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Abstract 

 

 

This thesis presents an account of two 

important facets of glycobioinformatics, 

comprising database development and 

molecular modeling of 3D structures of 

carbohydrates alongside the simulation of 

protein-carbohydrate interactions. Classical 

molecular modeling techniques were used to 

reconstruct 3D polysaccharide structures 

from experimentally determined atomic 

coordinates, or known starting points about 

their structures were used as guidelines to 

model them. A genetic algorithm search was 

employed as a high-throughput technique to 

characterize low energy conformers of 

bioactive oligosaccharides. The data 

generated were organized into two open-

access relational databases, namely, 

PolySac3DB and BiOligo, for use by the 

scientific community. The validation of the 

molecular techniques used were performed 

using solution phase NMR experiments on 

four enteroaggregative pathogenic E. coli 

strains, and were found to be robust and 

realistic. Further, the impact of the 

presentation of human fucosylated 

oligosaccharide epitopes to lectins from 

opportunistic gram negative bacteria was 

investigated in a screening study using 

molecular docking studies, which could help 

in evaluating the feasibility of using 

automated docking procedures in such 

instances as well as deciphering binding data 

from glycan array experiments and also 

correlated to isothermal calorimetry data. On 

comparison with high-resolution 

experimental crystal complexes, automated 

docking was found to delineate the present 

level of applicability, while emphasizing the 

need of constant monitoring and possible 

filtering of the results obtained. Finally, a 

review of the present status of the 

computational aspects of protein-

carbohydrate interaction studies is discussed 

in the perspectives of using molecular 

modeling and simulation studies to probe 

this aspect of molecular and structural 

glycobiology. 
 

Résumé 

 

Le travail décrit dans ce manuscrit 

rassemble les résultats obtenus au cours de 

ma thèse de doctorat. Ils s’inscrivent dans le 

domaine de la glycobioinformatique. Ils ont 

impliqué des développements de bases de 

données structurales et des applications en 

modélisation moléculaire des interactions 

protéines-sucres. Les méthodes de 

modélisation moléculaire ont été utilisées 

dans la reconstruction et dans la prédiction 

des structures tridimensionnelles de 

polysaccharides et d’oligosaccharides, ces 

dernières étant également établies par une 

approche de type “haut-débit” par 

application d’un algorithme génétique à des 

fins de minimisation énergétique. Les 

données ainsi générées ont été organisées 

sous la forme de bases de données 

relationnelles, proprement annotées 

(PolySca3DB et BiOligo) qui sont en libre 

accès pour consultation sur internet. Ces 

méthodes de modélisation moléculaire ont 

été appliquées à la caractérisation, par RMN 

en solution, des conformations de basse 

énergie de souches pathogènes d’un 

polysaccharide de la bactérie E. coli. 

D’autres bactéries pathogènes de type gram 

négatif,  interagissent avec des 

oligosaccharides par l’intermédiaire de 

protéines secrétées, telles que des lectines. 

Nous avons testé, au travers de l’utilisation 

de méthodes d’amarrage moléculaire, la 

possibilité d’identifier de manière 

automatique, la nature de ces interactions, en 

prenant comme cibles des épitopes 

oligosaccharidiques fucosylés. Les résultats 

de ces recherches ont été comparés, de 

manière critique, à ceux issus de 

l’application de bio-puces à sucres et de 

calorimétrie isotherme de titration.  Les 

conclusions et  perspectives de ces travaux 

sont présentées dans un article de revue 

consacré à l’application des méthodes de 

chimie computationnelle dans l’étude des 

interactions protéines-glucides qui viennent 

compléter l’arsenal des outils dédiés au 

champs de recherche couvert par la 

glycobiologie structurale et moléculaire.  
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Chapter 1 

Figure 1.1 Carbohydrates in the scheme of the molecular paradigm of the central dogma of life. 

Figure 1.2 The gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa and 

Burkholderia) studied in this thesis. Figure references [8-10]. 

 

Chapter 2 

Figure 2.1 The different levels of glycan encodings (not involving 3D coordinates) handled 

during this thesis. The example used to illustrate the variety of the notations in this figure is 

Blood group A Lewis B antigen. 

 

Chapter 3 

Figure 3.1 Classical force fields categorized according to their use in carbohydrate chemistry 

based upon their application class (see colours) indicating that biological relevance dominated 

trends in this area, according to a survey with data upto April 2010. Figure as published in [17]. 
 

Figure 3.2 An illustration of the basic concept of a genetic algorithm search. 
 

Chapter 4 

Figure 4.1. Schematic overview of the PolySac3DB organization and content. 

Figure 4.2 Cellulose chain conformation and morphology. (A) Crystalline conformations of the 

cellulose chain in the 1β allomorph showing the disordered orientation of hydroxylic hydrogen 

atoms. (B) Relative orientation of cellulose chains of native cellulose 1β. (C) Molecular model of 

the microfibril of cellulose projected along the fibril axis along with the indexing of the surfaces. 

(D) Computer representation of the crystalline morphology and surfaces of the microfibril of 

cellulose made up of 36 cellulose chains. 

 

Figure 4.3 Different levels of structural organization in starch. (A) Representation of the left-

handed single chains that are parallel stranded in A-starch double helix. (B) and (C) 

Representations of the double helix of crystalline starch after modeling the branching point 

between the strands. (D) Computer representation of an ideal platelet nanocrystal showing (i) 

width of the platelet with the tilt angle of the double helical component, (ii) composition of the 

platelet and (iii) the enlarged view of the constituent repeating unit. 

 

 

Chapter 5: Introduction 

Figure 5 The interactions of Escherichia coli and O-antigenic polysaccharides on its surface. (A.) 

The E. coli cell (magnification: 10,000 X) showing the double-layered cell wall packing in all the 

soluble cellular components [1].  
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(B.) A magnified (1,000,000 X) portion of the E. coli cell illustrating the proteins, nucleic acids, 

polysaccharides and lipid-membranes. The internal space of the cell is filled with water, glycans, 

nucleotides, amino acids, metal ions and many other small molecules [1].  

(C.) Schematic structure (CFG representation) of an enterobacterial lipopolysaccharide molecule 

[2].  The lipids are depicted by ribbons attached to GlcNAc in the lipid A part, attached to Kdo, 

heptoses in the inner core region, hexoses in the outer core region, and finally the O-antigenic 

components, most commonly hexoses.  

 (D.) The immune system piercing the E. coli cell wall (magnification: 1,000,000 X). Our blood 

contains proteins that recognize and destroy invading pathogens. This illustration depicts a cross-

section through the bacterial cell (lower section of the figure in green, blue and purple) being 

attacked by the proteins in the blood serum (upper part of the figure in yellow and orange). Y-

shaped antibodies recognize and attach themselves to the cell surface setting off a cascade of 

actions that culminate in a membrane attack complex, shown here, piercing the cell wall of E. coli 

[1]. 

 

 

Chapter 5.a 

 
Figure 5.a.1 Structure of the biological repeating units of the O-antigen PS from a) E. coli O5ac 

and b) E. coli O5ab in CFG-notation (top), schematic chemical representation (middle) and 

standard nomenclature (bottom), respectively. 
 

Figure 5.a.2 Illustrated example of the torsion angle conventions used in this study, described 

using the disaccharide β-D-Galp-1,3-α-D-GalpNAc. The Heavy Atom Convention is represented 

in the top panel, while the Light Atom Convention is illustrated in the bottom panel. 

 

Figure 5.a.3 Relaxed adiabatic maps of the disaccharide components of the molecular model of 

O5ac and O5ab. The top panel illustrates the glycosidic linkages that are identical in the two E. 

coli samples, while the lower panel highlights the glycosidic linkages (GalpNAc-α12-Quip3NAc 

in O5ac and GalpNAc-α14-Quip3NAc in O5ab) that are the distinguishing feature between them. 

 

Figure 5.a.4 Conformation of the ribofuranose ring (residue B) as a function of the puckering 

parameters Q and φ [27]. The twenty O5ac structures of lower energy obtained from the north 

and the south starting models are denoted in red and blue, respectively. 

 

Figure 5.a.5 Scatter plots of rij vs Ψ
H
 obtained from conformational sampling on the two 

hexasaccharide models representing the biological repeating unit of the O-antigenic PS from E. 

coli O5ac. The families that explain the experimental data are indicated in red. 

 

Figure 5.a.6 Selected region of the 2D 
1
H,

1
H-NOESY spectrum of the O-antigen PS from E. coli 

O5ac recorded at 700 MHz with a mixing time of 80 ms. Correlations from the anomeric protons 

are indicated with pertinent annotations. 

 

Figure 5.a.7 Plots of the normalized volume intensities versus mixing time obtained for the intra-

residue correlation between H1 and H2 of GalpNAc (•), the trans-glycosidic correlation between 

H1 of GalpNAc and H2 of QuipNAc () and the long-range correlation between H1 of GalpNAc 

and H4 of Ribf (♦). The data was obtained from 2D 
1
H,

1
H-NOESY experiments recorded at 700 

MHz. 
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Figure 5.a.8 Scatter plots of rij vs. ΨDA obtained from the hexasaccharide models representing 

the biological repeating unit of the O-antigenic PS from E. coli O5ab. The conformational 

families that explain the experimental data are indicated in red. 

 

Figure 5.a.9 (a) 
1
H-NMR spectrum of the O-antigen PS from E. coli O5ab and (b) 1D 

1
H,

1
H-

SPFGSE NOESY experiment (mixing time 80 ms) with selective excitation of the H1 resonance 

of GalpNAc and (c) plot of the normalized intensities versus mixing time obtained for the 

resonance of H2 of Quip3NAc by selective excitation of H1 of GalpNAc in the 1D 
1
H,

1
H-

SPFGSE NOESY experiments. 

 

Figure 5.a.10 The schematic representation of the polysaccharide helices, describing the major 

populations observed in O5ac (8 repeating units) and O5ab (8 and 4 repeating units, in the upper 

and lower panels for O5ab, respectively) (a) as viewed perpendicularly, and (b) along the length 

of the helix. 

 

Figure 5.a.11 Common epitope observed in the O-antigen PS from E. coli O5ac O5ab in 

schematic chemical (ring) representation of (top) and molecular models (below). Dashed lines 

denote the face exposed to the surface of the helix. 

 

 

Chapter 5.b 

 
Figure 5.b.1 Structure of the biological repeating units of the O-antigen PS from E. coli 1303 

(with and without O-acetylation on α-L-Fucp) in CFG
1
-cartoon notation (top), schematic 

chemical (ring) representation (middle) and linear nomenclature (bottom), respectively. 

 

Figure 5.b.2 Relaxed adiabatic maps of the disaccharide components of the molecular models of 

O1303. The top and middle panels illustrate the glycosidic linkages that are distinct in the two 

varieties of the biological repeating units, due to the variable substitution on the α-L-Fuc, while 

the lower panel highlights the glycosidic linkages (Galp-β1→3-GalpNAc and GalpNAc-α14-

Quip3ANc) that are common to both the glycans being investigated. 

 

Figure 5.b.3 The schematic representations of the helices formed by the O-antigenic 

polysaccharides of O1303 and O5ab. 

 

Figure 5.b.4 Comparison of the biological repeat units of O-antigenic polysaccharides O5ab and 

the O1303. The green part highlights identical stretch between the sequences, while the pink 

region marks the difference, which is in the substitution of one monosaccharide unit in the 

biological repeat. 

 

 

Chapter 6 
 

Figure 6.1 Nomenclature and structural representations commonly used for complex glycans, for 

example, the pentasaccharide lacto-N-fucopentaose V [Gal β1-3 GlcNAc β1-3 Gal β1-4 (Fuc) α1-

3 Glc] in this figure. The relative orientation of two contiguous monosaccharide units in a 

disaccharide is expressed by two torsion angles Φ and Ψ around the glycosidic bond. According 

to the heavy atom convention (x+1), Φ= O5-C1-O-Cx and Ψ= C1-O-Cx-Cx+1 for a (1x) linkage 

                                                        

1 CFG is an abbreviation for the Consortium for Functional Glycomics. 
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[inset: top panel]. Alternatively, reference to the hydrogen atoms involved in the glycosidic 

linkage as per the light atom convention, can be used Φ
H
 = H1-C1-O1-Cx and Ψ

H
 = C1-O1-Cx-Hx, 

for a (1x) linkage. For a (16) linkage another torsion angle is required and denoted by ω, 

referring to O5-C5-C6-O6. The sign of the torsion angle is given in accordance with the IUPAC 

nomenclature [8]. 

 

Figure 6.2 The distinct conformations reported in BiOligo after a complete conformational 

sampling of the lacto-N-fucopentaose V structure. 

 

Figure 6.3 A schema showing the various search modes accessible to the user and results 

displayed for a query made to the BiOligo database. 

 

Figure 6.4 An illustration of the simple search (Top) and advanced search (Bottom) search 

options in BiOligo. 

 

Figure 6.5 An illustration of the results in BiOligo. (Top) Preview (Left) Molecule information 

(Right) Display and download. 

 

 

Chapter 7: Fucose-binding lectins 

 

Figure 7.a The gram-negative bacteria Pseudomonas aeruginosa [1]. 

 

Figure 7.b The gram-negative bacteria Burkholderia found in roots of plants [4]. 

 

 

Chapter 7 

 
Figure 7.1 Schematic representation of fucosylated trisaccharides and bacterial lectins used in the 

docking calculations (LecB, BambL and Bc2L-C-nt, from left to right). 

 

Figure 7.2 Selected data from the glycan array v4.1 experiment performed on three bacterial 

lectins. Only fluorescent results for biding to terminal fucosylated epitopes presented in 

monovalent manner on glycans have been selected. Blue bar: average value with standard 

deviation, red bar: maximum response observed. 

 

Figure 7.3 Docking of α-methyl fucoside in the binding site of BambL and LecB. The protein 

model is represented in red with docked ligand as sticks. The crystal structures of BambL/fucose 

(3ZW0) and LecB/fucose (1GZT) are represented in green with ligands as lines. 

 

Figure 7.4 Docking of six fucosylated oligosaccharides in the binding sites of BambL. The 

docking pose with best “glide-score” is represented in red for all oligosaccharides. For the blood 

group B trisaccharide, the second best orientation is represented in yellow. Comparison with 

crystal structures is performed with same oligosaccharide when available (H type 1: 3ZW1, H 

type 2: 3ZZV, blood group B tetrasaccharide: 3ZW2) or elsewhere with fucose (3ZW0), always 

represented as green line. 

 

Figure 7.5: Docking of six fucosylated oligosaccharides in the binding sites of LecB. The 

docking pose with best “glide-score” is represented in red for all oligosaccharides. Comparisons 



List of f igures: 
 

 

 

with Le
a
 trisaccharide and fucose monosaccharide are represented with green lines from 

corresponding crystal structures (1GZT and 1W8H). 

 

 

Figure 7.6 Attempts to correlate experimental data (ΔH and ΔG) obtained for the interaction of 

BambL with a series of oligosaccharides and the experimental data (Glide score and Glide 

energy) obtained from docking. 
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Chapter 1 

Table 1.1: Comparison of the possible structural isomers for nucleic acids, proteins and 

carbohydrates found in mammals. The numbers are calculated considering both the α and β 

configurations for the 10 most common mammalian monosaccharides of D-Glc [4], D-Gal [4], D-

Man [4], D-Neu5Ac [4], D-GlcNAc [3], D-GalNAc [3], L-Fuc [3], D-Xyl [3], D-GlcA [3] and L-

IdoA [3] and the various possible linkage positions. The number of substitutable hydroxyl groups 

is mentioned in square brackets. Commonly only the pyranose (and not the furanose) forms of 

these monosaccharides are found in mammals [2].  

 

Table 1.2: Core structures of eukaryotic glycans. 

 

Chapter 2 

Table 2.1: Glycan databases arranged according to the information content. The ones boxed in 

green incorporate glycan structure information, the one in blue include both structure and 3D 

structure information, while the one boxed in orange provides glycan 3D structure information. 

 

Table 2.2: Glycan databases arranged according to the focus of the database/tool and its 

respective glycan-encoding format. 

 

Chapter 3 

Table 3.1: High-throughput techniques for glyco-analysis: MS [5], HPLC [3], glycan array [6] 

and molecular modeling. 

 

Chapter 4 

 
Table 4.1. The classification of polysaccharide structures in PolySac3DB.  

 

Table 4.2. Workflow of the informatics tools used in PolySac3DB. 

 

 

Chapter 5 
 

Table 5.a.1 Averaged torsion angles for each of the conformational families identified in the 

conformational sampling of the two hexasaccharides, representing the tetrasaccharide biological 

repeating unit (with the monosaccharide linked to the reducing and non-reducing ends to account 

for the linkage effect) of the O-antigen PS from E. coli O5ac. The maximum and minimum 

torsion angle values considered for each conformational family are indicated in square brackets. 

(a) Associated to the ribofuranose ring in 
3
T2–

3
E (N) conformations. (b) associated to the 

ribofuranose ring in E2–
3
T2 (N) or 

 2
E–

4
T3 (S) conformations. The term “exo” denotes those 

conformations where the exo-anomeric effect prevails. 

 

Table 5.a.2 Cross relaxation rates and effective distances determined for the O-antigen 

polysaccharide from E. coli O5ac from 2D 
1
H,

1
H-NOESY experiments at 500 and 700 MHz. 

Calculated distances are reported for the different conformational families identified; the values 
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used to explain the experimental data are highlighted in bold. [a
 distance used as reference. 

b
 

Overlapping with D1/D3 and D1/D5. Cross relaxation rates were calculated subtracting the theoretical values 

obtained from the models. n.d. = not determined due to overlapping. n.o. = not observed or at the noise level. N = 

north conformation of Ribf. S = south conformation of Ribf.] 

 

Table 5.a.3 Averaged torsion angles obtained from conformational sampling of the two 

hexasaccharides representing the biological repeating unit of the O-antigen PS from E. coli O5ab. 

 

Table 5.a.4 Cross relaxation rates and effective distances determined for the O-antigen 

polysaccharide from E. coli O5ab from 1D 
1
H,

1
H-NOESY experiments at 700 MHz. Calculated 

distances are informed for the different conformational families identified; the values used to 

explain the experimental data are highlighted in bold. [
a
 distance used as reference.] 
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Table 6.1 The classification of 3D structures of glycan determinants in BiOligo. 

Table 6.2 The list of disaccharides included as part of the sub-database GlycoLego incorporated 

within BiOligo. 

 

 

Chapter 7 
 

Table 7.1 Glycosidic linkage conformations for all starting model of oligosaccharides. The 

torsion angles about a glycosidic 1x linkage are Φ / Ψ, with Φ = O5-C1-O1-Cx and Ψ = C1-O1-

Cx-Cx+1. 

 

Table 7.2 Docking results obtained for six fucosylated trisaccharides with BambL lectin. 

 

Table 7.3 Docking results obtained for six fucosylated trisaccharides with LecB lectin. 

 
Table 7.4 Titration microcalorimetry data for the interaction between BambL, LecB, BC2LC-nt 

and fucosylated ligands (all energies in kJ/mol). All data have been measured at least twice and 

standard deviations are below 15%. (a from ref [13], b from ref [15], c from ref [15]) 
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CHAPTER 1 

 

INTRODUCTION 
 

1.1 Carbohydrates 

 

Carbohydrates are the most abundantly occurring organic matter on earth, being present 

ubiquitously throughout the living world. Complex carbohydrates are built for high-

density biocoding at par with proteins and nucleic acids, if not more. An extended 

paradigm of molecular biology in which biological information flows from DNA to RNA 

to protein and the role of carbohydrates therein is described in Figure 1.1. 

Figure 1.1: Carbohydrates in the scheme of the molecular paradigm of the central dogma of life.  
(Inspired from the Essentials of Glycobiology [1]) 



2  Introduction 
 

 

 

Out of the major classes of biological macromolecules, carbohydrates differ from nucleic 

acids and proteins because they are  

a. Either linear or branched. 

b. Their constituting monosaccharides are connected through different types of 

glycosidic linkages (unlike proteins that have amide bonds and nucleic acids that 

have 3’-5’ phosphodiester bonds). Each monosaccharide can theoretically be 

present in an α or a β conformation and be linked to any one of several positions 

on another monosaccharide in a chain or to another type of molecule. 

This complexity allows carbohydrates to provide almost unlimited variations in their 

structures (Table 1.1). 

 

Table 1.1: Comparison of the possible structural isomers for nucleic acids, proteins and 

carbohydrates found in mammals. The numbers are calculated considering both the α and β 

configurations for the 10 most common mammalian monosaccharides of D-Glc [4], D-Gal [4], D-

Man [4], D-Neu5Ac [4], D-GlcNAc [3], D-GalNAc [3], L-Fuc [3], D-Xyl [3], D-GlcA [3] and L-

IdoA [3] and the various possible linkage positions. The number of substitutable hydroxyl groups 

is mentioned in square brackets. Commonly only the pyranose (and not the furanose) forms of 

these monosaccharides are found in mammals [2].  

 

Size Nucleotides Peptides Carbohydrates 

1 4 20 20 

2 16 400 1360 

3 64 8000 126,080 

4 256 160,000 13,495,040 

5 1024 3,200,000 1,569,745,920 

 

1.2 The third alphabet of life 

 

Carbohydrates form the third alphabet of life. The high-density coding capacity inherent 

in oligosaccharides is strongly influenced by its stereochemistry, established by 

variations in its [3]: 

 • Anomeric status 

 • Linkage positions 
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 • Ring size 

 • Branching 

 • Introduction of site specific substitutions 

 

An explosive amount of possible glycan structures can be theoretically present in 

biological systems. But a relatively small fraction of glycans out of this very large 

number of possible monosaccharide units is observed in naturally occurring biological 

macromolecules in a limited number of combinations [1]. 

 

1.3 Glycobiology to Glycomics 

 

The term glycobiology was introduced during the 1980s [4], when it became apparent 

that a knowledge of sugar decorations was becoming necessary to fully describe 

biomolecular functions. Glycobiology was thus born at the interface of biochemistry, 

carbohydrate chemistry and molecular biology with the aim of studying the biosynthesis, 

structure and biological functions of saccharides (sugar chains/glycans). Later, the 

conceptual term glycome was described in the literature to refer to the complete set of 

glycan structures synthesized by an organism, at par with proteome and genome [5]. And 

at the beginning of the 21st century the term glycomics has become common, in analogy 

to genomics and proteomics [6] and emphasizes the holistic view of the total glycan 

content and its functions in a given organism, cell or tissue.  

 

1.4 Glycosylation: a requirement of the cell 

 

There has been an observation in the scientific community that often altered protein 

profiles of cells and tissues is a result of an alteration in protein expression rather than 

modified gene expression. This has been shifting the focus of rigorous research from the 

genetic code more towards post-translational modifications (PTMs). PTMs in proteins 

increase manifold the functional diversity of the proteome by modifying the translated 

protein encoded in the genetic information content. PTMs have a marked influence on all 

aspects of biological functions and pathogenesis. It is gradually becoming clear in 
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biology that given the surprisingly limited number of genes in the entire mammalian 

genome, including humans, than what was expected before the completion of the human 

genome project, PTMs regulating protein function in the phenotype of cells have a much 

greater role than previously acknowledged. Glycosylation is the most extensive and 

complex form of the protein PTMs providing for the functional diversity to generate 

multiple phenotypes from a limited genome. The central dogma of cellular biology can be 

interpreted to its extended paradigm as shown in Figure 1.1. Thus, the study of glycans is 

critical to the fundamental understanding of cell biology as well as for disease treatment 

and prevention. 

 

Glycans, like all other components of living cells are constantly recycled. They are 

assembled and attached by the action of glycosyltransferases. The degradation phase is 

mediated by very specific enzymes that cleave the sugars either at the non-reducing / 

terminal end or internally at the reducing end (called exoglycosidases and 

endoglycosidases, respectively) occurring at the lysosome. These monosaccharide units 

are then exported from the lysosome to the cytosol for re-use [1].  

 

The variety of information transmission and reception that glycans provide to the genetic 

code that is translated as proteins, though nothing short of a boon for the cell in equipping 

it with various possibilities for adapting to changing environments, has been the 

bottleneck for studying sugars. The solution of this scientific mystery is necessary to fully 

elucidate nature’s way of biocoding in extremely efficient and compact tools and 

subsequently usher in a new era of biological understanding and progress. 

 

Glycosylation is highly sensitive to alterations in cellular function, and abnormal 

glycosylation is indicative and used as a diagnostic technique in diseases like cancer. 

Through glycosylation, different cells can be labeled with the same recognition markers 

without having to code it into the genome. Glycosylation patterns differ among 

glycoconjugates of different species (driven by evolutionary selection pressures) as well 

as between different cell types of the same organism. Site-specific protein glycosylation 
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suggests that the 3D structure of the protein has an important role to play in fixing the 

extent and type of its own glycosylation.  

 

It has been found that the actual geometry in which the oligosaccharide presents itself to 

the receptor is important to trigger a biological response [7]. If the same sugar occurring 

on multiple proteins does not present itself in the correct geometry to the receptor, the 

receptor cannot distinguish between the ‘self’ and ‘foreign’ sugars. 

 

Table 1.2: Core structures of eukaryotic glycans. 
 

Index Eukaryotic glycan 

core structures 

Classification CFG Representation of a 

typical example 

1 N-glycans ER1 N-glycans are preassembled and 
attached en bloc to the amine group of 
asparagine residues 

 

2 O-glycans Glycans bound via the -OH groups of a 
serine or threonine constitute the cores of 
the different O-glycans, α-GalNAc attached 
O-glycans are also called ‘mucin-type’  

3 C-glycans Mannose is bound to the tryptophan via C2 
of the indole ring in C-glycans 

 

4 GAGs The core structure is attached to the -OH 
groups of a serine but not threonine  

5 GPI-anchors GPI anchor- glycans are preassembled on 
phosphoinositol and then transferred en bloc 
involving a trans-amidation reaction that 
results in the cleavage of a signal peptide 

 

6 Glycolipids The glycan moiety of eukaryotic 
glycosphingolipids is attached to ceramide 
(Cer) 

 

7 Cytoplasmic / 
Nuclear glycans 

These are complex glycoconjugates in the 
nucleoplasmic and cytoplasmic 
compartments of the cell like cytosolic N-
linked glycans, O-linked glycans and sialic-
acid-containing glycans on nucleoporins. A 
few examples are glycogenin, O-linked 
GlcNAc, O-linked mannose, O-linked 
fucose and nuclear GAGs 

 

 

                                                        
1 ER refers to Endoplasmic Reticulum 
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The majority of the cell surface and secreted proteins are glycosylated, with glycans 

being attached via a covalent bond between their reducing end to either a nitrogen atom 

(from an asparagine) or an oxygen atom (belonging to a serine or threonine). The 

important core glycan structures found in eukaryotes have been illustrated in Table 1.2. 

 

Strikingly, on measurement, it is observed that the distance between contiguous oxygen 

atoms (O1 and O4) of a carbohydrate residue is ~5.4 Å and that of the ends of the first 

three residues of an N-linked glycan (α-D-Manp-1,3-β-D-Manp-1,4-β-D-GlcpNAc-1,4-β-

D-GlcpNAc) is 16 Å from head to tail. Considering the dynamic motions of the glycans, 

these relatively small oligosaccharides seem to shield large areas of the protein surface 

keeping in mind that an N-linked sugar typically would have at least two or more arms 

each comprising three or four monosaccharide units [7]. Moreover, combining the 

flexibility of the glycan-protein linkage (and its associated small motions) with the rigid 

glycan core would provide an amplification of the motion of the terminal arms of the 

glycan that would enable it to span an even larger surface, which could greatly affect the 

accessibility of the glycoprotein for intermolecular interactions (Table 1.2). The 

knowledge of the 3D structures of these glycoproteins shall correctly quantify such 

properties and the time evolution of the same, besides shedding light on properties like 

hydration, hydrophobicity and hydrophilicity. Also, over the same time span, the glycan 

shows greater dynamic fluctuations than the protein which is highlighted by nuclear 

magnetic resonance (NMR), thus requiring molecular dynamics (MD) to fulfill the 

frequent insufficiencies in the data that would add up to a complete conformational 

analysis. 

 

1.5 Bacteria: The love-hate relationship 

 

Bacteria are small, sleek and self-contained organisms, probably the most successful ones 

on earth, that are found everywhere, be it in hot springs or freezing water or our gut. They 

seem to have explored and mastered every possible way to sustain themselves on this 

planet. 
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Figure 1.2: The gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa and 

Burkholderia) studied in this thesis. Figure references [8-10]. 

 

They can be non-pathogenic or pathogenic in nature. Bacteria can be classified as gram-

positive and gram-negative2. The majority (almost 90-95%) of gram-negative bacteria 

known currently are pathogenic. This thesis includes the application of molecular 

modeling techniques to study complex glycan structures in three such gram-negative 

bacteria that cause diseases in humans, diary herds and plants, namely- Escherichia coli 

(E. coli), Pseudomonas aeruginosa and Burkholderia ambifaria (Figure 1.2). 

  

                                                        

2 Gram-positive and gram-negative refer to how bacteria react to gram staining. If it takes the initial stain, 
it will be purple and be considered gram-positive. If it does not take the initial stain, it will be pink and 
gram-negative. The difference is the outer casing of the bacteria. Gram-positive bacteria will have a thick 
layer of peptidoglycan (a sugar-protein shell) that the stain can penetrate. Gram-negative bacteria have an 
outer membrane covering a thin layer of peptidoglycan on the outside. The outer membrane prevents the 
initial stain from penetrating. 
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CHAPTER 2 

 

GLYCAN DATABASES & ENCODING 

 

About 70% of the protein in sequence repositories have potential N-glycosylation sites 

(recognized by the occurrence of the Asn-Xxx-Ser/Thr sequon
1
) [1, 2]. According to a 

rough estimate, more than half of all proteins in the human body are associated with 

glycans. A large number of carbohydrate sequences have been determined through 

extensive work in areas of chemical and enzymatic degradation of biomass or bacterial 

fermentation of glycan structures and their analysis using mass spectroscopy (MS) and 

nuclear magnetic resonance (NMR). The primary impetus behind the growth of 

glycoinformatics has been the construction of large-scale repositories to store, organize 

and disseminate the data that was rapidly being generated through experiments and 

theoretical calculations in relation to glycan sequence and structure. Additionally, various 

algorithms and tools have been developed that could query (search) these repositories, 

interlink them and be useful in further calculations and analyses of the existing data. 

 

2.1 Glycan databases 

 

The complex carbohydrate sequences determined till the year 1997 (~23,000 unique 

structures and 50,000 entries) were stored in the pioneering glycan database called 

Complex Carbohydrate Structure Database (CCSD) [3] developed at the Complex 

Carbohydrate Research Center, University of Georgia. This was created, edited and made 

searchable using the CarbBank search tool [4] and was the first such attempt to build 

such a large-scale common database, which would be available for free public use. CCSD 

comprised published structures of oligosaccharides and glycoconjugates that had three or 

more glycosyl residues, though excluding mono- and disaccharides as well as synthetic 

intermediates (as these were already commercially available from the Chemical Abstracts 

Service at the time). This project was discontinued in the mid-1990s but as the data was 

                                                        

1 The N-glycosylation sequon is a sequence motif as mentioned above where Xxx can be any amino acid 
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made available publicly, it became the foundation for other glycan structure
2
 databases 

that followed. 

 

Though there have been major advances in the sequence determination of glycans, the 3D 

structures of complex glycans lagged behind considerably, due to their inherent 

complexities and variability
3
. This could become a bottleneck in identifying the functions 

of glycans in the many biological roles that they are involved in which are directly related 

to their 3D structures and surface properties.  

 

In modern day science, databases have become an integral part of any research project 

design and development. Glycobiology has such repositories that store and disseminate 

data to the scientific community catering mostly to the area of carbohydrate chemistry. 

To categorize these databases and other useful tools according to the focus of the data 

contained in each database, we can classify them according to the Tables 2.1 and 2.2. 

 

2.2 Encoding of glycan structures 

 

One of the main requirements for databases is to store information in an organized way 

that facilitates its computational processing. Two approaches can be followed to encode a 

carbohydrate molecule: 

a. Connecting atom sets through chemical bonds 

This approach, commonly followed in chemoinformatics and chemical file 

formats like InChi [18] and SMILES [19] have been developed to aid storing of 

molecule information in chemical databases like PubChem [20] or ChEBI [21]. 

IUPAC (extended), InChi and SMILES encoding are computed from the chemical 

drawing (ring structure) and thus, auto-generation of these encodings is possible. 

Yet, there are severe limitations that do not make this kind of encoding the 

favored choice. 

                                                        

2 Structure, in glycobiology, indicates the branched representation of a glycan sequence, unless 3D is explicitly 

mentioned. In some places the term ‘sequence’ has been used to maintain coherence. 
3 Stereochemistry (the arrangement of the constituent atoms in space that are connected within the molecule) is 

the key to the structural characterization of glycans, and the source of their structural complexities and 

variability. 
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Table 2.1: Glycan databases arranged according to the information content. The ones boxed in 

green incorporate glycan structure information, the one in blue include both structure and 3D 

structure information, while the one boxed in orange provides glycan 3D structure information. 
 

Database Description URL Present 

Status 

CCSD [3] 
(Also called 

CarbBank [4]) 

The Complex Carbohydrate Structure Database was an effort 

to link literature data to carbohydrate sequences. It was 

discontinued but has been succeeded (& extended) by 

SugaBase and SweetDB. It has also been incorporated into 

other databases such as KEGG. 

- Discontinued 

in 1997 

SugaBase [5] SugaBase is a database that combines structure data from the 

CCSD with NMR data. SweetDB succeeds it. 

http://boc.chem.uu.nl/sugabase/d

atabases.html  

Development 

was stopped in 

1998, but 

entries can 

still be 

searched 

BCSDB [6] Bacterial Carbohydrate Structure Database provides 

structural, bibliographic, taxonomic and other related 

information on bacterial carbohydrate structures. Sourced 

from CCSD. 

http://csdb.glycoscience.ru/bacte

rial/  

Maintained 

KEGG Glycan 

[7] 

The KEGG GLYCAN structure database is a collection of 

experimentally determined glycan structures. It contains all 

unique structures taken from CarbBank, structures entered 

from recent publications & structures present in KEGG
4
 

pathways. 

http://www.genome.jp/kegg/glyc

an/  

Maintained 

GlycoSuiteDB 

[8, 9] 

The GlycoSuite database is an annotated & curated relational 

database of glycan structures and is a product of Tyrian 

Diagnostics Ltd (formerly Proteome Systems Ltd). Currently, 

the database contains most published O-linked glycans & N-

linked glycans in the literature from the years 1990-2005. For 

each structure, information is available concerning the glycan 

type, linkage & anomeric configuration, mass and 

composition. Detailed information is provided on native and 

recombinant sources, including tissue and/or cell type, cell 

line, strain and disease state. Where known, the proteins to 

which the glycan structures are attached are described, and 

cross-references to Swiss-Prot/TrEMBL are provided if 

applicable. The database annotations include literature 

references, which are linked to PubMed. Detailed information 

on the methods used to determine each glycan structure is 

noted to assess the quality of the structural assignment. 

http://glycosuitedb.expasy.org/gl

ycosuite/glycodb  

Re-launched 

GlycoBase 

(Dublin) [10] 

GlycoBase is an HPLC resource that contains elution 

positions (expressed as glucose unit values) for more than 375 

2AB-labeled N-linked glycan structures by a combination of 

NP-HPLC with exo-glycosidase sequencing and mass 

spectrometry (MALDI-MS, ESI-MS, ESI-MS/MS, LC-MS, 

LC-ESI-MS/MS) 

http://glycobase.nibrt.ie/glycoba

se/show_nibrt.action  

Maintained 

GlycoBase 

(Lille) [11] 

This is a compilation of glycan sequences in various animal 

species that have been validated using mass spectrometry and 

NMR. This allows searching of glycan sequences that have 

found to be typical for each species. Both NMR files & 

annotated NMR spectra can be downloaded in .jpg format. 

http://glycobase.univ-

lille1.fr/base/  

Maintained 

CFG
5
-Glycan 

Database [12] 

Consortium for Functional Glycomics Glycan Database offers 

detailed structural and chemical information for thousands of 

synthetic glycans as well as glycans isolated from biological 

sources. Each glycan structure in the database is linked to 

relevant entries in CFG and external databases (including 

primary data and information about binding proteins, where 

available). Links are also provided to a 3D modeling feature, 

references, and other information. The starting data in the 

http://www.functionalglycomics.

org/glycomics/molecule/jsp/carb

ohydrate/carbMoleculeHome.jsp  

Maintained 

                                                        
4
 KEGG  Kyoto Encyclopedia of Genes and Genomes 

5
 CFG  Consortium for Functional Glycomics 
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CFG portal was established using the commercial 

GlycoMinds to which new structures are added based on 

experimental evidence. 

GlycomeDB [13] GlycomeDB through its cross-linking and inter-conversion of 

the carbohydrate sequences of all freely available glycan 

databases (CFG, KEGG, GLYCOSCIENCES.de, BCSDB & 

CCSD) to GlycoCT provides an overview of all carbohydrate 

structures in the different databases and crosslinks common 

structures in the different databases. One can search for a 

particular structure in the meta database and get information 

about the occurrence of this structure in the five carbohydrate 

structure databases. 

http://www.glycome-db.org/  Maintained 

JCGGDB [14] Japan Consortium for Glycobiology and Glycotechnology 

DataBase is a portal that integrates all glycan-related data in 

Japan (glycoprotein, glycolipid, glycosaminoglycans, 

polysaccharides, etc.) set-up in Japan. The data is sourced 

from large-quantity synthesis of glycogenes and glycans, 

analysis and detection of glycan structure and glycoprotein, 

glycan-related differentiation markers, glycan functions, 

glycan-related diseases and transgenic and knockout animals, 

etc. 

http://jcggdb.jp/search/search.cgi  Maintained 

ECODAB [15] Escherichia coli O-antigen Database contains structures of the 

repeating units that comprise the O-antigen. 

http://www.casper.organ.su.se/E

CODAB/  

Maintained 

EUROCarbDB 

[16] 

EUROCarbDB is a relational database containing glycan 

structures, their biological context and, when available, 

primary and interpreted analytical data from high-

performance liquid chromatography, mass spectrometry and 

nuclear magnetic resonance experiments. The database is 

complemented by a suite of glycoinformatics tools, 

specifically designed to assist the elucidation and submission 

of glycan structure and experimental data when used in 

conjunction with contemporary carbohydrate research 

workflows. 

http://www.ebi.ac.uk/eurocarb/h

ome.action, 

http://www.eurocarbdb.org/data

bases  

Maintained 

Glycoconjugate 

DB 

This database comprises carbohydrate and glyco-conjugate 

data linked to "chemical" compounds. It consists of structural, 

spectroscopic (NMR, MS), synthesis pathway data etc. The 

database doubles up as a compounds’ "library". 

http://akashia.sci.hokudai.ac.jp/  Maintained 

GlycoEpitope  This database provides information on polyclonal or 

monoclonal antibodies (that have been used as tools for 

analyzing expression of various carbohydrate chains and their 

functions), carbohydrate antigens, i.e. glyco-epitopes. 

http://www.glyco.is.ritsumei.ac.j

p/epitope/  

Maintained 

Glycosciences.de 

[17] 

The first glycomics web-portal comprising glyco-related 

databases and tools in the Molecular Modeling Group of Willi 

von der Lieth at the German Cancer Research Center (DKFZ) 

in Heidelberg, Germany. The program SWEET & its 

successor SWEET-II were the first web-based molecular 

builders for carbohydrate 3D structures. In the late 1990s the 

SweetDB project started generating data based upon, the then 

discontinued CCSD, & to link 3D carbohydrate structures 

modeled with Sweet-II to the corresponding entries, linking 

them to SugaBase NMR data and others from the literature. 

Carbohydrates in PDB were also analyzed & incorporated. 

Several tools were made available to access or analyze this 

data. 

http://www.glycosciences.de  Reinstated 

Glyco3D A site for the 3D structures of glycans and related proteins 

(lectins, glycosyltransferases and GAG-binding proteins, etc.). 

http://glyco3d.cermav.cnrs.fr/gly

co3d/  

Maintained 

 

 

b. Connecting building blocks (monosaccharides) through glycosidic linkages 

Like nucleic acids and proteins, it is far more efficient to encode carbohydrates 

using a residue-based approach [22]. However, as compared to nucleic acids or 

proteins, there are a far greater number of building blocks (monosaccharides), 
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arising due to the frequent modifications occurring on the parent 

monosaccharides. Also, since carbohydrates are frequently found to have 

branched structures, most of them are tree-like molecules, unlike nucleic acids 

and proteins. The pre-requisite for a residue-based encoding format is a controlled 

vocabulary of its residue names. For practical reasons, it makes sense to restrict 

the number of residues to as low a number as possible. Yet, the lack of clear rules 

to subscribe atoms of a molecule to one particular monosaccharide and not to a 

substituent, pose the main hurdle in encoding monosaccharide names. As 

explained in an excellent review [22], let us consider examples of Glc, GlcN, 

GlcNAc, GalNAc and GlcOAc, all  of which can be called monosaccharides from 

a biologist’s or chemist’s point of view, except GlcOAc where the 

monosaccharide is glucose that carries an ‘acetyl’ substituent. However, 

considering these as separate monosaccharides would create a major 

computational complexity. On the other hand, if we think from the encoding point 

of view, all these examples can be related to the monosaccharides Glc and Gal, 

with N, NAc and OAc being their respective substituents. Even for bacteria, 

where the number of monosaccharides is more than 100 [23], this schema is 

reasonable sized and relatively much easier to maintain. 

 

Due to the development of glycan databases approximately at about the same time in 

various geographical locations on the globe, but essentially independent of each other, 

several formats for representing glycan structures have been developed. The major 

formats for representing glycans that have been used to construct major glycan databases 

are described in Table 2.2. 

 

The variety in nomenclature and structural representation of glycans makes it complex to 

decide the best form of illustrating the approach of the scientific investigation. The choice 

of notation is frequently based on whether the study is focused on the chemistry or has a 

more biological approach. Moreover, the information content of each representation may 

vary or highlight a particular aspect as compared to others. For example, while 

representing a complex glycan structure, chemists prefer to elucidate the structure that 
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includes information about the anomeric carbon, the chirality of the glycan, the  

Table 2.2: Glycan databases arranged according to the focus of the database/ tool and its 

respective glycan-encoding format. 

 

  Database Encoding URL 

Integrated 

databases 

  

  

  

  

  

GlycomeDB GlycoCT [24] http://www.glycome-db.org/ 

EUROCarbDB GlycoCT [24] http://www.ebi.ac.uk/eurocarb/, 

http://www.eurocarbdb.org/databases 

CFG Glycominds Linear 

Code  [25] 

http://functionalglycomics.org/  

GlycoSuiteDB IUPAC condensed [8] http://glycosuitedb.expasy.org/glycosuite/glycodb  

GLYCOSCIENCES.de LINUCS [26] http://www.glycosciences.de/index.php  

JCGGDB CabosML [27] http://jcggdb.jp  

Glyco3D Motif-based http://glyco3d.cermav.cnrs.fr/glyco3d/index.php  

Tools for 

building 

glycans and 

GPI site 

prediction  

Sweet II [28, 29] N/A http://www.glycosciences.de/modeling/sweet2/doc/index.php  

Glycam [30] N/A http://glycam.ccrc.uga.edu/ccrc/pages/3dspt.html  

SHAPE [31] N/A http://sourceforge.net/projects/shapega/  

Polys [32] N/A - 

GPI site prediction [33] 

 

N/A http://mendel.imp.ac.at/gpi/gpi_server.html  

Glycan 

biosynthetic 

and 

catabolic 

pathways 

(species 

specific) 

  

KEGG-Glycan KCF [34] http://www.genome.jp/kegg/glycan  

CazyDB [35] N/A http://www.cazy.org  

LectinDB [36] N/A http://proline.physics.iisc.ernet.in/lectindb/  

CancerLectinDB [37] N/A http://proline.physics.iisc.ernet.in/cancerdb/  

Dougal [38] LINUCS http://www.cryst.bbk.ac.uk/DOUGAL/  

BCSDB BCSDB linear code http://csdb.glycoscience.ru/bacterial/ 

GGDB CabosML [27] http://riodb.ibase.aist.go.jp/rcmg/ggdb  

Structural 

glycan 

characterizat

-ion 

  

  

  

GlycoBase 

(Dublin/NIBRT) 

Motif based http://glycobase.nibrt.ie/glycobase.html  

Glycobase (Lille) Linkage path http://glycobase.univ-lille1.fr/base 

CCSD (CarbBank) IUPAC extended [18] http://boc.chem.uu.nl/sugabase/carbbank.html  

GMDB [39] 

(Glycan Mass Spectra 

Database) 

 http://riodb.ibase.aist.go.jp/rcmg/glycodb/Ms_ResultSearch  

 

 

monosaccharides present and the glycosidic linkages that connect them. For others, it is 

more interesting to visualize the monosaccharides present and hence a 

symbolic/diagrammatic notation is favored. The most popular and distinct ways of 

encoding glycans are: 

a. The symbolic/diagrammatic notation (e.g. Oxford and CFG notations) 

b. Linear notations (e.g. IUPAC) 

The structural encodings of glycans dealt with during the course of this thesis have been 

illustrated in Figure 2.1. 
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Figure 2.1: The different levels of glycan encodings (not involving 3D coordinates) handled 

during this thesis. The example used to illustrate the variety of the notations in this figure is 

Blood group A Lewis B antigen. 

 

It is evident from the tables above that the focus of glycoinformatics is still on glycan 

structure (i.e. the glycan composition and topology and not the 3D aspect). But the data 

generated by the high-throughput techniques of mass spectroscopy (MS), high-pressure 

liquid chromatography (HPLC) and glycan array technology needs to be translated to a 

structural understanding for channelizing this information towards the rational structure-

based drug development and vaccine design.  
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CHAPTER 3 

 

MOLECULAR MODELING: A high-throughput technique in glycobiology 

 

3.1 High-throughput techniques in glycobiology 

 

In glycobiology, the current important areas of research include establishing relationships 

between glycan structures and their functions (functional glycomics), monitoring 

glycosylation in diseased states, disease diagnosis and prognosis and elucidating 

molecular mechanisms underlying pathogenesis. Towards this goal there is a critical need 

for new and precise methodologies to be developed that are robust and sensitive at the 

same time. The field of glycobiology, which is at the frontiers of biomolecular research, 

is affected by far greater complexities as compared to proteomics or genomics as already 

discussed in the previous chapters. 

 

Glycan biosynthesis is not template-driven and hence is highly sensitive and responsive 

to the changing cellular environment. Since glycoconjugates are rather low in abundance 

(frequently in the femto-molar scale) existing analytical methods need to be adapted to 

match their occurrence. Improvement in the sensitivity of the existing methods and 

development of such newer technologies for the investigation of glycans, is a challenge 

beyond which lies the unraveling of the glycome. Since, no universal technique is still 

recognized for the rapid and reliable detection, identification and characterization of 

glycan structures, more possibilities still need to be explored. 

 

Glycan structural diversity and complexity stems from an elaborate and energetically 

expensive glycosylation process in the cell, executed by numerous sequential and 

competitive steps in an assembly-line-like system. The intricate work of glyco-enzymes 

(glycosyltransferases and glycosylhydrolases) gives rise to cell-specific glycan 

expression patterns, which again, are subjected to notable modifications due to changing 
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cellular conditions like aging or disease [1, 2]. Three different routes can be taken for 

glycosylation analysis 

a. Characterization of glycans present in intact glycoproteins 

b. Characterization of glycopeptides 

c. Structural analysis of chemically and enzymatically released glycans. 

All the above routes provide complementary information and it is important to ascertain  

a. Which level of information is the focus of the investigation? 

b. Whether the investigation is expected to yield qualitative or quantitative answers? 

c. How much of the starting material is available for carrying out the experiments? 

 

High-throughput technology development in glycomics that rationally probes glycan 

sequence to 3D structure requires heavy bioinformatics support. Glycoinformatics has 

been crucial in rationally organizing data, building retrieval systems, the analyses and 

automation of the experimentally generated bulk data in glycobiology.  

 

For glycan composition and interaction studies, the already existing technologies in 

genomics and proteomics have been modified to suit the special requirements of glycans. 

A brief over-view of the status of these high-throughput techniques is provided in Table 

3.1.  

 

In addition to insightful information about the functional properties of glycans and their 

biological roles, knowledge about glycan structure and composition can provide 

explanations to observed discrepancies in protein molecular weight, charge or 

chromatographic retention for values predicted from polypeptide sequences [3]. 

Glycoprotein properties are strongly influenced by the overall glycan size, shape and 

charge. Thus, a modification in glycan structure, in say a culture medium, in a 

recombinant glycoprotein production system can lead to solubility problems during 

purification and storage, and in a glycoprotein with enzymatic activity (e.g. tissue 

plasminogen activator) can show modified (enhanced to decreased) activity [4]. 
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Table 3.1: High-throughput techniques for glyco-analysis: MS [5], HPLC [3], glycan array [6] 

and molecular modeling. 

Focus Technique Schematic 

representation 

Present status 

Glycan 

Composition 

- Mass Spectrometry (MS) 

 

 

 

 

 

- High Pressure Liquid 

Chromatography (HPLC) 

 

 

Rapidly developing 

 

 

 

 

 

Rapidly developing 

Glycan Interaction - Glycan array 

 

Rapidly developing 

Glycan 3D 

Structure 

construction 

Molecular Modeling 

 

Developing 

 

Orthogonal (chemically distinct) functions of protein glycosylation depend on the overall 

size, shape and charge of the glycans that are attached. The 3D structure is crucial for 

receptor-glycan interactions (as with all interactions). To accurately describe/map the 3D 

structure of glycans, molecular modeling plays a prominent part alongside experimental 

techniques. Due to the inherent flexibility of glycan structures, because of glycosidic 

linkages (whose degree varies from one linkage to another), established protein structure 

determination methods like X-ray crystallography and NMR need molecular modeling to 

aid in fully describing the structure and the conformational space sampled by the various 

stable conformations in solution. As glycans have two naturally active nuclei (13C and 
1H), NMR is a key technique that is often indispensible in the determination of unusual or 

previously undescribed glycans, such as those present in bacterial glycoconjugates [3]. 

Yet, NMR requires highly purified glycans in large amounts (typically >1mg), though the 

introduction of the cryoprobe has increased the sensitivity in NMR analysis. Inspite of 

NMR databases and software now being available, data analysis still remains quite 

specialized. No single technology can provide the answers for all information required to 

solve a 3D structure of a glycan, as this needs a multi-dimensional approach.  
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Since experimental carbohydrate 3D structure determination often is time-consuming, 

expensive and sometimes unsuccessful, the computational approach of conformation 

prediction is a viable option for pre-screening, or even replacing, experiments, altogether, 

when the experimental determination of 3D structure fails and/or is dependent upon the 

upgradation of existing techniques or instrumentation. The added advantage of 

computational approaches is that access to compounds is not required. We propose that 

molecular modeling can prove to be a key high-throughput technique in procuring atomic 

coordinates for studying 3D structure of glycans. 

 

3.2 Technique and rationale of glycan 3D structure construction 

Carbohydrates are well suited for computational conformation prediction. Of the ~20 

atoms present in the pyranose unit bound within an oligosaccharide chain, 80% are 

rigidly-linked together: six locked in the pyranose ring and further ten which are rigidly 

attached to the five ring carbons. This considerably reduces the motion of the ring 

structure. The torsion angles, Φ and Ψ of the glycosidic linkage are the most significant 

for the relative orientations of the glycan units.  

 

The basic assumption used in the modeling of oligo- and polysaccharides is based upon 

the observation that the structures are made up of alternating fairly rigid components (the 

pyranose rings) having dimensions in the order of 5 Å, which are linked by flexible 

glycosidic linkages. As a result there are no strong interactions between non-adjacent 

sugar residues. From such an assumption, the structure of an oligosaccharide can be 

constructed from disaccharide nuclei by the sequential addition of one residue at a time. 

Each added residue is fixed in the lowest energy location. The first computer softwares to 

be used in the area based upon these approximations were the Hard Sphere Exo-

Anomeric (HSEA) program [7, 8] and the Potential Function for Oligosaccharides 

(PFOS) [9]. The advantage of the rigid-residue approach was that it is extremely fast. 

More recent tools based on these approximations are SWEET-II [10] (a web-based 

glycan builder) and POLYS [11]. Whereas this fast method of construction has been used 

successfully, it is only robust if there are no interactions between non-adjacent residues, 

and does not allow for a thorough conformational exploration of the conformational 
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space. The requirement for carrying out an exhaustive search led to the development of 

more complex computational protocols, allowing all significant degrees of freedom 

(glycosidic torsion angles, primary and secondary hydroxyl groups) to be varied over the 

full angular range by increments. The complete sampling of the conformational space can 

be depicted on two-dimensional maps, called ‘adiabatic (energy) maps’. While offering 

some guarantees to find global and local energy minima, this method suffers from its 

exponential complexity and has been limited to the investigation essentially of 

disaccharides. 

 

The knowledge of the occurrence of the low energy conformers for a series of 

disaccharide residues offers the possibility to assemble in a very efficient way much more 

complex structures. The program POLYS [11] uses this method to generate 3D structures 

of large polysaccharides and glycan structures from a library of pre-optimized structures 

of monosaccharides and population statistics of disaccharide segments. Obviously, there 

are cases where long-range interactions occur and the generated structures are not valid 

and have to be discarded. Nevertheless, the computational process being efficient, the 

overall procedure can be continued and the structures presenting steric hindrances can be 

discarded. 

 

More elaborate prediction methods have been developed and applied to the exploration of 

the hyper-dimensional conformational space of complex oligosaccharides.  Among these, 

molecular dynamics (MD) simulations have been shown to be a suitable first to 

characterize the low energy regions of disaccharide molecule [12] along with the 

conformational pathways corresponding to some transitions from one energy minimum to 

another one. When applied to larger oligosaccharides, the “natural transition” between 

low energy conformations, while crossing high-energy barriers, becomes a real issue. 

Increase in computation time may become impractical, without offering any guarantee to 

explore all areas of the conformational space.  In order to cope with such drawbacks, 

several MD simulations are run in parallel, for a given molecule, starting from different 

random selected conformations. Another way is to perform simulation at “high 
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temperature” in order to allow the molecule to undergo conformational transitions by 

lowering the height of the energy barriers.  

 

The heuristic approach aims at identifying the geographical occurrence of the low energy 

conformations by progressing along the low energy valleys of the energy hypersurface. 

The CICADA algorithm [13] has been developed and applied to the characterization of 

fairly complex oligosaccharides. It must be recognized that such a guided search method, 

which is fast, does not guarantee to find the global minimum conformation. Nevertheless, 

the quality of the results compared to those obtained by an exhaustive search has been 

established. CICADA has been shown to successfully predict the 3D structure of large 

oligosaccharides, while requiring an acceptable computational time [14]. 

  

The stochastic search offers a compromise between computational efficiency and quality 

of the exploration of the conformational hyperspace. Among them, the Monte Carlo 

(MC) method has been shown to be both efficient and robust for exploring the 

conformational space of oligosaccharides [15, 16]. The protocol requires starting 

randomly with a conformation with known energy, which is submitted to a random 

alteration and further energy evaluation. The energy difference between the old and the 

new conformation is evaluated. Based upon a probability function operating from the 

energy difference, the new conformation is rejected or accepted; in the later case, 

replacing the previous conformation. The efficiency of the MC method depends on 

parameters such as the scheme used for the random generation of the structure and the 

acceptance criterion. As with the molecular mechanics calculations, MC searches can be 

run in parallel to increase the chance of exploring satisfactorily the conformational 

hyperspace. 

 

3.3 Carbohydrate force fields 

For the successful modeling of glycans, the choice of the correct force field is crucial, for 

which the parameterization used for the involved glycans should be the deciding factor. 

An extensive review of carbohydrate-related molecular force-fields has been published 

recently [17]. Molecular mechanics potential functions that specifically cater to the 



Chapter 3  25 
 

 

special characteristics of carbohydrates, and those, which are widely used, are briefly 

mentioned below, along with the most recent bibliographic reference: 

a. MM2, MM2CARB and MM3 [9, 18, 19]: are generic molecular force fields, 

developed in solid and gas phase simulation states. MM3 is the most widely used 

molecular force field, applicable to a wide range of molecular classes. These force 

fields are known to have reproduced experimental data from X-ray 

crystallography, gas phase structures, besides others. 

b.  GROMOS [20]: was first developed for MD simulations of proteins, nucleotides 

or sugars in aqueous or apolar solutions, or in crystalline form. It considers the 

exo-anomeric effect for pyranoses in its parameterization. 

c. CHARMM [21]: has been designed for molecular modeling using both molecular 

mechanics and MD calculations. 

d. AMBER [22]: initially developed for simulating proteins and nucleic acids, it was 

modified for carbohydrates. 

e. GLYCAM [23]: was developed based on AMBER, with a parameter set specially 

focused towards the MD simulations of glycoproteins and oligosaccharides. 

f. OPLS-AA [24]: has incorporated parameters to accommodate carbohydrates 

simulated in gas phase and explicit solvated simulations. 

g. TRIPOS_PIM [25]: parameters were incorporated into a generalized molecular 

mechanics force field in solid and gas phase and validated on X-ray 

crystallographic data.  

 

Figure 3.1: Classical force fields categorized according to their use in carbohydrate chemistry 

based upon their application class (see colours) indicating that biological relevance dominated 

trends in this area, according to a survey with data upto April 2010. Figure as published in [17]. 
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During the course of this thesis, SYBYL X 1.3 [26] has been used extensively for the 

modeling of disaccharide and monosaccharide units, employing the pim_2010 parameters 

for atom types and partial charges incorporated in the TRIPOS force field [25].  

 

3.3.1 Shape 

The Shape software [27] has been developed for glycan conformation prediction using a 

genetic algorithm (GA). It is a powerful tool for automated modeling. Glycans upto a few 

hundred atoms in size can be investigated using the standard computer hardware on a 

desktop or laptop. It has been tested on ~300 oligosaccharide structures and has also been 

found to confirm well to the previously predicted glycan structures. Shape primarily 

searches the rotational torsion angles of the compound. Ring structures are detected and 

high-energy ring conformations are ignored as they impart high energies on the 

conformers, which are generally not seen in nature. 

 

Shape uses a genetic algorithm for searching the conformational space of the glycans. 

The MM3 force field [28-30] is used for the energy evaluation in Shape. MM3 is 

considered to perform well for probing glycan structure and hence is the force field of 

choice working in the background of this program. Shape can be conceptually divided in 

separate sections 

a. Input of molecular data and control parameters 

b. GA search combined with the energy-evaluation back-end 

c. Clustering of the results from the conformation analysis 

 

3.3.2 Genetic algorithm (GA) and energy evaluation 

Genetic algorithms are inspired from molecular evolution; especially the concept of 

‘survival of the fittest’ is used to reach an ensemble of conformations that have the lowest 

energies. Several parallel populations compete for survival based on their conformational 

energies. The conformations with the lowest energies are considered to be the ‘fittest’ and 

survive to pass on their traits to the next generation of conformations. Inheriting the traits 

of the parents and the further application of genetic operators of mutation and crossover 

produces the new generation (as illustrated in Figure 3.2).  
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Figure 3.2: An illustration of the basic concept of a genetic algorithm search. 
 
The GA implementation in Shape is a generational parallel population Lamarkian GA, 

supporting mutation, crossover and migration. Genes are represented using real value 

direct encoding of torsion angles. All genes are arbitrarily arranged on a single linear 

chromosome. Each conformation of a molecule is called an individual. Each individual 

has a genome describing the torsion angles of that individual. Several individuals 

constitute a population, within which the individuals compete for survival based upon the 

calculated conformational energy known as fitness. A low energy conformation 

corresponds to a high fitness score. Each step in Shape can be best described as below: 

a. Initialization: One or several populations are initialized with a number of 

individuals each having a random genome composition, corresponding to random 

conformations. 

b. Energy evaluation: Every individual in each population is evaluated by 

minimizing their structure with the MM3 force field in the back-end, and both the 

final geometry and energy are stored. The minimized geometries are encoded to 

torsion angles and saved (updated) in the genome of each individual. The fitness 
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score of each individual is calculated based upon its conformational energy, in 

comparison to all other individuals of that population. 

c. Pro-creation: All populations then propagate their next generation with the 

application of various genetic operators (based upon the input). These operators 

that act in the evolution are: 

i. Mutation: randomly changing one or more torsion angles (genes), in the 

individual conformation. Mutation is parameterized either by frequency or 

probability. Two versions of mutation operators are available: one of 

totally random mutation, or another that sets a torsion angle to a random 

value, or an additive mutation, wherein the torsion angle is modified by a 

random amount. 

ii. Crossover: creation of a new individual by combining the genomes of two 

or more parents. Crossover is supported through inheritance from two or 

more individuals with the probabilities of multiple parents. The weight of 

inheritance between parents is determined by the search parameters. 

Different scoring and selection methods are available for selecting parents 

for the next generation of individuals. To employ a ranking based scoring 

model and a roulette wheel based selection model is the most successful 

method. 

iii. Migration: one or more individual(s) move from one population (with 

specified sizes) to another. In general, one large population is more 

efficient than several smaller ones. This observation is true especially for 

small compounds, which is consistent with published results [31]. 

d. Termination: The conformational search terminates in Shape when no significant 

improvement in the best individuals has been found for a (specified) long time.  

Lamarkian evolution is supported in Shape, wherein the minimized geometry of each 

surviving (fit) individual is inherited by its offspring. This method significantly speeds up 

the convergence rate (as compared to the standard GA approach). However, for larger 

molecules having a more complex energy hyper-surface, it can be difficult to find a 

global minimum with only one population. In this case, the standard parameters provided 

work reasonably well. 
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GA is a heuristic method that does not guarantee reaching a global minimum, but when 

correctly parameterized it has a high probability of finding all the important low energy 

conformations with relatively limited computation time. For a pentasaccharide, the 

computation time is approximately 6 hours, on a laptop with a 2GB RAM and 20 GB 

hard disk, while for a decasaccharide it is close to one day. A trade-off between speed 

and accuracy can be optimized depending upon the user’s priority. Computer clusters 

speed up the calculations even further and modeling of large glycan structures or a library 

of glycans can be performed with ease. 

 

3.3.3 Clustering 

The numerous conformations generated during the conformational sampling allow the 

trace-back of the evolution of the molecule being investigated. These conformations are 

sorted according to increasing energy. The first cluster is then seeded by the lowest 

energy conformation and grown by adding all such conformations that lie within the 

specified distance (RMSD) from the seed centroid conformation. The next cluster is 

similarly formed with the next lowest energy conformation that has not already been 

designated to a cluster and grown as mentioned before. This mode of clustering is fast, 

with an algorithmic complexity faster than O(c·n) (as mentioned in the Shape 

documentation), where c is the number of clusters and n is the number of conformations. 

This is found to be efficient in locating all low energy conformers for the test set used for 

Shape. The drawback that may appear for this simplified clustering technique is the 

appearance of small false positive cluster(s) due to the conformations lying just outside 

the specified cut-off distances from the previous centroids. But this is not a major 

problem as this can be detected in the filtering stage. 

 

Shape supports a few different combinations of distance measurements and weighting 

formulas. The primary distance measurement is the RMSD of atomic positions. In this 

case, different weights can be applied to the atoms, for instance,  

- All atoms can be assigned have equal weight.  

- Atoms below a certain mass can be discarded.  



30  Molecular modeling: A high‐throughput technique in glycobiology 
 

 

 

- Atoms can also be weighted based on their mass, either linearly or by the square 

root.  

The second distance measurement implemented is based on RMSD of the torsion angles, 

where the torsion angles can be weighted evenly, etc. The available measurement and 

weighting schemes allow for flexible distance measurements for the clustering result. 

 

3.3.4 Filtering 

The clustering groups the result of the conformational search into distinguishable families 

of low energy conformers. This is further filtered based upon φ/ψ maps generated by 

using MM3 that gives an indication of the low energy regions occupied by the 

conformations of the molecule being investigated. Out of the cluster centroids reported 

after Shape clustering, the ones that inhabit the low energy regions are selected and 

stored as the final results of the conformational sampling. 

 

3.4 High-throughput molecular modeling 

Thus, calculations that employ genetic algorithms (as in Shape) to describe the 

conformation of glycans can prove to be a valuable high-throughput mode to determine 

the 3D coordinates of the stable low-energy conformations that can be acquired, without 

the application of any constraints on the molecule. Other methods, such as high 

temperature MD simulations (usually performed at 700 to 1000 K) may be faster in terms 

of exploring the energy hypersurface, but it carries a risk of having ring inversions or 

getting stuck in a high-energy zone, from which it cannot exit.  

 

Shape, for instance, when used on a single desktop machine (with a dual core processor 

@ 2.9 GHz, 2.00 GB of memory [RAM1] and 160 GB hard disk space on a 32-bit 

operating system), can produce atomic coordinates representing the conformational 

sampling of a trisaccharide in about 6 to 8 hours, for the specific genetic algorithm 

parameters that were employed for the job. When deployed on a large-scale cluster (as in 

                                                        

1 RAM is an abbrevaiation for Read Only Memory. 
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our case, on the CECIC 2  cluster maintained by the Université de Grenoble) the 

calculation time evidently speeds up significantly. Since, experimental 3D structure 

determination of glycans is complicated due to the difficulty of obtaining enough sample 

amounts for biophysical characterization, problems in crystallizing sugars coupled with 

the inherent flexibility of the glycans, molecular modeling can serve as an active high-

throughput technique in speeding up the process of determining atomic coordinates of 

these special molecules. 
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Thesis aim and scope 
 

This thesis was carried out within the framework of the Marie Curie Initial Training 

Network (FP7) for the Euroglycoarrays consortium. The objective of the programme was 

to bring together an interdisciplinary team of scientists and technologists in Europe for 

the development and application of ‘glycan arrays’. Glycan arrays are carbohydrate 

microarrays displaying unnatural and natural complex carbohydrate structures, such as 

those found on cell surfaces and/or attached to proteins and lipids. Such glycan arrays are 

meant to identify the many interactions of carbohydrate binding proteins with specific 

carbohydrate sequences on a cell and organism-wide scale, and thus providing a 

fundamental understanding of these important biological recognition events.  

 

Our role in the Euroglycoarrays consortium was to provide an understanding of the three-

dimensional (3D) basis underlying the interactions of glycans, focussing on 

computational methods such as molecular modeling along with database development 

and management. A particular emphasis was given to the organization of the data into 

relational databases for retrieval and sustainability, as well as to make it open access, for 

the effective use and update by the scientific community. The challenges in the context of 

contemporaneous questions raised in glycosciences are presented in Chapters 1 to 3 of 

this thesis.  

 

A complete section of the thesis addresses issues pertaining to the 3D structures of 

polysaccharides in the solid state (as revealed by X-ray, neutron and electron diffraction 

studies) and in solution (as revealed by the joint use of high resolution NMR 

spectroscopy and molecular modeling). Chapter 4 focuses on the organization of 

polysaccharide atomic coordinates in one single database called PolySac3DB [1]. The 

search period covered by the investigation is about 50 years and yielded structural 

information of 157 polysaccharide entries, which have been organized into 18 categories. 

Structure related information includes the glycosidic linkages present in each entry, the 

unit cell and expanded 3D representations of the repeat unit, information about the unit 
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cell dimensions and space group, type of helix and most of the original diffraction 

diagrams, linked to the abstract of the publication, bibliographic references and the 

atomic coordinate files for visualisation and download. All this data has been organized 

in an annotated database accompanied by a user-friendly graphical user-interface, and can 

be accessed at http://polysac3db.cermav.fr.  

 

Chapter 5 is an example of the determination of 3D structures of a O-antigenic bacterial 

polysaccharides with the joint use of high resolution NMR spectroscopy and molecular 

mechanics / dynamics in search of a common epitope that could be found in 4 different 

strains of enteroaggregative pathogenic E. coli.  This is a collaborative endeavour with 

another member of the Initial Training Network (Göran Widmalm’s group, Stockholm 

University), where the isolation of the biological material and the NMR experiments 

were performed. As with many other polysaccharides, the solution behavior is 

characterized by the occurrence of several interconverting conformations, the occupancy 

of which can only be explained by the results provided by the molecular modeling 

calculations. The structural similarities and differences shed some light on the nature of a 

common epitope between the different strains. These new 3D structures of bacterial 

polysaccharides will be included in the PolySac3DB upon acceptance of the submitted 

manuscript for publication.  

  

The next section of the manuscript deals with the complex world of glycan determinants, 

which are recognized by glycan binding proteins. Chapter 6 addresses the question of 

applying high-throughput molecular modeling to the characterization of the low energy 

conformers of those molecules, which are grafted on glycan arrays and used to probe the 

occurrence of interactions between the proteins and the glycan. To this end about 250 

glycan determinants have been selected and submitted to a thorough exploration of their 

hyperdimensional space to determine their conformational preference. Such an endeavour 

is one of the first attempts to apply molecular modeling to such a large number of 

samples, ranging in size from trisaccharides to dodecasaccharides. This required the 

implementation of a widely applicable high accuracy molecular mechanics force field 

coupled to a genetic algorithm search (previously developed in the group) on a high-
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performance computing center. The 3D structures of these 250 determinants, 

accompanied by a total of 200 disaccharides and monosaccharides of interest, which 

represent more than 1300 conformers and 4000 data files, have been organized into a 

database called BiOligo (http://bioligo.cermav.cnrs.fr).  

 

While BiOligo [2] aims at offering 3D information to help in deciphering binding data 

from glycan arrays, it provides, among other structural information, realistic starting 

conformations that can be used in such instances as molecular dynamics calculations, or 

docking oligosaccharides in glycan binding proteins. This opens the route to in silico 

screening of protein-carbohydrate interactions, provided that automated docking is 

capable of structurally characterizing these interactions. Chapter 7 is an attempt to 

evaluate such a level of feasibility, in conjunction, at present, with data coming from 

glycan arrays and isothermal calorimetry. To this end a collaborative study was 

conducted on soluble lectins from opportunistic bacteria binding to human fucosylated 

epitopes on mucins.  Critical evaluations of the results compared to those derived from 

the experimentally available high-resolution crystal structures of the complexes, delineate 

the present level of applicability, while suggesting some future directions for 

improvements.  

 

The conclusions and perspectives for future works are encapsulated in a review chapter 

that covers the application of molecular modeling at large, to the field of protein-

carbohydrate interactions. It is recognized that the presently available computational tools 

are considered as useful as the other methods of structural investigation. They can 

actually help in reconciling the experimental results gathered from separate experiments 

in different conditions and environments and in extrapolating the results. The wealth of 

successful applications to many different protein interactions with carbohydrates is a 

testimony for the maturity of the molecular modeling methods and protocols that have 

been developed. Nevertheless, these success cases are almost exclusively dealing with 

instances where proteins interact with carbohydrates, without any further catalytic 

actions.  
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A further conclusion emphasizes the urgent need of a more organized access to glycan 

related data and pleads for the establishment of an open-access global portal to connect 

glycosciences with the other branches of life sciences.  

 

 

 

Links to the databases developed: 

 

1. PolySac3DB: A database of polysaccharide 3D structures 

[http://www.cermav.cnrs.fr/polysac3db/web/home] 

2. BiOligo: A 3D structural database of bioactive oligosaccharides  

[http://bioligo.cermav.cnrs.fr] 
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CHAPTER 4 

PolySac3DB: An Annotated Data Base of 3 Dimensional Structures of Polysaccharides 

1
 

Abstract 

Background: Polysaccharides are ubiquitously present in the living world. Their structural 

versatility make them important and interesting components in numerous biological and 

technological processes ranging from structural stabilization to a variety of immunologically 

important molecular recognition events. The knowledge of polysaccharide three-dimensional 

(3D) structure at the molecular level is important in studying carbohydrate-mediated host-

pathogen interactions, interactions with other bio-macromolecules, drug design and vaccine 

development as well as material science applications. 

Description: PolySac3DB is an annotated database that currently contains the 3D structural 

information of 157 polysaccharide entries that have been collected from an extensive 

screening of scientific literature.  They have been systematically organized using standard 

names in the field of carbohydrate research into 18 categories representing polysaccharide 

families. Structure-related information includes the saccharides making up the repeat unit(s) 

and their glycosidic linkages, the expanded 3D representation of the repeat unit, unit cell 

dimensions and space group, helix type, diffraction diagram(s) (when applicable), 

experimental and/or simulation methods used for structure description, link to the abstract of 

the publication, bibliographic reference and the atomic coordinate files for visualization and 

download. The database is accompanied by a user-friendly graphical user interface (GUI). It 

features interactive displays of polysaccharide structures and customized search options for 

both beginners and experts. The site also serves as an information portal for polysaccharide 

structure determination techniques. The web-interface also references external links where 

other carbohydrate-related resources are available. 
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Conclusion: PolySac3DB is established to maintain information on the detailed 3D structures 

of polysaccharides. All the data and features are available via the web-interface utilizing the 

search engine and can be accessed at http://polysac3db.cermav.cnrs.fr. 

Keywords: polysaccharides, carbohydrates, three-dimensional (3D) database, graphical user 

interface (GUI), atomic coordinates, information portal. 

Background 

Carbohydrates are an essential class of biological molecules. They are ubiquitous in the living 

world, occurring mostly as polysaccharides and oligosaccharides, frequently in the form of 

conjugates with other bio-molecules like proteins (glycoproteins) or lipids (glycolipids). In 

comparison to the more vastly studied nucleic acids and proteins, carbohydrates have an 

information carrying capacity of a much higher degree by virtue of the presence of a 

multiplicity of chiral centers, combinations of various glycosidic linkages and a large number 

of functional group modifications that might include acetylation, methylation, oxidation and 

sulfation, creating an even greater diversity out of the already numerous possible building 

blocks (monosaccharides) [1]. Polysaccharides (or carbohydrate polymers) are 

macromolecules made up of repeating monosaccharide units linked by glycosidic bonds.  

They are essential cellular constituents and their roles extend far beyond being mere energy 

stores (e.g. starch and glycogen) and structural support agents (e.g. cellulose and chitin). They 

partake in regulating cell wall plasticity (e.g. pectins, alginates and carrageenans), cell 

signaling, governing solution properties of some physiological fluids and participating in the 

structural build-up of the extra-cellular matrix (e.g. glycosaminoglycans), eliciting immune 

responses, cancer progression and as an anti-coagulating agent for the prevention of blood 

clots (e.g. heparin).  Polysaccharides are frequently found on the cell surface of single-celled 

or multicellular organisms [2] and in the extra-cellular matrix of eukaryotes [3] and are 

involved in host-pathogen recognition events. 

Polysaccharides range in structure from linear to highly-branched. They are often quite 

heterogeneous, containing slight modifications of their repeating units.  This high degree of 

complexity and inherent micro-heterogeneity of polysaccharide structures make them very 

difficult macromolecules to handle and explore experimentally. Their structure determines 

their properties and consequently their function(s). To understand the molecular basis of the 

native arrangements of polysaccharides and relating their properties and functions to their 

structures, the different levels of their structural organization must be determined. As with 
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other macromolecules, the elucidation of the primary structure (implying the sequence of 

monomeric units with the respective glycosidic linkages) is a pre-requisite. Depending on 

their primary structures and biosynthesis, polysaccharides may have single or multiple chains 

in characteristic helical forms that define their secondary structure. Energetically favored 

interactions between chains of well-defined secondary structures result in ordered 

organizations, referred to as tertiary structures. A higher level of organization involving 

further associations between these well-structured entities results in quaternary structures. 

Diffraction techniques (X-rays, neutrons and electrons) are used for structure determination of 

bio-macromolecules. Nuclear magnetic resonance (NMR) is used in assessing 3D structures 

of polysaccharides either in solution or in solid state. Molecular modeling has also become an 

essential component, not only as a complementary technique to be used in the elucidation of 

3D crystalline structures, but also as a powerful tool in the study of the packing of 

polysaccharides, which can be used to build models, study chain-chain interactions [4] and 

calculate energies. These molecular modeling techniques can be used to construct structures 

starting from the content of the crystallographic unit cell to much larger macromolecular 

assemblies offering a unique possibility to visualize morphological features which are in 

many cases, the relevant level of structural organization with respect to functions or properties 

of carbohydrate polymers. 

3D structures provide information that is indispensable in many respects of molecular 

interaction studies.   The unification of the resources on carbohydrate polymers and their easy 

and free availability is necessary. Bioinformatics has played a role in unifying the resources 

and information available in genetics and proteomics. Similarly, glycoinformatics has a 

crucial role to play in the field of carbohydrates. Although a large amount of 3D information 

regarding the structure of polysaccharides has accumulated over time, the effort to collect, 

curate and disseminate this data electronically and freely to the scientific community has been 

feeble when compared to similar initiatives in the fields of proteomics or genomics. The 

Protein Data Bank (PDB [5]) contains few polysaccharide entries, though some coordinates 

are available, and the Cambridge Structural Database [6] is not open source. The only similar 

contribution, with respect to polysaccharides, has been in the form of a book chapter, wherein 

all the atomic coordinates of polysaccharide structures established by X-ray fiber diffraction 

have been reported and categorized [7]. A similar effort has been made for celluloses and 

cellulose derivatives in a book devoted to the structures of this important polysaccharide [8]. 
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Here we report the construction of an annotated polysaccharide 3D structural database called 

PolySac3DB, which provides details of experimental and modeled structures of 

polysaccharides. 

Construction and content 

Construction 

PolySac3DB is a web-based, platform-independent, manually curated database of 

polysaccharide 3D structures. It currently runs on an Apache web server [9] hosted at the 

Centre de Recherches sur les Macromolécules Végétales (CERMAV) with the application 

program Hypertext Preprocessor (PHP) [10]. It has been developed based on a combination of 

three layers. The underlying layer is the MySQL database system [11], a relational database 

management system [MySQL 5.1.41 (Community Server) with PBXT engine 1.0.09-rc] that 

stores all the structural information along with the respective publications in the back-end and 

provides the facility to link two or more tables in the database. The intermediate layer is an 

Apache-PHP application [Apache 2.x; PHP 5.3.1] that receives the query from the user and 

connects to the database to fetch data to the upper layer, which comprises populated HTML 

and PHP pages, to the web browser client. The PHP and Java scripts are embedded in the 

HTML web pages to this effect and are used as application programs for integrating the back-

end (MySQL database) to the web pages (HTML). Apache is used as the web server for 

building the interface between the web browser and the application programs. HTML and 

PHP have been used to build the web interface. 

Content 

Data sources –screening, conversion and information extraction 

In order to collect structural information about the constituent members of the various 

polysaccharide families, an extensive screening of literature was performed. This yielded 87 

publications that supplied records of the atomic coordinates of polysaccharide (unit) structures 

established using various structure determination techniques as well as molecular modeling, 

predominantly containing diffraction data. Enough information could be extracted from these 

publications to fit the minimum information criteria set for this database and thereafter a total 

of 157 polysaccharide structures were incorporated into PolySac3DB. The classification of 

the polysaccharide structures into families is presented in Table 1 (The detailed table can be 

found in Annex II: Supplementary Material for PolySac3DB).  
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 Table 4.1. The classification of polysaccharide structures in PolySac3DB. 

Index Polysaccharide Family 

1 Agaroses 

2 Alginates 

3 Amyloses & Starch 

4 Bacterial Polysaccharides 

5 Carrageenans  

6 Celluloses 

7 Chitins and chitosans 

8 Cudlans 

9 GAGs 

10 Galactoglucans  

11 Galactomannans 

12 Glucomannans  

13 Mannans 

14 Pectins 

15 Scleroglucans 

16 Xylans 

17 Nigerans 

18 Others 

 

The information was manually extracted and curated before incorporation into the repository. 

The publications provided atomic coordinates within the asymmetric unit of the cell content 

available as fractional, Cartesian or cylindrical polar coordinates. The available data was 

converted to either fractional or Cartesian coordinates to generate the atomic coordinate files 

in standardized representations of PDB (Protein Data Bank) [5] or Mol2 (SYBYL) [12] 

formats. The files were generated using an in-house PHP script called PDBGenerator, 

developed for the construction of this database, which can convert fractional and 

cylindrical/polar coordinates to PDB format. Besides, SYBYL, PyMol, Mercury and Polys 

were also used to generate helical/expanded forms of the unit cell structures [12-15]. The 

aforementioned formats were chosen to provide a broad readability by various visualization 

programs as well as to expedite comparisons of glycan with nucleic acid and protein structure 

as well as computer simulation of their interactions. Application of the symmetry operators of 
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the space groups was done to generate the atomic content of the unit cell and extend them to 

larger structures. Where symmetry operator information was unavailable, models were 

generated (wherever possible) to offer a representation of the expanded forms assumed by the 

polysaccharides. The 3D structures of the repeat units and the packing structures were split 

into two separate tables on the relational database, respectively. The workflow is described in 

Table 4.2. 

Table 4.2. Workflow of the informatics tools used in PolySac3DB. 

Concept Implementation 

Raw or primary data Atomic coordinates from experiments 

  

Digitization of data Text files  

  

Computational conversion to structure files PDB/ENT, Mol2, Mol (Using molecular modeling 

tools, e.g. SYBYL, PDBGenerator) 

  

Conversion to helical/expanded structures PDB/ENT, Mol2, Mol (Using molecular modeling 

tools, e.g. SYBYL, Polys, PyMol etc.) 

  

Relational database Constructed using XAMPP comprising of the Apache 

web server PHP, MySQL 

  

Web interface HTML & PHP pages 

 

The extracted data also included information about carbohydrate composition, glycosidic 

linkages as well as space group, unit cell dimensions (a, b, c, α, β and γ), the type of helix 

(that the polysaccharide chains form), which is made available via the ‘Expert Mode’.  The 

experimental methods used in structure determination of the respective polysaccharide, the 

link to the abstract and the reference to the publication cited were also extracted. Particular 

attention was given to the recording of the available diffraction patterns, which are indeed the 

original experimental data from which the 3D structures were established. In the present 

version of PolySac3DB more than 120 diffractograms have been collected; they form a 

unique collection of information that have been generated over almost half a century of 

structural research in the area of carbohydrate polymers. 
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Data storage 

Efficiency of data storage and management are the hallmarks of a fully functional database. 

At present the database comprises four tables stored within the relational database working in 

the back-end of PolySac3DB developed using MySQL which provides the facility of 

linking/relating two or more tables in a database. The important tables within the database are 

‘strucdata’, ‘images’, ‘polysac3dview’ and ‘polysac3d-dwnld’ that incorporate information 

regarding the experimental or modeled structures and other information extracted from the 

publications, the diffraction data and the figure legends, and the atomic coordinates of the 3D 

structures for viewing and download, respectively. The tables are linked via a unique key to 

maintain non-redundancy in PolySac3DB. Subsequent tables can easily be added and 

logically connected to the existing relational database to accommodate more data about the 

polysaccharide structures that would be deemed relevant in the future. 

 

Utility and Discussion 

PolySac3DB search: Navigation and retrieval 

The links to access various utilities and the search engine are provided on the left panel of the 

website via which the data content of the repository can be browsed and retrieved by the user. 

The ‘User Guide’ describes each search parameter and its output with detailed examples. 

A ‘Discover Mode’ is available that provides background information about the entry/family 

(mainly regarding occurrence, biosynthesis, property and function). The two-dimensional 

representations of the polysaccharide repeating unit have been constructed and made available 

through the ‘Discover Mode’ in PolySac3DB to aid users to find a familiar representation of 

the glycan. Information about the nature of the helical structure and all other information can 

be retrieved upon querying through the ‘Expert Mode’. 

Data access 

Data retrieval and usability are the front-runners in terms of the goals set by the developers of 

an effective database. An interactive front-end was designed for PolySac3DB with HTML 

pages and server side scripts that extract data from the tables on the relational database for 

user-queries on ‘Search’ and display the retrieved information in a coherent manner. 

PolySac3DB is equipped with a user-friendly GUI for quick and easy access to the required 



  PolySac3DB: A 3D database of polysaccharide structures 
 

 

 

46 

 

data. The interface provides the user with options to search by ‘Name’ or ‘Family’ of the 

polysaccharide. This GUI was tested on different versions of four web browser clients 

(Google Chrome, Mozilla Firefox, Safari and Internet Explorer) with which it performed 

efficiently. The ‘User Guide’ gives a detailed description of the content and searchable 

options within the repository. The schematic overview is provided in Figure 4.1.  

 

Figure 4.1. Schematic overview of the PolySac3DB organization and content. 

 

PolySac3DB also provides an overview about the polysaccharide structure determination 

methods, acting as an information portal on how X-ray, neutron and electron diffraction as 
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well as molecular modeling are applied to polysaccharides. A list of references is provided on 

the site on a separate web page incorporating all the publications from which the atomic 

coordinates of the structures in the database have been derived, besides proper referencing on 

the individual ‘Expert’ pages. In an effort to assimilate other relevant resources for sugars, 

‘External Links’ are provided that empowers the user to explore more online glycoinformatics 

resources. 

PolySac3DB output 

The bulk of the structure information for the polysaccharide entries is made available via the 

‘Expert Mode’. 3D structures can be viewed over the website via the Jmol application [16]. 

Jmol is an interactive web browser applet, which is an open-source, cross-platform 3D Java 

visualizing tool for chemical and molecular structures that provides high-performance 3D 

rendering with standard available hardware. Downloading the atomic coordinates for further 

independent use is of course another option provided via the expert mode. The GUI has been 

designed to retrieve, interpret and display the related information about each entry stored in 

the back-end on four tables of the relational database and display it interactively to the user. 

Data collection was followed by data arrangement and fields were set up under which the data 

was categorized in the database. Since the majority of experimental structures in our dataset 

contained entries from crystallography, the data fields were defined upon these guidelines. 

Beyond the unit cell contents 

Besides providing essential structural information, the 3D crystallographic data on 

polysaccharides open the way to further insights into other strata of structural organization. 

The following describes some examples of such extensions.  In the case of celluloses, the 

availability of an accurate description of the crystalline structures of the two allomorphs 

cellulose Iα [17] and cellulose Iβ [18] has provided new insights into the crystalline 

morphology of the native celluloses. These models were used to generate different ordered 

atomic surfaces, and evaluate their occurrence along with their respective features. Full 

atomic models of the crystalline morphology and surfaces of a micro-fibril of cellulose made 

up of 36 cellulose chains could be conceptualized [19]. Such a model was built as a part of the 

present database as shown in Figure 4.2. 
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Figure 4.2. Cellulose chain conformation and morphology. (A) Crystalline conformations of the 

cellulose chain in the 1β allomorph showing the disordered orientation of hydroxylic hydrogen atoms. 

(B) Relative orientation of cellulose chains of native cellulose 1β. (C) Molecular model of the 

microfibril of cellulose projected along the fibril axis along with the indexing of the surfaces. (D) 

Computer representation of the crystalline morphology and surfaces of the microfibril of cellulose 

made up of 36 cellulose chains. 

 

In other instances, the structural characterization of the branching areas of polysaccharides is 

difficult to assess. The reason for this may be because these branches constitute only a small 

fraction of the total macromolecule, or since they are located in the amorphous regions, or in 
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less ordered regions such as between crystallites as in the case of starch. The use of advanced 

methods of macromolecular modeling has been essential for going from a single helix of 

amylose, to a unit cluster of amylopectin, by working through a series of building blocks, 

including single helices, double helices and branch points [20]. In the case of starch, full 

atomic models of a nano-crystal containing 300 double helical segments in full 

crystallographic register have been constructed as a part of the work on PolySac3DB. They 

explain the morphology of these macromolecular assemblies as revealed by transmission 

electron microscopy [21].  

 

Figure 4.3. Different levels of structural organization in starch. (A) Representation of the left-handed 

single chains that are parallel stranded in A-starch double helix. (B) and (C) Representations of the 

double helix of crystalline starch after modeling the branching point between the strands. (D) 

Computer representation of an ideal platelet nanocrystal showing (i) width of the platelet with the tilt 

angle of the double helical component, (ii) composition of the platelet and (iii) the enlarged view of 

the constituent repeating unit. 
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Figure 4.3 describes the different levels of structural organizations of starch as represented in 

the various structures present in PolySac3DB. Cases occur where the quality of the 

experimental data are far from being sufficient to establish a non-ambiguous model of the 3D 

arrangement. For example, extensive molecular modeling has provided insights about the way 

chain-pairing occurs, being mediated by Ca
2+

 interactions in alginates and pectins [22]. 

 

Conclusion 

The aim of the present work is to provide an organization of all polysaccharide atomic 

coordinates in one single database serving as a unifying repository and to categorize them in a 

logical fashion for the user to access the required data using pre-customized searching 

techniques. The search period covered by the present investigation is about 50 years, during 

which these structural models have been proposed in carbohydrate research. In view of the 

crucial role played by molecular modeling techniques, it was important to preserve, organize 

and distribute the macromolecular models developed. Their extensions to higher level of 

structures may expand our knowledge from the molecular to the microscopic level and help 

scrutinizing the several levels of structural organization of polysaccharides that underline their 

remarkable functions and properties. With the increasing number of third generation 

synchrotron X-ray sources, free electron lasers, new neutron spallation sources and upgrading 

of current large scale facilities worldwide as well as development of electron-microscopy 

instrumentation and techniques, one should anticipate an increase in micro, nano and single 

molecule diffraction data in all areas of science, most certainly including the glycosciences, 

databases such as PolySac3DB will become an increasingly important tool for the continued 

documentation, classification, access and dissemination of such data to the scientific 

community. 

At a time when more and more carbohydrates and especially polysaccharides are being called 

to the fore for their increased use in a plethora of areas as diversified as tissue engineering and 

repair, wound healing, drug delivery systems, biofuels, bio-degradable fibers and bio-

composites due to their generally non-toxic and biodegradable properties and being a 

renewable resource, PolySac3DB shall be an asset to the community for probing further into 

the behavior of this class of biological macromolecules. 
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Availability  

The database PolySac3DB is now available at http://polysac3db.cermav.cnrs.fr 
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INTRODUCTION TO O‐ANTIGENIC POLYSACCHARIDES 

 

Escherichia coli 

 

E. coli is the most studied cellular organism known to science and the best described 

system that played an important role in many of the seminal discoveries of biochemistry 

(since its discovery by Theodor Escherich in 1885) including the genetic code, glycolysis 

and the regulation of protein synthesis.  

 

A multi-layered, multi-functional cell wall surrounds the E. coli cell and insulates it from 

environmental dangers. The outer-most membrane is the cell’s first line of defense. Its 

outer face is primarily composed of lipopolysaccharides, which are long strings of 

polysaccharides with a little bundle of lipid attached at one end. The lipid anchors the 

molecule into the membrane while the polysaccharide chain extends into the surrounding 

liquid to form a sticky protective coat. The antibodies of our immune system use these 

lipopolysaccharides to recognize invading bacteria and mobilize our body’s defense 

mechanism to fight the infection (Figure 5)  

 

Many gram-negative bacteria contain structurally unique polysaccharides, i.e. capsular 

polysaccharides and lipopolysaccharide O-antigens that are often pathogen specific. 

These polysaccharides are the signature of the respective bacteria.  In view of conducting 

sero-epidemiological surveillance, vaccine trials and livestock immunity studies, the 

generation of several pathogen polysaccharide antigen arrays is being 

evaluated.  Conjugation strategies can be specifically applied on bacterial 

polysaccharides followed by immobilization on glass slides. There exist efficient and 

reproducible ways to prepare polysaccharide antigens either via total organic synthesis or 

via specific degradations of the native lipopolysaccharides to give chemically defined 

fragments with high antigenic activity and enable systematic evaluation antigenicity 

toward new diagnostic tools. Among the many open questions that remain to be evaluated 

to reach such a goal, the issue related to the characterization of the structural behavior of 

the polysaccharide in solution and the investigation of the binding conformations still  
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Figure 5: The interactions of Escherichia coli and O-antigenic polysaccharides on its surface. 

(A.) The E. coli cell (magnification: 10,000 X) showing the double-layered cell wall packing in 

all the soluble cellular components [1].  

(B.) A magnified (1,000,000 X) portion of the E. coli cell illustrating the proteins, nucleic acids, 

polysaccharides and lipid-membranes. The internal space of the cell is filled with water, glycans, 

nucleotides, amino acids, metal ions and many other small molecules [1].  

(C.) Schematic structure (CFG representation) of an enterobacterial lipopolysaccharide molecule 

[2].  The lipids are depicted by ribbons attached to GlcNAc in the lipid A part, attached to Kdo, 

heptoses in the inner core region, hexoses in the outer core region, and finally the O-antigenic 

components, most commonly hexoses.  
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 (D.) The immune system piercing the E. coli cell wall (magnification: 1,000,000 X). Our blood 

contains proteins that recognize and destroy invading pathogens. This illustration depicts a cross-

section through the bacterial cell (lower section of the figure in green, blue and purple) being 

attacked by the proteins in the blood serum (upper part of the figure in yellow and orange). Y-

shaped antibodies recognize and attach themselves to the cell surface setting off a cascade of 

actions that culminate in a membrane attack complex, shown here, piercing the cell wall of E. coli 

[1]. 

 

remains to be addressed.  These NMR experiments have to be used in conjunction with 

experimental observations such as immunological data, and in the future with the glycan 

array screening, combined with molecular modeling. Ultimately, the identification of the 

nature and the size of the epitope should guide the optimum preparation of the future 

pathogen glycan arrays.  

 

Chapters 5.a and 5.b are devoted to the structural elucidation of O-antigenic 

polysaccharides from enteroaggregative pathogenic Escherichia coli strains, with the aim 

to fully characterize their solution behavior and to identify the nature and the size of the 

epitopes reacting with monoclonal antibodies. 
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CHAPTER 5.a 

 

Three-dimensional structural elucidation of O-antigenic polysaccharides from 
enteroaggregative pathogenic Escherichia coli strains O5ac and O5ab. 
1 

Introduction 

The multi-layered cell wall of Escherichia coli forms the cell’s first line of defense, 

protecting and insulating it from the external environment. Lipopolysaccharides (LPS) 

(which are long strings of polysaccharides with a little bundle of lipids attached at one 

end) constitute an important part of the lipid bilayer in the bacterial cell wall. The 

lipid anchors the molecule into the membrane while the polysaccharide chains extend 

out into the surrounding liquid environment to form a sticky, protective coat. Immune 

systems of the hosts have antibodies that recognize the LPS of the bacteria and 

prevent infection.  

E. coli is a part of the human colonic flora. They are generally non-pathogenic 

although some strains are known to cause virulence causing a number of diseases in 

animals as well as human beings. Diarrheagenic E. coli strains are major pathogens 

associated with enteric disease in many parts of the world. Enteroaggregative 

pathogenic E. coli strains have been found to colonize intestinal mucosa, mainly of 

the colon, and the subsequent secretion of enterotoxins and cytotoxins [1]. Initially, 

this pathotype was considered to be an emerging agent of persistent infantile pediatric 

diarrhea, especially in developing countries [1-5]. But later it was detected to be 

virulent in adults and having a global distribution [6, 7].  

The O-antigenic polysaccharide present in the LPS of E. coli O5ac and O5ab are very 

similar to each other, with the difference being in one glycosidic linkage, i.e. the 
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substitution pattern of β-D-Quip3NAc that links two biological repeat units as shown 

in Figure 5.a.1. Thus, the O-antigenic polysaccharide of O5ac, in which β-D-

Quip3NAc is 2-substituted, and that of O5ab, where the same monosaccharide is 4-

substituted, are positional isomers. The shape and biological function of 

polysaccharides are closely related. An understanding of the conformational behavior 

of the bacterial surface polysaccharide in solution can clearly elucidate this 

relationship. In this study we focus on the O-antigenic cell surface polysaccharides of 

E. coli O5ac and O5ab to understand their immunochemical similarities. 

 
 

Figure 5.a.1. Structure of the biological repeating units of the O-antigen PS from a) E. coli 

O5ac and b) E. coli O5ab in CFG-notation (top), schematic chemical representation (middle) 
and standard nomenclature (bottom), respectively. 

 

Materials & Methods 

Nomenclature  

The position of two contiguous monosaccharides connected by a glycosidic linkage 

(excluding the 1 6 linkage) is described by the torsion angles Φ and Ψ. The Φ/Ψ 
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definitions used for the relaxed maps (as well their description in the results & 

discussion section) correspond to the heavy atom convention (as illustrated in Figure 

5.a.2), where, for a (1x) glycosidic linkage 

Molecular modeling: Φ  O5-C1-O1-Cx and Ψ  C1-O1-Cx-Cx+1.  

NMR: ΦH
 H1-C1-O1-Cx and ΨH  C1-O1-Cx-Hx. 

 

The different conformational families were clustered according to their characteristic 

Ψ
H torsion angles and denoted Ψ+, Ψ−, Ψcis and Ψtrans for torsion angles corresponding 

to gauche+, gauche−, cis and trans states, respectively. Analogously, the 

conformational families that have a torsion angle ΦH in the trans state are denoted 

Φ
trans. 

 

Figure 5.a.2. Illustrated example of the torsion angle conventions used in this study, 
described using the disaccharide β-D-Galp-1,3-α-D-GalpNAc. The Heavy Atom Convention 
is represented in the top panel, while the Light Atom Convention is illustrated in the bottom 

panel.  
 

Molecular modeling 

Most of the constituent monosaccharides were built from optimized base types found 

in Glyco3D [8]. β-D-Quip3NAc was built from the base type found in PDB (1MMY) 

and N-acetylated using an optimized NAc fragment from Glyco3D. The north and the 

south conformers of β-D-Ribf were extracted from two PDB structures (1QXB and 

3KSM, respectively).  
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Energy Calculations 

The geometry optimization of the starting disaccharides and oligosaccharides was 

performed using the Tripos force field [9], with the pim partial atomic charges [10], 

and an energy convergence criterion of 0.05 kcal/mol for a maximum of 1000 

iterations for monosaccharides and 10,000 iterations for oligosaccharides. The 

dielectric constant was set at 4.0. 

Relaxed Energy Maps of each Disaccharide present in the modeled oligosaccharide 

The four disaccharides each of O5ac and O5ab were subjected to high temperature 

molecular dynamics (MD) simulations to explore the accessible conformational space 

of carbohydrates [11]. The conformational free energy maps were derived from the 

population analysis of the MD using the Boltzmann equation [12]. MM3 

(implemented through the TINKER suite [13] was used to minimize the starting 

oligosaccharide structures of O5ac and O5ab, and to calculate the trajectories at 

1000K for 10 ns. The Conformational Analysis Tools (CAT) software was used for 

data processing and analysis [14]. 

Conformational analysis of the oligosaccharides 

The conformational space available to the oligosaccharides, constituting the biological 

repeat units of the O5ac and O5ab, have been characterized using the software called 

Shape [15]. 

Within Shape, MM3 [16, 17] and the block diagonal minimization method for 

geometry optimization was used with the default energy-convergence criterion 

(ΔE=0.00008*n kcal/mol every 5 iterations, where, n= number of atoms). MM3 

allows full relaxation of the glycosidic residues taking into account the exo-anomeric 

effect [17, 18] and this force field also allows optimization to a nearby transition state 

(with the full matrix Newton-Raphson method).  

Genetic algorithm 

The systematic exploration of the conformational search of the O-antigenic 

hexasaccharides (i.e. the biological tetrasaccharide repeat and the monosacchaide 

required to represent the glycosidic bond connecting two biological repeats at the 

reducing and non-reducing ends) of O5ac and O5ab were performed using Shape. The 
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genetic algorithm parameters for conformer generation were specified to a population 

size of 25 individuals to be included in every population throughout the search, while 

the total number of parallel populations to be used during the search was set to 20. 

Every generation produced by the genetic algorithm comprised   

Total number of individuals = population size* total number of populations 

The energy convergence criterion for the conformers generated was assigned a 

window size of 20 to search for improvements (i.e. the search was terminated when 

even after 20 generations no significant improvements in conformational energy was 

found), with a limit value (i.e. the highest energy difference in the entire window that 

is accepted as a significant improvement for the search to continue) of -0.5 kcal/mol. 

Clustering 

The large number of possible conformations generated during the complete 

conformational sampling had to be clustered in order to clearly demarcate the distinct 

families of low energy conformations that could be present. In this study, the 

conformations generated were clustered based upon the deviation of the conformation 

having the lowest energy as compared to the starting minimized structure (atom 

distances), ignoring hydrogen atoms and 1 Å tolerance for RMSD from the cluster 

centroid. 

Filtering 

The results after clustering were filtered based upon the energy. The lowest energy 

representative was selected from the distinct minima (as described by the adiabatic 

maps). 

 

NMR spectroscopy 

Preparation and purification of the O-antigen polysaccharides 

The O-antigenic polysaccharides (PS) from E. coli O5ac and O5ab were obtained as 

described previously [19]. Purification by size exclusion chromatography was carried 

out on a HiLoadTM 16/60 SuperdexTM 30 column (GE healthcare) using an ÅKTATM 

purifier system (GE healthcare).  
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Studies on the O-antigen PS from E. coli O5ac 

The O-antigen PS from E. coli O5ac (3.6 mg) was deuterium-exchanged by repeated 

cycles of dissolution of the sample in excess of 99.9% D2O followed by freeze-

drying. The sample was dissolved in 0.5 ml 99.9% D2O and treated with a Chelex® 

100 cation exchange resin (100-200 mesh, Na+ form, BioRad) for 1 hour in order to 

remove paramagnetic ions. The solution was filtered to a 5 mm NMR tube, freeze-

dried, and re-dissolved in 0.6 ml of 99.99 % D2O; sodium 3-trimethylsilyl-(2,2,3,3-
2H4)-propanoate (TSP) was added as internal reference (δH 0.00). Oxygen was 

removed by three freeze-pump-thaw cycles, and finally the NMR tube was flame-

sealed under vacuum. 1H chemical shifts assignments have been reported earlier [19]. 

Proton cross-relaxation rates were measured using a 2D 1H,1H-NOESY experiment 

with a zero-quantum suppression filter [20] on two different spectrometers: Bruker 

Avance III 700 MHz and Bruker Avance 500 MHz, both equipped with 5 mm TCI Z-

Gradient CryoProbes. The experiments were recorded at 42 °C over a spectral width 

of 5.0 ppm, with 14k × 256 or 10k × 260 data points (at 700 MHz and 500 MHz, 

respectively) using 6 – 16 scans per t1-increment and a total recycle time between 

scans of 16 s or 13 s (at 700 and 500 MHz, respectively) corresponding to 5 times the 

longer T1. Five different cross-relaxation delays (mixing times) of 30, 40, 50, 60 and 

80 ms were used. At 700 MHz a 40 kHz broad and 20 ms long adiabatic smoothed 

CHIRP [21] pulse was employed during the zero-quantum suppression, accompanied 

by a gradient pulse of strength 9% of the maximum (100 % ~ 53.0 G⋅cm−
1). At the 500 

MHz, on the other hand, a 27 kHz broad adiabatic [22, 23] smoothed CHIRP pulse 

was used instead, and the gradient pulse strength was set to 6% of the maximum (100 

% ~ 53.0 G⋅cm−
1). Prior to Fourier transformation forward linear prediction to 512 or 

520 (at 700 and 500 MHz, respectively) in the F1-dimension and zero-filling to 16k × 

2k points were performed; 90° shifted squared sine-bell window functions were used 

in both dimensions. A fifth-order polynomial baseline correction was applied in both 

dimensions and the peaks of interest integrated by using the same integration limits at 

all mixing times.  

The volume integral of each NOE buildup peak was divided by the volume integral of 

the respective autopeak to produce the normalized buildup intensities that were used 

to calculate the NOE buildup rates (σ) from the slope. At each magnetic field the 
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cross relaxation rates were averaged for each proton pair, and the unknown proton-

proton distances (rij) calculated using as reference the intra-residue distance between 

H1 and H2 of the α-D-GalpNAc residue (D) and the following equation: 

!!" = !!"#×
!!"#

!!"

!/!

 

Effective proton-proton distances from the models were calculated using the 

following equation:   

1

!!"#!

= !
!! !/! 

The final proton-proton distances were obtained by averaging the distances calculated 

at each magnetic field. The plots that were used to obtain the cross relaxation rates 

had a residual standard deviation of less than 16%. The experimental error in σ is 

estimated to be less than ± 26%, which corresponds to only ± 4% in the calculated 

proton-proton distances as a result of the rij
-6 dependence, which is in the order of ± 

0.1 Å. 

Studies on the O-antigen PS from E. coli O5ab 

The O-antigen PS from E. coli O5ab (6.4 mg) was deuterium-exchanged by using 

repeated cycles of dissolution of the sample in excess of 99.9% D2O followed by 

freeze-drying. The sample was then transferred to a 5 mm NMR tube, freeze-dried 

and re-dissolved in 0.6 ml of 99.99% D2O, using sodium 3-trimethylsilyl-(2,2,3,3-
2H4)-propanoate (TSP) as internal reference (δH 0.00). 1H chemical shifts assignments 

were reported earlier [24].  

Proton cross-relaxation rates were measured at 700 MHz using a selective 1D single-

pulse-field-gradient spin-echo (SPFGSE) NOESY experiment with a nulling 180° 

pulse [25] and a zero-quantum suppression filter [20]. The experiments were recorded 

at 27 °C over a spectral width of 7.5 ppm, with 21k data points and 256 scans per 

transient. A total recycle time between scans of 23 s corresponding to 8.3 times the 

longest T1 was employed. Eight different mixing times of 45, 50, 55, 60, 65, 70, 75 

and 80 ms were used. Selective excitation of the H1 proton of the α-D-GalpNAc 

residue (D) was achieved using a 40 Hz broad RSnob [26] shaped pulse of 80 ms, 
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flanked by pulse field gradients (sine.100) of 1 ms length, with the strength set to 15% 

of the maximum. The strength of the 1 ms length gradients flanking the 180° nulling 

pulse during the mixing time were set to 40% of the maximum. A 40 kHz broad and 

20 ms long adiabatic smoothed CHIRP pulse was employed during the zero-quantum 

suppression, accompanied by a gradient pulse of strength 8% of the maximum. Zero-

filling to 128k points and an exponential line broadening of 1 Hz were performed 

prior to Fourier transformation. A fifth-order polynomial baseline correction was 

applied and the peaks of interest integrated by using the same integration limits at all 

mixing times. 

In addition, a 2D 1H,1H-NOESY experiment with a zero-quantum suppression filter 

[20] and a mixing time of 80 ms was recorded over a spectral width of 7.5 ppm, with 

22k × 256 data points, using 6 scans per t1-increment and a total recycle time between 

scans of 14 s (corresponding to 5 times the longest T1).  A 40 kHz broad and 20 ms 

long adiabatic smoothed CHIRP pulse was employed during the zero-quantum 

suppression, accompanied by a gradient pulse of strength 8% of the maximum.  

The integrals of each NOE buildup peak were divided by the integral of the selective 

excited peak to produce the normalized buildup intensities that were used to calculate 

the NOE buildup rates (σ) from the slope. The intra-residue distance between H1 and 

H2 of the α-D-GalpNAc residue (D) was used as reference for distance calibration. 

The plots that were used to obtain the cross-relaxation rates had a residual standard 

deviation of less than 2%. 

 

 

Results & Discussions 

Molecular modeling of the oligosaccharides 

The repeat units of the O5ac and O5ab comprise the same constituent 

monosaccharides and  
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Figure 5.a.3. Relaxed adiabatic maps of the disaccharide components of the molecular model 
of O5ac and O5ab. The top panel illustrates the glycosidic linkages that are identical in the 

two E. coli samples, while the lower panel highlights the glycosidic linkages (GalpNAc-α12-
Quip3NAc in O5ac and GalpNAc-α14-Quip3NAc in O5ab) that are the distinguishing feature 

between them. 
 

glycosidic linkages with the exception being in the glycosidic linkage connecting two 

biological repeats in the two strains, i.e. Dα12A in O5ac and Dα14A in O5ab. To 

eliminate the linkage end effects, for each tetrasaccharide biological repeat unit of 

O5ac and O5ab, an α-D-GalpNAc was added to the non-reducing end and a β-D-

Quip3NAc at the reducing end. 

To build the 3D O-antigenic polysaccharide models, four glycosidic linkages were 

needed, namely, Aβ13B, Bβ14C, Cβ13D and Dα12A for O5ac and Aβ13B, Bβ14C, 

Cβ13D and Dα14A for O5ab, respectively. The conformational space sampled by the 

oligosaccharides was explored using a genetic algorithm as implemented in Shape 

[15]. Further, each of the constituent disaccharides were studied using high 

temperature MD (with TINKER using CAT scripts) by a systematic grid search 

approach using MM3 parameters. The conformational maps generated have been 
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shown in Figure 5.a.3. Each of the disaccharides can occupy multiple conformational 

states, thus indicating that they are potentially flexible molecules.  

 

O-antigen of E. coli O5ac 

The Φ angle of the disaccharides Quip3NAc-β13-Ribf (Aβ13B) and Ribf-β14-Galp 

(Bβ14C) linkages of O5ac are restricted around a value of 270˚. The Ψ angle for the 

Quip3NAc-β13-Ribf (Aβ13B) linkage is flexible and spans about 120˚ on the energy 

map. In the Ribf-β14-Galp (Bβ14C) linkage, the Ψ angle is more restricted, centered 

about 145˚, and covering only ~20˚ on this axis. In the Galp-β13-GalpNAc (Cβ13D) 

linkage, the value for Φ is centered at about 280˚ while the Ψ angle is more flexible, 

spanning ~80˚ on the energy map within an energy barrier of 7 kcal/mol. The Φ angle 

value of the GalpNAc-α12-Quip3NAc (Dα12A) of this oligosaccharide is much more 

flexible, covering approximately 40˚ on the energy hypersurface. The Ψ values are 

expanded between 180˚ to 230˚ for the global minimum and centered about 280˚ for a 

local minimum.  

In the disaccharide Quip3NAc-β13-Ribf (Aβ13B), we detect two populations 

corresponding to the energy minima, one population at Φ/Ψ ≈ 270°/180° and another 

at Φ/Ψ ≈ 280°/280°. The disaccharide Ribf-β14-Galp (Bβ14C) presents only one 

global minimum at Φ/Ψ ≈ 280°/140°. For the Galp-β13-GalpNAc (Cβ13D) 

disaccharide, a long stretch of energy minima is observed, that can accommodate the 

conformational families lying between the low energy plateau, having two prominent 

centers at Φ/Ψ ≈ 280°/120° and Φ/Ψ ≈ 270°/70°. A higher energy island at Φ/Ψ ≈ 

60˚/100˚ is also observed. Finally, for the disaccharide component GalpNAc-α12-

Quip3NAc (Dα12A), which carries the glycosidic linkage between two biological 

repeats of O5ac, a contiguous conformational pathway for the Φ values is followed 

during the conformational sampling, with two distinct minima at Φ/Ψ ≈ 80°/200°, 

corresponding to the global minimum, and Φ/Ψ ≈ 100°/270°, corresponding to the 

local minimum separated by an energy barrier of 3 kcal/mol. The comparison of these 

values with the NMR observations, have been recorded in Table 5.a.1. 
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O-antigen of E. coli O5ab 

The disaccharide Quip3NAc-β13-Ribf (Aβ13B) in O5ab has a long stretch of low 

energy minimum between two points, one centered at Φ/Ψ ≈ 280°/280° 

(corresponding to the south conformation) and Φ/Ψ ≈ 270˚/180˚ (corresponding to the 

north conformation), similar to that seen in O5ac. At Φ ≈ 270° there is a Ψ value 

coverage from 180° to 300°, extending over ~120° on the energy map. One other 

isolated low energy area is also detected, centered at Φ/Ψ ≈ 60°/240°. This energy 

space can be reached starting from the lowest energy minimum by a conformational 

pathway that is contiguous from 300° to 60° on the Φ axis, crossing the trans 

conformation at Φ=180°, but not through the cis conformation at Φ =0°. The 

conformation of the Φ/Ψ angles for Ribf-β14-Galp (Bβ14C) is highly restricted and 

centered at about Φ/Ψ ≈ 270°/140°. A comparatively higher energy region separates 

the global minimum from the isolated (high) energy patch centered at Φ/Ψ ≈ 

60°/140°. In Galp-β13-GalpNAc (Cβ13D), a contiguous pathway of conformational 

sampling can again be observed similar to O5ac, while moving from the Φ values of 

60° to 300°, following a similar pattern of approaching the isolated energy island 

through the trans conformation. Finally, the GalpNAc-α14-Quip3NAc (Dα14A) 

disaccharide, which is the sole difference between the positional isomers of O5ac and 

O5ab O-antigenic polysaccharides being studied, samples absolutely the same space 

as seen for Dα12A in O5ac, though the population is more evenly distributed in the 

two observed minima. The values of the Dα14A segment calculated using molecular 

modeling in comparison to NMR observations are have been mentioned in Table 

5.a.3. 

Combining the NMR and Modeling data 

Based on 20 low energy models obtained from the conformational search on each of 

two hexasaccharides representing the biological repeating unit of the O-antigen PS 

from E. coli O5ac (one with Ribf in north conformation and the other in south 

conformation in the starting structures) were analyzed and clustered according to the 

conformation of the Ribf ring and the torsion angles Φ and Ψ across the glycosidic 

linkage. The conformation of the ribofuranoside ring was analyzed in the 40 models 

using the method described by Cremer and Pople [27], and the conformers clustered 

in two different populations: a major (north) population, comprising conformations 
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between 3E-3T2 and 3T2-E2 and a minor (south) population comprising mainly 

conformations between 2T3-E3.  The results of this clustering are summarized in 

Figure 5.a.4. 

 

Figure 5.a.4. Conformation of the ribofuranose ring (residue B) as a function of the 
puckering parameters Q and φ [27]. The twenty O5ac structures of lower energy obtained 

from the north and the south starting models are denoted in red and blue, respectively. 
 

Analysis of the torsion angles Φ and Ψ across the glycosidic linkages reveals several 

conformational families, summarized in Table 5.a.1. The ΦH/ΨH definitions used for 

description of this data correspond to the light atom convention, where, ΦH = H1-C1-

O1-Cx and ΨH = C1-O1-Cx-Hx. Table 5.a.1 shows that in most of the cases the major 

conformational state is the one for which the exo-anomeric effect prevails (ΦH ~ 40° 

for β-D-sugars and ΦH ~ −40° for α-D-sugars), with the exception of the β-D-Galp-

(1→3)-α-D-GalpNAc linkage (Cβ13D) where the Φtrans conformational state (ΦH ~ 

180°) was also represented. In all the models where the exo-anomeric conformational 

state is present, all the ΨH glycosidic torsion angles lead to cis- and/or gauche-

conformations for which the anomeric proton and the proton on the glycosyloxylated 

carbon are in close spatial proximity. In the gauche-conformations of the β-D-

Quip3NAc-(1→3)-β-D-Ribf (Aβ13B) and α-D-GalpNAc-(1→2)-β-D-Quip3NAc 

linkages (Dα12A) both the Ψ+ and the Ψ− states are populated (where the torsion angle 

ΨH is > 0° and < 0°, respectively). In the former, the Ψ− state is associated with the 

Ribf (residue B) in 3T2-
3E (north) conformations, whereas the Ψ+ state is mainly 

associated 2E-4T3 (south) conformations.  At the β-D-Ribf-(1→4)-β-D-Galp linkage 

(Bβ14C) only the Ψ+ state is present. In the gauche-conformations of the β-D-Galp-
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(1→3)-α-D-GalpNAc linkage (Cβ13D) three different states were identified and 

named gauche + (90° > Ψ+ > 30°), cis (30° > Ψcis  > −30°), and  gauche − (−30° > Ψ- 

> −90°). 

All these observations are in agreement with the maps of Figure 5.a.3 (top panel), 

where the average torsion angles for each relevant family (described in Table 5.a.1) 

can be accommodated in the low energy regions of the corresponding maps. NMR 

was used to study a 14-repeat of the O5ac polysaccharide. 

Table 5.a.1. Averaged torsion angles for each of the conformational families identified in the 
conformational sampling of the two hexasaccharides, representing the tetrasaccharide 
biological repeating unit (with the monosaccharide linked to the reducing and non-reducing 
ends to account for the linkage effect) of the O-antigen PS from E. coli O5ac. The maximum 
and minimum torsion angle values considered for each conformational family are indicated in 
square brackets.  
 
Glycosidic 

linkage 

Family  Average values (deg.) State Average values (deg.) State 

  Φ Φ
H  Ψ Ψ

H  

AB !!"

!  

(a) 

271 

[262,290] 

31 [22,51] exo 185 [177,203] −53  [−61, 

−33] 

gauche −
 

 !!"

!  

(b) 

283 

[278,291] 

43 [38,52]  278  

[248,300] 

  45 [13,68] gauche + 

        

BC !!"

!  279 

[266,291] 

42 [28,56] exo 144  

[134,170] 

25  [14,52] gauche + 

        

CD !!"

!  269 

[255,280] 

30 [16,42] exo 73 [63,80] −48 [−58, 

−41] 

gauche − 

 !!"

!"# 288 

[282,301] 

50 [44,62] exo 120 [96,145]     1 [−25,27] cis 

 !!"

!  302 

[300,304] 

64  [63,66] exo 174 [161,187]   58 [45,71]  gauche + 

 !!!

!"#$% 63 [50,72] 180 [168,189] trans 111 [99,120] −10 [−23,0]  

        

DA !!"

!  78 [62,96] −41 [−58, 

−22] 

exo 203 [192,213] −38 [−51, 

−28] 

gauche − 

 !!"

!  104 [90,120] −15 [−30,1] exo 273 [268,283]   37 [31,47] gauche + 

(a) Associated to the ribofuranose ring in 3T2–
3E (N) conformations. (b) associated to the 

ribofuranose ring in E2–
3T2 (N) or  2E–4T3 (S) conformations. The term “exo” denotes those 

conformations where the exo-anomeric effect prevails.  
 
 
 

Relevant proton-proton distances (rij) were extracted from the models and plotted as a 

function of the dihedral angles ΨH in the respective glycosidic linkages. Each of the 

different conformational families identified in Table 5.a.1 give rise to a very 

distinctive set of effective proton-proton distances (Figure 5.a.5), which allows for 

comparison with experimental observations.  
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Figure 5.a.5. Scatter plots of rij vs ΨH obtained from conformational sampling on the two 

hexasaccharide models representing the biological repeating unit of the O-antigenic PS from 
E. coli O5ac. The families that explain the experimental data are indicated in red. 
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Figure 5.a.6. Selected region of the 2D 1H,1H-NOESY spectrum of the O-antigen PS from E. 

coli O5ac recorded at 700 MHz with a mixing time of 80 ms. Correlations from the anomeric 
protons are indicated with pertinent annotations. 

 

 

Figure 5.a.7. Plots of the normalized volume intensities versus mixing time obtained for the 
intra-residue correlation between H1 and H2 of GalpNAc (•), the trans-glycosidic correlation 
between H1 of GalpNAc and H2 of QuipNAc () and the long-range correlation between H1 
of GalpNAc and H4 of Ribf (♦). The data was obtained from 2D 1H,1H-NOESY experiments 

recorded at 700 MHz.  
 

The conformations of the O-antigen PS from E. coli O5ac were examined using 

proton-proton distances obtained from 1H,1H-NOESY experiments. The 1H chemical 

shifts assignments have been reported earlier [19]. The 1H,1H-NOESY spectrum of 

the O-antigen PS from E. coli O5ac (Figure 5.a.6) shows a number of strong intra-

residue correlations as well as inter-residue correlations across the glycosidic 

linkages. The cross-peaks intensities measured at different mixing times were used to 

generate NOE build-up curves which were analyzed as detailed by Macura et al. [28]. 
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Proton-proton cross-relaxation rates were extracted from the slope of these curves 

(Figure 5.a.7) and the calculated intra-residue distance between H1 and H2 of the 

GalpNAc residue (D) was used as reference to obtain the unknown distances using the 

isolated spin-pair approximation (ISPA) [29]. Cross-relaxation rates obtained for the 

different proton pairs and their corresponding effective distances are compiled in 

Table 5.a.2, and compared to those obtained by conformational sampling. 

Table 5.a.2. Cross relaxation rates and effective distances determined for the O-antigen 
polysaccharide from E. coli O5ac from 2D 1H,1H-NOESY experiments at 500 and 700 MHz. 
Calculated distances are reported for the different conformational families identified; the 
values used to explain the experimental data are highlighted in bold. 
 

1H-1H 

correlation 

σ ij at 

700 

MHz 

(×  10-3 s-

1) 

σ ij at 

500 

MHz 

(×  10-3 s-

1) 

rij 

(Å) 

NMR 

rcalc (Å) 

rcalc (Å)  

of averaged 

populations 

A1-B2 103 n.d. 3.08 2.82 (Ψ!"
! ) / 4.71 (Ψ!"

! )  2.95 [3:1] 

A1-B3 446 406 2.42 2.31 (Ψ!"
! ) / 2.63 (Ψ!"

! )  2.37 [3:1] 

A1-B4 159 144 2.87 4.45 (Ψ!"
! ) / 2.29 (Ψ!"

! )  2.86 [3:1] 

B1-C4 354 311 2.52 2.43 (Ψ!"
! )  

B2-C2 64 n.d. 3.34 3.40 (Ψ!"
! )  

C1-D3b 788b 690b 2.21 
2.25 (Ψ!"

! ) / 2.35 (Ψ!"
!!") / 3.18 (Ψ!"

! ) / 3.63 

(Φ!"

!"#$%)  

 

C1-D4 n.o. n.o. 
> 

3.50 

2.72 (Ψ!"
! ) / 3.87 (Ψ!"

!"#) / 4.60 (Ψ!"
! ) / 4.12 

(Φ!"

!"#$%) 

 

D1-A1 49 n.o. 3.50 3.28 (Ψ!"
! ) / 4.46 (Ψ!"

! )  

D1-A2 234 213 2.69 2.58 (Ψ!"
! ) / 2.18 (Ψ!"

! )  

D1-B4 74 64 3.28 3.19 (Ψ!"
! ) / 5.70 (Ψ!"

! )  

D1-D2a 463 427 2.40a 2.40   

D4-D5 446 395 2.42 2.47   

A1-A3 279 258 2.61 2.59   

B1-B2 139 119 2.95 2.75 (N) / 2.95 (S)  2.81 [3:1] 

B1-B4 72 71 3.26 3.49 (N) / 3.71 (S)  3.54 [3:1] 
a distance used as reference. b Overlapping with D1/D3 and D1/D5. Cross relaxation rates were calculated 

subtracting the theoretical values obtained from the models. n.d. = not determined due to overlapping. n.o. = 

not observed or at the noise level. N = north conformation of Ribf. S = south conformation of Ribf. 

 

At the β-D-Quip3NAc-(1→3)-β-D-Ribf linkage (Aβ13B) three distances were 

determined from the anomeric proton of residue A to H2, H3 and H4 of residue B 

(3.08, 2.42 and 2.87 Å, respectively). These distances were compared with the 

calculated distances obtained for each of the two populations identified by molecular 

modeling (Ψ!"
!  and Ψ!"

!
 in Figure 5.a.5a-c). The experimental data can only be 

explained by considering a population distribution of 75 % and 25% of the 

conformational families Ψ!"
!  and Ψ!"

! , respectively. The calculated values for the 



Chapter 5.a 
 

 

 

75 

averaged populations (2.95, 2.37 and 2.86 Å, respectively) then differ only by 0.13, 

0.05 and 0.01 Å, respectively, from the experimental values. At the β-D-Ribf-(1→4)-

β-D-Galp linkage (Bβ14C) two distances were determined: a shorter being 2.52 Å 

between H1 of residue B and H4 of residue C, as well as a longer distance of 3.34 Å 

between H2 of residue B and H2 of residue C. These results are comparable to the 

distances calculated from the low-energy models obtained from the conformational 

sampling (2.43 Å and 3.40 Å, respectively), which only comprise conformers of a 

Ψ!"
!  family (Figure 5.a.5d-e). At the β-D-Galp-(1→3)-α-D-GalpNAc linkage 

(Cβ13D) the determination of the cross-relaxation rate between H1 of residue C and 

H3 of residue D was hampered by the overlapping of this cross-peak with two peaks 

arising from intra-residue correlations in residue C (H1-H3 and H1-H5). Therefore, 

the inter-residue distance was deduced from the cross-relaxation rate obtained for the 

three overlapping cross-peaks (1.525 s−
1 and 1396 s−

1 at 700 and 500 MHz, 

respectively) by subtracting the theoretical cross-relaxation rates predicted for each of 

the intra-residue cross-peaks (rH1,H3 = 2.61 Å and rH1,H5 = 2.41 Å). Using this 

approach, we found out that the distance between H1 of residue C and H3 of residue 

D is actually very short (~ 2.21 Å), which is a very important conformational 

restriction when examining the different conformational states found across this 

glycosidic linkage. In addition, no cross-peak of significant intensity was observed 

between H1 of residue C and H4 of residue B, indicating that these two atoms are 

separated by a distance larger than 3.5 Å (which is the shorter distance determined in 

this study). This data can only be explained by the proton-proton distances measured 

in the conformers of the Ψ!"
!"# family (2.35 Å and 3.87 Å, respectively), and indicate 

that the remaining sub-families (Ψ!"
! , Ψ!"

!  and Φ!"

!"#$%in Figure 5.a.5f-g) are not 

significantly populated. At the α-D-GalpNAc-(1→2)-β-D-Quip3NAc linkage (Dα12A) 

two trans-glycosidic effective distances could be determined, a short one between H1 

in residue D and H2 in residue A (2.69 Å), and a long one between H1 of residue D 

and H1 of residue A (3.50 Å, determined only at the higher field). These results are 

consistent with the averaged proton-proton distances calculated in the conformers of 

the Ψ
!"

!
 family (2.58 Å and 3.28 Å, respectively) (Figure 5.a.5h-i). In addition, a 

long distance correlation was observed between H1 in residue D and H4 in residue B 

(3.28 Å), which differs only by 0.9 Å of the average value obtained for conformers of 

the Ψ
!"

!  family (rD1,B4 = 3.19 Å) (Figure 5.a.5j), providing additional evidence that 
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the Ψ
!"

!  conformational family does not represent a significant contribution to the 

experimental observations (rD1,B4 = 5.70 Å).  

 

The O-antigen PS of E. coli O5ab 

 

In the 1H,1H-NOESY spectrum of the O-antigen PS from E. coli O5ab (data not 

shown) a number of intra- and inter-residue correlations similar to those observed in 

the 1H,1H-NOESY spectrum of the O-antigen PS from E. coli O5ac were identified 

across the glycosidic linkages Aβ13B,  Bβ14C and Cβ13D. This observation indicates 

that the conformations across these linkages are similar to those observed for the O-

antigen PS from E. coli O5ab. Based on this observation, we focused the analysis of 

the O-antigen PS from E. coli O5ab mainly from the point of view of the α-D-

GalpNAc-(1→4)-β-D-Quip3NAc linkage, which is the only structural difference with 

respect to the O-antigen PS from E. coli O5ac. 

The 20 low energy models obtained from the conformational search on each of two 

hexasaccharides representing the biological repeating unit of the O-antigen PS from 

E. coli O5ab (one with Ribf in the north conformation and the other in the south 

conformation in the starting structures) were analyzed and clustered according to the 

conformational states across the α-D-GalpNAc-(1→4)-β-D-Quip3NAc glycosidic 

linkage. Three conformational families were identified, all corresponding to 

conformational states where the exo-anomeric effect prevails (Table 5.a.3). The two 

major families correspond to conformers where the torsion angle ΨH leads to gauche-

conformations, and both Ψ+ and Ψ− states are represented. In addition, a Ψtrans 

conformational state was observed in a few models (where the anomeric carbon of 

residue D and H4 of residue A are in an trans arrangement). The distances from H1 of 

the GalpNAc residue (D) to relevant protons in the Quip3NAc residue (A) were 

extracted from the models and plotted as a function of the torsion angle ΨDA (Figure 

5.a.8). 
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Table 5.a.3. Averaged torsion angles obtained from conformational sampling of the two 
hexasaccharides representing the biological repeating unit of the O-antigen PS from E. coli 
O5ab. 
 
Glycosidi

c linkage 

Family  Average values (deg.) State Average values (deg.) State 

  Φ Φ
H  Ψ Ψ

H  

DA 
!!"

!  

77 [55,91] −43[−65, −28] 
exo 206 

[185,220] −35 [−58, −21] gauche − 

 
!!"

!  

103 [97,107] 

−17 [−23, 

−12] 

exo 279 

[272,291]   42 [36,55] gauche + 

 
!!"

!"#$% 

96 [82,104] 

−24 [−38, 

−15] 

exo 

80 [50,107] 

−164 [−192, 

−138] trans 

 
 

In order to measure effective proton-proton distances selective excitation of the 

anomeric proton of the GalpNAc residue (D) was carried out using one-dimensional 
1H,1H-NOESY experiments (Figure 5.a.9b) to generate NOE build-up curves (Figure 

5.a.9c) which were analyzed in detail using the same approach as described above. 

Proton-proton cross-relaxation rates were extracted from the slope of these curves and 

a reference distance of 2.39 Å between H1 and H2 of the GalpNAc residue (D) was 

used for distance calibration. These results are compiled in Table 5.a.4. The effective 

distance between H1 of the GalpNAc (residue D) and H4 of the Quip3NAc residue 

(A) determined experimentally corresponded to 2.39 Å. This value is slightly lower 

than the average distance measured in conformers of the Ψ
!"

!  family (2.56 Å) but 

slightly higher than the average distance obtained from models of the Ψ
!"

!  

conformational family (2.20 Å). Therefore, any of these two models, considered 

independently or as a mixed contribution, may explain the experimental data. The 

effective distance between H1 of the GalpNAc residue (D) and H3 of the Quip3NAc 

residue (A) determined experimentally (3.20 Å) is slightly higher than the average 

distance obtained from models of the Ψ
!"

!  conformational family (2.91 Å) and 

significantly lower than the average distance obtained from models of the Ψ
!"

!  (4.40 

Å) conformational family. If a shared contribution of both conformational families is 

considered, where the population distribution is about 50% for each of them, 

experimental and calculated values only differ by less than 0.02 Å. The Ψ
!"

!"#$% 

conformational family does not represent a significant contribution to the distance 

determined experimentally, as the average values calculated from these models differ 

considerably from the experimental data.  
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Figure 5.a.8. Scatter plots of rij vs. ΨDA obtained from the hexasaccharide models 
representing the biological repeating unit of the O-antigenic PS from E. coli O5ab. The 

conformational families that explain the experimental data are indicated in red. 
 
 

 

Figure 5.a.9. (a) 1H-NMR spectrum of the O-antigen PS from E. coli O5ab and (b) 1D 1H,1H-
SPFGSE NOESY experiment (mixing time 80 ms) with selective excitation of the H1 

resonance of GalpNAc and (c) plot of the normalized intensities versus mixing time obtained 
for the resonance of H2 of Quip3NAc by selective excitation of H1 of GalpNAc in the 1D 

1H,1H-SPFGSE NOESY experiments. 
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Table 5.a.4. Cross relaxation rates and effective distances determined for the O-antigen 
polysaccharide from E. coli O5ab from 1D 1H,1H-NOESY experiments at 700 MHz. 
Calculated distances are informed for the different conformational families identified; the 
values used to explain the experimental data are highlighted in bold. 
 

1H-1H 
correlation 

σij at 700 
MHz 
(× 10-3 s-1) 

rij (Å) 
NMR 

rcalc  (Å) 
rcalc (Å) 
of averaged 
populations 

D1-A3 144 3.20 
2.91 (Ψ!"

! ) / 4.40 (Ψ!"
! ) / 2.14 

(Ψ!"
!"#$%) 

3.22 [1:1] 

D1-A4 819 2.39 
2.56 (Ψ!"

! ) / 2.24 (Ψ!"
! ) / 3.36 

(Ψ!"
!"#$%) 

2.37 [1:1] 

D1-D2a 824 2.39 2.39   
a distance used as reference. 
 

 

O-antigenic polysaccharide modeling  

SYBYL X 1.3 was used to build the 3D models of the O5ac and O5ab polysaccharide 

chains guided by the NMR observations. Fragments comprising eight biological 

repeat units were constructed that corresponded to all the combinations illustrated on 

the disaccharide energy maps as shown in Figure 5.a.10. Interestingly, the only O5ac 

structure devoid of steric clashes corresponded to the major (75%) population 

observed in conformational sampling as well as in the NMR studies. The stable 

helical structure represented the north conformation of the β-D-Ribf constituent. The 

polysaccharide conformation of O5ac resulted in a 2-fold helix with a pitch of 15.6 Å. 

In the schematic representation of this helix (Figure 5.a.10. O5ac. a), we see that that 

there is no space inside the helix. The adjacent N-acetyl groups of α-D-GalpNAc and 

β-D-Quip3NAc interact. In case of O5ab, a regular helix with eight biological repeat 

units was constructed, that corresponded to 50% of the population observed in the 

NMR results. The helix pitch is measured to be 29.27 Å in a 2-fold helix and has a 

form resembling that observed in O5ac (Figure 5.a.10. O5ab. (upper panel) b). The 

β-D-Ribf constituent was in a conformation between 3E and 3T2 representing the 

major population as confirmed by both molecular modeling and NMR studies. The 

other 50% of the population had a helix pitch of 24.2 Å in a 2-fold helix (with the β-

D-Ribf in the north conformation) and had a form distinct from that formed by the 

major population observed in O5ac and it had a tendency to fold upon itself, beyond a 

degree of polymerization equal to four (Figure 5.a.10. O5ab. (lower panel) b). Both 
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these O5ab polysaccharide representations lacked steric hindrances. Thus, for the 

polysaccharide models a common pattern was observed for both O5ac and O5ab. 

 
Figure 5.a.10. The schematic representation of the polysaccharide helices, describing the 

major populations observed in O5ac (8 repeating units) and O5ab (8 and 4 repeating units, in 
the upper and lower panels for O5ab, respectively) (a) as viewed perpendicularly, and (b) 

along the length of the helix.  
 
Immunochemical properties of the oligosaccharide fragments 

Both intra- and inter-species serological cross-reactions based on the O-antigens are 

observed frequently between different bacterial isolates. These cross-reactivities are 

based on structural similarities in the cell wall associated antigens [30]. 

It was reported earlier that the strains of E. coli O5ac and O5ab cannot be 

distinguished by anti-O5ac or anti-O5ab sera [19], and this strong cross-reactivity is a 

limitation for differentiation of these two strains using the existing serotyping 

methodologies. As it was shown before, the structures of the O-antigen PS of these 

two strains are not identical but remarkably similar, differing only at the linkage 

position between the α-D-GalpNAc and β-D-Quip3NAc residues (Figure 5.a.1).  It 

seems that this structural difference is not ‘visible’ and hence not recognized by the 
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mono-specific anti-sera. Thus, the conformational analysis of these two 

polysaccharides may help to explain the cross-reactivity observed between the two 

strains. 

In the 3D model of the O-antigenic polysaccharide of E. coli O5ac, illustrated in 

Figure 5.a.10 (top panel).b, it can be observed that the α-D-GalpNAc residue is 

located on the inside of the helix, and the external accessibility is hindered by the N-

acetyl moiety of β-D-Quip3NAc. Similarly, in the helical structure of the O-antigen 

PS from E. coli O5ab, as shown in Figure 5.a.10 (middle panel).c, the αGalpNAc 

residue is once again located in the interior of the helix and only the N-acetyl group is 

partially exposed to the surface. Further analysis of the models (comprising eight 

biological repeating units each for O5ac and O5ab) reveals that in both cases the same 

epitope is exposed to the surface and corresponds to the β-D-Quip3NAc-(1→3)-β-D-

Ribf-(1→4)-β-D-Galp fragment as illustrated in Figure 5.a.11. 

 

 

Figure 5.a.11. Common epitope observed in the O-antigen PS from E. coli O5ac O5ab in 
schematic chemical (ring) representation of (top) and molecular models (below). Dashed lines 

denote the face exposed to the surface of the helix. 
 

Conclusion 

It was the aim of the present work to fully characterize the conformational behavior of 

the two enteroaggregative pathogenic E. coli strains. Previous immunological 

investigations, accompanied by the elucidation of the sequence of the sugars present 
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in the repeat units could not bring unequivocal conclusions about neither the eventual 

occurrence of a common antibody, nor its nature and size.  

In the present study, a combination of high resolution NMR and molecular modeling 

methods were used to elucidate the conformation of the two strains. The NMR study 

was based on the analysis of intra- and inter-residue distances using NOE build-up 

curves.  Molecular models of the repeating units and their extension to 

polysaccharides were obtained, taking into account the entire conformational 

flexibility as assessed by the force field and genetic algorithm. The agreements 

between experimentally measured and calculated distances can only be obtained by 

considering an averaging of several low energy conformations observed in the 

molecular models.  

  

Among these low energy conformations only some of them can be propagated in the 

form of long polymeric chain thereby allowing for investigating the eventual 

occurrence of any conformational epitope, which could not be found. Instead a 

common glycan epitope in the two strains was identified. Possibly, due to this reason 

the antibodies fail to differentiate between them. This aspect could be interesting to 

probe from the point of view of the pathogenicity of these bacteria. Indeed, some 

strains of E. coli are known to demonstrate cross-reactivity, and further studies from 

the immunological aspect would shed more light on this front. 

The extrapolation of the present conclusions to the preparation of a future pathogen 

glycan array would suggest that three contiguous repeat units, i.e a dodecasaccharide, 

are sufficient to be immobilized on glass slides. Such dimensions are compatible with 

a full recognition by monoclonal antibodies without generating the possible steric 

crowding that a long polymeric chain would cause on a glycan array. 
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CHAPTER 5.b 

 

Molecular modeling and conformational analysis of the O-antigenic polysaccharide 

of the pathogenic Escherichia coli strain 1303. 
1 

Introduction 

Escherichia coli is one of the major causative agents in mastitis, which is a major disease 

in dairy herds. Once infected, the animal is often culled and thus the dairy industry incurs 

considerable loss [1, 2]. Due to the economic implications of mastitis on the dairy 

industry and the health risk to the consumers, significant efforts have been made to 

identify factors that make dairy cows susceptible to infections of the mammary gland, 

that is most frequent at parturition. In that period, infections with E. coli often cause 

severe clinical symptoms [3, 4] accompanied by reduction in milk yield, altered milk 

composition and extensive damage of mammary tissue [5]. 

 

In E. coli, the lipopolysaccharide (LPS) is suspected to play a crucial role during 

infection [6]. The sequence of the bovine mastitis isolate Ec1303 was determined using 

chemical analyses, mass spectrometry and 1D and 2D nuclear magnetic resonance 

(NMR) spectroscopy methods. The O-antigenic biological repeating unit was 

characterized as  

-[→4)-β-D-Quip3NAc-(1→3)-α-L-Fucp2OAc-(1→4)-β-D-Galp-(1→3)-α-D-GalpNAc-(1→]- 

in which the O-acetyl substitution was non-stoichiometric2 [6]. The LPS of enterobacteria 

is frequently found to contain various non-stoichiometric substituents on the 

polysaccharide backbone [7]. These substituents can modify the biological activity of the 

LPS that includes, variable outer membrane stability, tolerance to cationic antibiotics, 

pathogenicity and sensitivity to bacteriophages that infect enterobacteria [7].  

                                                              
1 Anita Sarkar & Serge Pérez.           AS designed the simulations, modeled the polysaccharides, calculated the low 
energy maps and wrote the manuscript sans the perspectives. 
2 Non-stoichiometric compounds are chemical compounds with an elemental composition that cannot be 
represented by a ratio of well-defined natural numbers, and therefore violate the law of definite proportions. 
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The two existing serotypes of O5, designated as O5ac and O5ab, which have been 

described in Chapter 5.a., have a close resemblance with the O-antigenic polysaccharide 

of Ec1303. They differ from O5ab only by the presence of α-L-FucpOAc (or α-L-Fucp) as 

the second monosaccharide in the biological repeating units instead of a β-D-Ribf, and 

from O5ac similarly but with an additional difference of α-1→4 instead of a α-1→2 

linking two consecutive biological repeat units.  

 

Here, we report the conformational analysis of two molecular models of the O-antigenic 

polysaccharides of Ec1303, as illustrated below (Figure 5.b.1): 

-[→4)-β-D-Quip3NAc-(1→3)-α-L-Fucp-(1→4)-β-D-Galp-(1→3)-α-D-GalpNAc-(1→]- 

-[→4)-β-D-Quip3NAc-(1→3)-α-L-Fucp2OAc-(1→4)-β-D-Galp-(1→3)-α-D-GalpNAc-(1→]- 

 

 
 

 

Figure 5.b.1. Structure of the biological repeating units of the O-antigen PS from E. coli 1303 
(with and without O-acetylation on α-L-Fucp) in CFG3-cartoon notation (top), schematic 
chemical (ring) representation (middle) and linear nomenclature (bottom), respectively. 

 

                                                              
3 CFG is an abbreviation for the Consortium for Functional Glycomics. 
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Materials and methods 

The procedure followed for this study was identical to that described in Chapter 5.a. 

Nomenclature  

The Φ/Ψ definitions used for the adiabatic maps (as well their description in the results & 

discussion section) correspond to the heavy atom convention for (1x), where, 

Molecular modeling: Φ  O5-C1-O1-Cx and Ψ  C1-O1-Cx-Cx+1. Most of the 

constituent monosaccharides were built from optimized base types found in Glyco3D [8]. 

β-D-Quip3NAc was built from the base type found in PDB (1MMY) and N-acetylated 

using an optimized NAc fragment from Glyco3D. All the disaccharide and 

oligosaccharide starting structures were modeled with SYBYL X 1.3 [9] using the 

pim_2010 parameters for atom types and partial charges [10] and the Tripos force-field 

parameters [11]. 

 

Results and discussion 

Molecular modeling of the oligosaccharides 

The repeat units of the O1303 comprise identical glycosidic linkages and near identical 

constituent monosaccharides between each other, with the difference arising only with 

the α-L-Fuc being O-acetylated or not. Yet, to cover all possibilities of conformational 

behavior, for each tetrasaccharide biological repeat unit of O1303, an α-D-GalpNAc was 

added to the non-reducing end and a β-D-Quip3NAc at the reducing end, to eliminate 

linkage end effects.  

The construction of the 3D O-antigenic models of Ec1303 required five glycosidic 

linkages, namely, Quip3NAc-β1→3-Fucp, Fucp-α1→4-Galp, Galp-β1→3GalpNAc, 

GalpNAc-α1→4-Quip3NAc, and Fucp2OAc-α1→4-Galp. The conformational space was 

sampled by a genetic algorithm-based program called Shape [12], as described in 

Chapter 5.a. Further, relaxed energy maps were calculated based upon high temperature 

molecular dynamics (MD) simulations (with Tinker [13] using CAT scripts [14]) with a  
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Figure 5.b.2. Relaxed adiabatic maps of the disaccharide components of the molecular models of 
O1303. The top and middle panels illustrate the glycosidic linkages that are distinct in the two 

varieties of the biological repeating units, due to the variable substitution on the α-L-Fuc, while 
the lower panel highlights the glycosidic linkages (Galp-β1→3-GalpNAc and GalpNAc-α14-

Quip3ANc) that are common to both the glycans being investigated. 
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systematic grid search approach using MM3 parameters. The conformational maps 

generated, are illustrated in Figure 5.b.2. From the maps it is evident that each of the 

disaccharide components can inhabit distinct low energy regions that translate to distinct 

conformations, thus indicating the flexibility of the molecules. 

O-antigens of E. coli 1303 

The Φ/Ψ maps of the disaccharides Quip3NAc-β1→3-Fucp and Quip3NAc-β1→3-

Fucp2OAc are identical (Figure 5.b.2, top panel). The O-acetylation at C2 of the α-L-Fuc 

has no effect on the conformation of the O-antigen. The global minimum is centered 

about a Φ/Ψ value of 280˚/150˚ in both cases. Two isolated high-energy islands are 

observed in both samples, one centered at Φ/Ψ ≈ 60˚/150˚ and another at Φ/Ψ ≈ 280˚/ 

300˚. For the next disaccharide segment Fuc-α1→4-Galp and Fuc2OAc-α1→4-Galp, 

again containing the variably O-acetylated α–L-Fuc between the two variants of the 

biological repeat units of O1303, the energy maps show the sampling of a near identical 

conformational hypersurface, with the global minimum lying centered at Φ/Ψ ≈ 280˚/90˚ 

in both instances. In the Galp-β13-GalpNAc linkage, the value for Φ is centered at about 

280˚ while the Ψ angle is more flexible, spanning ~80˚ on the energy map within an 

energy barrier of 7 kcal/mol. The Φ angle value of the GalpNAc-α14-Quip3NAc of this 

oligosaccharide is much more flexible, covering approximately 40˚ on the energy 

hypersurface. The Ψ values are expanded between 180˚ to 230˚ for the global minimum 

and centered about 280˚ for a local minimum. In Galp-β13-GalpNAc, a contiguous 

pathway of conformational sampling can again be observed similar to that seen in O5ac 

and O5ab (described in Chapter 5.a), while moving from the Φ values of 60° to 300°, 

following a similar pattern of approaching the isolated energy island through the trans 

conformation. In this disaccharide segment, the energy minima has an oblong shape that 

can accommodate two populations of conformations, one centered at Φ/Ψ ≈ 260˚/120˚ 

and the other at Φ/Ψ ≈ 260˚/80˚ Finally, the disaccharide GalpNAc-α14-Quip3NAc 

carrying the linkage that connects two biological repeat units of O1303, is seen to 

represent the existence of two distinct minima, one at Φ/Ψ ≈ 80°/210°, corresponding to 

the global minimum, and Φ/Ψ ≈ 100°/270° indicating a local minima, respectively, 

separated by an energy barrier of 4 kcal/mol. The shape of the hyper-energy surface of 
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this disaccharide segment is very similar to that traced for the same disaccharide segment 

in O5ab. 

O-antigenic polysaccharide modeling of Ec1303 

The relaxed adiabatic maps (Figure 5.b.2) were used to guide the construction of the 

polysaccharide chains using the representative oligosaccharide segments obtained from 

the conformational search. The polysaccharide of O1303 forms a 2-fold helix with a pitch 

of 29.85 Å. O5ab has a helix pitch of 29.27 Å. Figure 5.b.3 illustrates the helix formed 

by O1303 in comparison to that of O5ab.  

 

Figure 5.b.3. The schematic representations of the helices formed by the O-antigenic 
polysaccharides of O1303 and O5ab. 

 
 

Immunochemical properties of the oligosaccharide fragments 

 
Both intra- and inter-species serological cross-reactions based on the O-antigens are 

observed frequently between different bacterial isolates. These cross-reactivities are 

based on structural similarities in the cell wall associated antigens [15]. 
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On the basis of structural and genetic data it has been shown previously that the mastitis 

isolate E. coli 1303 represents a new serotype and possesses the K-12 core type, which is 

rather uncommon among human and bovine isolates [6]. Western blot analysis of LPS 

from E. coli 1303 with monoclonal antibodies specific for the different E. coli core types 

showed that strain 1303 carried the K-12 core type in its LPS, which was unexpected and 

interesting since (i) this E. coli core type had been detected in previous studies in only 

4 % of faecal human and bovine isolates [16], (ii) the widely-used E. coli K-12 strains in 

laboratories produce an R-form LPS lacking O-antigenic polysaccharide repeating units 

[17], and (iii) an E. coli K-12 strain in which O-antigen assembly was restored exhibited 

serotype O16 [18]. 

 

Figure 5.b.4. Comparison of the biological repeat units of O-antigenic polysaccharides O5ab and 
the O1303. The green part highlights identical stretch between the sequences, while the pink 
region marks the difference, which is in the substitution of one monosaccharide unit in the 

biological repeat. 
 

Conclusion 

It was reported earlier that the strains of E. coli O5ac and O5ab cannot be distinguished 

by anti-O5ac or anti-O5ab sera [19], and this strong cross-reactivity is a limitation for 

differentiation of these two strains using the existing serotyping methodologies. As it was 

shown before, the structures of the O-antigen PS of O5ac and O5ab are not identical but 

remarkably similar, differing only at the linkage position between the GalpNAc and 

Quip3NAc residues (Chapter 5.a, Figure 5.a.1).  This structural difference seems to go 

unrecognized by the mono-specific anti-sera, and thus the analysis of the conformational 

structure of these two polysaccharides may help to explain the cross-reactivity observed 

between the two strains. The detection of a common glycan epitope between the two 

mentioned strains may provide leads to further investigations on this front. On comparing 

the biological repeat units of O1303 and O5ab we observe that they share 100% identity 
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between three monosaccharides and the connecting glycosidic linkages (Figure 5.b.4). 

Two of these contiguous monosaccharides (β-D-Galp-1,3-α-D-GalpNAc) lie within the 

same biological repeating unit, while the third one (β-D-Quip3NAc) is part of the next 

biological repeat unit. In the O-antigenic polysaccharide model of Ec1303, we observe 

that the α-D-GalpNAc residue is located on the inside of the helix, and the access from 

the outside is hindered by the N-acetyl moiety of Quip3NAc residue. The shapes of the 

helices of O1303 and O5ab are different, though the solvent accessibility of the glycan 

residues is similar. This may be indicative of a factor that leads to the detection of cross-

reactivities between the two strains of E. coli, but further investigations are required to 

reach a definite conclusion in this regard.  

The E. coli represents a new sub-type of serotype O5 and contains the rare K-12 core 

type whose expression may correlate with the ability of this strain to cause bovine 

mastitis. 

 

Perspectives 

The conformational features of bacterial polysaccharides are often discussed in terms of 

the size and shape of antigenic determinants (or epitopes). An epitope is the part of an 

antigen that is recognized by the immune system, specifically by antigen-specific 

membrane receptors on lymphocytes, secreted antibodies, B cells, or T cells. The part of 

an antibody that recognizes the epitope is called a paratope. The epitopes of protein 

antigens are divided into two categories, conformational epitopes and linear epitopes, 

based on their structure and interaction with the paratope [20]. A conformational epitope 

is composed of discontinuous sections of the antigen's sequence. These epitopes interact 

with the paratope based on the 3D surface features and shape or tertiary structure of the 

antigen. Most epitopes bind to paratopes based upon conformational characteristics. 

 

The O-antigenic capsular polysaccharides have been found to be critical in protective 

immunity, as in the case of O139 Bengal strain of Vibrio cholerae that causes epidemic 

cholera. The specific interactions of the glycan epitope(s) at the antibody binding sites are 
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responsible for the immunological behavior of these bacterial polysaccharides, which are 

of interest with respect to vaccine development. The glycan epitopes (usually comprising 

two to four sugar residues) may assume a compact and relatively rigid conformation that 

effectively interact with the paratopes of the antibody, or alternatively, be flexible, thus 

allowing antibodies to bind to select conformations, consistently being constituents of a 

rather flexible polysaccharide [21]. 

 

It can be interesting to probe the conformations of O-antigenic polysaccharides of E. coli 

strains (for example Ec65 that has a genetic similarity with Ec1303), to understand the 

basis of their cross-reactivity and subsequent pathogenesis. 
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CHAPTER 6 

 

BiOligo: A 3D structural database of bioactive oligosaccharides 

1
 

Abstract  

The relationship between the structure and biosynthesis of glycans to their actual functions is 

the driving force behind the systematic exploration of their biological roles. The knowledge of 

the three-dimensional (3D) structures of biologically occurring oligosaccharides is needed for 

the understanding of biological processes involving glycoproteins and protein-glycan 

interactions at the molecular level.  To this end, about 250 glycan determinants (bioactive 

oligosaccharides) have been listed and subject to systematic conformational sampling to 

determine their conformational preferences. They belong to widely-occurring families like the 

blood group antigens (A, B & O), core structures (Types 1, 2 & 4), fucosylated 

oligosaccharides (core & lacto-series), sialylated oligosaccharides (Types 1 & 2), Lewis 

antigens, GPI-anchors, N-linked oligosaccharides, globosides, among others, and have been 

systematically organized into an open-source database. The constituent disaccharide and 

monosaccharide units (currently, ~120 and 70 entries, respectively) of these bioactive 

oligosaccharides have also been characterized and made available through a sub-set within the 

BiOligo database (called GlycoLego). At present, BiOligo contains more than 400 entries of 

glycan determinants and their ‘lego’ blocks. The BiOligo data is accessible through several 

search criteria like oligosaccharide name, type of constituent (monosaccharide, disaccharide 

or oligosaccharide), glycan category and molecular weight. All 3D structures are available for 

visual consultation (with basic measurement possibilities) and can be downloaded in 

commonly used formats. BiOligo aims at offering 3D information to help in deciphering 

binding data from glycan arrays, and providing realistic starting conformations to be used in 

molecular dynamics (MD) simulations, molecular docking of oligosaccharides with proteins 

or nucleic acids and improving the resolution of the structures of glycoproteins, in particular 

                                                
1
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with small angles X-ray scattering (SAXs) experiments. BiOligo is an open source database 

of bioactive glycan determinants and can be accessed via its web-interface at 

http://glyco3D/bioligo.cermav.cnrs.fr . 

 

Introduction  

Carbohydrates are involved in a variety of biological functions ranging from the trivial to the 

crucial. They play important roles in the growth, function, development and even survival of 

an organism. These ubiquitous and complex molecules offer a tremendous diversity which 

arises not only from differences in monosaccharide composition, anomeric state (α or β) and 

branching of monosaccharides, but also from substituted (e.g., sulphated, phosphated) 

components and their linkage to the aglycones (like peptides, lipids). This makes glycans 

‘bio-informational’ molecules which are recognized by a variety of proteins, such as lectins, 

antibodies, receptors, toxins, microbial adhesins, enzymes, etc.), collectively known as glycan 

binding proteins. The number of glycans that comprise the human genome is still unknown, 

and it may be acknowledged that sequencing the human glycome at present may still be 

unrealistic given the current technology for glyco-proteomics, glycosaminoglycan-omics or 

glyco-lipidomics. According to R. Cummings [1] the number of glycan determinants likely to 

be important in their interactions with glycan binding proteins is estimated to be about 7,000. 

The Consortium for Functional Glycomics [2] lists 7500 entries in its glycan database. 

 

Complex carbohydrates are in general difficult to co-crystallize, and there is still a limited 

number of X-ray crystallographic protein-carbohydrates complex structures that have been 

resolved. Hence, molecular modeling methods have been particularly helpful and widely used 

to characterize the conformation of complex carbohydrates [3, 4]. The flexibility and high 

polarity of these molecules, along with the large number of degrees of freedom are challenges 

for molecular modeling. Nevertheless, development of sustainable methods and tools 

accompanied by major improvements in computing performances, are opening the way to 

high-throughput molecular modeling where hundreds of complex glycan structures can be 

investigated during the course of time-limited investigations [5].  

 

In contrast to genomics and proteomics, the glyosciences lack accessible, curated and 

annotated comprehensive data repositories that summarize and organize data such as 

structures, characteristics, biological origins and functions of glycans. The thrust of the 
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glycoinformatics community thus far has mainly been carbohydrate sequence related. Web-

based tools have been developed to build preliminary 3D structures starting from a sequence 

as implemented in SWEET-II and Glycam carbohydrate builder [6, 7]. 

 The purpose of the present work is to provide to the scientific community a useful database 

called BiOligo, which stores energetically favourable and optimized 3D glycan structures that 

can be used as reliable starting models for interaction studies. Particular attention has been 

given to the database content and its open access. Further, the possible linking of the 3D 

information with glycan array results and other 3D databases, dealing with protein-

carbohydrate interactions, is discussed in the perspectives. 

 

Scope of the work  

A comprehensive list of prominent glycan determinants involved in recognition events was 

established taking into account the availability of these glycans in ample quantities to fully 

explore the basis for glycan recognition and specificity using X-ray crystallography, nuclear 

magnetic resonance (NMR), and other biophysical methods as well as glycan arrays.  About 

250 glycan determinants that confirmed to the mentioned criteria were selected. These include 

representations from widely-detected families like the blood group antigens (A, B and O), 

core structures (Types 1, 2 & 4), fucosylated oligosaccharides (core and lacto-series), 

sialylated oligosaccharides (Type 1 and 2), Lewis antigens, GPI anchors, N-linked 

oligosaccharides, globosides, glycosaminoglycans (GAGs), etc. as listed in Table 6.1. In the 

present work, a glycan determinant is defined as a glycan structure that is required for the 

specific recognition by a glycan binding protein. The glycans containing three or more sugars 

in the current list are referred to as bioactive oligosaccharides. 

 

A complete list of the oligosaccharides included in the present in this database version is 

provided in Annex III: Supplementary Material for BiOligo. 

 

Specific glycan determinants result from the assembly of partial motifs i.e. disaccharide 

moieties. For reasons related to the construction and to the conformational analysis of 

complex glycan (vide supra), a list of partial determinants was established (Table 6.2). It is 

composed of ~120 distinct disaccharide moieties found in the glycans categorized as per 

Table 6.1. 
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Table 6.1. The classification of 3D structures of glycan determinants in BiOligo. 

Index BiOligo Category No. Of 

entries 

1.  Blood group A antigens 11 

2.  Blood group B antigens 11 

3.  Blood group H antigens (Blood group O) 12 

4.  Blood group H antigens (Blood group O) and Globo H tetraose 1 

5.  Core structures  1 

6.  Core structures (Type 1 & Type 2) 4 

7.  Core structures (Type 1) 4 

8.  Core structures (Type 2) 16 

9.  Core structures (Type 4) 1 

10.  Fucosylated oligosaccharides 4 

11.  Fucosylated oligosaccharides (3 Fucosyllactose core) 4 

12.  Fucosylated oligosaccharides (Lacto-Series) 13 

13.  GAGs 14 

14.  Galα-3Gal oligosaccharides (Galili and xeno antigens) 6 

15.  Galα-3Gal oligosaccharides (Isogloboseries) 3 

16.  Ganglioside sugars 17 

17.  Globoside sugars (P antigens) (Forssman antigens) 3 

18.  Globoside sugars (P antigens) (Globo series - core structure type 4) 3 

19.  Globoside sugars (P antigens) (P blood group antigens and analogues) 6 

20.  Globoside sugars (P antigens) (Stage-specific Embryonic antigens : SSEA-3 & 
SSEA-4) 

4 

21.  Glucuronylated oligosaccharides 2 

22.  Glycosphingolipid 2 

23.  Lewis antigens 29 

24.  Miscellaneous 22 

25.  Miscellaneous (Blood group-related oligosaccharides) 2 

26.  Miscellaneous (Chitin oligosaccharides) 4 

27.  Miscellaneous (Fibriniogen related oligosaccharides) 3 

28.  Miscellaneous (LDN-related oligosaccharides) 6 

29.  Miscellaneous (Lewis X-related oligosaccharides) 2 

30.  Miscellaneous (TF-related oligosaccharides) 4 

31.  Miscellaneous (TN-related oligosaccharides) 4 

32.  Miscellaneous (Trehalose-like sugars) 2 

33.  N-linked oligos 18 

34.  Sialylated oligosaccharide (Type 1) 11 

35.  Sialylated oligosaccharide (Type 2) 12 

36.  Disaccharides (GlycoLego) 124 

37.  Monosaccharides (GlycoLego) 70 
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High-Throughput Conformational Analysis of Glycan Determinants 

Nomenclature 

The variety in nomenclature and structural representations of glycans makes it complex to 

decide the most appropriate form to deal, both with the encoding required for computational 

manipulation and graphical representations, which are relevant from a chemical as well a 

biological standpoint. The structural encoding of glycans dealt with during the development 

and implementation of the work are illustrated in Figure 6.1.  

 

Figure 6.1. Nomenclature and structural representations commonly used for complex glycans, for 
example, the pentasaccharide lacto-N-fucopentaose V [Gal β1-3 GlcNAc β1-3 Gal β1-4 (Fuc) α1-3 
Glc] in this figure. The relative orientation of two contiguous monosaccharide units in a disaccharide 
is expressed by two torsion angles Φ and Ψ around the glycosidic bond. According to the heavy atom 

convention (x+1), Φ= O5-C1-O-Cx and Ψ= C1-O-Cx-Cx+1 for a (1x) linkage [inset: top panel]. 
Alternatively, reference to the hydrogen atoms involved in the glycosidic linkage as per the light atom 

convention, can be used ΦH = H1-C1-O1-Cx and ΨH = C1-O1-Cx-Hx, for a (1x) linkage. For a (16) 
linkage another torsion angle is required and denoted by ω, referring to O5-C5-C6-O6. The sign of the 
torsion angle is given in accordance with the IUPAC nomenclature [8]. 
 
 

Glycan Determinants 

The common computational approach to 3D structure prediction is based on searching 

through the conformational space of the glycan in order to find low energy regions, i.e. 

conformers, which the molecule is likely to populate. This can be accomplished in many 

different ways, and several packages have been developed for this task using a variety of 

different algorithms [9]. Despite their inherent structural intricacies, complex carbohydrates 

are particularly suited for computational conformational predictions. Of the usually 20 atoms 

of a hexa-pyranose unit bound within an oligosaccharide, 80% are rigidly linked together; six 

locked in the pyranose ring and further ten rigidly attached to the five ring carbon atoms. This 
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reduces the motion of the ring structure. The only bonds that are of significance for the mutual 

orientation of two contiguous linked monosaccharide units are the torsion angles at the 

glycosidic linkages (Φ, Ψ and ω in the case of 16 linkage).  

 

The 3D structures of complex glycans can be constructed by partitioning them into 

overlapping disaccharides, i.e. predicting each glycosidic linkage in the isolated disaccharide 

and then reassembling the complete structure. The determination of the preferred 

conformations of a disaccharide moiety is based on the calculation of potential energy 

surfaces as a function of their glycosidic torsional angles. This method provides a clear 

depiction of the results and an exhaustive exploration of the topology of the potential energy 

surface; it has a linear algorithmic complexity and is one of the fastest prediction methods 

available. However, it only works with oligosaccharides that have no interactions between 

non-adjacent residues and it requires the computation of all the potential energy surfaces of 

the constituting disaccharide segments.  

 

High-throughput conformational analysis of complex glycan requires the development of 

methods where both speed and thoroughness are vital. These factors need to be well balanced 

and preferably adjustable according to user priority. It is important to perform a 

comprehensive general search of the conformational space to find all the important energy 

minima, while at the same time use as little computation time as possible. To this end a 

dedicated software (Shape) for automatic conformation prediction of carbohydrates using a 

genetic algorithm was developed [5]. Its robustness and accuracy have been tested on a series 

of studies on previously published conformation predictions of oligosaccharides performed 

using other conformation search tools. In these cases all major local minima could be found 

with a major improvement in computational time.  

 

The glycan determinants (currently, 260 of these bioactive oligosaccharides have been 

evaluated) were submitted to the above mentioned automatic conformation prediction 

following the procedure described in the Computational Methods, which, including the mono- 

and disaccharide conformers, yielded a grand total of about 1200 conformers. As a typical 

example, the results of the exploration of the potential energy hypersurface of lacto N-

fucopentaose are shown in Figure 6.2.  
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Figure 6.2. The distinct conformations reported in BiOligo after a complete conformational sampling 
of the lacto-N-fucopentaose V structure. 

 

Disaccharide segments 

For each disaccharide, an exhaustive search was performed using the MM3 molecular 

mechanics force field. It gave a complete sampling of the conformational space, yielding the 

construction of a relaxed adiabatic energy map, which is represented as a function of Φ and Ψ 

glycosidic torsion angles. 
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Table 6.2. The list of disaccharides included as part of the sub-database GlycoLego incorporated 

within BiOligo. 

Fuc α1-2 Gal 

Fuc α1-2 Glc 

Fuc α1-3 Gal  

Fuc α1-3 Glc 

Fuc α1-3 GlcNAc 

Fuc α1-4 Gal  

Fuc α1-4 GlcNAc 

Fuc α1-6 GlcNAc (gg) 

Fuc α1-6 GlcNAc (gt) 

Gal [3S] β1-3 GalNAc  

Gal [3S] β1-4 GalNAc 

Gal [3S] β1-4 Glc  

Gal [3S] β1-4 Glc [6S]  

Gal [3S] β1-4 GlcNAc 

Gal [3S4S] β1-4 GlcNAc  

Gal [3S6S] β1-4 GlcNAc [6S] 

Gal [4S] β1-4 GlcNAc 

Gal [4S6S] β1-4 GlcNAc 

Gal [6S] β1-4 Glc  

Gal [6S] β1-4 Glc [6S] 

Gal [6S] β1-4 GlcNAc 

Gal [6S] β1-4 GlcNAc [3S]  

Gal α1-2 Gal  

Gal α1-3 Gal  

Gal α1-3 GalNAc  

Gal α1-4 Gal 

Gal α1-4 GlcNAc 

Gal α1-6 Gal (gt) 

Gal α1-6 Gal (tg) 

Gal α1-6 Glc (gg) 

Gal α1-6 Glc (gt) 

Gal α1-6 Glc  (gg) 

Gal β1-4 GlcNAc [6S] 

Gal β1-1 Glc  

Gal β1-2 Gal  

Gal β1-2 Xyl 

Gal β1-3 AltNAc  

Gal β1-3 Gal 

Gal β1-3 GalNAc 

Gal β1-3 GlcNAc  

Gal β1-4 Gal 

Gal β1-4 GalNAc  

Gal β1-4 Glc 

Gal β1-4 Glc [3S]  

Gal β1-4 GlcNAc 

Gal β1-4 GlcNAc [3S6S]  

Gal β1-4 GlcNAc [6S]  

Gal β1-6 Glc  (gg) 

Gal β1-6 Glc  (gt) 

GalNAc [4S] β1-4 GlcA 

GalNAc [4S] β1-4 L-Ido 

GalNAc [4S] β1-4 L-Ido [2S] 

GalNAc [6S] β1-4 GlcA 

GalNAc α1-3 Fuc  

GalNAc α1-3 Gal 

GalNAc α1-3 GalNAc  

GalNAc α1-3 Man 

GalNAc β1-3 Gal 

GalNAc β1-4 Gal 

GalNAc β1-4 GalA 

GalNAc β1-4 GlcA 

Glc α1-4 Glc  

Glc β1-3 Glc  

Glc β1-4 Glc  

GlcA [4S] β1-3 GalNAc 

GlcA [6S] β1-3 GalNAc 

GlcA β1-3 GalNAc [4S] 

GlcA β1-3 GalNAc [6S] 

GlcA β1-3 GalNAc 

GlcA β1-3 GlcNAc 

GlcNAc [6S] β1-3 Gal 

GlcNAc α1-6 GalNAc (gg) 

GlcNAc α1-6 GalNAc (gt) 

GlcNAc α1-6 GalNAc (tg) 

GlcNAc β1- 3 GalNAc 

GlcNAc b1-2 Gal 

GlcNAc β1-2 Man 

GlcNAc β1-3 Gal 

GlcNAc β1-3 GalNAc 

GlcNAc β1-3 GlcNAc 

GlcNAc β1-4 Gal 

GlcNAc β1-4 GlcA 

GlcNAc β1-4 GlcNAc 

GlcNAc β1-4 Man  

GlcNAc β1-6 Gal 

GlcNAc β1-6 Gal 

GlcNAc β1-6 Gal 

GlcNAc β1-6 GalNAc (gg) 

GlcNAc β1-6 GalNAc (gt) 

GlcNAc β1-6 GalNAc (tg) 

GlcNAc β1-6 Man (gg) 

GlcNAc β1-6 Man (gt) 

GlcNS α1-4 IdoA [2S] (2S0) 

GlcNS α1-4 IdoA [2S] (1C4) 

GlcNS [6S] α1-4 IdoA [2S] (2S0) 

GlcNS [6S] α1-4 IdoA [2S] (2S0) 

 IdoA [2S] (1C4) α1-4 GlcNAc 

 IdoA [2S] (2S0) α1-4 GlcNAc  

 IdoA [2S] (1C4) α1-4 GlcNAc 

 IdoA [2S] (2S0) α1-4 GlcNAc  

IdoA [2S] (1C4) α1-4 GlcNS [6S]  

IdoA [2S] (2S0) α1-4 GlcNS [6S]  

IdoA [2S] (1C4) α1-4 GlcNS 

IdoA [2S] (2S0) α1-4 GlcNS 

L-Ido [2S, 6S] α1-4 GlcNS 

L-Ido a1-3 GalNAc [4S] 

Man [6P] α1-3 Man 

Man α1-2 Man 

Man α1-3 GlcNAc 

Man α1-3 Man  

Man α1-4 GlcNAc 

Man α1-4 Man  

Man α1-6 Man (gg) 

Man α1-6 Man (gt) 

Man β1-4 GlcNAc 

Man β1-4 Man 

Neu5Ac α2-3 Gal 

Neu5Ac α2-3 GalNac 

Neu5Ac α2-6 Gal  

Neu5Ac α2-6 GalNAc  

Neu5Ac α2-6 GlcNAc 

Neu5Ac α2-8 Neu5Ac  

Xyl β1-2 Man  

Xyl β1-3 Man  



Chapter 6   
 

 

105 

Typically the exploration of each MM3 energy map indicated the occurrence of 3 to 5 energy 

minima. They were ranked based on relative energies and the corresponding atomic 

coordinates were stored.  A library of about 500 conformers was set-up corresponding to the 

population occurrence and statistics of all the disaccharide segments occurring in the glycan 

determinants under investigation.   

This library is a unique collection of structural features of very diverse disaccharides that can 

be used to build, modify or extend 3D glycan structures. The consideration of the 

axial/equatorial nature at the glycosidic linkage provides a useful framework for a 

classification of the disaccharides moieties, independently of the surroundings of the glycan 

molecule.  

 

 

Construction & Content 

 

Database content 

BiOligo database, in its current version, contains about 400 entries, including 

monosaccharides, disaccharides and oligosaccharides. The selected carbohydrates are known 

to be biologically active and come from in-house databases, glycan array from the ‘Glycan 

Database’ of the Consortium for Functional Glycomics [10] as well as catalogued complex 

sugar libraries [11]. The source and constitution of the database include neutral and sialylated 

oligosaccharides from human milk and urine, cell adhesion oligosaccharides, blood groups, 

head groups of common glycosphingolipids, lectin-binding oligosaccharides and 

glycosaminoglycans.  

 

Database construction 

BiOligo is a web-based, platform-independent, manually curated database of bioactive glycan 

3D structures. It currently runs on an Apache web server [12] hosted at Centre de Recherches 

sur les Macromolécules Végétales (CERMAV) with the application program Hypertext 

Preprocessor (PHP) [13]. It has been implemented using the open source MySQL database 

[14]. It has been developed based on a combination of three layers. The underlying layer is 

the MySQL database system, a relational database management system [MySQL (Community 

Server) with the storage-engine PBXT] that stores all the other structure-related information 

in the back-end and provides the facility to link two or more tables in the database. The 

intermediate layer is an Apache-PHP application [Apache 2.x; PHP 5.3.1] that receives the 
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query from the user and connects to the database to fetch data to the upper layer, which 

comprises populated HTML pages, to the web browser client. The PHP and Java scripts are 

embedded in the HTML web pages for this effect and are used as application programs for 

integrating the back-end (MySQL database) to the web pages (HTML). Apache has been used 

as the web server for building the interface between the web browser and the application 

programs. PHP was used for writing scripts to query the database, and JavaScript (with 

JQuery plugin) was used to design the ‘auto-complete’ function for the user-interface. The 

graphical user interface was developed with HTML (version 5) and CSS (version 3). 

 

Database query and results 

The schema of data organization and output is illustrated in Figure 6.3. 

 

 

Figure 6.3. A schema showing the various search modes accessible to the user and results displayed 
for a query made to the BiOligo database. 

 

Database Search and GUI features 

The search page comprises primarily of two approaches to query the database, as shown in 

Figure 6.4, namely,   
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a. Simple search: In this the user types in the text box provided, based upon which a 

result prompt appears to guide the user in selecting from the ‘hits’ found in the 

database. An accordion function was developed to display a preview of the results. 

This can be used to expand or minimize the preview of the listed results of the user 

query for a first glance into the entries matching the request to the database. The 

preview provides the glycan name, sequence, category and molecular weight to the 

user to make an informed choice.  

 

 
 

 

Figure 6.4: An illustration of the simple search (Top) and advanced search (Bottom) search options in 
BiOligo. 

 

 

a. Advanced search: This is a multi-criteria search that can be used together for querying 

or in various combinations as best suits the user’s requirement. Four search modes are 
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provided in BiOligo, namely, trivial name, type of constituent, category and molecular 

weight. A slider is provided for assigning a range of values to be queried in the 

molecular weight of the database entries. It consists of two cursors that can navigate 

on a bar for specifying the minimum and maximum limit of the search. Two text fields 

display the values of the cursor position on the slider bar. The slider cursors auto-

adjust themselves when values are entered directly in the text boxes. This feature was 

developed by modifying a JQuery plug-in. 

 

Both the simple and advanced search options are equipped with an ‘auto-complete’ function. 

This is one of the prime features of result refinement provided in the GUI. It guides the user 

while querying the database. It comprises two parts (a) single field of entered text, and (b) the 

auto-prompt when the data is entered, through which the desired hit in the database can be 

selected either by scrolling down with the mouse or using the arrow keys on the keyboard. 

 

The detailed results are organized under two tabs as shown in Figure 6.5, namely,  

a. Molecule information: This includes the trivial name of the glycan, its sequence, the 

chemical (ring) and CFG (Consortium of functional glycomics) cartoon 

representation, molecular weight, the glycan category or family into which it has been 

classified in BiOligo, glycan composition, i.e. the comprising glycan type and number 

of each such glycan in the BiOligo entry, glycosidic linkages present in it and 

occasionally additional comments. Each entry is associated with a reference that 

identifies it as a glycan determinant, and from which it has been sourced into BiOligo. 

The illustrative representations of the glycans are can be viewed through the 

‘Zoombox’ feature that was developed by modifying an existing JQuery plug-in that 

allows the selected image to be zoomed and highlighted. 

 

b. View and download: This tab incorporates the best representatives of the families of 

the most-probable low energy conformational families from the results that have 

passed the filtering step. The molecules are displayed using Jmol applet windows that 

also enable basic viewing and measurement options under the right-click options. 

Each of the conformations can be downloaded from this section. 
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Figure 6.5: An illustration of the results in BiOligo. (Top) Preview (Left) Molecule information 
(Right) Display and download. 

 
 

Conclusions 

The present work is the first report of the application of high-throughput molecular modeling 

to complex carbohdyrates as exemplified by the number of different molecules that have been 

submitted to the application of high accuracy molecular mechanics force field coupled to 

genetic algorithms. The present selection of more than 250 complex carbohydrate molecules 

is focused on glycan determinants recognized to show interactions with glycan binding 

proteins. All the entries incorporated in BiOligo have been sourced from experimental studies 

like X-ray crystallography, glycan array etc. The accompanying conformational 

characterization of ~120 disaccharide segments provides the foundations for further 

explorations as this collection of data allows the coverage of more than 80% of the 
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constituting disaccharides found in all the glycan determinants that have been reported thus 

far. The same strategy can be applied to other types of carbohydrate containing molecules, for 

example to the repeat units found in bacterial polysaccharides.  

 

The data generated was stored in a relational database, called BiOligo and its sub-section, 

GlycoLego. BiOligo is open access and can be queried by the user through the web-interfaced 

search engine. It categorizes the structural information into logical sections for the user to 

access using pre-customized searching techniques.  The database will be maintained and 

regularly updated. In the near future, BiOligo shall be linked with existing databases dealing 

with crystallographic data of protein carbohydrate interactions (lectins, glycosaminoglycans 

intracting proteins, glycosyl transferases, and monoclonal antibodies). Efforts will be devoted 

to link the present database with accessible glycan information when a global consensus is 

reached regarding a minimum information about a glycan array experiment (similar to 

MIAME [15]) for which efforts are already being made in the glycobiology community. 

 

Computational Methods 

All bioactive oligosaccharides contained in the database have been sequentially built using the 

same protocol. First, the SWEET-II web-based tool on the Glycosciences.de web portal 

(http://www.dkfz.de/spec/sweet/doc/index.php) was used to generate a 3D model from the 

oligosaccharide sequence [6]. The resulting 3D model was further optimized using MM3 

force field [16-18] as implemented in the TINKER package [19] and then saved in the Protein 

Data Bank (PDB) format. Subsequently, the carbohydrate atom and bond typing were 

manually checked and corrected within the SYBYL X1.3 interface [20].   

 

The Shape software [5] has been used to perform the high-throughput computational 

exploration of many di- and all oligosaccharides entries, whose conformations have been  

reported in the present investigation. Shape uses a genetic algorithm for searching the 

conformational space of the glycans. The MM3 force-field [16-18] is used for the energy 

evaluations, which have been performed using a value of 4.0 for the dielectric constant for all 

calculations. The block diagonal minimization method for geometry optimization was used in 

MM3 with the default energy-convergence criterion (ΔE=0.00008*n kcal/mol every 5 

iterations, where n= number of atoms). MM3 allows full relaxation of the glycosidic residues 

taking into account the exo-anomeric effect [16, 21] and this force field allows optimization to 

a nearby transition state (with the full matrix Newton-Raphson method).  
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The genetic algorithm implementation in Shape is a generational parallel population 

Lamarkian method that follows molecular evolution. The genetic operators in action are 

mutation, migration and crossover. A population size of 25 individuals was specified for 

inclusion in every population of conformations throughout the search, while the total number 

of parallel populations to be used during the search was set to 20. Each generation produced 

by the genetic algorithm comprised:  

Total number of individuals = population size * total number of populations. 

The energy convergence criterion for the conformers generated was assigned a window size 

of 20 to search for improvements (i.e. the search was terminated when even after 20 

generations no significant improvements in conformational energy was found). The highest 

energy difference is the entire window that is accepted as a significant improvement for the 

search to continue (i.e. the limit) is of -0.5 kcal/mol. This is directly related to the maximum 

efficiency of the evolution of conformers, since this is the absolute minimum limit to the 

length of the conformation search. For each run, once the ‘best’ conformer has been found, 

the search still continues for a number of generations, to the specified window size, till 

satisfied that the results have converged.  

 

To analyze the large amount of conformations generated by the GA, the results were clustered 

into distinct families of low energy conformations. The conformations were clustered using 

atom distances, ignoring hydrogen atoms and a 1Å tolerance for RMSD2 from the cluster 

centroid. After the families of low energy conformations are clustered, a further filtering is 

applied based upon possible low energy regions that could be populated by the conformations 

of the molecules being investigated. Out of the cluster centroids reported after Shape 

clustering, the ones that inhabit the low energy regions are selected and stored as the final 

results of the conformational sampling in BiOligo.   

 

The 3D structures deposited in BiOligo can be viewed on the interface via the Jmol 

application [22]. Jmol is in an interactive web browser applet, which is an open-source, cross-

platform 3D Java visualizing tool for chemical and molecular structures that provides high-

performance 3D rendering with standard available computer hardware. The provision to 

download the atomic coordinates for further independent use is provided in the PDB format. 

 

                                                
2 RMSD is an abbreviation for root mean square deviation. 
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All the calculations have been performed using the facilities of the Centre d’Expérimentation 

et de Calcul Intensif en Chimie (CECIC) on a cluster of computers made up of a 18-node Dell 

Power Edge C6100 (24GB and 48GB of central memory), 7-node Bull R424E3 (32 GB of 

central memory) linked by an Infiniband interconnection network, making a total of 316 

processors and with access to a disk storage system offering a global capacity of 2.3 TB. This 

facility is part of the Grenoble University High Performance Computing Center : CIMENT.  
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FUCOSE‐BINDING LECTINS 

 

Pseudomonas aeruginosa 

 

Pseudomonas aeruginosa is a free-living gram-negative bacteria, commonly found in soil, 

water, vegetation and plant surfaces and occasionally on the surfaces of animals (Figure 

7.a).  

 

 

Figure 7.a: The gram-negative bacteria Pseudomonas aeruginosa [1]. 
 

P. aeruginosa is the epitome of an opportunistic pathogen of humans that almost never 

infects uncompromised tissues, yet there is hardly any tissue that it cannot infect if the 

tissue defenses are compromised in some manner. It causes urinary tract infections, 

respiratory system infections, dermatitis, soft tissue infections, bacteremia, bone and joint 

infections, gastrointestinal infections and a variety of systemic infections, particularly in 

patients with severe burns, transplants, cystic fibrosis, cancer (having undergone 
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chemotherapy) and AIDS
1

 patients who are immunosuppressed. P. aeruginosa is 

especially more dangerous to certain populations comprising people with weak immune 

systems, the elderly and those who have been hospitalized for long periods of time. 

Moreover, since this bacterium is relatively resistant to most antibacterial medications, 

infection can be deadly, particularly when it infects the lungs or bloodstream. The case 

fatality rate in these patients is near 50%. 

 

P. aeruginosa produces high-levels of L-fucose binding, PA-IIL protein (lectin), in 

association with its cytotoxic virulence factors and under quorum sensing control
2
. The 

affinity to L-Fuc-containing oligosaccharides and its relation to the conformation has 

been studied as a part of this thesis.  

 

 

B.2. Burkholderia ambifaria 

 

Burkholderia ambifaria is a member of the Burkholderia cepacia complex, a group of 

closely related bacteria that cause lung infections in immune-compromised patients etc 

(Figure 7.b). Burkholderia ambifaria is usually associated with plant rhizospheres where 

it has bio-control effects on other microorganisms.  

 

There is evidence that indicates that lung pathogen lectins and adhesins frequently target 

fucose on human epithelia [2]. The lectin BamBL from Burkholderia ambifaria can bind 

to artificial glycosphingolipid-containing vesicles, human saliva and lung tissues, which 

confirmed that BambL recognizes a wide spectra of fucosylated epitopes, albeit with a 

lower affinity for biological material from non-secretor individuals [3]. 

 

                                                        

1 Acquired immunodeficiency syndrome 
2 Quorum sensing is a system of stimulus and response correlated to population density. Many species of 

bacteria use quorum sensing to coordinate gene expression based upon the density of their local population. 

P. aeruginosa uses quorum sensing to coordinate the formation of biofilms, swarming motility, exo-

polysaccharide production and cell aggregation. These bacteria can grow within a host without harming it, 

until they reach a certain concentration. Then they become aggressive, develop to the point at which their 

numbers become sufficient to overcome the host's immune system, and form a biofilm, leading to disease 

within the host. 
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Figure 7.b: The gram-negative bacteria Burkholderia found in roots of plants [4]. 

 

 

Burkholderia cenocepacia 

 

Burkholderia cenocepacia is a species of gram-negative bacteria that is common in the 

environment and may cause disease in plants. It is an opportunistic pathogen causing 

often-fatal infections in humans especially in patients with cystic fibrosis and chronic 

granulomatous disease. 

 

Bacteria utilize different lectin topologies and fucose binding sites with different 

specificities towards fucosylated glycans. It is suspected that they may have potentially 

different responses towards humans with different histo-blood group oligosaccharides. 

The application of the low energy conformers generated during the process of populating 

BiOligo has been probed with the docking studies of fucose-containing ligand 

conformers with fucose-binding lectins from the bacteria introduced above. The results
3
 

of the docking studies were co-related to experimental (titration microcalorimetry and 

glycanarray) data in Chapter 7. 

                                                        

3 Some studies are still on-going 
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CHAPTER 7 
1 

Soluble lectins from opportunistic bacteria binding to human fucosylated epitopes: 

Screening specificity by docking and glycan array 

 

Introduction 

Interaction between protein and carbohydrate play important roles in many biological and 

pathological processes. For example, infection by bacteria is often initiated by the 

specific recognition of host epithelial surfaces by glycan binding proteins that are 

virulence factors having a major role in the first steps of adhesion and invasion. The host 

glycosylation is specific for species, tissues, cell types and development. The variations 

in animal glycans as a function of time and space is mirrored by the variety of strategies 

that pathogens use to exploit the host surface and escape the defence [1]. As part of the 

strategies adopted by microbes, a large number of their proteins, either lectins, toxins or 

adhesins, have the capacity to specifically recognize complex oligosaccharides present on 

host tissue [2, 3]. 

 

Among the human glycoconjugates that can be the targets of bacterial lectins, the A, B, 

and H antigens are complex fucosylated oligosaccharides present on endothelial cells and 

erythrocytes of all individuals of blood group A, B, or O, respectively [4]. The ABH 

antigens are also expressed in saliva, tears, and mucus secretions in the digestive tract of 

individuals who display the secretor phenotype, Se [5]. In addition, Lewis epitopes, that 

are also fucosylated oligosaccharides, depend on the Lewis phenotype of the individuals. 

The biological role of the ABO and Lewis histo-blood group systems remains to be 

                                                        
1 Publication draft. A. Sarkar, J. Arnaud, A. Audfray, E. Gillon, D. Smith, S. Pérez, A. Imberty* & 
A.Thomas   (two first authors participated equivalently to this work). 
AS designed the method for the in silico docking experiments, modeled the oligosaccharides and contributed to the 
manuscript. 
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elucidated, but since 80s, several studies pointed out some correlations between the 

repartition of phenotype in population and the susceptibility to diseases [6, 7]. The most 

cited examples are the O phenotype presenting higher susceptibility towards cholera 

toxins [8, 9],  and for gastroenteritis caused by Norwalk virus [10].  

 

For secretor individuals, blood group related epitopes are also present in lung mucus. The 

nature of the oligosaccharides present in airways depends not only on ABO, Lewis and 

secretor phenotype but also on long-term inflammatory diseases such as chronic 

bronchitis and cystic fibrosis (CF). More particularly, fucosylated glycoconjugates, which 

are present in higher quantity in mucins [11] and N-glycans [12] of CF lungs,  appear to 

be the target for lectins from pathogenic bacteria that are responsible for morbidity and 

mortality in CF patients. Soluble lectins with high affinity for human fucosylated 

oligosaccharides have been identified in Pseudomonas aeruginosa and bacteria from the 

Burkholderia cepacia complex such as B. cenocepacia and B. ambifaria [13-15]. LecB 

from Pseudomonas aeruginosa is a tetrameric protein that displays an unusually strong 

micromolar affinity to L-fucose in a tight binding site which requires two Ca2+ ions [16, 

17]. BambL from Burkholderia ambifaria is a trimeric lectin arranged in a β-propeller 

fold with two similar binding sites per monomer, resulting in an hexameric arrangement 

of fucose binding sites [13]. Previous specificity studies indicate that both lectins bind to 

a large variety of fucosylated oligosaccharides, with LecB having higher affinity to Lewis 

A epitope [18] and BambL to H-type2 epitopes [13]. A third fucose-binding bacterial 

lectin of interest is the N-terminal domain of Bc2lC from B. cenocepacia. Bc2lC is an 

hexameric lectin, each of the monomer containing two domains with different specificity 

and oligomerisation state [19]. The N-term assembles as a TNFα-like trimer with strong 

specificity for H-type1 and Lewis Y oligosaccharides [15], while the C-term is a dimeric 

mannose-binding lectin [19].   
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Figure 7.1. Schematic representation of fucosylated trisaccharides and bacterial lectins used in 
the docking calculations (LecB, BambL and Bc2L-C-nt, from left to right). 
 

Bacteria utilize therefore various lectin topologies and fucose binding sites resulting in 

difference in specificity toward fucosylated oligosaccharides and therefore potentially 

towards human with different histo-blood group oligosaccharides. Molecular modeling 

can help in rationalizing these observed specificity differences. It can also help in 

designing glycocompounds that can compete with binding to human tissues.  Several 

such compounds have already been synthesized for targeting LecB [20-23]. 

Conformational analysis of histo-blood group epitopes [24, 25] demonstrated that these 

oligosaccharides can adopt a limited number of well defined conformations. The results 

of molecular docking studies of fucose and fucose-containing oligosaccharides have been 

published using a variety of computational approaches, in protein targets such as histo-

blood group antibodies [26, 27], virus capsid proteins [28] or bacterial lectins [29-31]. 

Good predictive fucose binding mode in the LecB lectin was achieved using several 

docking algorithms, even though the presence of two bridging calcium ions in the binding 

site was computationally challenging [29-32].  

 

In this paper, the structural recognition between a series of fucosylated oligosaccharides 

representative of histo-blood group oligosaccharides (Figure 7.1A) and three fucose-
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binding lectins namely BambL, Bc2L-C-Nter and LecB (Figure 7.1B and 7.1C) is 

investigated using computational approaches so as to gain a greater insight into the 

atomic interactions between the glycan and the lectins. The binding of the fucosides was 

estimated through molecular docking calculations. The different low energy 

conformations of the histo-blood group oligosaccharides have been taken from a recently 

developed structural database BiOligo.  The theoretical calculations presented in this 

paper are compared to the semi-quantitative binding data derived from glycan array 

screening and with thermodynamic data determined from titration microcalorimetry 

experiments.  

 

Materials and Methods 

 

Molecular docking  

Preparation of ligands and proteins 

The three-dimensional (3D) structures of the low energy conformations of the 

oligosaccharides were taken from the BiOLigo database 

(http://glyco3d.cermav.cnrs.fr/bioligo).  BiOLigo is a database for 3D structures of 

glycan determinants that contains about 250 entries of bioactive oligosaccharides, 

accompanied by a total of 200 disaccharides and monosaccharides of interest, which are 

represented by ~1200 conformers (A. Sarkar, A. Rivet & S. Pérez, manunscript in 

preparation). Coordinates of low-energy conformers (2 to 4) of each of these 

oligosaccharides were taken from the database. They have been determined using high 

accuracy molecular mechanics force-field coupled to genetic algorithm implemented on a 

high performance computing meso-center [33]. Details of the starting conformation are 

listed in Table 7.1. 
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Table 7.1: Glycosidic linkage conformations for all starting model of oligosaccharides. The 
torsion angles about a glycosidic 1x linkage are Φ / Ψ, with Φ = O5-C1-O1-Cx and Ψ = C1-O1-
Cx-Cx+1. 
 Conf. H-type 1 H-type 2 A-tri B-tri Lea LeX 

Fucα1-2Gal 

1 -80 / -96 -79 / -94 -95 / -167 -95 / -167   

2 -97 / -168 -95 / -169 -69 / -87 -70 / -89   

3 -104 / -166 -76 / -89 -89 / -176 -88 / -176   

Fucα1-

3GlcNAc 

1      -78 / 150 

2      -151 / 92 

Fucα1-

4GlcNAc 

1     -79 / -98  

2     -104 / -167  

Galβ1-

3GlcNAc 

1 -74 / 137    -76 / 142  

2 -89 / 67    -64 / 172  

3 -64 / 169      

Galβ1-

4GlcNAc 

1  -76 / -113    -75 / -104 

2  -88 / -178    -77 / -102 

3  -80 / 64     

Galα1-3Gal 

1    73 / 77   

2    74 / 67   

3    91 / 177   

GalNAcα1-

3Gal 

1   72 / 78    

2   71 / 68    

3   90 / 175    

 

Crystal structures of three lectin/carbohydrate complexes were taken from the Protein 

Data Bank [34] and used as starting point, namely LecB/fucose (code 1GZT), BambL/H 

type 2 (code 3ZZV) and BC2L-C-nt / fucoside (code 2WQ4). In all protein-carbohydrate 

complexes, the hydrogen atoms were built assessing a pH of 7 with the Protein 

Preparation wizard within the Schrödinger Suite 2012 (Schrödinger Inc., L.L.C. New 

York, NY).  Histidine residues were treated as neutral. The two calcium ions present in 

the binding site of LecB were kept in the procedure. No crystallization water molecules 

were considered.  A standard energy minimization was performed using the Impref 

algorithm using the OPLS2005 force field [35] with a convergence of heavy atoms to a 

0.30Å RMSD. 

 

Docking Calculations  

The docking calculations were performed using the program Glide version 5.8 in Simple 

Precision [36] from the Schrödinger Suite 2012 (Schrödinger Inc., L.L.C. New York, 
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NY). For each lectin, the binding site was defined on the basis of the crystallographic 

structures with the bonded ligands. For BambL, that has two fucose-binding sites per 

chain, with high similarities, the intramolecular site was selected. The box side was set to 

14 Å in all directions centered on the ligand. During the grid generation, the parameters 

for van der Waals radii scaling was scaled by 1.00 for atoms with partial charges less 

than 0.25. The ring conformational sampling was not allowed and no other constraints 

were defined. During the docking procedure, the OPLS2005 partial atomic charges were 

assigned to the ligands. The parameters for van der Waals radii scaling in docking was set 

at 0.80 for atoms with partial charges less than 0.15. Ligand poses were clustered within 

RMSD less than 0.30 Å and within maximum atomic displacements less than 1.3 Å. Up 

to 10,000 poses were set to be retained for the initial phase of the docking upon the Glide 

runs, and submitted to energy minimization. A distance dielectric constant of 4 was used. 

After the docking procedure, up to 1,000 poses with the best score were saved and used 

for further analysis. Docking results were analyzed using the Glide pose viewer included 

in MAESTRO (Schrodinger, Inc., N.Y.). The RMSD between crystal and docked 

structures were measured considering all the heavy atoms of fucose. All the values were 

determined using MAESTRO and the ‘Superpose in place’ command.   

 

Specificity and affinity experiments 

Material  

Human histo-blood group oligosaccharides were purchased from Elicityl (Crolles, 

France). The three bacterial lectins were produced recombinantly in E. coli as previously 

described for LecB [17], BambL [13] and BC2LC-nt [15].  

Glycan array 

Purified LecB and BC2L-C-nt lectin samples were labeled with Alexa Fluor 488-TFP 

(Invitrogen, CA) according to manufacturer’s instructions and re-purified on a D-Salt 

polyacrylamide-desalting column (Pierce, Rockford IL). Alexa-labeled proteins were 

used for glycan array screening with standard procedure of the Core H of the Consortium 

for Functional Glycomics (http://www.functionalglycomics.org, Emory University, 

Atlanta, GA, USA).  The labeled lectins were assayed on version 4.1 of the CFG glycan 
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array comprising 465 natural and synthetic glycans and the data were analyzed in a dose-

dependent manner as previously described [37] at 10, 1 and  0.1 µg ml-1 of LecB and  1, 

0.2 and 0.05 µg ml-1 of Bc2L-C-nt and BambL dissolved in 20 mM HEPES, 140 mM 

NaCl, 5 mM CaCl2, pH 7.5.  

 

Isothermal Titration Calorimetry (ITC)  

Recombinant lyophilized LecB was dissolved in buffer (20 mM Tris/HCl pH 7.5, NaCl 

150 mM) and degassed. Protein concentration was checked by measurement of A280 by 

using a theoretical molar extinction coefficient of 6990 M-1 cm-1. Carbohydrate ligands 

were dissolved in the same buffer, degassed and loaded in the injection syringe. ITC was 

performed with a ITC200 microcalorimeter (MicroCal Inc.). Lectin solution was placed 

in the 200 µl sample cell, at 25°C. Titration was performed with 20 of 2 µl injections of 

carbohydrate ligands every 300 s. Data were fitted with MicroCal Origin 7 software, 

according to standard procedures. Fitted data yielded the stoichiometry (n), the 

association contant (Ka) and the enthalpy of binding (ΔH). Other thermodynamic 

parameters (i.e. changes in free energy, ΔG, and entropy, ΔS) were calculated from the 

equation ΔG=ΔH-TΔS= -RTlnKa in which T is the absolute temperature and R=8.314 J 

mol-1 K-1. Two independent titrations were performed for each ligand tested. 

 

Results 

Specificity of the three bacterial lectins 

The fine specificity of the three bacterial lectins of interest was checked using glycan 

array v4.1 from the Consortium for Functional Glycomics. The overall glycan array data 

for BambL were described previously [13] and the ones for LecB and BC2L-C-nt are 

available from the CFG web site (http://www.functionalglycomics.org/). Briefly, BambL 

and BC2L-C-nt only attached to the oligosaccharides presenting at least one fucose 

residue, whereas LecB displays also some affinity towards mannose-containing glycans. 

In order to set up a comparison with the docking results, binding data were analyzed by 

selecting only glycans having one fucosylated epitope at the non-reducing position.  This 

resulted in data for 53 glycans with three lectins at three concentrations (see Table S1, S2 

and S3 in Annex IV: Supplementary Material for Screening specificity by docking and 



128  Screening specificity by docking and glycan array 
 

 

 
glycan array).  The different concentrations gave very consistent data, and only the 

results corresponding to one lectin concentration are given in Figure 7.2 with a selection 

of the histo-blood groups of interest for the present investigation. 

 

Figure 7.2: Selected data from the glycan array v4.1 experiment performed on three bacterial 
lectins. Only fluorescent results for biding to terminal fucosylated epitopes presented in 
monovalent manner on glycans have been selected. Blue bar: average value with standard 
deviation, red bar: maximum response observed. 
 

Very different binding patterns are observed for the three bacterial lectins. The glycan 

array for LecB confirms its preference for Lewis A epitopes with higher affinity for the 
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sialylated form (only one glycan on the array). H-type 2 is also a strong ligand, while 

other fucosylated glycans give moderate but significant labeling, except for A-type 1 and 

B-type 1 that are negative. BambL was described previously as a fucose-binding lectin 

with broad specificity [13] and the present analysis confirms its preference for H-type 2 

and Lewis Y oligosaccharides. BC2L-C-nt has the narrowest specificity among the three 

lectins since, among the selected epitopes, it binds only to the ones that contain the 

Fucα1-3Galβ1-3GlcNAc motif, i.e. H type 1 and Lewis B. It should be noted that it also 

binds, albeit less strongly to H type 3 (Fucα1-3Galβ1-3GalNAcα) that is not present in 

Figure 7.2 but listed in Annex IV: Supplementary Material for Screening specificity by 

docking and glycan array. 

 

Docking calculations 

The strategy for docking was first validated by docking the α-methyl fucoside into the 

binding site of BambL and LecB. In both cases, the “glide-score” which approximates the 

ligand binding free energy, indicated a very favorable interaction and indeeed the 

resulting pose was in good agreement with the location of the monosaccharide in the 

corresponding crystal structures of lectin complexes. It should be noted that the fit 

between the predicted and observed location of fucose is better for BamBL than for LecB 

(Figure 7.3). Indeed the presence of the two calcium ions in the binding site of LecB 

presents a difficult challenge for docking calculations [31]. 

Figure 7.3: Docking of α-methyl fucoside in the binding site of BambL and LecB. The protein 
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model is represented in red with docked ligand as sticks. The crystal structures of BambL/fucose 
(3ZW0) and LecB/fucose (1GZT) are represented in green with ligands as lines. 
 

Six histo-blood group fucosylated trisaccharides were selected for the docking procedures 

to two different lectins (calculations with Bc2LC-nt are in progress and will be included 

in the submitted version of the manuscript). In each case, between 2 to 3 starting 

conformations were used for the oligosaccharides, as selected from BiOligo database. By 

default, the Glide program would frequently invert carbohydrate rings so this option was 

disabled. For all trisaccharides, a good sampling was observed. The conformation with 

the best “glide-score” was selected for each run and the data are reported below. 

 

Table 7.2: Docking results obtained for six fucosylated trisaccharides with BambL lectin. 

  Glide 
Score 

Glide 
Energy 

Φ Ψ Φ Ψ O3…W79.NE1 O5…ARG15.NH2 

H type 1     Fucα1-2Gal Galβ1-3GlcNAc     

Conf_3 -4.9 -40.2 -110 -123 -48 149 2.7 2.6 

Conf_2 -4.5 -40.0 -104 -121 -24 113 3.0 2.6 

Conf_1 -4.3 -38.0 -97 -114 -56 144 3.0 2.6 

H type 2     Fucα1-2Gal Galβ1-4GlcNAc     

Conf_1 -4.7 -41.5 -115 -140 -64 -108 2.9 2.8 

Conf_2 -4.7 41.1 -117 -153 -68 -101 3.2 2.8 

Conf_3 -4.7 -41.9 -115 -142 -65 -108 2.9 2.8 

A tri     Fucα1-2Gal GalNAcα1-3Gal     

Conf_1 -3.8 -33.7 -85 -148 62 71 3.0 2.6 

Conf_3 -3.7 -33.8 -81 -129 65 66 6.4 3.1 

Conf_2 -2.9 -28.1 -83 -136 67 74 2.9 2.9 

B tri     Fucα1-2Gal Galα1-3Gal     

Conf_1 -3.9 -37.9 -114 61 58 54 3.1 2.8 

Conf_2 -3.5 -35.7 -120 52 128 135 3.0 2.8 

Conf_3 -3.5 -32.3 -83 -132 59 70 2.9 2.9 
Lewis a     Fucα1-4GlcNAc Galβ1-3GlcNAc     

Conf_2 -4.3 -40.6 -99 -162 -54 179 3.1 2.8 

Conf_1 -2.6 -26.4 -76 -98 -67 134 10.0 8.0 
Lewis X     Fucα1-3GlcNAc Galβ1-4GlcNAc     

Conf_2 -3.2 -33.5 -103 106 -67 -88 2.9 2.9 

Conf_1 -2.5 -32.1 -85 142 -68 100 12.6 6.6 
Glide Score: an empirical scoring function that approximates the ligand binding free energy (kcal/mol) 
Glide Energy: glide evdw + glide ecoulomb scores (kcal/mol) 
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The results for docking six fucosylated oligosaccharides in BambL binding sites are listed 

in Table 7.2. As expected, the use of several different conformations for the 

oligosaccharides has a favorable effect on the docking procedure, since in many cases, 

the starting lowest energy conformation (conf1) is not always the one that produces the 

best docking “glide-score”. In some cases all different starting conformations converged 

to the same docking pose (see H type 2) whereas in others, variable poses were obtained. 

In all cases, but two, the fucose is correctly bound in the main binding sites, as checked 

by the occurrence of two hydrogen bonds (Table 7.2). Close inspections of the results 

indicate that the conformation of the monosaccharide ring is preserved, and that all the 

conformations at the glycosidic linkages belong to the low energy regions of the 

corresponding disaccharide segments. On rare occasions, the cis conformation of the N-

acetyl substituent is found. At the present time, the reasons underlying the occurrence of 

such an unusual conformation have not been identified; to which extent this finding 

indicates a flaw in the energy parameterization, or a transient, but still valid 

conformational state remains to be scrutinized.  

 

When comparing the docking results with available crystal structures of BambL 

complexed with oligosaccharides, the conformation and positions of best “glide-score” 

for H-type 1 and H-type 2 trisaccharide display good agreement between theoretical and 

experimental binding modes (Figure 7.4). The agreement is not as good for blood group 

B oligosaccharide, but it has to be noted that in the crystal structure, the tetrasaccharide 

has to adopt a constrained shape because of the branching point, that is not required for 

the trisaccharide used in the docking procedure. Interestingly, Lewis A and Lewis X 

trisaccharides, that display only moderate affinity for BambL do not bind in their lowest 

energy minimum (conf 1 in Table 7.1). Indeed this rather rigid low energy conformation 

correspond to the crystal structure of Lewis X [38] and to the solution conformation with 

stacking of galactose and fucose ring. Such arrangement is not possible in the binding site 

due to the shape of the fucose-binding pocket and a distorted shape is predicted.  
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Figure 7.4: Docking of six fucosylated oligosaccharides in the binding sites of BambL. The 
docking pose with best “glide-score” is represented in red for all oligosaccharides. For the blood 
group B trisaccharide, the second best orientation is represented in yellow. Comparison with 
crystal structures is performed with same oligosaccharide when available (H type 1: 3ZW1, H 
type 2: 3ZZV, blood group B tetrasaccharide: 3ZW2) or elsewhere with fucose (3ZW0), always 
represented as green line. 
 

When compared to glycan array, the general agreement is good with higher score for H-

type 2 than for blood group oligosaccharides, and weaker one for Lewis X. However, H-

type 1 and Lewis A have higher score than expected from the glycan array.  

 

The results for docking of six fucosylated oligosaccharides in LecB binding sites are 

listed in Table 7.3. The position of the fucose in the binding site is evaluated by the 

distance between its oxygen atoms and the two calcium ions, since in the crystal 

structure, these atoms are directly coordinated with distances between 2.5 and 2.6 Å. It 
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can be seen that in most cases, the fucose is well located, although not as deeply buried in 

the binding site as it is in the crystal structure. 

 

Table 7.3: Docking results obtained for six fucosylated trisaccharides with LecB lectin. 

  Glide 
score 

Glide 
Energy 

Φ Ψ Φ Ψ O2…Ca1 O4…Ca2 

H type 1     Fucα1-2Gal Galβ1-3GlcNAc     

Conf_2 -5.1 -47.2 -156 -168 -48 129 2.8 3.0 

Conf_3 -3.7 -38.9 -73 70 -48 142 2.8 2.9 

Conf_1 -3.2 -36.6 -90 -173 40 120 2.7 4.5 

H type 2     Fucα1-2Gal Galβ1-4GlcNAc     

Conf_2 -4.0 -42.4 -104 -173 22 -153 2.8 3.8 

Conf_3 -3.8 -32.8 -72 -90 -77 60 2.6 3.2 

Conf_1 -3.6 -33.8 -92 -75 -68 -107 2.7 3.1 

A tri     Fucα1-2Gal GalNAcα1-3Gal     

Conf_3 -3.9 -41.0 -76 -132 96 160 3.5 2.6 

Conf_2 -3.1 -36.7 -52 -77 82 68 2.9 3.8 

Conf_1 -2.9 -30.3 -84 117 91 76 2.6 3.7 

B tri     Fucα1-2Gal Galα1-3Gal     

Conf_1 -3.2 -35.2 -71 -93 47 53 3.7 2.6 

Conf_2 -3.2 -36.0 -72 105 78 153 10.3 11.8 

Conf_3 -3.1 -31.4 -79 -134 75 -139 3.9 2.7 
Lewis A     Fucα1-4GlcNAc Galβ1-3GlcNAc     

Conf_1 -4.5 -44.4 -152 -153 -54 169 2.7 3.1 

Conf_2 -3.0 -35.5 -80 -97 23 -77 2.7 3.1 
Lewis X     Fucα1-3GlcNAc Galβ1-4GlcNAc     

Conf_2 -3.8 -40.8 -78 17 -51 86 2.7 3.1 

Conf_1 -3.2 -41.2 -69 -12 -84 -97 2.7 4.9 
Glide Score: an empirical scoring function that approximates the ligand binding free energy (kcal/mol) 
Glide Energy: glide evdw + glide ecoulomb scores (kcal/mol) 

 

In this case, no much convergence from different starting conformations is observed. 

Each starting low energy conformation leads to different poses; some of them exhibit 

large variations between the initial shape and the final one. All the conformations at the 

glycosidic linkages belong to the low energy regions of the corresponding disaccharide 

segments (energy maps are given in Annex IV: Supplementary Material). LecB has been 

cocrystallized with Lewis A [18] and in the crystal structure, the trisaccharide adopts the 

solution structure with the lowest energy conformation, characterized by stacking of 

galactose and fucose. The docking procedure used in the present study does not 
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reproduce this conformation. The best pose exhibits a different orientation at the Fucα1-

2Gal linkage, which results in a different conformation for the trisaccharide. However, in 

the case of the Lewis and blood group oligosaccharides the docked conformations in the 

combining site retain lowest energy conformation of the oligosaccharides. While being 

tempted to conclude at a successful level of prediction, it seems wiser, in the absence of 

reproduction of the binding mode of Lewis A, to reinvestigate further the computational 

protocol. This investigation is on-going.  

 

Figure 7.5: Docking of six fucosylated oligosaccharides in the binding sites of LecB. The 
docking pose with best “glide-score” is represented in red for all oligosaccharides. Comparisons 
with Lea trisaccharide and fucose monosaccharide are represented with green lines from 
corresponding crystal structures (1GZT and 1W8H). 



Chapter 7  135 
 

 

Titration microcalorimetry 

For BambL, the docking modes and “glide-scores” obtained are in general agreement 

with the binding data from the glycan array: some of the divergences observed may be 

attributed to the presentation and/or to the multivalency on the chips. Thermodynamic 

data are available in the literature for BambL [13] and BC2LC-nt [15]; the ones for LecB 

have been measured. 

 

Table 7.4: Titration microcalorimetry data for the interaction between BambL, LecB, BC2LC-nt 
and fucosylated ligands (all energies in kJ/mol). All data have been measured at least twice and 

standard deviations are below 15% 
 

a 
from ref [13]

 

b 
from ref [15]

 

c 
from ref [15]

 

 

In the present state of calculations, the docking results obtained with LecB are not of a 

sufficient quality to be tested against thermodynamic data. The energy validation has 

therefore been performed only using BambL data obtained previously with a variety of 

oligosaccharides [13]. 

  BambL a LecB  BC2LC-nt b 

Ligand  KD 

(μM) 

‐ΔG 

 

−ΔH 

 

KD 

(μM) 

‐ΔG 

 

−ΔH 

 

KD 

(μM) 

‐ΔG 

 

−ΔH 

 

H-type1-tetra 26.1 26.2 17.6          77.2 23.5 23.0 

H-type1 tri       1.39 33.4  32.0 77.2 23.5 23.0 

H-type 2-tetra 7.5  29.3 44.4  0.48 36.1  39.3  213 16.6 24.9 

A-tri 0.46 36.0 53.1  10.3 28.5 25.2    

A- type 2 (penta) 120 22 13.7       

B- type 2 (penta) 95.3 23 25.9 15.5 27.4 40.0    

Lea-tric    0.21 38.1 35.0  132 22.1 48.1 

Lea-tetra 18.2 27.1 28.7  0.20 38.2 49.1    

LeX-tric    3.44 31.1 22.3 196 21.2 38.7 

LeX-tetra 34.8 25.4 39.1  1.15 33.9 30.8    

Sialyl Lea tetra    0.29 37.3 38.9    

Sialyl Lex penta    1.47 33.3 52.6    
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Both glide score and glide energy of binding can be compared with microcalorimetry 

data. For the experimental part, both enthalpy and free energy of binding are of interest. 

The free energy is the most interesting one since it is the direct evaluation of affinity, 

while the enthalpy of binding is expected to correlate better with calculated energy of 

binding. All correlations are displayed in Figure 7.6. 

 

Figure 7.6: Attempts to correlate experimental data (ΔH and ΔG) obtained for the interaction of 

BambL with a series of oligosaccharides and the experimental data (Glide score and Glide 

energy) obtained from docking. 

 

Interestingly, the glide data do not correlate well with the enthalpy of binding, resulting 

in scattered plots. The correlation with the free energy of binding is clearly better. The 

best correlation is obtained when comparing glide score and free energy of binding from  

ITC experiment (R2= 0.55)  indicating therefore that the glide score has predictive value 
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for affinity between lectin and oligosaccharides. Only Lewis x trisaccharide is clearly out 

of the range. Its ommission from the data sets  yields a R2  value of 0.86. Thes data 

should be however considered as very preliminary since experiments were in general 

conducted on  oligosaccharides longer than the ones that are used for the docking (i.e. H 

type1 tetrasaccharide instead of H-type 1 trisaccharide). Since BambL has a narrow 

binding site with preference for short glycan, this can influence the ITC data. 

 

Conclusions 

The development of a fast and easy docking protocol would be very useful for analysing 

the large amount of binding data generated by glycan array. Once the high affinity 

oligosaccharides are identified, it is of high interest to determine in which orientation and 

conformation they are bound to  the lectin, in order to develop glycocompounds that can 

block protein/glycan interaction in pathological process. This approach would also be 

useful for designing lectin mutants with highest specificity for targeted glycan of 

biological interest. Molecular dynamics simulation with explicit water environment is of 

course well suited for calculations of free energy of binding. However, the combined use 

of database of  oligosaccharides conformation associated with fast docking procedure 

appears as a  medium-throughput screening approach for the analysis of glycan array 

data. 
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GENERAL CONCLUSIONS  
Glycans are vital to all cells in every living species. These special biomolecules decorate 

the cell surface and modulate several cellular functions. Glycans can be analogized to 

identity badges containing access codes to enter cells or cellular organelles. Depending 

upon which side of the gate they are on they can have beneficial or harmful effects for the 

host. Considering that the human genome comprises a much smaller number of genes 

than previously anticipated, glycans (and lipids) provide the additional empowerment to 

the cell to adapt to changing environments and pathogen attacks. Approximately 2% of 

human genes are associated with glycosylation, known from large-scale sequencing and 

gene function predictions.  

 

A lot of effort has been invested in deciphering the 3D coordinates of glycans, and 

especially polysaccharides; yet, these valuable data are not readily accessible to the 

community and lie hidden in literature. As in proteomics and genomics, the speed of 

advancement in glycomics is dependent upon the development of specific bioinformatics 

data repositories to start with, to make all assimilated data easily accessible, to have a 

global vision of what has been achieved and what remains to be done to complete the 

puzzle of molecular machines. Towards this end, for polysaccharide structures, atomic 

coordinates were sourced from the literature, from techniques such as X-ray 

crystallography, neutron diffraction, electron diffraction, nuclear magnetic resonance 

(NMR) and molecular modeling, to extract data about the asymmetric unit of the cell 

content. The extracted data was converted to either fractional or Cartesian coordinates to 

generate the atomic coordinate files in standardized representations of Protein Data Bank 

(PDB) or Mol2 (SYBYL) formats. The files were generated using an in-house PHP script 

called PDBGenerator, developed for the construction of PolySac3DB, which was 

designed to convert fractional and cylindrical/polar coordinates to PDB format. Further, 

this data was used to generate helical/expanded forms of the unit cell structures. The 3D 

atomic coordinates thus collected or generated were classified into 18 families of well-
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recognized polysaccharide classes. They were then organized into a relational database, 

PolySac3DB, that provides, besides atomic coordinates, other related information about 

the polysaccharide structure such as the diffraction diagrams, linkages present, space 

group, the unit cell parameters, type of helix (since the majority of the data assimilated 

were from diffraction experiments), link to the abstract, and bibliographic references. The 

3D coordinates were made available for viewing (and basic manipulation via Jmol) and 

download. PolySac3DB is a compilation of scientific research, covering almost 50 years 

of work in carbohydrate science. PolySac3DB is hosted at CERMAV_CNRS (Centre de 

Recherches sur les Macromolecules Vegetales) and shall be regularly updated with new 

structures that match the scope of this database. 

 

Perception and protection are the primary functions of the cell wall. In E. coli, the multi-

layered cell wall forms the first line of defense against environmental dangers. It is 

composed of a lipid bilayer decorated with special lipids called lipopolysaccharides 

(LPS). Our immune system actually uses these LPS to identify bacteria when they try to 

invade our bodies. Antibodies recognize these LPS and mobilize our defenses to fight 

infection. The O-antigenic polysaccharides of E. coli O5ac and O5ab have emerged as 

new pathotypes of persistent infantile pediatric diarrhea and now have also been detected 

to cause infection in adults. The O-antigenic polysaccharide present in the LPS of E. coli 

O5ac and O5ab are positional isomers with the difference lying in the substitution pattern 

of one monosaccharide of the tetrasaccharide biological repeating unit. The O-antigenic 

cell surface polysaccharides of E. coli O5ac and O5ab were studied to understand their 

immunochemical similarities and also the shape of the polysaccharide that generally has a 

direct influence on its biological function. Using molecular modeling, the oligosaccharide 

biological repeats were built and their conformational energy hypersurface was sampled. 

Viable models were selected based upon their energy. Further, validation was performed 

using high temperature molecular dynamics (MD) simulations, and torsion angle 

functions of the constituting disaccharide segments were plotted and matched with the 

models generated. Finally, NMR experiments were carried out for both the samples and 

the models were found to be in close agreement to the experimental results. The models, 

which were the best represented in the NMR analysis of the polysaccharide samples were 
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selected for the construction of the polysaccharide models. Both O5ac and O5ab (models 

with four biological repeats) were found to have 2-fold helices that had a common pattern 

of arrangement of the monosaccharides on it. In both cases, the α-D-GalpNAc residue 

was found to be located on the inside of the helix, and external accessibility was curtailed 

by the N-acetyl moiety of β-D-Quip3NAc. Further, analysis on molecular models of eight 

repeating biological repeats revealed that in both cases the same epitope is exposed to the 

surface and corresponds to the β-D-Quip3NAc-(1→3)-β-D-Ribf-(1→4)-β-D-Galp 

fragment. This may be an indication to a common glycan epitope due to which antibodies 

cannot differentiate between O5ac and O5ab. Further, immunological validation is 

required to confirm this point.  

O1303 is another E. coli strain that is one of the prime causative agents in mastitis, a 

major disease in dairy herds, which causes considerable loss to the dairy industry every 

year. Here again, the LPS of O1303 is suspected to play a crucial role during infection. 

Comparative sequence analysis of the O1303 with the O5 serotypes shows a close 

resemblance between the two. O5ab differs from O1303 in just one monosaccharide  

(β-D-Ribf instead of α-L-Fucp, respectively), while O5ac has an additional difference in 

the glycosidic linkage connecting two biological repeat units. Conformational analysis of 

the oligosaccharide fragments were carried out using a genetic algorithm as employed for 

the investigations on O5ac and O5ab. In addition, Φ/Ψ energy maps were generated and 

used for validation of the models. The latter were then used to guide the construction of 

polysaccharide chains. The polysaccharides of O1303 and O5ab, both formed 2-fold 

helices had a comparable helix pitch, though the shape of the helix was observed to 

differ. Yet, a similar trend of the α-D-GalpNAc residue lying in the interior of the helix 

was observed, with a guarded accessibility due to the N-acetyl group of the β-D-

Quip3NAc. Unfortunately, sufficient quantities of the O1303 sample were not available 

for NMR experiments. Further investigations with NMR or other biophysical methods 

accompanied by immunological tests shall be useful in elucidating the cross-reactivity 

between the strains.  

 

The flexibility of glycan 3D structures is a blessing for the cell, but a bottleneck for 

glycobiology to correctly characterize them. Moreover, experimental procedures are also 
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constrained by the availability of sufficient amounts of glycan samples to conduct tests 

on them. Molecular modeling in glycoinformatics is a way to overcome this hindrance. 

Using this as a high-throughput technique would lead to the rapid generation of 

dependable 3D coordinates that can be used to aid experimental techniques (for 

validation and further exploration) as well as other simulations to understand the multi-

faceted roles of glycans. Towards this goal, the 3D structures of mono-, di- and 

polysaccharides have been modeled during the course of this thesis. This employs a 

genetic algorithm based upon the concepts of Lamarkian evolution. The theory centers on 

the idea of acquired characteristics and the inheritance thereof. It assumes that 

complexity of organisms increases over time and there is a direct transmission of 

phenotypic traits from parents to offspring. The method for conformational sampling 

used during the course of this thesis, considers one conformation to be one individual 

within a population of conformations that is generated from the starting structure. The 

torsion angles are the inheritable traits depending upon whether the conformation energy 

is feasible to adopt a stable state. On this basis, more than 400 glycan determinants 

including bioactive oligosaccharides and several of their constituting lego blocks have 

been generated. The results have been organized into a relational database, BiOligo (and 

its sub-set of constituting di- and monosaccharide fragments, called GlycoLego), 

containing information about the most stable representatives of the families of low energy 

conformers. Other searchable fields in this database include the trivial name, constituent 

type (mono-, di- or oligosaccharide), category into which the entry is grouped in BiOligo 

and the molecular weight. The 3D structures are available for viewing and basic 

manipulation via Jmol and can also be downloaded. The entries included in this database 

are known glycan determinants characterized already by X-ray crystallography, nuclear 

magnetic resonance (NMR), other biophysical methods as well as glycan arrays. The 

structures provided can be used in deciphering binding data from glycan arrays, and 

providing realistic starting conformations to be used in molecular dynamics (MD) 

simulations, molecular docking of oligosaccharides with proteins or nucleic acids and 

improving the resolution of the structures of glycoproteins, in particular with small angle 

X-ray scattering (SAXS) experiments. BiOligo is an open source database provided to the 
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scientific community that shall be updated with new glycan determinants being 

identified. 

 

A static picture of glycosylation is, however, not sufficient to reflect dynamic 

developmental and disease-related fluctuations that are critical factors in the final shaping 

of oligosaccharide conformations. Bacterial infection, for example, often occurs by the 

specific recognition of the host epithelial surface by glycan binding proteins that are 

virulence factors with major roles to play in invasion and adhesion initiation. As host 

glycosylation varies between tissues, species, cell types, developmental stage, 

physiological condition of the cell etc., pathogenic bacteria mirror this variability in the 

host glycan as a function of time and space to escape the host’s defense mechanism and 

penetrate the host cell surface. The structural recognition between various low energy 

fucosylated oligosaccharide conformations of histo-blood group oligosaccharides 

(derived from BiOligo) and the fucose binding lectins of Pseudomonas aeruginosa 

(LecB) and Burkholderia ambifaria (BambL) [calculations for Burkholderia cenocepacia 

(Bc2lC-n-ter) are still in progress] were studied using molecular docking. The theoretical 

calculations presented in this work compared well with glycan array data for BambL, in 

general, except for two oligosaccharides (H type 1 and Lewis A). In case of LecB, the 

fucose is well-placed (evaluated by the distance between its oxygen atoms and the Ca
2+

 

ions) in the binding site of the docked complexes though not as deeply buried as observed 

in the crystal structure. However, in case of LecB, the docking calculations do not 

reproduce the stacked galactose and fucose conformation as recorded in the crystal 

structure with this ligand. The best pose exhibits a different orientation at the Fuc-α12-

Gal linkage. For the Lewis x and blood group oligosaccharides, however, the docked 

conformations retain their low energy conformations. The docking with LecB is being re-

calculated to reproduce the binding mode observed in the crystal structure of Lewis a and 

only then the docking scores could be considered for comparison with thermodynamic 

data. For BambL, the docking scores are in general agreement with the binding data from 

glycan arrays. These results are still at a preliminary stage and need more refinement for 

correlation. The experimental results are also preliminary as the oligosaccharides are 

longer than the ones used for docking. 
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Glycan specificity is a crucial requirement for the plethora of cellular and sub-cellular 

interactions occurring all at the same time in an orchestrated fashion. In such a crowded 

setting it is very important for the substrate to find the right ligand conformation, 

ignoring all the other distractions that appear. This is achieved through a multi-point 

interaction filter for the correct recognition to occur through a perfect match of shape and 

chemistry. Thus, it is imperative to characterize glycan structure and functions to 

understand how they manipulate proteins, which are the work-horses of the cell, to help 

keep the cell in a robust healthy state, as well as to probe the aspects of when and why 

they fail to carry out their work efficiently - the sweet aspect of protein-carbohydrate 

interactions.  
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8.1 Introduction 

In Nature, carbohydrates form an important family of biomolecules, as simple or complex 

carbohydrates, either alone or covalently linked to proteins or lipids. Most of the earlier studies 

on carbohydrates focused on plant polysaccharides, such as cellulose, starch, pectins, etc., largely 

because of their wide range of applications. More recently, the role of carbohydrates in 

biological events has been recognized and glycobiology has emerged as a new and challenging 

research area at the interface of biology and chemistry. Of special interest are the carbohydrate-

mediated recognition events that are important in biological phenomena, which gives a pivotal 

role to the study of protein-carbohydrate interactions. Actually, the binding protein partners of 

carbohydrates encompass a wide variety of macromolecules involved in functions such as 

recognition, biosynthesis, modification, hydrolysis, etc. (Figure 8.1). 

 

 
Figure 8.1. Synopsis of the families of proteins interacting with carbohydrates, illustrated with examples 
from the Protein Data Bank (PDB) for Synthesis [1], Modifications (acetyltransferase [2]), Degradation 
by Glycosyl Hydrolases (a) On a single chain [3], (b) On a solid substrate [4], Carbohydrate Binding 
Modules (CBMs) [5-9], Transport [10], Interaction/Recognition (a) Lectin [11], (b) Anti-body [12], (c) 
Chemokines [13]. 
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Determination of the three-dimensional (3D) structural and dynamical features of complex 

carbohydrates, carbohydrate polymers, and glycoconjugates, along with the understanding of the 

molecular basis of their associations and interactions represent the main challenges in structural 

glycoscience [14]. 

 

Elucidation of the 3D structures and the dynamical properties of oligosaccharides is a 

prerequisite for a better understanding of the relationships between structures and functions, 

involving the biochemistry of recognition processes and the subsequent rational design of 

carbohydrate-derived drugs. Seemingly, the elucidation and the understanding of the different 

structural levels of polysaccharides are required to relate structure to properties. Ultimately, 

some polysaccharides are also carriers of biological information that can only be deciphered if 

their interactions with other biological macromolecules are understood. Unfortunately, 

oligosaccharides, either in their free form or as part of glycoconjugates, are inherently difficult to 

crystallize and structural data from X-ray studies are sparse [15]. In solution, the flexibility of 

certain glycosidic linkages produces multiple conformations which coexist in equilibrium. The 

use of several spectroscopic methods, with appropriate time resolution, is necessary for analysis 

of the conformational behavior of such molecules [16, 17]. As for polysaccharides, they differ 

from other biological macromolecules because the diffraction data that can be obtained are not 

sufficient to permit crystal structure determination based on the data alone. Hence, procedures 

for molecular modeling of carbohydrates and carbohydrate polymers have been devised as an 

important tool for structural studies of these compounds. Various molecular modeling methods 

have been developed [18] and have been widely used for the determination of oligosaccharide 

and polysaccharide conformations [19]. The progress made in algorithms and computational 

power allows for the simulation of carbohydrates in their natural environment, that is, solvated in 

water or in organic solvent, in concentrated solution. These developments along with their 

applications have been thoroughly reviewed in a previously published chapter [20].  

 

Carbohydrates, along with proteins and nucleic acids, constitute one of the central building 

blocks of life. The interactions between proteins and carbohydrates play a role in numerous 

biological processes such as protein specificity in antibody-antigen recognition, cell-cell 

adhesion, enzyme-substrate specificity, molecular transport, etc. They are critical to the onset, 
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detection, and, potentially, also the prevention of human diseases such as cancer. The 

interactions between proteins and complex carbohydrates such as polysaccharides are also 

involved in the biosynthesis and biodegradation of the major raw materials on Earth. 

Experimental assessment of the carbohydrate-recognition by X-ray crystallography is impeded 

by difficulties of co-crystallizing proteins and carbohydrates. Nevertheless, highly resolved 

protein-carbohydrate complexes gathered from X-ray synchrotron investigations have 

accumulated to the point where it has been possible to compare the experimentally derived 

structures with those predicted from computational methods. Some general features governing 

the protein-carbohydrate interactions have been derived, and computational tools have evolved 

and improved accordingly. These tools provide efficient ways to increase our understanding of 

the different contributions to the binding energy. These developments allow searching the 

conformational space efficiently and yield reliable estimates of the binding free energy. They 

allow to explore in silico cases where the experimental data are lacking, and provide sound 

structural information for a rational design of bio-active carbohydrates or carbohydrate mimetics. 

 

In this chapter we aim to review the significant contributions and the present status of the 

application of computational methods to the characterization and prediction of protein-

carbohydrate interactions.  

  

8.2 Specific features of carbohydrate modeling 

Carbohydrates have a potential information content that is several orders of magnitude higher 

than any other biological macromolecule. The diversity of carbohydrate structures results from 

the broad range of monomers (>100) of which they are composed and the different ways in 

which these monomers are joined (glycosidic bonds). Thus, even a small number of 

monosaccharide units can provide a large number of different oligosaccharides (also referred to 

as glycans), including branched structures, a unique feature among biomolecules. For example, 

the number of all possible linear and branched isomers of a hexasaccharide exceeds 1012 [21]. 

 

The carbohydrate recognition mechanism depends on (i) the sequence of the mono-saccharides 

in the glycan (i.e. glucose vs. mannose), (ii) the anomeric centers (i.e. α or β), (iii) the linkage 

positions (i.e. 1-3 vs. 1-4), and (iv) the chemical modifications to the core glycan (i.e. sulfation, 
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phosphorylation, methylation, acetylation, etc.). The strength of this interaction is also 

determined by the carbohydrate conformation and orientation with respect to the binding site.  

 

Carbohydrates and their derivatives possess many hydroxyl groups and thus a large number of 

rotatable bonds. Due to the many hydroxyl groups, these compounds are usually highly water 

soluble and their logP is often negative. The surface of carbohydrates and their derivatives is 

composed of hydrophobic and hydrophilic patches formed by nonpolar aliphatic protons and 

polar hydroxyl groups. This leads to anisotropic solvent densities around carbohydrate 

molecules. In aqueous environments, favorable interactions of water molecules with the 

hydrophilic patches result from electrostatic interactions and hydrogen bonding. Conversely, the 

interaction of water with hydrophobic surface patches is unfavorable. Such equilibrium between 

hydrophobic and hydrophilic patches forms the basis for such properties as carbohydrate 

solubility in water, or such functions as molecular recognition. 

 

Another essential feature of carbohydrates is their conformational flexibility [22]. Compared to 

drug-like molecules, carbohydrates are typically much more flexible. The relative orientations of 

two consecutive monosaccharide units in a disaccharide moiety are expressed in terms of the 

glycosidic linkage torsional angles Φ and Ψ around the glycosidic bonds which are defined as Φ 

= O5–C1–O–Cx and Ψ = C1–O–Cx–C(x+1) for a (1x) linkage (Figure 8.2). The energetically 

favorable conformations of a carbohydrate dimer may be easily shown on energy plots called (Φ, 

Ψ) maps which are somewhat similar to the Ramachandran plots used to visualize the backbone 

dihedral angles of the constituent amino acids in proteins. These plots feature multiple minima 

with the separating energy barriers being over 10-15 kcal/mol.  
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Figure 8.2. Molecular representation of the disaccharide (α-D-Glcp-(1-4)-β-D-Glcp) with the Φ and Ψ 
torsion angles shown on the glycosidic linkage. The potential energy surface shows conformational 
energy with respect to the Φ and Ψ torsion angles. The favored low-energy Φ/Ψ combinations are shown 
in light color, while the high energy regions are shown in red and the inaccessible regions are shown in 
white. The surface of the disaccharide is composed of hydrophobic (green) and hydrophilic (red) patches, 
formed by nonpolar aliphatic protons and polar hydroxyl groups.  
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However, carbohydrates in complex were found to adopt conformations belonging to different 

minima. These observations underline the necessity for thoroughly sampling the conformational 

space of carbohydrate oligomers during docking. While this may be feasible for glycosidic 

bonds, the number of degrees of freedom increases rapidly when, in addition to this, we take into 

account the orientation of the hydroxyl groups. 

 

8.3 Protein-carbohydrate interactions 

As with other types of macromolecular interactions, the formation of the complex is driven by 

favorable changes in enthalpy (ΔH) and entropy (ΔS). Thermodynamic measurements have 

indicated that the binding free energy of monosaccharide to proteins is quite small. ΔG increases 

in a significant manner whenever disaccharides or higher oligosaccharides are interacting with 

proteins. Whenever such proteins are interacting with carbohydrates, a high “avidity” is observed 

as a result of a multivalent effect. The binding free energy between a carbohydrate molecule and 

a protein partner (ΔG) is indeed the variable of interest to be assessed. It is assumed to be 

composed of independent contributions in terms of van der Waals forces, electrostatic 

interactions with or without encompassing hydrogen bonding, the hydrophobic effect etc. 

 

8.3.1 van der Waals and electrostatic interactions  

From the large number of hydrogen bond donors and acceptors present in carbohydrates, 

complex and dense networks of hydrogen networks with proteins arise. The complexity of such 

networks is enhanced by the competition occurring with the water molecules for hydrogen 

bonds. The overall enthalpic gain from hydrogen bonding may be counter-balanced by some 

entropic cost.  

 

8.3.2 CH/π Interactions  

These characterize the enthalpy of binding of carbohydrates to protein. It is defined as a type of 

hydrogen bond occurring between a hydrogen atom attached to a carbon and the π systems of 

arenes. Typically, this is a weak effect. Despite the full recognition of this effect, its computation 

requires a high level of theory and is not fully taken into account in the computational procedures 

[23].  
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As observed in many crystal structures of protein-carbohydrate complexes, aromatic residues of 

the proteins are often stacked against some faces of the carbohydrates. Such an arrangement 

results from the hydrophobic effect wherein small hydrophobic moieties of the solute induce an 

ordering of the water molecules at the solvent interface. The resulting decrease of the 

hydrophobic surface area induces a decrease in solvent ordering and a consequent favorable 

change in entropy. Alternatively, a non-classical hydrophobic effect has also be documented to 

occur in lectin-carbohydrate complexes, where the complex formation is driven by enthalpy due 

to favorable interactions between the solute forming the complex as well as favorable 

interactions between the solvent molecules [24, 25].  

 

8.3.3 Solvation-desolvation 

As a result of docking carbohydrates into proteins, the number of atomic contacts between ligand 

and protein is maximized and the subsequent structure is such that the carbohydrate lies more or 

less flat on the protein surface [26]. However, X-ray crystal structures show contradictory 

features, with carbrohydrate residues extending into the surrounding solvent. These structures 

might be correctly computed if the impact of solvation and desolvation on the binding free-

energy were properly taken into account.  

 

8.4 Force fields designed for carbohydrates 

To study carbohydrate structures and properties using molecular modeling techniques, molecular 

mechanics potential energy functions and parameters specific for this class of molecules are 

required. Appropriate force fields for carbohydrate systems have been created, with the aim of 

reproducing the particular effects that influence their global structural properties in solution [27]. 

The exocyclic hydroxymethyl group behavior is defined by the ω-angle (O5-C5-C6-O6) and its 

preference for gauche states can be reproduced by introducing scaling factors that slightly 

modify the 1-4 non-bonded interactions [28]. 1-4 non-bonded interactions define the influence, 

in terms of electrostatic and van der Waals potentials. 1-4 non-bonded interactions are not treated 

in the same manner in all force fields (Figure 8.3) and this could be a problem in simulating 

complex systems in which two different force fields have to be used. In these cases, the separate 

treatment of 1-4 non bonded interactions can assure a full compatibility among the force fields. 

The potential impact of choosing the 1-4 scaling factors often becomes irrelevant when glycans 
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bind to proteins because generally their freedom in the binding site is reduced. In literature, 

several reviews describe and compare the performance of carbohydrate force fields used in 

glycomodeling [29, 30]. 

 

Figure 8.3. Parameterization protocol comparison between the carbohydrate force-fields: GLYCAM06; 
GROMOS 45A4, CHARMM, OPLS-AA-SEI. 

 

To simulate the behaviour of carbohydrates in vacuo or in solution (e.g., to study ring puckering 

[31] or rotational barriers of oligosaccharides), either established force fields or special 

parameterizations may be used [32-36]. Such force fields allow investigation and prediction of 

the deformation of carbohydrate rings. These special force fields (as well as previously 

established ones) have been employed repeatedly for molecular dynamics simulations (MD) of 

protein-carbohydrate complexes [37, 38]. In some cases, the simulations were successfully used 

for estimating binding free energies [39-42]. 

 

Despite the many possible advantages of established force fields, they were not designed to 

predict binding free energies or enthalpies in protein-ligand docking. Since solvent molecules are 

usually modeled explicitly, force fields do not need to include extra terms for hydrophobic 

effects. The special CH/π interactions are not taken into account [43, 44].  

 

Some force fields do model hydrogen bonds explicitly, while others regard it as part of the 

electrostatic interaction. Irrespective of the approach, displacement of water molecules 

competing for hydrogen bonds is not accounted for. 
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Some force fields correlate well with ab initio calculations for ab initio optimized geometries 

[45]. A recent comparison of the results of ab initio and force field calculations underlines the 

difficulties in predicting binding enthalpies in protein-carbohydrate complexes using existing 

force fields; for example the stabilizing interaction energy for the interaction between fucose and 

tryptophan is heavily overestimated by the AMBER*1 force field [46]. 

 

GLYCAM06 is a widely used force field for modeling carbohydrates, glycoproteins, glycolipids, 

as well as for protein-carbohydrate complexes [34, 47]. It can be used for describing the physico-

chemical properties of complex carbohydrate derivatives and it is fully compatible with the 

AMBER force field. Parameters have been developed taking into account a test set of 100 

molecules from the chemical families of hydrocarbons, alcohols, ethers, amides, esters, 

carboxylates, molecules of mixed functional groups as well as simple ring systems related to 

cyclic carbohydrates and fit to quantum mechanical data. GLYCAM06 may be used in 

simulation package other than AMBER through the employment of appropriate file conversion 

tools.  

 

To facilitate the parameter transferability, all atomic sequences have an explicitly defined set of 

torsion terms, with no generic terms, and PARM94 parameters, the same used in AMBER, are 

used for modeling the carbohydrate van der Waals terms [48]. No scaling factors for treating 1-4 

interactions are introduced for reproducing the gauche effect on ω angle rotamers [28]. 

 

In GLYCAM06, the stereoelectronic effects that influence bond and angle variations at the 

anomeric carbon atom are included in a unique anomeric atom type. This feature permits to 

mimic the ring flipping observed in glycosidic monomers that occur, for example, during 

catalytic events [49]. Comparison with experimental data confirmed that the force field is able to 

reproduce rotational energies and carbohydrate features quite well if combined with an 

appropriate charge set, except for highly polar molecules for which empirical terms have been 

introduced to correct energetic torsion errors [34]. The atomic partial charges are calculated 

                                                

*1
 As implemented in the Maestro program (1995 version)  
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residue by residue. For each residue, 50 to 100 ns MD simulation is performed, 100-200 

snapshots are extracted and charges are calculated by fitting to the averaging quantum mechanics 

molecular electrostatic potential (ESP). This strategy is adopted for incorporating the dependence 

of molecular conformations on partial charges. Restraints are employed in the ESP fitting 

procedure (RESP) to ensure that the charges on all aliphatic hydrogen atoms are zero since C-H 

aliphatic hydrogen atoms are not significant for reproducing dipole moments [50, 51]. An 

optimal RESP charge restraint weight of 0.01 is applied, based on simulations of carbohydrate 

crystal lattices [52]. 

 

GROMOS-53A6 (CARBO), CHARMM and OPLS-AA are alternative carbohydrate force fields 

used, together with GLYCAM06, to describe conformational carbohydrate properties in 

computational chemistry. The GROMOS force field was earlier developed for MD simulations 

of proteins, nucleotides, or sugars in aqueous or apolar solutions or in crystalline form but it has 

been modified to include the anomeric effects for mono- and oligo-pyranoses [53, 54]. As in 

GLYCAM06, quantum mechanics methods are used for calculating bond and angle force 

constants whereas dihedral parameters derivation and van der Waals terms are directly taken 

from previous GROMOS versions [55, 56]. An ESP fitting procedure, with restraints on aliphatic 

hydrogen atoms and averaging over atom types, is chosen for reproducing the electrostatic 

potential, using a trisaccharide as a model for charge development [54]. No distinction is done 

between α and β monomers in terms of charges and anomeric atom type and electrostatic - van 

der Waals 1-4 scaling factors are not introduced so as to correctly reproduce the gauche effects 

on ω angles. Twenty nanosecond long MD simulation in explicit water [57] was used for 

validating the force field, showing the capability to correctly predict the stereo-electronic effects 

and the most stable ring conformations but sometimes failing to reproduce their correct energies. 

GROMOS was proposed as the more adapted force field to mimic the transition from 4C1 to skew 

boat conformations of the iduronic acid residues in heparin MD simulations [58]. 

 

The CHARMM force field was extended to glucopyranose and its diastereomers [59]. Several 

revisions for carbohydrates have been proposed in order to extend this force field to five member 

sugar rings and oligosaccharides [60, 61]. The same hierarchical parameterization procedure and 

treatment of 1-4 non-bonded interactions are used to ensure a full compatibility with other 
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CHARMM biomolecular force fields [62-64]. Preliminary parameter sets are created using 

small-molecule models corresponding to fragments of pyranose rings and then successively 

applied to complete pyranose monosaccharide structures. Missing dihedral parameters are 

developed by fitting over 1800 quantum mechanical hexopyranose conformational energies. 

Both partial atomic charges and Lennard-Jones parameter values, taken from previous 

CHARMM versions, are adjusted to reproduce scaled quantum mechanical carbohydrate-water 

interaction energies and distances, and further refined to reproduce experimental heats of 

vaporization and molecular volumes for liquids. The force field, with different atom types for α 

and β anomers, was validated as it reproduces calculated quantum mechanical and experimental 

properties using MD simulations with TIP3P water models.  

 

The OPLS force field has been expanded to include carbohydrates [65]. In OPLS-AASEI 

(Scaling Electrostatic Interactions) force field, 1-4, 1-5 and 1-6 scaling factors are introduced to 

improve the prediction of Φ/Ψ conformations properties, as well as anomeric effects and relative 

energies [65]. Unique charge sets and atom types for α and β anomers are used. All non-bonded 

parameters are imported directly from the parent force field OPLS-AA [66]. Charges are derived, 

as done for previous force field versions [66, 67], from standard alcohols and acetals to simply 

reproduce consistent energetic properties, and then transferred to carbohydrates. 

 

Other force fields are employed to understand carbohydrate properties in silico. In particular, 

MM3, a force field initially meant for hydrocarbons, is applicable to a wide range of compounds. 

The MM3 force field for amides, polypeptides and proteins [68, 69] is widely used for the 

construction of adiabatic maps of disaccharides. TRIPOS molecular mechanics force field is 

designed to simulate both peptides and small organic molecules [70] but parameter extension for 

oligosaccharides includes sulfated glycosaminoglycan fragments and glycopeptides carbohydrate 

interactions [71, 72]. The TRIPOS force field is implemented in the molecular package SYBYL 

[73] and commonly used for geometry optimizations. 

 

8.5 Computational tools for docking carbohydrates on proteins 

8.5.1 Molecular docking 

Molecular docking is a computational procedure that aims at predicting the preferred orientation 
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of a ligand to its target protein, when bound to each other to form a stable complex [74]. In order 

to perform computational protein–ligand docking calculations, the 3D structure of the target 

protein must be known. Each docking program operates slightly differently, but they share 

common features that enable them to: (i) search for locations on the protein surface that lead to 

favorable interactions with the ligand, (ii) sample the conformational space of the ligand, (iii) 

compute the interaction energy (or score the binding) between the protein and ligand. The 

interaction with the ligand relies on both the protein backbone fold in the region of the binding 

site, as well as on the orientation of the side chains in the binding site. One of the most 

significant limitations in docking is that it is generally performed while keeping the protein 

surface rigid, which prevents the consideration of the effects of induced fit within the binding 

site. 

 

8.5.1.1 Difficulties in molecular docking  

These difficulties are mostly due to the high number of degrees of freedom characterizing a 

protein-ligand system that increase the computational cost of the calculations. Thus, several 

approximations about the flexible states may be introduced in molecular docking experiments. 

The simplest approximation (rigid docking) considers only the three translational and three 

rotational degrees of freedom of the protein and of the ligand, treating them as two distinct rigid 

bodies. The most widely used algorithms at present enable the ligand to fully explore its 

conformational degree of freedom in a rigid-body receptor [75-79]. 

 

8.5.1.2 Docking algorithms 

The docking algorithms can be grouped into deterministic and stochastic approaches. 

Deterministic algorithms are reproducible whereas stochastic algorithms include random factors 

that do not allow the full reproducibility. The following describes the most widely used 

algorithms in docking simulations. 

 

8.5.1.2.1 Incremental construction algorithms  

These algorithms consist of the division of a ligand into rigid fragments. One of the fragments is 

selected and placed in the protein binding site. The reconstruction of the ligand is then carried 

out in situ, adding the remaining ligand fragments. For example, DOCK [80] uses incremental 
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construction algorithm to treat ligand flexibility. It generates points (sphere centers) that fill the 

binding site and try to capture the binding site shape properties for identifying favorable regions 

in which the ligand atoms may be located. The ligand is divided along each flexible bond to 

generate rigid segments. An anchor fragment is then selected from all the rigid pieces and 

oriented in the active site by matching ligand atoms with sphere centers. Fragments are then 

added and all possible placements are scored on the basis of their interactions with the protein 

using the energetic scoring function. Best anchor fragments are used for completing the 

construction of the ligand in the protein binding site. The best scored poses of the complete 

ligand are selected. 

 

8.5.1.2.2 Genetic algorithms 

Genetic algorithms are stochastic searching approaches that use techniques inspired by 

evolutionary biology to find reliable results. It mimics the process of evolution by manipulating a 

collection of data structures called chromosomes. 

 

AutoDock [81] uses this algorithm for obtaining reliable docking results. First, the protein is 

placed inside a cube with a predefined size, characterized by a defined number of points (grid 

points). In the second step, probes corresponding to the different atom types of the ligand are 

then moved through the cube and, in particular, at each point, protein-probe interaction energies 

are calculated and stored in affinity maps. Thirdly, a conformational search of the ligand is 

performed applying the Lamarkian genetic algorithm. Its characteristic is that environmental 

adaptations of an individual’s phenotype can become heritable traits, transferred to its genotype. 

At this stage, a minimization or local search is performed and the results are taken into account 

modifying the initial conformation that will enter in a new iteration of crossover and mutation of 

the genetic algorithm cycle. 

 

8.5.1.2.3 Hierarchical algorithms 

The algorithm used in GLIDE [82] can be defined as a hierarchical algorithm. It uses an 

exhaustive systematic search for discovering the most favored ligand conformations in the 

protein active site, with a screening based on progressively restricted energetic cut-offs. Fields 

containing information of the protein receptor properties are calculated before the algorithm 
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search. Then a set of initial ligand conformations is produced. Initial screens are performed over 

the whole phase space available to the ligand to locate promising ligand poses in the respective 

receptor fields. Ligands are minimized in the field of the receptor using a standard molecular 

mechanics energy function [66]. Finally, the lowest-energy poses are subjected to a Monte Carlo 

procedure that examines torsional minima. A composite scoring function is then used to select 

the correct docked poses. 

 

A variety of other sampling methods like simulated annealing have been implemented in docking 

programs.  

 

8.5.1.3 Scoring functions 

Energy scoring functions are necessary to evaluate the free energy of binding between proteins 

and ligands. The equation below is the Gibbs-Helmholtz equation that describes the ligand-

receptor affinity:  

ΔG = ΔH – TΔS 

ΔG gives the free energy of binding that is the measure of energetic changes between two states 

represented by the bound and unbound state of the receptor and the ligand. ΔH is the enthalpy, T 

the temperature expressed in Kelvin and ΔS is the entropy of the system. ΔG is related to the 

binding constant Ka by the equation: 

ΔG = -RT ln Ka 

(where R is the gas constant.) 

Some sophisticated techniques for predicting binding free energies are currently too slow to be 

used in molecular docking of large sets of compounds. Thus, fast scoring functions have been 

developed. Empirical scoring functions use a set of parameterized terms describing properties 

known to be important in protein-ligand binding to construct an equation for predicting affinities. 

Multi-linear regression is used to optimize these terms using a set of known protein–ligand 

complexes. These terms usually describe polar-apolar interactions, loss of ligand flexibility 

(entropy) and desolvation effects. The Glide Score 2.5 [82] is a regression-based scoring 

function: 

ΔG =Clipo ∑f(rlr) + CHbond ∑g(Δr) h(Δα) + Cmetal∑f (rlm)+ Cpolar-phobVpolar-phob + CcoulEcoul + 
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CvdwEvdw + Solvation term 

The first term describes the lipophilic and aromatic interactions whereas the polar terms are 

included in the second (hydrogen bonds, separated into differently weighted components that 

depend on the electrostatic properties of donor and acceptor atoms) and third (ionic interactions) 

terms. The fourth term rewards instances in which a polar but non-hydrogen bonding atom is 

found in a hydrophobic region. Coulomb and van der Waals interaction energies between the 

ligand and the receptor are evaluated as well as the solvation effect. 

 

Force field based scoring functions (AutoDock, DOCK) are based on the non-bonded terms of 

the classical molecular mechanics force fields. A Lennard-Jones potential describes van der 

Waals interactions whereas the Coulomb energies describe the electrostatic interactions. In 

AutoDock (Morris et al. 1998), the implemented scoring function has the following form: 

ΔG = ΔGvdw Σi,j [(Aij/r
12

ij) – Bij/r
6

ij)] + ΔGHbond + Σi,j E(t) [(Cij/r
12

ij) – Dij/r
10

ij)] + ΔGelec Σi,j 

q1q2/ε(rij)
2
+ΔGtorNtor + ΔGsol Σi,j (SiVj + SjVi)

e(-r2ij/2σ2)
 

where the five ΔG terms are coefficients empirically determined using linear regression analysis 

from a set of protein ligand complexes with known binding constants. The summations are 

performed over all pairs of ligand atoms, i, and protein atoms, j. The first three terms describe 

the Lennard-Jones dispersion, the directional hydrogen bonds and the Coulomb electrostatic 

potential taken from the AMBER force field [48]. ΔGtor is an empirical measure of the 

unfavorable entropy of ligand binding due to the restriction of conformational degrees of 

freedom whereas Ntor is the number of ligand rotatable bonds. In the fifth term, for each atom 

type within the ligand, fragmental volumes of the surrounding protein atoms V are weighted by 

an exponential function and summed, evaluating the percentage of volume around the ligand 

atom that is occupied by protein atoms. This percentage is then weighted by the atomic solvation 

parameter S of the ligand atom to give the desolvation energy [81]. Several developed docking 

approaches use knowledge-based scoring functions based on statistical observations of 

intermolecular close contacts in protein-ligand X-ray databases, which are used to derive 

potentials of mean force. This method assumes that the frequency of close intermolecular 

interactions between certain ligand and protein atoms contributes favorably to the binding 

affinity. In this approach, no fitting to experimental affinities is required and solvation and 
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entropic terms are treated implicitly [83]. 

8.5.2 Molecular Dynamics Simulations 

In MD simulations (Figure 8.4), an ensemble of configurations is generated by applying the laws 

of motion to the atoms of the molecule. The concept behind MD simulation involves calculating 

the displacement coordinates in time (trajectory) of a molecular system at a given temperature. 

Finding positions and velocities of a set of particles as a function of time is done classically by 

integrating Newton’s equation of motion in time. MD simulations are usually carried out as a 

micro-canonical (constant-NVE) or canonical (constant-NVT) ensemble. As a consequence, all 

other thermodynamic quantities must be determined by ensemble averaging. In a classical 

system, Newton’s equations of motion conserve energy and thus provide a suitable scheme for 

calculating a micro-canonical ensemble. However, canonical ensemble can readily be performed 

by coupling the molecular system to a constant-temperature bath, which rescales the atomic 

velocities according to the desired temperature. In a similar manner, constant-pressure 

simulations can be performed by scaling through coupling to a constant-temperature position, as 

the pressure can be calculated from the virial theorem. 

 

Several algorithms have been developed for MD simulations. Such simulations follow a system 

for a limited time. Physically observed properties are computed as the appropriate time averages 

through the collective behavior of individual molecules. For the results to be meaningful, the 

simulations must be sufficiently long so that the important motions are statistically well sampled. 

Experimentally accessible spectroscopic and thermodynamic quantities can be computed, 

compared, and related to microscopic interactions. It should be noted that MD is severely limited 

by the available computer power. With presently available computers, it is feasible to perform a 

simulation with several thousand explicit atoms for a total time of up to a few microseconds. To 

explore the conformational space adequately, it is necessary to perform many such simulations. 

In addition, it may be possible that carbohydrate molecules undergo dynamical events on longer 

timescales. These motions cannot be investigated with standard MD techniques. Another way is 

to use high-temperature dynamics to allow the molecule to assume high-energy conformations. 

This approach has to be used with caution since it can make the molecules acquire ‘non-

physiological’ conformations.  
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Figure 8.4. General scheme and the practical sequential approach of the molecular dynamics simulations. 
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8.5.3 Molecular Robotics 

Whereas a number of simulations are performed using MD calculations it must be recognized 

that they are usually performed on short time scales and have therefore allowed modeling of the 

dynamic properties of equilibrium states. Indeed, simulations that are needed to capture an entire 

conformational event, particularly with explicit simulation of solvents are usually too short, 

relative to the characteristic time of conformational changes occurring upon binding. 

Consequently, alternative methods such as essential dynamics or normal mode analysis have 

been successfully applied to selectively enhance conformational sampling along specific 

directions of motions, and identify large collective motions that may occur in the protein upon 

binding to a carbohydrate. Novel methods are being developed with the aim of simulating 

molecular motions that can occur on large spatial and temporal scales. 

 

In addition, to simplify models, methods alternative to MD simulation can be applied to perform 

an effective exploration of the conformational space. Algorithms originally developed to 

compute robot motions, have been extended and proposed as alternative methods to compute 

molecular motions (Figure 8.5). Robotics-based algorithms have been applied to the study of 

several problems such as ligand docking and accessible pathways in flexible receptors, or 

conformational changes of proteins, due to loop motions, domains motions etc. A methodology 

named “molecular robotics” has been developed that separates the search for conformational 

pathways into two stages. The first stage consists of the exploration of geometrically feasible 

motions, using the robotics-based approach, whereas the second stage uses molecular mechanics 

for an evaluation of solutions found in the previous stage, while taking into account explicit 

simulation of solvents. Such a conformational search method handles large molecular motions in 

a continuous way and within very short computing times. The key advantage of the robotics-

based approach is that it enables fast exploration of high-dimensional conformational spaces 

thanks to the combination of a geometrical treatment of the main molecular constraints, with the 

performance of path-planning algorithms.  
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Figure 8.5. Illustration of the molecular robotics approach to investigate the role of substrate accessibility 
to the active site on Burkholderia cepacia lipase enantioselectivity. Conformational exploration of the 
active-site pocket using Path-Planing algorithms in order to search exit paths of the ligand from its 
catalytic position (A). Exit paths computed for the R- and S-enantiomers (50 paths for each enantiomer). 
The distribution obtained for the R-enantiomer (blue) appears clearly larger and less constrained, than for 
the S-enantiomer (white) (B). Histogram representing for each enantiomer the relative frequency of 
interatomic contacts (averaged among the 50 paths) with amino acid residues (C). This automated 
analysis of ligand-protein contacts enables to highlight amino acid hindering the displacement of 
enantiomers and thus provide target residues for engineering enantioselectivity [84]. 
 

 

Based on robotics background, computationally efficient methods have been developed in recent 

years for sampling and exploring conformational space of biological macromolecules. Combined 

with methods in computational physics such as normal mode analysis [85], or using appropriate 

multi-scale molecular models [86], robot path-planning algorithms relying on a mechanistic 

modeling of (macro)molecules are able to compute large-amplitude conformational transitions in 

proteins with several orders of magnitude faster than standard simulation methods such as MD 

[84, 87]. These robotics-inspired methods have also been developed to simulate ligand 

displacement inside an active-site pocket of a protein considering both partners as flexible 

molecular models with very low computational cost [87-89] and provide information about the 

interactions between the ligand and the protein and about the required conformational changes 

that are important for understanding the complex biochemical processes. Such methods have 

already been successfully applied for rational enzyme engineering [90, 91], showing the 

efficiency and the potential of molecular robotics methods to guide the engineering of enzyme 

mutants with improved activity, selectivity and specificity. 
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8.5.4 Free Energy Calculations 

The absolute ligand-receptor interaction energies can be obtained by performing average 

Molecular Mechanics / Poisson-Boltzmann Surface Area (MM-PBSA) calculations on an 

ensemble of uncorrelated snapshots in an implicit water environment, collected from an 

equilibrated MD simulation (Figure 8.6). MM-PBSA is a method that approximates the average 

free energy of binding ΔG between the ligand L and the receptor R in an implicit aqueous 

environment as: 

ΔG = ΔGRL – ΔGR – ΔGL 

Each term of the above equation is further decomposed as follows: 

ΔGRL = ΔEMM + ΔGPBSA - TΔSMM 

ΔGR   = ΔEMM + ΔGPBSA - TΔSMM 

ΔGL   = ΔEMM + ΔGPBSA - TΔSMM 

where, ΔEMM is the average molecular mechanical energy containing the bond angles, torsion 

angles, van der Waals and electrostatic energetic terms described in the force field. The solvation 

free energy term ΔGPBSA term contains the electrostatic and non-polar solvent contributions. 

Δ GPBSA = ΔGPB 
el 

+ ΔGSA
np

 

The Poisson-Boltzmann equation is solved for determining the solvent polar effects ΔGPB
el [92] 

whereas the solvent accessible surface area is used to determine the non-polar energetic term 

ΔGSA
np [93]. Finally, TΔSMM represents the entropic term, due to the loss of degrees of freedom 

upon association. The evaluation of this term represents an issue in computational chemistry, 

commonly performed by using a quasi-harmonic method or by normal-mode analysis [94]. The 

high computational cost combined with a very slow convergence and the approximations 

introduce significant uncertainty in the result [95, 96]. Thus, the entropy contribution can be 

neglected in case of a comparison of states of similar entropy is desired such as a series of 

similar ligands binding to the same protein receptor [97]. 



Review & perspectives: Structural Glycobiology  169 
    

 

 

Figure 8.6. MM-PBSA calculations determine the absolute free energy of binding of a ligand to a 
receptor (ΔGAI) in an implicit solvent environment, whereas Thermodynamics Integration methods 
calculate the free-energy of binding difference between receptor-ligand complexes (ΔΔG= ΔGC – ΔGD = 
ΔGA – ΔGB), where only the ligand is changed. 
 

8.5.4.1 Relative free energy of binding 

Thermodynamic Integration (TI) calculations compute the free energy difference between two 

closely related systems A and B by slowly transforming the initial state A to the final state B. 

The two states are coupled via a parameter λ that serves as an additional, non-spatial coordinate. 

This parameter describes the transformation from the reference system A to the target system B 

and allows the free energy difference between the states to be computed as: 

ΔGTI = 1∫0 <δV(λ) / δ(λ)>λ dλ 
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In this equation, λ represents the coupling parameter that corresponds to the potential energy 

V(A) for λ = 0 and V(B) for λ = 1. The integration is carried out over the average of the λ 

derivative of the coupled potential function at given λ values. Thus, MD simulations in explicit 

water at different discrete λ points are performed and the value of the integral is calculated 

numerically. For TI calculations, the system should not undergo significant conformational 

changes during the transformation, otherwise MD simulations will most likely not sample 

enough phase space for obtaining converged results [98]. 

 

8.6 CASE STUDIES  

Avoiding the risk of transforming this section into a catalog, only select examples are provided 

that deal with the relevant classes of the macromolecules for which a range of the conformational 

features of protein-carbohydrate interactions have been reported throughout application of 

computational methods. 

 

8.6.1 Recognition 

8.6.1.1 Lectins 

Lectins are oligomeric proteins that can specifically recognize carbohydrates, which as per 

present knowledge act like molecular tools to decipher sugar-encoded messages. They play 

biologically important roles in recognition processes involved in fertilization, embryogenesis, 

inflammation, metastasis and parasite-symbiote recognition, from microbes and invertebrates to 

plants and vertebrates. In the plant kingdom, lectins have been demonstrated to play a role in 

defense against pathogens or predators and hypothesized to be involved in establishing symbiosis 

with mushrooms and with bacteria of the Rhizobia species. Among the proteins that interact non-

covalently with carbohydrates, lectins bind mono- and oligosaccharides reversibly and 

specifically while displaying no catalytic or immunological activity. 

 

More than 700 crystal structures of lectins have been solved, most of them as complexes with 

carbohydrate ligands [99]. At present the 3D Lectin Database [100] makes 922 lectin structures 

available. The wealth of experimental data obtained from the crystallographic studies of 

oligosaccharides with lectins provided an essential driving force to the development of molecular 

modeling methods of complex oligosaccharides in their interactions with proteins. These 
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confirmed the flexible conformational behavior of oligosaccharides that was anticipated from 

earlier calculations. Studies of molecular recognition of the histo-blood group oligosaccharides 

by lectins paved the way for the conformational analysis of complex carbohydrate-protein 

interactions, an area that has been thoroughly reviewed [29]. Several docking procedures have 

been developed, and tested against the experimental data available. 

 

Increasing crystallographic explorations of oligosaccharide–lectin complexes have made 

significant progress in the characterization of the binding sites of lectins, which are usually rather 

shallow, located near the surface and thus accessible to solvent. This allows predicting the 

binding mode of complex carbohydrates to proteins [101]. In several lectin families of different 

origins, one or two calcium ions are involved in the carbohydrate binding site with direct 

coordination to the sugar hydroxyl groups. Thanks to the availability of well documented 3D 

structures of lectins in their native and complexed form, they have been considered as rich 

playground to develop and test the robustness of docking methods in predicting the binding 

mode of complex carbohydrates to proteins.  

 

Flexible docking methods of AutoDock, DOCK and Grid-based Ligand Docking with Energetics 

(GLIDE) were compared for a set of bacterial and animal calcium-dependent lectins and their 

calcium-dependent sites [102]. DOCK represented crystallographic information well but its 

lowest energy conformations did not confirm to experimental data for all tested cases. GLIDE 

results were similar to that of DOCK but the lowest energy poses were always satisfactory that 

could mimic the real carbohydrate orientation. AutoDock showed reasonable accuracy in sugar 

orientation and reported the most accurate distances between calcium ions and the sugar 

hydroxyl groups. 

 

8.6.1.2 Antibodies  

The major role of carbohydrates in blood group transfusion and in organ transplants dramatically 

highlights the importance of carbohydrate-protein interactions as key to major biological 

processes. The two major histo-blood group carbohydrate determinants [103] are the antigen 

families, so-called ABH(O) and the Lewis determinants. The majority of the ABO antigens are 

expressed on human erythrocytes, at the ends of long polylactosaminic chains while a minority 
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of the epitope is expressed on neutral glycosphingolipids. Despite the key role played by these 

determinants, the description at the molecular level of the interactions occurring between the 

antigens and the antibodies is only beginning to be resolved and characterized, for instance, 

crystal structures of Fab against Lewis determinants [104-107]. The exhaustive investigation of 

the cross-reaction patterns on nine antibodies against 12 carbohydrate antigens has been 

conducted through computational methods [108, 109]. Three-dimensional descriptors of the 

molecular properties of the carbohydrate antigens were used in Comparative Molecular Field 

Analysis (CoMFA). Processing of the QSAR data gave indications on the carbohydrate epitopes 

essential for antibody recognition while yielding insights into the nature of the molecular 

recognition.  

 

The successful transplantation of pig organs to human (xenotransplantation) is prevented by the 

occurrence of carbohydrate antigens on the surface of pig organs which are recognized by xeno-

reactive antibodies in the human bloodstream. In silico protocol aimed at analyzing the 

interaction between these xeno-antigens and antibodies interactions has been developed [110] 

and applied [111] to the determination of the structures of these terminating carbohydrate 

antigens in complex with a panel of xenoreactive antibodies. 

 

Cell surface complex carbohydrates and polysaccharides are potent targets for recognizing 

pathogen infections or cancerous cells. As such they offer promising or already successful 

vaccine components against various pathologies. Consequently, their interactions with antibodies 

are of a significant interest. The elucidation of the molecular basis of the formation of the 

complexes but also the balance between the enthalpic and entropic contribution involved in the 

binding are both required. For the time being, only an appropriate combination of computational 

and experimental methods may help in establishing these features, in view of developing broad-

serotype coverage vaccines.  

 

A majority of life-threatening cases of septicemia, meningitis, and pneumonia occur from the 

deleterious action of surface capsular polysaccharides of bacteria. Whereas these polysaccharides 

may have similar carbohydrate sequences, they may markedly differ in immunogenicity, 

antigenicity, virulence and geographical dispersion, for example the case of Group B 
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Streptococcus agalactiae and Streptococcus pneumomia.  

 

The generation of the antibody complexed with carbohydrate antigens was performed through a 

combination of comparative antibody modeling and automated ligand docking. Subsequently, 

several 10 ns molecular dynamic simulations were performed using the Molecular Mechanics-

Generalized Born Surface Area (MM-GBSA) method with explicit hydration, augmented by 

conformational entropy estimates. While providing detailed insight into the molecular details and 

the energy components involved in the formation of the complexes, the analysis offered a 

comprehensive interpretation of a large body of biochemical and immunological data related to 

antibody recognition of bacterial polysaccharides [112]. 

 

Shigella flexneri is the main causal agent of the endemic form of bacillary dysentery. The O-

antigen is the polysaccharide moiety of the lipopolysaccharide; it is the major target of the 

serotype-specific protective humoral response elicited upon host infection by Shigella flexeneri. 

The repeating unit of the O-antigen is a pentasaccharide. The availability of the X-ray structure 

of the Fab/[AB(E)CD]2 complex, at a resolution of 1.80 Å [113], along with a sufficient amount 

of well characterized pentasaccharides, and IgG monoclonal antibody allowed a thorough 

analysis of the complexes by Saturation Transfer Difference (STD) NMR experiments and 

extensive MD simulations (Figure 8.7). The study brought into light information on the 

dynamics of the corresponding antibody-carbohydrate complexes that is available neither from 

the X-ray structure nor from the NMR analysis independently [114]. The proposed protocol 

making use of MD simulations and STD-NMR is likely to facilitate the design of either ligands 

or carbohydrate recognition domains, according to needed improvements of the natural 

carbohydrate-receptor properties.  
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Figure 8.7. Features of Shigella flexeneri O-antigen interacting with monoclonal antibody.  
(I.) Primary structure of the Shigella flexneri SF2a O-Ag [115] common AB(E)CD linear backbone repeat 
unit.  
(II.) CFG representation of Shigella flexneri common AB(E)CD linear backbone repeat unit, where the 
green triangles represent Rhamnose, the circle denotes Glucose and the blue square denotes N-
acetylgalatosamine.  
(III.) Crystal structure of synthetic O-antigen decasaccharide from serotype 2a Shigella flexneri (PDB i.d. 
3BZ4) in complex with a protective monoclonal antibody Fab F22-4.  
(IV.) ϕ,ψ maps of MD simulations for the glycosidic linkages of 2 repeat units of the bound conformation 
of the Shigella flexneri O-Antigen D0 AB(E)CD pentasaccharide.  
(V.) Comparison between the predicted Saturation Transfer Difference (STD) values of the 2 repeat units 
of the truncated crystal structure of F22-4 and the measured STD NMR intensities and the predicted 
values of the 50 MD simulation snapshots of AB(E)CD. 
 
 

8.6.1.3 Chemokine-Glycosaminoglycan Interactions 

The glycosaminoglycans (GAG) comprise a family of complex anionic polysaccharides 

including: (i) glucosaminoglycans (heparin, heparan sulfate), (ii) galactosylaminoglycans 

(chondroitin sulfate and dermatan sulfate), (iii) hyaluronic acid and keratan sulfate. In addition to 

their participation in the physicochemical properties of the extracellular matrix, GAG fragments 

are specifically recognized by protein receptors and they play a role in the regulation of many 

processes, such as hemostasis, growth factor control, anticoagulation and cell adhesion [116]. 
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Given the importance of protein-GAG interactions, oligosaccharide fragments are important 

targets for drug design.  

 

Docking of GAG oligosaccharide in protein receptor binding sites presents two main difficulties: 

(a) the binding site does not generally adopt a pocket or crevasse shape that would allow for easy 

identification and (b) both the ligand and the protein presents a high flexibility of side chains. In 

addition to a simple molecular visualization program, the analysis of the projection of the 

electrostatic potential on the Connolly surface of the protein, for example with the MOLCAD 

program (included in SYBYL [73], has been proven to be useful. The GRID program [117], that 

allows prediction of the most energetically favorable region for binding of small probes on 

protein surface, is very successful in identifying sulfate-binding regions. For predicting the 

orientation of the oligosaccharide on the protein surface, the AutoDock program [81] that 

considers flexibility at glycosidic linkages and pendant groups (hydroxyl groups, hydroxymethyl, 

etc.) can be used for charged oligosaccharide fragments. It should be kept in mind that such an 

approach generally yields several families of conformations and that further simulations, 

including MD in the presence of explicit water and counter ions have to be envisaged for a 

thorough investigation. 

 

The conformational behavior of the heparin pentasaccharide responsible for high affinity to 

antithrombin III has been the subject of several investigations. This study is complicated by the 

fact that a conformational change occurs in the protein upon binding [118, 119]. The first model 

obtained using homology modeling for the protein and hand-docking of the pentasaccharide, 

allowed the determination of the basic amino acids involved in the recognition of the sulfate and 

carboxylate groups [120]. A study making use of several newly developed docking programs, 

arrived at the same prediction for the binding site [121]. In the crystal structures of the complex 

between antithrombin III and pentasaccharide [118, 122] a cluster of basic amino acids has been 

demonstrated to interact with the oligosaccharide’s sulfate and carboxylate groups. The 

conformation of the bound pentasaccharide is also subjected to induced fit upon binding (Figure 

8.8). At the present time, both X-ray crystallography studies and NMR data coupled with 

molecular modeling [123] agree that the binding is accompanied by dihedral angle variations of 

two glycosidic linkages and conformational shift of the 2-O-sulfated iduronic residue. 
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Figure 8.8. General view (left hand side panel) of the crystal structure of ternary complexes between 
antithromin (reddish-brown ribbon), thrombin (green ribbon), and heparin analog [124, 125]; (right-hand 

side panel) blow-up of the binding site of antithrombin interacting with the specific heparin fragment.  
 

Amongst the numerous proteins that bind heparin, the fibroblast growth factors (FGFs) have 

received special attention because they are involved in the control of cell proliferation, migration 

and differentiation. Heparin fragments have been co-crystallized as ternary complexes with two 

FGF and their receptors (FGFRs) and the minimal binding sequences could be determined [126, 

127]. Analysis of the crystal structures together with molecular modeling demonstrated that upon 

binding, the regular helical shape of heparin is kinked at one point by both modification of one 

glycosidic linkage conformation and one iduronate ring shape [128]. Such “induced-fit” of the 

ligand in GAG/protein interactions is very likely to happen since it is classically observed in 

lectin-oligosaccharide interactions. 

 

Chemokines, derived from chemo-attractant cytokines, represent a large family of small proteins 

which, based on their physiological features, have been classified as "inflammatory" (or 

inducible) or "homeostatic" (or constitutive) [129]. Their roles include events as diverse as 

development, angiogenesis, neuronal patterning, hematopoiesis, viral infection, wound healing 

and metastasis. Given the importance of protein-GAG interactions, oligosaccharide fragments 

are important targets for drug design. Chemokines interact with GAGs in general and heparan 

sulfate in particular. This binding is thought to create a local concentration, or a gradient, of 

chemokines on tissues where some GAGs are specifically expressed. Modeling studies have 

therefore been used for describing the interaction between chemokines and heparan sulfate. One 

interesting structural feature is that chemokines may exist in solution as monomer or dimer 
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(sometimes tetramer) but they bind GAGs in the dimeric or tetrameric state. Depending on the 

dimerization mode and positions of basic amino acids in the peptide sequences, chemokines will 

present positively charged clusters on their accessible surfaces that define several possibilities for 

binding heparan sulfate [130, 131].  

 

8.6.1.4 Transport 

Carbohydrates such as the malto-oligosaccharides of lactose, sucrose, raffinose, fructo-

oligosaccharides, L-fucose, trehalose, oligo-alginate, oligo galacturonate etc. constitute a source 

of carbon for many organisms. These molecules have to be transported across channel and pores 

and their motion is critically important for understanding mechanism of many cellular processes. 

At the protein level, this is achieved by a family of proteins, collectively referred to as 

transporters. These trans-membrane proteins allow permeation of sugars: their structures along 

with the mechanistic transport model are the subject of intense research. The recent high-

resolution structural elucidation of transporters is enabling investigation into the MD of 

fundamental transport processes.  

 

Transport across the membrane is mediated by channel-forming proteins, of which maltoporin 

has been most extensively studied. The elucidation of the first high-resolution structure of 

maltoporin [132] revealed the general model of specific channel-forming membrane proteins: a 

beta-barrel with 18 anti-parallel strands. Like the general diffusion porins, the functional unit of 

maltoporin is a trimer with long loops exposed to the cell exterior and short turns exposed to the 

periplasm. A striking feature is a consecutive stretch of aromatic residues in the channel arranged 

in a left-handed helical path, which has been described as the “greasy slide”.  

 

The translocation mechanism of malto-oligosaccharides across the maltoporin membrane 

channel (Figure 8.9) has been investigated by MD calculations [133] (see the movie at 

http://spider.iwr.uni-heildelberg.de/fischer/research/maltoporin.mpeg). The first event is the 

binding of sugar to the first residue of the “greasy slide” which occur via van der Waals 

interactions to the hydrophobic face of the glucosyl ring. Deeper penetration into the channel 

occurs throughout guided diffusion of the oligosaccharide along the “greasy slide”. A gradual 

dehydration of the malto-oliogosaccharide favours the establishment of transitory hydrogen 
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bonds between the sugars’ hydroxyl groups and the surrounding amino-acids. This is made 

possible by the conformational flexibility occurring at the glycosidic linkages and at the primary 

hydroxyl groups. The presence of the charged side chains (referred to as “polar tracks”) mimics 

the lost hydration shell to the sugar by providing hydrogen bonds to the hydroxyl groups of the 

carbohydrate. The polar tracks are divided into donor and acceptor lanes all along the greasy 

slide. The movement of the carbohydrate residues to the next binding site of the greasy slide in 

combination with a rearrangement of hydrogen bonds is referred to as the “register shift”. The 

continuous making and breaking of hydrogen bonds results in the oligosaccharide moving 

through the porin in a capillary-like fashion.  

 

 

Figure 8.9. Three-dimensional structure of maltoporin [134] along with snapshots of the interaction of 
malto-oligosaccharides within the channel.  
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Within the super family of carbohydrate transporter exists the MFS family, which exploits the 

electrochemical potential to shuttle substrates across cell membranes. These transporters are 

thought to use an alternating-access mechanism to upload and download substrates. The 

elucidation of the 3D structure of a fucose transporter [135] opened the way to MD simulation of 

the L-fucose residue complexed to the trans-membrane protein inserted into a POPE bilayer to 

mimic the bacterial membrane. Structural, biochemical and computational analysis provided 

insights into the function of the transporter, with the identification of key amino-acids that play 

an essential role in the active transport path.  

 

As the structures of other unique transport systems are revealed, the power of computational 

methods in transporter analysis and prediction will grow exponentially. 

 

8.6.2 Synthesis: Glycosyltransferases  

The central process of oligosaccharides, polysaccharides and glycoconjugate biosynthesis is 

performed by the action of glycosyltransferases (GT). These enzymes constitute a large family of 

proteins which are present in prokaryotes, eukaryotes, and viruses and mediate a wide range of 

functions from structures and storage to signaling. GTs are responsible for the formation of the 

glycosidic bond by attaching a sugar moiety of an appropriate donor substrate, mainly a 

nucleotide sugar, to a specific acceptor substrate. These proteins are highly stereo- and regio-

selective and they are usually classified by their preferred sugar substrates, acceptor molecules 

and the types of glycosidic linkage they generate [136, 137].  

 

Molecular modeling of GTs along with their interactions with the nucleotide sugar and the 

specific acceptor substrate is difficult. The number of available crystal structures is still limited 

[136]; only a limited number of folds has been observed. In these crystal structures, the ratio of 

loops to secondary elements is high, and many of them do not describe the entire catalytic 

domain as the electron densities are not clear due to the flexible polypeptide extremities and/or 

several loops. Flexible loops appear to play an important role in substrate binding. For some of 

these enzymes, structural and calorimetric binding studies indicate that an obligatory ordered 

binding of donor and acceptor substrates, linked to a donor substrate-induced conformational 
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change, and the direct participation of UDP in acceptor binding, induces a large conformational 

change. It has been shown that the open state (free enzyme) has no or little affinity for the 

oligosaccharide acceptor. Alternatively, the closed active conformation creates a pocket that 

serves as the binding site for the acceptor. Starting from an available crystal structure of a GT, or 

using such theoretical approaches as fold recognition [138], a 3D model of the GT of interest is 

first constructed. Further, a combination of methods like fold recognition and molecular 

modeling might aid the prediction of the acceptor specificities of the putative 

glycosyltransferase. Docking of substrates also appears to be a difficult task because of the 

conformational flexibility of the nucleotide sugar and the presence of phosphate and divalent 

cation. Appropriate energy parameters have been developed based on the AMBER force field 

interfaced with CICADA for conformational search [139]. Interacting with the protein, the 

nucleotide sugar(s), the metal ions, and the oligosaccharide acceptor(s) are then submitted to a 

docking procedure which is followed by energy optimization of the amino acid side chains 

surrounding the substrates. At present such molecular modeling procedures are aimed at 

revealing the key catalytic amino acids and the nucleotide-sugar donor specificity and are 

performed in conjunction with site-specific mutagenesis and biochemical analysis [140]. The 

availability of a well-resolved crystal structure of glycosyltransferase GT(51), a penicillin-

binding protein, has opened the way to investigate how computational methods can be used to 

explore drug targets for antibiotic resistance. Docking and scoring methodology (Surflex-Dock 

and FlexX-Pharm) have been applied resulting in the discovery of nine novel potential leads for 

GT(51) inhibition [141]. Detailed characterization of the mechanisms involved in either the 

inversion or retention of stereochemistry can only be interpreted with the use of ab initio 

molecular orbital study [142-144].  

 

8.6.3 Glycosyl Hydrolases / Glycosidases 

The hydrolysis of glycosidic bonds in carbohydrates, polysaccharides, glycoproteins, glycolipids 

etc. is performed by glycosidases. These enzymes are classified into endo- and exo-types. Exo-

type glycosidases attack and hydrolyze monoglycosides into free sugar and aglycon. When 

acting on oligo- or polysaccharides, they liberate a monosaccharide unit from the non-reducing 

end. Endo-type glycosidases act on oligo- and polysaccharides and catalyzes the hydrolysis of an 

internal glycosidic linkage thereby liberating two carbohydrate moieties, or in releasing an 
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oligosaccharide (or polysaccharide) and monoglycoside of the reducing end. Some glycosidases 

are capable of acting as both exo- and endo-types. The reactions resulting from the catalytic 

action of glycosidases can also be characterized by the anomeric configuration of the glycosidic 

bond of the substrate that the enzyme attacks, i.e. with retention or inversion of the anomeric 

configuration.  

 

8.6.3.1 Glycosyl hydrolases on single chain 

Computational methods are essentially used to dock the oligosaccharide, polysaccharides etc. 

into the active state (which is usually identified throughout systematic mutations). The 

glycosidases and their carbohydrate ligands are considered in their energetically stable 

conformations and their interaction energies are compared. The resulting docked structures are 

used to propose a model for substrate and conformer selectivity based on the dimensions of the 

active site. The docking of substrates and inhibitors indicate the dimensions of the binding site 

which are usually large, extending over several monosaccharide units, beyond and towards the 

cleaving site. The key amino acids which may be involved in the catalytic mechanism can be 

identified from these results. Such computational protocols have been applied to the study of 

several classes of glycosidases. Most recent examples incorporating state-of-the-art modeling 

tools have been used to investigate the features of heparanase interacting with heparin [145, 

146]. These docking ligand-protein complex models can interpret the substrate specificity of 

heparanase, providing a rationale for the design of polysaccharides that may act as inhibitors of 

the enzymatic activity of heparanase. Predicted heparin/complexes show that the interactions of 

the heparin binding domains in combination with the catalytic domain can be targeted for the 

design of inhibitors.  

 

Enzyme inhibitors can be classified into substrate analogs and transition state analogs. Both 

types of analogs inhibit the enzyme via generally competing with the substrate for binding to the 

active site of the enzymes but are not affected by the enzyme. Substrate analogs mimic the 

structural features of the substrates, whereas transition state analogs have some structural 

characteristics that are unique to the transition state.  

 

Structural analysis of influenza virus neuraminidase [147] and neuraminidase in complex with 
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sialic acid [148] led to the design of a potent inhibitor of neuraminidase activity: zanamivir 

[149]. Based on the efficacy of zanamivir (RelenzaTM), another neuraminidase inhibitor was also 

developed: oseltamivir phosphate (TamifluTM) [150]. Both, Relenza, a carbohydrate-based drug, 

and Tamiflu, a carbocyclic mimetic, are potent and clinically effective anti-influenza drugs 

[151]. Despite the efficacy of these drugs, major concerns remain regarding the development of 

resistance to these drugs, which is already occurring. Point mutations in the influenza virus 

enzyme neuraminidase have been reported that lead to dramatic loss of activity for known 

neuraminidase inhibitors cited above. A more sound understanding of the molecular basis of 

such resistance is needed toward developing improved next-generation drugs. Modeling the 

binding of ligands with neuraminidase has been undertaken using explicit solvent all-atom MD 

simulations, free energy calculations and residue-based decomposition. The simulations 

predicted the effects of a known mutation at one amino acid (R292K) and provided clues as to 

the origins of resistance to the mutant. The results significantly enhance experimental 

observations [152]. 

The likelihood of future influenza pandemics (including the possibility of highly 

pathogenic H5N1 strains), highlighted the need for additional computational methods. The 

binding properties of the H5N1 influenza virus neuraminidase have been inferred from molecular 

modeling [153]. They concerned the binding properties between sialic acid, methyl 3’-sialyl 

lactoside, methyl 6’-sialyllactoside and H5N1 influenza virus neuraminidase using molecular 

docking and MD simulations. The obtained results indicate that, in the complex, sialic acid 

undergoes a conformational transition of the ring. Meanwhile, methyl 3’-sialyl lactoside 

establishes only weak interactions with a key loop of the neuraminidase, in contrast to what is 

observed for the complex with methyl 6’-sialyl lactoside. The differences could be attributed to 

the occurrence of distinct conformations about the glycosidic linkages. As these molecular 

modeling results are consistent with available experimental data on the specificity of 

neuraminidase, they provide sound structural information for a rational design of novel and 

specific inhibitos of H5N1 neuraminidase as potential therapeutics for the treatment of avian flu. 

 

8.6.3.2 Glycosyl hydrolases on a solid substrate 

Many polysaccharides occur in the form of highly packed 3D arrangements as a result of 

extensive inter- and intra-molecular hydrogen bonding networks and van der Waals interactions. 
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These features render the structures completely insoluble in water (e.g. cellulose, chitin) and 

provide them with substantial resistance from attack by most enzymes. The hydrolysis of 

cellulose in Nature is the result of plant cell wall degrading complexes, referred to as 

cellulosomes [154] including cellulases. Cellulases consist of a core of glycoside hydrolases and 

cellulose-binding modules (also referred to as Carbohydrate-Binding Modules or CBMs) and a 

linker that binds the two enzymatic components. By playing the dual role of recognizing and 

adhering to the solid state surface of the polysaccharide, and maintaining the proximity effect, 

the presence of CBMs is a key factor in the ability of the enzyme to efficiently breakdown 

insoluble polysaccharides. Once bound to the crystalline substrate, the active center of the core 

domains of cellulases can attack the cellulose chains. The cellulases are classified into two types: 

the exo- and endo-cellulases, depending on whether or not the cellulose can recognize the 

reducing end of the cellulose chains. The morphology of the native crystals is of course an 

essential feature in the enzymatic digestion of crystalline cellulose, and this is a major scientific 

and industrial question [155]. It is established that the enzymatic breakdown and degradation of 

cellulose requires a complex of enzymes working together (Figure 8.10). The general picture 

that has emerged from earlier investigations in this area indicates that the cooperation of at least 

three types of enzymes is required for efficient digestion of crystalline cellulose into glucose. 

These are (i) endoglucanases (EC 3.2.1.4), which cleave the chains randomly, (ii) 

cellobiohydrolases (EC 3.2.1.91), which recurrently cleave cellobiose from the chain-end of 

cellulose, and (iii) β-glucosidases (EC 3.2.2.21), which hydrolyze cellobiose. As for the 

cellulose-binding modules, numerous studies have established that three aromatic residues are 

needed for binding onto cellulose crystals, and that tryptophan residues contribute to higher 

binding affinity than tyrosines. However, evidence has accumulated showing that different 

binding sites for the same cellulose-binding domains could occur.  
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Figure 8.10. The enzymatic digestion of cellulose. The top panel depicts the three dimensional structures 
of the three main categories of enzymes (from Trichoderma reesei) that digest crystalline cellulose. The 
central panel provides a visual as to how cellulose digesting enzyme (shown here as cellobiohydrolase I 
or Cel7A [156]) interacts with the cellulose crystalline arrangement and breaks down cellulose into 
glucose and also illustrates a carbohydrate binding module (CBM; PDB i.d. 1CBH). The bottom panel 
shows the three faces of the cellulose Iα crystal models in projection with the Miller indices of their 
constituent crystal planes.  

 

A systematic study of the carbohydrate binding module (CBM) protein of Cel7A of Trichoderma 

reesei, with the cellulose Iα crystal model has been performed using a combined Grid docking 

search and MD calculations [157]. Three types of cellulose Iα crystal models with infinite 

dimensions were constructed, each consisting of different crystallographic faces, i.e. (1 1 0), (1 0 

0) and (0 1 0). The (1 1 0) complex models exhibited larger affinities at the interface than the 

other ones. It was found that the CBM was more stably bound to the (1 1 0) surface when it was 

placed in an anti-parallel orientation with respect to the cellulose fiber axis. The predicted 
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directional specificity of the CBM at the optimum positions was consistent with the observed 

processing direction of the Cel7A [158]. In the solvated dynamic state, the curved (1 1 0) surface 

resulting from the fiber twist somewhat assisted a complementary fit with the CBM at the 

interface.  

 

Much can be learned about the processivity by conducting carefully designed MD simulation of 

the binding of the catalytic domains of cellulases with various substrate configurations, solvation 

models and thermodynamics protocols [159]. 

 

Computational model of Cellobiohydrolase I (Cel7A) from Trichoderma reesei on a cellulose (1 

0 0) surface displaying the large catalytic domain (left), linker (middle single strand), and 

cellulose binding module (right small domain). A cellodextrin strand is shown peeled out of the 

surface of the cellulose and threaded into the catalytic tunnel of Cel7A [156]. The investigation 

requires the consideration of approximately 800,000 atoms. In order to face such a computational 

challenge, most of the numerical simulations shall require major modifications of existing code 

and algorithms.  

 

8.7 CONCLUSION  

In the past few years, there has been an increase in the development and application of 

computational methods aimed at establishing the molecular features characterizing the protein- 

carbohydrate interactions. Quite naturally, these computational methods are becoming reliant on 

experimental studies for the elucidation of structural and dynamics feature in the field of 

glycoscience. Significant steps have been made among which the developments and 

implementations of force fields capable of taking into account the specificity of carbohydrates 

(stereo-electronic effect, gauche effect etc.) and their compatibility with the computational tools 

that have been developed for proteins. Recently, methods for handling many rotatable bonds in 

flexible docking of conformationally flexible carbohydrates have been established. It has been 

recognized that the surface of carbohydrates and their derivatives that are composed of 

hydrophobic and hydrophilic patches remain a source of complexity in modeling. Nevertheless, 

the balance between hydrophobic and hydrophilic patches is essential for carbohydrate solubility 

and for molecular recognition. The occurrence of such a feature combined with the enhanced 
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conformational flexibility is a unique characteristic that explains how complex oligosaccharides 

can be transported throughout trans-membrane proteins in a capillary-like and yet selective 

fashion. 

 

Calculations of binding free energies and enthalpies with the required accuracy remain to be 

improved and tested against well-characterized experimental data. Certainly, calculation of free 

energy perturbations is a promising approach for the prediction of carbohydrate-receptor binding 

affinity. Such calculations cannot be performed without a full understanding of solvation. 

Progresses in this area imply a better handling of hydration and the major role played by 

solvation and desolvation of both carbohydrates and proteins in their isolated state and during the 

course of their interactions. 

 

At present these computational tools are considered as useful as the other methods of structural 

investigation. They can actually help in reconciling the experimental results gathered from 

separate experiments in different conditions and environments and in extrapolating the results. 

The wealth of successful applications for many different protein interactions with carbohydrates 

is a testimony to the maturity of the modeling methods and protocols that have been developed. 

Nevertheless, these success cases are almost exclusively dealing with cases where proteins 

interact with carbohydrates, without any further catalytic actions. 

 

Complementary computational methods need to be developed and/or integrated to allow the 

study of enzymatic reaction and the subsequent optimization of bio-catalyzers. These methods, 

based on molecular robotics algorithms, would be used for an efficient virtual screening of 

configurational and conformational spaces of high dimensions. The on-going developments of 

robotics algorithms are likely to provide efficient tools to explore the dynamic functionality of 

enzymes. These are based on efficient path-planning algorithms and fast geometric operators 

designed for complex articulated chains. The aim is to reduce, in a significant but relevant way, 

the exploration of the combinatorial space of the enzyme sequences, based on the geometric 

feasibility for a ligand either to access or to leave the catalytic site in a “productive” way. The 

enhancement of the predictive performances of such algorithms will require the use of simplified 

energy functions to pre-filter the conformations that are non-viable to construct the network of 
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concerted motions while the enzyme is interacting with the ligand. 

 

The investigation of the catalytic mechanism of inverting and retaining carbohydrate active 

enzymes requires high level density functional theory (DFT), hybrid quantum mechanical and 

molecular mechanical (QM/MM) calculations. The studies of the catalytic reaction and the 

dynamic motions undergone by the enzymes are being investigated independently at present. 

Consequently, developments are required to set up MD ‘hybrid methods’ based on the principles 

of quantum mechanics with the aim of studying the dynamics of electronic effects and charge 

transfer within the catalytic site. Such hybrid methods would incorporate ab initio dynamics as 

developed by Carr and Parinello (CPMD) and a ‘classical’ MD force field. Applications of these 

computational methods will allow exploiting further the protein-carbohydrate interactions, 

especially for therapeutic purposes. Design of transition state analog inhibitors of glycosyl 

hydrolases and glycosyl transferases requires knowledge of the mechanism of the enzymatic 

reaction along with the geometry and charge distribution of transition state. 

 

Extremely challenging cases are being identified. Many of the carbohydrates with biological 

functions are found at the surfaces of proteins and cells. Some physico-chemical principles that 

underline their associations are being considered to model such systems, for example patches of 

glycolipids and glyco-surfaces. As the concept of “glyco-landscape” is being recognized, new 

modeling protocols need to be developed. They require novel computational tools capable of 

constructing the landscape resulting from the side-by-side arrangements of glycoconjugates such 

as glycolipids. A new paradigm will emerge, and the attention will not only be given to the 

interaction of a protein with a single carbohydrate unit (the so-called “tree vision”) but instead 

the interaction with glyco-surfaces (the so-called “glyco-canopy”, as an analogy to the crown 

canopy, i.e. the uppermost layer in a forest formed by the crown of the trees).  

 

This concept is likely to become more prevalent as the field of research dealing with the solid 

state degradation of plant cell walls polysaccharides by enzymes offers formidable challenges. 

Plant biomass is an alternative natural source for chemical and feed stocks with a replacement 

cycle short enough to meet the demand of the world fuel market. The enzymatic hydrolysis of 

cellulose is still considered as a main limiting step of the biological production of biofuels from 
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lignocellulosic biomass. This step involves the action of three types of cellulose degrading 

enzymes acting in a synergistic way. In view of designing a functional kinetic model integrating 

the respective properties of each enzyme along with their synergies, much can be learned by 

conducting carefully designed computer simulations of the binding of the cellulose-binding- 

domains and the catalytic domains of cellulases with various substrates, solvation models and 

thermodynamics protocols. Such an extraordinary computational challenge is delineating the 

new frontiers of the area of protein-carbohydrate interactions.  
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Annex I  
STRUCTURE OF CARBOHYDRATES 
 

I. Important parameters for the 3D description of glycans 

 

Figure I.1 Parameters for glycan structure description. 
[This figure describes the ‘heavy atom convention’ for the torsion angle description for (1x) linkages, 

where, ΦO5-C1-O-Cx, Ψ C1-O1-Cx-Cx+1 and ωO5-C5-C6-O6]. 

 

 

I.1. Constitution, Configuration & conformation 

Constitution by definition is the reversible formation of cyclic hemiacetals from the 

corresponding poly-hydroxy-aldehydes or –ketones (denoted as ring tautomerism). 

Configuration of the sugar refers to its spatial arrangement of bonds that can only be 

altered by breaking of bonds. For instance, the D/L and the R/S configurations of organic 

molecules can only be changed by breaking one or more bonds connecting the chiral 

atom. 

Conformation is the spatial arrangement of atoms in a molecule (usually of substituent 

groups) that are free to assume different positions in space through the free rotation of 

atoms about a single chemical bond. It can be changed without breaking bonds. For 

example, rotation about single bonds produces the cis/trans conformations.  

 

Constitution and configuration (Figure I.1) describe permanent geometry descriptors for 

the glycan. In order to change them a chemical change would be required, implying an 
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addition of (a relatively) high energy or catalyst, which would alter the identity of the 

glycan itself. On the other hand, conformations can change in solution at room 

temperature without altering the nature of the glycan. The activation energy lies, in 

general, below 63 kJ/mol for monosaccharides.  

 

For furanoses and pyranoses, one can speak about definite conformations and energetic 

preferences of some forms (though mostly a single form abounds) as these are separated 

but sufficiently high-energy barriers for conformational inter-conversion. Energy 

differences of a few kJ/mol suffice to allow one stable conformation to dominate to 

almost 100% over less stable ones in equilibrium in solution (the effect being especially 

pronounced for pyranoses). In the crystalline form, however, monosaccharides and their 

derivatives are conformationally homogeneous.  

 

In solution, the stable conformations of a monosaccharide and their relative proportions 

to one another are influenced by the following: 

a. influence of the environment 

b. underlying constitution and configuration 

It can thus be inferred that conformations indicate the fine structure of the compound and 

come closest to representing the true shape of the molecule. 

 

Thus, extrapolating from the above, physical properties and behavior of the glycans can 

be traced down to the predominant conformation(s). These conformations can be 

assigned using physical methods, especially NMR spectroscopy. There are 3 ‘non-bonded 

interactions’ that stabilize a certain conformation in comparison to others: 

a. steric (van der Waals) interactions 

b. polar (electrostatic) interactions  

c. hydrogen bonding 

 

The Newman projection formulae are convenient for the pictorial representation of 

conformations. In such a projection, the angle formed between a bond protruding out (in 
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front) of the plane of the paper and a bond behind the plane of the paper, is known as the 

dihedral or torsion angle (Figure I.2). 

 

 

 Figure I.2 Torsion angle descriptions. 

 

In general, steric interactions are the deciding factor in the relative stabilization or de-

stabilization of certain conformations of a molecule.  

 

I.2. Ring puckering 

The puckered conformations of furanose (five-membered glycan ring) and pyranose (six-

membered glycan ring) are central to analyzing the action of enzymes on carbohydrates 

[1]. Sugar rings can adopt different conformations that can be described using the 

puckering parameters described by Cremer and Pople [2] as illustrated in Figure I.3 and 

I.4 for furanoses and pyranoses, respectively. In every case, there are four or more atoms 

that define the plane. In order to visualize which atoms are above or below the plane, the 

molecule has to be oriented such that the atoms are numbered clockwise when viewed 

from the top. The atom above the plane is prefixed as a superscript, while the one below 

is suffixed as a subscript (e.g., 
4
C1). Pyranose and furanose forms of glycans can exist as 

different conformers and can inter-convert if an energy penalty is met. 

 

I.2.a. Furanoses  

Pentoses like ribose form five-membered furanose rings. Upon cyclization, the C1 carbon 

becomes chiral giving rise to either an α or a β anomer. For furanoses, the two possible 
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conformers are the Twist (T) and the Envelope (E). The conformational flexibility of the 

furanose ring is represented by the puckering parameters as described in Figure I.3. The 

figure describes the amplitude νν  (or the endocyclic torsion angles, ν0, ν1, ν2, ν3 and ν4) of 

the furanose ring. Each point on the circle represents a specific phase (or pseudorotation
1
) 

angle P. The molecule can move from one conformation to another on the circle, crossing 

an intermediate low energy barrier. 

 

Figure I.3 The schematic representation of the puckering parameters in a furanose ring [3]. The 

pseudo-rotational wheel of furanoses encompasses the 20 twist and envelope shapes. 

 

 

I.2.b.  Pyranoses 

Hexoses such as glucose, on the other hand, are mostly found in the six-membered 

pyranose ring forms, as illustrated in Figure I.4. The chair [C] is the representative 

conformation for most pyranoses with 
4
C1 and 

1
C4 being the most-favored. In this 

conformation the ring oxygen O5 and the ring carbons C2, C3 and C5 lie on the same 

plane. Depending on whether the C4 is above the plane (with C1 below the plane) or 

vice-versa the sugar is said to be in either 
4
C1 or 

1
C4 conformation, respectively. 

Generally, the D- and the L- pyranose rings have a preference for the 
4
C1 and 

1
C4                                                         1 Pseudorotation is defined as the ready change of the flexible conformations from one form to another. 

This term is used frequently for furanoses. 



      Annex I  v 
  
conformations, respectively. Beside the chair, boat (or twist boat) and skew 

conformations can also be observed for pyranose rings. Usually a ring conformation is 

stable with one predominant form, but it does happen that the ring flips to another 

alternative conformation. This requires considerable energy since high-energy barriers 

separate the low-energy conformational states. The energy barrier for the inter-

conversion of one chair conformation into another amounts to about 42kJ/mol [4]. This 

rare situation may arise if there are bulky substituents at the axial position. The ring flip 

involves a large conformational change due to all the axial groups becoming equatorial 

and vice-versa. It is assumed that the ring inversion via the high-energy half-chair 

conformation, along with the skew and boat conformations [4]. This factor is thus 

important to consider when molecular modeling involves a sugar with such a behavioral 

trait of flexible rings. 

 

Figure I.4 (a) The puckering parameters for pyranoses describing the polar angle (θ), the 

azimuthal or phase angle (φ) and the puckering amplitude (Q) [3]. [The phase angle is also 

denoted sometimes as P and the puckering amplitude as ν] (b) Energy barriers for the 

interconversion of one chair conformation into another chair conformation in a pyranose ring 

system [4]. 
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I.3. Exocyclic hydroxymethyl groups 

The exocyclic primary alcohol groups can adopt a number of low-energy conformations. 

The conformation of the exocyclic hydroxymethyl groups is best described as an 

equilibrium that exists between three staggered rotamers that correspond to their local 

minima. In furanoses and pyranoses, they are called gt (gauche-trans), gg (gauche-

gauche), and tg (trans-gauche). The corresponding torsion angle (ω) between the 

terminal oxygen and the ring oxygen in α-D-Glcp, for example, is shown in Figure I.5. 

In pyranoses, the two most frequent positions occupied by the primary hydroxyl groups 

correspond to those that avoid interactions between O4 and O6 [3]. However, each of the 

secondary hydroxyl groups can rotate almost freely. 

 

Figure I.5: The ring and Newman projections of the gt (gauche-trans), tg (trans-gauche) and gg 

(gauche-gauche) rotameric conformers of the ω (O5–C5–C6–O6) torsion angle in α-D-Glcp. 

 

 

I.4. Glycosidic linkages 

The monosaccharides are connected to build longer chains of di-, oligo and 

polysaccharides via a condensation reaction. This occurs at the –OH function at the 

anomeric carbon with the hydroxyl of another monosaccharide, with the elimination of a 

water molecule to form an acetal. Thus, a glycosidic linkage is formed (Figure I.1). 

 

I.4. Torsion Angles 

The relative orientation of two consecutive monosaccharides linked by a glycosidic bond 

in a disaccharide can be characterized by the Φ and Ψ torsion angles. In this thesis, the 

‘Heavy Atom Definition’ (commonly followed by crystallographers) has been used 

where ΦO5-C1-O-Cx and ΨC1-O1-Cx-Cx+1 (where x is the number of the carbon 
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atom of the second monosaccharide with which the glycosidic bond is formed), except in 

Chapter 5 and Chapter 6, where the ‘Light Atom Definition’ has also been used for 

describing the NMR results (Figure 1.6). For 16 glycosidic linkages, the ω (O5–C5–

C6–O6) torsion angle is another parameter that is important. In analogy to the 

Ramachandran plots generated for proteins, in glycobiology Φ / Ψ maps can be generated 

using molecular mechanics or molecular dynamics calculations. The minima on these φ/ψ 

maps describe the energetically preferred disaccharide conformations. For 

oligosaccharides containing 1 6 linkages, variation in rotamer population have a direct 

effect on the glycan structure and function. Water seems to induce the disruption of 

hydrogen bonds within the glycan thus allowing rotamer populations to be determined by 

internal electronic and steric repulsions between the oxygen atoms [5]. 

 

Figure I.6: The conventions used in this thesis illustrated using the disaccharide β-D-Galp-1,3- α-

D-GalpNAc (a) Heavy atom convention: ΦO5-C1-O1-C4, Ψ C1-C2-O1-C4, (b) Light atom 

convention: ΦH H1-C1-O1-Cx and ΨH
  C1-O1-Cx-Hx. 

 

I.5. Reducing and non-reducing ends 

The hemiacetal or hemiketal functions in the disaccharides and higher carbohydrate 

species retain the aldehyde or the ketone functional group and hence the ability to reduce 

inorganic ions. Thus, this part of the sugar is called the reducing end [6]. The non-

reducing end is at the monomer whose anomeric carbon is engaged in a glycosidic bond, 

thus preventing the opening of the ring to the aldehyde or keto form.  

 

Oligosaccharides are flexible molecules containing several freely rotatable bonds. 

Glycans are also difficult to model due to their highly polar functionality and differences 
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in electronic arrangements, like the anomeric, exo-anomeric and the gauche

2
 effects that 

occur during conformational and configurational changes [3]. 

 

I.7. Anomeric and exo-anomeric effect 

Anomers are special epimers
3
, which in the cyclic forms differ in chirality at the 

anomeric (hemi-acetal or hemiketal) carbon only. In the straight-chain format, anomers 

have an identical configuration. When the stereochemistry at C1 matches that of the last 

stereogenic center, the sugar is an alpha (α) anomer and when they are oppositely 

oriented then the sugar is a beta (β) anomer. The anomers can inter-convert through 

mutarotation
4
. The content of the α-anomer in the equilibrium mixture following 

mutarotation is observed to be greater than what could be explained by the 

conformational energy of the –OH group, for example, in α-D-methyl-glucopyranoside 

the α-anomer predominates with a ratio of 2:1 (the α-anomer has an axial –OH group 

while the β-anomer has an equatorially oriented –OH group at C1). This tendency of the 

α-anomer to predominate is called the anomeric effect.  

Anomeric effect, also known as the endo-anomeric effect, is the propensity of 

heteroatoms at C1 to be oriented axially. The lone pair being donated comes from the 

ring oxygen. 

Exo-anomeric effect is similar to the endo-anomeric effect, with the source of the lone 

pair of electron that is donated being different. The lone pair in the exo-anomeric effect is 

donated by the substituent at C1. This results from the interaction of the lone pairs on the 

exocyclic oxygen with the endocyclic C-O bond. This interaction is favorable only in the 

gauche conformer about the exocyclic C-O bond. Thus, the anomeric effect not only 

                                                        2 The term "gauche" refers to conformational isomers (conformers) where two vicinal groups are separated 

by a 60° torsion angle. IUPAC defines groups as gauche if they have a "synclinal alignment of groups 

attached to adjacent atoms".  3 Epimers are monosaccharides differing in chirality at only one carbon. In the straight-chain format, 

epimers have –H and –OH switched at one backbone carbon, but not at any other.  4 Mutarotation is the change in the optical rotation that occurs by epimerization (i.e. change in the 

equilibrium between two epimers, when the corresponding stereocenters interconvert). Cyclic sugars show 

mutarotation as α and β anomers interconvert. The optical rotation of the solution depends on the optical 

rotation of each anomer and their ratio in the solution. 
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influences the axial/equatorial isomerism in sugars, but also has a strong influence on the 

conformation of oligosaccharides. 

Gauche effect The Gauche effect characterizes any gauche rotamer, which is actually 

more stable than the anti rotamer. Though it is recognized that the gauche effect in 

glycans is a solvent-dependent phenomenon, the mechanism through which this effect is 

induced as well as the physical origin of such conformational preferences remain 

unknown [7]. 
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Table 1 
Polysaccharide Families, their constituent members and the bibliographic references present in PolySac3DB 

No. Family Name Polysaccharide Member Reference 
1 Agaroses Agarose (single)  [1] 

Agarose (double)  [2] 

Agarose Molecular Models [3] 

2 Alginates Poly-α-L-Guluronic Acid  
[4] 

Poly-β-D-Mannuronic Acid  
[5] 

Alginate Molecular Models [6, 7] 

3 Amyloses & Starch A Starch  [8, 9] 

Starch Nanocrystals  [10] 

Amylopectins  [11] 

B Starch [12] 

Amylose DMSO [13] 

Amylose KOH [14] 

Amylose Triacetate [15] 

Amylose tri-O-ethyl (TEA3) [16] 

Amylose V [17] 

Amylose V propanol complex [18] 

4 Bacterial Polysaccharides Dextran (high T polymorph) [19] 

Dextran (low T polymorph) [20] 
Exo-polysaccharide  

(Burkholderia cepacia) 

[21] 
α (2-8)-linked Sialic Acid Polysaccharide [22] 

M41 Capsular Polysaccharide (E. coli) [23] 

O-antigenic polysaccharide (E. coli 1303) Manuscript in preparation 

O-antigenic polysaccharide (E. coli O5ab) Manuscript in preparation 
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O-antigenic polysaccharide (E. coli O5ac) Manuscript in preparation 

O-antigenic polysaccharide (E. coli O65) Manuscript in preparation 

Capsular Polysaccharide (Rhizobium trifolii) [24] 

Gellan Native K [25] 

Gellan K [26] 

Gellan Li [27] 

RMDP17 [28] 

Welan (Ca) [29] 

Xanthan [30] 

5 Carrageenans Iota Carrageenan [31] 

Iota Carrageenan (Na salt) [32] 

Kappa Carrageenan [33] 

6 Celluloses Cellulose I α [34] 

Cellulose I β [35] 

Cellulose I triacetate [36] 

Cellulose II   [37] 

Cellulose II hydrate [38] 

Cellulose II hydrazine [39] 

Cellulose II triacetate [40] 

Cellulose IIII 
[41] 

Cellulose IVI 
[42] 

Cellulose microfibrils [43] 

7 Chitins & Chitosans Chitin I (Chitin β) [44] 

Chitin II (Chitin α)  [45] 

Chitosan (anhydrous) [46] 

Chitosan (high T Polymorph) [47] 

8 Curdlans Curdlan I (Native)  [48] 

Curdlan II   [49] 

Curdlan III  [50] 

9 GAGs Chondroitin (unsulphated)  [51] 
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Chondroitin 4-sulphate Ca [52] 

Chondroitin 4-sulphate K [53] 

Chondroitin 4-sulphate Na [54] 

Dermatan 4-sulphate Na (allomorphs I, II, III)  [55] 

Hyaluronate I & II Sodium  [56] 

Hyaluronate III Sodium [57] 

Hyaluronate I Potassium [58] 

Hyaluronate II Potassium [59] 

Hyaluronate III Potassium [60] 

Hyaluronate Calcium   [61] 

Hyaluronic acid  [62] 

Heparin (dp 12) 

Heparin (dp 18, 24, 30, 36) 

[63, 64] 

Keratan-6-sulphate          [65] 

10 Galactoglucans Galactoglucan [66] 

11 Galactomannans Galactomannan [67] 

12 Glucomannans Konjac glucomannan [68] 

13 Mannans Mannan I  [69] 

Mannan II [70] 

α-D-1,3-Mannan  [71] 

Mannan dihydrate  [72] 

14 Pectins Pectic Acid [73] 

Calcium Pectate  [74] 

Sodium Pectate  [73] 

Polyuronides Molecular Models [6, 7] 

Arabinan  [75] 

Arabino-Galactan Type I  [75] 

Arabino-Galactan Type II  [75] 

RG-I  [75] 

RG-II  [76] 
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15 Scleroglucans Scleroglucan [77] 

16 Xylans Xylan (β-1,3) [78] 

Xylan (β-1,4) [79, 80] 

17 Nigeran Nigeran [81] 

18 Others Inulin hemihydrate [82] 

Inulin monohydrate [82] 

α-D-glucan  [83] 

α-1,3-glucan triacetate [84] 
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Index  Oligo  Formula  Type 
1  Blood group A antigen tetraose type 1  GalNAc a1‐3 (Fuc a1‐2) Gal b1‐3 GlcNAc b  Blood group A antigens 
2  Blood group A antigen hexaose type 1  GalNAc a1‐3 (Fuc a1‐2) Gal b1‐3 GlcNAc b1‐3 Gal b1‐4 Glc  Blood group A antigens 
3  Blood group A antigen hexaose type 2  GalNAc a1‐3 (Fuc a1‐2) Gal b1‐4 GlcNAc b1‐3 Gal b1‐4 Glc  Blood group A antigens 
4  Blood group A antigen pentaose type 1  GalNAc a1‐3 (Fuc a1‐2) Gal b1‐3 GlcNAc b1‐3 Gal  Blood group A antigens 
5  Blood group A antigen pentaose type 2  GalNAc a1‐3 (Fuc a1‐2) Gal b1‐4 GlcNAc b1‐3 Gal  Blood group A antigens 
6  Blood group A antigen pentaose type 4  GalNAc a1‐3 (Fuc a1‐2) Gal b1‐3 GalNAc b1‐3 Gal  Blood group A antigens 
7  Blood group A antigen tetraose type 2  GalNAc a1‐3 (Fuc a1‐2) Gal b1‐4 GlcNAc b  Blood group A antigens 
8  Blood group A antigen tetraose type 5  GalNAc a1‐3 (Fuc a1‐2) Gal b1‐4 Glc  Blood group A antigens 
9  Blood group A antigen triose  GalNAc a1‐3 (Fuc a1‐2) Gal b  Blood group A antigens 
10  Blood group A Lewis B antigen pentaose type1  GalNAc a1‐3 (Fuc a1‐2) Gal b1‐3 (Fuc a1‐4) GlcNAc  Blood group A antigens 
11  Blood group A Lewis Y antigen pentaose type2  GalNAc a1‐3 (Fuc a1‐2) Gal b1‐4 (Fuc a1‐3) GlcNAc  Blood group A antigens 
12  B antigen hexaose type 1  Gal a1‐3 (Fuc a1‐2) Gal b1‐3 GlcNAc b1‐3 Gal b1‐4 Glc  Blood group B antigens 
13  B antigen hexaose type 2  Gal a1‐3 (Fuc a1‐2) Gal b1‐4 GlcNAc b1‐3 Gal b1‐4 Glc  Blood group B antigens 
14  Blood group B antigen pentaose type 1  Gal a1‐3 (Fuc a1‐2) Gal b1‐3 GlcNAc b1‐3 Gal  Blood group B antigens 
15  Blood group B antigen pentaose type 2  Gal a1‐3 (Fuc a1‐2) Gal b1‐4 GlcNAc b1‐3 Gal  Blood group B antigens 
16  Blood group B antigen pentaose type 4  Gal a1‐3 (Fuc a1‐2) Gal b1‐3 GalNAc b1‐3 Gal  Blood group B antigens 
17  Blood group B antigen tetraose type 1  Gal a1‐3 (Fuc a1‐2) Gal b1‐3 GlcNAc b  Blood group B antigens 
18  Blood group B antigen tetraose type 2  Gal a1‐3 (Fuc a1‐2) Gal b1‐4 GlcNAc  Blood group B antigens 
19  Blood group B antigen tetraose type 5  Gal a1‐3 (Fuc a1‐2) Gal b1‐4 Glc b  Blood group B antigens 
20  Blood group B antigen triose  Gal a1‐3 (Fuc a1‐2) Gal b  Blood group B antigens 
21  Blood group B Lewis Y antigen pentaose type1  Gal a1‐3 (Fuc a1‐2) Gal b1‐3 (Fuc a1‐4) GlcNAc  Blood group B antigens 
22  Blood group B Lewis Y antigen pentaose type2  Gal a1‐3 (Fuc a1‐2) Gal b1‐4 (Fuc a1‐3) GlcNAc  Blood group B antigens 
23  Blood group H antigen pentaose type 2  Fuc a1‐2 Gal b1‐4 GlcNAc b1‐3 Gal b1‐4 Glc  Blood group H antigens (Blood 

group O) 
24  Blood group H antigen tetraose type 1  Fuc a1‐2 Gal b1‐3 GlcNAc b1‐3 Gal  Blood group H antigens (Blood 

group O) 
25  Blood group H antigen tetraose type 2  Fuc a1‐2 Gal b1‐4 GlcNAc b1‐3 Gal  Blood group H antigens (Blood 
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group O) 
26  Blood group H antigen triaose type 2  Fuc a1‐2 Gal b1‐4 GlcNAc b  Blood group H antigens (Blood 

group O) 
27  Blood group H antigen triose type 1  Fuc a1‐2 Gal b1‐3 GlcNAc b  Blood group H antigens (Blood 

group O) 
28  Blood group H antigen triose type 3  Fuc a1‐2 Gal b1‐3 GalNAc a  Blood group H antigens (Blood 

group O) 
29  Blood group H antigen triose type 4  Fuc a1‐2 Gal b1‐3 GalNAc b  Blood group H antigens (Blood 

group O) 
30  Blood group H antigen triose type 5  Fuc a1‐2 Gal b1‐4 Glc  Blood group H antigens (Blood 

group O) 
31  Blood group H antigen triose type 5 (2'‐

Fucosyllactose) 
Fuc a1‐2 Gal b1‐4 Glc b  Blood group H antigens (Blood 

group O) 
32  Blood group H antigen triose type 6  Fuc a1‐2 Gal b1‐4 Glc b  Blood group H antigens (Blood 

group O) 
33  Lacto‐N‐fucopentaose I  Fuc a1‐2 Gal b1‐3 GlcNAc b1‐3 Gal b1‐4 Glc b  Blood group H antigens (Blood 

group O) 
34  LNT‐2  GlcNAc b1‐3 Gal b1‐4 Glc b  Blood group H antigens (Blood 

group O) 
35  Blood group H antigen tetraose type 4 & Globo 

H tetraose 
Fuc a1‐2 Gal b1‐3 GalNAc b1‐3 Gal  Blood group H antigens (Blood 

group O) 
36  Core 4  GlcNAc b1‐3 (GlcNAc b1‐6) GalNAc a  Core structures  
37  a2‐3 Neu5Ac on Core 1 of Core 2  Neu5Ac a2‐3 Gal b1‐3 (GlcNAc b1‐6) GalNAc a  Core structures (Type 1 & Type 

2) 
38  a2‐3 Neu5Ac on Core 1 with a‐galactose on Core 

2 
Neu5Ac a2‐3 Gal b1‐3 (Gal a1‐3 Gal b1‐4 GlcNAc b1‐6) GalNAc 
a 

Core structures (Type 1 & Type 
2) 

39  a2‐3 Neu5Ac on Core 1 with a‐galactosylated 
Core 2 

Neu5Ac a2‐3 Gal b1‐3 (Gal b1‐4 GlcNAc b1‐6) GalNAc a 
 

Core structures (Type 1 & Type 
2) 

40  a2‐3 Neu5Ac on Core 1 with Lex on Core 2  Neu5Ac  a2‐3  Gal  a1‐3  (Gal  a1‐4  (Fuc  a1‐3)  GlcNAc  a1‐6) 
GalNAc a 

Core structures (Type 1 & Type 
2) 

41  a2‐3 Neu5Ac on Core 1  Neu5Ac a2‐3 Gal b1‐3 GalNAc a  Core structures (Type 1) 
42  Core type 1 triose  Gal b1‐3 GlcNAc b1‐4 Gal  Core structures (Type 1) 
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43  Lacto‐N‐tetraose  Gal b1‐3 GlcNAc b1‐3 Gal b1‐4 Glc b  Core structures (Type 1) 
44  Lacto‐N‐triose  GlcNAc b1‐3 Gal b1‐4 Glc  Core structures (Type 1) 
45  a2‐3 Neu5Ac on Core 2  Gal a1‐3 (Neu5Ac a2‐3 Gal a1‐4 GlcNAc a1‐6) GalNAc a  Core structures (Type 2) 
46  a‐Galactose on Core 2  Gal b1‐3 (Gal a1‐3 Gal b1‐4 GlcNAc b1‐6) GalNAc a  Core structures (Type 2) 
47  b‐galactosylated Core 2  Gal b1‐3 (Gal b1‐4 GlcNAc b1‐6) GalNAc a  Core structures (Type 2) 
48  Core 2  Gal b1‐3 (GlcNAc b1‐6) GalNAc a  Core structures (Type 2) 
49  Core type 2 triose  Gal b1‐4 GlcNAc b1‐4 Gal  Core structures (Type 2) 
50  disialyl Core 2  Neu5Ac  a2‐3  Gal  b1‐3  (Neu5Ac  a2‐3  Gal  b1‐4  GlcNAc  b1‐6) 

GalNAc a 
Core structures (Type 2) 

51  disialyl Core 2 with sLex on Core 2  Neu5Ac  a2‐3  Gal  b1‐3  (Neu5Ac  a2‐3  Gal  b1‐4  (Fuc  a1‐3) 
GlcNAc b1‐6) GalNAc a 

Core structures (Type 2) 

52  Lacto‐N‐hexaose  Gal b1‐4 GlcNAc b1‐6 (Gal b1‐3 GlcNAc b1‐3) Gal b1‐4 Glc b  Core structures (Type 2) 
53  Lacto‐N‐neohexaose  Gal b1‐4  GlcNAc  b1‐6 (Gal  b1‐4  GlcNAc  b1‐3)  Gal b1‐4 Glc 

b 
Core structures (Type 2) 

54  Lacto‐N‐neooctaose  Gal b1‐4 GlcNAc b1‐3 Gal b1‐4 GlcNAc b1‐3 Gal b1‐4 GlcNAc 
b1‐3 Gal b1‐4 Glc 

Core structures (Type 2) 

55  Lacto‐N‐neotetraose  Gal b1‐4 GlcNAc b1‐3 Gal b1‐4 Glc b  Core structures (Type 2) 
56  LN2 Type 2 (Di‐N‐Acetyl‐D‐Lactosamine)  

[I antigen] 
Gal b1‐4 GlcNAc b1‐3 Gal b1‐4 GlcNAc b  Core structures (Type 2) 

57  LN3 Type 2  [I antigen]  Gal b1‐4 GlcNAc b1‐3 Gal b1‐4 GlcNAc b1‐3 Gal b1‐4 GlcNAc b  Core structures (Type 2) 
58  N‐Acetyl‐D‐Lactosamine (LacNAc)  Gal b1‐4 GlcNAc b  Core structures (Type 2) 
59  Para‐Lacto‐N‐neohexaose  Gal b1‐4 GlcNAc b1‐3 Gal b1‐4 GlcNAc b1‐3 Gal b1‐4 Glc  Core structures (Type 2) 
60  SLex on Core 2  Neu5Ac  a2‐3  Gal  b1‐3  (Gal  b1‐4  (Fuc  a1‐3)  GlcNAc  b1‐6) 

GalNAc a 
Core structures (Type 2) 

61  Core type 4 (Elicityl)  Gal b1‐3 GalNAc b1‐3 Gal  Core structures (Type 4) 
62  3'‐sulpho Lewis A [3S‐Gal‐3(Fuc)‐GlcNAc]  Gal [3S] b1‐3 (Fuc a1‐4) GlcNAc b  Fucosylated oligosaccharides 
63  Fuc‐(Glc‐Man‐(Gal‐(Fuc)‐GlcNAc‐Man)‐Man‐

GlcNAc)‐GlcNAc 
Fuc a1‐6 (Glc b1‐2 Man a1‐6 (Gal b1‐4 (Fuc a1‐3) GlcNAc b1‐2 
Man a1‐3) Man b1‐4 GlcNAc b1‐4) GlcNAc b 

Fucosylated oligosaccharides 

64  Fuc‐(GlcNAc‐Man‐(Gal‐GlcNAc‐Man)‐Man‐
GlcNAc)‐GlcNAc 

Fuc a1‐6 (GlcNAc b1‐2 Man a1‐6 (Gal b1‐4 GlcNAc b1‐2 Man 
a1‐3) Man b1‐4 GlcNAc b1‐4)GlcNAc b 

Fucosylated oligosaccharides 
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65  3S‐Gal‐4(Fuc)‐GlcNAc  Gal [3S] b1‐4 (Fuc a1‐3) GlcNAc b  Fucosylated oligosaccharides 
66  a‐3Galactosyl‐3Fucosyllactose  Gal a1‐3 Gal b1‐4 (Fuc a1‐3) Glc  Fucosylated oligosaccharides (3 

Fucosyllactose core) 
67  a‐4Galactosyl‐3Fucosyllactose  Gal a1‐4 Gal b1‐4 (Fuc a1‐3) Glc  Fucosylated oligosaccharides (3 

Fucosyllactose core) 
68  3‐Fucosylated Blood group A tetraose  GalNAc a1‐3 (Fuc a1‐2) Gal b1‐4 (Fuc a1‐3) Glc  Fucosylated oligosaccharides (3 

Fucosyllactose core) 
69  3‐Fucosylated Blood group B tetraose  Gal a1‐3 (Fuc a1‐2) Gal b1‐4 (Fuc a1‐3) Glc  Fucosylated oligosaccharides (3 

Fucosyllactose core) 
70  3‐Fucosyllactose  Gal b1‐4 (Fuc a1‐3) Glc b  Fucosylated oligosaccharides 

(Lacto‐Series) 
71  3'‐Sialyl‐3‐fucosyllactose  Neu5Ac a2‐3 Gal b1‐4 (Fuc a1‐3) Glc b  Fucosylated oligosaccharides 

(Lacto‐Series) 
72  6'‐Sialyllactose  Neu5Ac a2‐6 Gal b1‐4 Glc b  Fucosylated oligosaccharides 

(Lacto‐Series) 
73  A‐tetra Lactose  GalNAc a1‐3 (Fuc a1‐2) Gal b1‐4 Glc b  Fucosylated oligosaccharides 

(Lacto‐Series) 
74  A‐tetra type 2  GalNAc a1‐3 (Fuc a1‐2) Gal b1‐4 GlcNAc b  Fucosylated oligosaccharides 

(Lacto‐Series) 
75  B‐tetra Lactose  Gal a1‐3 (Fuc a1‐2) Gal b1‐4 Glc b  Fucosylated oligosaccharides 

(Lacto‐Series) 
76  B‐tetra type 2  Gal a1‐3 (Fuc a1‐2) Gal b1‐4 GlcNAc b  Fucosylated oligosaccharides 

(Lacto‐Series) 
77  Difucosyllactose  Fuc a1‐2 Gal b1‐4 (Fuc a1‐3) Glc b  Fucosylated oligosaccharides 

(Lacto‐Series) 
78  Lacto‐N‐difucohexaose I  Fuc a1‐2 Gal b1‐3 (Fuc a1‐4) GlcNAc b1‐3 Gal b1‐4 Glc b  Fucosylated oligosaccharides 

(Lacto‐Series) 
79  Lacto‐N‐fucopentaose II  Gal b1‐3 (Fuc a1‐4) GlcNAc b1‐3 Gal b1‐4 Glc b  Fucosylated oligosaccharides 

(Lacto‐Series) 
80  Lacto‐N‐fucopentaose III  Gal b1‐4 (Fuc a1‐3) GlcNAc  b1‐3  Gal b1‐4 Glc b  Fucosylated oligosaccharides 

(Lacto‐Series) 
81  Lacto‐N‐fucopentaose V  Gal b1‐3 GlcNAc b1‐3 Gal b1‐4 (Fuc a1‐3) Glc b  Fucosylated oligosaccharides 
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(Lacto‐Series) 
82  Lacto‐N‐neofucopentaose  Gal b1‐4 GlcNAc b1‐3 Gal b1‐4 (Fuc a1‐3) Glc  Fucosylated oligosaccharides 

(Lacto‐Series) 
83  Chondroitin tetrasaccharide  deoxy‐GlcA b1‐3 GalNAc [4S] b1‐4 GlcA b1‐3 GalNAc [4S]  GAGs 
84  Heparin decasaccharide  deoxy‐IdoA  [2S]  a1‐4  GlcN  [2S6S]  (a1‐4  IdoA  [2S]  a1‐4  GlcN 

[2S6S])4 
GAGs 

85  Heparin heptasaccharide  deoxy‐GlcN [2S6S] (a1‐4 IdoA [2S] (a1‐4 GlcN [2S6S])3  GAGs 
86  Heparin hexasaccharide  deoxy‐GlcN [2S6S] a1‐4 IdoA [2S] (a1‐4 GlcN [2S6S] a1‐4 IdoA 

[2S])2 
GAGs 

87  Heparin hexasaccharide  IdoA [2S] a1‐4 GlcN [2S6S] (a1‐4 IdoA [2S] a1‐4 GlcN [2S6S])2  GAGs 
88  Heparin hexasaccharide  deoxy‐IdoA  [2S]  a1‐4  GlcN  [2S6S]  (a1‐4  IdoA  [2S]  a1‐4  GlcN 

[2S6S])2 
GAGs 

89  Heparin nonasaccharide  deoxy‐GlcN [2S6S] (a1‐4 IdoA [2S] a1‐4 GlcN [2S6S])4  GAGs 
90  Heparin octasaccharide  deoxy‐GlcN [2S6S] a1‐4 IdoA [2S] (a1‐4 GlcN [2S6S] a1‐4 IdoA 

[2S])3 
GAGs 

91  Heparin pentasaccharide  GlcN [2S6S] a1‐4 IdoA [2S] a1‐4 GlcN [2S6S] a1‐4 IdoA [2S] a1‐
4 GlcN [2S6S] 

GAGs 

92  Heparin pentasaccharide  deoxy‐IdoA [2S] (a1‐4 GlcN [2S6S] a1‐4 IdoA [2S])2  GAGs 
93  Heparin tetrasaccharide  deoxy‐IdoA  [2S]  a1‐4  GlcN  [2S6S]  a1‐4  IdoA  [2S]  a1‐4  GlcN 

[2S6S] 
GAGs 

94  Hyalonuric acid hexasaccharide  GlcA  b1‐3  GlcNAc  b1‐4  GlcA  b1‐3  GlcNAc  b1‐4  GlcA  b1‐3 
GlcNAc b 

GAGs 

95  Hyalonuric acid tetrasaccharide  GlcA b1‐3 GlcNAc b1‐4 GlcA b1‐3 GlcNAc b  GAGs 
96  SR123781A (Heparin 16)  Glc  [2S3S4S6S]  a1‐4 Glc  [2S3S6S]  a1‐4 Glc  [2S3S6S] b1‐4 Glc 

[6S] a1‐4  (Glc b1‐4 Glc a1‐4)3 Glc b1‐4 Glc  [6S] Glc b1‐4 Glc 
a1‐4 [2S3S6S] IdoA a1‐4 Glc 

GAGs 

97  Xeno lewis X (Gal Lewis x)  Gal a1‐3 Gal b1‐4 (Fuc a1‐3) GlcNAc b  Galα‐3Gal oligosaccharides 
(Galili and xeno antigens) 

98  Xeno lewis a  Gal a1‐3 Gal b1‐3 (Fuc a1‐4) GlcNAc  Galα‐3Gal oligosaccharides 
(Galili and xeno antigens) 

99  Galili antigen pentaose  Gal a1‐3 Gal b1‐4 GlcNAc b1‐3 Gal b1‐4 Glc  Galα‐3Gal oligosaccharides 
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(Galili and xeno antigens) 
100  Galili‐tri  Gal a1‐3 Gal b1‐4 Glc b  Galα‐3Gal oligosaccharides 

(Galili and xeno antigens) 
101  Xeno antigen type 1  Gal a1‐3 Gal b1‐3 GlcNAc  Galα‐3Gal oligosaccharides 

(Galili and xeno antigens) 
102  Xeno antigen type 2 (Galili antigen triose Gal a3 

epitope) 
Gal a1‐3 Gal b1‐4 GlcNAc  Galα‐3Gal oligosaccharides 

(Galili and xeno antigens) 
103  Isoglobopentaose (iGB5)  Gal b1‐3 GalNAc b1‐3 Gal a1‐3 Gal b1‐4 Glc  Galα‐3Gal oligosaccharides 

(Isogloboseries) 
104  Isoglobotetraose (iGB4 & Cytolipin R)  GalNAc b1‐3 Gal a1‐3 Gal b1‐4 Glc  Galα‐3Gal oligosaccharides 

(Isogloboseries) 
105  Isoglobotriose (iGB3)  Gal a1‐3 Gal b1‐4 Glc  Galα‐3Gal oligosaccharides 

(Isogloboseries) 
106  3'‐Sialyllactose  Neu5Ac a2‐3 Gal b1‐4 Glc b  Ganglioside sugars 
107  Fucosyl GM1  Fuc a1‐2 Gal b1‐3 GalNAc b1‐4 (Neu5Ac a2‐3) Gal b1‐4 Glc  Ganglioside sugars 
108  GA1 (aGM1)  Gal b1‐3 GalNAc b1‐4 Gal b1‐4 Glc b  Ganglioside sugars 
109  GA2 (aGM2)  GalNAc b1‐4 Gal b1‐4 Glc b  Ganglioside sugars 
110  GD1a  Neu5Ac  a2‐3  Gal b1‐3 GalNAc  b1‐4  (Neu5Ac  a2‐3) Gal  b1‐

4 Glc b 
Ganglioside sugars 

111  GD1b  Gal  b1‐3  GalNAc  b1‐4  (Neu5Ac  a2‐8  Neu5Ac  a2‐3)  Gal  b1‐4 
Glc b 

Ganglioside sugars 

112  GD2  GalNAc b1‐4 (Neu5Ac a2‐8 Neu5Ac a2‐3) Gal b1‐4 Glc b  Ganglioside sugars 
113  GD3  Neu5Ac a2‐8 Neu5Ac a2‐3 Gal b1‐4 Glc b  Ganglioside sugars 
114  GM1a  Gal b1‐3 GalNAc b1‐4 (Neu5Ac a2‐3) Gal b1‐4 Glc b  Ganglioside sugars 
115  GM1b  Neu5Ac a2‐3 Gal b1‐3 GalNAc b1‐4 Gal b1‐4 Glc b  Ganglioside sugars 
116  GM2  GalNAc b1‐4 (Neu5Ac a2‐3) Gal b1‐4 Glc b  Ganglioside sugars 
117  GM3  Neu5Ac a2‐3 Gal b1‐4 Glc b  Ganglioside sugars 
118  GT1a  Neu5Ac a2‐8 Neu5Ac a2‐3 Gal b1‐3 GalNAc b1‐4 (Neu5Ac a2‐

3) Gal b1‐4 Glc 
Ganglioside sugars 

119  GT1b  Neu5Ac a2‐3 Gal b1‐3 GalNAc b1‐4 (Neu5Ac a2‐8 Neu5Ac a2‐
3) Gal b1‐4 Glc b 

Ganglioside sugars 

120  GT1c  Gal b1‐3 GalNAc b1‐4 (Neu5Ac a2‐8 Neu5Ac a2‐8 Neu5Ac a2‐ Ganglioside sugars 
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3) Gal b1‐4 Glc b 
121  GT2  GalNAc b1‐4 (Neu5Ac a2‐8 Neu5Ac a2‐8 Neu5Ac a2‐3) Gal b1‐

4 Glc b : Na 
Ganglioside sugars 

122  GT3  Neu5Ac a2‐8 Neu5Ac a2‐8 Neu5Ac a2‐3 Gal b1‐4 Glc  Ganglioside sugars 
123  Forssman antigen pentaose   GalNAc a1‐3 GalNAc b1‐3 Gal a1‐4 Gal b1‐4 Glc  Globoside sugars (P antigens) 

(Forssman antigens) 
124  Forssman antigen triose  GalNAc a1‐3 GalNAc b1‐3 Gal  Globoside sugars (P antigens) 

(Forssman antigens) 
125  Isoforssman antigen pentaose  GalNAc a1‐3 GalNAc b1‐3 Gal a1‐3 Gal b1‐4 Glc  Globoside sugars (P antigens) 

(Forssman antigens) 
126  Globo‐A  GalNAc a1‐3 (Fuc a1‐2) Gal b1‐3 GalNAc b1‐3 Gal a1‐4 Gal b1‐

4 Glc 
Globoside sugars (P antigens) 
(Globo series ‐ core structure 

type 4 
127  Globo‐B  Gal  a1‐3  (Fuc  a1‐2) Gal  b1‐3 GalNAc b1‐3 Gal  a1‐4 Gal  b1‐4 

Glc 
Globoside sugars (P antigens) 
(Globo series ‐ core structure 

type 4 
128  Blood group H antigen tetraose type 4 & Globo 

H tetraose 
Fuc a1‐2 Gal b1‐3 GalNAc b1‐3 Gal  Globoside sugars (P antigens) 

(Globo series ‐ core structure 
type 4 

129  Globoside (NAc) (P‐antigen)  GalNAc b1‐3 Gal a1‐4 Gal b1‐4 GlcNAc b  Globoside sugars (P antigens) (P 
blood group antigens and 

analogues) 
130  Globotetraose (Gb4) (P antigen)  GalNAc b1‐3 Gal a1‐4 Gal b1‐4 Glc  Globoside sugars (P antigens) (P 

blood group antigens and 
analogues) 

131  P1 antigen (Globotriose analogue type 2)  Gal a1‐4 Gal b1‐4 GlcNAc b   

132  Globotriose analogue type 1  Gal a1‐4 Gal b1‐3 GlcNAc   

133  3‐Sialyl‐Gb3 (Sialylated Globotriose)  Neu5Ac a2‐3 Gal a1‐4 Gal b1‐4 Glc   

134  Pk antigen (Globotriose or Gb3)  Gal a1‐4 Gal b1‐4 Glc b   

135  Globopentaose (Gb5) [Stage specific embryonic 
antigen 3a (SSEA‐3a)] 

Gal b1‐3 GalNAc b1‐3 Gal a1‐4 Gal b1‐4 Glc  Globoside sugars (P antigens) 
(Stage‐specific Embryonic 
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antigens : SSEA‐3 & SSEA‐4) 
136  Globo‐H hexaose [Stage specific embryonic 

antigen 3b (SSEA‐3b)] 
Fuc a1‐2 Gal b1‐3 GalNAc b1‐3 Gal a1‐4 Gal b1‐4 Glc  Globoside sugars (P antigens) 

(Stage‐specific Embryonic 
antigens : SSEA‐3 & SSEA‐4) 

137  SSEA‐4 tetraose (Stage‐specific embryonic 
antigen 4) 

Neu5Ac a2‐3 Gal b1‐3 GalNAc b1‐3 Gal  Globoside sugars (P antigens) 
(Stage‐specific Embryonic 
antigens : SSEA‐3 & SSEA‐4) 

138  SSEA‐4 hexaose (Stage‐specific embryonic 
antigen 4) 

Neu5Ac a2‐3 Gal b1‐3 GalNAc b1‐3 Gal a1‐4 Gal b1‐4 Glc 
 

Globoside sugars (P antigens) 
(Stage‐specific Embryonic 
antigens : SSEA‐3 & SSEA‐4) 

139  Glucuronyl_Lactose  GlcA b1‐3 Gal b1‐4 Glc  Glucuronylated oligosaccharides 
140  Glucuronyl‐Lacto‐N‐tetraose  GlcA b1‐3 Gal b1‐3 GlcNAc b1‐3Gal b1‐4 Glc  Glucuronylated oligosaccharides 
141  Lacteneo sphingolip core  Gal b1‐4 GlcNAc b1‐3  Gal  b1‐4  Glc  b : Cer  Glycosphingolipid 
142  GPI anchor  Man a1‐2 Man a1‐6 Man a1‐4 GlcNH2 a1‐6 myo‐inositol  Glycosphingolipid 
143  3'‐SiaDi‐LN  Neu5Ac a2‐3 Gal b1‐4 GlcNAc b1‐4 Gal b1‐4 GlcNAc b  Lewis antigens 
144  3'‐Sialyl‐Lewis c  Neu5Ac a2‐3 Gal b1‐3 GlcNAc b  Lewis antigens 
145  3'‐su‐Lewis a  Gal [3S] b1‐3 (Fuc a1‐4) GlcNAc b  Lewis antigens 
146  3'‐su‐Lewis x  Gal [3S] b1‐4 (Fuc a1‐3) GlcNAc b  Lewis antigens 
147  6‐su‐GalNAc‐SiaLewis x  Neu5Ac a2‐3 Gal b1‐4 (Fuc a1‐3) GlcNAc [6S] b  Lewis antigens 
148  6‐su‐Gal‐SiaLewis x  Neu5Ac a2‐3 Gal [6S] b1‐4 (Fuc a1‐3) GlcNAc b  Lewis antigens 
149  di‐Lewis x b1‐4 Lewis x [di‐Lewis x]  Gal b1‐4 (Fuc a1‐3) GlcNAc b1‐4 Gal b1‐4 (Fuc a1‐3) GlcNAc b  Lewis antigens 
150  Lacto‐N‐difucohexaose II  Gal b1‐3 (Fuc a1‐4) GlcNAc b1‐3 Gal b1‐4 (Fuc a1‐3) Glc b  Lewis antigens 
151  Lewis a hexaose  Gal b1‐3 (Fuc a1‐4) GlcNAc b1‐3 Gal b1‐4 (Fuc a1‐3) Glc  Lewis antigens 
152  Lewis a Lewis x  Gal b1‐3 (Fuc a1‐4) GlcNAc b1‐3 Gal b1‐4 (Fuc a1‐3) GlcNAc b  Lewis antigens 
153  Lewis a LN  Gal a1‐3 (Fuc a1‐4) GlcNAc b1‐3 Gal b1‐4 GlcNAc b  Lewis antigens 
154  Lewis a tetraose  Gal b1‐3 (Fuc a1‐4) GlcNAc b1‐3 Gal b  Lewis antigens 
155  Lewis a triose  Gal b1‐3 (Fuc a1‐4) GlcNAc b  Lewis antigens 
156  Lewis b pentaose  Fuc a1‐2 Gal b1‐3 (Fuc a1‐4) GlcNAc b1‐3 Gal  Lewis antigens 
157  Lewis b tetraose  Fuc a1‐2 Gal b1‐3 (Fuc a1‐4) GlcNAc b  Lewis antigens 
158  Lewis c  Gal b1‐3 GlcNAc b  Lewis antigens 
159  Lewis X hexaose (also Lacto‐N‐ Gal b1‐4 (Fuc a1‐3) GlcNAc b1‐3 Gal b1‐4 (Fuc a1‐3) Glc  Lewis antigens 
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neodifucohexaose, LeX‐LeX) 
160  Lewis x on Core 2  Gal b1‐3 (Gal b1‐4 (Fuc a1‐3) GlcNAc b1‐6) GalNAc a  Lewis antigens 
161  Lewis X tetraose [Gal‐(Fuc)‐GlcNAc‐Gal]  Gal b1‐4 (Fuc a1‐3) GlcNAc b1‐3 Gal b  Lewis antigens 
162  Lewis x triaose [SSEA‐1]  Gal b1‐4 (Fuc a1‐3) GlcNAc b  Lewis antigens 
163  Lewis y Lewis x  Fuc a1‐2 Gal b1‐4 (Fuc a1‐3) GlcNAc b1‐4 Gal b1‐4 (Fuc a1‐3) 

GlcNAc b 
Lewis antigens 

164  Lewis y pentaose  Fuc a1‐2 Gal b1‐4 (Fuc a1‐3) GlcNAc b1‐3 Gal  Lewis antigens 
165  Lewis y tetraose [Blood group H type 2]  Fuc a1‐2 Gal b1‐4 (Fuc a1‐3) GlcNAc b  Lewis antigens 
166  Sialyl Lewis a (sLeA) tetraose [CA19‐9 antigen]  Neu5Ac a2‐3 Gal b1‐3 (Fuc a1‐4) GlcNAc b  Lewis antigens 
167  Sialyl Lewis X (sLeX) pentaose  Neu5Ac a2‐3 Gal b1‐4 (Fuc a1‐3) GlcNAc b1‐3 Gal  Lewis antigens 
168  Sialyl Lewis X (sLeX) tetraose  Neu5Ac a2‐3 Gal b1‐4 (Fuc a1‐3) GlcNAc b  Lewis antigens 
169  SLex‐Lex (SDLeX)  Neu5Ac  a2‐3 Gal  b1‐4  (Fuc  a1‐3) GlcNAc b1‐3 Gal  b1‐4  (Fuc 

a1‐3) GlcNAc b 
Lewis antigens 

170  SLex‐Lex‐Lex  Neu5Ac  a2‐3  Gal  b1‐4  (Fuc  a1‐3)GlcNAc  b1‐3  Gal  b1‐4  (Fuc 
a1‐3) GlcNAc b1‐3 Gal b1‐4 (Fuc a1‐3) GlcNAc b 

Lewis antigens 

171  tri‐Lewis x  Gal  b1‐4  (Fuc  a1‐3) GlcNAc b1‐4 Gal  b1‐4  (Fuc  a1‐3) GlcNAc 
b1‐4 Gal b4 (Fuc a1‐3) GlcNAc b 

Lewis antigens 

172  Gal b1‐4 GalNAc b1‐4 Gal b1‐4 Glc b  Gal b1‐4 GalNAc b1‐4 Gal b1‐4 Glc b  Miscellaneous 
173  (GlcNAc)3‐GalNAc  GlcNAc b1‐3 (GlcNAc b1‐4) (GlcNAc b1‐6) GalNAc a  Miscellaneous 
174  3'‐KDN‐Lewis c  KDN a2‐3 Gal b1‐4 GlcNAc b  Miscellaneous 
175  3'‐KDNLN  KDN a2‐3 Gal b1‐3 GlcNAc b  Miscellaneous 
176  6P‐Man3  Man [6P] a1‐3 Man a1‐3 Man a  Miscellaneous 
177  deoxy Chitotetraose  GlcNAc b1‐4 GlcNAc b1‐4 GlcNAc b1‐4 deoxy GlcNAc  Miscellaneous 
178  deoxy Chitotriose  GlcNAc b1‐4 GlcNAc b1‐4 deoxy GlcNAc  Miscellaneous 
179  Fuc‐Gal‐Xyl  Fuc a1‐2 Gal b1‐2 Xyl a  Miscellaneous 
180  Gal a (1‐3') LacNAc  Gal a1‐3 Gal b1‐4 GlcNAc b  Miscellaneous 
181  Gal‐GalNAc‐(Neu5Ac)‐Gal‐Glc  Gal b1‐3 GalNAc b1‐4 (Neu5Ac a2‐3) Gal b1‐4 Glc b  Miscellaneous 
182  Gal‐GlcNAc‐(Gal‐GlcNAc)‐Gal  Gal b1‐4 GlcNAc b1‐2 (Gal b1‐4 GlcNAc b1‐3) Gal b  Miscellaneous 
183  GalNAc‐(Fuc)‐Gal‐Glc  GalNAc a1‐3 (Fuc a1‐2) Gal b1‐4 Glc b  Miscellaneous 
184  GlcNAc b(1‐3') LacNAc  GlcNAc b1‐3 Gal b1‐4 GlcNAc b  Miscellaneous 
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185  GlcNAc b (1‐4,6) GalNAc  GlcNAc b1‐4 (GlcNAc b1‐6) GalNAc a  Miscellaneous 
186  GlcNAc‐(Fuc)‐deoxyGlcNAc  GlcNAc b1‐4 (Fuc a1‐3) deoxy GlcNAc  Miscellaneous 
187  GlcNAc‐(Fuc)‐GlcNAc  GlcNAc b1‐4 (Fuc a1‐3) GlcNAc b  Miscellaneous 
188  GlcNAc‐Gal‐Glc  GlcNAc b1‐6 Gal b1‐4 Glc b  Miscellaneous 
189  GlcNAc‐Man‐(GlcNAc‐Man)‐Man  GlcNAc b1‐2 Man a1‐3 (GlcNAc b1‐2 Man a1‐6) Man a  Miscellaneous 
190  Neu5Ac‐Gal‐(Fuc)‐GlcNAc‐OMe  Neu5Ac a2‐3 Gal b1‐4 (Fuc a1‐3) GlcNAc b  Miscellaneous 
191  Neu5Ac‐Gal‐(Neu5Ac)‐GlcNAc  Neu5Ac a2‐3 Gal b1‐3 (Neu5Ac a2‐6) GlcNAc b  Miscellaneous 
192  tetrafluoro‐4‐methoxy‐benzamide‐GalN‐GlcNAc  C8O2F4 GalpN b1‐4 GlcpNAc b  Miscellaneous 
193  Tk  GlcNAc b1‐3 (GlcNAc b1‐6) Gal b1‐4 GlcNAc b  Miscellaneous 
194  Fucosylated A antigen type 5  GalNAc a1‐3 (Fuc a1‐2) Gal b1‐4 (Fuc a1‐2) Glc  Miscellaneous (Blood group‐

related oligosaccharides) 
195  Fucosylated B antigen type 5  Gal a1‐3 (Fuc a1‐2) Gal b1‐4 (Fuc a1‐2) Glc  Miscellaneous (Blood group‐

related oligosaccharides) 
196  Chitohexaose  GlcNAc  b1‐4  GlcNAc  b1‐4  GlcNAc  b1‐4  GlcNAc  b1‐4  GlcNAc 

b1‐4 GlcNAc b 
Miscellaneous (Chitin 
oligosaccharides) 

197  Chitopentaose  GlcNAc b1‐4 GlcNAc b1‐4 GlcNAc b1‐4 GlcNAc b1‐4 GlcNAc b  Miscellaneous (Chitin 
oligosaccharides) 

198  Chitotetraose  GlcNAc b1‐4 GlcNAc b1‐4 GlcNAc b1‐4 GlcNAc b  Miscellaneous (Chitin 
oligosaccharides) 

199  Chitotriose  GlcNAc b1‐4 GlcNAc b1‐4 GlcNAc b  Miscellaneous (Chitin 
oligosaccharides) 

200  As‐Fibrinogen  Gal b1‐4 GlcNAc b1‐4 Man a1‐3  (Gal b1‐4 GlcNAc b1‐4 Man 
a1‐6) Man a1‐4 GlcNAc b1‐4 GlcNAc b 

Miscellaneous (Fibrinogen 
related) 

201  asialo‐, agalacto‐N‐glycan from porcine 
fibrinogen 

GlcNAc  b1‐2  Man  a1‐3  (GlcNAc  b1‐2  Man  a1‐6)  Man  b1‐4 
GlcNAc b1‐4 (Fuc a1‐6) GlcNAc b 

Miscellaneous (Fibrinogen 
related) 

202  di‐sialylated N‐glycan from porcine fibrinogen  Neu5Ac  a2‐6 Gal  b1‐4 GlcNAc  b1‐2 Man  a1‐3  (Neu5Ac  a2‐6 
Gal b1‐4 GlcNAc b1‐2 Man a1‐6) Man b1‐4 GlcNAc b1‐4 (Fuc 
a1‐6) GlcNAc b 

Miscellaneous (Fibrinogen 
related) 

203  2'‐F‐Di‐LN  Fuc a1‐2 Gal b1‐4 GlcNAc b1‐3 Gal b1‐4 GlcNAc b  Miscellaneous (LDN‐related) 
204  3‐SLDN  Neu5Ac a2‐3 GalNAc b1‐4 GlcNAc b  Miscellaneous (LDN‐related) 
205  6'‐SiaDi‐LN  Neu5Ac a2‐6 Gal b1‐4 GlcNAc b1‐4 Gal b1‐4 GlcNAc b  Miscellaneous (LDN‐related) 
206  Sialylated LDN [6‐SLDN]  Neu5Ac a2‐6 GalNAc b1‐4 GlcNAc b  Miscellaneous (LDN‐related) 
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207  Bi‐LDN  GalNAc b1‐4 GlcNAc b1‐4 Man a1‐6 (GalNAc b1‐4 GlcNAc b1‐
4 Man a1‐3) Man b1‐4 GlcNAc b1‐4 GlcNAc b 

Miscellaneous (LDN‐related) 

208  Fuc a (1‐3) Lac‐di‐Nac  GalNAc b1‐4 (Fuc a1‐3) GlcNAc b  Miscellaneous (LDN‐related) 
209  3' sulfo Lewis X [3S‐Gal‐(Fuc)‐GlcNAc]  Gal [3S] b1‐4 (Fuc a1‐3) GlcNAc b  Miscellaneous (Lewis X‐related) 
210  4' sulfo Lewis X [4S‐Gal‐(Fuc)‐GlcNAc]  Gal [4S] b1‐4 (Fuc a1‐3) GlcNAc b  Miscellaneous (Lewis X‐related) 
211  6‐LacNAc‐TF  Gal b1‐4 GlcNAc b1‐6 (Gal b1‐3) GalNAc a  Miscellaneous (TF‐related) 
212  6‐Siab‐TF  Neu5Ac b2‐6 (Gal b1‐3) GalNAc a  Miscellaneous (TF‐related) 
213  6'‐SiaaTF  Neu5Ac a2‐6 (Gal b1‐3) GalNAc a  Miscellaneous (TF‐related) 
214  GlcNAc b (1‐2') TF  GlcNAc b1‐2 Gal b1‐3 GalNAc a  Miscellaneous (TF‐related) 
215  3,6‐(LacNAc)2Tn  Gal b1‐4 GlcNAc b1‐3 (Gal b1‐4 GlcNAc b1‐6) GalNAc a  Miscellaneous (TN‐related) 
216  3‐6‐STn  Neu5Ac a2‐3 (Neu5Ac a2‐6) GalNAc a  Miscellaneous (TN‐related) 
217  3‐LacNAc‐Tn  Gal b1‐4 GlcNAc b1‐3 GalNAc a  Miscellaneous (TN‐related) 
218  6‐LacNAc‐Tn  Gal b1‐4 GlcNAc b1‐6 GalNAc a  Miscellaneous (TN‐related) 
219  Disialosylpentaose  Neu5Ac a2‐3 Gal b1‐4 Glc b1‐1 (Neu5Ac a2‐3) Gal  Miscellaneous (Trehalose‐like 

sugars) 
220  Galactosyl‐lactose  Gal b1‐4 Glc b1‐1 b Gal  Miscellaneous (Trehalose‐like 

sugars) 
221  (Man)2‐GlcNAc  Man a1‐3 (Man a1‐4) GlcNAc b  N‐linked oligos 
222  (Man)3 chitobiose  Man a1‐3 (Man a1‐6) Man b1‐4 GlcNAc b1‐4 GlcNAc b  N‐linked oligos 
223  (Man)3a  Man a1‐3 (Man a1‐6) Man a  N‐linked oligos 
224  (Man)3b  Man a1‐3 (Man a1‐6) Man b  N‐linked oligos 
225  (Man)4  Man b1‐2 Man a1‐2 Man b1‐3 Man b  N‐linked oligos 
226  (Man)4‐(Fuc)‐GlcNAc  Man a1‐2 Man a1‐3 (Man a1‐6) Man b1‐4 (Fuc a1‐3) GlcNAc b  N‐linked oligos 
227  (Man)5  Man a1‐6 (Man a1‐3) Man a1‐6 (Man a1‐3) Man b1‐4 GlcNAc 

b1‐4 GlcNAc b 
N‐linked oligos 

228  (Man)5‐OMe  Man a1‐2 Man a1‐3 (Man a1‐3 Man a1‐6) Man b  N‐linked oligos 
229  (Man)6  Man a1‐6 (Man b1‐3) Man b1‐6 (Man a1‐2 Man b1‐3) Man a  N‐linked oligos 
230  (Man)6 (GlcNAc)2  Man  a1‐6  (Man  a1‐3) Man  a1‐6  (Man  a1‐2 Man  a1‐3) Man 

b1‐4 GlcNAc b1‐4 GlcNAc b 
N‐linked oligos 

231  (Man)7  Man a1‐2 Man a1‐6 (Man a1‐3) Man a1‐6 (Man a1‐2 Man a1‐ N‐linked oligos 
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3) Man b1‐4 GlcNAc b1‐4 GlcNAc b 
232  (Man)9‐GlcNAc‐GlcNAc  Man b1‐2 Man a1‐6 (Man b1‐2 Man b1‐3) Man b1‐6 (Man a1‐

2 Man a1‐2 Man b1‐3) Man b1‐4 GlcNAc b1‐4 GlcNAc b 
N‐linked oligos 

233  Gal‐GlcNAc‐Man‐(Gal‐GlcNAc‐Man)‐Man‐
GlcNAc 

Gal b1‐4 GlcNAc b1‐2 Man a1‐3  (Gal b1‐4 GlcNAc b1‐2 Man 
a1‐6) Man b1‐4 GlcNAc b 

N‐linked oligos 

234  Man‐3 chitobiose core Fuc  Man  a1‐6  (Man  a1‐3)  Man  b1‐4  GlcNAc  b1‐4  (Fuc  a1‐2) 
GlcNAc b 

N‐linked oligos 

235  Mono‐sialylated N‐glycan from porcine 
fibrinogen 

Neu5Ac  a2‐6  Gal  b1‐4  GlcNAc  b1‐2  Man  a1‐3  (Gal  b1‐4 
GlcNAc  b1‐2  Man  a1‐6)  Man  b1‐4  GlcNAc  b1‐4  (Fuc  a1‐6) 
GlcNAc b 

N‐linked oligos 

236  N‐glycan mixture from horseradish peroxidase  Man  a1‐3  (Xyl  b1‐2)  (Man  a1‐6)  Man  b1‐4  GlcNAc  b1‐4 
GlcNAc b 

N‐linked oligos 

237  N‐Man5 GlcNAc 1‐4  Man a1‐6  (Man a1‐3) Man a1‐6  (GlcNAc b1‐4)  (GlcNAc b1‐2 
Man a1‐3) Man b1‐4 GlcNAc b1‐4 GlcNAc b 

N‐linked oligos 

238  tri‐sialylated N‐glycan from porcine fibrinogen  Neu5Ac a2‐8 Neu5Ac a2‐(3,6) Gal b1‐4 GlcNAc b1‐2 Man a1‐3 
(Neu5Ac  a2‐6  Gal  b1‐4  GlcNAc  b1‐2  Man  a1‐6)  Man  b1‐4 
GlcNAc b1‐4 (Fuc a1‐6) GlcNAc b 

N‐linked oligos 

239  Sialylated triose type 1  Neu5Ac a2‐3 Gal b1‐3 GlcNAc b  Sialylated oligosaccharide (Type 
1) 

240  Di‐sialyl‐lacto‐N‐tetraose  Neu5Ac  a2‐3  Gal b1‐3  (Neu5Ac  a2‐6)  GlcNAc  b1‐3  Gal  b1‐4 
Glc b 

Sialylated oligosaccharide (Type 
1) 

241  LS‐tetrasaccharide a  Neu5Ac a2‐3 Gal b1‐3 GlcNAc b1‐3 Gal b1‐4 Glc b  Sialylated oligosaccharide (Type 
1) 

242  LS‐tetrasaccharide b  Gal b1‐3 (Neu5Ac a2‐6) GlcNAc b1‐3 Gal b1‐4 Glc b  Sialylated oligosaccharide (Type 
1) 

243  LS‐tetrasaccharide c  Neu5Ac a2‐6 Gal b1‐3 GlcNAc b1‐3 Gal b1‐4 Glc b  Sialylated oligosaccharide (Type 
1) 

244  Neu5Ac‐Gal‐(Neu5Ac)‐deoxy‐GalNAc  Neu5Ac a2‐3 Gal b1‐3 (Neu5Ac a2‐6) deoxy GalNAc  Sialylated oligosaccharide (Type 
1) 

245  Sia2TF  Neu5Ac a2‐3 Gal b1‐3 (Neu5Ac a2‐6) GalNAc a  Sialylated oligosaccharide (Type 
1) 

246  Sialylated tetraose type 1  Neu5Ac a2‐3 Gal b1‐3 GlcNAc b1‐3 Gal  Sialylated oligosaccharide (Type 
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1) 
247  Disialylated tetraose type 1  Neu5Ac a2‐8 Neu5Ac a2‐3 Gal b1‐3 GlcNAc  Sialylated oligosaccharide (Type 

1) 
248  Disialylated pentaose type 1  Neu5Ac a2‐8 Neu5Ac a2‐3 Gal b1‐3 GlcNAc b1‐3 Gal  Sialylated oligosaccharide (Type 

1) 
249  Trisialylated pentaose type 1  Neu5Ac a2‐8 Neu5Ac a2‐8 Neu5Ac a2‐3 Gal b1‐3 GlcNAc  Sialylated oligosaccharide (Type 

1) 
250  LS‐hexasaccharide d (3'‐SiaLN‐LN‐LN)  Neu5Ac a2‐3 Gal b1‐4 GlcNAc b1‐3 Gal b1‐4 GlcNAc b1‐3 Gal 

b1‐4 GlcNAc b 
Sialylated oligosaccharide (Type 

2) 
251  LS‐tetrasaccharide d (3'‐SiaLN‐LN‐LN)  Neu5Ac a2‐3 Gal b1‐4 GlcNAc b1‐3 Gal b1‐4 Glc  Sialylated oligosaccharide (Type 

2) 
252  3'‐Sialyl‐N‐acetyllactosamine  Neu5Ac a2‐3 Gal b1‐4 GlcNAc b  Sialylated oligosaccharide (Type 

2) 
253  6'‐Sia‐6‐su‐LacNAc  Neu5Ac a2‐6 Gal [6S] b1‐4 GlcNAc  Sialylated oligosaccharide (Type 

2) 
254  6'‐Sialyl‐N‐acetyllactosamine  Neu5Ac a2‐6 Gal b1‐4 GlcNAc b  Sialylated oligosaccharide (Type 

2) 
255  deoxy‐3'SLN  Neu5Ac a2‐3 Gal b1‐4 deoxy GlcNAc  Sialylated oligosaccharide (Type 

2) 
256  deoxy‐6'SLN  Neu5Ac a2‐6 Gal b1‐4 deoxy GlcNAc  Sialylated oligosaccharide (Type 

2) 
257  Neu5Ac‐Gal‐(Fuc)‐GlcNAc  Neu5Ac a2‐3 Gal b1‐4 (Fuc a1‐3) GlcNAc b  Sialylated oligosaccharide (Type 

2) 
258  3‐Sialyl‐LN type 2 [Sialylated triose type 2, 3'‐

SLN] 
Neu5Ac a2‐3 Gal b1‐4 GlcNAc b  Sialylated oligosaccharide (Type 

2) 
259  Sialylated tetraose type 2  Neu5Ac a2‐3 Gal b1‐4 GlcNAc b1‐3 Gal  Sialylated oligosaccharide (Type 

2) 
260  Disialylated tetraose type 2  Neu5Ac a2‐8 Neu5Ac a2‐3 Gal b1‐4 GlcNAc  Sialylated oligosaccharide (Type 

2) 
261  Trisialylated pentaose type 2  Neu5Ac a2‐8 Neu5Ac a2‐8 Neu5Ac a2‐3 Gal b1‐4 GlcNAc  Sialylated oligosaccharide (Type 

2) 
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Annex IV 



Hexoses: Circles         N-Acetylhexosamines: Squares

Hexosamines: Squares divided diagonally

•Galactose stereochemistry: Yellow (255,255,0) with Black outline

•Glucose stereochemistry:  BLUE (0,0,250) with Black outline

•Mannose stereochemistry: GREEN (0,200,50) with Black outline

•Fucose: RED (250,0,0) with Black outline

•Xylose: (5-pointed star) ORANGE (250,100,0) with Black outline

Essentials Second Edition Symbols : RGB colors

Acidic Sugars (Diamonds)

•Neu5Ac: PURPLE (125,0,125) with Black outline

•Neu5Gc: LIGHT BLUE (200,250,250) with Black outline 

•KDN: GREEN (0,200,50) with  Pattern & Black outline

•GlcA: BLUE (0,0,250)/Upper segment with Black outline

• IdoA: TAN (150,100,50)/Lower segment with Black outline

•GalA: RED (250,0,0)/Left segment with Black outline

•ManA: GREEN (0,200,50)/Right segment with Black outline

Print in color

Other Monosaccharide

(use letter designation inside symbol to specify if needed)
A



Hexoses: Circles        N-Acetylhexosamines: Squares

Hexosamines: Squares divided diagonally

•Galactose stereochemistry: white with Black outline

•Glucose stereochemistry:  Black with Black outline

•Mannose stereochemistry: Grey with Black outline

•Fucose: Dark Grey with Black outline

•Xylose: (5-pointed star) with Black outline

Acidic Sugars (Diamonds)

•Neu5Ac: Dark Grey with Black outline

•Neu5Gc: White with Black outline 

•KDN: Light Grey Pattern & Black outline

•GlcA: Grey upper segment with Black outline

• IdoA: Grey Lower segment with Black outline

•GalA: Grey Left segment with Black outline

•ManA: Grey Right segment with Black outline

Print in black & white

Essentials Second Edition Symbols : Black & White

Other Monosaccharide

(use letter designation inside symbol to specify if needed)
A
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Figure S1. Energy maps for all glycosydic linkages of interest taken from Glyco3D 

(http://glyco3d.cermav.cnrs.fr/) as a function of Φ andΨ torsion angles with Φ = O5-C1-

O1-Cx (X-axis) and Ψ= C1-O1-Cx-Cx+1 (Y-axis). Red dots represent the lowest energy 

conformation. 
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Table S1: Binding intensities (FU  fluorescence units) for labeled LecB protein with 

glycan array chips v4.1 from the consortium for functional glycomics. Full data available 

on the web site of cfg (http://www.functionalglycomics.org/) 
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Table S2: Binding intensities (FU) for labeled BambL protein with glycan array chips 

v4.1 from the consortium for functional glycomics. Full data available on the web site of 

cfg (http://www.functionalglycomics.org/) 
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Table S3: Binding intensities (FU) for labeled Bc2L-C-nt protein with glycan array chips 

v4.1 from the consortium for functional glycomics. Full data available on the web site of 

cfg (http://www.functionalglycomics.org/) 
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