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Résumé étendu de la thèse

0.1 Introduction

Cette partie constitue un résumé étendu de ma thèse en français. Je mettrai
l’accent sur la présentation de mes travaux, je donnerai quelques explications
sur les modèles mathématiques et sur les tests numériques effectués.
Mes travaux de recherche sont liés au contexte de fabrication de semi-conduc-
teurs. Plus précisément, ils se focalisent sur l’intégration des décisions d’ordon-
nancement et du contrôle avancé des procédés. L’idée majeure est d’intégrer
des objectifs similaires (ou presque), exprimés à différents niveaux (niveau
processus de fabrication et niveau contrôle avancé) dans le but de mieux pro-
duire avec les qualités exigées et à un coût moindre. Dans ce contexte, des
problèmes novateurs et pertinents sont définis et étudiés.

Contexte

L’industrie des semi-conducteurs est l’une des industries les plus complexes
existant de nos jours. Le nombre considérable d’opérations et le type de
procédé par rapport aux industries manufacturières classiques sont les prin-
cipales sources de cette complexité. Une plaquette de silicium (wafer) subit
plusieurs centaines d’opérations consécutives avant qu’elle ne soit prête à
l’usage. Ceci est dû au fait que les flux dans la fabrication de semi-conducteurs
sont de type reentrant, i.e. les plaquettes visitent les mêmes machines plusieurs
fois. Ces caractéristiques de l’environnement de fabrication et de nombreux
autres aspects, font de l’ordonnancement dans de telles industries une ques-
tion complexe.

Les procédés de fabrication de semi-conducteurs nécessitent un niveau de
précision élevé. Des équipements fiables sont nécessaires et des paramétrages
précis doivent être fournis. Cela nécessite pour ce type d’industries, d’avoir
un système de contrôle fiable. Le rôle du contrôle avancé des procédés (Ad-
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vanced Process Control -APC) consiste à s’assurer que chaque processus est
effectué suivant le cahier des charges prédéfinis et que chaque matériel est
fiable pour traiter les types de produits différents.

En fait, les décisions d’ordonnancement d’une part, et le contrôle avancé
des procédés (APC) d’autre part, visent à améliorer l’efficacité globale de
la fabrication, et plus précisément à maximiser la cadence et à réduire les
coûts de fabrication. Il existe différents types de stratégies d’ordonnancement
et de techniques utilisées dans différents types d’industries manufacturières.
Néanmoins, les décisions d’ordonnancement dans les industries de fabrication
de semi-conducteurs sont plus complexes que celles des industries classiques.
La difficulté des décisions vient de l’environnement complexe de fabrication
des contraintes de fabrication, du nombre de machines et du coût élevé des
machines et leurs besoins d’entretien. Dans l’environnemnt de fabrication
de semi-conducteurs, il existe de nombreuses techniques d’ordonnancement
étudiées et la recherche est toujours active dans ce domaine. Ces recherches
tentent de suivre les énormes progrès dans la technologie et de la demande
telle que décrite par la Loi de Moore.

Le contrôle avancé des procédés (APC) est devenu un élément indispens-
able dans le processus de fabrication des semi-conducteurs avec une demande
de qualité et une productivité accrue. L’APC utilise diverses techniques afin
de maintenir les processus à un niveau de spécification voulu et de surveiller
les équipements pour éviter les défauts sur les lots. Pour atteindre ces objec-
tifs, des techniques telles que les statistiques, la fouille de données, les cartes
de contrôle et les boucles de régulation sont utilisées. La mise en oeuvre
de ces techniques a montré une amélioration notable du rendement, de la
productivité des équipements (OEE ) et de toute l’unité de fabrication de
semi-conducteurs (fab). En outre, de nombreux sujets de recherche dans le
domaine de l’APC sont actuellement à l’étude et les techniques modernes
sont analysées et étudiées comme la Métrologie Virtuelle (VM ).

De nos jours, les fabs utilisent des systèmes d’ordonnancement qui n’ont
pas vraiment de relations avec le système de contrôle et vice versa. Si nous
considérons les techniques d’ordonnancement et nous étudions ses effets sur
la fabrication, nous remarquons qu’elles ont un impact sur l’efficacité de
fabrication et aussi sur le système de contrôle. Par conséquent, comment faire
collaborer les deux systèmes pour améliorer les décisions d’ordonnancement
et de contrôle ? Que gagnerait-on de plus ? Et par la suite, comment intégrer
l’ordonnancement et les questions de l’APC.

Par la suite, nous caractériserons dans les chapitres à venir des idées
d’intégration d’ordonnancement et du contrôle avancé des procédés.
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0.2 Fabrication de semi-conducteurs : Ordonnancement et Contrôle
Avancé des Procédés

Plan de lecture

Je commencerai par présenter le cadre d’étude de ma thèse, en expliquant
les concepts de base pour faciliter la compréhension des travaux. Le plan de
lecture sera le suivant :

• En section 0.2, je décris l’environnement de fabrication de
semi-conducteurs qui est le contexte de mon étude. Je détaille un peu
les décisions d’ordonnancement et le contrôle avancé des procédés dans
la fabrication des semi-conducteurs.

• Les motivations pour l’intégration des décisions d’ordonnancement et
du contrôle avancé des procédés sont résumées dans la section 0.3.

• En section 0.4, je décris un problème d’ordonnancement avec con-
traintes de temps, puis en section 3.5 un deuxième problème d’ordonnan-

cement en intégrant les états de santé des équipements. Je discute
également des résultats numériques effectués sur des instances générées
aléatoirement.

• Des conclusions et des perspectives sont décrites en section 0.8 et sec-
tion 0.9 respectivement.

0.2 Fabrication de semi-conducteurs : Ordon-

nancement et Contrôle Avancé des Procé-

dés

La fabrication La fabrication de puces à base de semi-conducteur est com-
posée de trois grandes parties.

Pré-fabrication

Le prétraitement comprend (May and Sze (2003)): la croissance de silicium
par le procédé polycristallin, la découpe en tranches et le polissage. Le wafer
obtenu peut être utilisé pour commencer le processus de fabrication de puces
qui comprend généralement deux étapes : le Front-End et le Back-End.
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Le processus de Front-End

Le processus de Front-End comprend les procédés de Photolithographie,
Gravure, Implantation ionique et Planarisation Chimique et Mécanique (CMP).

Le processus de Back-End

Le processus de Back-End comprend deux principaux procédés : les tests et
l’assemblage (packaging).

L’ordonnancement

Définition

L’ordonnancement traite de l’affectation de ressources limitées à des tâches
au fil du temps. C’est un ensemble de décisions ayant pour but d’optimiser
un ou plusieurs objectifs tout en satisfaisant un ensemble de contraintes.
Dans tous les problèmes d’ordonnancement, les tâches, les contraintes, les
ressources et la fonction objectif sont les principaux composants (Carlier and
Chrétienne (1988)).

L’environnement de l’ordonnancement

Le processus de fabrication dans la fab peut être vu comme un problème
d’ordonnancement complexe de type job-shop impliquant plusieurs ateliers
de fabrication, différentes variétés de produits, des temps de setup, des pro-
cessus re-entrants, etc. Il existe dans la littérature plusieurs techniques de
résolution de ce type de problèmes. On trouve des heuristiques constructives,
de la programmation mathématique, des méthodes à base de voisinage, de
l’intelligence artificielle, etc. La Figure 1.2, de Moench et al. (2011) résume
les principaux problèmes d’ordonnancement rencontrés dans la fab et les
méthodes de résolution proposées.

Le Contrôle Avancé des Procédés (APC) Le contrôle avancé des
procédés (Advanced Processs Control -APC) est d’une importance capitale
dans les industries de fabrication de semi-conducteurs. L’APC est important
pour le contrôle afin d’améliorer continuellement le rendement des machines,
la qualité des produits et la baisse des coûts de fabrication. En général,
l’APC améliore la fabrication par les apports suivants :

• Développpement rapide des procédés,
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0.3 Intégration de l’ordonnancement et du contrôle avancé des
procédés

Figure 1: Les problèmes d’ordonnancement déterministes dans la fabs
(Moench et al. (2011)).

• Diminution du nombre de wafers moniteurs,

• Diminution de la variation des procédés, augmentation du rendement
des machines, meilleure utilisation des boucles de contrôle en cas de
dérive,

• Meilleure stabilisation des procédés,

• Augmentation du temps d’utilisation des machines.

L’APC est composée du SPC (Statistical Process Control contrôle statis-
tique des processus), du FDC (Fault Detection and Classification détection
des fautes et classification), du R2R (Run-to-Run, régulation) et plus récemment
de la VM (Virtual Metrology). SPC et FDC se concentrent sur la détection de
défauts sur les wafers et les machines ou d’anomalie des procédés. On trouve
des techniques de l’APC telles la moyenne mobile pondérée (ou exponen-
tielle), l’analyse des composantes principales (factorielles) qui sont utilisées
pour réduire les erreurs et, la VM pour prédire des informations de mesure.

0.3 Intégration de l’ordonnancement et du

contrôle avancé des procédés

La concurrence s’est accentuée au cours des dernières décennies en raison de
la crise financière, des stratégies de croissance, parfois agressives, affichées
par certains des acteurs de ce marché, une récession constatée dans certains
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pays et dans certains secteurs. Pour survivre, les industries sont en per-
manence à la recherche de solutions idoines qui leur permettraient de rester
compétitives. Pour ce faire, une possibilité serait entre autres de partager
les informations entre différents systèmes de décision. L’objectif est s’assurer
que les décisions prises à un niveau donné n’impactent pas négativement
les décisions prises à d’autres niveaux. Cela conduit à des problèmes plus
larges et plus difficiles avec des contraintes complexes et des objectifs sou-
vent contradictoires. Dans cette thèse, je m’intéresse à quelques problèmes
d’intégration de l’ordonnancement et de l’APC dans l’environnement de fab-
rication de semi-conducteurs.

0.3.1 Motivations

Nous listons différentes motivations pour l’intégration de l’ordonnancement
et de l’APC dans la fabrication de semi-conducteurs.

• Les opérations liées à l’APC (comme par exemple les mesures) peuvent
interférer avec les décisions d’ordonnancement en modifiant les ordres
de traitement et les listes des opérations à effectuer.

• En utilisant la capabilité des machines fournie en temps réel par des
méthodes de l’APC, on peut améliorer les décisions d’ordonnancement,
le temps de cycle et le rendement des machines.

• Qualifier (rendre éligible) un équipement a un coût élevé. Ainsi, les al-
gorithmes d’ordonnancement devraient décider comment les opérations
seront affectées aux machines qualifiées et équilibrer les charges des
machines, le coût d’utilisation de la machine et la qualité du pro-
duit obtenu. Dans ce contexte, les machines peuvent être considérées
comme qualifiées ou déqualifiées, ou nous pouvons considérer même
des niveaux (intermédiaires) de qualification des machines. De plus,
une quantité énorme d’informations liées à la machine est recueillie par
les systèmes APC, et l’élaboration d’un indice de santé (Equipment
Health Factor -EHF) permettrait d’optimiser et fiabilier les décisions
d’ordonnancement.

• Les paramètres des boucles de contrôle R2R doivent régulièrement être
mis à jour. Lorsqu’une machine est utilisée pour la fabrication de
différents types de produits, des wafers de test doivent être éxécutés
sur les machines pour conserver les boucles de contrôle valides. Par
conséquent, un algorithme d’ordonnancement qui prend en compte une
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0.3 Intégration de l’ordonnancement et du contrôle avancé des
procédés

telle contrainte sera plus efficace. Cette contrainte peut être présentée
par exemple comme une contrainte temporelle liée aux boucles du
système de contrôle, ou en nombre de lots qui ont été traités sur
la machine. Dans la Section 3.4, une nouvelle contrainte temporelle
liée au système APC est présentée et est intégrée dans le problème
d’ordonnancement sur des machines parallèles non identiques(présentant
différentes qualifications).

Il y a globalement deux façons d’intégrer l’ordonnancement et l’APC :

• Des informations de l’APC pour aider à prendre des décisions d’ordonnancement
plus efficaces (section 0.3.2),

• des décisions d’ordonnancement prenant en compte des contraintes de
l’APC (section 0.3.3).

0.3.2 Des informations de l’APC pour un ordonnance-
ment plus efficace

Les données disponibles dans le système de contrôle APC peuvent fournir
des informations pertinentes pour l’ordonnancement. Ces données peuvent
être utilisées comme contraintes ou comme information supplémentaire, pour
améliorer les décisions d’ordonnancement. Par exemple, un contrôleur de
R2R détecte une erreur (par exemple pas suffisamment de retrait de matière)
sur le procédé de planarization (CMP). Un ordonnanceur informé par ces
différents taux de polissage pourra envoyer des lots à la machine avec un
taux de polissage plus élevé pour compenser le manque de polissage. Ainsi,
s’il existe des machines du même type et les conditions de traitement presque
similaires, toujours selon les données fournies par les contrôleurs de l’APC, le
système d’affectation des lots peut utiliser cette information, pour compenser
les dérives.

De plus, le système APC peut fournir un indice de capabilité de la machine
ou du procédé(Cpk). Il spécifie que la machine est capable de traiter un pro-
duit tout en restant conforme aux spécifications. Ces informations fournies
par le système APC aident le système d’ordonnancement à sélectionner les
machines avec les Cpk adéquats pour les couches critiques. Cela permet
d’améliorer le rendement. En complément, le système de contrôle APC four-
nit des informations sur l’état de santé des équipements, qui peuvent être
utilisées pour définir un facteur (indice) de santé pour chaque équipement
variant au fil du temps. L’ordonnancement va tenir compte des facteurs de
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santé pour affecter des lots. Et l’acheminement des lots ou des wafers sur les
machines deviendrait encore les plus fiable.

Cependant, les machines qui sont affectées à l’exécution de tâches données
devraient être qualifiées avant de commencer le procédé. Des lots sont
envoyés en éclaireur sur les machines pour vérifier leur conformité avant
l’ordonnancement. Cette qualification est faite généralement par l’envoi d’un
type spécial de wafers (Send Ahead Wafers- SAW) pour tester l’équipement.
Cette information peut être utilisée dans l’ordonnancement pour développer
des solutions avec une vue plus claire sur l’équipement le plus fiable pour
exécuter le procédé, en intégrant le rendement attendu ou la probabilité de
perte de puces.
Généralement, lorsqu’un lot a fini son procédé sur une machine, il fait l’objet
d’opérations de contrôle en métrologie (par exemple l’épaisseur d’une couche
de dioxyde de silicium). Certaines opérations sont donc pour la production
et d’autres pour des tests de contrôle. Le système d’ordonnancement devrait
alors décider non pas seulement comment est traité le lot, mais également
comment il est mesuré (Dauzère-Pérès et al. (2010)). Comment sélectionner
les lots pour les mesurer et comment ordonnancer les lots sélectionnés sont
des questions intéressantes pour améliorer l’efficacité de fabrication.

L’APC permet de ne pas démarrer le traitement d’un lot sur une ma-
chine lorsqu’il n’y a pas d’information dans le système de contrôle, obtenue
généralement par les boucles R2R. Il est donc important de garder actives
(aptes) les boucles R2R à valider l’état des machines. Pour que les boucles
R2R reste valides, il est nécessaire d’envoyer à intervalles de temps régulier
des lots sur les machines pour garantir la conformité du produit. Un système
d’ordonnancement ayant cette information de l’APC, utilisera cette informa-
tion pour garder les boucles de contrôle R2R mises à jour. Par exemple,
sachant que les paramètres d’une boucle R2R vont être obsolètes, le système
d’ordonnancement programmera les lots de manière à permettre cette mise
à jour des paramètres de la boucle R2R. Ainsi, les paramètres de la boucle
R2R sont mis à jour avant qu’ils ne soient hors des spécifications de contrôle
(ce qui exige habituellement une recalibration de la machine entrâınant des
coûts non négligeables). De plus, cela permet des diminutions de temps de
cycle en gardant les machines éligibles pour le traitement des lots.

0.3.3 Ordonnancement avec des contraintes de l’APC

L’ordonnancement des lots de production peut améliorer les performances
des systèmes de contrôle de l’APC en particulier dans un environnement où
il y a plusieurs machines, différents produits et procédés. À titre d’exemple,
il peut y avoir des milliers de boucles de contrôle à mettre à jour. Plus

8



0.4 Ordonnancement de famille de jobs sur machines parallèles
non-identiques et contraintes de temps(PTC)

précisément, les recettes ajustant les boucles de régulation R2R exigent des
opérations de métrologie régulières à effectuer pour chaque type de produit
et de procédé. De plus, lorsque les conditions de traitement ne sont plus aux
normes, le risque de perdre un lot/wafer augmente. Pour mieux comprendre,
considérons le scénario suivant : une machine traite trois types de produits.
Chaque type de produit a un temps limite (seuil) dans lequel il doit être
traité, sinon on considère que la machine n’est plus apte à traiter ce type de
produits. Ces temps limite sont renouvelés chaque fois que les produits sont
exécutés. Lorsque le seuil temporel d’un des produits est dépassé, la machine
ne reçoit plus que deux types de produits, le troisième ne peut être traité
car il y a non respect du seuil temporel. La régulation de la boucle pour
ce troisième produit n’est plus valide. La boucle de contrôle de ce dernier
produit doit donc être requalifiée (homologuée). Donc, pour maintenir la
qualification, il est alors nécessaire de réaliser le traitement du troisième
type de produits avant la fin de l’intervalle de temps. L’ordonnancement qui
prendrait en compte cette contrainte améliorerait l’efficacité globale de pro-
duction (Overall Effectiveness Equipment-OEE ) et diminuerait le nombre de
wafers tests.
Dans certaines zones, il y a un temps maximum autorisé entre des étapes
du processus. Par exemple, un matériau qui a été traité à une certaine
étape doit passer à l’étape suivante dans un certain temps, sans quoi la
procédure devra être répétée. Par conséquent, un système d’ordonnancement
qui tient compte de ces contraintes diminuerait les étapes redondantes et par
conséquent améliorerait le temps de cycle global et le rendement global de la
fab.
Dans ce qui suit, nous étudions deux exemples de problèmes d’ordonnancement
avec des contraintes de l’APC.

0.4 Ordonnancement de famille de jobs sur

machines parallèles non-identiques et con-

traintes de temps(PTC)

Court état de l’art L’impact de l’APC sur les décisions de l’APC est
analysé par Li and Qiao (2008). Les auteurs étudient également l’ordonnancement
de familles de jobs sur des machines parallèles. Ils considèrent que les ma-
chines sont identiques, que la qualification des machines peut être ordon-
nancée et que la limite entre deux jobs d’une même famille est donnée en
nombre de jobs. Dans cette thèse, nous considérons des machines parallèles
non identiques et nous supposons que les qualifications ne peuvent pas être or-
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donnancées et sont effectuées après l’horizon d’ordonnancement. Le problème
devient plus complexe, étant donné que l’affectation des jobs aux machines est
essentielle pour éviter les déqualifications. Enfin, nous considérons une limite
(un seuil) exprimée en temps plutôt qu’en nombre de jobs. Les deux types de
seuil sont pertinents et sont liés. Cai et al. (2011) étudient l’interaction entre
l’ordonnancement et l’APC sur une machine, avec des temps de setup entre
deux familles de jobs et une qualification à effectuer lorsque la contrainte
R2R n’est pas respectée. Ils montrent que le problème sur une machine avec
plusieurs familles de jobs est NP-difficile. Un autre exemple de l’intégration
des contraintes de l’APC dans les décisions d’ordonnancement se trouve dans
Detienne et al. (2012), où les opérations de mesures sont idéalement ordon-
nancées afin de minimiser le risque de perte des produits.
Dans cette thèse, nous abordons deux nouveaux problèmes d’ordonnancement
: un problème avec des contraintes de temps (Problem with Time Con-
straints-PTC) et un problème d’ordonnancement avec intégration de la santé
des équipements (Problem with Equipment Health Factor -PEHF ). Dans
PTC, il y a un temps de contrainte sur les jobs de la même famille, c’est-à-
dire que l’intervalle de temps entre deux jobs consécutifs d’une même famille
doit être inférieur ou égal à un seuil fixé. L’objectif est d’ordonnancer les
familles de jobs sur les machines parallèles avec des informations de l’APC
tout en réduisant le nombre de déqualifications des machines. Comme men-
tionné ci-dessus, la contrainte spécifique de PTC est inspirée des besoins des
systèmes de l’APC, et en particulier les boucles R2R pour un type donné de
produit sur une machine, qui exigent de recueillir régulièrement des données.
PEHF est une extension de PTC dans lequel les états de santé des machines
sont pris en compte.

Ordonnancement avec contraintes de temps

Définition

Rappelons que, dans PTC, les lots (jobs) de différentes (familles) sont prévus
sur des machines parallèles et toutes les machines ne sont pas capables de
traiter toutes les familles de jobs (machines non identiques). Nous con-
sidérons une contrainte de temps sur les jobs d’une même famille, c’est-à-
dire que l’intervalle de temps entre deux jobs consécutifs d’une même famille
doit être inférieur à un seuil de temps donné. Comme il a été déjà men-
tionné, cette contrainte est inspirée des besoins du système de l’APC et en
particulier des boucles R2R, qui nécessitent de recueillir régulièrement des
données pour les types de produits sur les machines. Dans notre problème,
nous supposons que cette qualification ne peut être effectuée dans l’horizon
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0.4 Ordonnancement de famille de jobs sur machines parallèles
non-identiques et contraintes de temps(PTC)

d’ordonnancement. Le problème devient plus complexe, étant donné que
l’affectation des jobs aux machines est essentielle pour éviter les pertes de
qualification.

Notre objectif est d’ordonnancer, sur un horizon discrétisé en T périodes,
un ensemble de N jobs de différentes familles sur un ensemble deM machines
parallèles. Le nombre de familles de jobs est noté F et f(i) est la famille du
job i. Nous supposons que les temps de traitement pf de tous les jobs de la
famille f sont égaux. Les machines ne sont pas qualifiées pour traiter toutes
les familles de jobs. La qualification d’une machine peut être perdue à un
certain instant en raison d’un changement dans le niveau de confiance de la
machine. Un temps de setup sf ′ sur une machine est nécessaire pour changer
d’un job d’une famille f à un autre job de famille f ′, où f 6= f ′. Enfin,
les contraintes de contrôle R2R sont considérées à travers un paramètre γf ,
qui correspond à l’intervalle de temps maximal (appelé seuil de temps dans
la suite) entre le traitement des deux jobs de la famille f sur une machine
qualifiée. Habituellement, si cette contrainte n’est pas satisfaite, une qualifi-
cation doit être effectuée pour qualifier de nouveau la machine pour la famille
f . Par la suite, nous considérons que la machine n’est plus disponible pour
tout job de la famille f si la qualification ne peut être maintenue. L’objectif
est d’optimiser la somme des dates de fin des jobs, tout en minimisant le
nombre de déqualifications des machines. Nous avons donc un problème
d’ordonnancement bi-critères. Selon la notation α|β|γ introduite par Gra-
ham et al. (1979) pour classer les problèmes d’ordonnancemnt, ce problème
est noté Pm|STsi,b|

∑
cj.

Notations

Voici les notations et les paramètres utilisés pour la modélisation du problème.

Paramètres: Les paramètres sont :

T : Nombre de périodes dans l’horizon,
N : Nombre de jobs,
M : Nombre de machines,
F : Nombre de familles de jobs,
M(f): Ensemble de machines qualifiées pour traiter les jobs de
la famille f (M(f) ⊂M),
pf : Durée d’exécution des jobs de la famille f ,
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sf : Temps de setup des jobs de la famille f ,
γf : Seuil de temps pour les jobs de la famille f ,
f(i): famille du job i (f(i) ∈ F ).

Variables de décision Les variables de décisions sont :

xm
i,t = 1 si le job i commence à la période t sur la machine m, et

= 0 sinon,
Cf : Somme des dates de fin de tous les jobs de la famille f ,
ymf,t = 1 si le seuil de temps n’est pas satisfait pour la famille f sur
la machine m à la période t, i.e. une qualification est nécessaire,
et = 0 sinon.
Y m
f = 1 si le seuil de temps n’est pas satisfait pour la famille f

sur la machine m à la fin de l’horizon, et = 0 sinon.

Il est important de rappeler que si le seuil de temps γf n’est pas satisfait
pour le job de la famille f sur la machine m, la qualification sur la machine
m ne peut être effectuée pendant l’horizon. Dans ce cas, nous supposons
qu’aucun job de famille f ne peut être exécuté sur m. On utilisera les mêmes
notations pour la modélisation PEHF .

Modélisation basée sur la famille des jobs (IP3)

∑

m∈M(f)

T−pf+1∑

t=1

xm
f,t = nf ∀f ∈ F (1)

∑

m∈M(f)

T−pf+1∑

t=1

(t+ pf − 1)xm
f,t ≤ Cf ∀f ∈ F (2)

t∑

τ=t−pf+1

xm
f,τ ≤ 1 ∀t = 1 . . . T, ∀f ∈ F, ∀m ∈ M(f) (3)

t∑

τ=t−pf−sf′+1

xm
f,τ + nf .x

m
f ′,t ≤ nf ∀t = 1 . . . T, ∀(f, f ′) ∈ F × F (4)

s.t. f 6= f ′, ∀m ∈ M(f) ∩M(f ′)

t∑

τ=t−γf+1

xm
f,τ + ymf,t ≥ 1 ∀f ∈ F, ∀m ∈ M(f), ∀t = γf . . . T (5)

ymf,t−1 − 1 +
1

T − (t− 1)

T∑

τ=t

∑

f ′∈F

∑

m′∈M(f ′)

xm′

f ′,τ ≤ Y m
f ∀t = 2 . . . T, ∀f ∈ F, ∀m ∈ M(f) (6)

xm
f,t ∈ {0, 1} ∀t = 1 . . . T, ∀f ∈ F, ∀m ∈ M(f) (7)

ymf,t ∈ {0, 1} ∀t = 1 . . . T, ∀f ∈ F,m ∈ M(f) (8)

Y m
f ∈ {0, 1} ∀f ∈ F,m ∈ M(f) (9)
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0.5 Ordonnancement avec contraintes de temps et état de santé des
équipements (PEHF )

La fonction objectif

Deux types de critères sont considérés pour PTC. Le premier type corre-
spond à la minimisation de la somme des dates de fin

∑
f∈F Cf . Le second

type est associé au nombre de déqualifications
∑

f∈F

∑
m∈M(f) Y

m
f . Notre

fonction objectif est une somme pondérée de ces deux types de critères:
α
∑

Cf et β
∑

Y m
f , où α et β sont des poids associés à chacun des critères.

Cependant, il semble plus réaliste d’envisager un ordre lexicographique, où
le nombre de déqualifications est priorisé sur le critère d’ordonnancement
pur, c’est-à-dire β est choisi suffisamment grand par rapport à α (α = 1,
β = |N | ∗ T ), de sorte que l’amélioration du critère d’ordonnancement n’est
pas préférable à une déqualification supplémentaire.

0.5 Ordonnancement avec contraintes de temps

et état de santé des équipements (PEHF )

Définition

Nous rappelons que le problème PTC est un problème d’ordonnancement
des lots (jobs) de différentes familles sur des machines parallèles, où toutes
les machines ne sont pas capables de traiter toutes les familles de jobs (ma-
chines non identiques). PEHF peut être considéré comme une extension
de PTC où nous ajoutons à la contrainte de temps des jobs d’une même
famille la notion de risque d’affecter des familles de jobs sur les machines.
Le problème devient plus complexe, étant donné que l’affectation des jobs
aux machines est essentielle à la fois pour éviter les déqualifications, et pour
minimiser/maximiser la probabilité de rendement associée à l’affectation.
Par conséquent, PEHF est un problème d’ordonnancement, avec discrétisa-
tion en T périodes, un ensemble de N jobs des différentes familles sur un
ensemble de M machines parallèles. Nous rappelons que le temps de traite-
ment pf de tous les jobs de la famille f est le même et qu’un temps de setup
sf sur une machine est nécessaire pour passer d’un job d’une famille f à
un autre job d’une autre famille f , où f 6= f ′. La contrainte de temps est
considérée avec le seuil de temps γf . La valeur de vmf est considérée comme
le rendement attendu résultant de l’affectation d’un job de la famille f à
une machine m. L’objectif est d’optimiser un problème d’ordonnancement
multicritères (somme des dates de fin, somme des déqualifications des ma-
chines et somme des probabilités de perte de lots (somme totale de rendement
attendu)).
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Maximisation du rendement

La fonction objectif comprend trois critères qui sont la somme des dates de
fin, le nombre de déqualifications des machines et la somme du rendement
attendu. Nous proposons une somme pondérée de ces trois critères dans
notre fonction objectif. L’équation (3.47) représente la fonction objectif à
maximiser avec les mêmes contraintes que le modèle IP3. Le modèle IP5
correspond à IP3 avec la fonction objectif suivante :

max (γ
′
∑

f∈F

∑

m∈M

T∑

t=1

wfx
m
f,tv

m
f − (α

′
∑

f∈F

Cf + β
′
∑

f∈F

∑

m∈M

Y m
f )) (10)

0.6 Expérimentations avec les modèles de pro-

grammation mathématique

Génération des instances

Pour tester les modèles de programmation mathématique PTC et PEHF et
les heuristiques de la section 0.7, des instances ont été générées aléatoirement.
Pour les deux problèmes, les seuils de temps des familles de jobs ont été
déterminés suffisamment grands en tenant compte des durées d’exécution.
Cela a été fait pour donner un biais minimal pour trouver une solution,
étant donné que les seuils courts peuvent entrâıner une perte très rapide des
qualifications des machines. Et, par la suite, il ne sera pas possible de traiter
tous les jobs disponibles, étant donné que les jobs ne peuvent pas être en-
voyés aux machines déqualifiées. Nous considérons que Max(pf ) ≤Min(γf ).
Le schéma de qualification initiale de famille/machine a été défini afin que
chaque famille ait au moins une machine sur laquelle elle peut être traitée,
et chaque machine est qualifiée pour exécuter au moins une famille. Ceci a
pour but d’éviter les solutions irrealisables pour une instance donnée. Les
temps de setup ont été choisis pas trop grands afin que la probabilité de
perte d’une qualification de machine soit acceptable. Nous considérons que
Max(sf ) ≤ Min(pf ). L’horizon temporel a été pris comme la somme des
durée opératoires, plus les temps de setup multipliés par le nombre de jobs
par famille. C’est un cas extrême où tous les travaux sont prévus sur une
seule machine et, chaque fois qu’un job est ordonnancé, un temps de setup
est requis (T =

∑
f ∈ Fnf ∗ (pf + sf )). Les types d’instances ont été choisis

en tenant compte des effets possibles du nombre de jobs, des familles, des
machines et aussi de la plus grande durée opératoire.
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De plus, la valeur de vmf , c’est-à-dire le rendement attendu résultant de
l’affectation des jobs de la famille f à une machine m, est considéré comme
dominant par machine. Cela signifie que, chaque fois qu’une machine m∗ est
en meilleure santé que m′, alors le rendement obtenu lors de l’affectation des
jobs de la famille f à m∗ est meilleur que l’attribution des mêmes jobs de la
famille f à toute autre machine m′, c’est-à-dire vm

∗

f ≥ vm
′

f , ∀f ∈ F . Cette
hypothèse est forte, elle hiérarchise le facteur de santé de la machine sur tout
autre facteur comme par exemple la criticité du lot/famille comme indiqué
à la section 0.3. Nous pensons que cette hypothèse, en plus de l’existence
de γf , ajoute plus d’importance à l’EHF en rendant la conséquence d’une
décision d’ordonnancement (affectation d’une machine à une famille de jobs)
plus dépendant de la machine. D’autre part, la notion d’indice de criticité
famille lot/wafer est toujours considéré dans les valeurs de rendement.

Analyse des fonctions objectif PTC et PEHF

Problème avec contrainte de temps (PTC)

Dans ce problème, les deux critères de la fonction objectif de PTC sont op-
timisés en utilisant les valeurs suivantes: α = 1 et β = k ∗βo, où βo = |N | ∗T
et k = 1/βo, 1/6, 1 /4, 1/2 et 1. Ces valeurs sont choisies de manière à ce
que le critère d’ordonnancement, i.e. la minimisation de la somme des dates
de fin, soit le deuxième critère important, et la minimisation du nombre de
déqualifications soit le premier critère sauf pour k = 1/βo ; de sorte que c’est
équivalent à un ordre lexicographique. Le poids du critère de qualification
est varié en fonction de βo, ceci pour étudier l’effet de la variation des valeurs
de la fonction objectif. Les résultats montrent que le problème devient beau-
coup plus difficile avec l’augmentation du poids du critère de qualification,
de même qu’avec k = 1/6. Cela est dû au fait que l’objectif est non seule-
ment de trouver un ordonnancement possible pour maximiser la satisfaction
des contraintes seuil, mais aussi de mettre en balance la minimisation de la
somme des dates de fin. En revanche, pour les types d’instance avec un temps
de résolution inférieur à la limite de temps, les valeurs de

∑
f

∑
m Y m

f sont
plus petites car la valeur du poids de ce critère a augmenté. Toutefois, les
valeurs de

∑
f Cf augmentent. C’est un comportement normal et la nature

antagoniste des deux critères est mise en évidence.

Le pourcentage d’augmentation de la somme des pertes des qualifications
des machines a tendance à être plus petit pour les petites valeurs de β. Notez
que ce n’est pas garanti pour les valeurs plus élevées de β, car l’augmentation
en pourcentage de la somme des dates de fin est directement proportionnelle
à cette variation lorsqu’il n’y a aucune domination complète d’un critère sur
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l’autre, c’est-à-dire des vecteurs de préférence (1,βo/2), (1,βo/4) et (1,βo/6).
La somme des pertes des qualifications des machines est maximale pour le
vecteur de préférence (1, 1) où la somme des dates de fin est la priorité et
est minimale pour le vecteur de préférence (1, βo)), où la déqualification des
machines est priorisée.

Problème avec état de santé des équipements (PEHF )

Dans ce problème, les trois critères de la fonction objectif de PEHF sont
optimisés, en utilisant les valeurs suivantes: α

′

= 1, β
′

= βo = |N | ∗ T et
γ

′

= k∗γo, où γo = |M |∗|F |∗|N |∗T et k = 1/γo, 1/8, 1 /6, 1 /4, 1/2 et 1. Ces
valeurs sont choisies de manière à ce que le critère d’ordonnancement (somme
des dates de fin) est moins priorisé par rapport à la minimisation du nombre
de déqualifications et la somme totale du rendement attendu. Le poids du
critère de rendement est augmenté en fonction de γo, pour étudier l’effet de γ

′

sur la fonction objectif. Les essais sont réalisés tout en modifiant le coefficient
de multiplication du critère de rendement. Ce critère est prépondérant car
PEHF est considéré comme une extension de PTC, et donc minimiser les
déqualifications devrait toujours être pris en compte. Les résultats montrent
que, pour les grandes valeurs de k, le rendement est mieux optimisé pour
tous les types d’instance dans le temps limite de calcul.

Les valeurs de α′ et β′ sont respectivement fixés à 1 et βo pour étudier
l’effet de la variable γ sur les différents critères de la fonction objectif. La
valeur de β est fixée à βo, parce que PEHF est une extension de PTC et
que les qualifications de la machine sont importantes. Les valeurs de βo sont
utilisées pour tester la nature antagoniste des qualifications des machines
et du rendement attendu. Le pourcentage de gain sur le rendement at-
tendu pour les instances sélectionnées apparâıt fondé sur les valeurs obtenues
pour le vecteur de préférence (1,βo,1), où les qualifications des machines sont
priorisées. Le pourcentage obtenu pour le vecteur de préférence (1,βo,γo),
c’est-à-dire priorisant la qualification des machines et le rendement attendu,
augmente par rapport aux autres vecteurs de préférence où la priorité du ren-
dement prévu décrôıt progressivement (γ = γo/2, γo/4, γo/6 et γo/8). Une
fois que le poids du rendement prévu est diminué, et que le poids des qualifi-
cations des machines est augmenté, le pourcentage de gain sur la diminution
du rendement attendu et le nombre des qualifications des machines diminue
aussi.

De plus, l’effet de variation du poids associé aux rendements attendus
par rapport à la somme des dates de fin est également étudié. Les résultats
montrent que la tendance est une augmentation de la somme des dates de
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fin lorsqu’on priorise le rendement attendu. Cela illustre une fois encore
la nature antagoniste des deux critères. Cependant, ce n’est pas toujours
vrai puisque la somme des dates de fin n’est pas toujours antagoniste avec
le rendement attendu. Afin de minimiser la somme des dates de fin, il y
a une tendance à ordonnancer les jobs d’une famille donnée sur la même
”meilleure” machine afin de réduire les setups et donc la somme des dates de
fin.

Frontières de Pareto pour PTC

Le problème PTC est un problème à deux objectifs (contraditoires). Pour les
problèmes à plusieurs objectifs, on s’intéresse souvent à déterminer des solu-
tions Pareto-Optimales. PTC comprend deux critères : un critère d’ordonnan-
cement classique qui est la somme des dates des jobs et un critère particulier
qui est la somme des déqualifications de la machine. Les résultats des tests
montrent qu’il existe un fort compromis entre le maintien des qualifications
des machines et l’exécution dès que possible des jobs. De plus, les résultats
indiquent que la somme des dates de fin peut augmenter considérablement
lorsque le nombre maximal de pertes de qualification de la machine est réduit
et vice versa.

Analyse de sensibilité du seuil de temps pour PTC

L’impact des seuils de temps sur la somme des pertes de qualification des
machines est également étudié. Dix types d’instances différentes sont choisies
et analysées. Le seuil de temps de la première famille varie de 1 à l’horizon
T , tandis que les seuils des autres familles sont définis à T pour mettre
l’accent sur le seuil d’une famille à la fois c’est-à-dire, ∀f ∈ F, f 6= f1γf = T.
Les tests sont effectués tout en priorisant le critère de qualification (α = 1
et β = |N | ∗ T ) pour étudier l’effet du seuil de temps sur ce critère. Les
résultats montrent que le nombre de déqualifications des machines diminue
à mesure que le seuil de temps augmente. Les machines ont plus de temps
pour traiter les jobs de la famille et passer à d’autres familles.

0.7 Heuristiques et Metaheuristiques

Heuristiques constructives

Des heuristiques sont développées pour résoudre PTC et PEHF : (Scheduling-
Centric Heuristic SCH ) et (Qualification-Centric Heuristic QCH ). De plus,
(Yield-Centric Heuristic YCH ) est également développé pour traiter le critère
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de somme totale de rendement attendu de PEHF . La première heuristique
(SCH ), comme son nom l’indique, met l’accent sur l’ordonnancement, la
deuxième (QCH vise à réduire au minimum la perte de qualifications des
machines et la troisième vise à maximiser le rendement total (YCH ).

Scheduling-Centric Heuristic (SCH)

Le principal objectif de SCH consiste à minimiser les temps de setup. Rap-
pelons qu’un temps de setup est nécessaire lorsque deux jobs de différentes
familles sont ordonnancés consécutivement sur une machine. L’heuristique
ordonnance les jobs d’une même famille successivement sur une machine,
jusqu’à ce que tous les jobs de la famille soient ordonnancés ou qu’il ne soit
plus possible d’ordonnancer les jobs de la famille sans perdre la qualification
de la machine. S’il n’est plus possible d’ordonnancer les jobs d’une famille
avant son seuil de temps restant, la machine est déqualifiée pour la famille.

Qualification-Centric Heuristic (QCH)

L’objectif principal QCH est de minimiser le nombre de violations de la con-
trainte de temps sur les machines sur lesquelles chaque famille est qualifiée.
Pour ce faire, dans la première phase de QCH, les jobs avec le seuil de temps
restant le plus petit sont ordonnancés sur une machine en priorisant toujours
la qualification. Cependant, cela entrâıne un grand nombre de setups. C’est
pourquoi deux autres phases d’améliorations locales sont appliquées pour
réduire le nombre de setups. La phase 2 tente de faire avancer le dernier job
de chaque machine en le combinant avec le premier job de la même famille or-
donnancée sur la machine, c’est-à-dire des changements intra-machines sont
évalués. La phase 3 permet des changements inter-machines.

Yield-Centric Heuristic (Y CH)

L’heuristique (Y CH) vise à maximiser le rendement total

∑

f∈F

∑

m∈M

T∑

t=1

xm
f,tv

m
f

Elle ordonnance d’abord les jobs sur la machine ayant un rendement maxi-
mum. Ensuite, l’heuristique tente de garantir la non violation des seuils de
temps.
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Les heuristiques SCH et QCH

En comparant les heuristiques entre elles, on remarque que les résultats de
SCH sont le plus souvent meilleurs que ceux de QCH en termes de somme
des dates de fin (38/47 instances résolues). D’autre part, comme prévu,
QCH donne les meilleurs résultats en termes de pertes de qualification des
machines (49/49 instances résolues). Il est important de noter que les heuris-
tiques ne peuvent pas toujours résoudre les instances car, selon l’heuristique,
une machine peut perdre sa qualification pour une certaine famille et aucun
traitement sur une autre machine n’est possible (aucune autre machine qual-
ifiée pour cette famille de jobs). Dans ce cas, les jobs de la famille considérée
ne pouvent être ordonnancés sur une autre machine et la solution est irreal-
isable. C’est le cas avec les instances 6 pour QCH, les instances 6, 23 et 29
pour SCH.

Les heuristiques SCH, QCH et Y CH

Les simulations ont montré que, pour certaines instances, les solutions peu-
vent être réalisables pour certaines heuristiques et irréalisables pour d’autres.
Y CH a la meilleure solution pour la somme du rendement attendu dans
41/47 instances résolues comparé à SCH et QCH. QCH a les meilleures
solutions concernant la somme des déqualifications des machines pour 45 /49
instances résolues par rapport à SCH et Y CH. Quant à la somme des dates
de fin, SCH a de meilleures performances pour 29/47 instances. Cependant,
Y CH montre une performance différente pour la somme des dates de fin (les
meilleures solutions sont obtenues pour 26/49 instances). Cela s’explique par
la tendance de Y CH à ordonnancer les jobs de la même famille sur la ma-
chine avec le meilleur indice de santé, minimisant ainsi le nombre de setups,
et par conséquent la somme des dates de fin.

Heuristique Récursive (RH)

L’idée générale de cet algorithme est d’ordonnancer des tâches en acceptant
chaque fois une perte de qualification ou plus. Plus précisément, nous envis-
ageons une solution obtenue par une des heuristiques introduites précédemment,
et nous réappliquons cette heuristique après un changement du schéma de
qualification initiale. Les perturbations dans le schéma de qualification sont
choisies parmi l’ensemble des machines qui ont perdu leurs qualifications
dans la solution obtenue par l’heuristique. En d’autres termes, avec un or-
donnancement des jobs utilisant une heuristique donnée, nous étudions la
solution afin de vérifier si les machines ont encore la capacité de traiter les
jobs, c’est-à-dire si les seuils de temps sont respectés ou non. Si ce n’est
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pas le cas, nous changeons les données afin d’accepter certaines violations de
seuil et nous réappliquons l’heuristique de manière récursive afin d’améliorer
la solution (voir figure 2).

Figure 2: Algorithme récursif

• Si la solution obtenue par une heuristique constructive admet une perte
ou des pertes de qualifications de la machine, alors

– Tant qu’une combinaison de déqualifications n’est pas testée:

∗ Déqualifier les machines avec la combinaison du schéma de
déqualification courant,

∗ Appliquer une heuristique constructive avec un nouveau schéma
de qualifications :

· Si la solution est réalisable, alors accepter la solution

· Sinon, retourner la même solution de l’heuristique con-
structive.

• Sinon, retourner la même solution de l’heuristique constructive.

Metaheuristique : Recuit Simulé (RS)

Le recuit simulé est une métaheuristique inspirée d’un processus utilisé en
métallurgie Kirkpatrick et al. (1983). On alterne dans cette dernière des
cycles de refroidissement lent et de réchauffage (recuit) qui ont pour effet de
minimiser l’énergie du matériau.
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• Pour le problème étudié, les trois principaux paramètres critiques du
RS sont initialisés de la manière suivante.

– To: La température initiale (ou alternativement la probabilité
d’accepter Po). La valeur initiale de la température est impor-
tante pour la performance du RS. Si elle est fixée trop haute,
l’algorithme pourrait passer trop de temps sur des solutions de
mauvaise qualité. Si elle est fixée trop basse, l’algorithme ne
fournira pas de meilleures solutions que les heuristiques construc-
tives. Nous considérons To = 20000.

– α < 1: Le cefficient de refroidissement. Le facteur dans notre cas
est 0.95.

– t: Décrit la façon dont la température est réduite tout au long
de l’algorithme. Nous avons considéré un refroidissement défini
par T (t) = αT (t − 1). Il permet de réduire la température très
rapidement.

• Critère d’arrêt fixe

– Nstop: Le nombre maximal d’itérations sans amélioration. L’algori-
thme de RS s’arrête soit quand le nombre maximal d’itérations
est atteint soit quand le temps d’exécution est de 600 secondes.

• Un voisinage S(s). Tout d’abord, il est important de mentionner que
dans les problèmes étudiés, l’espace de solution se compose au maxi-
mum de toutes les permutations des jobs, c’est-à-dire n!. L’algorithme
de RS tente de minimiser l’objectif de PTC et maximiser celui de
PEHF . Les mouvements se font de permutation en permutation. Nous
appelons un voisin de s, une permutation qui est accessible par un mou-
vement. La façon dont sont générés les voisins a un effet sur l’efficacité
du RS. Deux façons de faire des mouvements sont proposées :

– Insertion ”‘intra” signifie qu’un job sur une machine donnée est
sélectionné dans la position j et inséré avant un autre job à la po-
sition i sur la même machine. Chaque fois qu’une insertion ”intra”
est effectuée, la faisabilité de la séquence obtenue est testée.

– Insertion ”inter” signifie que les jobs sont échangés entre différentes
machines.

Le schéma de RS se résume comme suit.

• Déterminer une solution initiale s ∈ S
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• Selectionner la température initiale To

• Répéter

• Counter = 0

– Repeat

– Generer une solution s′ ∈ S(s)

– Calculer δs,s′ = Cost(s′)− Cost(s)

∗ Si δs,s′ ≤ 0, alors s = s′.

∗ Sinon, s = s′ avec la probabilité exp(−δs,s′/T (t))

– Counter = Counter + 1

– T (t) = αT (t− 1)

– Jusqu’à Counter = Mt

• t = t + 1

• Jusqu’à critère d’arrêt (Nstop)

Résultats numériques

Dans cette section, nous présentons les résultats numériques obtenus avec
les heuristiques sur les instances générées. Les résultats montrent, comme
prévu, que SCH donne généralement de meilleurs résultats pour la somme
des dates de fin, que QCH fournit de meilleures solutions sur le nombre de
pertes de qualification machine et que l’heuristique Y CH est plus perfor-
mant sur la maximisation du rendement attendu. L’algorithme récursif et
le recuit simulé montrent une performance remarquable dans l’amélioration
des solutions (les résultats détaillés se trouvent dans la version complète de
la thèse). Les résultats obtenus par les méthodes développées sont comparés
avec les solutions exactes obtenues par le solveur standard XPRESS-MP.

0.8 Conclusion générale

Dans cette thèse, nous avons examiné différentes possibilités d’intégration
des décisions d’ordonnancement avec des informations et des contraintes is-
sues du contrôle avancé des procédés (Advanced Process Control-APC ) dans
la fabrication de semi-conducteurs. Des discussions et des questions ont
été posées sur l’intégration des décisions d’ordonnancement et de l’APC.
Nous avons apporté quelques réponses à des questions posées en développant
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des idées à travers la définition de nouveaux problèmes d’ordonnancement
: Problème d’ordonnancement avec des contraintes de temps (Problème with
Time Constraints-PTC) et Problème d’ordonnancement avec l’état de santé
des équipements (Problem with Equipment Health Factor-PEHF ). PTC et
PEHF ont des objectifs multicritères. PTC est un problème d’ordonnancem-
ent des familles de jobs sur des machines parallèles non identiques en tenant
compte des temps de setup et des contraintes de seuil de temps. L’objectif
est de planifier les familles de jobs sur les machines en minimisant la somme
des dates de fin et les pertes de qualification des machines. La complexité
de ce problème réside dans le fait que ce n’est pas seulement une décision
d’affectation de jobs sur une machine, mais aussi de sélection de la famille
appropriée afin de maintenir les qualifications. Nous avons démontré que ce
problème est NP-difficile. Le problème PEHF est une extension de PTC.
Il consiste à ordonnancer des familles de jobs sur des machines parallèles
non identiques avec des contraintes de temps et en intégrant la ”santé”
de l’équipement (EHF ). L’objectif est d’ordonnancer les familles de jobs
différents sur les machines tout en minimisant la somme des dates de fin, les
pertes de qualification des machines et en optimisant le rendement attendu
qui résulte de l’affectation d’une machine à un job. Ce rendement est défini
comme une fonction de EHF et de la criticité des jobs.
Pour résoudre ces problèmes des programmes linéaires en nombre entiers, des
heuristiques et méta-heuristique ont été proposées, testées et analysées.

0.9 Perspectives

Des pistes de recherche peuvent être proposées concernant la résolution et
la modélisation des problèmes définis dans cette cette thèse. Mais avant, il
nous semble important d’aller un peu plus loin dans l’étude de la complexité
des problèmes définis dans cette thèse. En effet, nous avons pu montrer que
les problèmes sont NP-difficile sans pouvoir montrer si leur complexité est
au sens faible ou au sens fort. Une réflexion dans ce sens complèterait cette
étude complexité.

J’ai proposé dans cette thèse des méthodes exactes (programmation linéaire)
pour PTC et PEHF qui donnent des solutions pour des tailles d’instances
relativement petites. Il parâıt important d’investiguer d’autres approches
pour de plus grandes instances. La génération de colonnes nous parâıt être
une première approche sérieuse.

Enfin, d’autres dimensions peuvent être intégrées au contrôle avancé des
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procédés et à l’ordonnancement. Par exemple, certains nouveaux composants
dans la conception de produit exigent de vérifier en temps réel que les ma-
chines soient qualifiées. Pour s’assurer que la qualification est correcte-
ment faite et précise, des wafers tests (Send Ahead Wafers-SAW ) sont en-
voyés en éclaireur pour que les machines fonctionnent dans les spécifications
voulues. Il s’agit ici, d’intégrer l’ordonnancement des SAW dans le processus
d’ordonnancement global tout en minimisant le nombre de SAW qui coûtent
chers.
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General Introduction

Semiconductor industry is one of the most complex industries. The very
large number of processes and the variety in their types are major sources
of complexity. In this industry, the wafer is the principle element. A wafer
undergoes several hundreds operations. This is due to the fact that processes
in semiconductor manufacturing facilities are of a reentrant type, i.e. wafers
visit the same machines many times. These environment characteristics and
many other aspects, make scheduling in such industries, a complex issue.

Fabrication processes of semiconductors are very precise and require a
high level of accuracy. Reliable equipment are required and right recipe
parameters should be provided. Advanced Process Control (APC) systems
ensure that each process is done following predefined specifications and that
each equipment is reliable to process different product types.

In fact, both scheduling and Advanced Process Control (APC) aim at
improving the overall fabrication efficiency, and more precisely to maximize
the throughput and to minimize the manufacturing cost. There are various
types of scheduling strategies and techniques which are used in those indus-
tries. Nevertheless, scheduling in semiconductor manufacturing facilities is
even more complicated. The difficulty comes from the complex environment
and the related high cost of machines and their corresponding maintenance
requirements. Many scheduling techniques in semiconductor manufacturing
were studied in the literature and research is still active in this domain.

Advanced Process Control has become an indispensable element in the
fabrication process with the aggressive competition for better quality and
higher productivity. APC utilizes wide variety of techniques in order to keep
processes at their specification levels and to survey tools for existing and/or
possible defects. To accomplish such goals, statistical techniques, data min-
ing, control charts and control loops are used. The use of such techniques
showed a noticeable improvement in throughput, on Overall Equipment Ef-
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ficiency (OEE), and on the whole manufacturing productivity. Furthermore,
many research topics in this domain (APC) are being under study. Modern
techniques like Virtual Metrology (VM) are being analyzed and studied.

Most of existing semiconductor fabs use scheduling systems which have
no relation with process control systems and vice-versa. The objective of
this research work concerns the integration of two systems: Scheduling and
Advanced Process Control. Here are some questions (not exhaustive related
to this integration): What are the benefits of a collaboration between these
two systems? What are the challenging problems and the solution approaches
that may be proposed? And thereafter, how can we integrate scheduling and
APC issues? In this thesis, we try to answer these questions.

Reading Plan This thesis is composed of six chapters. Below, the contents
of each chapter are summarized.

• Chapter 1 provides an overview on processes, scheduling and Advanced
Process Control in semiconductor manufacturing, where a description
of semiconductor manufacturing processes is given. Also, scheduling
issues and problems are outlined and a summary on Advanced Process
Control components and techniques is provided.

• Chapter 2 addresses the contributions done in the integration of schedul-
ing and Advanced Process Control. In this chapter, different inte-
gration issues, possibilities and perspectives are discussed and major
integration problems are proposed. Two of the proposed problems,
Problem with Time Constraints (PTC) and Problem with Equipment
Health Factors (PEHF ) are considered, studied and analyzed in this
thesis.

• Chapter 3 presents a literature review concerning the selected problems
(PTC and PEHF ). Complexity is addressed. Time indexed mixed
integer linear programming models are proposed.

• Chapter 4 reports numerical results on the mathematical programming
models. Objective functions are considered as a weighted sum of differ-
ent criteria. These weights are defined in preference vectors. Different
types of preference vectors are studied and analyzed. A lexicographical
order of criteria is considered. Moreover, an example of the ǫ-constraint
method is also provided. A sensitivity study on the Time Constraint
(threshold) is also done. The results showed the strong compromise
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between the different criteria of the objective functions for both prob-
lems. Numerical experiments showed limitations on the number of jobs,
machines and families that a standard solver can handle, which led to
developing approximate solution approaches.

• Chapter 5 addresses several constructive heuristics and a metaheuristic
(Simulated Annealing, SA) to solve large instances. The performance
of dedicated heuristics, a recursive algorithm and SA depends on the
considered objectives.

• The last chapter concludes this thesis and various perspectives are pro-
posed and discussed.
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Chapter 1

Semiconductor Manufacturing:
Processes, Scheduling and
Advanced Process Control

1.1 Introduction

In this chapter, we give an overview on the fabrication processes and their
different procedures in semiconductor manufacturing. We also address some
important scheduling issues. A general overview about Advanced Process
Control (APC) is also given, which explores its different components.

1.2 The manufacturing process

The manufacturing process is decomposed in three main types of processes.
Section 1.2.1 covers pre-processing processes. Section 1.2.2 covers front-end
processes and Section 1.2.3 covers the back-end processes.

1.2.1 Pre-processing processes

Pre-processing processes include (May and Sze (2003)): Silicon polycrys-
talline growth that results in a cylindrical ingot, Wafer slicing and polishing
and Epitaxial silicon deposition that is used to grow a layer of single crystal
silicon onto the wafers. The resulting wafers can be used to start the fab-
rication process of chips which usually includes two stages: Front-end and
back-end processes.
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Silicon polycrystalline growth

The most commonly used technique for silicon crystal growth is the Czochral-
ski process. A silicon seed is slowly drawn from a crucible of molten silicon
to produce a cylindrical ingot of 100 to 300 mm in diameter and up to one
meter in length.

Wafer slicing and polishing

Ingots are sliced into individual wafers with a precision thin-bladed saw de-
signed to minimize waste, but rigid enough to cut flatly.

Epitaxial silicon deposition

This is a process used to grow a layer of single crystal silicon from vapor
onto a single crystal silicon substrate at high temperatures. Such layers are
important to assure device isolation and to avoid junction leakage.

1.2.2 Front-end processes

In the next chapters, we will mostly be interested in front-end processes,
where the manufacturing environment forms a challenging issue from both
scheduling and APC points of view. Front-end processes include: Photo-
resist processes, Photolithography, Etching, Ion implantation and Chemical
Mechanical Planarization (CMP).

Photo-resist process

A photo-resist or resist is a photo-sensitive material applied to the wafer in
a liquid state in small quantities. The wafer is spun typically at 3000 rounds
per minute to spread the material into a uniform layer around 2 micrometers
thick.

Photolithography

In this process, a mask is projected, normally using an ultra-violet radiation,
on the surface of the wafer to specify the different silicon areas which are
involved on a specific layer of the wafer.
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Etching

The wafer with patterned photo-resist is then put into an oxide etch process
to remove the oxide where there is no pattern. Etching selectively removes
portions of semiconductor layers to leave micro-structures on a device.

Ion implantation

In implantation, the dopant molecules are vertically implanted into the sur-
face of the silicon by exposing it to a high-energy ion beam. These molecules
aim to change the electrical characteristics of the target area. This is done
in order to finally get the different electronic components.

Chemical Mechanical Planarization (CMP)

It is a process used for polishing the surface of the wafer. It can be per-
formed on both oxides and metals. It involves the use of chemical slurries
and a circular mechanical action to polish the surface of the wafer.

Figure 1.1 summarizes the processes described above and their sequential
order. It also shows the re-entrant type of these processes. For example, a
product which already underwent a lithography process and has finished a
chemical mechanical polishing process, may need to pass through lithography
multiple other times (more than 30 times). These processing steps may be
repeated several times, on the same product to separate different layers.
This leads to the complex re-entrant nature of such process types, and it is
reflected on the scheduling issues in semiconductor manufacturing.

1.2.3 Back-end processes

After front-end processes, wafers are then tested, cut and packaged. This is
called the back-end stage. Back-end processes include two major finalizing
processes: 1- Testing and 2 - Packaging and assembly.

Testing

Testing includes generally some typical measurements applied to the wafers
in order to check its consistency with the predefined specifications. Such
measurements typically include wafer flatness, film thickness, electrical prop-
erties, critical dimensions. This adds to the complexity of semiconductor
manufacturing where sophisticated equipment and qualified workers are nec-
essary.
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Figure 1.1: Front-end processes and the re-entrant flow (Dauzère-Pérès
(2011)).

Packaging and assembly

In order to be connected to other devices or plugged into an electronic card,
chips need to be wired. Chips are wired to their appropriate packaging boxes
according to their types. A molten plastic material is poured on the whole
assembly to form the different well-known existing chips.

1.3 Scheduling

In this section, scheduling in semiconductor manufacturing is addressed. In
Section 1.3.1, a definition of scheduling is provided. Scheduling environment
in semiconductor manufacturing and the sources of its complexity are dis-
cussed in Sections 1.3.2 and 1.3.3. Job shop, batch and cluster tools schedul-
ing are discussed briefly in Sections 1.3.4, 1.3.5 and 1.3.6 respectively.
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1.3.1 Definition

Scheduling deals with the allocation of scarce resources to tasks over time.
It is a decision making process with the goal of optimizing one or more
objectives that satisfy a set of constraints. In all scheduling problems, the
tasks (also named jobs), the constraints, the resources and the objective
function are the main components. The tasks must be scheduled to optimize
a specific objective, and it is often more realistic in practice to consider
several criteria (Carlier and Chrétienne (1988)).

1.3.2 Scheduling environment

Scheduling is important for manufacturing as it has major impact on the pro-
ductivity. This assertion is even more true in Semiconductor Manufacturing
(SM) because of the high competition between semiconductor manufactur-
ers, which requires a continuous enhancement of productivity. The timely
completion of orders is a high priority, which could be achieved with proper
scheduling methodologies. Moreover, cycle time (defined as the time since a
machine is assigned to process a job to the time of finishing this job) reduc-
tion is usually considered as a primary objective, strongly motivated by high
inventory costs.

In semiconductor manufacturing, wafers are usually grouped in lots of 25
wafers. Lots visit the same workshops repeatedly, usually requiring different
processing times at different stages. Depending on the tool, the lot, and the
processing stage, different setups may be required for the tools. In the sequel,
a lot is considered as a job and vice-versa.

SM typically involves numerous batch processing operations e.g. oxida-
tion, diffusion, deposition, etching, e-beam writing and heat-treatment of
wafer fabrication, baking of wafer probing and burn-in of device testing.
These operations play an important role in determining how the system per-
forms in terms of throughput, inventories and cycle time. They generally
add variability to the system, because the items wait to form a batch and,
upon service completion, are released to downstream operations (Fowler et al.
(2002)). Further, effective scheduling of many batch processors in SM system
is important in terms of improving the due date compliance of the whole sys-
tem. Also, it is important for significant reduction of the overall cycle time
due to the long processing times compared to other manufacturing processes.
The environment in semiconductor manufacturing facilities, also called wafer
fabs, can be seen as a highly complex job-shop, involving multiple types of
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work centers, large and changing varieties of products, sequence dependent
setup times, reentrant process flows, etc. This problem has been investigated
from a variety of perspectives resulting in several analytical techniques com-
bining generic as well as problem-specific strategies.
A vast amount of literature exists on job shop scheduling due to the continu-
ous and improved research efforts in this field over the last five to six decades.
Most of the batch scheduling approaches to the semiconductor manufactur-
ing scheduling problems can be classified into four categories: Heuristic rules,
mathematical programming techniques, neighborhood search methods, and
artificial intelligence techniques. Figure 1.2, taken from Moench et al. (2011)
summarizes deterministic scheduling in wafer fabs. It shows the various ma-
chine environments, process restrictions and objectives that can be found in
a semiconductor fab.

Figure 1.2: Deterministic scheduling in wafer fabs (Moench et al. (2011)).

1.3.3 Sources of scheduling complexity

Wafer fabrication routes consist of 300 to 500 processing steps. There are a
number of unique features/requirements in these steps that make the problem
of optimally scheduling operations a complex issue. These include:

• Re-entrant flows: wafers revisit the same workshop at different stages of
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their process flow, so that lots at different stages of their manufacturing
cycle compete with each other for resources.

• Non-Uniform Load: due to the diversity in the production system, cycle
times vary by tool and process step. In addition, tools can process
wafers in lots, batches or process single wafers. Thus, machines can
off-load multiple lots onto tools that are capable of processing only one
lot at a time. This results in non-linear loading or flow of products in
the factory.

• Setup Times: some tools have significant sequence-dependent setup
times that need to be considered when computing schedules.

• Downtimes: the manufacturing system can have random tool failures.

• Rework: during the course of processing, some wafers in a lot may need
to be reworked, after which they regroup in the lot. Reworked wafers
need to be prioritized as the lot will wait before proceeding to the next
processing step. Some wafer lots may need to be rejected because of
defects.

• Hot Lots: during processing, it may happen that some lots are given
higher priority compared to other lots in the factory to meet delivery
due dates or other processing requirements.

• Auxiliary Resources: at different processing steps in wafer fabrication,
auxiliary resources are required (for example, reticles or masks in pho-
tolithography). These auxiliary resources are often limited in number.

• Test/Monitor Wafers: along with production lots, there might be some
test or monitor wafers in the systems which are being used for test-
ing/experimenting new products. Also, there might be a requirement
that the system cannot handle more than a certain number of test
wafers or needs a minimum number of these wafers.

• Send Ahead Wafers: it may be required that some wafers of a lot
are sent for processing after which they are inspected. Based on the
outcome of the inspection the remaining wafers of the lot are processed
and merged back into same lot.

• Processing Time Windows: in certain processing steps in the flow, e.g.
a batch processing furnace operation following a clean or etch operation,
it may be required that the next operations carried out within a certain
time window after the first operation.
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• Rules/Constraints for Scheduling: each step in the process flow might
have rules/constraints that govern the way products and processes are
scheduled, and these rules/constraints might vary from one fab to an-
other.

• Machine qualifications: a machine must be qualified to process an op-
eration, i.e. some parameters have to be set or adjusted (e.g. tem-
perature, pressure, etc) to pre-defined specifications. This notion is
particularly important in high-mix product environment.

A fab scheduling system must schedule lots of wafers taking all the above
listed requirements into consideration. The system should also be able to
reschedule lots, in real time, to accommodate changes in the manufacturing
environment. This involves exploration of a huge solution space to find the
best schedule or solution, which meets all constraints and minimizes the cost.
And, in order to be useful in practice, the scheduling and rescheduling steps
need to be done rapidly.

1.3.4 Job shop scheduling

A wafer fab can be viewed as a highly complex job shop containing a number
of single-server and/or multi-server stations (Wein (1988)). A vast amount
of literature exists on job shop scheduling because of the continuous and
improved research efforts in this field over the last six decades. The re-
search focus on scheduling in semiconductor manufacturing has only come
into existence in the last 20 years. It has become a very important issue
nowadays for the overall growth of the economy, since the semiconductor in-
dustry has seen a phase of rapid advancement during this period. A review
on job-shop scheduling techniques in semiconductor manufacturing was pre-
sented in Gupta and Sivakumar (2006). In this paper, the authors provided
a list of scheduling techniques that are used in semiconductor manufacturing.

Dispatching heuristics provide schedules quickly, but there is no guarantee
of optimality using these rules. Mathematical programming techniques can
provide optimal solutions, but computational times are prohibitive for large
problem sets. Neighborhood search methods are capable of finding very
good solutions in a reasonable amount of computational time. The choice
of a scheduling technique depends on several parameters that come from the
type of the problem as well as the needs and priorities.
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1.3.5 Batch scheduling

Batching jobs is a very common policy in the manufacturing system of most
of the industries. The main reasons for batching are avoidance of set ups
and/or facilitation of material handling. We define the batch as the set of
jobs that are processed together. We call the number of jobs in a processing
cycle the batch size.
Figure 1.3 taken from Moench et al. (2011) summarizes the characteristics
of scheduling problems found in different work areas of wafer fabs. How-
ever, in this thesis, we are more interested in problems that are found in
photolithography area. Further, We note that time constraints were not con-
sidered because they are often not only related to a single work area but
across different work areas.

Figure 1.3: Characteristics of scheduling problems in wafer fabs (Moench
et al. (2011)).

A review on Scheduling of Batch Processors (SBP) problems in semicon-
ductor manufacturing can be found in (Mathirajan and Sivakumar (2006)).
The authors classify SBP problems in SM into several groups. The clas-
sification results are presented based on various distributions, and differ-
ent methodologies applied for SBP problems in SM are briefly highlighted.
Batching occurs in two versions: Serial batching and parallel batching. In
serial batching, jobs may be batched if they share the same setup on a ma-
chine and one job is processed at a time. In parallel batching, several jobs
can be processed simultaneously as a batch. A good analysis of both types
of scheduling with batching was provided in (Potts and Wassenhove (1992)),
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(Albers (1993)), (Webster and Baker (1995)), (Brucker et al. (1998)) and
(Potts and Kovalyov (2000)). When the batch size becomes very large, the
problem of uniformity of machines involved in processing this batch appears.
Hence, cluster tools are used to minimize the difference in uniformity. In
Section 1.3.6, we briefly discuss cluster tools.

1.3.6 Cluster Tools

Cluster tools, which combine several single-wafer processing modules with
wafer handling robots in a closed environment, have been increasingly used
in wafer fabrication processes. We recall that the basic material handling
unit in a fab is a wafer lot that consists of 25 wafers. However, as the
wafer size increases and quality requirements become stricter due to circuit
shrinkage, the batch processing technology becomes difficult to ensure wafer
quality. This is because it is hard to control uniformity of gas or chemical
diffusion on multiple large wafer surfaces. Consequently, cluster tools or track
equipment have been increasingly used, including photolithography, etching,
deposition, and even testing (Lee (2008)).

1.4 Advanced Process Control (APC)

1.4.1 Introduction

The basic concept of equipment and process control lies in Advanced Equip-
ment Control (AEC) and/or Advanced Process Control systems, which have
become vital in any type of industries and especially in semiconductor man-
ufacturing. Advanced Process Control (APC) has become an essential com-
ponent for factory control to maintain the continuous improvement of device
yield and reliability at reduced cost. Generally, APC enables cost reduction
in manufacturing through the following improvements:

• faster process development,

• reduction of monitor wafers,

• decrease in process variation, increase of yield, and shorter control loops
in case of failure or drift,

• more stable processes ensure product reliability,

• increased equipment utilization.
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In semiconductor industry, it is very important to improve throughput, yield
and performance of products. APC is widely used to increase stability and
accuracy in fabrication. It is made of SPC (Statistical Process Control), FDC
(Fault Detection and Classification), R2R (Run-to-Run) and more recently
VM (Virtual Metrology). SPC and FDC focus on detection of equipment
faults or process abnormality. Feedback APC techniques such as Model
Based Process Control (MBPC) and Exponentially Weighted Moving Av-
erage (EWMA) are used to reduce systematic error and VM for predicting
metrological information at wafer level. These basic components of APC are
introduced in the following sections.

1.4.2 Statistical Process Control (SPC)

Statistical process control (SPC) involves the use of statistical techniques to
measure and analyze process variations. Most often used for manufacturing
processes, the intent of SPC is to monitor product quality and check that
processes are within fixed targets. SPC is used to monitor the consistency
of processes used to manufacture a product as designed. It aims at keeping
processes under control. No matter how good or bad the design is, SPC can
ensure that the product is being manufactured as designed and intended.
Thus, SPC will not improve the reliability of a poorly designed product,
but can be used to maintain the consistency of how the product is made
and therefore, of the manufactured product itself and its as-designed relia-
bility (Montgomery (2004)).

A primary tool used for SPC is the control chart, i.e. a graphical represen-
tation of certain descriptive statistics for specific quantitative measurements
of the manufacturing process. These descriptive statistics are displayed in
the control chart in comparison to their in-control sampling distributions.
The comparison detects any unusual variation in a manufacturing process,
which could indicate a problem with the process. Several different descrip-
tive statistics can be used in control charts. There are many types of control
charts that can test for different causes. Some of the basic tasks, which are
associated with SPC, include: Surveillance and feedback, signaling a prob-
lem with the process, detection of assignable causes of variation, reducing
need for inspection, monitoring of process quality and providing mechanism
to make process changes and track effects of those changes.
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Tools used in SPC

SPC can be applied to any process. Its seven major tools are (Montgomery
(2004)): Histogram or stem-and-leaf plot, check sheet, Pareto chart, Cause-
and-effect diagram, defect and concentration diagram, scatter diagram, con-
trol chart and process Capability. Although these tools, often called the
magnificent seven, are an important part of SPC, they are usually used to
complement each other, rather than employed as stand-alone techniques. In
what follows, control charts and process capability are discussed. These tools
were chosen among all others for the sake of providing a detailed and relevant
example.

Control charts

Control charts are used to detect whether a process is statistically stable,
which means that the process is under statistical control. The procedures
behind the application of control charts would be explained by the following
scenario: a process is sampled regularly, and the collected data is plotted
which represents some measure of performance such as mean, range, number
of defects, or any other variable. The process can then be checked graphically,
for example, whether it is under statistical control or not. Otherwise, certain
predefined action corresponding to the type of extrusion we obtained, should
be taken. For further details, the reader can refer to Montgomery (2004).

Process capability index

The process capability index expresses the variability in process character-
istics, i.e. whether the process is capable of producing products which con-
forms to specifications or not. Process capability studies distinguish between
conformance to control limits and conformance to specification limits which
are also called tolerance limits. For example, if the process mean lies within
control limits, then eventually all points will remain within control limits.

Process capability is also another important concept in SPC. It also refers
to the process uniformity. The variability of a process characteristic is a mea-
sure of the uniformity of a single process variable. The capability of a process
is determined only when common causes of variability are present. Deter-
mination of the capability of a process requires the estimation of mean and
standard deviation of a variable characteristic of the process (Montgomery
(2004)).
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1.4.3 Fault Detection and Classification (FDC)

The precise control of equipment status and performance is essential in mod-
ern semiconductor manufacturing facilities. The idea is that, by having well
controlled internal equipment and process parameters, higher yields are ex-
pected. FDC detects abnormalities of such key parameters within a relatively
short time, which allow the related equipment to be stopped, and scrap to be
avoided. The main purpose of FDC is at first to detect an abnormal status
of the equipment or the process running on it (Fault Detection - FD). The
second step is then to classify the detected failure, for instance a leak in the
chamber or a problem in a power supply, and to give engineers and techni-
cians a hint where to start to search for the root cause (Fault Classification
- FC).
A well implemented FDC system across a fab will provide many advantages
on the whole manufacturing process. At the level of equipment monitoring
for example, prevention of accident, enhancement of throughput, reduction of
test wafer, enhanced Overall Equipment Efficiency (OEE), real time monitor-
ing, preventive maintenance, and yield enhancement by reduction of scraps
and thus minimizing the cost, are some of these benefits.
A typical FDC system collects on-line a large amount of data from processes
by equipment sensors for every process run. They are called process variables
or FDC data. Some reliable available FDC data are essential to construct a
decision rule able to detect as quickly as possible an abnormal evolution of
the system (for example a machine) in order to prevent more critical prob-
lems in the future (He and Wang (2007)).
Moreover, fault diagnosis and classification begin with the selection of a
measurement plan, which is the data acquisition approach used to derive a
symptom vector. The selection of an appropriate set of measurements whose
deviations from expectations are used for diagnosis is critical. The cost,
speed, and accuracy of data acquisition are obviously important, since even
a set of accurate but poorly selected measurements can be of limited use.
Further, maintenance diagnosis is another technique which aims at avoiding
potential component failures based on historical performance. The available
data consist of the number of failures that a given component has experienced
as well as the component age. Usually a neural network approach is being
proposed and developed for the implementation of maintenance diagnosis
(Kim and May (1997)).
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1.4.4 Run to Run (R2R) control

Run-to-run control is a form of discrete process and machine control in which
the product recipe with respect to a particular machine process is modified
ex situ, i.e. between machine “run”, so as to minimize process drift, shift,
and variability (Moyne et al. (2000)).
This type of control is event-driven, where the events include the determi-
nation and reporting of pre- and/or post process ex situ metrology data,
and the requirement of the tool to begin processing. The control could be
on a wafer-to-wafer, lot-to-lot or batch-to-batch basis. The metrology and
automation scheme for R2R control can vary widely (Jedidi (2009)). For
example, the metrology is generally limited to ex situ metrology, but could
include in situ equipment state.

Types of R2R systems

A wide range of R2R systems currently exist in semiconductor manufactur-
ing. They can be categorized into three basic categories:

• Post-process quality measurement data, where the measurement data
may be in the form of ex situ post-process metrology (traditional), but
could also include in situ data compiled during the process. Knowing
that for most cases, the data may or may not be available for every
wafer, batch, or control event. Moreover, it is not trivial to have the
pre-process measurement data available all the time.

• A dynamic model of the process is maintained in the controller that
relates the post-process quality data to tunable process ”recipe” inputs.
Using this model, the controller is able to provide ”suggestions” for
process improvement as necessary based on post-process quality data
values. The model is dynamic in that it attempts to track drifts in
equipment and process quality parameters on a run-to-run basis.

• Process improvement control actions, i.e. process input parameter ad-
justments are set once during each ”run” based on suggestions by the
controller.

Figure 1.4 shows the feed-forward and feed-backward principles in a R2R
controller. The metrology results before a production process are sent to
update process parameters, and hence the feed-forward. On the other hand,
post process metrology results are sent in the backward direction which cor-
responds to feed-backward.
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Figure 1.4: Feed-forward and feed-backward in R2R control.

Regarding all these R2R characteristics and issues, the idea of scheduling
with the needs and/or constraints of a R2R system seems to become more
realistic and relevant when considering modern scheduling and planning tech-
niques.

1.4.5 Virtual Metrology (VM)

VM refers to the technology that estimates the process results based on
the previous metrology measurements and equipment sensor data, instead
of performing actual measures. Most APC techniques strongly depend on
the physical measurement provided by metrology tools (Qin et al. (2006)).
Critical wafer parameters are measured, such as, for example, the thickness
and/or the uniformity of thin films. If a wafer is mis-processed in an early
stage but detected at the wafer acceptance test, unnecessary resource con-
sumption is unavoidable. Measuring the quality of every wafer after each
process step could avoid late wafer scraps but it is too expensive and time
consuming. Therefore, metrology, as it is employed for product quality mon-
itoring today, can only cover a small fraction of sampled wafers.
Virtual Metrology (VM) in contrast enables prediction of every wafer metrol-
ogy measurement based on production equipment FDC data and previous
metrology results (Chang et al. (2006)), (Chen et al. (2005)), and (Cheng
et al. (2007)). This is achieved by defining and applying predictive models
for metrology outputs (physical measurements) as a function of metrology
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and equipment data of current and previous steps of fabrication (Hung et al.
(2007)), (Khan et al. (2007)) and (Lin et al. (2006)).
Of course it is necessary to collect data from equipment sensors to character-
ize physical and chemical reactions process chambers. Consequently, reliable
and accurate FDC data are essential in VM models (Su et al. (2008)). The
objective of a VM module is to develop a robust prediction that can esti-
mate metrology and which is able to handle process drifts whether they are
induced by preventive maintenance actions or not.
Figure 1.5 presents an illustrative diagram of virtual metrology. A step of
stand-alone metrology with a sampling of two wafers measured by lot is
considered. With only these two measurements and the history of FDC pa-
rameters of this lot, we can build a mathematical model to predict the values
for all the other wafers which is a very challenging goal to accomplish.

Figure 1.5: Virtual metrology.

Virtual metrology can enable wafer to wafer control without additional
real metrology. It is a result from a real need in modern fabs.

Advantages of VM

There are many advantages to virtual metrology including:

• Reducing wafer scraps: Process inspection can be performed through
VM for every wafer to sustain yield performance.
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• Tighter process control: VM provides a basis to overcome the
metrology delay problem for run-to-run control.

• Increasing throughput: Wafer handling from process tool to metrol-
ogy tool can be reduced and, thus, production cycle time can be short-
ened.

The development of virtual metrology does not aim to replace stand-
alone metrology tools, but to assist in achieving total quality management
and process control. However, the research progress is still tardy because
of the lack of relevant theory. While implementing VM, various needs come
out as for example the data collected from metrology tasks. These needs can
be seen as constraints for a scheduler, and hence scheduling while respecting
such needs becomes more challenging especially when they are considered as
hard constraints.

1.5 Conclusion

Based on this chapter, we can now imagine new integration problems and
propose new methods to improve production control and efficiency in semi-
conductor manufacturing. A factory integration strategy is described by
the International Technology Roadmap for Semiconductors (ITRS) which
mentions the integration of all factory systems to have at the end a fully
integrated semiconductor industry in all its systems. Alternatively, new in-
tegration ideas were elaborated by major semiconductor manufacturers such
as INTEL, AMD, and STMicroelectronics. We discuss in the next chapter,
possible integration ideas and we define new problems that come out when
merging APC and scheduling systems.
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Chapter 2

Integration of Scheduling and
Advanced Process Control

2.1 Introduction

In this chapter, we are going to introduce Advanced Process Control (APC).
The benefits of APC are: Improved process performance, increased overall
equipment efficiency, improved throughput and reduction of Non Product
Wafers (NPW) (Zaugg (2008)). Alternatively, the benefits of smart schedul-
ing methods are basically: reduced cycle time and increased resource utiliza-
tion.
Nowadays, in most semiconductor manufacturing facilities, scheduling deci-
sions are taken depending on more or less advanced lot to tool assignment
rules, in which the lot with the highest priority is dispatched on the next
available tool. However, considering the existing constraints and decision
possibilities, there are other types of constraints and criteria that must be
taken into consideration, such as equipment availability, equipment states,
time constraints, due dates, bottleneck resources, etc (Anderson and Hanish
(2007)). In the past, and still in some current semiconductor fabs, industry
system applications are being isolated from each other. This is still valid for
scheduling and APC systems. However, decisions in modern semiconductor
fabs have become more integrated and are moving towards service-oriented
policies. This new philosophy aims at creating a unified platform between the
different existing vendors in order to communicate more easily. In this chap-
ter, we discuss in Section 2.2 the interactions between scheduling and APC.
We address challenging integration problems in Section 2.3 before concluding
in Section 2.4.
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2.2 Interactions between scheduling and APC

In a more and more complex economic world, the recession of some coun-
tries and competition in many sectors increased. Industries are permanently
searching for solutions that allow them to remain competitive. This creates
a need for information sharing between different decision systems. The goal
is to assure that the decisions taken at one level do not negatively impact
decisions taken at other levels. This leads to global and challenging problems
with more complex constraints and multiple objectives (often conflicting). In
this chapter, we are interested in the integration of scheduling and APC.

2.2.1 Motivations

Some of the major motivations for integrating scheduling and APC decisions
in a semiconductor fab are summarized below.

• Operations related to APC (like measurements for instance) interfere
with scheduling decisions by modifying processing modes and lists of
operations to perform.

• Using real-time machine capabilities, which are available through time
and provided by APC methods will help scheduling to improve cycle
times and also yield.

• Equipment qualification is crucial, in spite of its high cost value. Thus,
scheduling algorithms should decide how operations will be assigned
to qualified machines, and balance between the corresponding cost and
the quality. In this context, machines may be considered as completely
qualified or disqualified, or we may even consider levels in machine
qualification (machine eligibility). Moreover, enormous amount of in-
formation related to machine and process states are collected by APC
equipment, thus an Equipment/process Health Factor (EHF) could be
available which is an indicator on the state of equipment (e.g. bad,
good, excellent). Again, scheduling decisions may become more effec-
tive by promoting reliable processes and equipment.

• Parameters of R2R control loops regularly need to be updated. When a
machine is used to manufacture different types of products, test wafers
must be sent to keep the associated control loops updated. Hence, a
scheduling algorithm which takes into consideration such a constraint
will be more effective. This constraint may be presented for example as
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a time constraint related to control system loops, as well as the number
of lots that were processed on a given machine. In chapter 3, a new
time constraint related to the APC system is presented and is being
integrated into a scheduling problem of parallel machines with different
eligibility characteristics.

These are some of the major reasons behind the idea of integrating
scheduling and APC decisions in any possible type of industry, and especially
in semiconductor industry because its complexity, the enormous number of
control loops and re-entrant processes. It seems promising to explore the pos-
sibilities and problems related to integration in a research avenue that takes
as its starting point APC information and aims at integration scheduling
conditions and vice-versa. In the following section, we detail the interactions
between scheduling and APC to later define new integration problems. In-
deed, there are two ways of thinking at the interactions between scheduling
and APC; both are detailed in the subsequent sections.

• APC information for efficient scheduling (Section 2.2.2).

• Scheduling with APC constraints or requirements (Section 2.2.3).

2.2.2 APC information for efficient scheduling

Data available in the APC control system may provide the scheduling system
with effective information. These data are used later as a new criterion under
the form of constraints and/or objective, to improve scheduling decisions.
For example, a run-to-run controller detects the polish rate of a Chemical
Mechanical Planarization (CMP) tool. We consider the case where we havem
CMP machines, each with its own polish rate. A scheduler informed by these
different polish rates will be able to send/batch a lot/wafer to the machine
with the highest polish rate. This corresponds to the Shortest Processing
Time (SPT) dispatching rule. Moreover, an APC controller can basically
provide the current process conditions and parameters for certain machines.
Thus, if there are m machines of the same type and with almost similar
processing conditions, always according to the data provided by APC con-
trollers, and if the dispatching system has this information, it would be able
to send batches of lots to the machines as if they were one entity. In addi-
tion, if multiple tools were set up to run a given lot, the dispatching system
could then decide to send a lot to the process tool with the actual shortest
processing time.
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Further, the APC system can provide a capability index of a tool/process,
also known as the process performance index (Cpk). It specifies whether the
tool/process is capable of producing a product that conforms to the specifica-
tions or not. This information provided by APC system helps the scheduling
system to select tools with high Cpk level for critical layers or process areas.
This may result in an improved yield. In addition, let us recall that the
APC control system gives information on the equipment state, which can
be used to define a health factor associated to each equipment, and which
vary over time (Montgomery (2004)). This factor was recently defined in the
literature, and is known as Equipment Health Factor (EHF). Thus, schedul-
ing techniques which take these factors into account, will be more precise
and efficient by routing lots or wafers to machines that are more reliable.
Real-time information on processes may also be collected such as real exact
processing times. These data may also interfere with scheduling decisions.

Nevertheless, tools that are assigned to perform a given process should
be qualified before starting this process (equipment/machine qualification).
Different from the equipment configuration needed at the beginning of pro-
cessing a new family type lot/wafer (setup), regular equipment qualifications
are frequently fulfilled according to predefined strategies based on the fabs’
policy and on the available expertise. This qualification is done usually by
sending special types of wafers to test the equipment and/or process (e.g.
Send Ahead Wafers, SAW ). Here also, we can use this information to develop
scheduling techniques with a clearer view on which equipment is qualified to
perform which process, and at which cost (e.g. expected yield, probability
of loss, etc). Further, smart dynamic sampling for metrology operations is
getting more importance. Typically, after a lot is completed on a process
tool, it will undergo test operations on a dedicated metrology tool (e.g. the
thickness of a silicon dioxide layer). Hence, some of the operations are for
processing and the others for testing. The scheduling system should then
not only decide how lots are processed, but also if and how they are mea-
sured (Dauzère-Pérès et al. (2010)). How to select lots to measure, and how
to schedule the selected lots are questions that open the door to many possi-
bilities and proposed solutions. Sampling for metrology is discussed later in
this chapter.

Furthermore, an APC-abort is defined to be the inability to start a lot
due to the lack of information in the APC system. This forms a disadvantage
for the flow of the production process, hence reducing these aborts is an inter-
esting objective. A dispatching system that is informed by APC constraints,
will use this knowledge to dispatch lots that would keep the control loops
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(e.g. R2R) updated. For example, knowing that the parameters of a given
control loop on a given machine are going to be outdated, the dispatching
system will schedule lots that compensate for these parameters in the con-
sidered machine. Thus, the control loop parameters are updated before that
they are out of specifications, which usually requires a tool recalibration.
Moreover, this helps to decreases cycle times by keeping the machines eligi-
ble to process lots.

Equipment Health Factor

Not fully studied and noted in the literature, the Equipment Health Factor
(EHF) or Index (EHI) is a rich domain of research, which still needs to be
accurately specified. Nevertheless, one can define the health factor of equip-
ment as an indicator of the current state of the equipment depending on
several measured parameters such as temperature, pressure, etc (Guo et al.
(1998)). This factor may specify for instance the zone within which the ma-
chine works with high reliability or, on the contrary, may fail. The goal is
how to determine an appropriate function that has as inputs the measured
parameters and that gives as output the EHF. Few models and methods
were proposed in that field, but actually there is no final exact method to
determine a precise factor (Chen and Wu (2007)).

Such a factor may be helpful in scheduling decisions to guide the lots to
routes, i.e. tools, which are more reliable. More precisely, consider the case
where lots of different family types, with different criticality levels, are to be
scheduled to tools with various health factors for each family type. Then,
the decision of assigning critical lots/wafers to healthy equipment become
more challenging while trying to optimize some scheduling criteria such as
the makespan or sum of completion times. Scheduling with equipment health
factor will be discussed in more details in Section 2.3.

Wafer Quality Indicator

Consequently to what was mentioned above, and despite the fact that it is
not trivial to know exactly and instantaneously a machine state, and that
research is still required in this field, it is important to mention that, by
combining data collected from SPC and FDC control systems, a basic ma-
chine health factor could be deduced. This basic indicator/factor will give
the scheduler a view on the states of the machines.

51



Chapter 2. Integration of Scheduling and Advanced Process Control

Let us now consider the case where a lot arrives on a certain machine
m. We suppose that this wafer will be tested. Combining the result of this
test with the equipment health factor, an indicator of wafer quality could
be deduced. This idea would be presented by a quality level indicator. This
indicator could be associated to each wafer, and will be used by the scheduler
to decide where to send the associated lot. In other words, the scheduler now
knows the states of all the future tools and the state of the lot itself. Thus,
it may change the predefined route of the lot depending on both factors: the
equipment health factor and the wafer quality level indicator. Hence, fully
dynamic scheduling plans would be available instantaneously.

The idea of using dynamic data is hard to apply in practice. This is why
we add some restrictions and constraints in order to make it more applicable.
Actually, the idea of considering a wafer quality indicator is complementary
to the EHF addressed above. A combination of wafer-tool leads to define an
associated cost of assignment that could be represented for example as of a
production yield and/or a probability of losing a wafer/lot.

Equipment Qualification

Equipment qualification is also an important issue in semiconductor fabs.
Qualification can help improving tool efficiency, minimize work-in-process,
and reduce cycle time. Machine qualifications management impact the over-
all performance of a wafer fab (Johnzén (2009), Johnzén et al. (2010)). Typ-
ically, lots cannot be sent to a tool unless that tool is qualified. Qualification
is usually maintained by sending test wafers (TW) to the tool (Faruqi et al.
(2008)). Hence, scheduling decisions are similarly affected by equipment
qualification.
The management of equipment qualification can be seen as a tactical prob-
lem. Long term equipment qualification decisions are required especially
when we know that, for instance, the initial qualification process can take
a large amount of time depending on the process nature in the manufactur-
ing chain. Actually, we can consider two levels of qualifications: Equipment
qualification level and process condition qualification. To start processing a
lot on a tool, both qualifications are required. A scheduler who takes into
account qualified and non-qualified tools and processes will effectively decide
much better how to route lots in the fab.
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2.2.3 Scheduling with APC constraints or requirements

Scheduling systems may enhance the performance of APC control systems
in particular knowing that, in such an environment, there are multiple tools,
products and processes. As an example, there would be effectively thousands
of control loops to be keep updated. More precisely, recipe adjustments done
by run-to-run regulation loop require regular metrology operations to per-
form for each process and product type. Otherwise, the processing conditions
are no longer in accordance to specifications and the risk of losing a lot/wafer
increases.
To illustrate, let us consider the following scenario: a tool serves several
types of products, e.g. three type. After an interval of time (threshold), let
us assume that it only received lots of two product types and the third has
not being processed in the interval.
The regulations in the loop become out of date (if the interval was sufficiently
large), so any lot of the third product type will not be accepted. The con-
trol loop must be re-calibrated (qualified) for the corresponding product. To
maintain qualification, it is then necessary to achieve the processing of a lot of
the third product type before the end of the time interval. It is obvious that
a scheduling system that takes into account this constraint will improve the
Overall Equipment Efficiency (OEE) and decrease the number of test wafers.

In addition, time limits associated to special process types are also diffi-
cult to handle. In some process areas, there is a maximum allowed amount
of time for lots between process steps. For instance, a material that has been
ashed (e.g. removal of a photo-resist using plasma ashing) must go through
the subsequent step within a specified time limit, or else the ash procedure
should be repeated. Consequently, a scheduling system which takes these
constraints into account would decrease redundant steps and consecutively
would improve the overall cycle time and fab yield.
In what follows, we address two examples of scheduling with APC constraints
or requirements. Dynamic sampling and preventive maintenance were chosen
as they are considered as two relevant realistic semiconductor fab issues.

Dynamic sampling

In order to dissipate for process drifts and variations, APC controllers de-
mand a huge amount of measurement data collected from wafers. This is
not always easy to be done because metrology tools are rare and expensive
resources that do not bring added value to the product. So, it is almost
impossible to get all the necessary measurements and similarly for all the
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wafers. In the extreme case, if all lots/wafers were measured, then this will
result in very large waiting times and number of operations. Alternatively,
different machines have various processing times and this result in an in-
crease in cycle time variability. Hence, the idea of dynamic sampling was
elaborated, which consists of dynamically deciding which products should be
measured to keep certain control parameters of different APC systems (e.g.
R2R, VM) updated (Dauzère-Pérès et al. (2010)).
More precisely, many current run-to-run applications use a fixed measure-
ment scheme. The measurements steps are considered as non-added value in
terms of the final product, and they have a negative impact on cycle time
and throughput. However, insufficient measurements lead to poor controller
performance. Information obtained from the control system could be used
by a dispatcher/scheduler at the metrology steps to determine whether a
lot should be inspected or not. For example, consider the situation where
the controller estimates that: the process is performed as expected (in con-
trol); has an acceptable process performance index, usually denoted in the
literature by Cpk; and its (R2R) control loop parameters have been updated
recently. Thus, depending on these circumstances, the metrology operation
of this lot/wafer could be canceled, this is what we call smart skipping. On
the other hand, if the controller detects any “out-of-control”, then the num-
ber of inspected lots is increased and this is equivalent to an increase of the
sampling rate.

In semiconductor manufacturing, a sampling strategy determines a rate
of measurements based on statistics. These rates can be obtained empiri-
cally based on the knowledge on products during their various manufactur-
ing stages, and more effectively by taking into consideration their life cycles
(Bousetta and Cross (2005)). The major obstacle is that an increase in pro-
duction volumes leads to a saturation of metrology tools. Hence, not all
lots that should be measured can actually be measured. This implies that
there should be a selection decision of the lots to be measured. This deci-
sion depends on many factors, for example: lot type, lot priority, metrology
capacity, etc. Answering the questions of what, when and how to choose
a lot for inspection forms a sampling strategy. Various dynamic sampling
strategies were developed. For instance, Lee et al. (2003) outline a strategy
to control the queues and to skip certain measurements. In addition, Purdy
(2007) presents a sequence modeling strategy for selecting lots for measure-
ment. Further, Holfeld et al. (2007) describe a system applied to an entire
manufacturing unit and that balances the needs of metrology, and minimizes
the risk under capacity and cycle time constraints.
Moreover, current dynamic sampling techniques are based on statistical no-
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tions which determine the sampling rate. However, instantaneous informa-
tion taken from the APC control system are not yet well exploited. If this
was the case, dynamic sampling techniques may become “smarter” (smart
sampling). Furthermore, from our point of view, other circumstances may
also be taken into account depending on the vast experience in the field of
semiconductor manufacturing.
Let us take as an example the following case: Suppose we just started process-
ing a lot on a machine, then it is clear that the results of the measurements of
the first wafer/lot is indispensable to calibrate the control loop parameters,
while it is not of great importance for the next ones. The difficulty lies in
determining the required number of modifications necessary for maximum
efficiency and how to modify this number over time.

Preventive Maintenance

Preventive Maintenance (PM) is a crucial activity in semiconductor manu-
facturing since there are no tools in a fab that are 100% reliable. A good
PM schedule can increase the availability of tools by trading off between the
planned unproductive downtime versus the risk of unscheduled downtime due
to tool failures.
Unscheduled downtimes not only induce the loss of productivity, but also
disturb the manufacturing process. Thus, in order to lessen these negative
effects, PM tasks have to be scheduled carefully and comprehensively. There
is research on the integration of preventive maintenance and scheduling deci-
sions and their inter dependency (Cassady and Kutanoglu (2005)). However,
modern semiconductor fabs need more than just preventive maintenance poli-
cies; shifting from classical preventive maintenance to predictive maintenance
has become a need. Hence, the integration of APC and scheduling in a sin-
gle predictive preventive maintenance policy will help to decrease equipment
downtimes and thus to increase the availability of tools.

APC components, and more specifically SPC and FDC, can provide real-
time information on production equipment. The idea is to benefit from this
information for the sake of PM. Data available in SPC databases may be
useful to predict potential future machine failures by applying statistical
techniques. Also, the states of tools available in FDC control systems almost
real time may be used to predict possible short-term tools failures. By merg-
ing the information on machine states into the scheduling system, we expect
that better scheduled PM decisions will be taken, leading to overall factory
efficiency.
Scheduling with PM is an important issue when talking about a fab wide fully
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integrated systems. This idea is not thoroughly studied in the literature in
semiconductor manufacturing. Cassady and Kutanoglu (2005) address this
problem on a single machine. However, integrating of scheduling and APC
systems requires a fab wide view of the problem.

After this overview on some interactions between scheduling and APC,
let us address some new problems of integration of scheduling and APC. In
Section 2.3, we discuss some of these possibilities.

2.3 Challenging integration problems

We recall that the literature on the integration of scheduling decisions and
APC is not very explicit. There are some papers (Edgar et al. (2000), Holfeld
et al. (2007), Purdy (2007)) on the integration of APC with the information
system, in which the description stays at a structural level. Other disciplines
are also concerned by the sociological difficulties that can hinder the idea
of integration (Shobrys and White (2002)). We highlight in the following
section, the importance of integrating scheduling decisions and APC infor-
mation by identifying new promising problems.

2.3.1 Scheduling with APC (R2R/VM) constraints

A recipe corresponds to specifications on how a process should be executed
on a tool (temperature, pressure, metal composition, etc). A Run-to-Run
controller has to provide the right recipe conditions, for a given process,
depending on the testing results obtained from feed forward and feedback
metrology data. An essential calibration of the Run-to-Run controller is
done when setting it up and, after that, the controller parameters will be
regularly adjusted to compensate for the drifts and shifts in recipe parame-
ters. If metrology results are not sent regularly, the R2R controller parame-
ters become out of date. Consequently, the risk of discarding the processed
lot/wafers is increased. Also, the needs of a virtual metrology (VM) lead to
a similar constraint. A VM model is based on FDC (monitoring equipment
status) results obtained from at least two measures, in order to provide ap-
proximate virtual metrology results.

The problem comes out from the fact that, with time, the Run-to-Run
control loop parameters parameters have not to be updated for long time. In
this case, the last recipe parameters will become non suitable for processing
certain types of lots on the machine after a given interval of time, called time
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threshold in the sequel. Hence, lots should be sent regularly to the machine in
order to keep the Run-to-Run control loop parameters updated by inspecting
production lots/wafers and reporting the obtained results to the controller.
More precisely, the problem does not lie in the idleness of a machine in a
fab, but that the machine must process different types of products, thus the
time between the arrivals of two lots (results of inspection tasks) of the same
type is considered as an idle time for the Run-to-Run control loop parameters.

Therefore, a time constraint (threshold) could represent the R2R/VM
requirements. This threshold is to be specified depending on several crite-
ria such as the process type, the equipment, the maturity of control loop,
etc. Scheduling with these constraints is a new challenging problem that is
expected, to improve product quality, process and machine efficiency. This
problem become more and more interesting if we consider the tremendous
number of control loops that should be maintained in a fab as well as the
various product types and equipment. Alternatively, it is recommended to
keep all the control loops of a fab updated from a tool/process level point of
view. However, it is complex and not always necessary to maintain all these
control loops from a supervisory point of view.

Figure 2.1 describes the above addressed problem. Scheduling of jobs
could become more effective in terms of product quality if the information
and requirements of the APC system were taken into account. For example,
information required by R2R control and Virtual Metrology leads to addi-
tional constraints on the scheduler and hence enhanced scheduling techniques
should be developed. This problem will be addressed in the next chapters.

2.3.2 Scheduling with Equipment Health Factor

Equipment Health Factor (EHF) can be exploited to enhance scheduling.
Let us recall that the EHF is an indicator associated to a tool to describe
its state such as its level of reliability. On the other hand, a criticality indi-
cator associated to a lot, wafer, product type (family) indicates the state of
the considered element. Based on these indicators (equipment, lot), we can
group tools/lots into categories as for example excellent, good, fair, etc.
More precisely, a good tool means that this tool has a good level of reliabil-
ity, and a good lot means that this lot is not as critical as a lot of the fair
category and so on.
The criterion that should be considered lies in the association of lots to tools,
both possess different categories. Scheduling in this case become more chal-
lenging because if it is done without taking into account these indicators, a
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Figure 2.1: Scheduling with APC constraints.

yield loss is expected. The cost of assigning a lot to a tool is represented as
a percentage of loss, probability of loss, yield, a combination of all of them,
etc. The new challenging problem is how to schedule while minimizing such
a cost i.e. maximizing the profit.
Figure 2.2 describes the mapping that can exist between lots and tool. While
scheduling lots on the different machines, we may look to a mapping of
lot/machine that minimizes certain risk. The later can be taken as a per-
centage of chip loss or/and a probability of loss. Whatever the criterion,
the scheduling approach to propose should minimize a novel criterion. This
problem will be treated in more details in Chapter 3.

2.3.3 Scheduling to maximize information in metrol-
ogy

Metrology operations are usually considered as non-value added operations
since they consume time and do not change the nature of the product. Avail-
able sampling policies are based on static or fixed criteria (Bousetta and Cross
(2005)). The problem here lies in how to make such sampling not only dy-
namic, but also smart by benefiting from information on the routes of the
lots. Briefly, knowing the sequence of machines on which a lot was processed,

58



2.3 Challenging integration problems

Figure 2.2: Scheduling with APC information (Equipment Health Factor).

we will then be able to decide whether this lot should be tested or not de-
pending on the current risk levels of the associated machines.

Figure 2.3 explains how the route followed by a lot can be optimized to
maximize the information on machines. By using the obtained information
on which lots to select for measurement, advanced smart sampling techniques
can be proposed (Dauzère-Pérès et al. (2010)).

2.3.4 Production and metrology scheduling

In general, the scheduling of production operations and the scheduling of
metrology operations are done independently one from another. However, a
strong link exists between production and metrology. For example, a lot of a
given product type is processed on a production tool and then on a metrol-
ogy tool. The processing of another lot of the same product type ideally
should not be started before the end of the inspection of the previous lot.
This is because the results obtained from metrology are used to compensate
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Figure 2.3: Scheduling while maximizing information on machines.

for process drifts and shifts (an APC need). As shown in Figure 2.4, in the
first case (top), the processing of a lot of type A is started before the end
of the related metrology operation, hence the wafers in the lot are at risk.
However, if we shift the metrology operations so that the lot of type A comes
before the inspection of a lot of type X, as in the same figure (bottom), then
the wafers are no longer at risk.

Another possibility is to change the production schedule as shown in
Figure 2.5 (bottom), the lot of type A starts after the end of the related
metrology operation, hence wafers in the lot are not at risk. This change in
production and/or metrology operation sequences illustrates the interaction
between production and metrology. We believe that this problem is a good
example of the integration of scheduling and APC systems. This problem
was studied in Detienne et al..

2.4 Conclusion

In this chapter, we have proposed an overview of the benefits resulting from
the integration of scheduling and APC systems. Possibilities of integration
and new problems were discussed. From those, we will treat problems of
scheduling with APC constraints and scheduling with EHF in the next chap-
ters.
Integrating scheduling and APC information is a very challenging research
problem, which combine different problem aspects, dimensions and research
disciplines. Furthermore, active research collaborations between academia
and industry also play a key role for the success of this topic.
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Figure 2.4: Scheduling with interaction between production and metrology
operations (1)
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Figure 2.5: Scheduling with interaction between production and metrology
operations (2)

62



Chapter 3

Scheduling with Time
Constraints and Equipment
Health Factor

3.1 Introduction

Semiconductor manufacturing is getting more and more competitive and in-
dustries are looking for innovative strategies to improve productivity, de-
crease cost and enhance quality. Advanced Scheduling and Advanced Process
Control (APC) systems support these objectives. Scheduling means assign-
ing jobs to machines and sequencing jobs on machines to minimize some given
objectives under a set of constraints. Hence, optimized scheduling helps to
increase productivity. Process control is widely used to enhance the quality
of products by compensating for process drifts and adjusting machine pa-
rameters. The collection of data at both machine and process levels helps
in the detection of current process drifts and/or machine degradation, as
well as in the prediction of possible faults. Scheduling and control could be
considered as mutually related issues in semiconductor manufacturing. For
example, to control, we may need information on scheduling, and to sched-
ule in an effective way, we need information on which machines can process
which operation.

Scheduling of lots has a direct impact on equipment utilization, cycle
times, delivery times, etc. For example, effective scheduling decisions would
send tasks to the right machines so as to avoid idle times and improve machine
utilization. Moreover, semiconductor fabrication plants have characteristics
that make scheduling a very complex issue (see Kumar (1993) or Moench
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et al. (2011) for instance). Given the re-entrant nature of manufacturing
processes, scheduling is often locally optimized in each work area. We re-
call that Advanced Process Control (APC) aims at controlling processes and
equipment to reduce variability, to increase equipment efficiency, or to col-
lect and classify information on equipment to name a few. APC is usually
associated to the combination of Statistical Process Control (SPC), Fault
Detection and Classification (FDC), Run to Run control (R2R), and more
recently Virtual Metrology (VM). Let us recall Figure 3.1 which shows the
relation between scheduling and the information from the APC control sys-
tem. Information on the needs of different APC control system components
such as R2R and VM could be used to direct the scheduler towards better
schedules in terms of quality.

Figure 3.1: Scheduling with APC constraints (recall).

In semiconductor manufacturing facilities, a wafer is the chip holder at
the end of the manufacturing process. Lots contain 25 wafers or less and are
processed in various work areas with different characteristics. From now on,
lots will be called jobs, and lots of the same product type will be called job
family. While investigating some works that are found in the literature, we
find that Kubiak et al. (1996) study the problem of scheduling a reentrant
job shop with different job families. They show that the shortest processing
time (SPT) job order is optimal for the single machine reentrant shop un-
der certain assumptions. An example can be found in the photolithography
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area that can be seen as a scheduling problem on parallel machines with job
family setups (also called s-batching). A setup is required before starting
the first job of a family, but no setup is necessary between two jobs of the
same family. For example, the change of reticles in the photolithography
workshop necessitates a family dependent setup time. Although research has
been performed on this problem, very little has been done to integrate APC
constraints.

In R2R control for instance, a R2R controller uses data from past pro-
cess runs to adjust settings for the next run as presented in Musacchio et al.
(1997). Note that a R2R controller is associated to one machine and one job
family. A machine can usually process a limited number of job families, that
are said to be qualified on the machine. Machines are thus non-identical in
terms of qualifications. Hence, a machine is qualified to process a job family
if and only if it is eligible (capable) and configured to process such a job
family. Machine eligibility, and availability will be addressed later in this
chapter. Further, in order to keep its parameters updated and valid, a R2R
control loop should regularly get data. This imposes an additional constraint
on scheduling, since jobs of the same family have to be scheduled within a
maximum time interval on each machine on which the family is qualified. The
value of this time interval (threshold) depends on several criteria such as the
process type (critical or not), the equipment type, the stability of the control
loop, etc. If this time threshold/constraint is not satisfied, a qualification run
is required to be able to process again the job family on the machine. This
leads us to define a new scheduling problem that integrates the previously
described time threshold as a hard constraint, when we assume that a qual-
ification run cannot be performed within the scheduling horizon. We first
consider the problem of scheduling lots (jobs) of different product types on
parallel machines, where not all machines are able to process all job families
(non-identical machines). A special time constraint, associated to each job
family, should be satisfied for a machine to remain qualified for processing a
job family. This constraint imposes that the time between the execution of
two consecutive jobs from the same family on a qualified machine must not
exceed the time threshold of the family. Otherwise, the machine becomes
disqualified.

Figure 3.2 illustrates this time constraint. In the first two cases, a job
of a given family is started during the time interval corresponding to its
family, and hence the machine will still be qualified to process jobs of the
same family for another time interval. The third case represents the situation
where a machine is no longer qualified to process such a job family, and this
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is because no job is scheduled during the considered interval. This problem
comes from semiconductor manufacturing, when Advanced Process Control
(APC) constraints are considered in scheduling problems, for example in the
photolithography area as mentioned earlier.

Figure 3.2: Time constraint.

Moreover, considering machine qualification in PTC leads us to intro-
duce a new concept related to the assignment of job families to qualified or
semi-qualified machines. In our problem, called PTC for Problem with Time
Constraint, machine qualification is considered as a boolean parameter i.e. a
machine is either qualified (possibility of processing with a perfect outcome)
or disqualified (impossibility of processing). However, to be more realistic,
this notion may be seen as a level of qualification. This can be modeled
by a certain risk associated to the assignment of a job family to a machine.
This risk could be a function of the Equipment Health Factor (EHF) and
the Wafer Quality Indicator (WQI) previously described in Chapter 2. We
define PEHF (Problem with Equipment Health Factor) as an extension of
PTC, where the global risk associated to assigning jobs to machines is also
minimized. In PEHF , we assume that a machine is disqualified for a job
family if the risk associated to assigning this machine to this job family is
larger than a given upper limit.
This chapter is organized as follows. Section 3.2 provides a literature review
on related problems. Section 3.3 gives an overview on multicriteria opti-
mization since our problems are multicriteria. Both problems are described,
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defined and modeled in Section 3.4 ( PTC), and Section 3.5 (PEHF ), and
will be analyzed and solved in Chapter 4.

3.2 Literature review

There are very few articles which deal with scheduling decisions while inte-
grating APC constraints. The impact of APC on scheduling performances
is analyzed by Li and Qiao (2008). They also study the scheduling of job
families on parallel machines. However, they consider that machines are
identical, that qualification runs can be scheduled and that the threshold
between two jobs of the same family is given in number of jobs. We consider
non-identical parallel machines and assume that qualification runs cannot be
scheduled and will be performed after the scheduling horizon. The problem
becomes more complicated, since the assignment of jobs to machines is criti-
cal to avoid qualification runs. Finally, we consider a threshold expressed in
time instead of number of jobs. Both threshold types are actually relevant
and are related. Cai et al. (2011) study the interaction between scheduling
and APC on one machine, with setup times between two job families, and a
qualification run when the R2R constraint is not respected. They show that
a single machine makespan problem with multiple job families is NP-hard.
Another example of the integration of APC constraints in scheduling deci-
sions can be found in Detienne et al. (2012), where measurement operations
are optimally scheduled to minimize the risk of losing products in jobs.
This chapter addresses two new scheduling problems (PTC and PEHF ).
In PTC, there is a time constraint on jobs of the same family i.e. the time
interval between two consecutive jobs of the same family should be smaller
than a given threshold. The goal is to schedule job in families on parallel
machines with information on APC system while minimizing the number of
loss in machine qualifications. As mentioned above, this constraint is in-
spired from the needs of APC systems, and in particular Run-To-Run (R2R)
control loops for a given product type on a machine, that require to regularly
collect data for product types on machines. PEHF is an extension of PTC
in which the states of machines is taken into consideration. In what follows,
we review some existing topics related to our problems.
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3.2.1 Dynamic dead-lines/due dates

A deadline d is a point in time by which a job must absolutely complete.
Scheduling with dynamic deadlines exists in the literature under various top-
ics and rarely in the domain of semiconductor manufacturing. Studies on
dynamic deadlines can be found in mobile communications.

Somasundara et al. (2007) study the problem of Mobile Element Schedul-
ing (MES). The mobile elements visit the nodes of a wireless sensor network
to collect their data before their buffers are full. In addition, as soon as a
node is visited, its deadline (time before which it should be revisited to avoid
buffer overflow) is updated. Thus, deadlines are dynamically updated as the
mobile element performs the job of data gathering. The idea is to find a
schedule for a controlled mobile element so that there is no data loss due
to buffer overflow. Other examples of dynamic deadlines problems in the
same domain include mobile element for data collection, battery charging,
and calibration (Kallapur and Chiplunkar (2010)).

Further, Caccamo et al. (1999) address the problem of scheduling hybrid
tasks in a shared resource environment (hard periodic and soft aperiodic)
with dynamic deadlines. They develop an algorithm which finds the optimal
solution for a schedule of hybrid tasks on shared resources. The problem is
basically a problem of task scheduling in computer operating systems. The
problem of lot release control and scheduling in wafer fabs producing multiple
products with due dates, was tackled in Kim et al. (1998). The authors
suggest several new rules to minimize mean tardiness. They show that new
dispatching rules work better in terms of tardiness of orders compared to
existing rules such as EDD (Earliest Due Date) for multi-machine scheduling.
By analogy, the idea of dynamic deadlines exists in our problem (PTC)
under the form of job family thresholds, where each family threshold creates
a deadline at the machine qualification level. This threshold is dynamically
updated once a job of a given family is scheduled on a qualified machine.

3.2.2 Scheduling on parallel machines

Parallel machine scheduling problems are frequent in semiconductor manu-
facturing. A wafer fab can be modeled as a complex job shop (Mason et al.
(2002)), which contains unrelated parallel machines with sequence-dependent
setup times and dedications, parallel batch machines, re-entrant flows, and
ready times for the jobs (Moench et al. (2011)). Classical scheduling objec-
tive functions include ( Pinedo (2009)) the minimization of makespan (Cmax),
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total weighted tardiness (
∑

wjTj), etc. Another classical scheduling objec-
tive function is the minimization of the total completion time (

∑
Cj). Rules

such as SPT (Shortest Processing Time) are used to solve the problem. When
the total weighted completion time

∑
wjCj (also

∑
Cj on non-identical ma-

chines) is to be minimized on parallel machines.

Unrelated parallel machines

Among parallel machine scheduling problems, one of the general cases is
when the machines are unrelated. In this case, the processing time of each
job depends on the machine to which it is assigned. Ruiz and Andrés (2007)
study the problem of scheduling unrelated parallel machines with resource-
assignable sequence dependent setup times. They address a problem where
the duration of the setups depend on assignable unrelated machines. They
develop some fast heuristics to tackle this problem and a mathematical model
is given and the sum of completion times of jobs is minimized.

Meta-heuristics were also used to tackle the problem of scheduling unre-
lated parallel machines. For example, Kim et al. (2002) address the prob-
lem of scheduling unrelated parallel machines with sequence-dependent setup
times, using Simulated Annealing (SA) to minimize total tardiness. The de-
veloped SA with different types of neighborhoods shows significant perfor-
mance.
Moreover, the problem of scheduling unrelated parallel machines with clas-
sical objective functions, such as minimizing the makespan or the total
weighted tardiness, was also studied in the literature (Anagnostopoulos and
Rabadi (2002); Lin et al. (2009); Zhou et al. (2007); Na et al. (2006)). Dif-
ferent heuristics and meta-heuristics (Simulated Annealing, Ant Colony Op-
timization,etc) were proposed to tackle this problem.

Some basic algorithms

List scheduling List Scheduling (LS) has been well known since more than
half a century ago. In this algorithm, jobs are fed from a pre-specified list
and, whenever a machine becomes idle, the first available job on the list is
scheduled and removed from the list, where the availability of a job means
that the job has been released and, if there are precedence constraints, all its
predecessors have already been processed.
Because of its simplicity and the fact that any optimal schedule can be con-
structed by LS with an appropriately chosen list, LS is by far the most
popular scheduling approach (Anderson (2004)).
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LPT and SPT If the jobs in LS are sorted in order of non increasing
processing times, then the resulting algorithm is known as Largest Processing
Time (LPT). On the other hand, if the jobs in LS are sorted in order of non
decreasing processing times, then the resulting algorithm is known as Shortest
Processing Time (SPT). Contrary to LPT, SPT tends to better minimize the
total completion time

∑
Cj.

3.2.3 Set-up times

A setup is a non-productive period of time which usually models operations
to be carried out on machines after processing a job to leave them ready for
processing the next job in the sequence. An extended survey on scheduling
problems with setup times or costs is done in Allahverdi et al. (2008). The
authors provide an extensive review of the scheduling literature on models
with setups covering more than 300 papers. They classify problems with
batching and non-batching considerations, and with sequence-independent
and sequence-dependent setup times. They also categorize the literature
according to shop environments, including single machine, parallel machines,
flow shop, no-wait flow shop, flexible flow shop, job shop, open shop, and
others.

In addition, scheduling jobs on parallel machines with sequence-dependent
family setup times is also studied in Eom et al. (2002). The authors propose
a three-phase heuristic to minimize the total weighted tardiness of a set of
tasks with known processing times, due dates, weights and family types for
parallel machines. They consider the case of identical machines in a Liq-
uid Crystal Display (LCD) manufacturing process where the setup time is
longer than the processing time. Schaller et al. (2000) study the problem
of scheduling a flowline manufacturing cell with sequence dependent family
setup times. The objective is to minimize the makespan. The authors show
that the problem is NP-hard in the strong sense, and they develop several
heuristics. In this chapter, we consider non-identical parallel machines and
minimize a bi-criteria objective function where the sum of completion times
is one criterion.
Setup times can be classified in two categories: Batch and non-batch setup
times.

Batch setup times

A batch is a set of jobs of the same family. While families of jobs are supposed
to be given in advance, batch formation is a part of the decision making
process. A batch setup time occurs when jobs are processed in batches,

70



3.2 Literature review

and a setup time precedes the processing of each batch. The batch setup
time can be machine dependent and/or sequence dependent. It is sequence
dependent if its duration depends on the families of both the current and the
immediately preceding batches, and is sequence independent if its duration
solely depends on the family of the current batch to be processed.

Non-batch setup times

In a non-batch processing environment, a setup time is incurred prior to the
processing of each job. It can be seen as a batch setup time in which each
family consists of a single job. Figure 3.3 describes this classification.

Figure 3.3: Classification of scheduling problems with setup times.

3.2.4 Machine eligibility and availability

A machine might become unavailable due to machine breakdowns or various
other reasons and in particular preventive maintenance. However, a machine
might have different capability to process different jobs. In our research, we
are interested in machine eligibility, where a qualified machine is eligible to
process a given job family, but may lose its qualification (PTC) if a given
time constraint is violated. The notion of “semi-qualification” of a machine
is used in PEHF where assigning a job of a given job family to a machine
is no longer a matter of a total qualification or not, but rather a degree of
confidence in the machine reliability represented modeled as a risk of assign-
ment.
Parallel machines are common in manufacturing industries. Parallel machine
scheduling problems with machine eligibility restrictions are of considerable
interest for industry in general and in particular in semiconductor manufac-
turing (Huang and Yu (2010)). They generalize scheduling problems on a
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single machine, on identical parallel machines and on uniform parallel ma-
chines (Guo and Liu (2010)). For example, in semiconductor manufacturing,
the wafer testing area is usually divided into five workcenters: Voltage and
current test, wafer test or also known as probe, back-grind, visual inspection
and ship (Centeno and Armacost (1997)). A wafer testing work-center in-
volves a number of testing machines in parallel with different capabilities.
The problem of scheduling uniform parallel machines with machine eligibility
restrictions to minimize total weighted tardiness (TWT) is studied in Guo
and Liu (2010). The authors presented a new heuristic based on local search
on each machine. The experimental results have shown that the proposed
heuristic is very effective method for this problem. In addition, Huang and
Yu (2010) develop a novel heuristic to minimize makespan for parallel ma-
chines with eligibility constraints while considering machine flexibility. Their
results show that their heuristic can achieve exact or nearly exact solutions.
Moreover, Liao and Sheen (2008) address the same problem but with machine
eligibility and availability constraints i.e. the machines are not continuously
available (availability) at all times and each job can only be processed on
specified machines (eligibility).
Further, the problem of minimizing maximum lateness in a parallel machine
environment with release dates and machine eligibility restrictions is ad-
dressed in Centeno and Armacost (1997). The authors develop a scheduling
algorithm for a wafer test work-center taking into consideration real manu-
facturing conditions and constraints. The results on real data showed a sig-
nificant performance improvement over the previously used schedule. Also
Sheen et al. (2008) study the problem of scheduling independent jobs on iden-
tical parallel machines with machine availability and eligibility constraints to
minimize the maximum lateness.

3.2.5 Scheduling techniques

We recall that every NP-complete problem can be solved by exhaustive
search. Known NP-complete problems include scheduling under precedence
constraints. While trying to solve these problems, many techniques were
developed. Essentially, most approaches for semiconductor manufacturing
scheduling problems can be classified into four categories: Heuristic rules,
mathematical programming techniques, neighborhood search methods, and
artificial intelligence techniques (Gupta and Sivakumar (2004)).
For our problems, we used mathematical programming, heuristic rules and a
neighborhood search method.
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3.3 Multicriteria Optimization

Most problems in nature have several (possibly conflicting) objectives to be
satisfied. Many of these problems are frequently treated as single-objective
optimization problems by transforming all but one objective into constraints.
Most scheduling problems in the literature consider only one optimization
criterion. However, many real industrial problems require that two or more
criteria are simultaneously optimized. These objectives are usually conflict-
ing. Therefore, there is no optimal solution that optimizes all the criteria
simultaneously. For example, minimizing the sum of completion times for all
jobs is one criterion that is antagonistic with minimizing the sum of losses
in machine qualifications. The objective function that we study in PTC and
PEHF is then of a multicriteria nature. The Multi Objective Optimization
Problem (MOOP) (also called multicriteria optimization, multiperformance
or vector optimization problem) can be defined as the problem of finding:
A vector of decision variables which satisfies constraints and optimizes a vec-
tor function whose elements represent the objective functions. These func-
tions form a mathematical description of performance criteria which are usu-
ally in conflict with each other. Hence, the term “optimize” means finding
such a solution which would give the values of all the objective functions ac-
ceptable to the decision maker (Eschenauer et al. (1990), Coello (2011)).

3.3.1 Linear and Nonlinear Multi-Objective Optimiza-
tion Problems

If all objective functions and constraint functions are linear, the resulting
MOOP is called a multi-objective linear program (MOLP). PTC and PEHF
are MOLPs. Like linear programming problems, MOLPs also have theoret-
ical properties. However, if any of the objective or constraint functions are
nonlinear, the resulting problem is called a nonlinear multi-objective prob-
lem. Unfortunately, for nonlinear problems, solution techniques often do not
have convergence proofs Deb (2001). There exist different methodologies that
were developed to deal with multicriteria optimization. Pareto optimality is
a fundamental notion in multicriteria optimization.

3.3.2 Definition of optimality

Let S ⊂ RQ be the set of solutions and Z̃ ⊂ RK the image in the criteria space
of S by K criteria Zj. The order structure associated with RK is, ∀x, y ∈ RK:
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x ≤ y ⇔ xi ≤ yi, ∀i = 1, . . . , K (3.1)

x = y ⇔ xi = yi, ∀i = 1, . . . , K (3.2)

This order defines a partial preorder, valid for K ≥ 2. Note that, for
single criterion optimization problems (K = 1), the structure associated with
R is a total preorder, i.e. there is no incomparability between two solutions.
Thus, in the single criterion case, the definition of an optimal solution is
straightforward. In the multicriteria case, this definition is no longer trivial
because a solution minimizing simultaneously all criteria rarely occurs. We
then use a more general definition of optimality: Pareto optimality (T’Kindt
and Billaut (2006)).

Definition - weak Pareto optimality. x ∈ S is a weak Pareto optimum,
also called a weakly efficient solution, if and only if ∄y ∈ S such that ∀i =
1, . . . , K;Zi(y) < Zi(x). We note WE the set of weak Pareto optima of S.
The set WE defines in the criteria space the trade-off curve, also called the
efficiency curve.

Definition - strict Pareto Optimality. x ∈ S is a strict Pareto opti-
mum, also called an efficient solution or a strict efficient solution, if and
only if ∄y ∈ S such that ∀i = 1, . . . , K;Zi(y) ≤ Zi(x) with at least one
strict inequality. We note E the set of strict Pareto optima of S and we have
E ⊆ WE.

3.3.3 Determination of Pareto optima

Pareto optima correspond to “best trade-off” solutions between different con-
flicting criteria. Only the decision maker can choose the most satisfactory
solution for his problem, among the set E (or WE). Three occasions where
the decision maker can intervene: before, during or after the resolution pro-
cess. A general category of methods can be associated to each of these
occasions:

• The methods enabling the decision maker to intervene before the reso-
lution process are called a priori. In the a priori methods, the resolution
process cannot be performed without the decision maker having pro-
vided a set of information, as for example the value of the weights of
the criteria for the minimization of a linear combination of criteria. De-
termining these parameters constitutes a problem itself, which requires
the use of a decision aid method.
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• The methods enabling the decision maker to intervene during the course
of the resolution process are called interactive. In the interactive meth-
ods, the resolution process is iterative. Each iteration provides the
decision maker a solution, which is not necessarily a Pareto optimum.
He then orients the process by providing, directly or indirectly, new
values for the parameters of the problem.

• The methods enabling the decision maker to intervene after the res-
olution process are called a posteriori. A posteriori method aims at
providing the decision maker with an exhaustive set of Pareto optima,
among which belongs the most satisfactory solution. The set of Pareto
optima suggested to the decision maker depends on the properties of
the problem.

There are different families of methods to find Pareto optima. The list
below provides a summary of some of these methods. The choice of a method
necessitates a trade-off between the quality of the calculable solutions and
the ease of its application. Let us recall the notation α|β|γ introduced to
classify scheduling problems by Graham et al. (1979). The γ field contains the
criteria to be optimized. In the case of multi-objective scheduling, a precise
description of the field γ is also given by (T’Kindt and Billaut (2006)). This
field helps to differentiate between existing methods to find Pareto optima.
These methods include:

• Determination by linear combination of criteria. In this ap-
proach, we aggregate the values of different criteria to finally obtain
one single indicator. The coefficients of each criterion helps in deter-
mining the direction of solution searching. In this case, the γ field is
defined as: Fl(Z1, . . . , ZK). The modeling of PTC and PEHF includes
an objective function which is a linear combination of the correspond-
ing criteria. However, by setting the weight of one of the criteria in
such a way that it dominates completely the other criteria, then the
criteria are considered in lexicographical order.

• Determination by lexicographical approach. In a lexicographical
approach, the criteria are optimized one after the other. This means
that once the first criterion is optimized, the second is then optimized
while inhibiting the first to be degraded and so on. In this case, the γ
field is defined as: Lex(Z1, . . . , ZK) (Lexicographic).

• Determination by means of the ǫ-constraint approach. Only
one criterion Zu is optimized in this approach, where all other criteria
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are taken as constraints bounded by a certain value. In this approach,
the γ field is defined as: ǫ(Zu|Z1, . . . , Zu−1, Zu+1, . . . , ZK).

• Determination by the goal-programming approach. This ap-
proach aims at finding a solution that satisfies the objectives for each
criterion. In this case, the γ field is defined as: GP (Z1, . . . , ZK).

More methods and details are provided in T’Kindt and Billaut (2006),
where the authors cover the theory, models and algorithms of multicriteria
scheduling. In this chapter, we focus on the determination of Pareto optima
by linear combination of criteria. We believe that these coefficients are more
realistic for industrial purposes since the decision maker can choose different
weights for each criterion of the objective function. Consequently, the ease
of implementation this method is also a strong motivation.

3.4 Scheduling Job Families on Non-Identical

Parallel Machines with Time Constraints

(PTC)

3.4.1 Definition of PTC

Let us recall that, in PTC lots (jobs) of different product types (job family)
are scheduled on parallel machines, where not all machines are able to pro-
cess all job families (non-identical machines). We consider a time constraint
on jobs of the same family, i.e. the time interval between two consecutive
jobs of the same family should be smaller than a given time threshold. As
mentioned in the previous section, this constraint is inspired from the needs
of APC systems, and in particular Run-To-Run (R2R) control loops for a
given product type on a machine, that require to regularly collect data for
product types on machines. We assume in our problem that this qualification
run cannot be performed within the scheduling horizon. The problem be-
comes more complicated, since the assignment of jobs to machines is critical
to avoid qualification runs.

Our objective is to schedule, on a horizon discretized in T periods, a set
N of jobs of different families on a set M of parallel machines. The set of
job families is denoted F , and f(i) is the family of job i. We assume that
the processing times pf of all jobs in family f are equal. Machines are not
qualified to process all jobs families. The qualification of a machine may be
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lost at a certain point in time due to a change in the level of confidence on the
machine. A setup time sf ′ on a machine is necessary to change from one job
of a family f to another job of family f ′, where f 6= f ′. Finally, Run-To-Run
control constraints are considered through a parameter γf , which corresponds
to the maximum time interval (called time threshold in the sequel) between
the processing of two jobs of family f on a qualified machine. Usually, if
this constraint is not satisfied, a qualification run will be required to qualify
again the machine for f . In the sequel, we consider that the machine will
not be available to process any job of family f if the qualification cannot
be maintained. The objective is to optimize a scheduling criterion, the sum
of the completion times, while minimizing the number of disqualifications of
families on machines, i.e. a bicriteria scheduling problem. According to the
α|β|γ notation introduced to classify scheduling problems by Graham et al.
(1979), this problem is noted Pm|STsi,b|

∑
Cj.

3.4.2 Notations

Parameters:

The parameters are:

T : Number of periods in the time horizon,
N : Set of jobs,
M : Set of machines,
F : Set of job families,
M(f): Set of qualified machines to process jobs in family f
(M(f) ⊂M),
pf : Processing time of jobs in family f ,
sf : Setup time of jobs in family f ,
γf : Time threshold for job family f ,
f(i): Job family of job i (f(i) ∈ F ).

Decision variables

The decisions variables are:

xm
i,t = 1 if job i starts at period t on machine m, and 0 otherwise,

Ci: Completion time of job i,
ymf,t = 1 if the time threshold is not satisfied for family f on
machine m at period t, i.e. a qualification run is required, and 0
otherwise.
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It is important to recall that, if the time threshold γf is not satisfied for
job family f on machine m, the qualification run required on machine m
cannot be performed within the time horizon. In this case, we suppose that
no job of family f can be processed on m. Moreover, these notations are still
valid when modeling PEHF . Additional notations will later be defined.

3.4.3 Complexity

Let us recall that a machine is said to be qualified to process a given job fam-
ily if it satisfies the necessary conditions to process this job. Our problem
consists of the scheduling of |F | job families, where |F | is the cardinal of the
set of job families F , on M non-identical parallel machines (each machine
has its own qualifications), with sf as the setup time of family f ∈ F and
pf as the associated processing time. A time interval is associated to each
family during which at least one job of this family must be scheduled. We
call this time constraint threshold. The value of the family threshold is given
by γf , and nf is the number of jobs in family f . Initially, we must send a
job of family f to a qualified machine m during the interval [0, γf ]. Other-
wise, the machine will not be available anymore to process such a job family
(the machine is disqualified). The objective function of our problem is a bi-
criteria one, in which we aim to minimize both the sum of completion times
of families (

∑
Cf ) and the number of machine disqualifications represented

by (
∑

Yf ).

Case of parallel machines

Let us consider the following particular case of our problem where the setup
time is set to zero for all job families (sf = 0, ∀f ∈ F ). The threshold as-
sociated to each job family defined by γf is considered as the deadline df of
a given family. Let us recall that all jobs of a family have the same dead-
line (threshold). The deadlines (thresholds) of all families are considered to
be equal to the time horizon, i.e. df = γf = T, ∀f ∈ F . We assume that
all machines are qualified to process all job families. Hence, the qualifica-
tion part in the objective function has no effect, and the objective function
becomes the classical known function of minimizing the sum of completion
times. Moreover, the machines are identical in terms of qualifications. There-
fore, the problem is reduced to scheduling n jobs on m machines, with pf as
the processing time of job family f , and (

∑
Cf ) as the objective function.

Webster (1997) proved that this problem is unary NP-hard, and therefore,
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our problem is NP-hard.

Case of a single machine

Another special case that could be deducted is the case of a single machine
with time lags. Kum (1992) performs a thorough analysis of scheduling prob-
lems on one machine with generalized precedence constraints. Wikum et al.
(1994) show that the problem of single machine scheduling with maximum
delays, precedence constraint and minimizing the sum of completion times, is
NP-hard in the strong sense. The proof is based on a reduction of a problem
studied in Kum (1992). A summary of the complexity of scheduling problems
with delays is given in Table 3.1.

Table 3.1: Complexity classification of min/max, precedence constrained
scheduling problem with completion time objective function

Type of Delays Objective Function Complexity
min delays

∑
Cj O(k3lgk)

min delays
∑

wjCj NP-Hard
max delays

∑
Cj NP-Hard in the strong sense

By taking the completion time as an objective function while considering
that all machines are qualified, setting family thresholds as the maximum
time lag per family (jobs are grouped in families), and considering only the
case of a single machine, we find that the problem discussed above is a
particular case of our problem.
Below, we consider an instance of PTC and show that it is equivalent to a
general instance of the problem described in Wikum et al. (1994).

NP-hardness We prove the NP-completeness of PTC by polynomial trans-
formation from the problem of Maximum Delay Precedence constraints with
total completion time -MDP (1|max delays, k 1-chains|

∑
Cj which is proved

to be NP-hard in [Kum (1992),Wikum et al. (1994)]). In what follows, we
provide an instance of our problem:

INSTANCE: A set of jobs N = {1,. . . ,n}, grouped in f ≥ 2
families and F is the set of families such that F = {1,. . . ,f},
processing requirement pk ∈ Z+

0 ∀ k ∈ F (where ∀i, j ∈ N , f(i) =
f(j) implies p(i) = p(j) i.e., jobs of the same family have the
same processing time), family thresholds γk for k ∈ {1,. . . ,f},

79



Chapter 3. Scheduling with Time Constraints and Equipment
Health Factor

setup times of families sk for k ∈ {1,. . . ,f}. One single qualified
machine m which is qualified to process all family types, and a
positive integer B.

QUESTION: Is there a one-machine schedule for N that places
all the jobs such that any two consecutive jobs of the same family
are not separated by more than γf , and such that the sum of
completion times, is equal or less than B (

∑
j∈N Cj ≤ B)?

PTC is in NP since one can check in polynomial time if a schedule has
a sum of completion times less than or equal to B and satisfying that two
consecutive jobs of a same family are separated by at most γf . The NP-
completeness of PTC is proved by polynomial transformation from theMDP
problem (Kum (1992)). Below a general instance of MDP :

INSTANCE: Job set J = {J1, . . . , Jk}
⋃
{∗}, processing require-

ment pj ∈ Z+
0 ∀Jj ∈ J , precedence relation P on J of the form P

= {〈Jj, ∗〉, j = {1,. . . ,k}}, maximum delays uj for j = 1, . . . , k,
where each delay is either infinite or a non negative integer, and
a positive integer Y .

QUESTION: Is there a one-machine schedule for J (i.e., a func-
tion σ : J → Z+

0 ) that satisfies the maximum delay precedence
constraints (i.e., σ(∗)− Cj(σ) ≤ uj, where σ(∗) is the start date
of the last job, Cj(σ) = σ(j) + pj ∀j = 1, . . . , k) and such that
the sum, taken over all Jj ∈ J , of Cj(σ) is Y or less?

Theorem 1. Problem PTC is NP-complete.

Proof. An instance of PTC leads to a general instance of MDP as follows:

- J = F , i.e. the set of jobs is the set of families when there is only one
job per family,

- pj = pf , ∀j ∈ J ,

- sf = 0, ∀f ∈ F ,

- uj = γf , ∀j ∈ J ,

- Y = B.
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Suppose there is a “Yes” answer for PTC. Without loss of generality, we
impose precedence constraints on jobs in each family. This will not change the
characteristic of the problem since all jobs of the same family have the same
processing time and jobs which belong to the same family are interchangeable.
In addition, whenever the time threshold γf is respected, it ensures that
the maximum delay precedence constraints (i.e., σ(∗) − Cj(σ) ≤ uj, where
Cj(σ) = σ(j)+ pj ∀j = 1, . . . , k) is satisfied (uj = γf ), and therefore a “Yes”
answer to MDP .

3.4.4 Mathematical programming models

In this section, mathematical programming models to tackle PTC are intro-
duced. A job based mathematical model and a family based mathematical
model are presented. The evolution of the family based mathematical model
is discussed and the final model is given. The objective function for PTC is
to minimize a scheduling criterion (sum of completion times) and a control
criterion (sum of losses in machine qualifications).

Job-based model (IP1)

A first model (IP1) can be written as follows, where each job i is considered
separately:

∑

m∈M(f(i))

T−pf(i)+1∑

t=1

xm
i,t = 1 ∀i ∈ N (3.3)

∑

m∈M(f(i))

T−pf(i)+1∑

t=1

t.xm
i,t + pf(i) ≤ Ci ∀i ∈ N (3.4)

∑

i∈N ;f(i)=f

t∑

τ=t−pf(i)+1

xm
i,τ ≤ 1 ∀t = 1 . . . T, ∀f ∈ F, ∀m ∈ M(f) (3.5)

t∑

τ=t−pf(i)−sf(j)+1

xm
i,τ +

t∑

τ=t−pf(j)−sf(i)+1

xm
j,τ ≤ 1 ∀t = 1 . . . T, ∀(i, j) ∈ N ×N s.t.

f(i) 6= f(j),∀m ∈ M(f(i)) ∩M(f(j))(3.6)

∑

i∈N ;f(i)=f

t∑

τ=t−γf+1

xm
i,τ + ymf,t = 1 ∀f ∈ F, ∀m ∈ M(f), ∀t = γf . . . T (3.7)

ymf,t−1 ≤ ymf,t ∀t = 2 . . . T, ∀f ∈ F, ∀m ∈ M(f) (3.8)

xm
i,t ∈ {0, 1} ∀t = 1 . . . T, ∀i ∈ N, ∀m ∈ M(f(i)) (3.9)

ymf,t ∈ {0, 1} ∀f ∈ F,m ∈ M(f) (3.10)

Constraint (3.3) guarantees that each job is scheduled once and only once on
a machine in the scheduling horizon. Constraint (3.4) is used to determine
the completion time of each job. Constraints (3.5) and (3.6) model the fact
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that only one job is processed at a time on a machine. Constraint (3.5) is
written for jobs of the same family, i.e. for which no setup time is required,
whereas Constraint (3.6) is associated to pairs of jobs of two different families
for which setup times are necessary. Constraint (3.7) ensures that either the
time threshold is always satisfied for a job family f qualified on machine m,
or a qualification run is necessary, i.e. ymf,t = 1. Constraint (3.8) guarantees
that, if a machine is disqualified at period t, then it is also disqualified in the
following periods. Constraints (3.9) and (3.10) force variables xm

i,t and ymf,t to
be binary.

When analyzing the problem, it is possible to see that, since there are no
release dates on jobs and jobs of the same family have the same processing
time, all jobs in a family can be interchanged in an optimal solution. Let
us denote by xm

f,t the decision variable that takes value 1 if a job of family
f starts at period t on machine m and 0 otherwise, nf the number of jobs
in family f , and Cf the sum of the completion times of jobs in f . Model
IP2 below is equivalent to IP1. Numerical tests were conducted to show
that the family based model IP2 dominates the job based model IP1 in
terms of execution times. In Chapter 4, numerical experiments conducted
on both models are presented. The results in Chapter 4 shows that, for a set
of generated instances, IP2 solves on average the instances 10 times faster
than IP1. The results also show that the maximum number of jobs that can
be treated is 30 for IP1, and 70 for IP2.

Family-based model (IP2)

∑

m∈M(f)

T−pf+1∑

t=1

xm
f,t = nf ∀f ∈ F (3.11)

∑

m∈M(f)

T−pf+1∑

t=1

(t+ pf − 1)xm
f,t ≤ Cf ∀f ∈ F (3.12)

t∑

τ=t−pf+1

xm
f,τ ≤ 1 ∀t = 1 . . . T, ∀f ∈ F, ∀m ∈M(f) (3.13)

t∑

τ=t−pf−sf′+1

xm
f,τ + nf .x

m
f ′,t ≤ nf ∀t = 1 . . . T, ∀(f, f ′) ∈ F × F (3.14)

s.t. f 6= f ′, ∀m ∈M(f) ∩M(f ′)
t∑

τ=t−γf+1

xm
f,τ + ymf,t ≥ 1 ∀f ∈ F, ∀m ∈M(f), ∀t = γf . . . T (3.15)

ymf,t−1 ≤ ymf,t ∀t = 2 . . . T, ∀f ∈ F, ∀m ∈M(f) (3.16)
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xm
f,t ∈ {0, 1} ∀t = 1 . . . T, ∀f ∈ F, ∀m ∈M(f) (3.17)

ymf,t ∈ {0, 1} ∀t = 1 . . . T, ∀f ∈ F,m ∈M(f) (3.18)

Constraint (3.11) ensures that nf jobs are scheduled for family f , and
Constraint (3.12) is used to determine Cf . Note that Cf in (IP2) is equal
to

∑
i∈N Ci, where f(i) = f , and hence Constraints (3.13) and (3.14) are

equivalent to Constraints (3.5) and (3.6). The number of binary variables
in (IP2) is greatly reduced compared to the number of binary variables in
(IP1). For each family f , the number of binary variables x is divided by nf .

Evolution of IP2

Constraint (3.15) is initially written in our first models as:

t∑

τ=t−γf+1

xm
f,τ + ymf,t = 1∀f ∈ F, ∀m ∈M(f), ∀t = γf . . . T. (3.19)

After testing and analyzing the models, it became obvious that this equa-
tion is wrong since it forces only one job of family f to be scheduled between
t−γf +1 and t or a qualification run to be done. However, in our hypothesis,
at least one job should be scheduled and not only one job. Hence, Constraint
(3.15) is now used, where at least one job of a given family is scheduled dur-
ing an associated time threshold and not necessarily one job.
Moreover, after studying and examining IP2, and after a significant period
of test and validation of this model, we saw that this model is strongly depen-
dent on the time horizon associated to each test instance. IP2 loses machine
qualifications even after Cmax, i.e. the maximum completion time of all jobs,
when no jobs are scheduled. More precisely, Constraint (3.16) is dependent
on the time horizon (ymf,t−1 ≤ ymf,t). To avoid losing a machine qualification, it
is necessary to maintain this qualification on the machine from period 1 to T .

However, it is more relevant to consider a model where the number of
machine qualification losses at the end of time horizon T , i.e.∑

f∈F

∑
m∈M(f) y

m
f,T , is independent of the time horizon. In order to do this,

Constraint (3.16) was first changed to:

ymf,t−1 − 1 +
1

T − (t− 1)

T∑

τ=t

∑

f ′∈F

∑

m′∈M(f ′)

xm′

f ′,τ ≤ ymf,t (3.20)

∀t = 2 . . . T, ∀f ∈ F, ∀m ∈M(f) (3.21)
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It is no longer necessary to maintain a qualification on the machine if no job
is started on any machine in the remainder of the horizon, i.e.

1
T−(t−1)

∑T
τ=t

∑
f ′∈F

∑
m′∈M(f ′) x

m′

f ′,τ = 0. Hence, the number of machine qual-

ification losses does not depend on T (if T is large enough). Nevertheless,
while testing IP2 with this new constraint, we saw that, although the number
of machine qualification losses is no longer dependent on the time horizon,
it still depends on the makespan Cmax, i.e. the number of machine qualifica-
tion losses is still being counted between the completion time on a machine
and the makespan. To handle this problem, we propose a new version of
Constraint (3.16) where Y m

f is a variable which is equal to 1 if the time
threshold is not satisfied for family f on machine m at the end of horizon,
and 0 otherwise. Hence, Constraint (3.16) becomes:

ymf,t−1 − 1 +
1

T − (t− 1)

T∑

τ=t

∑

f ′∈F

∑

m′∈M(f ′)

xm′

f ′,τ ≤ Y m
f (3.22)

∀t = 2 . . . T, ∀f ∈ F, ∀m ∈M(f) (3.23)

Although only Constraint (3.29) is new in IP3 below compared to IP2, all
other constraints are recalled.

Family-based model (IP3)

∑

m∈M(f)

T−pf+1∑

t=1

xm
f,t = nf ∀f ∈ F (3.24)

∑

m∈M(f)

T−pf+1∑

t=1

(t+ pf − 1)xm
f,t ≤ Cf ∀f ∈ F (3.25)

t∑

τ=t−pf+1

xm
f,τ ≤ 1 ∀t = 1 . . . T, ∀f ∈ F, ∀m ∈ M(f) (3.26)

t∑

τ=t−pf−sf′+1

xm
f,τ + nf .x

m
f ′,t ≤ nf ∀t = 1 . . . T, ∀(f, f ′) ∈ F × F (3.27)

s.t. f 6= f ′, ∀m ∈ M(f) ∩M(f ′)

t∑

τ=t−γf+1

xm
f,τ + ymf,t ≥ 1 ∀f ∈ F, ∀m ∈ M(f), ∀t = γf . . . T(3.28)

ymf,t−1 − 1 +
1

T − (t− 1)

T∑

τ=t

∑

f ′∈F

∑

m′∈M(f ′)

xm′

f ′,τ ≤ Y m
f ∀t = 2 . . . T, ∀f ∈ F, ∀m ∈ M(f) (3.29)

xm
f,t ∈ {0, 1} ∀t = 1 . . . T, ∀f ∈ F, ∀m ∈ M(f) (3.30)

ymf,t ∈ {0, 1} ∀t = 1 . . . T, ∀f ∈ F,m ∈ M(f) (3.31)

Y m
f ∈ {0, 1} ∀f ∈ F,m ∈ M(f) (3.32)

In Constraint (3.29), it is no longer necessary to maintain a qualification
on the machine if no job is started on any machine in the remainder of the
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horizon, i.e. 1
T−(t−1)

∑T
τ=t

∑
f ′∈F

∑
m′∈M(f ′) x

m′

f ′,τ = 0. Hence, the number of

machine qualification losses does no longer depend on T (if T is large enough)
or on Cmax. Constraint (3.32) ensures that variable Y m

f is binary.

Objective function

Two types of criteria can be considered. The first type corresponds to clas-
sical scheduling criteria such as minimizing the sum of completion times∑

i∈N Ci (or equivalently
∑

f∈F Cf in Models IP2 or IP3) or the makespan
Cmax. The second type is associated to the number of disqualifications∑

f∈F

∑
m∈M(f) Y

m
f (weights could be considered to differentiate between job

families wf or machines wm). Our objective function is a weighted sum of
both types of criteria: α

∑
Cf + β

∑
Y m
f , where α and β are weights that

model the trade-off between both criteria. However, it seems more realistic
to consider a lexicographical order where the number of qualification runs
is prioritized over a pure scheduling criterion, i.e. β is chosen large enough
compared to α (α = 1, β = |N | ∗ T ), so that improving the scheduling
criterion is not preferable to an additional disqualification.

3.5 Scheduling with Equipment Health Fac-

tor (PEHF )

3.5.1 Motivations

We recall that in chapter 2, the idea of scheduling with Equipment Health
Factor (EHF ) was addressed. In this section, we try to take a further look
at the possible approaches that can be used. Although rarely addressed and
studied in the literature, we can still find some articles which address EHF.
Chen and Wu (2007) develop a new method to determine an effective Pre-
ventive Maintenance (PM) scheduling policy based on real-time observations
of equipment condition. They use the multivariate process capability index
to integrate the equipment multiple parameters into an overall equipment
health factor, and then a dynamic PM schedule was determined based on
the health prognosis. On the other hand, Guo et al. (1998) presented an
integrated real-time equipment monitoring and fault detection approach for
chemical vapor deposition tools. This approach includes: simultaneous mon-
itoring scheme (dartboard display of real-time data that provides an easy
reading of the equipment overall status), system health factor (index that
evaluates the equipment overall health), and analysis functions (including
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various charting functions, real-time SPC, Run-to-Run SPC, and other ad-
vanced SPC functions). Their results show that the proposed system is an
effective tool for real-time monitoring and fault detection. Moreover, based
on the idea of integrating APC information in scheduling methodologies in
semiconductor manufacturing, another possible implementation concerning
the usage of EHF is proposed by us. The principle is to assign lot fami-
lies of different priority/criticality levels, in terms of risk of losing these lots,
to machines with various health factors. Figure 3.4 summarizes our idea,
where decision of assigning lots to machines with different criticality levels
for both, is not necessarily obvious especially when trying to optimize a given
risk criterion. We propose that the Equipment Health Factors (EHF) for all
machines are defined and known.

Figure 3.4: Scheduling with EHF

Based on Figure 3.4, two possible scenarii of assignment of a lot to ma-
chines could be found. In the first scenario, the lot with average risk level is
sent to tool 1 with the worst EHF, and the two other high critical lots to tool
2 with a healthy factor. In this case, we may lose the lot sent to tool 1 due
to the incompatibility between both factors (lot/machine). This situation is
shown in Figure 3.5. Another scenario is also shown where all lots are sent
to the equipment with the best EHF. However, by doing this, the makespan
will be higher than in the first scenario. On the other hand, the risk of losing
lots will be minimized. Hence, we can see the trade-off between these two
objective criteria. Therefore, a new interesting field of research would be to
look for solutions of this problem.

The problem becomes more and more complex if we take into account
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Figure 3.5: Various lot-to-tool assignment

lot families of different risk levels (criticalities), to be assigned to tools with
different EHFs. Figure 3.6 describes the situation where lots of different
families with various risk levels should be sent to tools with different EHFs.
The decision problem becomes interesting when each assignment/choice is
associated to a corresponding risk value, which in its turns could be translated
into a cost, a yield and/or a probability of losing a lot/wafer or even chips
on this wafer. The question lies in how we present this risk, and what are
the possible models which are relevant and efficient. The next section tries
to answer these questions.

3.5.2 Risk modeling

Risk is considered as probability and severity in Razzaghi and Kodell (2004).
Hubac et al. (2010) study risk assessment and evaluation methods in semicon-
ductor manufacturing. They address the benefits of supporting PM policies
by information from APC system. However, They discuss the risk associated
to an equipment. In our case, we are looking to model and evaluate the risk
related to assigning a job/lot to a tool based on its EHF. We believe this risk
can be evaluated in our opinion based on EHF which describes the state of
an equipment as a dominant parameter, as well as an indicator associated to
the job/lot itself, which describes the severity/criticality level corresponding
to the job family.

We propose several ways to model risk, which are shown in Figure 3.7.
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Figure 3.6: General scenario: Various families and different risk levels.

Figure 3.7: Various risk models

1. The risk can be represented as a percentage of loss of chips on a lot.
This means the the decision of send a certain job family on a given machine,
induces a certain percentage p of loss in chips on this lot/job. This percent-
age could be predefined in a fixed matrix where the values are fixed for (job
family,machine).

2. We may also consider that these values change over time (related to
the machine reliability level). This case will not be considered in this the-
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sis. We will assume that the risk of assigning a lot to a given machine is
taken from the master matrix of risks that gives the value of risk (percentage
of loss, expected yield, etc) which corresponds to the family of each job to
each machine. Table 3.2 describes a master matrix, from where risks in their
different possible forms corresponding to an assignment of a job family to a
machine, can be deducted.

3. Another way to represent the risk of assigning a job to a machine is to
consider the probability of loss and not the percentage itself. In both cases,
the objective will be to minimize the sum of percentages and/or probabilities
of loss.

The values v(f,m) in Table 3.2 can also represent the expected yield that
results from an assignment. In this case, the objective will be to maximize
the yield while minimizing the sum of completion times and the sum of
machine disqualifications. Moreover, we can for sure represent the risk as a
cost corresponding to an assignment.

In PTC, when a machine is disqualified for a given job family, it is no
longer possible to assign any job of that family. In this context, the new pro-
posed problems of scheduling with EHF extend PTC, by considering that
it is no more a matter of complete qualification or disqualification, but a
qualification with a certain risk resulting from scheduling job families of a
given criticality on full or semi qualified machines. We can look to machine
qualifications in this case as levels of reliability and eligibility represented by
risk values associated to each job family to machine assignment. In other
words, a machine m is considered as qualified to process a job of a certain
family f if the risk of associating this job family to this machine v(f,m) is
greater than a predefined risk threshold vmax(f,m). In what follows, we keep
both concepts of machine qualifications and the risk obtained related to an
assignment. We assume that, whenever a machine is qualified, lots can be
scheduled on it regardless of the risk value, i.e. machines are already dis-
qualified for high risk values or low expected yields. This hypothesis is based
on the fact that PEHF is considered as a natural extension of PTC, and
to keep on the concept of machine qualifications related to time constraints.
Also, keeping on both concepts gives us the flexibility to freely define the
value of v(f,m) to be either a yield which should be maximized or a proba-
bility of loss to be minimized.

From the reasons above, we decided to use two possible representations
of the risk value:
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Table 3.2: Family-Machine assignment matrix
Machine EHF

Family X Y Z
F1 v(F1, X) v(F1, Y ) v(F1, Z)
F2 v(F2, X) v(F2, Y ) v(F2, Z)
F3 v(F3, X) v(F3, Y ) v(F3, Z)

• vmax(f,m) represents the probability of losing the chips or wafers and
hence the probability of discarding a lot. This approach of risk is
detailed in Section 3.5.4.

• vmax(f,m) corresponds to the expected yield resulting from a family to
machine assignment. This is more detailed in Section 3.5.5.

3.5.3 Problem definition

We recall that PTC is the problem of scheduling of lots (jobs) of different
product types (job family) on parallel machines, where not all machines are
able to process all job families (non-identical machines). PEHF could be
seen as a normal extension to PTC where, to the time constraint on jobs of
the same family, we add the notion of risk of assigning job families to ma-
chines. The problem becomes more complicated, since the assignment of jobs
to machines is critical to avoid qualification runs on one hand, and on the
other, should sometimes be avoided to minimize/maximize the probability
of loss/expected yield associated to the assignment.

Consequently, the problem becomes scheduling, on a time horizon dis-
cretized in T periods, a set N of jobs of different families on a set M of
parallel machines. We recall that the processing times pf of all jobs in family
f are equal and that a setup time s′f on a machine is necessary to change from
one job of a family f to another job of another family f ′, where f 6= f ′. Once
again, the time constraint is considered through the parameter γf , which cor-
responds to the time threshold. The parameter vmf represents in this case the
probability of loss. The objective is to optimize a multi-criteria scheduling
problem (sum of completion times, sum of losses in machines qualifications,
and sum of probability of loss in lots or sum of expected yield ). Regarding
the sum of probability of loss, we can distinguish two cases:
• Case A. The sum of probability of loss is the sum over all families and
machines PMax (independent of families) to be determined. This repre-
sents the maximum allowed sum of probability of loss when scheduling
all jobs on all machines.

90



3.5 Scheduling with Equipment Health Factor (PEHF )

• Case B. The sum of probability is family dependent, i.e. each family
admits a PMax

f to be determined. This variable represents the maxi-
mum allowed sum of probability of loss for each family f .

3.5.4 First approach: risk as a probability of loss

To represent the problem of scheduling with constraints of probability of
loss, the next section addresses the different possibilities of implementation
of the notion of risk seen as a probability of loss in our PTC, hence obtaining
different possibilities of presenting PEHF in terms of mathematical models.

Mathematical programming model (IP4)

Notations We use the same notations that in section 3.4.2. Some new
parameters and variables are introduced:

Parameters

vmf : Risk value (yield as well as probability of loss) of assigning
a job of family f to machine m,
wf : Weight of family f . In this thesis, we consider that all weights
are equal (wf = wf ′ , ∀(f, f ′) ∈ F × F )

Variables

PMax
f : Maximum sum of probability of loss of jobs per family f ,

PMax: Maximum sum of probability of loss of scheduling all jobs
on all machines.

Model (IP4) below shows the integration of the sum of probability of loss
related to machines EHF in PTC (Case A). The objective function in this
case should include the notion of probability of loss to be minimized. This
objective function is:

min (α
∑

f∈F

Cf + β
∑

f∈F

∑

m∈M

Y m
f + γPMax) (3.33)

This insures that the decision of assigning a job family to a certain ma-
chine is not only related to the time threshold, but also to the cost related
to machines EHF .
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Mathematical model with sum of probability of loss (IP4)

∑

m∈M(f)

T−pf+1∑

t=1

xm
f,t = nf ∀f ∈ F (3.34)

∑

m∈M(f)

T−pf+1∑

t=1

(t+ pf − 1)xm
f,t ≤ Cf ∀f ∈ F (3.35)

t∑

τ=t−pf+1

xm
f,τ ≤ 1 ∀t = 1 . . . T, ∀f ∈ F, ∀m ∈ M(f)(3.36)

t∑

τ=t−pf−sf′+1

xm
f,τ + nf .x

m
f ′,t ≤ nf ∀t = 1 . . . T, ∀(f, f ′) ∈ F × F (3.37)

s.t. f 6= f ′, ∀m ∈ M(f) ∩M(f ′)

t∑

τ=t−γf+1

xm
f,τ + ymf,t ≥ 1 ∀f ∈ F, ∀m ∈ M(f), ∀t = γf . . . T(3.38)

ymf,t−1 − 1 +
1

T − (t− 1)

T∑

τ=t

∑

f ′∈F

∑

m′∈M(f ′)

xm′

f ′,τ ≤ Y m
f ∀t = 2 . . . T, ∀f ∈ F, ∀m ∈ M(f)(3.39)

∑

f∈F

∑

m∈M(f)

T∑

t=1

x
m

f ,tv
m

f
≤ P

Max (3.40)

xm
f,t ∈ {0, 1} ∀t = 1 . . . T, ∀f ∈ F, ∀m ∈ M(f)(3.41)

ymf,t ∈ {0, 1} ∀t = 1 . . . T, ∀f ∈ F,m ∈ M(f) (3.42)

Y m
f ∈ {0, 1} ∀f ∈ F,m ∈ M(f) (3.43)

PMax ≥ 0 (3.44)

Constraint (3.40) helps to determine the maximum allowed possible total
sum of probability of loss resulting from the assignment of job families to
machines and its associated cost (

∑
m∈M(f)

∑T
t=1 x

m
f,tv

m
f ).

Case B considers the maximum allowed sum of probability of loss per family
f (PMax

f ). This is done by modifying Constraint (3.40) to become:

∑

m∈M(f)

T∑

t=1

xm
f,tv

m
f ≤ PMax

f , ∀f ∈ F (3.45)

Consequently, the objective function becomes:

min (α
∑

f∈F

Cf + β
∑

f∈F

∑

m∈M

Y m
f + γ

∑

f∈F

wfP
Max
f ) (3.46)
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3.5.5 Second approach: maximizing yield as an objec-
tive

In this case, the value of vmf is considered as the expected yield resulting
from an assignment of a job of family f to a machine m. The objective
function includes three criteria which are the sum of completion times, the
number of machine disqualifications and the sum of the expected yield. We
propose a weighted sum of these three criteria in our objective function.
Equation (3.47) represents the objective function to be maximized with the
same constraints that model IP3. IP5 corresponds to IP3 with the next
objective function:

max (γ
′
∑

f∈F

∑

m∈M

T∑

t=1

wfx
m
f,tv

m
f − (α

′
∑

f∈F

Cf + β
′
∑

f∈F

∑

m∈M

Y m
f )) (3.47)

3.6 Conclusion

In this chapter, we have discussed two new problems which address the in-
tegration of scheduling and APC. Concerning the scheduling aspect, these
problems are the scheduling of job families on non-identical parallel machines
under special constraints, i.e. with time constraints in PTC, and with EHF
in PEHF . Simulation on test instances for exact methods and further anal-
ysis are elaborated in the next chapter (Chapter 4). Development of solution
approaches (heuristics and metaheuristics) are addressed in Chapter 5.
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Chapter 4

Numerical experiments on
Mathematical Programming
Models

4.1 Introduction

The problem of scheduling with APC constraints represented by a time con-
straint (PTC) is numerically analyzed in this chapter. Also, the results
of simulations on the problem of scheduling with Equipment Health Factor
(PEHF ) are shown. The tests are conducted on randomly generated in-
stances by an instance generator that was developed for this reason.

Models (IP1, IP2, IP3 and IP5) are tested using a standard solver
(Xpress-MP), on an Intel Xeon processor of 2.50 GHz and 3 GB of RAM.
Exact solutions are obtained for several types of instances that were gener-
ated with 10, 20, 30, 40, 50, 60, 70 and 80 jobs, 2, 3, 4 and 5 families, 2, 3,
4 and 5 machines, and upper bounds on processing times of 10, 20 and 30.
The objective function is considered as a weighted combination of different
criteria (α

∑
Cf + β

∑
Y m
f for PTC and γ

′ ∑
f∈F

∑
m∈M

∑T
t=1 wfx

m
f,tv

m
f −

(α
′ ∑

f∈F Cf + β
′ ∑

f∈F

∑
m∈M Y m

f )) for PEHF ). First, the values of the
weights are varied in order to study their effect on each criterion of the ob-
jective function (determination by linear combination of criteria). Examples
on an ǫ-constraint Pareto optima method are also provided. In addition, the
weights are considered to prioritize one criterion over other criteria in a lexi-
cographical order. Let us recall that multicriteria optimization in scheduling
and the choice of the objective function is addressed in Chapter 3. The exe-
cution time for all models and each instance are limited to 600 seconds.
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The rest of this chapter is organized as follows. In Section 4.2, instance
generation characteristics are described. Section 4.3 provides the obtained
numerical values of exact methods when solving models IP1, IP2 and IP3
for PTC and IP5 for problem PEHF . Both problems are analyzed in Sec-
tion 4.4 regarding their objective functions (PTC and PEHF ), impact of
threshold variations and Pareto frontiers (PTC). Section 4.5 concludes this
chapter.

4.2 Instances generation and characteristics

4.2.1 Instance generation

To test the mathematical programming models for problems PTC and PEHF
and the heuristics in Chapter 5, test instances were randomly generated. The
different parameter values to generate the instances were chosen so that the
basic problem pre-requisites are respected.
For both problems, the time thresholds of job families were set sufficiently
large with respect to their associated processing times. This was done to
give a minimal bias to find a solution, since short thresholds may lead to
a very fast loss in machine qualifications. Hence, it will not be possible to
process all available jobs, since jobs cannot be sent to disqualified machines
based on our hypothesis. We consider that Max(pf ) ≤ Min(γf ). The initial
family/machine qualification scheme was defined so that each family has at
least one machine on which it can be processed, and each machine is quali-
fied to process at least one job family. This is to inhibit a direct infeasible
solution of a given instance. Setup times were not chosen too large so as
the probability of losing a machine qualification due to a set-up time inser-
tion is acceptable. We consider that Max(sf ) ≤ Min(pf ). In addition, the
time horizon was taken as the sum of all processing times, plus the setup
time multiplied by the number of jobs per family. This is an extreme case
where all jobs are scheduled on one single machine and where, each time a
job is scheduled, a setup time is required (T =

∑
f∈F nf ∗ (pf + sf )). The

instances/instance types were chosen to consider the possible effects of the
number of jobs, families, machines and also the upper bound of the family
processing times.
In addition, the value of vmf i.e., the expected yield resulting from an as-
signment of a job of family f to a machine m, is considered to be dominant
per machine. This means that, whenever a machine m∗ is healthier than
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m′, then the yield obtained when assigning any job family f to m∗ is better
than when assigning the same job family f to any other machine m′, i.e.
vm

∗

f ≥ vm
′

f , ∀f ∈ F . This hypothesis is strong, it prioritizes the Equipment
Health Factor on any other factor as for example the criticality of the pro-
cessed family/lot as noted in Chapter 3. We believe that this hypothesis
added to the existence of the time threshold γf related to job families, add
more importance to EHF by making the consequence of a scheduling decision
(assigning a machine to a job family) more machine based/dependent. On
the other hand, the notion of the lot/wafer family criticality index (LCI) is
still considered while defining the values of the resulting yield vmf where vmf
= f(EHF,LCI).

4.2.2 Instance characteristics

In the sequel, the studied instances represent the types of instances. Each
type is a group of 10 instances, the values of the parameters are generated
following the Gaussian law, and the results are taken as an average of these
instances. In addition, the mean values of the sum of completion times and
those of the yield are rounded up to the nearest integer since they are suffi-
ciently large to notice the difference when comparing them for different ob-
jective functions. The mean values of the number of setups are also rounded
up to the nearest integer since it is not a direct objective and it is related to
the sum of completion times. Moreover, the percentage of obtained optimum
solutions (over 10 instances), for each instance type, is also provided. The
average value of the sum of losses in machine qualifications, also found in the
sequel to be the total number of machine disqualifications, is also provided.

Table 4.1 provides the characteristics of the tested instance types. In the
first column, each instance type is indexed by a number (No.). These rep-
resentative instance types summarize different possibilities of combinations
between the number of jobs |N | (second column), number of machines |M |
(third column) and number of families |F | (fourth column). The bounds on
the processing times are of a remarkable importance since the time horizon
T (column 8) is a function of this parameter. While solving a time indexed
mixed integer linear programming model, the resolution time is dependent
on the given time horizon and hence on these predefined bounds. In column
5, “Max.(pf )” represents the upper bound of the generated processing times
of all families in a given instance (pf , ∀f ∈ F ). The maximum possible sum
of machine-family qualifications |M | ∗ |F | is given in Column 6. The initial
sum of qualified machines for all families

∑
f |Mo(f)| of a given instance is

provided in Column 7. This value helps in knowing the percentage of the
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initial sum of qualified machines for all families with respect to the maximum
possible number of qualified machines (all machines are qualified to process
all families). This value is rounded up to nearest the integer.

4.3 Solving the mathematical programming

models

In this section, we solve the different models of both problems. It is im-
portant to mention before that classical multi-objective optimization meth-
ods are usually classified into four classes: No-preference methods, Posteriori
methods, A priori methods and Interactive methods (Miettinen (1999)). The
no preference methods do not assume any information on the importance of
objectives. These methods do not make any attempt to find multiple Pareto-
optimal solutions. Posteriori methods use preference information of each ob-
jective and iteratively generate a set of Pareto-optimal solutions. However,
generating Pareto-optimal solutions require some knowledge on algorithmic
parameters which will ensure finding a Pareto-optimal solution. A priori
methods use more information about the preferences of objectives and usu-
ally find one preferred Pareto-optimal solution. Interactive methods use the
preference information progressively during the optimization process. In the
next section, the weighted sum method is used. This method scalarizes the
set of objectives (

∑
f∈F Cf ,

∑
f

∑
m ymf and/or

∑T
t=1

∑
f

∑
m xm

f,tv
m
f,t) into a

single objective by pre-multiplying each objective with a predefined weight
(this weight is usually defined by the decision maker). This method is prob-
ably one of the most widely used classical approaches. Faced with multiple
objectives, this method is the most convenient one that comes to mind. For
example, regarding the two objectives of minimizing the sum of completion
times and minimizing the sum of losses in machine qualifications, one natu-
rally thinks of minimizing a weighted sum of these two objectives.

Although the idea is not so complicated, it introduces an important ques-
tion. Which values of the weights must one use? Actually, there is no unique
answer to this question. The answer depends on the importance of each ob-
jective in the context of the problem and the scaling factors associated with
the objective function (e.g. α = 1 , β = |N | ∗ T and γ = |M | ∗ |f | ∗ |N | ∗ T ).
Different objectives take different orders of magnitude (e.g.

∑
f∈F Cf of 1000

and
∑

f

∑
m ymf of 10). Hence when such objectives are weighted to form a

composite objective function, it would be better to scale them appropriately
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Table 4.1: Instance characteristics
No. |N | |M | |F | Max.(pf ) |M | ∗ |F |

∑
f (|Mo(f)|) T

1 10 2 2 10 4 3 85
2 10 2 2 20 4 3 90
3 10 2 2 30 4 3 168
4 10 2 3 10 6 5 74
5 10 2 3 20 6 5 108
6 10 2 3 30 6 5 150
7 10 3 3 10 9 7 56
8 10 4 4 10 16 10 44
9 10 5 2 10 10 6 70
10 10 6 2 10 12 8 32
11 10 7 2 10 14 8 66
12 10 8 2 10 16 10 56
13 10 9 2 10 18 10 32
14 20 3 4 10 12 8 101
15 20 3 5 10 15 9 60
16 20 4 2 10 8 6 132
17 20 4 3 10 12 7 55
18 20 4 4 10 16 11 134
19 20 4 5 10 20 13 114
20 30 3 2 10 6 4 210
21 30 3 3 10 9 7 124
22 30 3 4 10 12 8 95
23 30 3 5 10 15 13 118
24 30 4 4 10 16 10 162
25 30 5 5 10 25 14 144
26 40 3 2 10 6 4 175
27 40 3 3 10 9 5 284
28 40 3 4 10 12 7 170
29 40 3 5 10 15 10 252
30 40 4 4 10 16 11 264
31 50 2 2 10 4 3 225
32 50 2 3 10 6 4 247
33 50 2 4 10 8 7 243
34 50 3 3 10 9 6 299
35 50 5 2 10 10 8 356
36 50 5 3 10 15 9 237
37 50 5 4 10 20 15 249
38 50 5 5 10 25 14 193
39 60 3 4 10 12 9 348
40 60 3 5 10 15 11 289
41 60 5 4 10 20 14 201
42 60 5 5 10 25 13 160
43 70 2 4 10 8 6 259
44 70 3 5 10 15 12 283
45 70 4 4 10 16 9 329
46 70 4 5 10 20 14 398
47 70 5 4 10 20 12 474
48 70 5 5 10 25 16 341
49 80 2 2 10 4 3 532
50 80 2 3 10 6 5 497

so that each has more or less the same order of magnitude. this process is
called normalization of objectives. The weight of an objective is usually cho-

99



Chapter 4. Numerical experiments on Mathematical Programming
Models

sen in proportion to the objective relative importance in the problem (PTC
or PEHF ).

4.3.1 Models IP1, IP2 and IP3 (PTC)

In this section, numerical results obtained with Models IP1, IP2 and IP3
are shown. In the following tables below, columns named

∑
j∈J Cj and

∑
f Cf

indicate the obtained sum of completion times for jobs/families respectively.
Columns named

∑
f

∑
m ymf,T and

∑
f

∑
m Y m

f indicate the sum of loss in ma-
chine qualifications for time horizon dependent and independent respectively.
Columns denoted by Setups indicate the total number of setups needed in
the solution of the instance type. CPU-T is the CPU time to solve the in-
stance type.

The two weights of both criteria α and β, let us call them the preference
vector (α,β), are an important issue in our analysis of the objective function
and/or the problem itself. First, in the multicriteria objective function of
both problems (PTC and PEHF ), we consider a weighted sum of these cri-
teria, i.e. a preference vector of different values, to solve Models IP1, IP2,
IP3 and IP5. This is usually named as a preference-based multi-objective
optimization method. Nevertheless and generally speaking, it is important
to realize that the trade-off solution obtained by using the preference-based
strategy is sensitive to the relative preference vector used in the objective
function (α = 1, β = |N | ∗ T ). In the next sections, the obtained results
show that a change in this preference vector results in a different trade-off
solution which is not always true for all types of multi-objective optimization
problems. In fact, it is intuitive to realize that finding a relative preference
vector itself is highly subjective and not straightforward (Deb (2001)). This
requires an analysis of the non-technical, qualitative and experience-driven
information to find a quantitative relative preference vector. Without any
knowledge of the likely trade-off solutions, this is an even more difficult task.
Consequently, both problems are analyzed in Section 4.4 to prove the exist-
ing trade-off and to study the effect of choosing different preference vectors.

Solving Model IP1

Table 4.2 provides the obtained values on various test instance types, of the
sum of completion times and the sum of losses in machine qualifications for
exact solutions using Model IP1. It shows the results when both criteria of
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the objective function are optimized, using the following values: α = 1 and
β = 1 (i.e.

∑
j∈J Cj +

∑
f∈F

∑
m∈M(f) y

m
f,T ). Taking these values for α and

β means that minimizing the sum of completion times is prioritized over the
sum of losses in machine qualifications.

The execution times (values in CPU-T column) increase when the upper
bound on the processing time increases as it can be seen in the groups of
instance types (1, 2 and 3) and (4, 5 and 6) which have the same number
of jobs, families and machines but different upper bounds on job family pro-
cessing times (10, 20 and 30 respectively). This is an expected behavior since
the CPU time of a time indexed MILP model is time horizon dependent (T
=

∑
f∈F nf ∗(pf+sf )). In other words, when processing times become larger,

the time horizon increases as well and, in our time indexed models, the num-
ber of variables is directly related to the number of periods in the horizon.
As expected, the number of jobs also impacts resolution times. For example,
the execution times in instance types (1, 31 and 49), (4, 32 and 50), (7, 21, 27
and 34), (8, 18, 24 and 30) and (9 and 35) increase while fixing the number
of families and machines, the upper bound on processing times, and varying
the number of scheduled jobs. Note that Instance types 34 to 50 admit no
solution with Model IP1 because of an out of memory of the solver. In addi-
tion, no optimal solutions are found for Instance types 17 to 33 because the
solver attained the time limit of 600 seconds. The best feasible solution is
kept. Also, the number of families and machines has an equivalent effect on
the CPU time and hence on the complexity of the resolution of an instance.
For example, Instance types (9, 11 and 12), respectively (1 and 4), the CPU
time is increased whenever the number of machines, respectively families is
increased while fixing other parameters (number of jobs and processing time
upper bound).

However, the resolution times of Instance types 9, 10 and 13 show that
other parameters of the problem, and more specifically the initial qualifica-
tion scheme (6, 8 and 10 respectively), also has an effect on the problem
complexity and the CPU time, where the instance with the largest number
of machines takes less time to be solved. Actually, the larger the number
of machines initially qualified to process job families, the easier the instance
usually is. In addition, the thresholds associated to each job family also
impact the complexity of problems, since short thresholds may lead to fast
machine disqualifications. Hence, it becomes more difficult to find a solution
in which all job families are scheduled.

Moreover, the maximum number of scheduled jobs below the time limits
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is found to be 20 jobs for Model IP1 while prioritizing the sum of completion
times of jobs of different families. Instance types with more than 50 jobs (In-
stance types 33 to 50) cannot be solved under the given testing environment
(out of memory). In the next section, the results obtained from Model IP2
on the same instances are shown and compared to those of Model IP1.
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Table 4.2: Model IP1, (α = 1, β = 1), Minimizing the sum of completion times and the number of losses in machine
qualifications ∑

j∈J

∑
f

∑
m

∑
j∈J

∑
f

∑
m

No. (Cj) (ymf,T ) Setups CPU % of Opt. No. (Cj) (ymf,T ) Setups CPU-T % of Opt.

1 255 0.1 2 3.1 100 % 26 1108 0.4 5 600 0 %
2 245 1.4 3 13.7 100 % 27 2256 2.3 4 600 0 %
3 564 2.3 2 14.6 100 % 28 1228 4.2 6 600 0 %
4 211 4.9 3 6.4 100 % 29 1854 9.9 5 600 0 %
5 278 4.8 3 35.5 100 % 30 1705 8.9 9 600 0 %
6 351 4.9 3 85.5 100 % 31 3447 2.4 5 600 0 %
7 124 4.7 4 4.5 100 % 32 3343 2.7 4 600 0 %
8 76 9.8 6 1.2 100 % 33 3203 2.9 8 600 0 %
9 116 3.9 5 0.9 100 % 34 - - - -
10 46 4.6 6 0.6 100 % 35 - - - -
11 96 7.7 6 1 100 % 36 - - - -
12 67 9.8 8 1.1 100 % 37 - - - -
13 34 9.9 9 0.2 100 % 38 - - - -
14 346 7.8 7 600 20 % 39 - - - -
15 285 6.7 8 11.3 100 % 40 - - - -
16 404 0.4 7 600 20 % 41 - - - -
17 157 5.8 7 4.7 100 % 42 - - - -
18 407 10.9 8 600 20 % 43 - - - -
19 299 12.6 8 600 10 % 44 - - - -
20 1177 0.4 5 600 20 % 45 - - - -
21 582 4.8 7 600 10 % 46 - - - -
22 521 7.9 8 600 10 % 47 - - - -
23 642 12.8 10 600 0 % 48 - - - -
24 630 6.2 9 600 10 % 49 - - - -
25 463 13.9 11 600 0 % 50 - - - -
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Table 4.3 shows the results when both criteria of the objective function
are optimized, using the following values: α = 1 and β = |N | ∗ T . These
values are chosen so that the scheduling criterion, minimizing the sum of
completion times, is second to the minimization of the number of disquali-
fications, so that it is equivalent to a lexicographical order. This table also
provides the values of the sum of completion times and the sum of losses in
machine qualifications for solutions obtained using Model IP1.

The exact solutions for both criteria shown in both tables (Table 4.2 and
Table 4.3) prove that, when the number of losses in machine qualifications is
prioritized (Table 4.3), the sum of completion times is not minimized. Fur-
thermore, when the sum of completion times is prioritized over the sum of
losses in machine qualifications (Table 4.2), the results show that the sum
of losses in machine qualifications is not minimized. the number of setups
while prioritizing the sum of losses in machine qualifications in Table 4.3 is
greater than, for all instances, those of Table 4.2. This is due to the fact that
job families have to change frequently in order to satisfy the time threshold
constraints, hence minimizing

∑
f∈F

∑
m∈M(ymf,T ).

Note that instance types 32 and 33 which have a solution in Table 4.2
are no longer feasible under the same testing environment conditions in Ta-
ble 4.3. This illustrates that the complexity of the problem is also based on
the chosen objective function, where prioritizing the qualification criterion
over the scheduling one makes instances more difficult to solve.
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Table 4.3: Model IP1, (α = 1, β = |N | ∗ T ), Minimizing the sum of completion times and the number of losses in
machine qualifications∑

j∈J

∑
f

∑
m

∑
j∈J

∑
f

∑
m

No. (Cj) (ymf,T ) Setups CPU % of Opt. No. (Cj) (ymf,T ) Setups CPU-T % of Opt.

1 255 0.0 2 7 100 % 26 1108 0.4 6 600 0 %
2 245 0.5 3 10.7 100 % 27 2780 0.3 15 600 0 %
3 830 0.5 5 4.7 100 % 28 1448 0.4 13 600 0 %
4 269 2.6 7 9.3 100 % 29 2363 5.6 15 600 0 %
5 391 2.7 6 600 10 % 30 2094 0.4 16 600 0 %
6 634 1.6 7 40.40 100 % 31 2403 0.4 3 597 20 %
7 185 2.5 7 1.4 100 % 32 - - - -
8 161 6.7 10 3.2 100 % 33 - - - -
9 196 2.7 7 4.1 100 % 34 - - - -
10 102 3.5 7 0.5 100 % 35 - - - -
11 208 4.6 6 0.8 100 % 36 - - - -
12 290 5.7 10 14.2 100 % 37 - - - -
13 148 7.8 9 1.2 100 % 38 - - - -
14 826 2.8 17 41.8 100 % 39 - - - -
15 285 6.7 8 30.4 100 % 40 - - - -
16 404 0.2 9 600 0 % 41 - - - -
17 397 1.9 16 8.1 100 % 42 - - - -
18 793 4.9 14 600 0 % 43 - - - -
19 477 9.9 11 600 0 % 44 - - - -
20 1177 0.4 7 600 0 % 45 - - - -
21 682 1.8 9 600 0 % 46 - - - -
22 802 2.1 20 600 0 % 47 - - - -
23 806 8.9 18 600 0 % 48 - - - -
24 918 2.7 13 600 0 % 49 - - - -
25 1341 7.8 23 600 0 % 50 - - - -
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In the following sections, a graphical interpretation of the results are
shown for 9 selected instances (Instance types: 14, 19, 21, 22, 25, 38, 39, 41
and 44). In fact, these instance types are chosen to be representatives of all
instance types. This helps in making figures more comprehensible. However,
the numerical results for all instance types are given in the corresponding
tables.

Model IP1 versus Model IP2

Let us recall from Chapter 3 that after analyzing the problem and the re-
sults obtained with Model IP1, it is possible to see that, since there are no
release dates on jobs and jobs of the same family have the same processing
time, all jobs in a family can be interchanged in an optimal solution. There-
after, the job variables in Model IP1 are grouped into families in Model IP2.

Consequently, numerical tests are conducted to show that the family
based model IP2 dominates the job based model IP1 in terms of execu-
tion times. Tables 4.4 and 4.5 show the results of the tests conducted on
both models. The sum of completion times is now denoted by

∑
f Cf in

these tables. It is equivalent to
∑

j∈J Cj in Model IP1.

The execution times for Model IP1 are equal on average to hundred
times the execution times for Model IP2. Model IP1 cannot optimally solve
instances with more than 20 jobs when prioritizing the sum of losses in ma-
chine qualifications, whereas Model IP2 can solve instance up to 70 jobs
(Tables 4.3 and 4.5). This shows that Model IP2 dominates Model IP1,
which was expected due to the aggregation of variables.

Both models obtain the same results for the same studied objective func-
tion and below the time limits, regarding the sum of completion times in
Table 4.4 and the sum of losses in machine qualifications in Table 4.5. Re-
sults obtained for instances with CPU time equals to 600 seconds cannot be
compared since it is not guaranteed that the solver found an optimum solu-
tion. Once again, regarding the prioritized criterion in the objective function,
it is found that the resolution of the studied instances in both models (IP1
and IP2) takes longer CPU times when prioritizing the sum of loss in ma-
chine qualifications (α = 1, β = |N | ∗ T ) compared to prioritizing the sum
of completion times (α = 1, β = 1), see Tables 4.4 and 4.5. Also, this is
also true for the increase of the CPU time as a function of number of jobs,
families and machines.
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Table 4.4: Models IP1 and IP2, (α = 1, β = 1), Minimizing the sum of
completion times and the number of losses in machine qualifications∑

f Cf
∑

f

∑
m ymf,T Setups CPU % of Opt.

No. IP1 IP2 IP1 IP2 IP1 IP2 IP1 IP2 IP1 IP2
1 255 255 0.1 0.1 2 2 3.1 0.2 100 % 100 %
2 245 245 1.4 1.4 3 3 13.7 0.3 100 % 100 %
3 564 564 2.3 2.3 2 2 14.7 0.2 100 % 100 %
4 211 211 4.9 4.9 3 3 6.5 0.8 100 % 100 %
5 278 278 4.8 4.8 3 3 35.6 2.9 100 % 100 %
6 351 351 4.9 4.9 3 3 85.5 6.5 100 % 100 %
7 124 124 4.7 4.7 4 4 4.5 1.1 100 % 100 %
8 76 76 9.8 9.8 6 6 1.3 0.6 100 % 100 %
9 116 116 3.9 3.9 5 5 1 0.1 100 % 100 %
10 46 46 4.6 4.6 6 6 0.6 0 100 % 100 %
11 96 96 7.7 7.7 6 6 1 0.1 100 % 100 %
12 67 67 9.8 9.8 8 8 1.2 0.1 100 % 100 %
13 34 34 9.9 9.9 9 9 0.3 0 100 % 100 %
14 346 346 7.8 7.6 7 5 600 3.5 20 % 100 %
15 285 285 6.7 6.7 8 8 11.4 2.7 100 % 100 %
16 404 404 0.4 0.3 7 6 600 2.4 20 % 100 %
17 157 157 5.8 5.8 7 7 4.8 1.2 100 % 100 %
18 407 399 10.9 10.8 8 7 600 8.4 20 % 100 %
19 299 297 12.6 12.6 8 6 600 9.9 10 % 100 %
20 1177 1163 0.4 0.3 5 4 600 2.3 20 % 100 %
21 582 559 4.8 4.4 7 6 600 2.9 10 % 100 %
22 521 483 7.9 7.6 8 6 600 4.4 10 % 100 %
23 642 538 12.8 12.7 10 7 600 17.5 0 % 100 %
24 630 621 6.2 6.0 9 7 600 12.9 10 % 100 %
25 463 427 13.9 13.8 11 11 600 5.1 0 % 100 %
26 1108 1108 0.4 0.3 5 4 600 0.5 0 % 100 %
27 2256 2010 2.3 2.1 4 4 600 2.8 0 % 100 %
28 1228 1117 4.2 4.1 6 5 600 2.5 0 % 100 %
29 1854 1608 9.9 9.8 5 3 600 52.6 0 % 100 %
30 1705 1355 8.9 6.8 9 8 600 38.2 0 % 100 %
31 3447 2394 2.4 0.4 5 3 600 0.5 0 % 100 %
32 3343 3243 2.7 2.3 4 3 600 1.5 0 % 100 %
33 3203 2621 2.9 2.4 8 6 600 31.1 0 % 100 %
34 - 2710 - 1.8 - 5 - 10.6 - 100 %
35 - 1926 - 0.3 - 7 - 6.9 - 100 %
36 - 1329 - 6.8 - 6 - 6.6 - 100 %
37 - 1294 - 8.8 - 8 - 51.5 - 100 %
38 - 962 - 13.9 - 10 - 5.8 - 100 %
39 - 2992 - 4.8 - 7 - 23.3 - 100 %
40 - 2504 - 9.7 - 8 - 33.6 - 100 %
41 - 1158 - 9.9 - 11 - 11.1 - 100 %
42 - 834 - 8.7 - 22 - 6.6 - 100 %
43 - 3626 - 4.9 - 4 - 8.7 - 100 %
44 - 2711 - 7.9 - 9 - 32.1 - 100 %
45 - 2603 - 4.8 - 6 - 6.8 - 100 %
46 - 3279 - 6.8 - 8 - 600 - 20 %
47 - 3429 - 8.9 - 7 - 68.3 - 100 %
48 - 2387 - 11.8 - 12 - 97 - 100 %
49 - - - - - - - - - -
50 - - - - - - - - - -
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Figure 4.1: Model IP1 vs. Model IP2, (α = 1, β = 1), CPU times

Figures 4.1 and 4.2 represent the variation of CPU times on the selected
instances for both models (Model IP1 and Model IP2), and for two differ-
ent objective functions. In Figure 4.1, where the sum of completion times is
prioritized over machine qualifications, the CPU times of Model IP1 exceed
those of Model IP2 for all instance types. The same behavior is noticed
in Figure 4.2 where machine qualifications are prioritized over the sum of
completion times. This is an expected behavior because in Model IP2, the
number of variables related to the number of jobs is decreased to the number
of job families.

Model IP2 versus Model IP3

Let us recall that the difference between Models IP2 and IP3 (introduced in
Chapter 3) lies in two points. First, in model IP2, the calculation of the losses
in qualifications depends on the given time horizon (

∑
f∈F

∑
m∈M(f) y

m
f,T ).

This means that, for the larger time horizons, all machines could lose their
qualifications. Hence, comparison between different methodologies for solv-
ing PTC is not realistic and even solutions cannot be compared. Second, in
an enhanced version of model IP2 where the goal was to eliminate the time
horizon dependency on the calculation of losses in machine qualifications
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Table 4.5: Models IP1 and IP2, (α = 1, β = |N | ∗ T ), Minimizing the sum
of completion times and the number of losses in machine qualifications∑

f Cf
∑

f

∑
m ymf,T Setups CPU-T % of Opt.

No. IP1 IP2 IP1 IP2 IP1 IP2 IP1 IP2 IP1 IP2
1 255 255 0.0 0.0 2 2 7.1 0.2 100 % 100 %
2 245 245 0.5 0.5 3 3 10.8 0.7 100 % 100 %
3 830 810 0.5 0.5 6 5 4.8 0.2 100 % 100 %
4 269 249 2.6 2.6 9 7 9.4 1.8 100 % 100 %
5 391 298 2.7 2.7 7 5 600 15.1 10 % 100 %
6 634 500 1.6 1.6 8 7 40.4 5.5 100 % 100 %
7 185 176 2.5 2.5 8 7 1.5 0.2 100 % 100 %
8 161 143 6.7 6.7 11 10 3.3 0.2 100 % 100 %
9 196 184 2.7 2.7 9 7 4.2 0.4 100 % 100 %
10 102 98 3.5 3.5 8 7 0.6 0 100 % 100 %
11 208 174 4.6 4.6 7 6 0.9 0.5 100 % 100 %
12 290 248 5.7 5.7 13 10 14.2 0.1 100 % 100 %
13 148 132 7.8 7.8 10 9 1.3 0.8 100 % 100 %
14 826 782 2.8 2.8 20 17 41.8 2.9 100 % 100 %
15 285 285 6.7 6.7 8 8 30.4 3.3 100 % 100 %
16 404 404 0.2 0.2 6 6 600 2.4 0 % 100 %
17 397 381 1.9 1.9 17 16 8.2 0.6 100 % 100 %
18 793 739 4.9 4.6 13 13 600 5.8 0 % 100 %
19 477 441 9.9 9.6 10 9 600 9.7 0 % 100 %
20 1177 1163 0.4 0.3 5 4 600 2.6 0 % 100 %
21 682 634 1.8 1.7 9 8 600 7.3 0 % 100 %
22 802 841 2.1 0.6 19 20 600 2.6 0 % 100 %
23 806 732 8.9 8.7 18 16 600 600 0 % 100 %
24 918 862 2.7 2.7 14 12 600 13.5 0 % 100 %
25 1341 1272 7.8 7.6 24 23 600 5 0 % 100 %
26 1108 1108 0.4 0.3 4 4 600 0.3 0 % 100 %
27 2780 2614 0.3 0.2 15 13 600 41.5 0 % 100 %
28 1448 1370 0.4 0.3 14 12 600 6.7 0 % 100 %
29 2363 1972 5.6 5.0 17 14 600 275.5 0 % 90 %
30 2094 1936 0.4 0.3 17 16 600 41.2 0 % 100 %
31 2403 2394 0.4 0.3 5 3 597 0.7 20 % 100 %
32 - 3837 - 0.2 - 9 - 103.1 - 100 %
33 - 3293 - 0.2 - 20 - 151.5 - 100 %
34 - 4033 - 0.3 - 17 - 48.2 - 100 %
35 - 1926 - 0.3 - 7 - 6.9 - 100 %
36 - 2686 - 0.9 - 23 - 1.5 - 100 %
37 - 1635 - 4.8 - 16 - 600 - 10 %
38 - 2602 - 5.8 - 31 - 8.1 - 100 %
39 - 4361 - 0.3 - 20 - 69.3 - 100 %
40 - 4510 - 4.4 - 34 - 600 - 0 %
41 - 2812 - 2.8 - 34 - 215.3 - 100 %
42 - 2200 - 3.7 - 32 - 13.8 - 100 %
43 - 4211 - 0.3 - 15 - 43.6 - 100 %
44 - 4841 - 0.3 - 30 - 103.7 - 100 %
45 - 3795 - 0.3 - 18 - 58.1 - 100 %
46 - 5325 - 2.2 - 29 - 600 - 10 %
47 - 5603 - 3.6 - 20 - 468.8 - 70 %
48 - 5863 - 3.1 - 39 - 600 - 0 %
49 - - - - - - - - - -
50 - - - - - - - - - -
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Figure 4.2: Model IP1 vs. Model IP2, (α = 1, β = |N | ∗ T ), CPU times

( 1
T−(t−1)

∑T
τ=t

∑
f ′∈F

∑
m′∈M(f ′) x

m′

f ′,τ = 0), another problem showed up where
calculating the losses in qualifications is now dependent on the makespan of
the solution. This is in our opinion not realistic, because the calculation of
losses in qualifications should be completely independent of time in order to
compare the results later with resolution methods. Hence, Model IP3 was
proposed which is a modified version of Model IP2 to take into account both
problems.

In this section, the results obtained when solving the instance types using
Model IP3 are presented and compared to those found by IP2. Table 4.6
shows the results when prioritizing the sum of completion times and Ta-
ble 4.7 when prioritizing the sum of losses in machine qualifications. The
results show that the number of losses in machine qualifications for Model
IP3 is decreased in both tables compared to Model IP2. This is true since
counting the losses is no longer necessary when there are no jobs to schedule
on any of the machines and for all the machines. However, CPU times for
Model IP3 are greater than those of Model IP2 because of the new con-
straints and variables (Yf,m). In addition, whenever the instance is feasible
and is solved by the solver with a resolution time less than the time limit, the
sum of completion times is found to be the same (Table 4.6). On the other
hand, the CPU time for all instance types in Table 4.7 are greater than those
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in Table 4.6 (Model IP3 attains the time limit in more than 50% of the stud-
ied instance types in Table 4.7). Instance types 49 and 50 of 80 jobs are still
non solvable under the same testing environment conditions. In the rest of
this chapter, all the results that are shown for PTC are based on Model IP3.

Figure 4.3: Model IP2 vs. Model IP3, (α = 1, β = 1),
∑

f∈F

∑
m∈M Y m

f

Figure 4.3 shows the variation of the sum of losses in machine quali-
fications for Models IP2 and IP3 when prioritizing the sum of completion
times. The difference between both models is noticed where the sum of losses
in machine qualifications is now decreased for Model IP3. This is a normal
behavior since Model IP2 is time horizon dependent and hence machine dis-
qualifications are counted even after Cmax. This is not the case in Model IP3
since machine qualifications are now calculated up to every last job on each
machine.

Figure 4.4 shows the corresponding variations in CPU times for both
models. This figure illustrates again the fact that Model IP3 spends more
time to solve the selected instance types.

The same observations can be done in Figures 4.5 and 4.6 where machine
qualification is prioritized over the sum of completion times. However, re-
garding the sum of losses in machine qualifications in Figure 4.5, Instance
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Table 4.6: Models IP2 and IP3, (α = 1, β = 1), Minimizing the sum of
completion times and the sum of losses in machine qualifications∑

f Cf
∑

f

∑
m ymf,T

∑
f

∑
m Y m

f Setups CPU % of Opt.

No. IP2 IP3 IP2 IP3 IP2 IP3 IP2 IP3 IP2 IP3
1 255 255 0.1 0.0 2 2 0.2 0.4 100 % 100 %
2 245 245 1.4 0.9 3 3 0.3 0.4 100 % 100 %
3 564 564 2.3 1.6 2 2 0.2 0.8 100 % 100 %
4 211 211 4.9 3.1 3 3 0.8 1.7 100 % 100 %
5 278 278 4.8 3.1 3 3 2.9 6.4 100 % 100 %
6 351 351 4.9 1.2 3 3 6.5 16.8 100 % 100 %
7 124 124 4.7 2.1 4 4 1.1 4 100 % 100 %
8 76 76 9.8 3.3 6 6 0.6 2 100 % 100 %
9 116 116 3.9 0.4 5 5 0.1 0.3 100 % 100 %
10 46 46 4.6 0.4 6 6 0 0.1 100 % 100 %
11 96 96 7.7 0.4 6 6 0.1 0.5 100 % 100 %
12 67 67 9.8 0.4 8 8 0.1 0.5 100 % 100 %
13 34 34 9.9 0.3 9 9 0 0.1 100 % 100 %
14 346 346 7.6 3.3 5 5 3.5 13 100 % 100 %
15 285 285 6.7 6.6 8 8 2.7 3.6 100 % 100 %
16 404 404 0.3 0.3 6 6 2.4 3.2 100 % 100 %
17 157 157 5.8 1.2 7 7 1.2 2.2 100 % 100 %
18 399 399 10.8 1.4 7 7 8.4 27.4 100 % 100 %
19 297 297 12.6 7.2 6 6 9.9 47.8 100 % 100 %
20 1163 1163 0.3 0.0 4 4 2.3 4.2 100 % 100 %
21 559 559 4.4 2.4 6 6 2.9 7.7 100 % 100 %
22 483 483 7.6 2.7 6 6 4.4 10.4 100 % 100 %
23 538 538 12.7 7.3 7 11 17.5 95.4 100 % 100 %
24 621 621 6.0 3.4 7 7 12.9 31.2 100 % 100 %
25 427 427 13.8 6.1 11 11 5.1 46.5 100 % 100 %
26 1108 1108 0.3 0.4 4 4 0.5 1.5 100 % 100 %
27 2010 2010 2.1 1.2 4 4 2.8 10.7 100 % 100 %
28 1117 1117 4.1 1.1 5 5 2.5 7.3 100 % 100 %
29 1608 1608 9.8 6.4 3 6 52.6 243.6 100 % 90 %
30 1355 1355 6.8 0.4 8 8 38.2 102.7 100 % 100 %
31 2394 2394 0.4 0.4 3 3 0.5 1.3 100 % 100 %
32 3243 3243 2.3 2.2 3 3 1.5 7.2 100 % 100 %
33 2621 2621 2.4 2.1 6 6 31.1 108.6 100 % 100 %
34 2710 2710 1.8 2.3 5 5 10.6 40.4 100 % 100 %
35 1926 1926 0.3 0.4 7 6 6.9 43.8 100 % 100 %
36 1329 1329 6.8 0.4 6 6 6.6 31.9 100 % 100 %
37 1294 1294 8.8 3.4 8 8 51.5 306.5 100 % 80 %
38 962 962 13.9 5.4 10 10 5.8 78.8 100 % 100 %
39 2992 2992 4.8 3.3 7 7 23.3 137.4 100 % 100 %
40 2504 2504 9.7 9.1 8 8 33.6 345.1 100 % 80 %
41 1158 1158 9.9 4.3 11 11 11.1 106.7 100 % 100 %
42 834 834 8.7 6.2 22 14 6.6 47 100 % 100 %
43 3626 3626 4.9 2.4 4 6 8.7 33.2 100 % 100 %
44 2711 2711 7.9 5.3 9 9 32.1 213.7 100 % 100 %
45 2603 2603 4.8 0.4 6 6 6.8 58.1 100 % 100 %
46 3279 4060 6.8 4.3 8 28 600 600 20 % 10 %
47 3429 3429 8.9 3.1 7 7 68.3 600 100 % 10 %
48 2387 2389 11.8 2.3 12 12 97 600 100 % 0 %
49 - - - - - - - - - -
50 - - - - - - - - - -
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Figure 4.4: Model IP2 vs. Model IP3, (α = 1, β = 1), CPU times

Figure 4.5: Model IP2 vs. Model IP3, (α = 1, β = |N | ∗ T ),∑
f∈F

∑
m∈M Y m

f
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Table 4.7: Models IP2 and IP3, (α = 1, β = |N | ∗ T ), Minimizing the sum
of completion times and the number of losses in machine qualifications∑

f Cf
∑

f

∑
m ymf,T

∑
f

∑
m Y m

f Setups CPU % of Opt.

No. IP2 IP3 IP2 IP3 IP2 IP3 IP2 IP3 IP2 IP3
1 255 255 0.0 0.0 2 2 0.2 0.8 100 % 100 %
2 245 284 0.5 0.0 3 4 0.7 1.8 100 % 100 %
3 810 669 0.5 0.5 5 5 0.2 3.5 100 % 100 %
4 249 231 2.6 1.7 7 6 1.8 17 100 % 100 %
5 298 278 2.7 2.6 5 3 15.1 600 100 % 10 %
6 500 351 1.6 0.6 7 3 5.5 600 100 % 10 %
7 176 133 2.5 0.8 7 6 0.2 2.8 100 % 100 %
8 143 78 6.7 1.9 10 7 0.2 4.9 100 % 100 %
9 184 116 2.7 0.0 7 5 0.4 0.3 100 % 100 %
10 98 46 3.5 0.0 7 6 0 0.1 100 % 100 %
11 174 96 4.6 0.0 6 6 0.5 0.5 100 % 100 %
12 248 67 5.7 0.1 10 8 0.1 0.5 100 % 100 %
13 132 34 7.8 0.0 9 9 0.8 0.1 100 % 100 %
14 782 393 2.8 0.6 17 11 2.9 600 100 % 10 %
15 285 313 6.7 5.8 8 10 3.3 227.5 100 % 100 %
16 404 404 0.2 0.1 6 6 2.4 2.8 100 % 100 %
17 381 163 1.9 0.1 16 8 0.6 1.9 100 % 100 %
18 739 407 4.6 0.1 13 7 5.8 30.1 100 % 100 %
19 441 329 9.6 4.5 9 8 9.7 600 100 % 0 %
20 1163 1163 0.3 0.2 4 4 2.6 3.4 100 % 100 %
21 634 707 1.7 0.1 8 19 7.3 600 100 % 10 %
22 841 512 0.6 0.2 20 10 2.6 230.6 100 % 100 %
23 732 674 8.7 5.6 16 22 600 600 100 % 10 %
24 862 753 2.7 0.9 12 13 13.5 600 100 % 0 %
25 1272 460 7.6 0.7 23 16 5 600 100 % 0 %
26 1108 1108 0.3 0.3 4 4 0.3 1.6 100 % 100 %
27 2614 2064 0.2 0.2 13 6 41.5 29.7 100 % 100 %
28 1370 1135 0.3 0.1 12 6 6.7 18.7 100 % 100 %
29 1972 1734 5.0 3.7 14 14 275.5 600 90 % 10 %
30 1936 1355 0.3 0.1 16 8 41.2 126.8 100 % 100 %
31 2394 2394 0.3 0.1 3 3 0.7 1.2 100 % 100 %
32 3837 3778 0.2 0.2 9 10 103.1 600 100 % 10 %
33 3293 2842 0.2 0.2 20 16 151.5 600 100 % 10 %
34 4033 2966 0.3 0.1 17 10 48.2 600 100 % 0 %
35 1926 1926 0.3 0.1 7 6 6.9 44 100 % 100 %
36 2686 1329 0.9 0.2 23 6 1.5 39.7 100 % 100 %
37 1635 1483 4.8 0.5 16 19 600 600 10 % 10 %
38 2602 1146 5.8 0.2 31 23 8.1 600 100 % 0 %
39 4361 3129 0.3 0.2 20 11 69.3 600 100 % 10 %
40 4510 3421 4.4 7.8 34 37 600 600 0 % 0 %
41 2812 1195 2.8 0.3 34 14 215.3 600 100 % 0 %
42 2200 998 3.7 0.5 32 31 13.8 600 100 % 0 %
43 4211 3820 0.3 0.3 15 11 43.6 600 100 % 0 %
44 4841 3674 0.3 1.6 30 29 103.7 600 100 % 0 %
45 3795 2603 0.3 0.2 18 6 58.1 59.6 100 % 90 %
46 5325 3945 2.2 3.8 29 28 600 600 10 % 0 %
47 5603 4030 3.6 3.9 20 19 468.8 600 70 % 0 %
48 5863 2727 3.1 0.1 39 28 600 600 0 % 0 %
49 - - - - - - - - - -
50 - - - - - - - - - -
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type 44 has a value in IP2 less than that of IP3. This is because the instance
type is solved to optimality in Model IP2 and not in Model IP3.

Figure 4.6: Model IP2 vs. Model IP3, (α = 1, β = |N | ∗ T ), CPU times

4.3.2 Model IP5 (PEHF )

In this section, the results of the tests that were conducted on PEHF using
Model IP5 are shown. Let us recall that PEHF presents the problem of
scheduling job families on non-identical parallel machines (different qualifica-
tion schemes) with setup times and time constraints (γf ) and with Equipment
Health Factor (EHF ). We believe that assigning a machine m to process a
job family f depends on two major factors: 1 - The criticality of the pro-
cessed family (Lot/Family Criticality Index, LCI), that may be defined for
example as a function of the previous path (machines) of the lot/family as
well as other factors including the priority level of the lot/family (hot lot,
etc), and 2 - The state of the processing machine which can be described
(we assume that it is valid and well defined for the sake of our problem) by
its EHF . The consequence of assigning m with a given EHF to process
a job family f with a given LCI can be seen as a negative/positive cost
that is lost/gained upon this assignment. In PEHF , and in Model IP5, we
consider this cost to be an expected yield chosen between 80% and 100%.
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The scheduling decision now should not only take into consideration the loss
in machine qualifications, but also the gain in the sum of expected yield re-
sulting from this decision. Let us recall that this yield is define by vmf and
hence the objective function for Model IP5 become a weighted sum of three
criteria and is given in Equation 4.1.

max (γ
′
∑

f∈F

∑

m∈M

T∑

t=1

wfx
m
f,tv

m
f − (α

′
∑

f∈F

Cf + β
′
∑

f∈F

∑

m∈M

Y m
f )) (4.1)

Tables 8.a and 8.b summarize the simulation results obtained with Model
IP5 for different criteria, and when prioritizing each time one or more of the
criterion. In what follows, α

′

= 1, β
′

and γ
′

are respectively the weights
associated to the sum of completion times, the sum of losses in machine
qualifications and the sum of expected yield. We consider that the weights
of all families wf = 1, i.e. no family is originally prioritized. Further, α

′

=
α

′

o = 1, β
′

o = |N | ∗ T and γ
′

o = |M | ∗ |F | ∗ |N | ∗ T are the maximum values
taken by the weights for prioritizing each criterion. Note that the comparison
can be done on the instance types that are feasible and with a CPU time
less than the time limit, otherwise, the best solution is kept. In Tables 8.a
and 8.b, the following cases are addressed:

• (α
′

= α
′

o, β
′

= 1, γ
′

= 1): Means that the sum of completion times is
prioritized compared to the sum of losses in machine qualifications and
the sum of the expected yield.

• (α
′

= α
′

o, β
′

= β
′

o, γ
′

= 1): Means that the sum of losses in machine
qualifications is prioritized compared to the sum of completion times
and the sum of the expected yield.

• (α
′

= α
′

o, β
′

= 1, γ
′

= γ
′

o): Means that the sum of the expected yield
is prioritized compared to the sum of completion times and the sum of
losses in machine qualifications.

• (α
′

= α
′

o, β
′

= β
′

o, γ
′

= γ
′

o): Means that the sum of losses in machine
qualifications and the sum of the expected yield is prioritized compared
to the sum of completion times.

Results for
∑

f∈F Cf and
∑

f

∑
m Y m

f for different (α
′

,β
′

,γ
′

) combina-
tions (Model IP5)

In Table 8.a, the sum of completion times and the corresponding sum of
losses in machine qualifications are shown for each combination (α

′

,β
′

,γ
′

).
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In this table, the sum of completion times is optimally minimized for the
combination (α

′

= α
′

o, β
′

= 1, γ
′

= 1). This sum is lower than or equal to all
other sums, over all the instances, for all other combinations of weights. The
second column dominates Columns 3, 4 and 5 regarding minimum value of∑

f∈F Cf . However, for the minimum sum of losses in machine qualifications,
Column 7 dominates Columns 6, 8 and 9, which corresponds to the values
obtained for

∑
f

∑
m Y m

f for all instances while considering the combination

of weights (α
′

= α
′

o, β
′

= β
′

o, γ
′

= 1). Only in Instance type 47, the value of∑
f

∑
m Y m

f (α
′

= α
′

o, β
′

= β
′

o, γ
′

= 1) does not dominate because this is not
a guaranteed optimal solution.

Figure 4.7: Model IP5,
∑

f∈F Cf

The variation of the sum of completion times for different preference
vectors for PEHF (Model IP5)) is shown in Figure 4.7. Each curve repre-
sents the tendency on the selected instances. For a preference vector (1,1,γo)
where the expected yield is prioritized, the sum of completion times tends
to be maximum for all studied preference vectors. However, it tends to be
minimum for the preference vector (1,1,1) where the sum of completion times
is prioritized over other criteria. In addition, for a preference vector (1,βo,γo)
where both machine qualifications and expected yield, the sum of completion
times tends to have greater values with the preference vectors (1,βo,1) and
(1,1,1).
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Table 8.a: Model IP5, (α
′

= 1, β
′

o = |N | ∗ T , γ
′

o = |M | ∗ |F | ∗ |N | ∗ T ),∑
f∈F Cf and

∑
f

∑
m Y m

f
(β,γ) -

∑
f∈F Cf (β,γ) -

∑
f

∑
m Y m

f

No. (1,1) (β
′

o,1) (1,γ
′

o) (β
′

o,γ
′

o) (1,1) (β
′

o,1) (1,γ
′

o) (β
′

o,γ
′

o)
1 255 255 404 404 0.0 0.0 0.1 0.0
2 245 284 303 311 0.9 0.0 0.5 0.0
3 564 669 564 669 1.6 0.9 1.7 1.3
4 211 231 243 231 3.1 1.5 3.6 2.1
5 278 332 338 278 3.1 2.7 3.9 3.4
6 351 351 564 524 1.2 0.6 4.7 2.1
7 124 133 302 133 2.1 0.8 4.8 1.2
8 76 78 164 101 3.3 1.6 9.5 2.4
9 116 116 210 136 0.4 0.3 2.9 0.2
10 46 46 56 50 0.4 0.2 3.6 0.1
11 96 96 195 114 0.4 0.2 4.8 0.1
12 67 67 266 107 0.4 0.1 9.7 0.1
13 34 34 104 50 0.3 0.1 8.8 0.2
14 346 396 527 427 3.3 1.7 6.5 2.4
15 285 313 351 349 6.6 5.8 6.9 6.2
16 404 404 762 762 0.3 0.2 0.4 0.2
17 157 163 203 176 1.2 0.2 2.6 0.1
18 399 407 863 708 1.4 0.2 9.7 1.2
19 297 348 552 400 7.2 4.5 10.7 5.3
20 1163 1163 1687 1687 0.0 0.1 0.4 0.1
21 559 707 856 1033 2.4 0.2 2.9 1.1
22 483 512 918 711 2.7 0.3 5.8 0.1
23 538 574 1141 1046 7.3 6.6 12.6 11.8
24 621 666 1440 1439 3.4 1.9 6.9 3.2
25 427 460 566 520 6.1 0.8 9.5 1.4
26 1108 1108 4585 2550 0.4 0.2 0.3 0.2
27 2010 2064 3324 3113 1.2 0.2 1.7 1.3
28 1117 1135 2161 1908 1.1 0.1 4.6 0.2
29 1608 1776 2691 1960 6.4 4.6 8.6 6.2
30 1355 1355 2855 1981 0.4 0.1 3.8 0.1
31 2394 2394 2925 2925 0.4 0.1 0.3 0.1
32 3243 3765 3457 3763 2.2 0.2 1.7 0.2
33 2621 2752 4963 4708 2.1 0.2 2.5 3.4
34 2710 2977 6133 6881 2.3 0.1 1.8 2.3
35 1926 1926 4040 4040 0.4 0.1 0.3 0.1
36 1329 1329 3948 2659 0.4 0.2 6.7 0.2
37 1294 1403 4116 3636 3.4 1.8 9.9 7.1
38 962 1183 2116 1466 5.4 0.2 10.6 1.3
39 2992 3125 6419 5357 3.3 0.3 4.8 0.3
40 2504 3281 5928 3876 9.1 7.5 9.7 9.8
41 1158 1189 4366 3670 4.3 0.3 9.9 7.2
42 834 1020 1944 2980 6.2 0.6 7.9 5.4
43 3626 3825 4768 5076 2.4 0.3 4.8 0.3
44 2711 2820 7047 4497 5.3 0.9 8.6 4.2
45 2603 2603 8248 6355 0.4 0.3 4.5 2.3
46 3985 4118 6340 4966 4.3 3.7 4.7 4.1
47 3503 4214 8460 7247 3.1 5.8 6.7 7.4
48 2387 2531 5046 3763 2.3 1.6 9.6 2.1
49 - - - - - - - -
50 - - - - - - - -
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Figure 4.8: Model IP5,
∑

f

∑
m Y m

f

The sum of losses in machine qualifications is minimized for the prefer-
ence vector (1,βo,1) as Figure 4.8 illustrates. This is because machine qual-
ifications are prioritized. Also, note that, for the preference vector (1,βo,γo)
where machine qualifications and expected yield are both prioritized, the sum
of losses in machine qualifications also tends to be lower than with preference
vectors (1,1,1) and (1,1,γo). However, in Instance type 41 for example, the
sum of losses in machine qualifications is greater than with the preference
vector (1,1,1) because the latter does not guarantee optimality as shown in
Figure 4.10.

Results for yield and CPU time for different (α
′

,β
′

,γ
′

) combinations
(Model IP5)

In Table 8.b, the sum of expected yield and the corresponding CPU time are
shown for each of the (α

′

,β
′

,γ
′

) combinations. The sum of expected yield
is optimally maximized for the combination of (α

′

= α
′

o, β
′

= 1, γ
′

= γ
′

o).
This sum is greater than or equal to all other sums, over all the instances,
for all other different combinations of weights. The fourth column dominates
Columns 2, 3 and 5 on the maximum value of

∑T
t=1

∑
f

∑
m xm

f,tv
m
f,t.
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The CPU time either when prioritizing the sum of expected yield or the
sum of completion times is lower than when prioritizing the sum of losses in
machine qualification and the sum of expected yield, i.e. with the combina-
tions of weights (α

′

= α
′

o, β
′

= β
′

o, γ
′

= 1) and (α
′

= α
′

o, β
′

= β
′

o, γ
′

= γ
′

o).
This also illustrates the added complexity when the notion of machine qual-
ification and time constraint is considered.

Table 8.b: Model IP5, (α
′

= 1, β
′

o = |N | ∗ T , γ
′

o = |M | ∗ |F | ∗ |N | ∗ T ),∑T
t=1

∑
f

∑
m xm

f,tv
m
f,t and CPU Time

(β,γ) -
∑T

t=1

∑
f

∑
m xm

f,tv
m
f,t (β,γ) - CPU Time (β,γ) - % of Opt.

No. (1,1) (β
′

o,1) (1,γ
′

o) (β
′

o,γ
′

o) (1,1) (β
′

o,1) (1,γ
′

o) (β
′

o,γ
′

o) (1,1) (β
′

o,1) (1,γ
′

o) (β
′

o,γ
′

o)
1 870 870 922 922 0.8 0.8 2.8 2.1 100 % 100 % 100 % 100 %
2 890 888 894 892 0.4 1.8 0.2 2 100 % 100 % 100 % 100 %
3 952 952 952 952 0.8 4 0.8 3.3 100 % 100 % 100 % 100 %
4 848 844 856 844 2.3 15.6 2.5 21.8 100 % 100 % 100 % 100 %
5 854 835 856 854 6.4 600 22.9 600 100 % 10 % 100 % 10 %
6 879 879 896 883 16.8 600 600 600 100 % 10 % 20 % 10 %
7 905 909 939 909 3 3.8 5.7 27.6 100 % 100 % 100 % 100 %
8 940 939 981 954 3 9.7 3.1 8.3 100 % 100 % 100 % 100 %
9 868 868 915 890 0.3 0.3 0.3 1.2 100 % 100 % 100 % 100 %
10 911 911 926 924 0.1 0.1 0.1 0.1 100 % 100 % 100 % 100 %
11 905 905 938 918 0.5 0.5 0.6 1 100 % 100 % 100 % 100 %
12 905 905 982 948 0.8 0.7 4.4 7.8 100 % 100 % 100 % 100 %
13 908 908 950 939 0.2 0.2 0.2 0.2 100 % 100 % 100 % 100 %
14 1826 1837 1868 1853 12.4 600 4.2 600 100 % 10 % 100 % 10 %
15 1813 1818 1835 1835 5.1 600 1.2 245 100 % 10 % 100 % 100 %
16 1794 1794 1892 1892 5.5 3.7 1.1 1.1 100 % 100 % 100 % 100 %
17 1822 1815 1837 1820 1.2 3.5 0.3 4.6 100 % 100 % 100 % 100 %
18 1730 1738 1844 1787 26.9 30.8 39.5 600 100 % 100 % 100 % 10 %
19 1749 1755 1839 1765 58.8 600 21.6 600 100 % 10 % 100 % 10 %
20 2698 2698 2748 2748 3.4 3.1 1.3 1.3 100 % 100 % 100 % 100 %
21 2732 2664 2840 2833 7.6 600 1.9 299.2 100 % 0 % 100 % 100 %
22 2663 2693 2788 2747 14.3 310.6 6.5 600 100 % 90 % 100 % 20 %
23 2704 2679 2785 2761 128.1 600 69.3 600 100 % 0 % 100 % 20 %
24 2770 2758 2900 2875 30.6 600 24.4 600 100 % 0 % 100 % 10 %
25 2634 2618 2664 2644 38.7 600 15.3 600 100 % 10 % 100 % 10 %
26 3746 3746 3941 3936 1.6 1.4 12.9 9.5 100 % 100 % 100 % 100 %
27 3595 3606 3814 3814 11.8 30.9 9.4 57.5 100 % 100 % 100 % 100 %
28 3538 3534 3582 3568 7.8 21 18.7 548.1 100 % 100 % 100 % 60 %
29 3616 3584 3680 3583 241.5 600 600 600 90 % 0 % 20 % 10 %
30 3568 3568 3686 3666 106.3 115.2 52 414.1 100 % 100 % 100 % 70 %
31 4691 4691 4700 4700 1.2 1.2 0.8 0.8 100 % 100 % 100 % 100 %
32 4210 4194 4210 4194 8.2 600 5.4 421.8 100 % 0 % 100 % 80 %
33 4393 4378 4455 4454 78.2 600 600 600 100 % 0 % 10 % 0 %
34 4602 4597 4744 4708 45.9 600 600 600 100 % 0 % 10 % 0 %
35 4346 4346 4608 4608 43.9 44 33.1 33 100 % 100 % 100 % 10 %
36 4544 4544 4824 4776 31.1 35 23.8 600 100 % 100 % 100 % 0 %
37 4328 4356 4764 4636 300.4 600 97 600 80 % 0 % 100 % 0 %
38 4490 4470 4615 4561 82.5 600 36.2 600 100 % 0 % 100 % 0 %
39 5347 5354 5585 5528 148.1 600 96.2 600 100 % 10 % 100 % 0 %
40 5449 5383 5747 5626 426.6 600 347.6 600 80 % 0 % 50 % 0 %
41 5406 5324 5799 5787 118.9 600 51.6 600 100 % 0 % 100 % 0 %
42 5328 5303 5550 5519 48.6 600 37.6 600 100 % 0 % 100 % 0 %
43 6275 6266 6446 6435 34.6 600 33.9 600 100 % 0 % 100 % 0 %
44 6139 6099 6427 6242 228.2 600 600 600 100 % 0 % 0 % 0 %
45 6396 6396 6757 6741 60 58.9 91.5 600 100 % 0 % 100 % 0 %
46 6286 6266 6560 6370 600 600 600 600 10 % 10 % 0 % 0 %
47 6190 6200 6625 6418 600 600 425.5 600 10 % 0 % 50 % 0 %
48 6259 6231 6426 6195 600 600 293.2 600 0 % 0 % 90 % 0 %
49 - - - - - - - - - - - -
50 - - - - - - - - - - - -

The percentage of gain on the expected yield obtained with the preference
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Figure 4.9: Model IP5, Percentage of yield gain

vector (1,1,1), where the sum of completion times is prioritized compared to
other criteria is shown in Figure 4.9. This figure shows that the gain is
maximized for the preference vector (1,1,γo) where the expected yield is pri-
oritized. However, this gain tends to be minimal for the preference vector
(1,βo,1) where machine qualification is prioritized compared to other criteria.
In addition, for the preference vector (1,βo,γo), this percentage is larger than
with preference vectors (1,1,1) and (1,βo,1), but smaller than with prefer-
ence vector (1,1,γo). Further, Figure 4.10 represents the CPU times for all
studied preference vectors. It shows that whenever machine qualification is
prioritized with and compared to the expected yield and sum of completion
times, CPU times are the largest and close or equal to the time limit.

4.4 Problem analysis

4.4.1 Analysis of the objective function (PTC and PEHF )

Problem with Time Constraint (PTC)

In Tables 9.a and 9.b, we show the results when both criteria of the objec-
tive function in PTC are optimized, using the following values: α = 1 and
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Figure 4.10: Model IP5, CPU times

β = k ∗ βo, where βo = |N | ∗ T and k = 1/βo, 1/6, 1/4, 1/2 and 1. These
values are chosen so that the scheduling criterion, minimizing the sum of
completion times, is second to the minimization of the number of disqual-
ifications except for k = 1/βo, so that it is equivalent to a lexicographical
order. The weight of the qualification criterion is increased as a factor of
fractions of βo aiming at investigating the effect of its variation on the values
of the objective function. The results show that the problem becomes much
harder directly after increasing the weight of the qualification criterion, even
only with k = 1/6. This is due to the fact that the goal is not only to find
a feasible schedule maximizing the satisfaction of the threshold constraints,
but also to balance with the minimization of the sum of completion times.
On the other hand, for the instance types with a resolution time below the
time limit, the values of

∑
f

∑
m Y m

f are smaller as the value of the weight of
this criterion is increased. However, the values of

∑
f Cf increase. This is an

expected behavior and the antagonistic nature of both criteria is evidenced.

Figure 4.11 shows the percentage increase of the sum of completion times
when varying the weight of machine qualifications (β). As the figure shows,
the percentage of increase tends to be smaller for small values of β. These
values of percentages are based on the values obtained for the preference vec-
tor (1,1), where the sum of completion times is prioritized. Note that it is not
guaranteed for higher values of β, that the percentage increase of the sum of
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Table 9.a: Model IP3, (α = 1, βo = |N | ∗ T ),
∑

f Cf and
∑

f

∑
m Y m

f with
β variation

No. β -
∑

f Cf β -
∑

f

∑
m Y m

f

1 βo/6 βo/4 βo/2 βo 1 βo/6 βo/4 βo/2 βo

1 255 255 255 255 255 0.0 0.0 0.0 0.0 0.0
2 245 284 284 284 284 0.9 0.4 0.3 0.3 0.0
3 564 669 669 669 669 1.6 1.3 1.2 0.9 0.5
4 211 231 231 231 231 3.1 1.9 1.8 1.8 1.7
5 278 326 369 278 278 3.1 2.1 1.9 2.8 2.6
6 351 351 351 351 351 1.2 0.9 0.9 0.8 0.6
7 124 133 133 133 133 2.1 1.2 1.1 0.9 0.8
8 76 78 78 78 78 3.3 2.4 2.2 2.2 1.9
9 116 116 116 116 116 0.4 0.0 0.0 0.0 0.0
10 46 46 46 46 46 0.4 0.1 0.0 0.0 0.0
11 96 96 96 96 96 0.4 0.1 0.1 0.2 0.0
12 67 67 67 67 67 0.4 0.2 0.2 0.4 0.1
13 34 34 34 34 34 0.3 0.2 0.2 0.1 0.0
14 346 393 393 393 393 3.3 1.4 1.2 1.1 0.6
15 285 313 313 313 313 6.6 6.3 6.3 6.2 5.8
16 404 404 404 404 404 0.3 0.2 0.2 0.1 0.1
17 157 163 163 163 163 1.2 0.4 0.4 0.3 0.1
18 399 407 407 407 407 1.4 0.4 0.3 0.3 0.1
19 297 368 356 363 329 7.2 4.4 4.1 4.1 4.5
20 1163 1163 1163 1163 1163 0.0 0.2 0.2 0.1 0.2
21 559 711 707 707 707 2.4 0.2 0.1 0.1 0.1
22 483 512 512 512 512 2.7 0.2 0.1 0.1 0.2
23 538 738 738 872 674 7.3 6.6 6.6 6.4 5.6
24 621 694 669 689 753 3.4 2.4 2.3 2.2 0.9
25 427 460 460 466 460 6.1 1.4 1.1 1.1 0.7
26 1108 1108 1108 1108 1108 0.4 0.2 0.1 0.1 0.3
27 2010 2064 2064 2064 2064 1.2 0.2 0.2 0.1 0.2
28 1117 1135 1135 1135 1135 1.1 0.2 0.1 0.1 0.1
29 1608 1791 1850 1761 1734 6.4 4.4 4.4 4.9 3.7
30 1355 1355 1355 1355 1355 0.4 0.1 0.1 0.1 0.1
31 2394 2394 2394 2394 2394 0.4 0.2 0.2 0.1 0.1
32 3243 3879 3890 3878 3778 2.2 0.2 0.2 0.1 0.2
33 2621 2812 2792 2682 2842 2.1 0.4 0.7 0.6 0.2
34 2710 2981 2970 2966 2966 2.3 0.4 0.2 0.1 0.1
35 1926 1926 1926 1926 1926 0.4 0.4 0.3 0.3 0.1
36 1329 1329 1329 1329 1329 0.4 0.3 0.2 0.2 0.2
37 1294 1504 1412 1618 1483 3.4 2.3 2.3 1.1 0.5
38 962 1156 1181 1137 1146 5.4 0.4 0.4 0.4 0.2
39 2992 3125 3135 3125 3129 3.3 0.4 0.3 0.3 0.2
40 2504 3421 3421 3421 3421 9.1 8.2 8.2 7.8 7.8
41 1158 1190 1197 1193 1195 4.3 0.4 0.4 0.3 0.3
42 834 1009 1011 1109 998 6.2 1.2 1.2 1.1 0.5
43 3626 3825 3822 3820 3820 2.4 0.4 0.3 0.3 0.3
44 2711 2830 2842 3306 3674 5.3 0.4 2.9 2.7 1.6
45 2603 2603 2603 2603 2603 0.4 0.4 0.3 0.4 0.2
46 4060 3947 4037 3989 3945 4.3 4.1 4.1 4.3 3.8
47 3429 4159 4151 4181 4030 3.1 5.8 5.9 5.7 3.9
48 2389 2575 2503 2581 2727 2.3 1.7 1.6 1.6 0.1
49 - - - - - - - - - -
50 - - - - - - - - - -
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Figure 4.11: Model IP3, percentage increase of
∑

f Cf , variations of β

completion times is directly proportional to this variation when there is no
complete dominance of one criterion over the other, i.e. preference vectors
(1,βo/2), (1,βo/4) and (1,βo/6). Instance type 21 is an example.

Figure 4.12 shows the variation of the sum of losses in machine qualifica-
tions for the selected instances and for different preference vectors. The sum
of losses in machine qualifications is maximal for the preference vector (1,1)
where the sum of completion times is prioritized, and tends to be minimal for
the preference vector (1,βo), where machine qualification is prioritized. This
illustrates again the antagonistic nature of both criteria. It is important to
mention that the solution times for Instance types 19 and 44 reach the time
limit, and hence their behavior is not contradictory with the antagonistic
nature of both criteria since only the best found solution is shown.

On the contrary, the number of setups is minimized as the sum of comple-
tion time is prioritized. This can be seen in Figure 4.13 where the preference
vector (1,1) leads to a minimum number of setups for all the selected instance
types.

Further, note that in Figure 4.14, CPU times increase whenever the cri-
terion on machine qualifications becomes important, i.e. preference vectors
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Figure 4.12: Model IP3,
∑

f

∑
m Y m

f , variations of β

Figure 4.13: IP3 - Number of setups - β variation

(1,βo/6), (1,βo/4), (1,βo/2) and (1,βo). This is another evidence of the in-
crease of the problem complexity when time constraints are included.
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Table 9.b: Model IP3, (α = 1, βo = |N | ∗ T ), Number of needed setups and
CPU time with variations of β

β - Setups β - (CPU) β - % of Opt.
No. 1 βo/6 βo/4 βo/2 βo 1 βo/6 βo/4 βo/2 βo 1 βo/6 βo/4 βo/2 βo

1 2 2 2 2 2 0.3 0.8 0.7 0.7 0.8 100 % 100 % 100 % 100 % 100 %
2 3 4 4 4 4 0.4 1.7 1.8 1.7 1.8 100 % 100 % 100 % 100 % 100 %
3 2 5 5 5 5 0.8 12.5 11.9 8.1 11.9 100 % 100 % 100 % 100 % 100 %
4 3 7 7 7 6 1.7 16.4 19.1 23.7 19.1 100 % 100 % 100 % 100 % 100 %
5 3 3 5 3 3 6.4 600 600 600 600 100 % 10 % 10 % 10 % 10 %
6 3 3 3 3 3 16.8 600 600 600 600 100 % 10 % 10 % 10 % 10 %
7 4 6 6 6 6 4 2.8 2.9 3.4 2.9 100 % 100 % 100 % 100 % 100 %
8 6 7 7 7 7 2 5 5.5 6.2 5.5 100 % 100 % 100 % 100 % 100 %
9 5 5 5 5 5 0.3 0.3 0.3 0.3 0.3 100 % 100 % 100 % 100 % 100 %
10 6 6 6 6 6 0.1 0.1 0.1 0.1 0.1 100 % 100 % 100 % 100 % 100 %
11 6 6 6 6 6 0.5 0.5 0.5 0.5 0.5 100 % 100 % 100 % 100 % 100 %
12 8 8 8 8 8 0.5 0.5 0.5 0.6 0.5 100 % 100 % 100 % 100 % 100 %
13 9 9 9 9 9 0.1 0.2 0.2 0.2 0.2 100 % 100 % 100 % 100 % 100 %
14 5 11 11 11 11 13 335.6 206.1 600 206.1 100 % 70 % 100 % 10 % 10 %
15 8 12 11 12 10 3.6 107.4 600 387.9 600 100 % 100 % 10 % 70 % 100 %
16 6 6 6 6 6 3.2 3.6 3.5 3.2 3.5 100 % 100 % 100 % 100 % 100 %
17 7 8 8 8 8 2.2 1.6 2.1 2.2 2.1 100 % 100 % 100 % 100 % 100 %
18 7 7 7 7 7 27.4 28.6 30.7 30.5 30.7 100 % 100 % 100 % 100 % 100 %
19 6 12 13 12 8 47.8 600 600 600 600 100 % 10 % 10 % 10 % 0 %
20 4 4 4 4 4 4.2 3.6 3.5 3.7 3.5 100 % 100 % 100 % 100 % 100 %
21 6 19 18 19 19 7.7 362.3 373.7 509.6 373.7 100 % 60 % 60 % 30 % 10 %
22 6 10 10 10 10 10.4 171.5 155.7 182.3 155.7 100 % 100 % 100 % 100 % 100 %
23 11 21 21 26 22 95.4 600 600 600 600 100 % 0 % 0 % 0 % 10 %
24 7 12 11 10 13 31.2 600 600 600 600 100 % 0 % 0 % 0 % 0 %
25 11 16 16 16 16 46.5 600 600 600 600 100 % 0 % 0 % 0 % 0 %
26 4 4 4 4 4 1.5 1.5 1.6 1.6 1.6 100 % 100 % 100 % 100 % 100 %
27 4 6 6 6 6 10.7 30.5 29.3 29.9 29.3 100 % 100 % 100 % 100 % 100 %
28 5 6 6 6 6 7.3 19.3 19.1 19.1 19.1 100 % 100 % 100 % 100 % 100 %
29 6 15 18 16 14 243.6 600 600 600 600 90 % 0 % 0 % 0 % 10 %
30 8 8 8 8 8 102.7 129.1 129.4 129.6 129.4 100 % 100 % 100 % 100 % 100 %
31 3 3 3 3 3 1.3 1.2 1.3 1.2 1.3 100 % 100 % 100 % 100 % 100 %
32 3 10 11 11 10 7.2 600 600 600 600 100 % 0 % 0 % 0 % 10 %
33 6 15 15 10 16 108.6 600 600 600 600 100 % 0 % 0 % 0 % 10 %
34 5 12 12 10 10 40.4 600 600 600 600 100 % 0 % 0 % 0 % 0 %
35 6 7 6 6 6 43.8 44.8 43.9 45.4 43.9 100 % 100 % 100 % 100 % 100 %
36 6 6 6 6 6 31.9 38.5 43.9 39.5 43.9 100 % 100 % 100 % 100 % 100 %
37 8 20 19 22 19 306.5 600 600 600 600 80 % 0 % 0 % 0 % 10 %
38 10 23 26 26 23 78.8 600 600 600 600 100 % 0 % 0 % 0 % 0 %
39 7 11 11 11 11 137.4 600 600 600 600 100 % 0 % 0 % 0 % 10 %
40 8 37 37 37 37 345.1 600 600 600 600 80 % 0 % 0 % 0 % 0 %
41 11 13 13 14 14 106.7 600 600 600 600 100 % 0 % 0 % 0 % 0 %
42 14 25 24 33 31 47 600 600 600 600 100 % 0 % 0 % 0 % 0 %
43 6 13 12 11 11 33.2 600 600 600 600 100 % 0 % 0 % 0 % 0 %
44 9 17 19 21 29 213.7 600 600 600 600 100 % 0 % 0 % 0 % 0 %
45 6 6 6 6 6 58.1 60 59.9 60.1 59.9 100 % 90 % 90 % 90 % 90 %
46 28 28 30 32 28 600 600 600 600 600 10 % 0 % 0 % 0 % 0 %
47 7 25 25 21 19 600 600 600 600 600 10 % 0 % 0 % 0 % 0 %
48 12 18 20 19 28 600 600 600 600 600 0 % 0 % 0 % 0 % 0 %
49 - - - - - - - - - - - - - - -
50 - - - - - - - - - - - - - - -

Problem with Equipment Health Factor (PEHF )

In Tables 11.e and 10.b, we show the results when the three criteria the ob-
jective function of PEHF are optimized, using the following values: α

′

= 1
, β

′

= βo = |N | ∗ T and γ
′

= k ∗ γo, where γo = |M | ∗ |F | ∗ |N | ∗ T and
k = 1/γo, 1/8, 1/6, 1/4, 1/2 and 1. These values are chosen so that the
scheduling criterion, minimizing the sum of completion times, is second to
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Figure 4.14: IP3 - CPU times - β variation

both the minimization of the number of disqualifications and the sum of ex-
pected yield. The weight of the yield criterion is increased as a factor of
fractions of γo, to investigate the effect of γ

′

on the objective function. The
tests are conducted while varying the coefficient multiplying the yield crite-
rion by prioritizing in all cases the sum of losses in machine qualifications.
This criterion is prioritized because PEHF is considered as an extension
of PTC, and hence minimizing the disqualifications should always be taken
into account. The results show that, for larger values of k, the yield is better
maximized for all instance types for which CPU time is below the time limit.
The sum of losses in machines qualifications is simultaneously minimized and
has smaller values for smaller values of k. However, the value of

∑
f Cf are

increasing.

The values of α′ and β′ are respectively fixed to 1 and βo when studying
the effect of varying γ on the different criteria of the objective function. The
value of β is fixed to βo because we consider that PEHF is an extension
of PTC and that machine qualifications are important. Also, βo is used to
test the antagonistic nature of machine qualifications and expected yield. In
Figure 4.15, the percentage of gain on the expected yield for the selected in-
stance types is shown based on the values obtained for the preference vector
(1,βo,1), where machine qualifications are prioritized. As the figure shows,
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the percentage obtained for the preference vector (1,βo,γo), i.e. prioritizing
machine qualifications and expected yield, is maximized compared to other
preference vectors where the priority of the expected yield is gradually de-
creased (γ = γo/2, γo/4, γo/6 and γo/8). Once the weight of the expected
yield is decreased and consequently the weight of machine qualifications is
relatively increased, the percentage of gain on the expected yield decreases
and the number of machine qualifications decreases as well. This is shown
in Figure 4.16 where the values of losses in machine qualifications are pro-
vided for all preference vectors. This is true for instance types that are
solved to optimality and the tendency in Figures 4.15 and 4.16 shows this
hypothesis. Therefore, the antagonistic nature of machine qualifications and
expected yield is illustrated, in addition to the competing criteria of machine
qualifications and the sum of completion times discussed in previous sections.

Figure 4.15: Model IP5, gain in percentage on yield for different values γ,
based on the yield obtained for γ = 1

Furthermore, the effect of varying the weight of the expected yield on the
sum of completion times is shown in Figure 4.17. The tendency is to lose
on the sum of completion times (increase) when the priority on the expected
yield is increased. This illustrates the antagonistic nature between the sum
of completion times and the expected yield. However, this is not always true
since, if Instance type 27 in Table 10.b is considered for which the optimal
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Figure 4.16: Model IP5, total number of machine disqualifications for dif-
ferent values of γ

sum of completion times for all preference vectors are obtained (CPU times
are below the time limit), it can be noted that, for γ = γo/2, γo/4 and γo/6,
the sums of completion times are respectively 2916, 2923 and 2921. This
variation of the sum of completion times is not strange, since the sum of
completion times does not always have to be antagonistic with the expected
yield. When scheduling to minimize the sum of completion times, there is
a tendency to schedule the same job of a given family on the same machine
in order to decrease the number of setups and hence the sum of completion
times. This could be an advantage when maximizing the expected yield as
well as a disadvantage. Keeping on scheduling the jobs of the same family
may lead to a maximized yield if the family has a maximal yield on the ma-
chine. On the contrary, if this is not the case, the expected yield may be
degraded.

4.4.2 Pareto frontiers for PTC

The search space in the context of multiple objectives can be divided into
two non-overlapping regions, namely one which is optimal and one which is
non optimal. Although PTC is a two-objective problem, this is also true for
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Figure 4.17: Model IP5, sum of completion times for different values of γ

PEHF with three objectives. PTC has conflicting objectives, and hence the
set of its optimal solutions contains usually more than one solution. These
solutions, namely the Pareto-optimal solutions, are of equal importance when
there is no previous higher-level information. If higher-level information is
available, a biased search can be performed.

Let us recall that the objective function of PTC includes two criteria: A
classical scheduling criterion, the sum of the completion times of jobs, and
the sum of losses in machine qualifications. Thereafter, we see how both cri-
teria interact with each other by fixing a maximum number of possible losses
in machine qualifications and minimizing the sum of completion times. This
is equivalent to applying the ǫ-constraint method.

The results in Tables 11.a through 11.d show on some selected instance
types (14, 19, 21, 22, 25, 38, 39, 41, 42 and 44), the strong trade-off that
exists between keeping as many qualifications on machines as possible and
completing jobs as soon as possible and its effect on the number of setups
and the CPU time.

Figure 4.18 shows, for Instance type 38, the sum of completion times, the
sum of losses in machine qualifications, the number of setups and the CPU
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time. The Pareto frontiers are observed for the two criteria of the objective
function (

∑
f

∑
m Y m

f ) and
∑

f∈F Cf ). In addition, the number of setups and
the CPU time behave in the same way, i.e. they decrease for larger values of
allowed losses in machine qualifications. Hence, we find that other aspects
are also related and are contradictory.

Moreover, considering Instance type 19 for example, the optimal solution
is 297 when the sum of completion times is prioritized, but the thresholds
associated to job families on machines must be violated at least 7 times. On
the other hand, the global minimum number of disqualifications is 4, with
a sum of completion times of 351. The other instance types show as well
that the sum of completion times can sharply increase when the maximum
number of losses in machine qualifications is reduced and vice-versa.

Figure 4.18: Pareto frontiers, Instance type 38

4.4.3 Threshold sensitivity analysis for PTC

In this section, we analyze the impact of the time thresholds on the sum
of losses in machine qualifications. An instance of the 10 different Instance
types is chosen and analyzed. The threshold of the first family is varied from
1 to the time horizon T , while the thresholds of the other families are set to T
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to focus on the threshold of one family at a time i.e., ∀f ∈ F, f 6= f1, γf = T .
The same instances that in Section 4.4.2 are studied. The sum of losses in
machine qualifications when varying the threshold are shown in Table 4.12.
The tests are done while prioritizing the qualification criterion (α = 1 and
β = |N |∗T ) to study the effect of the threshold on this criterion. The results
show that the number of machine disqualifications decreases as the threshold
increases. Machines have more time to process the jobs of one family and
to shift for other families to be processed. The sum of losses in machine
qualifications for one family on all machines varies from one instance to an-
other. For example, Instances 39 and 42 have different maximum values for
a threshold interval of [1, 8], which are 3 and 1 respectively. Also, the solu-
tion of Instance 19 admits 2 losses in qualifications for a threshold interval
of [11, 12]. However, incrementing the threshold by only 1 unit of time leads
to 0 losses in qualifications for the same instance. Figure 4.19 shows the
staircase behavior between the threshold and the sum of losses in machine
qualifications.

Figure 4.19: Sum of losses in machine qualifications versus threshold variation
(Instances of Instance types 25, 38, 39 and 41)
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4.5 Conclusion

In this chapter, the results obtained with exact solution approaches were
presented and discussed. The results correspond to the problem of scheduling
job families on non-identical parallel machines with time constraints (PTC)
and the extension to scheduling with Equipment Health Factor (PEHF ). A
multi-criteria objective function is considered, which includes: The sum of
completion times, The sum of losses in machine qualifications (PTC,PEHF )
and the expected yield (PEHF ).

Exact solutions were determined by using a standard mathematical solver
(X-press) based on the family-based mathematical model IP3 for PTC and
IP5 for PEHF . The experiments showed that setup times, thresholds, and
the number of qualified machines have a direct impact on the complexity of
an instance. We noticed that, for instance with a large number of jobs (up
to 70 in our instances), the solver cannot get guaranteed optimal solutions in
the time limit of 600 seconds. Hence, other solution approaches are required.
In Chapter 5, heuristics that target each criterion of the objective function,
and numerical results on randomly generated instances are presented. A re-
cursive algorithm and a simulated annealing metaheuristic are also proposed.
Numerical results obtained with the developed approaches are compared with
the exact solutions given by the standard solver.
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Table 10.a: Model IP5, (α
′

= 1, β
′

= |N | ∗T , γ
′

o = |M | ∗ |F | ∗ |N | ∗T ), Sum
of expected yield (

∑T
t=1

∑
f

∑
m xm

f,tv
m
f,t) and

∑
f

∑
m Y m

f with variations of
γ

γ
′

-
∑T

t=1

∑
f

∑
m xm

f,tv
m
f,t γ

′

-
∑

f

∑
m Y m

f

No. γ
′

o γ
′

o/2 γ
′

o/4 γ
′

o/6 γ
′

o/8 1 γ
′

o γ
′

o/2 γ
′

o/4 γ
′

o/6 γ
′

o/8 1
1 922 922 909 896 883 880 0.0 0.0 0.0 0.0 0.0 0.0
2 892 890 890 890 890 888 0.0 0.0 0.0 0.0 0.0 0.0
3 952 952 952 952 952 952 1.3 1.2 1.2 1.1 1.1 0.9
4 844 844 844 844 844 844 2.1 2.1 2.1 1.9 1.9 1.5
5 854 835 835 835 835 835 3.4 2.4 2.3 2.3 1.8 2.7
6 883 882 879 879 879 879 2.1 1.6 0.9 0.9 0.8 0.6
7 909 909 909 909 909 909 1.2 1.1 1.0 1.0 0.9 0.8
8 954 954 954 954 950 939 2.4 2.1 2.1 2.1 2.0 1.6
9 890 890 890 890 890 868 0.2 0.1 0.1 0.2 0.1 0.3
10 924 924 924 924 924 911 0.1 0.2 0.2 0.1 0.1 0.2
11 918 918 918 918 918 905 0.1 0.2 0.2 0.2 0.1 0.2
12 948 948 948 948 948 905 0.1 0.1 0.1 0.0 0.1 0.1
13 939 939 939 939 939 908 0.2 0.2 0.2 0.2 0.1 0.1
14 1853 1840 1837 1840 1837 1837 2.4 1.8 1.8 2.6 1.1 1.7
15 1835 1835 1835 1835 1831 1818 6.2 6.0 6.0 5.9 5.9 5.8
16 1892 1892 1892 1891 1891 1794 0.2 0.3 0.3 0.1 0.1 0.2
17 1820 1820 1820 1820 1820 1815 0.1 0.3 0.2 0.2 0.1 0.2
18 1787 1766 1759 1774 1777 1738 1.2 0.2 0.2 0.2 0.2 0.2
19 1765 1776 1769 1765 1775 1755 5.3 5.6 5.6 4.4 4.9 4.5
20 2748 2748 2748 2745 2739 2698 0.1 0.3 0.3 0.3 0.2 0.1
21 2833 2833 2833 2682 2684 2664 1.1 1.1 1.0 0.4 0.3 0.2
22 2747 2752 2752 2749 2746 2693 0.1 0.3 0.3 0.3 0.1 0.3
23 2761 2733 2725 2737 2724 2679 11.8 9.3 8.2 7.4 8.1 6.6
24 2875 2883 2836 2875 2856 2758 3.2 3.6 2.4 2.7 2.7 1.9
25 2644 2626 2626 2644 2644 2618 1.4 1.7 1.2 1.2 1.1 0.8
26 3936 3936 3936 3936 3936 3746 0.2 0.3 0.2 0.2 0.2 0.2
27 3814 3778 3778 3778 3778 3606 1.3 0.4 0.4 0.4 0.2 0.2
28 3568 3566 3560 3560 3560 3534 0.2 0.2 0.2 0.2 0.2 0.1
29 3583 3570 3572 3612 3591 3584 6.2 5.8 5.7 6.6 5.6 4.6
30 3666 3641 3666 3666 3666 3568 0.1 0.4 0.3 0.3 0.2 0.1
31 4700 4699 4695 4694 4693 4691 0.1 0.3 0.3 0.2 0.1 0.1
32 4194 4210 4194 4194 4194 4194 0.2 0.6 0.4 0.3 0.3 0.2
33 4454 4426 4426 4425 4417 4378 3.4 0.4 0.6 0.3 0.2 0.2
34 4708 4693 4720 4730 4741 4597 2.3 0.8 1.6 1.6 1.6 0.1
35 4608 4608 4608 4608 4608 4346 0.1 0.4 0.4 0.2 0.2 0.1
36 4776 4776 4776 4776 4776 4544 0.2 0.3 0.3 0.3 0.2 0.2
37 4636 4445 4431 4463 4431 4356 7.1 2.8 2.8 2.8 2.6 1.8
38 4561 4514 4545 4542 4559 4470 1.3 0.4 0.9 0.9 0.7 0.2
39 5528 5546 5546 5503 5545 5354 0.3 2.7 2.7 0.3 1.6 0.3
40 5626 5529 5620 5650 5446 5383 9.8 9.8 9.8 9.6 8.1 7.5
41 5787 5667 5522 5556 5595 5324 7.2 9.6 8.7 8.6 0.2 0.3
42 5519 5505 5433 5408 5498 5303 5.4 5.2 5.6 5.6 4.7 0.6
43 6435 6435 6435 6435 6435 6266 0.3 0.3 0.3 0.3 0.2 0.3
44 6242 6122 6128 6111 6137 6099 4.2 3.9 3.9 3.8 3.6 0.9
45 6741 6727 6667 6716 6666 6396 2.3 0.4 0.4 0.4 0.3 0.3
46 6370 6358 6342 6333 6357 6266 4.1 4.2 4.1 4.1 3.9 3.7
47 6418 6492 6364 6370 6369 6200 7.4 7.0 6.9 6.8 6.8 5.8
48 6195 6213 6197 6238 6205 6099 2.1 1.4 1.3 3.8 3.6 1.6
49 - - - - - - - - - - - -
50 - - - - - - - - - - - -
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Table 10.b: Model IP5, (α
′

= 1, β
′

= |N | ∗ T , γ
′

o = |M | ∗ |F | ∗ |N | ∗ T ),∑
f∈F Cf and CPU time with variation of γ

γ
′

-
∑

f Cf γ
′

- (CPU)

No. γ
′

o γ
′

o/2 γ
′

o/4 γ
′

o/6 γ
′

o/8 1 γ
′

o γ
′

o/2 γ
′

o/4 γ
′

o/6 γ
′

o/8 1
1 404 404 341 296 267 267 2.1 2.6 2.6 3.1 2.6 2.6
2 311 284 284 284 284 284 2 2.3 1.9 2.2 1.8 1.8
3 669 669 669 669 669 669 3.3 7.7 3 11.5 5 4
4 231 231 231 231 231 231 21.8 24 43 22.9 14.6 15.6
5 278 326 326 332 329 332 600 600 600 600 600 600
6 524 421 356 351 351 351 600 600 600 600 600 600
7 133 133 133 133 133 133 27.6 8.2 6.7 3 3.7 3.8
8 101 101 101 101 92 78 8.3 9 8.4 14 22.5 9.7
9 136 136 136 136 136 116 1.2 1.4 0.8 0.7 0.7 0.3
10 50 50 50 50 50 46 0.1 0.1 0.1 0.1 0.1 0.1
11 114 114 114 114 114 96 1 1.4 0.9 0.9 1 0.5
12 107 107 107 107 107 67 7.8 5.1 9.9 4 3 0.7
13 50 50 50 50 50 34 0.2 0.2 0.2 0.2 0.2 0.2
14 427 425 386 359 396 396 600 600 600 600 600 600
15 349 349 349 349 334 313 245 363.8 599.9 446.9 599.9 600
16 762 762 762 739 739 404 1.1 1.3 1.9 2.3 2.7 3.7
17 176 176 176 176 176 163 4.6 8.1 6 5.7 5.4 3.5
18 708 440 459 430 418 407 600 600 600 600 600 30.8
19 400 428 446 407 392 348 600 600 600 600 600 600
20 1687 1687 1687 1582 1414 1163 1.3 1.2 1.3 1.2 1.4 3.1
21 1033 1024 1097 759 761 707 299.2 190.6 600 600 600 600
22 711 698 670 635 621 512 600 600 600 600 600 310.6
23 1046 895 773 837 808 574 600 600 600 600 600 600
24 1439 1327 1179 1308 1026 666 600 600 600 600 600 600
25 520 492 502 528 525 460 600 600 600 600 600 600
26 2550 2550 2550 2550 2550 1108 9.5 8 4.6 3.5 3.2 1.4
27 3113 2916 2923 2921 2916 2064 57.5 53.6 113.8 96.1 123.8 30.9
28 1908 1840 1322 1322 1322 1135 548.1 600 104 50.5 48 21
29 1960 1946 2000 2559 2362 1776 600 600 600 600 600 600
30 1981 1997 1981 1981 1981 1355 414.1 600 206.2 421.2 128.1 115.2
31 2925 2810 2490 2445 2414 2394 0.8 1 1 1.3 1.3 1.2
32 3763 3379 3763 3776 3766 3765 421.8 600 275.2 600 600 600
33 4708 4301 3688 3267 3108 2752 600 600 600 600 600 600
34 6881 6420 5533 5167 5594 2977 600 600 600 600 600 600
35 4040 4040 4040 4040 4040 1926 33 33 32.6 33 33.2 44
36 2659 2658 2667 2659 2673 1329 600 600 600 600 600 35
37 3636 1887 1969 2031 1976 1403 600 600 600 600 600 600
38 1466 1617 1423 1348 1409 1183 600 600 600 600 600 600
39 5357 3388 3399 4558 3655 3125 600 600 600 600 600 600
40 3876 4610 4445 4485 4311 3281 600 600 600 600 600 600
41 3670 2562 1911 1844 2089 1189 600 600 600 600 600 600
42 2980 2407 2762 1273 1997 1020 600 600 600 600 600 600
43 5076 5102 5026 5077 5045 3825 600 600 600 600 600 600
44 4497 4645 4013 3761 4083 2820 600 600 600 600 600 600
45 6355 6858 4579 6496 4580 2603 600 600 600 600 600 58.9
46 4966 4910 4751 4515 4685 4118 600 600 600 600 600 600
47 7247 7490 5401 6061 6833 4214 600 600 600 600 600 600
48 3763 3716 3375 3554 3734 2531 600 600 600 600 600 600
49 - - - - - - - - - - - -
50 - - - - - - - - - - - -
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Table 10.c: Model IP5, (α
′

= 1, β
′

= |N | ∗ T , γ
′

o = |M | ∗ |F | ∗ |N | ∗ T ),
Percentage of instance types solved to optimality with variations of γ

β - % of Opt.

No. γ
′

o γ
′

o/2 γ
′

o/4 γ
′

o/6 γ
′

o/8 1
1 100 % 100 % 100 % 100 % 100 % 100 %
2 100 % 100 % 100 % 100 % 100 % 100 %
3 100 % 100 % 100 % 100 % 100 % 100 %
4 100 % 100 % 100 % 100 % 100 % 100 %
5 10 % 10 % 10 % 10 % 10 % 10 %
6 10 % 10 % 10 % 10 % 10 % 10 %
7 100 % 100 % 100 % 100 % 100 % 100 %
8 100 % 100 % 100 % 100 % 100 % 100 %
9 100 % 100 % 100 % 100 % 100 % 100 %
10 100 % 100 % 100 % 100 % 100 % 100 %
11 100 % 100 % 100 % 100 % 100 % 100 %
12 100 % 100 % 100 % 100 % 100 % 100 %
13 100 % 100 % 100 % 100 % 100 % 100 %
14 10 % 10 % 10 % 10 % 10 % 10 %
15 100 % 70 % 20 % 20 % 10 % 10 %
16 100 % 100 % 100 % 100 % 100 % 100 %
17 100 % 100 % 100 % 100 % 100 % 100 %
18 10 % 0 % 0 % 0 % 0 % 100 %
19 10 % 10 % 10 % 10 % 10 % 10 %
20 100 % 100 % 100 % 100 % 100 % 100 %
21 100 % 90 % 10 % 10 % 10 % 0 %
22 20 % 0 % 0 % 0 % 0 % 90 %
23 20 % 0 % 0 % 0 % 0 % 0 %
24 10 % 0 % 0 % 0 % 0 % 0 %
25 10 % 0 % 0 % 0 % 0 % 10 %
26 100 % 100 % 100 % 100 % 100 % 100 %
27 100 % 100 % 90 % 100 % 90 % 100 %
28 60 % 0 % 90 % 100 % 100 % 100 %
29 10 % 0 % 0 % 0 % 0 % 0 %
30 70 % 0 % 80 % 60 % 100 % 100 %
31 100 % 100 % 100 % 100 % 100 % 100 %
32 80 % 0 % 90 % 0 % 0 % 0 %
33 0 % 0 % 0 % 0 % 0 % 0 %
34 0 % 0 % 0 % 0 % 0 % 0 %
35 10 % 0 % 0 % 0 % 0 % 100 %
36 0 % 0 % 0 % 0 % 0 % 100 %
37 0 % 0 % 0 % 0 % 0 % 0 %
38 0 % 0 % 0 % 0 % 0 % 0 %
39 0 % 0 % 0 % 0 % 0 % 10 %
40 0 % 0 % 0 % 0 % 0 % 0 %
41 0 % 0 % 0 % 0 % 0 % 0 %
42 0 % 0 % 0 % 0 % 0 % 0 %
43 0 % 0 % 0 % 0 % 0 % 0 %
44 0 % 0 % 0 % 0 % 0 % 0 %
45 0 % 10 % 10 % 10 % 10 % 0 %
46 0 % 0 % 0 % 0 % 0 % 10 %
47 0 % 0 % 0 % 0 % 0 % 0 %
48 0 % 0 % 0 % 0 % 0 % 0 %
49 - - - - - -
50 - - - - - -
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Table 11.a: Model IP3, (α = 1, β = 1), Maximum sum of losses in machine
qualifications ((

∑
f

∑
m Y m

f )
Max

) versus
∑

f∈F Cf

Instance type -
∑

f Cf

(
∑

f

∑
m Y m

f )
Max

14 19 21 22 25 38 39 41 42 44

0 - - 707 512 - - 3131 1194 - 3119

1 398 - 607 494 467 1024 3048 1180 1032 2952

2 368 - 559 486 456 1008 3018 1165 881 3139

3 346 - 559 483 435 978 2992 1160 865 2731

4 346 351 559 483 429 968 2992 1158 852 2714

5 346 329 559 483 429 962 2992 1158 842 2711

6 346 306 559 483 427 962 2992 1158 834 2711

7 346 297 559 483 427 962 2992 1158 834 2711

8 346 297 559 483 427 962 2992 1158 834 2711

9 346 297 559 483 427 962 2992 1158 834 2711

10 346 297 559 483 427 962 2992 1158 834 2711

Table 11.b: Model IP3, (α = 1, β = 1), Maximum sum of losses in machine
qualifications ((

∑
f

∑
m Y m

f )
Max

) versus
∑

f

∑
m Y m

f

Instance type -
∑

f

∑
m Y m

f

(
∑

f

∑
m Y m

f )
Max

14 19 21 22 25 38 39 41 42 44

0 - - 0.0 0.1 - - 0.1 0.0 - 0.0

1 0.9 - 0.9 0.8 0.9 0.8 0.8 0.9 0.9 0.8

2 1.9 - 1.8 1.8 1.8 1.8 1.7 1.8 1.9 1.9

3 2.8 - 1.8 2.9 2.8 2.7 2.9 2.8 2.9 2.9

4 3.9 3.9 3.9 3.8 4.0 3.8 3.7 3.9 3.8 3.8

5 3.8 4.8 4.3 4.4 4.9 4.6 3.4 4.1 4.9 4.8

6 3.8 5.9 4.1 4.3 5.7 5.8 3.4 4.4 5.8 5.8

7 3.8 6.8 6.8 4.3 5.7 6.3 3.3 6.7 6.8 6.9

8 7.9 7.9 6.7 7.8 5.8 6.4 3.4 7.6 7.7 7.2

9 7.8 8.9 6.6 7.8 5.7 6.2 8.8 8.8 7.6 7.1

10 7.9 9.6 6.7 7.7 5.9 9.8 8.9 9.7 7.6 7.1
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Table 11.c: Model IP3, (α = 1, β = 1), Maximum sum of losses in machine
qualifications versus total number of setups

Instance type - Number of Setups

(
∑

f

∑
m Y m

f )
Max

14 19 21 22 25 38 39 41 42 44

0 - - 19 10 - - 11 14 - 28

1 11 - 12 9 15 18 10 13 36 22

2 8 - 6 6 15 15 8 12 19 23

3 5 - 6 6 11 13 7 11 23 13

4 5 12 3 6 9 11 7 11 16 11

5 5 9 6 6 11 10 7 11 20 9

6 5 7 6 6 8 10 5 11 19 9

7 5 6 6 6 8 10 5 11 18 4

8 5 6 6 6 8 10 3 11 20 4

9 5 6 6 6 8 10 7 11 20 4

10 5 6 6 6 8 10 7 11 20 4

Table 11.d: Model IP3, (α = 1, β = 1), Maximum sum of losses in machine
qualifications versus CPU time

Instance type - CPU
(
∑

f

∑
m Y m

f )
Max

14 19 21 22 25 38 39 41 42 44

0 - - 244.5 138.7 - - 600 600 - 600
1 600 - 16.6 41.9 600 600 600 600 600 600
2 105.7 - 5.8 9.9 600 600 600 333.6 600 600
3 9.8 - 7.1 9.8 104.8 600 136.7 119.1 600 600
4 12.9 600 6.7 7.8 39.7 168.7 119.4 95.3 165.8 283
5 10.6 600 6.5 7.2 35 72.4 135.1 91.7 50.3 199.2
6 10.6 338.5 6.3 7.3 28.8 62.7 132 91.7 42.6 185.4
7 10.7 36.2 4.2 7.1 28.6 63.3 133.2 96.1 42.5 183.3
8 8.5 35.8 4.2 6.7 28.8 63 129.8 96.4 41.5 183.4
9 8.2 32.8 4.1 6 28.7 63.3 36.5 95.6 41.7 184.6
10 8.4 31.7 4.1 7 28.9 64.6 36.4 101.8 41.7 184.1

138



4.5 Conclusion

Table 11.e: Model IP3, (α = 1, β = 1), Maximum sum of losses in machine
qualifications versus percentage of optimal solution

Instance type - % of Opt.
(
∑

f

∑
m Y m

f )
Max

14 19 21 22 25 38 39 41 42 44

0 - - 90 % 100 % - - 0 % 0 % - 0 %
1 10 % - 100 % 100 % 0 % 0 % 0 % 0 % 10 % 10 %
2 100 % - 100 % 100 % 10 % 0 % 10 % 80 % 10 % 10 %
3 100 % - 100 % 100 % 100 % 10 % 100 % 100 % 10 % 10 %
4 100 % 10 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 90 %
5 100 % 10 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 90 %
6 100 % 90 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %
7 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %
8 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %
9 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %
10 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %

Table 4.12: Model IP3, (α = 1, β = |N | ∗ T ), Threshold sensitivity study∑
f

∑
m Y m

f

No. 4 3 2 1 0
14 - - - [1-6] [7-94(T )]
19 [1-2] [3-10] [11-12] - [13-112(T )]
21 - - [1-2] [3-8] [9-118(T )]
22 - - [1-2] [3-6] [7-92(T )]
25 - - - [1-2] [3-140(T )]
38 [1-2] [3-7] [8-10] [11-13] [14-191(T )]
39 - [1-56] [57-67] [68-75] [76-346(T )]
41 - [1-3] [4-5] [6-8] [9-199(T )]
42 - - - [1-8] [9-153(T )]
44 - [1-34] [35-42] [43-64] [65-281(T )]
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Chapter 5

Heuristics and Metaheuristics

5.1 Introduction

Heuristics and a metaheuristic for PTC and PEHF are presented in this
chapter. Numerical experiments are conducted and the results are compared
and analyzed. First, a List Heuristic (LH) is provided which tries to schedule
jobs by earliest job family threshold. A Scheduling-Centric Heuristic (SCH)
is then proposed. It aims at minimizing the sum of completion times by try-
ing to reduce the number of setups while scheduling job families. Regarding
machine qualifications, a Qualification-Centric Heuristic (QCH) is presented
that aims at minimizing the number of losses in machine qualifications by
trying to satisfy time thresholds each time a job is scheduled on any ma-
chine. A Yield-Centric Heuristic (Y CH) is proposed for PEHF . The idea
of this heuristic is to maximize the sum of expected yield by assigning jobs
of families to machines with a maximal yield.

Further, an Recursive Heuristic (RH) is introduced and applied on the
previous constructive heuristics. RH aims at finding solutions with a min-
imized sum of losses in machine qualifications. This is done by testing the
final solution obtained by a given constructive heuristic for losses in machine
qualifications, and then re-applying the same heuristic after disqualifying one
or more machines on one or more families. Finally, a Simulated Annealing
(SA) is adapted to handle PTC and PEHF . SA is applied on the solutions
obtained from RH. Results on the constructive heuristics, recursive heuris-
tics, and SA metaheuristic are provided and compared to the exact solutions
of Chapter 4.

The chapter is structured as follows. In Section 5.2, constructive heuris-
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tics for both problems are described. Section 5.3 addresses the recursive
heuristic. Simulated Annealing is proposed in Section 5.4. Section 5.5
presents the numerical results obtained for PTC and Section 5.6 for PEHF .
Section 5.7 concludes the chapter.

5.2 Constructive Heuristics

Various heuristics are developed to solve PTC and PEHF : A List Heuristic(LH),
a Scheduling-Centric Heuristic(SCH) and a Qualification-Centric Heuristic(QCH)
heuristics for PTC, and a Yield-Centric Heuristic (Y CH) for PEHF .

5.2.1 List Heuristic (LH)

In the list heuristic, jobs of different families are scheduled on parallel ma-
chines by combining two priority rules in the following order:

1. Earliest Time Threshold,

2. Shortest Processing Time (SPT).

The combined rules described in Algorithm 1. The Earliest Time Thresh-
old rule schedules jobs of the family with the earliest threshold, i.e. the most
urgent family (has the highest priority compared to other jobs of other fami-
lies) to keep the machine qualified. In case of equal thresholds, the selection
is performed using the SPT rule.

The mechanism of LH is described in the pseudo-code of Algorithm 2.
The function DISQUALIFY allows a machine to be disqualified for a cer-
tain family when the qualification could not be maintained either because of
a threshold violation or because there are no jobs to schedule. LH is sketched
below.

• For each machine, schedule first a job of the qualified family with the
smallest threshold.

• While there are still jobs to schedule in N ,

– For each machine m in M ,

∗ If the current family f on m is non empty and family f has
the smallest threshold, then
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Algorithm 1 Earliest Time Threshold
1: f = 1
2: for f = 1→ |F | do
3: if nf 6= 0 then
4: if m(f) = 1 then
5: if f∗

m = 0 then
6: f∗

m = f
7: else
8: if γf < γf∗

m
then

9: f∗
m = f

10: else
11: if γf = γf∗

m
then

12: if pf < pf∗
m

then
13: f∗

m = f
14: end if
15: end if
16: end if
17: end if
18: end if
19: end if
20: end for

· If there is a job in f that can be scheduled on m, then
schedule a job of f on m,

· Else, select the next non-empty qualified family f with
the smallest threshold on m, and schedule a job of f on
m.

∗ Else, select the next non-empty qualified family f with the
smallest threshold on m, and schedule a job of f on m.

The time complexity of LH is O(|N ||M ||F |), since the main loop is per-
formed at most |N | times, the second loop |M | times, and at most |F | families
are checked each time a job is scheduled. The practical complexity will be
much lower since |M | jobs will often be scheduled in each main loop.

5.2.2 Scheduling-Centric Heuristic (SCH)

The main goal of the Scheduling-Centric Heuristic (SCH) is to minimize
setup times. Recall that a setup time is necessary when two jobs of different
families are scheduled on a machine consecutively. The heuristic schedules
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Algorithm 2 List Heuristic
1: i = 1
2: for m = 1→ |M | do
3: f∗

m = 0
4: end for
5: while i ≤ |N | do
6: Feasible = FALSE
7: m = 1
8: for m = 1→ |M | do
9: - Select f∗

m by applying the Earliest Time Threshold algorithm
10: if f∗

m 6= 0 then
11: - Update Cf∗

m
by taking into considerations setup time if necessary

12: nf∗
m
= nf∗

m
− 1

13: i = i+ 1
14: Feasible = TRUE
15: else
16: DISQUALIFY (m, f∗

m)
17: ymf∗ = ymf∗ + 1
18: end if
19: end for
20: if Feasible = FALSE then
21: print No feasible solution.
22: end if
23: end while

jobs of the same family successively on a machine until either all jobs of the
family are scheduled or it is no longer possible to schedule a job of the family
without losing the qualification of another family on the machine. If it is
no longer possible to schedule a job of a family before its remaining time
threshold, then the machine is disqualified for the family.

SCH is sketched below, where a family f is called “non empty” if there
is at least one job to schedule in f , and is called “current” for a machine
m if f is the family of the last job scheduled on m. The “remaining time
threshold” for a qualified family f on machine m corresponds to the time
between the end of the last job scheduled on m and the latest allowed start
time of a job of f before losing its qualification on m. If the remaining time
threshold is negative, then family f becomes disqualified on m. This could
happen either because there is not enough time to schedule a job of f on m
or because all jobs of f are already scheduled.

• For each machine, schedule first a job of the qualified family with the
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smallest threshold.

• While there are still jobs to schedule in N ,

– For each machine m in M ,

∗ If the current family f on m is non empty, then

· If there is a job in f that can be scheduled on m with-
out losing the qualification of a non-empty family, then
schedule a job of f on m.

· Else, select the non-empty qualified family f with the
smallest positive remaining threshold on m, and schedule
a job of f on m.

∗ Else, select the non-empty qualified family f with the smallest
positive remaining threshold on m, and schedule a job of f
on m.

This heuristic is implemented following the pseudo-code in Algorithm 3,
where the function MIN NEXT aims at selecting the family with the mini-
mum threshold to be scheduled next to the family in process and UPDATE TIMES
is a time sweeper that updates start and end times on each machine.
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Algorithm 3 SCH pseudo code
1: i = 1
2: for m = 1→ |M | do
3: IDLEm = TRUE
4: tm = 0
5: f∗

m = 0
6: end for
7: while i ≤ |N | do
8: Feasible = FALSE
9: m = 1

10: - Select the family with the minimum threshold and that can be processed
on m (f∗

m)
11: for m = 1→ |M | do
12: if IDLEm = TRUE then
13: if f∗

m 6= 0 then
14: min next = MIN NEXT (γF , f

∗
m)

15: if tm < min next then
16: if nf∗

m
6= 0 then

17: IDLEm = FALSE
18: Cf∗

m
= UPDATE TIMES(f∗

m)
19: tm = tm + pf∗

m

20: nf∗
m
= nf∗

m
− 1

21: Feasible = TRUE
22: i = i+ 1
23: end if
24: else
25: - Select f∗

m with nf∗
m
> 0 and with shortest threshold

26: tm = tm + sf∗

27: end if
28: else
29: DISQUALIFY (m, f∗

m)
30: ymf∗

m
= ymf∗

m
+ 1

31: end if
32: end if
33: end for
34: for m = 1→ |M | do
35: IDLEm = TRUE
36: end for
37: if Feasible = FALSE then
38: print No feasible solution.
39: end if
40: end while
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The time complexity of SCH is also O(|N ||M ||F |), since the main loop
is performed at most |N | times, the second loop |M | times, and at most |F |
families are checked each time a job is scheduled. The practical complexity
will be much lower since |M | jobs will often be scheduled in each main loop,
and the same family will often be selected.

5.2.3 Qualification-Centric Heuristic (QCH)

The main objective of the Qualification-Centric Heuristic is to minimize the
total number of violations of the time constraint on the machines on which
each family is qualified. Hence, in the first phase of QCH, jobs are scheduled
on a machine by always prioritizing the family qualified on the machine with
the smallest remaining time threshold. However, this usually leads to a large
number of setups. This is why two other phases of local improvements are
applied where no additional machine disqualifications are allowed. Phase 2
tries to advance the last job of each machine by combining it with the first
job of the same family scheduled on the machine, i.e. only intra-machine
changes are evaluated. Phase 3 allows inter-machine changes, i.e. the last
job or group of jobs of the same family are combined with a job of the same
family on another machine.

The heuristic is sketched below, where the notions of “non empty” family
and “remaining time threshold” are the same than for the Scheduling-Centric
Heuristic (SCH) described in the previous section. Note that qualifications
can be lost since a lot of time is spent in performing setups from one family
to another, and there might not be enough jobs in a family to maintain the
qualification on a machine on the entire horizon.

• Phase 1. While there are still jobs to schedule in N ,

– Phase 1. For each machine m in M ,

∗ Phase 1. Select the non-empty qualified family f on m with
the shortest positive remaining threshold, and schedule a job
of f on m.

• Phase 2. For each machine m in M ,

– Phase 2. While a move is performed,
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∗ Phase 2. If scheduling the last job scheduled on m with the
first job of the same family scheduled on m does not result in
lost qualifications, then perform the move.

• Phase 3. For each machine m in M ,

– Phase 3. While a move is performed,

∗ Phase 3. For each machine m′ (m′ 6= m) in M ,

· Phase 3. If scheduling the last job (or group of jobs of the
same family) scheduled onm with a job of the same family
scheduled on m′ does not result in lost qualifications, then
perform the move.

This heuristic is implemented following the pseudo-code in Algorithm 4
where three more functions are added: UPDATE THRESHOLD that up-
dates all family thresholds on the qualified machines once any job is com-
pleted and INTRACHANGE and INTERCHANGE that try to shift jobs
on the same machine and between machines by moving jobs of the same fam-
ilies together in order to decrease the number of setups. This is done while
guaranteeing that no more machine qualification is lost when moving jobs.

The time complexity of Phase 1 isO(|N ||M ||F |), of Phase 2 isO(|M ||N |2)
and of Phase 3 is O(|M |2|N |2). Hence, the overall time complexity of QCH
is the one of Phase 3, i.e. O(|M |2|N |2). As for LH and SCH, the practical
complexity will be much lower, since |M | jobs will often be scheduled in the
main loop of Phase 1, and much less changes than the maximum possible
will actually be performed in Phases 2 and 3.

5.2.4 Comparing the heuristics related to problem PTC

Table 5.1 provides results for the PTC constructive heuristics. Comparing
the heuristics, we notice that SCH is in most cases better than LH andQCH
in terms of the sum of completion times (38 out of 47 instance types). On the
other hand, as expected, QCH gives the best results in terms of losses in ma-
chine qualifications (49 out of 49 instance types). The CPU times are almost
the same for all heuristics since solutions are obtained instantaneously. It is
important to note that heuristics cannot always solve the instances because,
depending on the heuristic, a machine can lose its qualification early for a
given family f and the remaining jobs of f may not be scheduled on another
machine (no other qualified machine), leading to an infeasible solution. This
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case is found in Instance type 6 for LH and QCH and in Instance types 6,
23 and 29 for SCH.
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Table 5.1: Comparison between LH, SCH and QCH (
∑

f∈F Cf and∑
f

∑
m Y m

f ), best solution in bold
∑

f∈F Cf
∑

f

∑
m Y m

f CPU-T

No. LH SCH QCH LH SCH QCH LH SCH QCH
1 255 255 255 0.4 0.4 0.3 0 0 0
2 245 245 303 0.9 0.9 0.4 0 0 0
3 669 669 669 0.9 0.9 0.8 0 0 0
4 290 263 290 2.8 2.8 2.7 0 0 0
5 323 323 323 2.9 2.9 2.8 0 0 0
6 - - - - - - - - -
7 153 153 189 2.8 2.8 1.7 0 0 0
8 91 96 99 4.8 4.7 2.8 0 0 0
9 129 129 165 1.2 1.2 0.4 0 0 0
10 52 52 92 2.1 1.9 0.3 0 0 0
11 123 123 141 1.1 1.0 0.4 0 0 0
12 80 80 80 2.2 2.1 1.8 0 0 0
13 34 34 34 0.3 0.3 0.3 0 0 0
14 391 393 436 3.8 3.7 2.8 0 0 0
15 359 335 335 6.9 6.7 6.7 0 0 0
16 404 404 404 0.4 0.3 0.3 0 0 0
17 167 167 167 2.1 2.1 1.8 0 0 0
18 473 473 503 2.8 2.8 1.9 0 0 0
19 340 340 378 7.7 7.7 5.8 0 0 0
20 1182 1182 1239 0.4 0.4 0.3 0 0 0
21 566 566 745 1.9 1.9 0.9 0 0 0
22 574 550 544 2.2 1.8 0.8 0 0 0
23 690 - 707 8.2 - 7.7 0 - 0
24 660 673 859 2.9 2.8 1.8 0 0 0
25 497 496 679 6.2 6.8 1.9 0 0 0
26 1148 1148 1572 0.4 0.4 0.4 0 0 0
27 2194 2194 2429 1.2 1.2 0.8 0 0 0
28 1671 1671 1210 0.8 0.7 0.4 0 0 0
29 2486 - 2924 5.3 - 4.1 0 - 0
30 1746 1746 2007 0.4 0.4 0.3 0 0 0
31 4133 4133 4133 0.4 0.4 0.4 0 0 0
32 3685 3685 3685 1.1 1.1 1.0 0 0 0
33 2765 2765 2947 2.9 2.9 2.7 0 0 0
34 3452 3452 3075 1.2 1.2 0.8 0 0 0
35 2440 2440 2440 0.4 0.4 0.4 0 0 0
36 1861 1913 1851 0.4 0.3 0.3 0 0 0
37 1615 1615 1957 2.2 2.2 1.8 0 0 0
38 1137 1128 1301 5.8 5.7 3.7 0 0 0
39 3823 3823 5200 1.2 1.2 0.8 0 0 0
40 3064 3074 3935 6.8 7.2 4.4 0 0 0
41 1304 1280 1568 4.1 3.8 1.9 0 0 0
42 878 873 1055 3.9 3.7 2.8 0 0 0
43 3876 3800 4593 2.2 2.9 1.7 0 0 0
44 3329 3189 3591 4.8 4.9 2.8 0 0 0
45 3001 3001 3223 1.2 1.2 0.9 0 0 0
46 3715 3698 4249 4.4 4.2 4.2 0 0 0
47 3650 3650 5634 3.4 3.4 2.3 0 0 0
48 2963 2963 3427 2.1 2.1 1.7 0 0 0
49 2876 2870 3074 3.4 3.3 2.2 0 0 0
50 3150 2952 3582 4.4 4.2 3.1 0 0 0
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Figure 5.1: Comparison between LH, SCH and QCH - Sum of completion
times

Figure 5.1 shows the percentage of increase in the sum of completion
times for the constructive heuristics. This percentage is calculated relative
to the values obtained by SCH. SCH shows a tendency to minimize the sum
of completion times in the majority of the selected instances. Let us recall
that these instances are the same as those of Chapter 4. In addition, LH
dominates QCH except for Instance type 22 where QCH dominates both
LH and SCH. The difference between QCH and SCH can attain 37% in
Instance type 25.

The sum of losses in machine qualifications for the constructive heuris-
tics is also shown in Figure 5.2. QCH dominates the other heuristics on
all the instance types. There is no dominance between LH and SCH since
LH sometimes dominates SCH as in Instance type 25 and SCH sometimes
dominates LH as in Instance type 41. Moreover, in Instance type 25, the
difference in losses in machine qualifications is around 5 (this corresponds to
the largest difference in this figure). This is consistent with the results in
Figure 5.1, where the difference in the sum of completion times is the largest
as well (around 37%). This illustrates once again the antagonistic nature of
both criteria in PTC.
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Figure 5.2: Comparison between LH, SCH and QCH - Sum of losses in
machine qualifications

5.2.5 Yield-Centric Heuristic (Y CH)

The Yield Centric Heuristic (Y CH) aims at maximizing the total yield
(
∑

f∈F

∑
m∈M

∑T
t=1 x

m
f,tv

m
f )) and is sketched below. It first schedules jobs

on the machine with maximum yield. Then, the heuristic tries to guarantee
that time thresholds are not violated. It chooses jobs of the same family
when the yield is the same and no time threshold is violated.

• For each machine, schedule first a job of the qualified family with the
largest yield.

• While there are still jobs to schedule in N ,

– For each machine m in M ,

∗ If the current family f on m is non empty, then

· If there is a job in f that can be scheduled on m with-
out losing the qualification of a non-empty family, then
schedule a job of f on m.

· Else, select the non-empty qualified family f with the
maximum yield on m, and schedule a job of f on m.
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∗ Else, select the non-empty qualified family f with the maxi-
mum yield on m, and schedule a job of f on m.

This heuristic does not consider the minimum threshold related to a given
family, but the yield resulting from assigning a given family on a machine.
Y CH tries to select jobs of families with maximum yield when assigning
these jobs to a given machine. Y CH keeps on selecting the same job family
while this family is not empty and the assignment of a job of this family
does not lead to a machine disqualification. By doing this, the number of
setups may be minimized since Y CH tends to schedule the same family on
the best machine. This may lead to minimizing the sum of completion times.
Moreover, machine qualifications are considered in the same way than SCH,
where it is checked whether scheduling a job of a job family violates the time
threshold of another family and hence causes a loss in machine qualification.
The pseudo code corresponding to this heuristic is provided in Algorithm 5.
The time complexity is the same as that of SCH, i.e. O(|N ||M ||F |).

5.3 Recursive Heuristic (RH)

The general idea of this algorithm is to schedule jobs by accepting each
time one qualification loss or more. More precisely, we consider a solution
obtained by any of the previous heuristics, and reapply this heuristic after
changing the initial qualification scheme. The perturbations in the qualifica-
tion scheme are chosen from the set of machines that lost their qualifications
in the solution. In other words, after scheduling the jobs using a given heuris-
tic, we examine the resulting solution to verify whether the machines are still
capable (qualified) to process the jobs, i.e. whether thresholds are satisfied
or not. If this is not the case, we change the data to accept some threshold
violations, and reapply the heuristic recursively to improve the solution.

• If the solution obtained by the constructive heuristic admits one or
more losses in machine qualifications, then

– For each disqualification on machinem for family f in the solution,

∗ Disqualify machine m for family f .

∗ Apply the constructive heuristic with the new qualification
scheme.

∗ If the solution is feasible, then accept it.
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∗ Else, return the previous solution.

• Else, return the previous solution.

The pseudo code of this method is presented in Algorithm 6. The func-
tion SOLV E returns a solution obtained by a given heuristic on a given
instance. Each solution s admits 0 or more losses in machine qualifications.
The total number of losses in machine qualifications represents the stopping
criterion. The function BINARY transforms the integer counter of base 10
into a number of base 2. This guarantees that all possible combinations of
machine disqualifications are covered by the counter. The score of a solution
s.SCORE is based on the minimum sum of losses in machine qualifications
prior to the sum of completion times for PTC and prior to the sum of ex-
pected yield and of completion times for PEHF .

5.4 Metaheuristic: Simulated Annealing (SA)

Different approaches for multi-objective scheduling problems can be found in
the literature as discussed in Chapter 3. Each approach has its own advan-
tages and drawbacks as described in Deb (2001). A need for a general method
able to treat a large class of models and independent of the considered ob-
jectives shows up. Effectively, metaheuristics, such as Simulated Annealing
(SA), have demonstrated their ability to solve combinatorial problems such
as production scheduling (Teghem (2002)). Also, some authors suggested to
adapt metaheuristics in order to solve multi-objective combinatorial prob-
lems (e.g. Ehrgott and Gandibleux (2000)). Since scheduling problems are
also combinatorial problems, applying metaheuristics to production schedul-
ing (e.g. scheduling in semiconductor manufacturing) with multiple criteria
is suitable. Let us recall that in the studied problems (PTC and PEHF ) of
this thesis, the objectives are conflicting. Thus, a solution may perform well
for one objective, but give bad results for others. Therefore, any proposed
scheduling approach has to find the right trade-off.

The limitations related to exact methods (IP3 and IP5) regarding the
maximum number of jobs, machines and families as shown in Chapter ??
led to the need for a more flexible method that can deal with large scale
instances. SA was chosen for this objective. Different parameters of SA
such as initial temperature, cooling factor, and number of iterations at each
temperature, described in the following section, are problem based. In this
section, SA is considered to tackle both PTC and PEHF . Experimental
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results, based on solutions obtained from the previous heuristics after ap-
plying the recursive algorithm, are provided in the next sections and real
industrial data are also used (see Appendix A). The scoring function of SA
is considered each time as a linear combination of the studied criteria while
prioritizing one of the criteria over the other depending on the objective of
the heuristic. For example, a preference vector (1,1) is used by the scoring
function of SA applied on SCH, called in the sequel SABSCH, since the
final objective of SCH is to minimize the sum of completion times.

5.4.1 Mechanism

Simulated Annealing (SA) is motivated by analogy to annealing in solids.
The idea of SA comes from a paper published by (Metropolis et al. (1953)),
where an algorithm is developed that simulates the cooling of material in
a heat bath. This is a process known as annealing. After heating a solid,
passing melting point and then cooling it, the resulting structural properties
of the solid are found to be dependent on the rate of cooling. If the liquid
is cooled slowly enough, large crystals will be formed. However, if the liquid
is cooled quickly (quenched), the crystals will contain imperfections. The
developed algorithm simulated the material as a system of particles. The al-
gorithm simulates the cooling process by gradually lowering the temperature
of the system until it converges to a steady, frozen state.

Simulated annealing was applied to optimization problems to search for
feasible solutions and converge to an optimal solution (Kirkpatrick et al.
(1983)). In a simulated annealing meta-heuristic algorithm, we use an initial
solution to generate a set of neighborhood solutions. We look in the later
for a solution which has a cost/score less/greater than the cost/score of the
initial solution. In order to find the optimal or at least an improved solu-
tion, we need to explore the space of solutions in an effective way since the
number of solutions is usually enormous (for example, the solution subspace
of an initial solution provided by any of the constructive heuristics is of size
|N |2 solutions). The exploration of the solution space is done in a simulated
annealing algorithm by using two major parameters which are: Temperature,
and number of iterations at each temperature. Actually, when exploring the
solution space, we may step toward a solution of higher cost from a solution
of lower cost. Hence, if the objective function is to minimize a criterion, as in
the case of PTC, then it should be ignored in a normal case. However, in a
simulated annealing algorithm, a worse solution is accepted with a probability
that is defined as a function of the annealing temperature mentioned earlier.
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The acceptance of worse solutions helps to leave local minima in case of cost
minimization (e.g. the objective function of PTC) as well as local maxima
in case of cost maximization (e.g. the objective function of PEHF ). The
pseudo code of a basic simulated annealing algorithm is given in Algorithm 7.

The number of iterations at each temperature is determined experimen-
tally. The temperature itself, and consequently the probability of acceptance,
is a key factor in the effective exploration of the solution space, and this is
called the intensification. In addition, solution neighborhoods are critical
in determining the optimal solution. A solution space may be divided into
subspaces associated to qualification schemes. We can look at each set of
neighborhood solutions as a subspace. If we are looking for an optimal solu-
tion (local and may be global) in a set/subspace of neighborhood solutions
of a given initial solution, it is possible that we will not find it because the
global optimal solution is found in another subspace. Diversification is used
to overcome this difficulty. It is based on exploring the solution space each
time from a different start point (subspaces). If we consider that our solution
space is divided into subspaces related to machine qualification schemes, the
diversification can consequently be done by starting with initial solutions of
different qualification schemes. This can actually be implemented by start-
ing the SA with different initial solutions. For example, the set of feasible
solutions of RH with different qualification schemes may be considered to be
the set of initial solutions of SA. This is not treated in the scope of this thesis.

5.4.2 SA for PTC and PEHF

While using the simulated annealing algorithm in our search for an opti-
mal solution, we notice that the possibility of finding the optimal solution
is strongly related to the initial solution as well as the set of its neighbor-
hoods. Let us recall that our problem is the scheduling of job families on
non-identical parallel machines, where non-identical machines means in this
case that the machines have different qualification configurations, i.e. not
all machines are available to process all job families. The objective function
for PTC is bi-criteria. Basically, the initial solution is provided by one of
the proposed heuristics. The set of neighborhood solutions of the generated
initial solution is determined by the intra-change of job families on each ma-
chine and by the inter-change of job families between machines. These are
explained later in this section.

The initial solution, which is generated for the simulated annealing al-
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gorithm by one of the recursive constructive heuristics, may have a dif-
ferent qualification scheme than the original one. If not, then we have
an optimal solution regarding the sum of losses in machine qualifications
(
∑

f∈F

∑
m∈M Y m

f ). On the other hand, if there are losses in the machine/family
qualifications, then the less the number of losses, the better the solution on
the same criterion. In our simulations, the objective function is considered
always as a combination of both criteria for PTC and for the three criteria
for PEHF . Hence, the results for the instance types are comparable to those
of the exact solution for the same weights of criteria (preference vector) of the
objective function. In our simulated annealing algorithm, the diversification
of the solutions while minimizing the sum of completion times, could be de-
fined as the set of feasible solutions with different configurations of machine
qualifications.

Using the same instance types, a simulated annealing algorithm is devel-
oped and adapted in the next section, and tests are done. The time limit
per instance were set to 600 seconds as one of the stopping criteria. The
algorithm is tested using the same objective functions that are studied for
the exact solutions. The minimum temperature and the number of iterations
done at each temperature are determined experimentally and specified below.

Preliminaries

• A weighting function is chosen, the effect of this choice on the procedure
is small due the stochastic character of the method. The weighted sum
is a well known method and it is the easiest function to compute. In the
sequel, the weighting function is computed with preference vectors that
prioritize one of the criteria that corresponds to a lexicographical order
in exact methods. The choice of the preference vector is related to the
nature of the final objective and the initial solution. In other words,
for an initial solution of RQCH, the preference vector that defines the
weighting function of SA is then (1,|N | ∗ T ), thus prioritizing machine
qualifications which is the main objective of QCH.

• The three classic parameters of an SA procedure are initialized. These
parameters are problem dependent and we provide below the best found
combination of values obtained after several trials:

– To: Initial temperature (or alternatively an initial acceptance prob-
ability Po). The initial value of the temperature is significant for
the performance of the SA algorithm. If it is set too high, the

157



Chapter 5. Heuristics and Metaheuristics

algorithm may spend a long time on poor solutions. If it is set
too low, then the algorithm may not perform better than any of
the constructive heuristics. We considered an initial temperature
To = 20, 000.

– α < 1: Cooling factor.The cooling factor used in our experiments
is set to 0.95.

– t: Length of temperature step in the cooling schedule. The cooling
schedule is the way the temperature is reduced throughout the
algorithm. We considered a cooling schedule defined by T (t) =
α ∗ T (t − 1), which rapidly reduces the temperature and most of
the running time is spent at low temperatures. However, linear
cooling schemes assign the same importance to all temperatures.

• A stopping criterion is fixed:

– Nstop: Maximum number of iterations without improvement. The
SA algorithm stops in our adapted version either because the max-
imum number of iterations or the running time of 600 seconds
is attained. Parameters such as initial temperature and cooling
schedule are taken into consideration for convergence to ensure
that the temperature is sufficiently low when the stopping rule
is satisfied. Experiments were conducted with different stopping
rules, and 10, 000 temperature changes are used as the stopping
criterion.

• A neighborhood S(s) of feasible solutions in the vicinity of a solution
s is defined. This definition is problem dependent. In both problems,
different types of neighborhoods are studied. First, it is important to
mention that, in our problems, the solution space consists at maxi-
mum of all permutations of jobs, i.e. n!. SA tries to minimize, for
PTC, or maximize, for PEHF , the objective function with a prede-
fined preference vector by examining the solution space using moves
from permutation to permutation. We call a neighbor of s, a permuta-
tion that is reachable by one move. The way neighbors are generated
impacts the efficiency of SA. Based on our preliminary experiments on
neighborhood structures, two different ways of generating a neighbor
were selected for both problems:

– Intra-change insertion of jobs means that a job on a given ma-
chine at the jth position is selected and inserted before another job
at the ith position on the same machine. Intra-change insertion
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also covers Intra-change Swapping, where two jobs are randomly
selected and swapped on the same machine. Intra-change insertion
is found to be more flexible since any swap move may be achieved
by two insertion but the inverse is not true. However, the diffi-
culty in our neighborhood generation lies in machine qualifications
because some intra-change insertions may lead to additional qual-
ification losses and to a non feasible sequence of jobs on a given
machine. Thus, each time an intra-change insertion is tried, the
obtained sequence is tested for feasibility since an earlier loss in
machine qualifications for a certain job family will for sure inhibit
any job of this family to be scheduled after the time instant the
machine is disqualified.

– Inter-change insertion corresponds to job positions that are
swapped between different machines. For any selection of a job
from a machine and its insertion on another machine, the sequence
on both machines should be checked for feasibility. Moreover, in
an inter-change insertion, the problem of machines with no jobs
after a move must be considered. In some situations, there may
still only be one job on a machine and an insertion of this job
on another machine will lead to a machine with no jobs, thus the
machine is not used at all and the number of machines in this
case is decreased by 1. To overcome this difficulty, we check, each
time a move is performed, whether the machine has strictly more
than one job. This guarantees that there is no machine idle on
the whole time horizon.

Mathematical representation

The basic elements of simulated annealing are:

• A finite set of solutions S.

• A real-valued cost function f defined on S. Let S∗ ⊂ S be the set of
global minima of the function f(e.g. PTC), assumed to be a proper
subset of S.

• For each s ∈ S, a set S(s) ⊂ S − {s}, called the set of neighbors of s.

• For every s, a collection of positive coefficients ps,s′ , s
′ ∈ S(s), such

that
∑

s′∈S(s) ps,s′ = 1. It is assumed that s′ ∈ S(s) ⇔ s ∈ S(s′). ps,s′

is the value of the probability that any particular neighbor s′ ∈ S(s) is
selected at random.
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• A non-increasing function T :→ (0,∞), called the cooling schedule and
T (t) is called the temperature at time t.

• An initial solution so (a solution is usually associated with a solution
state).

A sketch of SA, adapted from (Eglese (1990)), is given below.

• Select an initial solution s ∈ S,

• Select the temperature change counter t,

• Select a temperature cooling schedule, T (t),

• Select an initial temperature T (to),

• Select a repetition schedule Mt that defines the number of iterations
executed at each temperature T (t),

• Repeat

• Set the counter Counter = 0,

– Repeat

– Generate a solution s′ ∈ S(s),

– Calculate δs,s′ = Cost(s′)− Cost(s),

∗ If δs,s′ ≤ 0, then s = s′,

∗ Else, s = s′ with probability exp(−δs,s′/T (t)),

– Counter = Counter + 1,

– Until Counter = Mt,

• t = t + 1,

• Until stopping criterion is met (Nstop).

5.5 Numerical experiments on PTC

In this section, the results of numerical experiments on PTC obtained for
LH, SCH, QCH, and their derivatives, i.e. Recursive LH (RLH), Recur-
sive SCH (RSCH), Recursive QCH (RQCH), Simulated Annealing based
on LH solution (SABLH), Simulated Annealing based on SCH solution
(SABSCH) and Simulated Annealing based on QCH solution (SABQCH),
are shown and analyzed.
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5.5.1 Results on List heuristics (LH, RLH, SABLH)

The results of LH and its derivatives (RLH and SABLH) are shown in Ta-
ble 5.2. The results of IP3 for a preference vector (1,|N | ∗T ) are recalled for
the sake of comparison. Prioritizing machine qualifications is considered for
the objective functions used in SABLH and IP3, since we believe that it is
the main criterion to check when comparing LH which depends on schedul-
ing the jobs of different job families based on the shortest threshold first rule.
Moreover, the originality of PTC lies in adding machine qualifications to a
classical scheduling criterion. Nevertheless, results for the sum of comple-
tion times and the losses in machine qualifications are provided. The same
selected instance types used in Chapter 4 are being used in this chapter and
comments are done on representative instance types for the sake of clarity.
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Table 5.2: List Heuristic (LH) - (α = 1, β = |N | ∗ T )
∑

f Cf
∑

f

∑
m Y m

f CPU Time

No. LH RLH SABLH IP3 LH RLH SABLH IP3 LH RLH SABLH IP3
1 255 255 255 255 0.4 0.2 0.1 0.0 0 0 0 0.8
2 245 245 245 284 0.9 0.8 0.6 0.0 0 0 0 1.8
3 669 669 669 669 0.9 0.7 0.7 0.5 0 0 0 3.5
4 290 246 246 231 2.8 2.7 2.7 1.7 0 0 0 17
5 323 297 297 278 2.9 2.8 2.8 2.6 0 0 0 600
6 - - - 351 - - - 0.6 - - - 600
7 153 136 136 133 2.8 2.1 1.9 0.8 0 0 0 2.8
8 91 80 81 78 4.8 4.3 3.1 1.9 0 0 0 4.9
9 129 116 116 116 1.2 1.0 0.8 0.0 0 0 0 0.3
10 52 46 46 46 2.1 1.7 1.6 0.0 0 0 0 0.1
11 123 96 96 96 1.1 0.9 0.4 0.0 0 0 0 0.5
12 80 67 67 67 2.2 1.8 1.6 0.1 0 0 0 0.5
13 34 34 34 34 0.3 0.2 0.1 0.0 0 0 0 0.1
14 391 358 394 393 3.8 3.5 2.5 0.6 0 0 0 600
15 359 355 331 313 6.9 6.4 0.6 5.8 0 0 0 227.5
16 404 404 404 404 0.4 0.4 0.3 0.1 0 0 0 2.8
17 167 167 167 163 2.1 1.3 0.9 0.1 0 0 0 1.9
18 473 438 438 407 2.8 2.4 2.0 0.1 0 0 0 30.1
19 340 313 313 329 7.7 6.1 5.7 4.5 0 2 0 600
20 1182 1182 1182 1163 0.4 0.4 0.3 0.2 0 0 0 3.4
21 566 559 559 707 1.9 1.7 1.5 0.1 0 0 0 600
22 574 618 535 512 2.2 1.3 0.7 0.2 0 0 0 230.6
23 690 687 591 674 8.2 6.3 5.8 5.6 0 2 0 600
24 660 627 627 753 2.9 2.7 2.5 0.9 0 0 0 600
25 497 498 498 460 6.2 4.9 4.5 0.7 0 0 0 600
26 1148 1148 1148 1108 0.4 0.3 0.3 0.3 0 0 0 1.6
27 2194 2010 2010 2064 1.2 0.8 0.6 0.2 0 0 0 29.7
28 1671 1671 1692 1135 0.8 0.7 0.3 0.1 0 0 4 18.7
29 2486 2335 1725 1734 5.3 4.2 4.1 3.7 0 0 3 600
30 1746 1746 1639 1355 0.4 0.4 0.3 0.1 0 0 2 126.8
31 4133 4133 2654 2394 0.4 0.4 0.2 0.1 0 0 51 1.2
32 3685 3243 3243 3778 1.1 0.6 0.6 0.2 0 0 0 600
33 2765 2649 2650 2842 2.9 2.5 1.7 0.2 0 0 166 600
34 3452 3158 2710 2966 1.2 0.9 0.7 0.1 0 0 9 600
35 2440 2440 2232 1926 0.4 0.4 0.2 0.1 0 0 9 44
36 1861 1861 1696 1329 0.4 0.4 0.2 0.2 0 0 6 39.7
37 1615 1505 1505 1483 2.2 1.9 1.8 0.5 0 0 2 600
38 1137 1104 1018 1146 5.8 4.3 3.7 0.2 0 0 0 600
39 3823 3823 3628 3129 1.2 1.2 0.8 0.2 0 0 22 600
40 3064 2634 2696 3421 6.8 6.6 5.4 7.8 0 0 21 600
41 1304 1227 1229 1195 4.1 3.2 2.3 0.3 0 0 6 600
42 878 850 909 998 3.9 3.5 3.1 0.5 0 0 179 600
43 3876 3679 3697 3820 2.2 2.0 1.2 0.3 0 0 223 600
44 3329 3471 3068 3674 4.8 4.3 3.1 1.6 0 0 319 600
45 3001 2931 2931 2603 1.2 1.0 0.7 0.2 0 0 10 59.6
46 3715 3477 3421 3945 4.4 4.3 4.1 3.8 0 0 35 600
47 3650 3650 3650 4030 3.4 3.2 3.2 3.9 0 0 2 600
48 2963 2874 2660 2727 2.1 1.8 0.9 0.1 0 0 305 600
49 2876 2868 2735 - 3.4 3.2 3.0 - 0 0 37 -
50 3150 2948 2876 - 4.4 4.0 2.5 - 0 0 48 -

The percentage variation on the sum of completion times with respect
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to the values obtained by SABLH is shown in Figure 5.3. The curves cor-
respond to LH, RLH, SABLH and IP3. The preference vector for both
SABLH and IP3 is (1,βo) that corresponds to prioritizing machine qual-
ifications over the sum of completion times. SABLH dominates LH and
RLH in most cases except for Instances 14 and 19. This can be explained
because the objective function (scoring) of SA prioritizes machine qualifica-
tions. Also, it is important to mention that SA is applied with an initial
solution obtained by RLH. On the other hand, IP3 dominates SABLH for
some Instance types (22, 25, 39 and 41), and is dominated for Instance types
19, 21, 38 and 44. However, the values obtained by IP3 do not correspond
to optimal solutions.

Figure 5.3: LH, RLH, SABLH and IP3 - (α = 1, β = βo = |N | ∗ T ) - Sum
of completion times

Figure 5.4 presents the values of the sum of losses in machine qualifi-
cations of LH, RLH, SABLH and IP3 with (1,βo) as a preference vector
for SABLH and IP3. Regarding machine qualifications, SABLH is found
to dominate LH and RLH. RLH dominates LH and this is because it is
constructed to minimize the loss in machine qualifications. Moreover, this
performance of RLH is due to the pre-disqualification of a machine after
having a feasible solution from a certain heuristic (LH in this case). This
information on which machine to disqualify helps in directing the heuristic
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to search for a better solution in terms of machine qualifications.

Figure 5.4: LH, RLH, SABLH and IP3 - (α = 1, β = βo = |N | ∗ T ) - Sum
of losses in machine qualifications

LH and RLH solve the selected instance types almost instantaneously.
However, SABLH spends more time depending on its input parameters and
stopping criteria (initial temperature, number of iterations, etc). Alterna-
tively, Model IP3 spends more time than LH and its derivatives as shown
in Figure 5.5.

5.5.2 Results on Scheduling-centric heuristics (SCH,
RSCH, SABSCH)

The results of SCH and its derivatives (RSCH and SABSCH) are shown
in Table 5.3. The results of IP3 for a preference vector (1,1) are recalled for
the sake of comparison. Prioritizing the sum of completion times is consid-
ered for the objective functions used in SABSCH and IP3, since it seems
important to check the performance of SCH and its derivatives based on this
criterion. SCH is designed to first minimize the sum of completion times by
scheduling jobs of same job families as far as it is possible without violating
a time threshold corresponding to another job family. Results for the sum of
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Figure 5.5: LH, RLH, SABLH and IP3 - (α = 1, β = βo = |N | ∗T ) - CPU
times

completion times and losses in machine qualifications are provided for SCH,
RSCH, SABSCH and IP3. The same instance types selected in Chapter ??
are also being used, comments are done on representative instance types and
a graphical interpretation is provided.

In Figure 5.6, the percentage of increase in the sum of completion times
for SCH and its derivatives, with respect to IP3 with a preference vector
(1,1), is presented. As the figure shows, SABSCH of a preference vector
(1,1) dominates SCH and RSCH. Exact solutions are attained for some
instance types (e.g. 9 and 21). However, for SABSCH in Instance type 39,
the percentage increase is around 22% which is related to a corresponding
gain in machine qualifications (the same instance in Figure 5.7), where IP3
loses on average 2.2 machine qualifications.

The sum of losses in machine qualifications is presented for SCH, RSCH,
SABSCH and IP3 in Figure 5.7. The figure shows that RSCH dominates
SCH, SABSCH and IP3. This is due once again to the nature of the
recursive algorithm that tends to accept solutions with minimized losses in
machine qualifications. It is important to recall that both SABSCH and
IP3 have (1,1) as a preference vector, hence the sum of completion time is
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Table 5.3: Scheduling-Centric Heuristic (SCH) - (α = 1, β = 1)
∑

f∈F Cf
∑

f

∑
m Y m

f CPU Time

No. SCH RSCH SABSCH IP3 SCH RSCH SABSCH IP3 SCH RSCH SABSCH IP3
1 255 255 255 255 0.4 0.2 0.2 0.0 0 0 0 0.4
2 245 245 245 245 0.9 0.9 0.9 0.9 0 0 0 0.4
3 669 669 669 564 0.9 0.7 0.7 1.6 0 0 0 0.8
4 263 246 246 211 2.8 2.6 2.6 3.1 0 0 0 1.7
5 323 323 323 278 2.9 2.5 2.5 3.1 0 0 0 6.4
6 - - - 351 - - - 1.2 - - - 16.8
7 153 130 130 124 2.8 2.5 2.6 2.1 0 0 0 4
8 96 82 78 76 4.7 3.5 4.6 3.3 0 0 0 2
9 129 116 116 116 1.2 0.6 0.8 0.4 0 0 0 0.3
10 52 46 46 46 1.9 1.5 1.7 0.4 0 0 0 0.1
11 123 96 96 96 1.0 0.7 0.8 0.4 0 0 0 0.5
12 80 67 67 67 2.1 1.8 1.9 0.4 0 0 0 0.5
13 34 34 34 34 0.3 0.3 0.3 0.3 0 0 0 0.1
14 393 358 358 346 3.7 3.5 3.6 3.3 0 0 0 13
15 335 297 297 285 6.7 6.5 6.7 6.6 0 0 0 3.6
16 404 404 404 404 0.3 0.3 0.3 0.3 0 0 0 3.2
17 167 167 167 157 2.1 1.0 1.1 1.2 0 0 0 2.2
18 473 438 438 399 2.8 1.6 1.7 1.4 0 0 0 27.4
19 340 297 297 297 7.7 7.6 7.6 7.2 0 0 0 47.8
20 1182 1182 1182 1163 0.4 0.3 0.3 0.0 0 0 0 4.2
21 566 559 559 559 1.9 1.8 1.8 2.4 0 0 0 7.7
22 550 550 524 483 1.8 1.5 1.6 2.7 0 0 3 10.4
23 - - - 538 - - - 7.3 - - - 95.4
24 673 637 637 621 2.8 2.5 2.5 3.4 0 0 0 31.2
25 496 481 477 427 6.8 5.4 6.7 6.1 0 0 0 46.5
26 1148 1148 1148 1108 0.4 0.3 0.4 0.4 0 0 0 1.5
27 2194 2010 2010 2010 1.2 1.2 1.2 1.2 0 0 0 10.7
28 1671 1671 1461 1117 0.7 0.3 0.6 1.1 0 0 32 7.3
29 - - - 1608 - - - 6.4 - - - 243.6
30 1746 1746 1659 1355 0.4 0.3 0.4 0.4 0 0 9 102.7
31 4133 4133 2622 2394 0.4 0.3 0.4 0.4 0 0 119 1.3
32 3685 3243 3243 3243 1.1 1.0 1.2 2.2 0 0 0 7.2
33 2765 2649 2649 2621 2.9 2.6 2.6 2.1 0 0 24 108.6
34 3452 3158 2798 2710 1.2 1.0 1.1 2.3 0 0 56 40.4
35 2440 2440 2224 1926 0.4 0.3 0.4 0.4 0 0 51 43.8
36 1913 1913 1675 1329 0.3 0.3 0.3 0.4 0 0 92 31.9
37 1615 1505 1505 1294 2.2 2.1 2.1 3.4 0 0 0 306.5
38 1128 1073 1004 962 5.7 4.2 4.4 5.4 0 0 1 78.8
39 3823 3823 3629 2992 1.2 1.1 1.2 3.3 0 0 82 137.4
40 3074 2535 2535 2504 7.2 6.3 6.3 9.1 0 0 12 345.1
41 1280 1210 1208 1158 3.8 3.5 3.6 4.3 0 0 23 106.7
42 873 838 838 834 3.7 3.9 3.9 6.2 0 0 126 47
43 3800 3657 3638 3626 2.9 1.8 2.1 2.4 0 0 186 33.2
44 3189 3129 2873 2711 4.9 4.5 4.7 5.3 0 0 189 213.7
45 3001 2931 2931 2603 1.2 0.6 0.6 0.4 0 0 0 58.1
46 3698 3452 3452 4060 4.2 3.8 3.8 4.3 0 0 109 600
47 3650 3588 3588 3429 3.4 2.9 2.9 3.1 0 0 15 600
48 2963 2874 2486 2389 2.1 1.6 1.7 2.3 0 0 372 600
49 2870 2854 2720 - 3.3 3.0 3.1 - 0 0 62 -
50 2952 2762 2653 - 4.2 3.7 3.9 - 0 0 56 -
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Figure 5.6: SCH, RSCH, SABSCH and IP3 - (α = 1, β = 1) - Sum of
completion times

prioritized.

Figure 5.8 shows the CPU times of SCH, RSCH, SABSCH and IP3
with a preference vector (1,1). When comparing the obtained CPU times
with the ones obtained for (1,βo), it can be observed that IP3 solves all the
selected instance types to optimality for a preference vector (1,1) which is not
the case for a preference vector (1,βo). This illustrates the complexity added
to PTC whenever it is decided to prioritize and keep on qualified machines.
Hence, time constraints play an important role in the complexity of PTC.

5.5.3 Results on Qualification-centric heuristics (QCH,
RQCH, SABACH)

The results of QCH and its derivatives (RQCH and SABQCH) are shown
in Table 5.4. The results of IP3 for a preference vector (1,|N |∗T ) are recalled
for the sake of comparison. Prioritizing machine qualifications is considered
for the objective functions used in SABQCH and IP3, since it seems im-
portant to check the performance of QCH regarding machine qualifications.
Recall that QCH is designed to first minimize the total sum of losses in
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Chapter 5. Heuristics and Metaheuristics

Figure 5.7: SCH, RSCH, SABSCH and IP3 - (α = 1, β = 1) - Sum of
losses in machine qualifications

Figure 5.8: SCH, RSCH, SABSCH and IP3 - (α = 1, β = 1) - CPU times

machine qualifications by scheduling jobs according to their updated family
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time threshold. Results for the sum of completion times and losses in ma-
chine qualifications are provided for QCH, RQCH, SABQCH and IP3.

Table 5.4: Qualification-Centric Heuristic (QCH) - (α = 1, β = |N | ∗ T )
∑

f∈F Cf

∑
f

∑
m Y m

f CPU Time

No. QCH RQCH SABQCH IP3 QCH RQCH SABQCH IP3 QCH RQCH SABQCH IP3
1 255 255 255 255 0.3 0.1 0.0 0.0 0 0 0 0.8
2 303 303 303 284 0.4 0.2 0.0 0.0 0 0 0 1.8
3 669 669 669 669 0.8 0.8 0.6 0.5 0 0 0 3.5
4 290 246 246 231 2.7 2.5 2.5 1.7 0 0 0 17
5 323 297 297 278 2.8 2.7 2.6 2.6 0 0 0 600
6 - - - 351 - - - 0.6 - - - 600
7 189 136 136 133 1.7 1.5 1.5 0.8 0 0 0 2.8
8 99 99 100 78 2.8 2.5 1.9 1.9 0 0 0 4.9
9 165 165 165 116 0.4 0.3 0.0 0.0 0 0 0 0.3
10 92 92 92 46 0.3 0.1 0.1 0.0 0 0 0 0.1
11 141 141 141 96 0.4 0.2 0.0 0.0 0 0 0 0.5
12 80 67 67 67 1.8 1.6 1.6 0.1 0 0 0 0.5
13 34 34 34 34 0.3 0.3 0.1 0.0 0 0 0 0.1
14 436 436 452 393 2.8 2.7 1.5 0.6 0 0 0 600
15 335 350 349 313 6.7 6.1 5.8 5.8 0 0 0 227.5
16 404 404 404 404 0.3 0.1 0.1 0.1 0 0 0 2.8
17 167 167 167 163 1.8 1.3 0.5 0.1 0 0 0 1.9
18 503 439 438 407 1.9 1.7 1.6 0.1 0 0 0 30.1
19 378 378 313 329 5.8 5.7 5.5 4.5 0 0 0 600
20 1239 1239 1182 1163 0.3 0.3 0.2 0.2 0 0 0 3.4
21 745 745 745 707 0.9 0.7 0.5 0.1 0 0 0 600
22 544 535 532 512 0.8 0.6 0.6 0.2 0 0 0 230.6
23 707 687 609 674 7.7 6.3 6.1 5.6 0 0 2 600
24 859 859 844 753 1.8 1.8 1.6 0.9 0 0 0 600
25 679 679 667 460 1.9 1.7 1.5 0.7 0 0 0 600
26 1572 1572 1148 1108 0.4 0.4 0.3 0.3 0 0 0 1.6
27 2429 2010 2010 2064 0.8 0.7 0.5 0.2 0 0 0 29.7
28 1210 1210 1210 1135 0.4 0.2 0.1 0.1 0 0 3 18.7
29 2924 2924 1732 1734 4.1 3.9 3.7 3.7 0 0 19 600
30 2007 2007 1651 1355 0.3 0.3 0.1 0.1 0 0 8 126.8
31 4133 4133 2708 2394 0.4 0.4 0.1 0.1 0 0 111 1.2
32 3685 3243 3243 3778 1.0 0.8 0.6 0.2 0 0 0 600
33 2947 2649 2672 2842 2.7 2.5 1.7 0.2 0 0 95 600
34 3075 3075 3075 2966 0.8 0.6 0.5 0.1 0 0 0 600
35 2440 2440 2440 1926 0.4 0.1 0.1 0.1 0 0 0 44
36 1851 1851 1634 1329 0.3 0.2 0.2 0.2 0 0 36 39.7
37 1957 1505 1505 1483 1.8 1.7 1.5 0.5 0 0 0 600
38 1301 1019 1019 1146 3.7 3.6 3.5 0.2 0 0 0 600
39 5200 3823 3634 3129 0.8 0.7 0.6 0.2 0 0 75 600
40 3935 3935 3980 3421 4.4 4.2 3.3 7.8 0 0 214 600
41 1568 1568 1561 1195 1.9 1.6 0.3 0.3 0 0 4 600
42 1055 1055 1055 998 2.8 2.7 2.5 0.5 0 0 104 600
43 4593 3662 3712 3820 1.7 1.5 0.6 0.3 0 0 186 600
44 3591 3455 3082 3674 2.8 2.6 1.7 1.6 0 0 215 600
45 3223 2931 2931 2603 0.9 0.7 0.5 0.2 0 0 0 59.6
46 4249 3463 3463 3945 4.2 4.0 3.8 3.8 0 0 27 600
47 5634 5634 5730 4030 2.3 2.3 1.3 3.9 0 0 1 600
48 3427 2874 2506 2727 1.7 1.5 0.6 0.1 0 0 309 600
49 3074 2986 2888 - 2.2 2.1 1.9 - 0 0 27 -
50 3582 3373 3257 - 3.1 2.7 2.3 - 0 0 32 -

The percentage variation in the sum of completion times forQCH, SABQCH
and IP3 with respect to RQCH is shown in Figure 5.9. The results obtained
with IP3 and SABQCH correspond to a preference vector (1,NT ) where
machine qualification is prioritized. As the figure shows, IP3 dominates for
Instance types 14, 21, 22, 25, 39 and 41. Alternatively, SABQCH dominates
for Instance types 19, 38 and 44. On the other hand, it is found that the
difference in losses in machine qualifications between IP3 and SABQCH
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is maximized for the same instances for which SABQCH dominates IP3
as shown in Figure 5.10. Further, in this figure, IP3 dominates QCH and
its derivatives. Note also that SABQCH almost attains the best solutions
found by IP3 for Instance types 41 and 44. Moreover, RQCH dominates
QCH regarding the sum of losses in machine qualifications as Figure 5.10
demonstrates.

Figure 5.9: QCH, RQCH, SABQCH and IP3 - (α = 1, β = βo = |N | ∗ T )
- Sum of completion times

CPU times for IP3 attain the time limit for 8/9 of the selected instance
types. This can be explained when knowing that prioritizing machine qual-
ifications forces the standard solver to respect time constraints. QCH and
RQCH solves the instances instantaneously. For SABQCH, considerable
CPU times are found for large instances (e.g. Instance types 39 and 44).
These values are also affected by the initial settings of the SA parameters
such as the initial temperature, cooling factor, number of iterations, etc.

5.6 Numerical experiments on PEHF

The instances used for PTC are also used for PEHF . However, a new ma-
trix with the values of yield for each family to machine assignment is now
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Figure 5.10: QCH, RQCH, SABQCH and IP3 - (α = 1, β = βo = |N | ∗T )
- Sum of losses in machine qualifications

Figure 5.11: QCH, RQCH, SABQCH and IP3 - (α = 1, β = βo = |N | ∗T )
- CPU times
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necessary. Moreover, the values of the yield in this matrix are generated such
that, whenever a machine m is healthier than a machine m′, then m has a
greater yield than m′ for all job families. Results for SCH, QCH and Y CH
are provided and compared. Also, results for Y CH, RY CH and SABY CH
are also provided for a preference vector (1,1,γo), that prioritizes the expected
yield over the sum of completion times and machine qualifications.

5.6.1 SCH, QCH and Y CH

Table 5.5 presents the sum of completion times, the sum of losses in machine
qualifications and the sum of expected yield obtained for SCH, QCH and
Y CH. Simulations showed that some instance types are not feasible for one
constructive heuristic but feasible for another. For example, Instance type
6 is feasible for Y CH but not for SCH and QCH, whereas Instance type
14 is feasible for SCH and QCH but not for Y CH. Instance types 23 and
29 are other examples. Y CH has the best solution on the sum of expected
yield in 41 out of 47 solved instances compared to SCH and QCH. QCH
has the best solutions on the sum of losses in machine qualifications for 45
out of 49 solved instances compared to SCH and Y CH. On the total sum
of completion times, SCH is found to be the best for 29 out of 47 solved
instances. However, Y CH is also effective for the sum of completion times
(best solutions are found for 26 out of 49 solved instances). This is explained
by the tendency of Y CH to schedule jobs of the same family on the machine
with the best EHF , thus minimizing the number of setups and consequently
the sum of completion times. CPU times are omitted since constructive
heuristics are very fast.
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Table 5.5: Comparison between heuristics (
∑

f∈F Cf ,
∑

f

∑
m Y m

f and∑T
t=1

∑
f

∑
m xm

f,tv
m
f,t), best solution in bold
∑

f∈F Cf
∑

f

∑
m Y m

f

∑T
t=1

∑
f

∑
m xm

f,tv
m
f,t

No. SCH QCH YCH SCH QCH YCH SCH QCH YCH
1 255 255 296 0.4 0.3 0.4 870 870 896

2 245 303 284 0.9 0.4 1.1 890 894 890
3 669 669 564 0.9 0.8 1.1 924 924 952

4 263 290 263 2.8 2.7 3.3 846 840 846

5 323 323 - 2.9 2.8 - 844 844 -
6 - - 396 - - 2.9 - - 881

7 153 189 130 2.8 1.7 3.8 905 895 907

8 96 99 83 4.7 2.8 2.3 926 931 942

9 129 165 129 1.2 0.4 1.4 863 877 863
10 52 92 48 1.9 0.3 2.1 904 904 904

11 123 141 123 1.0 0.4 1 913 921 913
12 80 80 67 2.1 1.8 0.4 899 913 913

13 34 34 34 0.3 0.3 0.4 908 908 908

14 393 436 - 3.7 2.8 - 1815 1833 -
15 335 335 326 6.7 6.7 3.3 1785 1785 1805

16 404 404 472 0.3 0.3 0.4 1794 1794 1798

17 167 167 167 2.1 1.8 2.3 1774 1774 1774

18 473 503 457 2.8 1.9 2.3 1760 1740 1768

19 340 378 367 7.7 5.8 7.2 1769 1759 1777

20 1182 1239 1216 0.4 0.3 0.4 2677 2724 2709
21 566 745 704 1.9 0.9 1.8 2632 2677 2768

22 550 544 581 1.8 0.8 2.2 2701 2701 2705

23 - 707 - - 7.7 - - 2696 -
24 673 859 716 2.8 1.8 3.2 2762 2765 2773

25 496 679 498 6.8 1.9 5.3 2610 2647 2634
26 1148 1572 1148 0.4 0.4 0.4 3759 3663 3759

27 2194 2429 2435 1.2 0.8 1.1 3689 3724 3736

28 1671 1210 1668 0.7 0.4 0.4 3542 3536 3552

29 - 2924 2069 - 4.1 4.9 - 3543 3599

30 1746 2007 1746 0.4 0.3 0.3 3523 3510 3523

31 4133 4133 4133 0.4 0.4 0.3 4687 4687 4687

32 3685 3685 5429 1.1 1.0 1.2 4154 4154 4154

33 2765 2947 3259 2.9 2.7 3.2 4376 4350 4382

34 3452 3075 2927 1.2 0.8 1.3 4611 4621 4616

35 2440 2440 2126 0.4 0.4 0.4 4319 4319 4342

36 1913 1851 1850 0.3 0.3 1.1 4553 4543 4560

37 1615 1957 1337 2.2 1.8 3.4 4336 4343 4465

38 1128 1301 1181 5.7 3.7 6.2 4429 4437 4430
39 3823 5200 4432 1.2 0.8 1.3 5412 5460 5502

40 3074 3935 2973 7.2 4.4 5.3 5486 5475 5545

41 1280 1568 1282 3.8 1.9 3.4 5362 5284 5365

42 873 1055 877 3.7 2.8 3.8 5316 5341 5383

43 3800 4593 3837 2.9 1.7 2.4 6352 6352 6446

44 3189 3591 3049 4.9 2.8 5.3 6114 6060 6229

45 3001 3223 2877 1.2 0.9 1.4 6376 6222 6568

46 3698 4249 3680 4.2 4.2 4.4 6321 6210 6331

47 3650 5634 3764 3.4 2.3 3.9 6168 6227 6387

48 2963 3427 2730 2.1 1.7 2.2 6215 6251 6287

49 2870 3074 2995 3.3 2.2 3.2 6356 6289 6388

50 2952 3582 3114 4.2 3.1 4.1 6402 6398 6415
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The percentage variation of the sum of completion times are shown in
Figure 5.12 for SCH, QCH and Y CH relative to the values obtained for
SCH. SCH dominates QCH and Y CH in terms of minimizing the sum of
completion times. It is not the case for Instance types 22 and 44. Again,
this is due to the fact that Y CH tends to schedule job of the same family
on the same machine in order to maximize the resulting yield. In addition,
it is possible for QCH to schedule at an early stage jobs of different families
except for one, and hence to schedule the remaining jobs of the last family,
thus minimizing the number of setups and consequently the sum of comple-
tion times.

Figure 5.12: SCH, QCH and Y CH - Sum of completion times

QCH dominates SCH and Y CH on the loss in machine qualifications
as shown in Figure 5.13. It is important to note that it is not guaranteed
to have a feasible solution for all instances/instance types when applying a
certain heuristic. Instance type 14 is an example where Y CH has no fea-
sible solution. Moreover, note that SCH and Y CH dominate alternatively
in terms of machine qualifications, e.g. Instance type 19 (Y CH dominates
SCH) and Instance type 38 (SCH dominates Y CH).

Y CH dominates in most cases SCH and QCH on the sum of expected
yield. QCH and SCH dominate alternatively (e.g. Instances 19, 41 and 44
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Figure 5.13: SCH, QCH and Y CH - Sum of losses in machine qualifications

- SCH dominates QCH, and Instance types 14, 21, 25 and 39, where QCH
dominates SCH).

5.6.2 Results on RH and SA

Numerical results obtained for the Recursive Heuristic applied on Y CH
(RY CH) and Simulated Annealing applied on the solution obtained by
RY CH (SABY CH) with a preference vector (1,1,|M | ∗ |F | ∗ |N | ∗ T ) are
given in Tables 6.a and 6.b. The results are compared to IP5 with a pref-
erence vector (1,1,|M | ∗ |F | ∗ |N | ∗ T ) where the sum of expected yield is
prioritized on the sum of completion times and machine qualifications. This
preference vector is chosen because Y CH is designed to maximize the sum
of expected yield.

The results in Figure 5.15 through 5.18 correspond to a preference vector
(1,1,γo) for both IP5 and SA, where the expected yield is prioritized on both
the sum of completion times and machine qualification. This preference vec-
tor is chosen because we wanted to concentrate on the performance of Y CH
and its derivatives compared to IP5 (exact method).
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Figure 5.14: SCH, QCH and Y CH - Percentage of gain in yield with respect
to SCH

Figure 5.15: Y CH, RY CH, SABY CH and IP5 - (α = 1, β = 1, γ = γo =
|M | ∗ |F | ∗ |N | ∗ T ) - Percentage of gain in yield with respect to Y CH
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Table 6.a: Yield-Centric Heuristic (YCH) - (α′ = 1, β′ = 1, γ′ = |M | ∗ |F | ∗
|N | ∗ T ),

∑T
t=1

∑
f

∑
m xm

f,tv
m
f,t and

∑
f

∑
m Y m

f∑T
t=1

∑
f

∑
m xm

f,tv
m
f,t

∑
f

∑
m Y m

f

No. YCH RYCH SABYCH IP5 YCH RYCH SABYCH IP5
1 896 896 904 922 0.4 0.3 0.3 0.1
2 890 890 890 894 1.1 1.0 1.2 0.5
3 952 952 952 952 1.1 1.1 1.3 1.7
4 846 852 853 856 3.3 3.1 3.2 3.6
5 - - - 856 - - - 3.9
6 881 889 889 896 2.9 2.4 3.1 4.7
7 907 909 933 939 3.8 1.4 1.4 4.8
8 942 946 974 981 2.3 2.3 2.4 9.5
9 863 863 883 915 1.4 1.2 1.4 2.9
10 904 909 916 926 2.1 1.9 2.2 3.6
11 913 913 929 938 1.0 0.9 1.3 4.8
12 913 932 963 982 0.4 0.3 0.4 9.7
13 908 908 940 950 0.4 0.3 0.4 8.8
14 - - - 1868 - - - 6.5
15 1805 1813 1828 1835 3.3 3.2 3.4 6.9
16 1798 1798 1828 1892 0.4 0.4 0.4 0.4
17 1774 1805 1813 1837 2.3 1.1 1.4 2.6
18 1768 1790 1826 1844 2.3 1.2 1.3 9.7
19 1777 1792 1817 1839 7.2 6.1 7.2 10.7
20 2709 2727 2747 2748 0.4 0.2 0.3 0.4
21 2768 2686 2794 2840 1.8 1.3 2.2 2.9
22 2705 2704 2769 2788 2.2 2.1 2.3 5.8
23 - - - 2785 - - - 12.6
24 2773 2800 2887 2900 3.2 3.0 3.4 6.9
25 2634 2613 2662 2664 5.3 4.3 4.4 9.5
26 3759 3759 3889 3941 0.4 0.2 0.3 0.3
27 3736 3736 3809 3814 1.1 1.0 1.3 1.7
28 3552 3552 3580 3582 0.4 0.3 0.4 4.6
29 3599 3603 3616 3680 4.9 4.8 5.1 8.6
30 3523 3523 3666 3686 0.3 0.2 0.3 3.8
31 4687 4687 4699 4700 0.3 0.2 0.3 0.3
32 4154 4210 4210 4210 1.2 1.1 1.4 1.7
33 4382 4391 4442 4455 3.2 2.2 2.3 2.5
34 4616 4631 4726 4744 1.3 1.1 1.3 1.8
35 4342 4342 4394 4608 0.4 0.4 0.4 0.3
36 4560 4585 4586 4824 1.1 1.0 1.2 6.7
37 4465 4563 4658 4764 3.4 2.3 3.2 9.9
38 4430 4458 4519 4615 6.2 4.1 4.3 10.6
39 5502 5560 5584 5585 1.3 1.2 1.4 4.8
40 5545 5591 5735 5747 5.3 5.1 5.2 9.7
41 5365 5397 5693 5799 3.4 2.3 3.1 9.9
42 5383 5398 5467 5550 3.8 4.2 4.3 7.9
43 6446 6446 6446 6446 2.4 2.3 2.4 4.8
44 6229 6355 6418 6427 5.3 4.3 4.4 8.6
45 6568 6568 6580 6757 1.4 1.2 1.4 4.5
46 6331 6365 6480 6560 4.4 4.1 4.3 4.7
47 6387 6503 6578 6625 3.9 3.4 4.1 6.7
48 6287 6367 6421 6426 2.2 1.4 2.2 9.6
49 6388 6396 6405 - 3.2 2.9 3.0 -
50 6415 6436 6486 - 4.1 3.8 3.9 -
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In Figure 5.15, the variation in percentage of gain/loss in yield of RY CH,
SABY CH and IP5 referenced to the values obtained by YCH are presented.
As the figure shows, SABY CH dominates other heuristics and almost at-
tains the exact solutions in some instances (Instance types 25, 39 and 44).
However, RY CH is dominated by Y CH (Instance types 21 and 25). This
is because RY CH accepts a deterioration of one criterion to improve ma-
chine qualifications as illustrated in Figure 5.16. Also in this figure, RY CH
dominates SABY CH in terms of machine qualifications. This is due to the
fact that SABY CH tries to search for solutions that enhance the expected
yield compared to machine qualifications (preference vector (1,1,γo)). For all
selected instance types, RY CH dominates Y CH, SABY CH and IP5 on
machine qualifications.

Figure 5.16: Y CH, RY CH, SABY CH and IP5 - (α = 1, β = 1, γ = γo =
|M | ∗ |F | ∗ |N | ∗ T ) - Sum of losses in machine qualifications

The percentage increase in the sum of completion times for Y CH, RY CH
and IP5 with respect to the values obtained by SABY CH is shown in Fig-
ure 5.17. SABY CH dominates all approaches. IP5 is dominated by Y CH
and its derivatives. In addition, Y CH and RY CH alternatively dominate
one the other, e.g. Instance types 19 and 22 where Y CH dominates RY CH,
and Instance type 38 where RY CH dominates Y CH. It is important to
mention that Y CH and its derivatives admit no feasible solution for In-
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Table 6.b: Yield-Centric Heuristic (YCH) - (α′ = 1, β′ = 1, γ′ = |M | ∗ |F | ∗
|N | ∗ T ),

∑
f∈F Cf and CPU times

∑
f∈F Cf CPU Time

No. YCH RYCH SABYCH IP5 YCH RYCH SABYCH IP5
1 296 296 296 404 0 0 0 2.8
2 284 284 284 303 0 0 0 0.2
3 564 564 564 564 0 0 0 0.8
4 263 246 246 243 0 0 0 2.5
5 - - - 338 0 - - 22.9
6 396 544 351 564 0 0 0 600
7 130 145 145 302 0 0 0 5.7
8 83 83 83 164 0 0 0 3.1
9 129 129 129 210 0 0 0 0.3
10 48 46 46 56 0 0 0 0.1
11 123 123 123 195 0 0 0 0.6
12 67 67 67 266 0 0 0 4.4
13 34 34 34 104 0 0 0 0.2
14 - - - 527 0 - - 4.2
15 326 285 285 351 0 0 0 1.2
16 472 472 472 762 0 0 0 1.1
17 167 167 167 203 0 0 0 0.3
18 457 422 422 863 0 0 0 39.5
19 367 399 316 552 0 0 0 21.6
20 1216 1216 1216 1687 0 0 0 1.3
21 704 724 611 856 0 0 1 1.9
22 581 676 546 918 0 0 1 6.5
23 - - - 1141 0 - - 69.3
24 716 674 646 1440 0 0 0 24.4
25 498 533 448 566 0 0 0 15.3
26 1148 1148 1148 4585 0 0 0 12.9
27 2435 2435 2427 3324 0 0 1 9.4
28 1668 1668 1286 2161 0 0 14 18.7
29 2069 2034 1790 2691 0 0 8 600
30 1746 1746 1655 2855 0 0 3 52
31 4133 4133 2636 2925 0 0 138 0.8
32 5429 5079 3376 3457 0 0 8 5.4
33 3259 3217 2762 4963 0 0 46 600
34 2927 2927 2927 6133 0 0 3 600
35 2126 2126 2082 4040 0 0 1 33.1
36 1850 1605 1561 3948 0 0 0 23.8
37 1337 1389 1325 4116 0 0 4 97
38 1181 1114 1042 2116 0 0 8 36.2
39 4432 4432 3623 6419 0 0 125 96.2
40 2973 2921 2794 5928 0 0 84 347.6
41 1282 1272 1201 4366 0 0 39 51.6
42 877 872 872 1944 0 0 56 37.6
43 3837 3837 3801 4768 0 0 216 33.9
44 3049 3142 2957 7047 0 0 514 600
45 2877 2877 2877 8248 0 0 0 91.5
46 3680 3671 3587 6340 0 0 40 600
47 3764 3766 3676 8460 0 0 7 425.5
48 2730 2834 2480 5046 0 0 369 293.2
49 2995 3015 2854 - 0 0 187 -
50 3114 3219 2897 - 0 0 203 -
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stance type 14.

Figure 5.17: Y CH, RY CH, SABY CH and IP5 - (α = 1, β = 1, γ = γo =
|M | ∗ |F | ∗ |N | ∗ T ) - Sum of completion times

IP5 solves to optimality all the selected instances except one (Instance
type 44) before the time limit. The chosen preference vector that does not
prioritize machine qualifications led to CPU times lower than those obtained
when minimizing machine qualifications due to the relaxed time constraints.
SABY CH attains large CPU times for large size instances (Instance types
39, 41 and 44). Y CH and RY CH solve all instances instantaneously.

5.7 Conclusion

In this chapter, numerical results obtained for solution approaches were
shown. The results correspond to the problem of scheduling job families
on non-identical parallel machines with time constraints PTC and the ex-
tension problem of scheduling with Equipment Health Factor PEHF . A
multi-criteria objective function is considered. These criteria include: The
sum of completion times, the loss in machine qualifications (PTC) and the
expected yield (PEHF ).
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Figure 5.18: Y CH, RY CH, SABY CH and IP5 - (α = 1, β = 1, γ = γo =
|M | ∗ |F | ∗ |N | ∗ T ) - CPU times

We developed heuristics that target each criterion of the objective func-
tion, and numerical results on randomly generated instances were presented.
These results showed, as expected, that the scheduling-centric heuristic gives
generally better results regarding the sum of completion times, the qualification-
centric heuristic provides better solutions on the number of machine qualifi-
cation losses and the yield-centric heuristic has a better performance on the
maximization of the expected yield. A Recursive Heuristic and a Simulated
Annealing metaheuristic are able to provide effective solutions. The results
of our heuristics were compared with exact solutions given by a standard
solver. Simulated Annealing showed a remarkable performance when solving
large size instances (number of jobs, families, machines, etc), and was able
to reach optimum solutions in some cases for different criteria.
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Algorithm 4 QCH pseudo code
1: i = 1
2: for m = 1→ |M | do
3: IDLEm = TRUE
4: tm = 0
5: f∗

m = 0
6: end for
7: while i ≤ |N | do
8: Feasible = FALSE
9: m = 1

10: for m = 1→ |M | do
11: if IDLEm = TRUE then
12: if f∗

m 6= 0 then
13: - Select the family with the minimum threshold and that can be

processed on m (f∗
m)

14: if nf∗
m
6= 0 then

15: IDLEm = FALSE
16: Cf∗

m
= UPDATE TIMES(f∗

m)
17: tm = tm + pf∗

m

18: nf∗ ← nf∗
m
− 1

19: Feasible = TRUE
20: i = i+ 1
21: - UPDATE THRESHOLD(f∗

m, tm, γF )
22: - Select f ′∗

m with nf∗
m
> 0 and with shortest current threshold

23: if f ′∗
m 6= f∗

m then
24: tm = tm + sf∗

25: end if
26: f∗

m = f ′∗
m

27: end if
28: else
29: DISQUALIFY (m, f∗

m)
30: ymf∗

m
← ymf∗

m
+ 1

31: end if
32: end if
33: end for
34: for m = 1→ |M | do
35: IDLEm = TRUE
36: end for
37: if bool = FALSE then
38: print No feasible solution.
39: end if
40: end while
41: INTRACHANGE(Solution)
42: INTERCHANGE(Solution)
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Algorithm 5 YCH pseudo code
1: i = 1
2: for m = 1→ |M | do
3: IDLEm = TRUE
4: tm = 0
5: f∗

m = 0
6: end for
7: while i ≤ |N | do
8: Feasible = FALSE
9: m = 1

10: - Select the family with the maximum yield and that can be processed on
m (f∗

m)
11: for m = 1→ |M | do
12: if IDLEm = TRUE then
13: if f∗

m 6= 0 then
14: min next = MIN NEXT (γF , f

∗
m)

15: if tm < min next then
16: if nf∗

m
6= 0 then

17: IDLEm = FALSE
18: Cf∗

m
= UPDATE TIMES(f∗

m)
19: tm = tm + pf∗

m

20: nf∗
m
= nf∗

m
− 1

21: Feasible = TRUE
22: i = i+ 1
23: end if
24: else
25: - Select f∗

m with nf∗
m
> 0 and with maximum yield

26: tm = tm + sf∗

27: end if
28: else
29: DISQUALIFY (m, f∗

m)
30: ymf∗

m
= ymf∗

m
+ 1

31: end if
32: end if
33: end for
34: for m = 1→ |M | do
35: IDLEm = TRUE
36: end for
37: if Feasible = FALSE then
38: print No feasible solution.
39: end if
40: end while
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Algorithm 6 Recursive Algorithm
1: get INSTANCEo

2: s = SOLV E(INSTANCEo, HEURISTIC)
3: s∗ = s
4: if s.DISQUALIFICATIONS ≥ 1 then
5: STOP ITER = 2s.DISQUALIFICATIONS

6: Counter = 1
7: while Counter ≤ STOP ITER do
8: INSTANCE = DISQUALIFY (INSTANCEo, BINARY (Counter))
9: s′ = SOLV E(INSTANCE,HEURISTIC)

10: if s′.SCORE < s∗.SCORE then
11: s∗ = s′

12: Counter = Counter + 1
13: end if
14: end while
15: end if
16: RETURN s∗

Algorithm 7 SA pseudo code
1: s = so
2: Set T (to)
3: t = T (to)
4: while t 6= 0 do
5: - Set Mt, the number of iteration at temperature t
6: Counter = 0
7: while Counter ≤Mt do
8: Costs = SCORE(f, s)
9: Costs′ = NEIGHBOR(s)

10: Costs′ = SCORE(f, s′)
11: if Costs′ ≤ Costs then
12: s = s′

13: else
14: ps,s′ = RANDOM()
15: if ps,s′ ≤ min (1, exp(−(Costs − Costs′))/t) then
16: s = s′

17: end if
18: end if
19: Counter = Counter + 1
20: end while
21: t = DECREMENT (t)
22: end while
23: RETURN s
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General Conclusion and
Perspectives

Conclusions

In this thesis, we discussed various possibilities of integrating scheduling de-
cisions with information and constraints from Advanced Process Control
(APC) systems in Semiconductor Manufacturing. In this context, impor-
tant questions were opened regarding the benefits of integrating scheduling
and APC. We partly answered these questions by proposing some ideas for
integration and by developing novel approaches for new original problems:
Problem of Scheduling with Time Constraints (PTC) and Problem
of Scheduling with Equipment Health Factor (PEHF ). PTC and
PEHF have multicriteria objective functions. These problems were inspired
from industrial needs and challenges. PTC aims at scheduling job in fami-
lies on non-identical parallel machines with setup times and time constraints.
Non-identical machines mean that not all machines can (are qualified to) pro-
cess all types of job families, i.e. are non-identical in terms of qualification
schemes. Time constraints related to thresholds are inspired from the needs
of APC, for which APC control loops must be regularly fed with information
from metrology operations (inspection) within a time interval (the thresh-
old). The objective is to schedule job families on machines while minimizing
the sum of completion times and the losses in machine qualifications. The
complexity of this problem lies also in the fact that it is not only a decision
to assign a machine to process a job, but also to select the appropriate fam-
ily in order to keep control loop parameters updated and hence the machine
qualified. We showed that this problem is NP-hard. PEHF is an extension
of PTC, where job families are scheduled on non-identical parallel machines
with time constraints and with Equipment Health Factors (EHF ). EHF is
an indicator on the state of a machine (e.g. poor, good, very good, excellent).
The objective is to schedule jobs of different job families on machines while
minimizing the sum of completion times, the losses in machine qualifications,
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and maximizing the expected yield. This yield is defined as a function of the
EHF and the criticality of the considered job. Hence, the scheduling de-
cision in this problem is not only related to machine qualifications but also
to an expected yield related to the states of both the machine and the job
family.
An overview on processes, scheduling and Advanced Process Control in semi-
conductor manufacturing was done, where a description of semiconductor
manufacturing processes is given. Also, scheduling issues and problems are
outlined and a summary of Advanced Process Control components and tech-
niques is provided. The past contributions on the integration of scheduling
and Advanced Process Control were also presented. We discussed different
integration issues, possibilities and perspectives and we proposed four major
integration problems. Two of these problems (PTC and PEHF ) were stud-
ied and analyzed in this thesis. A literature review concerning both problems
was done, their complexity was addressed, and time indexed mixed integer
linear programming models were proposed. Further, numerical experiments
on these mathematical programming models were conducted. The results
showed the strong compromise between the different criteria of the objec-
tive functions of both problems. Objective functions were considered as a
weighted sum of different criteria. These weights are defined in preference
vectors. Different types of preference vectors were studied and analyzed. A
lexicographical order of criteria was considered. Moreover, an example of the
ǫ-constraint method was also provided. A sensitivity study on the Time Con-
straint (threshold) was also performed. Numerical experiments showed limi-
tations on the number of jobs, machines and families that a standard solver
can handle. Therefore, several constructive heuristics and a metaheuristic
(Simulated Annealing, SA) that address different criteria of the objective
function were proposed. Dedicated heuristics, a recursive algorithm and SA
showed a good performance on the related objectives.

Perspectives

Several research possibilities that may be studied as a continuation and/or
extension of this thesis are given below.

Dynamic time thresholds

In PTC and PEHF , thresholds related to families are considered fixed over
the time horizon and thus are time independent, i.e. γf,t = γf =, ∀f ∈ F ,
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t = 1, . . . , T . However, it seems that a given family threshold γf,to = γf
could be dilated when the number of jobs of the family f processed during
γf is greater than 1. In other words, when more jobs of the same family are
processed during a given time interval γf , the degree of maturity of control
loop parameters increases. This confidence in the parameters of the control
loop can lead to consider that it is no longer a constant threshold γf that
must be respected, but rather a dilated threshold γf,t. Hence, we propose to
dynamically update family thresholds by considering the following equation:

γf,t′ = λ ∗ (γf,t − (t′ − t)), ∀f ∈ F ; t′ = 1, . . . , T ; t = 1, . . . , T ; t′ > t. (5.1)

where λ ≥ 1 is a real number, called the dilation factor, and is defined
as a function of the number of processed jobs of a given family during its
corresponding threshold. λ is strictly larger than 1 if and only if nf,t′ < nf,t

and t′ < γf,t + t, and is equal to 1 otherwise.

Different possible considerations may be distinguished for choosing λ. We
mention four possible definitions:

• Fixed λ. The value of λ is independent of the families, and the ma-
chines. In this case, λ is predefined by the decision maker based on the
number of processed jobs during a given threshold (λ = k ∗nf , ∀f ∈ F ,
k is a natural number).

• Family based λ (λf). The value of λ is based on the family type.
This means that there is no longer one value for all families, but rather
a vector of values that contains the dilation factors of each family (λf

= kf ∗ nf , kf is a natural number). The values of λf may be different
for each family to relate to its criticality (related to Lot Criticality
Indicator (LCI)) addressed in Chapter 2.

• Machine based λ (λm). The value of λ is based on the machine
where the job/lot is scheduled (λm = km ∗nf , km is a natural number).
By considering such a vector of λ, we involve the notion of dynamic
machine reliability where a more reliable machine may have dilation
factors greater than other less reliable machines.

• Mixed λ (λf,m). The value of λ is based on both the family and the
machine (λf,m = kf,m ∗ nf , kf,m is a natural number). This involves
both aspects related to family criticality and machine reliability.
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Dynamic yield

The notion of dynamic time thresholds can be applied to PEHF , where
the values of the expected yield corresponding to assigning a machine m to
process a job of family f may change as a function of time. Let us recall that
these values are defined based on the machine state and the family criticality.
Hence, vmf = f(EHF,LCI) may become vmf,t = f(EHF,LCI, t). However, the
value of the dynamic expected yield depends on the results of a metrology
operation, i.e. when the results of sampled and tested lots in metrology that
were processed on a given machine m are “to specifications” at a period t,
then the value of the expected yield increases at period t. This is related to
the notion of Wafer at Risk (W@R) (Dauzère-Pérès et al. (2010)), where the
W@R is the number of wafers between two control operations.

Priorities on job families

Priorities on job families regarding delivery times can be included by consid-
ering, instead of the sum of completion times, a weighted sum of completion
times

∑
f∈F wfCf , where wf presents the weight/penalty associated to fam-

ily f . For example, if family f needs to be finished before family f ′, then
wf must be greater than wf ′ . This also can be extended to the sum of losses
in machine qualifications (PTC) and the sum of expected yield (PEHF ),
hence the objective function of PTC, to be minimized, becomes:

∑

f∈F

wf (αCf + β
∑

m∈M

Y m
f ) (5.2)

And that of PEHF , to be maximized, becomes:

∑

f∈F

wf (
∑

m∈M

(γ
′

T∑

t=1

xm
f,tv

m
f,t − β

′

Y m
f )− α

′

Cf ) (5.3)

Integrating flexibility, scheduling and qualifications

Qualification Management (QM) is studied in a previous thesis in our labo-
ratory (Johnzén (2009)). In this work, the interaction between Qualification
Management policies and flexibility measures such as Work In Process (WIP)
flexibility, time flexibility, toolset flexibility, system flexibility, are studied
(Johnzén et al. (2010)). The impact of QM on scheduling is also addressed
in this work. In our perspectives, we believe that it is possible to integrate
the results of Johnzén (2009) in PTC and PEHF . In fact, the proposed
qualification/disqualification schemes can be integrated by enabling machine
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re-qualifications in our problems, i.e. when a machine loses its qualification,
we then check whether the disqualified machine should stay qualified accord-
ing to the proposed qualification scheme of the QM system (to keep on ap-
propriate flexibility measures). If this is the case, we then set a qualification
run. Send Ahead Wafers (SAW) are usually used to test machine qualifi-
cation in semiconductor manufacturing. These wafers are non-productive
wafers and are usually scrapped. The cost of re-qualifying the machine in
this case may be illustrated by the gain in flexibility and even in the through-
put of the machine. This is a crucial in high mix/low volume semiconductor
manufacturing facilities. Machine re-qualification usually includes different
types of qualifications, i.e. we may find “easy” re-qualifications (do not re-
quire many resources and/or time), “normal” re-qualifications (that are done
using some resources and acceptable configuration times), and last but not
least “hard” re-qualifications (that require special resources and long times).
These last re-qualifications are often skipped or postponed. These types
help also in proposing machine re-qualifications for families and machine dis-
qualifications if flexibility measures are prioritized. In this context, a new
parameter can be defined, namely the re-qualification threshold (∇m

f ), which
indicates the time period by which a machine m should be re-qualified to
process job family f . Hence, relating to IP3 and IP5, we add the following
constraint:

xm
f,t ≥ ymf,t, ∀f ∈ F, ∀m ∈M, t = ∇m

f , . . . , T (5.4)

Application on Recursive Heuristic (RH)

An Enhanced Recursive Heuristic (ERH) can be proposed. Let us recall that
the recursive algorithm proposed in this thesis considers the perturbations
on qualification schemes. An infeasible qualification of a constructive heuris-
tic solution enables a perturbation in the initial qualification scheme of an
instance, followed by re-applying the considered constructive heuristic. The
complexity here lies in the case of two or more infeasible qualifications. The
number of combinations of perturbations is 2IQ, where IQ is the number of
infeasible qualifications. Hence, the question is which combination to choose
and what machines for which families should be disqualified or kept qualified.
Here, the proposed qualification schemes by Johnzén (2009) are very helpful
to answer these questions. An example on the effect of integrating QM in
RH is shown in Figure 5.19. Note that the number of choices on family and
machine to disqualify is reduced from 8 possibilities in RH without QM to
4 possibilities in RH with QM .
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Figure 5.19: Example on integrating QM with RH

Other Perspectives

Other perspectives can be proposed on different aspects of this thesis. For
example, further complexity analysis for both PTC and PEHF can be done
by considering the strong sense or weak sense of the NP-hard studied prob-
lems. Exact methods for larger instances may be developed as for example
a column generation approach. Other solution approaches may be tested
as for example Genetic Algorithms or hybrid math-heuristics. In addition,
further multi-criteria optimization methods can be used to thoroughly an-
alyze the antagonistic nature of the conflicting criteria. Other dimensions
can be added to scheduling and Advanced Process Control as for example
considering design constraints and needs through APC and scheduling and
vice-versa. For instance, some new components to integrate in the design
may require fully qualified machines and hence a qualification run should be
forced by sending a Send Ahead Wafer to verify machine parameters which
affect both scheduling and APC.
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Appendix A

Simulation on real data

Effect of threshold variation with real data

In this section, we address a test on real data. The pre-processing of data
is presented. The effect of threshold variation on both criteria of PTC is
studied.

Pre-processing of data

Industrial data are collected from a real industry. These data needed several
steps of pre-processing to be adapted to our problem. After pre-treating the
data, we end up with an instance of 523 jobs, 35 machines and 14 families.
It is obvious that this instance is too large to be treated by a standard solver
and therefore we apply our heuristics for PTC and SA, to study the effect of
threshold variation on the number of losses in machine qualifications and the
sum of completion times and to compare the performance of our approaches
when solving an industrial instance. Figure A.1 gives an example of data
preparation.

Processing time calculation

In our problem, the processing time per family is constant for all jobs. How-
ever, it is not exactly the case in the real data where processing times can
slightly differ from one job to another in the same family. This is why we use
the average value of processing times of all jobs which belong to the same
family, and hence the processing time is unified. Figure A.2 gives an exam-
ple on how processing times are estimated from a real sample. The names of
jobs/lots are omitted for confidentiality reasons.
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Figure A.1: Preparing data

Figure A.2: Calculating processing times

Setup times calculation

Setup times were taken as sequence independent. This means that a shift
from one job of family f to one job of family f ′ requires the same setup time

192



Effect of threshold variation with real data

as in the case of shifting from f ′ to f . It is not the case in industrial data (see
Figure A.3). Hence, we make a hypothesis which is to take the average value
of setup times from a certain family f to all other families. The obtained
value is considered as the setup time of the considered family.

Figure A.3: Calculating setup times - From sequence dependent to sequence
independent

Qualification matrix

The total number of qualified machines for all families is 129. This means
that a solution based on the number of losses in machine qualifications can
be compared with 129 in order to test algorithms in solving the industrial
instance in terms of qualifications.

Results on threshold variation

Thresholds were not given by the industry. We generated thresholds based
on the following equation:

γf = (ζ ∗max
f∈F

pf ) + pf (A.1)
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where, ζ is a coefficient to vary the threshold value, ζ ∈ [1,2. . . ,10], and
maxf∈F pf is the largest processing time for all families.

Tests are done on this instance by applying LH, SCH and SA, and the
results are shown in Table A.1. Note that for larger values of ζ, the time
threshold per family increases and the number of losses in machine qualifica-
tions decreases. This is expected since, when increasing family thresholds, it
is easier to keep machines qualified. SA dominates in all cases and for both
criteria of the objective function.

Figure A.4: Defining family thresholds
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Table A.1: Results of heuristics and simulated annealing applied on real data (best solution in bold).

Results obtained upon using real data
LH SCH SA - (1,|N | ∗ T )

ζ
∑

f∈F Cf (days)
∑

f∈F

∑
m∈M Y m

f

∑
f∈F Cf (days)

∑
f∈F

∑
m∈M Y m

f

∑
f∈F Cf (days)

∑
f∈F

∑
m∈M Y m

f

1 4 126 83 119 83 114
2 399 118 19 112 19 110
3 432 111 188 107 185 105
4 329 107 200 200 199 98
5 264 99 469 94 468 94
6 260 96 504 97 503 96
7 242 92 514 91 505 89
8 563 87 376 87 374 85
9 475 83 271 83 270 83
10 481 80 353 79 353 79
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Abstract: 

In this thesis, we study various possibilities of integrating scheduling decisions with 
Advanced Process Control (APC) systems in Semiconductor Manufacturing. Important 
questions are opened regarding the benefits of integrating scheduling and APC. In particular, 
two new scheduling problems are defined: Problem of Scheduling with Time Constraints 
(PTC) and Problem of Scheduling with Equipment Health Factors (PEHF). PTC and PEHF 
have multi-criteria objective functions. Mathematical models and various heuristics are 
proposed to solve these problems, and are validated with numerous experimentations.  
PTC aims at scheduling lots of different families on non-identical parallel machines with 
setup times. Machine are not identical since they cannot (are not qualified to) process all lot 
families. Time constraints are related to the needs of APC control loops to be regularly fed 
with information. The qualification of a lot family on a machine is lost if the time between 
two consecutive lots of the family is larger than a given threshold. The objective is to 
minimize the sum of the lot completion times and the losses in machine qualifications.  
PEHF is an extension of PTC which aims at integrating an indicator modeling the state of the 
machine (EHF, Equipment Health Factor). The goal is to minimize the sum of the lot 
completion times, the losses in machine qualifications and to maximize the yield. The yield 
of an operation is defined as a function of the EHF of the machine and of the job criticality. 
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Résumé : 

Dans cette thèse, nous étudions différentes possibilités d'intégration des décisions 
d'ordonnancement avec les systèmes de contrôle avancé des procédés (APC) en fabrication 
de semi-conducteurs. En particulier, nous définissons deux nouveaux problèmes 
d'ordonnancement : problème d'ordonnancement avec contraintes de temps (PTC) et 
problème d'ordonnancement avec prise en compte de l'état de santé des équipements (PEHF). 
PTC et PEHF ont des fonctions objectives multicritères. Des modèles mathématiques et 
différentes heuristiques sont proposés pour résoudre ces problèmes, et validés avec de 
nombreuses expérimentations. 
PTC est un problème d'ordonnancement de lots de différentes familles sur des machines 
parallèles non identiques avec des temps de setup. Les machines sont non identiques car elles 
ne peuvent pas traiter (être qualifiées pour) toutes les familles de lots. Les contraintes de 
temps sont liées à la nécessité d’alimenter régulièrement par des informations sur les lots les 
boucles de régulation en contrôle avancé des procédés. La qualification d’une famille de lots 
sur une machines est perdue si le temps entre deux lots consécutifs de la famille dépasse un 
seuil de temps donné. L'objectif est de minimiser la somme des dates de fin des lots et les 
pertes de qualification des machines. 
PEHF est une extension de PTC, qui vise à intégrer un indicateur modélisant l’état de la 
machine (EHF, Equipment Health factor). L'objectif est de minimiser la somme des dates de 
fin des lots, les pertes de qualification des machines et de maximiser le rendement. Le 
rendement d’une opération est défini comme une fonction de l’EHF de la machine et de la 
criticité du lot. 




