
N° d’ordre: 4673

THÈSE

PRÉSENTÉE A

L’UNIVERSITÉ BORDEAUX 1

ÉCOLE DOCTORALE DES SCIENCES PHYSIQUES ET DE L‘INGENIEUR

Par Zhiying, TU

POUR OBTENIR LE GRADE DE

DOCTEUR

SPÉCIALITÉ: PRODUCTIQUE

Federated Approach for Enterprise Interoperability: A Reversible

Model driven and HLA based methodology

Soutenue le 20 décembre 2012

Devant la commission d’examen formée de MM.:

David CHEN Professeur, Université Bordeaux 1 Directeur

Gregory ZACHAREWICZ Maître de conférences, Université Bordeaux 1 Co-directeur

Agostino BRUZZONE Professeur, University of Genoa, Italy Rapporteur

Ricardo JARDIM-GONCALVES Professeur, New University of Lisbon, Portugal Rapporteur

Dechen ZHAN Professeur, Harbin Insititute of Technology, China Examinateur

Yves DUCQ Professeur, Université Bordeaux 1 Examinateur

Acknowledgements

The past three years are the unforgettable time in my life. I started my doctorate research,

gained lots of invaluable advices from professors and senior researchers, met many wonderful

friends and colleagues, and moreover, I had my first child during this time. Meanwhile, these

three years are also a difficult time for me. However, I was fortunate enough to met lots of

warm hearted professors and friends, and had a supportive family. They always helped me out,

when I got confused and felt helpless. Accordingly, I would like to take a brief moment to

specifically thank those people who have been a consistent presence through my time as a

Ph.D. student.

Firstly, I have to thank the academic and support staff at the IMS/LAPS of University of

Bordeaux 1. In particular, I must sincerely thank my supervisors, Professor David Chen and

Gregory Zacharewicz. Thank you for introducing me to the ―enterprise interoperability‖

world and ―modeling and simulation‖ world. Thank you for pointing out the right way for me

every time when I got confused in the research. Thank you for accepting to my idea and

complementing it. Thank you for recommending me some interesting academic activities that

broaden my horizon. I would also like to mention my gratitude to Professor Guy Doumeingts,

Jean-Paul Bourrieres, Yves Ducq, Bruno Vallespir, Marc zolghadri, Alix Thecle, and Julien

Francois. Thank you for your advices about how to be a good researcher. In addition, I would

also like to thank Madam Isabelle Zolghadri Grignon and Valerie ABEL for help me out from

the complex administrative problems.

Secondly, I would like to thank my dear colleagues, Jia Zhenzhen, Zhang Xin, Song Fuqi,

Mounir BADJA, Guillaume Vicien, and Wael TOUZI. You are not only my colleagues, but

also my dear friends. Thank Jia Zhenzhen for helping me out every time when I was short of

money. Thank Zhang Xin, and Song Fuqi for willing to listen to my often incoherent

ramblings or provide a welcome distraction. Thank Mounir BADJA, Guillaume Vicien, and

Wael TOUZI for teaching me French, and helping me out in the troubles in particular with

French. Mounir, thank you for always be with me at the very first time when I was in trouble.

Guillaume, thank you for the first congratulation when I received best paper awards, let‘s

always remember the story happened in Coventry.

4

Thirdly, I would like to thank my friends, Yi Guangpeng, Zhang Zhenchuan, Zhang Songtao,

Zhao Kai, Ma Xiaotian, Zhao Qiang, Li Chong, Hou Jinying, Lv Hao, Taochy Mario, and

Armelle Polette. Thank you for hanging out with me every special day, such as Chinese New

Year, Christmas day, and so on. Because of you, my dear friends, I felt less homesick in the

past three year.

Finally, I must reserve me most heartfelt thanks to my family. Without your support, I cannot

finish my doctorate study. Firstly, I must sincerely thank my wife, Lai Xiaoying. We were

married at the first year of my time as a PhD. Then, she quitted her job and flew to Bordeaux

to accompany me. The love support I received from her during this time was altogether above

and beyond anything I could ever expect. One year after, we had our first child, Tu Zihan.

After that, besides taking care of me, she also needed to take care of the baby. She had not

complaint, but kept offering unconditional love without reservation. And then, I must thank

my cute little baby, Zihan. You brought me an enjoyable life. Furthermore, I must mention

my deepest gratitude to my parents, Tu Liuzhang and Lai Dongshui. Honestly, it is very

difficult to adequately articulate the love I received from them. In the past twenty eight years,

they gave me all their love. When, I decided to go abroad to study, they fully supported me,

even though they were so reluctant to send their son to a strange place which is far far away

from home. In a word, they provided everything I needed and without their support I would

never have finished my doctorate study.

Résumé étendu en français

Approche fédérée pour l'interopérabilité d'entreprise: une

méthodologie réversible, modèle entraînée et HLA basée

1. Contexte et problème

Au débutdes années 2000, la Commission Européenne aproposé d'identifierla problématique

relativeau développement des applications logicielles d'entreprise. Plusieurs projets de

rechercheont contribué au développement de l‘interopérabilité d‘entreprises, « Enterprise

Interoperability »(EI) quise concentre principalement surles architectures, les modèles, les

méthodologies et les solutionsopérationnelles pour l‘EI. Sur la base desrésultats de cesprojets

de recherche, de nombreusessolutions d'interopérabilitéd'entrepriseont été testées etmises en

œuvre pouraider les entreprises àse connecter età collaborer avec leurspartenaires d'affaires

dansune entreprise étendueet en réseau.

Aujourd'hui, le contexte économique très dynamique pousse les entreprises à fonctionner de

plus en plus en réseau. Pour obtenir plus d'opportunités commerciales, et survivre face à la

concurrence, les entreprisesne doivent pas uniquement tenir compte de leurs partenaires

commerciaux en lien direct, mais aussi identifier des partenaires commerciaux potentiels en

relation indirecte. Ce contexte nécessite des recherches dans le domaine de l‘EI pour étudier

tous les éléments coopératifs et compétitifs dans un environnement très dynamique et

complexe. Ainsi, les solutionshistoriques de l‘EI, telles que l'approche intégrée et l‘approche

unifiée identifiées dans le Cadre d'Interopérabilité des Entreprises proposé par les membres du

réseau d‘excellence INTEROPNoEpuis utilisé par le laboratoire virtuel INTEROPV-Lab, ne

permettent plus de satisfaire aucontexte économique actuel et futur très versatile. Cecisignifie

que la recherche de l'EI doit porter davantage sur la nature dynamique des besoins de

l'entreprise future, à la fois pour l'entreprise unique ainsi que pour les écosystèmes. Dans ce

contexte, le Cadre d'Interopérabilité des Entreprises a défini ce que devrait être

l‘Interopérabilité, celle-ci devrait être plus dynamique, cette nouvelle forme

estnommée« approche fédérée ». Cette approche exige que l'interopérabilité soitétablie « à la

volée ». Cela signifie que l'ajustement des systèmes et le partage des modèles des divers

6

partenaires doivent s‘effectueren définissant une ontologie ou un méta-modèles qui ne soient

pas prédéfinis, mais formé par une négociation dynamique. Théoriquement, le développement

d‘une EI conforme à cette approche fédérée doit fournir un environnement d'interopérabilité

très flexible et agile qui peut aider les entreprises à s'adapter au contexte économique

dynamique et évolutif.Cette nouvelle voie est identifié dans une feuille de route pour

l‘interopérabilité des entreprise publié par la Commission Européenne qui avait estimé

l'approche fédérée comme l'un des défis de recherche pour les années à venir (Charalabidis et

al., 2008). Cependant, actuellement, mettre complètement en œuvre l'approche fédérée reste

difficile compte tenu de l‘avancée des travaux par approches sémantiques en informatique.

Par rapport à l‘ensemble des points évoqués, cette recherche de doctorat a identifié les défis

suivants :

- Le marché dynamique et un contexte économique obligent l‘entreprise à être capable

d'interagir simultanément avec de multiples partenaires hétérogènes. Cela signifie que

l'entreprise doit être en mesure d'ajuster et d'adapter son système en permanence sur

différents canaux de communication.

- Pour s'adapter et répondre de façon dynamique aux partenaires potentiels

d'interopérabilité, il est nécessaire d'effectuer « à la volée », les changements nécessaires

pour se connecter aux systèmes des partenaires. Par conséquent, la capacité à restructurer

rapidement les systèmes d'entreprise est un enjeu important pour développer l'approche

fédérée de l'EI.

- Avant toute tentative de réingénierie, un autre défi est d'être capable de modéliser et

collecter automatiquement des informations et des données pertinentes sur les systèmes et

les applications existants déjà mis en œuvre dans l'entreprise et concernés par

l'interopérabilité.

- Pour établir dynamiquement l'interopérabilité, il est nécessaire de réduire la complexité

de l‘IE. Comment utiliser les services d'interopérabilité comme des mécanismes

« plug-and-play »permettant de translaterles principes d‘interopérabilité du niveau de

l'IEauxquels ils sont conçus vers leurs opérationnalisations (depuis les niveaux supérieurs

tels que le business, vers les inférieurs tels que les applications techniques) est un autre

défi à prendre en compte dans cette recherche.

2. Contribution de la thèse

Afin de vaincre les défis mentionnés plus haut, cette thèse a contribué à développer un cadre de

modélisation réversible dirigé par les modèles et le standard de simulation distribuée HLA

(High Level Architecture) et une méthodologie basée sur la mise en œuvre de l‘approche

7

fédérée au titre du Cadre d‘Interopérabilité des Entreprises. La contribution globale est résumée

dans la figure 1.

Figure 1.Contribution globale de cetterecherche

Firstly, a Harmonized and Reversible HLA based framework(as shown in figure2) has been

elaborated. This framework has four primary concepts: (1)Harmonized means that this

framework is synthetic, which consists of several techniques. As the framework in figure 2

shows, we propose a new five steps development life cycle which aligns MDA and HLA

FEDEP. In addition, this framework uses web services to improve the flexibility and

compatibilityof the HLA. (2) Reversible means that this framework uses model reverse

engineering technique to discover part of the models from the legacy system. Model reverse

engineering technique aims at avoiding rebuilding the complete legacy system for a new reuse.

The objective is to accelerate the development and reduce the cost. (3) HLA means that this

framework dedicates to the development of HLA based application. The RTI used in this

approach is an open source RTI, poRTIco(poRTIco, 2009). In addition, as mentioned earlier

in Harmonized part, Web Services will be used to improve the limitation of the traditional

HLA. Thus, the HLA approach proposed in this thesis is based on the HLA evolved IEEE

1516
TM

-2010 standard.

Tout d'abord, un cadre harmonisé et réversible basé sur HLA (comme le montre la figure 2) a

été élaboré. Ce cadre comporte quatre concepts principaux : (1) Harmonisée signifie que ce

cadre est synthétique, il se compose de plusieurs techniques. Comme le cadre de la figure 2 le

8

montre, nous proposons un nouveau cycle de vie (de développement) de cinq étapes qui

aligne MDA et HLA FEDEP. En outre, ce cadre fait appel à des services Web afin d'améliorer

la flexibilité et la compatibilité du système HLA. (2) Réversibles signifie que ce cadre utilise

une technique de modélisationinverse (d'ingénierie inverse) pour découvrir une partie des

modèles de l'ancien système. Cette technique d'ingénierie inverse de modélisation vise à

éviter la reconstruction complète de l'ancien système pour une nouvelle réutilisation.

L'objectif est d'accélérer le développement et réduire les coûts. (3) HLA signifie que ce cadre

se consacre au développement d‘applications basées sur HLA. Le RTI utilisé dans cette

approche est un RTI en source ouverte, poRTIco (poRTIco, 2009). En outre, comme

mentionné précédemment dans le cadre harmonisé, les services Web seront utilisés pour

améliorer les limitations traditionnelles de HLA. Ainsi, l'approche HLA proposée dans cette

thèse est basée sur la norme IEEE HLA évolué 1516TM-2010 standard.

Figure 2.Cadre de développement harmonisé et réversible pour application basée sur HLA

Deuxièmement, pour étayer le cadre réversible et harmonisé basé sur HLA, une méthodologie

9

a été élaborée. Elle se compose de trois méthodes : la générationde modèles inverse par la

découverte de modèles, une méthode de conception de fédérésHLA « web-enable », et une

méthode basée sur l‘utilisation d‘ontologieséphémères. Cette méthodologie a proposé une

nouvelle façon de soutenir le développement de l'approche fédérée de l'interopérabilité des

entreprises en réutilisant certaines méthodes existantes, des architectures et des technologies,

tels que MDA (Model Driven Architecture), le « Reverse Engineering »de modèles, HLA

(High Level Architecture), les services Web, et les ontologies. Plus précisément, cette

méthodologie (1) utilise MDA pour formaliser l'architecture du système et les relations entre

les systèmes, (2) applique le reverse engineering de modèle pour réutiliser et harmoniser les

différents systèmes/composants dans le nouveau système d‘information de l'entreprise

interopérable, (3) utilise HLA et lesfonctionnalités des services Web comme assistance

technique, et (4) utilise l'ontologie pour l'analyse de l'information. Après la définition de la

méthodologie, architecture de Reverse Engineering dirigée par les modèles et HLA a été

élaboré sur la base duquel un outil logiciel a été développé. L'utilisation de cet outil logiciel a

été illustrée par une étude de cas illustratifs.

The Harmonized and Reversible HLA based framework defines the general guideline for the

implementation of the three methods mentioned above. These three methods also complement

each other in order to achieve the expected result of the federated approach of enterprise

interoperability.

This framework and methodology have been implemented into a software tool called Model

driven and HLA based Reverse Engineering Tool. The objective and functionality of this tool

is identified by breaking down the name ―Model driven and HLA based Reverse Engineering

Tool‖:

Ce cadre et la méthodologie ont été mis en œuvre dans un outil logiciel appelé outil de

Reverse Engineering dirigée par les modèles et HLA. L'objectif et la fonctionnalité de cet

outil sont identifiés en décomposant le nom de « dirigée par les modèles et HLA outil de base

Reverse Engineering »:

- Reverse Engineering signifie que cet outil peut acquérir des modèles de systèmes

d'information d'entreprise en « rembobinant » les cycles de développement des systèmes

existants.

10

- Basé sur HLA signifie que la plate-forme cible de cet outil est HLA. L'utilisateur final se

connecte à la plate-forme grâce à un fédéré HLA de fédération.

- Dirigé par les modèles (Model Driven) signifie que cet outil doit résoudre les problèmes

d'interopérabilité basées sur des modèles de systèmes existants, puis réformer les modèles

du système interopérables, ce qui peut être converti au final en code exécutable en

fonction de la plate-forme cible.

Ainsi, l'objectif (ou la sortie) de cet outil est une plate-forme interopérable de communication

basée sur HLA. Les modules fonctionnels de cet outil sont (1) un module de construction,

contenant une fonctionnalité de découverte de modèles et d‘inversion de modèles,

d‘ajustement de modèle, et de définition de modèle cible et enfin de génération de code, et (2)

un module d'exécution, contenant l‘envoi/réception de message et leur gestion. L'architecture

de cet outil est illustrée à la figure 3.

11

Figure 3. Architecture de l'outilde Reverse Engineering basésur les modèles et HLA

- La partie « temps de construction » I (Build Time I) est la phase primaire. Il doit

implémenter la méthode inverse de modélisation et de développement de la Fédération

HLA basé sur le RTIpoRTIco. La méthode demodélisation inverse comprend l‘inversion

du modèle, l'ajustement du modèle, la définition d‘un modèle cible et la génération de

code. Il est chargé de préparer l'environnement de simulation pour l‘interopérabilité de

l‘entreprise, qui concerne l'établissement d'une interopérabilité rapide et dynamique. Il est

également responsable de la préparation des composants pour les services Web qui

permettent le développement de fédérés et d‘initier la contribution au glossaire

d‘ontologie Web des participants, qui visent à mettre en œuvre environnement

aveccompatibilité agile, et la gestion de l'environnement de collaboration.

12

- La partie « temps de construction » II (Build Time II) est une phase à la demande. Elle

n‘estréalisée que si un nouveau participant veut se joindre à partir du Web. La tâche de

cette partie est de mettre en œuvre la compatibilité de l‘environnement agile qui permet

aux participants Web de rejoindre la collaboration comme un « plug-and-play ». Cette

partie se compose d‘une méthode de conception d‘un fédéré HLA web-enable et d‘une

méthode de utilisant l'ontologie éphémère pour établir la communication. La méthode

reposant sur les ontologies éphémères est partiellement mis en œuvre dans cette phase

afin d'aider les participants à initier leur glossaire web à partir d‘une ontologie locale.

- La partie « temps d'exécution » (Run Time) est la simulation, cette phase gère l‘échange

d‘information en dynamique y compris l'envoi et la réception de message et leur gestion.

Cela concerne l'échange d'informations transitoireet leurs analyses. Pendant ce temps, la

production et la connexion d‘un nouveaufédéré« Web-enable »peut arriverà tout moment

en cours d‘exécution.

13

Table of Content

General Introduction ... 19

1. Background and Problem .. 21

2. Contribution of the thesis .. 22

3. Organization of the thesis .. 24

Chapter 1. Towards a federated approach of Enterprise interoperability .. 25

1.1. Context and background .. 27

1.1.1. Economic context .. 27

1.1.2. Research background .. 27

1.1.3. Industrial requirements .. 30

1.2. Concepts and definitions ... 31

1.2.1. Basic definitions on enterprise interoperability ... 31

1.2.2. Main concepts of enterprise interoperability ... 33

1.2.3. Main dimensions of enterprise interoperability ... 35

1.3. Research challenges and priorities .. 39

1.3.1. Tendency of Enterprise Interoperability – Federated .. 39

1.3.2. Main research challenges .. 40

1.3.3. Priorities of development .. 41

1.4. Objective and position of the thesis ... 42

1.4.1. Problem and objectives.. 42

1.4.2. Position of the thesis .. 43

1.4.3. Expected results ... 44

1.5. Conclusion ... 44

Chapter 2. Methods and architectures relevant to federated enterprise interoperability 45

2.1. Introduction ... 47

2.2. Relevant models for Systems Interoperability ... 47

2.2.1. LISI reference model ... 48

2.2.2. Database interoperability & Inverted-V model ... 50

2.2.3. Levels of Conceptual Interoperability Model .. 53

2.2.4. The System of Systems Interoperability Model .. 55

2.2.5. Summary ... 56

2.3. Model Driven technologies ... 57

2.3.1. Model Driven Architecture (MDA) ... 57

2.3.2. Model Driven Interoperability (MDI) architecture.. 60

2.3.3. Architecture Driven Modernization (ADM) .. 62

2.3.4. Summary ... 65

2.4. Simulation and application distribution frameworks ... 66

2.4.1. CORBA and RMI .. 66

2.4.2. DIS and ALSP ... 68

2.4.3. High Level Architecture .. 70

2.4.4. Service-oriented architecture (SOA) ... 74

14

2.4.5. Summary ... 78

2.5. Ontology .. 79

2.5.1. Ontology overview .. 79

2.5.2. Ontology for Interoperability .. 80

2.5.3. Ontology mapping approaches .. 80

2.5.4. Summary ... 82

2.6. Conclusion ... 82

Chapter 3. The Harmonized and Reversible HLA based framework and methodology 83

3.1. Introduction ... 85

3.2. The Harmonized HLA&MDA engineering framework .. 88

3.2.1. Why harmonized HLA and MDA ... 88

3.2.2. The proposed Framework .. 90

3.2.3. Summary ... 93

3.3. Model Reverse method .. 94

3.3.1. Why model reverse .. 94

3.3.2. The proposed model reverse method ... 95

3.3.3. Summary ... 117

3.4. Web-enabled HLA federate design method ... 118

3.4.1. Why HLA evolved ... 118

3.4.2. The proposed web-enabled HLA federate design method ... 119

3.4.3. Summary ... 126

3.5. Short-lived ontology method ... 127

3.5.1. Why short-lived ontology .. 127

3.5.2. Overview of short-lived ontology ... 128

3.5.3. Short-lived ontology for federated approach ... 129

3.5.4. Summary ... 133

3.6. Conclusion ... 133

Chapter 4. Implementation of a Model driven and HLA based Reverse Engineering Tool 137

4.1. Introduction ... 139

4.2. The architecture of Model driven and HLA based Reverse Engineering Tool 139

4.3. Build Time I .. 141

4.3.1. UML model discovery ... 142

4.3.2. HLA FOM generation ... 142

4.3.3. Generate HLA Federate Code Block ... 151

4.4. Run Time ... 156

4.5. Build Time II ... 159

4.6. Conclusion ... 162

Chapter 5. Case study ... 165

5.1. Introduction ... 167

5.2. Demonstration ... 167

5.2.1. Harmonization of MDA and HLA FEDEP .. 168

5.2.2. Build Time I... 169

5.2.3. Run Time and Build Time II .. 175

5.3. Conclusion ... 181

15

General Conclusion ... 183

References ... 191

Annex 1: UML file reversed by MoDisco ... 205

Annex 2: FOM generation ... 215

Annex 3: RTI specific code ... 219

16

List of Figures

Figure 1-1. Simplified Interoperability Framework ... 34

Figure 1-2. Enterprise Interoperability Framework ... 35

Figure 1-3. Interoperability concerns from ATHENA and INTEROP NoE 36

Figure 1-4. Basic approaches to develop interoperability .. 37

Figure 1-5. Position of the thesis .. 43

Figure 2-1. Alignment between Organizational Model and LISI ... 50

Figure 2-2. Notional Schema of Database Interoperability .. 51

Figure 2-3. The principles of the Inverted-V model... 52

Figure 2-4. Levels of Conceptual Interoperability Model .. 54

Figure 2-5. System of Systems Interoperability (SOSI) Model ... 56

Figure 2-6. OMG‘s Model Driven Architecture ... 58

Figure 2-7. Reference model for MDI ... 61

Figure 2-8. Layers, packages, and specification of concerns in KDM ... 63

Figure 2-9. CORBA and RMI .. 68

Figure 2-10. Distributed Interactive Simulation .. 69

Figure 2-11. High Level Architecture .. 71

Figure 2-12. OA-Webservice-orchestration infrastructure ... 74

Figure 2-13. Web Services Architecture... 76

Figure 2-14. ontology mapping approaches ... 81

Figure 3-1. Harmonized and reversible development framework for HLA based Application 87

Figure 3-2. Scenario description .. 87

Figure 3-3. Harmonization of MDA and HLA FEDEP .. 90

Figure 3-4. Harmonized federate structure .. 93

Figure 3-5. Model Reverse Process Scenarios ... 95

Figure 3-6. Model Reverse Process.. 96

Figure 3-7. a schema of model reversal structure .. 98

Figure 3-8. KDM models discovered by JavaDiscoverer .. 100

Figure 3-9. UML Model ... 102

Figure 3-10. Jaccard Similarity of set similarity .. 105

Figure 3-11. Relation Matrix.. 106

Figure 3-12. Model similarity transmission process .. 107

Figure 3-13. The possible coverage of transitive candidate ... 109

Figure 3-14. HLA object class structure... 109

Figure 3-15. An execution path for each input combination .. 111

Figure 3-16. Model processing of execution paths .. 112

Figure 3-17. Behaviour model generation .. 114

Figure 3-18. Federate code block generation ... 116

Figure 3-19. HLA Evolved Web Services .. 120

Figure 3-20. Architecture of HLA Evolved Web Services ... 121

Figure 3-21. Web services federate design ... 122

Figure 3-22. General solution for failure tolerance .. 124

Figure 3-23. short-lived ontology .. 129

17

Figure 3-24. Technical schema of the short-lived ontology ... 130

Figure 3-25. State diagrams of message emitter and receiver .. 132

Figure 3-26. Overall contribution of this research ... 134

Figure 4-1. The architecture of Model driven and HLA based Reverse Engineering Tool 140

Figure 4-2. Modisco Tool usage of KDM, Java Model obtainment ... 141

Figure 4-3. Modisco Tool usage for obtaining UML Model .. 142

Figure 4-4. UML file structure ... 143

Figure 4-5. Data structure of UML nodes .. 144

Figure 4-6. UML nodes storage structure .. 145

Figure 4-7. The algorithm of tracing elements along the links .. 145

Figure 4-8. Model evolution .. 146

Figure 4-9. The algorithm of model evolution ... 148

Figure 4-10. Model similarity distinction state chart ... 149

Figure 4-11. Calculation of Transmission Threshold Value ... 150

Figure 4-12. The pseudo code of the similarity transmission detection ... 151

Figure 4-13. Jprofiler result.. 152

Figure 4-14. Execution Node ... 152

Figure 4-15. Simple loop reduction ... 153

Figure 4-16. State diagram generation algorithm ... 155

Figure 4-17. Class diagram of run time.. 157

Figure 4-18. The deployment of federates ... 158

Figure 4-19. The code segment of WebServicesBridge. .. 160

Figure 4-20. OWL ontology example .. 161

Figure 4-21. Inter-relationships among modules ... 162

Figure 5-1. Use case diagram ... 169

Figure 5-2. UML Reader and Analyst Application .. 170

Figure 5-3. Simplified UML class information .. 171

Figure 5-4. Model Alignment User Interface ... 173

Figure 5-5. Align model structure .. 174

Figure 5-6. portico RTI based HLA FOM file.. 174

Figure 5-7. Central federate for Portico RTI .. 175

Figure 5-8. Federate user interface ... 176

Figure 5-9. Analysis Result .. 177

Figure 5-10. Alignment establishment between potential participant and existing members 178

Figure 5-11. Example of car purchasing and car manufacturing ... 179

Figure 5-12. HLA service for client ... 180

Figure 5-13. Car manufacturing schedule .. 181

18

List of Tables

Table 1-1. Characteristics about interoperability and integration (IST, 2005) 34

Table 2-1. Comparison CORBA, RMI, DIS, ALSP, HLA and SOA .. 78

Table 3-1. KDM to UML mapping ... 101

Table 5-1. Ontology alignment between new participant and existing participants 179

General Introduction

21

1. Background and Problem

Since the beginning of 2000s, the European Commission has proposed to identify the

problematic/approach relating to the development of enterprise software applications. Many

research projects have contributed to Enterprise Interoperability (EI) development that mainly

concentrates on EI architectures, models, methodologies, and operational solutions. Based on

the results of these research projects, numerous enterprise interoperability solutions have been

tested and implemented to help enterprises to connect and to collaborate with their business

partners in an extended and networked enterprise.

Nowadays, the economic context is becoming increasingly networked and dynamic. To get

more business opportunities, and survive in the competition, the enterprises must not only

consider about the apparent business partners with direct relationship, but also the potential

business partners with indirect relationship. This context requires EI research to consider all

the cooperative and competitive elements in a very dynamic and complex environment. Thus,

the traditional EI solution, such as integrated approach and unified approach as identified in

the INTEROP Enterprise Interoperability Framework, is becoming less efficient to satisfy

with such current and future economic context. It means that the EI research must concern

more about the dynamic nature of future business requirement, both for the single enterprise

and for ecosystems. The INTEROP Enterprise Interoperability Framework has also proposed

a dynamic solution called federated approach. This approach requires that the interoperability

must be established ―on-the-fly‖. It means that the adjustment and accommodation of the

models and systems from diverse partners must use a shared ontology or meta-models that are

not pre-defined, but formed through dynamic negotiation. Theoretically, the EI development

conformed to this federated approach can provide a very flexible and agile interoperability

environment that can help enterprises to adapt to the dynamic and evolutionary economic

context. However, currently, to completely implement the federated approach seems to be

difficult. The Enterprise Interoperability roadmap published by the European Commission

had considered the federated approach as one of the research challenges for the years to come

(Charalabidis et al., 2008). This doctorate research has identified the challenges as followings:

- Dynamic market and economic context require an enterprise capable of interoperating

simultaneously with multiple heterogeneous partners. This means that an enterprise must

22

be able to adjust and adapt their systems constantly and without delay.

- To adapt and accommodate dynamically to potential interoperability partners, it is

necessary to perform ‗on-the-fly‘ needed changes and mapping of systems connected to

partners. Consequently the ability to quick reengineer enterprise systems is an important

challenge to develop federated approach of EI.

- Prior to any reengineering attempt, another challenge is to be able to model and

automatically collect relevant information and data on the legacy systems and software

applications already implemented in the enterprise and concerned by the interoperation.

- To dynamically establish interoperability, it is necessary to reduce complexity in EI. How

to use interoperability services as ―plug-and-play‖ mechanisms independently of the EI

level for which they are designed (higher levels such as business, or lower ones such as

technical applications) is another challenge to consider in this research.

2. Contribution of the thesis

The contribution of this research is a Reversible model driven and HLA based methodology

for implementing federated approach under the INTEROP Enterprise Interoperability

Framework. The priorities of the development of this methodology are:

(1) To develop a semantic interoperability solution through an agile EI analysis process and

engineering.

(2) To create a methodology for model use and reuse, that can enhance the rapid and dynamic

enterprise interoperability establishment and cooperation environment control.

(3) To elaborate a technical architecture to support the implementation of the ―plug-and-play‖

mechanism.

In order to define this federated methodological approach, many existing methods,

architectures, and techniques have been referred to, such as:

- Model Driven Architecture, which can support modularization of development process

and enhance the reusability (OMG, 2003).

- Model Driven Interoperability, which can provide guidance on how model driven

development (MDD) should be applied to address interoperability (Bourey et al., 2007).

- Architecture Driven Modernization, which can discover models from the coding level of

23

legacy information system (OMG, 2010).

- Simulation and application distribution frameworks, which can support the information

exchange among distributed enterprise systems, such as CORBA (Common Object

Request Broker Architecture) (Mowbray et al., 1995), RMI (Remote Method Invocation)

(Buss et al., 1998), DIS (Distributed Interactive Simulation) (IEEE, 1995), ALSP

(Aggregate Level Simulation Protocol) (Weatherly, 1993), HLA (High Level Architecture)

(IEEE, 2000) and SOA (Service-Oriented Architecture) (Gustavson et al., 2005).

- Ontology, which can aid the business community to agree on a common ―vision‖ of the

domain (Veltman, 2001).

Moreover, In order to learn how existing interoperability methods or models implement or

define interoperability, LISI (Level of Information System Interoperability) reference model

(C4ISR, 1998), Database interoperability & Inverted-V model (Tolk, 2001), LCIM (Levels of

Conceptual Interoperability Model) (Tolk et al., 2003), and SOSI (System of Systems

Interoperability) Model (Morris et al, 2004) have been reviewed as well.

The objectives of these research efforts are as following:

- To develop a federated approach to support establishing enterprise interoperability

dynamically in a heterogeneous and multi-partners environment.

- To elaborate a model driven architecture to facilitate re-use of models and re-engineering

sub-systems based on models.

- To implement a reverse engineering approach that allows extracting relevant information

from legacy systems and software applications for EI engineering or re-engineering.

To achieve these goals, the Reversible Model driven and HLA based methodology proposed

by this research provides:

- Firstly, a model driven enterprise interoperability framework enhanced with needed

technology to support federated approach of establishing interoperability;

- Secondly, an enterprise interoperability engineering methodology which is composed of a

set of methods to support interoperability modelling, ―on-the-fly‖ negotiation design, and

model reversal;

- Finally, a computer aided tool to allow implementing the framework, interoperability

engineering methodology.

24

3. Organization of the thesis

This document is organized as follows:

- Chapter 1 introduces the historical, current situations and future challenges of Enterprise

Interoperability. This includes context and background of Enterprise Interoperability,

concepts and definitions of Enterprise Interoperability, and Enterprise Interoperability

research challenges and priorities. At the end, this chapter presents the objective and

position of this thesis.

- Chapter 2 presents the state-of-the-art on relevant models of Systems Interoperability, and

architectures, techniques and methodologies that are relevant to the development of

federated enterprise interoperability, including model driven technologies, simulation and

application distribution frameworks, and ontology.

- Chapter 3 presents a harmonized and reversible development framework and

methodology for rapidly developing an interoperable and HLA based application from

existing enterprise information systems. This framework includes: (1) a harmonized

HLA&MDA engineering framework that forms a rapid and flexible development life

cycle; (2) model reverse method that discovers the enterprises‘ knowledge from the

legacy information systems; (3) web-enable HLA federate design method that provides a

platform for interoperability negotiation; and (4) short-lived ontology method that

supports ―on-to-fly‖ negotiation semantically.

- Chapter 4 presents the architecture and the implementation of functional modules of

Model driven and HLA based Reverse Engineering Tool based on the framework and

methods presented in chapter 3.

- Chapter 5 demonstrates a case study of using this tool based on laboratory data. This case

aims at showing the feasibility of the methodology proposed in chapter 3, and the

efficiency of the architecture implementation elaborated in chapter 4.

Chapter 1. Towards a federated approach of

Enterprise interoperability

27

1.1. Context and background

This section will introduce the research of enterprise interoperability, including the economic

context, research background and industrial requirement.

1.1.1. Economic context

Nowadays, enterprise collaboration becomes more and more important because of globalised

economic context. An enterprise often needs to interoperate at the same time with many

different heterogeneous partners having different technologies, semantics, methods of work

and organizations. In this context, it needs a proper solution to avoid the collaboration barriers

caused by those differences. In the last decades, there are many solutions for this enterprise

collaboration problem. Generally speaking, those solutions are either enterprise integration

(tightly coupled systems) or enterprise interoperability (loosely coupled systems).

As the economic context becomes more and more networked and dynamic, enterprise

collaboration are required to be more and more flexible and agile. There is a shift from

traditional full enterprise integration paradigm to enterprise interoperability. In this case,

enterprise interoperability seems more suitable for and adapted to this context. Besides that, in

this new business context, value generation is increasingly knowledge-intensive and requires

new and adaptable expertise in products, services, and markets. In this case, the traditional

Enterprise Interoperability (EI) solution by connecting partners in an extended and networked

enterprise to support business cannot fully satisfy the new economic requirements. EI needs to

accommodate continuous and emergent change. Interoperability for enterprises, therefore, is

no longer about basic interconnectivity at the level of technology, or basic information

exchange between two entities, in static contexts of ―universal‖ business models. Instead,

interoperability is closely coupled with the changing nature of business needs, at the level of

the enterprise and the community of enterprises, the individual, and the economy (EC, 2008).

In other words, the sustainable and dynamic Enterprise Interoperability is calling by current,

even future, economic context.

1.1.2. Research background

Since the beginning of 2000s, the European Commission has set up an expert group to

28

identify problematic/approach relating to the development of interoperability of enterprise

software applications in Europe, and to make proposition to the Commission to launch

projects in this domain. This group identified three main research themes or domains that

address interoperability issues: (1) Enterprise Modelling dealing with the representation of the

inter-networked organization to establish interoperability requirements; (2) Architecture &

Platform (A&P) defining the implementation solution to achieve interoperability; (3)

Ontologies (ONTO) addressing the semantics necessary to assure interoperability (IDEAS,

2003). Based on the recommendation of this expert group, a thematic network Interoperability

Development of Enterprise Applications and Software (IDEAS) was launched (July

2002–June 2003). The objective was to elaborate a roadmap to develop interoperability (IST,

2001). This roadmap was used by the Commission to define orientation for future projects

under the FP6 (Sixth framework programme) for the years to come.

Two main initiatives relating to interoperability development within FP6 were carried out:

ATHENA Integrated Project (IP) and INTEROP Network of Excellence (NoE).

- Advanced Technologies for Interoperability of Heterogeneous Enterprise Networks and

their Applications (ATHENA) is actually a programme. It consists of a set of projects

dealing with gaps-closing activities considered as priorities in IDEAS roadmaps and will

lead to prototypes, technical specifications, guidelines and best practices that form a

common European repository of knowledge (ATHENA, 2003).

- Interoperability Research for Networked Enterprises Applications and Software

(INTEROP) aims at integrating expertise in relevant domains for sustainable structure of

European Research on Interoperability of Enterprise applications (INTEROP, 2003).

Both ATHENA and INTEROP initiatives have significantly contributed to enterprise

interoperability development. They laid down foundations to build enterprise interoperability

architectures, models, methodologies and operational solutions.

Besides ATHENA Integrated Project (IP) and INTEROP Network of Excellence (NoE), there

are also many research projects contributed on interoperability frameworks in the past decade.

For example, LISI (Levels of Information Systems Interoperability) reference model, IDEAS

interoperability framework, European interoperability framework, etc. Generally speaking,

the main purpose of these frameworks is to provide an organizing mechanism so that concepts,

29

problems and knowledge on enterprise interoperability can be represented in a more

structured way. It is a structure expressed in terms of diagrams, text and formal rules that

relates the components of a conceptual entity to each other (EN/ISO, 2003). Nowadays, these

frameworks have guided many developments of the interoperability of companies‘ ICT

systems and applications. Meanwhile, most international software, hardware and service

vendors have created their own strategies for achieving the goal of open, collaborative,

loosely coupled systems and components. However, as usual, the business context changing,

human desire growing, and technology progressing will lead constant and dynamic change of

market demand. Thus, the new concepts or solutions are needed to complement the traditional

frameworks and methodologies, since the existing solutions cannot fully handle the new

requirements. The ENSEMBLE FP7 project is providing the framework to validate such

results and considerations, working within the Future Internet Enterprise Systems (FInES)

community to develop and implement a systematic approach to the establishment of EI as a

science (ENSEMBLE, 2011) (Gonçalves et al., 2012).

More recently, some additional projects continue the research and development in enterprise

interoperability domain, focusing more specifically on dynamic enterprise interoperability

approach. We can mention among others:

- ABILITIES (Application Bus for InteroperabiLITy In enlarged Europe SMEs) project

is a FInES (Future Internet Enterprise Systems) Cluster in FP6. Its objective is to study,

design and develop a federated architecture implemented by a set of intelligent and

adaptive UBL active messages (an Application Bus for EAI - Enterprise application

integration) and basic interoperability services, aiming at supporting SMEs EAI in

e-commerce contexts, specifically in less developed Countries and less RTD intensive

industrial sectors (ABILITIES, 2008).

- COIN (Enterprise Collaboration & Interoperability) is one of the FInES Cluster FP7

Projects (COIN, 2011). Its objective is to study, design and develop an open, self-adaptive,

generic ICT integrated solution to support the 2020 vision, starting from notable existing

research results in the field of Enterprise Interoperability and Enterprise Collaboration.

COIN project believes that Enterprise Interoperability and Enterprise Collaboration (two

different concepts) can be interdependently and simultaneously presented in every

networked enterprise.

- NisB (The Network is the Business) project is one of the FInES Cluster FP7 Projects

30

(NisB, 2010). It aims at providing ICT support for value networks of SMEs, namely

hierarchical supply chains or dynamic business ecosystems, thereby rendering them the

primary facilitators of innovative networked businesses. NisB allows small and medium

businesses to easily and affordably connect, align, exchange data and complete

transactions with peers they have little common business language with.

Last but not least, it is important to also mention one research initiative developed at IPK

Berlin (IST, 2005) and one research project developed at DIP of Genoa University (Bruzzone

et al., 2007) (Bruzzone et al., 2009) (Bruzzone et al., 2011) Both of them carried out the

distributed modelling and simulation in supply chain management. Both of them used HLA

(High Level Architecture) for distributed modelling and simulation.

- Research initiative of IPK Berlin: This project focuses on distributed, decentralised

simulation. The concept is based on the results of the European MISSION project and an

extension of the Enterprise Modelling Method IEM (Integrated Enterprise Modelling).

The approach extends the High Level Architecture (HLA) approach to support the

industrial use of distributed simulation.

- Research project of DIP of Genoa University: This project designed a new modelling

methodology to simulate a complex logistics network and ensure interoperability among

the co-operators. This project developed an application of intelligent HLA Agent for

solving the problems like, distributed production planning and control, multisite

production scheduling and optimization, dynamic negotiation, and distributed logistics

network optimization.

1.1.3. Industrial requirements

Currently, enterprises face many difficulties related to the lack of interoperability which costs

industry huge sums of money.

In 2003, the company budgets for integration projects added up to 30-40% of companies‘ total

IT budgets. This figure led a new industrial goal of the reduction of enterprise application

integration costs, and adopted standards to achieve compliant solutions/practices, reducing

development and management costs. This means that there was a shift from the past

integrated paradigm to federated one. This goal was to reduce Enterprise Application

31

Integration costs by as much as 40%, starting from early 2005 (IDEAS, 2003).

An investigation performed by the Forrester Group in the US shows that some 40% of ICT

(Information and Communications Technology) project costs in most major manufacturing

industries can be attributed to solve interoperability problems. The Enterprise Applications

Integration (EAI) market is projected to grow to some 7 billion US dollars in 2006 making it

the biggest IT market ahead of the Enterprise Architecture market. The investigation report

briefly gives industrial evidence of the main causes of non-interoperability. This is done

through an effort to understand the complexity of the overall interoperability issue and

framing it in a convenient articulated framework that hopefully permits us to position the

single contribution to the overall issue (ATHENA, 2005).

From those investigation results, it is clear that enterprises are pursuing the ability of

interoperability, and desiring to save the cost of integration projects. Thanks to the technology

and standards progress, the industrial goals are coming closer. Many enterprises are

attempting to abandon the traditional enterprise application integration (EAI) approaches that

have resulted in too monolithic systems. Instead, they are adopting more service-oriented,

loosely coupled, messaged-based, and asynchronous techniques (Vernadat, 2007). More

recently, with the deployment of new technologies, such as, Web 2.0, and enterprise cloud

computing, enterprise needs more and more dynamic engineering capability to allow quickly

reconfiguring their systems, in order to set up collaboration relationships with their business

partners.

1.2. Concepts and definitions

1.2.1. Basic definitions on enterprise interoperability

As mentioned, interoperability is a key feature for enterprises in today‘s competitive

environment. Generally, ―Inter-operate‖ implies that one system performs an operation on

behalf of (or for) another system. However, Interoperability means different things to different

people, so there are various kinds of definitions as follows:

- Interoperability is the ability of a system to use the parts of another system – definition in

Webster.

32

- From software engineering point of view, interoperability means that two co-operating

software systems can easily work together without a particular interfacing effort. It also

means establishing communication and sharing information and services between

software applications regardless of hardware platform(s). In other words, it describes

whether or not two pieces of software from different vendors, developed with different

tools, can work together.

- The definition of Interoperability in IEEE is ―the ability of two or more systems or

components to exchange information and to use the information that has been exchanged‖

(IEEE, 1990).

- Ability of interaction between enterprises. The enterprise interoperability is achieved if

the interaction can, at least, take place at the three levels: data, application and business

process (IDEAS, 2003).

These definitions describe interoperability from different aspects. Some definitions describe

the interoperability behaviour. Some others emphasize the information interoperability. Some

definitions consider software application interoperability. While, the definition from IDEAS

focuses enterprise interoperability on business processes interoperability, not only information

interoperability. To summarize those definitions, Enterprise Interoperability is the ability to (1)

communicate and exchange information; (2) use the information exchanged; (3) access to

functionality of a third system (Chen, 2009).

However, in the last few years, some researches considered that those definitions need to be

extended to cover the additional interoperability issues in the enterprises, and a broader, more

comprehensive definition is needed. As a result, some new definitions of Enterprise

Interoperability were given in different projects.

- Enterprise Interoperability Research Roadmap (EIRR) define Enterprise Interoperability

as ―a field of activity with the aim to improve the manner in which enterprises, by means

of Information and Communications Technologies (ICT), interoperate with other

enterprises, organizations, or with other business units of the same enterprise, in order to

conduct their business. This enables enterprises to, for instance, build partnerships,

deliver new products and services, and/or become more cost efficient‖ (Charalabidis et al.,

2008).

- European Interoperability Framework defines interoperability as ―the ability of

33

information and communication technology (ICT) systems and of the business processes

they support to exchange data and to enable the sharing of information and knowledge‖

(IDABC, 2008). It also indicates ―Interoperability is the ability of disparate and diverse

organizations to interact towards mutually beneficial and agreed common goals,

involving the sharing of information and knowledge between the organizations via the

business processes they support, by means of the exchange of data between their

respective information and communication technology (ICT) systems‖ (IDABC, 2008).

These definitions involve interoperability between organizational units and business processes

and units either within distributed enterprises or within an enterprise network. In a word,

Enterprise Interoperability is perceived as a capacity of two or more enterprises, including all

the systems within their boundaries and the external systems that they utilize or are affected

by, in order to cooperate seamlessly, in an automated manner, in depth of time for a common

objective (ENSEMBLE, 2011) (Gonçalves et al., 2012).

1.2.2. Main concepts of enterprise interoperability

To analyse and summarize those definitions mentioned in the previous section, the enterprise

interoperability is an ability that can support the communication and transactions between

heterogeneous and networked enterprises / organizations based on shared business references.

Those communication and transactions are not only happen on ICT level but also on business

level and knowledge level as illustrated in simplified interoperability framework shown in

figure 1-1 (ATHENA, 2003). The business level includes the business environment and

business processes. The knowledge level includes the organizational roles, skills and

competencies of employees and knowledge assets. The ICT level includes the applications,

data and communication components. Besides that, semantics description, which can be used

to get the necessary mutual understanding between enterprises, exists throughout these three

levels. In order to bring this framework into effect, some relevant knowledge (mentioned in

section 1.1.2, Enterprise Modelling, Architecture & Platform (A&P), and Ontologies (ONTO))

are needed to model target systems, implement interoperability solutions and translate the

semantic differences (ATHENA, 2003).

34

Figure 1-1. Simplified Interoperability Framework

Enterprise interoperability concept is to be distinguished to enterprise integration. Enterprise

integration is the process of ensuring the interaction between enterprise entities necessary to

achieve domain objectives. Enterprise interoperability refers to the ability of interactions

(exchange of information and services) between enterprises.

From the above discussion, it seems that there are not many differences between integration

and interoperability, but they are actually different. It is very important to clarify their

differences. Intra ERP and EAI implementations are most concerned with ‗integration‘, which

can be achieved by using a single integration tool or vendor/integrator. Interoperability has the

advantage of using local or company vocabularies rather than conforming to vendor-specific

requirements and provides a loosely-coupled architecture, allowing changes to be made on

one system without seriously hampering other systems. Some characteristics about

interoperability and integration are shown in the table 1-1.

Table 1-1. Characteristics about interoperability and integration (IST, 2005)

Interoperability Integration

Autonomy Assimilation

Loosely-coupled Brittle

Sharing Conforming

Local Vocabulary Standard Vocabulary

Model-based Maps Scripts, Functions, Code

Concrete and Conceptual Concrete

As summary, interoperability has the meaning of coexistence, autonomy and federated

environment, whereas integration refers more to the concepts of coordination, coherence and

uniformization. From the point of view of degree of coupling, a fully integrated system is

35

‗tightly coupled‘, which indicates that the components are interdependent and cannot be

separated. Interoperability is ―loosely coupled‖, which means that the components are

connected by a communication network and they can exchange services while continuing

locally their own logic of operation. Thus two integrated systems are inevitably interoperable,

meanwhile two interoperable systems are not necessarily integrated.

1.2.3. Main dimensions of enterprise interoperability

To better understand the Enterprise interoperability concept, to define and position our

research theme, it is necessary to study various dimensions of enterprise interoperability.

Those dimensions representing problems, issues and concerns of EI research and development

are usually structured and represented in enterprise interoperability frameworks.

Figure 1-2 shows the INTEROP Enterprise interoperability Framework (now CEN/ISO 11354

standard) (Chen et al., 2008) with its three main dimensions.

Figure 1-2. Enterprise Interoperability Framework

This framework consists of three basic dimensions: interoperability concerns, interoperability

barriers and interoperability approaches. Three categories of barriers are defined: conceptual

barriers (syntactic and semantic incompatibilities), technological barriers (additional

incompatibility due to the use of technology), and organizational barriers (related to the

incompatibilities of method of work, organization structure, etc.). These barriers can exist at

four different levels of concerns: data, service, process and business. The interoperability

concerns and interoperability barriers can constitute the interoperability problem space. The

36

intersection of an interoperability barrier and an interoperability concern is the set of

interoperability problems having the same barrier and concern. In order to constitute the

solution for the interoperability problem, the interoperability approaches are imperative. This

framework defines the approaches into three types: integrated, unified, and federated. The

following sub-sections will describe the three dimensions of this framework.

1.2.3.1. Interoperability concerns

Interoperability concern is a dimension representing various interoperability aspects (or levels)

at which enterprise interoperation takes place. This framework shows that the Enterprise

Interoperability can take place at different levels depending on various interoperation aspects.

Different research organizations specify the aspects in different ways. For example, (1)

ATHENA adopts and reforms the IDEAS simplified interoperability framework, and then

proposes the interoperability reference architecture (ATHENA, 2007) as figure 1-3 A shows.

This architecture illustrates the interoperations can take place at enterprise/business level,

process level, service level and information/data level between provided and required

enterprises. (2) Adapted from the ATHENA interoperability reference architecture, INTEROP

NoE proposes another interoperability concern categorisation (Chen, 2009) as figure 1-3 B

shows. Besides the same concerned levels, this architecture also emphases the interoperability

can take place not only between enterprises (inter enterprise interoperability), but also inside

one enterprise between different departments (intra enterprise interoperability).

Figure 1-3. Interoperability concerns from ATHENA and INTEROP NoE

In other words, during the enterprise cooperation, depending on the participants‘ viewpoints

and needs, enterprise interoperability will be presented in different ways. For example,

according to the INTEROP NoE framework, enterprise needs processes to realise the business,

37

needs services/functions to materialize the processes, and needs data to perform and simulate

services/functions. Therefore, cooperative enterprises can establish enterprise interoperability

in the following expectations:

- Data interoperability: it is concerned with finding and sharing information coming from

heterogeneous data bases and which can moreover reside on different machines with

different operating systems and data bases management systems.

- Services interoperability: it deals with the capability of exchanging services among

partners. It has two main problems, service exchange between a service demander and a

service provider, and interconnection between different services to form a complex

service.

- Process interoperability: it aims at linking different process description to form

collaborative processes and perform verification, simulation and execution.

- Business interoperability: it is concerned with how business are understood and shared

without ambiguity among interoperation partner. It explores interoperability from a

business perspective and identifies the fundamental artefacts related to business issues.

1.2.3.2. Interoperability approaches

Interoperability approach dimension represents various ways or principles according to which

an interoperability solution is elaborated. Semantics description part in figure 1-1 shows that

we need a proper solution to overcome the gaps at each level, and then to satisfy the

interoperability expectation. In other words, establishing interoperability requires relating

entities together in some ways. According to ISO 14258 (concepts and rules for enterprise

models) (ISO, 1999), there are three basic ways to relate entities together: integrated, unified

and federated as shown in figure 1-4.

Figure 1-4. Basic approaches to develop interoperability

38

- Integrated approach: it requires a common format for all constituent systems. Divers

models are interpreted in the common format. This format must be as rich as the

constituent system models.

- Unified approach: it requires a common predefined format in meta-level. This format

covers across the constituent models, providing a means for establishing semantic

equivalence.

- Federated approach: it requires that the models must be dynamically accommodated

rather than having a predetermined meta-model. This assumes that concept mapping is

done at an ontology level, i.e. semantic level.

Therefore, it is considered that the federated approach is the most promising scenario for full

interoperability wherein most models will not be in a standardised or common form because it

is not economically feasible to put them in such a form (ISO, 1999).

1.2.3.3. Interoperability barriers

Besides the interoperability concerns and approaches mentioned in previous sections, another

dimension - interoperability barriers needs to be defined to precisely identify the

interoperability problems. ―Barrier‖ means an ―incompatibility‖ or ―mismatch‖ which

obstructs the sharing and exchanging of information. The ―incompatibility‖ or ―mismatch‖

can take place in all the concerns. Thus the interoperability concerns and interoperability can

constitute the problem space of the enterprise interoperability. Different research

organizations specify the barriers in different ways. For example, (1) The European

Interoperability Framework in the eGovernment domain (EIF, 2004a) defines three types of

interoperability: semantic, technical and organizational. (2) A similar approach was also

proposed in e-Health interoperability framework (NEHTA, 2005) which identified three types:

organizational, informational and technical interpretabilities. (3) The ATHENA

Interoperability Framework (AIF) proposes to structure interoperability issues and solutions at

the three levels: conceptual, technical and applicative (ATHENA, 2003). (4) The INTEROP

NoE Enterprise Interoperability Framework defined three categories of barriers: conceptual,

technological, and organizational (ISO, 2011).

- Conceptual Barriers are concerned with the syntactic and semantic incompatibilities of

information to be exchanged. These problems concern the modelling at the high level of

39

abstraction (such as the enterprise models of a company) as well as the level of the

programming (such as low capacity of semantic representation of XML). Conceptual

barriers are the main barriers to interoperability.

- Technological Barriers are concerned with the use of computer or ICT to communicate

and exchange information. The typical technological barriers include incompatibility of

IT architecture & platforms, infrastructure, operating system etc. In other words

technological barriers occur because of the lack of compatible standards to allow using

heterogeneous computing techniques for sharing and exchanging information among

systems.

- Organizational Barriers are concerned with the incompatibilities of organization

structure and management techniques implemented in different enterprises. For example,

the way of assigning responsibility and authority. These barriers are concerned with

human and organization behaviours which can create obstacles to interoperability.

1.3. Research challenges and priorities

1.3.1. Tendency of Enterprise Interoperability – Federated

Nowadays, under the globalised economic context, the markets are becoming more and more

competitive and complex. The complex markets require the enterprises to adapt in the

dynamic and changing environment. That means Enterprise Interoperability should become

more and more related with the dynamic nature of future business requirements, both for the

single enterprise and ecosystems.

As mentioned in the Enterprise Interoperability definition of EISB (Enterprise Interoperability

Science Base), in order to achieve the common goal and realize the enterprise interoperability,

the enterprises need to cooperate seamlessly, in an automated manner, in depth of time. This

means that they need a very efficient, dynamic, sustainable and seamless approach/solution,

as assumed in Enterprise Interoperability Dynamics. The Enterprise Interoperability

Dynamics is the aspiration that the enterprises can be networked fluently, efficiently,

dynamically, intelligently and with the lowest cost. In that case, all the collaboration

operations can be established ―on-the-fly‖. Such as, enterprises do not need to think about

reconstructing their legacy systems or building up an integrated platform to support

cooperation. A potential participant can detect this collaborative sphere and access it easily,

40

and the existing participants can detect the new partner dynamically and evolve themselves to

adapt the new environment. The federated approach aims at achieving this enterprise

interoperability dynamics. As mentioned in previous section, in order to establish the

interoperability ‗on-the-fly‘, the partners must share ontology or agree on meta-models for

mapping between diverse models/systems. However, all these ontology or meta-models are

not pre-defined, and they are all formed through dynamic negotiation
1
.

Nowadays, most of the approaches developed are unified ones, for example in the domain of

enterprise modelling, we can mention UEML (Unified Enterprise Modelling Language) and

PSL (Process Specification Language) which aim at supporting the interoperability between

enterprise models and tools. However, using the federated approach to develop enterprise

interoperability is a challenge and few researches have been performed in this direction. The

federated approach aims at developing full interoperability and is particularly suitable for an

inter-organizational environment (such as networked enterprises, virtual enterprises, etc.). In

the enterprise interoperability roadmap published by the European Commission (Charalabidis

et al., 2008), developing federated approach for interoperability is considered as one of the

research challenges for the years to come.

1.3.2. Main research challenges

As mentioned previously, because the complex markets require the enterprises to adapt to the

dynamic and evolutionary environment, the Enterprise Interoperability is forced to be more

and more efficient, dynamic, and sustainable. Thus, how to achieve this goal is becoming the

challenge of the Enterprise Interoperability research.

Some of main challenges towards dynamic enterprise interoperability through a federated

approach are considered as follows:

- Dynamic market and economic context require an enterprise capable of interoperating

simultaneously with multiple heterogeneous partners. This means that an enterprise must

be able to adjust and adapt their systems constantly and without delay.

1 Taking the data interoperability as example, one transnational corporation wants to do the sampling survey from branch

companies who are using individual databases with different data structures. During this survey, if the semantic/syntactic

annotation and mapping are done by using pre-defined reference ontology, i.e. using pre-defined reference ontology to model

a category of products, then it is not a federated approach. While, if the annotation and mapping are performed thought

negotiation on the fly, then it is a federated approach. For example, adding the descriptive ontology to data, the similarity of

those descriptions will be considered during the dynamic mapping.

41

- To adapt and accommodate dynamically to potential interoperability partners, it is

necessary to perform ‗on-the-fly‘ needed changes and mapping of systems connected to

partners. Consequently the ability to quickly reengineering enterprise systems is an

important challenge to develop federated approach of EI.

- Prior to any reengineering attempt, another challenge is to be able to model and

automatically collect relevant information and data on the legacy systems and software

applications already implemented in the enterprise and concerned by the interoperation.

- To dynamically establish interoperability, it is necessary to reduce complexity in EI

(Enterprise Interoperability). How to use interoperability services as ―plug-and-play‖

mechanisms independently of the EI level for which they are designed (higher levels such

as business, or lower ones such as technical applications) is another challenge to consider

in this research.

The considerations above point out the bottle neck of the Enterprise Interoperability research,

including the huge sum of cost, lack of sustainability (self-adapting and self-learning), lack of

succession of knowledge and experience (reusability and repeatability), and complicated

preparation and establishment of EI. In other words, these challenges give a novel

requirement to EI research. EI is required to be a sustainable interoperability with low cost,

excellent discovery ability, learning ability, adaptability, and reusability.

1.3.3. Priorities of development

As mentioned in the previous section, there are many challenges throughout this dynamic EI

development research. The priorities of this research are:

(1) To develop a semantic interoperability solution through an agile EI analysis process and

engineering.

(2) To create a methodology for model use and reuse, that can enhance the rapid and dynamic

enterprise interoperability establishment.

(3) To elaborate a technical architecture to support the implementation of the ―plug-and-play‖

mechanism.

42

1.4. Objective and position of the thesis

1.4.1. Problem and objectives

The objective of this thesis is to propose a federated approach for developing enterprise

interoperability, which allows quick interoperability establishment, easy-pass, and dynamic

environment update. In this approach, cooperating parties must accommodate and adjust

―on-the-fly‖ to establish interoperability. ―On-the-fly‖ means that all the models and systems

mapping need to be done dynamically through ―negotiation‖. In other words, federated

approach has no common predefined format for all models/systems and needs dynamic

adjustment and accommodation.

Dynamic adjustment and accommodation is an ideal and prefect idea, but the process of

achieving this goal copes with challenges and difficulties. It needs systematic semantic

specification and adequate information technique support. This thesis will present a solution,

which builds a semantic specification on a harmonized IT environment, to achieve federated

approach.

As mentioned before, federated approach requires runtime information analysis without

preparative script, thus, the semantic specification here needs to be self-adaptive and easily

adaptive. This thesis proposes an ontology based specification called ―short-lived ontology‖.

As the name shows, this specification has a non-persistent ontology based parsing script. This

script only exists when it is needed and it is easy to understand.

In addition, federated approach requires a flexible and reconfigurable IT environment to

support dynamic adjustment and accommodation. Meanwhile, because of using computer or

information and communication technology (ICT) to communicate and exchange information,

it causes technique barriers in enterprise interoperability. As a result, how to conquer the

barriers in technique level is also the concern of this research.

As a summary, the concrete objectives of this thesis are to:

- develop a federated approach to support establishing enterprise interoperability

dynamically in a heterogeneous and multi-partners environment;

- elaborate a model driven architecture to facilitate re-use of models and re-engineering of

43

sub-systems based on models;

- implement a reverse engineering approach that allows extracting relevant information

from legacy systems and software applications for EI engineering or re-engineering.

1.4.2. Position of the thesis

This doctorate research can be positioned in the Enterprise Interoperability Framework

mentioned in section 1.3.1. The approach of this research is a federated approach, which aims

at establishing interoperability by overcoming the conceptual, organizational and

technological barriers on data and services concerns (as figure 1-5 shows).

Figure 1-5. Position of the thesis

- The federated approach for problem space of conceptual barrier and data concern (cube 1

in figure 1-5): it has to address the on-the-fly mapping issue of information with different

format (syntactic) and meaning (semantic).

- The federated approach for problem space of conceptual barrier and service concern

(cube 2 in figure 1-5): it has to provide a platform-independent, technology-independent,

and language-independent service for the participants.

- The federated approach for problem space of organizational barrier and data concern

(cube 3 in figure 1-5): it has to provide a mechanism to manage the ownership of the data

and the authority of obtaining information.

- The federated approach for problem space of organizational barrier and service concern

(cube 4 in figure 1-5): it has to provide a mechanism to control the authority of accessing

the services.

44

- The federated approach for problem space of technological barrier and data concern (cube

5 in figure 1-5): it has to provide a data distribution service for implementing on-the-fly

information mapping.

- The federated approach for problem space of technological barrier and service concern

(cube 6 in figure 1-5): it has to provide a method to accurately define the service interface,

so that user can obtain the service correctly and the service authority control can be

realized.

1.4.3. Expected results

The expected results of this research are:

(1) A model driven enterprise interoperability framework enhanced with needed technology

to support federated approach of establishing interoperability.

(2) An enterprise interoperability engineering methodology which is composed of a set of

methods to support interoperability modelling, ―on-the-fly‖ negotiation design, and model

reversal.

(3) A computer aided tool to allow implementing the architecture, interoperability

engineering methodology.

1.5. Conclusion

This chapter has given an overview of the enterprise interoperability, its context and

background, basic definitions, concepts and dimensions. Based on this overview, this chapter

elaborates the research challenges and tendency of the current enterprise interoperability

research. It has been considered that federated approach represents the most promising

solution for today‘s enterprise to gain competitiveness in the markets. Consequently the

objective of this doctoral research aims at taking this challenge contributing to developing

federated enterprise interoperability focusing on the data and service levels. In order to

achieve the expected goals, this research will propose an innovative methodology based on

the state-of-the-art learned from the existing relevant interoperability methodologies and

architectures. The chapter 2 will study those methodologies and architectures.

Chapter 2. Methods and architectures relevant

to federated enterprise interoperability

47

2.1. Introduction

This chapter will present the state-of-the-art on the development of Systems Interoperability,

and models, architectures, techniques and methodologies which are helpful for the

development of federated enterprise interoperability.

Section 2.2 presents some existing models that are considered relevant to federated enterprise

interoperability. Useful concepts will be reviewed and abstracted to develop our proposed

methodology.

Section 2.3 reviews model driven technologies, in particular Model Driven Architecture

(MDA), related approaches using MDA to develop interoperability, such as Model Driven

Interoperability (MDI), and model driven reverse engineering technology, e.g. Architecture

Driven Modernization (ADM).

Section 2.4 investigates some existing software application architectures / infrastructures that

make interoperability happen. In particular HLA, SOA and some other similar approaches

will be studied in detail.

Section 2.5 is concerned with ontology techniques to support semantic interoperability

development.

Based on this state-of-the-art review, some existing architectures, techniques and

methodologies will be adapted if necessary to develop our proposed methodology presented

in chapter 3.

2.2. Relevant models for Systems Interoperability

The current situation, tendency and challenges of Enterprises and Enterprise Collaborations

show that the Enterprise Interoperability is not the outmoded isolated interoperability and

even not just a simple connected interoperability in a peer-to-peer environment, or simple

functional interoperability in a distributed environment. It becomes an exhaustive

interoperability in a complex distributed enterprises network, in which the individual

enterprise plays as a sub-system of a hug system. Thus, the concepts of Systems

48

interoperability can be borrowed. This section will introduce some maturity models and

architectures for systems interoperability. In (Joint, 2000), the perspective of systems

interoperability can be described as follow.

―Although technical interoperability is essential, it is not sufficient to ensure effective

operations. There must be a suitable focus on procedural and organizational elements, and

decision makers at all levels must understand each other’s capabilities and constraints.

Training and education, experience and exercises, cooperative planning, and skilled liaison at

all levels of the joint force will not only overcome the barriers of organizational culture and

differing priorities, but will teach members of the joint team to appreciate the full range of

Service capabilities available to them.‖

2.2.1. LISI reference model

LISI (levels of information systems interoperability) approach which is not a framework, but

the first significant initiative of Enterprise Interoperability. It is developed by C4ISR

(Command, Control, Communications, Computers, Intelligence, Surveillance and

Reconnaissance) Architecture Working Group (AWG) during 1997. Its objective is to provide

the US Department of Defense (DoD) with a maturity model and a process for determining

joint interoperability needs, assessing the ability of the information systems to meet those

needs, and selecting pragmatic solutions and a transition path for achieving higher states of

capability and interoperability (C4ISR, 1998). It defines the following five layers for technical

interoperability:

- Isolated interoperability in a manual environment, where no physical connection exists.

- Connected interoperability in a peer-to-peer environment, where homogeneous product

exchange is possible.

- Functional interoperability in a distributed environment, where heterogeneous product

exchange is possible.

- Domain based interoperability in an integrated environment, where systems are

connected via wide area networks sharing domain-based data models.

- Enterprise-based interoperability in a universal environment, where systems are capable

of using a global information space across multiple domains.

49

LISI model also defines four interoperability attributes as PAID, namely: Procedures,

Applications, Infrastructure (hardware, communications, security, and system services) and

Data. This is a basic and plain definition which is very useful and heuristic for the following

EI research.

The LISI is a widely recognized model for system of systems interoperability, but mainly

focuses on technical interoperability, does not address organizational issues. In order to make

up for this deficiency, (Clark et al., 1999) proposed the Organizational Interoperability

Maturity Model (OIM), which extends the LISI model into the more abstract layers of

command and control support. OIM defines five levels of organizational maturity, which

describe the ability to interoperate as follows:

- Level 0 - independent: it describes the interaction between independent organizations,

which would normally work without any interaction and sharing of common goals. Even

if interoperation is required, the arrangements are unplanned and unanticipated. This level

can be aligned with isolated level of LISI in manual environment.

- Level 1 - ad hoc: it contains very limited organizational frameworks which could support

ad hoc arrangement. The specific arrangements are still unplanned, and the organizations

remain entirely distinct. This level can be aligned with connected level of LISI in

peer-to-peer environment.

- Level 2 - collaborative: it will use recognised frameworks to support interoperability.

Shared goals are recognised, and roles and responsibilities are allocated as part of

on-going responsibilities. However, the organizations are still district. This level can be

aligned with functional level of LISI in distributed environment.

- Level 3 - integrated (also called combined): it has shared value systems and shared goals,

a common understanding and preparedness for interoperation. But, it still has residual

attachments to a home organization. This level can be aligned with domain level of LISI

in integrated environment.

- Level 4 - unified: it allows the organizational goals, value systems, command

structure/style, and knowledge bases to be shared across the systems. There is no

impediment in the organizational frameworks to full and complete interoperation. While,

it is likely to occur only in very homogeneous organizations. This level can be aligned

with the enterprise level of LISI in universal environment.

50

Figure 2-1. Alignment between Organizational Model and LISI

In addition, the four enabling attributes of organizational interoperability have been identified

as following:

- Preparedness: it describes the preparedness of the organization to interoperate. It is made

up of doctrine, experience and training.

- Understanding: it measures the amount of communication and sharing of knowledge and

information within the organization and how the information is used.

- Command Style: it describes the management and command style of the organization –

how decisions are made and how roles and responsibilities are allocated or delegated.

- Ethos: it is concerned with the culture and value systems of the organization and the goals

and aspiration of the organization. The level of trust within the organization is also

included.

2.2.2. Database interoperability & Inverted-V model

(Tolk, 2001) introduces database interoperability by summarizing the study of Sheth‘s book

(Sheth et al., 1990) and (Özsu et al., 1991). Figure 2-2 shows that they have defined the

database interoperability into three categorizations based on the degree of database coupling,

Homogeneous Non-Distributed Database (figure 2-2 a), Homogeneous Distributed Database

(figure 2-2 b), and Federated Database (figure 2-2 c).

51

Figure 2-2. Notional Schema of Database Interoperability

- Homogeneous Non-Distributed Database has three standardized levels: (1) internal

schema which describes how the data will be physically stored and accessed, using the

facilities provided by a particular DBMS; (2) conceptual schema describes the complete

stored data in terms of the data model of the DBMS; (3) external schema, for every

application, describes the data subset with the respective rights to read, write, and add

new data needed for the functionality provided by the application. This notional schema

defines the data mapping of the respective information exchange requirement in external

schema in local application, not within the architecture.

- Homogeneous Distributed Database has an additional schema, local conceptual schema,

compared with Homogeneous Non-Distributed Database. This schema has to be

implemented using the respective local internal schema. Besides that, conceptual schema,

which is implemented upon the local conceptual schema, is the common conceptual

52

schema for all the distributed participants/databases. This notional schema is the right

architecture and technique for a homogeneous system, where all participants of the

database federation are using the same data model, data replication.

- Federated Database is implemented because the scenario of Homogeneous Distributed

Database becomes so unlikely within the current joint and combined market context. It is

impossible to require all participating systems to use the same common data model. Thus,

the objective of federate database is to merge different data sources, which will remain

distributed, heterogeneous, and autonomous. In this notional schema, federated schema

takes place of conceptual schema to comprise the shared data elements, but not deal with

all details of the local autonomous data bases. Component schema is used as the common

presentation of the data elements being comprised in the local system dependent schema.

Upon it, export schema is used to comprise the data to be shared by the local database

with others. This notional schema enables the evolutionary growing of the common data

exchange model based on the actual information exchange request being formulated

between the global applications and the local databases.

After introducing different schemata for databases interoperability, (Tolk, 2001) also

introduces the principles of the Inverted-V model within the use of Standardized Data

Elements (SDE) for system coupling as shown in figure 2-3.

Figure 2-3. The principles of the Inverted-V model

53

- System level: Systems share the same memory on the same computer, which can be

considered distributed components. In this case, it is high coupling, and each component

only contributes to the functionality of the system and cares nothing about the way of

information interchange among the systems.

- Software-bus Level: Systems share database via software platform. In this case, systems

can be considered as sub-system or component of the entire collaborative system, then

SDE would be helpful to define the interface between sub-systems/component and shared

software-bus. For example, if we start to consider about reuse a legacy system, then the

definition of the interface of this legacy system becomes vital, and SDE can be used to

describe the data elements of the interface.

- Network Level: Systems exchange information via the communication infrastructure. It is

the real use of implemented SDEs to exchange data enables the ―plug and play‖ use of

the component in other systems using the same common information exchange data

model.

A summary of three aspects of Interoperability in system of system has been given in (Tolk,

2001).

- Information Exchange Aspect: How do systems interchange information? What are the

semantics used? How does one describe the objects/concepts used to do this?

- Functional Aspect: What states can the system, which has to be integrated into the

federation, be in? What functions are defined, starting at what state, with which

respective end state, knowing the used parameters and constraints? What

interdependencies can be defined between the state changes?

- Dynamical Aspect: What processing time is needed to perform the transition (1) in ―real

time‖ and/or (2) in ―simulated time‖? How can the dynamic interdependencies be

described?

2.2.3. Levels of Conceptual Interoperability Model

(Tolk et al., 2003) introduces a general model called Levels of Conceptual Interoperability

Model (LCIM) addressing various levels of conceptual interoperability that goes beyond the

technical reference models for interoperable solutions like LISI. The model is intended to

become a bridge between the conceptual design and technical design. The scope of this model

54

goes beyond the implementation level of actual standard, and focus on the data to be

interchanged and the available interface documentation. The layers of the LCIM (as shown in

figure 2-4) include:

Figure 2-4. Levels of Conceptual Interoperability Model

- Level 0 - System specific data: systems are black box components (or applications),

which are interoperable, and use the data in a proprietary way without sharing, for

example, data are hard-coded in the source code of the system, and poorly documented

data like comma separated lists, and meaningless column name, etc.

- Level 1 - Documented data: systems are black boxes, which have common protocols for

data documentation and interface for data access. Based on this, systems can establish

mapping layers to interconnect the data with external sources.

- Level 2 - Aligned Static data: systems are black boxes with standard interfaces, and use

common reference model based on common ontology for data documentation. The

common reference model will take care of the following three kinds of conflicts,

semantic conflicts, descriptive conflicts, and heterogeneous conflicts. However, the

common reference model is not sufficient for conceptual interoperability, because, even

with a common reference model, the same data can be interpreted differently in different

systems. Thus, the next dynamic level is required to cope with this.

55

- Level 3 - Aligned dynamic data: systems are white boxes with well defined data by using

standard software engineering methods such as UML (Unified Modeling Language). This

allows visibility into how data is managed in the system. This level focus on making the

behaviour of the components visible to the integrator, because, even systems with the

same interfaces and data can have different assumptions and expectations about the data.

- Level 4 - Harmonized data: systems are white boxes. Non-obvious semantic connections

are made apparent via a documented conceptual model underlying components. But not

only that, beyond the implemented parts of the concept the important relations that are

not captured in the implementation are captured. When doing the modelling, parts of the

real world and its relations are left out, which lead to interoperability problems.

2.2.4. The System of Systems Interoperability Model

(Morris et al, 2004) introduces the System of Systems Interoperability (SOSI) Model. This

model addresses both technical interoperability (also covered by LISI, and LCI) and

operational interoperability (also covered by OIM and LCI). In addition, this model also

addresses programmatic concerns between organizations building and maintaining

interoperable systems.

(Morris et al, 2004) points out that most of the existing approaches for interoperability only

achieve partial interoperability, only specific to the targeted systems but cannot facilitate

extension to other systems. Thus, achieving large-scale and consistent interoperation requires

a consistently applied set of management, constructive, and operational practices that support

that addition of new and upgraded systems to a growing interoperability web. The System

Activities Model of SOSI model (as shown in figure 2-5 a) defines necessary activities for

achieving interoperability. This model represents the activities within a single acquisition

organization. The description of the activities is specified into following aspects:

- Program Management: this aspect defines the activities that manage the acquisition of a

system. This aspect specifically concerns the contracts, incentives and practices.

- System Construction: this aspect defines the activities that develop or evolve a system,

such as use of standards and COTS (commercial off-the-shelf) products, architecture.

- Operational System: this aspect defines the activities within the executing system and

between the executing system and its environment, including the interactions with other

56

systems and also with end users.

Figure 2-5. System of Systems Interoperability (SOSI) Model

When the interactions occur between two programs, the following types of interoperability (as

shown in figure 2-5 b), which is the key premise of the SOSI work, need to be premeditated.

- Programmatic: interoperability between different program offices.

- Constructive: interoperability between the organizations that are responsible for the

construction (and maintenance) of a system.

- Operational: interoperability between the systems.

These types of interoperability show that the precondition of SOSI to achieve interoperability

between operational systems is to introduce and address the full scope of interoperability

between those organizations that participate in the acquisition of systems.

2.2.5. Summary

All models mentioned in this section have achieved some success in developing Systems

Interoperability. However, none of them proposes the complete solution for all the

interoperability issues.

- LISI focuses on technical interoperability and the complexity of interoperations between

systems. But LISI model does not address the environmental and organizational issues

that contribute to the construction and maintenance of interoperable systems. OIM can be

seen as the evolved LISI model in the context of the layers developed in the command

57

and control support (C2S) Study by extending LISI into the organizational layer.

- Database interoperability & Inverted-V model is an overall architecture to merge

information comprised in heterogeneous data sources into one technically consistent and

semantically coherent information space. However, it is only for data but not procedure or

architecture.

- The LCIM model has been carried out successfully in simulation domain, but the basic

premises apply to many complex sets of interoperating systems.

- The SOSI model extends the existing models by adding a focus on programmatic,

constructive and operational issues which must be managed across the life cycle.

Even these models only propose a partial representation of some aspects of interoperability,

but they still provide some very useful concepts for identifying and solving enterprise

interoperability from the views of conceptual, organizational, and technological barriers.

2.3. Model Driven technologies

The model driven technology aims at supporting the standardization & modularization of

system design and development, which enhances the systems/components reusability and

interoperability. This section will review some well known popular model driven technologies

or evolved model driven technologies.

2.3.1. Model Driven Architecture (MDA)

2.3.1.1. Overview

Model Driven Architecture (MDA) has been defined and adopted by the Object Management

Group (OMG) in 2001, and updated in 2003 (OMG, 2003). It is designed to promote the use

of models and their transformations to consider and implement different systems as figure 2-6

shows. The MDA has three major goals, which are portability, interoperability and reusability.

The MDA starts with the well-known and long established idea of separating the specification

of the operation of the system from the details of the way the system uses the capabilities of

its software execution platform (e.g. J2EE, CORBA, Microsoft .NET and Web services).

58

The MDA builds on six basic concepts -- System, Model, Architecture, Viewpoint, View and

Platform. System means existing or planed system, which may include a program, a single

computer system or some combination of parts of different systems. Model is a description or

specification of the system modelled and its environment for some certain purpose.

Architecture is a specification of the parts and connectors of the system and the rules for the

interactions of the parts using the connectors. Viewpoint is a technique for abstraction using a

selected set of architectural concepts and structuring rules. View is a representation of the

system from the perspective of a chosen viewpoint. Platform is a set of subsystems and

technologies that provide a coherent set of functionality through interfaces and specified

usage patterns, which any application supported by that platform can use without concern for

the details of how the functionality provided by the platform is implemented.

Figure 2-6. OMG‘s Model Driven Architecture

The MDA defines four levels according to different viewpoints, which go from general

considerations (conceptual level) to specific ones (implementation level).

- CIM Level (Computation Independent Model) is a view of a system from the

computation independent viewpoint. It focuses on the whole system and its environment.

It is also named ―domain model‖. It describes all work field models (functional,

organizational, decisional, process, etc.) of the system with a vision independent from

implementation.

- PIM Level (Platform Independent Model) is a view of a system from the platform

independent viewpoint. It models the sub-set of the system that will be implemented, but

does not show the details of its use of its platform. It might consist of enterprise,

information and computational viewpoint specifications.

59

- PSM Level (Platform Specific Model) is a view of a system from the platform specific

viewpoint. It takes into account the specificities related to the development platform. It

combines the specifications in the PIM with the details that specify how that system uses

a particular type of platform.

- Coding Level (Implementation) is last level, consisting in coding enterprises applications

(ESA: Enterprise Software Application). It is also a specification, which provides all the

information needed to construct a system and to put it into operation.

As the name shows, ―Model-driven‖ means using models to direct the course of

understanding, design, construction, deployment, operation, maintenance and modification.

Thus, the models of these four levels can be transferred to others under certain order and rules.

Model transformation is the process of converting one model to another model of the same

system. For example, model transformation from PIM to PSM, the input to the transformation

is the marked PIM (a certain mapping assigned) and the mapping (specification for

transformation under a particular platform). The result is the PSM and the record of

transformation.

2.3.1.2. MDA for Reuse and Interoperability

As mentioned in the overview, MDA provides a systematic architecture to model a system,

which can bring amount of advantages including reduction of development cost and

complexity and increase of interoperability and reuse. As the enhancement of interoperability

and reuse is the most promoted advantages of the MDA (OMG, 2003), and also major

concern of this research, so this section will describe how MDA supports interoperability and

reuse.

Concerning the MDA for reuse, most of the time, it takes place at these levels or between

these levels. For example, reuse of the work field models from a existing CIM to other CIMs;

reuse of entities and data types from a PIM to other PIMs; Use of UML profile entities and

data types in many PIMs; Reuse of a given PIM as the model for many differing PSMs and

implementations; reuse functional module in one PSM to other functional module within this

PSM or to other PSMs; and etc. The examples show that the models being reused are general,

flexible. They are only focus on one specific problem, and they remove the distraction and

complexity. In a word, to reuse the model entities and types defined in an existing MDA

60

model as the basement for other different business environments, technologies or platforms

implementation can reduces development time and effort.

Concerning MDA for interoperability, from intra-system MDA model point of view, the

interoperability ability of MDA is not so obvious. However, from inter-system point of view,

it will be very clear. As the MDA model transformation shows that, the model transformation

starts from PIM to PSM, than to implementation depending on different techniques and

platforms. Because PIM model is an abstract model contains enterprise, information and

computational viewpoint specifications and includes the mappings to the implementation

technology, if two system implementations are derived from the same PIM, then a bridge

between these two implementations can be generated based on those known and standardized

clues. In this way, the bridge enables the interoperability between these two system

implementations. This example shows that to reuse the existing entities, types with a given

PIM to guide a new implement across different technologies or platforms, a mapping or

relationship among those implementations is concealed. Then, because the MDA around open,

supported standards allows all models, data types and entities to be represented in a single,

consistent manner, the interoperability of those implementations can be achieved.

Actually, to reuse or to map the model in PIM model showed in the example is just one way

to achieve the interoperability. The interoperability can be achieved in even more abstract

level, such as remove the business duplicate issues in CIM level, or in more detail level, such

as adjust the function module in PSM level. The agile MDA model allows developer to realize

the interoperability in different levels. This must be the original idea of Model Driven

Interoperability, which will be introduced in next section.

2.3.2. Model Driven Interoperability (MDI) architecture

As previous section mentioned, the MDA provides a way for developing modern enterprise

applications and software systems, meanwhile, it also provides a better way of addressing and

solving interoperability issues compared to earlier non-modeling approaches. In addition,

from an interoperability point of view, most of the enterprises build their information system

by using MDA, so it seems that MDA is a good solution for overcoming the interoperability

barriers (Ullberg et al., 2007). As a result, the researchers believe that an interoperability

framework based on MDA can provide guidance on how model driven development (MDD)

61

should be applied to address interoperability. Thus, Model Driven Interoperability (MDI)

framework is created for how to apply Model Driven Development (MDD) in software

engineering disciplines in order to support the business interoperability needs of an enterprise

(Elvesæter et al., 2007). It is a model driven method that considers interoperability problems

at the enterprise model level instead of only at the coding level. It provides a foundation,

consisting of a set of reference models. Figure 2-7 shows the reference model of MDI

approach which performs different abstraction in each MDA levels. Between each level of

models, the successive model transformations are carried out to reduce the gap existing

between enterprise models and code level. The models at the various levels may be

semantically annotated (such as reference ontology) which helps to achieve mutual

understanding on all levels. The mutual understanding also helps to achieve model

interoperability horizontally between different enterprises‘ model in homologous level.

Figure 2-7. Reference model for MDI

The concepts of this method were realized in the Task Group 2 (TG2) of INTEROP-NoE

project by defining an approach inspired by the OMG MDA concepts (Bourey et al., 2007).

The goal of MDI is to tackle the interoperability problems at each abstraction level defined in

MDA and to use model transformation technique to link both vertically the different levels of

the MDA abstraction and horizontally the corresponding models of the systems to interoperate.

62

The main goal of MDI, based on model transformation, is to allow a complete follow-up from

the expression of requirements to the coding of solutions and also to provide a greater

flexibility thanks to the automation of these transformations.

In the context of TG2, experimentations have been realized and in particular the feasibility

study to transform GRAI Methodology (Chen et al., 1997) (Doumeingts et al., 2001) Models

to UML models between CIM and PIM levels (Bourey et al., 2007). These works are

complemented by additional works realized in the context of ATHENA to define UML

profiles to take into account also the Service Oriented Architectures (SOA) at the PIM level

(Gorka et al., 2007). These results have been complemented by results presented by (Touzi,

2007) who has proposed an interoperability transformations method from BPMN to UML in

the context of SOA.

2.3.3. Architecture Driven Modernization (ADM)

MDA is well-known for promoting the use of models and their transformations to design and

implement different information systems. After MDA became an important change in

software development, OMG launched another research activity leading to what was later

called Architecture Driven Modernization (ADM) (OMG, 2010).

The basic idea proposed in the MDA approach is to translate from an abstract

platform-independent model (PIM) expressed in UML into a more concrete platform-specific

model (PSM) from which the code still needs to be generated (OMG, 2003). Reversing the

MDA lifecycle, ADM is discovering models from the coding level of legacy information

system, such as UML models, Knowledge Discovery Meta-model (KDM) and Abstract

Syntax Tree Meta-model (ASTM). KDM and ASTM are aimed to satisfy someone interested

in discover more specific models from a legacy system (OMG, 2010).

2.3.3.1. KDM - Knowledge Discovery Meta-model

KDM is a meta-model for representing existing software assets and their associations, as well

as relationships among the function models in the system (OMG, 2010). It also describes the

operation environments. It can insure the interoperability among the existing systems, make

the data exchange among different vendor tools easier. As shown in figure 2-8, KDM contains

63

4 layers and 12 packages. The four layers are Infrastructure layer, Program Elements layer,

Runtime Resource layer and Abstractions layer. The twelve packages are located in the

different four layers. The Infrastructure layer consists of core package, kdm package, and

source package. In the Program Elements layer, there are code package and action package.

The data package, UI package, Event package, and platform package are located in the

Runtime Resource layer. The conceptual package, structure package, and build package are

located in the Abstraction layer.

Figure 2-8. Layers, packages, and specification of concerns in KDM

2.3.3.2. ASTM - Abstract Syntax Tree Meta-model

ASTM aims at enabling easy interchange of detailed software metadata between software

development and software modernization tools, platforms, and metadata repositories in

distributed heterogeneous environments (OMG, 2011a). It defines a specification for

modeling elements to express abstract syntax trees (AST) in a representation that is sharable

among multiple tools from different vendors.

The Abstract Syntax Tree Metamodeling specification mainly consists of definitions of

metamodels software application artifacts in the following domains:

- Generic Abstract Syntax Tree Metamodel (GASTM): A generic set of language modeling

elements common across numerous languages establishes a common core for language

64

modeling, called the Generic Abstract Syntax Trees. In this specification the GASTM

model elements are expressed as UML class diagrams.

- Language Specific Abstract Syntax Tree Metamodels (SASTM) for particular languages

such as Ada
2
, C, Fortran, Java, etc. are modeled in Meta Object Facility (MOF) or MOF

compatible forms and expressed as the GASTM along with modeling element extensions

sufficient to capture the language.

- Proprietary Abstract Syntax Tree Metamodels (PASTM) express ASTs for languages

such as Ada, C, COBOL
3
, etc. modeled in formats that are not consistent with MOF, the

GSATM, or SASTM. For such proprietary AST this specification defines the minimum

conformance specifications needed to support model interchange.

In a word, the KDM establishes a specification for abstract semantic graph models, while the

ASTM establishes a specification for abstract syntax tree models. The relationships between

these two are detailed in (OMG, 2011a).

2.3.3.3. Model Reverse Tool

Nowadays, there are many software tools developed based on model reversal theories. We

choose MoDisco (for Model Discovery) tool which is an Eclipse GMT (Generative Modeling

Technologies) component for model-driven reverse engineering. The reason of choosing

MoDisco is that it is an open source plug-in of the Eclipse that is our research development

IDE (Integrated Development Environment) and its result is a readable UML file in XML

format, so it is very convenient to import the MoDisco and its result into our application

(Bézivin et al., 2006).

The objective of MoDisco is to allow practical extractions of models from legacy systems.

MoDisco proposes a generic and extensible metamodel-driven approach to model discovery

and use a basic framework and a set of guidelines to discover models in various kinds of

legacy systems.

As a GMT component, MoDisco will make good use of other GMT components or solutions

available in the Eclipse Modeling Project (Eclipse Modeling Framework - EMF, Model To

2 Ada is a structured, statically typed, imperative, wide-spectrum, and object-oriented high-level computer programming

language, extended from Pascal and other languages (Gehani, 1983).
3 COmmon Business-Oriented Language is one of the oldest programming languages. Its primary domain is in business,

finance, and administrative systems for companies and governments (Sammet, 1978).

65

Model - M2M, GMF, Textual Modeling Framework - TMF, etc), and more generally of any

plug-in available in the Eclipse environment.

MoDisco can extract XML model, KDM model, KDM code model, JAVA code model, UML

model and etc. Our research will only use the intuitive and intelligible UML model to analyse

interoperability issues which will be discussed in chapter 3. The installation and usage of

MoDisco Tool can be found in the (MoDisco, 2012a) (MoDisco, 2012b).

2.3.4. Summary

This section has presented a survey on MDA, MDI and ADM. All of them have the highlights

in standardization & modularization of system design and development, but also have the

drawbacks that need to be improved. The summary of these technologies are as following:

- The MDA approach contributes on building an interoperable ICT model, from enterprise

models to technology models. Those models are able to be aligned by using common

meta-model. MDA also provides flexibility and adaptability to accommodate changes at a

higher abstraction level. Furthermore, Model transformation ensures the interoperability

achievement and/or agreement from higher level to infrastructure (lower level). Besides

that, it allows document transformations on the fly, and can contribute to new approaches

for semantic interpretations on information exchanges. However, no matter how many

advantages MDA has, there are still many people doubt on its performance in practice.

For example, (Ambler, 2003) doubted that MDA will follow the old way of Integrated

Computer-Aided Software Engineering to ruin, to spend 10 percent effort to generate

incomplete and useless code (80 to 90 percent), but spend 90 percent effort on struggling

in tracing down the rest part to achieve perfection. In addition, the information is losing

during the model transformation, such as details of system behaviours. Therefore, how to

use MDA in helping achieve federated interoperability becomes a big concern of this

thesis. The section 3.2 will introduce a harmonized HLA&MDA engineering framework

that can improve the model transformation.

- Nevertheless, the soundness of the MDI methodology has been demonstrated in the

current researches, but no full industrial scale validation has been yet achieved. Only

some projects have been especially carried to demonstrate these concepts in an industrial

real world significant application. The different methodological propositions are tested

66

and refined by focusing on models and their interoperability. They consist in particular of

ways to improve the flexibility of the MDI transformation process and in obtaining

dynamic interoperability in the context of the federated approach.

- ADM shows its strong power in obtaining information from the legacy systems. But,

many people doubt on the validity of this information for achieving federated enterprise

interoperability. ADM met the same model transformation problems as MDA. In addition,

most of the current researches are focus on obtaining static models from the existing

systems which cannot fully describe the systems. Most of the time, the reversed models

can only be a guideline for the system reconstruction. Thus, the model reverse

engineering did not achieve its real intention. The method introduced in section 3.3 will

specify the usage of reversed static model for achieving interoperability and propose a

way to obtain dynamic models that can describe the business behaviour of the enterprise.

The static models and dynamic models will be used to generate an intelligent agent for

establishing enterprise interoperability without reconstructing the system of each

participant.

2.4. Simulation and application distribution frameworks

Since 1970s, people started to use computer to help manufacturing and named this activity as

―Informatization‖, human civilization had moved into information age. The information

technology (IT) is never-ending changes and improvement. Nowadays, IT has permeated

through almost all the human activities, and of course, enterprise management is not an

exception. Enterprise informatization and networked enterprise become inevitable trend. Thus,

federated approach requires a flexible and advanced IT environment to support dynamic

adjustment and accommodation. Thus, this section will give a brief survey of some typical

and popular IT technologies that can promote distributed systems interoperability.

2.4.1. CORBA and RMI

CORBA (Common Object Request Broker Architecture) was developed and standardised by

the Object Management Group (OMG). CORBA can link disparate applications together,

which means that distributed, heterogeneous application can communicate with each other in

a location and language independent manner (McCarty et al., 1998).

As shown in part (a) of the figure 2-9, the remote client application can request the public

67

interface in the remote server by using the Interface Definition Language (IDL). There is an

IDL stub at the client side and an IDL skeleton at the server side. The IDL provides a

programming language neutral method for specifying the specifics of an interface. It can also

be used by other frameworks to generate the necessary stub code that will facilitate distributed

communication (Mowbray et al., 1995).

In addition, the communication can only be carried out within the Object Request Broker

(ORB), which is achieved by defining a generalised communications protocol – the

Inter-ORB Protocol (IIOP). This protocol standardises the format of communications that are

passing between the distributed CORBA based applications. This protocol also allows clients

written in any programming language and on any platform to communicate with one another.

RMI (Remote Method Invocation) was developed by Sun Microsystems. Originally, RMI

only supported the Java programming language, but the recent versions have added the IIOP

protocol used by CORBA. RMI is similar to CORBA. It allows the programmers to write

object-oriented programming in which objects on different computers can interact in a

distributed network (Buss et al., 1998).

As shown in part (b) of the figure 2-9, the RMI system consists of three layers:

- The stub/skeleton layer: client-side stubs (proxies) and corresponding server-side

skeletons. The stub appears to the calling program to be the program being called for a

service.

- The remote reference layer: remote reference behaviour that can be different depending

on the parameters passed by the calling program. (e.g. invocation to a single object or to a

replicated object)

- The transport layer: connection set up and management and remote object tracking

The client uses the stub (proxy) to invoke a method on the remote server. The local stub is an

implementation of the remote interfaces of the remote object. It holds a reference to the

remote object and forwards the invocation requests to the server via the remote reference layer.

The remote reference layer is responsible for carrying out the semantics of the invocation. The

transport layer takes in charge of connection set-up and management. It also keeps track of

remote objects (the targets of remote calls) and dispatches them to the transport's address

space.

68

Figure 2-9. CORBA and RMI

Summary: This section has studied the CORBA and RMI. Both of them strongly support the

interoperation of software application on in a distributed environment. But they cannot

provide advance simulation services, such as integrated time management, interest

specification, ownership management and data distribution services. Without these services, it

is very hard to create a flexible and adaptable interoperability environment. The event control,

time management can rarely be implemented. The organization barrier of EI will be a Chinese

puzzle.

2.4.2. DIS and ALSP

DIS (Distributed Interactive Simulation) is a government/industry initiative to define an

infrastructure for linking simulations of various types at multiple locations to create realistic,

complex, virtual worlds for the simulation of highly interactive activities (IEEE, 1995). As the

figure 2-10 shown, the DIS network can realize the communication among different systems

built for separate purposes, with different technologies, and providing different

products/services, so that they can interoperate. A standard set of Protocol Data Unit (PDU)

has been defined for describing the format of messages exchanged between participating

simulation hosts. The individual simulation host has a dis_mgr, which is PDUs dispatcher

between the DIS network and application programs. The client-server protocol implemented

between the dis_mgr and application programs use TCP/IP (Transmission Control

Protocol/Internet Protocol) to exchange information. The connection between the DIS

network and dis_mgr is based on UDP/IP (User Datagram Protocol/ Internet Protocol). Once

69

the simulation host changes its state, it will broadcast a message to all other participants.

Figure 2-10. Distributed Interactive Simulation

The ALSP (Aggregate Level Simulation Protocol) is under the auspice of the Advanced

Distributed Simulation, which is the nomenclature emanating from the U.S. Department of

Defense. It provides a mechanism for the integration of the existing simulation models to

support training via theater-level simulation exercises (Weatherly, 1993).

Similar to DIS, ALSP describes a collection of infrastructure software and protocols for

passing the messages between the various participants of a distributed simulation. Different

from DIS, ALSP has global time synchronization and use object-oriented approach to describe

the shared object model of a distributed simulation.

Summary: This section has briefly introduced the DIS and ALSP. Both of them provide a

protocol of the distributed systems communication. Both of them have proven successful in

supporting the interoperation of disparate systems/platforms/services, and the ALSP even

starts to take into account the time issue. However, they still cannot support time management

and data distribution management. In this case, they still cannot fully satisfy the requirement

of the federated approach proposed in this thesis.

70

2.4.3. High Level Architecture

2.4.3.1. Overview

The High Level Architecture (HLA) is a software architecture specification that defines how

to create a global software execution composed of distributed simulations and software

applications. This standard was originally introduced by the Defence Modelling and

Simulation Office (DMSO) of the US Department Of Defence (DOD). The original goal was

reuse and interoperability of military applications, simulations and sensors.

In HLA, every participating application is called ―federate‖. A federate interacts with other

federates within a HLA federation, which is in fact a group of federates. The HLA set of

definitions brought about the creation of the standard 1.3 in 1996, which evolved to HLA

1516 in 2000 (IEEE, 2000). In order to benefit from the Web Services such as, the support for

numerous newer and older languages and operating systems as well as the ease of deployment

across wide area networks, HLA evolved IEEE 1516
TM

-2010 was published in August, 2010

(IEEE, 2010).

Run Time Infrastructure (RTI): RTI is the supportive middleware for the distributed

simulation. It is the fundamental component of HLA. It provides a set of software services for

the dynamic information management and inheritance, in which federates coordinate their

operations and exchange data during a runtime execution.

According to the HLA interface specification, RTI provides six management services:

Federation management, Time management, Declaration management, Object management,

Ownership management and Data distribution management.

Several commercial RTI software tools coexist such as Pitch portable RTI (pRTI), MAK

Real-time RTI, BH RTI and etc. There is also open source RTI software, such as Portico RTI.

Portico RTI is chosen for this doctorate research, because Portico is a fully supported, open

source, cross-platform HLA RTI implementation. Designed with modularity and flexibility in

mind, Portico is intended to provide a production grade RTI implementation and an

environment that can support continued research and development.

71

HLA Federate: The Federate A and Federate B in figure 2-11 shows the structure of a single

federate. A HLA federate has two parts, federate code and local RTI component code (LRC).

The federate code is the user‘s code for a federate which is linked with Local RTI Component

Code from the C++ library LibRTI to form a complete federate. The local RTI components

provide the services for the federate through communication with the RTI executive

component, the Federation executive component and other federates. Those services can be

obtained by calling the member functions of Class RTI::RTIAmbassador, which is contained

in the LibRTI. The federate code has to extend and implement RTI::Federate Ambassador,

because when the RTI sends messages and responses to the federate code, it needs to call

functions implemented in the federate which are known as callback functions and are

implemented as a subclass of Class RTI::FederateAmbassador. Class

RTI::FederateAmbassador is also contained in LibRTI, and contains pure virtual functions for

each possible callback. These routines are simply "place holders" that cannot be called. The

federate code must create a derived class from this class that contains the actual

implementation for each of these callback functions.

Figure 2-11. High Level Architecture

HLA Models: The interface specification of HLA describes how to communicate within the

federation through the implementation of HLA specification: the Run Time Infrastructure.

Federates interact using services proposed by the RTI. They can notably ―Publish‖ to inform

about an intention to send information to the federation and ―Subscribe‖ to reflect some

information created and updated by other federates. The information exchanged in HLA is

represented in the form of classical object class oriented programming. The two kinds of

72

object exchanged in HLA are Object Class and Interaction Class. Object class contains

object-oriented data shared in the federation that persists during the run time; Interaction class

data are just sent and received information between federates. These objects are implemented

within XML format. More details on RTI services and information distributed in HLA are

presented in (IEEE, 2000).

In order to respect the temporal causality relations in the execution of distributed

computerized applications, HLA proposes to use classical conservative or optimistic

synchronization mechanisms (Fujimoto, 2000). In particular, the Lookahead is an important

notion in conservative approach, it is the Delay given by an influencer federate to the RTI.

Federates certify to the RTI not to emit message until their actual time plus their lookahead.

Another important notion is the LITS (Least Incoming Time Stamp (IEEE, 2000)): Federate

LITS is a lower bound until which the federate will receive no message, this value is

calculated from its GALT and the messages in transit not received yet by the federate (i.e.

messages stored in the LRC queue).

HLA FEDEP: The development and execution of HLA federation must follow the HLA

FEDEP (Federation Development and Execution Process) which describes a high-level

development and execution framework. The FEDEP uses the seven-step process to guide the

development of the simulation system through phases of (1) requirements, (2) conceptual

modelling, (3) design, (4) software development, (5) integration, (6) execution and (7)

evaluation (IEEE, 2003). It has been recently integrated into the more general DSEEP

(Distributed Simulation Engineering and Execution Process) framework (IEEE, 2011).

2.4.3.2. HLA for Interoperability

As mentioned, HLA has lot of outstanding features, such as generalized development process:

Federation Development and Execution Process (FEDEP); synchronization standard: Runtime

Infrastructure Specification; Data Standards; and etc. Because of these features, HLA provides

excellent services: capability of achieving interoperability across disparate platform;

reusability of simulation models; time management; secure simulation environment; and etc.

These valuable services help us to realize the potential ability of HLA in supporting the

achievement of enterprise interoperability.

73

In order to understand how HLA can help the enterprises to establish interoperability, it is

necessary to know how to implement interoperability across heterogeneous platforms in HLA

simulation. Various HLA components, functionalities and services support the interoperation

of distributed simulation, but HLA FOM (Federation Object Model) is playing the primary

role among them via following ways:

(1) Unify information exchange: As mentioned, FOM defines the shared vocabulary of a

federation, which allows federates to work with one another in a defined manner. This

means that the information exchange among the simulation units follows a unique manner,

meanwhile, any simulation unit, who accept this manner, could join this communication if

they want to. In order to achieve that, the notion of reference FOMs has been used within

the defense domain for a long time. The creation of a central, standard FOM for a specific

purpose allows components to be created with interoperability in mind (Shanks, 1997).

(2) Overcome platform differences: The FOM also helps overcome platform differences.

While the data of different platforms have different representations, HLA concerns this

situation very little. All the HLA communication is based on the transmission of an

opaque series of bytes. In this case, it needs a mechanism to reconstitute any received

information into the useful and understandable format. FOM provide this mechanism. In

the HLA simulation, FOM plays as a recipe for the reconstitution of received information

into its intended format.

Nowadays, many applications have been developed to implement HLA based interoperability

solution in the last decade. (Zacharewicz et al., 2011) has reported several applications which

establish interoperability between enterprises IS in various industrial domains. Most of those

platforms were designed to exchange data inside the enterprise using distributed simulation

for routing and synchronizing the information management using HLA. However, those

applications emphasize more on integration. The structure of data exchanged is mostly static.

Even HLA allows federation members (federates) to join or leave at run time, but this ability

is not fully used. Also the flexibility and compatibility are based on HLA 1.3 or 1516, so they

are not very satisfactory regarding at present web 2.0 technologies possibilities and

requirements. Regarding these limitations, the methodology presented in this thesis wants to

focus on not only reusability of components, but also the compatibility of the platform with

web services to be interfaced through the web (i.e. being compliant with HLA 1516 Evolved).

Consequently, it needs facilities for community joining and resigning from anywhere on the

74

web, and making software components interoperable with others thanks to the rapid

development life cycle.

2.4.4. Service-oriented architecture (SOA)

2.4.4.1. SOA overview

SOA is an approach to build distributed systems that deliver application functionality as

services to end-user applications or to build other services (Colan, 2004). It focuses on the

loose coupling of integrated elements to minimize unnecessary dependencies among systems

and software elements while maintaining functionality (Gustavson et al., 2005)

The service is the primary element of the SOA infrastructure. It is well defined

business/application functionality, which can be reused for different purposes. Recently, the

service is mostly represented in web services, but also can be described in other technologies,

such as CORBA. (Wiedemann, 2007) introduced a typical SOA-Webservice-orchestration

infrastructure as shown in figure 2-12. The major elements of this infrastructure are SOA

Service Orchestration and Enterprise Service Bus.

Figure 2-12. OA-Webservice-orchestration infrastructure

75

- SOA Service Orchestration is a control engine that dominates the sequence of service

execution. This Service Orchestration Engine has the rule interpreter that can parse the

rule defined in BPEL/BPMN (Business Process Execution Language/Business Process

Modeling Notation).

- Enterprise Service Bus is an intermediator that brings the distributed loosely couple

services together. The services can interact with others by sending XML based message,

or file message, or email. The individual application can also generate a web service

interface as wrapper to communicate with other participants.

As this infrastructure shows, the web services can fully support the service detail definition,

so that the SOA solution can be well implemented. The next section will introduce the web

services in detail.

2.4.4.2. Web Services

Web Services has achieved a great success in the business domain, which stems from the

good characteristics of the technology itself, is widely recognized by enterprises and business

organizations and provides effective support for the open source community (Richardson et

al., 2007). Microsoft, IBM and Sun and other leading manufacturers as well as Apache and

other open source organizations support it. In September 2000, Microsoft, IBM and Ariba

published the specification for UDDI (Universal Description, Discovery and Integration). A

month later, Microsoft, and IBM jointly published the specification for WSDL (Web Services

Description Language) based on XML and SOAP (Simple Object Access Protocol). The

SOAP and WSDL specifications have been submitted to the W3C (World Wide Web

Consortium). The UDDI community drives the UDDI effort. The W3C and other

standardization organizations with active participation in the Web services technology provide

for great maturity and popularity of the organization advantage.

The web services technology offers a programming model for creating loosely coupled

distributed applications that use open standards. It builds on Internet standards such as HTTP,

XML and SOAP. These standards are not associated with any particular vendor, operating

system and programming language, which makes Web services platforms with good vendor

neutrality. Coarse-grained business functions can also be packaged for the Web service

platform and can then be discovered by potential consumers. The figure 2-13 shows the

76

architecture of web services (Gisolfi, 2001).

Figure 2-13. Web Services Architecture

Members of web services architecture:

- Service provider: an entity provides an interface for a system that manages a specific set

of tasks. It can represent a business entity or a reusable subsystem.

- Service requestor: an entity discovers and invokes other software services in order to

accomplish a task or provide a business solution

- Service broker: an entity acts as a repository for the software interfaces published by the

service providers.

Process of web services:

- Step 1: The service provider implements the service and describes the service interface,

and then publishes the service to the service broker. The service is described in WSDL.

- Step 2: the service requestor discovers the service by UDDI and WSIL, and then obtain

the WSDL from the service broker.

- Step 3: the service requestor uses the information obtained from service broker to invoke

the service from services provider. After application succeeds, requestor will be bound

with provider.

Besides the WSDL, UDDI and WSIL, the cornerstones of this architecture are HTTP for

transport, XML for data description, SOAP for invocation.

77

2.4.4.3. Web Services for Interoperability

As mentioned in the previous section, the primary elements of the web services are HTTP,

XML and SOAP. These elements help the web services to overcome the barriers of different

programming languages, operating systems, and vendor platforms, so that diverse and

distributed applications can interoperate.

- The HTTP protocol provides a protocol and a paradigm for remote invocation across

secure boundaries. The HTTP model cares anything about the operations environment in

the involved systems.

- XML Web Services provides a common, platform-agnostic medium/technology-agnostic

solution, which can support the integration, aggregation, and orchestration of the services

across vendors, systems, and organizational boundaries. A set of standards for XML Web

Services has been provided by companies such as Microsoft, IBM, BEA, and Sun. These

standards contemplate all aspects of enterprise interoperability, such as security, reliability,

and transactions. In addition, the Web Services Description Language is XML format.

XML helps the WSDL to allow the description of services and their messages regardless

of different message formats and different network protocol used for communicating

(W3C, 2001a).

- SOAP is a specification for describing an exchange medium between peer systems (W3C,

2007). XML and SOAP fervently support each other. For example, the type of data in

SOAP message is identified by XML Schema datatypes and structures, and SOAP helps

XML to create Web Services that can provide both synchronous and asynchronous remote

invocation. In addition, SOAP XML message over HTTP can travel through the

boundaries caused by corporate firewalls.

In sum, through the support of Web Services, SOA can provide a flexible solution for

distributed enterprise interoperability. SOA supports component coupling, synchronization,

ownership management, and etc. However, some of the functionalities are not fully

implemented or hard to implement. For example, the time management performs unstably;

Synchronous and asynchronous logic for complicated task might be very complex; and data

ownership is not as secure as HLA. In a word, SOA is not the perfect choice for the federated

approach proposed in this thesis.

78

2.4.5. Summary

This section has introduced some simulation and application distribution frameworks,

including CORBA, RMI, DIS, ALSP, HLA and SOA. All of them can support distributed

system interoperability, but in varying degrees. None of them can fully satisfy the requirement

of the federated approach proposed in this thesis as shown in the following table 2-1.

Table 2-1. Comparison CORBA, RMI, DIS, ALSP, HLA and SOA

 CORBA RMI DIS ALSP HLA SOA

Component

Coupling
Yes yes yes yes yes yes

Time

Management
No no no partial yes partial

Ownership

Management
No no no no yes yes

Environment

Management
No no no no yes yes

Environment

Flexibility
partial partial no no no yes

data

distribution

services

No no no no yes yes

The federated approach proposed in this thesis requires loose coupling, time control,

information authority control, environment control, environment compatibility, and

information distribution control. As the table 2-1 shows, none of the technologies reviewed in

this section can fully cover these requirements. But, the combination of HLA and SOA seems

to be a good choice to achieve the expected goal. Thus, the combination of HLA and SOA has

been chosen for this federated approach that will be explained in detail in section 3.4.

79

2.5. Ontology

2.5.1. Ontology overview

From the philosophical view, ontology is the study of the nature of being, existence or reality

in general, as well as of the basic categories of being and their relations. Ontology deals with

questions concerning what entities exist or can be said to exist, and how such entities can be

grouped, related within a hierarchy, and subdivided according to similarities and differences

(Gomez-Perez et al., 2004). During the last decades, ontology has been used in many research

domains, such as ontology engineering in computer science and information science. It is a

new field, which studies the methods and methodologies for building ontologies: formal

representations of a set of concepts within a domain and the relationships between those

concepts. Ontologies are used in artificial intelligence, the Semantic Web, software

engineering, biomedical informatics, library science, and information architecture as a form of

knowledge representation about the world or some part of it (De Nicola et al., 2009).

As ontology is defined as a formal, explicit specification of a shared conceptualization,

representation language is essential for description. During the last decades, several ontology

representation languages have been developed, such as Ontolingua, RDF(S), and OWL

(DAML+OIL).

- Ontolingua is originally an Interlingua for ontology representation and sharing developed

by KSL (Knowledge Systems Lab) at Stanford University (Gruber, 1992). It is designed

by adding frame-like representation and translation functionalities to KIF (Knowledge

Interchange Format) (Genesereth, 1992) which is a logic-based Interlingua for knowledge

representation.

- RDF(S) developed by W3C provides a common framework for expressing this

information so it can be exchanged between applications without loss of meaning. Since

it is a common framework, application designers can leverage the availability of common

RDF parsers and processing tools. The ability to exchange information between different

applications means that the information may be made available to applications other than

those for which it was originally created (W3C, 2004a). RDF has an XML-based syntax

(called serialization) which makes it resembles a common XML-based mark up language.

But, RDF is different from such a language in that it is a data representation model rather

80

than a language and that the XML‘s data model is the nesting structure of information and

the frame-like model with slots.

- OWL (DAML+OIL) is also a language developed by W3C (W3C, 2004b). OWL is

designed to make it a common language for ontology representation and is based on

DAML+OIL (W3C, 2001b). OWL is an extension of RDF Schema and also employs the

triple model. Its design principle includes developing a standard language for ontology

representation to enable semantic web, and hence extensibility, modifiability and

interoperability are given the highest priority. At the same time, it tries to achieve a good

trade-off between scalability and expressive power.

2.5.2. Ontology for Interoperability

As mentioned in chapter 1, the lack of a shared understanding among enterprises leads to a

poor communication which impacts on levels of misunderstanding, effectiveness of people‘s

cooperation and flaws in enterprise operations. In addition, because eBusiness is involved, the

further problems arise on the identification of common, shared objectives, effective exchange

of knowledge and services and interoperability among systems, to support value production.

Thus, Ontology is increasingly seen as a key factor for enabling interoperability across

heterogeneous systems. Ontology can help capturing meaning beyond technical solutions,

specifying the representation of documents and modeling semantic content in unambiguous,

formal way.

For enterprise interoperability, ontology can aid the business community to agree on a

common ―vision‖ of the domain. Ontology can allow business and enterprises to semantically

enrich their own models of business documents and services. Ontology can also allow a

preventive assessment of the inherent kinship of two enterprises, e.g., potential problems

when starting cooperation, by Cross-analysis of Semantic Annotation. Semantic Annotation

allows the identification and building of the reconciliation strategies (rules) to cope with

divergences (Veltman, 2001).

2.5.3. Ontology mapping approaches

In most of the ontology approaches for enterprise interoperability, ontology mapping is core

for combining distributed and heterogeneous ontologies. The existing ontology mapping

approaches can be indentified into three kinds of approach: single ontology approach,

81

multiple ontology approach, and hybrid ontology approach (H.Wache et al., 2001).

Figure 2-14. ontology mapping approaches

- Single ontology approach has a global ontology which provides a shared vocabulary for

the specification of the semantics (as shown in figure 2-14 A). All the information

sources have to relate to this global ontology. The global ontology can also be a

combination of several specialized ontologies which can be the modularization of a

potentially large monolithic ontology. This approach can be applied to integration

problems where all information sources to be integrated provide nearly the same view on

a domain. The domain differences may cause the difficulties on finding ontology

commitment (Gruber, 1995). In addition, if one information source changes something, it

will affect the global ontology and the mappings to the other information sources.

- Multiple ontology approach has no common and minimal ontology commitment about

global ontology. Each information source is described by its own ontology (as shown in

figure 2-14 B). The local ontology of each information source could be developed

without respect to other sources or their ontologies — no common ontology with the

agreement of all sources is needed. This approach can minimize the affection of change,

such as modifications in one single information source or the adding and removing of

82

sources. However, in reality the lack of common vocabulary makes it extremely hard to

compare different source ontologies.

- Hybrid ontology approach is kind of trade-off of the previous two approaches. It absorbs

the essences of the previous approaches. As figure 2-14 C shows, this approach has a

global ontology as single ontology approach does, but each information source has its

own local ontology which is similar to multiple ontology approach. This idea aims at

making the ontologies comparison among the coordinated information sources easier.

The advantage of this approach is that new sources can easily be added without the need

of modification in the mappings or in the shared vocabulary. It also supports the

acquisition and evolution of ontologies.

2.5.4. Summary

The ontology can fully support the conceptual enterprise interoperability. As the section 2.5.3

mentioned, there are three ontology mapping approaches that can correspond to the three

enterprise interoperability approaches introduced in section 1.2.3.2. Thus, the multiple

ontology approach seems to be the approach that meets the demand. Based on the theory of

multiple ontology approach, section 3.5 will propose a new ontology approach for enterprise

interoperability called ―short-lived ontology‖.

2.6. Conclusion

This chapter reviewed relevant existing models, methodologies, technologies, and

architectures for the development of federated enterprise interoperability. Due to the fact that

enterprises require more and more dynamic, complex, and advanced interoperability, these

methodologies, technologies, and architectures independently can hardly handle these

requirements any more. However they are complementary rather than contradictory. On the

basis of those existing approaches, chapter 3 will propose a harmonized and reversible HLA

based methodology for developing model driven federated enterprise interoperability. This

methodology will creatively combine the excellences of some of these existing methodologies,

technologies, and architectures, and propose an innovative way to tackle enterprise

interoperability at service and data levels through a federated approach.

Chapter 3. The Harmonized and Reversible

HLA based framework and methodology

85

3.1. Introduction

This chapter presents a harmonized and reversible engineering framework and methodology

for developing a HLA based application to set up interoperability rapidly among existing

enterprise information systems. This framework and methodology contain the core

information of the solution proposed in this doctoral thesis. As mentioned in chapter 2, many

architectures, methodologies and technologies can support enterprise interoperability. Such as,

MDA and Model reverse engineering can reduce the development cost and complexity, and

optimize system/component reusability to enhance system interoperability. HLA and SOA

have the potential abilities in supporting the achievement of federated enterprise

interoperability in data concern by overcoming the technical barrier. This framework and

methodology will draw their benefits to create a novel way to support the development of

federated approach of enterprise interoperability. Thus, the methodology presented in this

thesis will utilize MDA to formalize the system architecture and relationship among systems,

and apply Model reverse engineering to reuse and align different systems/component to

initiate enterprise IS interoperability environment, and use the HLA and SOA functionalities

as technical support. This framework has three primary concepts that can be separately

presented as follows.

Harmonized means that this framework is synthetic, which consists of several techniques. As

the framework in figure 3-1 shows, we propose a new five steps development life cycle which

aligns MDA and HLA FEDEP. MDA is easy to use and understand, and tightly bounded with

Unified Modelling Language, Meta-Object Facility (MOF). It appears to be an appropriate

solution to overcome the interoperability barriers, such as the MDI framework mentioned in

(Elvesæter et al., 2007). HLA FEDEP is the standard for development and execution of HLA

federation. It is quite similar to the waterfall development but with look-back test phase.

MDA and HLA FEDEP can be easily aligned, because they have several similar steps. The

HLA FEDEP & MDA alignment will be explained in section 3.2. In addition, this framework

uses web services to improve the flexibility and compatibility of the HLA. The Web Services

allows potential external systems to discover the existing HLA Federation, and then connect

to it. Section 3.4 will explain the reason and way of using web services.

Reversible means that this framework uses model reverse engineering technique to discover

86

part of the models from the legacy system. Model reverse engineering technique aims at

avoiding rebuilding the complete legacy system for a new reuse. The objective is to accelerate

the development and reduce the cost. As figure 3-1 illustrates, there are two kinds of dotted

arrows, which have opposite directions to the five steps development life cycle. These two

kinds of arrows represent two different scenarios of model reversal in this framework. Section

3.3 will present the method of using model reverse technique to rapidly develop HLA based

interface for achieving federated enterprise interoperability.

HLA means that this framework dedicates to the development of HLA based application. The

RTI used in this approach is an open source RTI, poRTIco (poRTIco, 2009). The reason of

choosing it is not only because of the software price, but also the objective of initiating a

global open framework and receiving comments from contributors who can be interested in

this idea. In addition, as mentioned earlier in Harmonized part, Web Services will be used to

improve the limitation of the traditional HLA. Thus, the HLA approach proposed in this thesis

is based on the HLA evolved IEEE 1516
TM

-2010 standard. This approach will be presented in

section 3.4.

87

Figure 3-1. Harmonized and reversible development framework for HLA based Application

A schema of the related scenario is shown in figure 3-2. We assume that before enterprises

start to launch a cooperative project, all of them have their own information systems. Thus,

the goal is to achieve the interoperability among those existing systems in a common project

context. The steps of this approach are presented in the following:

Figure 3-2. Scenario description

- Step 1 (arrows numbered with ―1‖): model reverse engineering is used to discover the

models from the legacy system. The model discovery is guided by the enterprises new

requirements and interest. Then, these discovered MDA conceptual models go down

again along the alignment of MDA and HLA FEDEP. It means that models are generated

from code to PSM then PIM and CIM level. At each level of the MDA models the

interoperability problem is tracked according to the principle of the MDI framework.

- Step 2 (arrows numbered with ―2‖): a test of the final models obtained by model reverse

engineering is carried out. After that, the correct models are transformed from CIM to

code, and generate a Federate Interface, which can plug into the HLA platform and

exchange the information with other companies‘ information systems via RTI.

- Step 3 (arrows numbered with ―3‖): if other enterprises want to join this ongoing

cooperative project, they also need to follow the step 1 and step 2, to rewind their legacy

88

systems into MDA conceptual models, and select part of them that can be used for

interoperability, then generate the Federate Interfaces, finally, synchronize with other

systems.

3.2. The Harmonized HLA&MDA engineering framework

3.2.1. Why harmonized HLA and MDA

As mentioned in the state-of-the-art, HLA is successful in defining how to create a global

software execution composed of distributed simulations and software applications.

Meanwhile, MDA becomes the standard for promoting the use of models and their

transformations to consider and implement different systems. Both of them have made some

achievements in their respective domain. However, they both still have drawbacks expected to

be improved. This section will explain how HLA and MDA complement each other by using

their achievements mentioned in chapter 2, which is conducive for federated enterprise

interoperability. This section will firstly further describe HLA and MDA shortfalls in

conducing to federated enterprise interoperability. Then, the motivation of the harmonization

of HLA and MDA will be given.

As mentioned in section 2.4.3, HLA is a distributed simulation standard that specifies a

Federation Development and Execution Process (FEDEP), a synchronization mechanism:

Runtime Infrastructure (RTI), and a Data Standards. The FEDEP can standardize the

development, which can enhance the model/component reusability for interoperability. RTI

can bring different simulation units together for interoperability. The FOM can be seen as the

shared template for understanding messages from different simulation systems. However,

their ways to achieve interoperability do not fully satisfy the requirement of federated

interoperability. The main incongruent factors are as following:

- Tight coupling: the coupling coefficient of HLA is still too high for federated

interoperability from some aspects. For example, the models defined by FEDEP are HLA

federation specified. These models are hardly be reused if the HLA federation

environment changes. There is no formal standard for separating the business logic code

and RTI support code, which affects the code reusability (Pokorny et al., 2006).

- Weak compatibility: the FOM-centric approach of HLA and RTI constraints cause this

89

weak compatibility. As mentioned earlier, FOM is the share data objects for one HLA

federation, but it does not mean that it can be recognized by other HLA federations

(Granowetter, 1999). Meanwhile, because the federate code must respect to the RTI

ambassador services, when attempting to move a federate to another different RTI

implementation, the source code modification is definitely necessary (Granowetter, 2004).

Thus, it means that the existing work in an existing federation context is hardly be reused

in another context, because it was not originally intended.

- Syntax interoperability only: even the FOM helps the data interoperability, but it only

defines the syntax for interoperability, not the semantics (StraBburger, 2001). The FOM

only defines the structure of the data object. However, only syntax interoperability is not

enough for the complex business collaboration. The semantic conflicts will cause a lot of

misunderstandings.

In sum, HLA cannot achieve the expected results mentioned in section 1.4.3 alone, such as

rapid and dynamic interoperability establishment, and agile environment compatibility.

On the other hand, even MDA has lots of advantages, but some of them only function

smoothly in theory, which cause the difficulties of their realisation. The following will present

some examples of these difficulties.

- Difficulty of model transformation: as mentioned in section 2.3.4, the MDA model

transformation is difficult to control and rarely fully completed. Most of the time, manual

intervention and elaboration are needed, which can introduce some unexpected

complexities.

- Difficulty of model mapping at the same level: the model mapping at the same level, such

as the horizontally mapping mentioned in section 2.3.2, can enhance the model

reusability and systems interoperability. However, it is also hard to control and rarely

completed. Some additional technologies and methods are needed, such as the ontology

approach in the MDI framework.

- Difficulty of representing the behaviour of the complex systems: MDA models

standardize the system processes and logics in the CIM level. However, since the model

transformation from top to down, the information of the system behaviour is not

formalized. Especially, when UML is used to present the system, it cannot fully capture

the detail of temporal consideration in the behaviour of the complex systems.

90

In sum, MDA alone is not the ideal solution for federate approach of enterprise

interoperability. The difficulties of its realisation might be the bottleneck of the development

of federated approach.

However, it seems that MDA and HLA can help each other in compensating the drawbacks

and overcoming the difficulties. The alignment of MDA and HLA can facilitate the

construction of simulators and provide the standardized meta-models to this integration (Tolk,

2002) (Parr et al., 2003) (Trbovich et al., 2005). For example, the model levels defined in

MDA can help the HLA to define RTI specific or federation specific information in the PSM

model, and define the system logics in CIM and PIM model. MDA can also standardize the

data objects, which can help the model reverse method to initiate the short-lived ontology

glossary (this will be explained in section 3.5). On the other hand, the HLA specific

constraints and given context can strictly guide the MDA model transformation.

3.2.2. The proposed Framework

3.2.2.1. Overview of the framework

This section introduces a development lifecycle based on HLA FEDEP and MDA under the

five steps engineering framework (as shown in figure 3-3). This new framework has been

reported in (Tu et al., 2012b), which aims at adopting the strong points from both HLA

FEDEP and MDA. This framework proposes some proper key phases for reusing existing

software to achieve a rapid redevelopment of a HLA based system of systems. The task of

each phase is as follows:

Figure 3-3. Harmonization of MDA and HLA FEDEP

91

- Phase 1: Domain requirement definition. Its main task is to collect sufficient and clear

requirements from the participants in order to define the objective of the system, to

describe the environment of the system, the scenario of the system and the business

process. All these definitions and descriptions have to be reasonable and understandable

for all of the participants. The CIM level of MDA has a task that is similar to both the

Define Federation Objectives and the Develop Federation scenario together in HLA

FEDEP. As a result, their alignment in this phase is to convert the user requirements that

are textual based, into a more visual and formal model, such as the UML use case to

derive the federation requirement.

- Phase 2: Domain scenario systematization. Its main task is to refine the domain

scenario and the business process captured in the first phase. It identifies and describes

the entities involved in the scenario and business process. Then, it defines the

relationships among entities and their behaviours, events for each entity, etc. This phase

integrates the PIM level in MDA, which describes the operation of the system but doesn‘t

address the detail platform information yet. It also integrates steps of the Perform

Conceptual Analysis, Develop Federation Requirements and Select Federates in HLA

FEDEP. In addition, it defines and selects general participants of the federation, describes

their relationship, behaviours and event in general.

- Phase 3: System model specialization. In this phase, according to the technique chosen

and the platform selected, the system needs to be refined, for instance, to refine federation

and federate structure, to allocate functions and attributes, etc. Detailed design is carried

out at this time. This phase integrates the following parts in MDA and FEDEP.

 The PSM level in MDA that is in the form of software and hardware manuals or even

in an architect‘s head, is based on detailed platform models, for example, models

expressed in UML and OCL
4
 (Object Constraint Language), or UML, and stored in a

MOF compliant repository.

 The Prepare federation design, Prepare plan, Develop FOM, and Establish federation

agreement in FEDEP produce federate responsibilities, federation architecture,

supporting tools, integration plan, VV&A
5

 (Verification, Validation and

Accreditation) plan, FOM, FED (Federation Execution Data) /FDD (Federation

Object Model Document Data) and time management, date management, distribution

agreements, etc.

4 Object Constraint Language is a declarative language for describing rules that apply to Unified Modeling Language (UML)

models developed at IBM and now part of the UML standard (OMG, 2006).
5 VV&A is to assure development of correct and valid simulations and to provide simulation users with sufficient

information to determine if the simulation can meet their needs (DoD DMSO, 2006).

92

- Phase 4: System Implementation. Its task is to transfer the specific system model into

code, to create the executable federation and executable federate. At this level, MDA has

various transformation techniques from model to code. In the FEDEP, Implement

Federate designs provide modified and/or new federates and their supporting databases.

Implement Federation Infrastructure provides implemented federation infrastructure and

modified RTI initialization data. Plan Execution and Integrate Federation provide

execution environment description and integrated federation.

- Phase 5: Test. Throughout the previous steps of the MDA and HLA FEDEP alignment

process, testing is essential to ensure fidelity of the models. Testing phase includes the

Test Federation, Execute Federation and Prepare Outputs, and Analyze Data and Evaluate

Results in HLA FEDEP. Meanwhile, it also refers to the outputs from the previous steps,

such as the original user requirement in the first step, and federation test criteria from

second phase.

3.2.2.2. Harmonized single federate structure

Due to the purposes of harmonization of HLA and MDA, this harmonization process will

generate a specific structure of HLA federate. This structure can be considered as a converter.

The federate has two parts as illustrated in figure 3-4, one is the Adapter and another is the

Plug-in.

93

Figure 3-4. Harmonized federate structure

- The Adapter is an Enterprise Business Behaviour Interface that links to the enterprise

legacy system. As the name shows, the functionality of the adapter is to overcome the

gaps between enterprise legacy system and the HLA environment. As mentioned, the

objective of this approach is to make the enterprise capable to cater for the cooperation

without changing its legacy system and business mode. Thus, the duty of the enterprise

business behaviour interface is to adapt to different legacy systems of different

enterprises by implementing specific strategies and algorithms for different enterprises. In

addition, it will also accomplish the cipher mission. From HLA point of view, the adapter

concerns only the local federate, and keeps it independent from any RTI modification.

The adapter makes the federate different from others, then play different roles in

simulation. The code generation of adapter is the mission of model reverse method,

which will be explained later.

- The Plug-in is an Integration code, which manages the interactions between the enterprise

business behaviour interface and the RTI, providing an RTI independent API to the

enterprise business behaviour interface, and a simulation independent API to the RTI

services. The integration code is the common component for all federates of the existing

coordinators and also the reusable components for the future coordinators. In addition,

the integration code makes the federate capable to detect and adapt to the environment

changes automatically. It maintains the communication connections, cooperation requests,

and withdraw announcement. The enterprise will ignore these trivial and technical related

operations, but waiting for the message from integration code.

3.2.3. Summary

Section 3.2.2.1 has presented an engineering framework of harmonization of MDA and HLA

FEDEP with a five steps development lifecycle. The purposes of the harmonization of MDA

and HLA FEDEP are:

1) To reduce the complexity of the HLA based application development by modelling and

standardizing it.

2) To enhance the reusability by merging both MDA and HLA features for promoting

reusability.

3) To ensure that the model reverse process can follow the ADM (Architecture Driven

94

Model) way.

Section 3.2.2.2 has introduced a harmonized single federate structure, which divides the

federate into two abstract parts. The objective of these abstractions is to ensure that the

enterprise business behaviour remains decoupled from RTI services. After the harmonization,

all federates will have the same integration code but different Enterprise Business Behaviour

Interfaces. Meanwhile, any simulation related services required by the enterprise business

behaviour interface are accessed via the integration code, rather than through direct

interaction with the RTI.

3.3. Model Reverse method

3.3.1. Why model reverse

As section 1.4.3 mentioned, the expected interoperability environment must allow rapid and

dynamic interoperability establishment, agile environment compatibility, easy connection, and

collaboration environment control. In other words, this interoperability environment intends

to be the ―plug and play‖ environment. The previous section has proposed a harmonized

single federate structure, which consists of an ―Adapter‖ - Enterprise Business Behaviour

Interface and a ―Plug-in‖ - an integration code. The significance of this structure is the

platform independence and reusability by encapsulating the Enterprise Business Behaviour

code and RTI specific code. In addition, it is the elaborative design for implementing ―plug

and play‖ environment.

Since the expected interoperability environment must support rapid and dynamic

interoperability establishment, it is not desired to redevelop the entire existing enterprise

systems. In this case, the existing systems will be retained and used for interoperation. Thus,

an agile interface – ―Adapter‖ has been designed as a wrapper to allow the existing systems to

connect to the interoperability environment seamlessly. This ―Adapter‖ is a lightweight

component, which is generated based on the model information reversed from the legacy

systems.

The model reverse method introduced in this section aims at obtaining the static models of

legacy systems, and also the dynamic models (behaviour models). Meanwhile, this method

must follow the development lifecycle of the harmonized HLA&MDA engineering

95

framework proposed in previous section. Therefore, the model information obtained by this

model reverse method will help the ―Adapter‖ generation for rapid and dynamic

interoperability establishment and easy connection, and also the ―Plug-in‖ generation for agile

environment compatibility and environment management. In addition, this model information

will also be used to generate HLA federation web service that will be introduced in section

3.4, and to initialize the ―short-lived ontology‖ glossary that will be introduced in section 3.5.

3.3.2. The proposed model reverse method

This section describes a model reverse method with two different scenarios constraints. These

two scenarios are presented as two arrows around the five steps life cycle as shown in figure

3-5. The reversal method will re-characterize the legacy system in order to capitalize on the

information and functions of the existing system, and reuse them in a new HLA compliant

system. The expected output of this method is the HLA FOM (Federation Object Model) file

and HLA federate code block. These outputs will assist to HLA FEDEP / MDA alignment

mentioned in section 3.2, to fully achieve rapid development of federation and/or federate

based on the legacy IT systems.

Figure 3-5. Model Reverse Process Scenarios

The difference of the two scenarios constraints is the proportion of model reversal. According

to the existence of HLA federation, the reversal process will stop at different steps of

harmonized lifecycle mentioned in previous section.

- First scenario (shown as the green ―reversal‖ arrows in figure 3-5): If the HLA federation

has not been created yet, the model reversal process needs to start from the code of the

96

legacy information systems to the first definition phase (domain requirement definition).

- Second scenario (shown as the red ―reversal‖ arrows in figure 3-5): If the HLA federation

has already been created, the reversal can stop at the second phase (Domain scenario

systematization). It will only reuse the model of the existing federation to create the

model for the federate related to the legacy system of new participant.

All the models coming from this reversal process are used to produce a federation and

federate rapid development template.

As mentioned, the purpose of this method is to generate HLA FOM and HLA federate code

blocks. Since these two outputs have essential differences and subtle relevance, the process of

this method is decomposed into the following steps (shown in figure 3-6):

Figure 3-6. Model Reverse Process

A. This process will firstly start from obtainment of UML model by using adapted MoDisco

(for Model Discovery) principle.

B. Model Discrimination: The UML models obtained from step A will be used for HLA

relevant code generation, HLA FOM and HLA Federate code Block. The information of

HLA FOM concerns more the object and interaction that represent the information

exchanged with other federates. The HLA Federate code Block is located in Enterprise

Business Behaviour Interface shown in the previous section, which contains enterprise

business logic. Because HLA FOM and HLA Federate code Block are entirely different

model transformation targets, two different processes of model transformation will be

carried out based on the UML models reversed from existing systems.

97

C. Generation of HLA FOM:

C.1. Firstly, this sub-process starts from analysis of UML model that aims at simplifying

complex model information and obtain useful and meaningful class models and

attributes.

C.2. Secondly, this sub-process commences the categorization of the collaborated

enterprises to help model evolution which intends to simplify the model alignment

and ensure the quality of aligned models.

C.3. Thirdly, this sub-process begins to find the similar models in model categorization

generated by model evolution.

C.4. Finally, based on the aligned models, this sub-process generates the HLA FOM file.

D. Generate HLA Federate code Block

D.1. Firstly, this sub-process starts from system traversal that aims at discovering the

possible execution paths of the existing system. The nodes of paths are the simplified

UML class models from step C.1. They are linked by function call on the paths.

D.2. Secondly, the possible paths detected by step D.1 need to be recomposed into one or

more directed graphs
6
. And then, these directed graphs needs to be simplified by

transitive reduction.

D.3. Thirdly, the reduced directed graphs will be transformed into state machine diagrams.

These state machine diagrams can be transformed into other models, such as BPMN
7
,

DEVS
8
 model, to represent the business/simulation logic in detail. They can also be

used to represent the system behavior directly. The method introduced in this section

chooses the latter solution, because of the limitation of the research time.

D.4. Finally, the state machine diagrams will guide the code generation of business logic

control module. Afterwards, business logic control module will be combined with

RTI specific code block, so that the federate code block is finally generated.

6 In mathematics, a directed graph or digraph is a graph, or set of nodes connected by edges, where the edges have a

direction associated with them (Biggs et al., 1986).
7 Business Process Model and Notation (BPMN) is a graphical representation for specifying business processes in a business

process model (OMG, 2011b).
8 DEVS abbreviating Discrete Event System Specification is a modular and hierarchical formalism for modeling and

analyzing general systems that can be discrete event systems which might be described by state transition tables, and

continuous state systems which might be described by differential equations and hybrid continuous state and discrete event

systems (Zeigler, 1984).

98

3.3.2.1. Obtain model information

Model Reversal Structure

A schema of model reversal structure can be seen in figure 3-7. This illustration is based on

the MoDisco approach. In MoDisco principle (Jouault et al., 2009), a model (Mi) in the

modeling world is a representation of a system in the real world and the nature of the model

(Mi) is defined by its meta-model (MMi). It means that model Mi conforms to its meta-model

MMi, and every step is guided by a meta-model. The very first step of a model discovery

process is always to define the meta-model corresponding to the models that are required to

be discovered. Then, the second step is about creating one or many discoverers, which is

illustrated in the middle of figure 3-7. These discoverers extract necessary information from

the system in order to build a model conforming to the previously defined meta-model. The

way to create these discoverers is often manual but can also be semi-automatic.

Figure 3-7. a schema of model reversal structure

In addition, in order to adapt MoDisco principle to the federated approach proposed in this

thesis, the ―constraints‖ will be added onto the ―discoverer‖ (the green box illustrated in

figure 3-7). The ―constraints‖ will be put before the ―discoverer‖ (as the constraint shown

in the figure 3-7, before system reversal happens) and after the ―discoverer‖ (as the constraint

 shown in the figure 3-7, before the target model transformation happens) according to the

99

following specification:

- ―Constraints ‖: these constraints are used to simplify and configure the model reverse

process.

 Simplify the model reverse process: as known, the legacy system consists of lots of

diverse sub-systems, which are always based on various kinds of platforms and

techniques, thus it is big and only partially useful in the particular context. The

reversal of the whole legacy system would be extremely huge and complicated,

which departs from the objective. As a result, ―constraints ‖ aims at specifying the

target source, which means that the bound of model reversal must be defined before

start to reverse. The boundary must also be defined based on each enterprise‘s

confidential information. This boundary specification will be recorded as a

configuration file which can be read by discoverers.

 Configure the model reverse process: the model reverse application designed for

enterprise interoperability will be applied on various enterprise systems. Thus, it

must consider interoperability constraint based on the specific scenario, such as

participants‘ relationship, collaboration agreement, work flow, and etc. Before to

execute model reverse application on different systems, the model reverse process

must be configured based on the interoperability constraint. This configuration will

be refined in the part model evolution of section 3.3.2.2.

- ―Constraints ‖: these constraints are used to filter the model information obtained from

model reverse tools, and guide the model transformation according to the specific

requirements, such as language specific, platform specific, and so on.

 Model information filter: this first functionality of ―constraints ‖ can be considered

as a ―filter‖. Based on the current model reverse engineering technology, most of the

model reverse tools can obtain mass information of models. According to the

different motivations, the model information might be useful or useless. The reverse

method proposed in this section concerns only the system handles that provide the

interfaces for data input and output. In addition, it is very complicated and dangerous

to make an interoperability decision based on the complex information. Thus, it is

necessary to wipe off the unnecessary information and retain only the valuable

information in the considered context. The ―filter‖ will be refined in the part analyze

UML model and model alignment of section 3.3.2.2.

 Model transformation guide: according to the ongoing research, none of the software

100

tools can fully reverse a legacy system from code to model. Some of the tools can

rewind the code to static model without the dynamic one, and some of them can only

discover the data model from database. Meanwhile, as mentioned in section 2.3, the

model transformation also causes the loss of information. Therefore, the obtained

model information cannot be used directly for interoperability, it must be

complemented. For example, in order to develop HLA components that interface

with legacy IS, the behaviour models of the actions on the data also need to be

discovered for implementing the mechanism for data access, the periodicity of update

and the sequences of modifications accepted. Thus, the guider must complement the

obtained information in order to generate the required models. This complementary

guider will be refined in section 3.3.2.3. The part generate HLA FOM of section

3.3.2.2 describes a language and platform specific constraint.

Model conversion

MoDisco tool is an Eclipse GMT
9
component for model-driven reverse engineering. MoDisco

tool has two existing discoverers, one is JavaDiscoverer which discovers KDM models from

java sources or java models, and another one is CSharpDiscoverer which discovers from C#

models. Figure 3-8 illustrates the KDM models which are discovered by JavaDiscoverer.

Figure 3-8. KDM models discovered by JavaDiscoverer

9 GMT is Generative Modeling Technologies. The Eclipse GMT project is to produce a set of prototypes in the area of Model

Driven Engineering (MDE).

101

As shown in figure 3-8, there are many KDM models listed in the left model trees, such as

ClassUnit, LanguageUnit, ParmeterUnit and etc. Those models will be converted into UML

models later by ―KDM to UML Converter‖. This conversion must follow the mapping listed

in table 3-1.

Table 3-1. KDM to UML mapping

KDM UML

LanguageUnit Package

CodeModel Model

CodeAssembly Model

Package Package

ClassUnit Class

InterfaceUnit Interface

MethodUnit Operation

ParameterUnit Parameter

Extends, Implements Generalization

PrimitiveType PrimitiveType

MemberUnit Property, Association

The ―KDM to UML converter‖ is mainly implemented by an ATL
10

 model-to-model

transformation taking as input a model conforming to the KDM meta-model and producing as

output a model conforming to the KDM models into UML meta-model. After the conversion

which follows the mapping showed in table 3-1, the UML models will be generated as the

figure 3-9 shows. These converted UML models include Packages, Interfaces, Classes, and

also the properties and operations of classes and associations and dependencies among the

classes.

10 ATL is ATL Transformation Language that is a model transformation language and toolkit. ATL provides ways to produce

a set of target models from a set of source models.

102

Figure 3-9. UML Model

3.3.2.2. Generate HLA FOM

As mentioned earlier, HLA FOM uses the object-oriented method to define the structure of all

information that is available to be exchanged among federates. In HLA simulation, FOM

plays as shared concepts between all federates of the HLA federation, which represents the

established consensus of the collaborative enterprises. In this case, after the obtainment of

UML models of different enterprises shown in the previous section, it is imperative to

simplify and unify the complex information, and then generate the HLA FOM.

Analyze UML model

As shown in figure 3-9, the generated UML models contain lots of information, including

unnecessary elements for one particular HLA FOM generation. Thus, in order to avoid the

ineffectual cost, it is necessary to simplify the models by eliminating the information of

redundant and unused classes.

HLA FOM contains object class which represents object-oriented data shared in the federation

103

that persists during the run time, and interaction class data which are just sent and received

information between federates. Thus, the task of HLA FOM generation is to extract these two

classes from the reversed UML model. The class diagram is very helpful for generating object

class, but the dependency and association among classes might not be very useful. The

functions and associations may help the generation of interaction class, but not of all them are

helpful. In addition, not all the classes are interesting to be used. In summary, this step will

select useful classes, and associations. The interaction class generation also needs the supports

from the behaviour models reversal that will be explained in the coming section.

Model Evolution

After previous step, the prerequisite UML models of each enterprise are ready for model

alignment. However, sometimes, many cooperative enterprises are involved. Thus, the

following questions come out altogether: shall we align all the models once or separately? If

separately, who should be aligned first (i.e. defining a reference), who should be the next one?

How to keep the best feature and eliminate trash? How to limit the information loss during the

model alignment? In this case, the definition quoted from human evolution can help to

illustrate these questions. The hominid speciation started 15 million years ago. After that,

human inherits the features of ancestors and select them generation after generation. Now,

human has evolved into an intelligent species. In this evolution process, human keeps the

good genes which help human in adapting to the law of nature and survive. Some species

such as dinosaur and mammoth died and disappeared, because they retain the genes which

obey the law of nature. These are two kinds of evolution result, either prosperity or extinction.

Without doubt, the model evolution in this section must be the good one. In this way, the

objective of this model evolution is to maintain the model information which conforms to the

law of enterprise interoperability and enterprise requirements.

As mentioned earlier, UML models have been obtained for each single enterprise after

previous steps. From the set theory point of view, each single enterprise can be considered as

a set which contains UML models as elements. Thus, the set theory can help the model

evolution and model alignment. In set theory, the theory of composition of relations (Wang,

2000) defines that if the R1 is a binary relation between set A and set B; the R2 is a binary

relation between set B and set C; the R3 is a binary relation between set C and set D, then

(R1R2)R3 = R1(R2R3) (1)

 represents relation composition

104

If we consider the model alignment as a relation (because model alignment is the process of

finding similar UML models among the enterprises, it can be considered as a similarity

relation), then we can answer the question ―who should be aligned first, who should be the

next‖. In other words, it is possible to categorize the cooperative enterprises for model

alignment which is a process to maintain the useful information for the most suitable model

evolution. The principle of the categorization is to start from enterprises that are in similar or

relevant domains, or the closest partners. In this case, the cooperative enterprises will be

categorized into several sets. If it is necessary, the categorization of enterprises could be taken

place in the smaller set again based on the principle. When the sets of the enterprises are ready,

model alignment can be carried out in each set. After that, the categorization process will be

executed on the posterities created by each set‘s model alignment, then model alignment again.

So, the model evolution is an iterative process as the human evolution. It passes through many

generations, and finally obtains a set of brilliant enough models which satisfies the law of

enterprise interoperability and enterprise cooperation requirements.

Model Alignment

Model alignment is carried out in a union of enterprise created by enterprise categorization.

This union contains many UML models. The task of model alignment is to find the similar

models and unify the information of these models. As mentioned, the UML model used in this

phase is the class diagram which consists of attributes and functions. To generate the object

class of HLA FOM, we will use the attributes of the class diagram and also use the set theory

for theoretical support. Each class can be considered as a set, and the attributes can be

considered as the set elements. In this case, the similarity of class can be treated as set

similarity which concerns the numbers of similar elements. According to the Jaccard

Similarity
11

 of set similarity (Jaccard, 1912), the set similarity is defined as follows,

If S and T are two sets that contain limited quantity of elements, then:

The similarity of set S and T = S ∩ T / S ∪ T (2)

For example, as figure 3-10 shown, set S contains 8 elements, and set T contains 9 elements.

Meanwhile, the number of the elements inside the intersection of set S and T (S ∩ T) is 6,

and the number of the elements of the union of set S and T (S ∪ T) is 11. Then, the similarity

11 Jaccard Similarity is defined as the quotient between the intersection and the union of the pair wise compared variables

among two objects.

105

of set S and T is
6

11
.

Figure 3-10. Jaccard Similarity of set similarity

Refer to this definition, the class similarity equals to:

 the number of similar attributes

the number of similar attributes + the number of dissimilar attributes
 (3)

As one categorization of models can be the models from several different enterprises, the

model similarity will not be carried out only on one pair but also on a set. Thus, similarity

transmission can be helpful to discover similar pairs automatically and avoid some duplicate

actions. Before to describe what the similarity transmission is, it is better to firstly refer to the

relation transmission theory of the set theory (Wang, 2000). In this theory, the transitive

relation is defined as following:

R is a binary relation of Set X, then if any elements of X like x, y, z ∈ X have the feature that

if xRy (x and y have R relation) and yRz, then xRz, then relation R is transitive. Vice versa, if

R is a transitive relation of Set X, then any x, y, z ∈ X, if xRy, yRz, then xRz. For example,

the common transitive relations are equivalent relation, descendant relation, and etc.

Because the similar relation is not always a transitive relation, the similarity transmission

mentioned here is an intellective detect and determine process of the relation transmission.

For example, Class A, B, C belongs to the same model union. If class A is similar to class B,

and class B is similar to class C, then the similarity transmission process will detect the

possibility of to transmit similar relation from class A to class C, and decide whether this

possibility can be worked out.

In order to implement the model alignment among the models of model union, the similarity

106

transmission will be operated on a relation matrix. The relation matrix is a way of explaining

transitive relation definition. It defines that if Relation R is transitive, then if Matrix M has Mij

= 1 (it means that i and j has R relation) and Mjk =1, then Mik = 1, as shown in the table A of

the figure 3-11. And so, in a similar manner, all classes inside the model union will be placed

on the matrix columns and rows. In other words, each column and row of the relation matrix

represents a class and the value of the Mij represents the similarity value of class I and J. And

then, as the table B of figure 3-11 shows, for example, if Mbi = 80% (it means that class B and

I are 80% similar.) and Mij = 70%, then the similarity transmission process will detect the

question mark on Mbj which means that class B and J are possible to be similar. If so, the

similarity transmission process will determine the value for Mbj automatically based on the

value of Mbi and Mij. Otherwise, no value will be assigned to Mbj, which means that the

similar relation will not be transmitted from class B to class J, so they are not similar.

Figure 3-11. Relation Matrix

To carry out this strategy, the model alignment will follow the process shown in figure 3-12.

- Step 1 defines the similarity for one pair of classes based on the evolved formula (3) of

Jaccard Similarity of set similarity.

- Step 2 discovers whether there is a possibility to transmit the similarity on the matrix. If

yes, go to step 4, else go to step 3.

- Step 3 checks whether there is any blank cell that is required to be assigned with the

similarity value on the matrix? If yes, go back to step 1, else finish model alignment.

107

- Step 4 calculates the transmission threshold value based on the defined similarity values

of two pairs and the expected transmission similarity. (This step will be detail in the

coming part)

- Step 5 decides whether this possibility of similarity transmission is available or not based

on the result of step 4? If yes, go to step 6, else go back to step 3.

- Step 6 transmits the similar relation onto the new pair and assigns the similarity value to

it.

Figure 3-12. Model similarity transmission process

The step 4 of this process is the core phase which decides the tendency of the similarity

transmission. This paragraph is going to give an example to explain how to calculate the

Transmission Threshold Value (TTV). As the segment A of the figure 3-13 shows, there are

108

two similar classes, class S and class T. We assume that there is a transitive candidate class G,

because it is similar to class T. We symbolize the similarity of S and T as X and the similarity

of T and G as Y. We assume that the ETS (Expected Transmission Similarity) of S and G is

70% (defined by user). In addition, we assume that all the classes have the same number of

attributes (simplify result from Analyze UML model phase). And then, there are three

possibilities need to be considered as the segment B, C and D of figure 3-13 shows.

- Segment B: if the intersection of class T and class G belongs to or equals to the

intersection of class S and class T, and none of the elements of complement class S and T

exists in the intersection of class S and G, symbolized as T ∩ G ⊆ S ∩ T and ∀x ∈

S – T, x ∉ S ∩ G, then it is clear that the similarity of class S and class G equals to the

similarity of class T and class G.

- Segment C: if the intersection of class T and class G belongs to the intersection of class S

and class T and some of the elements of complement class S and T exist in the

intersection of class S and G, symbolized as T ∩ G ⊂ S ∩ T and ∃x ∈ S – T, x ∈ S ∩ G,

then the size of the intersection of class S and G is easy to identify by counting the

number of x and the T ∪ G .

- Segment D: if the intersection of class T and class G belongs to the intersection of class S

and class T and none of the elements of complement class S and T exists in the

intersection of class S and G, symbolized as T ∩ G ⊂ S ∩ T and ∀x ∈ S – T, x ∉ S ∩ G,

then the similarity of S and G is hard to tell. Thus, if this possibility wants to be transitive,

then the following calculation can help to obtain the TTV.

ETS ≤ (S ∩ T − |T − G|)/(|S ∪ T| − |G − T|)

∵ ETS = 70%

∴ TTV = (17 – 3X) / (3 + 23X) X ∈ (0.77, 1) X represents the similarity of S and T.

Then TTV ∈ (0.54, 0.71)

Thus, after calculation, if the similarity of class T and G is beyond the TTV, then this

possibility can be feasible.

109

Figure 3-13. The possible coverage of transitive candidate

Generate HLA FOM

After the model evolution and model alignment, we can get a union of UML models which

exist in most of the considered enterprises and are useful for enterprise interoperability. Then,

we can revise those models such as rename the classes and class attributes, and convert these

models into HLA object class. The figure 3-14 shows the structure of the HLA object classes.

And then, according to different RTI (Run Time Infrastructure), this HLA object class can be

translated into different formats of HLA FOM file.

Figure 3-14. HLA object class structure

110

3.3.2.3. Generate HLA Federate Code Block

This section will explain the method of generating HLA Federate code block. This code block

locates in the ―adapter‖ part of the Harmonized single federate structure mentioned in section

3.2.2.2. This code block generation needs the simplified UML models, and also the system

behaviour. As mentioned earlier, the model transformation and model reversal lose the

information of system behaviour. The simplified UML models are static model that cannot

represent the system behaviour. A serial of procedures will be carried out to trace and record

some part of the behaviour of existing system.

System Traversal

The system traversal method is aimed at detecting the possible behaviour of existing system.

The definition of behaviour is the action, reaction, or functioning of a system, under normal or

specified circumstances. As the definition shows, the detection of system behaviour has to

take place when the system is executed, and conform to a scenario.

As known, a running system is a black box, in which the data flow, system actions/reactions,

and system states are invisible. User can only obtain different outputs by entering diverse

input combinations, but without being aware of the detail. Thus, in order to make the detail

visible, a tracer tool
12

 is necessary. The tracer tool is commonly used in software testing,

especially black-box testing. The black-box testing requires numerous high robust test cases
13

to detect any bugs of system execution. Similarly, this system traversal method also needs to

define the test cases (called input combination in this method), which can fully cover the

possible routine operations. The operations must conform to system operation manual and

operating process.

The intention of using tracer tool is to detect the system execution paths. The tracer tool can

trace any function calls happened in any classes or among any classes. Meanwhile, the

simplified UML models have already been generated. As a result, the system traversal method

can generate an execution path (as illustrated in figure 3-15) for each input combination. The

execution path will be saved as a linked list that can be read by computer (software program).

12 Tracer is a specialized software tool for logging to record information about a program's execution.
13 A test case in software testing is a set of conditions or variables (input combinations) under which a tester will determine

whether an application or software system is working correctly or not.

111

Every class model invoked will be saved as a node of the linked list, and every method

invocation will be saved as a pointer (edge).

Figure 3-15. An execution path for each input combination

In addition, the tracer tool can also detect the function execution time that can be used for

simulation time management.

Model Processing

Because one input combination will have one execution path, numerous execution paths will

be detected after the system traversal. However, without rearrangement, these execution paths

are intricate. They cannot be used for analyzing the system behaviour directly. Thus, the

follow-up mission is to make these paths understandable.

- Step 1: these execution paths need to be categorized according to their relevance. As

known, different operations with different input combinations will invoke different

methods in different modules or sub-systems, and can lead the system into different states.

Besides that, according to different runtime execution contexts, the same operation will

turn to different modules or sub-systems, and can also lead the system into different states.

In sum, different operations could lead an execution path with different starting point, but

the execution path caused by the same operation might also have different starting point

accidently. As a result, the starting point of the execution path is chosen as the relevance

to partition the group of execution paths. As shown in the picture of figure 3-16, the

execution paths with the same starting point will be put together.

- Step 2: because the execution paths of one categorization have at least one intersection

point (the starting point), they can be synthesized into a complete directed graph with the

same starting point (as shown in the picture of figure 3-16) (Biggs et al., 1986). The

nodes of the graph are UML class models, and the edges are the function calls. This

synthesis can eliminate the redundant information such as duplicate nodes and edges, so

that the view of all possible execution paths becomes more systematic. However, this

directed graph is not concise enough, and it can be reduced again by step 3.

112

Figure 3-16. Model processing of execution paths

- Step 3: it is very likely to find a circle in a directed graph with many intersection points.

As shown in the picture of figure 3-16, Class A, B, X and M form a circle with the

edges of callB.b(), callX.x(), callM.m(), and callM.m(). According to the theory of

113

transitive reduction of directed graph, it is possible to reduce this circle. The theory of

transitive reduction of directed graph defines that a transitive reduction of a directed

graph G = (V, E) is a graph H = (V, F) where F is a minimal subset of E such that G and

H have the same transitive closure (Aho et al., 1972). In graph theory, V is set of

elements, and E is the set of binary relations of the elements. Thus, the explanation of this

theory by using mathematic term is that a transitive reduction of a binary relation E on

the set V is a minimal relation E‘ on V such that the transitive closure of E‘ is the same as

the transitive closure of E. In other words, a transitive reduction of a directed graph G =

(V, E) is the minimal representation graph G. For example, the directed graph shown in

the picture of figure 3-16 is the transitive reduction of the picture .The duplicative

edges have been removed, and the nodes on the transitive closure path have been merged.

The objective of this transitive reduction is to abstract the execution paths, so that it can

be more straightforward, and easier to extract the system states.

After these three steps, the complex and intricate execution paths will be organized into a

clearer and more straightforward map, which is easier for discovering system behaviours.

Behaviour Model Generation

Before explaining how to generate behaviour model, it is necessary to determine what level of

detail of behaviour model is required. For example, if the behaviour model is only used for

describing the system logic in general, i.e. the main I/O relation. Then the state machine is

qualified. However, if the behaviour model is used for process interoperability or business

interoperability, state machine is not competent enough for displaying business details. In that

case, the behaviour model must be transformed into the models that can formalize the detailed

business logic, such as BPMN model, GRAI model
14

, DEVS model, etc.

As mentioned in section 3.2.2.2, the ―adapter‖ is a simplified interface that simulates the

dynamic business logic of the existing system. It is an interface that is responsible for

handling participants‘ requests coming from RTI, and preparing input for the existing system.

According to the complexity of the request, it can react immediately or indirectly by invoking

the correspondent sub-system of the existing system. Thus, the state machine that can describe

system logic in general is enough for guiding the generation of the ―adapter‖. Therefore, this

part will introduce a method to generate state machine from the reduced system execution

14 GRAI represents Graphes à Résultats et Activités Interreliées. It is was developed in the early 1980‘s by the Laboratory of

Automation and Productics of University Bordeaux I to design manufacturing management systems (Chen et al., 1997).

114

paths (as the directed graph shown in the picture of figure 3-16).

As known, the control flow of a state machine depends on the sequence of events. Each state

at least has one pair of received event and sent event. When one state receives an event, it will

execute the actions inside that will change the state differently depending on the execution

results. Meanwhile, the state change will trigger different sent events which will become the

received event of another model‘s state. According to this description, the directed graph

shown in the picture of figure 3-16 can also be considered as a state diagram. Each node

represents one state, and each edge represents one event. However, this state diagram is too

verbose and can be optimized again.

Figure 3-17. Behaviour model generation

As illustrated in the picture of figure 3-16, the directed graph has many branches. Each

branch represents an assertion that decides the function redirection. Therefore, an assertion

115

box can be added where the branch appears (as shown in the picture of figure 3-17). If the

assertion box is considered as the cut point of the graph, and then the nodes before or after the

assertion box belongs to an independent set. As a result, this independent set can be

considered as a state. For example, in picture , the system smoothly runs from class A to

class Reduced, until it meets the assertion box, and then it stops for deciding the next

destination. In this case, the actions of class A and class Reduced can be treated as the inside

actions of one state. To perform this combination on each assertion box, the state diagram can

be optimized as the reduced state diagram shown in the picture of figure 3-17. Each state

consists of the handles of classes, so that when the state is activated, the program can

distinguish the entrance. The function call between classes is the transition of this state

diagram, because the function call is interpreted as sent event triggered by the assertion of

state change.

This method will not specify the exact number of states, because the ―adapter‖ does not need

to distinguish all the system states perfectly. The duty of ―adapter‖ is to make a quick

decision of the data flow based on the logic assertions. If the request is simple to ask, it will

reply immediately. If the request is too complicated to reply directly, it can invoke the

correspondent sub-system for answer.

Federate Code Block Generation

After the behaviour model generation, all the possible system execution paths are summarized

into different state diagrams that correspond to a set of operations (input combinations). The

state diagrams will be generated into diverse functions that define corresponding logic

analysis. Hence, the federate code block needs a control function to dispatch the request to the

right function of logic analysis. As the figure 3-18, before code generation, an initial state is

added to play as a controller that can determine the request direction.

116

Figure 3-18. Federate code block generation

1) The code generation of the initial state: it needs firstly to classify the operations into

different categories as logical conditions, such as data range, regular expression of

operations, and so on. Afterwards, the rest of the code of the initial state is the alternative

statement (for example, if, else, and else if) or selection statement (for example, switch

case in Java) based on the logical conditions.

2) The code generation of state diagrams from 1 to N: if database access or database access

handle of the existing system can be invoked, some state diagrams of simple business

process can be transformed into a mini simulation code that can briefly represent the

original code of the existing system. Otherwise, each internal action of these state

diagrams will use the class handles to access the corresponding classes of the existing

system. As figure 3-18 shows, the function call between classes is still used as the state

transition. Thus, the state manipulation of each state diagram does not need to be

redesigned. It just follows the usual logic that exists in the existing system.

3) RTI specific code generation: as mentioned in 2.4.3, federate code must implement the

callback functions in the Class RTI::FederateAmbassador, such as function for granting

time advance, functions for sending and receiving interaction, functions for reflecting

attributes‘ values, and so on. The ―adapter‖ concerns the functions for sending and

117

receiving interaction, so that it must reply the participants‘ requests correctly. Thus,

interaction handles must be defined and published for other federates to subscribe,

meanwhile, the ―adapter‖ needs to subscribe to other federates‘ interaction handles. These

definitions of interaction handles will be used to complete the HLA FOM. However,

concerning the ―on-the-fly‖ negotiation of federated approach, to specify and hardcode all

the interaction handles in HLA FOM is inappropriate. Thus, it is better to abstract the

interaction handles according to the categories of operations defined in step 1. And then,

one code segment needs to be added into the function of the initial state, which can

distinguish the types of interaction handles.

4) The code generation of the final state: no matter initial state turns to which state set (from

1 to N), finally the ―adapter‖ will end up at this final state that will call the function of

sending interaction to reply the requesters.

Overall, the three steps above complete the HLA FOM, and generate a control function, and

several simulation functions. The control function is responsible to acquire participant‘s

request by distinguishing interaction handles, and transmit participant‘s request to

corresponding simulation code by judging from condition statements. The simulation function

deals with the request by simulating the business process of existing system.

3.3.3. Summary

This section has introduced a model reverse method that can obtain static models and

behaviour models, and transform these models into HLA relevant code.

Section 3.3.2.1 has introduced the way of obtaining model information by using the MoDisco

Tool with constraints. The constraints ease the burden of UML model recovering process. The

participants must be involved in this phase, because the constraints are the results of the

negotiation among participants. For example, concerning the business confidentiality, the

participants must designate the sub-systems or functional modules to be reversed.

Section 3.3.2.2 has explained the method of HLA FOM generation. This method firstly trims

the reversed UML models by deleting unnecessary models. Afterwards, this method proposes

a method called model evolution to classify the participants, so that the next step – model

alignment can be easily carried out. Model alignment will pick out the similar models from

118

the models in the same category, and then restructure them into a new model. After several

times of model evolution, a list of new models will be ready for generating HLA FOM. A

software application has been developed to implement this method. Section 4.3.2 will explain

this implementation and section 5.2.2 will demonstrate this software application. This

software application supports the on-the-fly negotiation on the models. It can shorten the

develop time of the federate for interoperation. In addition, the models extracted by this

method can be used to create the web services for potential participants. This web services

creation will be introduced in the next section.

Section 3.3.2.3 has explained the method of generating HLA Federate Code Block. This

method firstly gathers all the possible system execution paths by using program tracer.

Afterwards, these paths are integrated into several directed graphs that will be transformed

into state diagrams. Finally, HLA Federate Code Block is generated based on these state

diagrams. The theory of this method has been systematically described. However, it has not

been fully implemented, because of the time limitation of my doctoral research. The

algorithms of model processing and state diagram generation have been studied out without

complete verification, so they will not be presented in this doctoral thesis. We have opened

this part to the future work.

3.4. Web-enabled HLA federate design method

3.4.1. Why HLA evolved

The objective of using HLA Evolved Web Services is to provide an easy-pass for the potential

participants to join the cooperative project based on traditional HLA.

As mentioned in section 2.4, HLA provides extremely high performance and scalability for

achieving interoperability across disparate platform, reusing simulation models, time

management, securing simulation environment, and etc. However, these high performance

and scalability are restricted within the LAN (Local Area Network). On the other hand, Web

Services provides a loosely coupled mechanism for performing coarse-grained services with

modest performance over both LAN and WAN (Möller et al., 2005) (Möller et al., 2007).

However, compared to HLA, Web Services is weaker in the time management, environment

security control, and system state management. Because of these weaknesses, Web Services

119

cannot fully meet the demand of the federated approach of Enterprise Interoperability in

technical level. Even though either HLA or Web Services seems to be imperfect for the

federated approach, but the combination of them will be a perfect technical solution for the

federated approach. Meanwhile, as mentioned in section 2.4.3.1, HLA evolved IEEE

1516
TM

-2010 was published in 2010, it gives a notional instruction about how can HLA

benefits from the Web Services such as the ease of deployment across wide area networks.

The Web-enabled HLA federate design method proposed in this section complies with the

rules defined in HLA evolved IEEE 1516
TM

-2010. This method can strengthen the

compatibility and self-learning ability of the HLA interoperability environment. It allows the

interoperability environment to adapt to different potential participants with heterogeneous

cooperation purposes and modalities, and upgrade itself in order to conform to this adaptation.

3.4.2. The proposed web-enabled HLA federate design method

3.4.2.1. HLA Evolved Web Services scenario

The general scenario of HLA Evolved Web Services is illustrated in figure 3-19. It assumes

that a cooperative project has been launched between several partner enterprises. The

information systems of the members run correctly within the HLA federation. During this

project, other enterprises want to join this project with different expectation, such as different

cooperation time periods, different cooperation domains, different expected results from the

cooperation, etc. Rebuilding the existing HLA federation is inappropriate because it will take

immerse expense and time. Accordingly, our solution is to add one particular federate called

WebservicesFederate as shown in figure 3-19. WebservicesFederate will allow the members

inside the traditional HLA federation to connect with the potential business partners from

World Wide Web in a more flexible and safe way (Tu et al., 2011b). This special federate will

publish the Web Services that consist of various kinds of services of the existing HLA

federation, different access permissions to the existing HLA federation, and the common API

for connecting to the existing HLA federation. The ―web-candidates‖ (potential business

partners from World Wide Web) could use the common API and services, which are

interesting for them, to generate their own local federate, and then connect to the existing

HLA federation with different authorities via the Wide Area Network (WAN).

120

Figure 3-19. HLA Evolved Web Services

For example, in figure 3-19, two enterprises X and Y decide to participate in one existing

project. Enterprise X is a supplier and enterprise Y is a client who is interested in the final

product of this project. Thus, enterprise X has to know the workflow that is related to his

business, and synchronize its information with other participants. While, enterprise Y only

requires receiving information from the HLA federation, so, it doesn‘t have to synchronize

with other systems. In that case, enterprise X must ask WebservicesFederate for the services

with an authority of synchronization with other HLA federates. However, enterprise Y needs

the service with the lowest authority which only can receive information from the HLA

federation. Finally, both of them are connected with the existing federation via Web Services,

even though they get different services.

3.4.2.2. Technical transcription

The figure 3-20 presents the technical transcription of the problems presented in Figure 3-19.

The WebservicesFederate is called as bridge in this transcription. This bridge uses the

Integration code (the result of Harmonized HLA and MDA) to communicate with other

members of the existing HLA federation as the other ―traditional‖ HLA federates do. On the

other hand, it uses Enterprise Business Behaviour Interface (also the result of Harmonized

HLA and MDA) to publish the Web Services which the existing members are capable to

provide. The bridge is a multithreading processor, which is a standby federate for detecting

121

potential partners and handling their applications and requirements. When the bridge receives

any request from the ―web-candidate‖, it will launch a thread to handle the new case

individually. Thus, this bridge plays as a viaduct with multiple lanes to monitor both the

existing federates and the ―web-candidate‖ / ―web-partner‖ (business partners from World

Wide Web) and dispatch the messages. In addition, as the figure 3-20 shows, the HLA

federate of the ―web-partner‖ only has Enterprise Business Behaviour Interface part but no

Integration code. The reason of this design is to ensure the information privacy. As known,

the information exchange through the WAN is not considered safe, but one of the advantages

of HLA is high insurance of information privacy, so in order to sustain this advantage, the

naked information exchange will only be taken place inside the traditional HLA federation. It

means that the ―Enterprise Business Behaviour Interface‖ of the ―web-partner‖ will send the

encrypted message, and the corresponding part of bridge will decrypt this message and use

the communal Integration code to dispatch the message. Thus, the multiple lanes are only

paved in the ―Enterprise Business Behaviour Interface‖ of both sides.

Figure 3-20. Architecture of HLA Evolved Web Services

3.4.2.3. Elected RTI

An open source RTI, poRTIco (poRTIco, 2009) has been chosen for implementation, even if it

does not provide Web-RTI functionality. Actually, only one mature commercial RTI, pRTI,

supports some Web-RTI functionality (Möller et al., 2007). Even in this one not all IEEE

1516-2010 features are already developed. As mentioned, the current status of commercial

developments and the aspiration to develop an open framework has guided the choice to

122

poRTIco. But, to reach some HLA evolved requirements, new features have been added to

poRTIco. As mentioned earlier, a WebservicesFederate component has been implement as a

bridge, who takes in charge of providing web services, connecting and synchronizing HLA

federates outside the HLA federation with HLA federates inside the HLA federation.

As mentioned in section 3.2, after the harmonization of MDA and HLA FEDEP, an

integration code is provided with a RTI independent API for HLA Federates. This API can be

reused and published as common API. So, the ―web-candidates‖ can reuse this API and follow

the second scenario of model reversal, mentioned in section 3.3, to generate their own

Enterprise Business Behaviour Interface adapted to the common API. After that, a new

federate outside the federation can send the information to the bridge via the Web services

interface and be synchronized to the HLA federation.

3.4.2.4. WebservicesFederate design

WebservicesFederate design

A schema of WebservicesFederate design proposed in this thesis is illustrated in figure 3-21.

In this design, WebservicesFederate is a special HLA federate, which is inside the Local area

network (LAN) but not fully included in the HLA federation. According to this specific

structure, WebservicesFederate is divided into two parts: one is WebservicesBridge, which is

inside the HLA federation; another is WebServicesServer, which is outside the HLA

federation but still inside the LAN. These two parts are connected by a socket. This design is

customized for poRTIco RTI. As mentioned, this simulation is based on poRTIco RTI that

doesn‘t support natively Web RTI functionality. In order to implement Web RTI functionality,

the approach defines WebservicesBridge and WebservicesServer for WebservicesFederate.

Figure 3-21. Web services federate design

123

- WebservicesServer: it is used to publish web services interface to potential customers

outside the federation. It takes charge of monitoring and replying to the federate via web

service. When this server receives the message from the federate outside federation, it

generates a User Datagram Protocol
15

 (UDP) data package and sends it to

WebServicesBridge by the socket connection.

- WebservicesBridge: it uses to synchronize the message from the federate outside the

federation with other federates inside the federation. This bridge transmits messages to

federate inside the federation by RTI, but exchanges messages with the

WebservicesServer by the socket connection. When web services federation establishes,

this bridge launches a thread to monitor the events happening in the web service server.

- Socket data package: in order to ensure the security of the federation, common federation

attributes are encapsulated into the web service interface, which is published by the web

services server. So, WebservicesBridge encodes the attributes into the socket data

package, and then this package is decoded by WebServicesServer. Afterwards,

WebServicesServer generates the result that is requested by the federate outside the

federation. In the opposite way, federates outside the federation can send request based on

the web services it customized. While, the WebServicesServer receives the request, it

translates the request based on the FOM, and then generates a data package which is

decoded by the WebservicesBridge.

General solution for failure tolerance

As Web Services and UDP are involved in this simulation, the failure tolerance needs to be

considered. This section proposes an example which only considers two failures: data

exchange delay and data package lost.

Firstly, let‘s describe this example and define its major elements. Because this example is a

scale real-time simulation, the scale (simulation time unit) needs to be defined first. Thus, as

shown in Figure 3-22, the simulation time unit (∆t) of the federation is assumed to be 3

seconds, which means that a new event will be issued in every 3 seconds. The approach uses

the conservative algorithm described in (Fujimoto, 2000) and (Zacharewicz et al., 2008). For

example, in Figure 3-22, Federate A sends one event with a Time stamp (Tstamp) plus LA

(Lookahead of A) equals 3 to the event queue, so when simulation time passes one ∆t, this

event is triggered. Every federate can announce its events with Tstamp plus Lookahead.

15 User Datagram Protocol is one of the core members of the Internet protocol suite, and one of the set of network protocols

used for the Internet (Postel, 1980).

124

Lookahead is a special non-negative value, which establishes the lowest value of time stamps

that can be sent in its Time Stamp Order (TSO) messages. In the simulation, the lookaheads of

WebServicesfederate and the HLA federates outside of federation are assumed to be 0.

Meanwhile, the lookaheads of the HLA federates inside the federation are bigger than 0 and

depend on their own process. When simulation time moves forward, RTI sends Eventj of

federatej, whose Tstampj + Lj > LBTSi (Low Bound on Time Stamps), is triggered and sent to

the related Federatei.

Figure 3-22. General solution for failure tolerance

Due to the performance of Web Services and UDP and also this simulation context, the

approach proposes that each federate can store three states, SC, SP1, and SP2. SC is the current

state. SP1 is the previous state (roll back one ∆t). SP2 is the state before the SP1 (roll back two

∆ts). The reason for saving three states is to backup necessary information in order to answer

overdue customer requests from WebServiceFederate. The reason of only saving three states

is to limit the times of re-ACK(ACKnowledgment) between the WebServiceFederate and

federates outside the LAN, which can ensure the message channel between the

WebServicesbridge and the WebSerivesserver fluent and strictly control the increase of each

federate‘s memory load as well as the amount of redundancy in the federate. In addition, in

this simulation context, the time scale allows federates inside the LAN to keep their current

state for a quite long period, so three backup states are enough for querying (it does not

roll-back the state for overdue customer request. It only provides the state query service. This

roll-back querying does not affect the message synchronization inside the federation).

Normally, the approach also proposes by no reply after the third PING (Packet Internet

Grope), the web connection is broken.

125

The solution for failure tolerance is the following: In this project, some of the HLA federates

are federates outside the HLA federation. They send events to the federation and synchronize

with other federates via Web services, so the time delay within web transmission and the

possibility of package lost should be considered.

- Data exchange delay: for example, in figure 3-22, the federate C sends one message with

a time stamp plus LC equals 9 to the WebServicesFederate. Normally, when the

WebServicesFederate receives this message, the current simulation time (Tcurrent) should

be less than the Tstamp plus LC, but, if this message transmission has several seconds time

delay, this message arrives Tstamp + LC < Tcurrent, which means that this event has already

expired. As a result, there is no reply for the federate C. The solution for data exchange

delay is if Tcurrent is bigger than Tstamp + Li of the messagei, then the WebServicesFederate

asks for the past state of requesting federate. There is another situation if the authority of

messagei (MAi) is low, the federation ignores this message.

- Package lost: for example, in figure 3-22, the federate D sends one message with Tstamp

plus LD equals 12 to the WebServicesFederate. However, if the package lost during the

web transmission, then this message cannot join the simulation of the federation before

its own time stamp. As a result, there is no reply for the federate D. The solution for

package lost is to set the attribute in the federate D called waiting time (Twait). If Twait is

bigger than ∆t, then federate D resends the message. The maximum resend time (Fresend)

is two times ∆t. If the WebServicesFederate receives the resend message, it calculates the

time difference (Tdifference) and decides which state of the requesting federate is used for

the simulation. Another situation is when the authority of the message is low, the

federation ignores this message.

The general algorithm of the failure tolerance is the following:

- For federate outside the federation:

Fresend = 0;

while (Fresend < 2) {

if (Twait > ∆t){

resend message;

Fresend++;

} else {

Fresend = 2;

126

}

}

- For WebServicesFederate:

if (Tcurrent > Tstampi + Li) {

if (MAi != low) {

Tdifference = (Tcurrent - Tstamp - Li)/∆t;

 switch (Tdifference) {

 case 0 : state = SC; break;

 case 1 : state = SP1; break;

 case 2 : state = SP2; break;

 case 3 : ignore message; break;

}else{

Ignore message;

}

} else {

if (Tstampi + Li > LBTSj){

send event to Federate j;

state = runSimulation();

} else {

state = SC;

}

}

- For federate inside the federation:

while (simulation time passes ∆t){

SP2 = SP1;

SP1 = SC;

SC = runSimulation();

}

3.4.3. Summary

This section has introduced the method of designing Web-enabled HLA federate based on the

open source RTI, poRTIco. This method has proposed a new component, WebserviceFederate,

straddling between HLA federation LAN and WAN to fulfil HLA 1516-2010 new

127

requirements. The WebserviceFederate is designed to bridge the gaps between HLA Evolved

approach requirements and the HLA 1.3 API provided by portico. This method has also

proposed a solution for failure tolerance, which can recover the lost information caused by

data exchange delay and data package lost. This failure tolerance solution can also ensure that

the HLA federation runs smoothly including web services. Even if one federate of

―web-partner‖ is disconnected because of network fault, the WebserviceFederate will play as

a standby federate until it connects again.

The objective of this method is to achieve easy connection for potential participants, authority

management, and interoperation environment management for HLA federation (interoperation

environment). A software application has been developed to implement this method. Section

4.4 will detail this implementation and section 5.2.3 will demonstrate this software

application.

The method is based on HLA technology, so the establishment of dynamic interoperability

still has a common standard to follow even if it is only in the technical level. Even so, this

research work can be considered as an answer to new challenges engendered by future

internet requirements at the semantic level, and to create, in particular, enterprises more

dynamically interoperable.

3.5. Short-lived ontology method

3.5.1. Why short-lived ontology

The previous sections have introduced the framework for defining development lifecycle and

structure of HLA federate, model reverse method for obtaining valuable information of

existing system, and web-enable HLA federate for agile technical support. Up to now, the

infrastructure of federated approach has been set up, but one more important element,

information analysis, is absent to activate this approach. One of the expected results is

transient information exchange and analysis without common format at conceptual barrier.

Section 3.4 has proposed the HLA evolved Web Services solution for transient information

exchange, but has not solved the problem of transient information analysis without common

format. This section will introduce the short-lived ontology to handle this problem.

128

As mentioned, ontology is used to organise and handle data by semantically interconnecting

them. Many existing enterprise interoperability researches and projects have used ontology to

translate the message with different semantic meanings and structures, or map diverse models.

Most of the researches and project used the common format or predefined format for

translation or mapping, which cannot satisfy the on-the-fly requirement of federated approach.

Therefore, short-lived ontology is proposed to minimally avoid the common format by

predefine the format during the dynamic negotiation.

3.5.2. Overview of short-lived ontology

―Short-lived ontology‖ is a particular non persistent ontology (Zacharewicz et al., 2009), with

a very short lifetime. To the extreme it can exist (and persist) only during a communication

between interlocutors. The Figure 3-23 illustrates informally the communication mechanism

of ―Short-lived ontology‖.

- Case a: the ―enterprise 1‖ sends information and the ontology to understand (decode) it at

the same time. This ontology is supposed to be only valid for this information. The

ontology is not persistent above the relation of the two enterprises.

- Case b: the ―enterprise 1‖ sends only the information to ―enterprise 2‖. Once ―enterprise

2‖ receives the information, it interprets the meaning using its local ontology if it is able

to decode the information. If not, it asks for the ontology associated to the message to the

sender of the message. The enterprise can conserve the new received ontology to reuse it

with further data sent by the same emitter or another one also compliant to the same

ontology. A ―best before end‖ date or a countdown of validity can be associated to the

ontology.

In the case a, the information can be exploited directly thanks to the ontology received at the

same time. However, the information size exchanged is more important, in addition, it can be

intercepted and the confidentiality can be broken. In the case b, the confidentiality is enforced

but it requires more exchanges between the two partners and consequently increasing the

communication duration.

According to the definition of federated approach, case b is the ―on-the-fly‖ solution. Case b

can also ensure the information confidentiality. From that postulate we introduce the concept

129

of ―short lived‖ ontology (this ontology definition is based on the definition in (Gruber,

1995)), where ontology can be, in some case, suppressed after use or have a finite duration

validity. This ―short-lived ontology‖ approach will be used to dynamically handle the

interoperability issue in data concern.

Figure 3-23. short-lived ontology

3.5.3. Short-lived ontology for federated approach

As mentioned in section 2.5.3, there are three kinds of ontology mapping approach for

information integration (H.Wache et al., 2001), single ontology approach, hybrid ontology

approach, and multiple ontology approach. Compared to the interoperability approach in

enterprise interoperability framework：

- The single ontology approach is more suitable for integrated approach. Because single

ontology approach needs a global ontology to provide a shared vocabulary for the

specification of the semantics. All the information sources are related to this global

ontology. While, integrated approach needs a common format for all models to develop

systems.

- The hybrid ontology approach is similar to the unified approach. Because, hybrid

130

ontology approach requires a shared vocabulary to be built upon the individual local

ontologies of different information sources. The shared vocabulary contains basic terms

of a domain, and all the local ontology are required to refer to it. In sum, unified approach

needs a common predefined format only exists at meta-level for mapping.

- The multiple ontology approach is supportive for achieving federated approach. Because,

multiple ontology approach has no common and minimal ontology commitment about

one global ontology. Each information source is described by its own local ontology.

Federated approach requires dynamical adjustment and accommodation without

predefined common format.

Therefore, the short-lived ontology must follow the principle of the multiple ontology

approach. The technical schema of the short-lived ontology is shown in figure 3-24. When a

message requester (Enterprise B shown in the right side of figure 3-24) receives information,

it will try to decode the information by using its local ontology glossary. This ontology

glossary is initiated by using the set of similar models, which is generated in phases of model

evolution and model alignment mentioned in section 3.3.2.2. If the translation from local

ontology glossary is not understandable for Enterprise B, it can demand to the emitter

(Enterprise A shown in the left side of figure 3-24) to deliver the ontology translation

associated to this message. After Enterprise B obtains all the information required, the

received ontology translation can be deleted. However, the terms inside the ontology

translation can also be temporarily saved in the local ontology glossary of Enterprise B. This

local ontology glossary is a self-learning system with limited space (in order to save the

memory and also avoid the redundancy), which means that this glossary can be self updated

automatically. Every ontology term of this ontology glossary has a weighting coefficient for

its ranking, which can measure the popularity of ontology term. If the coefficient of the

ontology term decreases to the bottom, this ontology term will be deleted from the local

ontology glossary.

Figure 3-24. Technical schema of the short-lived ontology

131

In addition, because enterprises are isolated from this message translation process, the

above-mentioned process must be handled by the Enterprise Business Behaviour Interface

which is the output of the Harmonization of HLA and MDA. As mentioned in section 3.3.2.3,

the ―adapter‖ of the Enterprise Business Behaviour Interface has to process the participants‘

requests, and also transmit the response to these participants. Thus, this short-lived ontology

method can be considered as information pre-processing and after-treatment of the ―adapter‖.

The information pre-processing will decode the request and then pass it to the ―adapter‖, if it

fails in decoding, it will require the translation from the requesters. The after-treatment is

responsible for transmitting the response to requesters, and translating response if requesters

cannot understand it. In order to link up with the initial state and final state of the state

diagram generated by model reverse method mentioned in section 3.3, the state diagrams of

the information pre-processing and after-treatment must be defined. The output of the

information pre-processing must be discernible for the initial state. It means that this output

must be in the range of possible system input combinations defined in the initial state, so that

the initial state can precisely decide the direction of the information flow and change the

system state. The after-treatment must help the final state to process the answer from the

existing systems, and then reply the requesters. Part A of figure 3-25 shows the state diagram

of message emitter, and Part B of figure 3-25 illustrates the state diagram of message receiver.

Actually, one single federate must implement these two state diagrams for the implementation

of the Enterprise Business Behaviour Interface. Message emitter will be implemented as the

after-treatment, and message receiver will be implemented as the information pre-processing.

- Message emitter has four states: initial/final, message sent, interpretation preparation, and

interpretation sent.

 Initial/final: it is the initial or final state. It is waiting for ―send message‖ order to

change the state, or waiting for ―confirm‖ events to stop the process.

 Message sent: after sending the message, it is waiting for the feedback. If the

feedback is ―confirm message‖, it will turn to final state. But if the feedback is

―request interpretation‖, it will change into the ―interpretation preparation‖ state.

 Interpretation preparation: it will be activated, if the interpretation is needed. It will

end up with sending the interpretation.

 Interpretation sent: after sending the interpretation, it is waiting for the feedback. If

the feedback is ―confirm interpretation‖, it will turn to final state. But if the feedback

is ―deny interpretation‖, it will return to the ―interpretation preparation‖ state.

132

- Message receiver has five states: initial/final, message analysis, business processing,

interpretation preparation, and wait for interpretation from requester.

 Initial/final: it is the initial or final state. It is waiting for ―Receive message‖ order to

change the state, or waiting for ―Send response‖ event to stop the process.

 Message analysis: after receiving the message, it will determine whether the message

is understandable. If so, it will move forward to business processing. Otherwise, it

will search the local ontology glossary for translation.

 Business processing: if the message is understandable, it will process this message,

and then send the response.

 Interpretation preparation: it will be activated, if the interpretation is needed. If the

local ontology glossary can provide the answer, then it will end up with sending the

interpretation. Otherwise, it will send the interpretation request to the message

emitter.

 Wait for interpretation from requester: it is waiting for the message emitter‘s answer.

If the answer is ok, it will end up with confirming interpretation, and turn to final

state. But if the answer is still not understandable, it will send the interpretation

request again and wait for the answer.

Figure 3-25. State diagrams of message emitter and receiver

133

3.5.4. Summary

This section has introduced the short-lived ontology method for implementing ―on-the-fly‖

negotiation that is one of the expected results. This section has explained the general idea of

the short-lived ontology, and also the mechanism of short-lived ontology for federated

approach according to the result achieved in the previous sections. The mechanism includes

the method of initiating and upgrading the local ontology glossary, and the technical schema

of the short-lived ontology interpretation request/response. In addition, the state diagrams are

designed conform to this technical schema, so that the short-lived ontology method can be

linked up with the model reverse method to develop an intelligent agent for achieving

federated enterprise interoperability.

However, as the same situation as the part of HLA Federate Code Block generation, this

method has not been fully implemented yet. The algorithms of the technical schema of the

short-lived ontology interpretation request/response have been studied out without complete

validation, so they will not be presented in this doctoral thesis. We have opened this part to

the future work. Another PhD candidate of our laboratory is working on this part. He has

proposed a novel ontology alignment approach with multiple strategies and aggregated based

on Method Analytic Hierarchy Process (AHP). This approach supports the dynamic and

automatic aggregation of different matching results (Song et al., 2012).

3.6. Conclusion

This chapter has presented the Harmonized and Reversible HLA based framework and

methodology. This approach is a novel idea that combines the existing methods and

techniques mentioned in chapter 2 to achieve federated enterprise interoperability. The overall

contribution is summarized in figure 3-26. This research firstly proposed a harmonized HLA

and MDA Framework which aims at implementing federated enterprise interoperability.

Under this framework, there are three methods, model reverse model, web-enable HLA

federate design method, and short-lived ontology method. The framework defines the general

guideline for the implementation of these three methods. These three methods also

complement each other in order to achieve the expected result of the federated approach of

enterprise interoperability.

134

Figure 3-26. Overall contribution of this research

Section 3.2 has presented the Harmonized HLA & MDA engineering framework. This

framework provides a new five steps development lifecycle starting from conceptual models

to code implementation. This lifecycle combines HLA FEDEP with MDA. MDA is

responsible for standardizing the modelling process, so that the models are general and

common, which can enhance the model reusability. On the other hand, HLA provides a

technical environment, which allows the model transformation to perform towards a clear

target with constraints. As the result of this framework, the harmonized single federate

structure provides a novel view of HLA federate, which dissociates the business behaviour

code from RTI specific code. This dissociation reduces the model coupling, which can

enhance the system reusability and maintainability. In addition, this dissociation promotes the

implementation of ―plug and play‖ mechanism, which can help to achieve the rapid, and

dynamic interoperability establishment, and agile environment compatibility.

Section 3.3 has proposed the model reverse method. This method uses MoDisco tool to

discover UML model that is initial data of this method. A process of model evolution and

model alignment has been performed on the UML models, which achieves the interoperability

modelling in ―on-the-fly‖ negotiation. The processed models can be used to generate HLA

FOM and initiate local ontology glossary that is introduced in section 3.5. Another process of

behaviour model discovery has been proposed to generate system state diagrams that can be

transformed to system simulation code. This process avoids completely redevelop the existing

systems, and allows them to establish interoperability rapidly. The objective of this model

135

reverse method is to implement the harmonized single federate proposed in section 3.2, in

order to achieve ―plug and play‖.

Section 3.4 has proposed the method of web-enable HLA federate design based on the open

source RTI, portico. This method fulfils HLA evolved IEEE 1516
TM

-2010 standard. A novel

federate called WebserviceFederate is designed to bridge the gaps between HLA Evolved

approach requirements and the HLA 1.3 API provided by portico. This method uses the

results of model reverse process, such as similar models for HLA FOM, and behaviour

models, to generate the web services. Thus, the potential participants can use the web services

to rapidly generate their own ―adapter‖ to join the existing HLA federation. This method

intends to achieve ―easy connection‖ for potential participants, and authority management and

interoperation environment management for HLA federation (interoperation environment).

Section 3.5 has introduced the short-lived ontology method. The federate approach of

Enterprise Interoperability requires that the interoperability accommodation and adjustment

should not impose the existing models, languages and methods of work as the common

format. The short-lived ontology is used to support this ―on-the-fly‖ negotiation semantically.

The theory of the harmonized and reversible HLA based methodology has been

systematically described. However, the behaviour model reverse method and the short-lived

ontology method have been proposed, but only been partially implemented, because of the

priority of implementation and time limitation of my doctoral research. The algorithms of

model processing, state diagram generation, and the technical schema of the short-lived

ontology interpretation request/response have been studied out without complete verification.

We have opened these parts to the future work.

Chapter 4. Implementation of a Model driven

and HLA based Reverse Engineering Tool

139

4.1. Introduction

This chapter will introduce the architecture and the implementation of functionality modules

of Model driven and HLA based Reverse Engineering Tool based on the framework and

methodologies presented in the previous chapter. This tool is based on poRTIco RTI and

developed in Java language. It is implemented on Eclipse, and can be run in Windows NT or

UNIX system with JDK 1.6.0 (or higher) environment and poRTIco environment. JAX-WS

(JAX-RPC)
16

 is used for implementing web services. JFreeChart
17

 is used for illustrating the

simulation result.

4.2. The architecture of Model driven and HLA based Reverse

Engineering Tool

The objective and functionality of this tool is identified by breaking down the name ―Model

driven and HLA based Reverse Engineering Tool‖:

- Reverse Engineering means that this tool can acquire models of enterprise information

systems by rewinding the existing systems.

- HLA based means that the target platform of this tool is HLA. The end user will connect

to this platform through a federate of HLA federation.

- Model driven means that this tool must solve the interoperability issues based on models

of rewound systems, and then reform the models into the interoperable models, which can

be converted into executable code according to the target platform.

Thus, the objective (or output) of this tool is an interoperable ISs communication platform

based on HLA. The functional modules of this tool are (1) a build time module including

model reversal, model adjustment, and target model & code generation, and (2) a run time

including message dispatch and management. The architecture of this tool is illustrated in

figure 4-1.

16 JAX-WS (Java API for XML-WebService) is the evolution version of JAX-RPC that provides Web services API

operations by using the annotation of Web services in an open configuration information and configuration information on

SOAP messages (Oracle, 2012).

17 JFreechart is an open-source framework for the programming language Java, which allows the creation of a wide variety

of both interactive and non-interactive charts, such as X-Y chart, pie chart, Gantt chart, and etc (JFreeChart, 2008).

140

Figure 4-1. The architecture of Model driven and HLA based Reverse Engineering Tool

- Build time: HLA&MDA harmonization and model reversal will be performed at this time.

As mentioned in chapter 3, according to the differences of the perspective, interest,

authority, and join-time slot of the participants, the reverse level will be different and the

HLA Federation is divided into traditional part and web-evolved part. Thus, the build

time will be divided into two parts to cater for diverse requirements of different

performances.

 Build time I: it is the time for initiating the interoperation environment. It is the first

priority of the interoperability development and this tool.

141

 Build time II: it is the extra and agile part of the interoperation environment, which

takes in charge of discovering the potential participants, helping new participants to

adapt to the environment, and managing these special participants.

- Run time: it is the execution time of the interoperation. The HLA federation will manage

the interactions among the participants, maintain the status of the participants, and control

the interoperation environment.

4.3. Build Time I

The Build Time I is responsible for interoperability environment establishment. It means that

Build Time I must bring all the participants‘ existing IT systems together for Enterprise

Interoperability. Thus, the main task of Build Time I is to discover models from legacy

systems, and perform the interoperability modelling on these models, which is corresponding

to the first model reverse scenario mentioned in section 3.3.

The harmonized federate mentioned in section 3.2, which consists of Integration code and

Enterprise Business Behaviour Interface, is the expected output of this module. Thus, one

division of the work of this module is HLA FOM generation, which is based on static model

discovery, analysis, and reform. This part will systematize the global scenario of the

interoperation, e.g. definition of primary entities and basic interactions, and then specify this

scenario into HLA and JAVA related model, e.g. HLA FOM and correspondent JAVA object

bean. Another division is HLA federate code generation, which is based on dynamic model

discovery, analysis, and reform. This part will systematize the scenario of the individual

interoperable entity, e.g. description of entity behaviours and statuses, and then specify this

scenario into HLA and JAVA related model, e.g. HLA SOM and correspondent JAVA action

bean. The basis division of this module is UML model discovery, which provides the raw

material, UML model, to the other two divisions.

Figure 4-2. Modisco Tool usage of KDM, Java Model obtainment

142

4.3.1. UML model discovery

This division can obtain the raw UML model with the aid of MoDisco Tool. As mentioned

earlier, MoDisco tool is an Eclipse GMT component. It is available on the Eclipse Website

http://www.eclipse.org/MoDisco/downloads/ with the latest version 0.10.0 released on June

13
th

, 2012. After installing it (the full instruction of how to install MoDisco is explained in

(MoDisco, 2012a)), the right-click popup menu of Eclipse will be changed by adding a new

menu bar with MoDisco logo. By clicking the right mouse button on one project in the

―Package Explorer‖, a popup menu with a menu bar labelled ―MoDisco‖ (as highlighted in

figure 4-2) will show. Following the options insides this bar, you can obtain KDM model and

Java model. After KDM model is obtained, a popup menu with a menu bar labelled

―MoDisco‖ (as highlighted in figure 4-3) can be activated by clicking the right mouse button

on KDM model item. This item can be found under the structured tree of selected project.

Following the options insides this ―MoDisco‖ bar, a menu bar labelled ―Discover UML model

from KDM model‖ can be found, which can be used to obtain UML model. The detail of the

usage of MoDisco Tool is introduced in (MoDisco, 2012b).

Figure 4-3. Modisco Tool usage for obtaining UML Model

4.3.2. HLA FOM generation

This division consists of four sequential sub-modules, Analyze UML, Model Evolution,

Model Alignment, and FOM generation.

4.3.2.1. Analyze UML

The UML models obtained from the MoDisco Tool are saved in XML format (as the tree

structure shown in figure 4-4) and as an .uml file. Each item of the tree structure has a ―xmi:id‖

and ―name‖, so that it can be uniquely identified. The ―xmi:id‖ will also be used for class

dependency and association. Each item also has some other information of correspondent

http://www.eclipse.org/MoDisco/downloads/

143

level, but not all useful. Besides that, the .uml file would contain bulk information, which is

not interesting for HLA FOM generation, such as external java package, common java

datatypes, and etc. Thus, an ―Analyze UML‖ sub-module is required to select the useful

information, and arrange this information.

Figure 4-4. UML file structure

The procedures of the Analyze UML sub-module include:

- Parsing and simplifying UML model: to load the .uml file and parse the file based on

W3C XML technology specification (W3C, 2008). As mentioned that the .uml file would

contain unnecessary information, so during the model parsing, the program will ignore

the elements labelled as ―external‖, ―source references‖, ―common java datatypes‖ and

etc.

- Sorting UML model: after .uml file decomposition, the information of each item need to

be collected and catalogued, so that the elements of the UML model can be found or

recalled easily by the program. In order to achieve this, data structure of each item is

defined in the way shown in figure 4-5. Each UML node has attributes ―xmiId‖ and

―name‖ as unique identity, and has attributes ―upper‖ and ―lower‖ as the bidirectional

pointer to its father nodes and child nodes in the tree structure shown in figure 4-4. In

others word, the attributes ―upper‖ and ―lower‖ memorize the aggregation relationship

between different UML nodes. The ClassNode has additional attributes ―dependencyLink‖

and ―associationLink‖ which recode the class relationship. The values of these two

attributes are list of ―xmiId‖s. The OperationNode has an additional attribute

―parameterList‖ which is used to save the parameters of one function.

- Storing UML model: because the nodes have different types, nodes will be sorted into

different categories, then as figure 4-6 shown, four HashMaps are defined to save

different categories of UML nodes. Since the nodes have bidirectional pointer, these four

HashMaps are linked into a combination of doubly linked lists. Then, from any node exist

144

in the HashMaps, it is possible to trace any expected target.

- Choosing UML model: this second round to simplify the UML model after first step cuts

out the redundant information. However, this round will not be finished automatically by

computer. The program will illustrate entire UML models on the user interface, so that,

participants can choose the information they want to or must share with others. As

mentioned in section 3.3.2.2, at the phase of generating HLA FOM, class dependencies,

associations, and functions may not be interesting, thus this information will not be

selected. The similar situation will also happen in the federate code generation. Those

situations are the reason of storing UML model in the way shown in figure 4-6. Model

elements are individually saved but connected by links. When we decide not to show one

category of element, we can break the links and hide these elements. When we want to

delete one element, we can erase it from the hash without affecting others, but also erase

all the related information by tracing along the links. The algorithm for tracing elements

along the links is shown in figure 4-7. This algorithm is a recursive algorithm (Collins,

2005) (Cormen et al., 2003). The principle is to start from one node to check whether it

has child nodes. If yes, then travel to those nodes and do the same thing, until a node

without child nodes is found (we call it leaf node). Afterwards, operate on this leaf node

and then return to the father node, and erase the leaf node from the child nodes list of the

father node, which can make the father node into a leaf node. Recursively doing this

operation, we can finish the traversal of the link.

Figure 4-5. Data structure of UML nodes

145

Figure 4-6. UML nodes storage structure

Figure 4-7. The algorithm of tracing elements along the links

4.3.2.2. Model Evolution

As explained earlier, to generate HLA FOM, it has to find the similar entities among the

146

participants by comparing their UML models, which are the output of the previous step. Even

the UML models have already been simplified, but to compare several participants‘ models at

the same time is still a huge project. Thus, the model evolution theory introduced in section

3.3.2.2 can be used to start the third round of UML model simplification.

This sub-module requires manual operation. The participants have to decide the model

evolution groups based on their business relationship. Let us take the business relationship

shown in figure 4-8 as an example. Enterprise B and C are the subsidiaries of enterprise A, so

they are grouped together. Enterprise F is the raw material supplier of enterprise E,

meanwhile, the enterprise D provides the product transformation services to enterprise E and

F. Thus, enterprise D, E and F are grouped together. The group of G, H and I is set in the

same way. As this step, the first round of the model evolution is ready. And then, the

enterprises in the same group will start the model alignment which is the mission of the

following sub-module. After alignment, each group will have a list of common object models,

which are the input of second round of the model evolution. Then, because the enterprise E is

the biggest semi-manufactured goods supplier, the group in red and the group in blue will

perform model alignment together in the second round of the model evolution. Finally, the

output of evolution 2 will perform model alignment with the output of group in purple at the

third round of the model evolution, in order to obtain the final common object models for

HLA FOM generation.

Figure 4-8. Model evolution

147

As shown in figure 4-8, the participants are connected by binary relation, such as ―supply‖

and ―transportation‖. The participants and their relations make up a binary relation network

that can be represented as a dyadic array. The type of relation will be ignored in the

implementation, because we only consider about the customer intimacy, such as, long-term

relation or short-term relation.

In order to implement the model evolution, we will assign value to the binary relation

between two participants. For example, ―(A, B) = 1‖ means that the binary relation between

enterprise A and B is 1. The value range is 1 to N. The exact value of N depends on how

many times of model evolution will be performed. This value assignment of each binary

relation must be performed at the first two phases of HLA&MDA harmonized development

lifecycle mentioned in section 3.2. Phase 1 (Domain requirement definition) must define the

customer intimacy of participants. Phase 2 (Domain scenario systematization) must refine

these intimacies into corresponding value from 1 to N. these values will be saved in a dyadic

array that can be read by model evolution program. The model evolution program will

traverse the dyadic array by starting from the main point, such as, the enterprise A shown in

figure 4-8, which is the main manufacturer. The program will use the inorder traversal

algorithm (Cormen et al., 2003) to discover the participants which are connected by binary

relation valued 1, and put them together in one set for first model evolution. The participants,

which have binary relation valued 2 with the main point, will join the second model evolution.

Successively, the following model evolution will be performed on the participants with binary

relation valued 3 to N. For example, if ―(A, B) = 1‖ and ―(B, C) = 1‖, then enterprise A, B and

C can be put in one set for the first model evolution. If (A, E) = 2, then enterprise E cannot be

in the same set with enterprise A for the first model evolution, but it will align with the

evolution result of enterprise A, B, C in the second evolution.

The inorder traversal algorithm for model evolution is illustrated in figure 4-9. This algorithm

is based on recursive algorithm. Program will start from one row-coordinate on the dyadic

array (represents one participant), and check all the binary relation values on this row, which

represent the binary relation between this participant with others. If the binary relation value

equals to 1, then program will recursively call this function with the corresponding

column-coordinate to find the participants who have binary relation valued 1 with this

participant (because the dyadic array used for saving the binary relations of the participants is

dyadic array, the column-coordinate also represents one participant). After this recursive

148

function stops, the program can obtain a set of participants for model evolution.

Figure 4-9. The algorithm of model evolution

4.3.2.3. Model Alignment

The Task of Model Alignment sub-module is to conduct the model evolution from the top

level to bottom level. The methodology of the conduction explained in section 3.3.2.2 is to

distinguish the similar entities/features among the models from disparate enterprises, align

them, and preserve them for the next model generation. So, the prime point of this sub-model

is the distinction of the model similarity.

Figure 4-10 illustrates the finite state diagram of the model similarity distinction.

- State 1: The program will firstly require user to import the Simplified UML Model (SUM)

file of one group of enterprises, which is the output of analyze UML model sub-model.

- State 2: When all the SUM files are uploaded, user has to define the Expected

Transmission Similarity value for this distinction.

- State 3: Afterwards the program will illustrate the SUM matrix and turn to the state of

waiting user enters the similarity for model pair. If there is not suitable pair for definition,

then this distinction program will stop.

- State 4: When program detects the possibility of similarity transmission, it will highlight

the possible pairs. And then, user can check these pairs to confirm or deny this possibility.

If the possibility is confirm, the program will detect the possibility of similarity

149

transmission again, and highlight more possible pairs, until all the possibility are

confirmed or denied. After that, the program will turn back to the state 3 to wait for the

definition from user.

Figure 4-10. Model similarity distinction state chart

The similarity transmission detection is an automatic process following the algorithm shown

in segment ―Model Alignment‖ of section 3.3.2.2. For example, user has firstly defined the

similarity of the pair of class S and T, and then defined the pair of class T and G as shown in

figure 4-11. Then, according to the relation transmission theory, it is possible to transmit the

similarity to the pair S and G. However, the program has to calculate the Transmission

Threshold Value based on the user input and the Expected Transmission Similarity value, so

that the program can accept this possibility. It means that if the similarity of class T and G

defined by user is beyond the blue line shown in figure 4-11, then the program will highlight

the cell of class S and G on the matrix to the user.

150

Figure 4-11. Calculation of Transmission Threshold Value

The figure 4-12 illustrates the pseudo code of the similarity transmission detection with the

example shown in figure 4-11. When user defines the similarity for one pair of models, the

program will call the function of highlightSimiPossibility with parameters of row-coordinate

and column-coordinate of the relation matrix, and defined similarity value. Then, the program

will iteratively check the pairs of the matrix on the same row to discover the pairs of models

with similarity value. Because the defined the expected similarity is 70%, the first constraint

for the existing similarity value (x) is [0.77, 1), and the equation of calculating Transmission

Threshold Value (y) is (17 – 3x) / (3 + 23x). Thus, if the x of Matrix[row][i]
18

 satisfies the

first constraint, its value will be used to calculate the value of y. Finally, if the similarity value

of the new defined pair equals to or is higher than y, the program will highlight the table cell

whose row-coordinate is i and column-coordinate is col
19

.

18 the Matrix is a dyadic array that represents the relation matrix of participants' models. ―row‖ is the row-coordinate of the

new defined pair. ―i‖ is the column-coordinate of the current pair that is checking.
19 ―col‖ is the column-coordinate of the new defined pair.

151

Figure 4-12. The pseudo code of the similarity transmission detection

4.3.2.4. FOM generation

After the model alignment, the program will illustrate the similar model list to the user, so that

user can select the useful attributes of those models, and then generate a new common model

and rename it. While the model evolution is finished, throughout many times of model

alignment, the program has generated a list of new common models. Afterwards, user can

transfer this list of models into HLA FOM file by following different RTI FOM file format.

Because HLA FOM also obeys to the object oriented principle, this model transformation is

only a syntax transformation, but not a semantic one. For example, according to the portico

RTI FOM file format, UML:Class matches to Objects: Class, and UML: Attribute matches to

Objects: Attribute.

4.3.3. Generate HLA Federate Code Block

As mentioned in section 3.3.2.3, we will use program tracer tool to discover all the possible

execution paths of the existing system, and then merge the paths into a directed graph.

Afterwards, the directed graph will be reduced for generating state diagram. As mentioned,

this method has not been completely implemented, because of time constraint of my PhD

research. This method requires numerous experimental data to define general system

behaviour and rules for execution paths reduction, which we did not obtain enough. This

section will introduce the implemented part of this method.

152

4.3.3.1. System traversal

The system traversal is the phase to obtain all the possible system execution modes. This

phase needs to do many experiments on diverse systems, so that different system behaviours

can be discovered to identify different reduction scenarios. The selected program tracer tool

for obtaining experimental data is Jprofiler. The trial version of this tool can be downloaded

from http://www.ej-technologies.com/index.html. The online help for configuring and using

this tool can be found in (JProfiler, 2012). We have used Jprofiler to trace the execution of

many systems. The figure 4-13 shows an example of the result of Jprofiler. Jprofiler can show

all the possibilities of system execution by following every function call. As the first step of

model reverse method has discover the UML models from the existing systems, each function

call can be re-tracked back to its class. In that case, the Jprofiler result can be transform into

the execution paths shown in figure 3-15.

Figure 4-13. Jprofiler result

The figure 4-14 illustrates the representative structure of the node of the execution path. Each

node has three attributes, className as unique identity, functionCallList for saving function

call originated from this node, and objectValue for saving the object values of instances

created by different function calls.

Figure 4-14. Execution Node

http://www.ej-technologies.com/index.html

153

4.3.3.2. Model Processing

Model processing phase is responsible for reducing the system execution paths. This phase

requires reduction rules to merge the nodes on different execution paths. Currently, we have

defined four rules.

- Rule 1: Completely same. If the nodes have same class name, function calls and object

values, they will be merged immediately.

- Rule 2: Objects with different values. If the nodes have same class name and function

calls, but different object values, they will be considered as similar. They will still be

merged, but different object values will be saved and matched to different function calls

that triggered by different values. It means that this merged node has value assertion that

might cause the system state change.

- Rule 3: Lack of function calls. If the nodes have same class name, but different function

calls, they will be consider as similar. They will still be merged, but different function

calls will be appended on the functionCallList. It means that this merged node has

different options to change the system states.

- Rule 4: Simple loop reduction. As shown in figure 4-15, node B and node C are called by

one same node, node A, and they will also call another same node, node D. In that case,

these four nodes form a simple loop. This simple loop will be reduced into a simple path

by merging node B and Node C and the edges of the directed graph. The functionCallList

must be merged into one list. ObjectValue must also be saved in one list. The className

of the merged node must be merged as well. Node A must match the function calls to the

corresponding system handlers with node B and C.

Figure 4-15. Simple loop reduction

154

4.3.3.3. Behaviour Model Generation

The phase of behaviour model generation is responsible for transforming the reduced directed

graph of the system execution paths into state diagram. According to the method introduced

in section 3.3.2.3, one algorithm for generating state diagram is provided as figure 4-16

shows.

This algorithm is a recursive algorithm. The program starts from the first point of one directed

graph of the system execution paths. Then, it calls stateGeneration function recursively for

each node on the execution path. The stateGeneration function has a return type of ArrayList

that is used to save system states. The system state is represented as a class structure called

StateNode, which consists of two attributes, nodesList and stateTransitionList. The nodesList

is used to save the nodes of execution path which will be put together in one state. The

stateTransitionList is used to save state transitions which are the function calls of the last node

in one state. The stateGeneration function requires two parameters, executionNode and

sameState. The executionNode is an instance of ExecutionNode class, which represents the

current node for states discovery. The sameState is a list that saves the nodes which belong to

the same state.

155

Figure 4-16. State diagram generation algorithm

156

The program firstly checks the number of function calls of the executionNode, and whether

the executionNode is repetitively checked. This checking will decide different cases of the

executionNodes alignment for generating a state.

- If the number of function calls is 0, it means that it is the end of one sub-path of system

execution. The nodes in the sameSate list must be merged into one state.

- If the executionNode is repetitively checked, it means that it is a recall loop. If the

sameSate is not null, the nodes inside must be merged into one state. If the sameState is

null, the function call (state transition) will be saved in the previous stateNode.

- If the number of function calls is 1, it means that the next executionNode will be in the

same state. The function will save the current executionNode in the sameState, and then

recursively call this function with the next executionNode.

- If the number of function calls is bigger than 1, it means that system will turn to different

states. The function will merge the nodes in the sameSate list into one state, and put the

function calls into the stateTransitionList of one instance of class StateNode. Afterwards,

the function will iteratively check each of the next executionNodes that could be called

by the current executionNode.

Finally, this stateGeneration function returns a list of instances of class StateNode. Each

instance saves a set of the nodes on the execution path for mapping to the system classes (as

system handlers). Each instance also has a list of function calls that are used to represent the

state transitions.

4.4. Run Time

Run time is the HLA execution time. The Build Time I has prepared HLA FOM and Federate

Code, which are the essential parts of HLA federation execution and the single federate. In

other words, the output of the build time I accelerates the establishment of HLA federation

environment, and the code generation of the HLA federate Interface for each participant.

The class diagram of the establishment of run time is illustrated in figure 4-17. In this

simulation, there are four kinds of federates: federate for central control, federate for

Web-enable, federate for initial participant (inside traditional HLA federation), and federate

for potential participant (outside traditional HLA federation, but connected via web services).

157

As mentioned in section 2.2, no matter what kinds of federates need RTI::RTIAmbassador

and RTI::FederateAmbassador to implement the basic communication functions inside the

LibRTI, such as callback function. Thus, class Federate has an association with a class

RTIFactoryFactory which can create the RTIAmbassador and execute the HLA federation or

join the federation. Class Federate will also extend class FederateAmbassador, so that it can

implement the management of the message exchange.

Figure 4-17. Class diagram of run time

Meanwhile, because the participants have different interests in this collaboration, so the

representative federate of each participant will share different messages and have different

ways of sharing them. Therefore, each federate has a correlated federate ambassador. At the

meantime, each participant has different business processes and partnerships, so each

representative federate must have different behaviours, and it will publish different objects

and subscribe to different objects. In order to implement this diversification, the factory

design pattern (Cooper, 2000) is used to allow the agile creation of FederateAmbassadors and

federates. This factory pattern helps to reuse the fundamental RTI related functionalities and

assist the Build Time I to automatically generate diverse federates.

As shown in figure 4-17, there are four sub classes of the abstract class ―Federate‖, Class

CentralFederate, Class PartFederate, Class WebFederate, and Class OutsideFederate. The

functionalities and features of these sub classes are listed as follows:

158

- Class CentralFederate is implemented as the monitor of the HLA federation environment.

It has to maintain the execution status of the online federates, and recode their active time

period. Besides that, it also needs to report and log any exceptions happen in the run-time,

in order to conduce to the good maintenance of the HLA federation environment.

- Class PartFederate can be implemented into diverse federates based on the different

Enterprise Business Behaviour Interfaces (adaptors mentioned in section 3.2.2.2)

generated by sub module HLA federate code generation of Build Time I.

- Class WebFederate is implemented as the Web Services server that publishes HLA

federation services. Thus, besides the inheritance from abstract class ―Federate‖, the

WebFederate also needs to implement the HLA WebServiceInterface. The potential

participants will be synchronized with traditional federates via this federate. In fact, The

WebFederate has to be separated into two classes, WebservicesBridge and

WebservicesServer, because of the elected RTI – portico RTI. The federate inside the

HLA network environment cannot use local IP to connect with the web user. The

WebservicesBridge will be deployed inside the HLA network environment to

communicate with other federates via RTI, and the WebservicesServer will be deployed

outside it to preside over the web communication, but they will be linked through the

socket connection. The deployment of federates is illustrated in the figure 4-18.

- Class OutsideFederate is implemented as the federate interface for the potential

participant (from web). This federate will be explain in detail in next section.

Figure 4-18. The deployment of federates

159

4.5. Build Time II

The Build Time II is responsible for interoperability establishment between potential

participants and the existing interoperability environment. Thus, the main task of Build Time

II is to discover models from legacy systems of new participants, and match these models to

the existing ones, which is corresponding to the second model reverse scenario mentioned in

section 3.3.

The Build Time II will be performed during the HLA federation execution time. After the

previous two steps, the HLA federation environment is ready for the participants to start their

interoperation. As the traditional HLA principle, this HLA federation is completed and cannot

be changed. In order to welcome the potential participants, the WebservicesServer has been

designed according to the HLA evolved principle. Thus, even the HLA federation has closed

its port to the unexpected federate, the web users can download the WSDL (Web Services

Description Language) file from the Services Broker, and generate the OutsideFederate to

communicate with WebservicesServer.

After the Build Time I generate the initiative information of the HLA federation, the program

will generate this information in the Web Services (as the red dash-line named ―web services

generation‖ shown in figure 4-1). For example, the objects in the FOM file will be transferred

into service items, and the interactions will be transferred into service functions. The web

users can tick the service items and functions that they are interested in, so that their

OutsideFederates can subscribe to the objects and interactions of HLA FOM. Meanwhile, as

the web users have different authorities to access the HLA federation, the service items and

functions will also be constrained by the WebservicesServer. The message from

OutsideFederates will be synchronized with other traditional federate through the

WebservicesBridge. The figure 4-19 shows the code segment of WebServicesBridge. The

WebServicesBridge will run a thread for one participant from web. One thread will create a

socket to wait for the message from WebservicesServer. After the message processing,

WebServicesBridge will call the callback functions of the federate ambassador to update the

attribute, send the interaction, and request time advance.

160

Figure 4-19. The code segment of WebServicesBridge.

In addition, the web participants need to build up their own local ontology glossary for

information analysis. It is a part of the implementation of short-lived ontology. As mentioned

in section 3.5.4, the short-lived ontology method has been completely implemented. It has

also been opened as the future work that is the research subject of a new PhD candidate in our

research group. Thus, we use his ontology alignment approach (Song et al., 2012) to help the

local ontology glossary implementation.

161

After model evolution and model alignment, a set of similar models are obtained, which can

be encapsulated into an ontology in format OWL (Ontology Web Language) as shown in the

part A of figure 4-20. The reversed models of web participant can also be generated into an

ontology as shown in the part B of figure 4-20. In the generated ontology, it mainly contains

the classes and subclass as the XML‘s structure represents. The properties are represented as

descriptors.

Figure 4-20. OWL ontology example

In order to find equivalent concepts between the ontologies of existing HLA federation and

new participant, ontology matching will be performed with a multi-strategies-based approach

(Song et al., 2012). In this approach, two source ontologies are the inputs.

- Firstly, a pre-process will be carried out to eliminate and tokenize source ontology into

single elements.

- Secondly, for each pair of elements, a strategy will be applied to select one or more

suitable matchers. There are three matchers (Song et al., 2012) are used in the approach

from different aspects of source ontology: string, structural and semantic. Each selected

162

matcher will generate one similarity value.

- Thirdly, in order to aggregate different matching results, an analytic method with AHP

(Analytic Hierarchy Process) (Song et al., 2012) is adopted to learn the weight of each

matcher. The process is based on three similarity indicators, which could reflect the

essential features of source ontology, to assign the intensity of importance when

measuring the criteria against the goal. A final correspondence will be generated with the

learned weights.

A threshold can be used to filter the discovered alignments. When the similarity is greater

than the threshold, the alignments are kept, otherwise, the alignments are considered as

invalid. A final correspondence is defined as {e1, e2, r, v, id}, where e1 and e2 are two

identified elements with relation r and similarity value v and a unique identifier id. With

constructs built-in OWL, the equivalent links will be setup.

4.6. Conclusion

This chapter has described the mechanism for implementing the Harmonized and Reversible

HLA based methodology. Almost all methods introduced in chapter 3 have been implemented,

but the behaviour model reverse method and the short-lived ontology method have been

partially implemented. The architecture for implementing the model driven and HLA based

Reverse engineering tool has been elaborated. To sum up this architecture, it consists of three

parts (as shown in figure 4-21), build time I, run time, and build time II. Each part has

difference tasks of modelling and simulation.

Figure 4-21. Inter-relationships among modules

163

- The part of build time I is the primary phase. It must implement the model reverse

method and development the HLA Federation based on poRTIco RTI. Model Reverse

Method includes model reversal, model adjustment, and target model & code generation.

It is responsible for preparing simulation environment of Enterprise Interoperability,

which concerns rapid and dynamic interoperability establishment. It is also responsible

for preparing services items for web-enable federate development, and initiating ontology

glossary for web participants, which aim at implementing agile environment

compatibility, and the collaboration environment management.

- The part of build time II is a flexible phase. It only performs when a new participant

wants to join from the web. The task of this part is to implement agile environment

compatibility that allows web participants to join the collaboration as ―plug-and-play‖.

This part consists of web-enable HLA federate design method and short-lived ontology

method. As mentioned earlier short-lived ontology method is partially implemented. The

implemented part of this method is used in this phase to help the web participants to

initiate their local ontology glossary.

- The part of run time is for simulation, including message dispatch and management. It

concerns transient information exchange and analysis. Meanwhile, the generation and

connection of web-enable federate happens also in the run time.

Chapter 5. Case study

167

5.1. Introduction

As mentioned in chapter 4, we have developed a model driven and HLA based reverse

engineering tool. This section will present a case study of using this tool based on laboratory

data. This case aims at illustrating the feasibility of the methodology mentioned in chapter 3,

and the efficiency of the implementation introduced in chapter 4. This case describes a

scenario of car purchasing and car manufacturing. This scenario includes customer ordering,

car manufacturing, material purchasing/delivering, and product delivering. The actors of this

case are car manufacturer, clients, semi-manufactured goods/ automobile parts suppliers, raw

material suppliers, and potential participants. The actions of this case are collaboration

establishment of car manufacturer and suppliers, goods order and distribution between car

manufacturer and clients, material purchasing and delivering between car manufacturer and

suppliers, and collaboration establishment of potential participant and existing members. The

goal of this case is to use the federated approach to achieve efficient establishment of

interoperability environment, rapid order dispatch, intelligent information analysis and easy

pass to the federation for clients and new participants.

5.2. Demonstration

This section will demonstrate the simulation of the case described in the previous section. We

will specify and illustrate the functionality of each module. This section is organized

according to the usage of model driven and HLA based reverse engineering tool.

- Firstly, section 5.2.1 will present to harmonization of MDA and HLA FEDEP, which

defines the development lifecycle, and requirements.

- Secondly, section 5.2.2 will present the build time I part of this tool. This section will

illustrate how to implement model reverse method to prepare the establishment of HLA

Federation for simulating enterprise interoperability.

- Thirdly, section 5.2.3 will present both run time part and build time II part of this tool.

This section will illustrate how to simulate enterprise interoperability among participants

in the HLA federation. This section will also explain how web participants use the web

services to generate their federate to join existing HLA federation.

168

5.2.1. Harmonization of MDA and HLA FEDEP

As mentioned in section 3.2, the harmonization of MDA and HLA FEDEP supports

standardization & modularization design and development of the federated approach

presented in this thesis. Thus it is the guideline of the enterprise interoperability requirement

analysis and the enterprise interoperability environment establishment.

- Phase 1: Domain requirement definition - The scenario of this case can be simply

decomposed into (1) cars purchasing and distribution between car manufacturer and client,

(2) material/ automobile parts purchasing and delivering among car manufacturer,

semi-manufactured goods/ automobile parts supplier and raw material supplier, who are

the initial members of this interoperation, and (3) alignment establishment between

potential participant/ customers and existing members. The scenario (1) requires that

clients can send the car purchasing order and trace the order process, while, the car

manufacturer has to produce the car following the customer requirement and make the

order process public to the clients. The scenario (2) is the common commercial processes

happen when car manufacturer or semi-manufactured goods/ automobile parts supplier is

in the situation of stock shortage, but, this case requires these processes efficient and low

cost. The scenario (3) of this case is swift link and self-adjusted link for web users

(potential participant and customers).

- Phase 2: Domain scenario systematization - as defined in the first phase, there are four

main entities, car manufacturer, client, semi-manufactured goods/ automobile parts

supplier, raw material supplier and potential participant. They are connected by various

kinds of request and response functions. The use case diagram (figure 5-1) illustrates these

entities and their relationship.

- Phase 3: System model specialization - In this case, HLA and JAVA are chosen, the

scenario defined in the previous phases needs to be transferred into HLA and JAVA

models. In this case, the car manufacturer and suppliers are the sponsors of the HLA

federation, who start this collaboration. The clients and the potential participant will join

this collaboration later after the HLA federation has been established, so they will be the

HLA Evolved federate mentioned in section 3.4. All the actors join this collaboration for

certain reasons such as to sell their products or purchase products, so their IT systems

have their own objects for representing their interests. However, because of the federate

approach, it is not proper to define common attribute for the objects of everyone‘s

169

―interests‖. Thus, in the HLA context, a JAVA object of HLA message is defined for

―interests‖ with attributes of sender, receiver and message context. All the members are

connected by various kinds of request and response functions, so different HLA

interaction classes are defined for these function, such as, the ―Material Delivering‖ HLA

interaction class. Inside these classes, there are the parameters of HLA specific timestamp

and message object defined before.

- Phase 4: System Implementation - the objects and interaction classes defined in phase 3

will be generated into HLA FOM file, so that it will be part of the plug-in (―integration

code‖) mentioned in section 3.2.

- Phase 5: Test - while giving the definition of the previous four phases, the test case will be

prepared and be used in each phase‘s evaluation and final validation.

Figure 5-1. Use case diagram

5.2.2. Build Time I

5.2.2.1. HLA FOM generation

Analyze UML

After using the Modisco Tool, a .uml file is generated with the format mentioned in section

4.3.1 (the detail of the .uml file is shown in Annex 1). As mentioned in section 4.3.1, only

part of the information of the .uml file is useful for the HLA FOM generation. Thus, the

170

Model driven and HLA based Reverse Engineering Tool provides a module called ―UML

Reader and Analyst‖ (as shown in figure 5-2) to load the UML information. This module will

load the UML class information and illustrate it into the hierarchy, ―root -> package -> class ->

attribute‖, as the column name of the table shown in figure 5-2.

Figure 5-2. UML Reader and Analyst Application

After loading the .uml file, this application will provide a well arranged view of class relevant

information as the table shown in figure 5-2. Afterwards, user can delete the useless UML

class information by selecting the row or the cell where it locates in. After removing all the

unnecessary information for HLA FOM generation, user can click button ―save‖ to confirm

that the rest information in the table is the expected information. And then the rest

information will be saved into an xml file as shown in figure 5-3. This xml file is the input of

the module ―model alignment‖, so it only retains the classes with their attributes. It can also

be considered as the first version of the HLA SOM of the correlative enterprise federate.

171

Figure 5-3. Simplified UML class information

Model Evolution & Model Alignment

After reserved and simplified UML classes of each enterprise are ready, it is time to perform

the model evolution. As mentioned in section 4.3.2.2, the participants have decided the model

evolution groups based on their business relationship. Thus, in this case, different suppliers

and car manufacturer have been categorized into different groups. This section will show an

example of model alignment with one group that consists of one raw material supplier, one

automobile parts supplier, and a car manufacturer.

The figure 5-4 shows the user interface of the model alignment module. The operation panel

172

of the first phase of the model alignment includes four parts. (1) On the top left corner, there

is tree list (within the red box) for listing the imported projects SOMs. (2) Below this tree list,

there is another tree list (within the blue box) for listing the URLs of the imported XML files.

On the right side of the tree list area, it is the model analysis area. (3) On the top of this area,

there is a table (within the green box) for performing model similarity transmission. (4) Under

this table, there is the class diagram illustration area (within the purple box).

Firstly, the user has to load the xml files of the simplified UML class information of the raw

material supplier, automobile parts supplier, and car manufacturer. And then, the tree list

within the red box will list out the class information of imported projects, the tree list within

the blue box will list out the URLs of the imported XML files. Meanwhile, the first row and

the first column of the table within green box will be initiated with the classes‘ names of

imported projects. Afterwards, if the user selects one cell of the table, then the class diagrams

of the correlative row and column will show out in the class diagram illustration area. By

comparing the class diagrams, user can define the similarity for the selected classes. In case

the classes are hard to read and find on the table, the user can also select the classes they want

to compare on the tree list within the red box, and then the corresponding table cell will be

selected at the same time, and the class diagrams will shows up as well.

The cells of the model similarity transmission table are bound to a trigger event based on the

similarity transitive algorithm introduced in section 3.3.2.2. Thus, while the user is defining

the class similarity for each cell manually, the cell scans the whole cells on the corresponding

row and column in order to detect the possibility of similarity transmission. If a possibility is

detected, then the correlative cell will be highlighted and user can turn it later to define the

similarity.

173

Figure 5-4. Model Alignment User Interface

When the user confirms that there are not proper classes to define the similarity, user can click

the save button, which means that the first phase of the model alignment has been finished.

And then, under the class diagram illustration area, a new operation panel (as shown in the

figure 5-5, within the blue box) shows up for aligning the model structure.

After the first phase of the model alignment, the user has found several groups of similar

classes. Each group of similar classes can be reformed into a new class for the next model

generation or HLA FOM generation. So that, the user has to give a unified name to each

group of similar classes and their attributes. Therefore, the new operation panel within the

blue box provides the rename functionality by listing out the groups of classes and their

attributes. The user can delete or rename the attributes, and input the new name for the classes

in the text field at the bottom.

When, the model evolution has been finished, the user can click the button ―generate FOM

file‖. And then, the HLA FOM file will be initiated according to the correlative RTI format.

For example, this simulation chooses the portico RTI, then, the HLA FOM file will be

organized in the format shown in the figure 5-6. Objects are embedded inside the pair label

―Objects‖. Each class has a ―class‖ label with ―class name‖ and the attributes are embedded

inside it. The FOM file shown in figure 5-6 is incomplete, missing the interaction class part

174

which will be generated with the help from next section. An example of FOM generation code

is shown in the Annex 2.

Figure 5-5. Align model structure

Figure 5-6. portico RTI based HLA FOM file

175

5.2.3. Run Time and Build Time II

As mentioned in section 4.5, the build time II is performed during the run time. The Build

time II takes in charge of building the federate interface for web user to join the collaboration

project running in the HLA federation. Thus, in order to ensure the fluency of demonstration,

the applications of these two modules have to be presented together in one section.

Figure 5-7. Central federate for Portico RTI

The run time is the HLA federation execution time. As the Portico RTI is an open source RTI

without central monitor of the HLA federation execution, the central federate is designed to

play this role. The figure 5-7 illustrates the user interface of the central federate. On the left

side, there is a tree list for presenting the running federates inside the federation. Once the

federate of one participant joins the federation, its name will be appended on this tree list. So

that, we can know who are involved in the collaboration in time. On the top right corner, there

is a table for illustrating the federate information. When user selects one federate on the tree

list, all the information of this federate will shows up in this table. The information includes

federate name, join time, web user, IP and exception information. The web user item is used

to distinguish whether the federate is a traditional federate or is an evolved federate. If it is not

a web user, the IP is the local network IP. Otherwise, the IP is the wide area network IP. The

exception information item can help user to locate the exception, which can reduce the

176

maintenance time and complexity. Below the federate information table, it is the text area of

the HLA execution log. The log recodes the time of federation creation, the join time and

leave time of federates, the role names of federates, and the exception information of the

federation execution.

Figure 5-8. Federate user interface

The federate of each participant is the protagonist of the HLA federation execution. Build

Time I has prepared the Integration code and Enterprise Business Behavior Interface for each

federate. The Integration code takes in charge of the communication with RTI. The Enterprise

Business Behavior Interface simulates the enterprise business process and it is the basis of the

federate user interface development.

The figure 5-8 shows an example of the user interfaces. The user interface of car

manufacturer federate within the red box on the top left is for automobile parts purchasing.

The operator of the car manufacturer federate can input the information of needed goods, such

as product name, product category, and demand. After the confirmation of this request, this

request will be sent to the RTI by calling RTI specific code, such as, the sendInteraction

(String interactionName, ArrayList parameterList) function (Annex 3 shows an example of

177

RTI specific code), and then the RTI will dispatch it to the federates of automobile parts

suppliers. Because they have already subscribed to the purchasing order message published

by car manufacturer. Afterwards, the automobile parts suppliers will query their database

based the request information in the order of car manufacturer (as the user interface within the

green box on the bottom of figure 5-8). If the automobile parts suppliers have enough

inventories of required goods, they will answer this requirement. Then, the federate of car

manufacturer will analyze all the feedbacks, decode the messages, and then generate an

analysis report. The analysis report is shown in the user interface within the blue box on the

top right of figure 5-8. The report includes the names of the suppliers, their location, the

distance from car manufacturer to them, the inventory number, the price and etc. The

application also provides a clearer view of the summary of total cost based on the data

provided by this report (as shown in figure 5-9). The application can calculate the sum of the

goods‘ price and the freight charge, so that the user can visually compare the suppliers.

Finally, the car manufacturer will select the automobile parts suppliers that he satisfies with

based on this report. For example, the figure 5-9 shows that the cost of purchasing from

supplier in Bordeaux is most reasonable.

Figure 5-9. Analysis Result

The WebservicesFederate makes the traditional HLA federation agiler and more flexible. It

bridges the potential participants and clients from the web with the members of the

collaboration project within the HLA federation.

178

Figure 5-10. Alignment establishment between potential participant and existing members

The illustration of the user interface of alignment establishment between potential participant

and existing members is shown in figure 5-10. For example, if one supplier of automobile

parts wants to be the member of the collaboration project, he can find the Web Services

published by WebservicesFederate (as the user interface within the red box on the right side

of the figure 5-10 shown). Afterwards, he can choose the collaboration items and fulfill his

own information, and then submit the application form to the existing federation. The

administrator of the HLA federation will verify the applicant list (as the user interface within

the green box on the left side of the figure 5-10 shown), and decide which application can be

accepted. After passing the evaluation, the applicant can download the Web Services package

to generate his own federate interface by fully following the procedure mentioned in section

4.5.

In addition, the new participant will perform the ontology alignment with the existing

participants in the HLA federation to create his local ontology glossary, which will be used

for automatically analyze the information from existing HLA federation. The table 5-1 shows

an example of the result of the ontology alignment that uses the multi-strategies ontology

alignment approach (Song et al., 2012) as shown in section 4-5. This approach will assign

similarity value to each pair of ontology elements. Only the pairs with the similarity value

bigger than the threshold value will be kept and aligned.

179

Table 5-1. Ontology alignment between new participant and existing participants

Elements of existing

participants

Elements of new

participants

Relationship Similarity value Id

ProductID CargoID Similar/equal 87.496% 1

ProductName CargoName Similar/equal 87.496% 2

ProductCategory CargoClassification Similar/equal 74.527% 3

Price Price Equal 100% 4

InventoryNumber InventoryLevel Similar/equal 90.831% 5

The figure 5-11 shows an example of car purchasing and car manufacturing which happen

between a customer from web and car manufacturer federate with HLA federation.

Figure 5-11. Example of car purchasing and car manufacturing

Firstly, the customer sends an order to the car manufacturer federate (CMF). And then the car

manufacturer federate calculates the amount of raw materials based on the bill of material.

After that it dispatches orders to the different suppliers, such as wheel supplier (WS) and

engine supplier (ES), to get the parts. When suppliers finish the production, they deliver the

products to the CMF who assembles them and then deliver to the customer. In this simulation,

the status of the order is the concerned issue. The customer cares about when he can receive

his cars and the status of this manufacturing process. As a result, the customer does not have

the complex interaction with the existing federate within the HLA federation. Thus, he does

not need to follow the complex procedure as the web applicants mentioned earlier. The only

thing needs to know is what kinds of cars the car manufacturer can provide. The only thing

180

needs to follow is the HLAservice Interface shown in the figure 5-12. By implementing this

interface, the customer can send the purchasing order, can know when he can receive the cars,

and can trace the manufacture process.

Figure 5-12. HLA service for client

As the user interface within the red box on the right side of the figure 5-11 shown, the

customer can input order quantity. After the confirmation of this order, the client side shows

the total number of manufacturing days. During the car manufacturing, the customer can

request the detail of the manufacturing process, and the federation immediately sends back the

result, which has been generated as a bar chart to vividly illustrate the status of the

manufacturing process.

In the CMF user interface (as the user interface within the green box on the left side of the

figure 5-11 shown), the remaining days of car manufacture is presented. In order to assist the

car assembling process, the information of the suppliers is presented. By clicking the ‗refresh‘

button, CMF can receive the latest information from each supplier. The Gantt chart shown in

figure 5-13 is a real time report of the car manufacturing schedule. As shown, the car

assembling process is waiting for the wheel and engine, any delay caused by suppliers will

postpone the schedule of car assembling process. Thus, the car manufacturer has to monitor

the suppliers‘ manufacturing process, in order to be able to cope with the incidents by

adjusting the schedule or proposing a new solution. This Gantt chart allows the car

manufacturer to monitor the suppliers in real time. For example, the figure 5-13 shows that

the wheel supplier has completed 20% process, and engine supplier has completed 40%, both

of them are progressing under the schedule.

181

Figure 5-13. Car manufacturing schedule

Since the supplier may be a participant coming from the web, its information may lose

because of network fault. Therefore, the car manufacturer cannot get the real time information

to make the decision. As the failure tolerance solution introduced in section 3.4.2.4, the

WebservicesFederate will play as a standby federate to give a network failure report to the car

manufacturer. At the same time, the simulation will keep running, but the

WebservicesFederate will request the supplier‘s federate for the information of the state when

it disconnected.

5.3. Conclusion

The simulation of this case runs correctly with laboratory data. It has proved the feasibility of

the federated approach proposed in this thesis. The reverse engineering tool can obtain system

object information and system state information. So that it can help to generate the major part

of federate code. This tool also provides the bridge component that passes some gaps between

the HLA 1516 Evolved standard and the API provided by poRTIco.

This case study proves that the harmonized and reversible HLA based and framework and

methodology can implement the federated approach of enterprise interoperability. The

harmonized HLA and MDA framework guides the development. The model reverse method

discovers the information from participants‘ legacy systems, and uses it to quickly establish

HLA federation for simulating enterprise interoperability. The web-enable federate design

182

method provides a web-enable RTI solution to allow potential participants to easily join the

existing collaboration through web as ―plug-and-play‖. The short-lived ontology method

initiates the local ontology glossary of web participant for information analysis.

Nevertheless, the simulation runs based on the academic data, and it still needs to be validated

in the industrial project. In addition, the bridge component code for implementing

WebserviceFederate is performed at the application layer, which means that the Web-RTI

functionality is implemented without changing any mechanism or source code of poRTIco.

As a result, the link, between the WebServiceFederate and the rest of the HLA federation, is

not providing all HLA functionalities as web services on the web. The role of the external

component is mostly constrained to receiving data and basic actions of data sending, e.g. it

cannot impose time management modifications. In addition the security issue could also been

involved. Now, the authors use encapsulation and encoding method to ensure the security of

the data package.

General Conclusion

This thesis has contributed to develop a Reversible Model driven and HLA based framework

and methodology for implementing federated approach under the Enterprise Interoperability

Framework. Firstly, a Harmonized and Reversible HLA based framework has been elaborated

and its associated methodology defined. This methodology has proposed a novel way to

support the development of federated approach of enterprise interoperability by reusing some

existing methods, architectures, and technologies, such as MDA (Model Driven Architecture),

Model Reverse Engineering, HLA (High Level Architecture), Web Services, and Ontology.

More precisely, this methodology (1) utilizes MDA to formalize the system architecture and

relationship among systems, (2) applies Model reverse engineering to reuse and align

different systems/component to initiate enterprise IS interoperability environment, (3) uses

the HLA and Web Services functionalities as technical support, and (4) uses Ontology for the

information analysis. After the definition of the methodology, a Model driven and HLA based

Reverse Engineering architecture has been elaborated based on which a software tool has

been developed. The use of this software tool has been illustrated through an illustrative case

study.

Chapter 1 identified and defined the scope and objectives of this doctoral research. Firstly, it

presented the economic and industrial context, and the research background of Enterprise

Interoperability. And then, it presented the definitions and conceptual explanations of

Enterprise Interoperability. Afterwards, it analysed the current situation of Enterprise

Interoperability and elaborated the research challenges, priorities, and tendency of the current

enterprise interoperability research. Finally, it pointed out the objective and expected results

of this doctoral research according to the research challenges.

Chapter 2 made a survey of the existing methods and architectures that are relevant to

federated enterprise interoperability. Firstly, it reviewed the existing models for system

interoperability to identify the relevant concepts, methods, and principles that can be useful

suggestions for solving Enterprise Interoperability from the views of conceptual,

organizational, and technological barriers. Afterwards, it describes model driven technologies,

software and application distribution frameworks, and ontology into detail. It compared the

methodologies or technologies in the same domain to point out their advantages for

conducting to federated enterprise interoperability, and also their shortfalls that need to be

complemented to satisfy with the requirement of federated enterprise interoperability.

186

Chapter 3 presented the main contribution of this research work. It defined a Harmonized and

Reversible HLA based framework and methodology.

- The harmonized HLA&MDA engineering framework has proposed a five steps

development lifecycle that adopts the strong points from both HLA FEDEP and MDA. In

addition, a harmonized single federate structure has been defined as the result of this

framework.

- Model reverse method has proposed a way of using UML models discovered from the

existing systems to generate HLA FOM that represents system static information and

HLA federate code block that represents system behaviour.

- Web-enabled HLA federate design method complies with the rules defined in HLA

evolved IEEE 1516
TM

-2010. This method can strengthen the compatibility and

self-learning ability of the traditional HLA federation environment, and also strengthen

the time management, environment security control, and system state management of

web services.

- Short-lived ontology method has proposed a particular non persistent ontology with a

very short lifetime, which is used to generate the information analysis part of each HLA

federate.

Chapter 4 explained the implementation of a Model driven and HLA based Reverse

Engineering tool that is based on the Harmonized and Reversible HLA based methodology. It

described the implementation in three parts, build time I, run time, and build time II.

- Build time I is responsible for establishing Enterprise Interoperability environment by

modelling, including model reversal, model adjustment, and target model & code

generation.

- Run time is for the execution of Enterprise Interoperability, including message dispatch

and management. It concerns transient information exchange and analysis.

- Build time II is for establishing Enterprise Interoperability with potential participants

from web, by generating web-enable federate and connecting it with the executed HLA

federation.

Chapter 5 showed a case study of the Model driven and HLA based Reverse Engineering tool

with laboratory data. This case describes a scenario of car purchasing and car manufacturing.

187

This scenario includes customer ordering, car manufacturing, material purchasing/delivering,

and product delivering. This case shows the rapid interoperability establishment of the

original participants, including car manufacturing semi-manufactured goods/ automobile parts

suppliers, and raw material suppliers. It also shows how participants use the interoperability

simulation results to make the business decision. In addition, this case shows how potential

participants, such as customer and suppliers, discover the interoperability activity, and join it.

All the research surveys and contributions are for the purpose of achieving the research

objectives.

(1) Transient information exchange and analysis without common format at conceptual

barrier, which are supported by web-enabled HLA federate design method and short-lived

ontology.

(2) Rapid and dynamic interoperability establishment, dynamic negotiation, and agile

environment compatibility at technological barrier, which are supported by harmonized

HLA&MDA engineering framework, model reverse method, and web-enabled HLA

federate design method.

(3) Easy connection and the collaboration environment management at organizational barrier,

which are supported model reverse method, and web-enabled HLA federate design

method.

The five steps development lifecycle of the Harmonized HLA & MDA engineering

framework combines HLA FEDEP with MDA. MDA is responsible for standardizing the

modelling process, so that the models are general and common, which can enhance the model

reusability. HLA FEDEP is a standardized process for developing interoperable HLA based

federations, which provides specific constraints for the model transformation towards a clear

target. To sum up, this framework is a model driven enterprise interoperability framework,

which proposes a standardized process for establishing federated enterprise interoperability. It

provides a development environment, where model reversal is under control, model

transformation (no matter forwards and backwards) is fluently carried out, and

interoperability modelling is performed throughout the entire development process.

Moreover, the output of this framework - the harmonized single federate structure dissociates

the business behaviour code (called ―adapter‖ in this thesis) from RTI specific code (called

―plug-in‖ in this thesis). This dissociation reduces the model coupling, which can enhance the

188

system reusability and maintainability. In addition, this dissociation conduces to the

implementation of ―plug and play‖ mechanism that can help to achieve the rapid, and

dynamic interoperability establishment, and agile environment compatibility.

Model reverse method is designed to discover the enterprises‘ knowledge from the legacy

information systems. As mentioned earlier, the model reverse method is implemented under

the Harmonized HLA & MDA engineering framework. This method uses MoDisco tool to

discover UML models that are used for model evolution and model alignment. The model

evolution and model alignment is the process of model adjustment and accommodation,

which aims at achieving the interoperability modelling in ―on-the-fly‖ negotiation. The output

of this negotiation is a set of interoperable models that can be used to generate HLA FOM and

initiate local ontology glossary of short-lived ontology. Moreover, the UML models

discovered from the existing systems are also used to assist the generation of system

behaviour. This method uses program tracer to collection system execution information. And

then, the system execution information is represented as directed graph in which UML class is

the node, function call between classes is the arc. Afterwards, the directed graph is reduced

and transferred into system state diagrams that can be transformed to system simulation code.

This model reverse method is responsible for implementing the harmonized single federate, in

order to achieve ―plug and play‖. It obtains semi-automatically the knowledge from the

existing systems, and generates automatically the ―adapter‖ of the harmonized single federate

by model transformation. So that it avoids completely redevelop the existing systems, and

allows them to establish interoperability rapidly.

The method of web-enable HLA federate design is based on the open source RTI, portico.

This method fulfils HLA evolved IEEE 1516
TM

-2010 standard. A novel federate called

WebserviceFederate is designed to bridge the gaps between HLA Evolved approach

requirements and the HLA 1.3 API provided by portico. This method uses the intermediate

results of model reverse process, such as the set of interoperable models and behaviour

models, to generate the web services. Thus, the potential participants can discover the existing

interoperability activity, and use the web services to rapidly generate their own ―adapter‖ to

join this interoperability activity. This method is responsible for implementing easy

connection for potential participants, and authority management and interoperation

environment management for HLA federation (interoperation environment).

189

The short-lived ontology method is responsible for supporting the ―on-the-fly‖ negotiation

semantically. It allows the interoperability accommodation and adjustment do not need to

impose the existing models, languages and methods of work as the common format. The

mechanism of this method includes the method of initiating and upgrading the local ontology

glossary, and the technical schema of the short-lived ontology interpretation request/response.

In order to link this method up with the model reverse method to develop an intelligent agent

for achieving federated enterprise interoperability, the technical schema of the short-lived

ontology interpretation request/response is designed as the state diagram. Finally, this

short-lived ontology method can be implemented as the information analysis code of the

―adapter‖.

To sum up, this thesis proposed a Reversible Model driven and HLA based framework and

methodology. The methodology consists of a set of existing methods, architectures, and

technologies, to support federated approach of Enterprise Interoperability. This methodology

has a model driven development lifecycle to standardize the process of interoperability

establishment, and a model reverse engineering process to semi-automatically collect relevant

information and data of the existing systems for quickly reengineering enterprise systems.

These model driven development lifecycle and model reverse engineering process reduce the

complexity of EI establishment and implement the ―plug-and-play‖ mechanism in technical

layer. This methodology also has a web-enable federate design method that allows enterprises

to adapt and accommodate dynamically to the potential interoperability partners. The HLA

evolved platform provides an interoperability environment where enterprises can interoperate

simultaneously with multiple heterogeneous partners.

The harmonized and reversible HLA based framework and methodology have been

systematically described. A Model driven and HLA based Reverse Engineering Tool has been

developed to implement this methodology. However, the behaviour model reverse method

and the short-lived ontology method have been proposed, but not been fully implemented,

because of the priority of implementation and time limitation of my doctoral research. We

have only implement the method of system traversal, reduction rule definitions of model

processing, and the algorithm of state diagram generation. We have implemented the

generation of web participant‘s local ontology glossary by using a novel ontology alignment

approach. This approach is proposed by another PhD candidate of our laboratory. It is an

ontology alignment approach with multiple strategies and aggregated based on Method

190

Analytic Hierarchy Process (AHP). This approach supports the dynamic and automatic

aggregation of different matching results (Song et al., 2012).

As mentioned above, we have proposed a framework and methodology for implementing

federated approach of enterprise interoperability. We have validated most of the methods

under the framework and methodology. We have published our contribution in many papers,

such as the five step development lifecycle in I-ESA 2010 (Tu et al., 2010a), web-enable

federate design method in WinterSim 2012 (Tu et al., 2011b), and the framework and

methodology in research handbook (Tu et al., 2012a), IJCIM journal (Tu et al., 2012b),

INSIGHT journal (Tu et al., 2011c). However, there are remaining works to be done in the

future, which are considered as following:

- Behaviour model reverse method: this thesis used the behaviour model to generate

system simulation code. Thus, the behaviour model only needs to represent the system

logic, so that the federate knows the access of the existing systems. However, if we

enrich this behaviour model with some additional elements, such as time, and rules of

equivalent class definitions, then this behaviour model will not only represent the system

logic, but also the business logic, so that it can be transformed into BPMN model, DEVS

model, and etc. And then, these models can be used to achieve federated enterprise

interoperability in process concern and even business concern.

- Short-lived ontology method: this thesis proposed a way of using short-lived ontology for

data interoperability. Actually, the short-lived ontology can also be used in the model

adjustment and accommodation. The ontology description can be added on the UML

models, so that, we can reduce the manual operations when we determine the model

similarity. However, it will increase the complexity of the initiation of the local ontology

glossary. The local ontology glossary has to be initiated along with the model evolution.

In addition, short-lived ontology has a self-learning mechanism for information analysis.

In fact, this self-learning mechanism can also be used in the interoperability environment

upgrade. It means that the interoperability environment system can analyze the

short-lived ontology self-learning experience, so that it can identify some new and

interesting requirements of the participants. Based on these discoveries, the

interoperability environment can self-upgrade, and then inform the participants and

upgrade the web services at the same time.

References

193

(ABILITIES, 2008) ABILITIES project, (2008). Application Bus for InteroperabiLITy In

enlarged Europe SMEs, Available from http://www.dbis.cs.uni-frankfurt.de/index.php

[accessed 07 July 2011].

(Aho et al., 1972) Aho A., Garey M., Ullman J., (1972). The Transitive Reduction of a Directed

Graph. SIAM Journal on Computing. 1(2), 131–137.

(Ambler, 2003) Ambler S.W., (2003). Agile model-driven development is good enough. IEEE

SOFTWARE 20(5): 71-73.

(ATHENA, 2003) ATHENA: FP6-2002-IST-1, (2003). Advanced Technologies for

Interoperability of Heterogeneous Enterprise Networks and their Applications,

DEUTSCHLAND: SAP AG.

(ATHENA, 2005) ATHENA, (2005). Deliverable DA4.1 Requirements for Interoperability

Framework, product-based and process-based Interoperability Infrastructures,

Interoperability Life-cycle Services, Available from

http://www.asd-ssg.org/html/ATHENA/Deliverables/Deliverables%20provided%20to%2

0EC%202nd%206%20months/050321_ATHENA_DA41_V10.pdf [accessed 07 July

2011].

(ATHENA, 2007) ATHENA, (2007). Deliverable DA4.2 Specification of Interoperability

Framework and Profiles, Guidelines and Best Practices, Available from

http://www.asd-ssg.org/html/ATHENA/Deliverables/Deliverables%20provided%20to%2

0EC%206th%206%20Months/070322_ATHENA_DA42_V10.pdf [accessed 07 July

2011].

(Bézivin, 2005) Bézivin J., (2005). On the Unification Power of Models. Software and Systems

modeling, 4(2), 171-188.

(Bézivin et al., 2006) Bézivin J., Brunelière H., Barbero M., (2006). The Model Discovery

(MoDisco) Component: A Proposal for a New Eclipse/GMT Component, Version 1.

INRIA (ATLAS Group). Available from http://www.eclipse.org/MoDisco/about.php.

(Biggs et al., 1986) Biggs N., Lloyd E., Wilson R., (1986). Graph Theory. Oxford University

Press. 1736-1936.

(Bourey et al., 2007) Bourey, J.P., Grangel Seguer, R., Doumeingts, G., and Berre, A.J., (2007).

Report on Model Driven Interoperability, Deliverable DTG 2.3, INTEROP NoE, April, pp.

91. Available from http://www.interop-vlab.eu/ [accessed 15 June 2009]

(Bruzzone et al., 2007) Bruzzone A.G., Bocca E., Longo F., Massei M., (2007). Training and

Recruitment in Logistics Node Design by using Web Based Simulation. International

Journal of Internet Manufacturing and Services, I(1), 32-50.

http://www.dbis.cs.uni-frankfurt.de/index.php/de/projekte-forschung-51/96-abilities-application-bus-for-interoperability-in-enlarged-europe-smes
http://www.asd-ssg.org/html/ATHENA/Deliverables/Deliverables%20provided%20to%20EC%202nd%206%20months/050321_ATHENA_DA41_V10.pdf
http://www.asd-ssg.org/html/ATHENA/Deliverables/Deliverables%20provided%20to%20EC%202nd%206%20months/050321_ATHENA_DA41_V10.pdf
http://www.asd-ssg.org/html/ATHENA/Deliverables/Deliverables%20provided%20to%20EC%206th%206%20Months/070322_ATHENA_DA42_V10.pdf
http://www.asd-ssg.org/html/ATHENA/Deliverables/Deliverables%20provided%20to%20EC%206th%206%20Months/070322_ATHENA_DA42_V10.pdf
http://www.eclipse.org/MoDisco/about.php
http://www.interop-vlab.eu/

194

(Bruzzone et al., 2009) Bruzzone A.G., Fadda P., Fancello G., Bocca E., D'Errico G., Massei

M., (2009). Virtual world and biometrics as strongholds for the development of innovative

port interoperable simulators for supporting both training and R&D. Int. J. Simulation and

Process Modelling, 6(1), 89 - 102.

(Bruzzone et al., 2011) Bruzzone A.G. Massei M., Tremori A., (2011). Adding Smart to the

Mix. Modeling Simulation & Training: The International Defense Training Journal, 3,

25-27.

(Buss et al., 1998) Buss A., Jackson L., (1998). Distributed Simulation Modeling: A

Comparison Of HLA, CORBA And RMI. Proceedings of Winter Simulation Conference.

819-825.

(C4ISR, 1998) C4ISR, Architecture Working Group (AWG), (1998). Levels of Information

Systems Interoperability (LISI). Washington, DC. Available from

http://www.eng.auburn.edu/~hamilton/security/DODAF/LISI.pdf

(Chen et al., 1997) Chen D., Vallespir B., Doumeingts G., (1997), GRAI integrated

methodology and its mapping onto generic enterprise reference architecture and

methodology, Computers in Industry, 33(2-3).

(Chen et al., 2003) Chen, D., Doumeingts G., (2003). European initiatives to develop

interoperability of enterprise applications—basic concepts, framework and roadmap.

Annual Reviews in Control, 27(2), 153-162.

(Chen et al., 2004) Chen D., Knothe T., Zelm M., (2004). ATHENA Integrated Project and the

Mapping to International Standard ISO 15704. Proceedings of the International

Conference on Enterprise Integration and Modeling Technology (ICEIMT’04), Canada.

(Chen et al., 2008) Chen D., Shorter D., (2008). Framework for Manufacturing Process

Interoperability. Standards for Interoperability - How, Workshop in Conjunction to I-ESA,

Berlin : Germany

(Charalabidis et al., 2008) Charalabidis Y., Gionis G., Moritz Hermann K. and Martinez C.,

(2008). Enterprise Interoperability Research Roadmap, Draft Version 5.0. Available from

ftp://ftp.cordis.europa.eu/pub/fp7/ict/docs/enet/ei-roadmap-5-0-draft_en.pdf [accessed 20

December 2010]

(Chen, 2009) Chen D., (2009). Framework for enterprise interoperability. Congrès

International de Génie Industriel (CIGI2009), Bagnères de Bigorre: France.

(Clark et al., 1999) Clark, T., Jones, R., (1999). Organization al Interoperability Maturity

Model for C2. Proceedings of the 1999 Command and Control Research and Technology

http://www.eng.auburn.edu/~hamilton/security/DODAF/LISI.pdf
ftp://ftp.cordis.europa.eu/pub/fp7/ict/docs/enet/ei-roadmap-5-0-draft_en.pdf

195

Symposium. United States Naval War College, Washington, DC: Command and Control

Research Program (CCRP).

(Cooper, 2000) Cooper J.W., (2000), Java™ Design Patterns: A Tutorial. addsion wesley

longman, Inc.

(Cormen et al., 2003) Cormen T.H., Leiserson C.E., Rivest R.L., Stein C., (2003).

Introductions to Algorithms. MIT Press.

(Colan, 2004) Colan M., (2004). Service-Oriented Architecture expands the vision of web

services, Part 1: Characteristics of Service-Oriented Architecture. Available from

http://www.ibm.com/developerworks/webservices/library/ws-soaintro/index.html.

(Collins, 2005) Collins W.J., (2005). Data Structures and the Java Collections Framework.

Second Edition. McGraw Hill.

(COIN, 2011) COIN Project, (2011). Enterprise Collaboration & Interoperability, Available

from http://www.coin-ip.eu/ [accessed 07 July 2011].

(De Nicola et al., 2009) De Nicola A., Missikoff M., Navigli R., (2009). A Software

Engineering Approach to Ontology Building. Information Systems. 34(2), 258-275.

(Doumeingts et al., 2001) Doumeingts G., Ducq Y., (2001), Enterprise Modelling techniques

to improve efficiency of enterprises, International Journal of Production Planning and

Control - Taylor & Francis, 12(2), 146-163

(DoD DMSO, 2006) DoD DMSO, (2006). Introdution to VV&A. Available from

http://vva.msco.mil/Key/key.htm.

(EIF, 2004a) EIF, (2004a). European Interoperability Framework, White Paper. Brussels,

Available from http://www.comptia.org.

(EIF, 2004b) EIF, (2004b). European Interoperability Framework for PAN-European

EGovernment Services, IDA Working Document, Version 4.2.

(Elvesæter et al., 2007) Elvesæter B., Hahn A., Berre A., Neple T., (2007).Towards an

Interoperability Framework for Model-Driven Development of Software Systems.

Interoperability of Enterprise Software and Applications, 409-420.

(EN/ISO, 2003) EN/ISO I9439, (2003). Enterprise Integration—Framework for Enterprise

Modelling, Technical Committee CEN/TC 310.

(ENSEMBLE, 2011) ENSEMBLE, (2011). Deliverable 2.1 EISB State of Play Report version

1.00. Available from http://www.fines-cluster.eu/fines/wp/d21/ [accessed 07 July 2011].

http://www.ibm.com/developerworks/webservices/library/ws-soaintro/index.html
http://www.coin-ip.eu/
http://vva.msco.mil/Key/key.htm
http://www.comptia.org/
http://www.fines-cluster.eu/fines/wp/d21/

196

(EC, 2008) European Commission (EC), (2008). Unleashing the Potential of the European

Knowledge Economy: Value Proposition for Enterprise Interoperability (version 4.0),

Informal Study Group on Value Proposition for EI.

(Favre et al., 2008) Favre L., Martinez L., Pereira C., (2008). MDA-Based Reverse

Engineering of Object Oriented Code. SERA’08, 153-160.

(Fujimoto, 2000) Fujimoto R. M., (2000). Parallel and Distributed Simulation Systems, Wiley

Interscience.

(Gehani, 1983) Gehani N., (1983). Ada: An Advanced Introduction. Prentice-Hall, Engelwood

Cliffs, New Jersey.

(Genesereth, 1992) Genesereth M.R., Fikes R.E., (1992). Knowledge Interchange Format,

Version 3.0 Reference Manual. Logic- 92-1. Computer Science Department, Stanford

University.

(Gisolfi, 2001) Gisolfi D., (2001). Web services architect: part 1. An introduction to dynamic

e-business, IBM developer Works Web Services articles. Available from

http://www.ibm.com/developerworks/webservices/ [Accessed April 20, 2012]

(Gomez-Perez et al., 2004) Gomez-Perez A., Corcho O., Fernandez-Lopez M., (2004).

Ontological Engineering : with examples from the areas of Knowledge Management,

e-Commerce and the Semantic Web. (Advanced Information and Knowledge Processing),

First Edition, Springer. 54-121.

(Gorka et al., 2007) Gorka B., Larrucea X., Elvesæter B., Neple T., Beardsmore A., Friess M.,

(2007), A Platform Independent Model for Service Oriented Architectures, Enterprise

Interoperability, Ed, London, S., pp. 23-32.

(Gonçalves et al., 2012) Gonçalves R., Agostinho C., Garção A., (2012). A reference model for

sustainable interoperability in networked enterprises: towards the foundation of EI science

base. Computer Integrated Manufacturing. 25(10), 855-873.

(Gruber, 1992) Gruber T.R., (1992). Ontolingua: A Mechanism to Support Portable Ontologies.

KSL 91-66. Stanford University, Knowledge Systems Laboratory.

(Gruber, 1993) Gruber T., (1993). A translation approach to portable ontology specifications.

Knowledge Acquisition, 5(2), 199–220.

(Gruber, 1995) Gruber T., (1995). Toward principles for the design of ontologies used for

knowledge sharing. International Journal of Human-Computer Studies, 43(5-6), 907 - 928.

http://www.ibm.com/developerworks/webservices/

197

(Granowetter, 1999) Granowetter L., (1999). Solving the FOM-Independence Problem.

Proceedings of Simulation Technology and Training Conference.

(Granowetter, 2004) Granowetter L., (2004). Design of the Dynamic-Link-Compatible C++

RTI API for IEEE 1516. Proceedings of Fall Simulation Interoperability Workshop.

04F-SIW-086.

(Gustavson et al., 2005) Gustavson P., Chase T., Root L., Crosson K., (2005). Moving

Towards a Service-Oriented Architecture (SOA) for Distributed Component Simulation

Environments. Proceedings of Spring SIW, San Diego, USA.

(H.Wache et al., 2001) H.Wache T. V. o., Visser U., Stuckenschmidt H., Schuster G.,

Neumann H., H übner S., (2001). Ontology-Based Integration of Information — A Survey

of Existing Approaches. IJCAI-01. Seattle, USA.

(IDEAS, 2003) IDEAS, (2003). IDEAS project deliverables (WP1-WP7) (Public reports).

(IDABC, 2008) IDABC, (2008). European Interoperability Framework draft version 2.0.

Available from http://ec.europa.eu/idabc/servlets/Docb0db.pdf?id=31597 [accessed 07

July 2011].

(IEEE, 1990) IEEE std 610, (1990). IEEE Standard Computer Dictionary: A Compilation of

IEEE Standard Computer Glossaries. New York, Institute of Electrical and Electronic

Engineers.

(IEEE, 1995) IEEE-1278.2-1995, (1995). Standard for Distributed Interactive Simulation -

Communication Services and Profiles. New York: Institute of Electrical and Electronic

Engineers

(IEEE, 2000) IEEE std 1516.2-2000, (2000). IEEE Standard for Modeling and Simulation

(M&S) High Level Architecture (HLA) - Federate Interface Specification, New York:

Institute of Electrical and Electronic Engineers.

(IEEE, 2003) IEEE std 1516.3-2003, (2003). IEEE Standard for Modeling and Simulation

(M&S) High Level Architecture (HLA) - Federation Development and Execution Process

(FEDEP), The Institute of Electrical and Electronic Engineer.

(IEEE, 2010) IEEE std 1516
TM

-2010, (2010). IEEE Standard for Modeling and Simulation

(M&S) High Level Architecture (HLA) -- Framework and Rules, New York: Institute of

Electrical and Electronic Engineers

(IEEE, 2011) IEEE std 1730
TM

-2010, (2011). IEEE Recommended Practice for Distributed

Simulation Engineering and Execution Process (DSEEP), The Institute of Electrical and

Electronic Engineer.

http://ec.europa.eu/idabc/servlets/Docb0db.pdf?id=31597

198

(INTEROP, 2003) INTEROP, (2003). Interoperability research for networked enterprises

applications and software, network of excellence, France: UNIVERSITE DE

BORDEAUX I.

(ISO, 1999) ISO 14258, (1999). Industrial Automation Systems – Concepts and Rules for

Enterprise Models, ISO TC184/SC5/WG1

(IST, 2001) IST-2001-37368, (2001). Thematic network, IDEAS: Interoperability development

for enterprise application and software—Roadmaps, description of work, France:

UNIVERSITE DE BORDEAUX I.

(ISO, 2008) ISO 19440:2007, (2008). Enterprise integration. Constructs for enterprise

modelling, Organisation internationale de normalisation.

(ISO, 2011) ISO 11354-1, (2011). Advanced automation technologies and their applications --

Requirements for establishing manufacturing enterprise process interoperability -- Part 1:

Framework for enterprise interoperability, ISO TC 184/SC5

(Jaccard, 1912) Jaccard P., (1912). The distribution of the flora in the alpine zone. New

Phytologist. 11(2), 37-50.

(JFreeChart, 2008) JFreeChart, (2008). The JFreeChart Developer Guide. Available from

http://www.jfree.org/jfreechart/.

(Joint, 2000) Joint Chiefs of Staff, (2000). Joint Vision 2020. Washington, DC: U.S.

Government Printing Office. Available from

http://www.dtic.mil/dtic/tr/fulltext/u2/a510839.pdf.

(Jouault et al., 2009) Jouault F., Jean B., Mikaël B., (2009). Towards an advanced

model-driven engineering toolbox. Innovations in Systems and Software Engineering, 5,

5-12.

(JProfiler, 2012) JProfiler, (2012). JProfiler Help. Available from

http://resources.ej-technologies.com/jprofiler/help/doc/.

(McCarty et al., 1998) McCarty B., Cassady-Dorion L., (1998). Java Distributed Objects.

SAMS Publishing: Indianapolis.

(Mellon et al., 1995) Mellon L., West D., (1995). Architectural optimizations to advanced

distributed simulation. Proceedings of 27th Winter Simulation Conference. 634-641.

(Mowbray et al., 1995) Mowbray T., Zahavi R., (1995). The essential CORBA: systems

integration using distributed objects. Wiley Publishing: New York.

http://www.jfree.org/jfreechart/
http://www.dtic.mil/dtic/tr/fulltext/u2/a510839.pdf
http://resources.ej-technologies.com/jprofiler/help/doc/

199

(Morris et al, 2004) Morris E., Levine L., Place P., Plakosh D., Meyers B., (2004). System of

Systems Interoperability (SOSI): Final Report. Software Engineering Institute, Carnegie

Mellon University, Pittsburgh, Pennsylvania. Available from

http://www.sei.cmu.edu/library/abstracts/reports/04tr004.cfm [accessed 07 July 2011]

(Möller et al., 2005) Möller B, Löf S., (2005). Mixing Service Oriented and High Level

Architectures in Support of the GIG. Proceedings of the 2005 Spring Simulation

Interoperability Workshop, 05S-SIW-064.

(Möller et al., 2007) Möller B., Clarence D., Mikael K., (2007). Developing Web Centric

Federates and Federations using the HLA Evolved Web Services API. Proceedings of

2007 Spring Simulation Interoperability Workshop, 07S-SIW-107.

(MoDisco, 2012a) MoDisco, (2012). MoDisco/Installation. Available from

http://wiki.eclipse.org/MoDisco/Installation.

(MoDisco, 2012b) MoDisco, (2012). MoDisco User Guide. Available from

http://help.eclipse.org/indigo/index.jsp.

(NEHTA, 2005) NEHTA, (2005). Towards an Interoperability Framework, Version 1.8

(IST, 2005) Network of Excellence - Contract no.: IST-508011, (2005). Deliverable D6.1:

Practices, principles and patterns for interoperability, France, University Bordeaux 1.

(NisB, 2010) NisB project, (2010). The Network is the Business, Available from

http://www.nisb-project.eu/index.php [accessed 07 July 2011].

(OMG, 2003) OMG, (2003). MDA Guide Version 1.0.1. Object Management Group,

Document number: OMG / 20030601. Available from

www.omg.org/docs/omg/03-06-01.pdf [accessed 15 June 2009].

(OMG, 2006) OMG, (2006). Object Constraint Language. Document number:

formal/06-05-01. Available from http://www.omg.org/spec/OCL/2.0/ [accessed 15 July

2010].

(OMG, 2010) OMG, (2010). Architecture Driven Modernization (ADM): Knowledge

Discovery Meta-Model (KDM) v1.2, OMG, Document number: formal/2010-06-03.

Available from http://www.omg.org/spec/KDM/1.2 [accessed 15 July 2010].

(OMG, 2011a) OMG, (2011). Architecture-driven Modernization: Abstract Syntax Tree

Metamodel (ASTM) v1.0, OMG, Document number: formal/2011-01-05. Available from

http://www.omg.org/spec/ASTM [accessed 25 April 2011].

http://www.sei.cmu.edu/library/abstracts/reports/04tr004.cfm
http://wiki.eclipse.org/MoDisco/Installation
http://help.eclipse.org/indigo/index.jsp
http://www.nisb-project.eu/index.php
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/spec/OCL/2.0/
http://www.omg.org/spec/KDM/1.2

200

(OMG, 2011b) OMG, (2011). Business Process Model and Notation (BPMN) Version 2.0.

Document number: formal/2011-01-03. Available from

http://www.omg.org/spec/BPMN/2.0 [accessed 25 April 2011].

(Oracle, 2012) Oracle, (2012). The Java EE 6 Tutorial. PartIII. Available from

http://docs.oracle.com/javaee/6/tutorial/doc/bnayl.html.

(Özsu et al., 1991) Özsu T., Valduriez P., (1991). Principles of Distributed Database Systems.

Prentice-Hall, Eaglewood Cliffs, New Jersey.

(Parr et al., 2003) Parr S., Keith-Magee R., (2003). The Next Step Applying the Model Driven

Architecture to HLA. Proceedings of the 2003 Spring Simulation Interoperability

Workshop, 03S-SIW -123.

(Postel, 1980) Postel J., (1980). RFC 768: User Datagram Protocol. Internet Engineering Task

Force. Available from http://tools.ietf.org/html/rfc768.

(Pokorny et al., 2006) Pokorny T., Stratton D., Smith P., (2006). AOP and the HLA: Simplified

Federation Development. Proceedings of Fall Simulation Interoperability Workshop.

06F-SIW-034

(poRTIco, 2009) poRTIco, (2009), Developer Documentation. Available from

http://porticoproject.org/index.php?title=Developer_Documentation [accessed 15 July

2010]

(Richardson et al., 2007) Richardson L., Ruby S., (2007), RESTful web services, O'Reilly

Media, Inc.

(Sammet, 1978) Sammet J., (1978). The Early History of COBOL. ACM SIGPLAN Notices -

Special issue: History of programming languages conference. 13(8), 121–161.

(Sheth et al., 1990) Sheth A. P., Larson J. A., (1990). Federated Database Systems for

Managing Distributed, Heterogeneous, and Autonomous Databases. ACM Computing

Surveys, 22(3), 183-236.

(Shanks, 1997) Shanks G., (1997). The RPR-FOM. A Reference Federation Object Model to

Promote Simulation Interoperability. Proceedings of Spring Simulation Interoperability

Workshop. 97S-SIW-135.

(SISO, 2011) ―Simulation Interoperability Standards Organization‖, accessed May 10, 2011,

http://www.sisostds.org/Home.aspx

http://www.omg.org/spec/BPMN/2.0
http://docs.oracle.com/javaee/6/tutorial/doc/bnayl.html
http://tools.ietf.org/html/rfc768
http://porticoproject.org/index.php?title=Developer_Documentation
http://www.sisostds.org/Home.aspx

201

(Song et al., 2012) Song F., Zacharewicz G., Chen D., (2012). Multi-strategies Ontology

Alignment Aggregated by AHP. 16th International Conference on Knowledge-Based and

Intelligent Information & Engineering Systems, IOS Press, San Sebastian, 1583-1592.

(StraBburger, 2001) StraBburger S., (2001). Distributed Simulation Based on the High Level

Architecture in Civilian Application Domains. PhD Thesis, University of Magdeburg.

(Tolk, 2001) Tolk A., (2001). Bridging the Data Gap - Recommendations for Short, Medium

and Long Term Solutions. Spring Simulation Interoperability Workshop. U.S.: Orlando,

Florida

(Tolk, 2002) Tolk A., (2002). Avoiding another Green Elephant - A Proposal for the Next

Generation HLA based on the Model Driven Architecture. Proceedings of the 2002 Fall

Simulation Interoperability Workshop, 02F-SIW-004.

(Tolk et al., 2003) Tolk A., Muguira J. A., (2003). The Levels of Conceptual Interoperability

Model. Fall Simulation Interoperability Workshop. U.S. Orlando, Florida.

(Touzi, 2007) Touzi J., (2007). Aide à la conception de Système d’Information Collaboratif

support de l’interopérabilité des entreprises, PHD thesis, Institut National Polytechnique

de Toulouse.

(Trbovich et al., 2005) Trbovich S., Reading R., (2005). Simulation and Software

Development for Capabilities Based Warfare: An Analysis of Harmonized Systems

Engineering Processes. Proceedings Spring Simulation Interoperability Workshop,

05S-SIW-106.

(Tu et al., 2010a) Tu Z., Zacharewicz G., Chen D., (2010). Unified Reversible Life Cycle for

Future Interoperable Enterprise Distributed Information Systems. IESA

2010-Interoperability for Enterprise Software & Applications 2010, 57-66, Coventry

(UK).

(Tu et al., 2010b) Tu Z., Zacharewicz G., Chen D., (2010), Harmonized and Reversible

development framework for HLA based interoperable application. The International

Conference on Modelling and Applied Simulation part of The 7th International

Mediterranean and Latin American Modelling Multiconference 2010.

(Tu et al., 2011a) Tu Z., Zacharewicz G., Chen D., (2011), Harmonized and Reversible

development framework for HLA based interoperable application. Symposium On Theory

of Modelling and Simulation (DEVS/TMS'11) part of Spring Simulation Multi-Conference

2011, Boston USA.

202

(Tu et al., 2011b) Tu Z., Zacharewicz G., Chen D., (2011), DEVELOPING A WEB-ENABLE

HLA FEDERATE BASED ON PORTICO RTI. Proceedings of the 2011 Winter

Simulation Conference, Orlando USA.

(Tu et al., 2011c) Tu Z., Zacharewicz G., Chen D., (2011), A Harmonized and Reversible

Development Framework for HLA-Based Interoperable Application. INSIGHT Newsletter

of INCOSE. 14(4) 16-17.

(Tu et al., 2012a) Tu Z., Zacharewicz G., Chen D., (2012), Harmonized and Reversible

development framework for HLA based interoperable application. Handbook of Research

on E-Business Standards and Protocols: Documents, Data and Advanced Web

Technologies 2012 chapter 3.

(Tu et al., 2012b) Tu Z., Zacharewicz G., Chen D., (2012). Building a high-level architecture

federated interoperable framework from legacy information systems. International

Journal of Computer Integrated Manufacturing. Available online.

(Ullberg et al., 2007) Ullberg J., Chen D., Johnson P., (2007). Barriers Driven Methodology

For Enterprise Interoperability. IFIP International Federation for Information Processing,

453-460.

(Veltman, 2001) Veltman K.H., (2001). Syntactic and Semantic Interoperability: New

Approaches to Knowledge and the Semantic Web. New review of information networking.

7, 159-183

(Vernadat, 2007) Vernadat F.B., (2007). Interoperable enterprise systems: Principles, concepts,

and methods. Annual Reviews in Control, 31, 137-145.

(W3C, 2001a) W3C, (2001). Web Services Description Language (WSDL) 1.1. Available from

http://www.w3.org/TR/wsdl.

(W3C, 2001b) W3C, (2001). DAML+OIL Web Ontology Language. Available from

http://www.w3.org/Submission/2001/12/.

(W3C, 2004a) W3C, (2004). RDF Primer. Available from http://www.w3.org/TR/rdf-primer/.

(W3C, 2004b) W3C, (2004). OWL Web Ontology Language Overview. Available from

http://www.w3.org/TR/owl-features/.

(W3C, 2007) W3C, (2007). SOAP Version 1.2 Part 1: Messaging Framework (Second Edition).

Available from http://www.w3.org/TR/2007/REC-soap12-part1-20070427.

(W3C, 2008) W3C, (2008). Extensible Markup Language (XML) 1.0 (Fifth Edition). Available

from http://www.w3.org/TR/2008/REC-xml-20081126/.

http://www.w3.org/TR/wsdl
http://www.w3.org/Submission/2001/12/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/2007/REC-soap12-part1-20070427
http://www.w3.org/TR/2008/REC-xml-20081126/

203

(Wang, 2000) Wang Y., (2000). Discrete Mathematics Introduction. Harbin Institute of

Technology Press.

(Wagner, 2006) Wagner F., (2006). Modeling Software with Finite State Machines: A Practical

Approach. Auerbach Publications.

(Weatherly, 1993) Weatherly R., Wilson A., Griffin S., (1993). ALSP-theory, experience, and

future Directions. Proceedings of 25th Winter Simulation Conference. 1068-1072.

(Wiedemann, 2007) Wiedemann T., (2007). SOA-Conform Modeling As a Highlevel standard

for Discrete Modeling and Simulation, Proceedings 21st European Conference on

Modelling and Simulation, Ivan Zelinka, Zuzana Oplatková, Alessandra Orsoni

(Zacharewicz et al., 2008) Zacharewicz G., Chen D., Vallespir B., (2008). HLA Supported

Federation Oriented Enterprise Interoperability, Application to Aerospace Enterprises.

Proceeedings of 2008 International Simulation Multiconference EuroSISO, 08E-SIW-074,

Edinburgh Scotland.

(Zacharewicz et al., 2009) Zacharewicz G., Chen D., Vallespir B., (2009). Short-Lived

Ontology Approach for Agent/HLA Federated Enterprise Interoperability. Proceedings

IEEE of International Conference I-ESA China 2009 Interoperability for Enterprise

Software and Applications. 329-335, Beijing China.

(Zacharewicz et al., 2011) Zacharewicz G., Labarthe O., Chen D., Vallespir B., (2011). A

Multi Agent/HLA Platform for Enterprises Interoperability: Short-Lived Ontology Based,

Electronic Supply Network Coordination in Intelligent and Dynamic Environment:

Modeling and Implementation, 319-346.

(Zeigler, 1984) Zeigler B.P., (1984). Multifacetted Modeling and Discrete Event Simulation.

Academic Press, London; Orlando.

Annex 1: UML file reversed by MoDisco

207

Below is an example of the UML file reversed by MoDisco Tool. Note that some segments of

XML code have been omitted, because the complete information takes more than 50 pages to

illustrate.

<?xml version="1.0" encoding="ISO-8859-1"?>

<uml:Model xmi:version="2.1" xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"

xmlns:uml="http://www.eclipse.org/uml2/3.0.0/UML" xmi:id="a1" name="root model">

 <packagedElement xmi:type="uml:Model" xmi:id="a2" name="AutoPartsSupplier">

 <packagedElement xmi:type="uml:Package" xmi:id="a3" name="autopartssupplier">

 <packagedElement xmi:type="uml:Class" xmi:id="a4" name="ManufactureOrderForm">

 <ownedAttribute xmi:type="uml:Property" xmi:id="a5" name="orderId" visibility="public" type="a660">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a6" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a7"/>

 </ownedAttribute>

 <ownedAttribute xmi:type="uml:Property" xmi:id="a8" name="productId" visibility="public" type="a660">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a9" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a10"/>

 </ownedAttribute>

 <ownedAttribute xmi:type="uml:Property" xmi:id="a11" name="productName" visibility="public"

type="a660">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a12" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a13"/>

 </ownedAttribute>

 <ownedAttribute xmi:type="uml:Property" xmi:id="a14" name="orderQuantity" visibility="public"

type="a646">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a15" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a16"/>

 </ownedAttribute>

 <ownedAttribute xmi:type="uml:Property" xmi:id="a17" name="deliverTime" visibility="public"

type="a660">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a18" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a19"/>

 </ownedAttribute>

 <ownedOperation xmi:type="uml:Operation" xmi:id="a20" name="getDeliverTime" visibility="public">

 <ownedParameter xmi:type="uml:Parameter" xmi:id="a21" visibility="public" type="a660"

direction="return">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a22" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a23"/>

 </ownedParameter>

 </ownedOperation>

 <ownedOperation xmi:type="uml:Operation" xmi:id="a24" name="setDeliverTime" visibility="public">

 <ownedParameter xmi:type="uml:Parameter" xmi:id="a25" visibility="public" type="a648"

direction="return">

208

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a26" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a27"/>

 </ownedParameter>

 <ownedParameter xmi:type="uml:Parameter" xmi:id="a28" name="deliverTime" visibility="public"

type="a660">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a29" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a30"/>

 </ownedParameter>

 </ownedOperation>

 </ownedOperation>

 </packagedElement>

 <packagedElement xmi:type="uml:Class" xmi:id="a75" name="AutpPartsSupplierApp"

clientDependency="a546 a547">

 <generalization xmi:type="uml:Generalization" xmi:id="a76"/>

 <ownedOperation xmi:type="uml:Operation" xmi:id="a77" name="startup" visibility="protected">

 <ownedParameter xmi:type="uml:Parameter" xmi:id="a78" visibility="public" type="a648"

direction="return">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a79" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a80"/>

 </ownedParameter>

 </ownedOperation>

 <packagedElement xmi:type="uml:Class" xmi:id="a127" name="CustomerOrderForm">

 <ownedAttribute xmi:type="uml:Property" xmi:id="a128" name="orderId" visibility="public" type="a660">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a129" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a130"/>

 </ownedAttribute>

 <ownedAttribute xmi:type="uml:Property" xmi:id="a131" name="productId" visibility="public"

type="a660">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a132" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a133"/>

 </ownedAttribute>

 <ownedAttribute xmi:type="uml:Property" xmi:id="a134" name="productName" visibility="public"

type="a660">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a135" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a136"/>

 </ownedAttribute>

 <ownedOperation xmi:type="uml:Operation" xmi:id="a146" name="getOrderHost" visibility="public">

 <ownedParameter xmi:type="uml:Parameter" xmi:id="a147" visibility="public" type="a660"

direction="return">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a148" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a149"/>

 </ownedParameter>

209

 </ownedOperation>

 <ownedOperation xmi:type="uml:Operation" xmi:id="a150" name="setOrderHost" visibility="public">

 <ownedParameter xmi:type="uml:Parameter" xmi:id="a151" visibility="public" type="a648"

direction="return">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a152" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a153"/>

 </ownedParameter>

 <ownedParameter xmi:type="uml:Parameter" xmi:id="a154" name="orderHost" visibility="public"

type="a660">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a155" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a156"/>

 </ownedParameter>

 </ownedOperation>

 </packagedElement>

 <packagedElement xmi:type="uml:Class" xmi:id="a451" name="ProductInformation">

 <ownedAttribute xmi:type="uml:Property" xmi:id="a452" name="product_id" visibility="public"

type="a660">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a453" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a454"/>

 </ownedAttribute>

 <ownedAttribute xmi:type="uml:Property" xmi:id="a455" name="product_name" visibility="public"

type="a660">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a456" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a457"/>

 </ownedAttribute>

 <ownedAttribute xmi:type="uml:Property" xmi:id="a458" name="product_category" visibility="public"

type="a660">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a459" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a460"/>

 </ownedAttribute>

 <ownedOperation xmi:type="uml:Operation" xmi:id="a498" name="setProduct_id" visibility="public">

 <ownedParameter xmi:type="uml:Parameter" xmi:id="a499" visibility="public" type="a648"

direction="return">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a500" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a501"/>

 </ownedParameter>

 <ownedParameter xmi:type="uml:Parameter" xmi:id="a502" name="product_id" visibility="public"

type="a660">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a503" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a504"/>

 </ownedParameter>

 </ownedOperation>

210

 <ownedOperation xmi:type="uml:Operation" xmi:id="a505" name="setProduct_name" visibility="public">

 <ownedParameter xmi:type="uml:Parameter" xmi:id="a506" visibility="public" type="a648"

direction="return">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a507" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a508"/>

 </ownedParameter>

 <ownedParameter xmi:type="uml:Parameter" xmi:id="a509" name="product_name" visibility="public"

type="a660">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a510" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a511"/>

 </ownedParameter>

 </ownedOperation>

 </ownedOperation>

 <ownedOperation xmi:type="uml:Operation" xmi:id="a528" name="getProduct_id" visibility="public">

 <ownedParameter xmi:type="uml:Parameter" xmi:id="a529" visibility="public" type="a660"

direction="return">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a530" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a531"/>

 </ownedParameter>

 </ownedOperation>

 <ownedOperation xmi:type="uml:Operation" xmi:id="a532" name="getProduct_name" visibility="public">

 <ownedParameter xmi:type="uml:Parameter" xmi:id="a533" visibility="public" type="a660"

direction="return">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a534" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a535"/>

 </ownedParameter>

 </ownedOperation>

 <ownedOperation xmi:type="uml:Operation" xmi:id="a536" name="ProductInformation"

visibility="public"/>

 </packagedElement>

 <packagedElement xmi:type="uml:Dependency" xmi:id="a546" supplier="a1336" client="a75"/>

 <packagedElement xmi:type="uml:Dependency" xmi:id="a547" supplier="a1337" client="a75"/>

 <packagedElement xmi:type="uml:Dependency" xmi:id="a548" supplier="a820" client="a99"/>

 <packagedElement xmi:type="uml:Dependency" xmi:id="a549" supplier="a1338" client="a311"/>

 <packagedElement xmi:type="uml:Association" xmi:id="a568" memberEnd="a100 a569">

 <ownedEnd xmi:type="uml:Property" xmi:id="a569" type="a99" association="a568"/>

 </packagedElement>

 <packagedElement xmi:type="uml:Association" xmi:id="a570" memberEnd="a115 a571">

 <ownedEnd xmi:type="uml:Property" xmi:id="a571" type="a99" association="a570"/>

 </packagedElement>

 <packagedElement xmi:type="uml:Association" xmi:id="a572" memberEnd="a313 a573">

 <ownedEnd xmi:type="uml:Property" xmi:id="a573" type="a311" association="a572"/>

 </packagedElement>

211

 </packagedElement>

 <packagedElement xmi:type="uml:Package" xmi:id="a642" name="Common Java datatypes">

 <packagedElement xmi:type="uml:PrimitiveType" xmi:id="a643" name="int"/>

 <packagedElement xmi:type="uml:PrimitiveType" xmi:id="a644" name="long"/>

 <packagedElement xmi:type="uml:PrimitiveType" xmi:id="a645" name="float"/>

 </packagedElement>

 </packagedElement>

 <packagedElement xmi:type="uml:Model" xmi:id="a653" name="externals">

 <packagedElement xmi:type="uml:Package" xmi:id="a654" name="java">

 <packagedElement xmi:type="uml:Package" xmi:id="a655" name="lang">

 <packagedElement xmi:type="uml:Package" xmi:id="a656" name="reflect">

 <packagedElement xmi:type="uml:Interface" xmi:id="a657" name="GenericDeclaration"/>

 <packagedElement xmi:type="uml:Interface" xmi:id="a658" name="Type"/>

 <packagedElement xmi:type="uml:Interface" xmi:id="a659" name="AnnotatedElement"/>

 </packagedElement>

 <packagedElement xmi:type="uml:Class" xmi:id="a660" name="String" clientDependency="a661 a662

a663">

 <interfaceRealization xmi:type="uml:InterfaceRealization" xmi:id="a661" supplier="a717" client="a660"

contract="a717"/>

 <interfaceRealization xmi:type="uml:InterfaceRealization" xmi:id="a662" supplier="a669" client="a660"

contract="a669"/>

 <interfaceRealization xmi:type="uml:InterfaceRealization" xmi:id="a663" supplier="a673" client="a660"

contract="a673"/>

 <ownedOperation xmi:type="uml:Operation" xmi:id="a664" name="equals" visibility="public">

 <ownedParameter xmi:type="uml:Parameter" xmi:id="a665" name="arg0" visibility="public"

type="a697">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a666" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a667"/>

 </ownedParameter>

 </ownedOperation>

 <ownedOperation xmi:type="uml:Operation" xmi:id="a668" name="trim" visibility="public"/>

 </packagedElement>

 </packagedElement>

 <packagedElement xmi:type="uml:Package" xmi:id="a859" name="util">

 <packagedElement xmi:type="uml:Interface" xmi:id="a860" name="EventListener"/>

 <packagedElement xmi:type="uml:Class" xmi:id="a861" name="EventObject"

clientDependency="a862">

 <interfaceRealization xmi:type="uml:InterfaceRealization" xmi:id="a862" supplier="a717" client="a861"

contract="a717"/>

 </packagedElement>

 <packagedElement xmi:type="uml:Class" xmi:id="a863" name="ArrayList" clientDependency="a868

a869 a870 a871">

 <ownedTemplateSignature xmi:type="uml:RedefinableTemplateSignature" xmi:id="a864"

212

name="ArrayList<E>" parameter="a865">

 <ownedParameter xmi:type="uml:ClassifierTemplateParameter" xmi:id="a865"

parameteredElement="a866">

 <ownedParameteredElement xmi:type="uml:Class" xmi:id="a866" name="E"

templateParameter="a865"/>

 </ownedParameter>

 </ownedTemplateSignature>

 <generalization xmi:type="uml:Generalization" xmi:id="a867" general="a882"/>

 <interfaceRealization xmi:type="uml:InterfaceRealization" xmi:id="a868" supplier="a898" client="a863"

contract="a898"/>

 <interfaceRealization xmi:type="uml:InterfaceRealization" xmi:id="a869" supplier="a903" client="a863"

contract="a903"/>

 <interfaceRealization xmi:type="uml:InterfaceRealization" xmi:id="a870" supplier="a711" client="a863"

contract="a711"/>

 <interfaceRealization xmi:type="uml:InterfaceRealization" xmi:id="a871" supplier="a717" client="a863"

contract="a717"/>

 <ownedOperation xmi:type="uml:Operation" xmi:id="a872" name="size" visibility="public"/>

 <ownedOperation xmi:type="uml:Operation" xmi:id="a873" name="get" visibility="public">

 <ownedParameter xmi:type="uml:Parameter" xmi:id="a874" name="arg0" visibility="public"

type="a643">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a875" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a876"/>

 </ownedParameter>

 </ownedOperation>

 <ownedOperation xmi:type="uml:Operation" xmi:id="a877" name="ArrayList" visibility="public"/>

 <ownedOperation xmi:type="uml:Operation" xmi:id="a878" name="add" visibility="public">

 <ownedParameter xmi:type="uml:Parameter" xmi:id="a879" name="arg0" visibility="public"

type="a697">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a880" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a881"/>

 </ownedParameter>

 </ownedOperation>

 </packagedElement>

 <packagedElement xmi:type="uml:Package" xmi:id="a971" name="event">

 <packagedElement xmi:type="uml:Interface" xmi:id="a972" name="TableModelListener">

 <generalization xmi:type="uml:Generalization" xmi:id="a973" general="a860"/>

 </packagedElement>

 </packagedElement>

 <packagedElement xmi:type="uml:Class" xmi:id="a982" name="JDialog" clientDependency="a984 a985

a986 a987">

 <generalization xmi:type="uml:Generalization" xmi:id="a983" general="a765"/>

 <interfaceRealization xmi:type="uml:InterfaceRealization" xmi:id="a984" supplier="a998" client="a982"

contract="a998"/>

213

 <interfaceRealization xmi:type="uml:InterfaceRealization" xmi:id="a985" supplier="a925" client="a982"

contract="a925"/>

 <interfaceRealization xmi:type="uml:InterfaceRealization" xmi:id="a986" supplier="a1002"

client="a982" contract="a1002"/>

 <interfaceRealization xmi:type="uml:InterfaceRealization" xmi:id="a987" supplier="a1005"

client="a982" contract="a1005"/>

 <ownedOperation xmi:type="uml:Operation" xmi:id="a988" name="JDialog" visibility="public">

 <ownedParameter xmi:type="uml:Parameter" xmi:id="a989" name="arg0" visibility="public"

type="a783">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a990" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a991"/>

 </ownedParameter>

 </ownedOperation>

 <ownedOperation xmi:type="uml:Operation" xmi:id="a992" name="getRootPane" visibility="public"/>

 <ownedOperation xmi:type="uml:Operation" xmi:id="a993" name="setDefaultCloseOperation"

visibility="public">

 <ownedParameter xmi:type="uml:Parameter" xmi:id="a994" name="arg0" visibility="public"

type="a643">

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="a995" value="1"/>

 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="a996"/>

 </ownedParameter>

 </ownedOperation>

 <ownedOperation xmi:type="uml:Operation" xmi:id="a997" name="getContentPane"

visibility="public"/>

 </packagedElement>

 </packagedElement>

 <packagedElement xmi:type="uml:Package" xmi:id="a1335" name="org"/>

 <packagedElement xmi:type="uml:Interface" xmi:id="a1336" name="org.jdesktop.application.Application"/>

 <packagedElement xmi:type="uml:Interface" xmi:id="a1337"

name="org.jdesktop.application.SingleFrameApplication"/>

 </packagedElement>

 <packagedElement xmi:type="uml:Model" xmi:id="a1342" name="source references">

 <packagedElement xmi:type="uml:Artifact" xmi:id="a1343" name="ManufactureOrderForm.java"

fileName="F:\workspace1\AutoPartsSupplier\src\autopartssupplier\ManufactureOrderForm.java"/>

 <packagedElement xmi:type="uml:Artifact" xmi:id="a1344" name="AutpPartsSupplierApp.java"

fileName="F:\workspace1\AutoPartsSupplier\src\autopartssupplier\AutpPartsSupplierApp.java"/>

 <packagedElement xmi:type="uml:Artifact" xmi:id="a1345" name="DatabaseFactory.java"

fileName="F:\workspace1\AutoPartsSupplier\src\autopartssupplier\DatabaseFactory.java"/>

 </packagedElement>

</uml:Model>

Annex 2: FOM generation

217

Below is a list of the code for FOM generation.

package objectanalysis;

import java.io.FileWriter;

import java.io.IOException;

import java.io.PrintWriter;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.Iterator;

/**

 * this class is used for model transformation

 * @author Zhiying Tu

 */

public class WriteToFile {

 public static boolean generateFOM (HashMap<String, ArrayList<String>> fomMap) {

 try {

 //Convenience class for writing character files. boolean:true,append

 FileWriter fw = new FileWriter("testFOM.fed",false);

 //Print formatted representations of objects to a text-output stream.

 PrintWriter out = new PrintWriter(fw);

 //load poRTIco FOM template

 String topMsg = loadTemplate();

 //Create new FOM

 out.write(topMsg);

 Iterator iterator = fomMap.keySet().iterator();

 while(iterator.hasNext()){

 String className = iterator.next().toString();

 //Find UML:class

 ArrayList attrList = fomMap.get(className);

 if (attrList.size() == 0) {

 //Transform to RTIObjects:class

 out.println("\n\t\t\t(class " + className + ")");

 } else {

218

 //Transform to RTIObjects:class

 out.println("\n\t\t\t(class " + className);

 for(int i = 0; i < attrList.size(); i++){

 //Find UML:Attributes, and transform them into RTIObjects:Attributes

 out.println("\n\t\t\t\t(attribute " + attrList.get(i) + " reliable timestamp TestSpace)");

 }

 out.println("\n\t\t\t)");

 }

 }

 out.println("\n\t\t)");

 out.println("\n\t)");

 out.println("\n)");

 out.close();

 fw.close();

 return true;

 } catch (IOException e) {

 System.out.println("Write file error!");

 e.printStackTrace();

 return false;

 }

 }

 private static String loadTemplate() {

 String template = "(FED\n\t(Federation Portico-Test)\n\t\t(FEDversion v1.3)\n\t\t(spaces" +

 "\n\t\t\t(space TestSpace\n\t\t\t\t(dimension TestDimension)\n\t\t\t)\n\t\t(space OtherSpace\n\t\t\t"

+

 "(dimension OtherDimension)\n\t\t\t)\n\t\t)\n\t(objects\n\t\t(class ObjectRoot\n\t\t\t"+

 "(attribute privilegeToDelete reliable timestamp)\n\t\t\t(class RTIprivate)";

 return template;

 }

}

219

Annex 3: RTI specific code

220

221

Below is a list of RTI specific code.

// ///

 // //////////////////////// Main Simulation Method /////////////////////////

 // ///

 /**

 * This is the main simulation loop. It can be thought of as the main method

 * of the federate. For a description of the basic flow of this federate,

 * see the class level comments

 */

 public void runFederate(String federateName) throws RTIexception {

 // ///////////////////////////////

 // 1. create the RTIambassador //

 // ///////////////////////////////

 rtiamb = RtiFactoryFactory.getRtiFactory().createRtiAmbassador();

 // ////////////////////////////

 // 2. create the federation //

 // ////////////////////////////

 // create

 // NOTE: some other federate may have already created the federation,

 // in that case, we'll just try and join it

 try {

 File fom = new File("testfom.fed");

 rtiamb.createFederationExecution("ExampleFederation",

 fom.toURI().toURL());

 log("Created Federation");

 } catch (FederationExecutionAlreadyExists exists) {

 IS_FIRST = false;

 log("Didn't create federation, it already existed");

 } catch (MalformedURLException urle) {

 IS_FIRST = false;

 log("Exception processing fom: " + urle.getMessage());

 urle.printStackTrace();

 return;

 }

 // //////////////////////////

222

 // 3. join the federation //

 // //////////////////////////

 // create the federate ambassador and join the federation

 fedamb = new Example13FederateAmbassador();

 rtiamb.joinFederationExecution(federateName, "ExampleFederation",

 fedamb);

 log("Joined Federation as " + federateName);

 // //////////////////////////////

 // 4. announce the sync point //

 // //////////////////////////////

 // announce a sync point to get everyone on the same page. if the point

 // has already been registered, we'll get a callback saying it failed,

 // but we don't care about that, as long as someone registered it

 if (IS_FIRST) {

 rtiamb.registerFederationSynchronizationPoint(federateName, null);

 } else {

 rtiamb.registerFederationSynchronizationPoint(READY_TO_RUN, null);

 }

 // wait until the point is announced

 while (fedamb.isAnnounced == false) {

 rtiamb.tick();

 }

 // WAIT FOR USER TO KICK US OFF

 // So that there is time to add other federates, we will wait until the

 // user hits enter before proceeding. That was, you have time to start

 // other federates.

 // ///

 // 5. achieve the point and wait for synchronization //

 // ///

 // tell the RTI we are ready to move past the sync point and then wait

 // until the federation has synchronized on

 rtiamb.synchronizationPointAchieved(READY_TO_RUN);

 log("Achieved sync point: " + READY_TO_RUN

 + ", waiting for federation...");

 while (fedamb.isReadyToRun == false) {

 rtiamb.tick();

223

 }

 // ///////////////////////////

 // 6. enable time policies //

 // ///////////////////////////

 // in this section we enable/disable all time policies

 // note that this step is optional!

 enableTimePolicy();

 log("Time Policy Enabled");

 // ////////////////////////////

 // 7. publish and subscribe //

 // ////////////////////////////

 // in this section we tell the RTI of all the data we are going to

 // produce, and all the data we want to know about

 publishAndSubscribe();

 log("Published and Subscribed");

 // ///////////////////////////////////

 // 8. register an object to update //

 // ///////////////////////////////////

 objectHandle = registerObject();

 log("Registered Object, handle=" + objectHandle);

 int classHandle2 = rtiamb.getObjectClassHandle("ObjectRoot.CarWheelSupplier");

 objectHandle2 = rtiamb.registerObjectInstance(classHandle2);

 log("Registered Object, handle=" + objectHandle2);

 while(true){

 String feedback = businessAdapter.handleBusiness(this.getMsg());

 advanceTime(1.0);

 log("Time Advanced to " + fedamb.federateTime);

 if(feedback.split(@)[0].trim.equals(“quit”))break;

 }

// // 9.1 update the attribute values of the instance //

//

 updateAttributeValues(objectHandle ,allCarDays-i,currentState,announceWheel,announceEngine,count);

// // 9.2 send an interaction

// sendInteraction(allCarDays-i,currentState,announceWheel,announceEngine,count);

224

// // 9.3 request a time advance and wait until we get it

// advanceTime(1.0);

// log("Time Advanced to " + fedamb.federateTime);

 // ////////////////////////////////////

 // 10. delete the object we created //

 // ////////////////////////////////////

 deleteObject(objectHandle);

 log("Deleted Object, handle=" + objectHandle);

 // //////////////////////////////////

 // 11. resign from the federation //

 // //////////////////////////////////

 rtiamb.resignFederationExecution(ResignAction.NO_ACTION);

 log("Resigned from Federation");

 // //////////////////////////////////////

 // 12. try and destroy the federation //

 // //////////////////////////////////////

 // NOTE: we won't die if we can't do this because other federates

 // remain. in that case we'll leave it for them to clean up

 try {

 rtiamb.destroyFederationExecution("ExampleFederation");

 log("Destroyed Federation");

 } catch (FederationExecutionDoesNotExist dne) {

 log("No need to destroy federation, it doesn't exist");

 } catch (FederatesCurrentlyJoined fcj) {

 log("Didn't destroy federation, federates still joined");

 }

 }

 private String getMsg() {

 return fedamb.recMsg;

 }

 private void setMsg(String msg) {

 fedamb.recMsg="";

 }

 private void setLastRecMsg(String msg) {

225

 fedamb.lastRecMsg="";

 }

public Example13Federate(){

}

 // //

 // //////////////////////////// Helper Methods

 // //////////////////////////////

 // //

 /**

 * This method will attempt to enable the various time related properties

 * for the federate

 */

 private void enableTimePolicy() throws RTIexception {

 // NOTE: Unfortunately, the LogicalTime/LogicalTimeInterval create code

 // is

 // Portico specific. You will have to alter this if you move to a

 // different RTI implementation. As such, we've isolated it into a

 // method so that any change only needs to happen in a couple of spots

 LogicalTime currentTime = convertTime(fedamb.federateTime);

 LogicalTimeInterval lookahead = convertInterval(fedamb.federateLookahead);

 // //////////////////////////

 // enable time regulation //

 // //////////////////////////

 this.rtiamb.enableTimeRegulation(currentTime, lookahead);

 // tick until we get the callback

 while (fedamb.isRegulating == false) {

 rtiamb.tick();

 }

 // ///////////////////////////

 // enable time constrained //

 // ///////////////////////////

 this.rtiamb.enableTimeConstrained();

 // tick until we get the callback

 while (fedamb.isConstrained == false) {

226

 rtiamb.tick();

 }

 }

 /**

 * This method will inform the RTI about the types of data that the federate

 * will be creating, and the types of data we are interested in hearing

 * about as other federates produce it.

 */

 private void publishAndSubscribe() throws RTIexception {

 int classHandle = rtiamb.getObjectClassHandle("ObjectRoot.CarManufactureSupplier");

 int aaHandle = rtiamb.getAttributeHandle("wheelMessage", classHandle);

 AttributeHandleSet attributes = RtiFactoryFactory.getRtiFactory()

 .createAttributeHandleSet();

 attributes.add(aaHandle);

 rtiamb.publishObjectClass(classHandle, attributes);

 rtiamb.subscribeObjectClassAttributes(classHandle, attributes);

 int interactionHandle = rtiamb

 .getInteractionClassHandle("InteractionRoot.CarManufactureSupplier");

 rtiamb.publishInteractionClass(interactionHandle);

 rtiamb.subscribeInteractionClass(interactionHandle);

 int classHandle2 = rtiamb.getObjectClassHandle("ObjectRoot.CarWheelSupplier");

 AttributeHandleSet attributes2 = RtiFactoryFactory.getRtiFactory()

 .createAttributeHandleSet();

 int abHandle = rtiamb.getAttributeHandle("dayToFinish", classHandle2);

 attributes2.add(abHandle);

 int acHandle = rtiamb.getAttributeHandle("currentState", classHandle2);

 attributes2.add(acHandle);

 int adHandle = rtiamb.getAttributeHandle("type", classHandle2);

 attributes2.add(adHandle);

 int aeHandle = rtiamb.getAttributeHandle("price", classHandle2);

 attributes2.add(aeHandle);

 rtiamb.publishObjectClass(classHandle2, attributes2);

 rtiamb.subscribeObjectClassAttributes(classHandle2, attributes2);

 int interactionHandle2 = rtiamb

 .getInteractionClassHandle("InteractionRoot.CarWheelSupplier");

 rtiamb.publishInteractionClass(interactionHandle2);

227

 rtiamb.subscribeInteractionClass(interactionHandle2);

 }

 /**

 * This method will register an instance of the class ObjectRoot.A and will

 * return the federation-wide unique handle for that instance. Later in the

 * simulation, we will update the attribute values for this instance

 */

 private int registerObject() throws RTIexception {

 int classHandle = rtiamb.getObjectClassHandle("ObjectRoot.CarManufactureSupplier");

 return rtiamb.registerObjectInstance(classHandle);

 }

 /**

 * This method will update all the values of the given object instance. It

 * will set each of the values to be a string which is equal to the name of

 * the attribute plus the current time. eg "aa:10.0" if the time is 10.0.

 * <p/> Note that we don't actually have to update all the attributes at

 * once, we could update them individually, in groups or not at all!

 */

 private void updateAttributeValues(int objectHandle,int dayToFinish ,int currentState,int announceWheel, int

announceEngine,int count) throws RTIexception {

 SuppliedAttributes attributes = RtiFactoryFactory.getRtiFactory()

 .createSuppliedAttributes();

 byte[] aaValue =

EncodingHelpers.encodeString(String.valueOf("wheelDays;"+this.carWheelDays*count+";"+dayToFinish));

 int classHandle = rtiamb.getObjectClass(objectHandle);

 int aaHandle = rtiamb.getAttributeHandle("dayToFinish", classHandle);

 attributes.add(aaHandle, aaValue);

 byte[] abValue = EncodingHelpers.encodeString(String.valueOf(currentState));

 int abHandle = rtiamb.getAttributeHandle("currentState", classHandle);

 attributes.add(abHandle, abValue);

 byte[] acValue = EncodingHelpers.encodeString("wheelType;215/70R15");

 int acHandle = rtiamb.getAttributeHandle("type", classHandle);

 attributes.add(acHandle, acValue);

228

 byte[] adValue = EncodingHelpers.encodeString("wheelPrice;"+300*count);

 int adHandle = rtiamb.getAttributeHandle("price", classHandle);

 attributes.add(adHandle, adValue);

 rtiamb.updateAttributeValues(objectHandle, attributes, generateTag());

 LogicalTime time = convertTime(fedamb.federateTime

 + fedamb.federateLookahead);

 rtiamb.updateAttributeValues(objectHandle, attributes, generateTag(),

 time);

 }

 private void sendInteraction(int dayToFinish,int currentState,int announceWheel,int announceEngine,int

count) throws RTIexception {

 SuppliedParameters parameters = RtiFactoryFactory.getRtiFactory()

 .createSuppliedParameters();

 byte[] xaValue = EncodingHelpers.encodeString("dayToFinish:" + dayToFinish);

 int classHandle = rtiamb.getInteractionClassHandle("InteractionRoot.CarWheelSupplier");

 int xaHandle = rtiamb.getParameterHandle("dayToFinish", classHandle);

 parameters.add(xaHandle, xaValue);

 byte[] xbValue = EncodingHelpers.encodeString("currentState:" + currentState);

 int xbHandle = rtiamb.getParameterHandle("currentState", classHandle);

 parameters.add(xbHandle, xbValue);

 byte[] xcValue = EncodingHelpers.encodeString("type:" + "215/70R15");

 int xcHandle = rtiamb.getParameterHandle("type", classHandle);

 parameters.add(xcHandle, xcValue);

 byte[] xdValue = EncodingHelpers.encodeString("price:" + 300*count);

 int xdHandle = rtiamb.getParameterHandle("price", classHandle);

 parameters.add(xdHandle, xdValue);

 rtiamb.sendInteraction(classHandle, parameters, generateTag());

 LogicalTime time = convertTime(fedamb.federateTime

 + fedamb.federateLookahead);

 rtiamb.sendInteraction(classHandle, parameters, generateTag(), time);

 }

229

 /**

 * This method will request a time advance to the current time, plus the

 * given timestep. It will then wait until a notification of the time

 * advance grant has been received.

 */

 private void advanceTime(double timestep) throws RTIexception {

 // request the advance

 fedamb.isAdvancing = true;

 LogicalTime newTime = convertTime(fedamb.federateTime + timestep);

 rtiamb.timeAdvanceRequest(newTime);

 // wait for the time advance to be granted. ticking will tell the

 // LRC to start delivering callbacks to the federate

 while (fedamb.isAdvancing) {

 rtiamb.tick();

 }

 }

 /**

 * This method will attempt to delete the object instance of the given

 * handle. We can only delete objects we created, or for which we own the

 * privilegeToDelete attribute.

 */

 private void deleteObject(int handle) throws RTIexception {

 rtiamb.deleteObjectInstance(handle, generateTag());

 }

 private String getLastRecMsg() {

 return fedamb.lastRecMsg;

 }

 private double getLbts() {

 return fedamb.federateTime + fedamb.federateLookahead;

 }

 private byte[] generateTag() {

 return ("" + System.currentTimeMillis()).getBytes();

 }

230

Résumé: L'interopérabilité est une des caractéristiques requises pour les entreprises

évoluantdans un marché globaliséà la concurrencecroissanteet complexe. Dans la dernière

décennie, l'interopérabilité des entreprises a été développée et prescrite par différents types de

cadres, de méthodes et de techniques. Cependant, le développement de l'interopérabilité n'est

pas encore assez mature pour être considéré en tant que science à part entière. Par ailleurs, il

ne cesse d'évoluer en fonction des besoins des entreprises,de leursenvironnementset

desdifférents secteurs d‘activité. Aujourd'hui, l'environnement s‘organise en réseaux

multipleet provoque d‘imprévisibles situations liées à leurs dynamiques (création,

modification, résilience). Ainsi l‘interopérabilité durable devient une dimension nouvelle de

recherche pour l'interopérabilité des systèmes d'entreprise et de leurs domaines d'applications.

Dans l'interopérabilitédurable, l'interopérabilité d'entreprise dynamique est l'un des thèmes

focaux. Cette approche dynamique, également appelée«fédérée», est originaire du cadre

d'interopérabilité de l'Entreprise proposée dans le Réseau d‘Excellence (NoE) INTEROP. Il

vise à donner la capacité aux entreprises d‘établir une interopérabilité à la volée sans

connaissance préalable des informations à échanger. Cette thèse présente l'état actuel des

travaux qui se rapprochent du développement de l'interopérabilité des entreprises «fédérés»

endynamique. Ces travaux de thèse mettent tout d‘abord en évidence l‘intérêt de la

redécouverte de modèles à partir d‘un système existant avant de concevoir un futur système.

Uneméthodologie de réverse engineering dirigée par les modèles et basée sur la norme de

simulation distribuée HLAest proposée pour concevoir et développerpar l'approche fédérée

d'interopérabilité le futur système d‘information de l‘entreprise. La phase de mise en œuvre

réutilise les concepts d‘interopérabilité issusde la simulation distribuée pour faciliter et

coordonner la communication entre les systèmes d'information distribués hétérogènes des

entreprises en combinant avec les dernières orientation service actuelle du web. La

plate-forme tend ainsi à satisfaire les attentes de la dernière version du standard de

l'architecture de haut niveau HLA 1516 Evolved. Ce cadre propose donc un cycle complet de

développement pour qui a l'intention de réutiliser un système d'information existant sans

recoder ex-nilo, mais en l‘adaptant aux nouvelles exigences de la dynamique

d'interopérabilité.

Mots clés：L'interopérabilité d'entreprise; Dynamique; Approche fédérée; HLA; MDA;

Ingénierie inverse

231

Abstract: Interoperability is one of the requisite features for existing enterprises in the

increasing competitive and complex global market. In the last decade, enterprise

interoperability has been developed and prescribed by various kinds of frameworks, methods,

and techniques. However interoperability development is still not mature enough to become a

science. Meanwhile, it keeps evolving according to different business requirement and market

environment. Nowadays, networked environment causes unpredictable dynamical situations,

thus sustainable interoperability becomes a new research dimension in the interoperability of

enterprise systems and applications domain. In the sustainable interoperability, enterprise

interoperability dynamics is one of the focal topics. This dynamic approach also called

federated is originated from Enterprise Interoperability Framework of INTEROP NoE, which

aims to establish interoperability on the fly. This thesis presents current state on federated

approaches to develop enterprise interoperability dynamics. Based on this study, a reversible

model driven and HLA based methodology is proposed for achieving federated approach for

Enterprise Interoperability. It reuses distributed simulation interoperability concepts to

facilitate and coordinate the communication between heterogeneous distributed information

systems of the enterprises. The platform is complaint with the latest version of the High Level

Architecture (HLA) that is a distributed communication standard. This framework is also

proposing a development lifecycle that intends to reuse existing information systems without

recoding them but by adapting them to the new requirements of interoperability dynamics.

Key words: Enterprise Interoperability; Dynamic; Federated approach; HLA; MDA; Model

Reverse

Laboratoire de l‘Intégration du Matériau au Système (IMS)

Université Bordeaux 1.

351, Cours de la Libération – 33405 Talence Cedex.

Tél. : (33) 05 40 00 36 25

http://www.ims-bordeaux.fr

http://www.ims-bordeaux.fr/

