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Résumé

Dans cette thèse, de nouvelles techniques d’égalisation et de précodage pour des sys-

tèmes multiporteuses ont été proposées et analysées. D’abord, la probabilité d’erreurs des

systèmes multiporteuses à base de bancs de filtres (FBMC) précodées a été analysée. Il a

été montré que cette performance est très sensible à l’égalisation complète des sous-canaux.

Lorsqu’ il y a de l’interference inter-symbole residuelle qui vient de l’égalisation imparfaite

des sous-canaux, il y a une perte de diversité ; cette diversité peut être récuperée avec l’uti-

lisation d’un nombre de sous-canaux assez grand pour que chaque sous-canaux subisse de

l’évanouissement plat ou avec l’utilisation d’un égaliseur par sous-canal avec une longueur

suffisante pour compenser cette réponse en fréquence. Une approximation pour la distribu-

tion du rapport signal/bruit-plus-interfèrence (SINR) des systèmes SC-FDE qui utilisent

égalisation MMSE linéaire a été ensuite proposée. Cette approximation utilise la distribu-

tion lognormal avec la plus petit distance de Kullback-Leibler vers la vraie distribution, et

nous avons montré qu’elle est précise pour estimer la performance d’erreurs ; elle sert aussi

comme une abstraction de ce système. Avec cette abstraction, une méthode précise pour

obtenir la performance d’erreur analytique codée de ces systèmes a été proposée. Finale-

ment, des précodeurs Tomlinson-Harashima (THP) et égaliseurs (linéaires et à retour de

décision) largement linéaires pour des systèmes SC-FDE ont été proposés. Ces précodeurs

et égaliseurs ont une meilleures performance comparés aux versions strictement linéaires

lorsque les signaux de constellations impropres sont transmises. Aussi, le taux d’erreurs

quand des égaliseurs à retour de décision sont utilisés est moins sensible à la longueur du

filtre de retour. Quand des précodeurs largement linéaires sont utilisés, cette performance

devient moins sensible aux erreurs d’estimation des canaux.
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Abstract

In this thesis, new precoding and equalization techniques for multicarrier systems were

proposed and analyzed. First, the error performance of precoded filterbank multicarrier

(FBMC) systems was analyzed. It was found out that this performance is highly sensitive

to complete subchannel equalization. When there is residual intersymbol interference (ISI)

stemming from imperfect subchannel equalization there is a loss of diversity ; this loss can

be prevented with the adoption of a number of subchannels large enough so that each sub-

channel suffers flat fading or with the utilization of a subchannel equalizer with sufficient

length to compensate the subchannel frequency response. After that, an approximation for

the signal to interference-plus-noise ratio (SINR) distribution of SC-FDE systems using

linear MMSE equalization was proposed. This approximation uses the lognormal distribu-

tion with the smallest Kullback-Leibler distance to the true distribution, and was shown

to be precise in the error performance sense ; it serves as a system abstraction. With this

abstraction, a precise method to obtain the analytical coded error performance of these sys-

tems was proposed. Finally, widely linear Tomlinson-Harashima precoders and equalizers

(linear and decision-feedback) for SC-FDE systems were proposed. These precoders and

equalizers have better error performance when compared to their strictly linear versions if

signals coming from an improper constellation are transmitted. Their error performance

when decision-feedback equalizers are used is less sensitive to the length of the feedback

filter. When widely linear precoders are used, this error performance becomes less sensitive

to channel estimation errors.

Keywords : Multicarrier systems, Precoding, Equalization, Widely linear processing
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Résumé des Travaux de Thèse

Chapitre 1 - Introduction

Le but de cette thèse est de proposer et d’étudier de nouvelles techniques d’égalisation et

de précodage pour les systèmes multiporteuses. D’abord, nous avons étudié le taux d’erreurs

des systèmes FBMC/OQAM (FilterBank MultiCarrier/OQAM) précodés. Ensuite, nous

avons abordé le problème de l’aproximation du SINR des systèmes multiporteuses précodés

qui utilisent l’égalisation linéaire MMSE ; une étude de leurs taux d’erreurs théoriques avec

codage est aussi présentée. Finalement, nous avons examiné l’utilisation du traitement

largement linéaire dans les précodeurs et égaliseurs pour les systèmes SC-FDE.

Chapitre 2 - État de l’Art

Systèmes OFDM/QAM

L’un des principaux problèmes des systèmes de communication est l’effet des trajets

multiples, responsable de la selectivité en frequence. Pour éviter l’usage d’un égaliseur de

grande taille dans le domaine temporel, un canal selectif en fréquence peut être partagé en

plusieurs sous-canaux plus étroits qui subissent un évanouissement plat. Ces sous-canaux

peuvent être égalisés avec des égaliseurs à un coefficient. Ce schéma est connu comme la

technique OFDM/QAM, qui utilise la transformée de Fourier rapide pour une implemen-

tation moins complexe. En outre, un prefixe cyclique de taille plus grande que celle de la

réponse impulsionnelle du canal est ajouté au bloc de symboles pour éliminer l’interference

entre symboles (ISI) dans le recepteur.
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Filtres prototype

Les systèmes OFDM/QAM conventionnels utilisent une fenêtre rectangulaire comme

filtre pour séparer les sous-canaux. L’orthogonalité entre les filtres rectangulaires est af-

fectée dans les systèmes pratiques par les effets du canal (l’interférence entre symboles et

entre sous-canaux), offsets de temps et fréquence et le bruit. Une façon de surmonter ces

problèmes est l’adoption de filtres de Nyquist ayant une bonne localisation en fréquence

(c’est-à-dire, avec des lobes secondaires petits en fréquence), en améliorant la séparation

entre les sous-canaux. La perte de puissance et de bande, conséquence de l’utilisation du

préfixe cyclique, peut être éliminée en adoptant de filtres bien localisés dans le domaine du

temps.

Systèmes FBMC/OQAM

L’utilisation de filtres bien localisés en temps et en fréquence, limités en bande et

avec une efficacité spectrale maximale pour séparer les sous-canaux dans les systèmes

OFDM/QAM conventionnels est impossible. Pour utiliser ces filtres nous devons renon-

cer à l’orthogonalité complexe, car les filtres bien localisés n’ont que l’orthogonalité réele.

Pour surmonter cet obstacle, la modulation OQAM peut être utilisée ; elle sépare les

symboles complexes en parties réelles et imaginaires pour la transmission. Il est possible

d’implémenter ce système FBMC/OQAM avec la décomposition polyphase du filtre pro-

totype et l’IFFT ; avec cela, la complexité matérielle est réduite par rapport à une imple-

mentation directe (un filtre par chaque sous-canal).

Systèmes OFDM/QAM Précodés

Les systèmes multiporteuses subissent le problème du facteur de crête, de la faible

robustesse à des trous spectraux et au offset de fréquence de la porteuse (CFO, en an-

glais). Une façon de surmonter ces obstacles en gardant l’égalisation dans le domaine de

la fréquence est l’usage de la précodage linéaire. Dans les systèmes OFDM/QAM conven-

tionnels, l’égalisation de forçage à zéro est l’optimale.Comme l’égalisation est faite bloc par

bloc (avant la déprecodage) dans les systèmes OFDM/QAM précodés, les techniques de
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maximum de vraisemblance peuvent avoir une complexité trop grande si le système a un

nombre de sous-canaux élevé. Ainsi, des techniques d’égalisation linéaires sous-optimales

sont souvent utilisées.

Égalisation Linéaire MMSE

Si le SNR est connu à la réception, l’égalisation linéaire basée dans le critere de l’er-

reur quadratique moyenne minimale (MMSE) peut être apliquée. Avec l’égalisation linéaire

MMSE, l’ordre de diversité non-codée des systèmes OFDM/QAM précodés varie selon la

taille de la réponse impulsionnelle du canal, la taille de la constellation et le nombre de

sous-canaux.

Égalisation avec Retour de Décision MMSE

Un inconvenient de l’égaliseur linéaire MMSE est qu’il n’est pas capable d’éliminer

complétement l’ISI. Un égaliseur avec retour de décision (DFE) peut être utilisé pour

améliorer le taux d’erreurs, en utilisant les décisions précédentes pour réduire l’ISI post-

curseur.

Précodage de Tomlinson-Harashima

Si l’émetteur a des informations complètes de l’état du canal, le filtre de retour du DFE

peut être déplacé du récepteur vers l’émetteur pour compenser l’effet de l’ISI, en évitant

la propagation des erreurs des systèmes DFE. Avec le filtre de précodage une opération

modulo-2M est utilisée pour limiter la puissance à la sortie du précodeur si la réponse

impulsionnelle du canal a des valeurs proches de zéro.

Cette technique s’appelle précodage de Tomlinson-Harashima. Comme les décisions

dans le recepteur sont instantanées dans les systèmes THP, la codage de canal peut être

utilisée avec une bonne performance. Le taux d’erreurs de ces systèmes est la même que

celle de systèmes qui utilisent un DFE idéal (c’est-à-dire, sans propagation d’erreur) dans

le recepteur à une penalité de puissance prés (qui varie selon la constellation utilisée pour

le signal).
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Traitement Largement Linéaire

Les systèmes presentés jusqu’à maintenant utilisent un traitement linéaire pour obtenir

l’estimation du symbole à partir du signal à l’entrée du recepteur. Pourtant, pour certains

signaux, le traitement linéaire ne prend pas en compte toutes les statistiques du second

ordre du signal reçu. Pour utiliser toutes ces statistiques le traitement largement linéaire a

été proposé.

Chapitre 3 - Systèmes FBMC/OQAM Précodés

Introduction

Le but de ce chapitre est étudier le taux d’erreurs des systèmes FBMC/OQAM précodés,

y compris le cas où l’ISI résiduelle qui vient de l’égalisation imparfaite des sous-canaux est

présente dans ces systèmes lorsqu’ils utilisent l’égalisation linéaire MMSE. Il est montré

que cette ISI residuelle occasionne une perte de diversité dans les systèmes FBMC/OQAM

précodés. Une expression analytique du BER pour ces systèmes que prend en compte ou

pas cette ISI residuelle est comparée aux resultats des simulations de Monte Carlo pour

des différents modéles de canaux afin de démontrer sa précision.

Puissance de l’ISI dans les Systèmes FBMC Non-complétement Égalisés

Dans les systèmes FBMC l’égalisation n’est pas toujours parfaite, à cause de l’absence

du préfixe cyclique ; donc, des intérferences residuelles peuvent être présentes. La réponse

impulsionnelle réelle désirée doit être zéro en nTs, n 6= 0 pour éliminer l’ISI des autres

symboles transmis dans la partie réelle, lorsque la réponse impulsionnelle imaginaire désirée

doit être zéro en nTs

2 , n 6= 0 pour éliminer l’ISI dans les symboles transmis dans la partie

imaginaire. Les autres instants ne seront pas pris en compte.

Cette réponse impulsionnelle idéale resultera dans une réponse en fréquence égalisée

plat du sous-canal Heq
k (f) ; ainsi, des déviations de cette réponse plat correspondront à

de l’ISI supplémentaire dans le symbole détecté, parce que cette réponse en fréquence du

sous-canal non-plat signifie que l’énergie du symbole a été étalée vers les autres symboles.

Donc, nous intégrons sur ce spectre résiduel du sous-canal pour déterminer la puissance
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1

Partie réele

Partie imaginaire

−Ts −Ts

2 0 Ts

2 Ts

Réponse impulsionnelle complexe désirée aprés égalisation dans les systèmes FBMC.

σ2
ISI,k de cette ISI supplémentaire dans le k-ème sous-canal, selon l’équation suivante.

σ2
ISI,k =

∫ ∞

−∞
|1−Heq

k (f)|2df.

La puissance de l’ISI qui vient des sous-canaux non-complètement égalisés sera ajoutée

à la variance du bruit AWGN (en considérant cette ISI comme gaussienne grâce au grand

nombre de sous-canaux) pour former le SINR effectif d’un système FBMC précodé qui

utilise l’égalisation MMSE. L’expression qui définit ce SINR est donnée par

γMMSE,ISI =
1

MSEMMSE,ISI

− 1,

où

MSEMMSE,ISI =
1

N

N
∑

n=1

1

ζk|Hn|2 + 1
.

et ζk = Es
N0+σ2

ISI,k

.

Si l’égaliseur du sous-canal a une taille assez grande pour compenser la réponse en

fréquence du sous-canal ou le nombre de sous-canaux est assez grand de façon que la

réponse en fréquence des sous-canaux soit plat, l’équation précédente du SINR est réduite

vers les équations connues de la MSE et du SINR pour les systèmes multiporteuse précodés

utilisant l’égalisation linéaire MMSE.
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Taux d’erreurs pour les systèmes FBMC non codés précodés qui utilisent l’égalisation
MMSE en transmettant à travers du modèle de canal Vehicular A.

Taux d’erreurs pour les systèmes FBMC codés précodés qui utilisent l’égalisation MMSE
en transmettant à travers du modèle de canal Vehicular B.

Resultats de Simulation

La première Figure montre la comparaison entre les résultats de simulation de Monte

Carlo et ceux de l’approximation présentée dans ce chapitre. Les systèmes FBMC trans-

mettent à travers un modèle de canal Vehicular A avec N = 128, 256. Pour ce cas, avec

N = 128 les sous-canaux seront sélectifs en fréquence ; si N = 256 les sous-canaux seront
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plats. Les résultats de l’approximation sont conforment avec ceux fournis par les simula-

tions de Monte Carlo. Il est aussi possible voir que les systèmes qui utilisent des égaliseurs

de sous-canal d’un coefficient ont une ordre de diversité réduite par rapport aux systèmes

qui utilisent des égaliseurs de sous-canal de trois coefficients pour le même nombre de sous-

canaux si les sous-canaux sont sélectifs en fréquence car l’égaliseur d’un coefficient n’est

pas capable de compenser toute la sélectivité du sous-canal dans ces cas. Lorsque les sous-

canaux ont une réponse en fréquence plate, l’égaliseur d’un coefficient suffit pour égaliser

complètement le sous-canal et obtenir l’ordre de diversité maximum dans le scénario. Dans

ce cas, l’utilisation d’égaliseurs de sous-canal avec plus de coefficients n’apporte pas de gain

de performance.

Les résultats pour des systèmes qui utilisent un codage de canal avec le modèle de canal

Vehicular B, avec N = 1024, 2048 sont présentés dans la deuxième Figure. Dans ce cas,

avec N = 1024 on aura des sous-canaux sélectifs en fréquence, lorsque avec N = 2048 les

sous-canaux seront plats. Les mêmes conclusions peuvent être apliquées au cas codé.

Chapitre 4 - Sur la Distribution du SINR et la Performance
d’Erreur Non-codée et Codée en Systèmes SC-FDE avec Éga-
lisation Linéaire MMSE

Dans ce chapitre, nous proposons l’adoption de la distribution lognormale avec la plus

petite distance de Kullback-Leibler vers la distribution observée comme une approximation

de la densité de probabilité du SINR dans un système multiporteuse précodé avec de

l’égalisation linéaire MMSE. Cette approximation est précise au sens du BER même dans

les valeurs élevées du SNR. Nous utilisons cette approximation lognormale pour simplifier

le calcul de la performance d’erreur codée de ce système. Avec cette simplification, une

expression pour la probabilité d’erreur par paire est dérivée. Cette expression pour la PEP

donne des limitants proches des résultats de simulation de Monte Carlo.

Distribution du SINR

Pour le calcul du BER l’approximation doit être plus précise dans la partie gauche

de la courbe du pdf, parce que cette partie va correspondre aux valeurs plus faibles du
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SINR. Pour ce but, une approximation que minimise la distance de Kullback-Leibler vers

la distribution du SINR est appropriée.

Il y a une connexion directe entre la minimization de la distance KL entre l’approxi-

mation et la distribution du SINR et la minimisation des erreurs avec la distance KL.

Donc, avec la minimisation de la distance KL il est possible obtenir une approximation

précise dans la région d’interêt pour le taux d’erreurs. Pour minimiser la distance KL entre

l’approximation et le SINR une simulation de Monte Carlo est faite à chaque SNR pour

chercher les paramètres de distribution qui meneront à la plus petite valeur de la distance

KL pour chaque cas.

Comme la SINR d’un système multiporteuse précodé MMSE n’a que des valeurs posi-

tifs, une moyenne faible ,une forte élevée et skew positif, une distribution appropriée pour

l’ approximation peut être la distribution lognormale. Les paramètres de la distribution

lognormale µ et σ peuvent être déterminés pour des modèles de canaux specifiques. L’ex-

pression compacte suivante pour la probabilité d’erreurs bit dans un système multiporteuse

précodé en utilisant la distribution lognormale comme approximation pour le SINR peut

être utilisée :

Pe ≈
1√
π

K
∑

n=1

wnQ

(
√

Es

σ2
n

exp
(√

2σxn + µ
)

)

,

où wn et xn sont les paramètres d’integration de Gauss-Hermite.

Performance d’Erreur Codée

Comme le SINR non-codé d’un systéme multiporteuse précodé MMSE a été approximé

par une distribution lognormale, on peut simplifier le système pour un système à porteuse

unique qui transmet à travers un canal avec de l’évanouissement lognormal. On peut dériver

une expression compacte pour la PEP des systèmes multiporteuses précodées en utilisant

l’équation antérieure ; cette expression est donnée par

Pep(d) ≈
1√
π

Nt
∑

n=1

wnQ

(
√

2d
Es

σ2
n

exp
(√

2σxn + µ
)

)

,

où µ et σ sont les paramètres de la distribution lognormale que minimisent la distance KL

entre l’approximation lognormale et la distribution du SINR d’un système multiporteuse
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précodé MMSE mais sans codage de canal. L’union bound pour la performance d’erreur

codée est

Pe ≤
1

kc

∞
∑

d=dfree

w(d)Pep(d).

Résultats de Simulation

0 5 10 15 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb

N0

(dB)

B
E

R

Pedestrian B channel model, N = 256

 

 

MMSE
Lognormal KL
Lognormal MM
Lognormal ML

Comparaison de la performance d’erreur du SINR avec ses approximations pour le modèle
de canal Pedestrian B.

La première Figure montre la probabilité d’erreur de bit du système comparée avec ses

approximations pour le modèle de canal Pedestrian B. Les paramétres µ et σ en fonction

du SNR et du modèle du canal sont estimés par la méthode des moments, maximum de

vraisemblance et ceux qui resultent dans la plus petite distance KL vers la vraie distribu-

tion. On peut voir que l’approximation qui utilise la distance KL est la plus précise dans les

SNRs élevés (> 10 dB) par rapport aux autres approximations, parce que la méthode KL

assure que l’approximation sera plus proche de la vraie distribution dans la partie gauche

de la pdf.

Pour valider la nouvelle méthode analytique pour la détermination de la performance

codée, la deuxième Figure compare les résultats de Monte Carlo avec les résultats de

l’équation de la performance codée (avec les paramétres de la distribution lognormale

obtenus avec le méthode KL) pour N = 512, le modéle de canal Pedestrian B et les taux
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Comparaison entre les bornes et les résultats de simulation de Monte Carlo pour N = 512
et le modèle de canal Pedestrian B.

de code Rc 1/2, 2/3 et 3/4. Il est possible voir que les limitantes d’erreur obtenus avec

l’approximation lognormale sont très proches des résultats de simulation de Monte Carlo.

Chapitre 5 - Techniques Largement Linéares MMSE de Pré-
codage et d’Égalisation pour les Systèmes SC-FDE

Introduction

Dans ce chapitre nous proposons des systèmes SC-FDE qui utilisent de l’égalisation

simple, de l’égalisation avec retour de décision et du précodage Tomlinson-Harashima

MMSE largement linéaire. L’usage de l’égalisation et de la précodage largement linéaire

donne une avantage de performance par rapport aux systèmes strictement linéaires quand

des constellations impropres sont transmises. Des expressions pour le SINR à la sortie du

récepteur sont données pour tous les cas.
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Modèle du Système

Égaliseur WL-MMSE

L’égaliseur optimal A est donné par

A = C−1
RRCRs

=

[

HHH + σ2
nIN HUHT

H∗UHH H∗HT + σ2
nIN

]−1 [
H

H∗U

]

.

Égaliseur WL-MMSE DFE

La valeur optimale du filtre feedforward B peut être donnée par

B = A(IN +D),

où D est le filtre de retour dans le domaine de la fréquence.

Les coefficients du filtre de retour d̃ sont donnés par la solution du système linéaire

Fd̃ = −g.

La matrice F de taille L
d̃
xL

d̃
et le vecteur colonne g de taille L

d̃
x1 sont exprimés, respec-

tivement, par

[F]m,l =

N
∑

n=1

exp (−j2π((n(l −m))/N))

Hmod(n, n) + σ2
n

, 1 ≤ m, l ≤ L
d̃

et

[g]m =
N
∑

n=1

exp (j2π(nm/N))

Hmod(n, n) + σ2
n

, 1 ≤ m ≤ L
d̃
.

Pour initialiser le filtre de retour, les derniers L
d̃

symboles de x̃CP peuvent être utilisés.

Une fois que d̃ est determiné, B peut être calculé. Pour retirer toute l’ISI des symboles

determinés avant, la taille du filtre de retour L
d̃

doit être la même que celle du canal L
h̃
.

Précodeur Tomlinson-Harashima WL-MMSE

On peut démontrer que l’égaliseur B
′

et le précodeur THP d̃
′

sont les mêmes que le filtre

feedforward et de retour d’un système SC-FDE qui utilise de l’égalisation MMSE largement

linéaire avec retour de décision. Donc, les coefficients du précodeur Tomlinson-Harashima

d̃
′

sont égaux a d̃ et l’égaliseur largement linéaire MMSE B
′

est égal a B.
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Analyse de la Performance d’Erreur

SINR pour le Récepteur WL-MMSE

L’erreur moyenne quadratique MSEWL pour le système SC-FDE WL-MMSE est donnée

par

MSEWL = W−1
(

Hmod + σ2
nIN

)−1
W.

MSEWL est bien plus petite que celle obtenue par l’égaliseur strictement linéaire. Le

SINR effectif aprés la déprécodage lorsqu’on utilise un égaliseur WL-MMSE est

γWL-MMSE =
1

2

(

γN

tr[MSEWL]
− 1

)

,

avec

tr[MSEWL] =
1

2|H1|2 + σ2
n

+
1

2|HN/2+1|2 + σ2
n

+

+

N/2
∑

i=2

2

|Hi|2 + |HN+2−i|2 + σ2
n

,

et γ = Es/σ
2
n. La division par 2 dans l’équation du SINR est du à la décision finale du

symbole qui n’utilise que l’estimation réelle.

SINR pour le Récepteur WL-MMSE DFE

La MSE du système SC-FDE WL-MMSE DFE est exprimée par

MSEWL-DFE = exp

(

1

N

N
∑

n=1

log

(

1

1 + γHmod(n, n)

)

)

.

L’erreur moyen quadratique ne prend pas en compte l’effet de la propagation de l’erreur

qui peut provenir de mauvaises décisions antérieures. Cette MSE est à nouveau plus petit

que celle obtenue par le système strictement linéaire.

Le SINR pour le système SC-FDE WL-MMSE est donné par

γWL-DFE =
1

2

(

1

MSEWL-DFE

− 1

)

.

À nouveau, nous divisons par 2 pour obtenir le SINR effectif pour le système qui utilise

l’égalisation largement linéaire.

xxii



SINR pour le Précodeur WL-MMSE-THP

La MSE pour le système WL-MMSE-THP SC-FDE est la même que celle d’un système

WL-MMSE DFE moins un facteur η, qui représente la perte de précodage. Donc, cette

MSE peut être exprimée par

MSEWL-THP = exp

(

1

N

N
∑

n=1

log

(

1

1 + γ
ηHmod(n, n)

))

,

avec η = M2

M2−1
pour des constellations unidimensionnels et η = M

M−1 pour des constellations

bidimensionnels.

Résultats de Simulation

12 13 14 15 16 17 18 19 20 21
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Vehicular A channel model, N = 128
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N0

(dB)

B
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R

 

 

DFE, Ld = Lh/2
DFE, Ld = Lh/4
DFE, Ld = Lh/8
WL-DFE, Ld = Lh/2
WL-DFE, Ld = Lh/4
WL-DFE, Ld = Lh/8

Taux d’erreurs pour N = 128 et le modèle de canal Vehicular A en systèmes SC-FDE DFE
avec de differents tailles de L

d̃
.

Les systèmes avec l’égalisation et précodage largement linéaire ont un gain de perfor-

mance par rapport aux leurs versions strictemente linéaires si des constellations impropres

sont utilisées, grâce à l’usage complet des statistiques de second ordre du signal.

La premième figure montre l’effet de la variation de la taille du filtre de retour sur

le taux d’erreurs des systèmes SC-FDE DFE. Le système largement linéaire a un taux

d’erreurs moins sensible par rapport au système strictement linéaire, parce que son filtre

feedforward est plus efficient dans l’enlèvement de l’ISI. Avec des filtres de retour plus
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THP.

courts, la complexité de calcul pour le calcul des coefficients de ce filtre est réduite.

Une comparaison de l’impact des erreurs d’estimation du canal et CSI imparfait sue le

taux d’erreurs des systèmes MMSE-THP SC-FDE est présentée dans la deuxième figure

pour Eb

N0
= 19.25 dB, N = 128 et le modèle de canal Vehicular A. L’estimation imparfaite du

canal peut être exprimée comme He = H + EH, où EH est la matrice d’erreurs d’estimation

du canal, avec sa diagonale composée par des variables aléatoires gaussiennes, de moyenne

zéro et variance σ2
e . Cette estimation imparfaite est transmise au émetteur, qui aura une

mauvaise information de l’état du canal. Lorsque les performances du système strictement

linéaire deviennent pire à cause de l’augmentation de la variance d’erreur σ2
e , le système

SC-FDE précodé largement linéaire est presque insensible à l’augmentation de la variance

d’erreurs de l’estimation du canal.

Chapitre 6 - Conclusions Finales

Dans cette thèse de nouvelles techniques de précodage et d’égalisation pour les sys-

tèmes multiporteuses ont été proposées, avec une analyse théorique de leurs performances.

D’abord, le taux d’erreurs des systèmes FBMC/OQAM précodés a été étudié dans le Cha-

pitre 3. Il a été montré que cette performance est très sensible à l’ISI residuelle qui provient
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de l’égalisation imparfaite des sous-canaux. Une expression pour le SINR qui considère ces

cas a été obtenue pour des transmissions non-codées ; cette expression fournit des résultats

identiques avec ceux des simulations de Monte Carlo.

Le Chapitre 4 traite de la densité de probabilité du SINR dans un système multiporteuse

précodé qui utilise l’égalisation linéaire MMSE. Nous avons proposé d’utiliser la distribution

lognormale pour ce SINR comme approximation afin d’estimer le BER ; les paramétres de

cette distribution doivent minimiser la distance de Kullback-Leibler vers le vrai SINR.

Avec cette minimisation, nous nous assurons que cette approximation sera précise dans la

partie gauche de la fonction, qui est la partie la plus importante pour le calcul du BER.

Avec cette distribution lognormal comme abstration du système nous avons développé une

nouvelle méthode analytique pour déterminer la performance d’erreurs pour les systèmes

multiporteuses précodés qui utilisent l’égalisation linéaire MMSE et la codage de canal

convolutionnel. Cette méthode donne des résultats cohérents avec ceux des simulations de

Monte Carlo.

Des égaliseurs et précodeurs Tomlinson-Harashima MMSE qui utilisent le traitement

largement linéaire pour les systèmes SC-FDE ont été proposés dans le Chapitre 5. Comme

ces égaliseurs et précodeurs utilisent toutes les statistiques de deuxième ordre disponibles

si le signal transmis est impropre, ils ont une erreur quadratique moyenne plus petite et

un meilleur taux d’erreurs. Des expressions pour la MSE et le SINR de tous les égaliseurs

et précodeurs proposés ont été développés ; ces expressions sont en conformité avec les

résultats de simulation de Monte Carlo. Les égaliseurs à retour de décision pour les systèmes

SC-FDE ont un taux d’erreurs moins sensible à la taille du filtre de retour. Les précodeurs

Tomlinson-Harashima largement linéaires sont moins sensible à une information du canal

erronée à l’émetteur par rapport aux versions strictement linéaires.
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Chapter 1

Introduction

The world had 7 billion people and 5.9 billion mobile phone subscriptions in use by

the end of 2011. Of those 5.9 billion subscriptions, 1.6 billion were active users of mobile

browsing and 1.1 billion were smartphone users [2]. These smartphones are used for much

more than calls and short messages. They have more functions, larger screens, faster pro-

cessors and more connectivity options than before. Their users demand constantly faster

download and upload speeds. However, the pace of battery evolution has not kept up with

these demands, and battery life in these devices is sometimes measured in hours, not days.

On the other end of the spectrum, the usage of mobile phones is also widespread in

poorer countries. In Kenya, for example, 40 percent of the adult population use a mobile

payment system to receive their salary, buy goods and transfer money [2]. In some of these

countries, power supply is not constant, and rolling blackouts can be a common occurrence.

A large battery life can help the user avoid the unpleasant surprise of finding that his mobile

device has no power and cannot be charged instantly. Thus, an effort to save power in every

operational aspect is important to improve the user experience and battery life.

These mobile devices transmit data through multipath channels, which introduce inter-

symbol interference in the received data. To compensate the effect of this ISI, the adoption

of multicarrier systems has increased greatly in the last few years. This is due to their

efficient equalization, being able to equalize channels with a long impulse response with

simple subchannel equalizers due to the use of the cyclic prefix. Nowadays, the most used

multicarrier systems are the ones based on Orthogonal Frequency Division Multiplexing

1
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and transmitting data from Quadrature Amplitude Modulation symbols (OFDM/QAM)

[3; 4]. However, because these systems use the rectangular window to separate the subchan-

nels and a cyclic prefix to make equalization easier, they have large spectral lobes outside

their designated bandwidth and waste power and bandwidth to transmit redundancy. Fil-

terbank Multicarrier systems transmitting data from Offset Quadrature Amplitude Modu-

lation (FBMC/OQAM) [5] have been proposed to eliminate the cyclic prefix and limit this

out-of-band radiation, by using a window well-localized in time and frequency to separate

the subchannels. This window also allows better user separation in multiuser systems.

Both of these multicarrier systems have a major drawback : they are not suitable for

the uplink of mobile devices due to their high peak-to-average power ratio (PAPR). With

this high PAPR, highly linear power amplifiers are required to avoid excessive distortion.

To operate in their linear region these amplifiers must be backed off from their peak po-

wer, leading to a low power efficiency (ratio of transmitted power to dc power dissipated),

which places a significant burden on portable wireless terminals [6]. A way to overcome

this limitation is to linearly precode the signal before transmission. These precoded sys-

tems have much lower PAPR, allowing the usage of more efficient amplifiers and improving

battery life. When dealing with OFDM/QAM systems, their Discrete Fourier Transform

(DFT)-precoded version is known as Single Carrier with Frequency Domain Equalization

(SC-FDE) [7; 8], because the precoding DFT cancels the Inverse Fast Fourier Transform

(IFFT) that is done at an OFDM/QAM transmitter. 3GPP Long Term Evolution (LTE)

systems [9] use a multi-user version of SC-FDE, known as Single Carrier Frequency Do-

main Multiple Access (SC-FDMA) [6], for their uplink. Unlike regular multicarrier systems,

where equalization is done symbol by symbol and zero-forcing equalization corresponds to

the maximum-likelihood one, equalization in precoded multicarrier systems is done blo-

ckwise ; thus, maximum-likelihood detection is impractical when the system uses a high

number of subchannels. Because of this, linear equalization techniques are usually em-

ployed. Improved equalization techniques can be applied to these systems to make their

error performance closer to the one provided by maximum-likelihood detection.

These systems normally transmit symbols from a complex QAM constellation. QAM

symbols can be described as proper, that is, they have their second-order statistics comple-
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tely described by their autocovariance, which for a complex random process w with zero

mean is expressed by E[wwH ]. However, if w comes from real or offset constellations (such

as Binary Phase Shift Keying (BPSK) and Offset QAM (OQAM) ones) the autocovariance

by itself is insufficient to describe its second-order statistics, since the pseudoautocorrela-

tion of w, given by E[wwT ] is non-zero ; this type of process is called improper [10]. Widely

linear (WL) processing [11; 12; 13] was proposed to take advantage of this impropriety, by

processing the signal together with its conjugate version to obtain a more precise estimate.

The transmitters in these systems can also benefit from channel state information if

it is available, making possible to adapt transmissions to current channel conditions and

improving channel capacity [14]. This channel state information can also be useful to im-

prove the error performance by precoding or pre-equalization [1]. However, perfect channel

state information is hard to obtain at the transmitter because of the constantly changing

channel conditions imposed by user and obstacle movement.

1.1 Goal

The goal of this thesis is to propose and study new equalization and precoding tech-

niques for multicarrier systems, together with an theoretical analysis of their error per-

formance. First, we studied the error performance of precoded FBMC/OQAM systems.

After, we tackled the problem of finding a distribution for the SINR of precoded multicar-

rier systems using linear Minimum Mean Square Error (MMSE) equalization and studied

their theoretical coded error performance. Finally, we investigated the use of widely linear

processing in precoders and equalizers for SC-FDE systems.

1.2 Contributions

The contributions of this thesis are the following :

– The error performance of precoded FBMC/OQAM systems was analyzed. It was

found that their diversity order is highly sensitive to incomplete equalization : when

there is residual intersymbol interference stemming from incomplete subchannel equa-

lization, this diversity order is reduced. If the number of subchannels is large en-
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ough to turn the subchannel frequency responses flat or if the subchannel equa-

lizers are large enough to compensate the selective frequency response precoded

FBMC/OQAM systems have the same diversity order of SC-FDE systems using

regular OFDM modulation.

– An analytical method to determine an approximation for the SINR distribution of

SC-FDE systems using linear MMSE equalization and transmitting through real-

life channel models was proposed. This compares with the method proposed in [15;

16], which only works when all the channel taps have equal power. With this SINR

distribution, the analytical error performance of SC-FDE systems using linear MMSE

equalization and convolutional channel coding was found.

– A widely linear equalizer based on the MMSE criterion in its regular and decision

feedback (DFE) versions was proposed for SC-FDE systems using improper modu-

lations, together with a widely linear Tomlinson-Harashima precoder. Since a pre-

coder/receiver using widely linear processing makes full use of the second-order sta-

tistics made available by the transmitted signal, it has better error performance. It

was found that the feedback filter length can be reduced without much impact in the

error performance of SC-FDE using WL-MMSE-DFE equalizers. The semi-analytical

error performance of systems using these precoders/equalizers was also analyzed. In

Tomlinson-Harashima precoded systems, the error performance when using the wi-

dely linear precoder was found to be much less sensitive to imperfect channel state

information in the transmitter when compared to its strictly linear version.

1.3 Publications

Based on the research work presented in this thesis the following publications were

accepted or submitted.

– B. S. Chang, W. L. Lopez, and C. A. F. da Rocha, “Técnicas de Projeto para equa-

lizadores por subcanal para sistemas FBMC/OQAM” in XXVII Simpósio Brasileiro

de Telecomunicações (SBrT 2009), Blumenau, Brazil [17]

– B. S. Chang, C. A. F. da Rocha, D. Le Ruyet and D. Roviras, “On the Use of

Precoding in FBMC/OQAM Systems” in The 7th International Telecommunications
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Symposium (ITS 2010), Manaus, Brazil [18]

– B. S. Chang and C. A. F. da Rocha, “On the Error Performance of Precoded Filter-

bank Multicarrier Systems Transmitting Through Highly Frequency Selective Chan-

nels” in XXVIII Simpósio Brasileiro de Telecomunicações (SBrT 2011), Curitiba,

Brazil [19]

– B. S. Chang, C. A. F. da Rocha, D. Le Ruyet and D. Roviras, “On the Distribution

of the SINR in Precoded Multicarrier Systems Using Linear MMSE Equalization”

in 2012 16th IEEE Mediterranean Electrotechnical Conference (MELECON 2012),

Yasmine Hammamet, Tunisia [20]

– B. S. Chang, C. A. F. da Rocha, D. Le Ruyet and D. Roviras, “On the Effect of ISI in

the Error Performance of Precoded FBMC/OQAM Systems” in The 18th Asia-Pacific

Communications Conference (APCC 2012), Jeju Island, South Korea [21]

– B. S. Chang, C. A. F. da Rocha, D. Le Ruyet and D. Roviras, “Widely Linear MMSE

Precoding and Equalization Techniques for SC-FDE Systems” in IEEE Transactions

on Signal Processing, under review

1.4 Organization

This work is organized in five chapters after this introduction.

– Chapter 2 contains the state of the art of the subjects studied in this thesis. It first

revises the basics of multicarrier systems, starting with OFDM/QAM systems. Next,

FBMC/OQAM systems are introduced and a comparison is made between them.

Linearly precoded multicarrier systems, together with the linear equalization tech-

niques and the decision feedback equalizer that can be applied to them are detailed

next. After that, the Tomlinson-Harashima precoder and its application to SC-FDE

systems are discussed. Finally, an introduction to widely linear processing and the

processing gain that can be obtained by using it is presented.

– Precoded FBMC/OQAM systems are studied in Chapter 3. We start by describing

their structure. After, an error analysis in the uncoded case is done, taking into

account the case where residual ISI is present after incomplete equalization and deri-

ving a semi-analytical equation for the uncoded BER in this case. Finally, simulation
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results to analyse the precision of this equation and these systems’ error performance

are presented.

– Chapter 4 discusses the probability density function for the SINR in a SC-FDE sys-

tem using linear MMSE equalization. The lognormal distribution with the smallest

Kullback-Leibler distance to the target SINR is proposed as an accurate approxima-

tion of this SINR in the sense of the BER. With this lognormal distribution, a novel

way to determine the analytical error performance of these systems when they are

employing convolutional channel coding is proposed.

– Widely linear MMSE equalizers and Tomlinson-Harashima precoders for SC-FDE

systems are proposed in Chapter 5. This chapter starts with the derivation of the

coefficients of these filters. After, an analysis of their error performance is made,

with equations for the mean square error for each case provided. Finally, simulation

results to validate these equations and to compare these systems with their linear

counterparts are presented.

– Chapter 6 shows the concluding remarks, summarizing the main obtained results and

providing suggestions for future work.
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Chapter 2

State of the Art

2.1 Introduction

This chapter presents the background and the state of the art that served as basis for the

research presented in this thesis. We introduce OFDM/QAM systems in Section 2.2. Section

2.3 shows prototype filters that can overcome some of the deficiencies of the rectangular

windows used to separate the subchannels in OFDM/QAM systems, while introducing

other characteristics of their own. In Section 2.4, multicarrier systems that can use the

previously presented prototype filters are described : FBMC/OQAM ones. A comparison

between the two multicarrier systems presented before in the chapter is shown in Section

2.5. Section 2.6 unveils precoded OFDM/QAM systems and the various techniques used in

their equalization. After that, Tomlinson-Harasima precoding is described in Section 2.7.

Finally, Section 2.8 briefly introduces widely linear processing.

2.2 OFDM/QAM Systems

One of the main problems faced by communication systems is the multipath effect,

which is responsible for frequency selectivity. The several replicas of the transmitted signal

received in different time instants make necessary the utilization of a long linear equalizer

in the receiver to eliminate the intersymbol interference and allow reliable recovery of

the transmitted information. One alternative to avoid the usage of a long equalizer is

the division of a frequency-selective channel (with its time dispersion Td larger than the

7
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symbol duration time Ts) in N subchannels, each suffering almost flat fading (the symbol

duration time NTs is much larger than the time dispersion Td). This way, a high data rate

transmission ( 1
Ts

) is partitioned in several parallel transmissions, each one with lower data

rates ( 1
NTs

). In these parallel transmissions suffering from approximately flat fading, a one

tap subchannel equalizer (which can be implemented by a simple multiplier) is enough to

compensate the transmission channel effect, eliminating the need for a complex equalizer

in the receiver.

This scheme is the technique known as OFDM/QAM [3]. Its adoption started to be wi-

despread after the application of the fast Fourier transform to multicarrier systems [4], since

its analog implementation is extremely complex. Nowadays, OFDM/QAM modulation is

adopted in several standards, such as DVB-T, DAB, IEEE 802.11, among others.

OFDM/QAM symbols can be expressed by

s̃[n] =
N−1
∑

k=0

∞
∑

l=−∞
ak,lg̃[n− lN ]ej

2π
N

kn, (2.1)

=
N−1
∑

k=0

∞
∑

l=−∞
ak,lζk,l[n], (2.2)

where g̃ is the rectangular window that separates the subchannels, with its coefficients

expressed in the time domain by

g̃[n] =

{

1√
T
, if |n| ≤ T

2

0, if |n| > T
2

(2.3)

with T = 1
F = NTs is the OFDM/QAM symbol length and F is the spacing between

subchannels. The synthesis basis function ζk,l[n] are given by

ζk,l[n] = g̃[n− lN ]ej
2π
N

kn, (2.4)

where ak,l are complex symbols from a M -QAM constellation, k is the subchannel index,

l the time index, N is the number of subchannels and T is the OFDM symbol length.

We can see that s̃[n] is the output of a N -point IDFT of ak,l. With the fast Fourier

transform, this IDFT can be done in a computationally efficient way.

To eliminate the intersymbol interference (ISI), a cyclic prefix of length LCP is added

to the OFDM/QAM symbol. If LCP is equal or larger than the channel impulse response

8
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length, the samples corrupted by ISI will be discarded, guaranteeing ISI-free received data

and flat fading in every subchannel. This way, s̃ with length Ls̃ is transformed into s̃CP ,

with length Ls̃ + LCP . sCP can be expressed by

s̃CP [−LCP ], ..., s̃CP [−Ls̃ − 1] =

s̃[Ls̃ − LCP ], ..., s̃[Ls̃ − 1], s[0], ..., s̃[Ls̃ − 1],−LCP ≤ n ≤ Ls̃ − 1. (2.5)

The block diagram of an OFDM/QAM transmitter (comprising a serial to parallel

conversion, the IFFT, the cyclic prefix insertion and a parallel to serial conversion) is

shown in Figure 2.1.

With the cyclic prefix, the signal at the entry of the receiver ỹ[n] is given by

ỹ[n] = s̃CP [n] ∗ h̃[n], (2.6)

=

LCP
∑

k=0

h̃[k]s̃[n− k]Ls (2.7)

(s̃CP [n− k] = s̃[n− k]Ls̃
for 0 ≤ n ≤ Ls̃ − 1), (2.8)

= s̃[n]⊗ h̃[n], (2.9)

where [ ]Ls̃
indicates a modulo-Ls̃ operation and ⊗ represents cyclical convolution.

It is possible to see that the cyclic prefix transforms the linear convolution of the

transmitted signal with the channel impulse response s̃CP [n]∗h̃[n] in the cyclic (also known

as circular) convolution s̃[n]⊗ h̃[n]. This cyclic convolution will lead to a circulant channel

matrix, which is diagonalized by the FFT in the receiver. With this diagonalization, flat

fading in every subchannel is guaranteed, and due to this condition, one tap equalizers

are enough to compensate the channel effects. These equalizers can be implemented by a

simple multiplier per subchannel.

Assuming a distortion-free channel, the estimated symbol âk,l at the receiver output

will be equal to the transmitted symbol ak,l if the internal product of ỹ[n] and the analysis

basis function ξk,l[n], expressed as

ξk,l[n] = g̃[n− lN ]e−j 2π
N

kn, (2.10)
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constitutes an orthonormal basis of its vectorial space, in a way that
〈 ∞
∑

n=−∞
g̃[n− lN ]g̃[n− l

′

N ]ej
2π
N

(k−k
′

)(n−Ls−1

2
)

〉

= δk,k′ δl,l′ , (2.11)

where 〈u,v〉 is the internal product between u and v, expressed by

〈u,v〉 =
∞
∑

k=−∞
u∗[k]v[k], (2.12)

and δk,k′ represents the Kronecker delta.

Figure 2.2 shows an OFDM/QAM receiver, which realizes the inverse of the operations

done in the transmitter plus equalization.

2.3 Prototype Filters

As stated before, conventional OFDM/QAM systems use the rectangular window g̃ as

a filter to separate the subchannels. The spectral characteristics of the rectangular window

are presented in Figure 2.3.

This window allows a complex orthogonality between the synthesis/analysis basis func-

tions ζk,l[n] and ξk,l[n], which facilitates its use in the receivers. We remember that the

orthogonality between two functions can be determined by the calculation of the their

internal product, given in (2.12).

It can be seen in Figure 2.3 that the rectangular window has large sidelobes in its fre-

quency response ; yet, without any external interference and perfect synchronization these

large sidelobes are not a problem, due to the attenuation at the crossings with other sub-

channels. However, this orthogonality between the basis functions is affected in practical

systems by channel effects (intersymbol and interchannel interference), time and frequency

offsets and noise. When using OFDM/QAM systems and the rectangular window to se-

parate the subchannels the intersymbol interference (caused by the multipath effect) is

abolished with the adoption of a cyclic prefix with sufficient length to compensate this

interference. The interchannel interference and frequency offsets remain obstacles in prac-

tical conditions (due to the large sidelobes of the rectangular window’s frequency response),

affecting the system performance. A way to combat these problems is the adoption of Ny-

quist filters with good frequency localization (i.e., with small sidelobes in their frequency

11
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Figure 2.3 – Frequency response of the rectangular window.

response), improving the separation between the subchannels [22]. Power and bandwidth

waste, which are consequences of the cyclic prefix, can be eliminated with the adoption of

filters well localized in time.

However, if the filter is only optimized in the time domain (like conventional OFDM/QAM

systems), its frequency localization will be bad, causing interchannel interference when the

information is transmitted through frequency-selective channels. Perfect passband filters,

on the other hand, have poor time localization, causing intersymbol interference in time-

dispersive channels [22]. The raised cosine, the extended gaussian functions [23; 24] and the

filter proposed for the PHYDYAS project [25] can be cited as examples of well-localized in

time and frequency filters.

The raised cosine filter has the f -th element of its frequency response p given by

p(f) =















1
2BW , 0 ≤ |f | < f1

1
4BW

{

1− sin
[

π(|f |−BW ))
2BW−2f1

]}

, f1 ≤ |f | < 2BW − f1

0, |f | ≥ 2BW − f1,

(2.13)
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with the frequency parameter f1 and the bandwidth BW having the following relation :

α = 1− f1
BW

, (2.14)

where α is the rolloff factor. Figures 2.4 and 2.5 show the time and frequency responses of

the raised cosine filter with α = 1.
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Figure 2.4 – Time-domain response of the raised cosine filter.

The extended gaussian functions are a result of a orthogonalization process of the

gaussian function. Its time domain coefficients are

z̃λ,µ0,τ0(t) =
1

2

∞
∑

k=0

[

gλ

(

t+
k

µ0

)

+ gλ

(

t− k

µ0

)]

×
∞
∑

l=0

dl,1/λ,µ0,τ0 cos

(

2πl
t

τ0

)

, (2.15)

with λ being real-valued, dλ,µ0,τ0 coefficients found in [26], µ0 = 1
2τ0

= F and gλ(t) being

the gaussian function, expressed as

gλ(t) = (2λ)
1

4 e−πλt2 . (2.16)
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Figure 2.5 – Frequency-domain response of the raised cosine filter.

A special case of the extended gaussian functions is the IOTA (Isotropic Orthogonal

Transform Algorithm) [27], which happens when λ = 1 and µ0 = τ0 =
1√
2
. This function has

its name because its time and frequency domain responses are identical. This way, its time

and frequency localization properties are also identical. They are presented, respectively in

Figures 2.6 and 2.7.

The filter proposed for the PHYDYAS project has its coefficients defined as

F1 = 0, 97196 (2.17)

F2 =

√
2

2
(2.18)

F3 = 0, 235147 (2.19)

Fk = cosπ
k

2K
(2.20)

f̃k =
1

2

[

F0 + 2
K−1
∑

k=1

(−1)kFk

]

, (2.21)

where f̃ = [f̃1f̃2 . . . f̃LPF
]T is the filter’s impulse response and K is the overlapping fac-
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Figure 2.6 – Time-domain response of the IOTA filter.

tor 1. Figures 2.8 and 2.9 show this filter’s time and frequency-domain responses for an

overlapping factor K = 4 and 512 subchannels.

It is worth saying that since well-localized in frequency filters have more compact fre-

quency responses, each subchannel will only interfere in a meaningful way with its imme-

diate neighbors, as it is possible to see in Figures 2.5, 2.7 and 2.9.

Since the wireless mobile channel is doubly dispersive (in time and in frequency), pro-

totype filters must have good localization in time and in frequency. It is possible to express

this localization through the Heisenberg parameter, introduced by [27] and given by

ξ =
1

4π∆t∆f
, (2.22)

with
{

∆t2 =
∫

t2||q̃(t)||2dt
∆f2 =

∫

f2||q(f)||2df,
(2.23)

1. Factor which implies that the transition phase at the output of the receiver has a length of K − 1
symbols
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Figure 2.7 – Frequency-domain response of the IOTA filter.

where q̃(t) and q(f) are the elements of the time and frequency response of the prototype

filter.

The Heisenberg parameter has its upper limit (ξ = 1) in the gaussian function and its

lower limit (ξ = 0) in the rectangular window.

2.4 FBMC/OQAM Systems

It is impossible to use bandlimited and well-localized in time and frequency filters, such

as the ones cited in Section 2.3, with maximal spectral efficiency (TF = 1) to separate the

subchannels in conventional OFDM/QAM systems, because according to the Balian-Low

theorem [28] these filters do not have complex orthogonality. To use these filters we have

to relax the complex orthogonality constraint, since well-localized filters only have real

orthogonality, expressed between u and v as

〈u,v〉ℜ = ℜ
{ ∞
∑

k=−∞
u∗[k]v[k]

}

. (2.24)
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Figure 2.8 – Time-domain response of the PHYDYAS filter.

The time-frequency impulse response of a multicarrier system using filterbanks (with

the PHYDYAS filter as the prototype filter) is presented in Table 2.1. As it is possible

to see, there are interferences composed of only real or imaginary numbers. To recover

information in the receiver without a lot of interference, it is necessary to transmit only

the imaginary part of the symbol where the interference is a real number and vice-versa,

like in the scheme presented in Figure 2.10.

This transmission scheme can be done by OQAM modulation, which separates complex

symbols in its real and imaginary parts for transmission. With OQAM modulation, the

Table 2.1 – FBMC transmultiplexer time-frequency impulse response with the PHYDYAS
prototype filter.

T/F -3 -2 -1 0 1 2 3

−2 0, 0006 −0, 0001 0 0 0 −0, 0001 0, 0006

-1 j0,0429 -0,125 -j0,2058 0,2393 j0,2058 -0,125 -j0,0429

0 -0,0668 0,0002 0,5644 1 0,5644 0,0002 -0,0668

1 -j0,0429 -0,125 j0,2058 0,2393 -j0,2058 -0,125 j0,0429

2 0,0006 -0,0001 0 0 0 -0,0001 0,0006
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Figure 2.9 – Frequency-domain response of the PHYDYAS filter.

adoption of well-localized in time and frequency filters becomes possible, because this

modulation transmits real symbols at two times the transmission rate of a conventional

QAM modulation. A OQAM transmitted symbol can be expressed as

s̃OQAM [n] =
N−1
∑

k=0

∞
∑

l=−∞
bk,lq̃

[

n− l
N

2

]

ej
2π
N

k(n−LPF−1

2
)ejρk,l (2.25)

=

N−1
∑

k=0

∞
∑

l=−∞
bk,lζ

OQAM
k,l [n], (2.26)

with the synthesis basis function ζOQAM
k,l [n] given by

ζOQAM
k,l [n] = q̃

[

n− l
N

2

]

ej
2π
N

k(n−LPF−1

2
)ejρk,l . (2.27)
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Figure 2.10 – The OQAM transmission scheme.

bk,l is given by

b2k,2l = aR2k,l,

b2k,2l+1 = aI2k,l, (2.28)

b2k+1,2l = aI2k+1,l,

b2k+1,2l+1 = aR2k+1,l.

As stated before, ak,l = aRk,l + jaIk,l are complex symbols from a QAM constellation, k the

subchannel index, l the time index, N the number of subchannels, q̃ the window separating

the subchannels with length LPF (the prototype filter) and ρk,l is given by

ρ2k,2l = 0,

ρ2k,2l+1 =
π

2
, (2.29)

ρ2k+1,2l =
π

2
,

ρ2k+1,2l+1 = 0.
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(2.26) can be seen as the output of a synthesis filterbank with N subchannels. This

way, it is possible to implement this so-called FBMC/OQAM system with the polyphase

decomposition of the prototype filter and the IFFT [29], reducing significatively the com-

putational complexity with respect to a direct implementation (one digital filter for each

subchannel). The scheme of a FBMC transmitter using the polyphase decomposition is

presented in Figure 2.11.

Assuming a distortion-free channel, the estimated symbol b̂k,l will be equal to the

transmitted symbol bk,l if the real internal product between the received signal yOQAM [n]

and the analysis basis function ξOQAM
k,l [n], which is given by

ξOQAM
k,l [n] = q̃

[

n− l
N

2

]

e−j 2π
N

k(n−LPF−1

2
)ejρk,l , (2.30)

constitutes an orthonormal basis of its vectorial space, in a way that
〈 ∞
∑

n=−∞
q̃

[

n− l
N

2

]

q̃

[

n− l
′ N

2

]

ej
2π
N

(k−k
′

)(n−LPF−1

2
)e

j(ρ
k
′
,l
′−ρk,l)

〉

ℜ
= δk,k′ δl,l′ . (2.31)

The block scheme of a FBMC receiver is presented in Figure 2.12.

2.5 Comparison Between Different Multicarrier Systems

In the previous sections, multicarrier systems based on the rectangular window, QAM

modulation and the cyclic prefix (OFDM/QAM) and based on well-localized pulses, OQAM

modulation and no cyclic prefix (FBMC/OQAM) were introduced. The goal of this section

is to compare these systems with respect to computational and equalization complexity,

bandwidth and power efficiency and error performance.

2.5.1 Equalization

Since the cyclic prefix is not present in filterbank multicarrier systems, ISI is not com-

pletely eliminated. For this reason, a one tap per subchannel equalizer is not always enough

to compensate the channel effect, as is the case in OFDM/QAM systems. When the fre-

quency selectivity of the channel is high, the usage of a multi-tap subchannel equalizer can

be necessary to compensate the channel effect introduced by subchannel selectivity [30; 31].
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2.5. COMPARISON BETWEEN DIFFERENT MULTICARRIER SYSTEMS

However, since ICI is limited to the adjacent subchannel (due to the prototype fil-

ters’ frequency response sidelobes), equalization complexity can be reduced. Proposals for

subchannel equalizers in filterbank multicarrier systems can be found in [30; 32; 33; 17].

2.5.2 Efficiency

The introduction of the cyclic prefix in a multicarrier system brings transmission band-

width and power waste. Bandwidth and power efficiencies ηBW and ηP are expressed,

respectively, by

ηBW =
N −Ng

N + LCP
(2.32)

and

ηP =
N

N + LCP
, (2.33)

where Ng is the number of subchannels not used for data transmission.

In filterbank multicarrier systems, the cyclic prefix is not used. Therefore, there is

an efficiency gain ; for this case, bandwidth and power efficiencies ηBW,FB and ηP,FB are

expressed, respectively, by

ηBW,FB =
N

N + α
(2.34)

and

ηP,FB =
N

N
= 1, (2.35)

with α equal to the roll-off factor of the prototype filter.

2.5.3 Computational complexity

OFDM/QAM systems operate at a symbol rate T , thus a pair of IFFT/FFTs is done at

each T seconds. Since filterbank multicarrier systems transmit the real and imaginary parts

of the complex symbol separately, they must operate at a T/2 symbol rate to transmit the

same amount of data, doing two times the amount of IFFT/FFTs for the same amount of

transmitted data when compared to OFDM/QAM systems. The filterbank in its polyphase

implementation adds NLPF multiplications, where LPF is the prototype filter length.

This way, the computational complexity of FBMC/OQAM is over two times higher than

OFDM/QAM systems [34; 35].
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2.5.4 Error Performance

The error performance of OFDM/QAM and FBMC/OQAM systems is compared in

this subsection through simulation examples. The simulation parameters are

– Sampling frequency - 10 MHz

– Carrier frequency - 2,5 GHz

– Number of subchannels - 128, 256 and 1024

– 1000 independent channel realizations for each point

– Frame length - 53 OFDM symbols

– QPSK/OQPSK constellations

– PHYDYAS prototype filter for the FBMC/OQAM system

– Channel models : Vehicular A and B [36]

Alongside the one tap subchannel equalizer, multitap subchannel equalizers based on

the Lagrange and geometric interpolations were used in FBMC systems [17].

For 128 subchannels and the Vehicular A channel model the results are presented in

Figure 2.13. Clearly, the one tap subchannel equalizer has the worst performance in high

Eb

N0
ratios among FBMC/OQAM systems, because the subchannel frequency response is

frequency selective. Thus, multi-tap subchannel equalizers are needed, but even with then

the error performance is worse than the one from OFDM/QAM systems. However, this

system uses a large cyclic prefix of 1/4, wasting 25 % of the bandwidth.

Figure 2.14 shows that for 256 subchannels and the Vehicular A channel model all

the FBMC/OQAM subchannel equalizers have similar error performance. This result can

be explained due to the fact that in this case the subchannels are nearly flat, thus a

one tap subchannel equalizer is enough to compensate the channel distorsion. Again the

OFDM/QAM system has the best error performance, but with a waste of more than 10 %

of the bandwidth.

Finally results for 1024 subchannels and the Vehicular B channel model (which is more

frequency selective than the Vehicular A one) are presented in Figure 2.15. To eliminate

the ISI the OFDM/QAM system used a cyclic prefix of 1/4, which leads to a waste of

25 % of the bandwidth. Among the FBMC/OQAM systems the one using the multitap
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Figure 2.13 – Comparison between OFDM/QAM and FBMC/OQAM systems for 128
subchannels and the Vehicular A channel model.

subchannel equalizer based on geometric interpolation has the best error performance.

2.6 Precoded OFDM/QAM Systems

The multicarrier systems seen in previous sections use frequency domain equalization

to simplify the equalization of channels with long impulse responses instead of long time

domain equalizers. However, they suffer from high peak-to-average power ratio (PAPR), low

robustness to spectral nulls in subchannels and low resistance to carrier frequency offset

(CFO) [7]. One way to overcome these drawbacks, while maintaining frequency domain

equalization, is the use of linear precoding [37]. This section deals only with precoded

OFDM/QAM systems ; precoded FBMC/OQAM systems will be detailed in Chapter 3.

A block diagram of a precoded OFDM/QAM system is presented in Figure 2.16. In this

system model, the symbols to be transmitted are precoded by an unitary matrix satisfying
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Figure 2.14 – Comparison between OFDM/QAM and FBMC/OQAM systems for 256
subchannels and the Vehicular A channel model.

the following condition [37] :

|ti,j | =
1√
N

, 0 ≤ i, j ≤ N − 1, (2.36)

where ti,j denotes the (i, j)-th element of the precoding matrix T. With this precoding

operation, symbol power will not increase. If the matrix T is the normalized DFT one,

this precoded multicarrier system will correspond to a SC-FDE system [7; 8], because the

precoding DFT cancels the IFFT done at a OFDM/QAM transmitter. SC-FDE systems

can also be seen as the switching of the IFFT from the OFDM/QAM transmitter to its

receiver.

After being precoded by T, the precoded symbols go through the usual OFDM/QAM

chain. In the receiver, after equalization the combined symbols are deprecoded by the

inverse precoding matrix T−1. Finally, the symbol decision is done in the time domain

after deprecoding.

In regular OFDM/QAM systems, zero-forcing equalization is the optimal one, being
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Figure 2.15 – Comparison between OFDM/QAM and FBMC/OQAM systems for 1024
subchannels and the Vehicular B channel model.

equivalent to maximal likelihood decoding [38]. This is because equalization is done sym-

bol by symbol. On precoded OFDM/QAM systems, since the equalization is done block by

block (before deprecoding), maximal likelihood techniques can be computationally imprac-

tical if the system has a large number of subchannels. Thus, suboptimal linear equalization

techniques are usually employed. In the following, we restrict ourselves to the case where

the precoding matrix T is the discrete Fourier matrix W (SC-FDE systems).

2.6.1 Linear Zero-forcing Equalization

The simplest of these techniques is zero-forcing equalization. When using ZF equaliza-

tion, the equalizer RZF can be expressed as

RZF = (HHH)−1HH , (2.37)

where H is the channel frequency response matrix.
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With this equalizer, the symbol estimate ˆ̃sZF can be expressed as

ˆ̃sZF = s̃+W−1(HHH)−1HHWñ. (2.38)

The zero-forcing equalizer eliminates completely the ISI out of ˆ̃sZF ; however, it amplifies

the noise term.

Observing (2.38), it is possible to see that the noise correlation matrix will be circulant.

Thus, the SNR after deprecoding will be the same for every symbol in the block. This SNR

can be expressed as

γZF =
γN

tr((HHH)−1)
, (2.39)

where γ is the symbol energy. Since the SNR is the same for every symbol, the BER will

be too.

The maximal uncoded diversity order of a precoded OFDM/QAM system using linear

zero-forcing equalization will be one, no matter what the channel impulse response length

is [39]. We remember that the diversity order D for a certain system is given by

D = lim
SNR→∞

− log(Pe(SNR))

log(SNR)
, (2.40)

with Pe(SNR) being the average error probability of a certain system as a function of the

SNR.

2.6.2 Linear Minimum Mean Square Error Equalization

If the SNR is known at the receiver, linear equalization based on the minimum mean

square error (MMSE) criterion can be applied. The MMSE equalizer RMMSE is given by

RMMSE = (HHH+ σ2
nIN )−1HH . (2.41)

The symbol estimate when using MMSE equalization is expressed as

ˆ̃sMMSE =s̃− σ2
nW

−1(HHH+ σ2
nIN )−1Ws̃

+W−1(HHH+ σ2
nIN )−1HHWñ. (2.42)
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Unlike when using the ZF equalizer, ˆ̃sMMSE contains ISI (the second term of (2.42)) alongside

the noise (the third term of (2.42)). This is a characteristic of MMSE equalizers : they

minimize the mean square error but do not completely eliminate the ISI.

The ISI and noise covariance matrices are again circulant ; as a consequence, the mean

square error is once again the same for every symbol in the block. This mean square error

in this case is given by

MSEMMSE =
1

N

N
∑

n=1

1

γ|Hn|2 + 1
, (2.43)

with Hn being the (n, n)th element of the channel frequency response matrix H, and the

unbiased signal to interference-plus-noise ratio (SINR) for this linear equalizer is

γMMSE =
1

MSEMMSE

− 1. (2.44)

With linear MMSE equalization, the uncoded diversity order of precoded OFDM/QAM

systems is dependent of the channel impulse response length, the constellation size and the

number of subchannels, varying between one and L
h̃
− 1, where L

h̃
is the channel impulse

response length [39]. Since this diversity order is usually higher than the one possible by

using a zero-forcing equalizer, the utilization of linear MMSE equalization is preferred in

precoded multicarrier systems.

2.6.3 Minimum Mean Square Error Decision Feedback Equalization

One drawback of the linear MMSE equalizer presented in Section 2.6.2 is that it is not

able to completely eliminate the ISI. A decision feedback equalizer (DFE) can be used to

improve the error performance, using previous decisions to reduce the postcursor ISI.

The system model of a precoded OFDM/QAM system using a MMSE DFE is shown

in Figure 2.17. This equalizer consists in a frequency domain feedforward (FF) filter

RMMSE-DFE,FF and a time domain feedback (FB) filter r̃MMSE-DFE,FB. The length of the feed-

back filter is set to match the length of the channel impulse response in order to cancel all

the ISI from the previous symbols.

To minimize the mean square error, the coefficients of the feedforward filter are [40]

RMMSE-DFE,FF = (HHH+ σ2
nIN )−1HH (IN −RMMSE-DFE,FB) , (2.45)
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where RMMSE-DFE,FB is the frequency domain version of the feedback filter r̃MMSE-DFE,FB.

r̃MMSE-DFE,FB (of length L
d̃
) can be found by solving the following equation [40]

CMMSE-DFE,FBr̃MMSE-DFE,FB = dMMSE-DFE,FB, (2.46)

with CMMSE-DFE,FB being a L
d̃
xL

d̃
matrix with its m, l-th element given by

[CMMSE-DFE,FB]m,l =
N
∑

n=1

exp(−j2π(n(l −m)/N))

|Hn|2 + σ2
n

(2.47)

and dMMSE-DFE,FB is a L
d̃
x1 vector with its m-th element given by

[dMMSE-DFE,FB]m =
N
∑

n=1

exp(−j2π(nm)/N)

|Hn|2 + σ2
n

. (2.48)

When using the MMSE-DFE equalizer, the mean square error considering that previous

decisions are perfect is given by [41]

MSEMMSE-DFE = exp

(

1

N

N
∑

n=1

1

1 + γ|Hn|2

)

. (2.49)

2.7 Tomlinson-Harashima Precoding

While decision feedback equalizers, such as the one presented in Subsection 2.6.3, are

efficient in eliminating the ISI if past symbol decisions are correct, the effect of wrong

symbol decisions can be propagated to future symbols. These incorrect propagated decisions

can affect significatively the final error performance, even if limited to one block as is the

case in SC-FDE DFE systems. These systems also cannot use channel coding without

modifications, because reliable symbol decisions in the receiver will be available only after

a delay [42].

If the transmitter has complete channel state information, the feedback filter of the

DFE scheme can be moved from the receiver to the transmitter to overcome the effect

of the ISI, avoiding error propagation. Together with the precoding filter a modulo-2M

operation is employed to stop the output from increasing or diverging to infinity if the

channel impulse response value is close to zero.

This scheme is known as Tomlinson-Harashima precoding [43; 44]. Since decisions are

instantaneous at the receiver in Tomlinson-Harashima precoded systems, channel coding
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Table 2.2 – Precoding loss in dB of Tomlinson-Harashima precoded systems [1].

M 2 4 8 16 32 64

η1D 1.25 0.28 0.07 0.02 0.004 0.001
η2D - 1.25 0.58 0.28 0.14 0.07

can be employed with good performance. Their error performance is the same as the one

from systems employing an ideal DFE (i.e., error free) in the receiver minus a power

penalty, which is dependent of the signal constellation used. This power penalty is due to

the modulo operation employed to limit the transmitted signal power. The power penalty

for one and two-dimensional constellations is listed in Table 2.2. As seen in Table 2.2, this

power penalty (precoding loss) becomes negligible as the constellation size grows [43].

Zhu et al. in [45] propose a SC-FDE system employing MMSE-based Tomlinson-Harashima

precoding. The block diagram for this system is presented in Figure 2.18.

In the transmitter, together with the precoding filter a modulo-2M operation is em-

ployed to stop the output from increasing or diverging to infinity by mapping the precoded

symbols from a M2-QAM constellation to the interval (−M,M ] if the channel impulse

response has values close to zero. The precoded signal follows the same path of a SC-

FDE system using linear MMSE equalization (cyclic prefix insertion, passage through the

channel, cyclic prefix removal, FFT, linear MMSE equalization and IFFT). After the de-

precoding IFFT, the same modulo operation is done in the receiver to obtain the symbol

estimate. The coefficients for the precoding filter in this system are the same ones from

the feedback filter in the MMSE-DFE equalizer ; thus, they can be found by solving (2.46).

The coefficients for the equalizer in the receiver are equal to the ones from the MMSE-DFE

feedforward filter, which are expressed in (2.45).

2.8 Widely Linear Processing

The systems presented up to now use linear processing to obtain the symbol estimate

from the received signal in the receiver. However, for a certain category of signals, linear

processing does not take into account all the available second-order statistics of the received
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signal. To use these statistics, widely linear processing was proposed [11; 12].

Let ˆ̃x be a scalar random variable to be estimated from an observation that is a random

vector ỹ. ỹ is a vector whose elements are samples from a complex random process with

zero mean, that is, E {ỹ} = 0. This vector can be written as ỹ = ỹr + jỹi, where ỹr is the

real part of ỹ and ỹi the imaginary one. As a consequence of E {ỹ} = 0, E {ỹr} = 0 and

E {ỹi} = 0.

We can also verify that for a random variable ỹ = ỹr + jỹi belonging to ỹ, with ỹr and

ỹi independent from each other with zero mean and the same variance, E {ỹỹ} = 0.

A vector ỹ is called a circular vector if [10]

PC ≡ E
{

ỹỹT
}

= 0, (2.50)

where PC is the so-called pseudocovariance matrix. Together with the covariance, (2.50)

defines completely the second-order statistics of ỹ. As examples of circular vectors, it is

possible to cite modulated signals from complex constellations, such as M -QAM ones.

By processing the received observation ỹ by the linear estimator f̃ we can obtain the

scalar estimate ˆ̃x, resulting in

ˆ̃x = f̃H ỹ. (2.51)

However, if ỹ belongs to a real or offset constellation (2.50) is no longer valid, because

for these constellations the pseudocovariance is non-zero, that is

PC ≡ E
{

ỹỹT
}

6= 0. (2.52)

This is the case for constellations such as M -PAM (Phase Amplitude Modulation), MSK

(Minimum Shift Keying), OQPSK (Offset Quadrature Phase Shift Keying)or M -OQAM

(Offset Quadrature Amplitude Modulation). Thus, when the transmitted signal comes from

one of these modulations the linear estimator f̃ does not use all the available second-order

statistics.
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2.8.1 Widely Linear Estimator

To take into account (2.52), the received signal must be processed together with its

conjugate to obtain the estimate ˜̂xWL, in the following way [11] :

˜̂xWL = c̃H ỹWL + d̃H ỹ∗
WL, (2.53)

where c̃ and d̃ are two complex vectors constituting a linear subspace over the complex

field, with ỹWL being an observation from an improper constellation.

This scheme is shown in Figure 2.19.

ỹWL

()∗

c̃

d̃

+

ˆ̃xWL

Figure 2.19 – A receiver using widely linear processing.

It is clear that ˆ̃xWL is not a linear function of ỹWL, which is the case of ˆ̃x in (2.51).

However, the order-k statistics of ˆ̃xWL can be inferred from the order-k statistics of ỹWL

and ỹ∗
WL. This is why (2.53) is called a wide sense linear or widely linear system.

Observing (2.53), the estimation problem consists in finding the optimal values of c̃

and d̃ in a way that E
{

|ˆ̃xWL − x̃WL|2
}

is minimized. The linear subspace spanned by

ˆ̃xWL becomes a Hilbert subspace if we define the scalar product by < ˆ̃xWL,1, ˆ̃xWL,2 > =

E
{

ˆ̃x∗WL,1
ˆ̃xWL,2

}

. As a consequence, ˆ̃xWL can be seen as a orthogonal projection of x̃WL

in this Hilbert subspace and due to the orthogonality principle,

E
{

ˆ̃x∗WLỹWL

}

= E {x̃∗WLỹWL} , (2.54)

E
{

ˆ̃x∗WLỹ
∗
WL

}

= E {x̃∗WLỹ
∗
WL} . (2.55)

Substituting (2.54) and (2.55) in (2.53) we obtain

Λc+Πd = λ, (2.56)

Π∗c+ Λ∗d = ̟∗, (2.57)
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with

Λ = E {x̃WLx̃
∗
WL} , (2.58)

Π = E
{

x̃WLx̃
T
WL

}

, (2.59)

λ = E {ỹ∗
WLx̃WL} , (2.60)

̟ = E {ỹWLx̃WL} . (2.61)

The optimal values of c̃ and d̃ according to the widely linear minimum mean square

error criterion are

c̃ = [Λ−ΠΛ−1∗Π∗]−1[λ−ΠΛ−1∗̟∗], (2.62)

d̃ = [Λ∗ −Π∗Λ−1Π]−1[̟∗ −Π∗Λ−1λ], (2.63)

and the corresponding mean square error for the widely linear estimator is

ǫ2
WL

= PỹWL
− c̃Hλ− d̃H̟∗, (2.64)

with Pỹ = E
{

|ỹWL|2
}

.

The mean square error obtained when using the widely linear estimator is lower than

the one from linear estimation, which is

ǫ2
L
= Pỹ − λHΛ−1λ. (2.65)

The corresponding processing gain can be expressed by

ǫ2δ = ǫ2
L
− ǫ2

WL
, (2.66)

ǫ2δ is also given by

ǫ2δ = [̟∗ −Π∗Λ−1λ]H [Λ∗ −Π∗Λ−1Π]−1[̟∗ −Π∗Λ−1λ] ≥ 0. (2.67)

2.8.2 Widely Linear Processing Gain

The gain ǫ2δ obtained by employing widely linear processing depends on the second-order

statistics of the noise and the transmitted signal.
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2.8.2.1 When both the noise and the transmitted signal are circular

The widely linear filter reduces to the strictly linear one if both the noise and the

transmitted signal are circular, since PC = 0 and s = E {ỹWLx̃WL} = 0 ; thus, there is no

performance advantage in using widely linear processing over strictly linear processing.

2.8.2.2 If the observed signal is circular, but ̟ 6= 0

In this case PC = 0, but ̟ 6= 0 since there is no information about the statistics of the

transmitted signal. Thus, the optimal coefficients of the filters c̃ and d̃ can be expressed as

c̃ = Λ−1λ, (2.68)

d̃∗ = Λ−1̟, (2.69)

and the widely linear processing gain is

ǫ2δ = ̟HΛ−1̟ ≥ 0. (2.70)

2.8.2.3 If the transmitted signal is improper

However, if a improper signal is transmitted through a complex channel, the observed

signal at the receiver is also complex and improper. In this case we reach easily the conclu-

sion that λ = ̟, which will lead to c̃ = d̃∗. The widely linear estimator in this case will

provide the following estimate x̂WL :

ˆ̃xWL = 2ℜ
{

c̃H ỹ
}

. (2.71)

This estimate is real, unlike when using strictly linear estimators, which will generate

a complex estimate of this real transmitted signal. For this case, by using widely linear

processing we can have up to half of the mean square error of the strictly linear estimator

[46; 12]. The processing gain by using widely linear estimation is

ǫ2δ = c̃Hλ. (2.72)
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2.9 Conclusion

This chapter has presented the background for the research work which will be presented

in the next chapters of this thesis. The following chapter will deal with the application of

linear precoding in FBMC/OQAM systems and their correspondent error performance.
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Chapter 3

On Precoded FBMC/OQAM
Systems

3.1 Introduction

Unlike precoded OFDM/QAM systems, precoded FBMC/OQAM systems are a theme

not very explored in research. Few proposals have appeared so far in the literature for pre-

coded FBMC systems ; one can be found in [47]. In this proposal, classical multicarrier, pre-

coded multicarrier and pure single carrier transmissions can be done simultaneously, each

in its group of subchannels, due to the high subchannel selectivity inherent to the FBMC

systems. A proposal to minimize the transmitted symbols’ PAPR in a single carrier-FBMC

using a novel transmitter scheme can be found in [48]. However, the error performance of

precoded FBMC systems has not been studied so far in the literature.

The objective of this chapter is to study the error performance of precoded FBMC/OQAM

systems, including the case where residual ISI stemming from imperfect subchannel equa-

lization is present in these systems when employing linear MMSE equalization. It is shown

that this residual ISI causes a loss of diversity in precoded FBMC/OQAM systems. An

analytical expression of the BER for these systems taking into account or not this residual

ISI is compared to Monte Carlo simulations in different channel situations to demonstrate

its precision.

This chapter is divided as follows : Section 3.2 presents an analysis on the error be-

haviour for precoded multicarrier systems with residual ISI. Simulation results for FBMC
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systems and a comparison with the error approximation provided earlier in the section are

presented in Section 3.3. Concluding remarks are given in Section 3.4.

3.2 BER Analysis for Precoded Filterbank Multicarrier Sys-
tems

The block diagram of a precoded FBMC/OQAM system is presented in Figure 3.1.

Figure 3.1a depicts a precoded FBMC transmitter, while Figure 3.1b shows a precoded

FBMC receiver. Finally, Figure 3.1c shows the complete system. In this diagram, the grey

box T is the precoding matrix, η is the AWGN (additional white gaussian noise) with

variance σ2
η and h̃ is the channel impulse response for a particular channel realization. The

only change with respect to a regular FBMC/OQAM system is the precoding matrix T in

the transmitter and the deprecoding one T−1 in the receiver.

We can write the received signal r̃OQAM [n] as

r̃OQAM [n] = h̃[n] ∗ s̃OQAM [n] + η[n] (3.1)

= ỹOQAM [n] + η[n], (3.2)

where ∗ is the convolution operator. After demodulation, the received signal on the k-th

subchannel of the l-th FBMC data block can be expressed as

r̃OQAM
k,l = ℜ











LPF−1+lN
2

∑

n=lN
2

ξOQAM
k,l [n]ỹOQAM [n] + ηk,l











(3.3)

= ˆ̃rOQAM
k,l + ℜ{ηk,l} , (3.4)

with r̂OQAM
k,l being the useful signal and ηk,l the filtered noise, expressed by

ηk,l =

LPF−1+lN
2

∑

n=lN
2

η[n]q̃

[

n− l
N

2

]

ej
2π
N

k(n−LPF−1

2
)ejρk,l . (3.5)

ηk,l is a linear combination of Gaussian random variables ; so, it remains a Gaussian random

variable with variance

σ2
ηk,l

= σ2
η

LPF−1+lN
2

∑

n=lN
2

q̃

[

n− l
N

2

]2

= σ2
η, (3.6)
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(a) A precoded FBMC transmitter

(b) A precoded FBMC receiver

(c) The complete system

Figure 3.1 – A precoded FBMC/OQAM system.

43



3.2. BER ANALYSIS FOR PRECODED FILTERBANK MULTICARRIER SYSTEMS

(a) One tap subchannel
equalizer

(b) Three tap subchannel equalizer

Figure 3.2 – Equalizers for FBMC Systems.

since the normalization of the prototype filters implies that

LPF−1+nN
2

∑

n=lN
2

q̃2
[

n− l
N

2

]

= 1. (3.7)

Therefore, the noise variance will not change after the analysis filterbank, also due to the

fact that the NxN DFT matrix is an unitary matrix. Thus, the analysis can proceed as in

the precoded OFDM/QAM case.

The one-tap equalizer used to compensate the channel effect (see Figure 3.2a) is equal

to ck,l =
1
Hk

for a ZF equalizer and to ck,l =
γH∗

k

1+γ|Hk|2 for the one employing the MMSE

criterion, with γ = Es

σ2 being the SNR and Hk being the channel frequency response at

the center of the k-th subchannel. A 3-tap per subchannel equalizer, which can be used to

overcome frequency-selective subchannels, is presented in Figure 3.2b. The expression for

its coefficients is not detailed in this section, but can be found in [30; 31].

We remind that a channel independent precoding matrix has to satisfy the following

condition so that the noise variance is the same in every subchannel (Section 2.6) :

|ti,j | =
1√
N

, 0 ≤ i, j ≤ N − 1, (3.8)

where ti,j denotes the (i, j)-th element of the precoding matrix T. To satisfy the condi-

tion imposed by (3.8), we can use the Discrete Fourier Transform (DFT) matrix or the
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Hadamard matrix, among others.

3.2.1 ISI power in non-completely equalized FBMC systems

Up to now, we have seen that the noise variance analysis in precoded FBMC/OQAM

systems can be done the same way as the OFDM/QAM ones. However, in FBMC systems

equalization is not always perfect, due to the absence of the cyclic prefix ; thus, residual

interferences can be present.

The effect of ICI (in absence of CFO) can be discarded in FBMC systems, because the

fractionally spaced equalizer eliminates ICI from the neighbouring subchannels, and the

high selectivity provided by the improved subchannel filtering eliminates the ICI from the

other ones [33]. However, residual ISI can be present, due to the absence of the cyclic prefix.

When the transmission channel is highly frequency-selective and the number of subchannels

is low, the subchannel frequency response will also be frequency-selective, even with the

subchannel pulse being optimized to minimize this selectivity.

To compensate this extra interference, equalization in FBMC systems has been dealt

with in [30; 31; 33], among other works. The desired complex impulse response on each

subchannel (black circles on Figure 3.3) after equalization is given in Figure 3.3. The real

desired impulse response must be zero at nTs, n 6= 0 in order to eliminate the ISI on the

other transmitted symbols on the real part, whereas the imaginary desired impulse response

must be zero at nTs

2 , n 6= 0 in order to eliminate the ISI on the transmitted symbols on the

imaginary part. The impulse response at other instants (white circles on Figure 3.3) can

have arbitrary values, because they are not taken into account for the desired equalized

subchannel impulse response.

This ideal impulse response will result in a flat equalized subchannel frequency response

Heq
k (f) ; thus, any deviation from the flat frequency response will correspond to extra ISI

in the detected symbol, since this non-flat equalized subchannel frequency response means

that the symbol energy was spread to other symbols.

So, we integrate over this residual subchannel spectrum to determine the power σ2
ISI,k

of this extra ISI at the k-th subchannel, according to the following equation :
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1

Real part

Imaginary part

−Ts −Ts

2 0 Ts

2 Ts

Figure 3.3 – Desired equalized subchannel complex impulse response in FBMC systems.

σ2
ISI,k =

∫ ∞

−∞
|1−Heq

k (f)|2df. (3.9)

When using MMSE equalization it is appropriate to use the signal to interference plus

noise ratio (SINR), since there is also ISI alongside the noise. Since after deprecoding both

the ISI and the noise covariance matrices are also circulant, the noise variance, SNR and

BER are the same for every subchannel. The ISI power stemming from non-completely

equalized subchannels will be added to the AWGN noise variance (considering this ISI as

gaussian due to the large number of subchannels) to form the effective SINR, which will

be, for a precoded FBMC system employing MMSE equalization,

γMMSE,ISI =
1

MSEMMSE,ISI

− 1, (3.10)

where

MSEMMSE,ISI =
1

N

N
∑

n=1

1

ζk|Hn|2 + 1
. (3.11)

and ζk = Es
N0+σ2

ISI,k

.
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If the subchannel equalizer has sufficient length to compensate the subchannel frequency

response or the number of subchannels is large enough so the subchannel frequency response

is flat, (3.10) reduces to the known MSE and SINR equations ((2.43) and (2.44)) for

precoded multicarrier systems using linear MMSE equalization, which are

MSEMMSE =
1

N

N
∑

n=1

1

γ|Hn|2 + 1
, (3.12)

and

γMMSE =
1

MSEMMSE

− 1. (3.13)

Finally, the overall BER Pe considering a given channel realization can be expressed as :

Pe = aQ
(

√

bβ
)

. (3.14)

where a and b are constellation-specific parameters [49], β in this equation can be βMMSE

or βMMSE,ISI and Q(x) = 1√
2π

∫∞
x e

−t2

2 dt. To compute the overall BER an average over all

the results from different channel realizations is made.

3.3 Simulation Results

In this section, simulation results of the error performance for precoded filterbank

multicarrier systems are presented, comparing the results from the error approximations

presented in Section 3.2 and the ones provided by Monte Carlo simulations. The simula-

tion parameters can be found in Table 3.1. Channel estimation is assumed to be perfect

and channel fading is considered to be quasistatic (time-invariant during each transmit-

ted frame). Results were averaged over all the independent channel realizations to obtain

the presented error probabilities. The multiple-tap per subchannel equalizers are the ones

presented in [31], whose project is based on the frequency sampling approach, geometric

interpolation and the IFFT to calculate the equalizers’ coefficients.

Figure 3.4 presents the simulation results comparing the results obtained from the

Monte Carlo simulations to the BER approximation presented in (2.44) (which does not

take into account the residual ISI) using linear MMSE equalization, for a system with N

= 1024 and the Vehicular A channel model. 1-tap and 3-tap per subchannel equalizers are
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Table 3.1 – Simulation Parameters for Section 3.3.

Constellation OQPSK
Sampling Frequency 10 MHz

Channel Models ITU-T Ped. B, Veh. A, Veh. B
Number of channel realizations 5000

Minimum number of errors 200
Prototype Filter PHYDYAS [25]

Overlapping factor K 4
Precoding matrix T DFT

0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb

N0

(dB)

B
E

R

Vehicular A channel model

 

 

N = 1024, Analytical, no ISI
N = 1024, 1 tap, Monte Carlo
N = 1024, 3 tap, Monte Carlo

Figure 3.4 – Comparison between theoretical and Monte Carlo simulation results using
1024 subchannels and the Vehicular A channel model.

used. In this case, we can assume that the subchannels suffer flat fading and there is no

residual ISI after equalization ; it is possible to see that the Monte Carlo simulation results

are very close to the ones provided by this approximation.

For N = 128, Figure 3.5 compares the results from the Monte Carlo simulations to

the BER approximation in (2.44) for the Vehicular A channel model. The same subchannel
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N = 128, Analytical, No ISI
N = 128, 1 tap, Monte Carlo
N = 128, 3 tap, Monte Carlo

Figure 3.5 – Comparison between theoretical and Monte Carlo simulation results using
128 subchannels and the Vehicular A channel model.

equalizers from the previous example are used. For this case, even the multiple-tap equalizer

is not enough to completely eliminate the ISI from the received data stream, because

the subchannels are frequency selective. It is possible to see that in a low SNR range,

the Monte Carlo simulation results are faithful to the approximation because the noise

variance is higher than the one from the ISI at this stage ; however, in higher signal-to-noise

ratios, their results drift from the BER approximation, due to this remaining unequalized

interference being higher than the noise variance. The results from the systems using a

1-tap per subchannel equalizer are much farther from the approximation than the ones

using a 3-tap per subchannel equalizer, due to its worse equalization performance.

Figure 3.6 presents the simulation results for 64 subcarriers and the ITU-T Vehicular A

channel model. For this scenario, the channel is highly frequency selective (for example, if

regular OFDM systems were used, the appropriate cyclic prefix size to completely eliminate

the ISI would be 1/2). It is possible to see that even subchannel equalizers with a higher

number of taps are not able to compensate effectively the channel selectivity, leading to
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Figure 3.6 – Error performance for N = 64 and the Vehicular A channel model.

residual ISI and an error floor at a bit error rate (BER) of about 10−3.

For 512 subcarriers and the Vehicular B channel model, Figure 3.7 presents the simu-

lation results. In this scenario, the channel selectivity is similar to the one presented in

Figure 3.6 (a cyclic prefix size of 1/2 would be needed too), and the subchannel equalizers

cannot eliminate all the ISI.

Figures 3.8 and 3.9 shows the comparison between the Monte Carlo simulation results

and the approximation results when using the model based on (3.10), which takes into

account the residual unequalized ISI present in the subchannels for the calculation of

the SINR. FBMC systems are transmitting through a Vehicular A channel model with

N = 128, 256 (in Figure 3.8) and the Pedestrian B channel model with N = 256, 512

(in Figure 3.9). For these cases, with N = 128 for the Vehicular A channel model and

N = 256 for the Pedestrian B channel model the subchannels are going to be frequency

selective. On the other hand, with N = 256 for the Vehicular A channel model and N =

512 for the Pedestrian B channel model the subchannels can be considered as flat. The
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Figure 3.7 – Error performance for N = 512 and the Vehicular B channel model.

approximation results are consistent with the ones provided by Monte Carlo simulation. It

is also possible to see that the systems employing a one tap per subchannel equalizer have

a lower diversity order than the systems using subchannel equalizers with three taps for the

same number of subchannels if the subchannels are frequency-selective ; this is because the

one tap equalizer is unable to deal with the subchannel selectivity in these cases. When the

subchannels have a flat frequency response, a one tap equalizer is enough to completely

equalize the subchannel and obtain the maximum possible diversity in the scenario. In

this case, using subchannel equalizers with three taps per subchannel does not bring a

performance improvement.

In the coded simulations, a mother convolutional code of rate 1/2 with a generating

polynomial (133, 171)8, a constraint length K = 7 and free distance dfree = 10 is used.

Higher rates are obtained through puncturing. Results are presented in Figure 3.10 for

systems employing convolutional coding, transmitting throught the Vehicular B channel

model and with N = 1024, 2048. In this case, N = 1024 will lead to frequency-selective

51



3.4. CONCLUDING REMARKS

0 5 10 15 20 25 30
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Vehicular A channel model

Eb

N0

(dB)

B
E

R

 

 

M = 128, 1 tap, Monte Carlo
M = 128, 1 tap, Analytical
M = 128, 3 tap, Monte Carlo
M = 128, 3 tap, Analytical
M = 256, 1 tap, Monte Carlo
M = 256, 1 tap, Analytical

Figure 3.8 – Uncoded error performance for precoded FBMC systems using MMSE equa-
lization and transmitting through the Vehicular A channel model.

subchannels, while with N = 2048 the subchannels will be flat. The same conclusions from

the uncoded case can be drawn from the results in the coded one : the residual unequalized

ISI from frequency-selective subchannels reduces the diversity order if a one tap subchannel

equalizer is employed ; this diversity order can be restored with multiple tap equalizers or

with an increase in the number of subchannels. With flat subchannels, a one tap equalizer

is enough to remove all the ISI and obtain the maximal possible diversity.

3.4 Concluding Remarks

In this chapter the error performance of precoded FBMC systems using linear MMSE

equalization was analyzed. Analytical uncoded BER performances for FBMC systems ta-

king into account this residual ISI were derived in this section, which are precise throughout

the ensemble of SNRs. It is also possible to see that the residual unequalized ISI from im-

perfect equalization causes a loss of diversity in the coded and uncoded cases. This loss of
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Figure 3.9 – Uncoded error performance for precoded FBMC systems using MMSE equa-
lization and transmitting through the Pedestrian B channel model.

diversity can be prevented with the use of subchannel equalizers with multiple taps or with

an increase in the number of subchannels ; with those measures, there will be very little to

no residual ISI.

The next chapter deals with the probability density function of the SINR of a precoded

multicarrier system using linear MMSE equalization and an analytical way to determine

its coded performance when using convolutional coding.
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Figure 3.10 – Coded error performance for precoded FBMC systems using MMSE equa-
lization and transmitting through the Vehicular B channel model.
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Chapter 4

On the Distribution of the SINR and
Performance in Uncoded and Coded
SC-FDE Systems Using Linear
MMSE Equalization

In the previous chapter we have tackled the analysis of the error probability of pre-

coded FBMC/OQAM systems ; a semi-analytical (averaging results from several channel

realizations) expression for the BER of these systems was developed. However, for the

direct analytical computation of the unconditional bit error probability of precoded mul-

ticarrier systems, the knowledge of the SINR distribution is necessary. [15; 16] proposed a

SINR distribution for SC-FDE systems using linear MMSE equalization for channel models

with equal powered taps. However, their method does not work when the channel taps do

not have equal power. Thus, the distribution for precoded multicarrier systems employing

MMSE equalization transmitting through real-life channel models has not been found, due

to the difficulty of computing the exact probability density function (pdf) of the SINR [50].

Coding, together with interleaving, can also be applied to these systems to improve

the transmission performance, resulting in the so-called Bit Interleaved Coded Modulation

(BICM) [51]. In precoded multicarrier systems, since the diversity gain comes mainly from

the precoding operation, coding and interleaving provide these systems with a coding gain.

Numerical simulation for these systems at high SNRs is time-consuming, due to the low

bit error rates at this stage ; thus, an analytical analysis is desired. An analysis for block
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fading channels was done in [52]. For the coded multicarrier case, but without precoding,

[53; 54; 55; 56] show an analysis of their performance. In [57; 58], linear constellation preco-

ding using subchannel grouping was applied to coded multicarrier systems, with maximum

likelihood iterative decoding being used at the receiver. The use of subchannel grouping

instead of full-scale (a combination of all subchannels) precoding when maximum likelihood

decoding is employed is desirable, since the decoding complexity increases with the number

of subchannels being grouped. As for precoded multicarrier systems using linear MMSE

equalization, the obtention of a pairwise error probability (PEP), which is necessary for

the analysis of their coded performance, is difficult. This is due to the inherently imperfect

(non-maximum likelihood (ML)) decoding of a combination of subchannels and the noise

and subchannel gains correlation introduced by this process.

In this chapter, we propose the adoption of the lognormal distribution with the smallest

Kullback-Leibler distance to the observed distribution as an approximation of the proba-

bility density function of the SINR in a precoded multicarrier system employing MMSE

equalization. This approximation is accurate in the sense of the BER and gives very accu-

rate results in terms of the error probability, even at high SNR values. We use this lognormal

approximation to simplify the calculation of the coded performance of this system. Due

to this simplification, an expression for the PEP is derived considering the lognormal sys-

tem abstraction. This PEP expression provides bounds that are close to the Monte Carlo

simulation results.

This chapter is organized as follows : Section 4.1 presents the system model employed

in this chapter. Section 4.2 deals with the approximation of the SINR distribution by

the lognormal one with the smallest Kullback-Leibler distance to the true distribution,

while the coded performance analysis employing the lognormal approximation to obtain

an expression for the PEP is presented in Section 4.3. Simulation results validating this

approach are presented in Section 4.4 and the concluding remarks in Section 4.5.
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4.1 System Model

Figure 4.1 details the system model for this chapter. In this system, the sequence s̃,

of size mS is encoded by a rate Rc convolutional code with constraint length K. This

codeword is bit-interleaved by an interleaver, resulting in the codeword c̃. c is then Gray

mapped to a block of M -QAM symbols x̃ = [x̃1 x̃2 . . . x̃N ]T of size N = S/Rc, where

M = 2m.

After interleaving, x̃ follows the same path detailed in Section 2.6, using linear MMSE

equalization. Thus, repeating (2.43) and (2.44) we remind that the MSE and SINR for this

system will be

MSEMMSE =
1

N

N
∑

n=1

1

γ|Hn|2 + 1
, (4.1)

and

γMMSE =
1

MSEMMSE

− 1. (4.2)

The deprecoded sequence x̂ is demapped, deinterleaved and decoded by a soft-input

soft-output (SISO) maximum likelihood Viterbi decoder, resulting in the estimated se-

quence ŝ.

4.2 SINR Distribution

The uncoded unconditional bit error probability for a communications system trans-

mitting through a fading channel with gain α is given by [49]

Pe =

∫ ∞

0
ξaQ(

√

ξbγ)pγ(γ)dγ, (4.3)

where ξa and ξb are constellation-specific parameters, γ = α2Es/σ
2
n is the SINR and

pγ(γ) is the pdf of this SINR. Looking at (4.3), it is necessary to know the pdf of γMMSE

in order to compute analytically the BER of a precoded multicarrier system using linear

MMSE equalization. This SINR for N = 128 and the Vehicular A channel model is pre-

sented in Figure 4.2.

Since it can be seen that this distribution changes for each SNR for the aforementioned
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Figure 4.2 – SINR for a precoded multicarrier system using linear MMSE equalization,
N = 128 and the Vehicular A channel model.

system, it is very hard to use a specific distribution that will fit to the SINR for all SNR

values. For low SNRs, the SINR distribution can be approximated by various distributions,

such as the Gamma one, as an example ; however, for higher SNR values, the approximation

becomes very loose. For the BER computation, the approximation should be more precise

in the left tail of the pdf curve. This is because this tail corresponds to low SINR values,

which will contribute heavily to the overall error performance. High SINR values correspond

to very low error probabilities in the Q-function curve ; thus, the other parts of the pdf

curve correspond to negligible errors [59]. To achieve this goal, an approximation which will

minimize the Kullback-Leibler (KL) distance to the target SINR distribution is desired.

The Kullback-Leibler distance between two distributions P and Q is given as

DKL(P ||Q) =

∫ ∞

−∞
p(x) log2

p(x)

q(x)
dx, (4.4)

where p and q are the probability density functions of P and Q. The KL distance (which

is non-negative and zero if and only if P = Q) is a measure of the inefficiency of assuming
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that the distribution is Q when the true distribution is P [60]. Also called relative entropy,

it is a measure of the distance between two distributions, but it is not a true distance

because it is not symmetric and does not satisfy the triangle inequality.

There is a direct connection between the minimization of the KL distance between an

approximation and the target distribution and the minimization of the effect of the KL tail

components [61]. A good fit in the tails of the pdf is needed so that the tail components

effect is minimized. Thus, with the minimization of the KL distance it is possible to obtain a

precise approximation in the region of interest for the bit error probability case. To minimize

the KL distance between the approximation and the SINR, a Monte Carlo simulation is

done at each SNR to search for the distribution parameters that will lead to the smallest

possible value of the KL distance.

Since the SINR of a precoded multicarrier system using MMSE equalization has only

positive values, low mean, high variance and positive skew, a suitable distribution for a

fit could be the lognormal distribution [62]. It was seen in our tests that by using the

lognormal distribution it is possible to obtain a smaller KL distance to the true SINR

distribution when compared to other distributions.

The lognormal distribution has its probability density function given by

fX(x, µ, σ) =
1

xσ
√
2π

exp−(lnx− µ)2

2σ2
for {x > 0} , (4.5)

where µ and σ are the mean and standard deviation, respectively, of a variable whose

logarithm is normally distributed.

µ and σ can be found for specific channel models. Figures 4.3,4.4 and Tables 4.1,4.2

specify them for some of the ITU-T channel models. They were found to minimize the

KL distance between the approximation and the SINR specified by (2.44). 30000 channel

realizations were made to generate this SINR.

Using Craig’s formula for the Q function, which is [63]

Q(x) =
1

π

∫ π
2

0
exp

( −x2

2 sin2 θ

)

dθ, (4.6)

(4.3) can be rewritten, for the lognormal distribution presented in (4.5) and a QPSK
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Figure 4.3 – µ for some ITU-T channel models.

Table 4.1 – µ for some ITU-T channel models.

Eb

N0
(dB) 0 3 6 9 12 15

Veh. A -0.53 -0.64 -0.78 -0.91 -1.03 -1.16
Ped. B -0.52 -0.65 -0.79 -0.93 -1.07 -1.21
Veh. B -0.51 -0.61 -0.74 -0.86 -1 -1.11

Eb

N0
(dB) 18 21 24 27 30

Veh. A -1.27 -1.37 -1.45 -1.53 -1.61
Ped. B -1.33 -1.44 -1.53 -1.61 -1.69
Veh. B -1.22 -1.32 -1.42 -1.5 -1.58

constellation, as

Pe =
1

π

∫ π

2

0

[
∫

∞

0

exp
(

−γ

2 sin2 θ

) 1
√

2πσ2γ
exp

(

−
(ln γ − µ)2

2σ2

)

dγ

]

dθ, (4.7)

since ξa = ξb = 1 for a QPSK constellation.

By the variable substitution x = ln γ−µ√
2σ2

, (4.7) can be rewritten as
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Figure 4.4 – σ for some ITU-T channel models.

Table 4.2 – σ for some ITU-T channel models.

Eb

N0
(dB) 0 3 6 9 12 15

Veh. A 0.52 0.54 0.56 0.59 0.63 0.66
Ped. B 0.45 0.45 0.48 0.5 0.52 0.55
Veh. B 0.56 0.58 0.6 0.63 0.67 0.71

Eb

N0
(dB) 18 21 24 27 30

Veh. A 0.7 0.74 0.79 0.82 0.86
Ped. B 0.59 0.62 0.66 0.7 0.73
Veh. B 0.74 0.79 0.82 0.86 0.90

Pe =
1

π

∫ π

2

0

[

1
√

π

∫

∞

0

(

exp

(

−

Es

σ2
n

exp
(√

2σx+ µ
)

2 sin2 θ

))

exp(−x
2)dx

]

dθ. (4.8)

The inner integral in (4.8) can be calculated by a quadrature Gauss-Hermite integration,

which results in
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K
∑

n=1

wn exp

(

−
exp(Es

σ2
n

√
2σxn + µ)

2 sin2 θ

)

, (4.9)

where wn and xn are, respectively, the weights and the abcissas of the Hermite polynomial

and K is the desired series precision. Values of wn, xn and K can be found in [64].

Thus, the following closed-form expression for the bit error probability in a precoded

multicarrier system using the lognormal approximation can be used :

Pe ≈
1√
π

K
∑

n=1

wn

[

1

π

∫ π
2

0
exp

(

−
Es

σ2
n
exp(

√
2σxn + µ)

2 sin2 θ

)

dθ

]

(4.10)

≈ 1√
π

K
∑

n=1

wnQ

(
√

Es

σ2
n

exp
(√

2σxn + µ
)

)

. (4.11)

4.3 Coded Performance

The direct derivation of the pairwise error probability of a precoded multicarrier sys-

tem employing MMSE equalization is very difficult, due to the subchannel gains and noise

correlation introduced by the imperfect (non-ML) decoding of a combination of all sub-

carriers. Since the uncoded SINR of a precoded system employing MMSE equalization

was approximated by a lognormal distribution in the previous section, we can simplify

the highlighted part of the system model presented in Figure 4.1 to the one presented in

Figure 4.5. Thus, the analysis of the coded performance of a precoded multicarrier system

employing MMSE equalization can be reduced to the much simpler analysis of the coded

performance of a single carrier system transmitting through a lognormal fading channel

(because if γ = α2Es/σ
2
n has a lognormal distribution, α has the same distribution).

A tight BER union upper bound for this system employing a convolutional code (with a

rate Rc = kc/nc obtained by puncturing a rate 1/2 mother code, with a minimum Hamming

distance dfree) is given by [49]

Pe ≤
1

kc

∞
∑

d=dfree

w(d)Pep(d|γ), (4.12)

where w(d) is the input weight of all error events at Hamming distance d and Pep(d|γ) is

the average pairwise error probability (PEP) conditional on the lognormal SINR γ between
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the codewords having Hamming distance d between them, expressed by [52]

Pep(d|γ) = Q
(

√

2dγ
)

. (4.13)

Values for w(d) at various code rates can be found in [65]. Without loss of generality, we

consider that these two codewords only differ in their first d bits. The unconditional pairwise

error probability can be obtained by averaging the conditional PEP over the probability

density function of the SINR, yielding

Pep(d) =

∫

Pep(d|γ)f(γ)dγ. (4.14)

Thus, we can use the process shown in Section 4.2 to derive a closed-form solution

for (4.14), which can be expressed as

Pep(d) ≈
1√
π

Nt
∑

n=1

wnQ

(
√

2d
Es

σ2
n

exp
(√

2σxn + µ
)

)

, (4.15)

where µ and σ are the lognormal distribution parameters which were found to minimize

the Kullback-Leibler distance between the lognormal approximation and the true SINR

distribution from a uncoded precoded multicarrier system employing MMSE equalization.

We remind that these parameters were presented in Tables 4.1 and 4.2 for some channel

models.

The union bound for the coded error performance can be obtained by remplacing (4.14)

in (4.12), resulting in

Pe ≤
1

kc

∞
∑

d=dfree

w(d)Pep(d). (4.16)

4.4 Simulation Results

In this section, simulation results to validate the approach presented in the previous

sections in different situations are presented. The simulation parameters used are depicted

in Table 4.3. In the coded simulations, a mother convolutional code of rate 1/2 with a

generating polynomial (133, 171)8, a constraint length K = 7 and free distance dfree = 10

is used. Higher rates are obtained through puncturing. Table 4.4 contains the weights at

each Hamming distance for the code rates used in this section. Only the 6 first Hamming
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Table 4.3 – Simulation parameters for Section 4.4.

Constellation QPSK
Sampling Frequency 10 MHz

Channel Models ITU-T Pedestrian B, Vehicular A
Number of channel realizations 20000

Table 4.4 – Error event weights.

Rc dfree w(d), d = dfree, dfree + 1, . . . , dfree + 5

1/2 10 [11 0 38 0 193 0]
2/3 6 [1 16 48 158 642 2435]
3/4 5 [8 31 160 892 4512 23297]

distances were considered, because their impact appears at low SNR [65]. The cyclic prefix

size is the minimum sufficient to eliminate the interblock interference and the power loss

caused by the redundance introduced by the cyclic prefix is taken into account in the SNR

calculation. Channel estimation in the receiver is assumed to be perfect, channel fading

is considered to be quasistatic (time-invariant during each transmitted block) and other

system imperfections are not taken into account in our simulations.

For a SNR of 25 dB, a comparison of the observed SINR distribution (obtained with

20000 channel realizations) with the lognormal approximation with the smallest Kullback-

Leibler distance to the observed distribution is presented in Figure 4.6 for the ITU-T

Pedestrian B channel model and in Figure 4.7 for the ITU-T Vehicular A channel model.

To validate this approach, the results from lognormal distributions whose parameters were

estimated using up to second-order moment matching (MM) and maximum likelihood (ML)

estimation are also presented. These figures are shown with the x axis in logarithmic scale

to make it easier to visualize the beginning of the probability density function curve. It

is possible to see that the approximation using the Kullback-Leibler distance to estimate

its parameters matches more closely the target distribution than the other ones in the

beginning of the pdf curve for both cases.

In order to show the effect of the left tail of the pdf function on the bit error probability,
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Figure 4.6 – A comparison of the true SINR distribution with the approximations at SNR
= 25 dB for the Pedestrian B channel model.

Figure 4.8 presents the bit error probability when taking into account into the calculation

different percentages of the left tail of the SINR’s probability density function curve. For

this simulation, the Vehicular A channel model was used. As stated before and validated

by the results seen in this Figure, only the lowest SINR values (the beginning of the pdf

curve) are important when calculating the bit error probability at high SNR values, due

to the fact that the rest of the pdf curve will correspond to very high SINR values, which

in turn will lead to a near-zero bit-error rate.

Figures 4.9 and 4.10 shows the system’s bit error probability (an average from all

channel realizations) compared to its approximations, for the Pedestrian B and Vehicular

A channel models respectively. (4.11) is used to calculate the bit error probability for the

lognormal approximation. The parameters µ and σ as a function of the SNR and the

channel model are estimated by moment matching, maximum likelihood estimation and

the ones which result in the smallest Kullback-Leibler distance to the target distribution.

We see that the approximation employing the KL distance is more precise in higher SNRs
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Figure 4.7 – A comparison of the true SINR distribution with the approximations at SNR
= 25 dB for the Vehicular A channel model.

(> 10 dB) when compared to the other ones using the lognormal distribution in both cases,

since it ensures that it will be closer to the real distribution at the left tail of the probability

density function curve (as seen in Figures 4.6 and 4.7), which are the significant ones as

shown in Figure 4.8.

To validate the novel method presented in Section 4.3, Figure 4.11 compares the results

obtained by Monte Carlo simulation with the results from (4.16) using the lognormal

approximation (with its parameters obtained by the search for the smallest KL distance),

for N = 512, the Pedestrian B channel model and code rates Rc of 1/2, 2/3 and 3/4. It is

possible to see that the error bounds obtained with the lognormal approximation are very

close to the Monte Carlo simulation results.
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Figure 4.8 – Error performance when taking into account different parts of the probability
density function curve of the SINR.

4.5 Concluding Remarks

We have presented in this chapter an approximation for the distribution of the SINR

in a precoded multicarrier system employing MMSE equalization. This approximation,

involving the lognormal distribution and the Kullback-Leibler distance, was shown to be

precise when calculating the unconditional uncoded bit error probability even in high signal-

to-noise ratios, due to its fidelity in the beginning of the pdf curve. This approximation

can also serve as an abstraction for the aforementioned system.

With this abstraction, we have developed a novel method of deriving the analytical

coded performance of a precoded multicarrier system employing MMSE equalization. This

method allows for a quicker performance evaluation when compared to time-intensive nu-

merical simulations. By using the lognormal approximation to abstract the precoded mul-

ticarrier system, an equation for the corresponding PEP was derived. Simulation results

have shown that the analysis is accurate when compared to the Monte Carlo simulation
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Figure 4.9 – Comparison of the error performance using the SINR with the SINR ap-
proximations for the Pedestrian B channel model.

results.

The next chapter deals with the application of widely linear processing to precoding

and equalization for SC-FDE systems using MMSE equalization.
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Figure 4.10 – Comparison of the error performance using the SINR with the SINR ap-
proximations for the Vehicular A channel model.
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Chapter 5

Widely Linear MMSE Precoding and
Equalization Techniques for SC-FDE
Systems

5.1 Introduction

We have investigated the use of linear equalization in precoded multicarrier systems in

the previous chapters. However, as seen in Section 2.8, if the transmitted signal is improper

widely linear processing can be employed with a performance gain.

In this chapter we propose SC-FDE systems using widely linear MMSE-based equa-

lization, decision-feedback equalization and Tomlinson-Harashima precoding. The use of

widely linear MMSE-designed equalization and precoding brings a performance advan-

tage with respect to stricly linear systems when improper constellations are transmitted.

It also makes the system less sensitive to the feedback filter length (in systems using

decision-feedback equalizers) and to channel estimation/channel state information errors

(in Tomlinson-Harashima precoded systems) when compared to systems using strictly li-

near processing. An expression for the Signal to Interference-plus-Noise Ratio (SINR) at

the output of the receiver is provided for all cases.

It is divided as follows. Section 5.2 presents the system models used in this work. The

derivation of the error performance of SC-FDE systems employing WL-MMSE precoding

and equalization is presented in Section 5.3. Simulation results validating the previous

sections are shown in Section 5.4. Finally, the concluding remarks are discussed in Section
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5.5.

5.2 System Model

On the transmitter side, the block s̃ = [s̃1 s̃2 . . . s̃N ]T of size N is composed by symbols

s̃i belonging to an improper constellation (such as M -PAM or M2-OQAM) with unit

energy. The transmitted signal, after the RF module, will pass through a channel with an

impulse response h̃ = [h̃1 h̃2 . . . h̃L
h̃
]T of size L

h̃
. Thus, the cyclic prefix appended to the

block s̃ before transmission must have a length LCP of at least L
h̃
+ 1, resulting in s̃CP .

Complex proper uncorrelated additional white gaussian noise (AWGN) ñ with zero mean

and variance σ2
n also contaminates the transmitted signal.

Due to the cyclic prefix, the NxN channel matrix HM is a circulant one, with its first

column containing the impulse response appended by (N − LCP − 1) zeros. Since HM is

a circulant matrix, we can apply an eigendecomposition to this matrix to obtain W∗HW,

where W is the discrete Fourier transform (DFT) matrix and H is a NxN diagonal matrix

with its (k,k)-th entry Hk corresponding to the k-th DFT coefficient of the channel impulse

response h̃.

The signal r̃ = [r̃1 r̃2 . . . r̃N+LCP
]T at the entry of the receiver has its cyclic prefix

removed and passes to the frequency domain through a Fast Fourier Transform (FFT),

whose normalized matrix W is of size NxN , so that equalization can be done in the

frequency domain. This will result in the signal r, expressed as :

r = Hs+ n

= HWs̃+ n, (5.1)

where H corresponds to the channel frequency response of a specific channel realization

and s = Ws̃. Equalization is performed by an filter based on the minimum mean square

error (MMSE) criterion. However, since the equalizer is dealing with a signal from an

improper constellation (which has non-zero pseudocorrelation), it has to employ widely

linear processing to use all the second-order statistics made available by the received signal.

In order to do that, the original version of the signal in the frequency domain together with

its conjugate version are processed by the equalizer.
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5.2.1 WL-MMSE Equalizer

The system model for a SC-FDE system employing widely linear MMSE-based equa-

lization is presented in Figure 5.1. The signal at the output of the equalizer z is given

by

z = AH
1 r+AH

2 r∗ = AHR, (5.2)

with AH = [AH
1 AH

2 ] and R =

[

r

r∗

]T

.

The cost function ǫWL to derive the equalizer A based on the WL-MMSE criterion is

ǫWL = E[||AHR− s||2]

= AHCRRA−AHCRs −CsRA+ IN . (5.3)

where

CRR = E[RRH ]

= E

{[

r

r∗

]

[

rH rT
]

}

=

[

Crr Crr

C
∗
rr C∗

rr

]

(5.4)

Crr = E
[

rrH
]

= E
[

(Hs+ n)(nH + sHHH)
]

= HE[ssH ]HH + σ2
nI

= HWE [̃ss̃H ]WHHH + σ2
nI

= HWWHHH + σ2
nI

= HHH + σ2
nIN (5.5)

Crr = E
[

rrT
]

= E
[

(Hs+ n)(nT + sTHT )
]

= HE[ssT ]HT

= HWE [̃ss̃T ]WTHT

= HWWTHT

= HUHT (5.6)
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with U expressed by

U =















1 0 0 . . . 0
0 0 0 . . . 1
...

...
...

...
...

0 0 1 . . . 0
0 1 0 . . . 0















, (5.7)

CRs = E[RsH ] = E

{[

r

r∗

]

sH
}

= E

{[

rsH

r∗sH

]}

=

[

HE[ssH ]
H∗E[s∗sH ]

]

=

[

HWE [̃ss̃H ]WH

H∗(WE [̃ss̃T ]WT )∗

]

=

[

HWWH

H∗(WWT )∗

]

=

[

H

H∗U

]

(5.8)

and

CsR = E[sRH ] = E

{

sH
[

r

r∗

]}

= E

{[

srH

s∗rH

]}

=

[

E[ssH ]H
E[s∗sH ]H∗

]

=

[

WE [̃ss̃H ]WHH

(WE [̃ss̃T ]WT )∗H∗

]

=

[

WWHH

(WWT )∗H∗

]

=

[

H

UH∗

]

, (5.9)

with E[nnT ] = 0 (since the noise is proper), and WWH = IN . We obtain the optimal

equalizer A by differentiating ǫWL with respect to A and equalling the result to zero,

resulting in

A = C−1
RRCRs

=

[

HHH + σ2
nIN HUHT

H∗UHH H∗HT + σ2
nIN

]−1 [
H

H∗U

]

. (5.10)

Using blockwise matrix inversion, C−1
RR can be expressed by

C−1
RR =

[

AA BB

CC DD

]

, (5.11)
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with

AA =
[

σ2
n

(

Hmod + σ2
nIN

)]−1 (
UHHHU+ σ2

nIN
)

(5.12)

BB =
[

σ2
n

(

Hmod + σ2
nIN

)]−1
HUHT (5.13)

CC =
[

σ2
n

(

Hmod + σ2
nIN

)]−1
H∗UHH (5.14)

DD =
[

σ2
n

(

Hmod + σ2
nIN

)]−1 (
UHHHU+ σ2

nIN
)

(5.15)

and

Hmod = HHH +UHHHU. (5.16)

Analysing (5.16), it is possible to see that Hmod is a diagonal matrix with its diagonal

equal to [2|H1|2 (|H2|2+|HN |2) (|H3|2+|HN−1|2) . . . 2|HN/2+1|2 . . . (|H3|2+|HN−1|2) (|H2|2+
|HN |2)].

This way, the equalizer A can be expressed as

A = C−1
RRCRs (5.17)

=

[

A1

A2

]

(5.18)

with

A1 =
[

σ2
n

(

Hmod + σ2
nIN

)]−1 (
UHHHU+ σ2

nIN
)

H−

−
[

σ2
n

(

Hmod + σ2
nIN

)]−1
HUHTH∗U

=
[

σ2
n

(

Hmod + σ2
nIN

)]−1 (
σ2
nH
)

=
(

Hmod + σ2
nIN

)−1
H (5.19)

and

A2 = −
[

σ2
n

(

Hmod ++σ2
nIN

)]−1
H∗UHHH+

+
[

σ2
n

(

Hmod + σ2
nIN

)]−1 (
UHHHU+ σ2

nIN
)

H∗U

=
[

σ2
n

(

Hmod + σ2
nIN

)]−1 (
σ2
nH

∗U
)

=
(

Hmod + σ2
nIN

)−1
H∗U. (5.20)

When transmitting proper signals, this equalizer is reduced to the strictly linear MMSE

one, since with proper signals E[ssT ] = 0. This process is very similar to the one done in

[66], but better details A1 and A2, showing that A2 is the conjugate version of A1.
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After equalization, an inverse Fast Fourier Transform (IFFT) is done so that the symbol

decision is realized in the time domain. Due to the fact that widely linear processing is

employed in the equalizer, the estimated symbols z̃ at the output of the receiver will be

purely real.

5.2.2 WL-MMSE DFE Equalizer

When using a WL-MMSE DFE equalizer, the system model is described in Figure 5.2.

Assuming that correct past decisions are passed along in the feedback filter, the fre-

quency domain representation q of the symbol estimate q̃ can be expressed as

q = BHR−DHs, (5.21)

where B is the feedforward filter and D is a NxN matrix with its main diagonal being

the Nx1 sized frequency-domain representation of the time-domain feedback filter d̃ =

[d̃1 d̃2 . . . d̃L
d̃
]T , with length L

d̃
. Thus, the cost function ǫWL-DFE to derive the feedforward

filter B is

ǫWL-DFE = E[||BHR−DHs− s||2]

= BHCRRB−BHCRsD−BHCRs−

−DHCRsB+DHD+DH −CsRB+D+ IN . (5.22)

Deriving this cost function with respect to the feedforward filter B and setting it to

zero, we obtain the optimal value of B, expressed as

B = C−1
RRCRs(IN +D)

= A(IN +D). (5.23)

Now, we substitute (5.23) in (5.22) to obtain the new cost function for the optimal

value of the feedback filter d̃, which is

ǫFB =
1

N

N
∑

n=1

|1 +D(n, n)|2
Hmod(n, n) + σ2

n

. (5.24)
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Using the feedback filter d̃ in the time domain instead of its frequency domain version

D in 5.24, we have

ǫFB =
1

N

N
∑

n=1

∣

∣

∣
1 +

∑Ld

l=1 dl exp
(

−j2π ln
N

)

)
∣

∣

∣

2

Hmod(n, n) + σ2
n

. (5.25)

To minimize ǫFB the feedback filter coefficients d̃ are given by the solution of the linear

system

Fd̃ = −g. (5.26)

The L
d̃
xL

d̃
matrix F and the L

d̃
x1 column vector g are expressed, respectively, as

[F]m,l =
N
∑

n=1

exp (−j2π((n(l −m))/N))

Hmod(n, n) + σ2
n

, 1 ≤ m, l ≤ L
d̃

(5.27)

and

[g]m =

N
∑

n=1

exp (j2π(nm/N))

Hmod(n, n) + σ2
n

, 1 ≤ m ≤ L
d̃
. (5.28)

To initialize the feedback filter, the last L
d̃

symbols of x̃CP can be used. Once d̃ is de-

termined, B can be calculated by (5.23). To cancel all the ISI from the previous detected

symbols, the size of the feedback filter L
d̃

should be equal to the channel length L
h̃
.

5.2.3 WL-MMSE Tomlinson-Harashima Precoder

A block diagram for the SC-FDE system using WL-MMSE Tomlinson-Harashima pre-

cocding is shown in Figure 5.3.

In this system model, we consider a single carrier block transmission, with the block to

be transmitted s̃
′

= [s̃
′

1 s̃
′

2 . . . s̃
′

N−L
h̃

]T of size N−L
h̃

composed by symbols belonging to an

improper constellation (such as M -PAM or M2-OQAM) with unit energy. s̃
′

then goes to

the Tomlinson-Harashima precoder, which consists of a L
d̃
-sized filter d̃

′

= [d̃
′

1 d̃
′

2 . . . d̃
′

L
d̃

]T

and a modulo operator.

The modulo-2M operation to the vector t̃ in the precoder is done independently on the

real and imaginary parts. The output of this modulo operation is given by

x̃
′′

= t̃− 2M

⌊

Re(̃s
′

)

2M
+

1

2

⌋

− j2M

⌊

Im(̃s
′

)

2M
+

1

2

⌋

= t̃+ ã. (5.29)
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5.2. SYSTEM MODEL

If the real (imaginary) part of t̃ is greater than M , 2M is (repeatedly) subtracted from

it until the result is less than M . If this real (imaginary) part is less than −M , 2M is

(repeatedly) added to it until the result is greater than or equal to −M . In other words, t̃

is reduced modulo 2M to the half-open interval [−M,M), limiting the effective dynamic

range of the transmitted signal to this interval. This modulo operation is represented by

the sequence ã. After this operation, L
h̃

zeros are appended to x̃
′′

to initialize the state of

the precoding filter, resulting in the vector x̃
′

= [x̃
′

1 x̃
′

2 . . . x̃
′

N ]T of size Nx1. More power

is necessary to transmit the precoded symbols when compared to non-precoded ones (see

Table 2.2) ; however, this penalty becomes negligible with an increase in constellation size.

Ignoring the modulo operation, the output of the Tomlinson-Harashima precoder x
′

is

x
′

k = s
′

k −
L
d̃
∑

l=1

d
′

lxk−l. (5.30)

x̃
′

follows the same path of a SC-FDE WL-MMSE-DFE up to the feedback filter (cy-

clic prefix insertion, passage through the channel, cyclic prefix removal, FFT, WL-MMSE

equalization by the filter B
′

and IFFT). The same modulo operation realized in the trans-

mitter is done in the receiver to ỹ
′

to map the received data to the interval (−M,M ],

resulting in the symbol estimate ŝ
′

. Only the first N − L
h̃

elements of ŝ
′

are used for the

decision.

An equivalent linearized scheme of the system model presented in Figure 5.3 is shown

in Figure 5.4, following the time domain THP conversion made in [67]. In this Figure,

K = [HH∗]T and D
′

is a NxN diagonal matrix with its main diagonal being the N -sized

Fourier transform of the Tomlinson-Harashima precoder d̃
′

.

Figure 5.4 shows that the symbol estimate ŝ
′

is given by

ŝ
′

= s̃
′

d + n+ ĩ, (5.31)

where s̃
′

d is the desired symbol vector, n the filtered noise and the remaining interference

is expressed by ĩ. This way, the error vector ẽ
′

is

ẽ
′

= n+ ĩ

= W−1((B
′

)Hn) +W−1((B
′

)HK−D
′

)x
′

. (5.32)
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ã

+
+

F
F
T

p

(D
′) −

1
x

′

D
′

(B
′)
H
K

−
D

′

IF
F
T

IF
F
T

s̃
′dĩ
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5.3. ERROR PERFORMANCE ANALYSIS

Using (5.32), we obtain the mean square error E
′

, given by

E
′

= E
{

|e′ |2
}

= E
{

|n+ ĩ|2
}

. (5.33)

Minimizing (5.33) we can find that B
′

and d̃
′

are the same as the ones in a SC-FDE

system employing a MMSE-based decision-feedback equalizer together with widely linear

processing. Thus, the coefficients of the Tomlinson-Harashima precoder d̃
′

= d̃ are given

by (5.26) and the widely linear MMSE equalizer B
′

= B is given by (5.23).

5.3 Error Performance Analysis

5.3.1 SINR for the WL-MMSE Receiver

Let us remember that after the FFT in this system, the received signal and its conjugate

version are grouped in the vector R. Both versions are processed together in the frequency

domain by the WL-MMSE equalizer A. Thus, the symbol estimate z̃ is expressed by

z̃ = W−1A
H
R

= W−1A
H

[

HWs̃+ n

(HWs̃+ n)∗

]

(5.34)

is obtained after deprecoding the signal z at the output of the WL-MMSE equalizer by the

IFFT matrix W−1.

We can rewrite z̃ in the following way :

z̃ = W−1(AH
1 H+AH

2 H∗U)Ws̃+W−1AH
1 n+W−1AH

2 Un∗. (5.35)

The combined effect of the ISI and the noise in z̃ is e, given by

e = W−1(AH
1 H+AH

2 H∗U− IN )Ws̃

+W−1AH
1 n+W−1AH

2 Un∗. (5.36)

With e we can calculate the mean square error MSEWL, expressed as

MSEWL = W−1
(

Hmod + σ2
nIN

)−1
W. (5.37)
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5.3. ERROR PERFORMANCE ANALYSIS

Since MSEWL is a circulant matrix, its diagonal elements are all the same. Thus, the

MSE for all the elements of z̃ is 1
N tr[MSEWL]. Note that MSEWL is much lower than the

MSE given by the stricly linear equalizer, which is 1
N tr[W−1(HHH+σ2

nIN )−1W] [39]. The

effective SINR after deprecoding when using a WL-MMSE equalizer is

γWL-MMSE =
1

2

(

γN

tr[MSEWL]
− 1

)

, (5.38)

with

tr[MSEWL] =
1

2|H1|2 + σ2
n

+
1

2|HN/2+1|2 + σ2
n

+

+

N/2
∑

i=2

2

|Hi|2 + |HN+2−i|2 + σ2
n

, (5.39)

and γ = Es/σ
2
n. The division by 2 in (5.38) is because the final symbol decision is only

done on the real estimate [68]. Since [66] does not specify well A1 and A2, (5.38) clarifies

the calculation of the SINR for a SC-FDE system using widely linear MMSE equalization

in the SISO case. (5.38)) also does not rely on matrix inversion for its calculation, as is

the case for the SINR expression given in [66].

5.3.2 SINR for the WL-MMSE DFE Receiver

For the SC-FDE system using WL-MMSE DFE equalization, its MSE can be expressed,

using the method described in [69], as

MSEWL-DFE = exp

(

1

N

N
∑

n=1

log

(

1

1 + γHmod(n, n)

)

)

. (5.40)

The mean square error expressed in (5.40) does not take into account the error propagation

effect that can be caused by erroneous previous decisions. This MSE is lower than the one

obtained by the strictly linear solution, given by [41]

MSEDFE = exp

(

1

N

N
∑

n=1

log

(

1

1 + γ|Hn|2
)

)

. (5.41)

The SINR for the SC-FDE system using WL-MMSE DFE equalization is given by

γWL-DFE =
1

2

(

1

MSEWL-DFE

− 1

)

. (5.42)

Again, we divide by 2 to obtain the effective SINR for the system using widely linear

equalization.
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5.3.3 SINR for the WL-MMSE-THP Precoder

The MSE for the WL-MMSE-THP SC-FDE system is the same one from a WL-MMSE

DFE one outside of a factor η which will represent the precoding loss. Thus, it can be

expressed as

MSEWL-THP = exp

(

1

N

N
∑

n=1

log

(

1

1 + γ
ηHmod(n, n)

))

, (5.43)

with η = M2

M2−1
for one-dimensional constellations and η = M

M−1 for two-dimensional ones.

Finally, to calculate the error probability Pe conditional to a specific channel realization,

the following equation is used :

Pe = αQ(
√

βγ), (5.44)

where α and β are constellation-specific parameters, γ can be γWL-MMSE, γWL-DFE or γWL-THP

and Q(x) = 1√
2π

∫∞
x exp −t2

2 dt. The unconditional error probability is obtained by avera-

ging over all the conditional error probabilities corresponding to the channel realizations.

5.4 Simulation Results

Simulation results to validate the use of widely linear MMSE based equalization and

precoding for different block sizes and channel models are presented in this section. For

the simulations presented in this section, the cyclic prefix size used is the minimum suffi-

cient to eliminate the interblock interference and the power loss caused by the redundance

introduced by the cyclic prefix is taken into account in the SNR calculation. A sampling

frequency of 10 MHz was used. To calculate the final bit error performance in the Monte

Carlo simulations, a minimum of 400 errors were taken into account for each point ; for

the method presented in Section 5.3, 5000 independent channel realizations were done to

obtain the unconditional error probability. Channel estimation in the receiver is assumed

to be perfect (unless noted otherwise), channel fading is considered to be quasistatic (time-

invariant during each transmitted block) and other system imperfections are not taken into

account. For THP systems, the precoder size is L
d̃
. In simulations using channel coding,

a mother convolutional code with R = 1/2, K = 7, (171, 133)8 code followed by a block

interleaver is used at the transmitter ; in the receiver, a block de-interleaver followed by a

87



5.4. SIMULATION RESULTS

soft-decision Viterbi decoder is used. Higher code rates are obtained through puncturing.
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Figure 5.5 – Error performance for N = 128 and the Vehicular A channel model in SC-FDE
systems.

Figure 5.5 shows the Monte Carlo results for a SC-FDE system using WL-MMSE

equalization compared to the results provided by (5.44) for transmission symbols drawn

from an BPSK constellation, a block size N = 128 and the ITU-T Vehicular A channel

model. For the systems employing a DFE, its length L
d̃

is equal to the channel length

L
h̃
. For reference, the error performance of SC-FDE systems using strictly linear MMSE

equalization is also shown. It is possible to see that the use of the analysis presented

in this chapter gives consistent results when compared to the Monte Carlo simulation

results throughout the Eb/N0 range. The utilization of the WL-MMSE equalizer brings

a performance gain when compared to the strictly linear MMSE one in the entire Eb/N0

range for systems using or not a DFE, due to the complete use of the second-order statistics

made available by the improper signal. Results using a QPSK constellation for the strictly

linear receiver and a OQPSK constellation for the widely linear one will be the same as

the ones presented in Figure 5.5.
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Figure 5.6 – Error performance for N = 512 and the Pedestrian B channel model in
SC-FDE systems.

Figure 5.6 presents results for N = 512, the ITU-T Pedestrian B channel model and

again a BPSK constellation. The same conclusions made for the previous case can also be

stated for this scenario. For high Eb/N0 ratios, the Monte Carlo simulation can be very

time-consuming for the WL-MMSE receiver, due to low BER values. Thus, the use of the

analytical method presented in this chapter allows us to derive the system performance in

less time.

Results for the same scenario employed in Figure 5.5, but with 16-QAM/OQAM constel-

lations in Figure 5.7 and 64-QAM/OQAM constellations in Figure 5.8, are shown. It is

possible to see that the performance advantage between the widely linear equalizer and the

strictly linear one in the case where a DFE is not used increases when the constellation size

grows. With a DFE, the advantage for the widely linear equalizer remains the same with

the increase of the constellation size. This can be explained by the fact that the WL-MMSE

feedforward filter is more effective in eliminating the ISI when compared to the strictly li-

near MMSE feedforward filter, thus leaving less ISI for its feedback filter to remove. The
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Figure 5.7 – Error performance for N = 128 and the Vehicular A channel model for
16-QAM/OQAM in SC-FDE systems.

effect of the linear feedforward filter’s lower efficiency in removing the ISI is compensated

by its feedback filter. It is interesting to note that the system with a WL-MMSE DFE

transmitting symbols from a 64-OQAM constellation has better error performance that

the system transmitting symbols from a 16-QAM constellation using regular linear MMSE

equalization.

In Figure 5.9, results for N = 128, the Vehicular A channel model, but this time using

convolutional coding, are presented. In this scenario, the performance gain from using the

WL-MMSE equalizer is also observed, with its advantage growing with a weaker code ratio.

For systems using a feedback filter, coding is not directly applicable due to the effect of

error propagation in the feedback filter, which causes a significant amount of burst errors in

the Viterbi decoder [42]. Efforts to overcome this problem in decision-feedback equalizers

have been discussed in [70; 71].

The results presented from previous simulations considered that in DFE systems the
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Figure 5.8 – Error performance for N = 128 and the Vehicular A channel model for
64-QAM/OQAM in SC-FDE systems.

feedback filter length L
d̃

was equal to the channel impulse response length L
h̃
. Figure

5.10 shows the effect of the feedback filter length L
d̃

on the error performance of SC-

FDE DFE systems. Feedback filter sizes of L
h̃
/2, L

h̃
/4 and L

h̃
/8 were considered. The

system using widely linear equalization has its error performance less sensitive to the error

propagation effect caused by the smaller feedback filters when compared to the system using

strictly linear equalization, because its feedfordward filter is more effective in removing the

ISI. With smaller feedback filters, the computational complexity needed to calculate their

coefficients in (5.27) and (5.28) is reduced.

The error performance results of widely linear MMSE Tomlinson-Harashima precoding

applied to a SC-FDE system compared to its strictly linear version for a BPSK constel-

lation, N = 128 and the ITU-T Vehicular A channel model are shown in Figure 5.11. In

these simulations, channel estimation in the receiver and channel state information in the

transmitter are assumed to be perfect. It is possible to see that the system using widely

linear processing outperforms its strictly linear counterpart. This is due to the complete
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Figure 5.9 – Error performance for N = 128 and the Vehicular A channel model using
coding in SC-FDE systems.

use of the statistics made available by the transmitted signal.

Results for Tomlinson-Harashima precoded systems using convolutional coding are pre-

sented in Figure 5.13. In this scenario, the performance gain from using widely linear-based

precoding is also observed, with its advantage growing with a weaker code ratio.

The previous results when using Tomlinson-Harashima precoding assumed perfect chan-

nel estimation in the receiver and perfect channel state information at the transmitter ;

however, this is an unlikely scenario in real conditions, because of channel variations. As

stated before, Tomlinson-Harashima precoded systems rely on complete channel state in-

formation in the transmitter, which in turn needs perfect channel estimation in the receiver.

A comparison on the impact of channel estimation errors and imperfect CSI in the error

performance of MMSE-THP SC-FDE systems using or not widely linear equalization is

presented in Figure 5.12 for Eb

N0
= 19.25 dB, N = 128 and the Vehicular A channel model.

The imperfect channel estimates can be expressed as He = H + EH, where EH is the
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Figure 5.10 – Error performance for N = 128 and the Vehicular A channel model with
different L

d̃
sizes in SC-FDE DFE systems.

channel estimation error matrix, with its diagonal composed of zero-mean Gaussian dis-

tributed random variables with variance σ2
e [72]. This imperfect channel estimate is then

passed to the transmitter, which will have erroneous CSI. While the error performance

of the strictly linear system degrades as the error variance σ2
e increases, the widely linear

precoded SC-FDE system is nearly insensitive to the increase of the channel estimation

error variance.

5.5 Concluding Remarks

This chapter presented SC-FDE systems using widely linear MMSE-based equalization,

decision-feedback equalization and Tomlinson-Harashima precoding. The use of widely li-

near processing brings, when the transmitter uses improper constellations, a performance

gain compared to when common strictly linear MMSE processing is used. With respect to

SC-FDE systems using MMSE-DFE equalization, together with the performance gain the
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Figure 5.11 – Error performance for N = 128 and the Vehicular A channel model in THP
SC-FDE systems.

use of widely linear processing also makes the error performance less sensitive to the feed-

back filter size. The error performance of Tomlinson-Harashima precoded systems using

widely linear processing is also much less sensitive to channel estimation/CSI errors than

the one from systems using strictly linear processing.

The next chapter brings the concluding remarks and suggestions for future work.
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Chapter 6

Conclusion

In this thesis new precoding and equalization techniques for multicarrier systems were

proposed, together with a theoretical analysis of their error performance. First, the error

performance of precoded FBMC/OQAM systems was studied in Chapter 3. It was found

out that this error performance is highly sensitive to residual ISI stemming from incomplete

subchannel equalization. If the subchannel frequency response is flat or if the subchannel

equalizer is large enough to compensate the frequency response there will be no residual ISI

after equalization and the diversity order will be the same of a SC-FDE system. However,

if subchannel equalization is incomplete, the residual interference after equalization will

reduce the maximal diversity possible. An expression for the SINR considering these cases

was found for uncoded transmissions ; this expression provides results consistent with the

Monte Carlo simulation results.

Chapter 4 deals with the probability distribution function of the SINR in a precoded

multicarrier system employing linear MMSE equalization. We proposed the lognormal dis-

tribution for this SINR as an accurate approximation in the sense of the BER, with its

parameters minimizing the Kullback-Leibler distance to the target SINR. By minimizing

the Kullback-Leibler distance, we ensure that the approximation will be precise in the lower

tail of the pdf, which is the part that counts for the calculation of the BER. With this lo-

gnormal distribution as an abstraction for the system we have developed a novel analytical

way to determine the error performance of a precoded multicarrier system employing linear

MMSE equalization and convolutional channel coding. This method gives results matching
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the Monte Carlo simulation results.

MMSE-based equalizers and Tomlinson-Harashima precoders for SC-FDE systems em-

ploying widely linear processing were proposed in Chapter 5. Since these equalizers and

precoders make full use of the available second-order signal statistics if the transmitted si-

gnal is improper, they have a lower mean square error and better error performance. MSE

and SINR expressions for all equalizers and precoders presented were developed, and were

found to be in agreement with the Monte Carlo simulation results. Widely linear decision-

feedback equalizers in SC-FDE systems have their error performance less sensitive to the

length of the feedback filter. The error performance of Tomlinson-Harashima precoders

using widely linear processing is much less sensitive to erroneous channel state information

at the transmitter when compared to their strictly linear counterparts.

Future work to extend the results presented in this thesis could be centered in the

following lines :

– We have seen in Chapter 5 that SC-FDE systems using widely linear equalization

have less ISI after the feedforward filter when compared to regular linear systems.

Thus, iterative widely-linear equalizers for SC-FDE systems (such as the linear ones

presented in [73; 74]) could need less iterations to reach the desired error performance

when compared to their strictly linear versions.

– Since FBMC/OQAM systems transmit signals from improper modulations, the appli-

cation of widely-linear equalizers and precoders in linearly precoded FBMC/OQAM

systems could increase their error performance. An analysis of their error performance

when the subchannel frequency response is selective as the one done in Chapter 3

(if their residual ISI after incomplete equalization also affects the diversity order as

much as in precoded FBMC systems using linear equalization) would also be desired.

– In [39] the diversity order of SC-FDE systems using linear equalization is studied. It

was found out this diversity order varies with block and constellation sizes. In Chap-

ter 5 it was found that with an increase in the constellation size the error performance

advantage of SC-FDE systems using widely linear MMSE equalizers (without DFEs)

over their linear counterpart improves. Thus, the mathematical analysis of the diver-

sity order in SC-FDE systems using widely linear processing could bring interesting
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results.

– A more fundamental analysis of maximal achievable bit rate of the widely linear

decision-feedback equalizer and Tomlinson-Harashima precoder does not exist yet in

the literature.

– It was found out in [75] that adaptive multicarrier transmission achieves a bit rate

greater than or equal to that of SC-FDE systems using decision-feedback equalization.

It remains to be verified if this result holds for SC-FDE WL-MMSE-DFE systems.

– The extension of the analysis presented in Chapter 4 for the case where subchan-

nel equalization is incomplete in precoded FBMC/OQAM systems and for SC-FDE

systems using widely linear processing.
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Nouvelles Techniques de Précodage et

d’Égalisation pour les Systèmes
Multiporteuses

Résumé :
Dans cette thèse, de nouvelles techniques d’égalisation et de précodage pour des systèmes multiporteuses
ont été proposées et analysées. D’abord, la probabilité d’erreurs des systèmes multiporteuses à base
de bancs de filtres (FBMC) précodées a été analysée. Il a été montré que cette performance est très
sensible à l’égalisation complète des sous-canaux. Lorsqu’ il y a de l’interference inter-symbole residuelle
qui vient de l’égalisation imparfaite des sous-canaux, il y a une perte de diversité ; cette diversité peut
être récuperée avec l’utilisation d’un nombre de sous-canaux assez grand pour que chaque sous-canaux
subisse de l’évanouissement plat ou avec l’utilisation d’un égaliseur par sous-canal avec une longueur
suffisante pour compenser cette réponse en fréquence. Une approximation pour la distribution du
rapport signal/bruit-plus-interfèrence (SINR) des systèmes SC-FDE qui utilisent égalisation MMSE
linéaire a été ensuite proposée. Cette approximation utilise la distribution lognormal avec la plus petit
distance de Kullback-Leibler vers la vraie distribution, et nous avons montré qu’elle est précise pour
estimer la performance d’erreurs ; elle sert aussi comme une abstraction de ce système. Avec cette
abstraction, une méthode précise pour obtenir la performance d’erreur analytique codée de ces systèmes
a été proposée. Finalement, des précodeurs Tomlinson-Harashima (THP) et égaliseurs (linéaires et à
retour de décision) largement linéaires pour des systèmes SC-FDE ont été proposés. Ces précodeurs et
égaliseurs ont une meilleures performance comparés aux versions strictement linéaires lorsque les signaux
de constellations impropres sont transmises. Aussi, le taux d’erreurs quand des égaliseurs à retour de
décision sont utilisés est moins sensible à la longueur du filtre de retour. Quand des précodeurs large-
ment linéaires sont utilisés, cette performance devient moins sensible aux erreurs d’estimation des canaux.
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Systèmes multiporteuses, Précodage, Égalisation, Traitement largement linéaire



Bruno SENS CHANG
New Precoding and Equalization

Techniques for Multicarrier Systems

Abstract :
In this thesis, new precoding and equalization techniques for multicarrier systems were proposed and
analyzed. First, the error performance of precoded filterbank multicarrier (FBMC) systems was analyzed.
It was found out that this performance is highly sensitive to complete subchannel equalization. When
there is residual intersymbol interference (ISI) stemming from imperfect subchannel equalization there is
a loss of diversity ; this loss can be prevented with the adoption of a number of subchannels large enough
so that each subchannel suffers flat fading or with the utilization of a subchannel equalizer with sufficient
length to compensate the subchannel frequency response. After that, an approximation for the signal
to interference-plus-noise ratio (SINR) distribution of SC-FDE systems using linear MMSE equalization
was proposed. This approximation uses the lognormal distribution with the smallest Kullback-Leibler
distance to the true distribution, and was shown to be precise in the error performance sense ; it serves
as a system abstraction. With this abstraction, a precise method to obtain the analytical coded error
performance of these systems was proposed. Finally, widely linear Tomlinson-Harashima precoders
and equalizers (linear and decision-feedback) for SC-FDE systems were proposed. These precoders
and equalizers have better error performance when compared to their strictly linear versions if signals
coming from an improper constellation are transmitted. Their error performance when decision-feedback
equalizers are used is less sensitive to the length of the feedback filter. When widely linear precoders are
used, this error performance becomes less sensitive to channel estimation errors.

Keywords :
Multicarrier systems, Precoding, Equalization, Widely linear processing


