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Abstract

This thesis work is devoted to extending Nonlinear Dynamic Inversion (NDI) for a large scale of
nonlinear systems while guaranteeing sufficient stability conditions.

After the mathematical formalization of feedback linearization in the 1980’s, NDI has been studied
in a wide range of applications, including aeronautics and aerospace. NDI allows to compute
nonlinear control laws able to decouple and linearize a model at any operating point of its state
envelope. However, this method is inherently non-robust to modelling errors and input saturations.
Moreover, obtaining a quantifiable guarantee of the attained stability domain in a nonlinear control
context is not a very straightforward task. This drives the motivation of the thesis.

In aerospace applications, most well-known linear control design techniques usually struggle to
give a satisfying answer to the control problem, unless gain-scheduled controllers are used. In this
contribution, to avoid standard difficulties raised by gain-scheduling approaches (lack of guaran-
tee between interpolation points, time-consuming tuning procedure), an alternative methodology,
inspired by NDI schemes and linear Robust Control, is then proposed.

Unlike standard NDI approaches, our methodology can be viewed as a generalized nonlinear com-
pensation framework which allows to incorporate uncertainties and input saturations in the design
process. Paralleling anti-windup strategies, the controller can be computed through a single multi-
channel optimization problem or through a simple two-step process : the first step, thanks to recent
advances in nonsmooth optimization techniques, consists of optimizing a structured H∞ control-
ler ; then in a second phase, an anti-windup strategy is used to enhance the controller properties
despite input constraints.

Within this framework, linear fractional transformations of the nonlinear closed-loop can be easily
derived for robust stability analysis using standard tools for linear systems.

The proposed method is tested for the flight control of a delta wing type reentry vehicle at hy-
personic, transonic and subsonic phases of the atmospheric reentry. For this thesis work, a Flight
Mechanics simulator including diverse external factors and modelling errors was developed in Si-
mulink.

In simulation, the longitudinal and lateral dynamics of the vehicle are tested to validate the com-
putation of the NDI-based control laws. A comparison between the standard NDI technique and
the general nonlinear compensation approach is also presented along with simulation results which
help to validate the proposed methodology.





Résumé

Ce travail de thèse est consacré à l’extension de l’Inversion Dynamique non-linéaire (NDI-Nonlinear
Dynamic Inversion) pour un ensemble plus grand de systèmes non-linéaires, tout en garantissant
des conditions de stabilité suffisantes.

Après la formalisation mathématique de la “linéarisation par retour d’état” dans les années 80, la
NDI a été étudiée dans le cas de diverses applications, y compris en aéronautique et en aérospatiale.
La NDI permet de calculer des lois de contrôle capables de linéariser et de découpler un modèle
non-linéaire à tout point de fonctionnement de son enveloppe d’état. Cependant cette méthode est
intrinsèquement non-robuste aux erreurs de modélisation et aux saturations en entrée. En outre,
dans un contexte non-linéaire, l’obtention d’une garantie quantifiable du domaine de stabilité at-
teint reste à l’heure actuelle complexe. C’est l’ensemble de ces paramètres qui a motivé la rédaction
de cette thèse.

Dans les applications aérospatiales, la plus grande partie des approches linéaires pour la concep-
tion de lois de pilotage ont, en général, du mal à donner une réponse satisfaisante au problème
de contrôle, à moins d’utiliser des gains auto-séquencés. Dans cette contribution, pour éviter les
difficultés soulevées par les approches utilisant des gains auto-séquencés (absence de garantie entre
les points d’interpolation, procédure de réglage longue...), une autre méthode, inspirée par la NDI,
est ensuite proposé.

Contrairement aux approches classiques de la NDI, notre méthodologie peut être considérée comme
un cadre de compensation non-linéaire généralisé qui permet d’intégrer les incertitudes et les sa-
turations en entrée dans le processus de conception. En utilisant des stratégies de contrôle anti-
windup, la loi de pilotage peut être calculée grâce à un simple processus multi-canaux ou par
un simple processus en deux phases. La première, grâce aux avancements récents des techniques
d’optimisation non-lisse, consiste à optimiser un correcteur structuré H∞, puis dans une deuxième
phase, une stratégie anti-windup est utilisée pour améliorer les propriétés du correcteur en dépit
des contraintes sur l’entrée du système.

Dans ce cadre de travail généralisé des transformations linéaires fractionnaires (LFT - Linear
Fractional Transformations) de la boucle fermée non-linéaire peuvent être facilement déduites pour
l’analyse de la stabilité robuste en utilisant des outils standards pour de systèmes linéaires. La
méthode proposée est testée pour le pilotage d’un véhicule de rentrée atmosphérique de type aile
delta lors de ses phases hypersonique, transsonique et subsonique. Pour cette thèse, un simulateur
du vol incluant divers facteurs externes ainsi que des erreurs de modélisation a été développé dans
Simulink.

En simulation, la dynamique longitudinale et latérale du véhicule est testée pour valider le calcul
des lois de pilotage. Une comparaison entre la technique standard NDI et l’approche généralisée
de compensation non-linéaire est également présentée avec des résultats de simulation permettant
de valider la méthodologie proposée.
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R.3.2 Modèles aérodynamiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

R.3.3 Objectifs de commande . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

R.3.4 Principales sources de perturbation . . . . . . . . . . . . . . . . . . . . . . . 199

R.4 Conception des lois de commande par Compensation Non-linéaire . . . . . . . . . . 200
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Introduction

Thesis context

Control techniques for nonlinear systems have been gaining much attention from the research
community in the late years. Compared to advances in Linear Control, the Nonlinear Control field
has historically advanced at a lower pace due to the computation capabilities available and to a lack
of general frameworks to allow a direct and systematic application on different classes of nonlinear
systems. With the advent of powerful computer technologies, most computational difficulties have
been wiped-out of the scene and the implementation of nonlinear controllers is simpler nowadays.

There are three main groups of mature nonlinear control approaches that can be foreseen: tech-
niques that attempt to treat the process as a linear system in limited ranges of operation (e.g.
Gain Scheduling), methods that introduce auxiliary nonlinear feedback loops so that the system
can be treated as linear for purposes of control design (e.g. Feedback Linearisation with Stability,
commonly referred as Nonlinear Dynamic Inversion), and Lyapunov function-based approaches
(e.g. Backstepping and Lyapunov Redesign).

This thesis work is devoted to extending Nonlinear Dynamic Inversion (NDI) for a
large scale of nonlinear systems while guaranteeing sufficient stability conditions.

NDI first derived from noninteracting control [IKGGM81, Fli85, NS86, IG88, Ha88, IKGGM89]
and from feedback linearization techniques [Isi85, IMDL86, CLM91, SL91, Vid93, Kha96].

The principle of noninteracting control is to find a decoupled partition of the input vector such that
each component of the i–th output is influenced only by the components of the i–th input partition.
This can be achieved via static state-feedback, when the full state information is available. Such
feedback control laws are said to be regular if they are invertible in the entire state envelop [NS86].

The first efforts to extend to nonlinear systems the noninteracting control theory, previously de-
veloped for linear systems, appeared at the beginning of the 1970’s by Porter [Por70]. In the
1980’s, Isidori et al. [IKGGM81] formulated and studied for the first time the problem of nonlinear
noninteracting control in the framework of differential geometry and distributions theory. Then,
the problem of achieving noninteraction and stability was addressed in [IG88, Ha88, IKGGM89].

From the results obtained through noninteracting control with stability, a coordinate transfor-
mation allowing to linearize nonlinear systems can also be obtained. Then, a nonlinear system
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can be decoupled, linearized and stabilized via state-feedback and a coordinate transformation
[Isi85]. This technique, considered nowadays a classic method of Nonlinear Control, is also known
as feedback linearization [Isi85, SL91, Vid93, Kha96].

In feedback linearization, concepts like the rank and controlled invariance of nonlinear systems
play a key role on the mathematical formalization of the technique. The rank was introduced
in [Fli85] based on a differential algebraic analysis. The study of controlled invariance was initiated
in [Bro78], under static state-feedback laws of the form

u = α(x) + v

Later on, controlled invariance was tackled in [IKGGM81]. A special class of controlled invariant
distributions is given by controllability distributions, which became a basic tool for solving the
noninteracting control problem with or without stability. In fact, the controllability distributions
allow to characterize the fixed dynamics of the decoupled system via static feedback [IG88]. Then,
the group of linearizing laws was extended to regular state-feedbacks of the form

u = α(x) + β(x) v

A generalized notion of controlled invariance was introduced in the 1990’s by Huijberts et al.
[HMA97], allowing to enlarge the group of linearizing laws to the class of quasi-static state-
feedbacks of the form

u = α(x, v, v̇, . . . , v(k))

Finally, sufficient conditions were introduced in [IMDL86, CLM91] to extend the group of lineariz-
ing laws to dynamic state-feedbacks of the form

�
ς̇ = �(x, ς) + ϑ(x, ς) v
u = α(x, ς) + β(x, ς) v

In fact, differentially flat systems can be inverted via dynamic state-feedback. A general nonlinear
system is considered flat if the state x and the input u can be recovered from a finite number of
derivatives of a vector z, containing a specific choice of system outputs [FLMR95].

NDI has become of great interest in aeronautics and aerospace applications due to the advantages
it presents. Some common examples include: high manoeuvrability airplanes [RBG95, RBG96,
Pap03, Kol05], atmospheric reentry vehicles [Jou92, IGVW02, DN02, GV03, LRDY07, MCV09],
civil transportation [Lav05] and military applications [Har91, SK98]. Before NDI came into play
in the Nonlinear Control scene, linear methods such as gain scheduling were successfully used in
the aerospace field.

Gain scheduling design typically employs a set of linearized approximations of the nonlinear process
which are representative of the operation domain. However, these approximations are only valid
in the neighborhood of a specific operating point, which means that there is a lack of guarantee
between interpolation points. Moreover, depending on the number of linearized approximations
considered, the tuning procedure of such design may turn-out to be time-consuming.

In contrast to gain scheduling, NDI adapts automatically to the present operating point around
which the system will be linearised. Next, the nonlinear system in question is decoupled and lin-
earized by a state-feedback controller. This is done by punctually eliminating all nonlinearities
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using the inverse of the system, obtained through feedback linearization. Once the system is lin-
earised and decoupled, it is with great simplicity that desired dynamics can be imposed for each
decoupled signal to guarantee the closed-loop stability. Finally, NDI is a very straight forward
technique where the controller is based on the equations of the open loop nonlinear system, thus
allowing to have an insight of the controller behaviour.

In the early 1990’s, the first implementations of the NDI theory in the aerospace field were con-
ducted by Honeywell Aerospace Advanced Technology in cooperation with NASA [BEE90]. A Hon-
eywell NDI design was selected for the F-18 High Angle-of-Attack Research Vehicle (HARV) [BEE90,
EBHS94]. Then, Honeywell collaborated with Lockheed Martin to produce a Nonlinear Dynamic
Inversion controller for the F-35 aircraft. In this case, the NDI controller provided consistent
predictable control through the transition from conventional aircraft flight to hover mode.

At the same time, the French space agency CNES started the development of the space vehicle
project Hermes which was later on absorbed by the European Space Agency ESA. The Hermes
space vehicle was designed to provide independent European manned access to space. NDI design
was studied as part of the attitude control system of the vehicle [Jou92] before the project was
cancelled due to budgetary constraints.

In the late 1990’s, NASA developed an X-38 Crew Rescue Vehicle program [Bos10]. The program
consisted of a series of developmental space vehicles that would lead to a production vehicle that
would serve as the Space Station lifeboat. The NDI controller was proposed as a good solution for
this program since it would provide a generic control approach [IGVW02].

For many reasons, control design for atmospheric reentry vehicles, for example, still remains a
challenging task. Typically, because the flight domain is extremely large, nonlinear and time-
varying aspects induce nontrivial issues. Most well-known linear control design techniques usually
fail to give a satisfying answer to the control problem, unless gain scheduled controllers are used.
It is in this type of context that NDI shows to be the most useful.

Despite its remarkable qualities, some drawbacks have kept NDI controllers from being used more
widely:

– standard NDI approaches are non robust to modelling errors, environmental factors and to
internal unobservable dynamics that may be unstable (including the inversion of non-minimal
phase systems). Robust approaches may then require a thorough adaptation of the method and
the resulting synthesis structures for “robustifying” NDI can easily become a complex process;

– standard NDI methods are not well adapted for models accounting for input constraints or
physical limits. In presence of these physical limits of the process inputs, the NDI controller
can only partially eliminate the original process dynamics and therefore residual unexpected
dynamics can become critical to the system stability.

These drawbacks drive the motivation of this work. In this contribution, an alternative methodol-
ogy inspired by NDI schemes, is proposed.

The main objective of this thesis work is to develop a general framework for nonlinear control
allowing to consider diverse uncertainties, varying parameters and input constraints in the
controller synthesis procedure, as well as proposing a modelling strategy to enable the use
of linear stability analysis tools.
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To achieve this goal, a reformulation of the standard NDI method will be introduced to give the
synthesis procedure a more linear oriented perspective. This reformulation requires to rewrite
nonlinear systems by first extracting their linear parts. Then, the remaining nonlinearities are
viewed as residual nonlinear inputs to be compensated by the control law.

Then, strongly inspired from the LPV analysis framework, a single loop controller structure is
proposed to compensate the system nonlinearities in presence of modelling errors, varying and
uncertain parameters, and in spite of input constraints.

Finally, the robust stability assessment of the interconnection between the nonlinear process and
the obtained NDI-based controller is carried out by deriving a Linear Fractional Transformation
of the nonlinear closed-loop, which enables the use of linear analysis tools.

In order to validate the proposed method, controllers for the longitudinal and lateral dynamics
of air vehicles (including aircrafts, space launchers and reentry vehicles) will be computed and
further tested with a 6 degrees-of-freedom Flight Mechanics simulator. In particular, the model of
a reentry vehicle will be employed in simulation given the interesting nonlinear characteristics of
the atmospheric reentry problem.

Thesis outline

This thesis is organized in two parts and five chapters. On the one hand, the first part is dedicated
to present some theoretical preliminaries along with the generalized nonlinear compensation frame-
work which is proposed as a contribution to Nonlinear Control techniques. On the other hand,
the second part of this work is devoted to applying the proposed framework to the computation
of flight control laws for air vehicles, from which the particular case of the atmospheric reentry
problem is treated in simulation.

In Chapter 1, an introduction to NDI techniques is presented for different classes of nonlinear
systems, going from the simpler cases to the more complex. Concepts related to the feedback
linearization are introduced along with different modelling approaches to solve commonly encoun-
tered issues. Standard remedies to the central limitations of the technique and more advanced
robust control strategies are also described. The chapter ends with a brief presentation of control
input saturations, which are not naturally accounted for by standard NDI techniques, but that
will be considered in the generalized framework proposed in Chapter 2.

Then, in Chapter 2, our generalized framework for nonlinear compensation is presented. A fresh
reformulation inspired by standard NDI is used to give the nonlinear compensation approach a
more linear oriented perspective. Then, robust approaches for linear control design can be readily
exploited. A multi-channel design oriented control scheme is introduced as an enhanced alternative
to the standard NDI controller design. In a very straightforward manner, anti-windup control
strategies are used to increase the stability domain of the nonlinear closed-loop in spite of input
saturations. Finally, different stability and robustness analysis tools are presented along with a
well-suited LFT modelling of the resulting nonlinear closed-loop.

Chapter 3 is dedicated to the presentation of some fundamental of Flight Mechanics and the
modelling of common flight control objectives. General equations of dynamic state models with
6 degrees-of-freedom are presented along with a general description of air vehicle aerodynamic
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models. The control objectives, which are fundamentally attitude parameters of the air vehicles,
are derived from the general equations of motion. This chapter is concluded by a presentation of the
main disturbances which are considered in simulation of air vehicles, either from an environmental
source or from a modelling source.

Next, in Chapter 4, standard NDI control laws and generalized Nonlinear Compensation control
laws are computed for the longitudinal and lateral control objectives of air vehicles. This allows a
direct comparison of both approaches in the design phase, before passing on to the synthesis and
simulation phases contained in Chapter 5.

Finally, Chapter 5 presents a general introduction to atmospheric reentry missions and the onboard
automatic systems that interact to enable a vehicle to land safely on Earth. Then, the implemen-
tation of the previously designed control laws is explained in detail. A thorough comparison of
the computed controllers using both, the standard NDI approach and the generalized Nonlinear
Compensation framework, is presented. Finally, a robustness assessment is introduced along with
simulation results for a final validation of the method.

The general conclusions are presented as a recapitulation of the main results of this work. Some
future work perspectives of the generalized framework proposed are also included as a guideline
of the actual state of this subject of study. An Appendix with reference information and an
international congress paper conclude this thesis work.
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Part I

A generalized “NDI inspired”
framework

7 / 345





Chapter 1

Introduction to Nonlinear
Dynamic Inversion techniques

Introduction

After the mathematical formalization, founded on differential geometry, of feedback linearization
techniques in the 1980’s by Isidori et al. [IKGGM81], Nonlinear Dynamic Inversion (NDI) has
been studied in a wide range of applications, including aeronautics and aerospace [Har91, Jou92,
RBG95, RBG96, SK98, IGVW02, Pap03, GV03, Lav05, Kol05, LRDY07]. In fact, NDI is basically
a feedback linearisation technique which uses a double loop structure to decouple, linearize and
stabilize a given nonlinear process. The purpose of the inner loop in a standard NDI controller is
to eliminate the process nonlinearities, thus linearizing it, while an outer loop is used to stabilize
and impose desired dynamics to the resulting decoupled linear system.

The design of the NDI inner loop has its origins in noninteracting control for nonlinear systems
[IKGGM81, Fli85, Har91]. The basic idea of noninteracting control techniques is to decouple a
nonlinear system via regular state-feedback.

As noninteracting control can ultimately lead to a linear canonical form of the decoupled nonlinear
system using a coordinate transformation, this particular case of state-feedback became known as
feedback linearization [Isi85, SL91, Vid93]. There are two main approaches that can be taken into
consideration: input-output feedback linearization and input-state feedback linearization.

In the case of input-output feedback linearization [Isi85, Vid93], the objective is to linearize the
map between the transformed model input ũ and the actual model controlled output z. However,
given a nonlinear system of dimension n, this approach may result in a linear sub-system of di-
mension r < n linked to a nonlinear unobservable sub-system of dimension n − r, which could
turn-out to be a disadvantage as it will be further discussed.

The goal of input-state feedback linearization [Isi85, Mar86, MT95] is to linearize the map between
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Chapter 1. Introduction to Nonlinear Dynamic Inversion techniques

the transformed input ũ and the entire vector of transformed state variables x̃. This can be
achieved by deriving an artificial output vector ỹ that yields a linearized feedback model with
state dimension r = n.

A major drawback of this last approach is that the artificial output ỹ is generally not the same as the
controlled output z. Then, an input-state linearizing controller with tracking objectives is almost
never attainable because a desirable behavior of the artificial output ỹ does not systematically
imply a desirable behavior of the actual controlled output z. In fact, input-state linearization is
used mainly for stabilization problems in which the controlled output z is not specified a priori.

Even though in some particular cases it is possible to simultaneously linearize the input-output
and input-state maps of the nonlinear system, in the following, the focus is set on the input-output
feedback linearization technique for designing the inner loop of the standard NDI controller.

Once the inner loop has been designed via feedback linearization, a linear controller, which stabi-
lizes the resulting linear mapping of the original nonlinear system, is designed as the outer loop
of the standard NDI structure. Different linear techniques, such as standard PID control and
H∞-based robust control designs, can be foreseen to this end as it will be further explained.

In this chapter, the standard NDI technique is developed for different classes of commonly encoun-
tered nonlinear control systems. The main objective is to gradually introduce the reader to the
fundamentals of NDI control while highlighting some relevant aspects that will ultimately lead to
a generalizing reformulation, which is at the core of this thesis work.

Starting from a simple case in Section 1.1, extensions to NDI controller design for more complex
classes of nonlinear systems are introduced in Section 1.2, along with useful approaches that help
avoid commonly encountered problems.

Finally, in Section 1.3, a small review on input control saturations in the context of NDI control
is presented as it will be an integral part of our generalized nonlinear compensation framework.

To better illustrate the design of NDI controllers, let us begin by introducing the case of square
and input-affine systems.

1.1 Input-affine square systems

The case of input-affine square systems is a very straightforward example to explain the standard
NDI design technique. The model Σ in equation (1.1) represents such a system.

Σ : ẋ = f(x) +G(x)u (1.1)

where
– x ∈ Rn is the state vector;
– u ∈ Rm is the control input, with n = m;
– f(x) ∈ Rn and G(x) ∈ Rm×m are smooth nonlinear functions;
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1.1. Input-affine square systems

Assumption 1.1 It is assumed that:

det(G(x)) �= 0 ∀x ∈ D,

where D ⊂ Rn is the admissible domain of the state vector. Therefore, G(x) is invertible.

A classical example of a square input-affine system, in the context of aerospace applications, is the
model of a flying vehicle rotation rates.

Example 1.2 The 3 degree-of-freedom dynamics model of the rotation rates is obtained from the
equation of moments about the center of gravity of a winged flying vehicle as described in Ap-
pendix A.




ṗ
q̇
ṙ



 = f(x) +G(x)




δaileron
δelevator
δrudder



 (1.2)

where G(x) ∈ R3×3 verifies Assumption 1.1 and x =
�
p q r

�T
is the state vector con-

taining the roll rate, the pitch rate and the yaw rate respectively. In this example, the input

u =
�
δaileron δelevator δrudder

�T
is defined as a set of independent control signals that repre-

sent the effects of the flying vehicle control surfaces on each of its reference axis.

1.1.1 General principle

NDI allows to linearize and decouple a nonlinear system via state-feedback. The general principle
is to construct a controller u(x) by explicitly using the functions f(x) and G(x) to eliminate the
nonlinear dynamics while enforcing a linear behavior on the closed-loop system. This is classically
achieved with two control loops: an inner loop used to eliminate system nonlinearities, and an
outer loop used to stabilize the closed loop.

Assumption 1.3 The full state x is available for controller design. Using this measurement of
the full state, exact computations of the real process nonlinear dynamics modelled as f(x) and G(x)
can be obtained.

The NDI controller design is done in two general steps:

Step 1 Consider the square input-affine representation (1.1). Define the inner loop controller
u(x) capable of eliminating the nonlinear dynamics of Σ contained in the functions f(x) and G(x)
as

u(x) = G−1(x)[−f(x) + ũ] (1.3)

The general interconnection scheme of this nonlinear controller u(x) is depicted on Figure 1.1.
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Figure 1.1: Standard NDI inner loop controller structure.

Once the inversion controller (1.3) of the inner loop is defined and applied to system (1.1), the
resulting linearized system Σ̃ is represented by equation (1.4). Clearly, the nonlinear system is
reduced to a set of n decoupled integrators for which a tracking controller needs to be designed.

Σ̃ : ẋ = ũ(xc, x) (1.4)

or, using a slight abuse of notation:

x = Σ̃(s) ũ(xc, x), with Σ̃(s) =
I

s

Linear dynamics can be imposed to system (1.4) through the new input ũ(xc, x) ∈ Rn as explained
in the next step.

Step 2 Define an outer-loop controller C(s) capable of enforcing a linear and stable behavior of
the inner loop to ensure a good tracking of the setpoint or commanded value xc, using a linear
approach such that:

ũ(xc, x) = C(s)

�
xc

x

�
(1.5)

Different linear approaches can be foreseen for designing this outer-loop controller. The choice
of the controller C(s) can be based on simple and common control requirements such as: having
small or no static error with respect to the setpoint xc, having a small overshoot in the system
transient response, guaranteeing a certain closed loop bandwidth (which is equivalent to fixing a
settling time for the system transient response), or allowing a specific pole placement.

By adding this layer to the nonlinear controller obtained in the previous step, the standard NDI
controller structure is illustrated on Figure 1.2.
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1.1. Input-affine square systems
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Figure 1.2: Standard NDI control design structure.

The control law resulting from the above procedure is described by:

u(x) = G−1(x)

�
−f(x) + C(s)

�
xc

x

��
(1.6)

Example 1.4 Consider the system described in Example 1.2 concerning the dynamics of a flying
vehicle rotation rates. By defining the nonlinear controller




δaileron
δelevator
δrudder



 = G−1(x)



−f(x) +




ũp

ũq

ũr







 (1.7)

the inner closed-loop system becomes 


ṗ
q̇
ṙ



 =




ũp

ũq

ũr





Stable dynamics for driving the state x =
�
p q r

�T
towards the target xc =

�
pc qc rc

�T
can

be enforced by means of a linear controller. The simplest structure to ensure this convergence is
that of a static proportional controller:

C(s) =
�
diag(k1, k2, . . . , kn) −diag(k1, k2, . . . , kn)

�
∀ ki ∈ R∗

+ (1.8)

Consider this proportional gain for adjusting the dynamics of the linearized system through the
input ũ(xc, x), then




ṗ
q̇
ṙ



 =
�
diag(kp, kq, kr) −diag(kp, kq, kr)

� �xc

x

�
(1.9)

By fixing the constant values of (1.8) as:

kp =
1

τp
, kq =

1

τq
, kr =

1

τr
(1.10)

13 / 345



Chapter 1. Introduction to Nonlinear Dynamic Inversion techniques

one obtains a first-order behavior for each variable:

ṗ = τ−1
p (pc − p), q̇ = τ−1

q (qc − q), and ṙ = τ−1
r (rc − r) (1.11)

It becomes clear that the NDI design that has just been described is actually a nonlinear com-
pensation technique. The information on the nonlinear dynamics of the model Σ is exploited to
generate the exact signal allowing to compensate for the nonlinearities and turning the original
system dynamics into a set of decoupled integrators. Then, suitable linear dynamics can be easily
imposed through the outer-loop controller.

1.1.2 Central limitations

Up to now, strong assumptions have been made to clarify the NDI design procedure. For example,
Assumption 1.3 deliberately reckons the capacity of having measurements of the state x and being
able to compute with this measurements the functions f(x) and G(x) to the point of reproducing
exactly the real process nonlinear dynamics. It has also been implicitly assumed that the linearizing
feedback control input u of equation (1.3) can be realized by the actuators without any constraints,
including delays and saturations.

Real life processes present a wide variety of different restrictions that make non-viable to assume
such ideal conditions. In a more realistic scenario:
– the model Σ is a simplified representation of a real process and its environment;
– the full state measurement of a real process may not be accessible, thus requiring the use of
on-line estimations; moreover, these measurements are usually affected by deterministic and
stochastic disturbances like noises and biases;

– the inputs of most real life processes are governed by actuators that have physical constraints
and inherent dynamics ΣA that may prevent the system from reacting immediately to any given
controller signal.

The main limitation of standard NDI approaches is that the exact compensation of the process
nonlinearities usually implies:
– a full access to the entire state vector x;
– a high accuracy of the model so that the on-line computed terms f(x) and G(x) coincide exactly
with the reality;

– large bandwidth actuators capable of realizing possibly large and fast control signals without
any limitations.

Let us temporarily neglect the impact of actuators and their inherent limitations, to focus primarily
on the limitations induced by a non direct access to the nonlinear model. In such a case, the
linearizing control law of equation (1.3) becomes

u(x) = Ĝ−1(x)[−f̂(x) + ũ(xc, x)] (1.12)

where f̂(x) and Ĝ(x) denote respectively approximated on-line estimations of the nonlinear vector
f(x) and the nonlinear control efficiency matrix G(x).

Closing the inner loop between this real scenario controller u(x) and the nonlinear model (1.1)
generates the following state equation:

ẋ = f(x)−G(x)Ĝ−1(x) f̂(x) +G(x)Ĝ−1(x) ũ(xc, x)
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1.1. Input-affine square systems

Now let us model the residual part due to the inexact simplification of the function G(x) with a
multiplicative uncertainty ∆G as:

∆G = G(x)Ĝ−1(x)− I (1.13)

and let us represent the residual part due to the inexact elimination of the function f(x) as a
nonlinear input disturbance

wf (x) = f(x)− (I +∆G) f̂(x) (1.14)

The dynamics of the system resulting from the inner closed loop can be stated as:

Σ̃ : ẋ = wf (x) + (I +∆G) ũ(xc, x) (1.15)

Clearly, the design of the outer tracking loop becomes more demanding since it is now required
that the linear controller C(s) exhibits some robustness characteristics with respect to the inversion
errors wf and ∆G. The control design problem of the outer loop is represented by the scheme of
Figure 1.3 where a controller C(s) is sought to ensure the tracking of the setpoint xc and withstand
the inversion errors, thus trying to keep the closed-loop dynamics as linear as possible.

�
�

�����

Δ
�

�
�

�� ��	��

�



�

�
�

  

Figure 1.3: Outer-loop controller design scheme for non-exact NDI.

1.1.3 Standard remedies

In Example 1.4, a proportional controller is used to enforce linear dynamics in the system Σ̃ through
the input ũ(xc, x). Yet, in the eyes of the limitations described in the previous section regarding
the inversion procedure, this controller strategy is no longer suited for assuring the convergence of
the state x towards the commanded value xc.

Let us denote ε = xc − x the error signal between the target xc and the state x. Then, the
proportional controller introduced in Example 1.4 can be re-written under the form:

ũ(xc, x) = KP ε (1.16)

where

KP = diag

�
1

τ1
,

1

τ2
, . . . ,

1

τn

�
(1.17)

This controller structure, depicted on Figure 1.4, fixes first-order dynamics of time constant τi for
each state. But given that an exact inversion is unattainable through the inner loop controller, it
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Chapter 1. Introduction to Nonlinear Dynamic Inversion techniques

can only help fending-off the inversion error ∆G from the system Σ̃ described by equation (1.15).
Indeed, by tuning the time constant τ , a desired settling time ts can be achieved in spite of this
inversion error. Still, a steady-state error between x and xc will be observed due to the inversion
error wf acting as an “exogenous” 1 input disturbance, thus preventing x to converge towards xc.

�
�

Δ
�

���
�

�
�

ε
�
�

��	��

�����������	
������		��

�



�

�
�

Figure 1.4: Proportional controller structure for the outer loop.

To counteract this issue inherent to the inversion procedure, integral control approaches are com-
monly employed.

1.1.3.1 The proportional-integral (PI) structure

Rejection of input disturbances is a common problem in linear control. The PI structure proves to
be practical for these type of control problems due to the robustness characteristics that it provides.

In the context of the problem established to control the system Σ̃ of equation (1.15), besides
being capable of reducing the impact of the inversion error ∆G through a proportional gain, a
PI controller helps eliminate the steady-state error between x and xc induced by wf using an
additional integral signal. This structure can be graphically represented with the block diagram
of Figure 1.5 and it is defined as:

ũ(xc, x) = KP ε+KI

�
ε dt (1.18)

where

KP = diag(kP1 , kP2 , . . . , kPn)
KI = diag(kI1 , kI2 , . . . , kIn)

From a time domain perspective, the proportional part of the PI controller uses the present error
ε while the integral part uses the accumulation of the error throughout time to try to minimize
the present error. Choosing the values of the gains in KP and KI becomes a trade-off between
the closed-loop settling time and the overshoot in relation to the commanded setpoint xc. From a
frequency domain perspective, this trade-off is translated in terms of the attained system bandwidth
versus damping.

1. From a synthesis perspective, the function wf (x) will be modelled as an input disturbance, thus allowing to

treat the control problem as linear. Yet, it should be kept in mind that this input depends on the state and further

analysis on its stability may be required.
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Figure 1.5: PI controller structure for the outer loop.

There are two characteristics that should be pointed out from the implementation of such a con-
troller structure. First, the behavior generated by the PI controller follows second-order stable
dynamics if the gains in KP and KI are defined as positive constants. In a very convenient man-
ner, the constants kPi and kIi can be associated to the cut-off frequency ωc and the damping
coefficient ξ by recalling the characteristic polynomial p(s) of second-order dynamic systems

p(s) = s2 + 2 s ξ ωc + ω2
c

To set a desired cut-off frequency ωci and damping coefficient ξi of each closed-loop state, the gains
kPi and kIi can be identified as:

kPi = 2 ξi ωci (1.19)

kIi = ω2
ci (1.20)

Second, as a result of the feedback interconnection the PI controller introduces a zero in each
closed-loop state at the frequency ωci = kIi/kPi . If the controller gains in KP and KI are defined
positive, then the closed-loop is not only stable but also minimum phase.

Remark 1.5 The proportional and the proportional-integral controllers are unique for a given
desired dynamics τ or (ωc, ξ). This means that the controller gains KP and KI can generate only
one specific desired dynamics. Having static gains K as adjustment parameters of the control law
makes it easy to schedule the controller with respect to any of the system parameters.

On the downside of this approach, the PI controller produces phase lag which tends to reduce the
closed loop stability margins. A more sophisticated solution can be proposed to palliate this slight
drawback.

1.1.3.2 The proportional-integral-derivative (PID) structure

The proportional-integral-derivative (PID) controller comes as a more general structure. In fact,
the prior two controllers described before can be considered as particular cases of a PID controller.

In the PID structure, the error measurement ε, its integral
�
ε dt and its time derivative ε̇ are

related to a set of static gains KP , KI and KD as defined in equation (1.21). A proportional
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Chapter 1. Introduction to Nonlinear Dynamic Inversion techniques

controller can be seen as a particular PID structure where the gains KI and KD are null, while a
PI controller is the particular case where the gain KD is null.

ũ(xc, x) = KP ε(t) +KI

�
ε(t) dt+KD

d

dt
ε(t) (1.21)

with

KP = diag(kP1 , kP2 , . . . , kPn)
KI = diag(kI1 , kI2 , . . . , kIn)
KD = diag(kD1 , kD2 , . . . , kDn)

This controller uses not only the present error ε and its accumulation through time, it also employs
a prediction of future error based on the present rate-of-variations to try to minimize the present
error. The derivative signal of the controller is useful to provide phase lead which in terms offsets
the phase lag caused by the integration signal. Because of this property, the derivative signal is
considered to help improve the stability margins.

In a similar way to the PI controller, the closed loop produces second-order stable dynamics if the
gains in KP , KI and KD are positive constants. In such case, the resulting closed-loop system is
also minimum phase.

The interconnection scheme on Figure 1.6 represents the closed loop between the PID controller
and the system Σ̃ of equation (1.15).
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Figure 1.6: PID controller structure for the outer loop.

Remark 1.6 The derivative operator is represented on Figure 1.6 by a non-causal block Is.

For implementation, in practice, it is assumed that the derivative ε̇ is available for feedback. Oth-
erwise, the non-causal operator is replaced by a pseudo-derivation filter such as:

FD =
s

τD s+ 1
I (1.22)

where the time constant τD is chosen sufficiently small.
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1.1. Input-affine square systems

The generated dynamics can also be associated to the second-order characteristic polynomial (1.19).
In choosing the values of kPi , kIi and kDi , the trade-off between attained bandwidth versus damp-
ing remains present. With the extra degree of freedom introduced by the gain KD, the cut-off
frequencies ωci and damping coefficients ξi of the closed-loop states can be fixed by identification
from the system

kPi

1 + kDi

= 2 ξi ωci (1.23)

kIi
1 + kDi

= ω2
ci (1.24)

From a practical point of view, one of the three gains can be chosen heuristically. Then, it is simply
required that the other two gains verify the equations above. Other heuristic methods to choose
the value of the constants in KP , KI and KD, such as the Ziegler-Nichol formula [ACL05, Oga02],
could also be used.

Although a well tuned PID controller is a very complete solution, one mayor disadvantage comes
from the fact that in presence of measurement noise, the derivative signal of the controller may
produce large control signals.

A simple way to reduce the magnitude of the derivative signal of the PID controller is to filter
the error measurement ε using a low-pass filter, which in term is equivalent compensating the
derivative signal of the controller. Therefore, the use of a PI controller structure could be a better-
suited alternative. In some cases, discarding the use of the derivative signal has little impact on
the closed loop.

Remark 1.7 For a given desired dynamics, different combinations of the gains KP , KI , and KD

are able to produce the same desired dynamics with a PID controller.

Remark 1.8 In the three standard controller structures that have been detailed above, even though
the inversion errors ∆G and wf are considered, they are not explicitly used to fix the controller
gains. Instead, the adjustment parameters of the gains K are directly linked to the dynamics that
can be realized. As a matter of fact, the choice of the constants in the gains K end up defining the
location of the closed-loop system poles, which leads us to consider these linear control designs as
pole placement approaches.

1.1.4 Advanced robustification techniques

There are essentially two kinds of techniques to improve the behavior of NDI controllers against
inversion errors: adaptive control schemes or robust controllers.

From an adaptive point of view, the main goal is to generate a loop capable of adjusting the base-
line model used to invert the system dynamics in presence of modelling errors. The foundations
of these adaptive approaches can be found in [SI89], where an asymptotic exact cancellation of
the nonlinear dynamics is achieved with a parameter update law. Different on-line adaptive laws
and system identification strategies can be foreseen [DN02, HLS06, Tan06]. Evolutionary methods
such as neural networks can also be employed as adaptive means of accomplishing an exact system
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Chapter 1. Introduction to Nonlinear Dynamic Inversion techniques

inversion [CR98, Ple03, SZ03]. In this thesis work, robust control techniques will receive more
attention, although our proposed control structure detailed in Chapter 2 has strong connections
with indirect adaptive control schemes.

As emphasized in Remark 1.8, standard PI or PID structures exhibit interesting robustness prop-
erties which permit, to some extent, to alleviate the adverse effects of inversion errors. However,
the available degrees-of-freedom in such structures do not allow to take these errors explicitly into
account while simultaneously placing the nominal closed-loop poles as desired.

More advanced linear approaches leading to higher-order controllers can then be foreseen to better
exploit the available information on the system and the disturbances that affect its behavior.
Particularly, to improve the controller robustness capabilities thanks to the additional degrees-of-
freedom offered by higher-order controllers, these linear approaches take into account explicitly
the different ways in which the model uncertainties, external disturbances and varying parameters
will affect the nominal behavior.

Supplementary efforts to model the disturbances affecting the system in question are usually re-
quired. These efforts show to pay-off as the computed controller becomes more sensible to distur-
bances, thus attaining a better level of robustness. Depending on how the system and considered
disturbances are modelled, the robust controllers may sometimes prove to induce conservatism in
the control loop, i.e., endowing the controller an overcapacity to react to circumstances that are
physically unattainable because of actuator saturation.

Let us elaborate on how these advanced robust control techniques can be used to obtain controllers
C(s) that can reduce the effects of the inversion errors ∆G and wf (x).

1.1.4.1 A standard H∞ approach

Along with the PI structure, the H∞ control design technique becomes very practical for linear
control problems dealing with disturbance rejection. Still, the latter presents the advantage of
using the model structure to establish a mathematical optimization problem where the H∞ norms
of specific transfer functions are minimized.

The formulation of the H∞ control problem is of the utmost importance, since the resulting
controllers are optimized in the sense given by the posed problem, which typically consists of:

– specifying the transfer functions to be minimized;
– tuning frequency domain weighting functions to control the closed-loop bandwidth as well as the
rejection properties in the frequency domain.

When used to provide improved robustness properties to the outer loop in the context of NDI, the
control problem consists on guaranteeing the robust performance of the closed loop by “rejecting”
the inversion errors. A closed-loop desired behavior can be enforced in this optimization problem
via a reference model R(s) as shown on Figure 1.7.
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Figure 1.7: H∞ control design scheme for system Σ̃.

The control design scheme above is then transformed into the standard form depicted on Figure 1.8.
The latter is a particular kind of linear fractional transformation (LFT) used for controller synthesis
where
– P (s) is the augmented linear interconnection specifying the H∞ design problem. In our context,
it contains the dynamics of Σ̃(s), R(s) and other weighting functions W (s);

– w is a vector regrouping all the exogenous inputs, including the setpoint signal xc and input
disturbances like wf ;

– z is a vector regrouping all the weighted exogenous outputs. In our context, it consists of the
error between the output y and that of the reference model.
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Figure 1.8: Standard form used to formulate H∞ optimization problems.

Indeed, the signals of the vector z (and possibly those of the vector w as well) are weighted by a
series of functions W (s) that contribute to adding information to the optimization process. These
weighting functions are part of the loop-shaping approach and they describe the frequency domain
characteristics over which the controller should be optimized. When these functions are neglected,
the controller is optimized for all frequencies ω which may result unnecessary and infeasible.

The interconnection system P (s) is formalized in such a way that the closed-loop plant describing
the multi-variable transfer to be minimized coincides with the following lower LFT expression:

Tw→z = Fl(P (s), C(s))
= P11(s) + P12(s)C(s) [I − P22(s)C(s)]−1P21(s) (1.25)
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where Pij(s) denote the elements of a suitable partition of P (s).

In the H∞ framework, considering the Small Gain Theorem presented on Appendix B.1 (see
page 241), the system illustrated on Figure 1.9 is robustly stable against any unstructured bounded
uncertain operator ∆(·) such that for all z, ||∆(z)|| < ||z|| if:

||Tw→z(s)||∞ < 1 (1.26)
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Figure 1.9: Standard form associated to H∞ robust stability.

Consequently, resolving the following optimization problem responds directly to the above robust
stability constraint:

min
C(s)

γ / ||Fl(P (s), C(s))||∞ < 1 (1.27)

But thanks to the time-domain interpretation of the H∞ norm (see Appendix B.2), the above
problem can also be regarded as a performance preservation issue against disturbing inputs wf .
More precisely, in our context, the H∞ outer-loop controller is designed to keep the error between
the plant outputs y as close as possible to those of the reference model R(s).

To achieve this goal, in a first approach two transfer functions are minimized. The first one, cor-
responding to Txc→zp(s), is directly related to the nominal performance and is to be minimized in
the low frequency domain. The second one, corresponding to Twf→zp(s), reflects the effects of the
nonlinear disturbances due to inversion errors on the outputs. In most cases, such a transfer is to
be minimized in higher frequency regions where the accuracy of the model is often degraded.

In a next phase, in order to take into account more explicitly the effects of the multiplicative
uncertainties ∆G, an additional transfer Tw∆→z∆(s), as shown on Figure 1.9, should be integrated
to the standard plant P (s). Now, the latter describes the interconnection between the inputs w∆,
wf and xc and the outputs z∆, zp and ỹ as shown on Figure 1.10.
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Figure 1.10: Augmented standard form associated to H∞ control design.

Once again, invoking the small gain theorem, standard H∞ design techniques can be used to
attempt to solve the following minimization problem:

min
C(s)

||Fl(P (s), C(s))||∞ ←→ min
C(s)

||Tw→z(s)||∞ (1.28)

where

w =
�
w∆ wf xc

�T
, z =

�
z∆ zp

�T

But this strategy turns out to produce very conservative results since the structure of ∆ is not
taken into consideration for controller synthesis. In this case, the uncertainty operator ∆ has the
following structure:

∆ =

�
∆G 0 0

0 ∆wf ∆perf

�
(1.29)

1.1.4.2 Enhanced H∞ design techniques

A classical approach to relax the conservatism described above, consists of taking explicitly into
account the structure of ∆ with the help of scaling operators.

As a matter of fact, the main source of conservatism is due to the minimization of non-physical
transfers, such as the transfer from wf to z∆. On the considered example, it is desired to minimize

the transfer from
�
wf xc

�T
to zp on one hand, and the transfer from w∆ to zδ on the other hand.

A standard approach to clearly distinguish these two main transfers is to minimize the influence
of the “cross transfers” with the help of scaling operators commuting with the structured ∆ block.
Because the latter might no be square, as shown in equation (1.29) for our example, left and right
scalings must be defined:

DL =

�
d∆G In 0

0 dw I2n

�
, DR =

�
d∆G In 0

0 dw In

�
(1.30)
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such that
∆DL = DR∆ (1.31)
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Figure 1.11: LFT representation used for µ-analysis and synthesis optimization problems.

It is clear, from a stability point of view, that the diagrams 1.11(a) and 1.11(b) are equivalent.
But the transfer “seen” by the uncertain operator ∆ is modified, which then relaxes the small gain
theorem stability condition. The optimal controller is now obtained as:

Ĉ(s) = Argmin
C(s),DL,DR

||DL Fl(P (s), C(s))D−1
R ||∞ (1.32)

The resolution of the above nonconvex optimization problem, which is often referred to as a complex
µ synthesis problem, is usually performed iteratively using the algorithm known as D-K Iteration
[Doy82, Roo07]. The scaling operators Di are initially fixed to identity and a preliminary controller
is designed. The latter is then fixed and the scaling operators are computed. Such an algorithm is
implemented in MatLab [BDG+90]. This approach has been successfully used in the NDI context
to compute robust outer-loop controllers C(s) in aerospace applications [AB93, RBG95, RBG96].

To simplify the discussion on this relaxation approach, constant scaling operators D have been
considered, which is also the only possible choice when the uncertain operator ∆ contains time-
varying elements. This is the case of the uncertainties ∆G and ∆wf .

Interestingly, it can also be assumed that some elements of the ∆ block can be estimated on-line.
In such a case, the controller C(s) may depend on an estimated uncertain operator ∆̂.

Assuming, for example, that ∆G can be modelled and estimated, then the closed-loop scheme can
be represented by the block diagram of Figure 1.12. When the estimation of the uncertainties is
accurate enough, it comes that

Θ � ∆̂G ≈ ∆G (1.33)

where Θ is a vector of varying parameters.

Then, the robust control problem can be reformulated using readily available design techniques
for LPV control. In this case, the convexity of the control problem is ensured. A solution based
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on the Scaled Bounded Real Lemma (see Section 2.5.4), can be foreseen to compute a parameter
dependent controller C(s,Θ) [AG95].
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Figure 1.12: LFT representation used to formulate LPV control problems.

Other LPV strategies using polytopic modelling of the inversion errors as varying parameters can be
considered [BA99]. In this case, theH∞ norm devoted to the class of LTI systems is replaced by the
L2-induced gain which remains valid for LPV models. A parameter dependent polytopic controller
C(s,Θ) ∈ Co{C(s,Θi)}i=1...N is then computed to guarantee the quadratic H∞ performance of
the closed loop system.

Remark 1.9 In robust control approaches, for a given desired dynamics contained in the reference
model R(s), a wide range of controllers C(s) can be obtained depending on the weighting functions
W (s) used and the way the optimization problem is established. These approaches present a more
flexible solution than the previously detailed standard remedies.

1.2 Extensions to more general nonlinear systems

Let us now present some extensions to NDI for more general nonlinear systems that are not nec-
essarily square or input-affine.

First, the case of single-input single-output (SISO) systems is presented. In such cases, as the
number of states of the nonlinear system is n �= 1, the system is no longer square. Next, an
extension to more general systems with multiple inputs and multiple outputs (MIMO) is addressed.
To simplify the presentation of the MIMO case, the focus will be preliminarily set on the class of
input-affine systems. Finally, an extension to non input-affine systems is considered.
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1.2.1 A brief review of the SISO case

The general expression of a SISO input-affine nonlinear system is

Σ :

�
ẋ = f(x) + g(x)u
z = h(x)

(1.34)

where
– x ∈ Rn is the state vector of the system;
– u ∈ R is the control input of the system;
– z ∈ R is the controlled output;
– f(x) ∈ Rn and g(x) ∈ Rn are smooth nonlinear vector fields;
– h(x) ∈ R is a smooth nonlinear scalar function.

Unlike what has been considered in Section 1.1, the nonlinear process represented in (1.34) is an
input-affine system for which the number of states n > 1 is no longer equal to the number of inputs
m = 1.

Example 1.10 Consider the SISO nonlinear system described by the sate-space equation (1.35)
where x ∈ D and D ⊂ Rn. Consider also that n = 2 and, consequently, n �= m. The control
tracking objective is z = x1, even though the full state measurement x may be available for controller
synthesis.

Σ :






ẋ1 = − cosx1 + x2
2

ẋ2 = 1
2x1 x

−1
2 − x1 u− x2 u

z = x1

(1.35)

Under the general form of equation (1.34), one can easily identify

f(x) =

�
− cosx1 + x2

2
1
2x1 x

−1
2

�
, g(x) =

�
0

−(x1 + x2)

�

1.2.1.1 Fundamentals on input-output feedback linearization

The design of the NDI linearizing inner loop is better known as input-output feedback linearization.
It can be defined as follows [Isi85, SL91, Vid93].

Definition 1.11 (Exact input-output feedback linearization) The nonlinear system (1.34)
can be input-output linearized if there exists a coordinate transformation

x̃ = Φ(x) (1.36)

and a static state-feedback control

u(x) = α(x) + β(x) ũ(zc, z) (1.37)

such that the resulting closed loop of transformed states are decoupled and linear.

To obtain the expression of the linearizing controller u(x), the controlled output z is derived. Let
us recall that the derivative operator of a scalar function with respect to a vector field is known as
the Lie Derivative. The Lie derivative of h(x) with respect to f(x), for example, is defined as:

Lfh(x) =
∂h(x)

∂x
f(x) (1.38)
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The derivation process of z continues until the control input u appears explicitly on the expression
of the last derivative. The minimum number r of consecutive derivations required is known as the
nonlinear system relative degree [Isi85].

Definition 1.12 (Relative degree) The nonlinear system (1.34) has a relative degree r if
• LgLi

fh(x) = 0 ∀ i < r − 1 with i ∈ N
• LgL

r−1
f h(x) �= 0

As a result of this derivation process, one obtains r linearly independent equations where the
input control u appears only in the r-th equation. To clarify this process, let us consider that the
nonlinear system Σ has a relative degree r, then

ż =
dh(x)

dt
=

∂h(x)

∂x
ẋ =

∂h(x)

∂x
(f(x) + g(x)u)

ż = Lfh(x) + Lgh(x)u

where Lgh(x) = 0. Continuing with the derivation process of z, one gets:

z̈ =
∂Lfh(x)

∂x
(f(x) + g(x)u)

z̈ = L2
fh(x) + LgLfh(x)u

where LgLfh(x) = 0. The derivation process continues until the r-th derivative

z(r) =
∂Lr−1

f h(x)

∂x
(f(x) + g(x)u)

z(r) = Lr
fh(x) + LgL

r−1
f h(x)u

This time, the control input u appears because LgL
r−1
f h(x) �= 0. From this expression of the r-th

derivative, the NDI inner loop controller that linearizes the input-output mapping of the nonlinear
system Σ is defined as:

u(x) =
1

LgL
r−1
f h(x)

�
−Lr

fh(x) + ũ(zc, z)
�

(1.39)

The static controller structure presented in equation (1.37) can be recovered by identification of
α(x) and β(x) as:

α(x) =
−1

LgL
r−1
f h(x)

Lr
fh(x), β(x) =

1

LgL
r−1
f h(x)

while the coordinate transformation (1.36) is given by:

Φ(x) =





φ1(x)
φ2(x)

...
φr(x)




=





z
ż
...

z(r−1)




=





h(x)
Lfh(x)

...
Lr−1
f h(x)




=





x̃1

x̃2
...
x̃r




(1.40)

Consequently, the closed loop SISO nonlinear system (1.34) is immersed into the linear and decou-
pled representation 





˙̃x1 = x̃2
...

˙̃xr−1 = x̃r
˙̃xr = ũ(zc, z)

(1.41)
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The dimension of the resulting transformed system (1.41) is equal to the relative degree r. Natu-
rally, one may be interested in comparing the dimension n of the original nonlinear system Σ and
that of the transformed representation. There are three main cases:

a) r = n. The first implication of this result is that the nonlinear system Σ can be fully reconsti-
tuted from the controlled output z. The input-output feedback linearization is equivalent to the
input-state linearization of Σ.

Example 1.13 Consider the nonlinear system of example 1.10 represented by the state-space equa-
tion (1.35) in page 26. Recall that the full state x is measurable and assume an exact estimation
of the nonlinear functions f(x) and g(x) is available.

Based on the procedure that has just been described, the relative degree must first be determined by
deriving the controlled output z until the input u appears explicitly in the expression of the r-th
derivative.

z = x1

ż = ẋ1 = − cosx1 + x2
2

z̈ = ẍ1 = x1 + x2
2 sin x1 −

1

2
sin 2x1 − 2x2(x1 + x2)u

Then, the relative degree is r = 2. The immersion of the nonlinear system into a linear represen-
tation is achieved by the static feedback controller

u(x) =
−1

2x2(x1 + x2)

�
x1 + x2

2 sin x1 −
1

2
sin 2x1 + ũ(zc, z)

�
(1.42)

where

ũ(zc, z) =
1

τ
(zc − z) (1.43)

and the coordinate transformation

Φ(x) =

�
x̃1

x̃2

�
=

�
x1

− cosx1 + x2
2

�
(1.44)

The closed-loop transformed representation becomes
�
˙̃x1
˙̃x2

�
=

�
0 1
0 0

� �
x̃1

x̃2

�
+

�
0
1

�
1

τ
(zc − z) (1.45)

b) r < n. In this case, the original system includes unobservable internal dynamics that cannot
be reconstituted and linearized by immersion using a static controller u(x) and a coordinate trans-
formation Φ(x). Yet, it is possible to obtain a linear input-output behavior through state-feedback.
The unobservable dynamics end up creating zero-dynamics, that may introduce further stability
problems as is clarified in Section 1.2.1.2.

Example 1.14 Consider the second-order SISO nonlinear system described by the sate-space equa-
tion

Σ :






ẋ1 = −x3
1 + 2x2 +

1
10 u

ẋ2 = −x1 − u
z = x1

(1.46)
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for which

f(x) =

�
−x3

1 + 2x2

−x1

�
, g(x) =

�
0.1
−1

�

Assuming an exact estimation of the nonlinear functions f(x) and g(x) is available, the relative
degree r of the nonlinear system is obtained by deriving the objective z until the input u appears
explicitly in the expression of the r-th derivative. Since

ż = ẋ1 = −x3
1 + 2x2 + 0.1u

the relative degree is r = 1 and the coordinate transformation reduces to:

φ(x) = x̃ = x1 (1.47)

The input-output linearizing controller of system (1.46) can be expressed as:

u(x) = 10

�
x3
1 − 2x2 +

1

τ
(zc − z)

�
(1.48)

Because in this case r < n, only the input-output mapping of the system Σ can be linearized. Then,
internal nonlinear dynamics in system (1.46) still remain to be analysed.

c) r > n. This case reveals that the relative degree r of the nonlinear system Σ is not well defined,
meaning that the input can not be recovered from the output, therefore, the system cannot be
input-output linearized.

1.2.1.2 The effects of zero-dynamics

Let us first define what zero-dynamics are [Isi85, Vid93].

Definition 1.15 (zero-dynamics) The zero-dynamics are the dynamics that characterize the
internal behavior of a system when the input u and the initial conditions x0 have been set in such
a way that the output y is strictly zero.

By regarding the linearizing controller u(x) of the inner loop as the nonlinear equivalent of placing
poles at the zeros of a system, the zero-dynamics are dynamics which are made unobservable by
state feedback.

As explained in the previous section, when the system dimension n is greater than the relative
degree r of the system, the nonlinear system posses internal dynamics that cannot be reconstituted
from the controlled output z. The system resulting from the coordinate transformation (1.40)
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becomes 




˙̃x1 = x̃2
...

˙̃xr−1 = x̃r
˙̃xr = Lr

fh(ζ, η) + LgL
r−1
f h(ζ, η)u

ẋr+1 = d1(ζ, η)
...

ẋn = dn−r(ζ, η)

(1.49)

where

ζ =





x̃1

x̃2
...

x̃r−1

x̃r




, η =





xr+1

xr+2
...

xn−1

xn




(1.50)

This representation can be decomposed into two sub-systems ζ̇ and η̇. By considering the operating
point x̄ = 0 as an equilibrium of the nonlinear system Σ, the zero-dynamics are characterized by:

η̇ = d(0, η) (1.51)

with d(0, η) ∈ Rn−r. When the zero-dynamics (1.51) are asymptotically stable, the control law

u(ζ, η) =
1

LgL
r−1
f h(ζ, η)

�
−Lr

fh(ζ, η) + ũ(zc, z)
�

linearizes and decouples the mapping from the input ũ to the controlled output z of the nonlinear
system Σ.

If the nonlinear system Σ is non-minimum phase, the system inverse is unstable and no input-output
linearization with internal stability can be obtained. The dimension of the largest linearizable
subsystem can be determined through the computation of controllability distributions [Mar86]. It
is also worth mentioning that the choice of the controlled output plays a key role on modifying
the residual internal dynamics as explained in [Har91]. By choosing the right output function to
be linearized, the resulting unobservable sub-system composed by the differential equation η̇ may
turn out to be stable.

Example 1.16 Consider the nonlinear system of example 1.14 represented by the state-space equa-
tion (1.46).

In fact, the system Σ is non-minimum phase. This can be proved by obtaining the first-order
tangent system about an equilibrium point (x̄1, x̄2) such as:






δẋ1 = −3 x̄2
1 δx1 + 2 δx2 + 0.1 δu

δẋ2 = −δx1 − δu
δz = δx1

(1.52)

When this system is expressed in the frequency domain using the Laplace transform, one gets the
non-minimum phase transfer function

δz

δu
=

0.1 s− 2

s2 + 3 x̄2
1 s+ 2

(1.53)
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As detailed in example 1.14, an input-output linearizing controller for the nonlinear system (1.46)
can be defined as:

u(x) = 10

�
x3
1 − 2x2 +

1

τ
(zc − z)

�

Because the number of states n = 2 is greater than the relative degree r = 1, one can expect the
existence of zero-dynamics. Considering the resulting transformation φ(x) defined in example 1.14,
the closed-loop system becomes

�
˙̃x = 1

τ (xc − x)
ẋ2 = 20x2 − 10x3

1 − x1 − 10
τ (zc − z)

(1.54)

As z = x1 converges towards a constant value zc = x1c , the zero-dynamics is characterized by the
following state equation:

ẋ2 = 20x2 − 10x3
1c − x1c (1.55)

Clearly, the solution to this differential equation increases exponentially with time. The zero-
dynamics is unstable.

At this point, one can choose to solve the problems related to unstable zero-dynamics by explicitly
trying to stabilize them. The strategy proposed in [DAOM92], for example, relies on establishing a
trade-off between making the input-output mapping as linear as possible, and making some portion
of the zero-dynamics “observable” in order to achieve internal stability.

But the issue of creating these unobservable dynamics via state-feedback in the first place, can be
associated directly to the system modelling. In this sense, selecting the appropriate type of model
to represent a nonlinear system intended to be input-output linearized is relevant.

For example, in some particular cases where the number of states is greater than the relative degree
of the nonlinear system r < n, the model may allow to obtain a “state-free” inverse [IMDL86]. For
such systems, a dynamic inner-loop controller

�
ς̇ = �(x, ς) + ϑ(x, ς) ũ
u = α(x, ς) + β(x, ς) ũ

can be designed to obtain an input-output linearization via state-feedback that does not generate
unobservable internal dynamics. It should be mentioned that the dynamics is not affected in the
single input case where m = 1 [CLM91].

This is the case of differentially flat systems. A general nonlinear system is considered flat if
the state x and the input u can be recovered from a finite number of derivatives of a vector z,
containing a specific choice of system outputs [FLMR95, Lé11]. By obtaining a differentially flat
model of the nonlinear system, the creation of zero-dynamics is averted. This approach has been
successfully used in aerospace applications [MCV09, Mor09].

A simple modelling approach, natural to various mechanical systems and that helps circumvent
partially having to deal with zero-dynamics along with other previously mentioned problems, is
introduced next.
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1.2.1.3 Systems with multiple time scales

The core idea of time-scaling separation consists in assuming that a process can be decomposed
into two or more sub-systems, based on a hierarchical time basis. This is done by analysing the
open-loop behavior of the states that compose a given process. In other words, the system can be
seen as two or more systems, that evolve over different ranges of time, and that are linked one to
the other.

Let us assume that the system (1.34) presented on page 26 can be rewritten as follows:





ẋ1 = f1(x1) + λ1(x1)x2

ẋ2 = f2(x1, x2) + λ1(x1, x2)x3

...

ẋk−1 = fk−1(x1, . . . , xk−1) + λk−1(x1, . . . , xk−1)xk

ẋk = fk(x) + λk(x)u

(1.56)

where x1 denotes the slowest dynamics while xk coincides with the fastest. In the above description,
the control input u directly affects the fastest dynamics. Then, the state xk is easily controlled
using the standard NDI law (1.6) which in this case becomes

u = λ−1
k (x)

�
−fk + Ck(s)

�
xkc

xk

��
(1.57)

The controller C(s) is tuned such that the convergence of the state xk towards the target xkc is
fast when compared to the dynamics of the slower states. As a result, in the differential equation
describing the evolution of xk−1, the approximation xk ≈ xkc may be considered. Then, it comes
that

ẋk−1 = fk−1(x1, . . . , xk−1) + λk−1(x1, . . . , xk−1)xkc (1.58)

Thus, xkc may now be viewed as a new control input thanks to which xk−1 can be easily driven
to x(k−1)c using a standard NDI control law. Clearly, by a recursive procedure, the slow dynamics
x1 can be finally controlled as well.

Interestingly, most physical systems can be approximated by (1.56) although in practice, the control
input u will rarely only affect the fastest dynamics.

Example 1.17 Consider again the SISO nonlinear system presented in example 1.14 of page 28.
The nonlinear system (1.46) has been intentionally formulated in such a way to resemble a me-
chanical system where the state x1 depends heavily on the state x2 rather than on the system input
u, and the state x2 reacts directly to the input commands u.

Assuming the full state x is measurable and that the system can be decoupled in a time-scale basis,
Σ can be expressed as two separate sub-systems such as:

Σ1 :

�
ẋ1 = −x3

1 + 0.1u+ 2x2

z1 = x1
(1.59)
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and

Σ2 :

�
ẋ2 = −x1 − u
z2 = x2

(1.60)

where the state x2 represents the fast dynamics and the state x1 represents the slow dynamics.

First, an input-output linearizing controller u(x) can be designed for the fast dynamics. Deriving
z2, one gets:

ż2 = ẋ2 = −x1 − u

u(x) = −x1 −
1

τ2
(x2c − x2) (1.61)

Clearly, r2 = n2 and n2 = m2. The closed-loop fast sub-system Σ2 becomes

ẋ2 =
1

τ2
(x2c − x2) (1.62)

It is reminded that while the slow dynamics evolve, the fast dynamics converge rather quickly to-
wards its setpoint x2 = x2c .

As for the slow dynamics control, the input of this sub-system is now the state x2, which means
that the system is not controlled through its non-minimal effect any more.

The input-output linearizing controller that eliminates the nonlinear dynamics of the slow sub-
system, generates the commanded value of this fast state x2c(x) such as:

ż1 = ẋ1 = −x3
1 + 0.1u+ 2x2

= −x3
1 + 0.1

�
−x1 −

1

τ2
(x2c − x2c)

�
+ 2x2

x2c(x) =
1

2

�
x3
1 − 0.1x1 +

1

τ1
(x1c − x1)

�
(1.63)

Once again, it can be verified that r1 = n1 and that n1 = m1. The closed-loop slow sub-system
becomes

ẋ1 =
1

τ1
(x1c − x1) (1.64)

Notice that under time-scaling separation, the inversion controller (1.63) is multiplied by a factor
of 1

2 instead of 10, thus requiring smaller control signals to linearize both, the slow state x1 and
the fast state x2.

Finally, by assembling controllers (1.61) and (1.63), the time-scaled NDI controller that linearizes
and decouples the nonlinear system (1.46) without creating zero-dynamics becomes

u(x) = −x1 −
1

τ2

�
0.5x3

1 − 0.05x1 +
0.5

τ1
(x1c − x1)− x2

�
(1.65)
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Figure 1.13: Cascade NDI structure of a system Σ with k time scales.

The time-scaling approach generates a very close approximation of the inversion control signal
required to compensate the system nonlinear dynamics, thus conferring approximated linearization
and decoupling properties to the NDI controller.

It should also be kept in mind that in order for this approach to work in practice along with the
NDI control technique, the hypothesis that the system can be decoupled into faster and slower
dynamics must hold when the control loop is closed. This means that the open-loop fast dynamics
must remain faster than the slower dynamics in closed loop. Generally, the obtained results using
NDI with time-scaling separation are adequate and sufficient from a performance perspective.

1.2.2 Overview of the MIMO case

Let us now explain how the NDI inner loop design described in the previous section for SISO
nonlinear systems can be extended in a very straightforward manner to the multiple-input multiple-
output (MIMO) case. The expression of a MIMO nonlinear system can be

Σ :





ẋ = f(x) +

p�

i=1

gi(x)ui

z = h(x)

(1.66)

where
– x ∈ Rn is the state vector of the system;
– ui ∈ R are the control input of the system, with i = 1, . . . , p and n �= p;
– z ∈ Rp are the controlled outputs;
– f(x) ∈ Rn and gi(x) ∈ Rn are smooth nonlinear vector fields;
– hj(x) ∈ R are smooth scalar functions, with j = 1, . . . , p.

The fundamentals regarding input-output linearization sustain in the MIMO case. The adaptation
of some concepts are nonetheless required. For example, the notion of the relative degree is
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extended as the vector relative degree. The vector relative degree of a MIMO nonlinear system is
expressed as:

r =
�
r1 · · · rj · · · rp

�T
(1.67)

where rj represent the minimum number of derivations of the corresponding controlled output zj
required to make at least one of the inputs ui appear in the expression of its ri-th derivative. Let
us clarify this concept by taking the example of the j-th controlled output zj . Its first derivative
is written as:

żj =
dhj(x)

dt
=

∂hj(x)

∂x
ẋ =

∂hj(x)

∂x

�
f(x) +

p�

i=1

gi(x)ui

�

żj = Lfh(x) +
p�

i=1

(Lgihj(x)) ui

where each of the Lgihj(x) = 0. The derivation process of zj continues until the rj-th derivative

z
(rj)
j =

∂L
rj−1
f hj(x)

∂x

�
f(x) +

p�

i=1

gi(x)ui

�

z(rj) = L
rj
f hj(x) +

p�

i=1

LgiL
rj−1
f hj(x)ui

This time, one of the control inputs ui appears because at least one LgiL
rj−1
f hj(x) �= 0. The same

process is applied to the p controlled outputs of the original nonlinear system Σ.

Once all the controlled outputs have been derived and that the vector relative degree is obtained,
by regrouping the set of p expressions containing the rj-th derivatives of z





z(r1)1
...

z
(rp)
p



 =




Lr1
f h1(x)

...
L
rp
f hp(x)



+G(x)




u1
...
up



 (1.68)

with G(x) =





Lg1L
r1−1
f h1(x) · · · LgpL

r1−1
f h1(x)

...
. . .

...

Lg1L
rp−1
f hp(x) · · · LgpL

rp−1
f hp(x)



,

the NDI inner loop controller that linearizes the input-output mapping of the MIMO nonlinear
system Σ can be deduced as:




u1(x)

...
up(x)



 = G−1(x)



−




Lr1
f h1(x)

...
L
rp
f hp(x)



+




ũ1(z1c , z1)

...
ũp((zpc , zp))







 (1.69)

Notice that the matrixG(x) ∈ Rp×p is square. It is also generally assumed thatG(x) is non-singular
∀ x, thus ensuring that it is invertible. An input-output linearization may still be achieved in some
cases where this square matrix G(x) is singular at some operating points by adding integrators
before specific inputs ui as proposed in [DM85].
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However, one may still be confronted with problems associated to the resulting NDI controller
generating large control signals if at specific operating point, the determinant of the matrix G(x)
becomes small. And in many real life control applications, G(x) may not necessarily be square. In
fact, when the number of inputs m and the number of outputs p do not match m �= p, the matrix
G(x) becomes rectangular, meaning that the input needs to be allocated or redistributed onto each
controllable state to compensate their nonlinear dynamics.

Both issues associated to the size and operating conditions of the matrix G(x), are usually resolved
using the modelling approach described in Section 1.2.1.3.

In regards to the coordinate transformation Φ(x), in the MIMO case, it is constructed from each
computed derivative. Let us retake the example of the j-th controlled output zj . The coordinate
transformation Φj(x) related to this controlled output yields

Φj(x) =




φj,1(x)

...
φj,rj (x)



 =





zj
...

z
(rj−1)
j



 =





hj(x)
...

L
rj−1
f hj(x)



 =




x̃j,1
...

x̃j,rj



 (1.70)

Then, the coordinate transformation is obtained by reassembling the p functions Φj such as:

Φ(x) =





Φ1(x)
...

Φj(x)
...

Φp(x)




(1.71)

The dimension of the resulting transformation function Φ(x), and therefore the dimension of the
transformed linear and decoupled system, depends on the number of derivatives rj of each one of
the p output functions z, then

dim(Φ(x)) =
p�

j=1

rj (1.72)

Example 1.18 Consider the MIMO nonlinear system described by the sate-space equation (1.73)
where x ∈ D and D ⊂ Rn. Consider also that n = 3, m = 2 and p = 2. The full state measurement
x is available for controller synthesis.

Σ :






ẋ1 = −x1 x2 + u1 − u2

ẋ2 = x2 x2
3

ẋ3 = −x3 − x2 u1 − u2

z =
�
x1 x2 x2

�T
(1.73)

Under the particular form (1.66), one can identify at first glance

f(x) =




−x1 x2

x2 x2
3

−x3



 , g(x) =




u1 − u2

0
−x2 u1 − u2




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The vector relative degree is obtained by deriving each one of the controlled outputs z. Since

z1 = x1 x2

ż1 = −x1 x
2
2 + x1 x2 x

2
3 + x2 u1 − x2 u2

the relative degree is r1 = 1. Passing on to the second controlled output, one gets that:

z2 = x2

ż2 = x2 x
2
3

z̈2 = x2 x
4
3 − 2x2 x

2
3 − 2x2

2 x3 u1 − 2x2 x3 u2

The relative degree is r2 = 2. Because r1+ r2 = n, the obtained input-output feedback linearization
is equivalent to the input-state linearization. The immersion of the nonlinear system into a linear
and decoupled representation is achieved by the static feedback controller

u(x) =

�
x2 −x2

−2x2
2 x3 u1 −2x2 x3 u2

�−1 �
−
�
−x1 x2

2 + x1 x2 x2
3

x2 x4
3 − 2x2 x2

3

�
+

�
τ−1
1 (z1c − z1)
τ−1
2 (z2c − z2)

��
(1.74)

and the coordinate transformation

Φ(x) =




x̃1

x̃2

x̃3



 =




x1 x2

x2

x2 x2
3



 (1.75)

The closed-loop transformed representation becomes




˙̃x1
˙̃x2
˙̃x3



 =




0 0 0
0 0 1
0 0 0








x̃1

x̃2

x̃3



+




1 0
0 0
0 1




�
τ−1
1 (z1c − z1)
τ−1
2 (z2c − z2)

�
(1.76)

1.2.3 The case of non input-affine systems

To conclude this section with a more general class of nonlinear systems, which often appear in
aerospace control applications, let us now consider the case of non input-affine systems as described
by the state-space equation (1.77).

Σ :

�
ẋ = f(x) + g(x, u)
z = h(x)

(1.77)

where
– x ∈ Rn is the state vector of the system;
– u ∈ Rm is the control input of the system, with n �= m;
– z ∈ Rp is the controlled output;
– f(x) ∈ Rn, g(x, u) ∈ Rn and h(x) ∈ Rp are smooth vector fields.

Non-affine representations increase the complexity of the practical application of the NDI stan-
dard technique since an explicit inversion, with respect to the input u is not possible. Different
approaches, some more sophisticated than the others, can be used to circumvent this issue.

For example, a complex but powerful solution is proposed in [SZ03]. In this case, a multi-layer
neural-network is used along with a high-gain observer to generate the nonlinear control signal
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u capable of inverting the non-affine system. This solution is an auto-adaptive strategy that
compensates the nonlinear dynamics of the input in relation to the system.

Another idea is proposed in [HLS06, YCHL06], where it is considered that for most non-affine
systems, the ideal dynamic inversion controller exists but can not be written explicitly. In this
sense, the authors introduce an heuristic design that attempts to approximate a dynamic inversion
controller based on a time-scaling assumption between the system dynamics and the input dynam-
ics. One disadvantage of this approach is that it does not account for input constraints that may
limit the system input dynamics.

A more elegant solution can be found by defining a vector containing the “flat” outputs of the
system which allow to recover the state x and the input u from a finite number of its derivatives
[SRS04, Lé11]. When the non-affine system is differentially flat, a dynamic state-feedback controller
for the inner loop of the NDI control structure can be obtained following [CLM91].

Finally, a simpler adaptation consists in considering the m inputs present in the process Σ as states
of an extended state-space representation [HS90]. The idea consists on including the input vector u
as part of the system dynamics. This can be achieved by proposing a change of variables x̆ in order
to obtain an affine representation. In a very natural manner, this approach generates a dynamic
linearizing controller when used with the standard NDI inner loop design. Let us illustrate this
idea. Starting from the state equation

ẋ = f(x) + g(x, u)

then by posing the change of variables

x̆ =

�
x
u

�
, ŭ = u̇ (1.78)

the extended representation of the non-affine system becomes

�
˙̆x = f̆(x̆) + ğ(x̆)ŭ
z̆ = h̆(x̆)

(1.79)

with f̆(x̆) =

�
f(x) + g(x, u)

0

�
, ğ(x̆) =

�
0
1

�
and h̆(x̆) = h(x).

The extended system (1.79) is affine, the linearizing controller can be designed in the usual manner
but with a slight difference. After computing the vector relative degree r and the set of p equations
corresponding to the rj-th derivative of each controlled output z̆j , the resulting feedback linearizing
control law has the following rate

u̇ = ŭ = Ğ(x̆)−1[−F̆ (x̆) + ũ(zc, z)] (1.80)

with F̆ (x̆) =





Lr1
f̆
h̆1(x̆)
...

L
rp
f̆

h̆p(x̆)



 and Ğ(x̆) =





Lğ1L
r1−1
f̆

h̆1(x̆) . . . LğmLr1−1
f̆

h̆1(x̆)
...

. . .
...

Lğ1L
rp−1

f̆
h̆p(x̆) . . . LğmL

rp−1

f̆
h̆p(x̆)



.

38 / 345



1.3. On control input saturations

Finally, this feedback linearization control law can be expressed in the form of a dynamic controller
by introducing the controller state ς ∈ Rm such as:

�
ς̇ = −Ğ(x̆)−1F̆ (x̆) + Ğ(x̆)−1ũ(zc, z)
u = ς

(1.81)

1.3 On control input saturations

Let us take into account the input constraints that have been neglected up to now, including
actuator dynamics ΣA and physical limitations.

In fact, the control input u of most physical processes involve constraints on the achievable value
that can be generated in real-life. These constraints represented by nonsmooth and unfortunately
non-invertible nonlinear functions are often referred to as “hard nonlinearities” in the literature
[SL91].

Magnitude and rate saturations are the most standard examples of such kinds of hard nonlinearities
which are commonly used to model the main physical limitations in actuators.

1.3.1 Representation and effects of control input saturations

In a large majority of control applications, the nominal behavior of actuators is correctly approxi-
mated by first or second-order transfer functions. Consider the simpler first-order case

ΣA(s) =
1

τa s+ 1
(1.82)

where τa is the time constant of the actuator, which is usually small compared to the closed-loop
response.

Let us denote uc the commanded input delivered by the control laws, and ur the real output
delivered by the actuator to the physical process. The transfer from uc to ur described by (1.82)
can also be represented by the block diagram presented on Figure 1.14.

�
�

�
� τ -1a�

�

�

�

�
�

�

Figure 1.14: A general first-order actuator model.

In a very convenient manner, the derivative signal u̇r appears explicitly on this diagram. This
allows a natural representation of rate limited actuators in a very simple way, using only static
nonlinearities. A standard representation of mixed magnitude and rate limited actuators, used for
controller design, is depicted on Figure 1.15.
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�
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�
� τ -1a�
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�
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�
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��
�

Figure 1.15: A design-oriented first-order saturated actuator model.

For simplicity, let us temporarily assume that the saturation nonlinearities on the diagram above
are symmetrical. In the case of the control signal uc, for example, one gets that:

ucL =






Lm if uc > Lm

uc if |uc| ≤ Lm

−Lm if uc < −Lm

(1.83)

This assumption on the symmetry of the saturation bounds generally holds in practice for rate
limitations, but not systematically for the magnitude limitations which usually depend on trimming
conditions.

The impact of magnitude and rate saturations on the closed-loop behavior is very sever, even for
linear systems. As a matter of fact, when saturations occur, the system is no longer controlled by
the feedback laws. The behavior is temporarily characterized by the open loop dynamics subject
to constant inputs ±Li. Assume that the open loop system is unstable, then it is easily understood
why saturations are often responsible for a dangerous reduction of the size of the stability domain.

In the NDI context, the saturation phenomenon is even more complex since the magnitude and
rate limitations will also introduce severe imperfections in the inversion process. As a result, the
feedback linearisation which is normally performed by the inner loop controller fails to provide
a linear system. Consequently, additional efforts are required from the outer loop to counteract
these nonlinear effects.

Whatever the control strategy, there exist essentially two ways to minimize the adverse effects
of saturations. The first possibility consists of avoiding saturations by adjusting the control re-
quirement as proposed in [GT91]. Typically, this will result in a significant loss of the attainable
performance. Moreover, in the NDI context, this approach is not trivial since, from equation (1.6),
one observes that u(x) is not directly controlled. The latter depends on f(x) and G(x).

The second possibility consists of actively controlling the saturated system through the design of
an external control loop also known as an anti-windup device. Such strategies are briefly reviewed
hereafter.

1.3.2 Anti-windup control strategies

Some of the first formal Anti-windup control approaches were introduced in [Hor83, DSE87,
HKH87]. To this day, anti-windup strategies have been developed for a variety of systems sub-
ject to input saturation: from linear time-invariant (LTI) systems [AR89, ZT02, WL04, GdST05],
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passing through LFT representations [FB07, Roo07] and applications to aerospace control systems
[BT09, Boa10]. Some works can be found on Anti-windup strategies applied along with NDI con-
trol [YPY08, HTM+10]. These particular approaches, which remain in a nonlinear context, require
adaptations of the NDI controller inner loop which results in rather complex control structures.

The basic idea of the anti-windup controller is to enlarge the closed-loop stability domain as much
as possible by reducing the impact of the saturating inputs. This is achieved by introducing a
correction signal from the input saturation to a nominal controller C(s) and its commanded signal
uc. This correction terms coming out of the anti-windup controller J(s) help diminishing the
signals that accumulate within the nominal controller states xC when saturation occurs.

The first anti-windup approaches were basically frequency domain techniques that focused on
changing the closed-loop system to prevent limit cycles or instability following the Nyquist criterion,
for example [Hor83, AR89]. The main drawback to these techniques is that they applied only to
single input saturation systems. More recent adaptations of the anti-windup schemes allow a
systematic implementation to multiple input saturation systems through the minimization of the
saturated input transfers. Although these last approaches can be considered as more conservative,
they are also more general and can be applied to a larger scale of systems.

However, the actuator constrained measurements are not generally available to the anti-windup
controller since they are generated inside the actuator internal structure. To generate the anti-
windup correction signals for the nominal controller C(s), the input saturation, whether in magni-
tude or in rate, needs to be reconstituted out of the actuator model. From this recovered saturation
or control limiter, one can define an input for the anti-windup device.
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Figure 1.16: Standard tracking control interconnection with control limiter.

Consider, for example, the standard tracking control interconnection illustrated on Figure 1.16. A
magnitude saturation nonlinearity that ensures the exact same nominal behavior of the saturated
actuator is now part of the controller C(s). As it has been explained, the advantage of adding
this saturation to the controller structure is that it can be directly exploited by the anti-windup
control loop.

The Direct Linear Anti-windup control scheme, that uses the signals measured from the control
limiter and that enhances the nominal controller C(s) of the previous interconnection, is illustrated
in the following figure:
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Figure 1.17: Direct Linear Anti-windup scheme.

where,
– Ca(s) is the augmented controller structure enhanced by the anti-windup device;
– uAW ∈ Rm is the anti-windup controller input, defined as uAW = uc − ucL ;
– v1 ∈ RnC is the anti-windup controller output that modifies the states of the nominal controller
C(s);

– v2 ∈ Rm is the anti-windup controller output that modifies the commanded signal ũc.

The anti-windup controller J(s) activates only when the control input saturates or u �= ucL ,

whereas the anti-windup correction signal v =
�
v1 v2

�T
is zero while the control input remains

within the linear zone u = ucL .

Different variations of the anti-windup structure can be foreseen. Take, for example, the case of
the so called Model Recovery Anti-windup structure [ZT02, Boa10], presented on Figure 1.18.
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Figure 1.18: Model Recovery Anti-windup scheme.

In this particular case, the anti-windup controller can be seen as a filter that reconstitutes the
unconstrained closed-loop dynamics. By exploiting the difference between the commanded value
uc generated by the controller and the saturated input ucL , this lost control signal uAW = uc−ucL

can be used to recover the missing closed-loop dynamics due to saturation. Then, the recovered
dynamics are fed to the nominal controller in an attempt to reduce the difference between the
unconstrained closed loop and the saturated one.

Usually, the computation of the anti-windup control loop is done as a supplementary step after
nominal controller synthesis. Although a very recent developed technique, founded on nonsmooth
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optimization, allows to synthesize a nominal controller and the anti-windup controller simultane-
ously [BA11].

Concluding comments

In this chapter, the evolution and foundations of standard Nonlinear Dynamic Inversion have been
described. Along with the fundamentals of the technique, some common approaches to “robustify”
NDI and to avoid practical problems, such as the time-scaling approach, have been also introduced.

First, the case of square and input-affine nonlinear systems was used to present in a very simple
and straightforward manner the general principle behind NDI. The inherent limitations of the
technique, which drive the motivation of this thesis work have also been exposed.

Then, extensions to more general nonlinear systems were addressed while presenting the NDI
technique in a more formal way. Concepts linked to feedback linearization like the relative degree
or the zero-dynamics of a nonlinear system have also been defined and explained. NDI for SISO,
MIMO and non input-affine nonlinear systems was explained and illustrated giving simple academic
examples.

Finally, a review on systems with input saturations was presented in the context of NDI control
design. Anti-windup control schemes were presented as an alternative to enhance the closed-loop
stability of such systems.

Nonlinear Dynamic Inversion is basically a nonlinear compensation approach. It has become of
great interest in a large number of applications due to the advantages it presents. In contrast to
other purely nonlinear control techniques, NDI bridges nonlinear and linear control approaches by
proposing state-feedback control laws capable of decoupling, linearizing and stabilizing nonlinear
systems.

Yet, some inherent robustness problems arise as wider classes of nonlinear systems are considered,
including: uncertainties, time-varying parameters and control input constraints.

In the next chapter, a new perspective will be given to this standard nonlinear compensation
method. As a more generic formulation of nonlinear compensation is obtained, a larger scale of
nonlinear systems can be ultimately addressed by the novel and interesting framework which will
be proposed.
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Chapter 2

Towards a generalized nonlinear
compensation framework

Introduction

The introduction presented in the previous chapter helps clarify the insight of NDI as a nonlinear
compensation technique. The nonlinear dynamics of a system can be compensated through an
inner loop that uses the “dynamic inverse” of the known process [Isi85, SL91, Vid93]. But, in
trying to linearize a system:

Is it really necessary to use a fixed structure that introduces nonlinear terms punctually to reproduce
the system inverse within the controller?

Whereas NDI seeks to compensate nonlinear dynamics by imprinting the system inverse in the
controller, other strategies can be devised for this purpose. Inspired from the robust control
framework and from the insight of NDI, the goal of compensating nonlinear dynamics could be seen
as a disturbance rejection problem (with specific performance requirements), where the nonlinear
process is in fact a “linear” system affected by nonlinear “disturbances”.

For example, consider the following representation of a nonlinear system:

ẋ = w(x,Θ) + Λ(x,Θ)u (2.1)

where Θ is a vector of varying parameters. The nonlinear function of the efficiency matrix Λ can
be considered as an input gain that varies with the operating conditions defined by (x,Θ), and the
nonlinear function w can be considered as a disturbance.

To compensate the nonlinear effects of the term Λ, one can use the gain inverse as proposed in
the standard NDI procedure. But the nonlinear function w can be rejected from the system as if
it were an input disturbance. This can be achieved using a linear robust controller by making the
information on the system nonlinear dynamics available to the control law as input signals. In this
sense, the basic idea is to compute a linear nominal controller that receives nonlinear functions as
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a part of its input vector, rather than computing a nonlinear controller.

The main objective of this chapter is to present a fresh reformulation of the standard NDI method,
which can be viewed as a Generalized Nonlinear Compensation (NLC) Framework that uses linear-
oriented techniques for controller design and analysis.

To do so, in Section 2.2, a particular representation of nonlinear systems is proposed. This repre-
sentation stresses the linear interaction of the state variables with the system nonlinear dynamics.
This leads to an easy and systematic implementation of readily available linear robust control tools
for systems with uncertainties, varying parameters, external disturbances and input saturations.

Then, in Sections 2.3 and 2.4, multi-channel design-oriented models are derived for robust control
design and anti-windup control strategies. General guidelines for weighting functions design are
also provided. A generic H∞ optimization approach is proposed for controller synthesis.

Finally, in Section 2.5, an LFT modelling approach of the resulting nonlinear closed-loop is pro-
posed for robustness and stability analysis. The linear nature of this modelling approach allows
the use of well-suited stability analysis tools, which are also detailed within this section.

But first, an interesting way of refining the standard NDI controller structure by promoting a
better balance between the efforts of the inner and outer loops is presented in Section 2.1. This
refined linearizing control law design will eventually lead to the linear-oriented framework which
is at the core of our generalized nonlinear compensation approach.

2.1 Refined linearizing control laws

Let us take a retrospective look at the NDI design procedure. As is clear from Chapter 1 and the
introduction above, a standard NDI-based controller for the nonlinear system of equation (1.1),
which is recalled hereafter:

ẋ = f(x) +G(x)u

is designed in two steps:

1. A nonlinear inner loop is first determined to cancel the nonlinearities of the system so that
the latter behaves like pure decoupled integrators;

2. A linear outer loop is computed to:
– ensure closed-loop stability and performance,
– compensate the inversion errors of the inner loop which has been designed on a simplified

approximation of the real nonlinear process to be controlled.

From the expression of the linearizing feedback law recalled below:

u(x) = G−1(x)[−f(x) + ũ] (2.2)

It is clear that the magnitude and rate-of-variations of each component of the nonlinear vector f(x)
directly impact the control inputs u to be realized by the actuators. Consequently, there might
be a significant difference between the actual input u and ũ which is delivered by the outer-loop
controller.
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As is clarified in Chapter 1, thanks to H∞ control techniques, for example, the magnitude of ũ is
rather easily tuned via appropriate weighting functions. Imagine then the case for which f(x) ≡ 0,
so that a straightforward relationship appears between u and ũ such that

u(x) = G−1(x) ũ (2.3)

Exploiting this relationship and the fact that in many applications G(x) is a diagonal dominant
matrix, the magnitude and rate-of-variations of u can be controlled by an appropriate choice of
the outer-loop controller. If necessary, the latter can be adapted as a function of G(x).

In summary, the standard NDI-based design approach proposed in Chapter 1 is well adapted to
nonlinear systems for which the vector f(x) remains close to zero:

ẋ ≈ G(x)u ≈ ũ (2.4)

This also means that the approach is well-suited for systems whose natural behavior remains
close to a pure integrator. In aerospace applications, this is rarely the case. More precisely,
in a neighborhood of some given flight conditions Θ, typically fixed as a function of the Mach
number and the altitude, the vector f(x) can be re-written given that some linear information
can be extracted from this nonlinear function. Consider the following reformulation of the process
nonlinear dynamics

f(x) = A(Θ)x+ f̃(x) (2.5)

The latter is determined so that the norm of the residual nonlinear entry f̃(x) is minimized. Since
the inner loop objective is solely to eliminate the system nonlinearities, with such a formulation,
the nonlinear control law of equation (1.3), presented on page 11, is modified as follows:

u(x) = Ĝ−1(x)
�
−f̃(x) + ũ

�
(2.6)

Consequently, the extracted linear part from the function f(x) remains present in the outer loop
design problem. The linearized model to be controlled through the intermediate variable ũ becomes

Σ̃ : ẋ = A(Θ)x+ ũ (2.7)

and it can be tuned using any LPV control technique.

The control interest of such a procedure is to better balance the efforts between the inner and outer
loops. When compared to (1.3), the modified nonlinear control law (2.6) becomes more interesting
since ||f̃(x)|| < ||f(x)||. This leads to a closer relationship between the magnitude of the physical
control input signal u(x) and that of the intermediate variable ũ which is generated by the LPV
outer loop.

Since both, the magnitude and rate-of-variations of ũ can be rather easily controlled during the
LPV design process via an appropriate choice of the weighting functions, this refined procedure
offers interesting new perspectives for an improved management of control limitations in NDI-based
control techniques. These ideas will be further exploited in the following sections.
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2.2 A linear-oriented framework

The control design framework that will be proposed next, allows to compute a linear robust control
law with enhanced stability characteristics. This augmented robust controller Ka(s) is presented
as a generalized solution to cope with the central limitations of the standard NDI approach. Here,
the inversion errors due to defective modelling and input saturation are dealt with in a unified
framework.

Based on the proposed modelling approach of Section 2.1, consider the class of affine nonlinear
systems presented in equation (2.8). This representation of nonlinear systems can be derived
for many practical problems concerning mechanical systems, particularly in the case of aerospace
applications. �

ẋ = A(Θ)x+B1 f(x,Θ) +B2 Λ(x,Θ)u
z = Cx

(2.8)

where
– x ∈ Rn is the state vector of the system;
– Θ ∈ Rq is a vector of varying parameters;
– f(x,Θ) ∈ Rm1 is a state and parametric dependent nonlinear input vector;
– u ∈ Rm2 is the control input;
– Λ(x,Θ) ∈ Rm2×m2 is a nonlinear input efficiency matrix;
– z ∈ Rp is the controlled output.

Assumption 2.1 The control efficiency matrix Λ(x,Θ) is invertible assuming that

det(Λ(x,Θ)) �= 0 ∀ (x,Θ) ∈ D × D̃,

given the admissible domains D ⊂ Rn and D̃ ⊂ Rq of the state and varying parameters respectively.

Assumption 2.2 The full state x and varying parameters Θ are measured and can be used for
controller design.

When modelled by (2.8), the nonlinear system presents a particular structure composed of
– a matrix A(Θ) ∈ Rn×n;
– two input matrices B1 ∈ Rn×m1 and B2 ∈ Rn×m2 ;
– a controlled output matrix C ∈ Rp×n.

Clearly, the system nonlinear dynamics are concentrated in f(x,Θ) and Λ(x,Θ). However, the
matrix Λ(x,Θ) will be considered as part of the control input u, while the vector f(x,Θ) will be
considered as an external input disturbance acting over the system. To get closer to the linear
framework, using a standard abuse of notation, the nonlinear system (2.8) can be rewritten as:

z = Σ(s)

�
f
Λu

�
(2.9)

where
Σ(s) = C (sI −A(Θ))−1 �

B1 B2

�
(2.10)

Unlike common input disturbances, the vector f(x,Θ) collects functions that can actually be esti-
mated from measurements and a nominal model. This is the main reason why, from now on, they
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will be referred to as measured disturbances.

In a first step, a nominal controller K(s) can be designed by using a robust control technique. This
robust controller K(s) will be charged of rejecting the system nonlinearities as well as fending-off
any modelling errors rising from an inaccurate estimation of the nonlinear functions.

On the one hand, the compensation of the nonlinear matrix Λ(x,Θ) can be tackled in the same
way as in the standard NDI procedure, by simplifying it as closely as possible using its inverse
Λ−1(x,Θ). On the other hand, based on the H∞ optimization framework, the compensation of the
nonlinear dynamics contained in f(x,Θ) can now be formulated as a disturbance rejection problem.

Inspired by the NDI technique, where the nonlinear dynamics of a system are introduced in the
inner loop of the controller structure for compensation, the rejection of the measured disturbances
f(x,Θ) can be achieved by making this nonlinear information available to the controller synthesis.

It should be kept in mind that only an approximation of the functions in f(x,Θ) can be obtained
and made accessible to the controller. Then, these measured disturbances can be modelled as:

f(x,Θ) = f̂(x,Θ) + wf (x,Θ) (2.11)

where the modelling error wf (x,Θ) is considered to be norm bounded.

Finally, the performance criterion of the closed-loop system can be established as a reference
model R(s) tracking problem. A general scheme of this linear-oriented control design framework
is represented on Figure 2.1.

�
�

�

�
�

����

����

�
�

�
�

Λ  (��Θ�-1

	
���Θ�
�

�

�

� Σ ���
Λ (��Θ�

�
�

Figure 2.1: A general linear-oriented robust control scheme for nonlinear compensation.

The goal of our robust control design scheme is to find the best controller K(s), such that the
control law:

u(x,Θ) = Λ−1(x,Θ) K(s)




f̂(x,Θ)

zc
x



 (2.12)

can minimize the error between the controlled output z and zr delivered by the linear reference
model R(s) in spite of the measured disturbances f̂(x,Θ) and modelling errors wf .
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This linear-oriented framework endows greater flexibility to the controller K(s) synthesis process
because more information on the system can be exploited as will be further explained.

Remark 2.3 The functions contained in the vector f̂(x,Θ) remain sufficiently small when the
operation points remain close to the equilibrium conditions (x̄, Θ̄). Making reference to the control
scheme of Figure 2.1, for such operating points, the transfer Tzc→zp becomes the most important
one which the controller should seek to minimize in order to guarantee the highest performance
level attainable.

The previous remark gives rise to a particular issue concerning the choice of the best flight condi-
tions that will minimize the size of the signals contained in the vector f̂(x,Θ) for most operation
points. A not necessarily optimal approach, consists in finding worst case scenario conditions at
which control requirements are higher and reducing the size of f̂(x,Θ) becomes relevant. This
might not necessarily minimize f̂(x,Θ) for most operation points but may improve the perfor-
mance at worse case scenarios while assuring that the size of f̂(x,Θ) remains bearable for other
points of the operation domain.

Another sub-optimal approach that can be foreseen, consists in finding a “central” point of the
operation domain from a pole location perspective. This can be done by obtaining a set of matrices
A corresponding to a priori selected conditions covering a wide range of the operation domain.
Then, it is only a matter of finding which matrix A of the set yields “midpoint” eigenvalues.

In a subsequent step to the synthesis of the robust controller K(s), this linear-oriented framework
allows to enhance the stability of the closed loop in presence of saturating inputs and actuator
dynamics by means of an anti-windup control loop. In contrast with existing approaches regarding
anti-windup strategies for NDI controllers [YPY08, HTM+10], in our framework any anti-windup
structure can be directly implemented with no particular precautions or adaptations since the
nominal controller K(s) is linear.

Consider, for example, the Direct Linear Anti-windup scheme presented in Section 1.3.2. A con-
troller J(s) that modifies the robust controller K(s) is sought as to enlarge the stability domain.
A schematic representation of this strategy is presented on Figure 2.2.

�
�

�

�
�

����

�
�

�
�

����	Θ��

�

�

Σ ���
�
�



��

��

�����



�




��

�

�
�

�
�

�
�
���



�

�

Λ  (�	Θ�-1 Λ (�	Θ�

�
�

Figure 2.2: A general linear-oriented anti-windup enhancement for nonlinear compensation.
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The expression of the robust control law augmented by the anti-windup controller J(s) becomes

uc(x,Θ) = Λ−1(x,Θ) Ka(s)





v1
f̂(x,Θ)

zc
x



+ v2 (2.13)

where �
v1
v2

�
= J(s)uAW (2.14)

The goal of this second control design scheme is to find an optimal controller J(s) that enlarges as
much as possible the stability domain in spite of saturating inputs and actuator dynamics.

Notice that the NDI control design can be considered as a particular case of a more general
nonlinear compensation problem. In fact, the baseline controller

uc(x,Θ) = Λ−1(x,Θ)

�
−f̂(x,Θ) + C(s)

�
zc
x

��

can be recovered for

Ka(s) =
�
0 −I C(s)

�
, v2 = 0

The novelty of this generalized linear-oriented approach for nonlinear compensation resides
in the fact that the nonlinearities of a system are not cancelled by punctually imprinting the
system inverse inside a double-loop controller structure, but instead, the information on the
nonlinearities is made available to a unified linear control design strategy that will naturally
seek to reduce their impact on the system along with modelling errors and in spite of input
saturations.

Remark 2.4 In Figure 2.2, the exact cancellation of Λ(x,Θ) by its inverse which appeared in
Figure 2.1 is no longer verified because of the saturation inserted between these two operators.
This is also the case when actuator dynamics are considered. In both cases, the diagram looses its
linear properties which makes more complex the design of K(s) or Ka(s). These issues are further
investigated in the following section.

2.3 A multi-channel Nonlinear Compensation H∞ design
procedure

The generalized nonlinear compensation (NLC) framework proposed in the previous section can
be enriched for controller synthesis. As more information on the system is made available, greater
are the means of the optimization process to generate a more effective controller to comply with
the performance requirements.
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2.3.1 Design-oriented models

In contrast with the standard NDI control design technique, this generalized framework can account
for actuator dynamics in a very natural manner. Let us start by considering the following actuator
linear dynamics that does not account for magnitude or rate saturations:

u = ΣA(s)uc, with ΣA(s) = (sI −Aa)
−1 Ba (2.15)

When the actual process allows it, the state of the actuator can be made available to the controller
as shown in the design-oriented scheme depicted on Figure 2.3.

Furthermore, it is also possible to add to the optimization process the objective of reducing the
magnitude of the control signals generated by the controller K(s), thus trying to prevent the
actuators from reaching prematurely their saturation limits. This additional optimization objective
makes the controller design procedure multi-channel. It can be integrated to the control scheme
by adding a weighted output zu directly related to the control signal u, its derivative u̇ or any
combination of both.
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Figure 2.3: A multi-channel H∞ design-oriented scheme.

As already emphasized by Remark 2.4, the diagram of Figure 2.3 is not in a fully compatible format
to allow the use of H∞ design techniques. The main obstacle resides indeed in the fact that Λ
and its inverse Λ−1 are separated here by the actuator dynamics. As a consequence, they do not
compensate each other exactly, which means that some nonlinearities will remain present in the
loop.

Yet, in the absence of any saturation, when the actuator dynamics are fast compared to the
evolution of the system, the following manipulations show that the compensation of Λ and its
inverse can be assumed without any great loss of accuracy. Let us rewrite the state-space equation
of the actuator model (2.15) as:

u̇ = Aa u+Ba uc

From Figure 2.3, let us identify the scaled variables ũ and ũc as:

ũ = Λ(x,Θ)u, ũc = Λ(x,Θ)uc (2.16)

Then, the derivative of the scaled input ũ can be expressed as:

˙̃u = Λ̇u,+Λ u̇
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= Λ̇Λ−1 ũ+Aa Λu+Ba Λuc

= (Λ̇Λ−1 +Aa) ũ+Ba ũc (2.17)

When the variations of the input efficiency matrix Λ are rather low compared to the actuator
dynamics and the input efficiency is strong enough, it is without any severe impact that the
product Λ̇ Λ−1 can be considered sufficiently small and the actuator model can be approximated
as

ũ ≈ ΣA(s) ũc, with ΣA(s) = (sI −Aa)
−1 Ba (2.18)

The resulting design-oriented scheme after this simplification becomes:
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Figure 2.4: Modified multi-channel H∞ design-oriented scheme simplifying Λ(x,Θ).

2.3.2 Weighting functions design

Once the controller structure has been enriched with as much information on the system as possible,
a set of weighting filters W (s) remain to be designed in order to give the optimization process more
details on the frequency domain desired characteristics that will shape the closed-loop.

The tuning of such filters is an essential and often a rather difficult task in the H∞ design frame-
work. It requires specific attention since these weighting functions reflect the performance and
stability requirements for the design of the robust controller. These requirements may have to be
translated from the time domain (rise time, settling time and step overshoot) to the frequency
domain (cut-off frequency, low and high frequency gain).

On the one hand, it is desired that the closed-loop system exhibits a high-gain for good setpoint
tracking as well as good disturbance rejection. On the other hand, the closed-loop should also
present a low-gain to obtain sufficient stability margins and be insensible to neglected system
dynamics and other external factors such as measurement noises. The conflicting nature of loop
shaping is obvious since, at any given frequency ω, both requirements can not be assured simulta-
neously by the same controller

Then, it is all a matter of choosing at which bandwidths the closed-loop should present higher and
lower gains by filtering the weighted outputs z. For example, to ensure a satisfactory disturbance
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rejection and a sufficient performance level, usually, the closed-loop gain must be higher at low
frequencies. The neglected process dynamics and measurement noises usually appear at high-
frequencies, therefore, the closed-loop gain must be lower at these bandwidths to improve the
stability margins.

Our multi-channel control scheme of Figure 2.3, is mainly focused on the rejection of the nonlin-
earities of the system and the tracking of a stable reference model, thus accounting naturally for
a stability objective. Another stability issue is raised by the size of the control signals generated
by the controller, mainly because of input constraints. Given these specificities of control scheme,

the filters of the weighted outputs z =
�
zu zp

�T
can be designed as follows:

– The filter Wp(s), weighting the output zp, should be chosen such that the low-frequency gain is
high, but then attenuated promptly at high frequencies. This can be achieved by defining Wp(s)
as a low-pass or lag filter.
The optimization process will seek to minimize the size of the error signal between the control
objective z and the reference model R(s) in the bandwidth where it is expected to be higher,
thus ensuring a sufficient disturbance rejection and good performance level at low-frequencies.

– The filter Wu(s), weighting the output zu = u̇, should be chosen such that the low-frequency
gain is rather low whereas the high-frequency gain is high. This can be achieved by defining
Wu(s) as a high-pass or lead filter.
The optimization process will seek to diminish the size of the input signals in the bandwidth
where they are expected to be higher, thus reducing their activity at higher frequencies while
ensuring a sufficient input gain where the performance constraint requires it. By extracting the
derivative u̇ from the actuator models, one can define filters for this signal which permits to
bound the rate-of-variations of the control signals. This is an interesting way of preventing the
adverse effects of rate limitations.

As for the exogenous inputs w, the use of weighting filters can be foreseen to translate the fact
that, for example, the system nonlinearities may not be significant in an unlimited frequency
spectrum. Therefore, lag filters Wf (s) can be used on the disturbances f̂(x,Θ) to reflect that the
system nonlinear dynamics are present mainly at low-frequencies. The loop shaped design-oriented
scheme using the weighting functions W (s) is illustrated on Figure 2.5.
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Figure 2.5: Loop shaped multi-channel H∞ control scheme.
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2.3.3 Controller synthesis through H∞ optimization

Once the enriched design-oriented model has been defined and that the weighting functions W (s)
have been selected to describe the model frequency domain characteristics, a standard form can
be easily deduced from the multi-channel control scheme of Figure 2.6 with the following notation:

– w =
�
wf f̂ zc

�T
is the vector of exogenous inputs;

– z =
�
zu zp

�T
is the vector of weighted outputs;

– ỹ =
�
f̂ zc x ũ

�T
is the vector of controller inputs.
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Figure 2.6: Standard form of the multi-channel H∞ control scheme.

Invoking arguments developed in Chapter 1, based on the small gain theorem and the time-domain
interpretation of the H∞ norm, the robust performance problem depicted in Figure 2.6 is satisfied
when

||Tw→z(s)||∞ < 1 (2.19)

and may thus be solved via H∞ optimization:

min
K(s)

||Fl(P (s),K(s))||∞ (2.20)

Depending on the different weighing functions W (s) chosen to establish the frequency domain
characteristics of the exogenous inputsw and the weighted outputs z, the resulting robust controller
that minimizes Tw→z should be able to produce the following effects:
– The smaller Tzc→zp , the better the model-tracking of the reference model R(s);
– The smaller Tf̂→zp

, the larger the operation domain;
– The smaller Twf→zp , the lower the modelling errors effect;
– The smaller Tw→zu , the lower the magnitude of the control input u.

This problem was shown to be convex in the full-order case, that is, when the order of the controller
K(s) coincides with that of P (s). In such a case, a famous algorithm based on an iterative
resolution of coupled Riccati equations can be used [DGKF89]. The latter is quite efficient even
for high-order systems, although it requires some regularity assumptions to be satisfied by P (s).
More recently, in 1994, an LMI-based formulation was developed and offered much more flexibility
[GA94]. Unfortunately, this approach is also much more demanding numerically and suffers from
some drawbacks as the Ricatti-based method: it does not allow to impose constraints neither on
the order of K(s) nor on its structure.

In such cases, which of course are very relevant in practice, the optimization problem turns out to
be no longer convex. Over the past ten years, many algorithms based on LMI optimization have
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Chapter 2. Towards a generalized nonlinear compensation framework

been proposed. Most of these implement iterative strategies combining design and analysis steps.
In many cases, such algorithms converge to a fixed point that might not even be a local optimum.

In 2006, recent developments in nonsmooth optimization [AN06, BHLO06], have given birth to
new and efficient tools to solve this difficult nonconvex problem [GMO08, Mat11b]. Quite inter-
estingly, the flexibility of nonsmooth optimization techniques permits to solve multi-model and
multi-channel H∞ design problems [GHMO09].

Thus, not only the structure and the order of K(s) can be imposed, but also non desired crossed
transfer functions can be avoided. This last property will be of particular interest for a simultaneous
design of the feedback controllerK(s) and the anti-windup compensator J(s), which will be detailed
next.

2.4 Anti-windup design procedure

Once a nominal robust controller K(s) has been obtained from the H∞ design approach presented
above, the nonlinear closed-loop properties may still require some improvement when input satu-
rations occur. As it was mentioned before, this can be achieved by anti-windup control loops to
be further detailed next.

Thanks to the generalized NLC framework, it is shown below that the optimization of these anti-
windup loops present strong similarities with the design of the nominal controller K(s). Interest-
ingly, both loops can be tuned simultaneously.

2.4.1 A design-oriented model for rate saturations

In a large majority of control applications, rate limitations are much more restrictive than magni-
tude bounds inside the actuator. This is why the following is essentially focused on this class of
saturations. Note that the results are easily transposed to the more simple case of static magnitude
constraints.

In practice, to preserve the actuators, the control signals are preliminarily bounded by an appro-
priate device within the control law. In the case of rate limitations, the signal uc illustrated on
Figure 2.7 is filtered by a nonlinear operator with first-order dynamics, thus generating a rate
limited signal ucL such that

u̇cL = satL (τ−1
L [uc − ucL ]) (2.21)
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Figure 2.7: General first-order control rate limiter.
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2.4. Anti-windup design procedure

Then, the physical actuator remains in a nominal region and can be represented by the linear
model ΣA(s) without loss of generality.

Still, with this new device inserted between Λ(x,Θ) and its inverse, the diagram of Figure 2.3 now
becomes:
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Figure 2.8: Control scheme with first-order rate limiter.

In this context, the manipulations of equation (2.23) allowing to obtain the simplified diagram of
Figure 2.4, must be revised. Using the notation of equation (2.16) and also defining similarly the
additional rescaled variable ũcL as:

ũcL = ΛucL (2.22)

one gets from equation (2.21) that:

˙̃ucL = Λ̇ucL ,+Λ u̇cL

= Λ̇Λ−1 ũcL + Λ satL(τ
−1
L [uc − ucL ])

≈ Λ satL(τ
−1
L [uc − ucL ]) (2.23)

Next, observing that for any positive diagonal matrix Λ(x,Θ) ∈ Rm×m, any vector L ∈ Rm and
any signal u ∈ Rm verifies that

Λ satL(u) = satΛL(Λu) (2.24)

one obtains the simplified rate limiter expression:

˙̃ucL ≈ satL̃(τ
−1
L [ũc − ũcL ]) (2.25)

with

L̃ = ΛL (2.26)

Finally, after replacing the saturation-type nonlinearity by a dead-zone operator ϕL̃, The above
developments lead to a simplified of the diagram as shown on Figure 2.9, where the linear inter-
connection ΣRL(s) is given by:

ΣRL(s) :






ẋRL = τ−1
L (ũc − xRL)− wϕ

ũcL = xRL

zϕ = τ−1
L (ũc − xRL)

(2.27)
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Figure 2.9: Modified control scheme with first-order rate limiter and simplifying Λ(x,Θ).

Since the saturation-type nonlinearity has been replaced by a dead-zone operator, whose outputs
wϕ are null in the linear region, the dynamics of ΣRL(s) correspond to the nominal unconstrained
case. As a result, this interconnection is stable.

Also, in a very convenient and interesting manner, the output wϕ coincides with the saturation
activity given that

wϕ = zϕ − sat(zϕ) (2.28)

Then, the control scheme of Figure 2.2 can be redrawn and transformed into a design-oriented
model as depicted on Figure 2.10, where wϕ can be directly used as the input of the anti-windup
device such that

uAW = wϕ (2.29)
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Figure 2.10: Design-oriented scheme with rate limiter and anti-windup correction.

Following the H∞ formalism introduced for designing the control laws with K(s), This diagram
can also be redrawn in a compact standard form as depicted on Figure 2.11.
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�������������������

�����

�
��

�

��

ϕ  
	�
����
�

Figure 2.11: LFT representation associated to the anti-windup control scheme.

Let us now discuss how the computation of the Anti-windup controller can be established as an
H∞ optimization problem.

2.4.2 Optimization aspects

The objective of the control synthesis procedure is to obtain an optimal controller J(s) capable
to diminish the impact of the nonlinear signal zϕ in the stability of the closed loop. Consider the
following assumption:

Assumption 2.5 There exists a positive scalar kϕ such that ∀ zϕ ∈ Rm

||wϕ|| = ||ϕ(zϕ)|| ≤ kϕ ||zϕ|| (2.30)

Invoking once more the small gain theorem, the stability of the closed loop is assured if

||Twϕ→zϕ ||∞ <
1

kϕ
(2.31)

In the same way as in the case of the nominal controller K(s), the computation of the anti-windup
controller J(s) can be done with a nonsmooth optimization method. The standard form, relative
to the proposed control scheme on Figure 2.10, that is used for controller synthesis is represented
on Figure 2.12, where

– wϕ = uAW is the exogenous input corresponding to the nonlinear disturbance, which is also the
anti-windup controller activation signal;

– zϕ is the exogenous output corresponding to the nonlinearity input;

– v =
�
v1 v2

�T
is the vector of anti-windup correction signals.
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Figure 2.12: Standard form of the anti-windup design-oriented control scheme.

The anti-windup compensator is obtained as the solution of the following H∞ minimization prob-
lem:

Ĵ(s) = Argmin
J(s)

||Fl(PAW (s), J(s))||∞ (2.32)

Clearly, the smaller the H∞ norm, the less restrictive assumption 2.5 will be. In that case, larger
values of kϕ are allowed.

Remark 2.6 Observing that the dead-zone operator always verifies the assumption for kϕ = 1,
the anti-windup compensator J(s) ensures global stability if:

||Fl(PAW (s), J(s))||∞ < 1 (2.33)

Conversely, large H∞ norms do not necessarily imply smaller stability regions since the represen-
tation of the dead-zone nonlinearity by a Lipschitzian operator is rather conservative.

With respect to other anti-windup synthesis approaches, such as those proposed in [Roo07, BT09,
GdST05, MTK09] based on convex optimisation, a nonsmooth optimization technique which min-
imizes the H∞ norm of the standard form will be used in this thesis. This synthesis tool allows to
fix the structure of the controller J(s).

2.5 On stability and robustness analysis

As it was already emphasized in Section 2.3, our NLC design strategy, thanks to the minimization
of the H∞ norm of the transfer from the nonlinear inputs f̂ to the error output zp, tends to
maximize the operating domain by minimizing the nonlinear effects on the closed-loop.

However, there is no straightforward relationship between the H∞ norm of this transfer and the
size of the stability domain achieved.

Then, a more specific model is required to perform this type of analysis. In the following, an LFT
interconnection composed of a linear closed-loop affected by structured nonlinear feedback signals
along with parametric variations and uncertainties will be derived. Then, robustness analysis tools
are presented to solve the robust stability problem.
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2.5. On stability and robustness analysis

2.5.1 Nonlinear closed-loop LFT modelling

For simplicity of the modelling strategy presentation, consider temporarily a nominal case without
modelling errors (wf = 0) which means that an exact estimation of the nonlinear inputs can be

obtained such that f̂(x,Θ) = f(x,Θ).

Let us suppose the existence of a stable equilibrium state x̄ of the closed-loop system presented on
Figure 2.10 for a given parametric configuration Θ = Θ̄. Then, the stability analysis is performed
about the equilibrium conditions (x̄, Θ̄) for which ẋ = 0.

By denoting x̃ = x − x̄ the “small” variations of the state x around the equilibrium point x̄,
the control scheme of Figure 2.10 can be redrawn to generate the diagram of Figure 2.13. The
input wΦ ∈ Rn on this diagram denotes the variation of the nonlinear estimates f̂(x,Θ) about the
equilibrium (x̄, Θ̄) such that:

wΦ = f̂(x,Θ)− f̂(x̄, Θ̄) (2.34)

Clearly, when the system is at the equilibrium, this variation becomes wΦ = 0.
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Figure 2.13: Representation of the control scheme about equilibrium conditions (x̄, Θ̄)

At the equilibrium, the setpoint signal is zc ≡ 0. Then, by suppressing the latter, the controller
Ka(s) becomes K̃a(s) as presented on the figure above. Since the focus of this diagram is set on
the stability conditions of the closed-loop system around x̄, the reference model R(s), the error
output zp and the actuator rate output zu are also discarded.

Next, let us further detail the nonlinear input wΦ to obtain a better suited representation for
robustness analysis. Assume that this variation can be rewritten as follows:

wΦ = LΦ(Θ̃) x̃+∆Φ(x̃) (2.35)

where it is supposed that the remaining nonlinearities contained in ∆φ only depend on x̃, the
variation of the state around the equilibrium.

In fact, it can be assumed that the parameter-dependent operator LΦ rationally depends on the
components of the vector Θ̃ ∈ Rq. By denoting ñi the size of the rational dependency of LΦ on
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Chapter 2. Towards a generalized nonlinear compensation framework

the i-th parameter of the vector Θ̃, there exists a block-diagonal structure ∆Θ̃(t) ∈ Rq̃ expressed
as:

∆Θ̃(t) = diag(∆Θ̃1
(t) Iñ1 , . . . ,∆Θ̃(t) Iñq ) (2.36)

and a linear interconnection TLΦ of appropriate sizes such that:

LΦ(Θ̃) = Fu(TLΦ ,∆Θ̃(t)) (2.37)
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Figure 2.14: LFT modelling of the variation wΦ.

Consequently, as illustrated on Figure 2.14, one can generate a better suited linear interconnection
matrix TwΦ such that:

wΦ = Fu

�
TLΦ

,∆Θ̃(t)
�
x̃+∆Φ(x̃)

= Fu

�
Fu(TwΦ

,∆Θ̃(t)),∆Φ(·)
�
x̃ (2.38)

Finally, connecting the above diagram with the one of Figure 2.13, one obtains the nonlinear closed-
loop scheme depicted on Figure 2.15. In practice, this interconnection can be easily implemented in
MatLab and Simulink by defining LFR objects using the Linear Fractional Representation Toolbox
(LFRT) [Mag02].
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Figure 2.15: Nonlinear closed-loop scheme.

From above scheme, the robustness analysis-oriented LFT form presented on Figure 2.16 can be
easily deduced and expressed using a nested upper LFT interconnection as:

Fu

�
Fu

�
M(s),∆

Θ̃
(t)

�
, diag (∆Φ(·), ϕL̃(·))

�
(2.39)
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Figure 2.16: Analysis LFT representation of the nonlinear closed-loop.

Now, let us consider the more realistic case where, due to the modelling errors wf , the estimations

f̂(x,Θ) are only approximations of the real nonlinearities f(x,Θ). Then, a difference exists between
the variation ŵΦ “seen” by the controller Ka(s) and the actual system variation wΦ around the
equilibrium conditions (x̄, Θ̄).

A multiplicative uncertainty ∆w(t) can be used to represent this modelling discrepancy as depicted
on Figure 2.17. In this case, a diagonal block ∆w(t) of time-varying parametric uncertainties is
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added to the signal wφ which is fed to the robust controller Ka(s) such that:

ŵΦ = (I +∆w(t)) wΦ, with ∆w(t) =




δw1(t)

. . .
δwn(t)



 (2.40)
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Figure 2.17: Nonlinear closed-loop scheme with parametric uncertainties.
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Figure 2.18: Analysis-oriented LFT of the nonlinear closed-loop with parametric uncertainties.

With some simple manipulations on the control scheme of Figure 2.17, the resulting LFT repre-
sentation of the nonlinear closed-loop with parametric uncertainties is depicted on Figure 2.18 and
can be expressed with a nested upper LFT interconnection as:

Fu

�
Fu

�
M(s), diag(∆

Θ̃
(t),∆w(t))

�
, diag (∆Φ(·), ϕL̃(·))

�
(2.41)
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2.5.2 Standard Assumptions

Based on the nonlinear closed-loop LFT model presented in the previous section, several robustness
analysis tools can be considered to evaluate the stability region of the nonlinear system in feedback
loop with our generalized NLC control law.

Hereafter, the time varying operators ∆Θ̃(t) and ∆w(t) along with the nonlinear elements ∆Φ(·)
and ϕL̃(·) are supposed to satisfy the following assumptions:

Assumption 2.7 The nonlinear operators ∆Φ(·) and ϕL̃(·) satisfy the Lipschitz condition. Then,
∀ x̃ ∈ Rn and ∀ zϕ ∈ Rm, two Lipschitz constants kΦ and kϕ can be defined such that:

∀ ρΦ > 0 and ∀ ρϕ > 0, where

||x̃|| < ρΦ, ||zϕ|| < ρϕ (2.42)

one gets that
||∆Φ(x̃)|| ≤ kΦ(ρΦ) ||x̃|| (2.43)

||ϕL̃(zϕ)|| ≤ kϕ(ρϕ) ||zϕ|| (2.44)

Assumption 2.8 The time varying operators ∆Θ̃(t) and ∆w(t) are normalized, i.e.:

∀ i = 1 . . . q, ∀ t ≥ 0, |∆Θ̃i
(t)| ≤ 1 (2.45)

∀ j = 1 . . . n, ∀ t ≥ 0, |δwj (t)| ≤ 1 (2.46)

From the previously established assumptions, the following remarks can be made:

Remark 2.9 Since the nonlinear operator ϕL̃ is associated to a dead-zone function, the Lipschitz
condition in Assumption 2.7 is global for kϕ ≥ 1. Otherwise, as illustrated by Figure 2.19, one
only gets a local condition.

(a) (b)

Figure 2.19: Global and local Lipschitz conditions of a dead-zone operator.

Remark 2.10 Assumption 2.8 is not restrictive since the linear interconnection M(s) can be
rescaled to enforce this normalization property.
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2.5.3 A basic result

A first stability test, that yields a rather conservative measure of the stability region, can be
proposed by invoking the Small Gain Theorem (see Appendix B.1 on page 243). Based on the

H∞ norm of the transfer between the exogenous inputs w =
�
w∆Θ̃

w∆w w∆Φ wϕ

�T
and the

exogenous outputs z =
�
z∆Θ̃

z∆w x̃ zϕ
�T

, if

||M(s)||∞ < γ (2.47)

then, the nonlinear closed-loop is stable for all

|∆Θ̃(t)| <
1

γ
, |∆w(t)| <

1

γ
, kΦ(ρΦ) <

1

γ
, and kϕ(ρϕ) <

1

γ
(2.48)

This approach allows to obtain a first idea of the size of the constants ki. From the latter, one can
deduce the size of the stability regions ρΦ and ρϕ given that:

∀ x̃, |x̃| < ρΦ → |∆Φ(x̃)| ≤ kΦ|x̃| (2.49)

∀ zϕ, |zϕ| < ρϕ → |ϕL̃(zϕ)| ≤ kϕ|zϕ| (2.50)

Furthermore, if the H∞ norm of the transfer Tw→z is γ < 1, the parametric domain of the variation
Θ̃ is cleared by the controller along with any time varying uncertainty ∆w(t) admissible in the
system. Otherwise, the parametric domain is not clear for all admissible variations of Θ̃ and the
closed-loop stability is only guaranteed for a certain level of uncertainty.

Remark 2.11 In the case where γ > 1, since the parametric domain is not cleared by the con-
troller, a refined result can be obtained by weighting separately the transfer “seen” by ∆Θ̃.

Considering the remark above, let us define:

Mρ(s) = diag

�
1
√
ρ
Iq̃, I2n+m

�
×M(s)× diag

�
1
√
ρ
Iq̃, I2n+m

�
(2.51)

After this modification to the system M(s), the stability conditions in (2.47) and (2.48) can be
transformed into the following statement: if

||Mρ(s)||∞ < γ (2.52)

then, the nonlinear closed-loop is stable for all

|∆Θ̃(t)| <
ρ

γ
, |∆w(t)| <

1

γ
, kΦ(ρΦ) <

1

γ
, and kϕ(ρϕ) <

1

γ
(2.53)

The previous restatement of the stability conditions can be solved for different values of ρ. The
parametric domain is cleared for all values of ρ that verify that:

ρ ≤ γ (2.54)

It is clear that conservatism induced by this approach can become non-trivial if the values of ρ
that verify the condition above are too small. In such a case, the transfer Tw∆

Θ̃
→z∆

Θ̃
becomes large

and preponderant with respect to transfer of the remaining inputs and outputs in w and z.
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2.5.4 A refined approach

Now, let us consider a less conservative approach that relaxes the robustness analysis problem
through the use of constant scalings. Once the nonlinear operators ∆Φ(·) and ϕL̃(·) have been
assumed Lipschitzian, they can be replaced by time-varying linear operators, which enable the use
of LTV analysis tools.

Indeed, for any nonlinear function that verifies the Lipschitz continuity condition, a sector associ-
ated to that nonlinearity can be deduced. Then, ∆Φ(x̃) and ϕL̃(zϕ) can be immersed in a linear
representation using time-varying uncertainties in diagonal-block structures ∆̃i(t) such that:

∀ i = 1 . . . n, ∀ x̃, ∃ δ̃Φi(t) ∈
�
−kΦ kΦ

�
/ ∆Φ(x̃) = ∆̃Φ(t) x̃ (2.55)

∀ j = 1 . . .m, ∀ zϕ, ∃ δ̃ϕj (t) ∈
�
−kϕ kϕ

�
/ ϕL̃(zϕ) = ∆̃ϕ(t) zϕ (2.56)

After replacing the nonlinear functions by LTV operators, the LFT in (2.41) can now be simply
expressed as:

Fu (M(s),∆(t)) (2.57)

with

∆(t) = diag
�
∆

Θ̃
(t),∆w(t), ∆̃Φ(t), ∆̃ϕ(t)

�
(2.58)
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Figure 2.20: Modified analysis LFT representation with LTV operators.

Given the time-varying nature of the operators in the block ∆(t), an invertible static scaling
operator D can be used such that:

∆(t)D = D∆(t) (2.59)

with

D =





dΘ̃ Iq̃ 0
dw In

dΦ In
0 dϕ Im



 (2.60)

Thanks to the above commuting property, the closed-loop interconnections of Figures 2.20 and 2.21
are clearly equivalent. But the transfer “seen” by ∆(t) is modified in this case, which relaxes the
small gain theorem.
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Figure 2.21: Modified analysis LFT representation with LTV operators and scalings.

Using a similar reasoning as on the previous case, a second test for robustness analysis can indeed
be established. Given

||DM(s)D−1||∞ < γ (2.61)

then, the nonlinear closed-loop is stable for all

|∆Θ̃(t)| <
1

γ
, |∆w(t)| <

1

γ
, |∆̃Φ(t)| <

1

γ
, and |∆̃ϕ(t)| <

1

γ
(2.62)

This problem can be readily solved using the Scaled Bounded Real Lemma (SBRL). The latter is
an adaptation of the well-known Bounded Real Lemma (BRL) which is described in Appendix B.2
(see page 244).

Consider that (AM , BM , CM , DM ) is a realization of the system M(s). The standard BRL can be
restated to include the constant scaling D as:

Lemma 2.12 (Scaled Bounded Real) The gain of the scaled system DM(s)D−1 is bounded
by γ > 0 if and only if there exist X = XT , L = LT and Z = ZT such that:





AT
M X +X AM X BM CT

M L

BT
M X −Z DT

M L

LCM LDM −Z




< 0 (2.63)

where X > 0, L = DDT > 0 and Z < γ L.

Using the SBRL, the solution to the robust stability problem presented by the conditions (2.61)
and (2.62), can be expressed as:

D̂ = Argmin
D

||DM(s)D−1||∞ (2.64)

Once again, a straightforward link between notion of stability region and the H∞ norm γ can be
established as described in the previous section.
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2.5. On stability and robustness analysis

Concluding comments

In this chapter, a novel Generalized Nonlinear Compensation Framework has been proposed for a
large class of nonlinear systems. This framework offers a fresh reformulation of the rather rigid
controller structure of standard NDI techniques. In this generalized framework, a linear controller
capable of compensating the system nonlinear dynamics in presence of modelling errors, uncertain
or varying parameters and input constraints, can be systematically designed.

First, a simple approach to refine the linearizing control laws, by better balancing the efforts of
the inner and outer loops of the standard NDI controller structure, was proposed. From this ap-
proach, a linear-oriented framework was deduced to design robust controllers capable of “rejecting”
the nonlinear dynamics of the system as if they were input disturbances. This new perspective
for nonlinear compensation produces linear controllers that proved to generalize the double loop
standard NDI controller structure.

Then, design-oriented models resulting from this framework were proposed. In these control
schemes, as more information about the system is made available, the better are the chances
of obtaining a high performance solution to address the control problem. Also, these design-
oriented models allow multi-channel formulations which are helpful to simultaneously optimize a
performance criteria and restrictions on the size of control signals.

Given the linear nature of the proposed framework, anti-windup control strategies were also pre-
sented as a natural option for enhancing the robustness of the obtained controllers with respect to
input saturations. No further adaptation of the existing anti-windup control schemes are required.

Finally, a modelling strategy using Linear Fractional Transformations for robustness and stability
analysis was proposed. This LFT representation of the nonlinear closed-loop enables the use of
a variety of linear-oriented analysis tests, some of which were detailed. To solve the robustness
analysis problem, it should be considered that an exact result is hardly ever found, no matter what
approach is used. Even though some tests induce less conservatism than others, the computational
burden foregone is usually greater. This remark on stability analysis concludes Part I of this thesis
work.

Part II will be devoted to one of the most popular application fields of standard NDI techniques:
aerospace applications. In the next chapter, some fundamentals on Flight Mechanics and mod-
elling of aerospace applications will be discussed. Some of the most common control objectives,
corresponding to attitude parameters, will be derived from the general equations of motion in a
rather convenient way for nonlinear compensation design.
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Part II

Application: air vehicles
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Chapter 3

Flight Mechanics modelling and
control objectives

Introduction

The fundamental laws of motion in classical Mechanics apply to all moving bodies in the same
way. The same principle holds for air vehicles (including aircraft, space launchers and spacecrafts
such as reentry vehicles). The fundamental equations of motion used in Flight Mechanics [Etk95,
Boi98, Taq09] allow to describe the dynamics of such air vehicles despite of their particularities
and desired flying qualities.

There are two main models used to represent the motion of any of these air vehicles: 3 degrees-
of-freedom models and 6 degrees-of-freedom models. On the one hand, the 3 degrees-of-freedom
representation is a simplified model which mainly focuses on the longitudinal motion of the air
vehicle. On the other hand, a 6 degrees-of-freedom model describes the complete motion of the air
vehicle in the 3 dimensional space. These degrees-of-freedom correspond to the 3 components of
forces and moments to which the air vehicle is subject to.

The central objective of this chapter is to introduce the main modelling aspects of air vehicles. In
particular, the modelling of the attitude control objectives is stressed. To do so, it is necessary to
begin with a description of the fundamental equations of motion used in Flight Mechanics.

First, in Section 3.1, a general representation of an air vehicle as a dynamic system with 6 degrees-
of-freedom is presented. Some relevant aspects of this model, mainly related to the air vehicle
simulation, are gradually exposed in more detail as the aerodynamic characteristics are introduced
in Section 3.2.

Then, in Section 3.3, the target parameters for which the flight control laws are designed are
introduced. These control objectives correspond specifically to attitude parameters of air vehicles
as it will be explained. An interesting formulation of these objectives is derived. By exploiting
measurements that are usually made available by the IMU, such as the acceleration measurement
Γm, some aerodynamic coefficients and vehicle parameters like the mass can be accounted for
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Chapter 3. Flight Mechanics modelling and control objectives

indirectly. This will prove to be very practical for NLC-based flight controller designs in some
aerospace applications since the instantaneous mass is usually hard to estimate.

Finally, Section 3.4 presents a list of the main sources of disturbance affecting air vehicles, which
should be considered to introduce a realistic scenario in simulation.

3.1 A general dynamic state model (6 degrees-of-freedom)

The dynamic model representing the motion of an air vehicle can be obtained from the general
equations of Flight Mechanics that are detailed in Appendix A.1. Such dynamic modelling can
be useful for computer simulation and also for deriving the expression of different predominant
parameters in specific tasks. The state models are represented as non-autonomous systems in the
general form �

�̇x = �f(t, �x(t),�c(t), �u(t))
�y(t) = �g(t, �x(t),�c(t), �u(t))

(3.1)

with �x(t) ∈ Rn as the state vector, �u(t) ∈ Rm as the input vector, �y(t) ∈ Rp as the system
measurements or output vector, �c(t) ∈ Rq as a vector of constant or varying parameters, �f and �g
as vector fields containing the system dynamics.

When modelling the 6 degrees-of-freedom motion of air vehicle, the focus is set on the instantaneous
position, attitude, translation speed, angular speed, and mass. The state vector �x(t) of an air
vehicle representation can be defined as:

�x(t) =
�
�r(t) �V(t) q(t) �Ω(t) m(t)

�T
(3.2)

where �r is the position vector, �V is the speed vector, q is an attitude quaternion, �Ω is the angular
speed vector and m is the mass of the air vehicle.

The input �u(t) affecting the states of the dynamic model are mainly: the deflection of the aerody-
namic controls, or control surfaces, located on the air vehicle and the thrust levers (when available).

The output �y(t) represents the measurements obtained via different on-board instruments such
as: the Inertial Measurement Unit (IMU), anemometric units, global positioning systems (GPS),
radars, and telemetry, amongst others. For example, the IMU detects the rotation rate �Ω through
a set of independent gyroscopes and the translational acceleration �Γ by means of accelerometers.
The IMU then integrates this measurements to compute other parameters such as: ground position
�rg, ground speed �Vg, and the Euler angles φ, θ and ψ. The anemometric unit uses a probe 1 to
measure the air speed and air-speed linked parameters like the anlge-of-attack and the side-slip
angle. The GPS provides information on the inertial position �r of an air vehicle and radars are
mainly used to determine its altitude.

Given that the moment of inertia tensor I can be considered constant in the body frame, equa-
tion (3.3) contains a general dynamic model with 6 degrees-of-freedom which can be used to

1. On high-speed vehicles, the anemometric probe is retracted to protect it from high temperatures, usually, for

Mach numbers M < 2.5.
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3.2. Aerodynamic models

represent the state �x(t) of an air vehicle at any given time t.






�̇r = �V

m�̇V = m�Γ =
� �F

q̇i = 1
2qi ⊗ �Ω

I �̇Ω =
� �MG − �Ω ∧ I�Ω

(3.3)

where

– �r = (
#     „
OG)/Ri

: inertial position vector, taken from the origin O of the inertial frame to the air
vehicle center of gravity G;

– �V = �Vg − �ΩE ∧�r : inertial speed vector;

– �Vg = �Va − �Vw : ground speed vector expressed as the difference of the aerodynamic speed and
the wind speed;

– �Γ : inertial acceleration vector;
– qi : attitude quaternion between the body frame and the inertial frame;
– �Ω = �Ωi − �Ωo − �ΩE : angular speed vector expressed in body frame as the difference of the
inertial angular speed, the local and Earth angular speeds;

– �Ωo : angular speed vector of the local frame rotation with respect to the inertial frame;
– �ΩE : angular speed vector of the Earth;
–
� �F = �Fa + �Fp +m�g : sum of aerodynamic, propulsion and gravitational forces;

–
� �MG = �MaG + �MpG : sum of aerodynamic and propulsion moments;

– ⊗ : noncommutative product of quaternions.

By setting the inertial frame of reference Ri with its origin at the center of the Earth (see Ap-
pendix A.2), the first equation in (3.3) describes the change in inertial position �r of the vehicle
center of gravity. Next, the force equation in the inertial frame Ri contains the dynamics of the
translational speed vector �V of a vehicle with instantaneous mass m, under the action of the iner-
tial gravity vector �g. The third equation determines the attitude of the body, using the quaternion
q to avoid non-physical computation problems. The dynamics of the angular speed vector �Ω,
expressed also in the body frame Rb, is described by the moments equation where the matrix I
represents the constant moment of inertia of the vehicle. Finally, the last equation represents the
change of mass of the air vehicle.

3.2 Aerodynamic models

The aerodynamic model contains the information on how the forces and moments are created
around a given air vehicle. This model is usually composed of coefficients that affect directly the
equations of forces and moments as shown in (3.4).

The model uses aerodynamic coefficients that depend on the body geometry and physical structure.
The general definition of the aerodynamic forces and moments about a reference point A show how
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these coefficients affect the aerodynamic model:

�MaA = q̄Sr




lrCl

brCm

lrCn



 =




L
M
N





�Fa = q̄Sr




Cx

Cy

Cz



 =




X
Y
Z





(3.4)

with
– Sr : reference surface;
– lr : lateral reference length or wingspan;
– br : longitudinal reference length or chord;
– q̄ = 1

2ρV
2
a : dynamic pressure;

– ρ : instantaneous air density of Earth’s atmosphere;
– Cl : roll moment aerodynamic coefficient;
– Cm : pitch moment aerodynamic coefficient;
– Cn : yaw moment aerodynamic coefficient;
– Cx : drag force aerodynamic coefficient;
– Cy : lateral force aerodynamic coefficient;
– Cz : lift force aerodynamic coefficient.

The coefficients Cx and Cz are usually expressed as a function of the coefficients Cxa , Cya and Cza

defined in the aerodynamic frame Ra with an opposite sign convention such as:

Cx = −(Cxa cos α cos β − Cya cos α sin β − Cza sin α) (3.5)

Cz = −(Cxa sin α cos β − Cya sin α sin β + Cza cos α) (3.6)

In the same way, when the coefficient Cy is not expressed in body axis, the following relation with
the aerodynamic coefficients Cxa and Cya can be used:

Cy = Cxa sin β + Cya cos β (3.7)

The aerodynamic coefficients Cl, Cm and Cn of the equation of moments are expressed in the body
frame Rb.

Two main kind of aerodynamic coefficients can be distinguished. In one hand, there are coefficients
that depend just on the flight operating conditions (angle-of-attack α, side-slip angle β and Mach
number M). On the other hand, there exist effects encountered on the 3 moment components that
are due to the aerodynamic controls. As so, 3 conventional controls δl, δm and δn acting on L, M
and N respectively are usually defined. Then, there exists a relation between actual aerodynamic
controls δreal and the conventional 3 axis controls δpseudo such that

δreal = G δpseudo (3.8)

As there can be more than just 3 aerodynamic controls in δreal, the matrix G is usually not
invertible. Heuristics and other methods can be used to allocate the efforts from δpseudo to δreal
as it will be explained in Section 5.2.2 for the case of a reentry vehicle.

The effect of the aerodynamic coefficients is often assumed to be additive. As so, this coefficients
can be decomposed as:




Cl

Cm

Cn



 =




Clβ (α,M)β + Clp(α,M)p̃+ Clr (α,M)r̃ + Clδl

(α,M, δl) + Clδn (α,M, δn)
Cm0(α,M) + Cmq (α,M)q̃ + Cmδm

(α,M, δm)
Cnβ (α,M)β + Cnp(α,M)p̃+ Cnr (α,M)r̃ + Cnδl

(α,M, δl) + Cnδn
(α,M, δn)




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


Cxa

Cya

Cza



 =




Cx0(α,M) + Cxδm

(α,M, δm)
Cyβ (α,M)β + Cyδl

(α,M, δl) + Cyδn
(α,M, δn)

Cz0(α,M) + Czδm (α,M, δm)



 (3.9)

with p̃ =
lr
Va

p, q̃ =
br
Va

q and r̃ =
lr
Va

r.

To express the aerodynamic moments about the actual center of gravity G of the air vehicle, a

transmission moments need to be added given (
#     „
AG) =

�
dgx dgy dgz

�T
. The equation of the

aerodynamic moments in (3.4) can be now expressed in the body frame Rb as:

�MaG = �MaA + �Fa ∧ (
#     „
AG) (3.10)

Now, let us show how to derive the control objectives which are parameters that depend directly
on the fundamental equations of movement affected by these aerodynamic coefficients.

3.3 Control objectives

The main objective of the control system of an air vehicle is the modulation of its attitude. From
a range of parameters that are usually of interest in aerospace and aeronautic applications, the
flight angular objectives that were chosen are:
– the angle-of-attack α;
– the side-slip angle β;
– the aerodynamic roll angle rate µ̇, that can be converted into a roll angle φ commanded value.

Some works that justify the choice of these control parameters include [HG70, HG79]. Without
any loss of generality, the angle-of-attack α can be chosen as a control objective. In the aeronautic
industry, this angular objective is used to conceive stall protection laws for airplanes. In aerospace
applications, the angle-of-attack becomes a control objective of the utmost importance since it
helps protect the low temperature insulation of reentry vehicles from over heating. Other control
problems, where the load factor is usually the control objective, can rely on the angle-of-attack
controller design. As a matter of fact, because the load factor nz can be expressed as a function
of the angle of attack as nz = f(α), the controller design keeps the same structure.

The flight controller design is based on the dynamic behavior of these objectives. Therefore, a
mathematical model allowing to explicitly represent the evolution of α, β and φ in time is re-
quired. Appendix A.3 shows how to derive these dynamic expressions from the general equations
of Flight Mechanics and by using the relations between the different frames of reference used to
model the motion of the reentry vehicle.

For attitude control, it is common practice to assume that the longitudinal dynamics of the air
vehicle are decoupled from the lateral dynamics. The control problem of both the longitudinal
and lateral dynamics can then be treated separately. Let us retake the dynamic equations (A.51),
(A.52), (A.53) and (A.54) concerning the control objectives and develop their vector representations
to obtain literal expressions highlighting the predominant terms for control design.
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3.3.1 Modelling the longitudinal objective dynamics

The objective for the longitudinal dynamics is to modulate the angle-of-attack α which is directly
coupled to the pitch rate q.

Let us recall from the definition in Appendix A.3, the differential equation describing the dynamic
behavior of the angle-of-attack α:

cosβ α̇ = �Ω · �ya +
�Γ · �za
Va

By making explicit the components of the vectors in the body frame of reference, one gets:

cos β α̇ =




p
q
r



 ·




− sin β cos α

cos β
− sin β sin α



+
1

Va








ax
ay
az



+ g




− sin θ

sin φ cos θ
cos φ cos θ







 ·




− sin α

0
cos α



 (3.11)

assuming that the IMU is located at the center of gravity of the vehicle.

Remark 3.1 In a realistic scenario, the IMU is located at a point P different from the vehicle

center of gravity G such that
#     „
GP =

�
λx λy λz

�T
. Then, the acceleration �Γ due to all forces

other that the force of gravity, can be associated to the acceleration �Γm measured by the IMU using
the relation:




ax
ay
az



 =




axm

aym

azm



− (λxp+ λyq + λzr)




p
q
r



+ (p2 + q2 + r2)




λx

λy

λz



−




ṗ
q̇
ṙ



 ∧




λx

λy

λz



 (3.12)

given that �Γ = �Γm + �Ω ∧ (�Ω ∧ #     „
PG) + �̇Ω ∧ #     „

PG.

Finally, expressing the scalar products of equation (3.11) leads to an angle-of-attack dynamics
equation such as:

cosβ α̇ = q cosβ − sinβ (p cosα+ r sinα)+

1

Va
[az cosα− ax sinα+ g(cosα cosφ cos θ + sinα sin θ)]

(3.13)

Remark 3.2 The proposed modelling of the angle-of-attack objective becomes rather interesting
since the expression of forces, which make intervene the thrust components along with additional
coefficients such as Cz and Cx, for example, are all indirectly included in the acceleration mea-
surements axm , aym and azm provided by the IMU. Also, thanks to these available measurements,
the NLC-based control laws that will be computed no longer depend on the instant value of the
parameter mass m, which is hard to approximate in aerospace applications.

The input δm of the dynamic model affects this angular objective α mainly through its action on
the dynamics of the pitch rate q. The differential equation of the pitch rate dynamics is obtained
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directly from the fundamental equation of moments (see Appendix A.1). By developing the vector
equation

I �̇Ω = �MaA + �Fa ∧
#     „
AG− �Ω ∧ I�Ω

one gets:



Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz








ṗ
q̇
ṙ



 =




L
M
N



−




X
Y
Z



 ∧




dgx
dgy
dgz



−




p
q
r



 ∧




Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz








p
q
r



 (3.14)

Remark 3.3 In some cases, the products of inertia Ixy, Ixz and Iyz are small and can be ne-
glected from the control design model. The inertia products in the diagonal of the matrix I are
preponderant.

After developing and extracting the equation of the pitch axis y in (3.14), considering the remark
above, it comes that:

Iyy q̇ = M − Zdgx +Xdgz + (Izz − Ixx)p r (3.15)

By further development, considering the aerodynamic model as introduced in Appendix 3.2, the
pitch rate dynamics can be formulated as a function of the input δm. Consider the following
approximation of the aerodynamic moment M

M ≈ q̄ Sr lr

�
Cm0(α,M) + Cmq (α,M)

lr
Va

q + Cmδm
(α,M)δm

�
(3.16)

With the simplification implied in Remark 3.3, the pitch rate dynamics can now be expressed in
terms of q and the input δm as:

Iyy q̇ = q̄ Sr lr

�
Cm0(α,M) + Cmq (α,M)

lr
Va

q

�
+ q̄ Sr lr Cmδm

(α,M)δm+

X dgz − Z dgx + (Izz − Ixx)p r (3.17)

3.3.2 Modelling the lateral objective dynamics

When it comes to the lateral control objectives, the focus is set on the side-slip angle β and the
roll angle φ. As explained in Appendix A.3, the roll dynamics is contained in the Euler angles
derivative and can be written as:

φ̇ = p+ tan θ(cosφ r + sinφ q) (3.18)

The side-slip angle dynamics is obtained as shown also in Appendix A.3. In this case, by making
explicit the body frame components of the vector equation

β̇ = −�Ω · �za +
�Γ · �ya

Va

one gets the expression:

β̇ = −




p
q
r



 ·




− sin α

0
cos α



+
1

Va








ax
ay
az



+ g




− sin θ

sin φ cos θ
cos φ cos θ







 ·




− sin β cos α

cos β
− sin β sin α



 (3.19)
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where Remark 3.1 should be considered. Finally, by further developing the previous equation, it
comes that

β̇ = p sinα− r cosα+
1

Va
(ay cosβ − ax cosα sinβ − az sinα sinβ)+

g

Va
(cosα sin θ sinβ + sinφ cos θ cosβ − sinα sin θ cosφ sinβ)

(3.20)

Notice also that Remark 3.2 made on the angle-of-attack dynamics, holds as well for the side-slip
angle dynamics.

Clearly, both lateral objectives are coupled to the roll rate p and the yaw rate r. The inputs δl
and δn affecting the lateral model impact the objectives mainly through these angular rates p and
r, whose dynamic equations can be extracted from the roll axis x and the yaw axis z in (3.14),
where

Ixxṗ− Ixz ṙ = L− Y dgz + Zdgy + [(Iyy − Izz)r + Ixzp] q (3.21)

and

Izz ṙ − Ixz ṗ = N − Y dgx +Xdgy + [(Ixx − Iyy)p+ Ixzr] q (3.22)

In fact, these dynamic equations are functions of the rates p and r and of the deflections δl and
δn. Consider the following approximations of the roll moment L and the yaw moment N

L ≈ q̄ Sr lr

�
Clββ + Clp

lr
Va

p+ Clr
lr
Va

r + Clδl
δl + Clδn δn

�
(3.23)

N ≈ q̄ Sr lr

�
Cnββ + Cnp

lr
Va

p+ Cnr

lr
Va

r + Cnδl
δl + Cnδn

δn

�
(3.24)

It is reminded that all aerodynamic coefficients Cl, Cn and Cy are a function of the angle-of-attack
α and the Mach number M.

By neglecting the product of inertia Ixz as explained in Remark 3.3 and by assembling equations
(3.23)-(3.24) with (3.21)-(3.22), the angular rate dynamic equations become

Ixxṗ = q̄ Sr lr

�
Clβ (α,M)β + Clp(α,M)

lr
Va

p+ Clr (α,M)
lr
Va

r

�
+

q̄ Sr lr
�
Clδl

(α,M)δl + Clδn (α,M)δn
�
+ Zdgy − Y dgz+

(Iyy − Izz)r q (3.25)

and

Izz ṙ = q̄ Sr lr

�
Cnβ (α,M)β + Cnp(α,M)

lr
Va

as p+ Cnr (α,M)
lr
Va

r

�
+

q̄ Sr lr
�
Cnδl

(α,M)δl + Cnδn
(α,M)δn

�
+Xdgy − Y dgx+

(Ixx − Iyy)p q (3.26)
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3.4 Main sources of disturbance

Any given air vehicle is subject to a set of uncertain phenomenon that one needs to consider in
order to validate the flight-control laws that will be computed. These phenomenon can be mod-
elled as additive or multiplicative uncertainties ∆ acting over the air vehicle nominal representation.

All additive uncertainties are expressed as a bounded range around a nominal value of a given
parameter and are measured in same units as the parameter, while multiplicative uncertainties are
expressed as a percentage of a nominal value of a given parameter. Numerical simulation values
of these uncertainties can be found in Appendix D.

The main model disturbance sources that were taken into consideration are described below.
– Variation of the atmosphere density (∆ρ) as a function of the altitude h, modelled as a multi-
plicative uncertainty.

– Wind. The wind is decomposed into static wind (�Vsw) and turbulent wind (�Vtw). The wind
modelling is detailed in Appendix D.1.2.

– Aerodynamic coefficient modelling errors (∆Cm0, ∆Cmδm , ∆Cmδbf , ∆Cx, ∆Cz, ∆Clδl , ∆Cnδl ,
∆Clδn , ∆Cnδn). Some of these are modelled as additive uncertainties and other as multiplicative
uncertainties as detailed in Appendix D.2.3.

– Centring and inertia modelling error (∆dgx, ∆dgy, ∆dgz) as additive uncertainties.
– IMU measurement errors. The direct measurements of the IMU, which are the translational ac-
celerations �Γm and the rotation rates �Ωm, are subject to deterministic and random phenomenon
such as: biases, scale factors and random walks. The IMU direct measurements were modelled
by the following formulas:

�Γm = �Γ sfΓ(t) + �wΓ(t) + �bmΓ (3.27)

�Ωm = �Ω sfΩ(t) + �wΩ(t) + �bmΩ (3.28)

where the white noise vectors �w(t) represent a normally distributed random walk phenomena
of standard deviation σ, and the vectors �bm represent the measurement bias. The scale factors
sf(t)

sfΓ(t) = (1 + wΓ(t) + bmΓ) (3.29)

sfΩ(t) = (1 + wΩ(t) + bmΩ) (3.30)

are composed of a bias bm affected by a white noise w(t).

These disturbed measurements �Γm and �Ωm are then numerically integrated by the IMU to com-
pute, as an output, the ground position vector �rg (containing the component altitude h) and

ground speed �Vg, as well as the body attitude angles (φ, θ, ψ) and rotation rate vector �Ω of com-
ponents (p, q, r). The IMU output measurements are then made available for the flight control
law. Depending on the control design objectives, this results in the introduction of uncertainties
in the control-loop (∆φ, ∆θ, ∆ψ, ∆p, ∆q, ∆r, ∆h).

In fast flight regimes, the probe of the anemometric unit charged of measuring the airspeed of
the reentry vehicle is retracted to protect it from overheating. Since the speed measurement
made by the IMU is basically the ground speed �Vg, in presence of wind, additional uncertainties
should be considered for the computation of the airspeed and aerodynamic angular parameters
(∆Va, ∆α, ∆β).
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– Anemometer measurement errors (∆α, ∆β, ∆Va) modelled as additive uncertainties.

The measurement errors considered may induce further errors on the calculation of diverse param-
eters that may need to be available for the Control system such as:
– The air density as a function of the altitude ρ(h) in an exponential atmosphere model: ∆ρ̃;
– Mach number M(Va, h) as a function of the airspeed and altitude: ∆M.

Concluding comments

In this chapter, the main modelling aspects of air vehicles and common control objectives were
presented, based on the fundamental equations of motion used in Flight Mechanics.

First, a general dynamic state model was presented, based on the fundamental equations of forces
and moments which describe the dynamics of the translational and angular speed. The dynamics
of the inertial position and attitude of the vehicle are also part of this 6-degree-of-freedom model
which can be eventually completed by the dynamic equation of mass.

After introducing general models of air vehicle aerodynamics and actuators, the control objectives
corresponding to the angle-of-attack α, the side-slip angle β and the roll angle φ, along with the
dynamics of p, q and r, were derived as part of the longitudinal and lateral dynamics.

Finally, the main sources of disturbance which should be considered in simulation of air vehicles
to introduce more realistic scenarios, were enlisted.

In the next chapter, the control objective models will be used to compute NLC-based control laws.
Both approaches, the standard NDI design with PI control and the generalized NLC-H∞ control
design, will be employed to conceive attitude controllers for general air vehicles.
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Chapter 4

Description of Nonlinear
Compensation-based control
design procedures

Introduction

As mentioned in Chapter 1, the NDI method is a particular case of nonlinear compensation,
where the system nonlinearities are punctually eliminated by using the “system inverse” in a fixed
inner loop structure. Unfortunately, this standard approach is not well adapted for some classes
of nonlinear processes, including systems with input saturations. Although some efforts have
been made to extend NDI for systems with input constraints using anti-windup control [YPY08,
HTM+10], staying in a nonlinear context still remains a challenging task.

In contrast to standard NDI, the generalized NLC framework proposed in Chapter 2 allows to
remain in a linear context, thus enabling a systematic implementation of robust controller design
techniques, including anti-windup schemes, for a large class of nonlinear systems. This framework
endows more flexibility to the compensation of a system nonlinearities while assuring certain lev-
els of performance and restricting the size of the control signals. As it will be further explained,
the control design of most aerospace applications fall within the modelling approach of our NLC
framework.

The main objective of this chapter is to describe both, the design procedure of a standard NDI
control law for attitude control of an air vehicle, and the design procedure under our generalized
NLC framework.

First, in Section 4.1, baseline NDI control laws with PI correction are applied to the longitudinal
and lateral control objectives following the time-scaling approach described in Chapter 1.

After having developed the standard NDI approach, Section 4.2 introduces the design-oriented
models of the longitudinal and lateral dynamics of an air vehicle for robust control synthesis
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within our NLC framework. This is achieved by using the general design guidelines proposed in
Chapter 2.

Finally, by considering a complete air vehicle model accounting for input saturations, the design-
oriented model for enhancing the nominal robust controllers with the use of anti-windup devices
is presented in Section 4.3.

Throughout this chapter, consider the following assumptions:

Assumption 4.1 For attitude control, the longitudinal and lateral dynamics of the air vehicle can
be decoupled under the hypothesis that lateral dynamics is at a steady state while the longitudinal
dynamics evolve and vice-versa,

Assumption 4.2 The angular rate dynamics of the air vehicle evolve sufficiently faster than the
angular objectives in a time-scale basis, thus allowing the decoupling of both dynamics under the
hypothesis that the slow dynamics is constant during the evolution of the fast dynamics, and that
the fast dynamics is steady during the evolution of the slow dynamics.

Assumption 4.3 Measurements of the controlled output z and state x of the air vehicle are all
available for controller design along with the vector of varying parameters Θ. Even though most
state parameters are usually measurable thorugh the IMU, anemometric unit, GPS, etc, if these
measurements are not readily available, a state reconstruction filter must be used to estimate these
parameters.

4.1 NDI-PI baseline controller design

To show how the standard NDI method can be applied to the objective dynamics for attitude
control of our application, let us begin by making a more particular assumption in relation to the
actuator dynamics. It is temporarily assumed that:

Assumption 4.4 The air vehicle control surfaces are governed by actuator dynamics that can be
idealized. This dynamics are sufficiently fast and have unlimited magnitude and rate capacities.

The NDI control design procedure for the longitudinal and lateral angular objectives will be de-
veloped next.

4.1.1 Longitudinal case

Let us begin by recalling the longitudinal angular objective model described in Section 3.3.1 where
the angle-of-attack is coupled to the pitch rate dynamics.

Σlong :






cosβ α̇ = q cosβ − sinβ (p cosα+ r sinα)+
1

Va
[az cosα− ax sinα+ g(cosα cosφ cos θ + sinα sin θ)]

Iyy q̇ = q̄ Sr lr

�
Cm0(α,M) + Cmq (α,M)

lr
Va

q

�
+ q̄ Sr lr Cmδm

(α,M) δm+

X dgz − Z dgx + (Izz − Ixx)p r

(4.1)
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4.1. NDI-PI baseline controller design

Consider now Assumption 4.2, meaning that the pitch rate dynamics q̇ is significantly faster than
the angle-of-attack dynamics α̇. This assumption allows us treat the longitudinal angular objective
model as two sub-systems: one containing the fast dynamics (the pitch rate q in this case) affected
by the global model input δm, and the other containing the slow dynamics (angle-of-attack α) with
the fast state q as the sub-system input.

The two sub-systems of the longitudinal model along with its angular objective z, can be re-written
under a standard nonlinear formulation as:

α̇ = Zα + q (4.2)

q̇ = Mq + gq δm (4.3)

z = Clong x (4.4)

where

z = α
x =

�
α q

�T

Θ =
�
p r ax az θ φ β q̄ X Z Va M

�T

Zα(x,Θ) = − tanβ (p cosα+ r sinα)+
1

Va cosβ
[az cosα− ax sinα+ g(cosα cosφ cos θ + sinα sin θ)]

Mq(x,Θ) =
q̄ Sr lr
Iyy

�
Cm0(α,M) + Cmq (α,M)

lr
Va

q

�
+

1

Iyy
(X dgz − Z dgx)+

1

Iyy
[(Izz − Ixx)p r]

gq(x,Θ) =
1

Iyy
q̄ Sr lr Cmδm

(α,M)

Clong =
�
1 0

�

An NDI controller design for this set is applied in two steps and can be formulated as follows:

Step 1 Find the expression of the control input δm that inverts the fast dynamics in (4.2) and de-
fine a linear controller capable to enforce the convergence of the pitch rate q towards its commanded
value qc while following first-order dynamics.

The control signal needed to invert the pitch rate dynamics, shown graphically on Figure 4.1, is
defined by the NDI controller

δm = g−1
q [−Mq + ũq(qc, q)] (4.5)

The first-order dynamics can be imposed through the new input ũq with a linear controller. A
proportional controller can be used to this effect by defining ũq such as:

ũq(qc, q) =
1

τq
(qc − q) (4.6)
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where qc is the commanded value that will be required to invert the slow dynamics as will be shown
in the next step. Clearly, by replacing (4.5) in equation (4.3), considering (4.6), it follows that

q̇ =
1

τq
(qc − q) (4.7)

Over a period of time determined by the value of the chosen time constant τq, the pitch rate q
converges towards its commanded value qc following first-order dynamics, i.e., q = qc.

�

�
� Σ

long

δ
�

�
�

������	
���
������
�
�������

�

�
�

~

τ -1q�
�

�

α

�

-1�
�
��(�	Θ�



�
(�	Θ�

Figure 4.1: Longitudinal fast dynamics inversion via standard approach.

Step 2 Find the commanded value of the pitch rate qc that inverts the slow dynamics in (4.3)
and define a linear controller that enforces the convergence of the angle-of-attack objective z = α
towards its commanded value zc = αc while following second-order dynamics.

In the same manner as shown for the fast dynamics, and given that after a small time q = qc, the
NDI controller required to invert the angle-of-attack dynamics is such as:

qc = −Zα + ũα(αc, α) (4.8)

Desired dynamics is enforced through the new input ũα. In this case, second-order dynamics can
be obtained with a PI controller with respective proportional and integral gains kP and kI as:

ũα(αc, α) = kP (αc − α) + kI

�
(αc − α) (4.9)

where αc is the commanded value of the angular objective. By replacing (4.8) in (4.2) given (4.9),
the angular objective dynamics become

α̇ = kP (αc − α) + kI

�
(αc − α) (4.10)

When equation (4.10) is written in the frequency domain using the Laplace transform, it follows
that:

α

αc
=

kP s+ kI
s2 + kP s+ kI
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4.1. NDI-PI baseline controller design

Second-order dynamics is enforced for the convergence of the angular objective z = α towards its
commanded value zc = αc by posing kP = 2 ξα ωcα and kI = ω2

cα , where ξα denotes the damping
coefficient and ωcα denotes the cut-off frequency of such second-order dynamics.

Notice that a stable zero is introduced by this PI control structure, which may induce some
additional overshoot on the closed-loop. This slight setback can be countered by filtering the
setpoint signal αc with a first-order filter of time constant τF and state αF . In fact, filtering
the setpoint signal usually improves the closed-loop performance. By introducing a pole at the
same frequency of that of the stable zero, the overshoot generated by the PI controller structure
is reduced. Consider the setpoint filter

Flong(s) : αF =
1

τF s+ 1
αc, τF =

kP
kI

(4.11)

Then, the closed loop control objective becomes

α

αc
=

kI(kP s+ kI)

(s2 + kP s+ kI)(kP s+ kI)

�

�
� Σ

long

������	
��
���������
�������

�
α

~

�
�

�

�
�

�����
����	
��
���

�
�
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	α 




α

�
α
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Figure 4.2: NDI-PI controller structure for the longitudinal model.

The expression of the NDI controller with proportional-integral correction (NDI-PI) for the longitu-
dinal angular objective, depicted on Figure 4.2, is obtained by assembling equations (4.5) and (4.8)
as:

δm = g−1
q

�
−Mq +

1

τq

�
−Zα + kP (αF − α) + kI

�
(αF − α)− q

��
(4.12)

A simpler expression of the controller can be generated by creating a measurement vector ỹ re-
grouping: the setpoint filter state αF , the integral of the error signal εα = (αF − α) and the

longitudinal model state x =
�
α q

�T
; along with a controller exogenous input vector w regroup-

ing the nonlinear functions Zα and Mq. The expression of this NDI-PI solution can be written
as:

δm = g−1
q (K ỹ +H w) (4.13)

where

K =

�
kP
τq

kI
τq

−1

τq

�
(4.14)

H =

�−1

τq
−1

�
(4.15)
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given the previously described vectors

ỹ =
�
εα

�
εα q

�T
(4.16)

w =
�
Zα Mq

�T
(4.17)

A clear separation between the outer-loop and inner-loop controller gains can be easily identified
under this simpler form. The static gain vector K regulates the outer-loop linear dynamics while
the inner-loop static gain vector H eliminates the longitudinal model nonlinear dynamics.

4.1.2 Lateral case

Now, let us recollect the lateral angular objective model described in Section 3.3.2 where the
side-slip angle and roll are coupled to the yaw rate and roll rate dynamics.

Σlat :






β̇ = p sinα− r cosα+
1

Va
(ay cosβ − ax cosα sinβ − az sinα sinβ)+

g

Va
(cosα sin θ sinβ + sinφ cos θ cosβ − sinα sin θ cosφ sinβ)

φ̇ = p+ tan θ(cosφ r + sinφ q)

Ixxṗ = q̄Srlr

�
Clβ (α,M)β + Clp(α,M)

lr
Va

p+ Clr (α,M)
lr
Va

r

�
+

q̄ Sr lr
�
Clδl

(α,M)δl + Clδn (α,M)δn
�
+ Zdgy − Y dgz + (Iyy − Izz)r q

Izz ṙ = q̄Srlr

�
Cnβ (α,M)β + Cnp(α,M)

lr
Va

p+ Cnr (α,M)
lr
Va

r

�
+

q̄ Sr lr
�
Cnδl

(α,M)δl + Cnδn
(α,M)δn

�
+

Xdgy − Y dgx + (Ixx − Iyy)p q
(4.18)

Consider again Assumption 4.2. In this case, the yaw rate and the roll rate dynamics are faster
when compared to the side-slip and roll angle dynamics. The lateral angular objective model can
be represented as two sub-systems: one containing the fast dynamics ṗ and ṙ affected by the global
model inputs δl and δn, and another containing the slow dynamics β̇ and φ̇ with the fast states p
and r as the sub-system input.

The two subsystems of the lateral model along with its angular objective z, can be re-written under
a standard nonlinear formulation as:

�
β̇
φ̇

�
=

�
Yβ

Xφ

�
+G1

�
p
r

�
(4.19)

�
ṗ
ṙ

�
=

�
Lp

Nr

�
+G2

�
δl
δn

�
(4.20)

z = Clat x (4.21)

where

z =
�
β φ

�T

x =
�
β φ p r

�T

Θ =
�
q ax ay az θ α q̄ X Y Z Va M

�T
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4.1. NDI-PI baseline controller design

Yβ(x,Θ) =
1

Va
(ay cosβ − ax cosα sinβ − az sinα sinβ)+

g

Va
(cosα sin θ sinβ + sinφ cos θ cosβ − sinα sin θ cosφ sinβ)

Xφ(x,Θ) = tan θ(cosφ r + sinφ q)

Lp(x,Θ) =
q̄ Sr lr
Ixx

�
Clβ (α,M)β + Clp(α,M)

lr
Va

p+ Clr (α,M)
lr
Va

r

�
+

1

Ixx
[Zdgy − Y dgz + (Iyy − Izz)r q]

Nr(x,Θ) =
q̄ Sr lr
Izz

�
Cnβ (α,M)β + Cnp(α,M)

lr
Va

p+ Cnr (α,M)
lr
Va

r

�
+

1

Izz
[Xdgy − Y dgx + (Ixx − Iyy)p q]

G1(x,Θ) =

�
sinα − cosα
1 0

�

G2(x,Θ) =





q̄ Sr lr
Ixx

Clδl
(α,M)

q̄ Sr lr
Ixx

Clδn (α,M)

q̄ Sr lr
Izz

Cnδl
(α,M)

q̄ Sr lr
Izz

Cnδn
(α,M)





Clat =

�
1 0 0 0
0 1 0 0

�

Remark 4.5 The choice of adding to the function Xφ(x,Θ) the term tan θ cosφ r, which con-
tains explicitly a combination of the slow sub-system input r, has been made. This term could
alternatively be included inside the matrix G1(x,Θ).

By choosing to include this term as part of the function Xφ(x,Θ) it is implicitly intended to
eliminate as much as possible the coupling between the angular objective φ and the yaw rate r
which may become relevant for θ �= (0, π). Then, from Assumption 4.1, the matrix G1(x,Θ) can
be considered as constant or rather slow varying.

After writing the MIMO lateral model with the standard nonlinear formulation with two time-
scales, the NDI controller design for this set is also applied in two steps and can be formulated as
follows:

Step 1 Find the expression of the lateral input u =
�
δl δn

�T
that inverts the fast dynamics

in (4.19) and define a linear controller capable of enforcing the convergence of the angular rates p
and r towards commanded values pc and rc while following first-order dynamics.

The NDI controller, shown on Figure 4.3, required to eliminate the angular rate nonlinear dynamics
is defined by: �

δl
δn

�
= G−1

2

�
−
�
Lp

Nr

�
+

�
ũp(pc, p)
ũr(rc, r)

��
(4.22)

The first-order dynamics can be imposed through the new input ũ =
�
ũp ũr

�T
with a linear

controller. As proposed for the fast longitudinal dynamics, a proportional controller can be used
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to this effect by defining ũ =
�
ũp ũr

�T
such as:

�
ũp(pc, p)
ũr(rc, r)

�
= T

�
(pc − p)
(rc − r)

�
(4.23)

where pc and rc are the commanded values required to invert the slow dynamics and the constant
matrix T is

T = diag(τ−1
p , τ−1

r ) (4.24)

When the NDI controller (4.22) is applied to the fast dynamics (4.20), considering the linear
controller (4.23), it follows that �

ṗ
ṙ

�
= T

�
(pc − p)
(rc − r)

�
(4.25)

Clearly, over a period of time determined by the value of the chosen time constants τp and τr,
the angular rates p and r converge towards the commanded values pc and rc following first-order
dynamics.

�

�
� Σ

lat
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�
�������
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Figure 4.3: Lateral fast dynamics inversion via standard approach.

Step 2 Find the commanded value of the angular rates pc and rc that invert the slow dynamics
in (4.20) and define a linear controller that enforces the convergence of the lateral angular objective

z =
�
β φ

�T
towards the target zc =

�
βc φc

�T
while following second-order dynamics.

Considering that the angular rates p and r converge towards their commanded values pc and rc, and
that the slow dynamics have the angular rates as their model inputs, the NDI controller required
to eliminate the angular objective dynamics is defined as:

�
pc
rc

�
= G−1

1

�
−
�
Yβ

Xφ

�
+

�
ũβ(βc, β)
ũφ(φc, φ)

��
(4.26)

Desired dynamics is enforced through the new inputs ũβ and ũφ. In this case, second-order dy-
namics can be obtained with a PI controller with respective proportional and integral gains KP

and KI as: �
ũβ(βc, β)
ũφ(φc, φ)

�
= KP

�
(βc − β)
(φc − φ)

�
+KI

��
(βc − β)�
(φc − φ)

�
(4.27)
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4.1. NDI-PI baseline controller design

where βc and φc are the angular objective commanded values and the constant matrices KP and
KI are defined by:

KP =

�
kPβ 0
0 kPφ

�
(4.28)

KI =

�
kIβ 0
0 kIφ

�
(4.29)

By applying the nonlinear controller (4.26) to the subsystem (4.19), given the linear control
law (4.27), the angular objective dynamics become

�
β̇
φ̇

�
= KP

�
(βc − β)
(φc − φ)

�
+KI

��
(βc − β)�
(φc − φ)

�
(4.30)

As described in the case of the longitudinal objectives, second-order dynamics is fixed by choosing

kPβ = 2 ξβ ωcβ , kIβ = ω2
cβ

kPφ = 2 ξφ ωcφ , kIφ = ω2
cφ

where ξi are the damping coefficients and ωci are the cut-off frequencies of such second-order
dynamics. To improve the performance of the closed-loop, given that the PI structure introduces
a stable zero on the linear dynamics of β and φ, consider the setpoint filter

Flat(s) :

�
βF

φF

�
=





1
kPβ

kIβ
s+ 1

0

0
1

kPφ

kIφ
s+ 1





�
βc

φc

�
(4.31)

The expression of the NDI-PI controller for the lateral angular objectives, illustrated on Figure 4.4,
is obtained by assembling equations (4.22) and (4.26) as:

�
δl
δn

�
= G−1

2

�
−
�
Lp

Nr

�
+ T

�
G−1

1

�
−
�
Yβ

Xφ

�
+KP

�
εβ
εφ

�
+KI

��
εβ�
εφ

��
−
�
p
r

���
(4.32)

where

εβ = (βF − β) (4.33)

εφ = (φF − φ) (4.34)
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Figure 4.4: NDI-PI controller structure for the lateral model.
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To obtain a more compact expression of this controller, a measurement vector ỹ can be proposed
by regrouping: the setpoint filter states βF and φF , the integral of the error signals εβ and εφ, and

the longitudinal model state x =
�
β φ p r

�T
; along with a controller exogenous input vector

w regrouping the nonlinear functions Yβ , Xφ, Lp and Nr. The expression of this NDI-PI solution
can be written as: �

δl
δn

�
= G−1

2 (K ỹ +H w) (4.35)

where

K =
�
T̃ KP T̃ KI −T

�
(4.36)

H =
�
−T̃ −I

�
(4.37)

considering that
T̃ = T G−1

1 (4.38)

and given the previously described vectors

ỹ =
�
εβ εφ

�
εβ

�
εφ p r

�T
(4.39)

w =
�
Yβ Xφ Lp Nr

�T
(4.40)

Under this simplified expression, the static gain matrix K regulates the outer-loop linear dynamics
while the inner-loop static gain matrix H is charged of eliminating the lateral model nonlinear
dynamics.

4.2 Multi-channel NLC-H∞ design reformulations

The reformulation of the standard NDI approach to our NLC framework introduced in Section 2.2,
will be now explained for the attitude control objectives of an air vehicle. Multi-channel design-
oriented models will be deduced for the longitudinal and lateral dynamics considering an actuator
model.

For the design procedure of nominal robust controllers, let us temporarily consider the following
assumption:

Assumption 4.6 The actuator dynamics of the air vehicle control surfaces can be closely modelled
by a first-order system and this dynamics has unlimited magnitude and rate capacities.

4.2.1 Longitudinal design-oriented model

Now, let us demonstrate how a NLC-H∞ controller Klong(s) can be designed to follow a second-
order reference model Rlong(s) while rejecting the system nonlinearities contained in the longitu-
dinal model.

In the context of the formulation proposed in Chapter 2, the nonlinear dynamics of both, the
angle-of-attack α and of the pitch rate q are now considered as measured disturbances w(x,Θ) that
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4.2. Multi-channel NLC-H∞ design reformulations

can be exploited for controller synthesis. The longitudinal model represented in equation (4.1) can
be represented by the compact expression

Σlong :

�
α̇ = wα + q
q̇ = wq + λq δm

where, taken from the model in Section 4.1.1,

wα = Zα(x,Θ)
wq = Mq(x,Θ)
λq = gq(x,Θ)

As explained in Section 2.1, in order to reduce the size of the signals entering the controller via the
exogenous inputs, one should extract as much linear information from these measured disturbances
w(x,Θ) as possible.

By fixing the flight conditions of the varying parameter vector Θ, linear approximations of the
measured disturbances w(x,Θ) can be obtained straight from classic modelling in linear flight
control about the trimmed conditions (ᾱ, δ̄m) such as:

ŵα = zα α̃ (4.41)

ŵq = mα α̃+mq q (4.42)

with α̃ = α − ᾱ. These approximations can now be included as part of the longitudinal model
linear dynamics by subtracting them from w(x,Θ), thus helping reduce the size of the measured
disturbances to be rejected by the controller.

f̂α = wα − zα α̃ (4.43)

f̂q = wq −mα α̃−mq q (4.44)

Using the above approximations, the longitudinal model along with the angular objective z can be
expressed with the generalized NLC framework proposed in Section 2.2, under the nonlinear form

Σlong(s) :






˙̃x =

�
zα 1
mα mq

�
x̃+B1

�
fα
fq

�
+B2 λq δm

z =
�
1 0

�
x̃

(4.45)

with

x̃ =
�
α̃ q

�T

B1 =

�
1 0
0 1

�
, B2 =

�
0
1

�

fα = f̂α + wfα , fq = f̂q + wfq

Remark 4.7 Even though the time-scaling separation assumption is still implicitly considered, the
system is no longer separated into two sub-systems since the controller synthesis will be done in
one single step through an H∞ optimization approach.
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Now, retake the simplification described in Section 2.3, where the scaled inputs ũ = Λ(x,Θ)u and
ũc = Λ(x,Θ)uc are used in the multi-channel design-oriented model and its respective standard
form. Then,

δ̃m = λq δm, δ̃mc = λq δmc (4.46)

Based on the actuator dynamics defined in Appendix D.2.2 for the control surfaces δreal, consider
the following first-order actuator model for controller design:

ΣA(s) :
˙̃δm =

1

τa
(δ̃mc − δ̃m) (4.47)

To help improve the performance of the controller vis-a-vis the overshoot in the time response
of the closed-loop system, the design-oriented model can include the setpoint filtered signal αF

considered for the standard NDI design. Then, the filter Flong(s) introduced in equation (4.11)
can be kept as part of the control system structure.

Once these considerations concerning the actuator model and filtered setpoint signal have been
made, the multi-channel reformulation of our NLC approach can be represented by the control
design scheme of Figure 4.5. From this figure, the control law that can ensure the reference model
tracking while rejecting the system nonlinearities along with any modelling errors can be expressed
as:

δmc = λ−1
q Klong(s) ỹ (4.48)

with ỹ =
�
f̂α f̂q αc α̃ q

�T
.
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Figure 4.5: Multi-channel H∞ design-oriented model I for longitudinal dynamics.

To avoid the use of weighting filters W (s) to ensure the tracking of the target αc, an artificial
signal containing an integral term of the tracking error εα = αF − α̃ can be created and added as
part of the input vector ỹ of the NLC-H∞ controller Klong(s).

As mentioned in Section 2.3 (see page 51), to better exploit the extra degrees-of-freedom offered
by higher-order robust controllers one should try to make available as much information possible
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4.2. Multi-channel NLC-H∞ design reformulations

about the system to the controller. Therefore, let us propose a new input vector ỹ for Klong(s)
including the following signals:

ỹ =
�
f̂α f̂q

�
εα αF αc α̃ q

�T
(4.49)

The resulting multi-channel H∞ design-oriented model for nonlinear compensation is depicted on
Figure 4.6.
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Figure 4.6: Multi-channel H∞ design-oriented model II for longitudinal dynamics.

The respective standard form, which will be used for controller synthesis, is represents by the block
diagram of Figure 4.7
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Figure 4.7: Standard form of the multi-channel H∞ design for longitudinal dynamics.

where
– w =

�
wfα wfq f̂α f̂q αc

�T
is the exogenous input vector;

– z =
�
zu zp

�T
is the weighted output vector.

4.2.2 Lateral design-oriented model

Now, an NLC-H∞ controller Klat(s) will be designed to follow a second-order reference model
Rlat(s) while rejecting the system nonlinearities contained in the lateral model of an air vehicle. In
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this case, the reference model contains the desired dynamics of both, the side-slip angle objective
β and of the roll objective φ.

The nonlinear dynamics of the lateral model are now considered measured disturbances w(x,Θ)
that can be exploited for controller synthesis, according to our NLC framework. The lateral model
presented in equation (4.18) can then be represented by the compact expression

Σlat :





β̇
φ̇
p
r



 =





wβ

wφ

wp

wr



+

�
G 0
0 Λ

�




p
r
δl
δn





where, taken from the lateral standard model in Section 4.1.2,

wβ = Yβ(x,Θ), wφ = Xφ(x,Θ)
wp = Lp(x,Θ), wr = Nr(x,Θ)
G = G1(x,Θ), Λ = G2(x,Θ)

In order to minimize the size of the measured disturbances, let us extract linear approximations
that are standard in modelling for linear flight control. By fixing specific flight conditions of the
varying parameter vector Θ, linear approximations of w(x,Θ) can be modelled as:

ŵβ = yβ β (4.50)

ŵp = lβ β + lp p+ lr r (4.51)

ŵr = nβ β + np p+ nr r (4.52)

As a matter of fact, the dynamics equation of the roll φ does not present any suitable linear terms
that could be use in this case. The above approximations of the measured disturbances can now
be associated to the linear dynamics of the lateral model by subtracting them from w(x,Θ), thus
helping reduce the size of the measured disturbances to be rejected by the controller.

f̂β = wβ − yβ β (4.53)

f̂p = wp − lβ β − lp p− lr r (4.54)

f̂r = wr − nβ β − np p− nr r (4.55)

(4.56)

Using the above approximations, the re-modelled lateral dynamics, along with its control objective
z, can be expressed using our generalized linear oriented framework under the nonlinear form

Σlat(s) :






ẋ =





yβ 0 sin α − cos α
0 0 1 0
lβ 0 lp lr
nβ 0 np nr



x+B1





fβ
fφ
fp
fr



+B2 Λ

�
δl
δn

�

z =

�
1 0 0 0
0 1 0 0

�
x

(4.57)

with

x =
�
β φ p r

�T
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B1 =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 , B2 =





0 0
0 0
1 0
0 1





fβ = f̂β + wfβ , fφ = f̂φ + wfφ

fp = f̂p + wfp , fr = f̂r + wfr

Notice that also in the lateral case, the time-scaling separation assumption is implicitly considered
but the system is not separated into two sub-systems since the controller synthesis will be done in
one single step through an H∞ optimization approach.

For controller synthesis using our multi-channel design-oriented model, the following simplification
of the input controls is retained:

�
δ̃l
δ̃n

�
= Λ

�
δl
δn

�
,

�
δ̃lc
δ̃nc

�
= Λ

�
δlc
δnc

�
(4.58)

Consider the following first-order actuator model associated to the scaled controls defined above
for controller design:

ΣA(s) :
˙̃δ = τ−1

a (δ̃c − δ̃) (4.59)

with

δ̃ =
�
δ̃l δ̃n

�T
, δ̃c =

�
δ̃lc δ̃nc

�T

and

τa = diag(τal , τan)

To add as much information possible to the controller, consider the setpoint filter Flat(s) presented
in (4.31) to help improve the controller performance and the artificial signals containing the inte-
gral of the tracking errors εβ = βF − β and εφ = φF − φ that will ensure the convergence of the
angular objective z to the target zc, as part of the input vector ỹ.

After having made the pertinent considerations on the actuator model and the controller input
vector ỹ, the resulting multi-channel H∞ design-oriented model for nonlinear compensation is
illustrated on Figure 4.8.

The control law that ensures a reference model tracking while rejecting the lateral model nonlin-
earities along with any modelling errors can be expressed as:

�
δlc
δnc

�
= Λ−1 Klat(s) ỹ (4.60)

with

ỹ =
�
f̂β f̂φ f̂p f̂r

�
εβ

�
εφ βF φF βc φc β φ p r

�T
(4.61)

97 / 345



Chapter 4. Description of Nonlinear Compensation-based control design procedures

�
�

������
���

�
�

�
�

Σ
	
���

�



�
�
φ

�

�
�

�

�
β

�

�
�

�

�
� 
��ε

Σ  ���
���

������
���

δ
�

�

δ
�

β
�

φ
�

δ
�
�

β
φ

β 
�

φ 
�

��������

�
�

Figure 4.8: Multi-channel H∞ design-oriented model for lateral dynamics.

It is now only a matter of proposing the right the weighting filters W (s) that will shape the
frequency domain characteristics of the exogenous inputs and the weighted outputs.

Once the weighting filters have been defined according to the performance requirements and inte-
grated to the design-oriented model, the associated standard form that will be used for controller
synthesis is represents by the block diagram of Figure 4.9.
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Figure 4.9: Standard form of the multi-channel H∞ design for lateral dynamics.

where
– w =

�
wfβ wfφ wfp wfr f̂β f̂φ f̂p f̂r βc φc

�T
is the exogenous input vector;

– z =
�
zu zp

�T
is the weighted output vector.

4.3 Anti-windup enhancement

As previously discussed, the anti-windup control loop is charged of enlarging the stability domain
of the closed loop in presence of input saturation. The controller J(s) is therefore restrained to
assuring stability constraints that can be formulated also through the small gain theorem. The
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resulting design-oriented model will be presented in a general from which can be applied to both,
the longitudinal and lateral nominal controllers K previously obtained.

Strong assumptions have been made concerning the actuator models. In the standard NDI design
procedure, the actuator dynamics are basically neglected through assumption 4.4 since they cannot
be accounted for directly in controller synthesis.

An improved controller synthesis scheme is presented by our generalized NLC framework, where
the actuator dynamics form part of the design-oriented model, thus allowing for a less restrictive
assumption. A fist order dynamic model of the actuator was used considering the scaled signals

δ̃ = Λδ, δ̃c = Λ δc

In this section, the particular assumption 4.6 concerning the limits of the actuator dynamics can
be discarded. A realistic actuator model accounting for first-order dynamics along with rate and
magnitude saturations can now considered.

As explained in Section 2.4.1 (see page 2.4.1), let us use a control limiter structure over K(s).
Since the more restrictive constraints correspond to the rate limitations of the actuators, a rate
limiter is added to the nominal controller K(s).

Consider a first-order rate limiter that ensures the nominal unconstrained behavior of the actuators
δreal. Using the operator sat(·), this structure of maximum scaled rate L̃ = ΛL can be expressed
as:

ΣRL : ˙̃δcL = satL̃

�
1

τL
(δ̃c − δ̃cL)

�
(4.62)

where δ̃c is the unconstrained control signal and τL = diag(τL1 , . . . , τLm) is the time constant of
the rate limiter. To avoid interactions with the actuator dynamics, thus guaranteeing its nominal
behavior, the rate limiter dynamics should be chosen sufficiently faster than the actuator dynamics
τL << τa.

The saturation included in the rate limiter can be used to generate the input of the anti-windup
controller by following the design-oriented model depicted on Figure 4.10.

The measurements of the error ε and its integral, used for the synthesis of the nominal controller,
are now included as part of the internal structure of K(s). The nominal control law structure is
now augmented by the anti-windup controller to help enhance the closed-loop stability domain.
By expressing K(s) using the state-space equation

K(s) :

�
ẋK = AK xK +BK ỹ
δ̃c = CK xK

under the Direct Linear Anti-windup strategy illustrated on Figure 4.10 (see page 100), the struc-
ture of the augmented controller becomes

Ka(s) :

�
ẋK = AK xK +BK ỹ + v1
δ̃c = CK xK

(4.63)

Given the anti-windup controller �
v1
v2

�
= J(s)uAW (4.64)
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the enhanced robust control law takes the form:

δc = Λ−1(x,Θ) Ka(s) ỹ + v2 (4.65)

with ỹ =
�
v1 f̂(x,Θ) zc x

�T
.
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Figure 4.10: Anti-windup control scheme with rate limiter.

The anti-windup controller input uAW can be expressed as a measurement of the rate-limited

control signal ˙̃δcL disturbed by a dead-zone operator ϕ(·). From this consideration about uAW , it
comes that

˙̃δcL = ˙̃δc − uAW (4.66)

Besides increasing the stability of the closed-loop, an additional objective can be included to reduce
the impact of the nonlinear disturbance wϕ on z. This can be achieved by creating the exogenous
output zs as shown on the figure above.

The resulting design-oriented model for anti-windup synthesis with controller rate limiter is illus-
trated on Figure 4.11.
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Figure 4.11: Flight control design-oriented scheme with rate limiter and anti-windup correction.

The anti-windup controller J(s) can now be computed through the optimization process described
in Section 2.4.2 (see page 59).
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Concluding comments

In this chapter, the design procedure of standard NDI laws and generalized NLC controllers for
attitude control of an air vehicle were detailed. For clarity of the design procedures, the longitudinal
and lateral control objectives were treated separately.

First, the double loop controller structure of baseline NDI design with PI control was presented.
In this case, the time-scaling approach was used as part of the control objective modelling. It
was also shown how second order stable dynamics can be imposed on the closed loop via the PI
controller of the outer loop.

In contrast to the baseline NDI design, in the generalized framework, the control objectives are not
required to be modelled as two cascade interconnected sub-systems. Even though the time-scaling
assumption is still implicitly considered, the generalized NLC controller can be designed using
the model of the control objectives as a whole. Also, the desired dynamics to be imposed on the
systems can take the form of higher-order dynamics through a reference model R(s).

Finally, an anti-windup control scheme designed to enhance the generalized nominal NLC con-
trollers was also presented.

Once the design of these generic control laws for the longitudinal and lateral control objectives of
air vehicles have been described, in the next chapter, the case of an atmospheric reentry control
problem will be addressed.
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Chapter 5

An atmospheric reentry control
problem

Introduction

Control design for atmospheric reentry vehicles remains a challenging task. Typically, because
the flight domain is extremely large, nonlinear and time-varying aspects induce nontrivial issues.
Moreover, the flying qualities required in atmospheric reentry missions demand high levels of
performance.

In this context, the attitude Control System of a reentry vehicle plays a key role. In early reentry,
the attitude protects the vehicle from overheating as the pressure builds up against the thermal
protection system. Then, the attitude of the vehicle regulates its deceleration as it flies (or glides)
down to a landing site safely.

It is in this type of applications that NLC-based approaches show to be powerful design techniques.
Several examples of standard NDI implementations to this control problem can be found in the
literature [Jou92, IGVW02, DN02, GV03, LRDY07, MCV09].

The main objective of this chapter is to apply the previously described flight control design method-
ology to an atmospheric reentry vehicle at different points of a possible trajectory.

First, in Section 5.1, a brief introduction to the physical context of an atmospheric reentry mission
and the on-board means of a space vehicle to accomplish it is presented.

Then, Section 5.2 contains a general description of the reentry vehicle aerodynamic controls (or
control surfaces) governed by the on-board Control System. These controls ultimately allow the
vehicle to realize the commanded attitude positions required for the reentry mission while inside
the atmosphere.

Finally, the computation and implementation procedures of the final control laws resulting from
both approaches are detailed in Section 5.3. After having defined the performance requirements
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that the control laws should ensure, the controller designs presented in the previous chapter are
computed using desired dynamics which respond to those performance specifications.

Once the flight controllers are synthesized, a robustness and stability analysis will be conducted
in the longitudinal case. Further validation of the method is provided by means of a 6 degrees-of-
freedom Flight Mechanics simulation using the aerodynamic model of a reentry vehicle. Simulation
results of independent manoeuvres for the longitudinal and lateral dynamics are then displayed.
A thorough comparison between the baseline NDI controller and the NLC-H∞ controller obtained
via our generalized framework is also presented.

5.1 Atmospheric reentry physical context

Reentry vehicles are compact and rigid air vehicles that suffer large parameter variations through-
out their flight domain. There are two main types of reentry vehicles that have been historically
used for manned space exploration: space capsules and delta-wing spacecrafts. On the one hand,
space capsules have a simpler aerodynamic profile, 1 without any wings, but with good heat dis-
sipation capacities. On the other hand, delta-wing shaped spacecrafts are re-usable, they have
better adapted lift/drag characteristics and more complex aerodynamics.

For this thesis work, a delta-wing reentry vehicle type was considered for simulation, specially due
to the nonlinear characteristics involved in the different phases of the mission.

5.1.1 On the mission of a reentry vehicle

The atmospheric reentry mission comprises a wide range of scientific fields such as Space Mechanics,
Flight Mechanics, Aerodynamics, Thermodynamics, Trajectography, amongst others, thus making
it a very complex application. In the context of a lifting body, the purpose of such mission is to
decelerate the gliding flight of the vehicle while directing it to a runway for its landing on Earth.
Typically the mission starts with the vehicle at a low orbit around the Earth (between 400 km
and 450 km from the Earth’s surface) and it continues by re-entering the vehicle into the Earth’s
atmosphere. The path to follow throughout the reentry is very precise and does not give much
margin for error. The consequences of a bad trajectory planning and tracking include:
– bounce the vehicle on the higher layers of atmosphere when the entry angle is too shallow,
– incinerate the vehicle with the heat shock wave produced by the compression of the air layers
when the entry angle is too steep or

– land the vehicle in an unanticipated region.

The typical reentry mission of a delta-wing spacecraft can characterized by four main phases
[HG79, VF03, VF05, Fal09]:

1. Descent Orbit phase. It begins with a manoeuvre made using the thrusters to reduce the
vehicle orbital speed allowing it to fall back smoothly to the Earth. The vehicle descends from
the initial orbit until contact with the atmosphere, taken conventionally at 120 km of altitude.

1. Space capsules are commonly designed as a spherical section with a blunted cone attached, providing good

aerodynamic stability.

104 / 345



5.1. Atmospheric reentry physical context

Using the thrusters, the attitude of the vehicle is positioned in such a way to direct the
thermal protection system 2 facing the atmosphere at a very precise angle-of-attack (usually
between 30◦ and 40◦ depending on the vehicle design).

A good manoeuvre precision is required at this phase to prevent the vehicle from bouncing
off the upper layers of the atmosphere or to disintegrate by thermal heating. In fact, a hot
sonic boom is produced around the vehicle as it compresses air molecules while entering the
atmosphere.

2. Hypersonic phase. It begins at 120 km altitude with a flight speed of about M ≈ 25
(airspeed Va ≈ 27000 km/h).

The attitude of the vehicle is maintained by steering thrusters early in this phase but as the
dynamic pressure rises around the vehicle, it begins a gradual transition from spacecraft to
aircraft enabling the use of the vehicle control surfaces.

The main objective of this phase is to target a predefined point in terms of down-range,
cross-range, speed and altitude to begin with the energy dissipation phase known as the
Terminal Area Energy Management (TAEM).

3. Energy Dissipation phase or TAEM. This phase starts when the speed of the vehicle
decreases conventionally to M = 2. During this phase, the vehicle performs ‘S’ manoeuvres
or banking turns to dissipate the remaining kinetic energy until it reaches a predefined point
in terms of altitude, speed and the distance to the runway position called NEP (nominal exit
point).

The NEP is reached when the vehicle is aligned with the runway after following a circular
profile defined as the Horizontal Alignment Cylinder (HAC) and starts dropping its altitude.

4. Approach and Landing phase. Once aligned with the runway, the vehicle begins a steep
approach. This approach is fixed for different vehicles on the order of γ = −16.5◦ to γ = −15◦.
Finally, a rounding manoeuvre is performed following a parabolic trajectory thus reducing
significantly the speed and angle of decent before posing the landing gear on the runway. The
angle of descent of this last manoeuvre, commonly γ ≤ −1.5◦, chosen in order to facilitate
touchdown. However, as this value is far from the approach angle, it can only be maintained
for a short time.

5.1.2 Automatic on-board systems: Guidance, Navigation and Control

To accomplish its mission, the reentry vehicle is equipped with 3 main systems. These systems are
interconnected with a given architecture allowing the vehicle to determine its desired trajectory
path, its actual point on the trajectory and how to enforce the desired trajectory path with specific
performance requirements.

1. The Navigation system is in charge of determining the instantaneous speed, position and at-
titude of the vehicle. The measurement of the vehicle state is usually done using redundant
systems to improve accuracy and avoid isolated system failure.

2. The thermal protection system (TPS) of a delta-wing spacecraft is usually based on carbon materials and silica

ceramics capable of absorbing large amounts of heat without increasing much their temperature. These materials

can withstand temperatures of over 1600◦C during this phase and can be re-used.
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The Inertial Measurement Unit (IMU) is the most common sensor used to determine the
reentry vehicle state. This unit uses accelerometers which can measure acceleration in all
axis and gyroscopes to determine the rotation rate. From this basic measurements, the IMU
provides by integration a measure of the position and attitude.

As IMU measurements have a tendency to drift from the actual values due deterministic
and random phenomenon, error correction can be provided by telemetry, GPS, radar, optical
celestial navigation and other navigation aids via communication systems when outside of
the blackout part of the reentry trajectory. Kalman filters provide a practical approach to
combining navigation data from multiple sensors to resolve the current state of a vehicle.

2. The Guidance system uses the information made available by the Navigation system to
compute the desired trajectory path in terms of specific parameters that can be physically
controlled by the vehicle via its actuators.

In the context of atmospheric reentry, the Guidance system uses a pre-defined entry corridor
to define the trajectory based on two profiles: the altitude vs. speed profile and the attack
angle vs. speed profile. By substituting the altitude by the drag acceleration, it can be
proved that the trajectory is completely determined by these two profiles, from which the
aerodynamic bank-angle commands that the vehicle must follow are generated [HG79]. To
maintain or recover the nominal path targeted, corrections to the drag acceleration profile are
done on-line mainly by determining the remaining nominal distance and the actual distance
to the landing site.

3. Finally, the Control system is responsible of tracking the Guidance system commands to
keep the vehicle on the desired trajectory while assuring the global system stability and
performance. It uses the measurements from the IMU and the commands of the Guidance
system to generate control signals to activate the different actuators (either aerodynamic
control surfaces or thrusters) of the vehicle as required. This thesis is focused on the
design of such control laws that build this last system.

For many reasons, control design for reentry vehicles still remains a challenging task. Typically,
because the flight domain is extremely large, nonlinear and time-varying aspects induce non-trivial
issues for guaranteeing the system stability and performance.

5.2 From control surfaces to forces and moments

The type of reentry vehicle considered for this thesis work, uses a combination of control surfaces
to direct the airflow around the vehicle. Changes in the airflow direction produces moments about
the vehicle center of gravity and ultimately have an effect on different parameters for attitude
control. At the same time, these control surfaces are activated by means of actuators.

Modelling the interactions between these as the input of the reentry vehicle dynamic model is of
great importance. Let us elaborate on some key points from a system modelling perspective.
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5.2.1 Generating aerodynamic forces and moments

Depending on the vehicle design, a number of control surfaces are available to control its motion.
The deflection of this control surfaces is denoted δ. The control system of the reentry vehicle is in
charge of generating suitable signals or deflection commands δ for these control surfaces in order
to modulate specific parameters of the vehicle.

For example, to modulate the lift force, the vehicle has to produce a pitch moment M to induce
changes on the angle-of-attack α. To achieve this effect, most delta-wing shaped vehicles have
two symmetrically placed control surfaces on the back-end called elevons. The deflection of these
surfaces is denoted by δre for the right elevon, and δle for the left elevon.

Elevons are also used to generate roll moment L, which means that the elevator and aileron effects
of a traditional aircraft are concentrated all together in these control surfaces.

In addition to the elevons, a body flap is integrated for trimming or to create extra pitch moment
at some specific flight conditions. The body flap is denoted δbf .

To modulate the lateral force, a yaw moment N is needed to induce changes on the side-slip angle
β. The type of vehicles considered commonly dispose of two vertical wing flaps or winglets. The
deflection of the winglets is denoted δrw for the right winglet, and δlw for the left winglet. Although,
they are mainly used to produce yaw, these winglets can also be used to produce a small amount
of pitch moment if necessary.

It may be added that the reentry vehicle also disposes of air-brake surfaces but these are not useful
for attitude control.

From the control surface display, one can create the independent control signals δl, δm and δn
that represent the global effects of the control surfaces on each body axis. As seen in Section 3.2,
these pseudo-controls are typically used to compute aerodynamic models and allow to distribute or
allocate the control signals onto each real control surface. The general expression of such allocation
for the described control surfaces can be written as:

δreal = G δpseudo (5.1)

where

δreal =
�
δle δre δbf δlw δrw

�T
(5.2)

δpseudo =
�
δl δm δn

�T
(5.3)

The term G can be considered as a constant matrix that distributes the independent control signals
δpseudo to the actual control surfaces δreal with specific weighting values, or it can be considered
as time function usually dependent on the state G(t, x) for dynamic allocation.

5.2.2 Choosing an allocation strategy

Any allocation strategy to compute G can be seen as an optimization of the control surface effi-
ciency. In fact, it is intended to obtain the maximum efficiency from the control surfaces at the
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lowest deflection by combination of all the surfaces. Specific choices for allocation of efforts on the
control surfaces of a reentry vehicle are based on the geometry of the vehicle and the placement of
the control surfaces.

The allocation of δl and δm onto the real control surfaces δre, δle and δbf can be separated into: a
decoupling strategy of the longitudinal effects and the roll lateral effects, and an a priori optimized
function.

In the case of the elevons, a simple mechanical mixer strategy is commonly used. The latter allows
to decouple the effects of these control surfaces on the axis x and y of the reentry vehicle. The
symmetric deflection δm of the elevons has an effect longitudinal motion (on the y axis), whereas
their anti-symmetric deflection δl affects the roll lateral motion (on the x axis). Then,

δle = δm − δl
δre = δm + δl

(5.4)

The body flap δbf can be used as a trim tab to ease the efforts of the elevons at different operating
points. Generally, δbf is a function of the pitch axis control δm and other system parameters Θ or
states x such as

δbf = fδbf (δm,Θ, x) (5.5)

The function fδbf can be defined, for example, in the form of a data table as a function of the
Mach number M, the control signal δm and other parameters.

Finally, the allocation of the winglets is mainly determined by the vehicle geometry and the place-
ment of the winglets with respect to the center of gravity. The choice for the allocation is commonly
a constant relation with the control δn. This can be expressed in general as:

δlw = fδlw(δn)
δrw = fδrw(δn)

(5.6)

An allocation example of the winglet control surfaces can be found in Appendix D.2.2.

Different allocation strategies can also be used depending on the control requirements to comply
with. More sophisticated allocation methods can be employed to, for example: optimize the total
distribution of efforts on all control surfaces [ODB06], or to minimize all control surface activity
and thus preventing premature actuator saturation [Zac09].

Such allocation strategies are supposed to be determined a priori before synthesis of the following
flight control laws.

5.3 Implementation of control laws and results

To develop how the implementation of the baseline NDI controllers and the generalized NLC
controllers takes place, it is first necessary to establish the performance specifications of the control
objectives that the control laws should comply with. To have a clear view of the specifications,
which are usually defined in the frequency domain, it is practical to set these requirements as time
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domain characteristics such as: rise time tr, settling time ts and maximum overshoot to a step
response.

Once the performance specifications have been set and analysed, the controller computation process
will be described. First, different values of the NDI-PI controller will be computed based on the
same desired dynamics by adjusting the tuning parameters.

Then, starting from one of these NDI-PI controllers, a set of robust controllers will be computed us-
ing our generalized NLC framework which accounts for actuator dynamics. As some results become
unsatisfactory in presence of magnitude and rate saturations of the actuators, anti-windup con-
trollers will be synthesized to enhance the stability of the nominal NLC-H∞ controllers previously
computed.

The implementation of the nonlinear control laws to the reentry vehicle will be done at different
flight conditions representative of the mission flight domain. This set of flight conditions is con-
tained in Table 5.1 and defined mainly by the altitude h and Mach number M, for which the trim
conditions ᾱ and δ̄m of the reentry vehicle nominal model are computed.

Flight point Trim values

no h (m) M q̄ (Pa) γ (o) ᾱ (o) δ̄m (o)

1 68 500 20 1 639 -0.3 33 2.08

2 54 500 11 3 615 -0.5 33 1.86

3 48 000 8 4 379 -1.5 28 5.43

4 38 000 5 6 395 -2.5 24 5.78

5 25 000 2.5 10 986 -5 16 1.78

6 10 000 0.8 11 843 -10 10 -4.89

7 5 000 0.6 13 613 -15 7 -7.59

8 0 0.3 6 383 -16 10 -5.99

Table 5.1: Flight points considered in simulation with associated trimmed flight conditions.

To highlight the benefits of our NLC framework, a comparison of the obtained simulation results
with both solutions will be developed for the reentry vehicle attitude control problem considering
modelling errors. In order to simplify the reading of this section, a selection of relevant flight
points will be made which helps emphasise the attributes of both, the NDI controllers and the
generalized NLC controllers. A more extensive compilation of the simulation results, using the
computed controllers at all considered flight points, can be found in Appendix E (see page 263).

Finally, simulation results of the closed-loop system under external environmental factors like static
wind gusts and turbulent wind will be presented to validate the proposed methodology.

Let us now detail the controller computation procedure by first considering the longitudinal dy-
namics of the reentry vehicle.
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5.3.1 Longitudinal axis

Recall that the control objective of the longitudinal dynamics is the angle-of-attack α, which is a
parameter of the utmost importance in the atmospheric reentry of a space vehicle. As previously
mentioned, the performance requirements have to be set and analysed first.

The performance specifications of the time response on the angle-of-attack α can be regrouped in
a bounded normalized area as will be detailed next.

5.3.1.1 Performance specification on angle-of-attack

Consider the normalized bounded region on Figure 5.1 as an example of the attitude control
performance specification for the angle-of-attack α in an atmospheric reentry mission.

The lower bounds of this performance specification accounts for the rise time tr and the settling
time ts as a function of the Mach number M, while the upper bound fixes the maximum overshoot
of the time response. The static regime accuracy of the angle-of-attack α is also enclosed by both,
upper and lower bounds. Two main characteristics can be pointed-out from this specification.

0 5 10 15
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0.8

1

1.2

1.4

1.6

1.8

t (s)

α

Normalized angle-of-attack objective

M ≤ 1

M > 1

Figure 5.1: Performance specification on the angle-of-attack α.

The first remark that can be made is that at higher Mach numbers, the lower bound is less
restrictive than that at lower Mach numbers. This is explained directly from the reentry mission
altitude vs. speed profile where the vehicle has higher speeds at higher altitudes and lower speeds
at lower altitudes.

Since the dynamic pressure q̄ is lower at higher altitudes, the attitude dynamics are slower, whereas
these dynamics are faster at lower altitudes where the atmosphere is denser and the dynamic pres-
sure greater. As a result, a faster time response on the angle-of-attack α is expected at slower
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Mach numbers than at higher Mach numbers.

The next remark that can be made about the performance specification bounds is that they allow
for second-order dynamics or higher. In this case, second-order dynamics will be defined for the
baseline NDI controller design as well as for the reference model Rlong(s) of our NLC framework.
Clearly, to stay within the boundaries, a reduced range of desired dynamics can be chosen.

To guide the choice of the desired dynamics to comply with the performance specifications, consider
the following:
– To avoid having excessive overshoot, the desired dynamics must be well damped. A damping
coefficient ξα ≥ 0.7 should be chosen to this effect, thus remaining below the upper bound of
Figure 5.1.

– The rise time tr and settling time ts are mainly affected by the cut-off frequency ωcα of the
desired dynamics. In this case, it can be deduced by observation that the settling time is of
about ts ≈ 6.5 s and it is the same for both lower bounds (M ≤ 1 and M > 1).
As for the rise time, for the yellow bound it can be deduced that tr ≈ 0.3◦/s, while for orange
bound one can estimate tr ≈ 0.23◦/s. Then, ωcα |M≤1 > ωcα |M>1.

After having defined the control requirements and characteristics of the dynamic behavior to be
followed by the closed-loop system, the computation of control laws will be detailed next.

5.3.1.2 Fixing the NDI-PI controller parameters

Let us now present the control laws obtained using the standard NDI controller design procedure
for the longitudinal dynamics of the reentry vehicle. Based on the general control law design
detailed in Section 4.1.1 (see page 84), consider the NDI-PI solution expressed in equation (4.13)
as:

δmc = g−1
q (K ỹ +H w) (5.7)

where

K =

�
kP
τq

kI
τq

−1

τq

�
(5.8)

H =

�−1

τq
−1

�
(5.9)

and

ỹ =
�
εα

�
εα q

�T
(5.10)

w =
�
Zα Mq

�T
(5.11)

The nonlinear function g−1
q (x,Θ) is estimated on-line while the gains K and H contain controller

parameters that should be fixed based on the control requirements. The vectors ỹ and w are the
controller input signals corresponding to system measurements and nonlinear function estimations.

It is now only a matter of choosing the value of the parameters kP , kI and τq to obtain the final
controller expression to be implemented. The values of the static gains kP and kI are directly
linked to the desired dynamics of the angle-of-attack α to be imposed on the closed-loop system
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via the outer loop. From these constants, the value of the setpoint filter Flong(s) time constant τF
is obtained.

A first example of the possible desired dynamics that can be established for the control objective
α, along with its associated controller parameters, is presented on Table 5.2.

Desired dynamics #1 Parameter values

M ωcα (rad/s) ξα kP kI τF

> 1 0.95 0.7 1.33 0.903 1.47

≤ 1 1.5 0.7 2.10 2.250 0.94

Table 5.2: Choice #1 of the controller parameters defining the desired dynamics for α.

Since the parameters kP and kI are fixed to comply with the performance specifications, the truly
adjustable controller parameter that allows to improve the closed-loop performance for specific
desired dynamics is τq. As a matter of fact, the only theoretical restriction that τq should abide by
is that the value of its inverse τ−1

q must remain sufficiently greater than the fixed cut-off frequency
ωcα , thus respecting the time-scaling assumption.

As the desired dynamics are established as a function of the Mach number, the obtained controller
can be considered as a self-scheduled solution which can be easily implemented thanks to the fact
that it is composed of static gains. A first choice of τq and the resulting NDI controller gains is
presented on Table 5.3.

NDI-PI controller #1

M τq (s) K H

> 1 0.5 [2.66 1.805 −2] [−2 −1]

≤ 1 0.25 [8.4 9.000 −4] [−4 −1]

Table 5.3: Definition of the NDI-PI controller #1.

Better results can be obtained by changing the value of the tuning parameter. In general, it will be
proved that reducing the value of τq tends to improve the closed-loop performance, translated as
a better tracking of the set-point and desired dynamics. Still, as the fast subsystem interacts with
the actuator dynamics, reducing the value of τq also results in an under-damped fast sub-system
that creates larger and faster oscillations of the control signal δmc , which could lead to premature
actuator attrition and even worse, to stability issues in presence of input saturations.

Consider a second NDI controller such as the one presented on Table 5.4, where the values of the
tuning parameter have been reduced.
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NDI-PI controller #2

M τq (s) K H

> 1 0.25 [5.32 3.610 −4] [−4 −1]

≤ 1 0.1 [21 22.50 −10] [−10 −1]

Table 5.4: Definition of the NDI-PI controller #2.

Hoping to improve the tracking of the desired dynamics, one can keep reducing the value of the
tuning parameter. Take, for example, the third NDI controller presented on Table 5.5 where lower
values of τq have been considered.

NDI-PI controller #3

M τq (s) K H

> 1 0.05 [13.30 9.025 −10] [−10 −1]

≤ 1 0.1 [42.00 45.00 −20] [−20 −1]

Table 5.5: Definition of the NDI-PI controller #3.

As the tuning parameter τq keeps being reduced, it will come to a point where very little or no
performance improvement will be perceived, while the control signal will increase its magnitude
and start to oscillate.

In presence of input saturations, the reentry vehicle may be destabilized at some points of the flight
domain. Specifically in the hypersonic regime, simulation results will show that the three NDI-PI
controllers computed above exhibit difficulties to maintain the stability of flight point n◦1. Still,
one can preserve the stability of this flight point by “relaxing” the choice of the desired dynamics
and computing the NDI controller n◦4 presented on Table 5.7.

Desired dynamics #2 Parameter values

ωcα (rad/s) ξα kP kI τF

0.7 0.7 0.98 0.49 2

Table 5.6: Choice #2 of the controller parameters defining the desired dynamics for α.

NDI-PI controller #4

τq (s) K H

0.25 [3.92 1.96 −4] [−4 −1]

Table 5.7: Definition of the NDI-PI controller #4.

Finally, let us propose a fifth NDI-PI controller obtained from the desired dynamics presented
on Table 5.8 and that are capable of covering the whole flight envelop. The choice of the tuning
parameter τq and the final controller gains are given on Table 5.9.
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Desired dynamics #3 Parameter values

ωcα (rad/s) ξα kP kI τF

1.2 0.7 1.68 1.44 1.16

Table 5.8: Choice #3 of the controller parameters defining the desired dynamics for α.

NDI-PI controller #5

τq (s) K H

0.1 [16.8 14.4 −10] [−10 −1]

Table 5.9: Definition of the NDI-PI controller #5.

Based on this controller, a solution with improved robust performance can be obtained via our
generalized NLC framework.

5.3.1.3 Computation of NLC-H∞ robust controllers

The method allowing to obtain generalized NLC-H∞ controllers for the longitudinal dynamics of
the reentry vehicle will now be described. In fact, the frequency domain response of the baseline
NDI solution can be exploited to begin shaping the robust controller synthesis.

First, let us recall the reformulated longitudinal dynamics model under the form (4.45) presented
on page 93, which reads:

Σlong(s) :






˙̃x = A x̃+B1

�
fα
fq

�
+B2 λq δm

z =
�
1 0

�
x̃

(5.12)

where
x̃ =

�
α̃ q

�T

α̃ = α− ᾱ, A =

�
zα 1
mα mq

�

B1 =

�
1 0
0 1

�
, B2 =

�
0
1

�

fα = f̂α + wfα , fq = f̂q + wfq (5.13)

The matrix A is chosen so that the norm of the functions fα and fq is reduced for most oper-
ating conditions. In this case, based on the linearization about the trim conditions (ᾱ, δ̄m), the
different matrices A and eigenvalues associated to the flight points in Table 5.1 were calculated.
These eigenvalues correspond to the modes of the anlge-of-attack and pitch rate. The flight point
considered the closest to the “center” of the flight domain, from a pole location point of view, was
then selected. This corresponds approximately to a mean value of the linear coefficients covering
the flight domain.
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Figure 5.2: Longitudinal open-loop poles of the flight domain considered for simulation.

From the map of poles presented on Figure 5.2, flight point n◦5 can be considered to have the
best eigenvalues corresponding to the criteria described above. For this flight point, the following
matrix can be deduced:

A =

�
−0.001574 1
0.009643 −0.06239

�
(5.14)

Now, the NDI-PI controller can be used to begin tuning the weighting functions for the synthesis
of the generalized robust compensator. Using the longitudinal model representation based on flight
point n◦5 and by closing the control loop using the baseline NDI control law (4.13), one can generate
the preliminary analysis model presented on Figure 5.3. Notice that the latter retakes the reference
model tracking structure to generate a performance measurement zp, and the measurement of the
actuator rate zu, which are used in the multi-channel design-oriented model.
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Figure 5.3: Preliminary analysis model for the longitudinal baseline NDI controller.
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Consider the NDI-PI controller #5 contained in Table 5.9. The second-order dynamics of the
reference model Rlong(s), which is presented in Table 5.8, can be expressed as:

Rlong(s) =
ω2
cα

s2 + 2 ξα ωcα s+ ω2
cα

(5.15)

with ωcα = 1.2 rad/s and ξα = 0.7. Using the analysis model proposed on Figure 5.3, the

singular value plots of the transfers Tw→zp and Tw→zu , where w =
�
zc fα fq

�T
, are depicted on

Figure 5.4.
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Figure 5.4: Singular value analysis of the closed-loop with NDI-PI controller #5.
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From the singular value curves depicted above, one gets that the peak gains of the performance
transfer Tw→zp and the actuator rate transfer Tw→zu are

σzp = 0.379 = −8.4 dB, and σzu = 102.145 = 40.2 dB (5.16)

The frequency domain response of the transfer Tw→zp can be used to obtain a starter idea of the
required performance characteristics for the robust controller synthesis. The weighting function of
the exogenous output zp can be designed by defining a lead filter that wraps all the singular value
curves as shown on Figure 5.5. This filter corresponds to the inverse of the weighting function
Wp(s) that should be used for loop-shaping the controller synthesis problem.

This intermediate step between standard NDI design and robust nonlinear compensation is of
great help to reduce the time consuming process of designing appropriate weighting functions
W (s) to loop-shape the optimization problem.Then, the proposed weighting functions provide
only a starting point of the tuning procedure. Obtaining a controller with improved robustness
results with respect to the baseline NDI solution may require further adjustments of W (s).
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Figure 5.5: Defining a weighting function Wp(s) using the NDI-PI controller #5.

A first weighting function Wp(s), whose inverse W−1
p (s) is depicted on Figure 5.5, was obtained

using the graphic tool magshape of MATLAB in the form of a sixth-order lag filter such as:

Wp(s) =
s6 + 12.8 s5 + 85.3 s4 + 366.4 s3 + 654.4 s2 + 262.3 s+ 12.7

0.35 s6 + 2.8 s5 + 15.8 s4 + 27.5 s3 + 8.9 s2 + 0.3 s+ 0.0003
(5.17)

Remark 5.1 With full-order H∞ techniques, the use of high-order weighting functions W (s) be-
comes a concern because it increases the order of the design-oriented model. As a consequence,
the order of the controller is also increased and computational issues become non-trivial. Since
the synthesis technique that will be used allows to fix the structure and the order of the robust
controller, this restriction on the order of the design-oriented model can be discarded.
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For the actuator rate measurement zu a dynamic weighting function Wu(s) will not be employed.
Instead, a static gain gzu can be used accordingly to increase or reduce the magnitude of the
actuator rate signal considered for the optimization process. Generally, when gzu > 1 is used, the
actuator rate is considered to be large, then, the optimization process produces a controller that
tends to attenuate the actuator activity. This has a direct impact on the achievable performance
which, in this case, is reduced.

When gzu < 1 is considered, the opposite effect is produced and the actuator activity is favored
thus attaining better performance levels. A unit gain gzu = 1 will be used hereafter.

Based on the cut-off frequency ωcα chosen for the reference model dynamics and following the
criteria defined in Section 2.3 (see page 54), two lag filters Wfα(s) and Wfq (s) can be proposed for

the measured disturbances f̂(x,Θ) as:

Wfα(s) =
0.01

s+ 1.5
, and Wfq (s) =

0.1

s+ 1.5
(5.18)

Once the longitudinal model has been established and that the weighting functions W (s) have
been selected, it is now only a matter of choosing a suitable controller structure for synthesis.
Actually, if a PI structure is chosen for the robust controller K(s), one can reproduce the baseline
NDI solution following this methodology as explained in [HJB11], thus exposing the generalizing
character of our NLC framework.

In this case, a state-space structure of higher-order will be used to introduce several degrees-of-
freedom to the controller Klong(s). More specifically, a fifth-order controller structure will be
retained.

For controller synthesis, consider the multi-channel design-oriented model presented on Figure 4.6
of page 95. The generalized NLC-H∞ controller Klong(s) can be computed via the MATLAB
function hinfstruct. The latter implements the structured H∞ synthesis technique presented in
[AN06], based on nonsmooth optimization.

By merging the fifth-order dynamics of the computed controller Klong(s) with those of the setpoint
filter Flong(s) and the error εα integral, one gets an augmented compensator structure of state
xK ∈ R7. It can be expressed under the form:

�
ẋK

δmc

�
= Klong

�
xK

ỹ

�
(5.19)

where

ỹ =
�
αc f̂α f̂q α q

�T
(5.20)

Using the reference model (5.15) along with the weighting functions (5.17) and (5.18), the first
computed NLC-H∞ controller is:
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Klong =





−0.85 0 0 0 0 0 0
0.85 0 0 0 0 0 0
2.9 1.5 −5.8 −0.2 0 0 0
15 −1.5 −18 −4.8 −18 0 0
14.8 −19 0 −0.4 0.2 −16 0
15.5 −9.9 0 0 4.2 −18 −0.3
6.04 4.9 0 0 0 2.35 −1.7

1 0 0 0 0
0 0 0 −1 0
1.2 0.35 0.4 3.1 1.1
−13 4.1 10.3 15.1 −3.4
4.2 −0.1 −0.7 −7.5 −4.1
2.1 −2.2 −0.8 −18 −5.7
16.2 0.74 −0.4 6.7 9.4

9.61 −13 13.4 −0.2 0.8 −17 0.2 0.9 −2.2 −1.1 −31.2 −13





Table 5.10: Definition of the NLC-H∞ controller #1.
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Figure 5.6: Preliminary analysis of the closed-loop with the NLC-H∞ controller #1.
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A preliminary singular value analysis of the closed-loop with the NLC-H∞ controller #1 produces
the curves presented on Figure 5.6. From these singular value plots, one gets that the peak gains
of the performance transfer Tw→zp and the actuator rate transfer Tw→zu become:

σzp = 0.418 = −7.5 dB, and σzu = 13.076 = 22.3 dB (5.21)

Clearly, the peak gain σzu has been successfully reduced when compared to that of the NDI-PI
controller #5 presented in (5.16). Still, σzp remains slightly greater than the peak gain of the
performance transfer obtained by the NDI controller. This means that the performance level
attained by the latter, is better than the one obtained by the NLC-H∞ controller #1.

To achieve a better results, the H∞ norm associated with the performance transfer can be reduced
by adjusting the weighting function Wp(s) tuning. In order for the optimization process to produce
a controller capable of reducing this particular transfer, one should generally proceed to increase
the static gain of this weighting function. By tuning Wp(s) this way, it is considered that the
performance measurement zp is large at low frequencies, thus the optimization process tends to
generate a controller that will act stronger to minimize the H∞ norm of this transfer.

Consider now the following forth-order weighting function Wp(s) that keeps the cut-off frequency
characteristics of the previous function (5.17), but for which the static gain has been increased:

Wp(s) =
s4 + 8.6 s3 + 37.7 s2 + 92.5 s+ 71.5

0.1 s4 + 0.57 s3 + 1.8 s2 + 1.5 s+ 0.002
(5.22)

Using once more the reference model (5.15) along with the newly adjusted weighting function (5.22)
and the previously defined functions (5.18), the second NLC-H∞ controller obtained is:

Klong =





−0.85 0 0 0 0 0 0
0.85 0 0 0 0 0 0
248 −105 −6.6 10.1 0 0 0
−98 36.3 4.02 −11 −10 0 0
83.1 139 0 3.7 −8.8 −5.1 0
64.5 −183 0 0 −3.4 −4.3 4.6
32.4 −74 0 0 0 −1.5 2.02

1 0 0 0 0
0 0 0 −1 0

−20 −36 −5.8 −65 −23
−7.2 −3.2 −1.7 179 3.9
−30 15 2 −10 3.7
81 −22 −5.2 38 −13
87 −6 −3 −42 −11

253.4 −37.4 −3.3 12.2 −4.6 −9.1 4.2 1.7 −6.8 −1.7 −115 −16.3





Table 5.11: Definition of the NLC-H∞ controller #2.

The preliminary singular value analysis of the closed-loop with the NLC-H∞ controller #2 produces
the curves presented on Figure 5.7. From these singular value plots, one gets that the peak gains
of the performance transfer Tw→zp and the actuator rate transfer Tw→zu become:

σzp = 0.291 = −10.7 dB, and σzu = 35.952 = 31.1 dB (5.23)

In this case, the peak gain σzp attains a lower level than that of the NDI-PI controller #5 presented
in (5.16). Yet, this reduction of the H∞ norm on the performance transfer comes at a cost. Clearly,
the peak gain σzu has increased its value, even though it still remains lower than that obtained by
the NDI-PI controller #5.
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5.3. Implementation of control laws and results

A trade-off raised by the loop-shaping approach, between the closed-loop performance and control
signal activity becomes evident. One cannot reduce the activity of the actuators, thus protecting
them from attrition and from reaching prematurely their saturation limits, while expecting the
highest levels of performance at the same time.
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Figure 5.7: Preliminary analysis of the closed-loop with the NLC-H∞ controller #2.

Finally, when actuator limits are considered, the stability of some flight points in the hypersonic
regime is lost when using either the NDI-PI controller #5 or any of the two NLC-H∞ controllers
that have been computed above. This will be proved with simulation results. In fact, the NDI-PI
controller is incapable of preserving the stability of flight points n◦1, n◦2 and n◦3. The NLC-H∞
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controller #2 is unable to maintain the stability of flight points n◦1 and n◦2, whereas the NLC-H∞
controller #1 is only incapable of preserving the stability of flight point n◦1.

From one point of view, this shows that the NLC framework proposed obtains better robustness
properties than an equivalent NDI-PI controller. Still, this solution remains insufficient for stabi-
lizing the whole flight envelop considered for this thesis work. Therefore, an anti-windup device
can be employed to enlarge the closed-loop stability domain under input saturations.

Consider, for example, the seventh-order nominal NLC-H∞ controller #2 contained in Table 5.11.
Under the rate limited Direct Linear Anti-windup strategy illustrated on Figure 4.10 of page 100,
consider that v2 = 0 and v1 = v. Given the first-order anti-windup controller

�
ẋJ

v

�
= Jlong

�
xJ

uAW

�
(5.24)

where v ∈ R7 and uAW ∈ R, the enhanced NLC-H∞ controller takes the form:

�
ẋK

δmc

�
= Kalong




xK

v
ỹ



 (5.25)

with ỹ =
�
αc f̂α f̂q α q

�T
.

Referring to the design-oriented model of Figure 4.11 presented on page 100, the exogenous output
zs can be weighted using the same filters as in the nominal NLC-H∞ controller synthesis Ws(s) =
Wp(s). Consider the weighting function (5.17) for the exogenous output zs and its inverse for
the exogenous input wϕ. The anti-windup device Jlong is computed once again via the MATLAB
function hinfstruct and one gets the following controller:

Jlong =





−1.954 0.3077

−1.965
0.5254
−68.28
4.647
−14.06
−10.19
5.032

−0.6037
0.6714
−251.8
−128.5
39.01
−148.2
−60.65





Table 5.12: Definition of the anti-windup device for NCL-H∞ controller #2.

This anti-windup device completes the robust nonlinear compensation strategy proposed for the
longitudinal dynamics.

5.3.1.4 Robustness assessment

Before assessing the stability of the computed control laws, let us propose the following numbering
code that will help identify each NDI-PI and NLC-H∞ controller:
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Control Law no Type Desired Dynamics Controller

δmc = g−1
q (K ỹ +Hw)

1 NDI-PI #1 Table 5.2 Table 5.3

2 NDI-PI #2 Table 5.2 Table 5.4

3 NDI-PI #3 Table 5.2 Table 5.5

4 NDI-PI #4 Table 5.6 Table 5.7

5 NDI-PI #5 Table 5.8 Table 5.9

δmc = λ−1
q Klong(s) ỹ

6 NLC-H∞ #1 Table 5.8 Table 5.10

7 NLC-H∞ #2 Table 5.8 Table 5.11

δmc = λ−1
q Kalong (s)

�
v

ỹ

�

8 NLC-H∞ #2 Table 5.8 Table 5.12

v = Jlong(s)uAW + AW

Table 5.13: Compilation of computed controllers for the longitudinal axis.

Using the LFT closed-loop modelling proposed in Section 2.5, the basic approach invoking the
small gain theorem and the refined approach based scaled bounded real lemma are employed. As
an example, the choice of the equilibrium point about which the small variations of the state will
be analysed corresponds to the trim conditions of flight point n◦5.

To expose some characteristics of the stability test that will be used, first, the NDI-PI and the
NLC-H∞ controllers are analysed discarding the presence of input saturations and modelling errors
in the ∆ blocks. The following H∞ norms were obtained from this stability tests:

Controller H∞ norm γ

Type no Basic approach Scaled BRL

NDI-PI

1 3.354 1.4448

2 3.011 0.8319

3 3.7557 0.74212

4 1.5793 0.67314

5 2.4997 0.68959

NLC-H∞
6 1.9565 1.1670

7 1.6563 0.70548

NLC-H∞+AW 8 1.5972 0.65582

Table 5.14: Stability analysis results with nonlinearities.

As expected, the scaled BRL approach yields less restrictive results. In this case, the Lipschitz
constants of the system nonlinearities can attain a maximum value defined by the inverse of γ
before destabilizing the system.

Now, let us include in the stability tests modelling errors as uncertainties on the previously con-
sidered nonlinearities. The ∆ block now includes nonlinear operators and real time-varying uncer-
tainties.
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Controller H∞ norm γ

Type no Basic approach Scaled BRL

NDI-PI

1 4.8105 2.2373

2 4.312 1.3890

3 5.3513 1.2197

4 2.3841 1.4841

5 3.6036 1.2174

NLC-H∞
6 2.1613 1.2707

7 1.9422 0.82788

NLC-H∞+AW 8 1.9296 0.82122

Table 5.15: Stability analysis results with modelling errors and nonlinearities.

By comparing the results contained in Tables 5.14 and 5.15, it can be observed that the values of
γ are greater when the modelling errors are accounted for. Finally, let us consider the saturation
operator in the ∆ block. The stability tests yield the following results:

Controller H∞ norm γ

Type no Basic approach Scaled BRL

NDI-PI

1 583.1 2.6642

2 1421.3 1.9933

3 2832 2.4492

4 583.1 1.9196

5 1421.3 1.7469

NLC-H∞
6 348.41 1.6398

7 987.75 1.5587

NLC-H∞+AW 8 987.75 1.4124

Table 5.16: Stability analysis results with modelling errors, nonlinearities and saturations.

It is now clear that by adding more operators to the block ∆, these stability analysis tests produce
greater values of γ. In fact this can be expected since the proposed stability tests become rather
conservative as more crossed transfers are added to the analysis. Some of these transfers lack of a
real physical interpretation, thus making these stability tests conservative.

In particular, the results contained in Table 5.16 demonstrate how the small gain theorem based
test obtains excessively large values of γ. Then, this test provides a very small characterization
of the stability domain meaning that only very small variations from the equilibrium point are
admissible.

In contrast, the scaled BRL based test is able to keep the values γ rather small and very close
together as more operators are added to the ∆ block. Still, the stability domain characterization
is smaller when modelling errors, nonlinearities and saturations are accounted for. This can be
attributed to the conservatism of the test.
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From the results presented above using the two stability tests, the flight control law that yields the
largest characterization of the stability domain corresponds to the NLC-H∞+AW solution. In an
interesting manner, the effects of the anti-windup device on stability can be observed in all cases
since lower values of γ are obtained.

5.3.1.5 Simulation results

Let us now present the simulation results obtained using the different controllers that have been
computed using the standard NDI procedure and the generalized NLC framework.

A disturbed aerodynamic model that considers the modelling errors presented in Section 3.4 and
that are detailed in Appendix D.2.3 (see page 261), is used in simulation. The latter differs from
the nominal model employed to estimate the nonlinear measured disturbances used by the NDI-
PI controllers and the NLC-H∞ controllers. Also, the Flight Mechanics simulator accounts for
measurement disturbances including: measurement noise, scale factors and biases.

In a first instance, the different computed controllers will be tested discarding the external envi-
ronmental factors such as static wind gusts and turbulent wind effects. This will allow a clearer
comparison between the simulation results. In a second instance, once a final solution capable of
controlling the reentry vehicle throughout the whole flight envelop is exhibited, these environmen-
tal factors will be added to validate the control law under a more realistic scenario.

For this longitudinal simulation case, the lateral dynamics are kept at a steady state by fixing the
values of the rotation rates p = r ≡ 0 in our six degrees-of-freedom nonlinear Flight Mechanics
simulator. The Mach number M and the altitude h are also kept constant during the simulation
given that the Control System is being tested independently at different flight points of a possible
reentry trajectory. The longitudinal dynamics of the reentry vehicle are then simulated with a step
setpoint signal αc such that

Step M > 4 M < 4

αc 3◦ 5◦

Table 5.17: Magnitude of the step αc used for simulation as a function of M.

To present the simulation results, two kind of figures are used to show the curves that characterize
the evolution of the most relevant parameters.

The first kind of figure is used for simulations considering an actuator model with unlimited rate
and magnitude. This type of simulation will help contrast the different computed controllers before
exhibiting the effects of input saturations. The figures used include graphs of: the control objective
α, the pitch rate q and the control input δm. Consider the following precisions:
– In the control objective graph there are three curves corresponding to: a reference angle-of-attack
signal αr (purple dotted line), the simulation angle-of-attack α (orange line) and the measured
angle-of-attack αm (blue line). The simulation angle-of-attack is the actual α as perceived by
the reentry vehicle.
The reference signal αr is in fact an artificially generated signal out of the control loop whose
only use is to show how the simulation angle-of-attack α should ideally evolve given the fixed
desired dynamics.
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The measured angle-of-attack αm is obtained by: a simulation inertial measurement unit when
the Mach number is M > 2.5, and by a simulation anemometric unit when the Mach number is
M ≤ 2.5. The performance objective is also presented on this graph as a fine dotted red line.

– Next, the pitch rate q graph contains two curves corresponding to the simulation pitch rate q
(orange line) and the measured pitch rate qm (blue line). The simulation pitch rate is the actual
q as perceived by the reentry vehicle, whereas the measured pitch rate qm is the signal provided
by the simulation IMU.

– Finally, the third graph depicts two curves corresponding to the commanded control signal δmc

(orange line) and the elevon signal δel (blue line). The commanded control δmc is the actual
signal generated by the controllers and that is fed to the reentry vehicle actuator model after
allocation.
The elevon signal δel is generated from the measurements of the real actuator states and coincides
with the average value of the elevons deflection δle and δre, as defined by the allocation strategy
presented in Section 5.2.2 (page 107).

The second kind of figures is used when the saturated actuator model is used for simulation. In
this case, besides presenting the graphs of the control objective α, the pitch rate q and the control
input δm, two more graphs are included corresponding to: the rate of the elevon actuators δ̇el
and the rate of the body-flap actuator δ̇bf . The limit and dynamics description of the elevon and
body-flap actuators used in simulation is presented in Appendix D.2.2 (see page 259). Consider
the following precisions:
– In the case of the control input graph, the two curves depicted now correspond to the commanded
signal δmc (orange line) produced by the controller and to the real deflection of the elevon
actuators δelr (blue line).

– In the cases of the elevon actuator rate δ̇el and the body-flap actuator rate δ̇bf , two curves are
illustrated on these graphs: the signal of the actuator rate δ̇ (orange line) due to the commanded
control signal δmc and the real signal of the actuator rate δ̇r (blue line).

The controller numbering used in the following corresponds to that proposed in the
compilation presented on Table 5.13.

Remark 5.2 To allow the reader of this thesis work a better comparison of the simulation results
obtained by the different computed controllers, the graphs of a same flight point will be presented
on the same page or on side by side pages.

Comparing simulation results of NDI-PI controllers n◦1 and n◦3. Consider these two
NDI-PI controllers contained in Tables 5.3 and 5.5. As an example, let us consider flight points
n◦5 and n◦6. In this case, the simulation results of flight point n◦5 are presented on Figures 5.14
and 5.15 of page 136, while the simulation results of flight point n◦6 are presented on figures 5.22
and 5.23 of page 142.

In the first and second graphs of each figure, it can be observed that the measured curves αm

and qm overlap with the simulation curves α and q, meaning that the measurement disturbances
of the IMU have little impact on the closed loop. It can also be observed that the tracking of
the setpoint generates no static error thanks to the integral term in the NDI controller structure.
Yet, the tracking of the desired dynamics in both cases is not very accurate during the transitory
regime. The performance objective is satisfied in both cases.

It becomes clear that as the value of the tuning parameter τq is reduced (from controller n◦1
to controller n◦3), an improvement of the closed-loop performance is obtained. This translates
in general as a better tracking of the desired dynamics represented by the reference signal αr.
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However, specially in the case of flight point n◦6, the control signal δmc increases its magnitude
and begins to present undesired oscillations when using NDI controller n◦3.

Then, better suited values of the tuning parameter τq that respond to the trade-off of obtaining a
good level of performance while keeping the magnitude and oscillations of the control signal δmc

low should be retained. This is the case of the NDI-PI controller n◦2.

NDI-PI controller simulation results with a saturated actuator model. To show the
impact of input saturations on the closed-loop, the saturated actuator models of the elevons and
body-flap is now employed.

Consider the NDI-PI controller n◦2 presented on Table 5.4. The simulation results of flight points
n◦5 and n◦6 are depicted on Figures 5.16 and 5.24 of pages 137 and 143 respectively. The impact
of the input saturations on these flight points is barely noticeable since only the actuator rate of
the body-flap saturates and very slightly. Both cases comply with the performance objective.

Still, in other points of the hypersonic regime, the saturation effects are more evident (see Ap-
pendix E.1.1 on pages 265-272 for simulation results over the complete flight envelop). As a
matter of fact, flight point n◦1 is destabilized due to a more severe effect of the actuator rate
saturations as illustrated on Figure 5.8 of page 130.

To preserve the stability of this flight point considering the saturated actuator, a possible solution is
to change the desired dynamics and use the NDI controller n◦4 presented on Table 5.7. Simulation
results of flight point n◦1 using this controller are shown on Figure 5.9 of page 131. Clearly, the
time response is stable although the angle-of-attack α curves come closer to the lower bound of
the performance objective.

Comparing simulation results of NLC-H∞ controllers n◦6 and n◦7. Now, let us compare
the two NLC-H∞ controllers presented on Tables 5.10 and 5.11.

Consider once more flight points n◦5 and n◦6. The simulation results of flight point n◦5 using the
NLC-H∞ controllers are found on Figures 5.18 and 5.19 of page 139, while the simulation results
of flight point n◦6 are found on Figures 5.26 and 5.27 of page 145.

Clearly, in the two flight points considered, both compensators satisfy with the control requirements
and achieve very good levels of performance. As exposed during the computation process, the NLC-
H∞ controller n◦7 achieves a lower H∞ norm of the performance transfer, which leads to a very
close tracking of the desired dynamics. This becomes more evident in the case of flight point n◦6.

The magnitude of the control signal δmc stays low and does not produce any oscillations. As
expected, this magnitude is lower when using NLC-H∞ controller n◦6. The performance is slightly
deteriorated with respect to that obtained when using NLC-H∞ controller n◦7.

Comparing simulation results of an equivalent NDI-PI controller and NLC-H∞ con-
troller with a saturated actuator model. Consider the NDI-PI controller n◦5 contained in
Table 5.9, which was computed using the same desired dynamics as the robust compensator n◦7.
This dynamics, common to both solutions, is contained in Table 5.8.
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Flight points n◦5 and n◦6 are used again to help contrast the simulation results obtained by the
two different controller design approaches for same desired dynamics. This time, the saturated
actuator model is considered.

The results of flight point n◦5 are shown on Figures 5.17 and 5.20 of pages 138 and 140, while the
results of flight point n◦6 are found on Figures 5.25 and 5.28 of page 144 and 146.

Even though both solutions prove to be satisfactory at these flight points, a better performance
level is achieved by the NLC-H∞ controller n◦7. The control signal δmc produced by the NLC-H∞
controller n◦7 shows to be less active and slightly lower in magnitude compared to that generated
by the NDI-PI controller n◦5.

Furthermore, flight points n◦1, n◦2 and n◦3 controlled by the NDI controller n◦5 are destabilized
due to the input saturations as shown on Appendix E.1.1 (see pages 273-275).

When using the NLC-H∞ controller n◦7, only flight points n◦1 and n◦2 are destabilized under
the saturated actuator model as illustrated on Figures 5.10 and 5.12 of pages 132 and 134. To
maintain the stability of these flight points, an anti-windup device that augments this NLC-H∞
controller can be used to actively control the saturated system, thus enlarging the stability domain
of the closed-loop.

Simulation results of the enhanced anti-windup controller. Finally, consider controller
n◦8 composed of the anti-windup device presented on Table 5.12, that enhances the nominal NLC-
H∞ controller n◦7.

The simulation results of this complete robust solution can be found on Figure 5.11 of page 133
for flight point n◦1, and on Figure 5.13 of page 135 for flight point n◦2. Very satisfactory results
are obtained under the saturated actuator model.

As can be expected, the enlargement of the stability domain of the closed-loop is followed by an
increase of the control signal δmc activity and by a slight deterioration of the performance level.
However, the evolution of the angle-of-attack α curves stays within the performance objective and
the primary objective of preserving the closed-loop stability is successfully achieved. The reentry
vehicle is controlled throughout the whole flight envelop while satisfying the performance require-
ments established for the control objective α.

Finally, simulation results at flight points n◦5 and n◦6 are shown on Figures 5.21 and 5.29 of
pages 141 and 147 considering a more realistic scenario with a static wind gust and wind turbulence,
following the profile described in Appendix D.1.2 (see page 256). It should be kept in mind that
the moderate wind turbulence profile considered for simulation starts at an altitude of 20km.

Simulation results of the whole flight domain with the NLC controller n◦8 under the effects of wind
can be found in Appendix E.1.3 (see pages 305-312).
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Figure 5.8: Simulation with saturated actuator and controller no2.
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Figure 5.11: Simulation with saturated actuator and controller no8.
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Figure 5.13: Simulation with saturated actuator and controller no8.
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Figure 5.14: Simulation at M > 1 with unsaturated actuator and controller no1.
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Figure 5.15: Simulation at M > 1 with unsaturated actuator and controller no3.
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Figure 5.16: Simulation at M > 1 with saturated actuator and controller no2.
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Figure 5.17: Simulation at M > 1 with saturated actuator and controller no5.
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Figure 5.18: Simulation at M > 1 with unsaturated actuator and controller no6.
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Figure 5.19: Simulation at M > 1 with unsaturated actuator and controller no7.
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Figure 5.20: Simulation at M > 1 with saturated actuator and controller no7.
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Figure 5.21: Simulation with wind disturbances, saturated actuator and controller no8.
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Figure 5.22: Simulation at M < 1 with unsaturated actuator and controller no1.

0 5 10 15
10

11

12

13

14

15

16

17

18

Flight point no6: h =10000m, M =0.8, q̄ =11843Pa

α
(o
)

αr

α

αm

0 5 10 15

0

1

2

3

4

q
(o
/s
)

q
qm

0 5 10 15
−7

−6

−5

−4

t (s)

δ e
l
(o
) δmc

δel

Figure 5.23: Simulation at M < 1 with unsaturated actuator and controller no3.

142 / 345



5.3. Implementation of control laws and results

0 5 10 15
10

11

12

13

14

15

16

17

18

Flight point no6: h =10000m, M =0.8, q̄ =11843Pa
α
(o
)

αr

α

αm

0 5 10 15

0

1

2

3

4

5

q
(o
/s
) q

qm

0 5 10 15

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

δ e
l
(o
)

δmc

δelr

0 5 10 15

−4

−2

0

2

4

6

δ̇ e
l

(o
) δ̇el

δ̇elr

0 5 10 15

−6

−4

−2

0

2

4

6

8

t (s)

δ̇ b
f

(o
) δ̇bf

δ̇bfr

Figure 5.24: Simulation at M < 1 with saturated actuator and controller no2.
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Figure 5.25: Simulation at M < 1 with saturated actuator and controller no5.
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Figure 5.26: Simulation at M < 1 with unsaturated actuator and controller no6.
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Figure 5.27: Simulation at M < 1 with unsaturated actuator and controller no7.
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Figure 5.28: Simulation at M < 1 with saturated actuator and controller no7.
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Figure 5.29: Simulation with wind disturbances, saturated actuator and controller no8.

147 / 345



Chapter 5. An atmospheric reentry control problem

5.3.2 Lateral axis

The control objectives on the lateral dynamics are the side-slip angle β and the roll angle φ. In
this specifications example, the performance requirements are actually set on the roll angle rate φ̇
rather than on the roll angle φ.

Throughout a reentry mission, side-slip angle objective is kept close to zero, while the specifications
on the time response of the roll angle rate φ̇ can be regrouped in a bounded normalized area as
will be explained next.

5.3.2.1 Performance objective on side-slip and roll angle rate

Let us now present the performance objectives that the control problem of the lateral dynamics of
the reentry vehicle should comply with.

– The side-slip angle β is to be kept around 0◦ and must verify in all cases: |β(t)| < 2◦;
– The constraints on roll angle rate φ̇ are defined by the normalized bounded regions as functions
of the Mach number on Figure 5.30.
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Figure 5.30: Performance specification on the roll angle rate φ̇.

Clearly, at higher Mach numbers, the lower bounds are less restrictive than that at lower Mach
numbers. A faster time response on the roll angle rate φ̇ is then expected at slower Mach numbers
than at higher Mach numbers.

Then, the bounds of this performance specification hardly admit any overshoot. Then, the roll
angle rate should preferably follow first-order dynamics, although they will be indirectly imposed
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by the roll rate p desired dynamics. Yet, to be consistent with the control designs of Chapter 4 for
the lateral control objectives, second-order dynamics will be defined for the roll angle φ through the
baseline NDI controller design as well as through the reference modelRlat(s) of our NLC framework.

In this case, to guide the choice of the desired dynamics which will allow to satisfy the performance
specifications, the settling time ts and rise time tr are affected by the time constants τi and the
cut-off frequencies ωci . It can be deduced by observation that the settling time is of about ts ≈ 3.5 s
for M < 0.9, ts ≈ 5.5 s for 0.9 ≤ M ≤ 2.5 and ts ≈ 12.5 s for M > 2.5. As for the rise time, it
can be estimated that for M < 0.9 a minimum tr of approximately 0.45◦/s should be satisfied; for
0.9 ≤ M ≤ 2.5, tr ≈ 0.25◦/s; and for M > 2.5, tr ≈ 0.15◦/s.

5.3.2.2 Controller synthesis process

Let us now present the control law obtained via the standard NDI controller design procedure for
the lateral dynamics of the reentry vehicle. Based on the general control law design detailed in
Section 4.1.2 (see page 88), consider the NDI-PI solution expressed in equation (5.26) as:

�
δl
δn

�
= G−1

2 (K ỹ +H w) (5.26)

where

K =
�
T̃ KP T̃ KI −T

�
(5.27)

H =
�
−T̃ −I

�
(5.28)

with

T̃ = T G−1
1 (5.29)

and given the vectors

ỹ =
�
εβ εφ

�
εβ

�
εφ p r

�T
(5.30)

w =
�
Yβ Xφ Lp Nr

�T
(5.31)

Recall that the control efficiency inverse G−1
2 (x,Θ) is estimated on-line while the gains K and H

contain controller parameters which respond to the performance specifications. The vectors ỹ and
w are the controller input signals corresponding to system measurements and nonlinear function
estimations.

The static gain values kP and kI contained in the matrices KP , KI are directly linked to the
desired dynamics of the side-slip angle β and the roll angle φ to be imposed on the closed-loop
system. From these constants, the time constants of the setpoint filters in Flat(s) are obtained
such as τFi = kPi/kIi .

An example of the possible desired dynamics that can be established for the control objectives,
along with its associated controller parameters, is presented on Table 5.18.
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Desired dynamics Parameter values

M ωcβ (rad/s) ωcφ (rad/s) ξi kPβ kIβ kPφ kIφ

> 2.5 1.00 0.65 1.0 2.00 1.00 1.30 0.42

[0.9, 2.5] 1.5 1.0 0.8 2.40 2.25 1.60 1.00

< 0.9 2.0 1.2 0.8 2.62 4.00 1.92 1.44

Table 5.18: Controller parameters defining the desired dynamics for the lateral control objectives.

The final lateral flight controller is computed by defining the matrix T̃ , which contains the value
of time constants τp and τr. These are the controller main adjustable parameters. It should be
reminded that the choice of these adjustable parameters needs to verify the time scaling hypothesis
made for the controller design.

Since the guidelines and outcomes of the choice of τi have been cleared out in the longitudinal
case, consider a single example which leads to the following Mach number-scheduled controller:

NDI-PI controller #6

Tuning Controller Gains

M τp (s) τr (s) K H

> 2.5 0.30 0.15

�
0 4.3 0 1.4 −3.3 0

−15.9 5.6 −7.9 1.8 0 −6.7

� �
0 −3.3 −1 0

7.9 −4.3 0 −1

�

[0.9, 2.5] 0.20 0.10

�
0 8 0 5 −5 0

−24.9 4.6 −23.4 2.8 0 −10

� �
0 −5 −1 0

10.4 −2.8 0 −1

�

< 0.9 0.10 0.05

�
0 19.2 0 14.4 −10 0

−64.9 6.7 −81.2 5.1 0 −20

� �
0 −10 −1 0

20.3 −3.5 0 −1

�

Table 5.19: Definition of the NDI-PI controller #6.

Next, the method allowing to obtain generalized NLC-H∞ controllers for the lateral dynamics of
the reentry vehicle is employed. Given that the difference between the expected dynamics at higher
and lower Mach numbers is significant in the lateral case, two robust controller will be computed:
one for the high hypersonic regime (M > 2.5), and another one for the lower hypersonic, transonic
and subsonic regimes (M ≤ 2.5).

The synthesis procedure presented for the longitudinal case, where the frequency domain response
of the baseline NDI solution is exploited to begin shaping the robust controller synthesis is used.

First, let us retake the reformulated lateral dynamics model under the form (4.57) presented on
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page 96, which reads:

Σlat(s) :






ẋ = Ax+B1





fβ
fφ
fp
fr



+B2 Λ

�
δl
δn

�

z =

�
1 0 0 0
0 1 0 0

�
x

(5.32)

with

x =
�
β φ p r

�T
, A =





yβ 0 sin α − cos α
0 0 1 0
lβ 0 lp lr
nβ 0 np nr





B1 =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 , B2 =





0 0
0 0
1 0
0 1





fβ = f̂β + wfβ , fφ = f̂φ + wfφ

fp = f̂p + wfp , fr = f̂r + wfr

Recall that the A matrix is chosen so that the norms of the functions fβ , fφ, fp and fr are reduced
for most operating conditions. The flight points considered the closest to the “center” of the flight
domain, from a pole location point of view, are selected. From the map of poles presented on
Figure 5.31, flight point n◦8 seems to be the best operating conditions which correspond to this
criteria at lower Mach numbers, while flight point n◦1 responds to the criteria at higher Mach
numbers.

The following matrices are deduced:

A1 =





−0.000016 0.001345 0.5446 −0.8387
0 0 1 0.6494

−0.003554 0 −0.04241 −0.05504
0.009815 0 0.07721 0.06083



 (5.33)

A8 =





−0.002112 0.09435 0.1736 −0.9848
0 0 1 0.1763

−0.02659 0 −0.2988 0.3691
−0.005022 0 0.1823 −0.638



 (5.34)

where the index 1 and 8 correspond to the flight points.
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Figure 5.31: Lateral open-loop poles of the flight domain considered for simulation.

First, let us present the computation of the controller which will control the lateral dynamics of the
reentry vehicle for M ≤ 2.5. For controller synthesis, consider the multi-channel design-oriented
model presented on Figure 4.8 of page 98.

A preliminary singular value analysis of the NDI-PI solution contained in Table 5.19, specifically
for M < 0.9, is used. Consider the general analysis model presented on Figure 5.32. One gets that
the peak gains of the performance transfers Tw→zp and the actuator rate transfers Tw→zu are

σzβ = 0.552 = −5.2 dB, σzδl
= 111.515 = 40.9 dB

σzφ = 0.424 = −7.5 dB, σzδn = 492.685 = 53.8 dB (5.35)

considering that w =
�
βc φc fβ fφ fp fr

�T
, zp =

�
zβ zφ

�T
and zu =

�
zδl zδn

�T
.

From the singular value analysis and after a few trial-and-error tunings, the following weighting
functions are retained for loop-shaping the design-oriented model presented on Figure 4.8:

Wpβ =
s6 + 22.97 s5 + 200.2 s4 + 1185 s3 + 1516 s2 + 342.3 s+ 6.705

0.2059 s6 + 2.997 s5 + 16.11 s4 + 13.41 s3 + 1.709 s2 + 0.02276 s+ 0.00002
(5.36)

Wpφ =
s5 + 7.742 s4 + 36.2 s3 + 84.43 s2 + 39.98 s+ 1.941

0.05578 s5 + 0.2789 s4 + 1.078 s3 + 0.8219 s2 + 0.08158 s+ 0.00008
(5.37)

The weighted outputs zu corresponding to the actuator rate transfers are weighted by constant
values gzi = 1.
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Figure 5.32: Preliminary analysis model for the lateral baseline NDI controller.

The reference models in Rlat(s) contain the desired dynamics of β and φ described in Table 5.18 for
M < 0.9. These desired dynamics are defined as second-order according to the transfer function

Rlati(s) =
ω2
ci

s2 + 2 ξi ωci s+ ω2
ci

(5.38)

The generalized NLC-H∞ controller Klat(s) can now be computed via the MATLAB function
hinfstruct which implements the structured H∞ synthesis technique. A fifth-order state-space
controller structure was chosen for this controller.

By merging the fifth-order dynamics of the computed controller Klat(s) with those of the setpoint
filter Flat(s) and the error integrals εβ and εφ, one gets an augmented compensator structure of
state xK ∈ R9. It can be expressed under the form:




ẋK

δlc
δnc



 = Klat

�
xK

ỹ

�
(5.39)

where

ỹ =
�
βc φc f̂β f̂φ f̂p f̂r β φ p r

�T
(5.40)

Using the reference model (5.38) along with the weighting functions (5.48), the lateral NLC-H∞
controller is:

Klat =

�
AK BK

CK DK

�
(5.41)

where the values of AK , BK , CK and DK are defined in the following table:
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AK =





−0.75 0 0 0 0 0 0 0 0
0 −0.75 0 0 0 0 0 0 0

0.75 0 0 0 0 0 0 0 0
0 0.75 0 0 0 0 0 0 0

−92.5 −66.1 75.3 121 −15.1 −1.5 0 0 0
5.2 −29.5 52.6 45.1 23.7 −20.2 4.6 0 0
32.7 −44.3 7.03 −26 0 5.3 −2.8 0.13 0
−1.7 652 20 −78.6 0 0 13.6 −1.6 −3.1
−55.4 7.1 −26.4 −109 0 0 0 −1.2 −12.7





(5.42)

BK =





1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1 0 0

−5.1 −3.3 −2.5 −2.5 −0.61 0.4 −26 −28 −2.2 8.1
−5.5 0.6 −5.8 4.1 1.7 1.7 −21 51.9 22.2 −6.9
3.8 20.6 −2.8 3.9 1.1 3.5 17 20.2 −5.4 −16
325 −375 80.7 −32 0.1 −27 −151 −27 −76 72.2
−39 51.8 −10 4.4 0.2 4.1 13.1 19.2 8.3 −7





(5.43)

CK =

�
−136. 35.4 35.9 22 −38.2 19.2 −3.9 −0.9 −9.1
155 −115 −30.5 119 −0.2 9.2 −5.2 2.4 22.1

�
(5.44)

DK =

�
0.4 1.9 −0.5 −5.4 −1.8 −0.2 −23 −98 −33 16.9
−1.6 −0.7 5.5 −0.8 −0.01 −1.4 51 −23 −10 −13

�
(5.45)

Table 5.20: Definition of the NLC-H∞ controller #3.

When the singular value analysis scheme is used, generating a closed-loop with the controller
presented above, the following peak gain values are obtained:

σzβ = 0.595 = −4.5 dB, σzδl
= 30.539 = 29.7 dB

σzφ = 0.483 = −6.3 dB, σzδn = 30.463 = 29.6 dB (5.46)

By comparing this results with those contained in (5.35), it can be observed that even though the
performance measurements obtained by both solutions are basically the same, there is an impor-
tant reduction on the peak gains of the actuator rate transfers.

Now, let us present the computation of the NLC-H∞ for the lateral dynamics of the reentry vehicle
for M > 2.5. Let us begin with the singular value analysis of the NDI-PI solution contained in
Table 5.19, which is done using the gains defined for M > 2.5. In this case, the peak gains of the
performance transfers Tw→zp and the actuator rate transfers Tw→zu are

σzβ = 0.621 = −4.1 dB, σzδl
= 26.338 = 28.4 dB

σzφ = 0.932 = −0.6 dB, σzδn = 112.441 = 41 dB (5.47)
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From these results, the following weighting functions are obtained for loop-shaping the design-
oriented model:

Wpβ =
s6 + 82.4 s5 + 473.9 s4 + 1491 s3 + 1866 s2 + 690 s+ 29.79

0.05548 s6 + 4.323 s5 + 12.62 s4 + 15.29 s3 + 4.405 s2 + 0.1126 s+ 0.0001
(5.48)

Wpφ =
s6 + 8.894 s5 + 28.81 s4 + 42.98 s3 + 33.54 s2 + 14.38 s+ 0.757

0.0986 s6 + 0.7815 s5 + 2.037 s4 + 1.902 s3 + 0.497 s2 + 0.008076 s+ 0.00007
(5.49)

Once more, the weighted outputs zu are weighted by constant values gzi = 1. The desired dynamics
of β and φ, contained in the reference models Rlat(s), correspond to those defined in Table 5.18
for M > 2.5.

As in the previous case, a fifth-order state-space controller structure was chosen for this controller.
Merged with the setpoint filters in Flat(s) and the error integrals εβ and εφ, the final augmented
compensator structure has its state such that xK ∈ R9.

By merging the fifth-order dynamics of the computed controller Klat(s) with those of the setpoint
filter Flat(s) and the error integrals εβ and εφ, one gets an augmented compensator structure of
state xK ∈ R9. The lateral NLC-H∞ flight controller for M > 2.5 is:

Klat =

�
AK BK

CK DK

�
(5.50)

where

AK =





−0.32 0 0 0 0 0 0 0 0
0 −0.32 0 0 0 0 0 0 0

0.32 0 0 0 0 0 0 0 0
0 0.32 0 0 0 0 0 0 0
2.9 8.2 31.4 −18.5 −16.3 −0.9 0 0 0

−36.5 −50.4 −18.1 −1.8 −0.9 −2.4 −9.1 0 0
10.1 −30.9 −27.1 −62.5 0 −4 −20.6 10.2 0
−7.8 −26 13.8 3.3 0 0 0.15 −4.1 0.3
78.6 73.6 26 −25.6 0 0 0 8.6 −0.7





(5.51)

BK =





1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1 0 0

−11.9 −2.9 7.8 4.2 3.4 −0.9 28 25 14 −4.2
188 38 −32 −8.9 −5.9 −2.7 31 56 37 −13
−19 −10 −3.4 −4.1 −0.8 −2.5 70 26 23 −17
29 −3.8 −27 −10 −4.5 −3.5 36 56 27 −4.1

−274 −57 60 17 10 4.8 −67 −118 −54 9.6





(5.52)

155 / 345



Chapter 5. An atmospheric reentry control problem

CK =

�
11.8 −10.7 −12.6 17.3 19.1 −0.8 −6.9 4.3 −0.4
31.5 −56.6 −22.5 −47.7 14.1 −9.9 −38.6 20.8 −2.4

�
(5.53)

DK =

�
0.6 1.3 −3 −3.3 −3.8 1.4 −33.6 −45.3 −20.7 0.6
−0.7 0.6 5.2 −2.4 −2.1 −0.6 92.3 −27.7 11.8 −33.6

�
(5.54)

Table 5.21: Definition of the NLC-H∞ controller #4.

Applying the singular value analysis to the closed-loop systems with the NLC-H∞ computed above,
the following peak gain values are obtained:

σzβ = 0.591 = −4.6 dB, σzδl
= 31.313 = 29.9 dB

σzφ = 0.791 = −2.1 dB, σzδn = 31.315 = 29.9 dB (5.55)

By comparing this results with those contained in (5.47), it is clear that the performance transfers
have been improved since the values of σzp become smaller under the action of this NLC-H∞
controller. As for the actuator rate transfers, even though the peak gain σzδl

presents an increase,
a significant reduction on the gain σzδn can be clearly identified.

Finally, as it will be shown in simulation, some points may be destabilized when input constraints
are accounted for. In both cases, the NDI-PI solution and the NLC-H∞ controller, flight point n◦1
is destabilized due to the severe effects of saturations. Then, let us propose a complete solution
using an anti-windup device.

In particular, the elevons rate limits generate the destabilizing effects when the roll manoeuvre
is done at flight point n◦1. Then, the rate limiter structure proposed for the longitudinal case is
retained for the control input δl.

Consider the ninth-order nominal NLC-H∞ controller #4 contained in Table 5.21. Using the rate
limited Direct Linear Anti-windup strategy illustrated on Figure 4.10 of page 100, consider that
v2 = 0 and v1 = v. Given the first-order anti-windup controller

�
ẋJ

v

�
= Jlat

�
xJ

uAW

�
(5.56)

where v ∈ R9 and uAW ∈ R, the enhanced lateral NLC-H∞ controller takes the form:




ẋK

δlc
δnc



 = Kalat




xK

v
ỹ



 (5.57)

Referring to the design-oriented model of Figure 4.11 (see page 100), adapted for this lateral
particular case, the anti-windup device Jlat is computed using once more the function hinfstruct.
The following first-order anti-windup device is obtained:
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Jlat =





−6.814 −2.967

−3.269
−0.4469
−2.76
−0.1131
12.64
4.926
8.098
8.734
19.3

−1.592
−0.2394
−1.033

−0.004452
4.442
6.157
10.83
5.242
7.968





Table 5.22: Definition of the anti-windup device for NCL-H∞ controller #4.

This anti-windup device completes the robust nonlinear compensation strategy proposed for the
lateral dynamics.

5.3.2.3 Simulation results

Next, the simulation results obtained using the different controllers that have been computed above,
are presented considering a disturbed aerodynamic model of the reentry vehicle. Also, the Flight
Mechanics simulator employed accounts for measurement disturbances including: measurement
noise, scale factors and biases. All results presented in this section will also consider saturated
actuator models. It is reminded that a complete compilation of simulation results including all
flight points of the domain studied are contained in Appendix E.

As treated in the longitudinal case, to allow a clearer comparison between the simulation results,
external environmental factors such as static wind gusts and turbulent wind effects will be tem-
porarily discarded. Once a final solution capable of controlling the reentry vehicle throughout the
whole flight envelop is exhibited, these environmental factors will be added to recreate a more
realistic scenario.

For the lateral simulation case, the longitudinal dynamics are kept at a steady state by fixing the
flight point trim values and by keeping the value of the pitch rate at q ≡ 0.

The lateral dynamics of the reentry vehicle are then simulated with a ramp function on the com-
manded value φc. The ramp function generates an artificial step manoeuvre on the roll angle rate
φ̇. This manoeuvre will be held at 6◦/s and the simulation will cover a range on the roll angle of
φ = 0◦ to at least φ = 70◦.

The commanded signal on the side-slip angle will be defined as βc ≡ 0◦ for all cases.

The figures containing the graphs that characterize the evolution of the most relevant lateral
parameters in simulation include the following:
– The first graph contains two curves corresponding to: the simulation roll angle rate φ̇ (orange
line), the measured roll angle rate φ̇m (blue line). In addition to these curves, this graph includes
the upper and lower boundaries (red fine dotted lines) defined by the normalized performance
objectives presented in Section 5.3.2.1. The simulation roll angle rate is the actual φ̇ as perceived
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by the reentry vehicle while φ̇m is an artificially created measurement within the IMU which
serves as a reference.

– The second graph includes three curves: The reference roll angle φr (purple dotted line), the
simulation roll angle φ (orange line) and the measured roll angle φm (blue line). The reference
curve φr is generated using the desired dynamics to be imposed by the controllers. The simulation
curve is the actual roll angle as seen by the vehicle. The measurement curve is directly obtained
via the simulation IMU.

– The third graph depicts two curves corresponding to the simulation side-slip angle β (orange
line) and to the measured side-slip angle βm (blue line). The measured side-slip angle βm is
obtained by: a simulation inertial measurement unit when the Mach number is M > 2.5, and
by a simulation anemometric unit when the Mach number is M ≤ 2.5.

– The forth graph includes the evolution of the angular rates of the lateral dynamics: the simulation
roll rate p (orange line), the measured roll rate pm (blue line), the yaw rate r (violet line) and the
measured yaw rate (green line). Again, the simulation values correspond to the actual angular
rates while the measured values correspond to the simulation IMU measurements.

– The fifth graph presents the actuator signals associated with: the right elevon δre (orange line),
the left elevon δle (blue line), the right winglet δrw (violet dotted line) and the left winglet δlw
(green dotted line). These curves represent the actual evolution of the actuators attached to the
corresponding control surfaces.

– Finally, the sixth graph contains the elevon rate signals, which help visualize the saturation
levels of these actuators. There are four curves presented in this graph: the demanded right
elevon rate δ̇re (orange line), the demanded left elevon rate δ̇le (blue line), the realized right
elevon rate δ̇rer (violet dotted line) and the realized left elevon rate δ̇ler (green dotted line).

To discuss the simulation results, let us compare the controllers computed on the previous section
at the high hypersonic regime on the one hand, and at the low hypersonic, transonic and subsonic
regimes on the other.

Comparing simulation results of NDI-PI controller #6 and NLC-H∞ controller #3 at
M ≤ 2.5. Consider the NDI-PI controller matrices for M ≤ 2.5 contained in Table 5.19 and the
NLC-H∞ controller in Table 5.20. As an example, let us consider once more flight points n◦5 and
n◦6. In this case, the simulation results of flight point n◦5 are presented on Figures 5.40 and 5.41
of pages 167 and 168, while the simulation results of flight point n◦6 are presented on figures 5.43
and 5.44 of pages 170 and 171.

Both controllers present satisfactory time responses which abide by the performance specifications
defined for φ̇ and β. Yet, improvements in the performance of the reentry vehicle can be easily
perceived in the case of NLC-H∞ controller #3 with respect to the baseline solution. The tracking
of the reference signal φr shows virtually no static error while the curves of β and βm remain closer
to 0◦ (easily seen on flight point n◦6) using the NLC-H∞ controller.

The control signals generated in both cases are very close in size and oscillating activity. Still, with
a closer look, the size of the control signals generated by the NLC-H∞ controller #3 seems to be
slightly lower and smoother. Looking at the elevons rate δ̇el graph, the control rate signal demanded
by the NLC-H∞ controller is smaller with respect to that of the baseline NDI-PI solution, which
induces less damaging saturation effects.

Comparing simulation results of NDI-PI controller #6 and NLC-H∞ controller #4
at M > 2.5. Now, consider the NDI-PI controller matrices for M > 2.5 of Table 5.19 and
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the NLC-H∞ controller in Table 5.21. Flight points n◦2 and n◦3 will be retained to discuss the
results obtained in the hypersonic regime. Simulation results of flight point n◦2 are presented on
Figures 5.36 and 5.37 of pages 163 and 164, while the simulation results of flight point n◦3 are
presented on figures 5.38 and 5.39 of pages 165 and 166.

In the hypersonic regime, both flight controllers give a satisfactory solution to the lateral control
problem of the reentry vehicle. The performance achieved by the NLC-H∞ solution still remains
better, specially in terms of the tracking of the reference roll angle φr. The regulation of β towards
0◦ using both controllers remains quite similar at flight point n◦2. In flight point n◦3, the β
curve remains closer to 0◦ with the NLC-H∞ controller. For same desired dynamics, the NLC-H∞
solution produces almost no static error in the tracking of φr.

In contrast to the previous comparison, the control signals generated by the NDI-PI controller seem
to be slightly lower in size to those generated by the NLC-H∞ controller. This fact can be more
clearly seen in the elevon rate δ̇el graph. Yet, the generated control signals remain very similar in
both cases.

Next, let us consider flight point n◦1. Simulation results using both, NDI-PI controller #6 and
NLC-H∞ controller #4, are contained in Figures 5.33 and 5.34 of pages 160 and 161. Clearly,
the closed-loop is destabilized due to the severe effects of the input saturations in both cases.

Now, the anti-windup device presented in Table 5.22, which enhances NLC-H∞ controller #4,
will be employed. Simulation results are presented on Figure 5.35, page 162. The closed-loop
shows a stable response in spite of input saturations even though a performance deterioration
can be perceived. As can be expected, the enlargement of the stability domain is accompanied
by an increase of the control signals size and activity. Yet, the curves of φ̇ and β verify the per-
formance objectives while preserving the stability of the closed-loop which is the primary objective.

Finally, simulation results with this complete robust solution at flight points n◦5 and n◦6 are shown
on Figures 5.42 and 5.42 of pages 169 and 169. A more realistic scenario is considered with a static
wind gust and turbulence, following the profile described in Appendix D.1.2 (see page 256). It
should be kept in mind that the moderate wind turbulence profile starts at an altitude of 20km.

At high numbers of Mach (M > 2.5) while in the presence of lateral wind and turbulence, the
simulation β is offset by more than 2◦ (see other simulation results in Section E.2.3 of Appendix E).
This effect is mainly due to the fact that the anemometric probe is protected at these speeds,
thus incapable of measuring and giving feedback on this offset. Therefore, all wind speed related
parameters, such as β, are estimated by the IMU without any direct information on �Vw. Yet, the
simulation β always shows a tendency to come closer to its commanded value βc = 0◦ under the
effects of the robust controller.

The lateral performance objectives are satisfied by the complete robust solution proposed through
the whole flight domain.
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Figure 5.33: Simulation with saturated actuator and NDI-PI controller #6.
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Figure 5.34: Simulation with saturated actuator and NLC-H∞ controller #4.
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Figure 5.35: Simulation with saturated actuator and NLC-H∞ controller #4+AW.
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Figure 5.36: Simulation with saturated actuator and NDI-PI controller #6.
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Figure 5.37: Simulation with saturated actuator and NLC-H∞ controller #4.
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Figure 5.38: Simulation with saturated actuator and NDI-PI controller #6.
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Figure 5.39: Simulation with saturated actuator and NLC-H∞ controller #4.
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Figure 5.40: Simulation with saturated actuator and NDI-PI controller #6.
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Figure 5.41: Simulation with saturated actuator and NLC-H∞ controller #3.
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Figure 5.42: Simulation with wind and saturated actuator and NLC-H∞ controller #4+AW.
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Figure 5.43: Simulation with saturated actuator and NDI-PI controller #6.
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Figure 5.44: Simulation with saturated actuator and NLC-H∞ controller #3.
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Figure 5.45: Simulation with wind and saturated actuator and NLC-H∞ controller #3.
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Concluding comments

In this chapter, the attitude control design methodology described in Chapter 4 were implemented
on an atmospheric reentry vehicle at different points of a possible mission trajectory.

First, an introduction to the physical context of atmospheric reentry missions was given. Also,
a general description of the reentry vehicle control surfaces display and how it allows to produce
changes in the attitude of the vehicle was presented.

Then, the computation and implementation procedures of the control laws resulting from the
design procedures of both approaches were detailed. Based on the performance requirements that
the control laws should ensure, the controller designs were computed using appropriate desired
dynamics. In the case of the NDI-PI solution, as desired dynamics are fixed, the only remaining
adjustable parameter is τq. This parameter was adjusted to different values to show its effect on
the closed-loop behavior.

In contrast, the generalized NLC framework uses different tuning parameters such as the weight-
ing functions and the reference model R(s) containing the desired dynamics. An initial tuning
of the weighting functions that allow to loop-shape the controller synthesis problem was obtained
from the standard NDI-PI solution. Using a simple performance analysis scheme, a singular value
analysis of the NDI-PI solution allowed to get an idea of the weighting functions frequency domain
characteristics. In fact, by following this procedure, the standard NDI-PI solution can be repro-
duced using the generalized NLC framework as explained in [HJB11]. By adjusting the tuning of
the weighting functions, the trade-off between better performance and smaller control signals was
managed.

Then, a robustness and stability test was presented in the case of the longitudinal controllers com-
putes using both, the standard NDI procedure with PI control and the generalized NLC framework.
It was concluded that the best stability characterization is that obtained by the NLC-H∞+AW
solution. Yet, it was shown that as more operators are added to the ∆ block of the closed-loop
analysis model, the stability tests employed tend to generate more conservative results.

Finally, the computed controllers were tested using a 6 degrees-of-freedom fully nonlinear Flight
Mechanics simulator. On the one hand, the standard NDI-PI solution proved to be a sufficient
solution when input constraints are discarded. When the tuning parameters τi is reduced, the
performance of the vehicle improved, although increasingly oscillating control signals of larger size
were produced.

In the longitudinal case, for example, a single tuning of the NDI-PI controller, corresponding
to controller n◦5, was able to satisfy the performance requirements through the whole set of
flight points considered of a possible reentry trajectory. Yet, as physical limits of the control
surface actuators are considered, some of these flight points were destabilized due to the effects of
saturation.

On the other hand, the generalized NLC-H∞ controllers proved to get significantly better perfor-
mance than the NDI-PI solution, while handling better the size and activity of the control signals
generated thanks to the multi-channel design approach. As input constraints are considered in
the synthesis process using our generalized framework, the NLC-H∞+AW controller was able to
satisfy the performance requirements through the whole set of flight points even under the worst
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case scenarios considering static wind gusts and turbulence. A complete solution was found for
both, the lateral and longitudinal dynamics of this reentry vehicle example using the Generalized
Nonlinear Compensation Framework proposed.

These highlights of the obtained results using nonlinear compensation for the attitude control of a
reentry vehicle conclude the works of this thesis.
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Conclusion

Thesis conclusions and contributions

The works presented in this thesis introduce a new methodology devoted to nonlinear compensa-
tion of systems with uncertainties, varying parameters and input saturations in a unified framework.

After having introduced some theoretical preliminaries on the well-known Nonlinear Dynamic In-
version (NDI) control design, it was concluded that this technique is basically a compensation
approach. It can only be directly applied to a limited set of nonlinear systems. The central limi-
tations inherent to the technique were exposed along with some standard remedies.

The main contributions of the thesis concern the development of a Generalized Nonlinear Compen-
sation (NLC) Framework. Parting from the insight of NDI design, and inspired by linear robust
control design, the proposed framework allows the systematic computation of robust controllers
for a large class of nonlinear systems affected by uncertainties, varying parameters and input sat-
urations. This framework also proved to endow a greater flexibility to controller design than the
standard NDI approaches.

First, a refined NDI-based control law approach was proposed to better balance efforts between the
inner and outer loops of the standard NDI controller structure. In a very straightforward way, this
approach led to the generalized NLC framework by considering the nonlinear dynamics of a system
as “measured disturbances”. Then, the nonlinear compensation problem can be reformulated as
a disturbance rejection problem, which is common in Linear Control. With this reformulation,
the proposed structure of the NLC control law proved to generalize the standard NDI controller
structure.

In order to enable the use of robust control techniques to solve the nonlinear compensation problem,
a particular nonlinear representation that stresses the linear interactions between the state variables
and the system nonlinear dynamics was proposed. Some general guidelines were also presented to
derive this representation.

Multi-channel design-oriented models were then established to solve the nonlinear compensation
problem via H∞ optimization strategies using a reference model structure. These design-oriented
models can include anti-windup devices to alleviate the effects of input saturations in the closed-
loop, thus enlarging the stability domain.
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A helpful procedure for the controller synthesis phase, which serves as an aid for tuning the weight-
ing functions of the multi-channel design-oriented models, was proposed. Interestingly, baseline
NDI controllers can be reproduced by the generalized NLC framework using this procedure.

Finally, a well-adapted LFT representation of the resulting closed-loop was proposed for robustness
and stability analysis.

The last three chapters of the thesis were dedicated to the implementation of the generalized NLC
framework to the flight controller design of air vehicles (including aircraft, space launchers and
spacecrafts). In particular, NLC-based controllers were designed and computed for the attitude
control of a reentry vehicle. These controllers were further tested in a 6 degrees-of-freedom Flight
Mechanics simulator.

The main modelling aspects of air vehicles were introduced. After a general description of the
fundamental equations of motion used in Flight Mechanics, the proposed modelling of the control
objectives resulted very interesting since it allows an easier implementation of the NLC-based
control laws.

Then, the method proposed for computing NLC-H∞ controllers was presented in detail along with
a standard NDI approach using PI control. Both control designs are based on the models of the
control objectives.

Finally, the control design methodology was applied to an atmospheric reentry vehicle at different
points of a possible trajectory. The flight domain covered include the hypersonic (M = 20 to
M = 2.5), transonic (M = 0.8) and subsonic (M = 0.6 to M = 0.3) phases of a possible reentry
trajectory. The altitude range considered goes from 68500m to 0m, while the speed domain
covered goes from approximately 6000m/s to 100m/s . Therefore, a wide domain of low and high
dynamic pressures q̄ was also covered.

In simulation, manoeuvres on α were performed to cover a wide domain from high angles-of-attack
(36◦) to low incidence (7◦). On the lateral case, the side-slip angle β was kept close to 0circ as
part of the reentry mission profile. The roll angle φ was tested in a range of 0◦ to around 80◦ with
manoeuvres on the roll angle rate φ̇ of 6◦/s.

A thorough comparison between the two approaches was presented based on synthesis procedures,
robustness analysis and simulation results. It was concluded that the greater flexibility of the
generalized NLC framework allows to obtain significantly better performance and stability than
standard NDI controllers, while handling better the size and activity of the control signals generated
thanks to the multi-channel design approach proposed and to the use of standard anti-windup
control schemes.

Future Work

Further studies on the Generalized Nonlinear Compensation Framework proposed in this contri-
bution can be of interest. Some of them will be exposed next.

In this thesis, only the case of rigid air vehicles was considered. Then, the case of air vehicles with
flexible modes is yet to be assessed for designing flight controllers under the NLC framework. A
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concern arises as the NLC controller might be such that the flexible modes of an air vehicle be-
come resonant. One way to overcome this problem could be to limit or cut-off some frequencies of
the NLC controller bandwidth to avoid exciting the flexible modes. A more sophisticated solution
could use the available information on these modes in the synthesis process to actively control them.

Even though the NLC framework was used to design and compute flight control laws of air vehi-
cles, other uses can be foreseen for this method within aerospace applications. Such is the case
of the synthesis of Guidance Systems. Also, one could think of using this generalized framework
for controller design with fault detection strategies using H∞ observers, which can be designed
simultaneously with the proposed approach.

The method proposed for controller synthesis within our NLC framework is based on a struc-
tured H∞ optimization process. Still, other robust controller synthesis strategies and anti-windup
schemes can be foreseen depending on the available information about the nonlinear system. These
alternative strategies are yet to be explored in more detail to generate, for example, polytopic or
high-fidelity system representations for synthesis of self-scheduled LPV controllers.

Last but not least, basic and rather conservative approaches were used to characterize the stabil-
ity domain attained by NLC controllers. Using the LFT modelling of the nonlinear closed-loop
proposed, refined performance and stability analysis tests can be explored considering a better
compromise between the accuracy of the results and the computational burden foregone for its
estimation. Such tests can be based on Integral Quadratic Constraints (IQC) or on Lyapunov
functions for time-varying and parameter-varying systems.
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RÉSUMÉ ÉTENDU

Cadre de travail généralisé de
compensation non-linéaire robuste

Application à la rentrée atmosphérique.





Introduction

Ce travail de thèse est consacré à l’extension de l’Inversion Dynamique non-linéaire (NDI-Nonlinear
Dynamic Inversion) pour un ensemble plus grand de systèmes non-linéaires, tout en garantissant
des conditions de stabilité suffisantes.

Après la formalisation mathématique de la “linéarisation par retour d’état” dans les années 80
[IKGGM81], la NDI a été étudiée dans le cas de diverses applications, y compris en aéronautique
et en aérospatiale [Har91, Jou92, RBG95, RBG96, SK98, IGVW02, Pap03, GV03, Lav05, Kol05,
LRDY07]. La NDI permet de calculer des lois de contrôle capables de linéariser et de découpler
un modèle non-linéaire à tout point de fonctionnement de son enveloppe d’état. Cependant cette
méthode est intrinsèquement non-robuste aux erreurs de modélisation et aux saturations en entrée.
En outre, dans un contexte non-linéaire, l’obtention d’une garantie quantifiable du domaine de
stabilité atteint reste à l’heure actuelle complexe. C’est l’ensemble de ces paramètres qui a motivé
la rédaction de cette thèse.

Dans les applications aérospatiales, la plus grande partie des approches linéaires pour la conception
de lois de pilotage ont, en général, du mal à donner une réponse satisfaisante au problème de
contrôle, à moins d’utiliser des gains auto-séquencés. Dans cette contribution, pour éviter les
difficultés soulevées par les approches utilisant des gains auto-séquencés (absence de garantie entre
les points d’interpolation, procédure de réglage longue...), une autre méthode, inspirée par la NDI,
est ensuite proposée.

Contrairement aux approches classiques de la NDI, notre méthodologie peut être considérée comme
un cadre de compensation non-linéaire généralisé qui permet d’intégrer les incertitudes et les sat-
urations en entrée dans le processus de conception. En utilisant des stratégies de contrôle anti-
windup, la loi de pilotage peut être calculée grâce à un simple processus multi-canaux ou par
un simple processus en deux phases. La première, grâce aux avancements récents des techniques
d’optimisation non-lisse, consiste à optimiser un correcteur structuré H∞, puis dans une deuxième
phase, une stratégie anti-windup est utilisée pour améliorer les propriétés du correcteur en dépit
des contraintes sur l’entrée du système.

Dans ce cadre de travail généralisé des transformations linéaires fractionnaires (LFT - Linear
Fractional Transformations) de la boucle fermée non-linéaire peuvent être facilement déduites pour
l’analyse de la stabilité robuste utilisant des outils habituellement dédiés aux systèmes linéaires
incertains. La méthode proposée est testée pour le pilotage d’un véhicule de rentrée atmosphérique
de type aile delta lors de ses phases hypersonique, transsonique et subsonique. Pour cette thèse,
un simulateur du vol incluant divers facteurs externes ainsi que des erreurs de modélisation a été
développé sous Simulink.
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Un cadre de travail généralisé
inspiré de la NDI

R.1 Introduction aux techniques d’Inversion Dynamique Non-
linéaire

Dans ce chapitre, la méthode de synthèse par inversion dynamique non-linéaire est présentée.
L’objectif principal est de présenter les bases de la technique, tout en soulignant certains aspects
qui nous ont amenés à développer une méthode plus générale inspirée de la NDI.

R.1.1 Systèmes carrés et affines

Le cas des systèmes carrés affines est intéressant car il permet de visualiser avec simplicité le
principe de la méthode NDI classique. Le modèle Σ représente un tel système :

Σ : ẋ = f(x) +G(x)u (R.1)

où
– x ∈ Rn est le vecteur d’état ;
– u ∈ Rm est l’entrée, avec n = m ;
– f(x) ∈ Rn et G(x) ∈ Rm×m sont des fonctions non-linéaires lisses ;

Assumption R.1 La matrice G(x) ∈ Rm×m est inversible.

Principe général

La NDI permet de linéariser et de découpler un système non-linéaire par retour d’état. L’idée
de base est de construire une loi de commande u(x) dite “interne” en utilisant explicitement les
fonctions f(x) and G(x) afin d’éliminer les dynamiques non-linéaires du système. Ensuite, on peut
créer une boucle externe chargée de stabiliser le système et lui conférer une dynamique désirée.

Assumption R.2 Le vecteur d’état x est disponible pour la conception de la loi de pilotage.

La conception de la loi de pilotage se fait en deux étapes :
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Step 1 Prenons le système carré et affine (R.1). Trouver l’expression de la loi de commande u(x)
tel que les dynamiques non-linéaires f(x) et G(x) soient compensées :

u(x) = G−1(x)[−f(x) + ũ] (R.2)

En boucle fermée, le système résultant Σ̃ peut s’écrire, avec un léger abus de notation, ainsi :

Σ̃ : ẋ = ũ(xc, x) (R.3)

x = Σ̃(s) ũ(xc, x), with Σ̃(s) =
I

s

Le système est réduit à un ensemble d’intégrateurs purs.

Des dynamiques linéaires peuvent alors être imposées via un signal d’entrée auxiliaire ũ(xc, x) ∈ Rn.

Step 2 Construire une boucle externe capable d’imposer une dynamique linéaire et stable à la
boucle fermée, telle :

ũ(xc, x) = C(s)

�
xc

x

�
(R.4)

La loi de commande finale obtenue par NDI classique s’écrit :

u(x) = G−1(x)

�
−f(x) + C(s)

�
xc

x

��
(R.5)

Il est clair que la méthode NDI classique est en effet une technique de compensation non-linéaire.

Limites de la méthode

À ce niveau, des hypothèse très restrictives ont été considérées. L’hypothèse R.2 suppose que l’on
est capable de mesurer le vecteur d’état et de reproduire exactement les fonctions f(x) et G(x).

Les processus dans la vie réelle sont soumis à des limitations physiques. Dans un scénario plus
réaliste :
– le modèle Σ est une représentation simplifiée d’un processus réel et son environnement ;
– la mesure du vecteur d’état pourrait ne pas être accessible ou être entachée de bruits et divers
phénomènes ;

– les entrées de la plus grande partie de systèmes ont des actionneurs avec limitations physiques
et dynamiques.

La plus grande limitation de la méthode NDI classique est que la compensation exacte des non-
linéarités du système requière :
– un accès à la mesure du vecteur d’état x ;
– une bonne modélisation du phénomène physique à commander, notamment en terme des fonc-
tions f(x) et G(x) ;

– des actionneurs avec des bandes passantes très larges afin d’être capables de réaliser les signaux
de commande produits par le correcteur NDI.

184 / 345



R.1. Introduction aux techniques d’Inversion Dynamique Non-linéaire

Solutions classiques

La rejection de perturbations est un problème bien connu de commande linéaire. La structure de
commande proportionnelle-intégrale (PI) est très pratique pour ce type de problèmes due à ses ca-
ractéristiques de robustesse. Le correcteur PI assure l’erreur statique nulle et une bonne rejection
de perturbations.

Cette structure est définie ainsi :

ũ(xc, x) = KP ε+KI

�
ε dt (R.6)

avec

KP = diag(kP1 , kP2 , . . . , kPn)
KI = diag(kI1 , kI2 , . . . , kIn)

La valeur du correcteur PI est unique pour des dynamiques désirées fixes. Le réglage des gains KP

and KI produit une seule dynamique désirée possible.

Techniques de robustification avancées

Il existe deux types d’approches permetantes d’améliorer les capacités de la NDI par rapport aux
erreurs d’inversion : la commande adaptative ou la commande robuste. Cette thèse se focalise sur
les approches de commande robuste même s’il existe un lien fort avec des approches adaptatives
indirectes.

Des structures plus complexes que la structure PI peuvent être envisagées en considérant des
correcteurs d’ordre plus importants, ce qui tend à ajouter des degrés de liberté dans le problème
de synthèse.

Avec la structure PI, la commande H∞ est devenue très répandue pour le problème de rejet de
perturbations.

�
�

�

�
�

Δ
�

�� �����

���	�


�	�

�
�

�
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�
�

Figure R.46 – Schéma de design H∞ du système Σ̃.

Ce schéma général de synthèse peut être mis sous forme standard tel que représenté sur la Fi-
gure R.47. La forme standard est une LFT qui est très utile pour la synthèse de correcteurs où :
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– P (s) est l’interconnexion linéaire qui définit le problème de synthèse. Dans notre contexte, elle
contient les dynamiques de Σ̃(s), R(s) et W (s) ;

– w est un vecteur regroupant toutes les entrées exogènes, y compris le signal xc et des perturba-
tions tel que wf ;

– z est un vecteur regroupant toutes les sorties pondérées.

����������������
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�����
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Figure R.47 – Forme standard utilisée pour la synthèse de correcteurs H∞.

Pour calculer le correcteur robuste C(s), il suffit de résoudre le problème d’optimisation suivant :

min
C(s)

γ / ||Fl(P (s), C(s))||∞ < 1 (R.7)

Remark R.3 Dans les approches robustes, pour une dynamique désirée décrite dans le modèle de
référence R(s) une gamme large de correcteurs C(s) peuvent être obtenus. Ces approches présentent
plus de flexibilité que les solutions classiques.

R.1.2 Sur la commande des systèmes avec saturations en entrée

Jusqu’à présent, nous avons négligé les limitations physiques présentes au niveau des actionneurs.
Ces dernières sont pourtant systématiquement présents et malheureusement très gênantes quand
il s’agit de saturations d’amplitude ou de vitesse sur les signaux de commande.

Représentation et effets des saturations en entrée

Dans un grand nombre d’applications, la dynamiques des actionneurs peut être approximée cor-
rectement par un modèle du premier ordre tel que :

�
�

�
� τ -1a�

�

�

�

�
�

�

Figure R.48 – Un modèle général d’actionneur du premier ordre.

ΣA(s) =
1

τa s+ 1
(R.8)
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où τa est la constante de temps de l’actionneur.

La commande uc générée par le correcteur et le signal de sortie de l’actionneur ur peuvent présenter
des écarts transitoires, voir pire, quand l’actionneur sature. Le modèle tenant compte des satura-
tions en position et en vitesse est représenté sur la figure suivante :

�
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�
� τ -1a�

�

�

�

�
�
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�
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�
�

��
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��
�

Figure R.49 – Modèle d’actionneur saturé pour la synthèse de correcteurs.

Strategie anti-windup

L’approche de commande anti-windup a été développée pour une large classe de systèmes tels que :
des systèmes LTI [ZT02, WL04, GdST05], des représentations LFT [FB07], et plus particulière dans
le contexte aérospatial [BT09, Boa10].

Le principe de base de la commande anti-windup est d’élargir le domaine de stabilité d’un système
en boucle fermée en corrigeant le comportement du correcteur nominal quand une saturation est
détectée. Une stratégie classique est la commande Direct Linear Anti-windup (DLAW) qui modifie
la loi de commande de la façon suivante :

�

�
�

�
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�
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�
���
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���
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Figure R.50 – Schéma de synthèse DLAW.

où

– Ca(s) est le correcteur robuste augmenté par le dispositif anti-windup ;
– uAW ∈ Rm est l’entrée du correcteur anti-windup, définie comme : uAW = uc − ucL ;
– v1 ∈ RnC est le signal anti-windup qui renforce le correcteur C(s) ;
– v2 ∈ Rm est le signal anti-windup qui modifie la commande ũc.

Typiquement, le calcul du correcteur anti-windup correspond a une étape finale une fois conçu un
correcteur nominal C(s). Des nouvelles méthodes fondées sur l’optimisation non-lisse, permettent
de calculer le correcteur Ca(s) et le correcteur J(s) de manière simultanée [BA11].
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R.2 Vers un cadre de travail généralisé de compensation
non-linéaire

Dans la présentation de la méthode NDI, le principe de base a été clarifié : les dynamiques non-
linéaires sont compensées à travers la boucle interne. Pour ce faire, la boucle interne utilise l’inverse
du système. Pour linéariser un système : Est-ce qu’il est vraiment nécessaire d’utiliser une structure
fixe qui se sert de termes non-linéaires pour reproduire l’inverse d’un système dans le correcteur ?

L’objectif principal de ce chapitre est de présenter une reformulation de la méthode classique NDI,
qui peut être considérée comme un cadre de travail généralisé de Compensation Non-linéaire (NLC)
qui permet l’utilisation systématique des outils de synthèse robuste.

R.2.1 Raffinement des lois de commande linéarisantes

D’après la procédure de conception décrite dans le cadre de la NDI classique, on s’aperçoit qu’il
existe un déséquilibre entre l’effort de la commande dans la boucle interne et de boucle externe.
Afin de mieux équilibrer les signaux de commande entre les boucles, on propose de reformuler la
fonction f(x) de la manière suivante :

f(x) = A(Θ)x+ f̃(x) (R.9)

La matrice A est déterminée de manière à minimiser la norme du terme résiduel f̃(x). Par
conséquent, après avoir appliqué la boucle interne au modèle reformulé, le système linéarisé de-
vient :

Σ̃ : ẋ = A(Θ)x+ ũ (R.10)

Ce système permet l’utilisation de techniques de commande LPV pour la conception de la boucle
externe du correcteur NDI.

R.2.2 Un cadre de travail linéaire

Ce cadre de travail linéaire que l’on propose ici, permet de généraliser la méthode classique d’in-
version dynamique non-linéaire. Il utilise une représentation particulière qui s’adapte à un grand
nombre d’applications dans le domaines aéronautiques et spatiaux.

�
ẋ = A(Θ)x+B1 f(x,Θ) +B2 Λ(x,Θ)u
z = Cx

(R.11)

avec
– le vecteur d’état x ∈ Rn ;
– le vecteur de paramètres variants Θ ∈ Rq ;
– la fonction dépendante de l’état et des paramètres variants f(x,Θ) ∈ Rm1 ;
– le vecteur de commandes u ∈ Rm2 ;
– la matrice d’efficacitée Λ(x,Θ) ∈ Rm2×m2 ;
– la variable commandée z ∈ Rp.
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Assumption R.4 La matrice d’efficacité Λ(x,Θ) est inversible.

Assumption R.5 Le vecteur d’état x et les paramètres variants Θ sont disponibles à la conception
de la loi de pilotage.

Sous la représentation (R.11), le système présente une structure particulière composée de :
– une matrice A(Θ) ∈ Rn×n ;
– deux matrices en entrée B1 ∈ Rn×m1 and B2 ∈ Rn×m2 ;
– une matrice de variables commandées C ∈ Rp×n.

Avec un léger abus de notation, on peut montrer plus clairement la nature linéaire de ce type de
représentation :

z = Σ(s)

�
f
Λu

�
(R.12)

avec
Σ(s) = C (sI −A(Θ))−1 �

B1 B2

�
(R.13)

À la différence d’autres perturbations en entrée, le vecteur f(x,Θ) contient des fonctions qui sont
mesurables. C’est pour quoi on utilise ici le terme perturbations mesurées.

Inspirée de la NDI, où les dynamiques non-linéaires sont inclus dans une structure fixe du correcteur
pour les compenser, la rejection de perturbations mesurées f(x,Θ) peut être atteint en rendant
disponible l’information sur ces non-linéarités à la loi de commande.

Les perturbations mesurées peuvent s’exprimer comme :

f(x,Θ) = f̂(x,Θ) + wf (R.14)

Enfin, le critère de performance peut être établi dans la boucle fermée au moyen d’un modèle de
référence R(s). Un schéma général de ce modèle de synthèse est présenté sur la Figure R.51.

�
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�

�
�
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����

�
�

�
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� Σ ���
Λ (��Θ�
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Figure R.51 – Schéma de synthèse générale robuste pour la compensation non-linéaire.

Le but du modèle de synthèse est de trouver le meilleur correcteur K(s), tel que la loi de commande

u(x,Θ) = Λ−1(x,Θ) K(s)




f̂(x,Θ)

zc
x



 (R.15)

189 / 345



R.2. Vers un cadre de travail généralisé de compensation non-linéaire

puisse minimiser l’écart entre la variable commandée z et le modèle de référence zr en dépit des
perturbations mesurées f̂(x,Θ) et erreurs de modélisation wf .

Le cadre de travail linéaire permet plus de flexibilité au processus de synthèse du correcteur K(s)
étant donné que plus d’informations sur le système peuvent être rendus disponible au processus de
calcul. Une forme standard est obtenue facilement à partir de ce schéma multi-canaux de synthèse,
où :
– w =

�
wf f̂ zc

�T
est le vecteur des entrées exogènes ;

– z =
�
zu zp

�T
est le vecteur de sorties pondérées ;

– ỹ =
�
f̂ zc x ũ

�T
est le vecteur d’entrées du correcteur.

���������������

�����

�

�
�

�

�

���

Figure R.52 – Forme standard du schéma de synthèse.

Le correcteur K(s) est calculé via l’optimisation H∞ du problème suivant :

min
K(s)

||Fl(P (s),K(s))||∞ (R.16)

Selon les fonctions de pondération W (s) utilisées, le correcteur robuste obtenu produit les effets
suivants :
– Plus Tzc→zp est petit, meilleur est le suivi de modèle de référence R(s) ;
– Plus Tf̂→zp

sont petits, plus grand sera le domaine de fonctionnement ;
– Plus Twf→zp est petit, plus faible sera l’impacte des erreurs de modélisation ;
– Plus Tw→zu sont petits, plus faible sera la commande u.

Ensuite, ce cadre de travail permet de renforcer la stabilité de la boucle fermée au moyen des
dispositifs anti-windup. Par exemple, le schéma de la Figure R.53 présente un schéma de synthèse
avec la structure DLAW.
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Figure R.53 – Renforcement anti-windup pour la compensation non-linéaire.

190 / 345



R.2. Vers un cadre de travail généralisé de compensation non-linéaire

L’expression de la loi de commande augmentée par le dispositif anti-windup devient :

uc(x,Θ) = Λ−1(x,Θ) Ka(s)





v1
f̂(x,Θ)

zc
x



+ v2 (R.17)

avec �
v1
v2

�
= J(s)uAW (R.18)

Le but de ce nouveau schéma de synthèse est de trouver un correcteur J(s) capable d’élargir le
domaine de stabilité de la boucle fermée en dépit de saturations et de dynamiques des actionneurs.

Notons que la loi de commande NDI classique peut être considérée comme un cas particulier d’un
problème de compensation non-linéaire plus général. La loi de commande NDI classique :

uc(x,Θ) = Λ−1(x,Θ)

�
−f̂(x,Θ) + C(s)

�
zc
x

��

peut s’exprimer sous la forme :

Ka(s) =
�
0 −I C(s)

�
, v2 = 0

Pour la synthèse du correcteur anti-windup, on considère l’hypothèse suivante :

Assumption R.6 Il existe un scalaire positif kϕ tel que ∀ zϕ ∈ Rm

||wϕ|| = ||ϕ(zϕ)|| ≤ kϕ ||zϕ|| (R.19)

��������
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��������

�����

� �
��
�

��

Figure R.54 – Forme standard pour la synthèse anti-windup.

À partir de la forme standard représentée dans la Figure R.54, le correcteur anti-windup est obtenu
comme la solution du problème d’optimisation suivant :

Ĵ(s) = Argmin
J(s)

||Fl(PAW (s), J(s))||∞ (R.20)

Il est clair que plus petite est la norme H∞ obtenue, moins restrictive sera l’hypothèse R.6.

Des techniques récentes, permettent de faire simultanément la synthèse du correcteur robuste et
du correcteur anti-windup [MTK09, BA11].
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R.2.3 Analyse de stabilité et robustesse

Pour l’analyse de stabilité, il est nécessaire de représenter la boucle fermée non-linéaire, tout en
laissant une partition M(s) en interconnexion linéaire avec des blocs contenant des incertitudes ou
des non-linéarités. Le formalisme LFT est bien adapté pour ce type de modélisation.

En introduisant un par un les blocs contenant les dynamiques non-linéaires et contenant des incerti-
tudes, on peut générer une représentation LFT de la boucle fermé non-linéaire. Cette modélisation
représente les petites variations du système par rapport à un point d’équilibre x̃ = x− x̄.

Le schéma de la Figure R.55 représente la boucle fermée d’un système non-linéaire, à paramètres
variants et qui est soumis à des incertitudes et à des saturations en entrée.
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Figure R.55 – Schéma de la boucle fermée non-linéaire avec incertitudes paramétriques.
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Figure R.56 – Représentation LFT du modèle d’analyse.

À partir du modèle d’analyse, différents outils d’analyse LPV peuvent être considérés dans le but
de calculer le domaine de stabilité le plus large possible. Pour ce faire, il existe diverses méthodes
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soumises à un compromis fondamental : plus la méthode d’analyse est précise, plus est la charge
numérique à résoudre par les tests de stabilité.
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Application : véhicules volants

R.3 Modélisation de la Mécanique du Vol et des objectifs
de commande

Les lois fondamentales du mouvement de la Mécanique classique s’appliquent à tout corps de
manière générale. Ce principe reste valable pour les véhicules volants tels que les avions, les lan-
ceurs de satellites et les véhicules aérospatiaux comme les véhicules de rentrée atmosphérique. Les
équations fondamentales de la Mécanique du Vol [Etk95, Boi98, Taq09] décrivent la dynamique
des véhicules en vol quel que soit leur profil aérodynamique.

L’objectif central de ce chapitre est de présenter les aspects importants de la modélisation d’un
véhicule en vol. En particulier, on présente la modélisation des objectifs de commande qui servent
à la synthèse de lois de pilotage non-linéaires.

R.3.1 Un modèle d’état général (à 6 degrés de liberté)

Le modèle dynamique capable de décrire le mouvement d’un véhicule en vol est obtenu à partir des
équations générales de la Mécanique du Vol. Un tel modèle dynamique sous forme de représentation
d’état peut s’exprimer en général sous la forme :

�
�̇x = �f(t, �x(t),�c(t), �u(t))

�y(t) = �g(t, �x(t),�c(t), �u(t))
(R.21)

avec le vecteur d’état �x(t) ∈ Rn, le vecteur d’entrées �u(t) ∈ Rm, le vecteur de de mesures en sortie
�y(t) ∈ Rp, le vecteur de paramètres constants ou variants dans le temps �c(t) ∈ Rq, et les champs
vectoriels contenant la dynamique du système �f et �g.

Quand on modélise le mouvement avec les 6 degrés de liberté d’un véhicule en vol, on se focalise
sur la valeur instantanée de la position, l’attitude, la vitesse de translation et de rotation, ainsi
que de la masse :

�x(t) =
�
�r(t) �V(t) q(t) �Ω(t) m(t)

�T
(R.22)

avec le vecteur position �r, le vecteur vitesse �V, le quaternion d’attitude q, la vitesse angulaire �Ω
et la masse du véhicule m.
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Les entrées �u(t) qui affectent la dynamique du système sont principalement le braquage des gou-
vernes aérodynamiques et la propulsion des moteurs à gaz.

Les sorties �y(t) représentent les mesures obtenues à partir d’instruments à bord tels que la centrale
à inertie (IMU), la centrale anémométrique, les systèmes de positionnement global (GPS), etc.

L’équation (R.23) contient un modèle général du mouvement à 6 degrés de liberté d’un véhicule
en vol : 





�̇r = �V

m�̇V = m�Γ =
� �F

q̇i = 1
2qi ⊗ �Ω

I �̇Ω =
� �MG − �Ω ∧ I�Ω

(R.23)

avec
– �r = (

#     „
OG)/Ri

: vecteur position inertielle, de l’origine du corps attracteur O vers le centre de
gravité du véhicule G ;

– �V = �Vg − �ΩE ∧�r : vecteur vitesse inertielle ;

– �Vg = �Va − �Vw : vecteur vitesse sol ;

– �Γ : vecteur d’accélération inertielle ;
– qi : quaternion d’attitude inertielle ;
– �Ω = �Ωi − �Ωo − �ΩE : vecteur vitesse angulaire ;
– �Ωo : vecteur vitesse angulaire local ;
– �ΩE : vecteur vitesse angulaire de la Terre ;
–
� �F = �Fa + �Fp +m�g : somme de forces aérodynamiques, de propulsion et de gravitation ;

–
� �MG = �MaG + �MpG : somme de moments aérodynamiques et de propulsion ;

– ⊗ : multiplication non-commutative des quaternions.

R.3.2 Modèles aérodynamiques

Le modèle aérodynamique décrit les forces et les moments s’exerçant sur le véhicule en vol. Ce
modèle comporte de coefficients qui affectent directement les équations de forces et moments comme
le montre l’équation (R.24).

Les coefficients aérodynamiques sont liés à la géométrie et à l’écoulement autour du véhicule. La
formulation générale des forces et moments aérodynamiques autour d’un point de référence A peut
s’exprimer ainsi :

�MaA = q̄Sr




lrCl

brCm

lrCn



 =




L
M
N





�Fa = q̄Sr




Cx

Cy

Cz



 =




X
Y
Z





(R.24)

avec
– Sr : surface de référence ;
– lr : longueur de référence latérale ;
– br : longueur de référence longitudinale ;
– q̄ = 1

2ρV
2
a : pression dynamique ;
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– ρ : masse volumique instantanée de l’atmosphère ;
– Cl : coefficient aérodynamique de roulis ;
– Cm : coefficient aérodynamique de tangage ;
– Cn : coefficient aérodynamique de lacet ;
– Cx : coefficient aérodynamique de trâınée ;
– Cy : coefficient aérodynamique de force latérale ;
– Cz : coefficient aérodynamique de poussée.

En général, on définit trois signaux de commande δl, δm et δn qui agissent de manière indépendante
sur les moments L, M and N .

Les effets des coefficients aérodynamiques sont généralement considérés comme additifs. De ce fait,
ces coefficients peuvent se décomposer de la manière suivante :




Cl

Cm

Cn



 =




Clβ (α,M)β + Clp(α,M)p̃+ Clr (α,M)r̃ + Clδl

(α,M, δl) + Clδn (α,M, δn)
Cm0(α,M) + Cmq (α,M)q̃ + Cmδm

(α,M, δm)
Cnβ (α,M)β + Cnp(α,M)p̃+ Cnr (α,M)r̃ + Cnδl

(α,M, δl) + Cnδn
(α,M, δn)








Cxa

Cya

Cza



 =




Cx0(α,M) + Cxδm

(α,M, δm)
Cyβ (α,M)β + Cyδl

(α,M, δl) + Cyδn
(α,M, δn)

Cz0(α,M) + Czδm (α,M, δm)



 (R.25)

ainsi que p̃ =
lr
Va

p, q̃ =
br
Va

q et r̃ =
lr
Va

r.

Les paramètres α, M et β correspondent à l’angle d’attaque, le nombre du Mach et à l’angle de
dérapage. Les coefficients Cxa , Cya , et Cza sont exprimés en axes aérodynamiques. Ces coefficients
peuvent être aussi exprimés en axes du véhicule en utilisant les expressions suivantes :

Cx = −(Cxa cos α cos β − Cya cos α sin β − Cza sin α) (R.26)

Cy = Cxa sin β + Cya cos β (R.27)

Cz = −(Cxa sin α cos β − Cya sin α sin β + Cza cos α) (R.28)

Ensuite, on présente la modélisation des objectifs de commande.

R.3.3 Objectifs de commande

L’objectif principal du système de pilotage d’un véhicule en vol, est le contrôle de son attitude. De
l’ensemble des paramètres qui sont généralement intéressants pour le pilotage dans des applications
en aéronautique et en aérospatial, les objectifs angulaires qui ont été retenus pour cette étude sont :
l’incidence α, l’angle de dérapage β et le roulis φ.

Pour le pilotage d’attitude d’un véhicule, les dynamiques latérales et longitudinales peuvent être
considérées comme découplées. On peut donc traiter le pilotage d’attitude de ces deux dynamiques
de manière séparée.

L’objectif de la dynamique longitudinale est de moduler l’incidence α qui est directement liée à la
dynamique de la vitesse angulaire de tangage q. L’équation dynamique de l’incidence est de façon
tout à fait général :

cosβ α̇ = �Ω · �ya +
�Γ · �za
Va

(R.29)
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En développant les produits de cette équation vectorielle, on obtient la relation dynamique sui-
vante :

cosβ α̇ = q cosβ − sinβ (p cosα+ r sinα)+

1

Va
[az cosα− ax sinα+ g(cosα cosφ cos θ + sinα sin θ)]

(R.30)

Remark R.7 La modélisation proposée pour l’objectif incidence α devient intéressante car on s’af-
franchit alors de l’expression de forces grâce aux mesures d’accélération axm , aym et azm fournies
par la centrale à inertie. Grâce à ces mesures, l’expression dynamique de l’incidence ne dépend pas
explicitement de la masse m, ce qui est très intéressant puisque ce paramètre est habituellement
mal connu.

La commande δm affecte l’objective α principalement à travers la dynamique de la vitesse de
tangage q. L’équation dynamique de la vitesse de tangage est obtenue à partir de l’expression
fondamentale de moments :

I �̇Ω = �MaA + �Fa ∧
#     „
AG− �Ω ∧ I�Ω (R.31)

Remark R.8 Dans certains cas, les produits d’inertie Ixy, Ixz et Iyz sont assez petits et peuvent
être négligés. Les composants prépondérant dans la matrice d’inertie I se trouvent sur sa diagonale.

En considérant la simplification dans la Remarque R.8, la dynamique de la vitesse de tangage peut
s’exprimer en fonction de la commande δm tel que :

Iyy q̇ = q̄ Sr lr

�
Cm0(α,M) + Cmq (α,M)

lr
Va

q

�
+ q̄ Sr lr Cmδm

(α,M)δm+

X dgz − Z dgx + (Izz − Ixx)p r (R.32)

Dans le cas de la dynamique latérale, le système de pilotage se focalise sur la modulation de l’angle
de dérapage β et l’angle de roulis φ. La dynamique de l’angle de roulis est contenue dans les
expressions de la dérivée des angles d’Euler tel que :

φ̇ = p+ tan θ(cosφ r + sinφ q) (R.33)

L’expression de la dynamique de β peut être obtenue en développant l’expression vectorielle sui-
vante :

β̇ = −�Ω · �za +
�Γ · �ya

Va
(R.34)

Il en résulte que :

β̇ = p sinα− r cosα+
1

Va
(ay cosβ − ax cosα sinβ − az sinα sinβ)+

g

Va
(cosα sin θ sinβ + sinφ cos θ cosβ − sinα sin θ cosφ sinβ)

(R.35)
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On peut souligner que la Remarque R.7 reste également valide aussi pour la modélisation de l’ob-
jectif angulaire β.

Les dynamiques de l’angle de dérapage et du roulis sont clairement liées à la vitesse de roulis p et à
la vitesse de lacet r. Les commandes δl et δn qui interviennent dans le modèle latéral impactent les
objectifs angulaires à travers les vitesses angulaires p et r. En négligeant le produit inertiel Ixz, tel
qu’il est précisé dans la Remarque R.8, les expressions dynamiques des vitesses angulaires dévient :

Ixxṗ = q̄ Sr lr

�
Clβ (α,M)β + Clp(α,M)

lr
Va

p+ Clr (α,M)
lr
Va

r

�
+

q̄ Sr lr
�
Clδl

(α,M)δl + Clδn (α,M)δn
�
+ Zdgy − Y dgz+

(Iyy − Izz)r q (R.36)

et

Izz ṙ = q̄ Sr lr

�
Cnβ (α,M)β + Cnp(α,M)

lr
Va

as p+ Cnr (α,M)
lr
Va

r

�
+

q̄ Sr lr
�
Cnδl

(α,M)δl + Cnδn
(α,M)δn

�
+Xdgy − Y dgx+

(Ixx − Iyy)p q (R.37)

R.3.4 Principales sources de perturbation

Un véhicule en vol quelconque est soumis à un ensemble de phénomènes que l’on doit considérer
afin de valider les lois de pilotage obtenues. Ces phénomènes peuvent être modelés par des incer-
titudes ∆ additives ou multiplicatives, qui agissent sur la représentation nominale du véhicule.

Les principales sources de perturbation considérées en simulation sont les suivantes :
– Variations de la masse volumique de l’atmosphère (∆ρ) en fonction de l’altitude h.
– Vent. Le vent se décompose en vent statique (�Vsw) et turbulence (�Vtw).
– Erreurs de modélisation des coefficients aérodynamiques (∆Cm0, ∆Cmδm , ∆Cmδbf , ∆Cx, ∆Cz,
∆Clδl , ∆Cnδl , ∆Clδn , ∆Cnδn).

– Erreurs de modélisation du centrage et moment d’inertie (∆dgx, ∆dgy, ∆dgz).
– Erreurs de mesure de la centrale à inertie. Les mesures de la centrale, qui correspondent aux
accélérations en translation �Γm et la vitesse de rotation angulaire �Ωm, sont soumis à des
phénomènes déterministes et stochastiques tels que : biais, facteurs d’échelle et marches au
hasard.

– Erreurs de mesure de la centrale anémométrique (∆α, ∆β, ∆Va) en dessous de Mach 2.5.

Les erreurs de mesure que l’on considère peuvent entrâıner des erreurs supplémentaires dans divers
paramètres qui pourraient intervenir dans la loi de pilotage tels que :
– La masse volumique de l’atmosphère en fonction de l’altitude ρ(h) : ∆ρ̃ ;
– Le nombre du Mach M(Va, h) en fonction de la vitesse et l’altitude : ∆M.

Dans ce chapitre, ce sont les aspects de modélisation et les objectifs de commande pour un
véhicule volant qui sont traités. Tout d’abord, à partir des équations fondamentales utilisées dans
la Mécanique du Vol, un modèle général avec 6 degrés de liberté du véhicule a été présenté. Puis,
la modélisation aérodynamique et des actionneurs d’un véhicule quelconque ont été abordés. Les
expressions dynamiques des objectifs angulaires pour le pilotage d’attitude d’un véhicule quel-
conque ont été obtenus. Enfin, les sources principales de perturbation que l’on doit considérer en
simulation ont été énumérées.
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R.4 Conception des lois de commande par Compensation
Non-linéaire

L’objectif principal de ce chapitre est de présenter et d’exposer les diverses contraintes dans les
processus de conception des lois de pilotage en utilisant la méthode NDI classique ainsi qu’en
utilisant le cadre de travail généralisé NLC. On retiendra les hypothèses suivantes au long de ce
chapitre :

Assumption R.9 Pour la synthèse des lois de pilotage, les dynamiques latérales et longitudi-
nales peuvent être découplées sous l’hypothèse que la dynamique latérale reste en équilibre durant
l’évolution de la dynamique longitudinale et vice-versa.

Assumption R.10 La dynamique des vitesses angulaires évolue, de manière suffisante, plus rapi-
dement que celle des objectifs angulaires en fonction d’une échelle de temps. Les dynamiques lentes
et les dynamiques rapides peuvent donc être découplées.

Assumption R.11 Les mesures des sorties commandées z et de l’état du véhicule sont accessibles
par la loi de pilotage ainsi que par la mesure du vecteur de paramètres lentement variants Θ.

R.4.1 Compensation classique NDI-PI

Dans le cas de la méthode NDI classique, on gardera temporairement l’hypothèse suivante :

Assumption R.12 La dynamique des actionneurs liée aux gouvernes aérodynamiques n’est pas
soumise à des saturations et, elle est suffisamment rapide pour réaliser n’importe quel signal de
commande.

En utilisant l’approche de séparation par échelles de temps multiples, les deux sous-systèmes du
modèle longitudinal avec sortie commandée z peut-être exprimé ainsi :

α̇ = Zα + q (R.38)

q̇ = Mq + gq δm (R.39)

z = Clong x (R.40)

avec

z = α
x =

�
α q

�T

Θ =
�
p r ax az θ φ β q̄ X Z Va M

�T

Zα(x,Θ) = − tanβ (p cosα+ r sinα)+
1

Va cosβ
[az cosα− ax sinα+ g(cosα cosφ cos θ + sinα sin θ)]

Mq(x,Θ) =
q̄ Sr lr
Iyy

�
Cm0(α,M) + Cmq (α,M)

lr
Va

q

�
+

1

Iyy
(X dgz − Z dgx)+

1

Iyy
[(Izz − Ixx)p r]
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gq(x,Θ) =
1

Iyy
q̄ Sr lr Cmδm

(α,M)

Clong =
�
1 0

�

La conception de la loi de pilotage NDI-PI s’effectue en deux étapes :

Step 1 Trouver l’expression de la commande δm qui inverse la dynamique rapide dans (R.38) et
définir une commande linéaire capable de stabiliser la boucle rapide en suivant une dynamique du
premier ordre.

Step 2 Trouver la valeur commandée de la vitesse de tangage qc nécessaire pour inverser les
dynamiques rapides (R.39) et définir un correcteur linéaire capable d’imposer une dynamique de
deuxième ordre à la convergence de l’objectif commandé vers son signal de consigne zc = αc.

En considérant un signal de consigne αc filtré par une fonction du premier ordre αF , l’expression
finale du correcteur NDI avec compensation PI (NDI-PI) est tel que :

δm = g−1
q

�
−Mq +

1

τq

�
−Zα + kP (αF − α) + kI

�
(αF − α)− q

��
(R.41)

avec

kP = 2 ξα ωcα kI = ω2
cα (R.42)

De manière plus concise, cette loi de commande peut s’écrire ainsi :

δm = g−1
q (K ỹ +H w) (R.43)

avec

K =

�
kP
τq

kI
τq

−1

τq

�
(R.44)

H =

�−1

τq
−1

�
(R.45)

et en considérant les vecteurs suivants :

ỹ =
�
εα

�
εα q

�T
(R.46)

w =
�
Zα Mq

�T
(R.47)

Sous cette formulation, on s’aperçoit que le gain statique K est chargé d’asservir la boucle externe
tandis que le gain statique H permet d’éliminer les non-linéarités du modèle longitudinal.

Dans le cas du modèle latéral que l’on utilise pour le processus de conception, le système peut
s’écrire en deux sous-systèmes de la manière suivante :

�
β̇
φ̇

�
=

�
Yβ

Xφ

�
+G1

�
p
r

�
(R.48)

�
ṗ
ṙ

�
=

�
Lp

Nr

�
+G2

�
δl
δn

�
(R.49)

z = Clat x (R.50)
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avec

z =
�
β φ

�T

x =
�
β φ p r

�T

Θ =
�
q ax ay az θ α q̄ X Y Z Va M

�T

Yβ(x,Θ) =
1

Va
(ay cosβ − ax cosα sinβ − az sinα sinβ)+

g

Va
(cosα sin θ sinβ + sinφ cos θ cosβ − sinα sin θ cosφ sinβ)

Xφ(x,Θ) = tan θ(cosφ r + sinφ q)

Lp(x,Θ) =
q̄ Sr lr
Ixx

�
Clβ (α,M)β + Clp(α,M)

lr
Va

p+ Clr (α,M)
lr
Va

r

�
+

1

Ixx
[Zdgy − Y dgz + (Iyy − Izz)r q]

Nr(x,Θ) =
q̄ Sr lr
Izz

�
Cnβ (α,M)β + Cnp(α,M)

lr
Va

p+ Cnr (α,M)
lr
Va

r

�
+

1

Izz
[Xdgy − Y dgx + (Ixx − Iyy)p q]

G1(x,Θ) =

�
sinα − cosα
1 0

�

G2(x,Θ) =





q̄ Sr lr
Ixx

Clδl
(α,M)

q̄ Sr lr
Ixx

Clδn (α,M)

q̄ Sr lr
Izz

Cnδl
(α,M)

q̄ Sr lr
Izz

Cnδn
(α,M)





Clat =

�
1 0 0 0
0 1 0 0

�

Puis, en suivant les deux étapes décrites pour le cas longitudinal, on obtient l’expression du cor-
recteur NDI-PI :

�
δl
δn

�
= G−1

2

�
−
�
Lp

Nr

�
+ T

�
G−1

1

�
−
�
Yβ

Xφ

�
+KP

�
εβ
εφ

�
+KI

��
εβ�
εφ

��
−
�
p
r

���
(R.51)

avec
T = diag(τ−1

p , τ−1
r ) (R.52)

KP =

�
kPβ 0
0 kPφ

�
KI =

�
kIβ 0
0 kIφ

�
(R.53)

kPi = 2 ξi ωci kIi = ω2
ci (R.54)

εβ = (βF − β) εφ = (φF − φ) (R.55)

Une expression plus concise peut être aussi formulée pour la loi NDI du modèle latéral sous la
forme : �

δl
δn

�
= G−1

2 (K ỹ +H w) (R.56)
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avec

K =
�
T̃ KP T̃ KI −T

�
(R.57)

H =
�
−T̃ −I

�
(R.58)

en considérant que :
T̃ = T G−1

1 (R.59)

et étant donnés les vecteurs suivants :

ỹ =
�
εβ εφ

�
εβ

�
εφ p r

�T
(R.60)

w =
�
Yβ Xφ Lp Nr

�T
(R.61)

R.4.2 Reformulation sous le cadre généralisé de compensation non-linéaire

Pour le processus de conception dans le cadre de travail NLC, on considère l’hypothèse suivante :

Assumption R.13 La dynamique des actionneurs liés aux gouvernes aérodynamiques suit une
fonction de premier ordre comme décrit dans la Section ??. On considère que l’actionneur n’est
pas soumis à des saturations.

Dans le contexte du cadre de travail généralisé proposé dans le Chapitre R.2, les non-linéarités du
système sont considérées comme des perturbations mesurées wi que l’on exploite pour la conception
de la loi de commande. De telle sorte que, le modèle longitudinal puisse être écrit sous la forme :

Σlong :

�
α̇ = wα + q
q̇ = wq + λq δm

avec

wα = Zα(x,Θ), wq = Mq(x,Θ), λq = gq(x,Θ) (R.62)

En considérant les relations :

ŵα = zα α̃, ŵq = mα α̃+mq q (R.63)

avec α̃ = α − ᾱ, les approximations suivantes permettent de réduire la norme des signaux fα et
fq :

f̂α = wα − zα α̃, f̂q = wq −mα α̃−mq q (R.64)

Le modèle longitudinal est facilement écrit sous la forme (R.11) proposée dans le cadre généralisé
NLC. On obtient que :

Σlong(s) :






˙̃x =

�
zα 1
mα mq

�
x̃+B1

�
fα
fq

�
+B2 λq δm

z =
�
1 0

�
x̃

(R.65)
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avec

x̃ =
�
α̃ q

�T

B1 =

�
1 0
0 1

�
, B2 =

�
0
1

�

fα = f̂α + wfα , fq = f̂q + wfq

Ensuite, on considère le modèle de l’actionneur suivant :

ΣA(s) :
˙̃δm =

1

τa
(δ̃mc − δ̃m) (R.66)

avec

δ̃m = λq δm, δ̃mc = λq δmc (R.67)

Le schéma de synthèse permettant de calculer le correcteur NLC-H∞ est présenté dans la Fi-
gure R.57. La loi de commande NLC du modèle longitudinal prend la forme :

δmc = λ−1
q Klong(s) ỹ (R.68)

avec

ỹ =
�
f̂α f̂q

�
εα αF αc α̃ q

�T
(R.69)

�
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Figure R.57 – Modèle de synthèse multi-canaux pour la dynamique longitudinale.

Une fois définie la valeur des filtres de pondération, la forme standard correspondant au schéma
de synthèse est facilement obtenu.
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Dans le cas du modèle latéral, en suivant le même processus de modélisation que dans le cas
longitudinal, on obtient la représentation suivante :

Σlat(s) :






ẋ =





yβ 0 sin α − cos α
0 0 1 0
lβ 0 lp lr
nβ 0 np nr



x+B1





fβ
fφ
fp
fr



+B2 Λ

�
δl
δn

�

z =

�
1 0 0 0
0 1 0 0

�
x

(R.70)

avec

x =
�
β φ p r

�T

B1 =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 , B2 =





0 0
0 0
1 0
0 1





fβ = f̂β + wfβ , fφ = f̂φ + wfφ

fp = f̂p + wfp , fr = f̂r + wfr

Le schéma bloc de la Figure R.58 est utilisé pour la synthèse du correcteur NLC-H∞ latéral qui
est de la forme : �

δlc
δnc

�
= Λ−1 Klat(s) ỹ (R.71)

avec

ỹ =
�
f̂β f̂φ f̂p f̂r

�
εβ

�
εφ βF φF βc φc β φ p r

�T
(R.72)

�
�
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Figure R.58 – Modèle de synthèse multi-canaux pour la dynamique latérale.
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R.4.3 Compensation Anti-windup

Dans ce cas, on considère un modèle d’actionneur tel que celui présenté dans la Section ??. On
introduit également aussi un rate limiter capable d’assurer le comportement nominal des action-
neurs δreal. Cette structure avec une vitesse d’évolution maximale de L̃ = ΛL peut s’exprimer
ainsi :

ΣRL : ˙̃δcL = satL̃

�
1

τL
(δ̃c − δ̃cL)

�
(R.73)

La saturation qui apparait dans cette structure est utilisée pour générer le signal d’entrée du
dispositif anti-windup selon le schéma de synthèse proposée dans la Figure R.59.

Le correcteur augmenté devient :

Ka(s) :

�
ẋK = AK xK +BK ỹ + v1
δ̃c = CK xK

(R.74)

Étant donné le correcteur anti-windup suivant :

�
v1
v2

�
= J(s)uAW (R.75)

la loi de compensation non-linéaire augmenté peut s’écrire ainsi :

δc = Λ−1(x,Θ) Ka(s) ỹ + v2 (R.76)

avec ỹ =
�
v1 f̂(x,Θ) zc x

�T
.
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Figure R.59 – Schéma de synthèse avec rate-limiter et correction anti-windup.

Dans ce chapitre, les processus de conception de lois de pilotage, avec la méthode NDI classique
et le cadre généralisé NLC, ont été abordés. Pour des raisons de simplicité et de clarté dans la
présentation de ces processus, les dynamiques latérales et longitudinales ont été étudiés de manière
indépendante.
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R.5 Un problème de commande pour la rentrée atmosphérique

Le pilotage d’un véhicule de rentrée atmosphérique reste une tâche ardue à l’heure actuelle à cause
de son large domaine de vol, des caractéristiques non-linéaires et des aspects variants dans le temps.
Par ailleurs, une mission de rentrée atmosphérique requière un niveau de performance élevé.

L’objectif de ce chapitre est d’appliquer les lois de pilotage, obtenues dans le chapitre précédent,
au modèle longitudinal d’un véhicule de rentrée atmosphérique. Les lois de pilotage sont testées à
différents points de vol d’un exemple de trajectoire.

R.5.1 Contexte physique de la rentrée atmosphérique

Les véhicules de rentrée atmosphérique sont des véhicules volants compacts et rigides soumis à des
variations paramétriques importantes tout au long de son domaine de vol. Pour cette thèse, un
véhicule de type aile delta a été retenu.

Une mission de rentrée atmosphérique commence à partir d’une orbite basse de la Terre (environ
400 km de la surface de la Terre) et continue par la rentrée du véhicule dans l’atmosphère Terrestre.
Une mission pour un véhicule de type aile delta est effectué en quatre phases principales [HG79,
VF03, VF05, Fal09] :

1. Déorbitation. Elle commence avec une manœuvrer dans le but de réduire légèrement la
vitesse orbitale du véhicule, ainsi, le véhicule commence à descendre vers la Terre. Le véhicule
descend de son orbite jusqu’à l’entrée dans l’atmopshpère, considéré conventionnellement à
120 km d’altitude.

2. Hypersonique. Cette phase commence à 90km d’altitude avec un vitesse d’environM ≈ 25
(airspeed Va ≈ 27000 km/h). L’objectif principal, c’est de viser un point en fonction de
divers paramètres afin de commencer la phase de dissipation d’énergie ou Terminal Area
Energy Management (TAEM).

3. Dissipation de l’énergie ou TAEM. Elle commence conventionnellement quand la vitesse
diminue autour de M = 2. Durant cette phase, le véhicule peut réaliser des manœuvres en
‘S’ pour dissiper de l’énergie cinétique.

4. Approach and Landing phase. Une fois que le véhicule est aligné avec la piste d’atter-
rissage, le véhicule réalise une approche à forte pente. Enfin, il effectue une manœuvre en
suivant une trajectoire qui permet de conserve une tangente avec une vitesse au dessus de la
vitesse de décrochage et permettant de faire l’arrondi.

R.5.2 Implantation des lois de commande et résultats

Les lois de pilotage ont été testées sur différents points d’un exemple de trajectoire. Les points
contenus dans le Tableau R.23, correspondent à des conditions de vol équilibré.
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Flight point Trim values

no h (m) M q̄ (Pa) γ (o) ᾱ (o) δ̄m (o)

1 68 500 20 1 639 -0.3 33 2.08

2 54 500 11 3 615 -0.5 33 1.86

3 48 000 8 4 379 -1.5 28 5.43

4 38 000 5 6 395 -2.5 24 5.78

5 25 000 2.5 10 986 -5 16 1.78

6 10 000 0.8 11 843 -10 10 -4.89

7 5 000 0.6 13 613 -15 7 -7.59

8 0 0.3 6 383 -16 10 -5.99

Table R.23 – Points de vol considérés en simulation.

Après avoir défini les spécifications et caractéristiques désirées pour la dynamique de la boucle
fermée, à partir du cahier de charges, on peut maintenant calculer les lois de pilotage.

Réglage du correcteur NDI-PI longitudinal

Rappelons la structure du correcteur NDI-PI pour le modèle longitudinal :

δmc = g−1
q (K ỹ +H w) (R.77)

avec

K =

�
kP
τq

kI
τq

−1

τq

�
, H =

�−1

τq
−1

�
(R.78)

Les gains kP et kI servent à fixer la dynamique désirée de la boucle fermée. En effet, le seul
paramètre véritablement ajustable est la constante de temps τq. Plus on diminue sa valeur, plus la
performance tend à améliorer et plus grande devient l’activité du signal de commande.

Le tableau R.25 contient les valeurs des gains du correcteur NDI-PI, calculée à partir du choix des
paramètres de réglage suivant :

Dynamique désirée Valeurs des paramètres

ωcα (rad/s) ξα kP kI τF

1.2 0.7 1.68 1.44 1.16

Table R.24 – Paramètres du correcteur et dynamique désirée.
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Loi de commande NDI-PI

τq (s) K H

0.1 [16.8 14.4 −10] [−10 −1]

Table R.25 – Correcteur NDI-PI.

À partir de ce résultat, une solution améliorée peut être obtenue avec le cadre de travail généralisé
du NLC.

Synthèse de correcteurs NLC-H∞

Rappelons le modèle contenant la dynamique longitudinal qui a été reformulé sous la forme pro-
posée dans le cadre généralisé NLC :

Σlong(s) :






˙̃x = A x̃+B1

�
fα
fq

�
+B2 λq δm

z =
�
1 0

�
x̃

(R.79)

avec

x̃ =
�
α̃ q

�T

α̃ = α− ᾱ, A =

�
zα 1
mα mq

�

B1 =

�
1 0
0 1

�
, B2 =

�
0
1

�

fα = f̂α + wfα , fq = f̂q + wfq (R.80)

La valeur de la matrice A est choisie de manière à réduire la norme des signaux fα et fq pour la
plus grande partie de conditions de vol. Selon le critère proposé, on considère la matrice suivante :

A =

�
−0.001574 1
0.009643 −0.06239

�
(R.81)

Pour commencer le réglage des filtres de pondération, on peut utiliser la loi de pilotage NDI-PI.
Pour ce faire, il faut effectuer une analyse de valeurs singulières des transferts Tw→zu et Tw→zp

de la boucle fermée entre le système non-linéaire et le correcteur NDI-PI. À partir de l’allure
de la réponse obtenue, on peut définir un filtre passe haut capable de mâıtriser les courbes des
valeurs singulières. De telle sorte, l’inverse de ce filtre passe haut peut être utilisé comme réglage
de référence pour les filtres de pondération. Ensuite, il suffit de trouver le réglage qui permet de
minimiser l’objective de performance et d’activité dans la commande.

L’analyse de valeurs singulières réalisée au correcteur NDI-PI fournit les gains maximaux suivants :

σzp = 0.379 = −8.4 dB, and σzu = 102.145 = 40.2 dB (R.82)
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Après quelques essais, on obtiens le réglage suivant du filtre de pondération sur la sortie de per-
formance zp = αr − α :

Wp(s) =
s4 + 8.6 s3 + 37.7 s2 + 92.5 s+ 71.5

0.1 s4 + 0.57 s3 + 1.8 s2 + 1.5 s+ 0.002
(R.83)

Puisqu’on utilise une méthode d’optimisation non-lisse pour le calcul des lois de commande, l’ordre
des filtres de pondération ne pose pas de problème pour sa résolution. Par ailleurs, cette étape pas
intermédiaire permet éventuellement de reproduire la solution NDI-PI [HJB11].

La loi de pilotage est de la forme :

�
ẋK

δmc

�
= Klong

�
xK

ỹ

�
(R.84)

avec
ỹ =

�
αc f̂α f̂q α q

�T
(R.85)

En utilisant le modèle de référence Rlong(s) ainsi que le filtre de pondération pour générer la forme
standard permettant d’adresser le problème de synthèse, on obtient le correcteur suivant :

Klong =





−0.85 0 0 0 0 0 0
0.85 0 0 0 0 0 0
248 −105 −6.6 10.1 0 0 0
−98 36.3 4.02 −11 −10 0 0
83.1 139 0 3.7 −8.8 −5.1 0
64.5 −183 0 0 −3.4 −4.3 4.6
32.4 −74 0 0 0 −1.5 2.02

1 0 0 0 0
0 0 0 −1 0

−20 −36 −5.8 −65 −23
−7.2 −3.2 −1.7 179 3.9
−30 15 2 −10 3.7
81 −22 −5.2 38 −13
87 −6 −3 −42 −11

253.4 −37.4 −3.3 12.2 −4.6 −9.1 4.2 1.7 −6.8 −1.7 −115 −16.3





Table R.26 – Correcteur NLC-H∞.

De la même manière que dans le cas du correcteur NDI-PI, l’analyse des valeurs singulières fournit
les gains maximaux suivants :

σzp = 0.291 = −10.7 dB, et σzu = 35.952 = 31.1 dB (R.86)

La valeur des gains σzu et σzp est plus petite ici que dans le cas du correcteur NDI-PI.

Enfin, on peut utiliser un dispositif anti-windup tel que celui détaillé auparavant. La structure du
correcteur NLC-H∞ est modifiée selon le schéma de synthèse de la Figure R.59, où :

�
ẋJ

v

�
= Jlong

�
xJ

uAW

�
(R.87)

avec v ∈ R7 et uAW ∈ R. Le correcteur NLC-H∞ renforcé par le dispositif anti-windup peut s’écrire
ainsi :

�
ẋK

δmc

�
= Kalong




xK

v
ỹ



 (R.88)
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avec ỹ =
�
αc f̂α f̂q α q

�T
.

Ayant défini la forme standard pour la synthèse du correcteur anti-windup, on utilise à nouveau
la synthèse par optimisation H∞ non-lisse. On obtient le correcteur suivant :

Jlong =





−1.954 0.3077

−1.965
0.5254
−68.28
4.647
−14.06
−10.19
5.032

−0.6037
0.6714
−251.8
−128.5
39.01
−148.2
−60.65





Table R.27 – Correcteur NCL-H∞ + AW.

Avec l’analyse de stabilité et robustesse, on devrait être capable de montrer que ce correcteur
augmenté induit une marge de robustesse plus grande. Ainsi, ce correcteur anti-windup complète la
stratégie de compensation non-linéaire pour le pilotage des dynamiques longitudinales du véhicule
de rantrée atmosphérique.

Résultats de simulation

Par la suite, on présente les résultats de simulation obtenus avec les différents lois de pilotage
calculées. Ces résultats de simulation sont représentés dans un graphique contenant les courbes
associées aux cinq différents paramètres d’intérêt : l’incidence α, la vitesse de tangage q, le braquage
des elevons δel et sa vitesse de variation δ̇el, et la vitesse de variation du body flap δ̇bf .

Comparaison de résultats de simulation entre solutions équivalentes NDI-PI et NLC-
H∞. Ces deux correcteurs ont été conçus en utilisant la même dynamique désirée contenue dans
le Tableau R.24.

Le point de vol n◦6 est utilisé pour comparer les résultats. D’un côté, on trouve la réponse tem-
porelle à l’échelon du système en boucle fermée avec le correcteur NDI-PI dans la Figure R.62
(page 216). De l’autre côté, on trouve la réponse du véhicule asservie par le correcteur NLC-H∞
dans la Figure R.63 (page 217).

Clairement, les deux correcteurs permettent d’obtenir des réponses temporelles satisfaisantes.
Néanmoins, le correcteur NLC-H∞ possède très clairement une meilleur performance par rapport
au suivi du modèle de référence αr. Dans le cas du correcteur NLC-H∞, l’activité de la commande
reste aussi inférieure à celle du correcteur NDI-PI.

Á cause des effets sévères des saturations dans la boucle fermée, aucun de ces deux correcteurs
n’est capable de prévenir la déstabilisation du système au point de vol n◦1.

Résultats de simulation avec le correcteur robuste renforcé. On teste maintenant le
correcteur augmenté qui résulte de la synthèse anti-windup.
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D’un côté, on trouve la réponse temporelle à l’échelon du système en boucle fermée avec le correc-
teur NLC-H∞ dans la Figure R.60 (page 214). De l’autre côté, on trouve la réponse du véhicule
asservie par le correcteur NLC-H∞ + AW dans la Figure R.61 (page 215).

La réponse stable dans le cas du correcteur NLC-H∞ + AW est évidente. Comme on l’attendait,
le domaine de stabilité de la boucle fermée est élargi par le dispositif anti-windup. L’activité de la
commande augmente durant le transitoire mais cela lui permet de satisfaire les contraintes tempo-
relles du cahier de charges. En effet, le but principal de stabiliser la boucle tout au long du domaine
de vol est atteint.

Dans ce chapitre, les lois de pilotage destinées à la commande d’attitude d’un véhicule de rentrée
atmosphérique ont été calculées et testées en simulation. Le cadre généralisé NLC permet d’obtenir
des meilleurs résultats de performance que la solution NDI classique.
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Figure R.60 – Simulation avec actionneurs saturés et loi de commande NLC-H∞.
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Figure R.61 – Simulation avec actionneurs saturés et loi de commande NLC-H∞+AW.
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Figure R.62 – Simulation à M < 1 avec actionneurs saturés et loi de commande NDI-PI.
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Figure R.63 – Simulation à M < 1 avec actionneurs saturés et loi de commande NLC-H∞.
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Conclusion

Le travail présenté dans cette thèse, introduit une nouvelle méthodologie pour la compensation
non-linéaire des systèmes incertains avec paramètres variants et saturations en entrée, dans un
cadre de travail unifié.

Après avoir fait un préambule théorique sur l’inversion dynamique non-linéaire (NDI), nous avons
conclu que cette technique est un cas particulier des compensations non-linéaires. Celle-ci ne
peut être appliquée qu’à une gamme limitée de systèmes non-linéaires. Les principales limita-
tions inhérentes à la technique ont été présentées avec des solutions classiques.

Les principales contributions de cette thèse, concernent le développement d’un cadre de travail
généralisé pour la compensation non-linéaire (NLC). Partant des principes de base de la NDI et
inspiré par les techniques de commandes robustes, le cadre de travail proposé permet le calcul
systématique des correcteurs robustes pour une gamme plus large de systèmes non-linéaires. Ce
cadre de travail a également démontré être plus flexible que les approches NDI classiques.

Tout d’abord, une approche permettant de mieux équilibrer l’effort entre la boucle externe et la
boucle interne de la structure NDI classique a été proposée. d’une façon très directe, cette approche
a mené à la généralisation du cadre de travail NLC, en considérant la dynamique non-linéaire du
système comme une perturbation mesurée. Ainsi, le problème de synthèse a pu être reformulé
comme un problème de rejet de perturbation. Avec cette reformulation, la structure du correcteur
NLC, généralise la structure du correcteur NDI classique.

Dans le but de permettre l’utilisation de techniques de commande robuste et afin de résoudre les
problèmes de compensation non-linéaire, une modélisation mettant en avant l’interaction linéaire
entre les systèmes et les variables d’état, a été proposée. Des lignes directrices générales ont
également été proposées afin de déduire cette représentation.

Des schémas de synthèse ont été établis pour résoudre les problèmes de compensation non-linéaire
par le biais d’une stratégie d’optimisation H∞ , en utilisant une structure avec modèle de référence.
Ces schémas de synthèse peuvent aussi inclure des dispositifs anti-windup afin de compenser les
effets de saturation en entrée dans la boucle fermée.

Une procédure qui rend la phase de synthèse plus aisée a été proposée afin de faciliter la conception
des filtres de pondération. De façon très intéressante, cette procédure permet de reproduire la
solution NDI classique, dans le cadre de travail généralisé NLC.

Enfin, une représentation LFT de la boucle fermé résultante est proposée pour l’analyse de stabilité
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et de robustesse.

Les trois derniers chapitres de cette thèse ont été dédiés à l’implantation du cadre généralisé NLC
pour la synthèse des lois de pilotage destinée aux véhicules volants. En particulier, différentes lois
de pilotage ont été calculées pour le pilotage de l’attitude d’un véhicule de rentrée atmosphérique.
Ces lois de pilotage ont été testées dans un simulateur de vol à 6 degrés de liberté.

Les principaux aspects de modélisation pour des véhicules volants ont été introduits. Après une
description générale des équations fondamentales du mouvement utilisé par la mécanique du vol,
la modélisation proposée se révèle très intéressante puisq’elle facilite l’implantation des lois de
pilotage par compensation non-linéaire.

Puis, le processus de synthèse des correcteurs NLC -H∞ a été détaillé ainsi que celui des correcteurs
NDI-PI.

Enfin, la méthode de synthèse a été appliquée à un véhicule de rentrée atmosphérique sur différents
points d’un exemple de trajectoire. Le domaine de vol couvert comprend les régimes hypersoniques,
transsoniques et subsoniques. La gamme d’altitudes prise en compte s’étend de 68500m à 0m,
tandis que la gamme de vitesses prise en compte, s’étend d’environs 6000m/s à 100m/s . C’est
pourquoi, un large domaine de pression dynamique a également été couvert.

En simulation, des manœuvres en α ont été réalisées afin de couvrir un large domaine d’incidence,
allant d’environ 36◦ jusqu’à 7◦. Dans le cas latéral, la valeur de l’angle de dérapage β est maintenu
autour de 0◦. L’angle de roulis φ a été testé dans une domaine allant de 0◦ jusqu’à environs 80◦

avec une rampe de 6◦/s.

Finalement, une comparaison approfondie entre la NDI classique et le cadre généralisé NLC a
été présentée en fonction du processus de synthèse, de l’analyse de robustesse et des résultats de
simulation. Il a été montré que le cadre généralisé NLC comporte plus de flexibilité et permet
d’obtenir de meilleurs résultats de performance tout en gérant de façon plus satisfaisante la taille
et l’activité du signal de commande.
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Appendix A

Backgrounds on Flight Mechanics

A.1 Fundamental principle

Flight Mechanics is the discipline concerned with the study of the motion of air vehicles. It focuses
on the combination of the two basic motions of an air vehicle: the displacement of a solid body and
the rotation of the solid body about its center of gravity. All air vehicles are subject to this same
basic principle of physics and thus their motion can be represented by the same basic kinematic
equations.

The foundation of Flight Mechanics is centred on Newton’s Second law of classical Mechanics.
This law can be stated as:

The sum of all the exterior forces interacting with a solid body is equal to the time rate of change
of its momentum in an inertial coordinate system. In the case of rotating bodies, the sum of all
moments impressed to the solid body is equal to the time rate of change of its angular momentum.

First of all, an inertial coordinate system needs to be defined along with other support reference
frames to describe the motion of an air vehicle. This will be treated in the next section. Then, an
explicit listing of the aerodynamic and propulsion forces and moments acting over the air vehicle
is required depending on the desired application. In some applications, propulsion systems are not
considered for atmospheric flight which is the case of reentry vehicles.

From these basic principle, the following relations are established

�

i

�Fi =
d(m�V)

dt
(A.1)

�

j

�MGj =
d(I�Ω)

dt
(A.2)

with
– �Fi is the i-th external force interacting with a rigid air vehicle;
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– �MGj is the j-th external moment impressed on a rigid air vehicle about its center of gravity G;
– m is the mass of the air vehicle;
– I is moment of inertia tensor of the air vehicle about G;
– �V is the inertial speed vector of the air vehicle;
– �Ω is the angular speed vector of the air vehicle about G;
– t denotes the time. Any parameters topped by a dot or presided by the operator d

dt indicate the
time derivative of the parameter.

It is also worth noting that equations (A.3) and (A.4) account for mass m and mass distribution I
variations on the air vehicle. The variation of mass is relevant in applications where the air vehicle
consumes large amounts of fuel for propulsion or posses heavy sections that are detached in flight,
which is the case of a space rocket for example. This is not usually the case of a reentry vehicle.

Also, the angular momentum I of any rigid body is constant when expressed in the frame of
reference attached to the body (see sectionA.2.2). To avoid the use of more complex expressions
due to variations of the angular momentum I, the equation of moments will always be expressed
in this non-inertial frame of reference carried by the air vehicle.

The translation and angular acceleration of the air vehicle can be expressed in terms of any moving
reference frame. Consider an inertial frame Ri with origin O and a moving non-inertial frame R
with origin Q and rotation Ω. Expressing the acceleration of the body center of gravity G as
components parallel to the inertial axis of Ri, the force and moments equations are described
by (A.3) and (A.4). But when expressed in the non-inertial axis of R, it is required to account
for the apparent forces induced by the arbitrary motion of this frame of reference. The force and
moments equations in the non-inertial frame become

m

�
d�VR

dt

�

/R

=
�

i

�Fi + �Fco + �Fce + �Ftr (A.3)

I/R
d�Ω

dt
=

�

j

�MGj − �Ω ∧ I/R�Ω (A.4)

with
– �rR = (

#     „
QG)/R : relative position vector;

– �VR =

�
d�rR
dt

�

/R

: relative speed vector;

– �Fco = −2m�Ω ∧ �VR : Coriolis apparent force;
– �Fce = −m�Ω ∧ (�Ω ∧�rR) : centripetal apparent force;

– �Ftr = −m

�
d2(

#     „
OQ)/R
dt2

�

/R

−m
d�Ω

dt
∧�rR : transport apparent forces.

The sub-index /R specifies that the vector components are expressed parallel to the non-inertial
axis R. For aerospace applications, the origin Q of the non-inertial frame is generally fixed at the
center of gravity G.

A.2 Defining coordinate systems

To characterise the movement of an air vehicle with respect to another body, we first need to define
fixed and independent coordinate systems. In the case of a reentry mission, the vehicle tries to

228 / 345



A.2. Defining coordinate systems

reach a specific landing point on Earth. While modelling the motion of such air vehicle, several
coordinate systems or frames of reference are defined.

In this section, the following notation is used:
– R : frame of reference;
– M : rotation matrix between two frames of reference;
– �r = (

#     „
OG)/Ri

: inertial position vector;

– �Va, �Vw : aerodynamic speed vector and wind speed vector (�Va = �V − �Vw − �ΩE ∧�r);
– q : attitude quaternion of the body frame relative to the local frame;
– �Ωo : angular speed vector of the local frame rotation with respect to the inertial frame;
– �ΩE : angular speed vector of the Earth about its zi axis (|�ΩE | = 7.29212 · 10−3 rad/s);
– φ, θ, ψ : attitude Euler angles of roll, pitch and yaw respectively;
– µ, γ, χ : aerodynamic Euler angles;
– α, β : aerodynamic angle-of-attack and side-slip angle respectively;
– λ, λg : geocentric and geographic latitude respectively;
– L : geographic longitude;
– Li : inertial longitude (Li = L + ΩT (t − t0), t0 is the instant of passage of the Greenwich
meridian);

– Req : radius of the Earth at the equator (Req = 6378.135 km);
– Rp : radius of the Earth at the poles (Rp = 6356.611 km).

The main frames of reference used for this effect are presented next.

A.2.1 Definition of the inertial frame Ri and local frame Ro

By definition, an inertial frame of reference is that in which the laws of physics apply to their
simplest extent. For example, when a body without any force interactions is observed from an
inertial frame, it is either at rest or in a state of uniform linear motion.

When studying the reentry of a space vehicle, generally, the origin of the inertial frame of reference
is placed on the center of the Earth O, with fixed axes with respect to the stars. This frame of
reference is based on the equatorial plane, with its xi axis pointing in direction of the vernal point
and with the zi axis pointing towards the North Pole as depicted on Figure A.1. In other words,
zi is considered as the rotation axis of the Earth.

Ri = (�xi, �yi,�zi) (A.5)

To describe the movement of an air vehicle towards another body carrying the inertial frame, a
local frame of reference fixed on the air vehicle is required. This local frame is mainly used to
locate the vehicle position in relation to the body carrying the inertial frame.

The local frame of reference has its origin fixed at the vehicle center of gravity G and it is based
on the position vector �r tying the center of the Earth to the vehicle center of gravity. The zo axis
is fixed downwards from the center of gravity of the vehicle towards a ground point in the Earth’s
surface. The xo axis is fixed pointing North and the yo axis is fixed pointing East.

Ro = (�xo, �yo,�zo) (A.6)
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Figure A.1: Definition of the inertial frame Ri and the local frame Ro.

In the figure above, to distinguish the geographic latitude λg from the geocentric latitude λ, the
Earth is considered to be an oblate spheroid flattened at the poles. The difference between these two
latitude measurements is usually very small, even though in the figure it appears to be significant.

A.2.2 Definition of the body frame Rb and aerodynamic frame Ra

Both, the body reference frame and the aerodynamic frame, have their origin fixed at the air ve-
hicle center of gravity G. They are mainly used to determine the attitude and rotation speed of
the air vehicle with respect to the local frame Ro and with respect to the airspeed vector �Va.

The body frame is based on the air vehicle geometry, with its xb axis directed towards the aft end
and its zb axis directed to the center of the Earth. This frame is useful for modelling the attitude
of the air vehicle with respect to the local reference as illustrated on figure A.2.

Rb = (�xb, �yb,�zb) (A.7)
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Figure A.2: Definition of the body frame Rb and its relation with the local frame Rb.

And finally, the aerodynamic frame is based on the aerodynamic speed vector �Va of the air vehicle,
with its xa axis over the speed vector and it za vector pointing in the direction of the Earth center.
This frame is considered when modelling the air vehicle attitude with respect to the speed vector
as shown on figure A.3.

Ra = (�xa, �ya,�za) (A.8)

α

β

α

β

��
��

��

��

��

��

��

��

Figure A.3: Definition of the aerodynamic frame Ra and its relation with the body frame Rb.

A.2.3 Relations between frames of reference

The natural relations between the different frames of reference is of the utmost for modelling the
dynamics of the movement of an air vehicle. For some applications like an atmospheric reentry
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mission, some predominant parameters defined in specific frames may need to be regulated and/or
computed from other flight parameters defined in different frames.

Let us describe some key points of these relations for air vehicles modelling.

A.2.3.1 From local Ro to inertial frame Ri

The inertial position vector �r = [xi, yi, zi] ties the origin of the inertial frame Ri and that of the
local frame Ro as depicted on figure A.1. This is the main relation for linking the movement of an
air vehicle to its inertial frame. With the use of the geocentric latitude λ, the components of the
position vector �r can be expressed as

xi = |�r| cosλ cosL (A.9)

yi = |�r| cosλ sinL (A.10)

zi = |�r| sinλ (A.11)

The construction of a rotation matrix can be done by linking the axis �zl of the local frame Ro to a
ground point in Ri from which the geographical latitude λg is measured. Considering the inertial
longitude Li, the base of Ro can be expressed as

�xo =




− sinλg cosLi

− sinλg sinLi

cosλg



 (A.12)

�yo =




− sinLi

cosLi

0



 (A.13)

�zo =




− cosλg cosLi

− cosλg sinLi

− sinλg



 (A.14)

Then, the rotation matrix for expressing vectors from the local frame Ro to the inertial frame Ri

comes from the concatenation of the expressions necessary to represent the base of Ro in terms of
the geographic latitude and inertial longitude as

Mio =




− sinλg cosLi − sinλg sinLi cosλg

− sinLi cosLi 0
− cosλg cosLi − cosλg sinLi − sinλg



 (A.15)

Consider a vector

�v =




xi

yi
zi



 when defined in Ri, and �v =




xl

yl
zl



 when defined in Ro.

Then, the following relation holds 


xi

yi
zi



 = Mio




xl

yl
zl



 (A.16)
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Now, let us express the components of the inertial speed vector as �V = [u, v, w]T . The angular
speed due to the rotation of the local frame Ro with respect to the inertial frame Ri is obtained
by:

Ωo =




cosλgL̇i

−λ̇g

− sinλgL̇i



 (A.17)

with

L̇i = |�ΩE |+ L̇ =
v xi − u yi
x2
i + y2i

(A.18)

λ̇g =
R2

p[w(x
2
i + y2i )− zi(uxi + v yi)]

R2
eq

�
x2
i + y2i

�
R4

p

R4
eq
(x2

i + y2i ) + z2i

� (A.19)

A.2.3.2 From body Rb to local Ro and inertial frame Ri

The relation between this two frames is useful for establishing the attitude of an air vehicle and
its rotation speed.

The attitude of an air vehicle is determined by the displacement of the body frame Rb with respect
to the local frame Ro and is defined as a triplet of angles known as the Euler angles. The Euler
angles φ, θ and ψ are defined on Figure A.2 and they can be used to transform components of
vectors defined in different frames.

Using the angular displacement between the two frames, to obtain the components of a vector
parallel to the body frame Rb axis in the local frame Ro, we use the rotation matrix (A.21)
defined by the successive rotations (A.20).

R1(φ) =




1 0 0
0 cosφ sinφ
0 − sinφ cosφ





R2(θ) =




cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ





R3(ψ) =




cosψ 0 sinψ
− sinψ cosψ 0

0 0 1





Mob = R3(ψ) ·R2(θ) ·R1(φ)

(A.20)

Mob =




cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ
cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ
− sin θ sinφ cos θ cosφ cos θ



 (A.21)

Consider once more a vector
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�v =




x
y
z



 when defined in Rb, and �v =




xl

yl
zl



 when defined in Ro.

Then, the following relation holds 


xl

yl
zl



 = Mob




x
y
z



 (A.22)

Similarly, to transform a vector defined on the body frame Rb onto the inertial frame Ri, we use
the rotation matrix (A.23), where φi, θi and ψi are the inertial Euler angles.

Mib =




cos θi cosψi sinφi sin θi cosψi − cosφi sinψi cosφi sin θi cosψi + sinφi sinψi

cos θi sinψi sinφi sin θi sinψi + cosφi cosψi cosφi sin θi sinψi − sinφi cosψi

− sin θi sinφi cos θi cosφi cos θi



 (A.23)

The components of the angular speed due to the rotation of the air vehicle about its center of
gravity is expressed in Rb as

�Ω =




p
q
r



 (A.24)

The change rate of the Euler angles, i.e., the rotation speed between the two frames Rb and Ro,
can be expressed using the components of �Ω with the relation




ψ̇
θ̇
φ̇



 =





1

cos θ
(q sinφ+ r cosφ)

q cosφ− r sinφ
p+ tan θ(q sinφ+ r cosφ)



 (A.25)

It is clear that in the time derivative equations of the Euler angles (A.25), a singularity is obtained
for a value of θ = ±π

2 . This singularity is purely mathematical. This is why it is common use to
represent the attitude of an air vehicle with 4 dimensional vectors called quaternions. Quaternions
are used to avoid mathematical calculation problems detached from the physical reality.

The quaternion q used to represent the attitude of the air vehicle as a function of the Euler angles
is written as

q =





q0
q1
q2
q3



 =





cos ψ
2 cos θ

2 cos
φ
2 + sin ψ

2 sin θ
2 sin

φ
2

cos ψ
2 cos θ

2 sin
φ
2 − sin ψ

2 sin θ
2 cos

φ
2

cos ψ
2 sin θ

2 cos
φ
2 + sin ψ

2 cos θ
2 sin

φ
2

sin ψ
2 cos θ

2 cos
φ
2 − cos ψ

2 sin θ
2 sin

φ
2



 (A.26)

Then, the rotation matrix used to express vectors between the body and local frames is defined as
follows:

Mob =




2(q20 + q21)− 1 2(q1 q2 − q0 q3) 2(q1 q3 + q0 q2)
2(q1 q2 + q0 q3) 2(q20 + q22)− 1 2(q2 q3 − q0 q1)
2(q1 q3 − q0 q2) 2(q2 q3 + q0 q1) 2(q20 + q23)− 1



 (A.27)

To obtain the rotation speed between the two frames Rb and Ro using quaternions, the variation
rate defined by the time derivative of the attitude quaternion is

q̇ =
1

2
q⊗ �Ω (A.28)
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where the symbol ⊗ represents the non commutative product of quaternions. Considering the
component q0 as a scalar s and the remaining three components q1...3 as part of the vector �u, the
product of quaternions is defined as

qa ⊗ qb =

�
sa
�ua

�
⊗
�
sb
�ub

�
=

�
sa sb − �ua · �ub

sa �ub + sb �ua + �ua ∧ �ub

�
(A.29)

Alternatively, to transform a vector defined on the body frame Rb to the inertial frame Ri, the
quaternion based rotation matrix (A.30) is used, where q0i , q1i , q2i and q3i are the components
of the inertial quaternion qi defined by the same expression as (A.26) but using the inertial Euler
angles φi, θi and ψi

Mib =




2(q20i + q21i)− 1 2(q1i q2i − q0i q3i) 2(q1i q3i + q0i q2i)

2(q1i q2i + q0i q3i) 2(q20i + q22i)− 1 2(q2i q3i − q0i q1i)
2(q1i q3i − q0i q2i) 2(q2i q3i + q0i q1i) 2(q20i + q23i)− 1



 (A.30)

A.2.3.3 From aerodynamic Ra to body Rb and local frame Ro

Since the aerodynamic speed vector �Va is probably the most important parameter for modelling
the dynamics of any air vehicle, it is necessary to keep track of the attitude of the body with
respect to �Va and the attitude of �Va with respect to the local frame.

The displacement of aerodynamic frame Ra carried by the speed vector �Va with respect to the
local frame Ro is defined by the aerodynamic Euler angles µ, γ and χ as shown on Figure A.4.

µ

γ

χ

χ

µ

γ��

��

��

��
��

��

��

��

Figure A.4: Angles de Euler aérodynamiques entre les repères Ro et Ra.
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In the same way as described for the body frame, to express a vector defined on the aerodynamic
frame Ra in the local frame Ro, we use the equivalent rotation matrix (A.31).

Moa =




cos γ cosχ sinµ sin γ cosχ− cosµ sinχ cosµ sin γ cosχ+ sinµ sinχ
cos γ sinχ sinµ sin γ sinχ+ cosµ cosχ cosµ sin γ sinχ− sinµ cosχ
− sin γ sinµ cos γ cosµ cos γ



 (A.31)

Consider the vector

�v =




xl

yl
zl



 when defined in Ro, and �v =




xa

ya
za



 when defined in Ra.

Then, the following relation holds 


xl

yl
zl



 = Moa




xa

ya
za



 (A.32)

The displacement between the aerodynamic frame Ra and the body frame Rb, as seen by the center
of gravity of the air vehicle, produces two main angles that are very important for the creation of
lift forces and yawing moments in flight. These angles are the angle-of-attack α and the side-slip
angle β as defined on figure A.3.

With the angle-of-attack α and the side-slip angle β, the coordinate rotation established in (A.34)
between the aerodynamic frame Ra and the body frame Rb can be defined by the successive
rotations (A.33).

R1(α) =




cosα 0 − sinα
0 1 0

sinα 0 cosα





R2(−β) =




cosβ − sinβ 0
sinβ cosβ 0
0 0 1





Mba = R2(−β) ·R1(α)

(A.33)

Mba =




cosα cosβ − cosα sinβ − sinα

sinβ cosβ 0
sinα cosβ − sinα sinβ cosα



 (A.34)

Now, consider the vector

�v =




x
y
z



 when defined in Rb, and �v =




xa

ya
za



 when defined in Ra.

Then, the following relation holds 


x
y
z



 = Mba




xa

ya
za



 (A.35)
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A.3 Deriving control objectives

All objectives for the automatic control system of an air vehicle can be obtained from the gen-
eral equations described in Section A.1 and by using the relations between frames of reference
described in Section A.2.3. For this thesis, the control objectives chosen are the angle-of-attack
α, the side-slip angle β, and the roll angle φ. This section will show how the dynamic equations
of these angular objectives were derived from the general equations of the movement of air vehicles.

Let us begin by expressing the base (�xa, �ya,�za) of the aerodynamic frame Ra in terms of the base
(�x, �y,�z) of the body frame Rb, resulting in the set of equations presented below.

�xa = cosα cosβ �x+ sinβ �y + sinα cosβ�z =
�Va

Va
(A.36)

�ya = − cosα sinβ �x+ cosβ �y + sinα sinβ�z (A.37)

�za = − sinα�x+ cosα�z (A.38)

From figure A.3, one can then deduce the following expressions for the angle-of-attack α and the
side-slip angle β

tanα =
�Va · �z
�Va · �x

(A.39)

tanβ =
�Va · �y�

(�Va · �x)2 + (�Va · �z)2
(A.40)

The aerodynamic speed vector �Va is tied to the inertial speed vector �V by the relation:

�V = �Va + �Vw + �VE (A.41)

where �VE = �ΩE ∧�r is the transport speed due to the rotation of the Earth.

The inertial rotation speed vector �Ωi can be decomposed into the following angular speeds:

�Ωi = �Ω+ �Ωo + �ΩE (A.42)

The fundamental relation of the speed vector dynamics comes from the force equation. Let us
retake this equation by explicitly expressing the acceleration as

�̇V =
1

m

�
�F = �Γ = �Γc + �g (A.43)

where �Γ is the acceleration resulting from all the forces interacting with the air vehicle. The ac-
celeration vector �Γ can be decomposed as the acceleration due to gravity �g and the acceleration
�Γc due to other forces and that is measurable by the accelerometers of the IMU.

Using the expression of the inertial speed (A.41), the last equation can be written as

�̇Va + �̇Vw + �̇VE = �Γ (A.44)
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But since
�̇VE = �ΩE ∧ �V = �ΩE ∧ (�Va + �Vw + �VE) (A.45)

then
�̇Va = �Γ− �ΩE ∧ �Va − �̇Vw − �ΩE ∧ �Vw − �ΩE ∧ (�ΩE ∧�r) (A.46)

Let us make the following simplifications:
– �ΩE can be discarded since |�ΩE | = 7.29212 · 10−3 rad/s is too small compared to �Ω;
– �Ωo can be discarded since at most, a value |�Ωo|max = 1.163553 · 10−3 rad/s is still too small
compared to �Ω;

– the term �ΩE ∧ (�ΩE ∧ �r) is integrated in the value of g, which is the standard value of the
acceleration due to gravity on ground at 45◦ of latitude.

The time derivatives of the relations in (A.36) - (A.38) expressed in the aerodynamic frame of
reference Ra can be written as

�̇xa = β̇ �ya + cosβ α̇�za (A.47)

�̇ya = −β̇ �xa − sinβ α̇�za (A.48)

�̇za = α̇ (cosβ �xa − sinβ �ya) (A.49)

From (A.36) and (A.47), the airspeed vector time derivative can be expressed as

�̇Va = V̇a �xa + Va �̇xa = V̇a �xa + Va β̇ �ya + Va cosβ α̇�za (A.50)

By extracting the components parallel to �za and �ya of the time derivative of the airspeed vector,
the dynamics of the angle-of-attack α and of the side-slip angle β can be written as

cosβ α̇ = �Ω · �ya +
�Γ · �za
Va

+ cosβ qw (A.51)

β̇ = −�Ω · �za +
�Γ · �ya

Va
+ rw (A.52)

where qw and rw are angular speed components of the rotation between the aerodynamic frame of
reference Ra and the local frame Ro. These two components are defined as

qw = − 1

cosβ Va

�
�̇Vw + �Ω ∧ �Vw

�
· �za

rw = − 1

Va

�
�̇Vw + �Ω ∧ �Vw

�
· �ya

When modelling control objectives, the wind speed vector �Vw is considered as an exogenous dis-
turbance, therefore qw and rw are usually discarded from the objectives model.

The dynamics of the roll φ is obtained directly by the classic relation for Euler angles derivative
contained in equation (A.25), corresponding to

φ̇ = p+ tan θ(sinφ q + cosφ r) (A.53)

Now, let us remind that the input u of the control model, corresponding mainly to control surfaces,
is used to create moments around the air vehicle thus having a direct effect on the rotation rate
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about the center of gravity G. And clearly, the dynamics of our angular objectives are functions
of the body angular speed vector �Ω.

To control the angular objectives α, β, and φ, it is then necessary to include in the coupling
between our objective dynamics (A.51) - (A.53) and the angular rate dynamics. Discarding the
moments due to propulsion forces, the angular rate dynamics can be obtained straight from the
equation of moments

I �̇Ω = �MaA + �Fa ∧
#     „
AG− �Ω ∧ I�Ω (A.54)

expressed parallel to the body frame axis.

239 / 345





Appendix B

Useful theorems and lemmas

B.1 On input-output stability (Small Gain Theorem)

To introduce the general notion of input-output stability, let us first introduce some notation which
will be used to explain this concept [Vid93, NT04, Bia96]. Consider that µ is a measure in the
sense of Lebesgue and that E is the space of functions f defined in R+, to values in R, and that
are Lebesgue measurable. A function f ∈ En is essentially bounded if µ �= 0 is bounded over any
interval in R+. Let us define the concept of Lq spaces first.

Definition B.1 (Lq space) An Lq space is the metric space of functions f in E such that

–

� ∞

0
|f(t)|q dt < ∞ for q < ∞

– f is essentially bounded for q = ∞, i.e., sup
t∈R+

|f(t)| < ∞.

An Lq space is constituted of all piecewise continuous functions

||f(t)||q =

�� ∞

0
[|f1(t)|q + |f2(t)|q + . . .+ |fp(t)|q] dt

� 1
q

(B.1)

where | · | represents the standard Euclidean norm and || · ||q is called a norm function.

Norm functions represent the formal idea of size of signals. The L2 norm, for example, is useful for
problems where energy constraints are imposed while the L∞ norm comes in handy for amplitude
or bound constraints.

At this point, it is also needed to introduce the notion of truncation operator which is used to
establish the input-output stability of a system.

Definition B.2 (Truncation operator) Consider u ∈ Lq. The truncation operator T of func-
tions Lq → Lq, is defined by
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�
fT(t) = f(t) if t ≤ T
fT(t) = 0 if t > T

Taking into account the truncation operator of the function f(t), the concept of Lq spaces can be
extended as follows.

Definition B.3 (Extended Lq spaces) The extension of the space Lq, denoted Lq,e, is defined
as the space consisting of of all functions whose truncation belongs to Lq. The space Lq,e is and
extension of the space Lq because Lq ⊂ Lq,e

After introducing some notation, now let us consider the autonomous nonlinear system

�
ẋ = f(x(t), u(t))
y(t) = h(x(t), u(t))

(B.2)

with initial condition x(t0) = x0. It is assumed that the existence and uniqueness of solutions is
verified. This means that given an initial condition x0 and the input vector u(t), only one output
vector y(t) can be determined. If the initial condition is at the origin and the input vector is set
to zero, then �

f(0, 0) = 0
h(0, 0) = 0

(B.3)

It will also be assumed that the signals u and y belong to the spaces Lm
q,e and Lp

q,e. Finally, an
operator H : Lm

q,e → Lp
q,e is associated to system (B.2) as an input-output mapping, such as

y = H(u) (B.4)

where H verifies the principle of causality or

∀T ≥ 0, H(u)T = H(uT)T (B.5)

Causality means the past and present outputs y(t) of the operator do not depend on future inputs
u(t). This principle also implies that the input can be determined by studying the output, which
in terms means that the operator H is invertible [Che84]. Notice that the nature of the operator
H is not specified, and therefore it may represent any type of process (whether autonomous,
non-autonomous, time invariant, etc.).

We can now establish the definition of input-output stability in the sense of Lq spaces [Bia96].

Definition B.4 (Lq stability) The operator H, or its associated system, is Lq stable if
– ∀u ∈ Lm

q,e, H(u) ∈ Lp
q,e;

– there exists two constants γ and β such that ∀u ∈ Lm
q,e and ∀T > 0

||(H(u))T||q ≤ γ||uT||q + β (B.6)

The constant γ represents the system gain and the smallest value of γ that satisfies the previous
condition is called the Lq gain of the operator H. The term β is a residual term that vanishes
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when the initial conditions are set at the origin x0 = 0.

The L2 stability of a system is linked to the idea that an input signal u(t) of finite energy should
produce an output signal y(t) of finite energy. This is not exactly the same notion as bounded-input
bounded-output (BIBO) stability.

Definition B.5 (BIBO stability) The general system (B.2) is BIBO stable if the output signal
y(t) remains bounded as long as the input signal u(t) is bounded, this is, if the system is L∞ stable.

To analyse the input-output stability of a feedback control loop, the Small Gain Theorem states a
basic requirement for the assessment of the Lq stability. Even though this theorem is not general
as the Lyapunov method, it simplifies the analysis for systems with the interconnection scheme of
figure B.1.

�
�

ε
1 �

�
�
�

�
�

�
�

�
� �

�
�
�

ε
2

Figure B.1: Interconnection for small gain stability analysis.

Theorem B.6 (Small Gain) Consider that the two operators H1 and H2 on figure B.1 are Lq

stables and of respective Lq gains γ1 and γ2. If

γ1γ2 < 1

then ∀u1 ∈ Lm1
q,e , ∀u2 ∈ Lm2

q,e and ∀T > 0

||(ε1)T|| ≤
1

1− γ1γ2
(||(u1)T||q + γ1||(u2)T||q + β2 + γ2β1)

||(ε2)T|| ≤
1

1− γ1γ2
(||(u2)T||q + γ2||(u1)T||q + β1 + γ1β2)

Consequently, the closed loop is Lq stable from the inputs (u1, u2) to the outputs (y1, y2).

In practice, based on an L2 norm criteria, the following corollary becomes a more common appli-
cation of the small gain theorem to linear control systems:

Corollary B.7 (Small Gain for LTI Systems with Unstructured Uncertainties) Consider
the closed-loop of Figure B.2, where P (s) is a stable LTI system and the unstructured uncertainty
∆(·) is an L2 operator which verifies the following condition:

∀ u, ε ∈ L2, ||∆(ε)−∆(u)||2 ≤ α||ε− u||2 (B.7)
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with 0 ≤ α ≤ 1, i.e., ∆(·) is a contraction.

This closed-loop is internally stable for all ∆(·) that verifies condition (B.7) if and only if:

||P (s)||∞ < 1 (B.8)

This result is preserved as the operator ∆(·) belongs to the class of stable LTI systems bounded by
||∆(s)||∞ < 1.

�ε
������

�

�

Δ �����

Figure B.2: Interconnection for small gain stability analysis of LTI systems.

B.2 On H∞ norm and design tools (Bounded Real Lemma)

The H∞ framework for robust control design has become of great importance in the last two
decades. Indeed, the H∞ norm is a rather convenient mathematical measure commonly used as a
cost parameter in feedback optimisation problems.

Before giving the formal definition of this measurement, consider H(s) the transfer function of
an LTI system of input u and output y for which a state-space realisation is characterized by the
quadruple (A,B,C,D). The system is stable if its associated matrix A is Hurwitz, i.e., if all its
eigenvalues have a negative definite real part.

The term H∞ denotes the space of bounded functions H(s) that are analytic in (Re)(s) ≥ 0.

Definition B.8 (H∞ norm) The H∞ norm of an LTI system is defined as the peak gain of the
frequency response of its transfer function H(s) over the imaginary axis:

||H(s)||∞ = sup
(Re)(s)≥0

σ̄ (H(s)) = sup
ω∈R

σ̄ (H(ωj)) (B.9)

where σ̄ denotes the largest singular value of the frequency response.

A time-domain interpretation can be given to the H∞ norm through the concept of L2 gain. From
Definitions B.1, B.2 and B.4 the L2 gain can be defined as follows [Meg09]:
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Definition B.9 (L2 gain) Consider a stable system of input u(t) ∈ L2 and output y(t) ∈ L2.
The L2 gain of such a system is the minimal gain γ ≥ 0 on one side such that:

inf
T≥0

� T

0
(γ2|u(t)|2 − |y(t)|2) dt > −∞ (B.10)

for all input-output pairs (u, y) over arbitrary finite time intervals.

From the definition above, it becomes clear why the L2 gain concept is of such relevance to robust-
ness analysis. Still, for some classes of systems, the L2 gain can be difficult to calculate or even
to estimate. Then, the importance of the H∞ norm is largely due to the fact that, for stable LTI
systems, the H∞ norm is equal to the L2 gain of such systems.

Inspired from this interpretation and based on the concept of quadratic stability, which focuses on
finding a quadratic Lyapunov function, the H∞ norm computation problem can be transformed
into a standard Linear Matrix Inequality (LMI) optimization problem. At the core of this idea, is
Bounded Real Lemma (BRL).

Lemma B.10 (Bounded Real) The gain of a stable LTI system represented by the state-space
realisation (A,B,C,D) is bounded by γ > 0 if and only if there exist X = XT such that





AT X +X AT X B CT

BT X −γ I DT

C D −γ I




< 0 (B.11)

with X > 0.

Originally, the BRL presented simple conditions under which any given system is contractive on the
imaginary axis, which lead to a straightforward way of computing the H∞ norm of such systems.
Yet, this result proved to be much more flexible and interesting. It then became a relevant tool
to prove that the existence of stabilizing feedback controllers was equivalent to the existence of
solutions of specific LMI formulations through convex optimization.

Today, the BRL allows to establish conditions for a number of applications including: synthesis
of H∞ controllers, optimization of scalings, multipliers and integral quadratic constraints (IQC)
in robustness analysis. Different adaptations of the BRL can be used for different classes of sys-
tems and representations in either continuous or discrete cases [ZDK10, ZXS08, Dum05, SDSX97,
SYdS98, SS01].
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Alternative synthesis and analysis
tools

C.1 Simultaneous design of Ka(s) and J(s)

Inspired by the schemes presented in [MTK09, BA11], a simultaneous synthesis of the linear con-
troller Ka(s) and the anti-windup device J(s) can be foreseen.

In general, by computing the both controllers simultaneously, the conservatism of more conven-
tional schemes can be reduced. This can be achieved by creating a structured multi-objective
design model that will seek to:

– minimize a system performance criterion established as the error between the system Σ(s) and
a reference model R(s),

– and preserve the closed-loop stability despite the effects of saturations.

Consider the actuator model presented in (2.18), the rate limiter model in (2.27) and the complete
NLC control scheme presented on Figure C.1.
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Figure C.1: Complete NLC control scheme.

From the control scheme presented above, the LFT representation of Figure C.2 can be easily
derived, where

w =
�
zc f̂ wf

�T
and z =

�
zu zp

�T

���������������
��

��
�
�

�

�����

�
	
����

ϕ  

�
����
�

Figure C.2: LFT representation of the complete NLC control scheme.

By removing the exogenous blocks of the LFT representation, a design-oriented model is obtained.
The goal of such design-oriented model is to find the best controllers Ka(s) and J(s) which respond
to the two control objectives previously stated.

Suitable weighting functions should be designed and added in this scheme to the exogenous
weighted output vector z (and to the exogenous input vector w if required).

A standard form with its associated structured controller block diag(J(s),Ka(s)) can be easily
derived. The latter is used for H∞ controller synthesis and it is represented on Figure C.3.
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� �
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Figure C.3: Standard form of the simultaneous H∞ control design of Ka(s) and J(s).

Finally, from the small gain theorem, the stability of the closed-loop is guaranteed if condition (2.31)
is verified. Moreover, the robust performance of the control loop is ensured if condition (2.19) is
verified at the same time. As a result, both controllers Ka(s) and J(s) can be obtained as a
solution of the following multi-channel H∞ design problem:

min
J(s),Ka(s)

γ /

�
||Fl(Pnom(s),Ka(s))||∞ < γ
||Fl (Prob(s), diag(J(s),Ka(s))) ||∞ < γ

(C.1)

where
– Pnom denotes the suitable linear interconnection of the transfer from the exogenous inputs w to
the exogenous outputs z, with ϕL̃ ≡ 0;

– Prob denotes the suitable linear interconnection of the transfer from the exogenous input wϕ to
the exogenous output zϕ;

C.2 On IQC-based analysis

More precise results on the achieved robust stability of the closed-loop can be obtained using other
analysis techniques. Some of these may also prove to be well-suited for the robustness analysis of
the problem that has been proposed using the analysis model described in Section 2.5.1.

In the same context of input-output stability analysis, the IQC formalism presents a very interesting
and complete framework allowing to obtain analysis results of lower conservatism. In fact, many
robustness stability methods can be reformulated to fall within the IQC framework as exposed in
the central contribution [MR97].

The basic principle of the IQC-based analysis is to replace a system nonlinearities, time-varying
coefficients, parametric uncertainties and unmodelled dynamics by IQC characterizations. Then,
the analysis model is immersed into a relaxed representation containing all possible solutions of
the real system. This is done by defining multipliers Π that satisfy an integral quadratic condition
denoted σΠ. The analysis problem of the relaxed model is much easier and can be solved via convex
optimization, which yields an upper bound of the L2 gain.

At the core of this framework, is the general interconnection of Figure C.4 which can be expressed
as: �

z = M(s)w
w = ∆(z)

(C.2)
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where M(s) is a stable LTI system and the bounded operator ∆(·) ∈ L2 can contain nonlinearities,
time-varying coefficients, parametric uncertainties and unmodelled dynamics. Then, the bounded
operator ∆(·) is said to satisfy the IQC σΠ, defined by the multiplier Π, if ∀ w = ∆(z) the following
condition is verified:

σΠ =

� ∞

−∞

�
ẑ(jω)
ŵ(jω)

�∗
Π(jω)

�
ẑ(jω)
ŵ(jω)

�
≥ 0 (C.3)

where the symbol ‘∗’ denotes the conjugate transpose, ẑ and ŵ denote the Fourier transforms of
the signals z and w, and the multiplier Π has the following general structure:

Π(jω) =

�
Π11(jω) Π12(jω)
Π12(jω)∗ Π22(jω)

�
(C.4)

���������������

Δ  ����

�

Figure C.4: Analysis interconnection of the IQC framework.

Considering that the quadruple (AM , BM , CM , DM ) is a realization of the system M(s), the sta-
bility of the interconnection depicted on Figure C.4 is guaranteed if:

�
M(jω)

I

�∗
Π(jω)

�
M(jω)

I

�
< 0, ∀ ω ∈ R (C.5)

Interestingly, by application of the Kalman-Yakubovich-Popov Lemma [Ran96], it follows that the
stability condition above is equivalent to verifying that there exists X = XT > 0 such that:

�
AT

M X +X AT
M X BM

BT
M X 0

�
+

�
Q S
ST R

�
< 0 (C.6)

where the symmetric matrices Q, S and R are part of the representations of the multiplier Π.
Then, the stability analysis of the interconnection between M(s) and ∆(·) takes the form of a
convex optimization problem defined by the LMI presented above.

A wide variety of multipliers Π can be proposed to characterize each particular operator contained
in ∆(·). An extensive list of multipliers that satisfy the IQC condition (C.3) can be found in [MR97].

Other refined characterizations of particular operators are a current subject of study. In fact, a
useful feature of this framework is that by adding as many IQC satisfied by a same operator as
possible, the method tends to reduce the conservatism of the results by considering all the IQC
simultaneously. For example, a refined IQC formulation for systems with slowly varying parameters
is proposed in [Hel99] based on the so called Swapping Lemma.
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C.2. On IQC-based analysis

Also, an interesting formulation for computing the L2 gain of systems with bounded sector non-
linearities and slope restrictions is presented in [TK11], founded on an IQC-based formulation of
the Zames-Falb multiplier and the Popov multiplier. In this contribution, compared to the classic
multipliers approach and the standard IQC framework, the conservatism of the results are reduced
by adding two IQC characterizations satisfied by the bounded nonlinearity and by solving a set of
LMI that result from the unified formulation.

On the downside, this technique may require large computational loads and longer times to run
the analysis tests depending on the size of the characterizations contained in Π. It should be
kept in mind that, from a computational point of view, it is difficult to obtain exact result to
the robustness analysis problem, no matter what technique or framework is used. A trade-off
between the conservatism of the analysis and computational burden or limits of the tests has to
be considered.

In this thesis work, the IQC framework was not explored given the computational burden that
it represents. Instead, the small gain theorem-based approaches will be preferred for robustness
analysis.
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Appendix D

Simulation parameters and values

This Appendix contains a detailed presentation of the numerical values of the simulation parameters
that were used to test the Control System of the reentry vehicle model.

The simulation parameters are classified into two groups: the parameters linked to the flight con-
ditions of the simulator, and the parameters associated to the reentry vehicle model. Different
sources of disturbance affecting relevant parameters and their numerical values will also be intro-
duced accordingly.

First, let us introduce the main simulation parameters linked to the Flight Mechanics simulator
environment.

D.1 Flight conditions

The 6 degrees-of-freedom nonlinear Flight Mechanics simulator considers specific environmental
conditions to which the reentry vehicle model is subject to. The following contains a brief descrip-
tion of such environmental conditions mainly determined by the atmospheric model, which may
also consider the effects of diverse perturbations on the reentry vehicle.

D.1.1 Atmospheric model

The aerodynamic and propulsion model of any air vehicle has a direct dependency on the following
atmospheric parameters:
– ρ: density;
– P : pressure;
– T : temperature;
– cs: sound speed;

These parameters characterize standard atmospheric models such as the International Standard
Atmosphere (ISA) model or the U.S. National Oceanic and Atmospheric Administration (NOAA)
1976 Committee on Extension to the Standard Atmosphere (COESA) model. The parameters
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presented above are a function of the altitude h at which the air vehicle is located. More complex
atmospheric models, such as the Committee on Space Research (COSPAR) International Reference
Atmosphere (CIRA) model, use the geographic location and the month of the year to generate more
accurate representations of the atmosphere at different altitudes.

In this work, the NOAA ’76 COESA model was employed for simulation with the reentry vehicle
model. The curves contained in the graphics of Figures D.1-D.4, present the atmospheric profile.
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Figure D.1: Atmospheric density ρ as a function of the altitude h.
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Figure D.2: Atmospheric pressure P as a function of the altitude h.
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Figure D.3: Atmospheric Temperature T as a function of the altitude h.
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Figure D.4: Speed of sound cs as a function of the altitude h.

The speed of sound is used to obtain the Mach number of a vehicle flying at an airspeed Vs such
that:

M =
Va

cs(h)
(D.1)

Variations on the density ρ can be represented as a multiplicative uncertainty of the atmospheric
model presented above as a function of the altitude h. The following values of this uncertainty
were considered in simulation:
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h (km) 25 45 60 80 90 120

∆ρ 0 ±11% ±14% ±12% ±16% ±8%

Table D.1: Atmospheric density variation ∆ρ.

Inside the atmospheric environment, diverse phenomena takes place as a result of the interaction
of air with different atmospheric characteristics. One such a phenomenon, caused mainly by a
gradient of pressure, is the wind.

D.1.2 Wind as a source of disturbance

The wind is represented as a vector �Vw with a specific direction and speed. In this work, the wind
is modelled as a static wind vector �Vsw affected by a turbulence vector �Vtw(t). This way, the
effect of the wind can be added to the simulation by applying �Vw to the center of gravity of the
reentry vehicle.

Other effects resulting from the wind speed variations on different points of the vehicle can be
modelled by angular speeds due to the wind. For example, the components pw, qw and rw can be
added to the angular rates p, q and r.

The static wind vector �Vsw is modelled as an horizontal static wind defined by its magnitude as a
function of the altitude and by the direction from which the wind comes. The static wind profile
varies depending on the geographical zone.

The direction of �Vsw is usually West to East for reentry missions close to the equatorial region
and it is measured with respect to the geographic North. In simulation with the reentry vehicle,
the latter is considered to be random and the magnitude is considered to be a function only of the
altitude h according to the following profile:

h (km) 0 5 10 27 50 60 75 80 115 120

Vsw (m/s) 15 25 35 62 190 190 150 150 200 200

Table D.2: Static wind Vsw profile as a function of the altitude h.

The wind turbulence �Vtw(t) is modelled by independent colored noises on the 3 vehicle axis with
the respective longitudinal component u, lateral component v and vertical component w. The
effects of the turbulence on the angular dynamics of the vehicle can be represented by 3 more
colored noises through the variables pw, qw and rw.

Each of these colored noises is characterized by a transfer function H(s) between the wind turbu-
lence and a white noise of standard deviation σi. For the angular speeds generated due to the wind
turbulence, a reference length br, which corresponds usually to the wingspan or vehicle length, is
used.

Consider the Dryden profile for wind turbulence [Mat11a], from which the following transfer func-
tions H(s) are obtained:
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Speed Angular speed

Hu(s) = σu

�
2 τu
π

1
1+τu s Hp(s) =

σw
Va

�
0.8

τ
1
3
p τ

2
3
w

1
1+τp s

Hv(s) = σv

�
τv
π

1+
√
3 τv s

(1+τv s)2 Hr(s) =
s

1+τr s
Hv(s)
Va

Hw(s) = σw

�
τw
π

1+
√
3 τw s

(1+τw s)2 Hq(s) =
s

1+τq s
Hw(s)
Va

Table D.3: Transfer functions H(s) defining the turbulence model.

In the transfer functions presented above, the time constants τi are expressed as a function of the
correlation lengths Li (not ot be confused with the inertial longitude Li) and the air speed Va such
that

τi =
Li

Va
(D.2)

given

Lp = Lq =
4 br
π

and Lr =
3 br
π

(D.3)

The other parameters in these transfer functions are mainly a function of the altitude. For example,
considering the Dryden turbulence model, one gets that:
– for 0 < h ≤ 300 m:

σw = 0.1 Vsw

σu = σv =
σw

(0.177 + 0.000823 h)0.4

Lw = h

Lu = Lv =
h

(0.177 + 0.000823 h)1.2

– for 300 m < h < 600 m, a linear interpolation is used.
– for 600 m ≤ h < 27000 m:

Lu = Lv = Lw = 533.4 m

The values σu, σv and σw are interpolated from tables as a function of the altitude h and of the
probability that the turbulence level is exceeded.

– for h ≥ 27000 m:

σi = σ0i

�
h

h0

�κσi

m/s

Li = L0i

�
h

h0

�κLi

m

where κi ∈ R.
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For simulation, a moderate wind turbulence profile is considered, in which the RMS turbulence
amplitude remains between 0 and 5 m/s with a 10−3 probability of exceedance starting at an
altitude of about 20 km.

D.1.3 Flight operating points

The flight domain covered by a vehicle throughout a reentry mission is very large. To test the
Control System of the reentry vehicle in simulation, different conditions within the flight domain
can be chosen as fixed points of a possible mission trajectory. Let us recall the typical flight
conditions presented in Section 5.3 of page 109, which were retained for simulation with the reentry
vehicle model.

Flight point Trim values

no h (m) M q̄ (Pa) γ (o) ᾱ (o) δ̄m (o)

1 68 500 20 1 639 -0.3 33 2.08

2 54 500 11 3 615 -0.5 33 1.86

3 48 000 8 4 379 -1.5 28 5.43

4 38 000 5 6 395 -2.5 24 5.78

5 25 000 2.5 10 986 -5 16 1.78

6 10 000 0.8 11 843 -10 10 -4.89

7 5 000 0.6 13 613 -15 7 -7.59

8 0 0.3 6 383 -16 10 -5.99

Table D.4: Recapitulation of flight points considered in simulation with associated trimmed flight
conditions.

These points are completely defined as a function of the altitude h and the Mach number M. The
dynamic pressure q̄ is then computes from these values, while the glide slope angle γ is mainly
imposed by the Guidance System as a possible mission trajectory. Then, equilibrium conditions
are used to fix the initial values of the simulator state vector and other flight parameters.

In general, an equilibrium state is sought such that the Euler derivatives, as well as the lateral
angles ψ, φ, β, µ and lateral angular rates p, r are zero.

There are different ways of defining trim values of the longitudinal flight parameters can be foreseen.
Two classical approaches are: the longitudinal moment equilibrium and the longitudinal load factor
equilibrium. In particular, a moment equilibrium was used to compute the trim values of the angle-
of-attack ᾱ and the control signal δ̄m that renders q̇ = 0, given q = 0.

Because the grand majority of air vehicles are symmetric about the x axis, the trim values of the
lateral attitude and angular speed are zero for zero deflection of the aerodynamic controls.
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D.2 Vehicle characteristics

In the following, specific characteristics of the reentry vehicle model used in simulation are detailed.
Numerical values are given for different relevant parameters of the vehicle, its actuators, and other
on-board devices such as the IMU.

D.2.1 Physical and geometric characteristics

Let us now present the most relevant characteristics of the reentry vehicle. These cover the main
physical and geometrical properties of the model used in simulation. Numerical values are not
presented due to copyright restrictions on the simulation model. Consider the table presented
below:

Parameter Units

Sr: reference area m2

lr: lateral reference length or wingspan m

br: longitudinal reference length or chord m

l: vehicle length m

dgx: x component of centring vector
#     „
AG m

dgy: y component of centring vector
#     „
AG m

dgz: z component of centring vector
#     „
AG m

m: vehicle mass kg

Ixx: principal moment of inertia around axis x kg ·m2

Iyy: principal moment of inertia around axis y kg ·m2

Izz: principal moment of inertia around axis z kg ·m2

Table D.5: Reentry vehicle physical and geometrical characteristics.

The order of grandeur of the lift-to-drag ratio of the simulation model is of about L/D ≈ 1.7.

D.2.2 Actuators and physical limits

The control surfaces on any air vehicle are deflected by action of the actuators attached to them.
These actuators are servomechanisms composed of mechanical and electric components whose phys-
ical response follow specific dynamics. As actuator dynamics is relevant to the controller design,
these should always be considered when modelling an air vehicle.
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In many cases, actuator dynamics of the control surfaces δ can be approximated in their nominal
region either by a first or second-order transfer between the commanded deflection δc and the real
surface deflection δr at any given time t. The second-order actuator model is characterized by the
state equation:

δ̈r = ω2
a(δc − δr)− 2ξaωaδ̇r (D.4)

where ωa is the natural frequency of the actuator and ξa is the damping coefficient. The first-order
actuator model, retained for this thesis work, can be expressed as:

δ̇r =
1

τa
(δc − δr) (D.5)

where τa is the time constant, or period, of the actuator.

Besides the dynamics of the actuator physical response, it should also be considered that both, the
electric and the mechanical components of any actuator have physical limits depending on their
design. The two most common limits that should be accounted for correspond to: the range of
action that can be attained by the actuator (magnitude limit) and the rate at which this range
can be achieved (rate limit). These physical limits are in fact input saturations as described in
Section 1.3 (see page 39).

Consider the maximum value Lδ+ and the minimum value Lδ− for the deflection of the control
surface achieved by the actuator, where

|Lδ+| �= |Lδ−| (D.6)

In the case of first-order actuator representation, to generate a valid control signal that lies within
the magnitude saturation Lδ− ≤ δr ≤ Lδ+ and the rate saturation |δ̇rs | ≤ Lδ̇, the commanded
value δc must verify that

Lδ+ ≤ δc ≤ Lδ+

δr − τa Lδ̇ ≤ δc ≤ δr + τa Lδ̇
(D.7)

Using the operator sat(·), the air vehicle actuator model (D.5) with anti-symmetric magnitude
limits can be represented by the interconnection of Figure D.5, and expressed by the following
state-space representation:

ΣA :





δ̇rs = satLδ̇

�
1

τa
(δc − δrs)

�

δr = sat[Lδ+,Lδ−] (δrs)
(D.8)

δ
�τ -1a�

�

�

�

δ
��

�

�
δ
�

�
δ�

�
δ�

δ
��

δ
�

Figure D.5: An air vehicle first-order saturated actuator model.

It should be reminded that the pseudo commands, that contains the signals delivered by the Control
System, are redistributed amongst the real aerodynamic control surfaces given the vectors

δpseudo =
�
δl δm δn

�T
and δreal =

�
δre δle δbf δrw δlw

�T
(D.9)

260 / 345



D.2. Vehicle characteristics

As presented in equation (5.4) of page 108, the allocation of δl and δm onto the real control surfaces
δre, δle and δbf can be separated into: a simple mechanical mixer of δre and δle decoupling the
longitudinal effects from the roll lateral effects, and an a priori optimized function δbf (δm,Θ, x).

As for the allocation of δn onto the winglets δlw and δrw, it is based mainly geometrical charac-
teristics from which moments about the center of gravity of the vehicle are created. The following
allocation functions for the winglets were considered in simulation:

δlw = max(Lδn−, δn) (D.10)

δrw = min(Lδn+, δn) (D.11)

where Lδn− and Lδn+ are inward limits of the winglets that can be chosen as to maximize the
control efficiency. In fact, the inward deflection of the winglets has less efficiency than the outward
deflection. The effects of the boundary layer of the air flow on the winglets efficiency is considered
in the aerodynamic model.

Finally, the table below contains an example of the saturation limits considered for the actuator
models δreal, which illustrate the order of grandeur of these physical limits:

Actuator
δr (◦)

Lδ̇ (◦/s)
Lδ− Lδ+

δle, δre -27 15 6

δbf -27 15 2

δlw -5 40 35

δrw -40 5 35

Table D.6: Physical limits of the control surface actuators.

In the higher hypersonic regime of the reentry mission, in order to protect the elevons in hot flow
and the winglets from the generated shock wave (generally for M > 20), more restrictive deflection
limitations should be considered, for example:

− 24◦ ≤ δre, δle ≤ 12◦ (D.12)

−12◦ ≤ δrw, δlw ≤ 12◦ (D.13)

D.2.3 Vehicle related sources of disturbance

In simulation, different sources of disturbance associated with the reentry vehicle modelling were
taken into account.

The following numerical values, which give an idea of the order of grandeur of these disturbances,
were considered and correspond to:

– Aerodynamic coefficient modelling errors. These are represented as multiplicative or additive
uncertainties depending on each case.
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Cm0 Cmδm Cmδbf Cx Cz Clδl Cnδl Clδn Cnδn

∆ ±0.0050 ±13.3% ±13.3% ±0.033 ±0.033 ±20% ±20% ±13.3% ±13.3%

Table D.7: Aerodynamic coefficient modelling errors.

– Centring and inertia modelling error as an additive uncertainty: ∆y = ±1cm.
– IMU measurement errors. Considering that the white noise vectors �w(t) represent a normally
distributed random walk of standard deviation σ, and that the vectors �bm represent measurement
bias in the following expressions

�Γm = �Γ(1 + wΓ(t) + bmΓ) + �wΓ(t) + �bmΓ (D.14)

�Ωm = �Ω(1 + wΩ(t) + bmΩ) + �wΩ(t) + �bmΩ (D.15)

where:

σΓ (m/s2) σΩ (rad/s) bmΓ (m/s2) bmΩ (rad/s)

Value 1× 10−5 1× 10−5 1× 10−5 1× 10−5

Table D.8: IMU measurement error values.

– Anemometer unit measurement errors (∆α, ∆β, ∆Va).

α (◦) β (◦) Va (Kts)

∆ 1 1 5

Table D.9: Anemometer unit measurement error values.
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Compilation of simulation results

In this Appendix, simulation results of the control laws that were computed in Section 5.3, at
all the flight operating points considered in Table D.4, are presented. Let us begin by making a
recapitulation of the control laws computed.

Control Law no Type Desired Dynamics Controller

δmc = g−1
q (K ỹ +Hw)

1 NDI-PI #1 Table 5.2 Table 5.3

2 NDI-PI #2 Table 5.2 Table 5.4

3 NDI-PI #3 Table 5.2 Table 5.5

4 NDI-PI #4 Table 5.6 Table 5.7

5 NDI-PI #5 Table 5.8 Table 5.9

δmc = λ−1
q Klong(s) ỹ

6 NLC-H∞ #1 Table 5.8 Table 5.10

7 NLC-H∞ #2 Table 5.8 Table 5.11

δmc = λ−1
q K̃along (s)

�
v

ỹ

�

8 NLC-H∞ #2 Table 5.8 Table 5.12

v = Jlong(s)uAW + AW�
δlc

δnc

�
= G−1

2 (K ỹ +Hw) 9 NDI-PI #6 Table 5.18 Table 5.19

�
δlc

δnc

�
= Λ−1 Klat(s) ỹ

10 NLC-H∞ #3 Table 5.18 Table 5.20

11 NLC-H∞ #4 Table 5.18 Table 5.21�
δlc

δnc

�
= Λ−1 K̃alat(s)

�
v

ỹ

�

12 NLC-H∞ #4 Table 5.18 Table 5.22

v = Jlat(s)uAW + AW

Table E.1: Recapitulation of computed controllers.

By keeping only the most representative solutions computed using the standard NDI procedure
and the generalized NLC framework, the table below contains an index of the simulation conditions
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and results for the whole flight domain considered in this work.

Controller Simulation conditions

no Type
Model Saturated Wind

Pages
Uncertainty Actuator Disturbance

2 NDI-PI #2
√ √

- 265 - 272

5 NDI-PI #5
√ √

- 273 - 280

6 NLC-H∞ #1
√ √

- 281 - 288

7 NLC-H∞ #2
√ √

- 289 - 296

8 NLC-H∞ #2
√ √

- 297 - 304
+ AW

8 NLC-H∞ #2
√ √ √

305 - 312
+ AW

9 NDI-PI #6
√ √

- 313 - 320

10 NLC-H∞ #3
√ √

- 325 - 328

11 NLC-H∞ #4
√ √

- 321 - 324

12 NLC-H∞ #4
√ √

- 329 - 336
+ AW

12 NLC-H∞ #4
√ √ √

337 - 344
+ AW

Table E.2: Index of simulation results.

The saturated actuator model used on each actual control surface δreal of the reentry vehicle can
be found in Appendix D.2.2, while the wind profile description is detailed in Appendix D.1.2.
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E.1 Results on the longitudinal axis

E.1.1 NDI-PI controller simulation results
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Figure E.1: Simulation with saturated actuator and controller no2.
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Figure E.2: Simulation with saturated actuator and controller no2.

266 / 345



E.1. Results on the longitudinal axis

0 5 10 15
28

28.5

29

29.5

30

30.5

31

31.5

32

32.5

33

Flight point no3: h =48000m, M =8, q̄ =4379Pa
α
(o
)

αr

α

αm

0 5 10 15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

q
(o
/s
) q

qm

0 5 10 15

4.2

4.4

4.6

4.8

5

5.2

5.4

δ e
l
(o
)

δmc

δelr

0 5 10 15
−3

−2

−1

0

1

δ̇ e
l

(o
) δ̇el

δ̇elr

0 5 10 15

−3

−2

−1

0

1

t (s)

δ̇ b
f

(o
) δ̇bf

δ̇bfr

Figure E.3: Simulation with saturated actuator and controller no2.
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Figure E.4: Simulation with saturated actuator and controller no2.
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Figure E.5: Simulation with saturated actuator and controller no2.
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Figure E.6: Simulation with saturated actuator and controller no2.
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E.1. Results on the longitudinal axis
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Figure E.7: Simulation with saturated actuator and controller no2.
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E.1. Results on the longitudinal axis
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Figure E.10: Simulation with saturated actuator and controller no5.
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E.1. Results on the longitudinal axis
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Figure E.12: Simulation with saturated actuator and controller no5.
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E.1. Results on the longitudinal axis
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Figure E.13: Simulation with saturated actuator and controller no5.
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Figure E.14: Simulation with saturated actuator and controller no5.
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E.1. Results on the longitudinal axis
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Figure E.15: Simulation with saturated actuator and controller no5.
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Figure E.16: Simulation with saturated actuator and controller no5.
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E.1. Results on the longitudinal axis
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Figure E.17: Simulation with saturated actuator and controller no6.
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Figure E.18: Simulation with saturated actuator and controller no6.

282 / 345



E.1. Results on the longitudinal axis

0 5 10 15
28

28.5

29

29.5

30

30.5

31

31.5

32

32.5

33

Flight point no3: h =48000m, M =8, q̄ =4379Pa
α
(o
)

αr

α

αm

0 5 10 15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

q
(o
/s
) q

qm

0 5 10 15

4.2

4.4

4.6

4.8

5

5.2

5.4

δ e
l
(o
)

δmc

δelr

0 5 10 15

−6

−5

−4

−3

−2

−1

0

1

δ̇ e
l

(o
) δ̇el

δ̇elr

0 5 10 15

−6

−5

−4

−3

−2

−1

0

t (s)

δ̇ b
f

(o
) δ̇bf

δ̇bfr

Figure E.19: Simulation with saturated actuator and controller no6.
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Figure E.20: Simulation with saturated actuator and controller no6.
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E.1. Results on the longitudinal axis
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Figure E.21: Simulation with saturated actuator and controller no6.
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Figure E.22: Simulation with saturated actuator and controller no6.
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E.1. Results on the longitudinal axis
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Figure E.23: Simulation with saturated actuator and controller no6.
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E.1. Results on the longitudinal axis
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Figure E.25: Simulation with saturated actuator and controller no7.
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Figure E.26: Simulation with saturated actuator and controller no7.
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E.1. Results on the longitudinal axis
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Figure E.27: Simulation with saturated actuator and controller no7.
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Figure E.28: Simulation with saturated actuator and controller no7.
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E.1. Results on the longitudinal axis
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E.1.3 Anti-windup robust controller simulation results
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E.1. Results on the longitudinal axis

0 5 10 15
16

17

18

19

20

21

22

23

24

Flight point no5: h =25000m, M =2.5, q̄ =10986Pa
α
(o
)

αr

α

αm

0 5 10 15

0

0.5

1

1.5

2

2.5

3

q
(o
/s
) q

qm

0 5 10 15

0

0.5

1

1.5

2

δ e
l
(o
)

δmc

δelr

0 5 10 15

−8

−6

−4

−2

0

2

δ̇ e
l

(o
) δ̇el

δ̇elr

0 5 10 15

−8

−6

−4

−2

0

2

t (s)

δ̇ b
f

(o
) δ̇bf

δ̇bfr

Figure E.37: Simulation with saturated actuator and controller no8.

301 / 345



Appendix E. Compilation of simulation results

0 5 10 15
10

11

12

13

14

15

16

17

18

Flight point no6: h =10000m, M =0.8, q̄ =11843Pa

α
(o
)

αr

α

αm

0 5 10 15

0

0.5

1

1.5

2

2.5

3

q
(o
/s
) q

qm

0 5 10 15

−5.5

−5

−4.5

−4

δ e
l
(o
)

δmc

δelr

0 5 10 15

−3

−2

−1

0

1

δ̇ e
l

(o
) δ̇el

δ̇elr

0 5 10 15
−4

−3

−2

−1

0

1

t (s)

δ̇ b
f

(o
) δ̇bf

δ̇bfr

Figure E.38: Simulation with saturated actuator and controller no8.

302 / 345
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E.1. Results on the longitudinal axis

0 5 10 15
7

8

9

10

11

12

13

14

15

Flight point no7: h =5000m, M =0.6, q̄ =13613Pa
α
(o
)

αr

α

αm

0 5 10 15

−1

0

1

2

3

4

q
(o
/s
) q

qm

0 5 10 15

−9

−8

−7

−6

−5

δ e
l
(o
)

δmc

δelr

0 5 10 15

−5

0

5

δ̇ e
l

(o
) δ̇el

δ̇elr

0 5 10 15
−10

−5

0

5

t (s)

δ̇ b
f

(o
) δ̇bf

δ̇bfr

Figure E.47: Simulation with wind and saturated actuator and controller no8.

311 / 345



Appendix E. Compilation of simulation results

0 5 10 15
3

4

5

6

7

8

9

10

11

Flight point no8: h =0m, M =0.3, q̄ =6383Pa

α
(o
)

αr

α

αm

0 5 10 15

0

1

2

3

4

q
(o
/s
) q

qm

0 5 10 15

−12

−10

−8

−6

−4

−2

0

δ e
l
(o
)

δmc

δelr

0 5 10 15

−20

−10

0

10

20

30

δ̇ e
l

(o
) δ̇el

δ̇elr

0 5 10 15

−20

−10

0

10

t (s)

δ̇ b
f

(o
) δ̇bf

δ̇bfr

Figure E.48: Simulation with wind and saturated actuator and controller no8.

312 / 345



E.2. Results on the lateral axis

E.2 Results on the lateral axis

E.2.1 NDI-PI controller simulation results
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E.2. Results on the lateral axis
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E.2. Results on the lateral axis
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Figure E.53: Simulation with saturated actuator and controller no9.
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Figure E.54: Simulation with saturated actuator and controller no9.
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E.2. Results on the lateral axis
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E.2. Results on the lateral axis

E.2.2 Robust nonlinear compensator simulation results
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Figure E.58: Simulation with saturated actuator and controller no11.
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E.2. Results on the lateral axis
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Figure E.59: Simulation with saturated actuator and controller no11.
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Figure E.60: Simulation with saturated actuator and controller no11.
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Figure E.61: Simulation with saturated actuator and controller no10.
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Figure E.62: Simulation with saturated actuator and controller no10.

326 / 345



E.2. Results on the lateral axis
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Figure E.63: Simulation with saturated actuator and controller no10.
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Figure E.64: Simulation with saturated actuator and controller no10.
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E.2. Results on the lateral axis

E.2.3 Anti-windup robust controller simulation results
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Figure E.65: Simulation with saturated actuator and controller no12.
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Figure E.66: Simulation with saturated actuator and controller no12.
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Figure E.67: Simulation with saturated actuator and controller no12.
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Figure E.68: Simulation with saturated actuator and controller no12.
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E.2. Results on the lateral axis
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Figure E.69: Simulation with saturated actuator and controller no10.
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Figure E.70: Simulation with saturated actuator and controller no10.
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E.2. Results on the lateral axis
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Figure E.71: Simulation with saturated actuator and controller no10.
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E.2. Results on the lateral axis
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Figure E.73: Simulation with wind and saturated actuator and controller no12.
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Figure E.74: Simulation with wind and saturated actuator and controller no12.
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Figure E.75: Simulation with wind and saturated actuator and controller no12.
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Appendix E. Compilation of simulation results
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Figure E.76: Simulation with wind and saturated actuator and controller no12.
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E.2. Results on the lateral axis
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Figure E.77: Simulation with wind and saturated actuator and controller no10.
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Appendix E. Compilation of simulation results
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Figure E.78: Simulation with wind and saturated actuator and controller no10.
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E.2. Results on the lateral axis
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Figure E.79: Simulation with wind and saturated actuator and controller no10.
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Appendix E. Compilation of simulation results
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Figure E.80: Simulation with wind and saturated actuator and controller no10.
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Cadre de travail généralisé de compensation non-linéaire robuste : 
application à la rentrée atmosphérique 

 
Ce travail de thèse est consacré à l'extension de l'Inversion Dynamique non-linéaire (NDI-Nonlinear 
Dynamic Inversion) pour un ensemble plus grand de systèmes non-linéaires, tout en garantissant des 
conditions de stabilité suffisantes. 
La NDI a été étudiée dans le cas de diverses applications, y compris en aéronautique et en 

aérospatiale. Elle permet de calculer des lois de contrôle capables de linéariser et de découpler un 
modèle non-linéaire à tout point de fonctionnement de son enveloppe d'état. Cependant cette 
méthode est intrinsèquement non-robuste aux erreurs de modélisation et aux saturations en entrée. 

En outre, dans un contexte non-linéaire, l'obtention d'une garantie quantifiable du domaine de 
stabilité atteint reste à l'heure actuelle complexe. 
Contrairement aux approches classiques de la NDI, notre méthodologie peut être considérée comme 
un cadre de compensation non-linéaire généralisé qui permet d'intégrer les incertitudes et les 
saturations en entrée dans le processus de conception. En utilisant des stratégies de contrôle anti-

windup, la loi de pilotage peut être calculée grâce à un simple processus en deux phases. 
Dans ce cadre de travail généralisé des transformations linéaires fractionnaires (LFT - Linear Fractional 
Transformations) de la boucle fermée non-linéaire peuvent être facilement déduites pour l'analyse de 
la stabilité robuste en utilisant des outils standards pour de systèmes linéaires. 
La méthode proposée est testée pour le pilotage d'un véhicule de rentrée atmosphérique de type aile 
delta lors de ses phases hypersonique, transsonique et subsonique. Pour cette thèse, un simulateur du 
vol incluant divers facteurs externes ainsi que des erreurs de modélisation a été développé dans 
Simulink. 

 
Mots-clés : Compensation Non-linéaire Généralisée, Inversion Dynamic Non-linéaire, Commande 
Anti-Windup, Commande Robuste, Transformations Linéaires Fractionnaires, Commande H-infinie 

Non-lisse, Rentrée Atmosphérique 
 
 

A generalized framework  for robust nonlinear compensation:  
application to an atmospheric reentry control problem. 

 
This thesis work is devoted to extending Nonlinear Dynamic Inversion (NDI) for a large scale of 
nonlinear systems while guaranteeing sufficient stability conditions. 
NDI has been studied in a wide range of applications, including aeronautics and aerospace. It allows to  
compute nonlinear control laws able to decouple and linearize a model at any operating point of its 
state envelope. However, this method is inherently non-robust to modelling errors and input 
saturations. Moreover, obtaining a quantifiable guarantee of the attained stability domain in a 
nonlinear control context is not a very straightforward task. 

Unlike standard NDI approaches, our methodology can be viewed as a generalized nonlinear 
compensation framework which allows to incorporate uncertainties and input saturations in the design 
process. Paralleling anti-windup strategies, the controller can be computed through a single multi-
channel optimization problem or through a simple two-step process. 

Within this framework, linear fractional transformations of the nonlinear closed-loop can be easily 
derived for robust stability analysis using standard tools for linear systems. 
The proposed method is tested for the flight control of a delta wing type reentry vehicle at hypersonic, 
transonic and subsonic phases of the atmospheric reentry. For this thesis work, a Flight Mechanics 

simulator including diverse external factors and modelling errors was developed in Simulink. 
 
Keywords: Generalized Nonlinear Compensation, Nonlinear Dynamic Inversion, Anti-Windup Control, 
Robust Control, Linear Fractional Transformation, Nonsmooth H-infinity control, Atmospheric Reentry 
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