2)(z) = 1 +
2

πρ

∫ +∞

0
dk [(uk + vk)

2αk + vk(uk + vk)] cos (kz). (143)

The term that is proportional to αk in the right hand side of Eq. 143 accounts for thermal fluc-
tuations, whereas, the second one which remains at T = 0 accounts for quantum fluctuations.
These expression will be studied in more details in Part III and IV.
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Figure 9: (a) Typical set of fluctuations data is shown: at low density the gas is not degen-
erate, and follows the Poissonian limit of Eq. 96 (blue dotted line). Then when the gas gets
degenerate, fluctuations are enhanced by bosonic bunching (green dashed-dotted line). At
even higher density, interactions come into play and reduce the fluctuations, which fall on the
quasi-condensate limit given by Eq. 139 (red dashed line). (b) The densities ρ1 and ρ2 for
which the measured fluctuations are 20% lower than the predictions of ideal Bose gas theory
and the quasi-condensate theory, respectively are plotted versus kBT/~ω⊥. This graph shows
the evolution of the crossover width (distance between ρ1 and ρ2) as the gas goes from 3D
(top-right) to 1D (bottom-left).

5 Crossover between the ideal Bose gas and the quasi-
condensate regimes

We have presented two theories which are valid in the limiting regimes of weakly interacting
gases: the quasi-condensate regime and the ideal Bose gas regime. To quantify the crossover
width, we need to consider how different quantities vary when going from the ideal Bose gas
regime to the quasi-condensate regime at fixed t. We can define the crossover width as the
distance between the point γmax for which the quantity of interest differs by 20 % from the
ideal Bose gas theory and the point γmin for which it differs by 20 % from the quasi-condensate
theory. If we chose for example the quantity g(2)(0), we see in Fig. 8(a), that the crossover
defined this way happens on about one order of magnitude in γ. Note that the crossover width
might be different if different quantities are considered.

In 5.1, we present our measurements of the crossover width, where the quantity of interest
is the atom number variance. We show that the crossover spans over one order of magnitude
in γ. We illustrate this statement with experimental results obtained during my PhD, without
going too much into the details, as those results have already been presented in [Armijo 11a].
In 5.2, we present a theory describing specifically the crossover. We show that this theory
can be used to compute quantities which are not given by the Yang-Yang theory. Finally, we
discuss its validity conditions in 5.3.

5.1 Width of the crossover

In [Armijo 11b], we have been studying 18 the evolution of the crossover width throughout
the transition from a 3D situation to a 1D situation. In 3D, a phase transition is expected,
whereas in 1D as we have already discussed, it is a smooth crossover. With our experiment, for

18. Those results are shown as an illustration of the theoretical results presented here, and are not part of
the core of this thesis. More information can be found in [Armijo 11a].
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a given temperature, we are able to measure the atomic density fluctuations versus the mean
atomic density, and as seen in 2.2.3, this quantity is related to the equation of state of the gas.
A typical set of data is shown in Fig. 9(a): at low density the gas is not degenerate, and follows
the Poissonian limit of Eq. 96 (blue dotted line). Then when the gas gets degenerate, fluctu-
ations are enhanced by bosonic bunching (green dashed-dotted line). At even higher density,
interactions come into play and reduce the fluctuations, which fall on the quasi-condensate
limit given by Eq. 139 (red dashed line).

To quantify the quasi-condensate transition we define the linear densities ρ1 and ρ2 for
which the measured fluctuations are 20% lower than the predictions of ideal Bose gas theory and
the quasi-condensate theory, respectively. We repeat the experiment many times for different
temperatures. In Fig. 9(b), we plot ρ1 (circles) and ρ2 (squares) against kBT/~ω⊥. The
top-right part of the graph is the 3D limit, and the bottom-left of the graph is the 1D limit.
We see that the width of the transition which we define as the distance between ρ1 and ρ2

converges towards a constant (in a log-log space) in the 1D limit. In addition, in the 1D limit,
we find that the crossover width does not depend on temperature, and spans over one order of
magnitude in ρ, or equivalently in γ.

5.2 Classical field version of the Lieb-Liniger model

In this subsection we present a theory valid in the crossover from the ideal Bose gas regime
to the quasi-condensate regime, from which correlation functions can be derived.

5.2.1 Description of the model

It is a known result of field theory [Tsvelik 03] that a classical field problem can be mapped
to a quantum problem with one less degree of freedom. This result has been applied by
[Castin 00, Castin 04] to the classical field version of the Lieb-Liniger Hamiltonian in order to
compute the correlation functions within this model, and to understand the coherence prop-
erties of an atom laser. The idea of the classical field approximation is to replace the field
operator Ψ̂(z) by a complex function Ψ(z) in the Lieb-Liniger Hamiltonian (Eq. 19). This ap-
proximation is expected to be appropriate since in the crossover region, quantum fluctuations
are expected to have very little effect. In the grand canonical ensemble, the resulting energy
functional for the chemical potential µ is

E[{Ψ}] =

∫ L

0
dz

[
~2

2m

∣∣∣∣dΨ

dz

∣∣∣∣2 +
g

2
|Ψ|4 − µ |Ψ|2

]
. (144)

The probability for the field configuration Ψ(z) is proportional to the Boltzmann factor
e−βE[{Ψ}]/Z, where Z is the partition function. Z is the sum over all the field configura-
tions of the probability for each configuration. It can be written with the following functional
integral

Z =

∫
Ψ(0)=Ψ(L)

DΨe−βE[{Ψ}] (145)

where we use the periodic boundary condition Ψ(0) = Ψ(L) [Castin 04].

5.2.2 Mapping to a quantum problem

We are interested in calculating the normalized average of the functional f [{Ψ}] over all
the field configurations. Since we want to compute correlation functions, we restrict ourselves
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0 Lz

Figure 10: To compute Eq. 146, we split the path into two parts and integrate over the initial
value of the field Ψ(0) = Ψ0 and over its intermediate value at position z : Ψ(z) = Ψz

to the case where 〈f [{Ψ}]〉 is of the form 〈g(Ψ(0))h(Ψ(z))〉. We get

〈f [{Ψ}]〉 =
1

Z

∫
Ψ(0)=Ψ(L)

DΨe−βE[{Ψ}]f [{Ψ}] (146)

To compute this expression, we split the paths into two parts at position z (cf Fig. 10), and
integrate over all possible values of Ψ(0) = Ψ0 and Ψ(z) = Ψz.

〈f [{Ψ}]〉 =
1

Z

∫
dΨ0

∫
dΨz

[∫ Ψz

Ψ0

DΨ0→ze
−βE0→z [Ψ]

∫ ΨL

Ψz

DΨz→Le
−βEz→L[Ψ]

]
f [{Ψ}]. (147)

We are left with the calculation of functional integrals of the form

I =

∫ Ψzf

Ψzi

DΨzi→zf e
−βEzi→zf [{Ψ}]. (148)

Let us now map this classical problem to a quantum problem by using the following substitu-
tions : z → iτ , Re(Ψ)→ x(τ) and Im(Ψ)→ y(τ) in Eq. 148, we get

I =

∫ x(τf )

x(τi)
Dx
∫ y(τf )

y(τi)
Dy ei

∫ τf
τi

dτL/~, (149)

where

L
~β

=
~2

2m

[(
dx

dτ

2)
+

(
dy

dτ

2)]
− g

2
(x2 + y2)2 + µ(x2 + y2). (150)

In Eq. 149, we recognize the quantum propagator of the Hamiltonian Ĥ associated to the
Lagrangian L between the states |xi yi〉 and |xf yf 〉, that is

I = 〈xf yf |e−i
Ĥ(τf−τi)

~ |xi yi〉. (151)

Ĥ can be interpreted as the Hamiltonian

Ĥ =
p̂x

2 + p̂y
2

2M
+ V (x, y) (152)

of a particle of mass M = ~3β/m moving in a two-dimensional space in the potential
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V (x, y) = ~β
[g

2
(x2 + y2)2 − µ(x2 + y2)

]
. (153)

Inserting Eq. 151 into Eq. 147 leads to

〈f [{Ψ}]〉 = 〈g(x0, y0)h(xz, yz)〉

= 1
Z

∫∫∫∫
dx0dy0dxzdyz 〈xz yz|e−

Ĥz
~ |x0 y0〉g(x0, y0)〈x0 y0|e−

Ĥ(L−z)
~ |xz yz〉h(xz, yz)

=
Tr

[
e−

Ĥ(L−z)
~ h(x̂,ŷ)e−

Ĥz
~ g(x̂,ŷ)

]
Tr

[
e−

ĤL
~

]
(154)

This expression simplifies in the thermodynamic limit (L → +∞), where only the lowest
eigenvalue of Ĥ contributes to the traces. If we denote the ground state of the system by |φ0〉
and its energy by ε0, we find

〈f [{Ψ}]〉 = 〈g(x0, y0)h(xz, yz)〉 →
L→+∞

〈φ0|h(x̂, ŷ)e−
(Ĥ−ε0)z

~ g(x̂, ŷ)|φ0〉. (155)

In the following we solve the quantum problem and find the expressions of the first-order and
second-order correlation functions.

5.2.3 Solution of the quantum problem

In polar coordinates (r, θ), the Hamiltonian of Eq. 152 writes

Ĥ = − ~2

2M

[
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂2θ

]
+ ~β

(g
2
r4 − µr2

)
. (156)

We recognize the angular momentum ~L = ~r × ~p = −i~ (x∂/∂y + y∂/∂x) = −i~∂/∂θ.
The Hamiltonian of Eq. 156 is rotationally invariant so that we can write its eigenstates
Φl
n(r) = φln(r)eilθ, where n is the radial quantum number, and l is the angular momentum

quantum number. Φl
n(r) is an eigenfunction of ~L with the eigenvalue l~, where l = 0, 1, 2, ... .

The Schrödinger equation writes

E lnφln(r) = − ~2

2M

1

r

∂

∂r

(
r
∂

∂r
φln(r)

)
+

~2l2

2Mr2
φln(r) + ~β

(g
2
r4 − µr2

)
φln(r). (157)

Solving this simple one-dimensional Schrödinger equation is sufficient to compute all the cor-
relation functions.

5.2.4 Single parameter dependence

Let us write the exponent of the Boltzmann factor with the dimensionless variables z0 and
Ψ0, such that

z = z0z̃,

Ψ = Ψ0Ψ̃,

E = βẼ.

(158)
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Substituting Eq. 158 into Eq. 144 leads to

Ẽ[{Ψ̃}] = gΨ4
0z0β

∫ L/z0

0
dz̃

 ~2

2mgΨ2
0z

2
0

∣∣∣∣∣dΨ̃

dz̃

∣∣∣∣∣
2

+
1

2

∣∣∣Ψ̃∣∣∣4 − µ

gΨ2
0

∣∣∣Ψ̃∣∣∣2
 . (159)

If we set

z0 =
(

~4β
m2g

)1/3
,

Ψ0 =
(

m
~2gβ2

)1/6
,

(160)

Eq. 161 writes

Ẽ[{Ψ̃}] =

∫ L

0
dz̃

1

2

∣∣∣∣∣dΨ̃

dz̃

∣∣∣∣∣
2

+
1

2

∣∣∣Ψ̃∣∣∣4 − η ∣∣∣Ψ̃∣∣∣2
 . (161)

We see that at the thermodynamic limit (L → +∞), this classical field problem depends on
the single parameter

η = µ

(
~2β2

mg2

)1/3

=
µ

kBT

(
t

2

)1/3

. (162)

5.2.5 Expressions of correlation functions

First-order correlation function

In the case where f(Ψ) = Ψ∗(z)Ψ(0), 〈f [{Ψ}]〉 is the first order correlation function G(1)(z).
At the thermodynamic limit, Eq. 154 gives

G(1)(z) = 〈φ0
0|(x̂− iŷ)e−|z|(Ĥ−E

0
0 )/~(x̂+ iŷ)|φ0

0〉. (163)

If we insert the completeness relation 1 =
∑
n,l

|φln〉〈φln| in Eq. 163, we get

G(1)(z) =
∑
n,l

e−|z|(E
l
n−E0

0 )/~|〈φ0
0|(x̂+ iŷ)|φln〉|2. (164)

In polar coordinates, we have x̂+ iŷ = r̂eiθ̂, which couples |φ0
0〉 to any |φ1

n〉 so that

G(1)(z) =
∑
n

e−|z|(E
1
n−E0

0 )/~|〈φ0
0|(x̂+ iŷ)|φ1

n〉|2, (165)

and

G(1)(z) =
∑
n

e−|z|(E
1
n−E0

0 )/~
∣∣∣∣∫ 2πrdr rφ0∗

0 (r)φ1
n(r)

∣∣∣∣2 . (166)

Within this approximation, g(1)(z) is a sum of exponential curves. At large distance, the first
term dominates, so that g(1)(z) decays exponentially with the length scale

l1 =
~

E1
0 − E0

0

. (167)
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The momentum distribution can be obtained by Fourier transforming Eq. 166. The uniform
convergence is ensured by the fact that the overlap integrals converge very fast towards zero 19.

Equation of state

Because there is only one parameter in this theory, the equation of state can be written as

ρ = Ψ2
0F(η), (168)

where F is a dimensionless function and Ψ2
0 is given by Eq. 160. Subsequently, from the

definition of G(1)(z), we have

ρ = G(1)(0). (169)

In terms of γ and t, Eq. 168 reads

γ =

(
t

2

)−2/3

F(η)−1 =
γco

F(η)
. (170)

Second-order correlation function

In the case where f [{Ψ}] = |Ψ∗(z)Ψ(0)|2, 〈f [{Ψ}]〉 is the second order correlation function
G(2)(z). Then, in Eq. 154, g(x̂, ŷ) = h(x̂, ŷ) = (x̂2 + ŷ2) which is invariant by rotation. In the
thermodynamic limit, we have

G(2)(z) =
∑
n

e−|z|(E
0
n−E0

0 )/~
∣∣∣∣∫ 2πrdr r2φ0∗

0 (r)φ0
n(r)

∣∣∣∣2 (171)

Within this approximation, g(2)(z) is a sum of exponential curves. At large distance, the first
term dominates, so that g(2)(z) decays exponentially with the length scale

l2 =
~

E0
1 − E0

0

. (172)

Limit η � 1: quasi-condensate regime

If η � 1, the Mexican hat potential U(r̃) ∝
(
(g/2)r4 − µr2

)
in Eq. 157 can be developed

to second order around its minimum r̃0 ' √η, so that Eq. 157 reduces to the Schrödinger
equation of an harmonic oscillator. The eigenenergies can be determined for l = 0 and l = 1,
and then substituted into Eq. 167 to give

l1 = 2ldeg. (173)

Thus, in the limit η � 1, that is to say in the quasi-condensate limit, we recover the same
correlation length than in Bogoliubov theory.

The eigenenergies can also be determined for n = 0, l = 0 and n = 1, l = 0, and then
substituted in Eq. 172 to give

19. In practice, we can stop the summation at n = 10.
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l2 =
ξ

2
. (174)

In 4.3.1, we have shown with a simple argument that the correlation length of density fluctu-
ations should be of the order of ξ. Here we recover this result in the quasi-condensate limit
of the classical-field approximation. In Part III, we will derive this result exactly from the
Bogoliubov theory.

Limit η � −1: ideal Bose gas regime

If η � −1 that is to say in the ideal Bose gas limit, the Hamiltonian of Eq. 152 in which we
set g = 0 reduces to the Hamiltonian of a 2D harmonic oscillator. Finding the eigenenergies
like in the limit η � 1, we recover the results of the ideal Bose gas theory.

Therefore, we have shown that the classical field theory interpolates between the ideal Bose
gas theory and the Bogoliubov theory.

5.3 Validity of this approximation

First of all, this approximation is valid only in the weakly interacting limit (γ � 1 or t� 1),
as the model does not contain any strong correlation. In the weakly interacting regimes, the
validity of the classical field approximation depends on the quantity we want to compute. It will
be valid only if the population of the modes that contribute to this quantity is large. Within
the ideal Bose gas regime, because of the Wick theorem, the typical width of g(1)(z) and of
g(2)(z) is the same so that the validity condition will be the same for those two quantities. In
this regime a high population of the low lying modes requires the gas to be very degenerate,
that is to say ρ� ρdeg or equivalently γ � γd, where γd is given by Eq. 88. Thus, the classical
field model does not describe the classical gas. In the quasi-condensate regime, the relevant
modes are phonons. The main contribution to the measured quantity must come from highly
populated phonon modes.

6 The strongly interacting regime

In 1.1, we have seen that when interactions become very strong, nodes appear in the many-
body wavefunction at positions zi = zj , with i 6= j. Interactions are thus mimicking the effect
of the Pauli principle for fermions. This gave the idea of a mapping between the theory of the
strongly interacting Bose gas and the non-interacting Fermi gas. It was introduced in 1960
[Girardeau 60] by Marvin Girardeau, following the work [Tonks 36] of Lewi Tonks. This model
describes the g → +∞ limit, known as the Tonks limit.

6.1 Bose-Fermi mapping

The idea is to write the many-body wavefunction of the bosonic system like the product
of the many-body wavefunction of a non-interacting Fermi gas times a term which ensures the
symmetry under particle exchange.

ΨB(z1, ..., zN ) = ΨF(z1, ..., zN )
∏

1≤j<i≤N
sgn(xi − xj) (175)

Putting the system on a ring of length L, with periodic boundary conditions, the ground-state
wavefunction can be written as
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Figure 11: (a) Zero temperature density profile of a 1D Bose gas in a harmonic trap : in the 1D
mean field regime (dashed line), and in Tonks regime (solid line). The profiles are normalized
to the same integral, and the horizontal axis is rescaled for each profile with the corresponding
Thomas-Fermi radius. (b) Two body correlation function of a Tonks gas at zero temperature.

Ψ0
B(z1, ..., zN ) ∝

∏
1≤i<j≤N

sin
(π
L
|xi − xj |

)
. (176)

We see that in the case of the two-body problem, this wavefunction coincides with the solution
of the Lieb-Liniger model.

Since the squared wavefunction is the same as that of a non-interacting Fermi gas, so are all
the properties that are linked to the density. For instance, the zero temperature density profile
of the gas in a harmonic trap, is that of a non-interacting Fermi gas. At the thermodynamic
limit, it writes

ρ(z) = ρ0

√
1−

( z
R

)2
, (177)

where the Thomas-Fermi radius is R =
√

4Nl//, with l// =
√

~/mω// being the harmonic scale
in the longitudinal direction. The difference between the mean-field density profile (Eq. 112)
and the density profile in the strongly interacting regime (Eq. 177) is shown in Fig. 11(a).
This change in the density profile could be used to identify the strongly interacting regime.

Another example of quantities shared by the Tonks gas and the non-interacting Fermi gas
is the two-body correlation function, and more generally any density correlation function. The
two body correlation function thus writes

g(2)(z) = 1−
(

sin kF z

kF z

)2

, (178)

where kF = πρ is the Fermi wavevector. It is plotted in Fig. 11(b).

This Bose-Fermi mapping holds in a harmonic trap, where the density and the kinetic
energy density have been derived [Brack 01, Vignolo 00]. It also holds in a lattice potential
[Paredes 04]. The calculation of the first order correlation function has triggered a lot of interest
in the past twenty years. In the following we review the main results.
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6.2 One-body correlation function.

Different approaches have been used to compute the one-body correlation function both at
zero temperature and at finite temperature (for a complete review, see [Cazalilla 11a]).

For impenetrable bosons at zero temperature, the calculation of g(1)(z) was first considered
by T. D. Schulz in 1963 [Schultz 63], who found a power law decay at large distances, thus
proving the absence of Bose-Einstein condensation 20. The precise expression of the power law
was determined by Lenard at zero temperature [Lenard 64]. He found the following expression

g(1)(z) '
z→∞

ρ∞

|kF z|1/2
, (179)

where ρ∞ ' 0.92418.

Using a hydrodynamic approach [Haldane 81] describing low energy properties of 1D quan-
tum fluids, known as the Luttinger liquid theory, Haldane showed that g(1)(z) can be written
as a sum of sine and cosine functions of multiples of 2kF z, each term being multiplied by a
series of odd or even powers of 1/(kF z) respectively. However, coefficients in this development
depend on microscopic properties of the gas, and are not given by the Luttinger theory. Nev-
ertheless, some of those coefficients can be calculated using exact theories. This was done in
[Vaidya 79] for a uniform Bose gas at zero temperature. The authors found

g(1)(z) =
ρ∞√
kF z

[
1− 1

8

(
cos(2kF z)+

1

4

)
1

(kF z)2
− 3

16

sin(2kF z)

(kF z)3
+

33

2048

1

(kF z)4
+

93

256

cos 2kF z)

(kF z)5
+...

]
.

(180)
This result was then generalized to a trapped system [Gangardt 04].

For a finite temperature system in the grand canonical ensemble, an asymptotic expression
has been derived in [Its 91]. For µ > 0, it is exponential and reads

g(1)(z) '
z→∞

2ρ∞√
πλdB

F (µ/kBT )e−2|z|/lc , (181)

where F is a dimensionless function, and lc is the correlation length. Two regimes can be
distinguished. If the gas is very degenerate (µ/kBT � 1), then the correlation length is the de
Broglie wavelength: lc ' λdB. In the non-degenerate limit, the correlation length is found to
be lc ' kFλ2

dB.

On the numerical side, the dynamical structure factor of a Lieb-Liniger gas at T = 0
[Caux 06] and g(1)(z) [Caux 07] were calculated for various interaction strengths. The momen-
tum distribution and first-order correlation function are shown in Fig. 12. In (a), we show
their results for the momentum distribution in log-log scale. The 1/k4 behavior is verified here.
It appears at lower k for lower values of γ, but with a lower amplitude than at high γ. To
understand this, we propose the following hand-waving argument. The value of k0 at which
the momentum distribution starts to scale as 1/k4 is given by the typical length on which the
wavefunction is linear around singular points. This linear part is larger when the interaction
strength is lower, so that the lower γ, the smaller k0. Moreover, the amplitude of the 1/k4 tail
is given by the slope of the wavefunction at singular positions, which is larger at high γ.

Very recently, the momentum distribution of a strongly interacting gas under harmonic
confinement and at finite temperature has been computed [Vignolo 12] using the Bose-Fermi

20. This result is anterior to [Hohenberg 67, Mermin 66], which sates that long range order cannot occur in
one-dimensional systems.
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Figure 12: Zero temperature numerical calculation adapted from [Caux 07]. (a) Momentum
distribution of a 1D Bose gas for various values of γ, where k is normalized to the Fermi
wavevector kF. We show the appearance of 1/k4 tails. Their amplitude is higher at large γ,
however, they appear for larger values of k at larger γ. (b) First-order correlation function for
various values of γ. In the inset, which is a log-log plot, we see the power law decay of g(1)(z).

mapping. In this work, the authors show that the weight of 1/p4 tails increases with the
temperature.
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Part II

Experimental apparatus
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In this part we present our experimental apparatus. We explain how we trap and cool a
87Rb gas from room temperature down to a few tens of nano-Kelvins. We show the principle
of the two different magnetic traps we use, and what are their general properties. We then
explain how our imaging system works, and the principle of absorption imaging. After having
discussed how we determine the scattering cross section both in the case of low and high atomic
densities, we give a flavor of some progress we did in chip fabrication.

7 Introduction

7.1 Atom chips

Magnetic trapping with coils outside the vacuum chamber where the atoms are cooled and
trapped was the first design adopted in cold atoms experiments, but it suffers from many
disadvantages. First, it requires the coils to be brought very close to the atoms, thus reducing
optical access. Second, the achievable trapping frequencies are below a few hundred Hertz, so
that reaching quantum degeneracy by means of evaporative cooling can take as long as one
minute, and reaching the low-dimensional regime is not possible. This is because the external
coils make it very difficult to produce magnetic fields that vary on short length scales. Two
different approaches are now implemented to gain optical access and to reach higher trapping
frequencies: optical trapping and atom chips 21. In the latter solution, the idea is to bring
atoms very close to the source of the magnetic field in order for them to experience strong field
gradients. This is achieved at a few tens of micrometers away from micro-wires in which an
electrical current of the order of 1 A flows, producing magnetic gradients as high as 1 T/cm.
Those micro-wires are deposited on a substrate which can be put into vacuum. Using this
technique, the first BEC on chip was obtained in 2001 in Tübingen [Ott 01] and Münich
[Hänsel 01], and two years later in Orsay [Aussibal 03]. The Orsay experiment is still the one
we use in this thesis, although it has undergone many upgrades.

7.2 Overview

During this PhD, we have been able to measure density fluctuations in both weakly and
strongly interacting 1D Bose gases. In the weakly interacting regime, we were also able to
measure the third moment of density fluctuations, and momentum distributions. This requires
to acquiring data for hours, with a repetition rate of one per twenty seconds. Maintaining
a stable experiment on the time scale of a day is challenging. Some work had already been
carried out before [Trebbia 07b] to improve stability, such as: adding a double layer magnetic
shield around the vacuum chamber to screen ambient magnetic fields, installing a laminar-flow
box above the experiment to avoid fluctuations of the air refractive index due to heating of
the electronic devices present on the optical table, water cooling the coils, and decoupling the
current supplies of the chip wires from the ground by putting them on batteries. In this Part,
after having explained how the experiment works, we present most of the changes we have done
on the experiments during the last three years.

8 Laser cooling and optical pumping

In this section, we briefly present the different steps required to cool a gas from room
temperature down to temperatures in the µK range, and put them in a trappable Zeeman

21. For a complete review, see [Reichel 11]
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sub-level. It is always difficult to take a good picture of such a compact experiment, so the
reader can imagine an onion structure: a chip in a small vacuum chamber surrounded with
eight coils. The vacuum chamber is a 7 cm cube: one face is the electrical feed-through, one
face holds a titanium sublimation pump, three faces are windows (see Fig. 13(a)), and the last
face is connected to a tube at the end of which there is a fourth window. On the sides of the
tube are connected an ion pump, a gauge and a valve. The chip is glued (or soldered) on a
copper mount which is screwed on the electrical feed-through. (see Fig. 13(b)). A gold layer
of 200 nm thickness has been deposited on the chip, so that it reflects the laser light. The
chip is at 45° from the horizontal, along a diagonal plane of the cubic chamber, and two 87Rb
dispensers 22, connected in series, both electrically and thermally isolated from the mount by
PEEK 23 pieces, are screwed on each side of the chip (see Fig. 13(b)).

8.1 External magneto-optical trap

The first cooling stage is a mirror-magneto-optical trap (MOT), for which four circularly
polarized beams are needed: two beams reflecting on the chip and two grazing beams. The
magnetic quadrupole is obtained by two water cooled coils in the anti-Helmholtz configuration
in which a 9 A current flows, and creating a 30 G/cm magnetic field gradient. The position of
the MOT can be varied by additional homogeneous magnetic fields provided by three pairs of
coils in the three directions of space, each pair being in the Helmholtz configuration.

The MOT beams are tuned about 15 MHz below the transition |5S1/2, F = 2〉 →
|5P3/2, F

′ = 3〉 (see Fig. 13(d)), and have a total power of about 70 mW and a cross-section
of about 5 cm2, so that the intensity in one beam is about I = 3.5 mW/cm2. The saturation
intensity of the transition being Isat = 1.6 mW/cm2, we have I/Isat ≈ 2.2.

Because the ground state of 87Rb is degenerate, a repumper laser is needed to pump the
atoms from the state |5S1/2, F = 1〉 back to the state |5S1/2, F = 2〉, through the excited state
|5P3/2, F

′ = 2〉. This laser beam is coupled with one of the MOT beams and has an intensity
of about 0.4 mW/cm2.

At the beginning of a cycle, we put 7 A in the dispensers (the threshold current is around
4 A) for 3 seconds, during which 87Rb is released. We load the MOT from the background
pressure of 87Rb during about six seconds, after which the dispenser current is set to a value
below threshold (around 2.5 A). This keeps the dispensers warm enough so that 87Rb is quickly
released when the current is raised again to 7 A during the next cycle.

8.2 On-chip magneto-optical trap (UMOT)

After having cooled and trapped the atoms, we want to bring them a few hundred microm-
eters away from the chip surface. However, the external MOT stands about half a centimeter
away from the chip, which is too far to be captured in a chip magnetic trap. Therefore, we
transfer the MOT onto the chip by switching off the current in the quadrupole coils, and
turning on the current in a U-shaped wire, deposited on the chip surface. It also produces a
quadrupole field (with an additional homogeneous magnetic field). The current in the U-wire
is usually of the order of 5 A, for an external magnetic field of a few Gauss. As soon as the
atoms have been transferred from one trap to the other, we lower the current in the U-wire to
bring the atoms closer to the chip surface (' 200 µm). The transfer and the UMOT stage only
lasts about 100 ms. The atom number in the UMOT is of the order of a few 107 atoms.

22. We have been using two types of dispensers both from SAES Getters. The RB/NF/4.8/17 FT10+10 and
the RB/NF/3.4/17 FT10+10.
23. Polyether ether ketone
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Figure 13: (a) Sideview of the experiment’s core. The chip mount is screwed on the electrical
feed-through. The chip is glued (or soldered) on the mount whose orientation is chosen such
that the chip faces down, at 45° from the horizontal. A Titanium sublimation pump is mounted
above the chamber. The four viewports are used for the 4 MOT beams, two of them are also
used for the imaging beam. (b) Copper mount with the chip and the connections. The
connections are ensured by bronze-beryllium springs that are soldered at the end of the wires.
The springs are then pressed against the chip by PEEK pieces. We also show one dispenser
(the other is on the other side), that is screwed on the side of the mount, but insulated both
thermally and electrically by PEEK pieces. (c) Picture taken along the ~ux direction. We see
the chip facing down, through the viewport. (d) 87Rb D2 line. The ground state 5S1/2 is
degenerate, the two ground levels being separated by 6.8 Ghz. The transition towards the
excited state 5P3/2 is at 780 nm. On the plot, we show the position of the different lasers.
LASER 1 is locked on the crossover between the excited states F ′ = 2 and F ′ = 3, the LASER
2 (repumper) is locked on the transition F = 1 → F ′ = 2, and SLAVE has a wavelength that
can be tuned in a [-80 MHz, +20 MHz] interval around the transition F = 2→ F ′ = 3.
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8.3 Optical molasses

Typical 87Rb MOT temperature is a few hundred micro-Kelvin, which is not low enough
for the atoms to be directly loaded into a magnetic trap. Therefore, after loading the UMOT,
we perform a molasses step, where the magnetic quadrupole field is switched off, and the laser
further detuned to the red (≈ 80 MHz). This brings the temperature down to a few tens of
micro-Kelvin and lasts about 1 ms.

8.4 Optical pumping

The atoms are now cold enough to be captured in a magnetic trap, but they are equally
distributed in the five Zeeman sub-levels of the ground state. Now, as we will see in 9.1, we
magnetically trap the atoms that are in the sub-level |F = 2,mF = 2〉. Therefore, we optically
pump the atoms in the sub-level mF = 2 on the transition F = 2→ F ′ = 2 using a circularly
polarized grazing beam and adding a homogeneous magnetic field in the direction of this beam
so that the polarization of the light is σ+, with respect to the quantization axis. The pulse
duration is of the order of a few hundred micro-seconds.

8.5 New 780 nm laser system

8.5.1 Enhanced cavity diode laser (SYRTE design)

Good stability of the MOT, UMOT, molasses and optical pumping steps is ensured by three
things. The pressure cycle in the vacuum chamber must reach equilibrium. This is usually
achieved in a few tens of cycles. The heat generated in the coils must be removed from the
inside of the magnetic shield, so that their temperature remains stable: this is achieved by
water cooling. Then, the laser power, wavelength and alignment must remain constant. The
old lasers were not stable enough and could not stay locked for hours. Therefore, we built new
ones.

We chose the design developed at SYRTE [Baillard 06], which uses an anti-reflection coated
laser diode 24: one of the diode facet reflects 100% of the light and the other only a few percents,
which is not enough for the diode to lase by itself. The cavity is closed by a glass plate (see Fig.
14) which feeds 10% of the light back into the laser. The glass plate is glued at the termination
of a cylindrical piezoelectric crystal (PZT), which enables one to finely tune the cavity length.
Moreover, we add a Fabry-Pérot etalon 25 in a telescope (L1, L2) inside the cavity, in order
to force the wavelength to a given value, determined by the etalon angle. Finally, the lens L3

collimates the beam.

In this system, we use the Fabry-Pérot etalon to roughly tune the wavelength of the laser
(precision is of the order of 0.1 nm), and then use the PZT to finely tune the frequency of the
laser in the GHz range (which is inside the etalon bandwidth). Indeed, changing the length of
the cavity modifies the frequency of the longitudinal modes.

The main advantage of this configuration, with respect to the Littrow configuration 26 we
were using before, is that changing the laser wavelength does not affect the beam alignment.

24. EagleYard: EYP-RWE-0790-04000-0750-SOT01-0000.
25. Research Electro-Optics: bandwidth 0.3 nm.
26. In the Littrow configuration, the light which comes out of the laser is diffracted by a grating which feeds

back the first order diffraction inside the cavity. Tuning of the laser is achieved by changing the angle of the
grating with respect to the incident beam. In this configuration, the beam is deflected by the grating, so that
tuning the laser leads to a complete misalignment of the output beam.
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Figure 14: Enhanced cavity diode laser using the SYRTE [Baillard 06] design. An anti-
reflection coated diode laser is used. The cavity is closed by a 10% reflecting glass plate,
and a Fabry-Pérot etalon (L1, L2) is added in a telescope inside the cavity. The glass plate
is glued on a cylindrical piezoelectric crystal (PZT) which allows for fine tuning of the cavity
length. It is positioned at the focus position of the telescope (L2, L3), so that the injection of
the diode laser is insensitive to any tilt of the glass plate.

Moreover, we implemented a two step thermal stabilization of the laser diode, by means of two
Peltier coolers, so that the wavelength is very stable with time. Finally, the fact that the glass
plate is at the focus position of two telescopes makes the injection of the laser insensitive to
any tilt of this device.

8.5.2 Frequency locking of the lasers

For atom cooling and trapping, we need two lasers. The cooling light must be locked a few
MHz below the transition |5S1/2, F = 2〉 → |5P3/2, F

′ = 3〉 and provide at least 100 mW. It is
obtained in the following way: a master laser (Laser 1 in Fig. 15) is locked on the crossover
between the transitions |5S1/2, F = 2〉 → |5P3/2, F

′ = 2〉 and |5S1/2, F = 2〉 → |5P3/2, F
′ = 3〉

using saturated absorption spectroscopy of 87Rb, and then coupled into a fiber (Fiber 1). The
next part of the experiment is not represented on the graph: the light that comes out of (Fiber
1) is frequency shifted by a few tens of MHz in a double-pass acousto-optic modulator. Then it is
seeded into a slave laser which provides 100 mW. The light from this slave laser is used for laser
cooling and trapping, imaging, and optical pumping. The second laser in Fig. 15 must provide
the repumping light, which must be locked on the transition |5S1/2, F = 1〉 → |5P3/2, F

′ = 2〉.
It is offset locked from Laser 1 using the beating signal of the two lasers on a fast photodiode.
The signal of this photodiode is mixed with a reference coming from a ≈ 6.6 GHz voltage
controlled oscillator. The outgoing signal is amplified and its frequency is converted into a
voltage in a frequency to voltage converter. Since this voltage is proportional to the frequency
difference between the two lasers, we use it to offset lock the repumper laser on the transition
|5S1/2, F = 1〉 → |5P3/2, F

′ = 2〉. The lasers can now stay locked for a whole day (or a whole
night).

9 Magnetic trapping with micro-wires

In section 8, we have seen how we obtain a gas in the micro-Kelvin range, a few hundred
micro-meters away from the chip surface, and with the atoms in the Zeeman sublevel mF = 2.
In this section, we show how the cloud is then magnetically trapped, and how further cooling
is achieved.
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Figure 15: Laser system : Laser 1 and 2 are enhanced cavity diode lasers, whose internal
structure is shown in Fig. 14. The master cooler is locked on the transition |5S1/2〉 → |5P3/2〉
using saturated absorption spectroscopy of 87Rb. It is then split into two beams. One is
coupled into a fiber and goes to another table (not represented). The other is combined on a
50/50 plate with the light from the repumper laser (Laser 2). The two beams are then focused
on a fast photodiode (FPD) Hamamatsu G4176-03 which is reverse biased through a bias tee
Mini-Circuits ZX85-12G+ . The photodiode signal is mixed (Mini-Circuits ZX05-73L+) with
the signal of a voltage controlled oscillator Mini-Circuits ZX95-6640C+ (≈ 6.6 GHz), and
amplified by a series of RF amplifiers (one Mini-Circuits ZJL-7G and two Mini-Circuits ZX60-
8008E+). Finally, the beating frequency is converted into a voltage by means of a frequency
to voltage converter. We use this signal whose amplitude is proportional to the frequency
difference between the two lasers to offset lock the repumper on the master cooler by means of
a PID (proportional-integral-derivative) controller.
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Figure 16: (a) Magnetic field ~Bw created by a current I running in a infinitely long wire. (b)
Magnetic field created by the wire in (a) plus a uniform field ~B⊥ along ~uu We see a minimum
appearing along the vertical black line. (c) The solid line is the potential along the ~uv direction
(black vertical line of (b)) due to ~B⊥ and ~Bw. The dashed line shows how this potential is
modified in the presence of an extra uniform magnetic field ~B0 along the ~uz direction.

9.1 Magnetic trapping

Let us consider an atom moving in the presence of a magnetic field ~B. If the Larmor
frequency ωL = µB| ~B|/~ is much larger than the rate of change of the field direction in the
reference frame of the atom, the spin of the atom follows adiabatically the local orientation of
the magnetic field, and the potential felt [Metcalf 99] by the atom writes

V = gFmFµB| ~B|, (182)

where µB = 9.274.10−24 J/T is the Bohr magneton, and gF is the Landé factor of the atomic
hyperfine state. The atom undergoes a force which drives it towards the potential maxima
if gFmF < 0, or toward the potential minima if gFmF > 0. In the first situation, the atom
is called a high field seeker, whereas in the second situation it is named a low field seeker.
Because a maximum of magnetic field cannot exist in free space, only the low field seeker can
be magnetically trapped. After the laser cooling stage, the atoms are in one of the ground
states (F = 1 or F = 2), where gF = −1/2 and 1/2 respectively. In order to be trapped,
the atoms should be either in F = 1 with negative mF , or in F=2 with positive mF . As the
potential is stronger if |mF gF | is larger, we use the state < F = 2, mF = 2|.

9.2 Magnetic trapping with microwires

9.2.1 2D trapping with a wire and a homogeneous magnetic field

In this subsection we show how it is possible to implement a magnetic trap in two directions
of space with a wire and two external uniform magnetic fields.

The magnetic field created by an infinite wire of infinitely small cross-section writes 27

~Bw =
µ0I

2πr
~uθ, (183)

27. In ~Bw, the index w stands for “wire”.
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where I is the current in the wire, r is the distance to the wire, and µ0 = 4π.10−7 H/m is the
vacuum magnetic permeability. If we add a uniform magnetic field ~B⊥ along a direction that
is perpendicular to the wire, let us say ~uu, it cancels the magnetic field created by the wire
at a certain distance v0. For u = 0, the potential along the axis ~uv (see Fig. 16(b)) is then
proportional to B⊥

∣∣v0
v − 1

∣∣, where v0 = µ0I/2πB⊥. Now we have a minimum in the potential
along a line parallel to the wire (direction ~uz), but we see that this minimum is 0. Therefore,
the adiabaticity condition is not verified in the vicinity of v0. To circumvent this problem, we
add another uniform magnetic field ~B0 along the direction ~uz, so that the potential writes 28

V~uv(u = 0, v) = µB

√
B2
⊥

(v0

v
− 1
)2

+B2
0 , (184)

where

v0 =
µ0I

2πB⊥
. (185)

We see that the potential minimum is lifted up (see dashed line in Fig. 16 (c)) to µBB0. B0

must be large enough in order to satisfy the adiabaticity condition. However B0 should not be
too large, otherwise the potential depth, whose expression is

∆V = µB

(√
B2
⊥ +B2

0 −B0

)
(186)

would come close to zero so that no atom can be trapped. We also see that close to y0,
the addition of ~B0 changes the shape of the potential, which goes from linear without ~B0 to
quadratic with ~B0. The oscillation frequency around v0 is

f⊥ =
1

2π

√
µB
m

∂2B

∂v2

∣∣∣∣
v0

. (187)

In the situation described above, we find

f⊥ =
1

2π

√
µB
mB0

µ0I

2πv2
0

∝ B2
⊥
I
. (188)

In order to increase ω⊥ substantially without coming closer to the chip (we will see in section
10 that the cloud would undergo fragmentation along the direction ~uz), the only solution is to
keep the ratio I/B⊥ constant. In practice I is limited to a few Amperes because of heating
issues, so that the maximum trapping frequency is not more than a few kHz.

If we now raise the question of the oscillation frequency in the other direction, the answer
comes easily from Maxwell’s equations. Indeed, as long as there is no magnetic field gradient
along ~uz, the Maxwell equations ensure that the oscillation frequency is the same 29 along ~uu.
In this case, the trap depth is also the same. With this configuration, the atoms are trapped in
direction ~uu and ~uv, in a tube that is at a distance y0 to the wire. Typical parameters (I = 3A
and B⊥ = 40 G) give y0 = 150 µm and f⊥ = 3.4 kHz.

28. From now on, we omit the term gFmF which is equal to 1 in the case of the Zeeman sub-level mF = 2 of
the ground state F = 2 of 87Rb.
29. Of course the potential is not exactly the same : the potential along ~uu is symmetrical.
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Figure 17: (a) Magnetic field created by two parallel wires running the same current. At half
distance between the two wires, the magnetic field is along ~uu. (b) If a third wire running
the same current but in this opposite direction is added in the middle, at a certain v, the
magnetic field it creates cancels ~B⊥. The potential is plotted in (c), with and without adding
a uniform magnetic field ~B0 along ~uz. A local minimum is found at position v0 = d/2, and a
local maximum is found at v1 = αd.

9.2.2 Three wires 2D trap

In this subsection we show how it is possible to implement a magnetic trap in two directions
of space with three parallel wires.

In usual experiments, ~B⊥ and ~B0 are obtained by Helmholtz coils that are outside the
vacuum chamber. However, ~B⊥ can be created by two parallel wires in which the same current
flows in the same direction. Indeed, at half distance between the two wires, the components of
the magnetic field of each wire along ~uv cancel each other, so that only the component along
~uu remains (see Fig. 17a). However, contrary to the situation of the magnetic field created by
coils, here ~B⊥ depends on v (and u). Let us calculate how it varies with v, at half distance
between the two wires. Using Eq. 183, one can get the expression

~B⊥(u = 0, v) =
µ0I

π

v

(d/2)2 + v2
~uu. (189)

If another wire is added at half distance between the two, and running the same current in the
opposite direction (see Fig. 17b), a minimum in the potential appears at distance d/2 from
the central wire (see Fig. 17c). Contrary to the situation where ~B⊥ was homogeneous, there
is a local maximum in the potential at the position v1 = αd with α =

√
2 +
√

5/2 ≈ 1.03. The
potential depth is

∆V = µBB
2
0 − µB

√(
µ0I

2πd

)2

β2 +B2
0 '

βµBµ0I

2πd
, (190)

where β = (α2 − 1/4)/2α(1/4 + α2) ≈ 0.30. Moreover, the trapping frequency becomes

f⊥ =
1

2π

√
8µB
mB0

µ0I

πd2
. (191)

This configuration differs from the previous one on several points. First, the position of the
center of the trap is geometrically fixed by the distance between the wires whereas in the
previous configuration, it depends on the external homogeneous magnetic field. Then, because
there exists a local maximum even in the absence of gravity, in the presence of gravity, particle
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tunneling outside the trap is more favorable than in the situation where ~B⊥ is homogeneous.
This can become an issue at very low current when the barrier starts to be thin.

10 The modulated guide

The modulated guide is a very powerful tool that was first implemented in this group in 2007
[Trebbia 07a, Trebbia 07b]. The last three years, we have been developing a new trap using
the same method, which we have used successfully to reach the crossover towards the strongly
interacting regime of one-dimensional Bose gases [Jacqmin 11], and to measure the momentum
distributions of a one-dimensional Bose gas in the weakly interacting regime [Jacqmin 12].
The main advantage of this trap is that it allows the atoms to be brought very close to the
chip surface, so that trapping frequencies up to 100 kHz can be obtained with currents of the
order of 1 A. One other very interesting feature of this trap is the fact that the transverse
and longitudinal confinements are completely decoupled, thus allowing one to engineer at will
the longitudinal trapping geometry. Of course, there are drawbacks such as the difficulty of
designing a power supply for the trap, and the fact that it becomes difficult to image the cloud
of atoms, when it is so close to the chip surface, but we are able to handle them.

10.1 Potential roughness due to wire imperfections

The advantage of micro-wires stems from the 1/r2 scaling of the magnetic gradient as one
comes close to a wire which makes it simple to reach very high trapping frequencies with low
values of current. But because of the wire imperfections, the resulting magnetic field is not
perfectly perpendicular to the wire. There exists a small component that points parallel to the
wire. Therefore, the potential along the wire direction is rough, which induces a fragmentation
of the cloud along that direction. This is a well known drawback that was observed first by
[Kraft 02]. The authors found out that by reversing the current in the wire, the roughness of
the potential is also reversed, and that the roughness depends on the value of the current. In
2003 the group of Ketterle [Leanhardt 03] had another piece of evidence that the fragmenta-
tion is due to the current in the wires. By trapping either magnetically or optically a cloud
at the same distance from the chip, they saw a fragmentation of the cloud in the first case
but a smooth cloud in the second one. Then the group of Hinds [Jones 04] found out that
the scaling of the fragmentation of the cloud with the distance to the wire is compatible with
the one expected from a sinusoidal variation of the longitudinal current density. However,
the first appearance of the idea that fragmentation could be due to wire imperfections comes
from [Wang 04]. They came to the idea that imperfections of the wire surfaces which stem
from the fabrication process are sufficient to create small longitudinal magnetic field variations.
Those variations can be of the order of the gas temperature, which explains the cloud frag-
mentation. Precise measurements and treatment confirmed this idea [Estève 04a, Schumm 05].
The authors showed that the geometric fluctuations of the edges of a flat wire of width a are
responsible for fluctuations of the magnetic field along the wire with a RMS value

〈B2
z 〉e = Je

(µ0I)2

r5
0.044, (192)

where Je is the spectral density of the wire border noise (which is assumed to be a white
noise 30), and r is the distance to the wire. This expression is only valid for distances larger
than a. At shorter distances the authors show that 〈B2

z 〉e saturate. At large distances, the

30. The approximation of the white spectral noise is used to obtain simple scaling laws. In fact, the noise
spectrum is not flat over the whole spectral range, and depends on the fabrication technique.
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Figure 18: Images of a wire used to trap the atoms in [Estève 04b]. We see that either the
top surface and the side surfaces of the wire are rough. These wire were obtained by electro-
deposition. The quality of the wire can be much improved by using evaporation.

amplitude of those fluctuations scale as 1/r5/2 thus it increases very fast when one gets closer
to the wire. Similarly, the fluctuations of the magnetic field due to the top surface of the wire
of width a is given by the relation

〈B2
z 〉t = Jt

π

6

a

b2
(µ0I)2

r5
0.044, (193)

where Jt is the two-dimensional spectral density of the noise (assumed to be a white noise) of
the wire top-surface, and b is the height of the wire. Contrary to edge fluctuations, surface
effects do not saturate at small distances, and become the main contribution to the roughness
of the potential as soon as r ≈ a.

With usual fabrication techniques and DC traps, it is possible to make this effect negligible
for most studies, so that a smooth single cloud in the weakly interacting regime can be ob-
tained. Still, in order to come very close to the wire surface to get higher trapping frequencies,
something more involved has been developed [Trebbia 07a], based on the idea of the TOP trap
(time averaged potential) 31.

10.2 Principle of the modulated guide

10.2.1 Basic idea

As pointed out by [Kraft 02], the fragmentation structure is reversed when the current in
the wire is reversed (see Fig. 19). Thus, if the current is modulated fast enough with respect
to the atomic motion, this fragmentation should be averaged to 0. Instead of running a DC
current I into the wire, let us run an AC current I(t) = I0 cos(ωt). The potential seen by the
atoms in the direction ~uz can be written as

V (z) = µB |B0 + δBz(z)| , (194)

where B0 is the homogeneous magnetic field along ~uz used to lift up the minimum of the
potential, as described in 9.2.1 and 9.2.2, and δBz(z) is the magnetic field component along ~uz

31. In fact the surface of the wire inherits the roughness of the substrate, which in our case is made of polished
Aluminum Nitride (AlN). This material is a ceramic, which is a collection of grains. By polishing the surface it
is not possible to get an RMS value of the noise smaller than the size of the grain. We will see in 13 that there
exists other materials which would give better results.
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Figure 19: Magnetic field created by the current density ~J (a) or − ~J (b) flowing in a distorted
wire. The contribution δBz of this current density to the longitudinal magnetic field has the
same absolute value but points in the opposite direction. (Adapted from [Trebbia 07b].)

coming from the deformation of the wire. In practice the situation is not as bad as in Fig. 19
B0 ≈ 1 G and |δBz| ≈ 1 mG so that

|δBz| < B0, (195)

and we have

V (z) = µB(B0 + δBz(z)). (196)

In Eq. 196, we see that if δBz ≡ δBz(z, t) is a periodic function of time whose average value is
zero, the average potential will be just

〈V (z, t)〉 = µBB0. (197)

The magnetic noise has been averaged to zero. Note that this picture holds in the presence of
a longitudinal trapping potential, created for instance by a magnetic field Bz(z) along ~uz (this
will be the subject of Section 11).

10.2.2 Effect of ~B⊥

The position of the potential minimum depends on the relative orientation of ~B⊥ and ~Bw
(see 9.2.1 and 9.2.2). Therefore, both magnetic fields must be modulated at the same frequency
and with opposite phases so that this technique actually works. As we will see in 10.3, the
frequency of the modulation is of the order of 200 kHz. The coils which are creating ~B⊥ in
the scheme of 9.2.1 have an inductance of about 10 µH and a resistance of about 0.2 Ω which
leads to a bandwidth of 30 kHz, making it difficult to switch off the current quickly. Thus, the
three wire scheme of 9.2.2 seems more adapted, since the inductance of the wires is smaller by
at least one order of magnitude. Moreover, in this trap, the three wires are put in series so
that the relative phase of the current between the wires is fixed 32. The fact that the current
amplitudes are exactly the same in the three wires provides an appreciable stability to the
transverse trap position, which is geometrically fixed, whereas it would depend on the relative
current amplitudes if they were different.

32. Contrary to the first version of the modulated trap [Trebbia 07a, Trebbia 07b], where a separate control
of the current amplitudes in the different wires was needed, a phase locking system was required between the
different power supplies. Here, in this respect, the implementation is simpler.
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Figure 20: Stability of the transverse motion of a classical particle computed with Eq. 203. The
blue zones are unstable and the white zones are stable. For ωm > 0.87〈ω⊥〉 all the trajectories
are stable.

Let us now calculate the potential in 3D, taking into account ~B⊥ created by the two lateral
wires. We have

V (u, v, z, t) = µB
√

(B0 + δBz(z, t))2 +B⊥u(u, v, t)2 +B⊥v(u, v, t)2, (198)

where B⊥u = ~B⊥.~uu and B⊥v = ~B⊥.~uv. Since in the region explored by the cloud of atoms, B0

is always much larger than any other magnetic field, we can develop the expression of Eq. 198
as

V (u, v, z, t) ≈ µBB0

[
1 +

δBz
B0

+
B2
⊥u +B2

⊥v
2B2

0

]
. (199)

The time-averaged potential is then

〈V 〉 ≈ µBB0

[
1 +
〈B2
⊥u〉+ 〈B2

⊥v〉
2B2

0

]
. (200)

The transverse part of the averaged potential is not so different from the DC case. First of all,
the transverse position of the trap is the same, and if we compute the transverse oscillation
frequency applying Eq. 187 to 〈V 〉, we find

f⊥ =
f⊥,dc√

2
. (201)

In the absence of any other magnetic fields, the modulated guide creates a transverse trap
that has the same properties than the DC transverse trap apart from the oscillation frequency
which is reduced by a factor

√
2. Moreover, the longitudinal roughness has been averaged to

zero.

10.3 Frequency of the modulation

Now comes the question: how to choose the frequency of the current modulation fm =
ωm/2π ?

10.3.1 Stability of the transverse motion

As we pointed out in subsection 10.2 the modulation frequency should be higher than the
frequencies associated to the transverse atomic motion. To have a closer look, let us go beyond
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the average potential analysis, and consider the motion of the center of mass of a wave packet
in the transverse modulated potential

V =
1

2
m〈ω⊥〉2 cos2(ωmt) v

2, (202)

where ω⊥(t) = 〈ω⊥〉| cos(ωmt)| and v is the position of the center of mass in one of the transverse
directions. The equation of motion is the one of a classical particle,

d2v

dt2
= −〈ω⊥〉

2

2ω2
m

(1 + cos(2ωmt)) v. (203)

This is a Mathieu equation, which is stable only for certain values of the ratio ωm/〈ω⊥〉. In Fig.
20 we plot the stability and instability zones of this equation. We see that for ωm > 0.87〈ω⊥〉
all the trajectories are stable. Note that the stability depends only on the ratio ωm/〈ω⊥〉 and
does not depend on the initial conditions. This ensures the stability against elastic collision.

Using the Wigner representation, one can show that the equivalent quantum problem
has the same stability regions as the classical one in the case of a harmonic potential
[Cohen-Tannoudji 85], for which the evolution of the Wigner distribution is that of a clas-
sical distribution.

10.3.2 Transverse micro-motion

For ωm � 〈ω⊥〉, the motion of the particle can be split into two contributions: a slow motion
v⊥(t) in the average transverse potential, and a fast micro-motion vm(t) at the frequency ωm.
Substituting v = vm + v⊥ in Eq. 203 and assuming that v⊥ � vm, we get the equation for the
micro motion

d2vm
dt2

= −〈ω⊥〉
2

2ω2
m

cos(2ωmt) v⊥. (204)

Assuming that v⊥ is a constant, Eq. 204 can be integrated to give the relative amplitudes of
the two motions

vmaxm

vmax⊥
=
〈ω⊥〉2
8ω2

m

. (205)

For fm = 200 kHz, and 〈ω⊥〉 = 60 kHz, we find vmaxm /vmax⊥ ≈ 10−2. Therefore, for transverse
frequencies lower than 60 kHz, the average potential approximation is well adapted to describe
our system.

10.3.3 Longitudinal micro-motion

In this paragraph, we estimate the longitudinal micro-motion induced by the modulation
of the potential roughness. We consider the position z(t) of the center of mass of a wave packet
undergoing the sinusoidal force F = −dv/dz cos(ωmt), where v(z) is the amplitude of the rough
potential. The classical equation of motion is

m
d2z

dt2
= −dv

dz
cos(ωmt), (206)

from which we deduce the amplitude of the longitudinal micro-motion,
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zm =
1

mω2
m

dv

dz
, (207)

and the average kinetic energy associated to this motion, which can be seen as an effective
potential 33 for the slow motion,

Veff =
1

4mω2
m

(
dv

dz

)2

. (208)

Veff scales like 〈v2〉/mω2
ml

2
c , where lc is the correlation length of the potential roughness. In this

case, the average potential due to the imperfections of the edges of the wire can be computed
[Bouchoule 08], and writes

〈V e
eff〉 = 0.048Je

(µ0µBI)2

mω2
mv

7
, (209)

where Je is the spectral density of the edges deformations, and v is the distance to the wire.
If we assume that the probability distribution associated to the wire edges deformations is
Gaussian, we deduce the roughness of this effective potential from the average value thanks to
the relation

σV eeff
=
√
〈V 2

eff〉 − 〈Veff〉2 =
√

2〈Veff〉. (210)

Je has been measured in [Schumm 05] for gold evaporated wires. In this paper the authors
found Je ≈ 10−5 µm3, which gives a residual roughness

σV eeff
= 0.2 pK, (211)

for a I = 1 A , y = 14.7 µm and ωm/2π = 200 kHz. The contribution of the top surface can
also be computed thanks to Eq. 193 and assuming that the roughness of the surface is the one
of the substrate. The surface of the substrate has a correlation length of about 50 µm and a
rms roughness of 50 nm, which makes a spectral density of about 10−7 µm4 which leads to
σV seff

� σV eeff
.

Therefore, even for currents as large as 1 A, the longitudinal micro-motion is totally neg-
ligible. In [Bouchoule 08], the authors estimate the heating rate that stems from this motion
and show that it is totally negligible for typical parameters.

10.3.4 Spin motion

In the sections 10.3.1, 10.3.2 and 10.3.3, we have seen that it is always better to modulate
faster. Nevertheless, there is an upper bound due to spin flips. Spin flips will occur when ωm/2π
is not negligible compared to the Larmor frequency ωL/2π. In our experiment, the Larmor
frequency is of the order of 10 MHz, so that the modulation frequency must be lower than 1
MHz. To be more quantitative, it is possible to compute the rate of spin flips [Bouchoule 08,
Trebbia 07b] versus ωm for a given 〈ω⊥〉. The authors find that for a fixed ωm, resonances are
expected when B0 is varied. These resonances are equally spaced by ~ωm:

µB∆B0 = ~ωm. (212)

33. This effective potential is used to trap ions in the Paul trap.



74 The modulated guide

0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

3

B0

N
×1

0
4

(a)

Figure 21: (a) Atom number as a function of B0 after a long hold time. (b) Taken from
[Bouchoule 08]: rate of spin flips as a function of ωm/〈ω⊥〉.

For ωm/2π = 200 kHz, we expect resonances every 0.2 G. In Fig. 21 we plot the atom number
in the modulated guide after a long hold time for various values of B0. We observe resonances
spaces by about 0.2 G.

If B0 is fixed and ωm is varied, the larger ωm, the greater the resonance spacing. One could
then think that modulating faster is better. However, when computing the loss rate due to spin
flips, as a function of the modulation frequency [Bouchoule 08], we see in Fig .21(b) 34 that the
maxima increase with ωm, so that the good strategy is to choose a modulation frequency large
compared to the transverse frequency, and then scan B0, to avoid a resonance.

10.4 Evaporative cooling in the modulated guide

What happens if a weak radio-frequency (RF) field polarized along ~ux is added to the mod-
ulated magnetic trap ? This question has been considered in [Bouchoule 08]. The idea is that
the modulation at 2ωm of the trapping potential induces a modulation of the Larmor frequency,
whose amplitude increases with the distance from the trap center. At a given position, within
the rotating wave approximation, the modulation in time of the Larmor frequency is equivalent
to a frequency modulation of the RF field. The RF field can then be seen as a carrier plus
sidebands spaced by 2ωm, whose amplitudes relative to the carrier are given by

Jn
(

µBb
′2

8B0~ωm

)
, (213)

where b′ is the magnetic field gradient along ~uu, and Jn is the Bessel function of the first kind.
Therefore, the coupling to untrapped states is resonant for the positions un such that

~(ωRF + nωm) = µBB0 +
µBb

′2u2
n

4B0
. (214)

This limits the temperature of the cloud to 2~ωm/kB ≈ 3µK. Thus, the atoms must be pre-
cooled before being loaded in the modulated guide. This is seen in Fig. 22(b), where we
monitor the atom number, while scanning the RF frequency. Note that this effect could also
be due to harmonics in the 200 kHz current.

34. Note that in [Bouchoule 08], the calculation was performed for spin 1 atoms.
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Figure 22: (a) Transverse potential. The carrier and two sidebands are represented. Each
sideband is an additionnal knife. (b) Atom number in the modulated guide monitored after a
hold time in the presence of a radio-frequency field.

11 Longitudinal geometries

In this section we introduce the longitudinal confinement in addition to the two transverse
trap geometries we have presented. We explain how the longitudinal confinement is obtained
and show how it affects the transverse properties of the trap.

11.1 Longitudinal trapping in the DC Z-trap

In subsection 9.2.1 we have shown that magnetic trapping can be achieved with one wire
plus a homogeneous magnetic field perpendicular to that wire. A common way of adding a
longitudinal confinement [Reichel 11] is to bend the wire like in Fig. 23(a). The properties of
this configuration have been studied in [Aussibal 03]. We briefly recall them.

First, in this configuration the eigen-axis of the transverse trap are changed so that the
trap is not parallel to the central wire [Aussibal 03]. Indeed, the two sidebars create a Bv(z)
component which shifts the potential minimum in the (u, v) plane, and the shift depends
linearly on z. The angle θ is an increasing function of the height, and can be of the order of a
few degrees for our typical parameters. In the eigenbasis (~u′u, ~uv, ~u′z) of this configuration, the
magnetic field is the sum of two terms: the central part of the wire and the external magnetic
field create a quadrupole magnetic field in the (~u′u, ~uv) plane, and the side wires create a
quadrupole field in the (~uv, ~u′z) plane, which has a non-zero value at the center. The magnetic
field at the bottom of the trap is

Bw
0 =

µ0I

2π

v0

L2/4 + v2
0

, (215)

where L ' 3 mm is the length of the central wire. For y0 = 150 µm and I = 3A, we find
Bw

0 = 0.4 G. This value is usually not sufficient to fulfill the adiabaticity condition, so that in
practice we add a homogeneous magnetic field along ~uz of about 0.5 G.

The height of the trap with respect to the central wire is given by [Estève 04b]

v0 =
L

2
√

2

√√√√√( 2µ0I

πB⊥L

)2

+ 1− 1. (216)
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Figure 23: (a) Z-trap configuration : a current I flows in the Z-shaped wire and homogeneous
magnetic field ~B⊥ is applied along ~uu. The resulting trap is tilted by an angle θ and has a very
high anisotropy. (b) Three wire modulated guide. The longitudinal confinement is obtained by
means of wires parallel to ~uu in which flow DC currents. The resulting trap is parallel to the
three modulated wires, and in this configuration, the transverse and longitudinal potentials are
independent.

In the limit where L → +∞, Eq. 185 is recovered. In the experiment, L ' 3 mm (see
Fig. 23(a)) so that for values of B⊥ larger than 10 G, Eq. 185 is a good approximation
of Eq. 216. The curvature of the magnetic field can be calculated in the eigenbasis of the
potential [Aussibal 03]. In the limit of v0 � L, the transverse frequency is well approximated
by Eq. 188, and the longitudinal trapping frequency can be approximated by [Estève 04b]

f// =
1

2π

√
6µB
mB⊥

2µ0I

πL2
∝ I√

B⊥
. (217)

From this expression, we see that when we compress transversally, without changing the trap
position, that is to say we increase B⊥ and I while keeping B⊥/I constant, the longitudinal
frequency increases as

√
B⊥. In the meantime the transverse frequency increases linearly with

B⊥, so that the anisotropy scales as
√
B⊥. The typical longitudinal frequency for I = 3 A,

B⊥ = 40 G and L = 3 mm is f// ' 14 Hz.

The Z-trap is very easy to implement, as 3D trapping is achieved by a single wire and an
external magnetic field. But it is not very convenient for many applications, such as longitudinal
focusing of a cloud, which will be the subject of Part 4. This is because the longitudinal and
transverse trapping potential cannot be varied independently.

11.2 Longitudinal trapping in the modulated guide

In the modulated guide, the longitudinal confinement is obtained by wires parallel to ~uu in
which DC currents run (see Fig. 23(b)).

11.2.1 Harmonic trap

We add magnetic field B//v(v, z) along ~uv and B//z(v, z) along ~uz. Developing the magnetic
field to second order in Bi/B0, where Bi stands for any other magnetic field than B0, we get
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〈V 〉 ' µBB0

 1︸︷︷︸
1

+
〈B⊥u(u, v, t)2〉+ 〈B⊥v(u, v, t)2〉

2B2
0︸ ︷︷ ︸

2

+
B//z(v, z)

B0︸ ︷︷ ︸
3

+
B//v(v, z)

2

2B2
0︸ ︷︷ ︸

4

 . (218)

The first term corresponds to the homogeneous magnetic field along ~uz produced by the external
coils. The second term is the transverse potential which stems from the three modulated wires
(same term than in absence of longitudinal trap). The term 3 is the main contribution to the
longitudinal potential. Its dependence in v also affects the transverse potential, but in practice
the gradient it creates along ~uv is negligible compared to the one due to the three modulated
wires. The fourth term is a second order contribution to the longitudinal potential. Again, its
influence on the transverse potential is negligible.

Note that contrary to a DC trap, the transverse trap is not tilted and the longitudinal
potential is totally independent from the transverse potential (to second order in Bi/B0).
Thus, the longitudinal potential can be calculated directly like

V//(z) = µB
√

(B0 +B//z)2 +B2
//v . (219)

If one computes the longitudinal potential created by two infinite wires (see Fig. 23(a)), one
finds that the position of the trap center is proportional to the ratio between the two currents.
Moreover, if we consider a centered trap (|I1| = |I2|), either the two currents are flowing in
the same direction and the magnetic field at the bottom of the trap is close to zero, or the
currents flow in opposite directions and the magnetic field at the bottom of the trap can be
large. Indeed, because the height of the trap is very small compared to the distance between the
wires, at the longitudinal potential minimum the Bz component is much smaller than the Bv
component. In the case where the currents have the same sign, the two Bv components cancel
each other, and the two Bz components add up, whereas if the current have opposite signs, the
Bz components cancel each other, and the Bv components add up. In the latter situation the
magnetic field minimum is of the order of 2µ0I/πd, where d is the distance between the wires.
For d = 2mm and I = 1 A it gives a trap bottom of 4 G. This offset of the magnetic field bottom
adds up to B0 and lowers considerably the transverse frequency, the independence between the
longitudinal and transverse potential being lost. Therefore, we use the configuration where the
currents are in the same direction.

In this configuration, the longitudinal frequency scales as

f// ∝
√
I

d3/2
, (220)

where I = I1 = I2. With this design, we obtain longitudinal trapping frequencies ranging from
a few Hertz to one hundred Hertz. In Appendix B, we show how to compute the currents for
a given trap position and the oscillation frequency.

11.2.2 Quartic traps

Box traps are of great interest, in so far as in such traps the density is nearly uniform. Thus,
it allows one to explore the regimes of one-dimensional Bose gases separately. For instance, it
would be very convenient to investigate the degenerate ideal Bose gas regime which is limited
to a narrow range of density, or the different crossovers of the phase diagram. It can also be a
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Figure 24: (a) Comparison between a typical harmonic potential of frequency 8 Hz and an
typical quartic potential γz4 with γ = 8 × 10−11 kB × µK/µm4. (b) Longitudinal density
profile of a hot cloud (' 2 µK) loaded in a quartic trap. Here the pixel size is ∆ = 2.6 µm.

useful tool to measure non-local quantities. Such systems have already been realized, first in
an optical trap [Meyrath 05] and five years later on an atom chip [van Es 10].

We were able to realize such a box-like trap by adding two more wires (see Fig. 23(b)).
This gives two additional degrees of freedom, and allows to control the terms of the potential
series expansion up to the fourth order, so that the potential is

V//(z) = α+ γz4 + o(z5). (221)

The maximum value of γ we can achieve without heating too much the wires is γ = 8 ×
10−11 kB × µK/µm−4. A comparison between this quartic potential and a typical harmonic
potential is shown in Fig. 24(a). In Fig. 24(b), we show the density profile of a hot cloud
(' 2 µK), and we see the characteristic flat top. A better way to see the potential shape is
to go in the quasi-condensate regime, where the density profile reproduces the shape of the
potential. In Fig. 25(a) we show the density profile of a ' 20 nK cloud in the same quartic
trap. We extract the potential using the quasi-condensate equation of state and show the result
in 25(b). We see that there is a remaining longitudinal roughness whose amplitude we estimate
around 10 nK. We can not explain the presence of this residual roughness. Note that in a DC
trap, for the same parameters, the roughness of the potential (computed with Eq. 209) would
have an amplitude of 25 µK.

Of course the quartic trap is not a perfect box trap. We can define criteria to quantify
the uniformity of the density. Those criteria depend on the non-local quantity one wants to
measure. For instance, if the momentum distribution of a weakly interacting gas is considered,
we know that the correlation length varies linearly with the density. In this situation, we define
the box-like criterion as follows: the trap is box-like if 90% of the atoms are within a 10% wide
density range. In the Thomas-Fermi regime, the density profile is

ρ(z) = ρ0

(
1− z4

R4

)
, (222)

where the R = (ρ0g/γ)1/4, and the total atom number is N = 8ρ0R/5. One can check that the
atom number that is contained in a 10% density range is 0.69 N (it is 0.45N for a harmonic
trap). Therefore, it is advantageous to use a quartic trap to measure a momentum distribution
in the weakly interaction regime. If we are interested in three body losses, we must consider
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Figure 25: (a) Cold cloud longitudinal density profile in a quartic trap. (b) Potential extracted
from the density profile using the quasi-condensate equation of state.

the quantity
∫
dz ρ(z)3. In this case, the center of the cloud contributes a lot more to the

quantity of interest, so that it would be even more interesting to use a quartic trap.

11.2.3 Effect of transverse DC magnetic fields

In this section we study the effect of an hypothetical additional DC transverse magnetic field
~b⊥ on the modulated guide. For simplicity we assume that ~b⊥ ≡ b⊥(u, v, z)~uv with b⊥ � B0.

We find the expression for the time-averaged potential

〈V 〉 ≈ µBB0

[
1 +

Bz
B0

+
〈B2
⊥u〉+ 〈B2

⊥v〉+ b2⊥
2B2

0

]
. (223)

If we now differentiate Eq. 223 with respect to z, in order to see how the longitudinal
potential is modified, we get

∂〈V 〉
∂z

= µB
b⊥
B0

∂b⊥
∂z

+ µB
dBz
dz

. (224)

In addition to the trapping gradient dBz/dz, a new term appears which yields a shift of
the potential position. This phenomenon occurs only if the transverse DC magnetic field b⊥
depends on z. Quantitatively, if we assume that 35 b⊥ = ξ+ζz, the effect of b⊥ will be noticeable
only if the minimum of the trap is noticeably displaced. The trap displacement with respect
to the situation where b⊥ = 0 is

∆z =
ξ/ζ

1 + mω2B0
µBζ2

. (225)

For ω///2π = 8 Hz and B0 = 1.5 G, we can compute the displacement produced by the magnetic
field generated by the too dispensers, in which there is a current of about 3 A. The magnetic
field at equal distance (' 2 cm) of the two dispensers is equal to ξ = 0.6 G, and its gradient is
0.3 G.cm−1. We find ∆disp

z ' 30 µm, the cloud size being of the order of 100 µm. Let us now
assume, that there is a remaining 10 mA current in a wire whose distance to the modulated

35. In the experiment, b⊥ is the sum of residual magnetic fields, created far away from the trap position, so
that this expression is valid.
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Figure 26: Vertical cut of the chip, perpendicular to the modulated guide three wires. Gold
wires are deposited on a polished Aluminium Nitride (AlN) substrate. On top of the wires we
add a resist layer on which a 200 nm gold mirror is evaporated.

guide is about 600 µm. It makes a magnetic field of 35 mG and a 0.6 G.cm−1 gradient. We
find ∆disp

z ' 4 µm.

Conclusion:

Any transverse magnetic field that has a non zero gradient along ~uz has a huge effect on
the longitudinal motion 36. Therefore, we carefully removed all the unwanted magnetic field
during the time when the atoms are in the modulated guide. The strongest perturbation came
from the dispensers.

11.3 Transferring atoms from the DC trap to the AC trap

As we have seen in 10.4, the gas needs to be pre-evaporated before being loaded in the
modulated guide. Thus, we first load the molasses into a Z-trap, evaporate for about 2.5 s
to reach a temperature of about 2 µK, and then transfer the cloud in the modulated guide,
where we evaporate again a few hundred milliseconds. The transfer between those two traps is
not easy, because of the extreme sensitivity of the modulated guide to DC fields. We proceed
as follows: we bring the cloud above the three wires by rotating the homogeneous transverse
fields of the Z-trap. Then we ramp up the current in the three wires, and the DC currents in
the lateral wires. Finally we ramp down the Z-wire current and the transverse homogeneous
magnetic field, making sure that the position of the DC trap does not move during the ramp.
We could not manage to transfer atoms adiabatically. Typically, we lose half of the atoms,
and excite longitudinal dipole and monopole oscillations. However, it is not such an issue, as
those excitations do not survive further evaporation 37 . Using this method we were able to
load 8× 104 atoms in the modulated guide.

11.4 Experimental realization

11.4.1 Atom chip

The atom chip consists in a polished Aluminium Nitride (AlN) substrate on which 3 µm
high metallic gold wires are evaporated 38. An electrically insulating layer is then deposited on
top of the wires, on which we evaporate a 200 nm thick gold mirror. The wire scheme is shown
in Fig. 27, where the chip is viewed with three different magnifications. (a) is a view of the

36. Note that it does not only induce a trap displacement, it also affects the trapping frequency.
37. In the case where a lot of atoms are needed, it is possible to calm down the dipolar oscillations before the

evaporation, by suddenly translating the center of the longitudinal trap to the position of the cloud, at a time
when it is at rest (at the maximum of the oscillation).
38. For more information about UV lithography, development and lift-off, see [Armijo 11a].
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Figure 27: (a) Chip layout. The chip is a 2.5 × 3.5 cm rectangle. The metallic zones are
white, and the connections can be seen on top and bottom. (b) Zoom on the central part. In
particular, we see the U-wire and the Z-wire. (c) Zoom on the Z-wire and modulated guide.
The Z-wire is colored in blue. The wires we use for longitudinal trapping in the modulated
guide are colored in red and green.

whole chip. The black zones indicate where the metal has been removed. (b) is a zoom on the
central part, where we can see all the wires used for UMOT and magnetic trapping. (c) is a
closer view of the Z-trap (blue) and of the modulated guide. The three wires of the modulated
guide are hardly distinguishable, since they are 8 µm thick and separated by 7 µm. The four
wires that are used to achieve longitudinal trapping in the modulated guide are colored in green
and red.

11.4.2 Electronics

Apart from the three wires of the modulated guide, all the wires are running DC currents.
We are using home-made current supplies that are powered by batteries. This improves the
stability by reducing the noise, and avoiding ground currents. Moreover, we added MOSFETs 39

and relays to completely disconnect all the power supplies at the time of the cycle when they
are not used. Indeed, we have seen that the modulated guide is very sensitive to DC currents,
so we need to be sure that there are no remaining currents in any unused wire. Also, we have
seen that after the MOT loading time, we maintain a current below threshold (around 2.5
A) in the dispensers to keep them warm. However, this current is sufficient to create a 0.2 G
magnetic field at the position where the atoms sit. Therefore, we added a relay on the dispenser
power supply, so that we can switch the current off during the time of the modulated guide.

39. Metal-Oxide-Semiconductor Field-Effect Transistor.
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Figure 28: Modulated guide electronics : (a) The 200 kHz signal is obtained from a synthesizer
(SRS DS345). Its amplitude is controlled with a DC signal coming from a sequencer, via the
amplitude modulation input of the synthesizer. The synthesizer signal is converted into a
current in a voltage-to-current converter. This chip can be switched off directly with a TTL
signal. In this scheme, two components are interdependently connected to the ground : the
synthesizer and the sequencer, all the other elements being put on batteries. An opto-coupler
for the TTL signal is added to break a ground loop. Devices that are on batteries are white
and the other ones are blue. (b) Scheme implemented for parametric heating of the cloud. (b)
Parametric amplification scheme. In addition to (a), the 200 kHz signal is summed up with a
sinusoidal signal at fp generated by a second synthesizer. The summator ensures that the gain
of the 200 kHz signal is exactly one, so that the transverse frequency has not been modified
compared to the scheme (a). The second synthesizer is programmed to deliver a few oscillation
at a given amplitude and frequency, when trigged by a TTL signal. This TTL signal comes
from the sequencer, through an opto-coupler.

Additionally, we disconnect the two pairs of coils which create a magnetic field in the transverse
plane of the modulated guide by means of a combination of relays and MOSFETS. We only keep
the coils which produce a homogeneous magnetic field along ~uz. To conclude, in the modulated
guide, everything is disconnected apart from ~uz coils, the three modulated wires and the two or
four wires we use for longitudinal trapping. This proved to be absolutely necessary to achieve
sufficient stability and longitudinal geometry to be remarkably predictable 40.

For the modulated guide, we need to produce a 200 kHz sinusoid of amplitude varying from
0 to 1 A, and we need to be able to switch it off in a few microseconds. The scheme we adopted
is shown in Fig. 28(a). The 200 kHz signal is obtained from a synthesizer 41. Its amplitude
is controlled with a DC signal coming from a sequencer, via the amplitude modulation input
of the synthesizer. The synthesizer signal is converted into a current in a home-made voltage-
to current converter based on a high voltage high current and high bandwidth operational
amplifier 42. This chip can be switched off directly with a TTL signal in less than 1 µs, without
the need of additional electronics. In the case of DC power supplies, the only connection to the
ground was through the sequencer. This ensures that there is no ground current in the wire.
In the modulated guide electronic scheme, two components are independently connected to the
ground: the synthesizer and the sequencer, unlike all the other elements that are powered by
batteries. That is why we tried to break the ground loops as much as possible, for example
by adding an opto-coupler for the TTL signal. In Fig. 28(a), devices that are on batteries are
white and the other ones are blue.

40. This was also made possible by calibrating the four current supplies which give the longitudinal geometry,
to a 1 mA accuracy.
41. Stanford Research System DS345.
42. Texas Instrument OPA 548.
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Figure 29: (a) Example of longitudinal center of mass oscillation frequency measurement. The
dots show the time evolution of the center position of the cloud, the solid line being a fit to
a sinusoid. The frequency extracted is 8.3 Hz. (b) Example of measurement of the transverse
frequency by parametric heating: we plot the transverse width of the cloud after time of flight
as a function of the excitation frequency.

11.4.3 Trap frequency measurement

Longitudinal trapping frequencies

Measuring the longitudinal trapping frequency (when the potential is harmonic), can be
done by inducing a small longitudinal oscillation of the cloud, which position is monitored
during a hold time. The longitudinal kick of the cloud is obtained by increasing slowly the
current in one of the two longitudinal trapping wires, thus displacing the cloud in one direction,
and then suddenly release the current to its original value. A typical center of mass oscillation
measurement is shown in Fig. 29.

Transverse trapping frequencies

We use two methods to measure this frequency. Like for the longitudinal frequency mea-
surement, we can induce a motion by putting a few tens of mA in the Z-wire for a short time.
Then, because the transverse size of the cloud is always much smaller than our optical resolu-
tion, we monitor the oscillation after time of flight, thus observing the oscillations in velocity
space.

The other method we can use is transverse parametric heating of the cloud. This method is
more complicated to implement as it requires a bit more electronics (see Fig. 28(b)). It works
as follows. The transverse oscillation frequency is modulated in time at a given frequency fp,
for a few periods 1/fp (typically around 10). When fp equals twice the transverse oscillation
frequency, energy is transferred resonantly to the cloud, which heats. Measuring the transverse
size of the cloud after a time of flight of about 1 ms versus fp, we can precisely determine f⊥.
The electronic scheme modification is shown in Fig. 28(b). The 200 kHz signal is summed
up with a sinusoidal signal at fp generated by a second synthesizer. The summator ensures
that the gain of the 200 kHz signal is exactly one, so that the transverse frequency has not
been modified compared to the scheme (a). The second synthesizer is programmed to deliver a
few oscillation at a given amplitude and frequency, when trigged by a TTL signal. This TTL
signal comes from the sequencer, through an opto-coupler. The amplitude of the modulation
is chosen to be a few percents of the carrier amplitude. An example of a parametric heating
spectrum is shown in Fig. 29(b).
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CAMERA

Objective

Doublet

Resonant beam

Figure 30: Imaging system: a collimated resonant (or nearly resonant) beam is sent on the
atoms. it reflects on the chip and goes to a camera, through an objective and a doublet. The
objective and the doublet image the cloud on the camera.

12 Position resolved in situ absorption imaging

12.1 Principle

Absorption imaging consists in measuring the attenuation of a resonant laser beam when a
cloud of atoms is put on its path. This allows to determine the total atom number in the cloud
if the three following quantities are known: the intensity in the probe beam at the position of
the cloud, the number of photons that has been sent on the cloud, or equivalently the duration
of the light pulse, and finally, the absorption cross section of the process. Among those three
quantities only one is known perfectly: the duration of the light pulse. The determination of
the two others is the subject of 12.3.2.

Our goal is not only to determine the total atom number in the cloud. We also want to
compute the longitudinal atomic density distribution with a good resolution. For this purpose
we image the cloud on a CCD 43 camera, and measure the atom number in each cell of the
object plane that is conjugated to a pixel of the camera. This is achieved if the resolution of the
imaging system is of the order of the cell size in the object plane. The imaging configuration is
shown in Fig. 30: the resonant laser beam reflect on the chip. The imaging system consists in
an objective and a doublet which image the cloud on a CCD camera. The study of the imaging
system is the subject of 12.2.

12.2 Optical configuration

12.2.1 Description of the imaging system

Our optical system consists in a Melles Griot objective 44 and a Melles-Griot achromat
doublet. The cloud of atoms is at the distance x to the objective, x being close to its focal
length, so that the image is close to infinity. We use the doublet to project this image on
the CCD camera. The distance between the objective and the doublet is d, and the distance
between the doublet and the CCD camera is D (see Fig. 31).

43. Charged-Coupled Device.
44. Note that in the figures of [Armijo 11a] and [Armijo 10] the objective is reversed which is wrong because

the meniscus should be facing the atoms, so that aberrations are minimum. In the experiment, the objective
has the good orientation (see Fig. 31).
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Figure 31: Imaging system modeled by two thin lenses. (a) The cloud is on the left of F1 :
the first lens (L1) produces an inverted real image on the right of F ′2 and L2 produces a real
image of this imaginary object between 02 and F ′2. (b) The cloud is on the right of F1 : the
first lens produces an imaginary image on the left of F1 which is imaged by L2 on the right of
F ′2. (c) Real imaging system: L1 is a Melles-Griot GLC-50.0-20.0-830 (former part number :
06 GLC 006) diode laser collimating lens, whose characteristics can be found in Table. 1. L2

is a Melles-Griot achromat doublet LAO-250.0-30.0 (former part number 01 LAO 626). The
window is a CF40 Caburn standard window

Table 1: Data for the imaging system. All length are in millimeters.
Element Part number Focal length Working distance Back focal length NA
Objective GLC-50.0-20.0-830 50 41.1 43.6 0.2
Doublet LAO-250.0-30.0 250 246.5 0.12
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12.2.2 Magnification

In situ imaging

The position of the objective must be such that the atoms sit at its working distance. When
in situ imaging is performed, we adjust its position by focusing a laser beam on the chip, and
find the position of the objective for which the outgoing beam is collimated. The good position
was found when the objective mount is about 1 mm away from the window. This strategy
was pursued in [Armijo 11b, Armijo 10], and [Jacqmin 11]. In that case, because the distance
between the cloud and the chip surface is smaller than the depth of focus, the image of the
wire structure is neat, and gives us the magnification.

In situ and time of flight imaging

In [Jacqmin 12], a data set consists in a few hundred thousand of in situ pictures plus a
few tens of time of flight images. The typical time of flight we perform is of the order of 25
ms, which corresponds to a free fall distance of about 3 mm. In the case of in situ imaging the
distance between the objective and the window is 1mm, we see that it is impossible to use the
objective in the optimal conditions. In [Jacqmin 12], we chose to put the objective in contact
with the window for both in situ and time of flight imaging, so that in the former case the
atoms sit 1 mm before the optimal object plane and in the latter case, the atoms sit 2 mm after
the optimal object plane. The magnification of the in situ images is determined by looking at
the wire structures, but in the case of time of flight images, because the distance between the
cloud and the chip is more than ten times the depth of focus, the wires structures are blurred,
and do not allow the determination of the magnification. In the following, we determine the
variation in the magnification caused by a variation of the distance x between the objective
and the atoms around x = f1, the focal length of the objective.

We first assume that the objective and the doublet are thin lenses. The thin lens relations
are

1
O1A2

+ 1
x = 1

f1
,

1
D − 1

O2A2
= 1

f2
.

(226)

The magnificationM of the system is the product of the magnifications of the two lenses, that
is

M =
F ′1A2

F ′1O1

D

O2A2

=
f1

D

f2 −D
f1 − x

. (227)

In practice we fix the distance d and we displace the camera, that is to say we change D. From
Eq. 226 we can express D as a function of x and d,

D =
f2

1 + f2
x−f1

x(x−d)−df1

, (228)

and substitute this expression into Eq. 227 to get the magnification. In figure 32(a) we plot
the magnification versus x for d = 230, 254 and 270 mm. We see that larger values of d are
favorable since they give a smaller slope.

To be more quantitative, we can differentiateM around x = f1. We get

∂M
∂x

∣∣∣∣
x=f1

=
f2(f1 + f2 − d)

f3
1

. (229)
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Figure 32: Magnification of the optical system versus x, the distance between the objective and
the cloud using thin lens theory : (a), and using a simulation of the real system (c). Distance
between the doublet and the camera versus the distance between the objective and the cloud
using thin lens theory : (b), and using a simulation of the real system (d). In (c) and (d),
we show two curves that correspond to the two different values of d (distance between the
objective and the doublet), used in the case of in situ imaging or time of flight imaging. In
each graph, the two arrows show the x position that correspond to in situ imaging and time
of flight imaging. The position x is deduced using the measured d and D, and graphs (b) and
(d). The difference in position x between those two situations corresponds to a time of flight
of 24 ms, which is very close to the one used in the sequence (25 ms). The relative change in
magnification is about 5% which leads to a change in the pixel size of 5% (2.5 µm in situ and
2.6 µm after time of flight).
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For our typical parameters, ∂M
∂x

∣∣
x=f1

' 0.09 mm−1 which gives a variation of the pixel size in
the object plane of about 1.5% mm−1.

In Fig. 32(b) we show how the distance D varies with the position x, for various values of
d. We see that d has very little effect on D around the focal position. Thus, changing d when
switching from in situ to TOF imaging does not help to reduce D.

In Fig. 32(c and d) we show the results of a simulation of the real system with the software
OSLO, in which we put the mathematical models of the objective and the doublet that are
provided by Melles-Griot. We add the contribution of the vacuum chamber’s window, which
is a 3 mm thick layer of BK7 glass, and we take into account the change of the refractive
index when we go from vacuum to air. In Fig. 32(c), the dots corresponds to the value of
d we used for in situ imaging, and the solid line corresponds to the value we used for TOF
imaging. The difference between those two values stems from the way we match the position of
the object plane and the position of the cloud, in the situation of TOF imaging (explained in
more details in Part 4). The distances d, D, and x are the distances between the input surfaces
of each optical elements. For each value x, and d, the distance D is found by minimizing the
RMS size of the image of a point like source. We find that the magnification in the in situ
case leads to a pixel size in the object plane 45 of 2.5 µm, and 2.6 µm in the case of time of
flight images (4% change). Moreover, the distance D found by OSLO are compatible with the
experimental values. The in situ value must be compared to the measured one which is 2.6 µm.
The difference between the measured value and the calculated one is due to the fact that we
could not measure the distance between the different optics to better than 5%.

12.2.3 Resolution

We want to determine the resolution of the imaging system. The theoretical ultimate
resolution is given by the numerical aperture (NA) of the objective, which is 0.2. Using the
Rayleigh criterion 46, we can determine the resolution of the objective in the case when it is
limited by diffraction. It is given by

δr = 0.61
λ

NA
= 2.4µm. (230)

The objective is diffraction limited if it is used in air, with an object very close to its focal
point, so that its point spread function (PSF) an Airy function, which has its first cancellation
at position δr.

However, we do not use the objective in those ideal conditions, because of the transition
air-glass-vacuum, and in some cases, because the cloud is not at the working distance from the
objective. The numerical aperture being small, we do not expect the PSF to be very different
from the optimal situation. We verified this statement by simulating the whole imaging system.

We have shown how we image the atoms on a CCD camera. Now, we explain how we
compute the density profile from these images.

45. The camera has pixels of 13 µm.
46. Rayleigh criterion: two point sources are resolved when the diffraction maximum of one image coincides

with the first minimum of the other.
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12.3 Case of dilute clouds

12.3.1 The Beer-Lambert Law

The intensity I of a light beam propagating in a gas decreases along the axis of propagation
~x as

dI

I
= −σ(I)n(x, y, z)dx, (231)

where σ(I) is the absorption cross section and n(x, y, z) is the density of particles. Because of
the 1D geometry of our gases, the density is integrated along two axis, so that the only quantity
we have access to is the linear density ρ(z) =

∫
dxdy n(x, y, z). The Beer-Lambert law is valid

in dilute clouds for which the inter-particle distance is larger than the optical wavelength. If
this condition is not fulfilled, multi-photon scattering processes may occur, and they are not
taken into account in this law. This limits the measurable densities to 2.1012cm−3. When it is
valid, the Beer-Lambert law can be used to compute the longitudinal density profile of a gas,
from two images: one in presence of atoms, and one in absence of atoms. However, it requires
the knowledge of the scattering cross section σ. When the density is too high for the Berr-
Lambert law to be accurate, we experimentally observe a deviation to this law [Armijo 10],
which we compensate if necessary (see Part III).

12.3.2 Determination of the absorption cross section

In this subsection, we want to determine the absorption cross section σ. It is related to the
density matrix ρ̂ of the system {atom + light}. More precisely, it is proportional to the ratio
between the atomic population that is brought by light into the excited state and the flux of
photons which is sent to the atoms. If Γ is the decay rate of the excited levels, σ writes

σ = Γ
~ω
I

∑
i∈{excited states}

ρii (232)

We see that we need to calculate the density matrix ρ̂ of the system, whose evolution is given
by the master equation,

˙̂ρ = Lρ̂, (233)

where Ĥ is the Liouvillian of the system. In the case of a two-level atom, Eq. 233 reaches
a stationary state after a time of the order of 1/Γ. This stationary state corresponds to the
situation where the population of the excited state is equal to the population of the ground
state. The resulting cross section, in the case where the laser is resonant with the transition
writes [Metcalf 99]

σ =
σ0

1 + I/Isat
, (234)

where

σ0 =
3λ2

2π
(235)

is the low intensity limit of σ, and where the saturation intensity is
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(a) (b)

(1)

(2)

Figure 33: (a) (1) Closed imaging transition obtained in the case where a purely σ+ polarized
light is sent on the cloud. In the experiment, if the cloud is far enough for the chip surface, it
can be obtained by focusing the beam on the cloud (2, a). (b) (1) In the case of a non purely
polarized light all the transitions have to be considered, together with the Zeeman shifts which
are different for upper and lower levels. This happens if the cloud is to close to the chip, so
that it is reached by both incident and reflected light (2).

Isat = Γ
~ω
2σ0

. (236)

Substituting Eq. 234 into Eq. 232 gives the expression of the linear density,

σ0ρ(z) = ln
Iin

Iout
+
Iin − Iout

Isat
, (237)

where Iin (Iout) is the intensity of the laser before (after) going through the cloud.

For a multilevel atom, it is still possible to get an analytical expression of σ, but the
solution strongly depends on the polarization of the light, the intensity of the light beam, and
the magnetic field experienced by the atoms. In a multilevel system, the Zeeman shift differs
from one transition to the other, so that in the presence of a magnetic field, the laser has
different detuning with respect to the different transitions. Moreover, when the light pulse
duration Tp is not much bigger than the time needed to reach a stationary state, the time
averaged value of σ depends on Tp. Thus, most of the time, absorption imaging is carried out
using a closed transition, so that the system reduces to a two-level atom.

In our setup, the atoms are trapped in the level |5S1/2, F = 2, mF = 2〉, so that the only
available closed transition is |5S1/2, F = 2, mF = 2〉 →

σ+

|5P3/2, F
′ = 3, m′F = 3〉 (see Fig.

33 (a)(1)). We use this configuration to take in situ data in the Z-trap, which is far enough
from the chip surface (' 200µm) so that by focusing the imaging beam on the cloud, only the
incident beam shines on the atoms and not its reflexion on the chip (see Fig. 33 (a)(2)). In
this configuration, the polarization of the light with respect to the quantization axis is chosen
to be σ+, so that the system can be treated as a two level atom.

However, when in situ images are taken in the modulated guide, the cloud is so close to the
chip surface (' 7 µm) that it sees the light from both the incident and the reflected beams (see
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Figure 34: (a) In the situation imaging the cloud of atoms in the modulated guide, the atoms
sit in the interference pattern produced by the incident and reflected beams. (b) Amount of
intensity in each polarization with respect to the phase θ.

Fig. 33 (b)(1)). In fact, it sits in the interference pattern produced by the two beams, that
has both an intensity and polarization modulation in space, so that the whole level structure
plus the Zeeman shifts have to be taken into account (see Fig. 33 (b)(2)). This is treated in
the following.

Polarization ratio

When the image is taken in the modulated guide, the magnetic field is along ~uz. In the
following, we determine the polarization of the beam with respect to this quantization axis.

The imaging beam is circularly polarized and left-handed with respect to the ~y axis, which
we write ~σy− . After reflexion on the chip, which is assumed to be a perfect mirror, it is still
circularly polarized but right-handed with respect to ~x. We denote this polarization by ~σx+ .
The atoms sit in a region where the direct beam and its reflexion overlap and interfere. Thus,
in this region, the amount of light in the ~πz, ~σz− and ~σz+ polarizations varies with the distance
to the chip. The electric field in the incident and reflected beams writes

~Ei = E0e
−i(ωt+ky)~εi

~Er = E0e
−i(ωt+kx)~εr

(238)

where the polarization vectors are ~εi = (~z − i~x)/
√

2 and ~εr = (~y + i~z)/
√

2. In the overlap
region, the electric field writes

~E = ~Ei + ~Er = E0e
−i(ωt+ky)

(
~εi + eiθ~εr

)
= E0e

−i(ωt+ky)~ε(θ), (239)

where θ = 2π(x + y)/λ = 2πu/λ. Here ~u is the direction parallel to the chip surface (cf. Fig.
12.3.2). The intensity is

I ∝ 〈~E.~E∗〉 ∝ |~ε(θ)|2 . (240)

Now, we must develop ~ε(θ) on the basis (~σz− , ~σz+ , ~πz) in order to get the relative intensity
and phase in each polarization. Using the fact that ~σz− = (~x − i~y)/

√
2, ~σz+ = (~x + i~y)/

√
2

and ~πz = ~z, we find
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~ε(θ) =
1√
2

(
ieiθ + 1

)
~πz −

i

2

(
1 + eiθ

)
~σz+ +

i

2

(
eiθ − 1

)
~σz− . (241)

The total intensity can be written I = I~πz + I~σz− + I~σz+ with 47

I~πz = I0
2 (1− sin θ),

I~σz− = I0
4 (1− cos θ),

I~σz+ = I0
4 (1 + cos θ).

(242)

The relative intensities are plotted in Fig. 12.3.2.

Optical Bloch equations

Using the optical Bloch equations, where we include coherences (see Appendix A), and for
a given (θ, I, ~Bz), we compute the population in each Zeeman sub-level versus time, starting
from a situation where the population of the ground state sub-level mF = 2 is 1. Because the
step of the interference pattern is small compared to the distance on which the atoms move
under the effect of the light (radiation pressure and diffusion), we average the resulting cross
section over all values of θ. Then, we average over the pulse time Tp. An example of the
evolution of the populations is given in Fig. 35(a), and the variation of the cross section, for
a given intensity, as a function of θ is shown in Fig. 35(b). Averaging over all values of θ,
and repeating the calculation for many different values of I give the Fig. 35(c), where the
different black solid lines correspond to different integration times. At low values of I, when no
saturation effects occur, all the curves fall on a plateau, different from σ0, the value expected
for a two-level atom. At large I, all the curves collapse on the limit of Eq. 234. This can be
explained by the fact that when the intensity is very large, at some point all the atoms will be
scattering Γ/2 photons per second, no matter the polarization of the light or the strength of
the magnetic field. Therefore, at large intensities, the knowledge of the scattering cross-section
does not require the knowledge of the sub-level structure, of the Zeeman shifts, and of the
polarization of the light. This can be used as an absolute calibration of the total atom number
[Reinaudi 07, Yefsah 11].

An approximate model has been used [Reinaudi 07] to account for the the level structure,
the magnetic field and the beam polarization. These effects are put in a dimensionless param-
eter α, which defines an effective saturation intensity 48

Ieff
sat =

Isat

α
. (243)

The author approximate the scattering cross section of the multilevel problem by

σ =
ασ0

1 + α I
Isat

, (244)

and check that this expression was indeed valid for their parameters, by comparing it with the
result of the optical Bloch equations. Then, they propose an experimental method to determine
the value of α. For our parameters, we tried to fit Eq. 244 to the results of the OBE. The fits
are shown in Fig. 35(c) (blue dashed lines). We find that for Tp > 50 µs, the approximate law
is valid for I/Isat > 0.1. For lower values of Tp it cannot be used for the range of intensity
we usually have (I/Isat < 0.5). The values of α corresponding to the blue dashed lines of Fig.
35(c) are plotted in Fig. 35(d), as a function of Tp.

47. If the incident polarization is ~σx+ and not ~σx− , then we find the same result with a phase shift θ → θ+π.
48. The way we define this parameter is different from [Reinaudi 07]. In this paper, the authors define α as

Ieff
sat = αIsat.



12.3 - Case of dilute clouds 93

0 5 10 15
0

0.02

0.04

0.06

t (µs)

(a)

0 0.5 1
0.05

0.055

0.06

0.065

σ
(θ
)/
σ
0

θ/2π

(b)

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

σ
/
σ
0

I/Isat

(c)

0 200 400 600

0.65

0.7

0.75

α

Tp(µs)

(d)

Figure 35: Results of the optical Bloch equations for the transition 5S1/2 → 5P3/2, in the
presence of a magnetic field Bz = 1.78 G. (a) Evolution of the population of the level
|5P3/2,mF = 3〉 (solid line), and evolution of the total population of the excited states (dashed
line), for s = 0.2 and θ = 0. (b) Normalized scattering cross section as a function of θ/2π
averaged over Tp = 50 µs. (c) Normalized scattering cross section, averaged over θ, and for
various integration times Tp = 5, 30, 90 and 300 µs (black solid lines). The blue dashed lines
show a fit to Eq. 244, for s > 0.1 for the two upper curves, and for s > 1 for the two lower
curves. (d) Parameter α extracted from the fits (see (c)), as a function of the pulse duration.
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12.4 Case of dense clouds

In the case of dense clouds, the Beer-Lambert law can not be used anymore for two reasons:
first, due to non trivial re-absorption effect [Rath 10], and second, because the transverse size
of the cloud is smaller than the pixel size, which leads to an underestimation of the atom
number in the pixel due to the non-linearity of the Beer-Lambert law. Indeed, if ∆ is the pixel
length, and l⊥ the transverse size of the cloud, if we write I1 and I2 the intensities measured in
the first (with atoms) and second (without atoms) pictures, the measured atoms number is 49

Nmeas =
∆2

σ0
ln
I2

I1
. (245)

However, the true atom number is different. This is because the intensity where the atoms sit
is different from I1. Let us write it i1. The true atom number is

Nreal =
∆l⊥
σ0

ln
I2

i1
. (246)

In the measured atom number, i1 has been diluted over all the pixel. i1 is linked to I1 and I2

through the relation I1 = (i1l⊥ + I2(∆− l⊥))/∆. One thus finds that Eq. 245 is equivalent to
Eq. 246 only if

∆

l⊥
� I2 − i1

I2
. (247)

In the experiment, initially 50 ∆/l⊥ ' 10, so that Eq. 247 is fulfilled for an optical density
smaller than 1. The deviation to the Beer-Lambert law has been observed in [Yefsah 11,
Armijo 10].

12.5 Resolution

The resolution of absorption imaging can be limited either by the imaging system, which
has a finite resolution, or by the diffusion of the atoms undergoing scattering events. Indeed,
if atoms absorb photons in one definite direction, the direction of spontaneous emission is
random. The atoms are thus doing a random walk in the momentum space which translates
into a diffusion in the real space. This process limits the resolution if the radius of diffusion
exceeds either the size of the PSF of the imaging system or the size of a pixel in the object plane.
To estimate the radius of diffusion, we assume that I = Isat. In this case, each atom scatter
Γ/4 photon per second, so that the number of photons scattered during Tp writes N = TpΓ/4.
Every scattering event transfers to the atom the momentum ~k in the direction of the beam,
and ~k in a random direction. The variance of the momentum writes 2N(~k)2. The square
radius of diffusion can be calculated, we find

∆r2 =
N

3

[
~k
m

]2

T 2
p =

Γ

12

[
~k
m

]2

T 3
p . (248)

Typically Tp will be chosen to give a radius of diffusion of the order of the optical resolution.
The optical resolution being of the order of the pixel size ∆ = 2.6 µm, we find Tp ' 40 µs. In
practice, the intensity is about Isat/3, and Tp is more of the order of 80 µs.

49. Saturation effects are neglected.
50. The transverse size of the cloud increases during the pulse due to spontaneous emission.
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13 Progress in chip fabrication

The chip as we have described it suffers many problems. First, it is glued on the copper
mount, and the glue 51 has a thermal conductivity of 0.66 W/m/K and a thickness of about
70 µm [Armijo ], which makes a thermal resistivity of about 10−4 m2K/W. The AlN thermal
conductivity is 128 W/m/K for a thickness of 600 µm, which makes a thermal resistivity of
4.5 × 10−6 m2K/W. Therefore, the glue is the limiting element [Armijo ]. A better thermal
contact would mean reduced spatial fluctuations of the mirror surface at the end of the cycle
when the images are taken. Indeed, when the first image is taken (in presence of the atoms),
the currents in the wires are still on. But the second image is taken at least 60 ms later, after
a period during which the currents are off. Thus, the temperature of the chip surface varies
between the two images, leading to spatial fluctuations of the mirror. We were able to reduce
the fluctuations of the mirror by turning on again the currents during the 60 ms, just after
the first image has been taken. To go one step further, it would be favorable to have a lower
thermal resistance between the substrate and the copper mount. Moreover, it happened once
that the glue degraded with time 52, so that we completely lost the thermal contact between the
chip and the mount, and fused the gold wires. Therefore, we switched from gluing to soldering
with Indium which has a much better thermal conductivity (around 80 W/K), is ultra-high
vacuum compatible, and has a very low melting point (around 156 °C). This was implemented
recently on the experiment and proves to work well, although soldering the chip on the copper
mount is delicate, if one does not want to damage the gold mirror.

Second, after two years of intensive use, the quality of the gold mirror degraded, due to
87Rb which coated the entire surface, and we had to replace the chip for this reason. It is
of common knowledge in the community that Rubidium sticks on gold 53, and a solution to
prevent this would be to add a layer of SiO2 on top of the mirror. We fabricated a chip with
an additional layer of SiO2 of 100 nm thickness above the mirror, but the results were not
satisfactory. After some time, possibly due to thermal stress and strain, the quality of the
surface degraded.

Third, in order to have good images, the mirror should be perfectly flat. This is difficult to
achieve, because the resist layer (see Fig. 26) reproduces partially the hills and valleys created
by the wires. A planarization process had been developed a few years ago [Armijo 11a], but
could not reduce the amplitude to lower than 80 nm. A good indication that the planarization
is not good enough is that we can see the wire pattern on the images. This pattern corresponds
to an intensity inhomogeneity in the object plane, which makes it impossible to know what is
exactly the intensity seen by the atoms. It also distorts the images.

To improve even more the planarization, we have started to develop a new method. The
idea is the following. We take a polished Silicon wafer which has an RMS roughness of a
few nanometers, and deposit on it between 2 and 4 micrometers of SiO2 by PECVD 54. Then
we glue 55 the SiO2 face of the Silicon wafer on to the chip. The next step is to selectively
remove the silicon wafer by plasma attack (Bosch process) or in a chemical reactor using a
TMAH 56 solution. When the Silicon has been completely removed, only the SiO2 remains.
We use its rigidity to absorb the constraints on the glue due to the underlying wires. This
method gives good results in terms of residual roughness, but is still not very well controlled.

51. High thermal conductivity Epotek H77.
52. Probably because it was heated too much.
53. It is also known that UV light can desorb 87Rb from surfaces. However, shining a 40 mW 405 nm laser

on the gold mirror did not give any result.
54. Plasma-enhanced chemical vapor deposition
55. Epotecny E505 optical Epoxy glue
56. Tetramethylammonium hydroxide
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For instance, the thickness of the glue is a very important parameter, since in the modulated
guide the position of the cloud is geometrically fixed (' 15 µm). It limits the total height of
the glue+SiO2 to ' 8 µm, since we do not want too many atom-surface interactions (Casimir-
Polder force, interactions with adsorbed Rubidium atoms, and thermal spin flips), which start
to have a noticeable effect below ' 5 µm [Harber , Lin 03, Obrecht 07, Harber 05, Rekdal 04].
To achieve a good control of the glue volume, we use a positive displacement pipette 57, which
allows to pipette volumes as low as 1 mL. Before the polymerization, we heat the sample below
polymerization threshold to lower viscosity and put a few hundred grammes of weight on top of
it to ensure that the glue spreads throughout. Finally we heat everything above polymerization
threshold. This technique is still under development.

Fourth, Aluminum Nitride is a ceramic, which consists in a collection of grains with the size
of a few tens of nanometers. Due to this structure, it is intrinsically impossible to polish the
substrate to better than the grain size. This roughness induces a roughness of the wire surface
and thus a roughness of the magnetic potentials. The ideal substrate would be: a very good
thermal conductor, a very good electrical insulator, and a totally flat surface. This is obtained
with diamond substrates which are now made by chemical vapor deposition 58. However this
solution is very expensive. Therefore we have been looking for alternative solutions such as: a
thin diamond layer deposited on a silicon substrate 59, or a layer of non-doped Silicon Carbide
(SiC) deposited on a Silicon wafer by epitaxy, or a layer of AlN deposited on a SiC substrate.

57. Mettler Tolledo - Rainin Instrument : Pos.D
58. Element 6
59. Advanced Diamond Technologies
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Part III

Two-body correlations



98 Introduction

14 Introduction

Two-body correlations started to be of great interest when Hanbury-Brown and Twiss, who
wanted to go beyond the interferometric method introduced by Michelson to determine the
diameter of a star, developed a new technique based on intensity correlations. Michelson’s
method, which consists in combining the light collected on two separate mirrors aiming at a
star and then computing the degree of coherence of the source from the visibility of the inter-
ference fringes, proved to be limited by the fluctuations of the atmosphere refractive index. By
measuring intensity correlations between the signals collected from the two physically separate
detectors, Hanbury-Brown and Twiss found a technique [Hanbury Brown 56] to measure the
degree of coherence without collecting information about the phases of the two signals. Nev-
ertheless, the importance of the Hanbury-Brown and Twiss experiment is not the result itself,
but its interpretation. Although the experiment is well explained by a classical field theory, its
interpretation in terms of particles led to a controversy in the 50’s. The fact that the proba-
bility to detect two photons on the detectors is enhanced suggests that photons are correlated.
This seemed suspicious to one part of the scientific community. A theory of quantum coherence
was developed [Glauber 63] in the 60’s to reconcile the classical field interpretation and the
quantum mechanical interpretation. In the latter interpretation, the fact that the photons are
indistinguishable explains that the two possible paths a photon can take to reach a detector
interfere. In the case of thermal bosons, the Bose Einstein statistics leads to a constructive
interference, so that the probability to detect two photons at the same time is 1 (g(2)(0) = 2).
This phenomenon, is often referred to as bosonic bunching. Nevertheless, the value of g(2)(0)
depends on the quantum state of the photons. For instance, the light emitted by a laser source
which is in the so called coherent state will show g(2)(0) = 1. This is because in a laser source,
all the photons are in the same mode, so that there is no correlation between them. Note that
the bunching effect is a purely statistical effect. In the case of fermions, the Pauli principle pre-
vents particles to arrive together on the detectors, so that the g(2)(0) = 0. This phenomenon,
is referred to as anti-bunching. Analogous Hanbury-Brown and Twiss experiments have been
done with different particles, among which: electrons [Henny 99, Oliver 99, Kiesel 02], neutrons
[Iannuzzi 06] and cold atoms [Schellekens 05, Jeltes 07].

In the Hanbury-Brown and Twiss experiment, only the local pair correlation g(2)(0) is mea-
sured. However, the full two-body correlation function gives information about the correlation
length of intensity (for light) or density (for matter) fluctuations. In many experiments 60 re-
viewed below, the full dependence of g(2) is obtained. Depending on the experimental situation,
it is either the momentum correlations, or spatial correlations, or temporal correlations that
are considered.

Two-body temporal correlations

The two-body temporal correlation function was first investigated in a cold neon (bosonic)
beam [Yasuda 96], showing bosonic bunching at short times. The authors were able to measure
the full time dependence of g(2)(τ), where τ is the difference between the detection times. A
few years later, g(2)(τ) was measured using atoms extracted from a thermal source of atoms
[Öttl 05] and proved to be equal to two at short times and one at longer times. The same
experiment made with a Bose-Einstein condensate gave g(2)(τ) = 1 for any value of τ .

In a 1D Bose gas, the group of Kaiserslautern observed bunching in a weakly interacting
gas and anti-bunching in a strongly interacting gas [Guarrera 12], using a scanning electron
microscope [Würtz 10]. In a strongly interacting Bose gas, interactions prevent two particles
to be at the same position at the same time, so that the probability to detect two particles at

60. We restrict ourselves to cold atoms sources.
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the same time is reduced leading to g(2)(τ) < 1. This behavior is similar to that of a Fermi gas
where the Pauli principle also prevents two particles to be at the same position at the same
time.

Two-body momentum correlations

Two-body correlations were measured in an expanding ultracold gas 61 of 4He
[Schellekens 05] above and below the Bose-Einstein condensation threshold. The observed
correlation for a thermal cloud showed a bunching behavior, whereas the correlation was flat
for a coherent sample. Doing the same experiment [Jeltes 07] with 3He, the fermionic isotope of
Helium, anti-bunching was observed. More recently, a similar experiment [Perrin 12] was per-
formed in an expanding 87Rb condensate, revealing the same bunching behavior for a thermal
source, but showing remaining correlations, stemming from a persistent multimode character,
in the case of a cloud that is Bose-condensed.

In a 1D Bose gas, the two-body momentum correlations have been investigated theoretically
in [Bouchoule 12] and will be investigated soon on our experiment by using the focusing tech-
nique described in Part IV. In [Bouchoule 12], the authors show that when the gas undergoes
the quasi-condensation crossover, the bosonic bunching in momentum space is preserved, un-
like spatial bunching. They also study specifically the correlations between opposite momenta
and show that unlike in a 3D Bose Einstein condensate where strong positive correlations are
expected [Mathey 09], in a 1D Bose gas, those correlations vanish.

Two-body spatial correlations

In a 1D Bose gas, the local pair correlation has been measured using the photo-association
[Kinoshita 05] phenomenon. The authors observe that g(2)(0) is reduced from 1 to 0 when
the interactions are increased. Their results are reproduced by a zero temperature theoreti-
cal prediction [Gangardt 03]. In weakly interacting gases, the measurement of in situ density
fluctuations, which is related to the integral of g(2)(z), proved to be a powerful tool to study
such a system. The pioneer experiment [Esteve 06] evidenced bosonic bunching in the ideal
Bose gas degenerate regime and the reduction of density fluctuations in the quasi-condensate
regime, which stems from a reduction of the short distance density correlations due to inter-
actions. More recently [Jacqmin 11], we observed sub-Poissonian density fluctuations in the
weakly interacting and in the strongly interacting regimes, thus indicating anti-bunching. The
same kind of experiment was performed with a Fermi gas were anti-bunching was observed
[Müller 10]. In the following, we explain how we measure density fluctuations, and we present
the results of [Jacqmin 11].

15 In situ atom number fluctuations

15.1 Principle

In situ atom number fluctuations are related to two-body correlations through Eq. 68 and
to the equation of state of the gas through the fluctuation-dissipation theorem (Eq. 72). In
the experiment, we measure the longitudinal density profile of the cloud with a sample length
corresponding to the pixel size 62. We repeat the same experiment a few hundred times, and

61. In those cases, we cannot really claim that the momentum distribution is measured, since the time of
flight performed is not long enough.
62. In this part, the pixel size is ∆ = 4.5 µm.
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perform statistical analysis of the density profiles. For each profile and for each pixel, we record
the atom number fluctuation δN = N−〈N〉, where 〈N〉 = ρ∆ is the mean atom number in the
pixel considered. The results are binned according to 〈N〉, and for each bin, we compute the
variance 〈δN2〉. The contribution of optical shot noise to 〈δN2〉 is subtracted. The subtraction
procedure is detailed in 16.1. Since in the experiment the gas lies in a harmonic trap, we
sample many different densities in a single set of data. We apply Eq. 68 in each pixel, that is
to say we assume that the gas is homogeneous in each pixel, and that the correlation length of
the gas is much smaller than the pixel size, is referred to as the local density approximation
(LDA). In 16.3, we discuss the validity of this approximation.

15.2 Extraction of the longitudinal density profile

In this Part, two different experimental situations will be considered. In subsection 17.2.4,
the data presented, which will be referred to as Data 1, concern a weakly interacting gas,
obtained in the Z-trap, which has the following characteristics: it is about 200 µm away from
the chip surface, and for the data shown the optical density in the center of the trap is higher
than 0.1, so that the Beer-Lambert law is no longer valid. In subsection 17.3, the data presented,
which will be referred to as Data 2, correspond to very a different experimental situation: the
atoms are trapped in the modulated guide, about 7 µm away from the chip surface, and the
optical density is always much lower than 0.1, so that the Beer-Lambert law is valid.

In this subsection, we show how the density profiles are extracted from absorption images
in the case of Data 1 and Data 2.

15.2.1 Imaging configuration

Data 1

As shown in subsection 12.3.2 (see Fig. 33(2)), the fact that the distance between the
chip and the cloud can be made larger than the probe beam waist makes it possible to shine
the cloud with only one stream of photons (either the incident beam or its reflection on the
chip 63). To achieve this, we need a beam with its waist of the order of 200 µm in the transverse
direction, obtained by means of a cylindrical lens. The light is not focused in the other direction
(the longitudinal axis of the cloud) to ensure the homogeneity of the light intensity in this
direction 64.

Data 2

In the modulated guide, such a configuration cannot be obtained because the distance
between the cloud and the mirror is too small. In fact, the cloud is shined by both the incident
beam and its reflection on the mirror (see subsection 12.3.2). Typical images are shown in Fig.
36.

15.2.2 Optimum signal to noise ratio

In this subsection, we address the question of the choice of the probe beam intensity. We
want to find the intensity I of the probe beam that optimizes the signal to noise ratio (SNR)

63. The incident beam is preferred because it has not been diffracted by the chip structures, so that the
intensity seen by the atoms is as homogeneous as allowed by our optics.
64. For additional information, note that the method employed to obtain and analyse Data 1 is the same as

the one presented in [Armijo 11a].
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Figure 36: (a) and (b): typical images of the atoms in the Z-trap (a), and in the modulated
guide (b). (c) Example of correction function f . The crosses are experimental points, the solid
line is a fit with a third order polynomial, and the dashed line is the Beer-Lamber prediction.

in the atomic fluctuations measurement. The signal is proportional to σ(I)ITp, where σ(I) is
the absorption cross section defined in Eq. 234, and Tp is the pulse duration. The noise is the
photonic shot noise that is proportional to

√
ITp. We get

SNR ∝ σ(I)ITp√
ITp

= σ(I)
√
ITp. (249)

Let us now express how Tp scales with I in order to keep the mean distance δx constant, δx being
the distance over which the atoms move during the imaging pulse. The motion of the atoms
due to light scattering is a diffusion process in momentum space, so that δx ∝ Tp

√
σ(I)ITp,

which gives Tp ∝ 1/(σ(I)I)1/3. With this expression of Tp, Eq. 249 becomes

SNR ∝ σ(I)5/6I1/3 ∝ I1/3

(1 + I/Isat)5/6
. (250)

For a fixed Tp, the intensity that maximizes the Eq. 250 satisfies

I =
2

3
Isat. (251)

However, in the experiment, we always chose a lower values (between 0.1 and 0.3), so that the
correction due to saturation is not too important.

15.2.3 Transverse integration

This step concerns both Data 1 and Data 2. As already explained in Part II, the transverse
size of the cloud is much smaller than the pixel size. However, due to finite optical resolution and
to diffusion caused by the probe beam, the atomic signal spreads over a few pixels. Therefore,
we integrate transversely over a few pixels. In the case of Data 2, two images of the same cloud
are seen on each picture: the direct image and its reflexion in the mirror. Those two images
are separated by about two pixels (see Fig. 36(b)), and we integrate transversely over those
two images.

15.2.4 Correction for Beer-Lambert law deviation

As pointed out in subsection 12.4, when the transverse extension of the cloud is smaller
than both the pixel size and the optical resolution, the Beer-Lambert law underestimates the
true atom number. Moreover, the validity of the Beer-Lambert law is questionable for high
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atomic densities due to non-trivial reabsorption effects. In the case of Data 1, where the
optical density is higher than 0.1 in the center of the trap, a correction must be applied to the
measured density profiles, where the atom number NBL computed with the Beer-Lambert law
deviates from the true atom number N . To estimate the deviation, we proceed as follows. The
correct density profile is obtained by averaging a few tens of images taken with a non-resonant
probe 65. This yields a smaller absorption cross section and thus a lower optical density. In
addition, we image the cloud after a time of flight of about 0.5 ms, long enough so that the
cloud expands transversely over a few micrometers, but short enough to leave the longitudinal
density distribution unchanged. The averaged correct density profile is then normalized to the
total atom number which is obtained as follows. We take a few tens of images with a resonant
probe, in a situation where the orientation of the magnetic field, and the polarization of the
beam ensure that the scattering cross section is exactly σ0/(1+I/Isat). Those images are taken
after a time of flight of about 2.5 ms during which the cloud expansion is sufficient to render
the Beer-Lambert law applicable.

From the correct average density profile and the average in situ profile, we obtain the
correction function f defined by N = f(NBL) by fitting the experimental points N versus NBL

with a third order polynomial. Each in situ profile is then corrected using the function f . A
typical correction function is shown in Fig. 36(c).

16 Data analysis

16.1 Photon shot noise subtraction

The measured atom number fluctuations contain a contribution from the optical shot noise.
Indeed, the number of photons measured in a pixel of the first and second images has Poissonian
fluctuations: Nj = nj + δnj , where j = 1 or 2. We recall the relation between the number of
photons Nphot and the number of photoelectrons Ne in a pixel of the camera

Nphot = g(Ne −Ne,0), (252)

where g = 0.62 is the gain of the camera, and Ne,0 = 616 is the dark-field. Substituting these
expressions into the solution of the Beer-Lambert law (Eq. 231) and computing the variance
give two separate contributions, one from the atomic noise which we want to measure, and
one from the optical shot noise. Since the optical noise verifies 〈δn2

i 〉 = gni, we find that
the contribution of the optical shot noise to the computed atom number fluctuations in one
effective pixel (that is to say after transverse integration) is

〈δN2〉phot =
∆4

σ2
0

f ′(NBL).2g
∑

transverse
pixels

[(
1

n1
+

1

n2

)
+
n1 + n2

N2
sat

+
4

Nsat

]
, (253)

where Nsat = IsatT∆2 and the sum is done over the transverse pixels that contribute to the
effective pixel. We subtract this contribution to the measured fluctuations.

65. The detuning being of the order of 5 MHz.
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16.2 Accounting for technical drifts

16.2.1 Interlaced scans

We have seen that three different kinds of images are needed: in situ images, profile calibra-
tion images and total atom number calibration images. To account for drift of the experiment
with time, we do interlaced scans. A typical cycle consists in 6 in situ pictures, 1 profile cali-
bration image and 1 atom number calibration image. Typically, this cycle is repeated for about
50 times.

16.2.2 Background normalization

Fluctuations of the probe beam can modify the measured fluctuations. We minimized the
spatial fluctuations from one image to the other by filtering the imaging beam with a fiber, so
that any spatial fluctuation before the fiber translates into an intensity fluctuation after the
fiber. Fluctuations of the intensity between the two images lead to a non-zero background in
the density picture. Although those fluctuations are always less than 1%, we correct for this
effect as follows by normalizing the two images to the same average intensity in a region where
no atoms are present.

16.2.3 Post-selection

We remove the images that are not shot-noise limited. Indeed, when we subtract the
contribution of the optical noise from the atom number fluctuations, we assume that the optical
shot noise is the Poissonian noise. We also reject images that have an atom number which does
not fall within a 10% range around the mean value. Typically this post-selection process throws
away about 5% to 20% of the images depending on the stability of the experiment.

16.2.4 Running average

In the experiment, all the trap parameters are well controlled and very stable. The param-
eter which noticeably drifts with time is the initial atom number in the magnetic trap, and
consequently the final atom number. It is an issue because the average profile depends on the
total atom number. Therefore, after the post-selection, we sort the images with respect to the
total atom number, and compute the fluctuations of the atom number in each pixel with a
running average. The typical number of images taken into account in the running average is
about 20.

16.3 Local density approximation

In the experiment the gas is not homogeneous as it lies in a longitudinal harmonic trap of
frequency f‖ = ω///2π. In this subsection we discuss the local density approximation (LDA)
which validity conditions are

[
1

ρ

dρ

dz

]−1

� ∆, (254)

and
lc � ∆. (255)
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Eq. 254 means that the density variation within a pixel should be small, and Eq. 254 that
the correlation length of the gas should be smaller than the pixel size. If those two conditions
are satisfied, then in each pixel the system can be described by a homogeneous gas at thermal
equilibrium with the local chemical potential

µ(z) = µ0 −
1

2
mω2

//z
2, (256)

where µ0 is the chemical potential at the center of the trap.

For a gas whose peak density lies in the crossover from the ideal degenerate Bose gas regime
to the quasi-condensate regime, the LDA conditions writes [Bouchoule 07]

ω// �
(
mg2k2

BT
2

~5

)1/3

. (257)

At higher densities, when almost the whole cloud lies within the quasi-condensate regime, the
LDA conditions give [Gerbier 03]

ω// �
kBT

~2

√
mg

ρ
. (258)

In the data presented in this Part, both criteria are fulfilled. We use Eq. 256 to compute the
in situ density profiles from the Yang-Yang theory for homogeneous gases.

In the following, we explain how the LDA is also used in the fluctuation measurement.
First of all, note that thermodynamic relation

〈δN2〉 =
1

β

∂〈N〉
∂µ

(259)

derived in subsection 2.2.3 requires the LDA to be valid. Moreover, in general 66, atomic
fluctuations are linked to g(2)(z1, z2) through the relation

〈δ2N〉 =

∫ ∆

0
dz1

∫ ∆

0
dz2 〈δρ(z1)δρ(z2)〉 = 〈N〉+ ρ2

∫ ∆

0
dz1

∫ ∆

0
dz2 (g(2)(z1, z2)− 1). (260)

We divide the gas into N cells of length ∆. Within each cell, the density varies little, so that
lc, the correlation length of g(2)(z) is almost constant in the cell (see Fig. 56). Additionally, if
we assume that lc � ∆, Eq. 260 can be approximated by

〈δ2N〉 = 〈N〉+ ρ2

∫ +∞

−∞
dz (g(2)(z)− 1), (261)

where g(2)(z) is the two body correlation function of a homogeneous gas.

16.4 Effect of finite optical resolution

The theoretical expectation for the atom number fluctuations in a cell (Eq. 260) does not
take into account the finite optical resolution. In this subsection, we analyze how it affects
the atom number fluctuation signal, and we show how the effective optical resolution can be
determined, and taken into account.

66. We do not consider a uniform gas.
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Figure 37: 2D plot of the second order correlation function of a trapped gas of length L.
g(1)(z1, z2) is peaked around the line z1 = z2.

16.4.1 Modelization of the point spread function (PSF) of the imaging system

The optical resolution is limited by two phenomena: first by the PSF of the optical system,
and then by the isotropic diffusion of the cloud under the effect of the probe beam. In all this
Part, the imaging system is used in the optimum configuration (the cloud is exactly at the
specified working distance from the objective), so that it is diffraction limited. The PSF is an
Airy function defined by only one parameter: the numerical aperture of the objective (0.2).
Which is well fitted by a Gaussian of RMS width

ζ = 1 µm. (262)

The impulse response due to diffusion under the effect of the probe beam is also assumed
to be a Gaussian. Convoluted with the point spread function (PSF) of the imaging system, it
gives the effective PSF

A(z) =
1√
2πδ

e−
z2

2δ2 (263)

which is a Gaussian of RMS width δ(ζ, T, I) > ζ. Note that because δ is a function of T and
I, it must be determined for each set of data. In the following we show that finite resolution
reduces the measured atomic fluctuation signal.

16.4.2 Reduction of the atomic fluctuations

The measured atom number fluctuation in a pixel is obtained by convolution with A(z) as

δN =

∫ ∆

0
dz

∫ +∞

−∞
dZ A(z − Z)δρ(z) (264)

Using Eq. 67, we find that the measured variance of atom number in a pixel is

〈δN2〉m =

∫ ∆

0
dz1

∫ ∆

0
dz2

∫ +∞

−∞
dZ1

∫ +∞

−∞
dZ2 A(z1−Z1)A(z2−Z2)

[
ρδ(Z1−Z2)+(g2(Z1−Z2)−1) ρ2

]
.

(265)
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Figure 38: Correlation of atom number fluctuations between adjacent (open squares), and next
neighbors (crosses) pixels. The solid lines are the predictions for an impulse response function
of width δ = 2 µm.

We checked that for the typical t and γ probed in this Part, the correlation length of the density
fluctuations is always much smaller than the pixel size and δ, so that the LDA is valid. Thus,
in Eq. 265, the two-body correlation function can be approximated by

g(2)(z)− 1 ' (g(2)(0)− 1)δ(z)lc, (266)

where lc stands for the correlation length of density fluctuations. Within this approximation,
Eq. 265 reduces to

〈δN2〉m = κ〈δN2〉t, (267)

where 〈δN2〉t is the atom number fluctuation we would measure in the limit of δ → 0 (〈δN2〉t
is defined by Eq. 68). Introducing the function

F(Z) =

∫ ∆

0
dz A(z − Z), (268)

κ is givven by

κ =

∫ +∞

−∞
dZ F(Z)2. (269)

We see that the effect of finite resolution is to reduce the fluctuation signal by a factor κ, which
depends on I, T and ζ. In the following, we explain how we determine κ.

16.4.3 Measurement of the reduction factor κ

In the case where the gas is in the Maxwell-Boltzmann regime, we expect Poissonian fluc-
tuations for which 〈δN2〉t = 〈N〉. In order to determine κ, one can then think of plotting
〈δN2〉m as a function of 〈N〉, which should be linear with a slope equal to κ. This method was
used in early experiments [Esteve 06], however it requires to take an additional set of data with
different parameters. In the following, we show that κ can be determined directly from the
data of interest, by computing correlations between atom number fluctuations in neighboring
pixels.

Measured correlations between distant pixels write
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Ci,i+j =
〈δNjδNj+i〉m√
〈δN2

j 〉m〈δN2
j+i〉m

, (270)

where i is 1 for adjacent pixels, 2 for next neighbors, etc. Ci,i+j can be computed by substi-
tuting Eq. 67 into Eq. 270. Using the LDA, it gives a similar expression as Eq. 265, and the
approximation of Eq. 266 can be done, so that

Ci,i+j =
1

κ

∫ +∞

−∞
dZ F(Z)F(Z − j∆). (271)

This expression is independent on 〈N〉. In the experiment, we measure Ci,i+j as a function of
〈N〉, and obtain a plateau. By fitting the plateau we obtain a very precise value of Ci,i+jj.
On the other hand, Ci,i+j can be tabulated 67 as a function of δ. From the measured Ci,i+j ,
we deduce the corresponding effective resolution δ, which we substitute into the expression of
κ. In Fig. 38, we show the extracted correlations for a typical set of data.

This method is very powerful, as all the pixels contribute to the signal. Moreover, we check
its validity by comparing the different values of κ obtained with 68 Ci,i+1, Ci,i+2 and Ci,i+3.
Flat correlations are also a good indication that the gas is at thermal equilibrium. For instance,
a monopole oscillation would make Ci,i+j dependent on 〈N〉.

17 SubPoissonian fluctuations in a one-dimensional Bose gas

17.1 Introduction: atom number fluctuation measurements

Fluctuations witness the interplay between quantum statistics and interactions and there-
fore their measurement constitutes an important probe of quantum many-body systems. In
particular, measurement of atom number fluctuations in ultracold quantum gases has been
a key tool in the study of the Mott insulating phase in optical lattices [Fölling 05], isother-
mal compressibility of Bose and Fermi gases [Esteve 06, Armijo 11b, Sanner 10, Müller 10],
magnetic susceptibility of a strongly interacting Fermi gas [Sanner 11], scale invariance of
a two-dimensional (2D) Bose gas [Hung 11], generation of atomic entanglement in double
wells [Estève 08], and relative number squeezing in pair production via binary collisions
[Jaskula 10, Bücker 11]. While a simple account of quantum statistics can change the atom
number distribution in a small volume of an ideal gas, from a classical-gas Poissonian to super-
Poissonian (for bosons) or sub-Poissonian (for fermions) distributions, many-body processes can
further modify the correlations and fluctuations. For example, three-body losses may lead to
sub-Poissonian fluctuations in a Bose gas [Whitlock 10, Itah 10]. Even without dissipation, the
intrinsic interatomic interactions can also lead to sub-Poissonian fluctuations, such as in a re-
pulsive Bose gas in a periodic lattice potential, where the energetically costly atom number fluc-
tuations are suppressed. This effect has been observed for large ratios of the on-site interaction
energy to the intersite tunneling energy [Li 07, Gross 11], with the extreme limit correspond-
ing to the Mott insulator phase [Bakr 10, Sherson 10]. The same physics accounts for sub-
Poissonian fluctuations observed in double-well experiments [Estève 08, Sebby-Strabley 07].
Sub-Poissonian fluctuations of the total atom number have been also realized via controlled
loading of the atoms into very shallow traps [Chuu 05].

67. Exact expressions of κ, Ci,i+1 and Ci,i+2 and Ci,i+3 are given in Appendix C and D
68. Usually, the signal is too low for j > 3.
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Figure 39: The two sets of data presented in this Part are shown. The line γt = 1 separating
the two sub-regimes of the quasi-condensate regime is the lower dashed line.

17.2 Density fluctuations in the quasi-condensate regime

17.2.1 Quasi-condensate subregimes

As pointed out in Part I, the quasi-condensation crossover is best seen on the two-body
correlation function, as density fluctuations are reduced when going from the ideal Bose gas
degenerate regime to the quasi-condensate regime. In Part I, we have been considering only
thermal density fluctuations. In this subsection, we show that two sub-regimes can be identi-
fied. In the first sub-regime, the density fluctuations, although reduced compared to the ideal
degenerate Bose gas are still larger than that expected from a Poissonian noise. In this regime,
g(2)(0) is dominated by thermal fluctuations which lead to g(2)(0) & 1, so that bunching is
still present in the system. In the second subregime, density fluctuations are even smaller than
the Poissonian prediction. In this regime, g(2)(0) is dominated by quantum fluctuations, which
lead to g(2)(0) . 1, thus revealing the presence of anti-bunching in the system.

We recall that the density fluctuations are given by

〈δρ(z)δρ(0)〉 = ρδ(z) + ρ2(g(2)(z)− 1), (272)

where the first term in the right hand side corresponds to the Poissonian noise, and the second
term is the contribution of the two-body correlations. The Bogoliubov expression of g(2)(z)
given by Eq. 143 writes

g(2)(z)− 1 =
2

πρ

∫ +∞

0
dz
[
2αkf

+2

k − (1− f+2

k )
]
eikz cos kz, (273)

where αk and f+
k are defined by Eq. 142 and Eq. 117 respectively. The first term in the

right-hand-side, which is proportional to αk, accounts for thermal fluctuations and is positive.
The second term, proportional to 1− f+2

k , accounts for quantum fluctuations and is negative.
Therefore, if

∫
g(2)(z) − 1 > 0, thermal fluctuations dominate over quantum ones, and if∫

g(2)(z)−1 < 0, quantum fluctuations dominate over thermal ones. We find that
∫
g(2)(z)−1 >

0 for µ < kBT , and
∫
g(2)(z) − 1 < 0 for µ > kBT . In the phase diagram (see lower dashed

line in Fig. 39), the line separating those two regimes has the equation
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tγ = 1. (274)

17.2.2 Atom number fluctuations in the case µ� kBT

The atom number fluctuations in a pixel of size ∆ write

〈δN2〉 =
ρ

π

∫ ∆

0
dz

∫ +∞

0
dk
[
2αkf

+2

k + f+2

k

]
cos kz. (275)

If we take the limit |µ| � kBT , and make the approximation of Eq. 266, we find

〈δN2〉 =
∆kBT

g
. (276)

〈δN2〉 is independent on 〈N〉, and proportional to the temperature T . This expression is also
obtained using the fluctuation dissipation theorem (Eq. 72) together with the quasi-condensate
equation of state (Eq. 112). Taking into account the finite optical resolution leads to the same
expression as Eq. 276, up to a factor κ.

17.2.3 Atom number fluctuations in the case µ� kBT

In this subsection, we show that in the regime where µ > kBT , although quantum fluctua-
tions dominate the two-body correlation function, the dominant contribution to the measured
atom number fluctuations 〈δN2〉 comes from thermal fluctuations. The contribution of quan-
tum fluctuations to the measured atom number fluctuations 〈δN2〉m writes 69

〈δN2〉T=0
m =

ρ

π

∫ +∞

−∞
f+2

k

1− cos(k∆)

k2
e−k

2δ2
. (277)

Since f+2

k ∝ kξ when kξ � 1, we find that for ∆ � δandξ, 〈δN2〉T=0
m scales as ρξ ln ∆/ξ/π.

On the other hand, we have seen that the thermal contribution to 〈δN2〉m scales as κ∆kBT/g.
Therefore, the ratio between the quantum contribution and the thermal contribution is

〈δN2〉T=0
m

〈δN2〉T6=0
m

' ~2 ln(∆/ξ)

πm∆ξkBT
, (278)

so that it vanishes at the limit ∆ → +∞. Note that for our typical parameters, this ratio is
not small. However, if we include the effect of the effective optical resolution (using Eq. 277),
it is much smaller than 1.

17.2.4 Results (Data 1)

The results presented here concern a weakly interacting gas of 3000 atoms at thermal
equilibrium in the Z-trap, with a transverse frequency f⊥ =3.3 kHz, and a longitudinal fre-
quency f// = 5.5 Hz. We measure atom number fluctuations as described above. Using the
method described in subsection 16.4.3, we find a reduction factor κ = 0.34 which corresponds
to δ = 3.5 µm.

69. Here we use Eq. 265.
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Figure 40: Data 1 : Variance of the atom number fluctuations in a weakly interacting gas, for t =
65. The measured data are shown as circles together with statistical uncertainties. Predictions
for different thermodynamic models are shown as solid (Yang-Yang), short-dashed (ideal Bose
gas) and dash- dotted (quasi-condensate) lines. The long-dashed line is the Poissonian limit
and the low lying dotted line is the contribution from quantum fluctuations (Eq. 277). Here
f⊥ = 3.3 kHz, f// = 5.5 Hz, T =16 nK (kBT = 0.1~ω⊥), and κ = 0.34.

The results are plotted in Fig. 40. The measured data are shown as circles, together with
their statistical uncertainty. The Poissonian prediction κ〈N〉 is the dashed line. We see that
the data are tangent to it at low 〈N〉, where the gas lies in the non-degenerate ideal Bose gas
regime. When 〈N〉 is increased, the bosonic bunching raises the signal well above the Poissonian
limit. At much higher densities, the gas enters the quasi-condensate regime, where interactions
level off the density fluctuations. Within the quasi-condensate regime, the fluctuations go from
super-Poissonian to sub-Poissonian, with 〈δN2〉/κ〈N〉 going from 2 to 0.44. The temperature
is obtained by fitting the equation of state of a quasi-condensate µ = ~ω⊥(

√
1 + 4na − 1) at

high densities. The result of the fit is plotted as a dash-dotted line. We find the temperature
T = 16.5 nK, which corresponds to t = 65, and gives a ratio kBT/~ω⊥ = 0.1. In Fig. 39, the
black horizontal line shows the parameters explored by this set of data. In Fig. 40, we also
show the ideal Bose gas prediction (small dash), and the Yang-Yang prediction (solid line). The
Yang-Yang prediction is in good agreement with the data only at low densities, and is about
20% lower at high densities. Indeed, the Yang-Yang equation is a purely 1D calculation, which
does not take into account the transverse swelling of the wavefunction due to interactions.
Finally, for our parameters, the contribution of quantum fluctuations (Eq. 277) is shown as a
dotted line.

17.3 In the crossover between the weakly interacting and strongly interact-
ing regimes

17.3.1 Experimental observations of a strongly interacting 1D Bose gas

Reaching this regime requires to increase the transverse confinement of the trap or the
scattering length, and/or decreasing the density. Before our work, the strongly interacting
regime has been reached only in 2D optical lattices. The first observation comes from W.D.
Philipps’ group [Tolra 04], where by comparing losses either in a 3D BEC or in an array
of 1D tubes with γ ' 0.5, they observed a factor 7 reduction in g(3)(0). Indeed, in the
strongly interacting regime, three-body collisions are killed by the fermionic nature of the wave-
function. A few months later it was evidenced in the group of Tilman Esslinger [Stöferle 04]
by recording the excitation spectrum using Bragg spectroscopy of an array of 1D tubes with
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γ ' 1. Then, in the group of Immanuel Bloch [Paredes 04], an array of 1D tubes was realized
using a 2D optical lattice. Adding a longitudinal shallow lattice allowed them to tune the
effective mass of the atoms, thus creating an effective γ ' 200. By looking at time of flight
images, they found out that the momentum distribution agrees well with zero temperature
momentum distributions obtained with the Bose-Fermi mapping. It was followed by the group
of David Weiss [Kinoshita 04] where the total energy of an array of 1D tubes was measured
for various interaction strength with a maximum at γ ' 5. The results is shown to fit well the
ground state prediction for a Tonks gas in a harmonic trap [Dunjko 01]. One year later, the
pair correlation was measured [Kinoshita 05] by using photo-association for various interaction
strength. The authors observed a reduction of g(2) from 1 in the quasi-condensate regime
to 0 in the strongly interacting regime. More recently, a more precise determination of the
three body correlation g(3)(0) was obtained [Haller 11] showing a reduction by many orders of
magnitude while increasing the interaction strength. In this experiment, where Cesium was
used, the strongly interacting regime was reached by tuning the scattering length by means of
a Feshbach resonance, so that the confinement induced resonance (see subsection 1.2.2) can be
reached for a reasonable value of f⊥.

All these observations were performed with an array of 1D tubes obtained by means of a
2D optical lattice, and compared to zero-temperature theories. In the following we present the
first observation of a single strongly interacting gas. We measure in situ density fluctuations
and compare our results to the Yang-Yang theory, which is a finite temperature theory. In our
experiment, the strongly interacting regime is obtained from a very cold sample of low density,
by increasing the transverse confinement to a few tens of kHz. To reach such high trapping
frequencies, we use the modulated trap described in section 10.

17.3.2 Determination of the scattering cross section

We recall that the data presented here are referred to as Data 2. Contrary to the case
where images are taken in the Z-trap (case of Data 1 ), we cannot perform an absolute atom
number measurement. However, we could determine the total number by cross-analyzing the
average density profile and the fluctuations data. To compute the total atom number, we need
to determine the scattering cross section σ(I) = ασ0/(1 + αI/Isat), where the coefficient α
accounts for the multilevel structure (see subsection 12.3.2). In this subsection, we propose a
method which enables to extract the parameters α from the data.

We found out that the temperature tp extracted from a fit to the Yang-Yang theory to the
density profile is a decreasing function of the parameter α used to compute the density profile.
On the other hand, we can also fit the Yang-Yang theory to the density fluctuations. In this
case, the temperature tf extracted from such a fit is an increasing function of the parameter
α. Indeed, if we think about the quasi-condensate theory 70, the height of the plateau at high
densities is proportional to the temperature. Increasing α reduces the height of the plateau
and by way of consequences it reduces the fitted temperature. Because the tf (α) and tp(α)
have opposite derivatives, they intersect for the correct value of α. In Fig. 42(c), we plot tf (α)
and tp(α). We find α = 0.77. On the other hand, the coefficient α could also be estimated
by means of the optical Bloch equations, as described in subsection 12.3.2. Using the imaging
parameters: T = 60 µs and I/Isat = 0.2, we found α = 0.75, in good agreement with the
experimental result.

70. Note that we do not expect the quasi-condensate theory to be accurate in this region of the phase diagram.



112 SubPoissonian fluctuations in a one-dimensional Bose gas

Figure 41: Typical optical density image of a gas of 1000 atoms.
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Figure 42: Data 2. (a) Variance 〈δN2〉 close to the strongly interacting regime. The cloud is
trapped in a f⊥ = 18.8 kHz and f// = 7 Hz trap. the temperature fitted using the Yang-Yang
theory is T = 40 nk which corresponds to t = 5.4, and kBT/~ω⊥ = 0.044. From correlations
between pixels we find κ = 0.47. (b) Average density profile (solid line) together with the
Yang-Yang prediction (dashes). (c) Value of t obtained from fits to the density profile (dotted
line) and atom number fluctuations (solid line) for different values of the parameter α.

17.3.3 Transverse compression

In Part II, we have seen how we load atoms in a 3 kHz modulated guide, and how radio-
frequency (RF) evaporation is performed in such a trap. In this subsection, we explain how,
starting from a weakly interacting cold cloud in such a trap, we obtain a strongly interacting
gas. First, as we want to increase γ, we reduce the longitudinal frequency from about 12 Hz
to 7 Hz. Then for the same purpose, we ramp up the transverse frequency from about 3 kHz
to 18.8 kHz in 600 ms, while keeping the RF on during this compression. After ramping the
RF power down in 100 ms, and letting the cloud thermalize for 150 ms, we switch off the wire
currents and image the cloud after a 50 µs time of flight with a 60 µs long resonant probe pulse.
A typical image is shown in Fig. 41, and the average density profile is plotted in Fig. 42(b).

17.3.4 Results (Data 2)

In weakly interacting gases, the atom number fluctuations take super-Poissonian values in
the degenerate ideal Bose gas regime, and in the thermal quasi-condensate regime. 〈δN2〉/〈N〉
is maximum at the quasi-condensation crossover where it scales at t1/3 [Armijo 11b]. When t
is decreased, the super-Poissonian zone is expected to merge towards the Poissonian limit and
it vanishes when the gas enters the strongly interacting regime. This trend is exactly what we
observe in Fig. 42(a), for t = 5.4: at large densities, we see a reduction of 〈δN2〉 below the
Poissonian level, but most importantly, we no longer observe super-Poissonian fluctuations at
lower densities: 〈δN2〉/〈N〉<1.3 which is within the experimental error bars. Interestingly, no
simple theory is applicable to this crossover region, and the only reliable prediction here is the
exact Yang-Yang thermodynamic solution (solid line in Fig. 42(a)).
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Figure 43: Longitudinal density profile of 300 atoms in a (f// = 5.6 Hz, f⊥ = 56 kHz) trap. A
fit of the Yang-Yang theory (solid line) to the data gives t = 0.4. At the center of the trap, we
find γ = 2.6.

18 Conclusion

We have observed the quasi-condensate sub-regime where the physics is dominated by quan-
tum fluctuations, by monitoring thermal density fluctuations. In this sub-regime, the density
fluctuations are sub-Poissonian. We also measured density fluctuations in a strongly interact-
ing one-dimensional Bose gas, where the fluctuations are sub-Poissonian for any density, like
in a non-interacting Fermi gas. However, we did not go far enough in the strongly interact-
ing regime to observe density fluctuations similar to that of a Fermi gas 71. Indeed, density
fluctuation measurements require a very good SNR and a good stability of the experiment,
which was not sufficient to deal with less than 10 atoms/pixel. On the other hand we have
observed the density profile of a gas of 300 atoms in a ' 50 kHz trap (see Fig. 43), which,
fitted by the Yang-Yang theory, gives t = 0.4 and γ = 2.6 at the center of the trap. Further
improvement of the experiment stability and of the imaging quality may allow us to perform
density fluctuation measurement in this experimental situation in a near future. Note that
by compressing transversely, we explore zones of the phase-diagram were three-body recom-
bination can be important. Thus, we lose many atoms, which in a way is favorable to reach
the strongly interacting regime, but significantly reduces the SNR for any measurement to be
feasible. Therefore, we installed a longitudinal optical lattice that we intend to use as follows:
before the transverse compression, we turn on adiabatically this longitudinal lattice, to transfer
the cloud in the Mott phase, where three-body interactions are killed. We then increase the
transverse confinement, thus entering in the strongly interacting regime, before switching off
adiabatically the lattice light.

71. In a non interacting Fermi gas, the fluctuations are Poissonian at low density, and converge towards zero
when the gas starts to be degenerate, due strong antibunching.
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19 Introduction

After reaching quantum degeneracy in Bose gases [Anderson 95, Davis 95], much attention
has been paid to the phase coherence of the 3D Bose Einstein condensate. This system was
expected to be coherent in phase over its whole size, opening the way towards matter-wave
interferometry. What the group of Wolfgang Ketterle did first [Andrews 97] was an interference
experiment in which two condensates were generated close to each other. After switching off
the trap, the condensates expanded and overlapped, showing an interference pattern with a
good visibility. To be more quantitative, this group also measured [Stenger 99] the coherence
length of a 3D BEC using Bragg spectroscopy, and found that the coherence length of the cloud
is indeed equal to its size. The same year, another group proposed a quantitative analysis by
measuring the interference pattern produced by two copies of the same condensate for various
relative positions [Hagley 99].

Although at the beginning, the most striking feature of BECs was their phase coherence
evidenced by g(1)(z), the first-order correlation function has proven to be the smoking gun
of various other phenomena such as the Mott transition [Greiner 02], and the Berezinski-
Kosterlitz-Thoules (BKT) transition [Hadzibabic 06].

Contrary to 3D condensates, for which the density and phase fluctuations are large only
close to the Bose-Einstein transition, 1D quasi-condensates exhibit reduced density fluctuations
for temperatures far below the 3D critical temperature, unlike the long wavelength phase fluc-
tuations which lead to an exponential decay of g(1)(z) at large distances [Kane 67, Petrov 00].
Thus, the phase coherence over the whole size of the sample is lost. This happens when the
wavelength of thermal excitations become larger than the transverse size of the cloud, so that
the longitudinal thermal excitations become 1D [Petrov 01].

This was first observed [Dettmer 01] by looking at a very elongated BEC after a time of flight
long enough so that the phase fluctuations have turned into density fluctuations. The density
image of the cloud is then related to the initial phase distribution. They showed that for the
same initial conditions, the distribution of the phase is not the same, thus proving the statistical
nature of phase fluctuations and that those fluctuations increase with the aspect ratio of the
cloud, and decrease with the temperature. The appearance of those structures in the images of
quasi-condensates after time of flight can be used as a thermometer [Imambekov 09, Manz 10].

The first order correlation function can also be deduced from measurements of momentum
distribution. This was investigated by [Richard 03, Gerbier 03] using Bragg spectroscopy. They
observed the Lorentzian shape of the momentum distribution of elongated quasi-condensates
and measured the coherence length of the gas at different temperatures. Apart from Bragg
spectroscopy, it is possible to measure the momentum distribution using the so-called focusing
technique. It was introduced for the first time [Shvarchuck 02, Shvarchuck 03, Buggle 05] to
see how the coherence length of an elongated Bose gas changes during its condensation into a
non-equilibrium state obtained by shock cooling. A few years later, it has been implemented
in another group on an atom chip [van Amerongen 08a, van Amerongen 08b] to measure the
momentum distribution of a quasi 1D Bose gas at thermal equilibrium, in the crossover from
the ideal Bose gas regime to the quasi-condensate regime. As we will see in the following, this
technique can be easily implemented in 1D and 2D. In 2D, it was implemented by [Tung 10]
in a slightly different version to measure the momentum distribution of a 2D Bose gas in the
presuperfluid regime.

The momentum distribution of purely 1D, strongly correlated Bose gases has been in-
vestigated in the group of Florence [Fabbri 11] in a regime where γ ' 1, using Bragg spec-
troscopy, and compared to time of flight distributions. Before our work, this constituted the
only measurement on purely 1D samples. However, in the case of quasi-1D quasi-condensates
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[van Amerongen 08a], and that of purely 1D strongly correlated Bose gases [Fabbri 11], no
independent thermometry was available for comparison of temperatures extracted from the
momentum distribution. In this thesis, we rely on our in situ thermometry to measure pre-
cisely the temperature of the gas.

From the theoretical point of view, the momentum distribution of 1D Bose gases with
repulsive contact interactions is not known exactly over the entire phase diagram. However,
a few results have been established: the mean kinetic energy can be extracted from the exact
Yang-Yang thermodynamics [Davis 12] (see subsection 2.1.3), and the short-range correlations
are responsible for a momentum tail scaling as 1/p4 (see subsection 2.1.4). The momentum
distribution is known in asymptotic regimes such as the ideal Bose gas and the quasi-condensate
regimes, and a classical field approximation has been proposed to account for the crossover
between them [Davis 12, Castin 00, Castin 04] (see subsection 5.2).

In the following, we introduce the focusing method we use to measure the momentum
distribution of a 1D gas. The implementation of this technique on our experiment was made
possible due to the independence between the longitudinal and transverse confinements. Then,
we present the measurement of the momentum distribution of a purely, or almost purely 1D
Bose gas in the weakly interacting regime, around the quasi-condensation crossover. On the
theory side, we find the domain of validity of the classical field approximation for computing
g(1)(z), and show that when interactions start to be strong, this theory does not accurately
describe g(1)(z) at the quasi-condensation crossover. This is the case in the experiment, where
the samples are too strongly interacting for this theory to be accurate. That is why we perform
exact Quantum Monte Carlo (QMC) simulations for the equilibrium behavior of the Lieb-
Liniger model. We use the QMC results to fit the experimental momentum distribution, and
compare the extracted temperature to that obtained by monitoring in situ density fluctuations.
Finally, we demonstrate a technique that allows to enhance the resolution of the method by
means of a levitation scheme.

20 The focusing technique

20.1 Why focusing ?

There are many different ways of measuring the momentum distribution of a 1D Bose gas.
It is possible to implement Bragg spectroscopy [Fabbri 11], but this method is experimentally
challenging, as it only allows to measure the population of the modes of wavevector k one by
one. In order to measure the full momentum distribution in one shot, the first idea is to switch
off all confining potentials which amounts to turning off instantaneously the interactions with
respect to the longitudinal motion, and then let the cloud evolve freely. After the cloud falls for
a certain time, an image is taken. This image reflects the initial momentum distribution if the
time of flight is long enough so that the far field regime has been reached. But implementing
such a method requires the ability to carry out very long time of flight, and an unrealistically
large field of view. This is difficult to realize in typical experiments.

The idea of the focusing technique is the following. In optics, an object at infinity can
be imaged at finite distance by means of a converging lens. In the following, we describe the
implementation of a magnetic parabolic lens that can be used to focus a 1D gas.
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20.2 Description of the method

20.2.1 Focusing of a classical particle

0kick

free
evolution

0

Figure 44: Focusing of a classical particle. The particle has the initial momentum ~pi. It is
kicked by the harmonic potential V (z) = 1/2mω2

fz
2 during a time τ . After a free evolution for

a time tf = 1/ωf tan (ωfτ), its position is z(tf + τ) = (pi/m)tf proportional to pi and does
not depend on the initial position L.

Let us consider an ideal gas of particles of mass m. Initially, the gas has a given momentum
distribution f(p). A parabolic potential V (z) = mω2

fz
2/2 is then raised for a time τ , during

which each atom experiences a force F (z) = −mω2
fz that is proportional to its distance to the

position of the potential minimum. Let us focus on an atom initially at position L with the
initial momentum pi. The equation of motion for this atom is dp

dt = −mω2
fz(t) so that at the

end of the kick its momentum writes 72 p = pi + pkick, where pkick = −mωfL sinωfτ , and its
position is z(τ) = L cosωfτ . After the kick, we let the atom evolve freely with the equation
dp
dt = 0 for a time

tf =
z(τ)

|pkick|/m
=

1

ωf tan (ωfτ)
, (279)

such that the final position of the atom writes

z(tf + τ) =
pi
m
tf . (280)

We see here that z(tf + τ) is proportional to the initial momentum of the atom and does not
depend on L. We emphasize that the reason why this method works is the fact that the final
position of the atom does not depend on its initial position.

20.2.2 Focusing of a classical wave

In this subsection, we present the focusing of an optical wave using a parabolic lens. This
problem is analogous to the problem of the focusing of a wave packet by a parabolic potential
which is treated in 20.2.3.

The amplitude Ψz(x, y) of a monochromatic wave at position z can be deduced from its
value at position 0 by a convolution with the Fresnel propagator [Born 80] as

72. Here, we assumed that the kick momentum is much larger than the initial momentum of the particle.
This condition writes pi � mωfL.
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Ψz(x, y) = Ψ0(x, y)⊗Fz(x, y). (281)

Within the paraxial approximation, Fz(x, y) writes

Fz(x, y) =
e2πi z

λ

iλz
eiπ

x2+y2

λz , (282)

and we see that Eq. 281 is just the Huygens-Fresnel principle.

In the following we calculate the amplitude of the wave diffracted by a parabolic lens of
transmission

t(x, y) = ei2π(n−1)e(x,y)/λ, (283)

where e(x, y) = eM − (x2 + y2)/L is the thickness of the lens and n is the refractive index of
the glass. Let us now consider that the amplitude of the optical field is Ψ0(x, y) at position
z = 0. Just after the lens, the amplitude is (see Fig. 20.2.2)

ΨeM (x, y) = t(x, y)Ψ0(x, y). (284)

At any position Z > eM the amplitude of the wave is

ΨZ(x, y) = [t(x, y)Ψ0(x, y)]⊗FZ(x, y) =
θ(Z)

λZ

∫∫
Ψ0(x′, y′)ei2π(n−1)

(x′2+y′2)
λL eiπ

(x−x′)2+(y−y′)2
λZ dx′dy′,

(285)
where θ(Z) is a phase factor. If we now expand the exponent in Eq. 285, we get

ΨZ(x, y) =
φ(Z)

λZ

∫∫
Ψ0(x, y)e

iπ
λ (−2n−1

L
+ 1
Z )(x′2+y′2)e−

2iπ
λZ

(xx′+yy′), (286)

where φ(Z) is a phase factor. If Z satisfies the relation

1

Z
= 2

n− 1

L
, (287)

that is to say if Z is the focal point of the lens, we see that Ψf (x, y) is just the rescaled Fourier
transform of Ψ0(x, y) :

Ψf (x, y) =
φ(f)

λf
T F [Ψ0(x, y)]u= x

λf
;v= y

λf
(288)

Therefore, using a parabolic lens is the easiest means of obtaining the Fourier transform of
an optical field.

20.2.3 Focusing of a matter wave without interactions

The Schrödinger equation describing the time evolution of a matter wave in the absence of
interactions is very similar to the paraxial equation describing the space propagation of optical
waves. In this frame, the amplitude of the wave function at time t2 and position z2 can be
deduced for its amplitude at time t1 and position z1 by a convolution with the propagator of
the free particle [Zinn Justin 04],
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Ψt2(z2) =

∫
dz1 Ψt1(z1)K0(t2, z2|t1, z1), (289)

where

K0(t2, z2|t1, z1) =

√
m

2iπ~(t2 − t1)
e
im(z2−z1)2

2~(t2−t1) . (290)

Eq. 289 looks very similar to Eq. 281 as Ψt2(z2) is obtained by convolution of Ψt1(z1) with a
kernel which is equivalent to the Fresnel propagator.

Similarly, the evolution of the wave function undergoing a harmonic potential V (z) =
mω2

fz
2/2 is described by the propagator

KV (t2, z2|t1, z1) =

√
mωf

2iπ~ sinωf (t2 − t1)
e

imωf
2~ sinωf (t2−t1) [(z

2
1+z2

2) cosωf (t2−t1)−2z1z2]
. (291)

If we apply the potential V (z) for a time τ and then let the particle evolve for a time tf , the
overall propagator is given by the Chapman-Kolmogorov equation

K0(tf + τ, zf |0, z) =

∫
dz′K0(tf + τ, zf |τ, z′)KV (τ, z′|0, z). (292)

Similar to Eq. 286, Eq. 292 simplifies if the condition

tf =
1

ωf tan(ωfτ)
(293)

is satisfied. In this case, we find

K0(tf + τ, zf |0, z) = φ

√
πα

2
e−iαzf z, (294)

where α =
mωf sin (ωf τ)

~ is a scaling factor and φ is a phase factor that does not depend on z.
Finally, the probability density at tf + τ writes

|Ψtf+τ (zf )|2 =
∣∣∫ dz K0(tf , zf |0, z)Ψ0(z)

∣∣2
= πα

2

∣∣T F [Ψ0(z)]p=αzf
∣∣2 . (295)
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The density distribution after a time tf is homothetic to the initial momentum distribution.
In absence of interactions, provided that Eq. 293 is satisfied, the density distribution at focus
is an image of the initial momentum distribution.

In the case where ωfτ � 1, which is equivalent to say that the displacement of the particle
during the kick is neglected, Eq. 293 reduces to

tf '
ωf τ�1

1

ω2
fτ
. (296)

This condition is fulfilled as long as tan (ωfτ)/ωfτ < 1.01 which happens for ωfτ < 0.18. In
practice, this condition is always satisfied in the experiment.

20.2.4 Effect of interactions during the kick

From 20.2.3, we have learned that, no matter how long the kick lasts, there always exists
a position for which the density distribution is an image of the initial momentum distribu-
tion. However, interactions that are present in the system during the kick might modify this
statement. In this subsection, we estimate the effect of interactions during the kick.

Solving the full N-body problem is a very difficult task, but in certain limits there exists very
simple tools. This is the case for a weakly interacting gas at zero temperature in a harmonic
trap, in the Thomas-Fermi limit. In this situation, the system is described by the classical
hydrodynamic equations

∂ρ

∂t
+
∂vρ

∂z
= 0, (297)

m
∂v

∂t
+

∂

∂z

(
V (z) + g(t)ρ+

1

2
mv2

)
= 0, (298)

where V (z, t) = ω//(t)
2z2/2 is the longitudinal potential. Eq. 297 and 298 have solutions of the

form [?, Castin 96]

ρ(z, t) =
1

λ(t)
ρ

(
z

λ(t)
, t = 0

)
=

1

λ(t)
ρ0

(
z

λ(t)

)
, (299)

where the time dependence of the problem is entirely encoded in the scaling parameter λ(t),
and ρ0(z) = (µ −mω//(0)z2/2)/g0 is the initial Thomas Fermi profile. Substituting Eq. 299
into Eq. 297 gives the expression of the velocity

v =
λ̇

λ
z, (300)

where λ̇ = dλ/dt. Finally, substituting Eq. 299 and 300 into Eq. 298 gives the time evolution
of λ,

λ̈ =
g(t)

g0

ω2
//(0)

λ2
− ω2

//(t)λ. (301)

Starting from an equilibrium situation, the initial conditions are λ(0) = 1 and λ̇(0) = 0. In
the case where interactions are neglected 73, Eq. 301 has the solution

73. Note that if interactions are neglected, the scaling equations are a priori not valid anymore, since they
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λ0(t < τ) = cos(ωf t),
λ0(t > τ) = cosωfτ − sin (ωfτ)ωf (t− τ).

(302)

For t > τ , it is linear in time as in the classical case. The focus is reached for λ0(tf + τ) = 0
which leads again to the relation tf = 1/ωf tan (ωfτ).

In order to see the effect of interactions, we consider that this effect is very small, and write

∀t < τ, λ(t) = λ0(t) + δ(t), (303)

where |δ(t)| � |λ0(t)|. substituting this expression into Eq. 301, we get an equation for δ(t)

∀t < τ, δ(t) =
ω2
//(0)

(cos(ωf t) + δ)2
− ω2

//(t)δ(t). (304)

If we assume that ωfτ � 1, and compute λ(t > τ), we find

∀t > τ, λ(t) =
1

2
ω2
//(0)τ2 + ω2

//(0)τ(t− τ) + λ0(t). (305)

Therefore, if the condition ω//(0)τ � 1 is fulfilled, interactions during the kick can be neglected.
Because ωf < ω0, we see that neglecting the motion of the atom during the kick (ωfτ � 1)
was a sufficient condition.

Of course, for finite temperature systems, this approach is not relevant, and only a com-
parison between the focus distribution and an exact theory can validate the use of the method.
However, reaching smaller and smaller values of ωfτ can only make the effect of interactions
smaller. Therefore, in the experiment described below, we choose the highest achievable 74

value of ωf and the smallest value of τ .

20.3 Experimental sequence

20.3.1 Basic idea

Starting from a gas at thermal equilibrium, a strong longitudinal harmonic potential is
applied for a very short time τ during which atoms do not have time to move but acquire
a longitudinal momentum shift δp = −mω2

fτz, proportional to their distance z to the trap
center. Atomic interactions are then suppressed by switching off the transverse confinement,
and the longitudinal confinement is removed so that the cloud starts a free evolution. After
a focusing time of tf ' 1/ω2

fτ , the longitudinal density distribution f(z) is homothetic to the
initial momentum distribution n(p) :

n(p) =
m

tf
f

(
p
tf
m

)
. (306)

The focusing sequence is plotted in figure 45. The longitudinal trapping frequency f// is ramped
up in τ1 ' 30 µs from f//1 ' 8 Hz to f//2 = 40 Hz, and then ramped down to 0 Hz in τ1. The total
duration of the longitudinal kick is τ ' 750 µs, the momentum transferred being proportional

require to be in the Thomas-Fermi regime. However, we see that if we set g = 0, we recover the results of the
classical case.
74. In the experiment, the value of ωf is limited by the maximum current we can put in the wire to avoid

too much heating of the chip. The value of τ is limited by the maximum free fall distance, which is set by our
imaging system.
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to the integral of the kick : pkick ∝ f//2τ − (f//2 + f//1)τ1/2. After the longitudinal kick, the
transverse confinement f⊥ is switched off in less than 5 µs which is much faster than any time
scale of the gas. Finally we let the cloud fall freely during a time tf ' 25 ms.

t

imaging
40 Hz

0 Hz

0 Hz

Figure 45: Idea of the focusing sequence. The longitudinal trapping frequency f// is ramped
up in τ1 ' 30µs from ' 8 Hz to ' 40 Hz and then ramped down to 0 Hz in τ1. The total
duration of the longitudinal kick is tkick ' 750µs. After the longitudinal kick, the cloud falls
freely during a time tf ' 25 ms.

20.3.2 Transverse decompression

The drawback of the sequence described in 20.3.1 is that the in situ kinetic energy of the
transverse motion of the cloud which writes E⊥K = ~ω⊥/4 for a purely 1D gas is responsible
for the transverse expansion of the cloud when it is released. This expansion reduces the
optical density during tf thus lowering the signal to noise ratio. To be more specific, for
ω⊥ = 6 kHz, if we neglect the interactions, the RMS transverse velocity of the atoms when
the trap is switched off is

√
〈v2
⊥〉 ' 4 mm/s. This causes a spread of ' 100 µm during tf .

To circumvent this problem we add a transverse decompression step which works as follows.
After the longitudinal kick, we ramp f⊥ down to a lower value of f⊥0 ' 700 Hz, in τ2 = 1 ms

t

imaging

decompression

40 Hz

0 Hz

0 Hz

Figure 46: Real focusing sequence. The longitudinal trapping frequency f// follows the same
scheme as in 20.3.1. Contrary to 20.3.1, after the longitudinal kick, f⊥ is ramped down to
a lower value f⊥0 , usually around 700 Hz, in a time τ2 = 1 ms, before being set to 0 Hz
quasi-instantaneously.

in order to reduce the kinetic energy of the transverse motion (see Fig. 46). τ2 must fulfill
two contradictory conditions. First, it has to be chosen so that the transverse opening of
the trap is adiabatic with respect to the transverse motion, which yields to the condition
τ2 � 1/f⊥ ' 100 µs. It must also be quick enough so that interactions do not have time to
modify the longitudinal momentum distribution (this criterion will be discussed in section 23).
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Figure 47: (a) Image of the cloud at focus position without decompression with f⊥ = 4.6 kHz.
The vertical axis is one of the transverse axis of the initial trap, and the horizontal axis is the
longitudinal axis of the cloud. (b) Image of the cloud at focus position with decompression from
f⊥ = 4.6 kHz to f⊥0 = 700 Hz. (c) Momentum distribution obtained by vertical integration
of (a) (dots) and (b) (solid line).

Therefore, we chose the smallest value that still satisfies the first condition, that is 1 ms. For
f⊥0 ' 700 Hz, the spread after a 25 ms free fall is ' 30 µm. The ratio between the transverse
sizes after expansion scale as

√
ω⊥/ω⊥0 .

In Fig. 47, we show an image of the gas at focus time without decompression (a), and with
decompression (b) for f⊥ = 4.6 kHz and f⊥0 = 700 Hz. We see that the transverse size is
reduced by more than a factor 2. This lowers substantially the noise on the focus distribution.
In Fig. 47 (c), we show the focus distribution after vertical integration. The dots are obtained
with the image (a) and the solid line with image (b). The fact that the two coincide with
each other validate the use of this technique. Moreover, we see clearly in the tails that the
distribution obtained with image (b) is much less noisy.

Let us now consider the question of the choice of f⊥0 . First of all, it must be large enough so
that interactions do not affect the focus distribution. This will be the subject of 23.1.2, where we
will see that f⊥0 ' 400 Hz is a lower bound. In addition to this requirement, the decompression
trap must be deep enough in order to keep the atoms in the trap. Experimentally, we tested
this requirement by performing the decompression ramp and then holding the atoms in the
decompressed trap for a few 100 ms. The lowest f⊥0 which permits to keep all the atoms is
700 Hz. In Fig. 48 we plot a transverse potential of about 700 Hz taking gravity into account,
along the direction of gravity. By comparing the potentials obtained along the two eigenaxis,
we see that gravity does not affect noticeably the value of the trapping frequency, but shifts the
position of the trap minimum by 700 nm. This shift is of the order of the transverse size of the
cloud, and might induce an oscillation along this direction during the decompression, however,
as ω⊥ is ramped down adiabatically, this effect is expected to be negligible. We see that the
trap has a depth of 600 nK so that there exists about one hundred bound states. Moreover,
the barrier height and thickness are so large that tunnel losses are very small. Therefore, we
can not explain why experimentally it was not possible to decompress to lower values of ω⊥.
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Figure 48: Time averaged transverse potential along (~ux + ~uy)/2, the direction of gravity. The
trap has an oscillation frequency of 700 Hz, which is not affected by gravity. The zero of the
horizontal axis shows the position of the trap in the absence of gravity. The height of the
potential barrier is ' 600 nK. The two red dotted lines show the maximum of the potential
barrier, and the level ~ω⊥/2 ' 40 nK.

20.4 Experimental issues

20.4.1 Harmonicity of the focusing potential

Like in optics where aberrations would blur the focus intensity distribution, the anhar-
monicity of the focusing potential results in a blurred focus distribution. In this paragraph, we
quantify the impact of the anharmonicity of the focusing potential on the focus distribution.

Let us consider that the kick potential is not purely parabolic and has the form 75

V (z) =
1

2
mω2

fz
2 +A3z

3 +A4z
4. (307)

An atom at the distance z to the trap experiences the force

F (z) = −mω2
fz − 3A3z

2 − 4A4z
3, (308)

so that his focus position is

zf = z +
F (z)tfτ

m
. (309)

Thus, at focus, an atom that was initially at position z will be at the position

zf = −(3A3z
2 + 4A4z

3)

mω2
f

, (310)

different from zero. This will broaden the focus distribution. In the following, we quantify this
broadening. We assume that initially the cloud is in the quasi-condensate regime, so that it
has a parabolic density ρ(z) = ρ0

(
1− z2/R2

)
, with the total atom number N = 4ρ0R/3. At

focus, the relation tf = 1/ω2
fτ is satisfied, and the RMS width of the cloud writes

75. Usual two-wire potentials are well fitted by a fourth order polynomial on distances equal to the typical
cloud size.
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Figure 49: 40 Hz Focusing potential produced by two wires (a), or four wires (b). The solid line
is the real potential, and the dashed line is the perfectly harmonic potential. The lower blue
dash-dotted lines show the position of the trap bottom, and in (a) the upper dash-dotted blue
line shows the level µBB0. The insets show the value of

√
〈z2
f 〉 versus R according to Eq. 312.

The blue dashed lines point out the position where R = 1 µm, which is about 10% of the
typical width of the focus distribution. In (a), the parameters are I3 = −2.40 A, I4 = −0.730
A and Bz = 1.38 G. In (b), the parameters are I3 = −4.82 A, I4 = 1.964 A, I1 = 0.698 A,
I2 = −0.296 A and Bz = 1.38 G. In (a) and (b), the center of the trap is at the position
−7.5 µm. In (a), A3 = −3.10−18 J.m−3 and A4 = 8.10−15 J.m−4. In (b) A3 = 5.10−20 J.m−3

and A4 = −5.10−16 J.m−4 (fits were performed on an interval of length 400 µm).

〈z2
f 〉 =

1

N

∫ R

−R
dz

(3A3z
2 + 4A4z

3)2

m2ω4
f

n(z), (311)

which gives

〈z2
f 〉 '

3

4
R2

[(
V3(R)

V2(R)

)2

+

(
V4(R)

V2(R)

)2
]
, (312)

where V2(R) = mω2
fR

2/2, V3(R) = A3R
3 and V4(R) = A4R

4. We see that we need to compare
the values of the two anharmonic terms to the value of the harmonic one evaluated at the
distance R. The value of

√
〈z2
f 〉 must be compared to ∆k, the typical width of the focus

distribution.

In the following we use this criterion to compare the degree of harmonicity of potentials
obtained with different wire configurations.

20.4.2 Two-wire focusing potential

A two-wire focusing potential of oscillation frequency 40 Hz can be made by the wires
3 and 4 (see Fig. 50). In Fig. 49 (a) we plot the potential created in the situation where
Bz = 1.38 G, I3 = −2.40 A and I4 = −0.730 A (solid line). The dashed line is the purely
harmonic potential. Fitting a 5th order polynomial to the calculated potential gives the values
A3 = −3.10−18 J.m−3 and A4 = 8.10−15 J.m−4. In the inset, we show the value of

√
〈z2
f 〉 versus

R according to Eq. 312. The blue dashed lines point out the position where
√
〈z2
f 〉 = 1 µm,
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1.40 mm

1.45 mm

0.2 mm

Figure 50: Wire configuration. The cloud is represented in yellow, and its longitudinal axis is
~uz. The modulated guide has a length of 1.4 mm, and there are four wires perpendicular to it,
for longitudinal confinement. Those wires are running the DC currents I1, I2, I3 and I4.

which is about 10% of ∆k, the typical width of the focus distribution. The corresponding value
of R is about 40 µm. Thus, we can consider that the trap is sufficiently harmonic over 80 µm.
The two-wire potential is not parabolic on the size of the whole cloud (typically 100 µm to
400 µm. To improve the harmonicity of the focusing potential, we implemented a four-wire
potential.

20.4.3 Four-wire focusing potential

The idea is two use the two additional degrees of freedom (I2 and I1) two cancel A3 and
A4 in Eq. 307. To achieve this, we compute the four currents by minimizing the least squares
between the computed potential, and the purely harmonic one. In Fig. 49 (b) we plot the result
as a solid line, and the purely harmonic potential is the dashed line. Note that the horizontal
scale is different than in Fig. 49 (a). By fitting a 5th order polynomial to the computed
potential we get A3 = 3.10−19 J.m−3 and A4 = −5.10−16 J.m−4. In the inset, we show the
value of

√
〈z2
f 〉 versus R according to Eq. 312. The blue dashed lines point out the position

where
√
〈z2
f 〉 = 1 µm, which is about 10% of ∆k the typical width of the focus distribution.

The corresponding value of R is about 210 µm. Thus we can consider that the trap is harmonic
enough over 420 µm.

Therefore, using a four-wire potential increases the harmonic zone by a factor of 5. However,
we will see in the next paragraph that it has a drawback.

20.4.4 Problem of the trap minimum

In Fig. 49 (a) we also show the position of the minimum of the trap (lower blue dash-dotted
line), and the position of µBB0. The difference between the two is equal to 3.4 µK and induces
a change in the transverse oscillation frequency (see Eq. 191) of

∆f⊥
f⊥

= −1

2

∆B0

B0
. (313)

For d = 14.66 µm, and B0 = 1.38 G, we find ∆f⊥/f⊥ ≈ −2%, which is very small. But
in the four-wire potential (see Fig. 49 (b)), the position of the trap minimum has changed
a lot so that its distance to µBB0 is now 275.2 µK leading to a transverse frequency change
∆f⊥/f⊥ ≈ −150%. Thus the value of the current I in the three wires that produces the



20.4 - Experimental issues 127

transverse trap must be increased during the focusing pulse in order to compensate for this
effect. The compensation is ∆I/I = +150%.

Note that the depth of the four-wire trap is also much less than the depth of the two
wires trap. Thus, in our experiment, it is not possible to accurately measure the momentum
distribution of clouds hotter than ' 100 nK.

20.4.5 Imaging at focus

Magnification

Imaging at the focus position 76 requires some caution. First, one needs to determine the
magnification of the optical system. Although the image of the wire structure is blurred, we
could still estimate the magnification from it. To confirm the measured value, we simulated
the imaging system (see subsection 12.2.2) and found that the magnification differs only by a
few percents from the in situ value, which is also what we estimated from the pictures in the
two configurations. As we do not know with sufficient precision the position of the atoms with
respect to the objective, we decided not to take into account the variation of magnification.

Intensity of the imaging light

The intensity of the imaging beam is chosen close to Isat/10 so that the correction for
saturation effects is small.

Pulse duration

The pulse duration must be chosen so that the atomic diffusion due to light scattering does
not affect the focus distribution. This is the case if the spread is smaller than 10 µm, the
typical width of the focus distribution. Using Eq. 248, we find

T < 100µs. (314)

Typically, we used T ' 80µs.

Seeking for the focus position

In order to image the cloud at the focus position, we proceed as follows. We fix tf (thus
τ), and then adjust roughly the position of the camera (which is mounted on a rail) so that
the longitudinal size of the cloud is minimized. Then we vary precisely the position of the
doublet with a micro-metric screw to reach a better optimum. Finally, we scan the kick time
τ precisely, thus varying the focus position with respect to the object plane of the imaging
system. The result of such a scan is plotted in Fig. 51.

20.4.6 Data acquisition and analysis

We average over 30 to 70 images, after integration along the transverse axis. As shown in
Fig. 47, the images are sometimes not shot noise limited because the diffraction pattern due to
the structures at the surface of the chip differs between the first and the second image. These
fluctuations stem from the temperature fluctuations of the chip surface between the two images.
To reduce this problem, we acquire images without atoms, and average them to compute the
mean background. This background is then subtracted from the mean image. This proved to
enhance the quality of the mean focus profile significantly.

76. In this paragraph, the expression ”focus position“ refers to the atoms, not to the optical system.
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Figure 51: Longitudinal RMS width of the cloud at tf = 25 ms as a function of τ , the duration
of the focusing pulse.

20.4.7 Resolution in p of the focusing technique

The resolution of the focusing technique depends only on tf and on the pixel size in the
object plane 77. It expresses as

δp =
m∆

tf
. (315)

For our typical parameters, we find

δp/~ ' 0.2 µm−1. (316)

This value is much smaller that the typical width of the measured momentum distributions
which is of the order of 10 µm−1.

21 Theoretical investigation

In this section we consider only homogeneous gases. We review all the available analytical
theories and show that for our temperature parameter t, those theories are not sufficient to
compute the momentum distribution of a Bose gas in the crossover from the ideal Bose gas
regime to the quasi-condensate regime.

21.1 Available theories

21.1.1 Ideal Bose gas theory

The ideal Bose gas theory is valid as long as the effect of interactions is negligible. We
have seen in subsection 3.2.3 that for a given t, the crossover from the ideal Bose gas regime
to the quasi-condensate regime occurs when γco = t−2/3. Since the crossover spans over one
order of magnitude in γ (see subsection 5.1), the ideal Bose gas theory is valid if γ � γco. In
this regime, the momentum distribution is given by Eq. 82. We have also shown that in the
classical subregime, where γ � γd = t−1/2, the momentum distribution is a Gaussian of width

77. Only if the optical resolution is limited by the pixel size.
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λ2
dB/4π and that in the degenerate subregime, where γ � γd, it is a Lorentzian of HWHM

(half width at half maximum) 1/ldeg.

21.1.2 Quasi-condensate theory

In the quasi-condensate regime, where γ � γco, we can use the Bogoliubov theory de-
scribed in section 4. The momentum distribution can be obtained by Fourier transforming the
expression of g(1)(z) given in Eq. 140. In the case where thermal fluctuations are the main
contributions to g(1)(z), a simple analytical expression can be obtained by considering the
quantum hydrodynamic Hamiltonian (see subsection 4.3.2). In the following, we show how to
derive the results from 4.3.2 using the more general expression of Eq. 140. In Eq. 140, we ne-
glect the zero temperature term that is not proportional to nk, and look at the contribution of
thermal phonons, that is to say we consider only phonons which have a population of αk � 1.
This happens for phonons of wavevector k � 1/lT � 1/ξ, where

lT =
λ2
dB

ξ
(317)

is the thermal phonon length which delimits two zones in the spectrum of excitations (see Fig.
52). When k � 1/lT , the population of the Bogoliubov modes is high, because of thermal
fluctuations, and when k � 1/lT , αk � 1 so that the population of the Bogoliubov modes
is given by quantum fluctuations only. In the limit of k � 1/lT , we have αk ' 2π/lTk and
u2
k + v2

k ' 2/kξ. The contribution of thermal fluctuations to g(1)(z) is given by the integral

(
ln g(1)(z)

)
thermal

= − 4z

ρλ2
dB

∫ z/lT

0
du

1− cos(u)

u2
. (318)

For z � lT , the integral can be done over [0,+∞] and is equal to π/2. Finally, the contribution
of thermal fluctuations to g(1)(z) is

(
g(1)(z)

)
thermal

= e−2|z|/ldeg , (319)

where ldeg =
ρλ2

dB
2π is the correlation length of phase fluctuations in the degenerate ideal Bose

gas regime (see 3.2.1). We recover here the expression derived in 4.3.2.

It is striking to see that the first order correlation function has the same shape in the
degenerate ideal Bose gas regime and in the quasi-condensate regime, in the case where only
thermal fluctuations contribute to g(1)(z) and for z > lT . The only difference resides in the
typical decay length of g(1)(z) which is two times larger in the quasi-condensate regime. The
momentum distribution is then also a Lorentzian of HWHM 2/ldeg.

In the following, we show that contrary to g(2)(z) which is affected by quantum fluctuations
in a zone of the phase diagram that is accessible to experiments, quantum fluctuations have an
effect on g(1)(z) only at extremely low temperatures, so that in practice the expression obtained
in Eq. 319 is valid in all of the quasi-condensate regime. Quantum fluctuations start to have
an effect for the modes k � lT . In this case αk � 1, and g(1)(z) writes

(
ln g(1)(z)

)
quantum

= − 1

2πρξ

∫ z/ξ

z/lT

du
1− cos(u)

u
. (320)

For 1/ξ � z � 1/lT , the integral can be evaluated over [0,+∞] and leads to
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Figure 52: Picture of the Bogoliubov spectrum of the excitations: for k � 1/ξ, it is linear,
and for k � 1/ξ it is parabolic. The population of modes k � 1/lT is high because of the
temperature, so that thermal fluctuations are the main contribution to g(1)(z) for z � lT .
The population of modes 1/lT � k � 1/ξ is small: those modes are populated by quantum
fluctuations only, which leads to an algebraic decay of g(1)(z) at intermediate distance ξ �
z � lT .

(
ln g(1)(z)

)
quantum

'
z�ξ
− 1

2πρξ

[
ln
z

ξ
+ C

]
, (321)

where C ' 0.577 is the Euler-Mascheroni constant. In the end, we see that quantum fluctua-
tions lead to an algebraic decay (z/ξ)−

√
γ/2π of g(1)(z) for ξ < z < lT , and adds a prefactor

ζ = (lT /ξ)
−√γ/2π (322)

to the exponential behavior of g(1)(z) for z > lT . The temperature TQ for which the value ζ is
reached reads

TQ = gρζ−2π/
√
γ , (323)

which decreases exponentially with 1/
√
γ. The temperature parameter tQ = 2~2kBTQ/mg

2 is
plotted as a function of γ in Fig. 54 (dash-dotted line). For weakly interacting gases, such low
temperatures have never been reached experimentally.

In Fig. 53 we plot g(1)(z) predicted by the Bogoliubov theory for γ = 0.1, for three
different values of the temperature parameter t : t = 10−1 (green line), t = 1 × 10−3 (black
line), t = 1 × 10−5 (blue line) and t = 1 × 10−7 (magenta line), and the red curve is the
expression given by Eq. 319 in the case where thermal fluctuations dominate. In Fig. 53 (a)
the horizontal axis is rescaled with ldeg and the position z/lT is shown by the vertical dashed
line. We see that for z > lT all the curves collapse on the exponential prediction, whereas for
z < lT quantum fluctuations give a lower value. Fig. 53 (b) is a zoom around z = 0, with
the horizontal axis normalized by lT . When the temperature is lowered, we see all the curves
collapse on the zero-temperature prediction. (c) is the same as (b) but we zoom even more
around z = 0 and rescale the horizontal axis with ξ. Here we see that the green, black, blue
and magenta lines are superimposed. which is due to the fact that short distance properties of
g(1)(z) do not depend on temperature. Finally, (d) is the same plot as (a), but the horizontal
axis is in log-scale. The four vertical red dashed lines on the left show the positions of ξ for the
four different temperatures (increasing temperatures from left to right). The last red dashed
line on the right shows the position of lT . Here, we only plot the magenta curve. The dashed
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black line are the algebraic decay expected for ξ < z < lT because of quantum fluctuations
(computed with Eq. 321).

21.1.3 Classical field theory

We have seen in 5.3 that the classical field theory is expected to be valid in the weakly
interacting regimes, when the occupation number of the modes contributing to the quantity
of interest is large. In this chapter, the quantity of interest is g(1)(z). In the non-degenerate
ideal Bose gas regime, the population of all the modes is very small, so that this classical field
theory is not appropriate. In the degenerate ideal Bose gas regime, the typical width of g(1)(z)
is ldeg and the modes of wavelength of the order of 1/ldeg are highly populated, so that the
classical field approximation is valid. In the quasi-condensate regime, g(1)(z) is dominated by
the contribution of phonon modes. We have seen that unless the temperature gets extremely
small, quantum fluctuations can be neglected. Therefore, the classical field approximation is
valid in the quasi-condensate regime. The area of validity is shaded in Fig 52. In this figure,
all the lines should be understood as smooth crossovers. We will see in the following that for
low values of t, the degenerate regime barely exists, which renders the use of the classical field
approximation inappropriate.

21.2 Classical field limitation

Within the ideal Bose gas regime, a large population of the modes requires γ � γd, that
is to say a highly degenerate gas. Thus, the classical field theory only correctly describes
the quasi-condensation crossover (which occurs at γ ' γco), provided that γco � γd. This
condition translates into t1/6 � 1. Since crossovers span typically about one order of magnitude
in γ, it requires that t . 106. This value is very difficult to achieve experimentally on cold-
atoms experiments while maintaining a temperature sufficiently low to ensure the 1D condition,
unless extremely weak atomic interactions are reached, using for instance a Feshbach resonance
[Bouchoule 07]. In the experiment presented here, we have t < 1000. In this case, according
to the above argument, the classical field approach is expected to be inaccurate at the quasi-
condensation crossover. This can be seen in Fig. 55(a), which shows the FWHM of the
momentum distribution as a function of γ according to the ideal Bose gas theory and the
classical field prediction for t = 1000. The classical field theory correctly describes the quasi-
condensation crossover only if it shares a common plateau with the ideal Bose gas theory at
∆p = 2~/ldeg in the degenerate ideal Bose gas regime, where γco � γ � γd. As seen in Fig.
55(a), this is not the case at all for t = 1000: the highly degenerate ideal Bose gas regime
is not very well identified for such a small value of t as far as the momentum distribution is
concerned, so that the classical field theory does not correctly describe the quasi-condensation
crossover.

21.3 Quantum Monte Carlo simulations

To quantify the inaccuracy of the classical field approximation for t < 106, we performed
exact Quantum Monte Carlo (QMC) simulations for a homogeneous gas, and compared the
full width at half maximum (FWHM) from the QMC momentum distribution to the FWHM
within the ideal Bose gas theory, and within the classical field theory, as a function of γ. The
results are shown in Fig. 55 for t = 1000, for values of γ that span the quasi-condensation
crossover. In Fig. 55(a) the FWHM of the momentum distribution calculated with QMC is
compared to that of the classical field and of the ideal Bose gas model. The QMC results follow
the ideal Bose gas prediction almost until the FWHM of the ideal Bose gas prediction crosses
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Figure 53: g(1)(z) within the Bogoliubov theory for γ = 0.1 and t = 10−1 (green line), t = 10−3

(black line), t = 10−5 (blue line) and t = 10−7 (magenta line). The red curve is the Bogoliubov
prediction in the case where it is dominated by thermal fluctuations (exponential shape). (a)
Linear plot, where the horizontal axis has been renormalized with ldeg. The vertical dotted line
show the position of lT /ldeg. The black, blue and magenta curves are almost superimposed.
(b) Same as (a) but zoomed around z = 0 and with the horizontal axis renormalized by lT . (c)
Same as (b) but zoomed even more around z = 0 and with the horizontal axis normalized by
ξ. The green, black, blue and magenta curves are superimposed: at any temperature, g(1)(z)
has exactly the same shape. (d) Same than (a) but the horizontal axis is in log-scale. The four
vertical red dashed lines on the left show the positions of ξ for the four different temperatures
(increasing temperatures from left to right). The last red dashed line on the right show the
position of lT . The black dashed lines are the algebraic decay due to quantum fluctuations of
Eq. 321.
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Figure 54: Validity of the classical field approximation for the calculation of g(1)(z) is shown
as a shaded area. Contrary to two-body correlations, quantum fluctuations affect g(1)(z) only
at very low temperature (below the dash-dotted line).

that of the classical field prediction. This happens for γ = γi. For γ < γi it converges towards
the classical field prediction. The disagreement with the respective theories never exceeds 20%.
These results mitigate the failure of the classical field approximation: as long as the FWHM is
concerned, the approximate model where one uses the ideal Bose gas prediction for γ > γi and
the classical field prediction for γ < γi, would give the correct predictions within 20% error.
In Fig. 55(c) the equation of state µ = f(γ) is plotted. We see that the zone for which there
is no agreement between the exact Yang-Yang prediction and both the ideal Bose gas theory
and the classical field theory is not the same as for the FWHM of the momentum distribution.
It is shifted towards higher values of γ.

Investigation of the whole momentum distribution is shown in Fig. 55(b) for 3 different
values of γ. On the ideal Bose gas side of the quasi-condensation crossover, for γ = 5γco, the
QMC momentum distribution follows closely the ideal Bose gas model. The classical field result
is recovered for γ ≈ γco/3, while the momentum width is still about 10% above the Bogoliubov
prediction. For γ = γco, we find that the tails of the momentum distribution agree well with
the ideal Bose gas prediction, while the width of the distribution is narrowed by about 20%.
Finally, note that, although the highly degenerate ideal Bose gas prediction ∆p = 2~/ldeg has
not been reached before the gas undergoes the quasi-condensation transition, the momentum
distribution at γ ' γco is much smaller than the Maxwell-Botlzmann prediction (dotted line in
Fig. 55 (a)), so that effect of degeneracy within the ideal Bose gas regime is already substantial.

22 Measurement of momentum distributions

22.1 Local density approximation

22.1.1 Validity

In Sec. 21, we have been considering results for homogeneous gases. However, in the exper-
iment the gas lies in a longitudinal harmonic trap of frequency f‖ = ω///2π. The momentum
distribution of an inhomogeneous system of size L writes

ν(k) ∝
∫ L

0

∫ L

0
dz1dz2 ρ(|z1 − z2|)g(1)(z1, z2) eik(z2−z1), (324)
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Figure 55: (a) FWHM of the momentum distribution of a homogeneous gas at t = 1000 as a
function of the interaction parameter γ. The dashed line shows the classical field prediction, the
solid line is the ideal Bose gas prediction and the dash-dotted line is the Maxwell-Boltzmann
prediction. The stars are the exact quantum Monte Carlo results. We also show the position
of γco = t−2/3, the value of γ at the crossover and γd = t−1/2, the value of γ at degeneracy.
(b) Momentum distribution for three different values of γ. (c) Equation of state written as
µ = f(γ) obtained with: the ideal Bose gas theory (solid line), the classical field theory (dashed
line), and with the exact Yang-Yang theory (dots).
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Figure 56: 2D plot of the first order correlation function of a trapped gas of length L. g(1)(z1, z2)
is peaked around the line z1 = z2.

where g(1)(z1, z2) is a function that is peaked around the line z1 = z2 (see Fig. 56). We
divide the gas into N cells of length ∆. Within each cell, the density varies little, so that
the correlation length of g(1)(z) is almost constant in the cell. Additionally, if we assume that
lc � ∆, Eq. 324 can be approximated by

ν(k)LDA ∝ ∆
N∑
i=1

ρ(i)

∫ L

0
dv g(1)(v) eikv. (325)

For weakly interacting gas, the condition lc � L can be expressed in the quasi-condensate
regime where lc = 2ldeg, and L can be taken as the Thomas-Fermi radius. This gives a
boundary for the longitudinal trapping frequency

f// �
t
√
γ

2π

Eg
~
. (326)

For the parameters probed in this chapter, this boundary is around 200 Hz, while the trapping
frequency is less than 10 Hz, so that the criterion is very well fulfilled.

Eq. 325 shows that in the quasi-condensate regime and in the degenerate ideal Bose gas
regime, the momentum distribution is a sum of Lorentzian curve. Thus, in those regimes, at
large distance, the momentum distribution of a trapped gas has 1/k2 tails.

22.1.2 Making QMC faster

Let νt(k) be the momentum distribution of a trapped gas of density n(z) and chemical
potential µ(z). Applying the LDA means slicing the gas in cells of size ∆ in which the gas is
assumed to be homogeneous with the chemical potential µ(z) = µ0−mω2

//z
2/2 and the density

n(µ(z)). νt(k)). The momentum distribution of the gas is then the sum of the momentum
distributions νh(k, n(µ(z)), µ(z)) of all the slices, that is

νt(k) =
1

∆

∫
dz νh(k, n(µ0 −

1

2
mω2

//z
2), µ0 −

1

2
mω2

//z
2). (327)

In Eq. 327, we replace the variable z with the dimensionless one u = ω//z
√

2m/µ0, and we get
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Figure 57: 1) in situ profile, 2) in situ density fluctuations, 3) and 4) momentum distribution of
a cloud confined in a harmonic trap of transverse oscillation frequency 6.4 kHz and longitudinal
oscillation frequency of 8.3 Hz in linear and logarithmic scales. The pixel size for the in situ
data is ∆ = 2.7 µm. A fit with QMC to the momentum distribution is shown as a solid line
and gives the temperature T = 72 nK and the chemical potential µ/kBT = 0.73. Using those
parameters, we plot the in situ profile and the in situ density fluctuations obtained with the
Yang-Yang theory (dashed line in 1) and solid line in 2)). In 2), the gray dashed and dotted
lines are the Yang-Yang predictions for a temperature 30% higher and lower respectively. In
2), the dash-dotted line shows the Poissonian level of fluctuations. In 1), the solid line is a
fit of the in situ profile using the Yang-Yang theory. This procedure gives a slightly higher
temperature of 111 nK. The dashed line in 3) is the prediction using the quasi-condensate
prediction together with the LDA, and the dotted lines are the contribution of the transverse
excited states. The dash-dotted line in 4) shows the 1/p2 behavior.

νt(k) =
1

∆ω//

√
2µ0

m

∫
du νh(k, n(µ0(1− u2)), µ0(1− u2)) (328)

Eq. 328 shows that for a given µ0, within the LDA, the shape of the momentum distribution
does not depend on ω//. Thus, for a given µ0, the momentum distribution of a trapped gas
with ω//1

, is the same than the momentum distribution of a trapped gas with ω//2
provided

that it is rescaled with ω//2
/ω//1

.

In QMC calculations, the computation is faster if the cloud is smaller. Therefore, within
the validity of the LDA, we computed the momentum distributions in traps that are five times
tighter, and then rescaled them to the appropriate ω//.
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Figure 58: Phase diagram of the one dimensional Bose gas, in (γ, t) coordinates. The two
segments [γm, γM ] show the positions of the two sets of data analyzed in this chapter. γm
corresponds to the peak density of the in situ profile, the segment is such that 80 % of the
atoms lie in a region of density larger than that associated to γM .

22.2 Results on the quasi-condensate side of the crossover

Data in Fig. 57 correspond to a cloud initially trapped with a transverse oscillation fre-
quency ω⊥/(2π) = 6.4 kHz and a longitudinal frequency of 8.3 Hz, measured using parametric
heating and dipole oscillations respectively. We checked a posteriori that the cloud temper-
ature and the chemical potential are such that kBT/~ω⊥ = 0.23 and µ/~ω⊥ = 0.17 so that
it is well described by a purely 1D model. Using QMC calculations in a harmonic trap, we
fit the measured momentum distribution : we find T = 72 nK corresponding to t = 76 and
the shape is reproduced up to a few percent (see figure 57 (3-4)). We reported in Fig. 58 the
segment [(γm, t), (γM , t)] corresponding to the domain explored by the data : γm corresponds
to the peak density and the segment length is such that 80% of the atoms lie in a region of
density larger than that associated to γM . We find that γm ' γco/2, where γco = t−2/3 is the
interaction parameter at the quasi-condensation crossover. Thus the cloud lies quite deeply
into the quasi-condensate regime.

However, the measured momentum distribution still differs substantially from that pre-
dicted using the quasi-condensate Lorentzian ν(k) ∝ 1/(k2 +(1/ldeg)2) together with the LDA:
this prediction, shown as dashed line in Fig.57(A,3), is 40% thinner than the measured distri-
bution.

On the other hand, for such a value of γm, the momentum distribution shows slowly de-
creasing tails compatible, within a few percent, with a Lorentzian behavior in a wide range
of momenta. This is seen in Fig.57(4) where dash-dotted line shows a 1/p2 decrease. For our
signal to noise ratio of about 80, data are compatible with a Lorentzian behavior at large p.

22.3 Results on the ideal Bose gas side of the crossover

While the previous results probes mainly the quasi-condensate regime, we also probed the
ideal Bose gas side of the quasi-condensation crossover, i.e. data for which γm > γco = t−2/3.
The ideal Bose gas regime will show a behavior very different from the trivial Maxwell Boltz-
mann prediction only for large t parameter, for which the quasi-condensation crossover occurs
for a gas already highly degenerate. Large t parameters can be reached, while ensuring that the
condition kBT < ~ω⊥ is still fulfilled, by decreasing the transverse confinement [Bouchoule 07].
We thus reduced the transverse confinement to 2.1 kHz. Data are shown in Fig. 59. No sat-
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Figure 59: 1) in situ profile, 2) in situ density fluctuations, 3) and 4) momentum distribution of
a cloud confined in a harmonic trap of transverse oscillation frequency 2.1 kHz and longitudinal
oscillation frequency of 7.6 Hz. The pixel size for the in situ data is ∆ = 2.7 µm. A fit with
QMC to the momentum distribution is shown as a solid line and give the temperature T =
84 nK and the chemical potential µ/kBT = 0.20. Using these parameters, we plot the in situ
profile and the in situ density fluctuations obtained with the Yang-Yang theory (dashed line in
1) and solid line in 2)). In 2), the gray dashed and dotted lines are the Yang-Yang predictions
for a temperature 30% higher and lower respectively. In 2), the dash-dotted line shows the
Poissonian level of fluctuations. In 1), the solid line is a fit of the in situ profile using the
Yang-Yang theory. This procedure gives a slightly higher temperature of 76 nK. The dotted
lines are the contribution of the transverse excited states. The dash-dotted line in 4) shows
the 1/p2 behavior.
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uration of the density fluctuations is seen on the in situ fluctuations measurements, which
indicates that the gas does enter in the quasi-condensate regime. Fluctuations however rise
well above the Poissonian level (shown as dash-dotted line on Fig. 59 1)), so that the gas is
highly degenerate.

Contrary to the data of Fig. 57, the ratio kBT/~ω⊥ is not much smaller than 1 (the
analysis presented below gives kBT/~ω⊥ = 0.8 ) so that transverse excited states contribute to
the measured fluctuations and momentum distribution. We take into account the population
of transverse excited states, assuming that they behave as independent ideal 1D Bose gases
of chemical potential shifted by −j~ω⊥, where (j + 1)~ω⊥ is the transverse energy of the j-th
excited state (the zero point energy ~ω⊥ is taken into account). This model has been used with
success to describe density profiles [van Amerongen 08a], density fluctuations [Armijo 11b] and
has been applied to predict the RMS width of momentum distributions [Davis 12].

A fit using this modified QMCmodel, reproduces well the measured momentum distribution
(see Fig. 57(2)), and yields the temperature T = 84 nK, corresponding to t = 840. The segment
explored in the phase space (γ, t) is shown in Fig. 58 for those data: the peak linear density
is close to the quasi-condensation crossover density and most of the cloud lies within the
degenerate ideal Bose gas regime. The contribution of the excited states to the momentum
distribution is seen in Fig. 59(3): it is only 10% in the center but it rises to almost 50% in
the wings around |k| ' 5 µm−1. Fig. 59(3) shows that the expected momentum distribution
decreases faster than 1/p2 at large momenta, which is due mainly to the contribution of the
excited states. However, with our signal over noise of about 50, no clear deviation from a 1/p2

behavior can be identified.

We report in Fig. 59(2) the fluctuations expected for the temperature T = 84 nK (obtained
from the fit of the momentum distribution with QMC calculations). They are in agreement
with the measured fluctuations. Note however that for those parameters, the uncertainty of
thermometry based on fluctuations is about 30% (see gray lines in Fig. 59(2)). The density
profile expected for T = 84 nK is not far from the measured one (see Fig. 57(1)).

In contrast to the results of 22.2, Yang-Yang thermometry based on the profile is less
sensitive to tiny modifications of the wings, since the profile of high-density regions is also
affected by temperature. Thus a thermometry based on the profile is expected to be quite
precise and an eventual potential roughness is expected to have a smaller effect. A Yang-Yang
fit to the experimental profile yields a temperature of 76 nK, only 10% different by 10% from
the temperature deduced from the momentum distribution.

22.4 Conclusion

We have shown that the temperatures deduced from the momentum distribution are in
agreement with an independent fluctuation-based thermometry. We find that the naive Bo-
goliubov result is not appropriate for parameters that are close to those relevant to our exper-
iment, even when the cloud lies quite deeply in the quasi-condensate regime. In [Davis 12],
it has been proposed to use the mean kinetic energy deduced from measured momentum dis-
tribution to extract the temperature using the modified Yang-Yang calculation. For the data
presented in this thesis, with a SNR of about 50, the measured momentum distribution shows
tails compatible with a 1/p2 behavior both in the quasi-condensate regime and in the degen-
erate ideal Bose gas regime. Therefore, extraction of the mean kinetic energy from the data
is impossible. We argue that this technique was applicable in [Davis 12] because of the more
3D nature of the gas: for quasi-1D gases, as discussed in section 22.3, the contribution of the
transverse excited states leads to fast decaying tails, which enable the extraction of the mean
kinetic energy per particle. We also remark that neither our measurements nor the QMC cal-
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culations we performed display the asymptotic behavior of 1/p4, which only appears at even
larger momenta for our parameters. On the other hand, we believe that this behavior could be
more readily discernible in the strongly interacting regime, where the 1/p4 tail should contain
a larger proportion of atoms.

23 Effect of interactions during the focusing time

In subsection 20.2.4, we have seen that interactions during the longitudinal kick can be
neglected if the condition ωfτ � 1 is fulfilled. After the kick, however, interactions are not
switched off instantaneously and may affect the focus distribution. In our experiment it is
intrinsically impossible to switch off interactions instantaneously. Even if the transverse con-
finement is ramped down to zero in an infinitely short period of time, it takes longer for the
interaction energy to become negligible. Here, we evaluate the effect of the interactions for
both a free expansion and for a linear deconfinement.

23.1 Scaling equation approach

23.1.1 Transverse confinement switched off instantaneously

In Fig. 60, we numerically solve Eq. 301 where ω//(t) varies as described in Fig. 45.
We assume that the gas is purely 1D, that is to say it populates only the transverse ground
state that has a Gaussian shape ρ⊥(r) ∝ exp(−r2/l2⊥), where l2⊥ = ~/(mω⊥). Here, we have
g0 = 2~ω⊥a = 2~2a/(ml2⊥). The width of the transverse wave-packet in free expansion scales

as l⊥
√

1 + ω2
⊥t

2 so that

g(t > τ)

g0
=

1

1 + ω2
⊥t

2
. (329)

Fig. 60 (a) shows the time evolution of the scaling parameter, when doing a trapezoidal ramp
of ω// after which interactions are turned off according to Eq. 329. We plot λ(t) for various
values of ω⊥, and we see that all the curves collapse onto the limit of Eq. 302 at large ω⊥,
whereas for low values of ω⊥ the focus minimum comes later and is different from zero. The
fact that it is different from zero means that even at the focus position interactions still play
a role.

To quantify this effect, we compare the width of the zero temperature focus distribution to
the typical width of the typical focus distributions measured in the experiment, which is of the
order of 10 µm. For a quasi-condensate of peak density ρ0 = 10 µm−1 in a (ω//, ω⊥) = (8 Hz,

2 kHz) trap, the initial Thomas-Fermi radius is R =
√

2gρ0/mω2
// ' 30 µm (this corresponds

to γ ' 2.10−2). At focus, in the case where a free fall is performed after the longitudinal kick,
the minimum scaling parameter is λmin = 3.10−5, so that the width of the focus distribution
is λminR = 100 pm. The focus time being 22 ms it translates into momentum, according to
Eq. 315, as ∆pT=0/~ ' 2.10−4 µm−1, which is negligible compared to the typical width of
the experimental focus distribution. With this criterion, we find that the initial transverse
frequency that leads to a width of the theoretical focus distribution equals to one hundredth
the width of the experimental focus distribution is f⊥ = 400 Hz. In our experiment, in order
to ensure a one-dimensional situation, we never use initial transverse frequencies lower than
2.1 kHz, so that this criterion is always very well fulfilled.
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Figure 60: (a) Evolution of the scaling parameter λ(t) for the sequence of Fig. 45, for ω// = 8 Hz,
τ1 = 30µs, τ = 690µs, ωf = 40 Hz, and for the following values of ω⊥: 40 Hz, 80 Hz, 160 Hz
(solid lines). The arrow points in the direction of increasing ω⊥. The dashed line is the limit
of Eq. 302 where interactions are switched off instantaneously. For very large ω⊥, the curves
converge towards this limit which gives a focusing time of 22.1 ms. The inset is a zoom around
t = 0. (b) Focus time (solid line) and value of λ at the focus time versus ω⊥/2π.

23.1.2 Adiabatic transverse decompression

In the previous paragraph, we have seen that in the case where the transverse confinement
is switched off instantaneously, the effect of interactions during the focusing sequence does not
substantially broaden the focus distribution of a zero temperature condensate.

How is this result modified when an adiabatic transverse decompression according to the
sequence of Fig. 46 is performed ? In this sequence g(t) evolves as follows,

g(t < τ) = g0 (330)
g(τ < t < τ + τ2) = g0(1− t(1− g1/g0)/τ2) (331)

g(t > τ + τ2) =
g0

1 + ω2
⊥0
t2
, (332)

where g1 = 2~ω⊥0a. In Fig. 61 (a) we plot the evolution of the scaling parameter with time.
The solid lines are the solutions of the scaling equations, setting ω⊥0 = 800 Hz. We can
see that only the focus time is modified when the initial transverse frequency is varied: the
value of the minimum is barely affected. This is best seen on Fig. 61 (b) where we plot the
variation of the focus time and of λmin as a function of the initial transverse frequency. This
is because the decompression time is so short that atoms do not have time to move and feel
the interactions during it. Therefore, following 23.1.1, the limiting factor is the final transverse
frequency ω⊥0/2π, which should not be smaller than 400 Hz.

23.2 Evolution of the Bogoliubov modes during the expansion

The previous result is only valid at T = 0. Thus, we want to go beyond and estimate
how the momentum distribution of a quasi-condensate at finite temperature is modified by the
interactions at the early stage of the time of flight. In order for the interactions not to affect
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Figure 61: (a) Scaling solution for the sequence of Fig. 46, where an adiabatic linear transverse
decompression is performed after the focusing pulse, before starting a free evolution according
to Eq. 329. The solid lines correspond to ω⊥0 = 800 Hz for the following values of the initial
transverse frequency (800 Hz, 1600 Hz and 10 kHz). The arrow points in the direction of
increasing initial transverse frequencies. The value of the focusing time for the initial transverse
frequency 10 kHz is indicated. (b) Focus time and minimum of the scaling parameter as a
function of the initial transverse frequency for ω⊥0 = 800 Hz.

the longitudinal momentum distribution, the rate of variation of the phonon energy must be
larger than the phonon frequency. It writes

1

εk(t)

∣∣∣∣dεkdt
∣∣∣∣ & εk(t)

~
, (333)

or equivalently

1

g

∣∣∣∣dgdt
∣∣∣∣ & k

√
gρ

m
. (334)

The maximum unperturbed k value is limited by the change in g. If the cloud is dropped with-
out decompression, Eq. 334 gives kmax ' 106 m−1 for ω⊥/2π = 3 kHz and ρ = 107 m−1. In the
case of a linear decompression in 1 ms for the same parameters, Eq. 334 gives kmax ' 107 m−1,
with ω⊥0 = 800 Hz. In both cases, this approximate relation gives a maximum momentum of
the order of the one we probe in the experiment, and does not allow to draw any conclusion.
Thus we performed numerical simulations, of the evolution of the momentum distribution, us-
ing the time-dependent Gross-Pitaevskii equation. In the case of an instantaneous switching
off of the trap, the momentum distribution is not affected on the range of momenta probed
in the experiment. In the case of a linear decompression ramp, we checked experimentally, by
comparing the momentum focus distribution obtained with and without decompression. The
results have already been shown in Fig. 47 : for typical parameters, the momentum distribution
is not affected by the decompression step.

24 Levitation technique

To improve the resolution of the focusing method, one should increase the focusing time
tf . However, our optical system limits the maximum free fall distance under gravity to about
3 mm, corresponding to a free fall time of about 25 ms. Nevertheless, larger focusing times
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Figure 62: Momentum distribution of a gas of 7000, atoms at thermal equilibrium in a 7.5 Hz
longitudinal trap and 4.6 kHz transverse trap. The solid line is the momentum distribution
obtained without the levitation step, with a free fall time of 24.7 ms. The dots are the mo-
mentum distribution of the same sample, obtained with a levitation time of 20.6 ms followed
by a free fall time of 22.7 ms.
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Figure 63: Sequence used for the levitation method. The evolution of fz is not modified
compared to Fig. 47. f⊥ is ramped down to 800 Hz in 1 ms and then held for tl. It it then
turned off instantaneously.
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can be obtained if a transverse potential is maintained during the focus time, strong enough to
overcome gravity but weak enough so that atomic interactions are negligible. More precisely,
the sequence we use is the following. After having performed the longitudinal focusing pulse
and switched off the longitudinal potential, we ramp the transverse frequency down to a finite
value f⊥0 in 1 ms, a time long enough to ensure an adiabatic increase of the transverse cloud
size, but short compared to the time scales of the longitudinal motion. The final transverse
frequency is fl = 800 Hz, which is the lowest value that allows the atoms to be transversally
trapped. We then hold the cloud for a levitation time tl, at the end of which, we switch off the
transverse confinement and let the cloud fall freely for a time (tf − tl).

The levitation does not affect the longitudinal free evolution as long as the effect of inter-
actions stays negligible. We can estimate how interactions affect the longitudinal evolution by
using the scaling equation for the sequence of Fig. 63. The results are shown in Fig. 64(a),
where we plot the evolution of the scaling parameter with time for τ = 375µs, τ1 = 30 µs and
tl = 20 ms. The dashed line assumes an initial trapping frequency of 40 kHz, whereas the solid
line assumes a more realistic initial value of 4 kHz. In the former case, the curve converges
towards the classical focus point, whereas, in the latter case, the focus time is increased sub-
stantially. This can be understood as follows. In this model, the frequency of the monopole
oscillation mode is f//

√
3 ' 20 Hz in the decompressed trap. The focus time is modified com-

pared to the classical case if the duration of the focusing pulse is short enough compared to
a quarter of a period of the monopole oscillation, so that the evolution of the scaling factor
during the focusing pulse is linear. In this case, although 1/(4

√
3f//) ' 14 ms is more than ten

times greater than τ , it is not sufficient for interactions not to affect the focus position, in the
case where the initial trapping frequency is 4 kHz. In Fig. 64 (b), we also show the focus time
as a function of the initial transverse frequency (solid line). The dashed line shows the value
of λmin. We see that is does not vary so much as long as ω⊥ equals a few kHz.

We have tested this method experimentally by measuring the longitudinal distribution at
focus f(z) of identical clouds, either without levitation and a focusing time tf = 24.7 ms, or
with the above levitation scheme with tl = 20.6 ms and tf = 43.3 ms which gives the free fall
time (tf − tl) = 22.7 ms. The focus distribution f(mz/tf ), shown on Fig. 62 for a cloud of
7000 atoms at T ≈ 95 nK, gives the same momentum distribution. Moreover, the focus and
kick times are compatible with the classical prediction. Therefore, we did not see an effect of
interactions for these parameters. However, this method needs to be tested on much colder
clouds. We believe that at some point we will see the focus time increase dramatically. This
can be overcome by using lower values of f⊥0 , but as already pointed out, we have not been
able to keep all the atoms transversally trapped for values of f⊥0 lower than 800 Hz, although
by computing the transverse potential we see that we should be able to use values of the order
of 100 Hz. In the future we must understand which technical problem prevents us to reach
such low values.

The validation of this technique will pave the way towards high resolution measurements
of momentum distributions of one dimensional gases.

25 Conclusion and prospects

This work opens many prospects for the study of 1D gases. First of all, we have shown
that momentum distribution measurements provide a precise thermometry for 1D Bose gases.
While in this work we use QMC calculations to fit the temperature of experimental data, a
rough estimate of the cloud temperature could be performed with a lower numerical cost. In-
deed, the comparison with the exact QMC momentum distribution shows that a model which
combines the ideal Bose gas theory and the classical field approximation gives the correct
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Figure 64: (a) Evolution of the scaling parameter for the sequence of Fig. 63. Initial transverse
frequency are 40 kHz (dashed line) and 4 kHz (solid line)and the final transverse frequency is
800 Hz. The focus times are indicated. (b) Focus time as a function of the initial transverse
frequency (solid line). Value of the scaling parameter at the focus time (dashed line).

width within 20% precision. Second, momentum distribution measurements are essential to
characterize more complex systems. For instance, in the presence of a lattice, it enables the
investigation of the correlation properties at the Mott and/or pinning transitions. Contrary to
Bragg spectroscopy [Richard 03, Fabbri 11], where a single momentum component is probed
at each shot, the focusing method as well as time of flight method gives access to the whole
distribution at the same time, which allows for noise correlation measurements in momen-
tum space [Bouchoule 12, Fölling 05]. Finally, recording the time evolution of the momentum
distribution is essential to monitor out-of-equilibrium dynamics and to address the questions
about thermalization in 1D. For example, the dynamics resulting from a quench of the 1D
coupling constant can be investigated. Measuring the momentum distribution of impurities
would also permit the study of impurity dynamics, which is currently under intense investiga-
tion [Catani 12].
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Conclusion (english)
In this thesis, we investigated the correlation properties of a one-dimensional gas of bosons

at thermodynamic equilibrium. First of all, we observed for the first time the sub-regime
of the quasi-condensate regime, in which the two-body correlation function is dominated by
quantum fluctuations. To achieve this, we measured in situ atom number fluctuations in a gas
of bosons, trapped at the surface of a micro-structure. We observed sub-Poissonian fluctuations
at high densities, indicating that this new regime had been reached. Using the same technique,
we observed a single gas of bosons in the strongly interacting regime, for which the atomic
fluctuations are sub-Poissonian, at any density, a behavior characteristic of a Fermi gas. To
go deeper into the strongly interacting regime, it is necessary to improve the quality of the
imaging system, to be able to acquire fluctuation data in a situation like that of Fig. 43, where
the atomic density is very low. In particular, we are limited by thermal fluctuations of the
chip mirror between the two images. Using the indium soldering, we recently improved heat
transfer between the substrate and the copper mount, but we also need keep working to improve
the flatness of the chip mirror, by pushing through studies initiated with the Laboratory of
Photonics and Nanostructures (LPN) in Marcoussis. In fact, the diffraction of the imaging
beam by the chip structures makes it impossible to know precisely what is the light intensity
at the position where the atoms sit. Moreover, to avoid losses during the three-body transverse
compression, we recently installed a longitudinal optical lattice, to transfer the cloud in the
Mott phase during compression. In fact, in this phase, three-body losses are suppressed if the
initial density is low enough for the number of particles per well to be less than three. This
lattice could also allow to study the Mott transition itself. For example, our method of magnetic
focusing could highlight the divergence of the correlation length of the phase transition, when
the density is commensurate to the lattice step. In addition, once in the strongly interacting
regime, we could study the properties of correlations during the “pinning transition”. We may
also use this system to measure the two-body correlation function by means of a tomography
method that we developed during my master thesis. This method consists in locking the
optical lattice light on a transition starting from the excited state of the imaging transition.
This way, we induce a light-shift from the excited state of the imaging transition, that depends
sinusoidally on the longitudinal position, without affecting the ground state of this transition.
The energy of the imaging transition is then spatially modulated, which allows us to measure
atom number fluctuations between packets of atoms separated by a distance that is controlled
by the laser detuning.

In this thesis, we also measured for the first time momentum distributions of a purely one-
dimensional gas of bosons in the weakly interacting regime. We observed essentially Lorentzian
distributions on both sides of the crossover between the ideal Bose gas regimes and the quasi-
condensate regime. In particular, we were unable to identify the 1/p4 tails due to the short
distance properties of the one-body correlation function. We also found that using the variance
of the momentum distribution as a thermometry cannot be considered in the case of purely
one-dimensional gas. We have shown that simple analytical theories (ideal Bose gas and quasi-
condensate dominated by thermal fluctuations) are not sufficient to describe the observed
distributions in the region of the phase diagram considered. Even a classical field theory
describing specifically the crossover and the quasi-condensate regime is not suitable, because
the interactions are too large for the parameters available with our experiment. Nevertheless,
our data are well fitted by quantum Monte-Carlo calculations. In addition, we are willing to
acquire enough data to be able to observe atom number fluctuations in the different momenta.
A recent theoretical work [Bouchoule 12] predicts the preservation of bosonic bunching in
momentum space during the quasi-condensation crossover, and the absence of correlations
between opposite momenta, as compared to a 3D Bose-Einstein condensate. We have also
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developed a method to significantly improve the resolution of the magnetic focusing technique.
However, the validation of this technique for very cold clouds requires more work, to understand
why the levitation trap is limited to such a high oscillation frequency. This method would allow
us to observe fine structures in the momentum distribution, for example, after the system
is put out-of-equilibrium by a very short transverse compression, or by any other process.
Indeed, the out-of-equilibrium dynamics of one-dimensional gases is a much discussed topic,
which is not yet understood. In this regard, we have recently measured density fluctuations
corresponding to a certain temperature for low densities, and to another temperature for high
density. We think that we observe a non-equilibrium state, that is stationary. Such a possibility
was recently predicted by numerical simulations of the Gross-Pitaevskii equation, in which
anharmonic potential was introduced [Moulieras 12]. We would like to find the origin of this
non-equilibrium state, and see another signature of this phenomenon in momentum space.

Two years ago we were also interested in the three-body correlations [Armijo 10] in a one-
dimensional gas of bosons in the weakly interacting regime. By measuring the asymmetry
of the distribution of density fluctuations and using the thermodynamic relation (Eq. 75)
together with a sum rule that is similar to Eq. 68, we demonstrated the presence of three-
body correlations in the ideal Bose gas regime and the reduction of three-body correlations in
quasi-condensate regime. In the same vein as the experiences performed in the group of Nägerl
in Innsbruck [Haller 11], we also started to measure values of g(3)(0) in the weakly interacting
regime. The contribution of our experience could come from our thermometry, and from the
use of quartic longitudinal geometries. Indeed, previous measurements were taken for very low
temperatures and compared to zero temperature theories. The principle of the experiment is
to measure the total number of atoms as a function of time. The values of g(3)(0) is then
proportional to the derivative of the number of atoms with respect to time taken at the initial
instant.
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Conclusion (french)
Au cours de ce travail de thèse, nous nous sommes intéressés aux propriétés de corrélations

d’un gaz de bosons unidimensionnel à l’équilibre thermodynamique. Dans un premier temps
nous avons observé pour la première fois le sous-régime du régime de quasi-condensat dans
lequel la fonction de corrélation à deux corps est dominée par les fluctuations quantiques. Pour
cela nous avons mesuré des fluctuations in situ de nombre d’atomes dans un gaz de bosons piégé
à la surface d’une micro-structure. Nous avons observé des fluctuations sous-poissoniennes à
haute densité, signe que ce nouveau régime a été atteint. En utilisant la même technique, nous
avons pu observer un gaz unique de bosons dans le régime d’interactions fortes pour lequel
les fluctuations atomiques sont sous-poissoniennes quelle que soit la densité, comportement
caractéristique d’un gaz de fermions. Pour sonder plus profondément le régime d’interactions
fortes, il est nécessaire d’améliorer la qualité de l’imagerie afin d’être capable d’acquérir des
données de fluctuations dans une situation comme celle de la figure 43 où la densité atomique
est très faible. En particulier, nous sommes limités par les fluctuations thermiques du miroir de
la puce entre les deux images. Grâce à la soudure à l’indium, nous avons récemment amélioré
le transfert thermique entre le substrat et la monture en cuivre. De plus, il faudra pousser
jusqu’au bout les études entamées avec le Laboratoire de Photonique et Nanostructures (LPN)
de Marcoussis afin d’améliorer la planéité du miroir de la puce. En effet, la diffraction du fais-
ceau imageur par les structures de la puce ne permet pas de connaitre précisément l’intensité
lumineuse à l’endroit où se situent les atomes. En outre, pour éviter les pertes à trois corps lors
de la compression transverse, nous avons récemment installé un réseau optique longitudinal
dans le but de passer dans la phase de Mott au cours de la compression. En effet, dans cette
phase, les pertes à trois corps sont supprimées, si la densité initiale est suffisamment faible
pour que le nombre de particules par puits soit inférieur à trois. En outre, ce réseau pourrait
permettre d’étudier la transition de Mott en soi. Par exemple, notre méthode de lentille ma-
gnétique pourrait mettre en évidence la divergence de la longueur de corrélation de la phase à
la transition, lorsque la densité est commensurée au réseau. Par ailleurs, une fois dans le régime
d’interactions fortes, nous pourrions étudier les propriétés de corrélations au cours de la transi-
tion de Mott dans le régime de sine-Gordon (« pinning transition »). Nous pourrions également
utiliser ce réseau pour mesurer la fonction de corrélation à deux corps grâce à une méthode de
tomographie que nous avions développée lors de mon stage de master. Cette méthode consiste
à asservir le réseau optique longitudinal sur une transition partant de l’état excité de la transi-
tion d’imagerie. De cette manière, nous induisons un déplacement lumineux de l’état excité de
la transition d’imagerie dépendant sinusoïdalement de la position longitudinale, sans agir sur
l’état fondamental de cette transition. L’énergie de la transition d’imagerie se retrouve donc
modulée spatialement, ce qui nous permet de mesurer des fluctuations de nombre d’atomes
entre des paquets d’atomes séparés par un distance contrôlée par le désaccord du laser.

Dans cette thèse, nous avons également mesuré pour la première fois des distributions en
impulsion de gaz de bosons en interactions faibles et purement unidimensionnels. Nous avons
observé des distributions essentiellement lorentziennes de part et d’autre de la transition molle
entre le régime de gaz de Bose idéal et le régime de quasi-condensat. En particulier nous n’avons
pas pu mettre en évidence les queues en 1/p4 dues aux propriétés de courte distance de la fonc-
tion de corrélation à un corps. De fait, utiliser la variance de la distribution en impulsion comme
thermométrie, ne peut être envisagé dans le cas de gaz purement unidimensionnels. Nous avons
également montré que les théories analytiques simples (gaz de Bose idéal, et quasi-condensat
dominé par les fluctuations thermiques) ne suffisent pas à décrire les distributions observées
dans la zone du diagramme de phase considérée. En outre, même une théorie de champ classique
décrivant spécifiquement la transition molle et le régime de quasi-condensat n’est pas adaptée,
car les interactions sont trop importantes pour les paramètres accessibles avec notre expé-
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rience. Néanmoins, nos données sont bien ajustées par des calculs Monte-Carlo quantiques. De
plus nous pensons acquérir suffisamment de données pour pouvoir observer des fluctuations de
nombre d’atomes dans les différentes impulsions. De récents travaux théoriques [Bouchoule 12]
prédisent en effet la préservation du groupement bosonique dans l’espace des impulsions lors
du passage de la transition molle vers le régime de quasi-condensat, et la disparition de cor-
rélation entre impulsions opposées. Nous avons également développé une méthode permettant
d’améliorer considérablement la résolution de la lentille magnétique. Cependant, nous avons
été limité à une valeur de la fréquence du piège transverse de lévitation de 800 Hz, alors que
théoriquement, on s’attend à pouvoir descendre jusqu’à 100 Hz. Trouver le facteur limitant
nous permettrait d’utiliser cette méthode pour observer de fines structures dans la distribution
en impulsion, par exemple, après que le système a été mis hors d’équilibre par une compression
transverse très brève, ou bien par tout autre processus. En effet, la dynamique hors d’équilibre
des gaz unidimensionnels est un sujet très discuté qui possède de grandes zones d’ombre. A ce
propos, nous avons récemment mesuré des fluctuations de densité correspondant à une certaine
température pour les basses densités, et à une autre température pour les hautes densités. Il est
possible que nous observions un état hors d’équilibre, mais stationnaire. Une telle possibilité a
été récemment prédite par des simulations numériques de l’équation de Gross-Pitaevskii, dans
laquelle un potentiel anharmonique a été introduit [Moulieras 12]. Nous souhaitons trouver
l’origine de cet état hors d’équilibre, et voir une autre signature de ce phénomène dans l’espace
des impulsions.

Il y a deux ans nous nous sommes également intéressés aux corrélations à trois corps
[Armijo 10] dans un gaz de bosons unidimensionnel en interactions faibles. En mesurant l’asy-
métrie dans la distribution de fluctuations de densité et en utilisant la relation thermodyna-
mique (Eq. 75) ainsi qu’une règle de somme équivalente à Eq. 68, nous avons mis en évidence
la présence de corrélations à trois corps dans le régime de gaz de Bose idéal et la réduction
des corrélations à trois corps dans le régime de quasi-condensat. Dans la même veine que les
expériences réalisées dans le groupe de Nägerl à Innsbruck [Haller 11], nous avons également
commencé à mesurer des valeurs de g(3)(0) dans le régime d’interactions faibles. L’apport de
notre expérience pourrait provenir de notre thermométrie. En effet, les mesures déjà effectuées
ont été prises pour des températures sans doutes très faibles, et comparées à des théories va-
lables à température nulle. Le principe de l’expérience est de mesurer le nombre d’atomes total
en fonction du temps. La valeurs de g(3)(0) est ensuite proportionnelle à la dérivée du nombre
d’atomes par rapport au temps, prise à l’instant initial.
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A Optical Bloch Equations

We consider the problem of a 87Rb atom initially in the |F = 2 mF = 2 > state, that is
illuminated by a laser composed of three polarizations components (~σz−, ~σz+ and ~πz), tuned
on the transition F = 2 → F ′ = 3, and in the presence of a magnetic field ~B = B0~uz (see
Fig. 65). Our goal is to determine the scattering cross section in those conditions.

Figure 65 – Hyperfine structure of 87Rb.

The scattering cross section σ is linked to the density matrix ρ̂ of the system {atom+light}
through the relation

Γ
~ω
I

∑
i∈{excited states}

ρii, (335)

where Γ = 2π × 6.0666(18) Mhz [Steck 08] is the decay rate of the excited levels, and I is the
intensity of the laser. The evolution of the density matrix is given by the master equation

˙̂ρ = Lρ̂, (336)

where L is the Liouvillian of the system. Eq. 336 is equivalent to the set of equa-
tions [Steck 08]

∂tρα mα,β mβ = i(δαeδgβ − δαgδeβ)∆ρα mα,β mβ

− i
2

[
δαe
∑
mg

Ω(mα,mg)ρg mg ,β mβ − δgβ
∑
me

Ω(me,mβ)ρα mα,e me

]

+ i
2

[
δeβ
∑
mg

Ω∗(mβ,mg)ρα mα,g mg − δαg
∑
me

Ω∗(me,mα)ρe me,β mβ

]
−
[
δαeδeβ + 1

2δαeδgβ + 1
2δαgδeβ

]
Γρα mα,β

+δαgδgβΓ
q=+1∑
q=−1

ρe(mα+q),e(mβ+q)Ξ(mα,mβ, q),

(337)

where the index “e” stands for “excited state”, “g” stands for “ground state”, δ is the Kronecker
symbol, q is the angular momentum of light, Ω(mα,mβ) is the Rabi frequency between the
two magnetic sublevels mα and mβ , and Ξ(mα,mβ, q) is a Clebsch-Gordan coefficient. This
equation includes the following processes : free evolution (first line in the right-hand side),
optical pumping (second and third lines in the right-hand side), and dissipation (fourth and
fifth lines in the right-hand side).

More precisely, the Rabi frequency Ω(me,mg) expresses as
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OI
M

P

Ω(me,mg) = (−1)Fe−Fg+me−mg
√

2Fg + 1

2Fe + 1
〈Fe me|Fg 1,mg (me−mg)〉Ωmg−me , (338)

where 〈Fe me|Fg 1,mg (me − mg)〉 can be expressed as a Wigner 3j symbol which can be
calculated with the Racah formula [Feynman 65]. In Eq. 338, Ωmg−me is the overall Rabi
frequency with polarization q = mg −me.

B Longitudinal potential calculation

In this appendix, we determine an analytical expression for the currents in the two wires that
are creating the longitudinal potential in the modulated guide, as a function of the oscillation
frequency and the center of the trap.

B.1 Magnetic field created by an infinite rectangular wire

The Biot and Savart law writes

~B(~r) =
µo
4π

∫ ~j(~ )r′ ∧ (~r − ~r′)
|~r − ~r′|3 . (339)

Integrating over z gives 2 in the case of an infinite wire and 1 in the case of a half-infinite wire.
We introduce the coefficient

C =
µo

4πab
K (340)

with K = 2 for an infinite wire and K = 1 for an half-infinite wire. The magnetic field along
x and y write

Bx(x, y) = CI

∫ a
2

−a
2

dx′
∫ b

2

− b
2

dy′ (y − y′)
[(x− x′)2 + (y − y′)2]

, (341)

and

By(x, y) = −CI
∫ a

2

−a
2

dx′
∫ b

2

− b
2

dy′ (x− x′)
[(x− x′)2 + (y − y′)2]

. (342)
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Eq. 341 gives

2

CI
Bx(x, y) =

(
x− a

2

)
ln

[
(x− a

2 )2 + (y − b
2)2

(x− a
2 )2 + (y + b

2)2

]

+
(
x+

a

2

)
ln

[
(x+ a

2 )2 + (y + b
2)2

(x+ a
2 )2 + (y − b

2)2

]

+ 2

(
y − b

2

)[
arctan

(
x− a

2

y − b
2

)
− arctan

(
x+ a

2

y − b
2

)]

+ 2

(
y +

b

2

)[
arctan

(
x+ a

2

y + b
2

)
− arctan

(
x− a

2

y + b
2

)]
.

(343)

The first order and second order derivatives of Bx with respect to x are

2

CI

∂Bx
∂x

= ln

[
(x− a

2 )2 + (y − b
2)2

(x− a
2 )2 + (y + b

2)2

]
+ ln

[
(x+ a

2 )2 + (y + b
2)2

(x+ a
2 )2 + (y − b

2)2

]
, (344)

and

1

CI

∂2Bx
∂x2

=
(
x− a

2

)[ 1(
x− a

2

)2
+
(
y − b

2

)2 − 1(
x− a

2

)2
+
(
y + b

2

)2
]

+
(
x+

a

2

)[ 1(
x+ a

2

)2
+
(
y + b

2

)2 − 1(
x+ a

2

)2
+
(
y − b

2

)2
]
.

(345)

By(x, y) is obtained by changing x into y, a into b and adding a minus sign in Eq. 343 :

− 2

CI
By(x, y) =

(
y − b

2

)
ln

[
(y − b

2)2 + (x− a
2 )2

(y − b
2)2 + (x+ a

2 )2

]

+

(
y +

b

2

)
ln

[
(y + b

2)2 + (x+ a
2 )2

(y + b
2)2 + (x− a

2 )2

]

+ 2
(
x− a

2

)[
arctan

(
y − b

2

x− a
2

)
− arctan

(
y + b

2

x− a
2

)]

+ 2
(
x+

a

2

)[
arctan

(
y + b

2

x+ a
2

)
− arctan

(
y − b

2

x+ a
2

)]
,

(346)

The first and second order derivatives of By with respect to x are

− 1

CI

∂By
∂x

= arctan

(
y − b

2

x− a
2

)
− arctan

(
y + b

2

x− a
2

)

+ arctan

(
y + b

2

x+ a
2

)
− arctan

(
y − b

2

x+ a
2

)
,

(347)

and
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− 1

CI

∂2By
∂x2

=

(
y − b

2

)[
1(

x+ a
2

)2
+
(
y − b

2

)2 − 1(
x− a

2

)2
+
(
y − b

2

)2
]

+

(
y +

b

2

)[
1(

x− a
2

)2
+
(
y + b

2

)2 − 1(
x+ a

2

)2
+
(
y + b

2

)2
]
.

(348)

B.2 Correction for a finite length wire

z
2

z
1

M(x, y, 0)

Now we take into account the finite length of the wire. If we consider an infinitely thin wire,
in cylindrical coordinate, along ~uθ, and at a distance D to the wire, we have

B(D) =
µoI

2π

∫ z2

−z1
dz

D

[D2 + z2]3/2
=

µoI

2πD

[
z2√

D2 + z2
2

− z1√
D2 + z2

1

]
(349)

The correction factor for the magnetic field and its derivatives then writes :

Kν(x, y, z1, z2) =

[
z2√

x2 + y2 + z2
2

− z1√
x2 + y2 + z2

1

]

dKν(x, y, z1, z2) =− ν
[

z2[
x2 + y2 + z2

2

]3/2 − z1[
x2 + y2 + z2

1

]3/2
]

d2Kν(x, y, z1, z2) =3ν2

[
z2[

x2 + y2 + z2
2

]5/2 − z1[
x2 + y2 + z2

1

]5/2
]
−
[

z2[
x2 + y2 + z2

2

]3/2 − z1[
x2 + y2 + z2

1

]3/2
]
,

(350)
where ν = {x, y}. For instance the approximate magnetic field along y is

Bcorr
y (x, y) = By(x, y)K(x, y, z1, z2) (351)

In Fig. 66, we plot in green the relative error between the uncorrected magnetic field and
the real magnetic field (obtained by numerically integrating Eq. 339), and in blue the relative
error between the corrected and the real magnetic field. The wire has a width of 144 µm, a
thickness of 3 µm, the calculation is done at fixed height above the wire : y = 14.7 µm, and
we vary the distance x. Here, we have chosen z2 = 30 µm and z1 = 2500 µm. We see that even
at small distance from the wire, the relative error between the real field and the corrected field
never exceeds 10%.
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Figure 66 – Finite size effect. In green, we plot the relative error between the uncorrected
magnetic field and the real magnetic field (obtained by numerically integrating Eq. 339), and
in blue the relative error between the corrected and the real magnetic field.

modulated guide

Figure 67 – Real wire scheme : the right wire (red one) can be considered as an infinite wire.
For the left wire (green one) the finite size effect must be taken into account. Moreover, the
left leg, which is bringing the current back to the supply must also be taken into account.

B.3 Chosing the center and the frequency of the trap

The magnetic potential felt by the atoms writes

V = µBB = µB

√
(Bx +Bo)2 +B2

y =
1

2
mω2

�x
2. (352)

We introduce

G =
|Bo|mω2

�

µB
. (353)

We develop the potential up to second order in Bx/Bo and By/Bo. Canceling the first order
derivative and fixing the second order derivative give the following set of equations :
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[
(Bx +Bo)

∂Bx
∂x

+By
∂By
∂x

]
= 0 (354)

(Bx +Bo)
∂2Bx
∂x2

+By
∂2By
∂x2

+

(
∂Bx
∂x

)2

+

(
∂By
∂x

)2

= G

[
1 +

Bx
Bo

+
1

2

(
By
Bo

)2
]

(355)

Bx =
∑
i

Bxi (356)

By =
∑
i

Byi . (357)

In Eq. 356 and 357, i labels the wires. We consider the functions fνi =
Bνi
Ii

, where ν stands for
x or y. Eq. 356 and 357 writes

Bν =
∑
i

Iifνi . (358)

Eq. 354 can be written in terms of fνi as

∑
ν=(x,y)

(i,j)={1..n}

IiIj
∂fνi
∂x

fνj +Bo
∑

i={1..n}

Ii
∂fxi
∂x

= 0. (359)

Eq. 355 can be written in terms of fνi as

∑
ν=(x,y)

(i,j)={1..n}

IiIj

{
∂2fνi
∂x2

fνj +
∂fνi
∂x

∂fνj
∂x
− G

2B2
o

fyifyj

}
+

∑
i={1..n}

Ii

{
Bo
∂2fxi
∂x2

− G

Bo
fxi

}
= G.

(360)

B.4 Determination of the currents

In fact, we need to consider three wires (I1, I2, I3), where we have I = −I1 = I2. Eq. 359
and 360 are equivalent to the following non-linear system :

AI2 +BII3 + CI2
3 + γI + ρI3 = 0 (361)

DI2 + EII3 + FI2
3 + ψI + θI3 = G (362)

where
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A =
∑

ν=(x,y)

∂fν1

∂x
fν1 +

∂fν2

∂x
fν2 −

∂fν1

∂x
fν2 −

∂fν2

∂x
fν1 (363)

B =
∑

ν=(x,y)

∂fν2

∂x
fν3 +

∂fν3

∂x
fν2 −

∂fν1

∂x
fν3 −

∂fν3

∂x
fν1 (364)

C =
∑

ν=(x,y)

∂fν3

∂x
fν3 (365)

D =
∑

ν=(x,y)

∂2fν1

∂x2
fν1 +

∂2fν2

∂x2
fν2 −

∂2fν1

∂x2
fν2 −

∂2fν2

∂x2
fν1 +

(
∂fν1

∂x
− ∂fν2

∂x

)2

− G

2B2
o

(fy1 − fy2)2

(366)

E =
∑

ν=(x,y)

∂2fν2

∂x2
fν3 +

∂2fν3

∂x2
fν2 + 2

∂fν3

∂x

∂fν2

∂x
− ∂2fν1

∂x2
fν3 −

∂2fν3

∂x2
fν1 − 2

∂fν3

∂x

∂fν1

∂x
− G

B2
o

fy3 (fy2 − fy1)

(367)

F =
∑

ν=(x,y)

∂2fν3

∂x2
fν3 +

(
∂fν3

∂x

)2

− G

2B2
o

f2
y3

(368)

γ = Bo

(
∂fx2

∂x
− ∂fx1

∂x

)
(369)

ψ = Bo

(
∂2fx2

∂x2
− ∂2fx1

∂x2

)
− G

Bo
(fx2 − fx1) (370)

ρ = Bo
∂fx3

∂x
(371)

θ = Bo
∂2fx3

∂x2
− G

Bo
fx3 (372)

An analytical solution of Eq. 361 and 362 can be found. I3 is the root of the following
fourth order polynomial :

P (t) = X0 +X1t+X2t
2 +X3t

3 +X4t
4 (373)

where

X0 = G
(
−Dγ2 +A2G+ ψγA

)
(374)

X1 = 2DρAG− θAγψ − ργDψ +GAγE + ρψ2A− 2γBDG+GABψ + γ2Dθ − 2GθA2

(375)

X2 = Cψ2A− CγDψ − 2DρAθ − FAγψ − ρBDψ − ργDE − 2GFA2 + 2γBDθ + ρ2D2 +GABE
(376)

− θABψ + θ2A2 + γ2DF + 2DCAG− θAγE + 2ρψAE −B2DG (377)

X3 = −CγDE − θABE + 2θFA2 − FABψ − 2DCAθ +B2Dθ + ρAE2 − 2DρAF − FAγE
(378)

+ 2CψAE + 2ρCD2 − CBDψ + 2γBDF − ρBDE (379)

X4 = C2D2 − 2DCAF − EBAF + CAE2 − CBDE +A2F 2 + FDB2 (380)
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C Expression of the reduction factor κ

In this appendix we give explicit expressions for the reduction factor κ, and for the corre-
lations between pixels. We recall that we write the PSF of the imaging system as a Gaussian
function

A(z) =
1√
2πδ

e−
z2

2δ2 . (381)

We define the function

F(Z) =

∫ ∆

0
dz A(z − Z), (382)

where ∆ is the pixel size. We have seen in subsection 16.4.2 that the reduction factor is given
by

κ =

∫ +∞

−∞
dZ F(Z)2. (383)

Performing the integrals gives

κ = Erf

(
∆

2δ

)
+

2δ

∆
√
π

(
e−

∆2

4δ2 − 1

)
, (384)

where we have used the error function Erf(x) = 2√
π

∫ x
0 e
−u2

du.

D Correlations between pixels

Correlations between pixels write (see 16.4.2)

Ci,i+j =
1

κ

∫ +∞

−∞
dZ F(Z)F(Z − j∆). (385)

For j = 1, we find

κCi,i+1 =

[
Erf

(
∆

δ

)
− Erf

(
∆

2δ

)]
+

δ

∆
√
π

[
1 + e−

∆2

δ2 − 2e−
∆2

4δ2

]
. (386)

For j = 2, we find

κCi,i+2 =
1

2

[
−4Erf

(
∆

δ

)
+ Erf

(
∆

2δ

)
+ 3Erf

(
3∆

2δ

)]
+

δ

∆
√
π

[
e−

∆2

4δ2 − 2e−
∆2

δ2
+e
− 9∆2

4δ2

]
(387)
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Abstract

In this manuscript, we present spatial one and two-body correlation measurements performed on a one-
dimensional gas of ultra-cold bosons trapped at the surface of a microstructure. Two-body correlations
are highlighted by measurements of in situ density fluctuations and one-body correlations are probed
through measurements of momentum distributions. We observed sub-Poissonian density fluctuations in
the regime of weak interactions, thus demonstrating for the first time the regime of quasi-condensate in
which the two-body correlation function is dominated by quantum fluctuations. We also observed sub-
Poissonian fluctuations regardless of the density in the regime of strong interactions. Our measurement
is the first observation of a single one-dimensional gas of bosons in this regime. The magnetic trap
that we used is a modulated trap that has the remarkable property of decoupling between transverse
and longitudinal confinements. This specificity has enabled us to engineer at will the shape of the
longitudinal confinement. In particular, we were able to obtain harmonic and quartic traps. We also
used the properties of this modulated trap to produce a longitudinal magnetic lens. This technique
allowed us to measure the momentum distribution of the gas in the regime of weak interactions. We
present two results obtained on both sides of the crossover between the ideal Bose gas regime, and the
quasi-condensate regime. On the theoretical side, we show that a classical field theory is not sufficient
to quantitatively describe this crossover for the typical parameters of the experiment. Therefore, we
used quantum Monte-Carlo calculations. We show that the temperature extracted from the fit of our
data with these calculations is in good agreement with that obtained by fitting the in situ density
fluctuations with the thermodynamics of C. N. Yang and C. P. Yang. Finally, we demonstrate a
method of compensation of gravity (residual harmonic trapping) during the phase of magnetic lens,
which allows us to significantly improve the momentum resolution of this technique.

Keywords : quantum gas, reduced dimensions, ideal Bose gas, quasi-condensate, Tonks-Girardeau
gas, correlation functions, sub-Poissonian density fluctuations, quantum fluctuations, Lieb-Liniger
model, Yang-Yang thermodynamics, momentum distribution, modulated guide, quartic trap, magnetic
focusing, quantum Monte-Carlo method

Résumé

Nous présentons dans ce manuscrit des mesures de corrélations spatiales à un et deux corps effec-
tuées sur un gaz de bosons unidimensionnel et ultra-froid piégé à la surface d’une microstructure. Les
corrélations à deux corps sont mises en évidence par des mesures de fluctuations de densité in situ ; les
corrélations à un corps sont sondées grâce à des mesures de distributions en impulsion. Nous avons
observé des fluctuations de densité sub-poissoniennes dans le régime d’interactions faibles, mettant ainsi
en évidence pour la première fois le sous-régime du régime de quasi-condensat dans lequel la fonction
de corrélation à deux corps est dominée par les fluctuations quantiques. Nous avons également observé
des fluctuations sub-poissoniennes quelle que soit la densité dans le régime d’interactions fortes ; notre
mesure constitue la première observation d’un unique gaz de bosons unidimensionnel dans ce régime.
Le piège magnétique que nous avons utilisé est un piège modulé qui possède la propriété remarquable
de découplage entre confinements transverse et longitudinal, permettant ainsi de façonner à volonté la
forme du confinement longitudinal. En particulier, nous avons pu obtenir des pièges harmoniques et
quartiques. Nous avons également utilisé les propriétés de ce piège modulé afin de réaliser une lentille
magnétique longitudinale. Cette technique nous a permis de mesurer la distribution en impulsion du gaz
dans le régime d’interactions faibles. Nous présentons deux résultats, obtenus de part et d’autre de la
transition molle entre les régimes de gaz de Bose idéal et de quasi-condensat. Sur le plan théorique, nous
montrons qu’une théorie de champ classique ne suffit pas à décrire quantitativement cette transition
molle pour les paramètres typiques de l’expérience. Nous avons donc recours à des calculs Monte-Carlo
quantiques. La température extraite de l’ajustement de nos données par ces calculs est en bon accord
avec celle obtenue en ajustant les fluctuations de densité in situ avec la thermodynamique de C. N.
Yang et C. P. Yang. Enfin, nous démontrons une méthode de compensation de la gravité (piégeage har-
monique résiduel) lors de la phase de lentille magnétique, qui nous permet d’améliorer considérablement
la résolution en impulsion de cette technique.

Mots-clefs : gaz quantique, dimension réduite, gaz de Bose idéal, quasi-condensat, gaz de Tonks-
Girardeau, fonctions de corrélations, fluctuations de densité sub-poissoniennes, fluctuations quantiques,
modèle de Lieb et Liniger, thermodynamique de Yang-Yang, distribution en impulsion, guide modulé,
piège quartique, lentille magnétique, méthode Monte-Carlo quantique


