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Abstract 

The prevalence of overweight and obesity is increasing worldwide at an alarming rate leading to the 

development of metabolic syndrome and diabetes mellitus. Previous studies have highlightened the 

association between fat accumulation, especially in the abdominal area, and the development of 

cardiovascular diseases. An increase in body and fat mass characterizes normal aging, which is 

considered per se the major risk factor for cardiovascular diseases. In the industrialized societies, the 

incidence of cardiovascular diseases occurring with age is even more increased due to the Western-

world lifestyle habits (e.g. obesogenic diets, sedentariness) that contribute to excess fat accumulation. 

Accordingly, the overall goal of this work was to understand how body changes occurring from youth 

to middle age were related to middle age cardiovascular complications and how diet-induced obesity 

altered these aspects. 

Initially, we demonstrated that in normal aging middle-aged hearts of Wistar rats were characterized 

by lower restoration of the cardiac mechanical activity during reperfusion ex vivo due to impaired 

recovery of the coronary flow and insufficient oxygen supply. This was also related to the presence of 

increased systemic oxidative stress following the increase in fat mass that occurred from youth to 

young adulthood. A progressive decline in the endothelium-dependent dilatation of the coronary 

microvasculature also occurred with aging, which was due to different functional behaviours of the 

endothelial and smooth muscular cells, which appeared to be related to the energy metabolism and 

oxidative stress.  

High-fat diet-induced obesity triggered a number of alterations in the body, metabolic and 

cardiovascular characteristics of the animals during this aging period. The excess abdominal fat 

accumulation provoked the increase of oxidative stress at the systemic, cytosolic and mitochondrial 

levels accompanied by biochemical alterations in the glucose and lipid metabolisms such as 

hypercholesterolemia and hypertriglyceridemia. The hyperphagia-induced obesity and the related type 

2 diabetes in the Zucker diabetic fatty rats provoked also severe insulin resistance. Both models of 

diet-induced obesity were characterized by decreased ex vivo cardiac function related to mitochondrial 

energy metabolism and oxidative stress. Furthermore, they were both characterized by an adaptation of 

the coronary microvasculature whose reactivity was enhanced in the first case and maintained in the 

second, in order to meet the elevated metabolic demands of the hearts due to obesity. These 

adaptations were due to different mechanisms in these two models of obesity. 

In conclusion, our work revealed a temporal pattern of changes concerning the body and metabolic 

characteristics, mitochondrial energy metabolism, cardiac function and coronary microvascular 

reactivity that occur from youth to middle age either under normal or obesogenic-related conditions. 

These results encourage further research in order to explain the mechanisms related to these 

alterations. Interventions aiming at reducing the fat mass that increases with age or diet would be of 

great interest in an effort to delay the cardiovascular complications occurring at middle age.  

 

 

Keywords: adiposity, aging, diabetes, oxidative stress, mitochondria, coronary microvascular 

reactivity, ischemia, reperfusion 

 



 

  

Résumé 

Le surpoids et l'obésité, en constante augmentation à l’échelle mondiale à un rythme exponentiel, 

conduit au développement du syndrome métabolique et du diabète de type 2. Plusieurs études ont mis 

en évidence l'association entre l’excès de masse grasse, en particulier dans la région abdominale, et le 

développement des maladies cardiovasculaires. Une telle augmentation de masse grasse corporelle 

caractérise le vieillissement normal, qui est considéré per se comme un facteur de risque majeur pour 

les maladies cardiovasculaires. De plus, dans le monde industrialisé, l'incidence des maladies 

cardiovasculaires est encore plus élevée et fortement liée aux habitudes occidentales (régimes 

obésogènes, sédentarité) qui contribuent à l'accumulation de la graisse abdominale. L'objectif général 

de ce travail consiste à suivre les changements corporels qui surviennent entre la jeunesse et l’âge 

moyen où commence à survenir les complications cardio-vasculaires et à savoir comment l'obésité 

induite par l'alimentation peut modifier ces aspects. 

Dans un premier temps, nous avons montré que les cœurs des rats Wistar d’âge moyen sont 

caractérisés par une moindre restauration de l'activité mécanique cardiaque au cours de la réperfusion 

post-ischémique en raison de perturbations de la perfusion coronaire et d’une insuffisance de l'apport 

en oxygène. La présence d’un stress oxydant systémique suite à l'augmentation de la masse grasse 

survenant entre la jeunesse et l'âge adulte est également en cause. Une diminution progressive de la 

dilatation endothélium-dépendante des microvaisseaux coronaires est également observé avec le 

vieillissement, ce qui résulte d’une évolution différentielle du comportement fonctionnel des cellules 

endothéliales et musculaires lisses apparemment liée au métabolisme énergétique et au stress oxydant. 

L’obésité induite par un régime riche en graisse provoque un certain nombre de modifications 

corporelles, métaboliques et cardiovasculaires au cours de cette période du vieillissement. L’excès de 

masse grasse abdominale induit une augmentation du stress oxydant aux niveaux systémique, 

cytosolique et mitochondrial accompagné par des altérations biochimiques concernant le métabolisme 

du glucose et les niveaux plasmatiques de cholestérol et de triglycérides. L'obésité induite par une 

hyperphagie et la présence d’un diabète de type 2 chez les rats Zucker obèses diabétiques provoque 

également une insulino-résistance sévère. Ces deux modèles d’obésité sont caractérisés par une 

diminution de la fonction cardiaque ex vivo liée au métabolisme énergétique mitochondrial et au stress 

oxydant. En outre, ils sont tous les deux caractérisés par une adaptation des microvaisseaux coronaires 

dont la réactivité est augmentée dans le cas de régime riche en graisse et maintenue dans le cas du 

diabète. Ces adaptations sont dues à des mécanismes différents dans les deux modèles d'obésité. Elles 

permettent de mieux répondre aux exigences métaboliques élevées liées à l'obésité.  

En conclusion, notre travail montre que les caractéristiques corporelles et métaboliques, le 

métabolisme énergétique mitochondrial, la fonction cardiaque et la réactivité coronaire sont modifiés 

lors du vieillissement dans les conditions normales ou obésogènes. Ces résultats encouragent la 

recherche ultérieure des mécanismes mis en jeu. Les interventions visant à réduire la masse grasse, 

qu’elle soit spontanément accrue par l'âge ou qu’elle résulte du régime alimentaire, seraient d'un grand 

intérêt pour retarder les complications cardiovasculaires. 

 

Mots clés: adiposité, vieillissement, diabète de type 2, stress oxydant, mitochondries, réactivité 

microvasculaire coronaire, ischémie, réperfusion 
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PART I INTRODUCTION 

1. The problem of overweight and obesity 

 

1.1 Defining the problem 

Overweight and obesity are both labels for ranges of weight that are greater than what is 

generally considered healthy for a given height. Obesity is defined as the condition of 

abnormal or excessive fat accumulation in adipose tissue to such an extent that health may be 

adversely affected [1]. It is an important risk factor for premature death [2-4] and health 

problems like metabolic syndrome, diabetes and coronary heart disease [5, 6]. Thus, the need 

to identify individuals and groups at increased risk of morbidity and mortality was raised. In 

order to classify underweight, overweight and obesity in adult humans, a tool commonly used 

is the Body Mass Index (BMI). BMI is calculated by the weight in kilograms divided by the 

square of the height in meters (kg/m
2
). The classification of obesity according to BMI is 

shown in Table 1. 

 

Table 1. BMI classification 

Source: Adapted from WHO  1995, WHO 2000 and WHO 2004. 

It should be noted that these values are age-independent and the same for both sexes. 

 

However, the amount of excessive fat stored within the body differs among individuals and 

BMI may not correspond to the same degree of fatness in different populations due, in part, to 

different body proportions, since it does not distinguish between weight associated with 

muscle and weight associated with fat.  

Classification BMI (kg/m
2
) (Principal cut-off points) 

Underweight <18.50 

Severe thinness 

Moderate thinness 

Mild thinness 

<16.00 

16.00-16.99 

17.00-18.49 

Normal range 18.50-24.99 

Overweight ≥25.00 

Pre-obese 25.00 - 29.99 

Obese ≥30.00 

Obese class I 

Obese class II 

Obese class III 

30.00 - 34.99 

35.00 - 39.99 

≥40.00 
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The regional distribution of excessive fat within the body of individuals affects also the risks 

of obesity. The excess abdominal fat mass consists a great risk factor for disease while the 

“gynoid” fat distribution (fat is more equally and peripherally distributed around the body) is 

less serious. There is the need to use other methods in addition to the measurement of BMI to 

identify individuals at increased risk from obesity-related illness due to abdominal fat 

accumulation, such as the waist-to-hip ratio (WHR). A high WHR with values >1.0 in men 

and >0.85 in women is an indicator of abdominal fat accumulation [7]. Waist circumference is 

also a simple measurement unrelated to height that correlates with BMI and WHR and is used 

as an index of intra-abdominal fat mass [8-10] and total body fat [11]. It has been evidenced 

that BMI classification misses subjects with elevated adiposity and it has been suggested that 

elevated adiposity rather than BMI determines metabolic risk. 

Increased general obesity estimated by BMI has been associated with the risk of death [12] 

with higher risks in the lower and upper BMI categories. However, abdominal adiposity, 

estimated by the waist circumference or the WHR, is also an important predictor of the risk of 

death independently of general obesity (Fig. 1).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 . The relative risk of death in association with BMI, waist circumference and WHR 

A for men and B for women. Solid lines indicative relative risks and dashed lines 95% 

confidence intervals [12] 
 

Thus, it is extremely important to assess the distribution of body fat even among persons of 

normal weight. Persons defined as BMI-normal subjects but with elevated body fat percentage 

display clustering of cardiometabolic abnormalities and have increased risk for future 
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development of obesity-related diseases, including cardiovascular diseases (CVDs) [13]. 

These observations have led to the description of a new syndrome, the normal weight obesity 

syndrome (NWO), which is defined as an excessive body fat associated with a normal body 

mass index and has captured the interest of researchers. 

 

1.2 Prevalence of overweight and obesity 

The prevalence of overweight and obesity is increasing worldwide at an alarming rate. 

According to World Health Organization, at least 2.8 million people die each year as a result 

of being overweight or obese. In 2008, 35% of adults aged 20+ were overweight (BMI ≥ 25 

kg/m2) (34% men and 35% of women). The worldwide prevalence of obesity has more than 

doubled between 1980 and 2008. In 2008, 10% of men and 14% of women in the world were 

obese (BMI ≥30 kg/m2), compared with 5% for men and 8% for women in 1980. An 

estimated 205 million men and 297 million women over the age of 20 are obese; a total of 

more than half a billion adults worldwide. 

In Europe, the prevalence of obesity has also significantly increased over the past several 

decades. The rate of obesity has increased by approximately 30% over the past 10 to 15 years 

[14] and predictions by 2015 suggest a sizeable further increase in European populations [15]. 

A study of the most recently available national data reveals that 25–70% of adults are 

overweight, depending on the country; 5–30% are obese, and 41% do not engage in any 

moderate physical activity in a typical week (WHO).  

In France, the prevalence of overweight reaches 30.1% while obesity accounts for 16% 

(WHO) as shown also in the Fig. 2 below.  

 

 

 

  

 

Figure 2. Prevelance of overweight and obesity in France (source: WHO)   

 

More specifically, according to the results of the Obepi-Roche study in 2009
1
, 31.9% of 

French adults aged 18 or more are overweight (25≤BMI<30kg/m
2
) and 14.5% obese (BMI 

                                                           
1 Enquête épidémiologiquenationale sur le surpoidset l’obésité, INSERM/TNS HEALTHCARE(KANTARHEALTH)/ROCHE, 2009). 
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≥30kg/m
2
). In the same study, it was also shown that obesity increases with age independently 

of the sex. 

1.3 Obesity in rats 

Obesity can also be assessed in animal models as in humans even though no classification like 

the BMI has been established until now. Criteria for the assessment of animal obesity are the 

gain of body weight, the Lee obesity index and/or the increase of body fat content.   

Many studies have used the increase of body or fat weight of the group fed a hypercaloric diet 

compared to control animals fed chow diets as an indicator of obesity [16-19] but there was a 

great variability of values between research groups. Harrold et al. [18] defined values of 10-

25% greater body weight than controls as moderate obesity and Levin et al. [20] values 

greater than 40% as severe obesity. The Lee obesity index in rats was defined by Lee in 1929 

and is considered to be similar to BMI in humans. It is calculated as the cube root of body 

weight (g) divided by the naso-anal length (cm) and multiplied by 1000 and values greater 

than 310 are considered as indicator of obesity. However, Woods et al. showed that measuring 

the body fat is a more sensitive criterion for assessing animal obesity [19]. In this study, when 

the rats fed a high-fat diet over 10 week period were compared to those fed a low-fat diet, 

their body weight was increased only by 10% but their fat content by 50%.   

 

1.4 Adipose tissue 

Adipose tissue was traditionally considered as a passive reservoir of energy storage. This 

view changed in 1994 when the hormone leptin secreted by the adipose tissue was identified 

and characterized. This established the adipose tissue as a complex and highly active 

metabolic and endocrine organ [21-23] that expresses and secretes mainly the adipokines, 

which are bioactive peptides acting at a local (autocrine/paracrine) or a systemic (endocrine) 

level. 

Adipocytes specialize in storing energy as fat in form of triglycerides (TGs) and in releasing it 

according to the organism needs. For the TGs to be stored in the adipocytes, they must 

separated first into their parts (one glycerol molecule and three free fatty acids) by the 

lipoprotein lipase (LPL), which is released by the adipocyte. Glycerol stays in the blood while 

the free fatty acids are transported into the adipocyte where are reformed in TGs and stored in 

lipid droplets. Their release is activated by the hormone sensitive lipase (HPL) and after their 

breakdown, free fatty acids are transferred into the blood stream.  
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Adipocytes are grouped into two different adipose tissue categories; the white adipose tissue 

(WAT) and the brown adipose tissue (BAT). WAT is highly adapted to store energy in form 

of triglycerides whereas BAT oxidizes lipids to produce heat, through the activity of 

uncoupling protein 1 (UCP1) found in the inner membrane of the mitochondria in this tissue. 

BAT in humans is found mainly in the newborns while it is highly abundant in hibernating 

mammals. In contrast to the WAT adipocytes that contain one single lipid droplet, BAT 

adipocytes contain numerous smaller droplets and many mitochondria that give them a 

characteristic brown colour. However, the classical WAT adipocytes are considered recently 

to be of two types: the brown-in-white (“brite or beige) adipocytes, which upon stimulation by 

cold acclimation or sympathetic agonists can differentiate into cells capable of expressing 

UCP1 and are particularly observed in the subcutaneous inguinal adipose tissue (iWAT); and 

the “true” WAT adipocytes incapable of expressing UCP1 physiologically [24, 25]. 

Aside from adipocytes, adipose tissue contains also connective tissue matrix, nerve tissue, 

stromovascular and vascular cells and immune cells [26]. Although the adipocytes are the 

main source of secreted hormones, many proteins are also derived from the non-adipocyte 

fraction of adipose tissue [27]. 

 

1.5 Adipose tissue-secreted proteins 

Adipose tissue secrets a number of proteins such as: 

Leptin (from the Greek leptos, meaning thin), which is a polypeptide of 16-kDa containing 

167 amino acids and its secretion is in direct proportion to adipose tissue mass and nutritional 

status. Leptin’s main role is to serve as metabolic signal of energy sufficiency than excess and 

its effects on energy intake and expenditure are mediated by hypothalamic pathways. Its 

levels decline with caloric restriction and weight loss. Its expression and secretion are 

increased by insulin, glucocorticoids, tumor necrosis factor-α (TNF- α) or estrogens and 

decreased by β-3 adrenergic activity, androgens, ghrelin (GH) or peroxisome proliferator-

activated receptor γ (PPARγ) agonists [28, 29]; 

Adiponectin, which is a 30-kDa polypeptide, highly and specifically expressed in 

differentiated adipocytes and circulating at high levels in the blood stream. Its biological 

effects depend on the relative circulating concentrations of its isoforms and the tissue specific 

expression of its receptor subtypes. It exists an inverse association between adiponectin and 

both insulin resistance and inflammatory states.  Its levels decline before the onset of obesity 

and insulin resistance whereas they are increased when insulin sensitivity improves [30, 31]; 
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TNF-α, which is a 26-kDa transmembrane protein that is cleaved into a 17-kDa biologically 

active protein exerting its effects via type I and II TNF-α receptors. Within adipose tissue, it is 

expressed by adipocytes and stromovascular cells [27]. Its expression is increased in obese 

rodents and humans and is positively correlated with adiposity and insulin resistance [32]; 

IL-6, which is a cytokine circulating in multiple glycosylated forms ranging from 22 to 27 

kDa in size. Within adipose tissue it is expressed by adipocytes and adipose tissue matrix 

[27]. Adipose tissue IL-6 expression and circulating levels are positively correlated with 

obesity, impaired glucose tolerance and insulin resistance [33]; 

Resistin, which is a 12-kDa polypeptide of a unique family of cysteine-rich C-terminal 

domain proteins called the resistin-like molecules. Resistin has significant effects on insulin 

action while its plasma concentration is correlated with insulin-resistance [34]. 

Other proteins expressed by the adipose tissue are apelin, macrophages and monocyte 

chemoattractant protein-1 (MCP-1), plasminogen activator inhibitor-1 (PAI-1), adipsin and 

proteins of the renin-angiotensin system. 

 

1.6 The causes of overweight and obesity 

1.6.1 Age 

In Western populations, weight gain from youth is the norm. As we age, a decrease in our 

physical abilities leads to a decrease in our metabolic rate (amount of energy used in a given 

period), which in turn contributes to weight gain. Studies have shown that body weight 

increases during the transition from early to middle adulthood independently of sex and that 

BMI (obesity prevalence) is predicted to grow about 0.12 kg/m
2
 (0.6 percentage points) per 

year [35]. Increases in weight largely reflect accumulated fat mass; the proportion of body 

weight that is fat increases even when total body fat does not change [35]. A significant 

positive trend of increased central adiposity and fat distribution with increasing age has been 

shown in some populations independently of BMI [36]. 

 

1.6.2 Lifestyle 

Obesity is a result of energy intake exceeding energy expenditure. Despite the strong genetic 

background of obesity [37], environmental factors are commonly considered to be the 

underlying cause of the increases in the prevalence of obesity by promoting or exacerbating 
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the problem [37, 38]. The “obesogenic” environment of our societies promotes sedentariness 

and excessive food intake that are strongly associated with obesity and higher body weight 

[39]. 

 

1.6.3 Genetic factors 

Although it is commonly recognized that environmental factors play a significant role in the 

development of obesity, genetic susceptibility has been identified as a major contributing 

factor [40]. Studies have shown that the risk of obesity is about two to three times higher for 

an individual with a family history of obesity and increases with the severity of obesity. 

However, not everyone becomes obese in present day despite the overall obesogenic 

environment, indicating the multifactorial nature of the condition. 

Recent progress in genetics has helped to identify candidate genetic loci related to the obesity 

risk. One of them is MC4R that is expressed in central nervous system and plays a key role in 

the regulation of food intake and energy homeostasis. Prohormone convertase 1/3 (PCSK1) is 

also another strong candidate as it encodes an enzyme that converts pro-hormones into 

hormones involved in energy metabolism regulation. Brain-derived neurotrophic factor 

(BDNF) has a role in the regulation of development, stress response, survival, and mood 

disorders. However, in rodent studies it is implicated in eating behavior, body weight 

regulation and hyperactivity [41, 42]. ADRB3 is also a candidate gene given its involvement 

in the regulation of lipolysis and thermogenesis and its variant Arg64Trp ADRB3 is one of the 

first genetic variants for which association with obesity was reported [43]. Mutations in these 

genes have been related to severe forms of obesity [43-45].  

In 1994, the ob gene that encodes the protein hormone leptin was cloned in mice. Leptin is a 

hormone produced and secreted by the white adipose tissue, and its circulating levels are 

closely related to body fat mass [46, 47]. Leptin deficiency in mice homozygous for a 

mutant ob gene (ob/ob mice) causes morbid obesity, diabetes, and various neuroendocrine 

anomalies, and leptin replacement leads to decreased food intake, normalized glucose 

homeostasis, and increased energy expenditure [48, 49]. Congenital deficiency of leptin in 

human subjects results in a phenotype with striking similarities to that seen in ob/ob mice. 

Furthermore, the human leptin receptor (LEPR) is also a candidate genetic locus related to 

obesity risk but until now no association of its three alleles (K109R, Q223R and K656N) with 

body mass index and waist circumference has been found in humans [50]. 
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However, in rodents several molecules have been identified to be involved in control of 

energy intake and energy expenditure. These include agouti, a secreted melanocyte-

stimulating hormone-receptor antagonist whose ectopic expression leads to severe obesity in 

mice [51], tubby/tubby mice harbor homozygous mutations for a phosphodiesterase (EC 

3.1.4.1-like molecule) which is expressed in the hypothalamus [52], fat/fat mouse has a 

genetically defective form of carboxypeptidase E that results in the impaired processing of 

hormones [53] and as previously said, the ob/ob and db/db mice. The ob/ob mice have normal 

weight at birth, then become hyperphagic, markedly obese, hyperinsulinemic and remain 

infertile with evidence of hypogonadotropic and hypogonadism [54]. The very obese db/db 

mice harbor a homozygous mutation in the hypothalamic form of the cell surface receptor of 

leptin [55].  

In rats, the adult obese Zucker fatty model has a fa mutation, the homologue of the mouse db 

mutation. It is a missence mutation in the extracellular domain of the leptin receptor [56, 57]. 

It has also been shown that the fa-type receptor not only exhibits a slightly reduced leptin-

bindig affinity, but also performs reduced signal transduction [58]. This results to insulin 

resistance, hypertension and dyslipidemia. The obese Zucker diabetic fatty model (ZDF) rat 

has similar characteristics of the Zucker obese rats and is also hyperglycemic. It was derived 

from the Zucker obese rat by inbreeding for the hyperglycemia phenotype, which occurred in 

a subpopulation of the Zucker rat when fed a high-fat diet. Furthermore, the ZDF rat carries a 

genetic defect in beta cell gene transcription that is inherited independently from the leptin 

receptor mutation and contributes to the development of diabetes in the setting of insulin [59]. 

 

 

 

 

 

 

 

                                                                                           

Figure 3. Genetic and environmental interactions influencing the obese phenotype [60] 
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1.7 Consequences of overweight and obesity 

Regardless of its origin (genetic or environmental), obesity is related to several metabolic 

disturbances such as disturbed glucose homeostasis, insulin resistance, impaired insulin 

secretion, hypertension and dyslipidemia [61, 62]. It has been reported that the metabolic risks 

associated with obesity are more correlated with a central (abdominal) rather than a peripheral 

(gluteo-femoral) fat pattern. These complications of obesity have been attributed to increases 

in visceral adipose tissue (VAT) with an associated increase in portal vein free fatty acid 

levels [63]. 

 

1.7.1 Glucose homeostasis and insulin resistance 

The concentration of glucose in the plasma depends on the rate of glucose entering the 

circulation balanced by the rate of glucose removal from the circulation. A finely regulated 

balance between these processes defines glucose homeostasis. 

Three are the major sources of circulating glucose: intestinal absorption during the fed state, 

glycogenolysis, and gluconeogenesis. The two last processes happen at the hepatic level. 

Glycogenolysis is the breakdown of glycogen, which is the polymerized storage form of 

glucose while gluconeogenesis is the formation of glucose primarily from lactate and amino 

acids during the fasting state. These processes are under the control of the hormone glucagon, 

which is produced in the α cells of the pancreas. Thus, glucagon facilitates the appearance of 

the glucose in the circulation. 

Insulin is also a glucoregulatory hormone derived from the pancreas, and in particular from 

the β pancreatic cells. The primary action of insulin is to lower blood glucose levels. This 

happens initially by transferring the signal to cells of insulin-sensitive peripheral tissues 

(primarily skeletal muscle and fat) to increase their glucose uptake [64]. Muscle is the major 

site of insulin-stimulated glucose uptake in vivo while the adipose tissue contributes relatively 

little to total body glucose disposal. Insulin acts also on the liver to promote glycogenesis, 

which is the process of glycogen synthesis. Finally, insulin inhibits glucagon secretion from 

the pancreas and signals the liver to stop producing glucose via glycogenolysis and 

gluconeogenesis.  

The term “insulin resistance” usually implies resistance to the effects of insulin on glucose 

uptake, metabolism, or storage. In cases of insulin resistance, there is a decreased insulin-

stimulated glucose transport and metabolism in adipocytes and skeletal muscle and an 

impaired suppression of hepatic glucose output [65]. Thus, a corresponding rise in insulin 
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output in order to maintain normal glycemia is demanded. In obese individuals and those 

predisposed to type 2 diabetes, this compensation is lost resulting in overt hyperglycemia. 

Moreover, insulin resistance related to excess adiposity is linked to abnormalities that impact 

pancreatic β cell function and viability. Some of these abnormalities are glucotoxicity, 

lipotoxicity, increased oxidative stress, and inflammation that can eventually lead to failure of 

insulin secretion and hyperglycemia. Defects in phosphorylation/activation of insulin receptor 

substrates (IRS) proteins are responsible for insulin resistance in the β cell resulting to 

impairment in glucose sensing, glucose stimulated insulin secretion and to increased loss of β 

cells. 

 

1.7.2 Dyslipidemia 

Obesity is frequently associated with a dyslipidemic state characterized by increased 

triglycerides, decreased HDL levels and abnormal LDL composition. Dyslipidemia is 

associated with increased plasma free fatty acids (FFA) levels, which are elevated in most 

obese subjects [66] due to their  increased release by the enlarged adipose tissue and reduction 

of FFA clearance [67]. Furthermore, elevated levels of FFA inhibit insulin’s antilipolytic 

action, which will further increase FFA release into the circulation [68]. Increased FA levels 

in blood and increased fatty acid flux to the liver have been known to occur in humans with 

insulin resistance with and without type 2 diabetes.  

 

1.7.3 Oxidative stress 

Reactive Oxygen Species (ROS) occur under physiological conditions and in many diseases 

causing direct or indirect damage in different organs. Oxidative stress is also involved in 

pathological processes such as obesity, diabetes and cardiovascular diseases. Biomarkers of 

oxidative damage, e.g. the sensitivity of C-reactive protein (CRP), have been found to be 

higher in obese individuals. They are also directly correlated with the BMI and the percentage 

of body fat, LDL oxidation, and TG levels [69]. In contrast, antioxidant defense markers are 

lower and inversely related to the amount of body fat and central obesity [70, 71]. Moreover, 

when obesity is present for a long time, antioxidant sources can be eliminated, leading 

eventually to the decreased activity of enzymes such as superoxide dismutase (SOD), catalase 

(CAT) and glutathione peroxidase (GPx) [72, 73]. 
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The increase of oxidative stress in obesity is probably due to the presence of excessive 

adipose tissue itself. Adipose tissue is considered an important source of proinflammatory 

cytokines such as the tumor necrosis factor (TNF-α) and the interleukins IL-1, and IL-6. 

These cytokines stimulate the ROS production by macrophages and monocytes while TNF- α 

inhibits the activity of CRP resulting to increased generation of superoxide anion [74]. 

Adipose tissue also secretes angiotensin II that stimulates nicotinamide adenine dinucleotide 

phosphate (NADPH) oxidase activity, the main source of ROS production in adipocytes [72, 

75]. 

 

1.7.4 Inflammation 

As previously described, adipose tissue is a source of proinflammatory cytokines; thus, 

obesity is considered to be a state of chronic inflammation that accompanies the accumulation 

of excess lipid in adipose tissue and liver. The concentrations of circulating fibrinogen, TNF-

α, IL-1, IL-6 and CRP are elevated in obese indivinduals [76]. This is due to the expansion of 

adipose tissue by the dietary excess resulting to hypertrophic adipocytes and increased 

production of pro-inflammatory cytokines (e.g. TNF-α, IL-6, MCP-1 and PAI-1). 

These substances have not only local effects leading to upregulation of adhesion molecule 

synthesis (VCAM, ICAM) but they also affect circulating monocytes contributing altogether 

to the enhancement of the inflammatory signal.  

 

1.8 Obesity and Type 2 Diabetes 

Obesity is associated with an array of secondary metabolic abnormalities, including insulin 

resistance, T2D and hyperlipidemia. T2D affects 180 million people worldwide and its 

complications such as diabetic nephropathy, extremity amputation and heart failure have 

become the principal causes of morbidity and mortality in the western world [77].  

Dynamic interactions among different metabolic organs, such as the pancreas, skeletal 

muscle, liver and adipose tissue, have a key role in the pathogenesis of obesity and diabetes. 

The hallmark events in the development of obesity-linked diabetes include elevation of 

plasma FFA, ectopic lipid accumulation in metabolic organs, and chronic low-grade 

inflammation in adipose tissue, peripheral insulin resistance, chronic hyperglycemia and 

eventual pancreatic β cell dysfunction [78]. 
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1.9 Obesity and Metabolic syndrome (MetS) 

In 1988, Reaven proposed that insulin resistance was a fundamental “disorder” associated 

with a set of metabolic abnormalities, which not only increased the risk of T2D but also 

contributed to the development of cardiovascular diseases (CVD) before the appearance of 

hyperglycemia [79]. This syndrome was first defined as syndrome X but later it was called 

metabolic syndrome. Since then, many studies have shown that insulin resistance is an 

important factor related to atherogenic abnormalities such as a prothrombotic profile, 

inflammation and a typical atherogenic dyslipidemic state characterized by high triglyceride 

and apolipoprotein B concentrations, increased proportion of small dense LDL particles and  

reduced concentration of HDL-cholesterol [80]. Insulin resistance contributes further to an 

dysglycemia, systemic hypertension and T2D.  

Various clinical criteria have been developed for the metabolic syndrome. The most widely 

accepted of these were produced by the World Health Organization (WHO), the European 

Group for the Study of Insulin Resistance (EGIR), and the National Cholesterol Education 

Program – Third Adult Treatment Panel (NCEP ATP III)
2
. All groups agreed on the main 

components of the metabolic syndrome: obesity, insulin resistance, dyslipidemia and 

hypertension. However, the existing guidelines created difficulties when attempting to 

identify individuals with MetS in clinical practice. International Diabetes Federation (IDF) 

gave a new IDF definition that addresses both clinical and research needs. According to this 

definition of 2006 for a person to be defined as having the MetS they must have: 

 central obesity (defined as waist circumference with ethnicity specific values)  

If BMI is >30kg/m², central obesity can be assumed and waist circumference does not need to 

be measured. 

 plus any two of the following four factors:  

1. Raised triglycerides : ≥ 150 mg/dL (1.7 mmol/L)  

or specific treatment for this lipid abnormality 

2. Reduced HDL cholesterol : < 40 mg/dL (1.03 mmol/L) in males 

< 50 mg/dL (1.29 mmol/L) in females  

or specific treatment for this lipid abnormality 

                                                           
2
 World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications. Report of a WHO 

consultation 1999, Executive summary of the Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on 

detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 2001;285:2486-97 , Balkau B, 

Charles MA. Comment on the provisional report from the WHO consultation. Diabetic Medicine 1999;16:442-3. 
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3. Raised systolic blood pressure : systolic BP ≥ 130 or diastolic BP ≥ 85 mm Hg  

or treatment of previously diagnosed hypertension 

4. Raised fasting plasma glucose (FPG): ≥ 100 mg/dL (5.6 mmol/L), or previously 

diagnosed type 2 diabetes 

If above 5.6 mmol/L or 100 mg/dL, OGTT is 

strongly recommended but is not necessary to 

define presence of the syndrome. 

 

The probability of having metabolic abnormalities, including MetS, increases with the level of 

obesity [81] and is translated into a higher risk of all-cause and CVD mortality compared to 

that of normal weight, metabolically normal men [82]. 

  

1.10 Obesity and Cardiovascular Diseases 

Major CVD feature among numerous comorbidities related to obesity. The adverse affects of 

obesity on cardiovascular health have been related to hypertension, insulin resistance, 

dyslipidemia, endothelial dysfunction, inflammation, systolic and diastolic dysfunction, heart 

failure, coronary heart disease and atrial fibrillation. 

The adipocyte is an endocrine organ playing an important role in the development of obesity-

related CVD. Recently, increased levels of CRP and leptin were associated with increased risk 

of CV events [83] and various inflammatory markers were related to insulin resistance, 

obesity and CVD [84]. 

Obesity affects significantly the hemodynamics and cardiovascular structure and function 

[85]. In obese individuals, the augmented body or fat mass results to increased total blood 

volume, cardiac output and cardiac workload but to a lower level of peripheral resistance at 

any given level of arterial pressure [85, 86]. The increased cardiac output is mostly caused by 

stroke volume even though the heart rate is mildly increased due to increased sympathetic 

activation [87]. Increases in filling pressure and volume shift the Frank-Starling curve to the 

left indicating increasing cardiovascular work. This often results to left ventricular (LV) and 

chamber dilation [85, 88, 89]. Obesity increases the risk for left atrial enlargement, abnormal 

LV diastolic filling and LV hypertrophy, independently of arterial pressure and age [85, 90]. 

It also affects the LV diastolic and systolic function. All these abnormalities increase the risk 

for heart failure and cardiovascular events [91-93]. 
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As previously described, obesity is closely related to the development of MetS and T2D. The 

metabolic characteristics of these states include atherogenic dyslipidemia, elevated blood 

pressure, proinflammatory and prothrombotic states that can result to cardiovascular events 

and more specifically to the occurrence of atherosclerosis.  Persons with MetS have at least a 

2-fold increase in risk for atherosclerotic CVD, compared with those without [94]. Risk for 

T2D in both sexes is increased about 5-fold. Atherosclerosis has been shown to have a long 

preclinical phase, with development of pathological changes in arteries of children and young 

adults well before clinical manifestations of the disease in adults [95]. The presence of 

endothelial dysfunction is now regarded as an early pivotal event in atherogenesis [96] and 

has been shown to precede the development of clinically detectable atherosclerotic plaques in 

the coronary arteries [97]. Endothelial dysfunction can be defined as the partial or complete 

loss of balance between vasoconstrictors and vasodilators, growth promoting and inhibiting 

factors, pro-atherogenic and anti-atherogenic factors, and pro-coagulant and anti-coagulant 

factors [98].  

The assesment of endothelial function in terms of vascular reactivity in people with T2D has 

shown a dysfunction at this level. They have been found to have abnormal vessel reactivity 

for both endothelium-dependent and -independent vasodilatory pathways. These data indicate 

a reduction in nitric oxide pathway and response in vascular smooth musle cells [99, 100]. 

These abnormalities are often the result of hyperglycemia, dyslipidemia and insulin resistance 

[101] that can lead to increased oxidative stress and affect directly or indirectly the NO 

pathway. Similar are the results by the measurement of plasma markers of endothelial 

activation, coagulation/fibrinolysis, or inflammation.  

 

Figure 4. Oxidative stress is the 

prime, common mediator of 

endothelial dysfunction that can be 

triggered by risk factors such as 

hypertension, dyslipidemia, diabetes 

mellitus, and obesity. It results in 

decreased bioavailability of nitric 

oxide, increased production of 

endothelin-1 (ET-1), increased 

angiotensin-converting enzyme 

(ACE), and increased local tissue 

generation of angiotensin II, which in 

turn, further increases oxidative 

stress [102] 

 



INTRODUCTION                                                     The problem of obesity 
 

 Page 27 
 

1.11 Obesity paradox 

As previously described, obesity has adverse effects on almost all CVDs and affects also 

adversely all the major risk factors for these events (hypertriglyceridemia, low levels of HDL, 

metabolic syndrome, diabetes mellitus). Despite these data, recent evidence suggests that 

among patients with established CVDs, those who are overweight and obese have a better 

prognosis than their lean counterparts do. This phenomenon has been termed the “obesity 

paradox”.  

Studies investigating the effects of obesity on cardiovascular outcomes in treated hypertensive 

patients have demonstrated a lower mortality in overweight and obese patients after two years 

[103]. It has also been shown that in a small study of 209 patients with chronic systolic heart 

failure, both higher BMI and percent body fat were independent predictors of better event-free 

survival (Fig. 5) [104]. Preliminary data in nearly 1,000 patients with systolic heart failure 

also showed the prognostic impact of body fat on total survival. Many studies have also 

reported an obesity paradox in coronary heart disease (CHD), including patients treated with 

revascularization [105]. In a recent systematic review of over 250,000 patients in 40 cohort 

studies followed up for 3.8 years, Romero-Corral et al. [105] reported that overweight and 

obese CHD patients have a lower risk for total and CV mortality compared with underweight 

and normal-weight CHD patients. Importantly, the obesity paradox has also been shown in 

patients after myocardial infarction (MI) and revascularization, and more recently it has been 

shown in patients referred for exercise stress testing [106]. 

  

 

 

 

 

 

 

Figure 5. Risk-adjusted survival curves for the four BMI categories at 5 years in a study of 

1,203 Individuals with moderate to severe heart failure. Survival was significantly better in 

the overweight and obese categories [107] 
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2. Oxidative stress 

 

2.1 Definition 

Oxidative stress as defined by Halliwell, is the incapacity of the organism to defend against 

the attack of ROS [108]. In biological systems oxidative stress occurs when there is an 

excessive bioavailabilty of ROS as a result of the imbalance between their production and the 

biological system's ability to detoxify the reactive intermediates or to repair the resulting 

damage.  

ROS are metabolites of molecular oxygen (O2) that have higher reactivity than O2. ROS 

include unstable oxygen radicals such as superoxide radical (O2•
−
), singlet oxygen and 

hydroxyl radical (HO•), and nonradical molecules like hydrogen peroxide (H2O2). For 

organisms living in an aerobic environment, exposure to ROS is continuous and unavoidable. 

They are generated intracellularly through a variety of processes, for example, as byproducts 

of normal aerobic metabolism, or as second messengers in signal transduction pathways. They 

can also derive from exogenous sources and being taken up directly by cells from the 

extracellular milieu. Finally they can be produced as a consequence of the cell exposure to 

environmental insult. 

A number of defense systems have evolved to combat the accumulation of ROS. These 

include non-enzymatic molecules (e.g., glutathione, vitamins A, C, and E, and flavonoids) but 

also enzymatic ROS scavengers (e.g. SOD, CAT and GPx). Unfortunately, these defense 

mechanisms are not always adequate to counteract the production of ROS resulting in what is 

termed a state of oxidative stress. 

Oxidative stress has been implicated in a wide variety of disease processes including 

atherosclerosis, ischemia/reperfusion, diabetes, pulmonary fibrosis, neurodegenerative 

disorders, and arthritis, and is believed to be a major factor in aging [109]. 

Reactive nitrogen species (RNS) are a family of antimicrobial molecules derived from nitric 

oxide (•NO) and superoxide (O2•
−
) produced via the enzymatic activity of inducible nitric 

oxide synthase 2 (NOS2/iNOS) and NADPH oxidase respectively. RNS act together 

with ROS to damage cells, causing nitrosative stress. 

 

http://en.wikipedia.org/wiki/Nitric_oxide
http://en.wikipedia.org/wiki/Nitric_oxide
http://en.wikipedia.org/wiki/Superoxide
http://en.wikipedia.org/wiki/Nitric_oxide_synthase_2A
http://en.wikipedia.org/wiki/NADPH_oxidase
http://en.wikipedia.org/wiki/Biological_cells
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2.1.1 Reactive Oxygen Species 

Radicals derived from oxygen represent the most important class of radical species generated 

in living systems [110]. 

2.1.1.1 Superoxide anion O2•
−
 

The superoxide anion radical is a radical anion with half-life of 10
-6

 seconds. It is formed by 

reduction of molecular oxygen mediated by NAD(P)H oxidases and xanthine oxidase or non-

enzymatically by redox-reactive compounds such as the semi-ubiquinone compound of the 

mitochondrial electron transport chain. The production of superoxide occurs mostly within the 

mitochondria of a cell [111]. During energy transduction, a small number of electrons “leak” 

to oxygen prematurely, forming the oxygen free radical superoxide, which has been 

implicated in the pathophysiology of a variety of diseases [112]. This leak occurs at the level 

of Complex I and III of the mitochondrial respiratory chain. 

It is dismutated very rapidly either spontaneously (10
5
 [mol/L]

-1
 · s

-1
) or by the SOD action 

(10
9
 [mol/L]

 -1
 · s

-1
)  [113] resulting to the production of hydrogen peroxide H2O2. 

 

2.1.1.2 Hydroxyl radical •OH 

It is the neutral form of the hydroxide ion (OH
−
). The hydroxyl radical has a high reactivity, 

making it a very dangerous radical with a very short in vivo half-life of approx. 10
−9

 s 

[114]. Thus when produced in vivo •OH reacts close to its site of formation.  

Under stress conditions, the superoxide radical O2•
− 

acts as an oxidant of [4Fe–4S] cluster-

containing enzymes and facilitates •OH production from H2O2 by making Fe
2+

 available for 

the Fenton reaction [115]: 

H2O2 + Fe
2+

  OH
-
 + Fe

3+
 

 The superoxide radical participates also in the Haber–Weiss reaction (O2•
− 

+ H2O2 → O2+ •OH + OH
−
) which combines a Fenton reaction and the reduction of Fe

3+
 by 

superoxide, yielding Fe
2+

 and oxygen (Fe
3+

 + O2•
− 

 → Fe
2+

 + O2) [116]: 

H2O2 + Fe
2+

  OH
−
 + Fe

3+
 

H2O2 + O2•
− 
 •OH + OH

-
 + O2 
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2.1.1.3 Peroxyl radicals (ROO•) 

The simplest peroxyl radical is HOO•, which is the protonated form (conjugated acid; 

pKa ∼ 4.8) of superoxide (O2•
−
) and is usually termed either hydroperoxyl radical or 

perhydroxyl radical. Given its pKa value, only ∼0.3% of any superoxide present in the cytosol 

of a typical cell is in the protonated form [117]. This radical has been demonstrated to be 

implicated in the peroxidation of fatty acids and in particular that of the unsaturated ones. 

2.1.1.4 Hydrogen peroxide H2O2 

The principal production of H2O2 is the dismutation of the superoxide anion by SOD as 

previously described. It is more stable and easily diffusible than the superoxide anion and is 

produced in peroxisomes under physiologic conditions. Peroxisomes are major sites of 

oxygen consumption in the cell and participate in several metabolic functions that consume 

oxygen. Oxygen consumption in the peroxisome leads to H2O2 production, which is then used 

to oxidize a variety of molecules. The organelle also contains CAT, which decomposes 

hydrogen peroxide and presumably prevents accumulation of this toxic compound. Thus, the 

peroxisome maintains a delicate balance with respect to the relative concentrations or 

activities of these enzymes to ensure no net production of ROS. When peroxisomes are 

damaged and their H2O2 consuming enzymes downregulated, H2O2 is released into the cytosol 

where it significantly contributes to oxidative stress. GPx together with CAT contribute in its 

neutralisation. 

 

2.1.1.5 Hyperchlorous acid HOCl 

In biological systems, hyperchlorous acid is produced in activated neutrophils by 

myeloperoxidase-mediated peroxidation of chloride anion. It contributes mainly to the 

defense against bacteria [118]. 

 

2.1.2 Reactive Nitrogen Species (RNS) 

2.1.2.1 Nitric oxide •NO 

•NO is a small molecule that contains one unpaired electron and is, therefore, a radical. •NO 

is generated in biological tissues by specific nitric oxide synthases (NOSs), which metabolise 

arginine to citrulline with the formation of •NO via a five electron oxidative reaction [119]. 
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•NO is an abundant reactive radical that acts as an important oxidative biological signalling 

molecule in a large variety of diverse physiological processes, including neurotransmission, 

blood pressure regulation, defence mechanisms, smooth muscle relaxation and immune 

regulation [120]. •NO has a half-life of only a few seconds in an aqueous environment.  

Nitric oxide has great affinity for metal ions. Many of its physiological effects are exerted as a 

result of its initial binding to Fe
2+

-heme groups in the enzyme soluble guanylate cyclase 

(sGC) [121]: 

Fe
2+

 (sGC)+ •NO → Fe
2+

 (sGC) –NO 

 

Because of its affinity for metal ions, nitric oxide can modulate the activity of various 

enzymes. During inflammtory processes, nitric oxide and superoxide anion may react together 

to produce significant amounts of peroxynitrtie anion (ONOO
−
): 

•NO + O2•
−
→ ONOO

−
 

 

2.1.2.2 Peroxynitrite (ONOO
–
) 

The peroxynitrite (ONOO
–
) anion is a short-lived oxidant species that is produced by the 

reaction of nitric oxide (•NO) and superoxide (O2•
−
) radicals at diffusion-controlled rates 

(~1×10
10

 M
–1

 s
–1

) [122].  

The oxidant reactivity of peroxynitrite is highly pH-dependent and both peroxynitrite anion 

(ONOO
–
) and peroxynitrous acid (ONOOH) can participate directly in one- and two-electron 

oxidation reactions with biomolecules. 

A fundamental reaction of ONOO
–
 in biological systems is its fast reaction with carbon 

dioxide, which leads to the formation of carbonate (CO3•
−
) and nitrogen dioxide (•NO2) 

radicals (yield ~35%). Nitrogen dioxide can undergo diffusion-controlled radical–radical 

termination reactions with biomolecules, resulting in nitrated compounds.  

Peroxynitrite can promote the oxidation of cofactors either by direct or free-radical-dependent 

mechanisms. Peroxynitrite-mediated oxidation of tetrahydrobiopterin (BH4) to quinonoid 5,6-

dihydrobiopterin (and subsequently to 7,8-dihydrobiopterin) leads to the dysfunction of NO 

synthase (NOS), as BH4 is an essential NOS cofactor. It has been proposed that low levels of 

BH4 can, in turn, promote a cycle of its own destruction, which is mediated by the NOS-

dependent formation of peroxynitrite [123]. This mechanism might contribute to vascular 

endothelial dysfunction that is induced by oxidative stress in various diseases. 
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2.2 Antioxidant defenses 

Enzymatic antioxidant defences include superoxide dismutase (SOD), glutathione peroxidase 

(GPx) and catalase (CAT). Non-enzymatic antioxidants are represented by ascorbic acid 

(Vitamin C), α-tocopherol (Vitamin E), glutathione (GSH), carotenoids, flavonoids, and other 

antioxidants. 

 

2.2.1 Superoxide Dismutase (SOD) 

The major cellular defense against O2•
− 

and peroxynitrite is a group of oxidoreductases known 

as SODs, which catalyze the dismutation of O2•
−
 into oxygen and H2O2. There are three 

isoforms of SOD in mammals: SOD1 [CuZnSOD]; SOD2 [MnSOD] and SOD3 [ecSOD] 

with distinct subcellular localization [124]. 

SOD1 is the major intracellular SOD (cytosolic Cu/ZnSOD) mainly localized in the cytosol. 

Enzymatic activity of SOD1 depends on the presence of the Cu and Zinc (Zn). SOD1 activity 

requires a catalytic Cu to scavenge O2•
−
. SOD2 is a mitochondrial manganese (Mn) 

containing enzyme (MnSOD), which is composed of a 96 kDa homotetramer and localized in 

the mitochondrial matrix [125]. Mn at the active site of SOD2 serves to catalyze the 

disproportionation of O2•
−
 to oxygen and H2O2 in a similar fashion as SOD1 and SOD3 

(Cu/ZnSODs) [126]. It is involved in dismutating O2•
−
 generated by the respiratory chain of 

enzymes. SOD3, a secretory extracellular Cu/Zn-containing SOD, is the major SOD in the 

vascular extracellular space. In vascular tissue, SOD3 is mainly synthesized by vascular 

smooth muscle cells and fibroblasts [127]. 

 

2.2.2 Catalases 

The overall reaction catalyzed by catalases is the degradation of two molecules of hydrogen 

peroxide to water and oxygen: 

2H2O2   2H2O + O2 

They are tetrameric enzymes consisting of four identical tetrahedrally arranged subunits of 60 

kDa that contains a single ferriprotoporphyrin group per subunit, and has a molecular mass of 

about 240 kDa [128].  
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2.2.3 Glutathione peroxidase (GPx) 

GPx (80 kDa) is an isoform of a family of enzymes containing a selenium atom. It contains a 

single selenocysteine (Sec) residue in each of the four identical subunits, which is essential for 

the enzyme activity. It protects mammalian cells against oxidative damage by catalysing the 

reduction of hydroperoxides using glutathione (GSH) [128]:  

ROOH + 2GSH  ROH + GSSG + H2O 

 

2.2.4 Glutathione (GSH) 

GSH is a major thiol antioxidant and redox buffer of the cell [129]. The oxidised form of 

glutathione is GSSG, the glutathione disulphide. GSH is highly abundant in the cytosol (1–

11 mM), nuclei (3–15 mM) and mitochondria (5–11 mM), and is the major soluble 

antioxidant in these cell compartments. GSH is a cofactor of GPx. It scavenges directly 

hydroxyl radical and singlet oxygen, detoxifying hydrogen peroxide and lipid peroxides by 

the catalytic action of glutathionperoxidase. GSH is able to regenerate the most important 

antioxidants, vitamins C and E, back to their active forms. GSH in the nucleus maintains the 

redox state of critical protein sulphydryls that are necessary for DNA repair and expression. 

Oxidised glutathione is accumulated inside the cells and the ratio of GSH/GSSG is a good 

measure of oxidative stress of an organism. A really high concentration of GSSG may damage 

many enzymes oxidatively. 

 

2.3 Damages 

2.3.1 DNA damage 

The hydroxyl radical reacts with all components of the DNA molecule resulting to the 

damage of both purine (adenine, guanine) and pyrimidine (cytocine, thymidine and uracile) 

bases and also the deoxyribose backbone. One consequence is the formation of 8-OH-G, 

which is used as a marker of DNA oxidative damage [130]. Permanent modification of 

genetic material resulting from these oxidative damages incidents represents the first step 

involved in mutagenesis, carcinogenesis, and ageing. The mitochondrial DNA (mtDNA) has 

also a susceptibility to oxidative stress 10 times greater than that of nuclear DNA. Its genome 

doesn’t have introns or protective histons and disposes limited reparation mecanisms. This 

predisposes the mtDNA to oxidative damage.  
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2.3.2 Lipid damage (lipid peroxidation) 

Polyunsaturated fatty acid residues of phospholipids are extremely sensitive to oxidation. This 

can modify the membrane fluidity and consequently the homeostasis and metabolic activity of 

the organism. 

Peroxyl radicals (ROO•) can be rearranged via a cyclisation reaction to endoperoxides 

(precursors of malondialdehyde) with the final product of the peroxidation process the 

malondialdehyde (MDA) [131]. 4-hydroxy-2-nonenal (HNE) is also produced, which with the 

thiobarbituric acids (TBARS) consist the most common markers of lipid peroxidation. MDA 

is mutagenic in bacterial and mammalian cells and carcinogenic in rats. HNE is weakly 

mutagenic but appears to be the major toxic product of lipid peroxidation. 

 

2.3.3 Protein damage 

The side chains of all amino acid residues of proteins, in particular cysteine and methionine 

residues of proteins are susceptible to oxidation by the action of ROS/RNS [132]. In most 

cases, a carbonyl group is added to the protein. Oxidation of cysteine residues may lead to the 

reversible formation of mixed disulphides between protein thiol groups (–SH) and low 

molecular weight thiols, in particular GSH (S-glutathiolation). The concentration of carbonyl 

groups, generated by many different mechanisms is a good measure of ROS-mediated protein 

oxidation [133]. 

 

2.4 Sources of ROS 

The sources of ROS can be either endogenous or exogenous. ROS production can be 

mediated by lysosomes, NADPH oxydases, lipoxygenases, xanthine oxydase or cytochrome 

P450. Heavy metals, gamma rays and UV light can also result in ROS formation. However, 

the primary site of ROS production is considered the mitochondrial respiratory chain [134].  

 

2.4.1 NADPH oxydases 

NADPH oxydases are multiproteic enzymatic complexes related to many physiological and 

pathological processes in the heart, such as hypertrophy, apoptosis, heart failure, and hypoxic 

adaptation [135]. NADPH oxidase-based enzyme complexes have seven catalytic subunits 

(i.e., Nox1–5 and Duox1 and 2) that are widely expressed. In the heart and vasculature, Nox1, 
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Nox2, Nox4, and Nox5 are of relevance. Nox-based enzymes generate ROS (O2•
− 

and H2O2) 

by transferring electrons from NADPH to molecular oxygen. 

 

2.4.2 Xanthine oxidase (XO) 

Under normal physiological conditions, XO exists as xanthine dehydrogenase (XDH), which 

can be converted into XO by oxidation of sulfhydryl residues or limited proteolysis. XO and 

XDH are both isoenzymes of xanthine oxidoreductase (XOR). XO generates both O2•
− 

and 

H2O2 through the catalytic oxidative hydroxylation of purine substrates. 

 

2.4.3 Nitric Oxide Synthases (NOS) 

NOSs produce nitric oxide from the conversion of L-arginine to L-citrulline. Three isoforms 

have been identified: neuronal NOS (nNOS, NOS1), inducible NOS (iNOS, NOS2) and 

endothelial NOS (eNOS, NOS3) [136]. 

 Increased O2•
− 

interacts with NO to form peroxynitrite. An increase in peroxynitrite levels 

suggests a compromising of NO bioavailability and physiology. The essential cofactor of 

NOS is BH4. Guanosine triphosphate cyclohydrolase I (GTPCH I) is the rate-limiting enzyme 

of the biosynthesis of BH4. In the presence of subsaturating levels or deficiency of BH4, 

electron transfer in NOS becomes uncoupled from L-arginine oxidation and NO formation, 

with subsequently less NO and more ROS generation, the so-called NOS uncoupling [137]. 

Furthermore, ROS serve as an amplifying mechanism to further exacerbate NOS uncoupling. 

Superoxide rapidly reacts with NO to form the highly reactive intermediate peroxynitrite. 

Increased formation of peroxynitrite in turn oxidizes BH4 to the BH3 radical. In addition, the 

oxidized form, BH2, may compete with BH4 for binding at NOS as well [138]. 

2.4.4 Myeloperoxidases (MPO) 

Myeloperoxidases are heme-containing enzymes in activated neutrophils and monocytes 

[139] and are used against bacteria and other pathogens. MPO produces hypochlorous 

acid (HOCl) from hydrogen peroxide (H2O2) and chloride anion (Cl
−
) (or the equivalent from 

a non-chlorine halide) during the neutrophil's respiratory burst. Respiratory or oxidative burst 

is the rapid release of ROS (O2•
− 

and H2O2) from various types of cells. Furthermore, it 

oxidizes tyrosine to tyrosyl radical using hydrogen peroxide as an oxidizing agent.  

 

http://en.wikipedia.org/wiki/Hypochlorous_acid
http://en.wikipedia.org/wiki/Hypochlorous_acid
http://en.wikipedia.org/wiki/Hydrogen_peroxide
http://en.wikipedia.org/wiki/Chloride
http://en.wikipedia.org/wiki/Anion
http://en.wikipedia.org/wiki/Tyrosine
http://en.wikipedia.org/wiki/Hydrogen_peroxide
http://en.wikipedia.org/wiki/Oxidizing_agent
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2.4.5 Lipoxygenases (LO) 

Lipoxygenases (LOs) are nonheme iron dioxygenases that stereospecifically insert molecular 

oxygen into polyunsaturated fatty acids, resulting in the formation of hydro(pero)xy-

eicosatetraenoic acid (H(P)ETE) molecules [140]. The conventional nomenclature classifies 

animal LOXs with respect to their positional specificity of arachidonic acid oxygenation as 5-

LOs, 8-LOs, 11-LOs, 12-LOs or 15-LOs. 

12/15-LOXs are mainly in the brain, kidney and blood vessels [141] and participate in the 

leucotrienes biosynthesis and the side production of ROS. LOXs contribute also in CVDs.  As 

documented, two LOXs in particular, 15-LO type 1 (15-LO-1) in humans and its closely 

related ortholog in mice, 12/15-LO, as well as the 5-LO pathway are the prime candidates 

implicated in atherosclerosis [142]. 

 

2.4.6 Cytochrome P450 

Mammalian cytochromes P450 (P450) are a family of heme-thiolate enzymes involved in the 

oxidative metabolism of a variety of endogenous and exogenous lipophilic compounds. Poor 

coupling of the P450 catalytic cycle results in continuous production of ROS. 

 

2.4.7 Mitochondria 

Mitochondria are a constant source of ROS such as O2•
− 

and H2O2, as a consequence of their 

normal aerobic metabolism to meet the demand of ATP synthesis by oxidative metabolism. 

The mitochondrial electron transport chain (ETC) has been recognized as one of the major 

cellular generators of ROS, which include O2•
−
, H2O2 and •OH. It was found that some of the 

electrons passing through the mitochondrial ETC leak out to molecular oxygen to form O2•
−
, 

which is quickly dismutated by the mitochondrial SOD (Mn-SOD) to H2O2 [143]. It has been 

estimated in vitro (in isolated mitochondria) that 1 to 3% of consumed oxygen is not 

completely reduced but directed to the radical production [144]. However, it seems that in 

vivo this percentage is 0.4 to 0.8 % [145].  

ROS are also produced within mitochondria at sites other than the inner mitochondrial 

membrane, for example, by monoamine oxidase (MAO) activity [146]. MAOs are 

flavoenzymes located within the outer mitochondrial membrane, which catalyze the oxidative 

deamination of catecholamines and biogenic amines such as serotonin. While undergoing this 

process MAOs generate H2O2. 
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2.5 Physiological role of reactive species 

Even though reactive oxygen species are predominantly implicated in causing cell damage, 

they also play a major physiological role in several aspects of intracellular signalling and 

regulation [147]. Cells are capable of generating endogenously and constitutively ROS which 

are utilized in the induction and maintenance of signal transduction pathways involved in cell 

growth and differentiation. 

ROS can play a very important physiological role as secondary messengers, especially in the 

mitogen-activated protein kinase (MAPK) pathways. In the heart, ROS provoke cardiac 

growth, remodeling, and dysfunction. They activate the hypertrophy signaling cascade and 

transcription factors. A low concentration of H2O2 (50 μmol/L) has been shown to evoke 

significant reduction in cardiac contractile function in neonatal and adult rat cardiomyocytes. 

It has been reported that H2O2-induced hypertrophy needs activation of PI3K in a time- and 

dose-dependent manner. G-protein-coupled receptor-induced ROS activate NF-κB and 

apoptosis signal-regulating kinase 1 (ASK1) to stimulate cardiomyocyte hypertrophy, 

whereas genetic depletion of ASK1 inhibits the hypertrophy. 

ROS also affect the connective tissue [148], by stimulating myocardial fibroblasts, regulating 

collagen synthesis , and activating matrix metalloproteases (MMPs) in several ways. ROS 

also are a critical factor for apoptosis stimulation in myocytes, endothelial cells, and 

fibroblasts. ROS-influenced apoptosis is concentration dependent; at low concentrations ROS 

inhibit apoptosis, whereas at high concentrations they provoke the opposite. ROS can also 

modulate directly components of cardiac excitation-contraction coupling, such as SERCA 

and ICa [149].  

Finally, the most prominent cases of NO-mediated regulation are in the control of vascular 

tone and platelet adhesion. Nitric oxide (NO) has also anti-inflammatory and anticoagulant 

properties. H2O2 has also been shown to act as an endothelium-derived hyperpolarizing factor 

in the process of vasodilatation [150]. 

 

2.6 ROS in association with aging, obesity and CVD 

Oxidative stress has been implicated in various pathological conditions involving 

cardiovascular disease, cancer, neurological disorders, diabetes, ischemia/reperfusion and 

ageing. 

The free radical theory of aging was first introduced in 1956 by Denham Harman who 

proposed the concept of free radicals playing a role in the aging process [151]. This theory is 
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based on the fact that the random deleterious effects of free radicals produced during aerobic 

metabolism cause damage to DNA, lipids, and proteins and accumulate over time. 

The production of ROS
 

has been shown to be increased in obesity and T2D [152]. 

Hyperglycemia and hyperlipidemia that characterize obesity and diabetes can stimulate ROS 

formation from various sources, resulting finally in tissue damage and pathophysiological 

complications. 

The ROS-induced oxidative stress in cardiac and vascular myocytes has been linked with 

cardiovascular tissue injury [153]. ROS-induced oxidative stress plays a role in various 

cardiovascular diseases such as atherosclerosis, ischemic heart disease, hypertension, 

cardiomyopathies, cardiac hypertrophy and congestive heart failure [154]. Major sources of 

oxidative stress in cardiovascular system are the enzymes xanthine oxidoreductase (XOR), 

NAD(P)H oxidase (multisubunit membrane complexes), NOS, mitochondrial cytochromes 

and hemoglobin. NOSs and hemoglobin are also principal sources of RNS, including NO and 

SNOs (NO-modified cysteine thiols in amino acids, peptides, and proteins), which together 

with ROS convey NO bioactivity. ROS have also a major role in ischemia and reperfusion. 

Massive production of ROS during ischemia/reperfusion leads to tissue injury causing thus 

serious complications in organ transplantation, stroke, and myocardial infarction. 
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3. Mitochondria 

 

3.1 Overview of the Cellular Energy Metabolism  

Many tasks that a cell must perform, such as movement and the synthesis of macromolecules, 

require energy. ATP plays a central role in this process by acting as a store of free energy 

within the cell. 

Carbohydrates: The major source of cellular energy is the breakdown of carbohydrates and 

particularly of glucose. Glycolysis is the initial stage in the breakdown of glucose and it is a 

procedure common to practically all organisms. In eukaryotic cells glycolysis happens in the 

cytosol. The complete oxidative breakdown of glucose to CO2 and H2O (glycolysis) can be 

written as follows:  

C6H12O6 + 6O2  6CO2 + 6H2O. 

Glycolysis occurs in the absence of oxygen and can provide all the metabolic energy of 

anaerobic organisms. The reactions of glycolysis result in the breakdown of glucose into 

pyruvate, with the net gain of two molecules of ATP. Phosphofructokinase is the key control 

enzyme of glycolysis and is inhibited by high levels of ATP. Thus, the breakdown of glucose 

is inhibited when an adequate supply of metabolic energy in the form of ATP is available in 

the cell. In addition to ATP production, glycolysis converts two molecules of the coenzyme 

NAD
+
 to NADH. The majority of pyruvate is converted to acetyl-CoA and fed into the citric 

acid cycle. The most important product of this cycle is NADH, which is made from NAD
+
 as 

the acetyl-CoA is oxidized, even though some more ATP is also generated. The acetyl-CoA 

oxidation releases carbon dioxide as a waste product. In anaerobic conditions, glycolysis 

produces lactate, through the enzyme lactate dehydrogenase re-oxidizing NADH to NAD
+
 for 

re-use in glycolysis. The pentose phosphate pathway is an alternative route for glucose 

breakdown. During this process, the coenzyme NADPH is reduced and pentose sugars are 

produced including ribose, the sugar component of nucleic acids. 

Lipids: Fats are catabolised by hydrolysis to free fatty acids and glycerol. The glycerol enters 

glycolysis and the fatty acids are broken down by β oxidation to release acetyl-CoA, which 

then enters the citric acid cycle. Every cycle produces one molecule of NADH and one 

FADH2. Fatty acids release more energy upon oxidation than carbohydrates because 

carbohydrates contain more oxygen in their structures and thus require less oxygen for their 

oxidation. 

http://en.wikipedia.org/wiki/Acetyl-CoA
http://en.wikipedia.org/wiki/Citric_acid_cycle
http://en.wikipedia.org/wiki/Citric_acid_cycle
http://en.wikipedia.org/wiki/Carbon_dioxide
http://en.wikipedia.org/wiki/Lactic_acid
http://en.wikipedia.org/wiki/Lactate_dehydrogenase
http://en.wikipedia.org/wiki/Pentose_phosphate_pathway
http://en.wikipedia.org/wiki/NADPH
http://en.wikipedia.org/wiki/Pentose
http://en.wikipedia.org/wiki/Ribose
http://en.wikipedia.org/wiki/Nucleic_acid
http://en.wikipedia.org/wiki/Hydrolysis
http://en.wikipedia.org/wiki/Beta_oxidation
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Aminoacids: Aminoacids are used to synthesize proteins and other biomolecules but are also 

oxidized to urea and carbon dioxide as a source of energy. The first step of the oxidation 

pathway is the removal of the amino group by a transaminase, which is then transferred into 

the urea cycle, leaving a deaminated carbon skeleton in the form of a keto acid. Several of 

these keto acids are intermediates in the citric acid cycle, for example the formation of  α-

ketoglutarate by the glutamate deamination. The glucogenic amino acids can also be 

converted into glucose, through gluconeogenesis. 

The produced coenzyme NADH from these catabolic pathways and the citric acid cycle 

contains electrons that have a high transfer potential. These electrons will pass by the 

mitochondrial electron transport chain at the level of complex I with final product the ATP. 

Succinate, a component of citric acid cycle, is also oxidized by the ETC but at the level of 

complex II. 

 

3.2 General 

The name mitochondrion originates from the Greek μίτος "mitos" (thread) and χονδρίον 

"chondros" (granule), referring to the appearance of these structures during spermatogenesis.  

Mitochondria are membrane-enclosed organelles found in the cytosol of most eukaryotic cells 

localized in parts of cells with active processes. Mitochondria form a functional reticulum 

whose steady-state morphology is regulated by dynamic fission, fusion and motility events. 

The mitochondrion contains two membranes that separate four distinct compartments, the 

outer membrane, intermembrane space, inner membrane and the matrix.  

The outer membrane is a relatively simple phospholipid bilayer, containing protein structures 

called porins or VDAC (Voltage-Dependent Anion Channel) which render it permeable to 

molecules of about 10 kilodaltons or less (the size of the smallest proteins) [155]. Ions, 

nutrient molecules, ATP, ADP, etc. can pass through the outer membrane easily. It contains 

also translocases or proteic transporters for the import of cytosolic proteins. 

The inner membrane is freely permeable only to oxygen, carbon dioxide, and water. Its lipid 

composition consists from phosphatidylcholine and cardiolipin that makes it impermeable to 

ions. It is highly folded into cristae that increase greatly the total surface area of the inner 

membrane. Cristae house the megadalton complexes of the electron transport chain and ATP 

synthase that control the basic rates of cellular metabolism. It also disposes translocases for 

the protein import. 

http://en.wikipedia.org/wiki/Amino_acid
http://en.wikipedia.org/wiki/Urea
http://en.wikipedia.org/wiki/Transaminase
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http://en.wikipedia.org/wiki/Alpha-Ketoglutaric_acid
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http://en.wikipedia.org/wiki/Gluconeogenesis
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The matrix contains the mitochondrial DNA (mtDNA) and the enzymes responsible for the 

citric acid cycle and β-oxidation reactions [156]. The matrix also contains dissolved oxygen, 

water, carbon dioxide and the recyclable intermediates that serve as energy shuttles. Due to 

the folds of the cristae, no part of the matrix is far from the inner membrane. This way, matrix 

components can diffuse to inner membrane complexes and transport proteins within a 

relatively short time. 

The process of energy production by mitochondria and the electron transport chain is called 

oxidative phosphorylation (OXPHOS), because it involves the coupling of oxygen to 

phosphorylation of ADP into ATP [157]. The human heart daily synthesizes approximatively 

30 kg of ATP. 

 

3.3 Electron Transport Chain (ETC) and ATP synthase 

The classic electron-transfer chain was first described as a sequence of prosthetic groups 

(flavins and cytochromes) embedded in a protein matrix in the inner mitochondrial membrane 

(IMM), transferring electrons in order of increasing redox potential [158]. 

Five membrane-embedded enzymes constitute an oxidative phosphorylation (OXPHOS) 

system in the inner mitochondrial membrane. Four of these protein complexes compose the 

“respiratory chain” and are involved in electron transfer reactions, which in three cases are 

coupled to proton translocation across the inner mitochondrial membrane. The resulting 

proton gradient is used by the ATP synthase complex for the phosphorylation of ADP. These 

multiproteic complexes either oxidize reduced NADH (complexes I, III, and IV) or reduced 

FADH2 (complex II). Membrane-bound mitochondrial glycerophosphate dehydrogenase, 

dihydroorotate dehydrogenase, electron transfer flavoprotein-ubiquinone oxidoreductase 

(ETF:QO) may also transfer electrons to oxygen. 

Complex I or NADH dehydrogenase is the main entrance point of electrons to the respiratory 

chain. It uses NADH molecules generated by catabolic reactions within the mitochondrial 

matrix as a source of electrons and transfers them to ubiquinone within the membrane. 

Succinate dehydrogenase or complex II represents an alternative entrance point of electrons to 

the respiratory chain, which transfers electrons from succinate to ubiquinone and directly 

connects the Krebs cycle to the respiratory chain. This electron transfer is not coupled to 

proton translocation. The central component of the OXPHOS system, cytochrome c reductase 

or complex III, is a functional dimer. It transfers electrons from reduced ubiquinone (which is 

referred to as “ubiquinol”) to cytochrome c, which is a small mobile electron carrier 
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associated with the outer surface of the inner membrane. Complex IV or 

cytochrome c oxidase represents the terminal complex of the respiratory chain and was 

described as a monomer upon solubilization of the inner mitochondrial membrane by mild 

detergent treatment but as a dimer within protein crystals. It catalyses electron transfer from 

cytochrome c to molecular oxygen thereby reducing the latter to water. By translocating 

protons across the inner mitochondrial membrane this complex makes a final contribution to 

the proton gradient across the inner membrane, which is used by the ATP synthase for ATP 

formation. The ATP synthase is composed of two domains: a hydrophobic F0 membrane part 

that is connected to a water-soluble F1-headpiece by two stalks. In a nutshell, the proton 

gradient across the membrane domain triggers the rotation of the subunit c ring within 

the F0 and γ, δ and within F1, which causes the phosphorylation of ADP. 

For a long time it was believd that the organization of OXPHOS sytem was best described by 

the “fluid-state” or “random diffusion” model, which was based on the finding that all 

individual protein complexes of the OXPHOS system can be purified in enzymatically active 

form and on lipid dilution experiments [159]. According to this model, the respiratory chain 

complexes freely diffuse in the membrane and that electrons flow between them connected by 

the mobile carriers CoQ and cytochrome c (cyt c). 

However, in the last decade an alternative view, known as “solid-state” model was proposed 

based on evidences pointing to stable interactions of the OXPHOS complexes in the form of 

defined supercomplexe [160]. According to this model the respiratory complexes are 

assembled into supramolecular structures (supercomplexes) to perform their role 

(“respirasomes”)   and ensure a quick and efficient transport of electrons [160].  

 

3.3.1 Complex I or NADH-coenzyme Q reductase 

Complex I (CI) catalyzes the first step of the electron-transport chain of mitochondria and 

several bacteria. The reaction is accompanied by translocation of four protons from the matrix 

to the intermembrane space. 

It is a heteromultimer consisting of 45 subunits for a molecular mass of 1,000 kDa which 

makes CI the largest enzyme of the respiratory chain. Seven subunits are the products of the 

mitochondrial genome. The enzyme consists of three different sectors: a dehydrogenase unit 

and a hydrogenase-like unit, constituting the peripheral arm protruding into the matrix, and 

a transporter unit deeply embedded in the membrane and involved in proton translocation. 

The dehydrogenase domain contains the NADH oxidizing site, whereas the hydrogenase 
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domain binds and reduces CoQ. Several prosthetic groups contribute to electron transfer 

within the enzyme: FMN is the entry point for electrons that are then transferred to a series of 

iron–sulfur clusters.  It is also one of the two mitochondrial sites of ROS production [161]. 

CI is inhibited by more than 60 different families of compounds from rotenone, the prototype 

of this series, to a number of synthetic insecticides/acaricides. Rotenone inhibits CI by 

blocking the electron transfer between the terminal iron-sulfur (FeS) cluster N2 and 

ubiquinone [162].  This leads to electron transport chain abnormal function with final result 

the incapacity of ATP synthase to produce ATP. 

 

3.3.2 Complex II or succinate deshydrogenase 

Succinate dehydrogenase, an enzyme of 100 kDa, has a functional role in the Krebs cycle. 

Beside that, it is also involved in aerobic metabolism by the respiratory chain because it can 

couple the two-electron oxidation of succinate to fumarate with the electron transfer directly 

to the quinone pool. Hence complex II (CII) is more precisely termed succinate:quinone 

oxidoreductase (SQR) [163]. Its 4 subunits are entirely products of the nuclear genome. 

Mammalian CII is part of a class of ubiquinone-reducing enzymes containing a single b heme 

and anchored to the inner mitochondrial membrane by two hydrophobic subunits. It catalyzes 

the oxidation of succinate to fumarate with subsequent electron transfer to the ubuiquinone 

pool which is though not coupled to proton efflux to the intermembrane space.  

CII is specifically inhibited by thenoyltrifluoroacetone (TTFA) or malonate. Malonate has a 

structure close to succinate. Thus, it can bind to CII and inhibit its dehydrogenation. This way, 

only the hydrogenes from CI pass through complex III. This results to the slowdown of the 

ETC that decreases the phosphorylation rate of ADP by the ATP synthase. 

 

3.3.3 Complex III or ubiquinol-cytochrome c oxidoreductase 

Complex III (CIII) is a symmetrical, oligomeric dimer of 300 kDa with 10 subunits, most of 

them produced by the nuclear genome. The enzyme represents a confluence point for 

reducing equivalents from various dehydrogenases: it can catalyze the transfer of electrons 

from hydroxyquinones (ubiquinol, reduced CoQ) to a water-soluble c-type cytochrome, and it 

can, concomitantly, link this redox reaction to translocation of protons across the membrane. 

CIII is the second site of ROS production [161].  
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Antimycin A and myxothiazol are inhibitros of CIII activity. Antimycin is an antibiotic that 

inhibits CIII at the level oriented to the matrix. This way the utilization of the ubiquinol 

(QH2) (H
+
 donor) and the ferric cytochorome c (H

+
 receptor) is decreased. The slowdown of 

the coenzyme Q reoxidation deprives the complexes I and II of their H
+
 coenzyme acceptor 

that leads to inhibition of these two enzymes and therefore of the NADH and succinate use. In 

the presence of this inhibitor cytochrome c oxydase is deprived from the reduced cytochrome 

c and use less oxygen. Thus, the ETC expels fewer protons and the membrane potential 

collapses with further inhibition of ATP synthase.  

 

3.3.4 Complex IV or cytochrome c oxydase 

Complex IV (CIV) (400 kDa) belongs to the heme-copper oxygen reductase superfamily. It 

catalyzes the complete reduction of dioxygen to water and promote proton translocation 

across the mitochondrial membrane, further contributing to the difference in electrochemical 

potential [164]. Its activity is inhibited by the carbon oxide and cyanide.   

The cyanide anion is the most powerful poison of the electron transport chain. It results to 

inhibition of CIV by blocking the utilisation of oxygen by this complex (hydrogen acceptor) 

and the cytochrome c (electron donor). The slowdown of the cytochrome c reoxidation 

deprives the CIII of its electron acceptor coenzyme that leads to inhibition of the activity of 

this complex and the utilization of QH2. The lack of the oxidized coenzyme Q deprives the 

complexes I and II from their hydrogen receptor coenzyme. Thus, the enzymes use less 

NADH and succinate finally leading to inhibition of ATP synthesis.  

 

3.3.5 Auxiliary enzymes of the respiratory chain 

There are also alternative oxidases that deliver electrons from CoQ to oxygen, bypassing CIII 

and cytochrome oxidase. All these enzymes are characterized by lack of energy-conserving 

proton-translocation mechanisms. Apart of CII that can be regarded as one of them, there is: 

- Glycerol-3-phosphate dehydrogenase (mtGPDH) that shuttles reducing equivalents from 

cytosol through the respiratory chain to molecular oxygen; 

- The electron-transfer flavoprotein (ETF)-ubiquinone oxidoreductase that is a globular 

protein located on the matrix surface of the inner mitochondrial membrane. The enzyme can 

accept reducing equivalents from a variety of dehydrogenases, including those involved in 
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fatty acid oxidation, in amino acid oxidation, and in choline catabolism (dimethylglycine 

dehydrogenase and sarcosine dehydrogenase), and is oxidized by ubiquinone ; 

- Choline dehydrogenase that catalyzes the oxidation of choline to betaine aldehyde. The 

enzyme is localized at the matrix side of the inner mitochondrial membrane; because its 

oxidation through the respiratory chain was shown to yield a P/O ratio approaching 2, it was 

suggested that it feeds electrons to CoQ at a similar position to that of respiratory complex II; 

- Dihydroorotate dehydrogenase (DHODH) an iron-containing 43-kDa flavoprotein (FMN) 

that catalyzes the oxidation of dihydroorotate to orotate, the fourth step in de novo pyrimidine 

biosynthesis; 

- Alternative NADH dehydrogenases (NDs), a family of proteins located in the inner 

membrane of eukaryotic mitochondria, which catalyze oxidation of NAD(P)H from either the 

cytosol (external enzymes) or the mitochondrial matrix (internal enzymes) and enable quinone 

reduction. The greatest functional difference from CI is that their oxidoreductase activity is 

rotenone insensitive and is not coupled to proton pumping. 

 

3.3.6 ATP synthase 

ATP synthase is often referred in the literature as Complex V (CV) of the respiratory chain 

due to coupling between the mitochondrial respiration and the ATP production. 

In 1960, Mitchell established the chemiosmotic theory according to which the movement of 

ions (as the reduced equivalents of NADH and FADH2) across an electrochemical potential 

(as that derived from the proton transfert of the respiratory chain) could provide the energy 

needed to produce ATP. ATP synthase forms ATP from ADP and inorganic phosphate (Pi) 

driven by this motive proton force, a reaction that is reversible.  

ATP synthase consists of two regions: the FO portion that is within the membrane and the 

F1 portion that is above the membrane, inside the matrix of the mitochondria. Intact ATP 

synthase is also called the FoF1-ATPase. 

The enzyme is composed of at least 8 subunit types, of which 5 form the catalytic hydrophilic 

F1-portion. These subunits are named by Greek letters (alpha α, beta β, gamma γ, delta δ and 

epsilon ε) in accordance with their molecular weight. The proton translocating FO portion is 

composed of subunits of 3 types named a, b and c. The catalytic portion of ATP synthase (F1) 

is formed by α3β3 hexamer with γ subunit inside it and ε attached to the γ. Subunit δ is bound 

to the "top" of the hexamer and to subunits b. The hydrophobic transmembrane segment of 

subunit b is in contact with subunit a. Subunits γ and ε of the catalytic domain are bound to 
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the ring-shaped oligomer of c-subunits. Proton translocation take place at the interface of 

subunits a and c. 

Driven by the protonmotive force, protons are transferred through the FO portion of the 

enzyme. This transfer drives the rotation of the c-subunit oligomer ring relative to 

the a and b subunits. The rotation is passed to γ and ε subunits that are bound to the c-subunit 

oligomer ring. The rotation of asymmetric Gamma subunit mechanically causes 

conformational changes in α3β3 -hexamer. Each 120 degrees of the γ subunit rotation forces 

one of 3 catalytic sites located at α-β interface into an opened conformation. Freshly 

synthesized ATP molecule is released, and phosphate and ADP are bound instead. High 

affinity of the opened site to phosphate impairs rebinding of ATP and favours ADP binding. 

Rotation goes further, γ subunit turns another 120 degrees forcing the next site into the 

opened conformation, and the ADP and phosphate bound to the previous opened site are 

occluded and ATP synthesis takes place. The ATP molecule formed is released when the γ 

subunit makes one 360 degrees turn and once again opens the site (Fig. 6B). 

Oligomycin is a specific inhibitor of ATP synthase by blocking its function. Protons are then 

accumulated in the intermembrane space which will prevent complexes I, III and IV from 

pumping protons from the matrix to the intermembrane space. The oxidation reactions are 

also inhibited finally leading to less utilization of NADH and succinate by complexes I and II 

respectively. 

 

 

 

Figure 6. A Structure of ATP synthase [165]. B A model of the ‘binding-change’ mechanism 

of ATP synthase, as proposed by Boyer [166] 
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3.3.7 Organization of complexes 

3.3.7.1 Fluid state model 

The original model for how the respiratory chain complexes are organized was that complex I 

to IV diffuse freely in the inner mitochondrial membrane and electron transfer is based on 

random collisions of the involved components. This model is supported by the fact that all 

five complexes can be purified in a physiologically active form and by lipid dilution 

experiments using isolated mitochondrial membranes [159].  

3.3.7.2 Supercomplexes and the respirasome 

According to the structural model of the mitochondrial inner membrane, initially proposed 

more than 50 years ago by Chance and Williams [158] and expanded and amplified by 

Schagger's group [167], the structural support for oxidative phosphorylation is provided by 

assemblies of the ETC complexes into supercomplexes termed respiratory supercomplexes or 

respirasomes. Many OXPHOS supercomplexes that function as a respiratory unit were 

identified and characterized: i) a “I+III2 supercomplex” including complex I and dimeric 

complex III, ii) “III2+IV1–2 supercomplexes” consisting of dimeric complex III and one or two 

copies of monomeric complex IV, and iii) very large “I+III2+IV1–4 supercomplexes” 

comprising complexes I, dimeric complex III, and one to four copies of complex IV [168]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Models of the mitochondrial OXPHOS system. A The “fluid state 

model”. B Defined interactions of OXPHOS complexes within supercomplexes as predicted 

by the “solid state model”. M: Matrix; IM: inner mitochondrial 

membrane; IMS: mitochondrial intermembrane space. 

 Adapted from Dudkina et al., 2008 [169] 



INTRODUCTION                                                                       Mitochondria 

 Page 48 
 

3.4 The leaks and slips of the oxidative phosphorylation 

As already seen, mitochondrial membrane contains proton pumps that couple electron 

transport to the pumping of protons across these membranes. This pumping generates an 

electrochemical proton gradient (Δp) across the membrane, composed of a pH gradient (ΔpH) 

and an electrical membrane potential (Δψ). The return of protons down this gradient is 

coupled to the phosphorylation of ADP by the ATP synthase. 

However, the mitochondrial membrane suffers from two major inefficiencies: 

-  Proton leak or just leak: it is the passive leak for protons (and other ions) such that a 

significant proportion of protons pumped by the redox proton pumps leak back across the 

membrane without being coupled to ATP synthesis, first measured by Mitchell and Moyle 

[170]; 

-  Redox slip or just slip: the phenomenon occurs when the proton pumps fail to pump 

protons at all, or pump protons at a reduced proton stoichiometry despite the electron transfer 

through the respiratory complexes, in particular cytochrome c oxydase. 

These processes have a major impact on mitochondrial coupling efficiency and ROS 

production. 

 

3.5 The respiratory chain as a source of ROS 

There is growing evidence that most of the O2•
–
 generated by intact mammalian mitochondria 

in vitro is produced by CI. This O2•
–
 production occurs primarily on the matrix side of the 

IMM. O2•
–
 production by CI was also found to be markedly stimulated in the presence of 

succinate, the substrate of CII, indicating that a reverse electron flow is involved. Superoxide 

anion is unable to cross the IMM and it is rapidly converted to hydrogen peroxide by the 

MnSOD present in the mitochondrial matrix.  

In addition to CI, CIII is regarded as an important site of O2•
–
 production, especially when 

mitochondrial respiration is suppressed by antimycin, which is a specific inhibitor of 

CIII. O2•
–
 produced at this site appears at both sides of the inner membrane. Ubiquinone, a 

component of the mitochondrial respiratory chain connecting complex I with III and complex 

II with III, is regarded as a major participant in formation of O2•
–
 by CIII. The oxidation of 

ubiquinone proceeds in a set of reactions known as the Q-cycle, and unstable semiquinone is 

responsible for O2•
–
 formation. Specific CIII inhibitors, such as antimycin and myxothiazol, 

are important tools in deducing both the site and the source of O2•
–
 production.  
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Figure 8. Electron transport chain, ATP generation and ROS production. Complexes I-IV are 

represented in the inner membrane (IM) of the mitochondria. ROS that are produced by the 

ETC are indicated. Several respiratory inhibitors are represented: rotenone (CI inhibitor), 

antimycin (CIII inhibitor), potassium cyanide KCN (CIV inhibitor), oligomycin (ATP synthase 

inhibitor). OM: outer membrane; IMS: intermembrane space; IM: inner membrane [171] 

 

3.6 Regulation of Mitochondrial Respiration by Substrates 

The nature of the cellular substrates (fatty acids, carbohydrates) affects the oxidative 

phosphorylation stoichiometry by modulating the ratio between NADH + H
+
 and FADH2. The 

oxidation of NADH involves three coupling sites, the complexes I, III and IV. The FADH2 

oxidation involves two coupling sites, the complexes III and IV. Thus, when FADH2 is 

oxidized the yield of ATP synthesis is lowered compared to the NADH oxidation. 

Carbohydrate metabolism results to two molecules of NADH while the fatty acid β-oxidation 

to equal amounts of NADH + H
+
 and FADH2. Thus, the stoichiometry of ATP synthesis to 

oxygen consumption is lower when lipids rather than carbohydrates are used. 

In order for the NADH
 
to enter the mitochondrion, since the mitochondrial inner membrane is 

impermeable to this molecule, shuttle systems are used: 
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-  the malate/aspartate shuttle: Malate dehydrogenase is the primary enzyme of this 

shuttle and exist in two forms: the mitochondrial and cytosolic forms, which catalyze the 

reaction in opposite directions. In the cytosol, malate dehydrogenase reacts with NADH + H
+
 

and oxaloacetate to produce malate and NAD
+
. Two electrons are attached this way to 

oxaloacetate. Malate is then imported into the mitochondrial matrix in exchange of α-

ketoglutarate. Malate is then converted into oxaloacetate by the mitochondrial malate 

dehydrogenase, during which NAD
+
 is reduced with two electrons to form NADH +H

+
. 

Oxaloacetate is then transaminated into aspartate by mitochondrial aspartate aminotransferase 

and glutamate. Glutamate is thus transformed into α-ketoglutarate. Then the glutamate-

aspartate antiporter imports glutamate from the cytosol into the matrix and exports aspartate 

from the matrix to the cytosol. Once in the cytosol, aspartate is converted by cytosolic 

aspartate aminotransferase to oxaloacetate; 

-  glycerol 3-phosphate/dihydroxyacetonephosphate shuttle: This shuttle is a mechanism 

that regenerates NAD
+
 from NADH, a by-product of glycolysis. Its importance in transporting 

reducing equivalents is secondary to the malate-aspartate shuttle. In this shuttle, the enzyme 

called cytoplasmic glycerol-3-phosphate dehydrogenase 1 (cGPDH) converts 

dihydroxyacetone phosphate to glycerol 3-phosphate by oxidizing one molecule of NADH to 

NAD
+
. Glycerol 3-phosphate is converted back to dihydroxyacetone phosphate by a 

membrane-bound  glycerol-3-phosphate dehydrogenase 2 (mGPDH) reducing at the same 

time one molecule of FAD to FADH2.  

The first shuttle depends on the mitochondrial transmembrane electrical potential while the 

latter does not. Moreover, the glycerol phosphate shuttle is energetically less efficient than the 

malate-aspartate shuttle, because the FADH2 produces one less ATP than NADH in the 

oxidative phosphorylation.  

 

3.7 Respiration measurements 

Measurement of oxygen consumption in mitochondria in the presence of specific substrates 

that feed electrons into different sites of the ETC [172] is possible. For example, in the 

presence of pyruvate + malate or succinate (+ rotenone), the electrons fed into CI or CII, are 

transferred to ubiquinone, CIII, and CIV, where oxygen plus hydrogen are converted into 

water. Substrates derived from carbohydrate, amino acids, or fatty acids oxidation can also be 

used to evaluate mitochondrial function. Oxygen consumption in the presence of ADP is 

coupled to the production of ATP by the phosphorylation system. The measurement of 

http://en.wikipedia.org/wiki/NADH
http://en.wikipedia.org/wiki/Glycolysis
http://en.wikipedia.org/wiki/Malate-aspartate_shuttle
http://en.wikipedia.org/wiki/Glycerol-3-phosphate_dehydrogenase
http://en.wikipedia.org/wiki/Dihydroxyacetone_phosphate
http://en.wikipedia.org/wiki/Glycerol_3-phosphate
http://en.wikipedia.org/wiki/Glycerol_3-phosphate
http://en.wikipedia.org/wiki/Dihydroxyacetone_phosphate
http://en.wikipedia.org/wiki/Glycerol-3-phosphate_dehydrogenase
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oxygen consumption in the absence of ATP synthesis by using the ATP synthase inhibitor 

oligomycin is used as an estimation of the proton leak, i.e., the protons not used to 

phosphorylate the ADP. Uncouplers also can be added to dissociate the proton gradient in the 

intermembrane space and to look at the limitation of the electron transport by the 

phosphorylation system. The measurement of OXPHOS assesses multiple components of 

mitochondrial metabolism and can uncover defects and differences in mitochondrial function 

not apparent by other techniques. 

 

3.8 Mitochondria in Aging and Obesity 

An overwhelming body of evidence accumulated in the last decades has demonstrated that 

mitochondria have a central role in the etiology and pathogenesis of most major chronic 

diseases and in aging itself as described by the mitochondrial (or free radical) theory of aging 

proposed by Harman in 1956 [151]. This theory proposes that oxidative damage to the 

mitochondria can lead to a compounding effect whereby damaged mitochondria in turn 

release more ROS, increasing oxidative damage to the mitochondrial, cytosolic and nuclear 

compartments and leading eventually to dysfunctional or defective mitochondria establishing 

a vicious circle of oxidative stress and energetic decline.  Numerous studies demonstrate 

increased oxidative damage to mitochondrial lipids, proteins and DNA with age.  Activities of 

the mitochondrial ETC complexes isolated from variety of tissues in several species have 

been reported to decrease with age [173, 174]. Decreases have been observed in the activities 

of CI, III and IV while the CII seems to be more resistant to age-induced changes [174]. The 

underlying reason is probably the fact that many subunits of CI, III and IV are encoded by 

mtDNA susceptible to mitochondrial oxidative damage while CII is encoded by nuclear DNA. 

A decline in oxygen consumption with age has also been reported [175, 176]. Advanced 

mitochondrial ROS production significantly increases in both heart and vasculature [176, 177] 

and they may impact endothelium-dependent dilatation. It should be noted though that most 

of these studies have studied the advanced aging after the cutoff point of middle age (65 years 

for the human). 

Aging is also related to the development of obesity and diabetes. Obesity and diabetes are 

related to altered myocardial substrate utilization by the heart. It has been shown that in 

rodents and humans there is a characteristic increase in fatty acid utilization accompanied by a  

reduction in glucose and lactate utilization [178]. The increased lipid delivery reduces the 

heart’s ability to enhance fatty acid oxidation and its metabolic flexibility. These are 
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consistent with the observed mitochondrial dysfunction in these states [179]. It has also been 

shown that the observed decreased cardiac efficiency in obese and diabetic patients is related 

to increased uncoupled respiration and activation of uncoupling proteins [179]. This may 

contribute to impair energy requiring processes in the heart such as diastolic relaxation and 

systolic contraction, and may render the heart susceptible to ischemic injury. 
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4.  Cardiovascular function 

 

4.1 Cardiac metabolism 

Life critically depends on the proper heart function, which in its turn relies on high efficiency 

of energy conversion. Mitochondrial oxygen-dependent processes transfer most of the 

chemical energy from metabolic substrates into ATP. In order to maintain a continuous 

supply of ATP to the contractile machinery, the heart has developed an omnivorous attitude 

and is able to use a wide variety of circulating substrates, including fatty acids, glucose, 

lactate and ketone bodies. Fatty acids are catabolized by β-oxidation, and account for 60–90% 

of the total energy production [180]. Metabolized through glycolysis, glucose accounts for 

10–40% of the total energy production [181]. However, substrate selection is dictated by their 

relative abundance at a given time and by regulation according to the developmental, 

hormonal and pathophysiological status of the organism. 

 

4.1.1 Fatty acid metabolism 

The heart has a small capacity for de novo fatty acid synthesis and storage, and therefore 

mainly relies on arterial fatty acid supply. The main sources of fatty acids for the heart are the 

free fatty acids bound to albumin and triacyglycerols (TAG) found in the core of blood 

lipoproteins. The majority of fatty acids for the heart are provided by the albumin-bound fatty 

acids, while the TAG component probably accounts for ≤20–25% of the cardiac FA 

consumption [182].  

FFAs originating from either albumin or lipoprotein-TAG enter the cardiac myocyte either by 

passive diffusion or via a protein carrier-mediated pathway that includes fatty acid translocase 

(FAT)/CD36, the plasma membrane isoform of fatty acid binding protein (FABPpm), and 

fatty acid transport protein (FATP) 1/6. Once in the cytoplasm, fatty acids are converted into 

long-chain acyl CoA esters by fatty acyl CoA synthetase (FACS) of the mitochondrial outer 

membrane [183] (Fig. 9). These long-chain acyl CoAs can then be used for synthesis of a 

number of intracellular lipid intermediates, or the fatty acid moiety can be transferred to 

carnitine and taken up into the mitochondria. The carnitine palmitoyltranferase system then is 

used for the long-chain acyl CoAs to overcome the mitochondrial membrane impermeability. 

Carnitine palmitoyltransferase (CPT) 1 is a key enzyme in the mitochondria and catalyzes the 

conversion of long-chain acyl CoA to long-chain acylcarnitine, which is subsequently shuttled 

http://physrev.physiology.org.gate2.inist.fr/content/90/1/207.long#F1
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into the mitochondria. Following the formation of long-chain acylcarnitine by CPT1, the 

acylcarnitine is translocated across the inner mitochondrial membrane by a 

carnitine:acylcarnitine translocase (CT) that involves the exchange of carnitine for 

acylcarnitine. Once in the matrix, acylcarnitine is converted back to long-chain acyl CoA by 

CPT2, which is located on the matrix side of the inner mitochondrial membrane. The 

metabolism of long-chain acyl CoA in the mitochondrial matrix occurs via the β-oxidation 

pathway, involving the sequential metabolism of acyl CoAs by acyl CoA dehydrogenase, 

enoyl CoA hydratase, L-3-hydroxyacyl CoA dehydrogenase, and 3-ketoacyl CoA thiolase (3-

KAT) [184]. The fatty acids that do not undergo β-oxidation are stored as triglycerides as a 

potent energy reserve.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 9. Cardiac fatty acid metabolism. 1 = Direct route of FA into outer cell membrane, 

2 = Indirect route of FA as source for passive diffusion; 3 = Passive diffusion, 4 = Transfer 

of FA by FATP. Abbreviations: ACBP=Acyl-CoA binding protein; ACS = Acyl-CoA synthase; 

Albumin-r = Albumin receptor; CoA = Coenzyme A; CPT1 and CPT2 = Carnitine 

palmitoyltransferase 1 and 2, respectively; FA = Fatty acids; FABPc = Cytoplasmic fatty 

acid binding protein; FABPpm = Peripheral membrane fatty acid binding protein; 

FAT/CD36 = Fatty acid translocase with CD36 antigen; FATP = Fatty acid transport 

protein; LC acylcarnitine = Long-chain acylcarnitine; LC acyl-CoA = Long-chain acyl-CoA; 

PL synthesis = Phospholipid synthesis; TG pool = Triacylglycerol pool [185] 
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4.1.1.1 Cardiac membrane phospholipids 

Myocardial cell membranes are dynamic structures that are always under constant strain. 

Their composition, in particular their fatty acid content, plays an important role in their 

function and can be affected by diet and stress. More specifically, it may influence the 

physical behavior of the membrane bilayer, the membrane permeability and fluidity and the 

activities of enzyme molecules embedded in it [186-188]. 

The type of dietary lipids is of crucial importance for the fatty acid composition of cellular 

membranes. Epidemiological studies have shown the detrimental effects of dietary saturated 

fatty acids (SFAs) on the cardiovascular health [189, 190] while monounsaturated fatty acids 

(MUFAs) seems to be either neutral [191] or protective [192] against CVD risk factors. In 

contrast, n-3 polyunsaturated fatty acids (PUFAs) seem to exert cardioprotective effects [193, 

194]. 

PUFAs include the n-6 and n-3 classes that are considered “essential” FAs since they cannot 

be synthetized in the human body and are mostly obtained by diet. More specifically, humans 

lack the Δ12- and Δ15-desaturases necessary to insert a double bond at the n-3 and n-6 

position of a FA carbon chain [194]. After their intestinal absorption, they are incorporated 

into chylomicrons and transferred to the liver, where they can be elongated and desaturated 

(Fig. 10). Then, they are released into the bloodstream and incorporated into different organs 

(e.g. heart, lung, kidney, brain, adipose tissue and skeletal muscle) [195-197]. At the cellular 

level, they can either be oxidized in the mitochondria or incorporated into complex lipids. N-3 

PUFAs compete with n-6 PUFAs for phospholipid fatty acid composition [198]. PUFAs also 

include the n-9 class, derived from oleic acid (OA, 18:1) and the n-7 class, derived from 

palmitoleic acid (16:1), which are not essential [199]. 

The n-6 and n-3 PUFAs are also involved in eicosanoid synthesis when incorporated into 

phospholipids. Through the action of phospholipase A2 they can be released as FFAs and can 

be transformed by the cyclooxygenase (COX), the lipoxygenase (LOX) or cytochrome P450 

monoxygenase enzymes.  The COX enzymes lead to the synthesis of 2-series prostanoids 

(prostaglandins E2, prostacyclin I2 and thromboxane A2) from arachidonic acid, while the 

LOX generate 5-HPETE (arachidonic acid 5-hydroperoxide), which in turn is used to produce 

the 4-series leukotrienes. EPA and DHA are converted by the same enzymes, e.g., COX and 

LOX, to 3-series prostanoids (prostaglandins E3, prostacyclin I3 and thromboxane A3), and 

5-series leukotrienes, respectively.  
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Generallty, the n-6 PUFA-derived eicosanoids are proinflammatory and elicit a wide range of 

responses including vasoconstriction, vasodilatation, activation of leukocytes, stimulation of 

platelet aggregation and generation of ROS. Eicosanoids produced from EPA and DHA (n-3 

PUFAs) are generally less inflammatory, serve as vasodilators and inhibit platelet 

aggregation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. The metabolism of n-3 and n-6 PUFA and the biosynthesis of their respective 

eicosanoid and proresolving mediators. HPETE: hydroperoxyeicosatetraenoic acid; LTA4: 

leukotriene A4; LXA4, lipoxin A4; LOX: lipoxygenase; COX: cyclooxygenase [194] 

 

4.1.2 Carbohydrate metabolism 

Glucose uptake rises with increasing concentrations of the carbohydrate presented to the 

myocardium. This glucose uptake into the myocytes is facilitated by the glucose transporters 

GLUT-1 and GLUT-4. In the adult heart, GLUT-4 is the dominant myocardial isotype in a 

GLUT- 4/GLUT-1 ratio of 3:1 and it is insulin-sensitive, responding to various environmental 

influences to meet changing metabolic demands. Once glucose is imported, hexokinase 

catalyzes the phosphorylation of glucose to glucose-6-phosphate. This reaction is irreversible, 

because heart, like all muscle tissues, does not contain glucose-6-phosphatase. Afterwards, 

glucose-6-phosphate can enter three different pathways: glycogenesis (and synthesis of 

glucose derivatives) where a variable amount of imported glucose is temporarily stored as 

glycogen being a small energy reserve for the myocytes, pentose phosphate pathway or 
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glycolysis. The glycolysis pathway generates two pyruvate molecules from one glucose-6-

phosphate with phosphofructokinase-1 (PFK-1) as the key-regulating enzyme in this pathway. 

The next step is the breakdown of one 6-C containing fructose-1,6-bisphosphate into two 3-C 

containing molecules (glyceraldehyde 3-phosphate), a reversible reaction catalyzed by 

fructose 1,6-bisphosphate aldolase. Further downstream, glyceraldehyde 3-phosphate is 

converted into 1,3-bisphosphoglycerate, a reaction catalyzed by glyceraldehyde 3-phosphate 

dehydrogenase, and generating NADH from NAD
+
.  

The pyruvate formed from glycolysis passes the outer mitochondrial membrane by the 

monocarboxylate transporter (MCT). The pyruvate dehydrogenase complex on the IMM 

transports pyruvate across the membrane and catalyzes the irreversible transformation into 

acetyl-CoA. Pyruvate can also be converted into two intermediates of the citric acid cycle, 

malate and oxaloacetate. A third intermediate-producing pathway is transamination of 

pyruvate with glutamate to form alanine and the citric acid cycle intermediate α-ketoglutarate. 

The anaplerotic reactions described above are viewed as ‘fillup reactions’, replenishing citric 

acid cycle intermediates. 

Lactate is also a significant, but often underestimated, source of oxidative fuel for the heart. It 

mainly crosses the plasma membrane by facilitated transport through monocarboxylate 

transporters (MCT). 

Intracellular lactate reacts with NAD
+
 in a reversible reaction catalyzed by lactate 

dehydrogenase (LDH). This reaction forms pyruvate and NADH and H
+
. The flux through the 

reaction depends on the concentrations of the reagents. Under conditions of adequate 

oxygenation and a high rate of lactate uptake, the equation proceeds toward pyruvate. During 

hypoxia, when NADH and H
+
 accumulate and pyruvate cannot be metabolized further, the 

reaction takes place in the lactate direction [185]. 

 

4.1.3 Amino acid and ketone bodies metabolism 

Under conditions of high-energy substrate demand, unmatched by glucose or fatty acids, 

protein is degraded and amino acids are released from muscle into the blood stream. 

Aminotransferases can convert some amino acids into other amino acids that can later be used 

for energy production or transported to the liver for gluconeogenesis. It has been proposed 

that amino acid transamination may be an important adaptive process in the immature heart, 

improving its resistance to ischemic damage [200]. 

Ketone bodies are a minor substrate for the myocardium since their plasma levels are usually 
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low. However, in times of starvation, poorly controlled diabetes, chronic heart failure and 

during high-fat diet consumption their levels can significantly increase [201] and can be used 

by the heart by inhibiting the other main oxidation pathways in the heart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Cardiac carbohydrate pathways. GAPDH : Glyceraldehyde-3-phosphate 

dehydrogenase; GLUT :Glucose transporter; GP: Glycogen phosphorylase; GS: Glycogen 

synthase; HK: Hexokinase; LDH: Lactate dehydrogenase; MCT: Monocarboxylate 

transporter; OP = Oxidative phosphorylation; PDH: Pyruvate dehydrogenase complex; 

PFK-1: Phosphofructokinase-1; TCA cycle: Tricarboxylic acid cycle [185]  

 

4.2 Myocardial Ischemia/Reperfusion 

Myocardial ischemia develops when coronary blood supply to myocardium is reduced, either 

in terms of absolute flow rate (low-flow or no-flow ischemia) or relative to increased tissue 

demand (demand ischemia) [202]. Ischemia may be followed by reperfusion, which is the re-

admission of oxygen and metabolic substrates with washout of ischemic metabolites. The 

incidence and implications of ischemic injury are enormous since it occurs in many situations 

including myocardial infarction, stroke and organ procurement injury. 

It is recognized that prolonged myocardial ischemia is accompanied by a time-dependent loss 

of the viability of myocardial cells in the traumatized region of the heart. Reperfusion is 

necessary to initiate and maintain those functions responsible for reversing the changes 

induced by ischemia. It is also necessary for the continued survival of the myocardial cells at 
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risk of permanent damage. Despite these benefits of the blood reperfusion to an ischemic 

tissue, this can cause a series of adverse reactions that paradoxically injure tissue [203]. 

Myocardial injury is clinically manifested as combination of myocardial cell death, contractile 

dysfunction, arrhythmia and microvascular dysfunction.  

 

4.2.1 Cellular effects of ischemia and reperfusion 

In non-ischemic hearts, the majority of ATP production (over 95%) results from the 

mitochondrial oxidative phosphorylation and in particular by beta-fatty acid oxidation [204]. 

Ischemia results from insufficient blood supply to the myocardium; thus, there is an 

insufficient oxygen supply to the mitochondria not meeting the oxidative phosphorylation 

demands. Consequently, cellular oxidative phosphorylation decreases resulting eventually to 

failure to resynthesize energy-rich phosphates (e.g. ATP and phosphocreatine). An 

accumulation of reduced substrates at the expense of their oxidative counterparts is observed 

as evidenced also by the 10-fold increase in the NADH/NAD
+
 ratio [205]. In response to this 

decreased oxidative phosphorylation, the cardiac metabolism switches to glycolysis for its 

energy production, which is a short-term solution since myocardial glycogen stores are 

limited [206]. This leads to increased lactic acid production and hydrogen ions accumulation 

with consequent intacellular acidosis within the first 15 minutes of ischemia [207].  Aside 

form these metabolic changes, the myocardium readjusts its oxygen demands according to the 

disponibility of oxygen under these conditions by reducing its contractility leading to 

myocardial hibernation [208].  

The excess of protons in the cytoplasm resulting from non-mitochondrial ATP production 

activates the sodium/hydrogen exchanger (NHE). This leads to an initial intracellular sodium 

overload and an eventual intracellular calcium overload caused by the functional inability of 

the sodium/potassium ATPase and the reverse function of the sodium/calcium antiporter 

[209]. Thus, cytosolic [210] and mitochondrial [211] calcium levels are increased. However, 

cytosolic calcium overload is exacerbated mostly at the early reperfusion [212]. Myocardial 

acidosis during ischemia interferes with the normal Ca
2+

-troponin C interaction resulting in 

reduced cardiac contractility and arrhythmia [213]. Elevated Ca
2+ 

may also activate proteases 

causing alterations in contractile proteins leading in contractility impairement despite the 

elevated calcium concentration.  

Furthermore, there is progressive membrane damage in the cardiomyocytes during ischemia. 

The sustained increase in calcium leads to the activation of phospholipase and consequent 
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degradation of phospholipids and release of FFAs. Since the mitochondrial oxidative 

phosphorylation is depressed, mitochondrial fatty acid metabolism products are accumulated 

and can be incorporated into membranes and impair their function. Moreover, ROS produced 

by the ischemic myocardium [214] can induce peroxidative damage to the fatty acids of 

membrane phospholipids. Activated proteases may also cleave cytoskeletal filaments leading 

to membrane permeability, derangement of intracellular electrolytes and ATP exhaustion. All 

these ischemic conditions contribute eventually to cell death [215] by oncotic necrosis (cell 

injury with swelling) or apoptosis (cell injury with shrinkage) [216]. 

Ischemia affects also the endothelium, where it promotes expression of certain 

proinflammatory gene products (e.g. leucocyte adhesion molecules, cytokines) and bioactive 

agents (e.g. endothelin, thromboxane A2) and repression of other ‘protective’ gene products 

(e.g. constitutive NOS, thrombomodulin) and bioactive agents (e.g. prostacyclin, NO). Thus 

ischemia induces a proinflammatory state that increases tissue vulnerability to further injury 

on reperfusion [202].  

At reperfusion, the oxygenation is restored. However, the concept of a unique type of 

reperfusion injury was first proposed in 1970s [217]. During ischemia, there is an increased 

accumulation of reducing equivalents that can serve as substrates for oxygen centered ROS 

generation at reperfusion [214]. The peak of ROS generation with oxygenated reperfusion 

occurs approximately 20 seconds after its beginning [218].  O2•
− 

 was identified as the 

parental radical at reperfusion [218, 219]. The combined presence of high calcium, ROS and 

increasing pH induces the mitochondrial permeability pore (MPP) opening that results to 

further ROS production, depletion of ATP and cytochrome C leak into the cytoplasm leading 

eventually to cell death. Moreover, since some of ATP production is restored there is 

excessive contractile activation. The mechanical effect can lead to disruption of the 

sarcolemma, and propagate to adjacent cells through gap junctions. These processes lead to 

cell death through necrosis and apoptosis, and have a crucial role in reperfusion injury [202]. 

Potential cellular sources of ROS production during ischemia and reperfusion are the 

mitochondrial electron transport damage and uncoupling, the NAD(P)H oxidase activity, the 

uncoupled nitric oxide synthase activity, the cellular P450 activity and the conversion of 

cellular xanthine dehydrogenase (XDH) to xanthine oxidase. However, mitochondria seem to 

be especially important in this context since they are abundant in the heart tissue [220], are 

important sources of O2•
−
, •OH

− 
 and •NO [221], contain biomolecules susceptible to ROS 

reactions and are key regulators of ROS mediated cell death [222]. However, it is possible 

that the peak of ROS production during the first seconds of reperfusion is associated with the 
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cellular xanthine oxidase. The cessation of oxidative phosphorylation during ischemia causes 

ATP degradation to lower energy products of purine catabolism. Hypoxanthine is one of these 

intermediates. Thus, it accumulates during ischemia and serves as substrate for XDH when 

oxygen is restored at reperfusion. This reaction provides also xanthine as substrate for 

xanthine oxidase.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Major cellular effects of ischemia (a) and reperfusion (b) leading to irreversible 

forms of injury [202] 
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4.2.2 Role of ROS and reperfusion injury 

As already described, reperfusion of ischemic tissues results in formation of toxic ROS (O2•
−
, 

•OH, HOCl, H2O2 and peroxynitrite) [223]. Cellular ischaemia results in ATP degradation to 

form hypoxanthine. Under normal physiological conditions, hypoxanthine is oxidized by 

xanthine dehydrogenase to xanthine. However, xanthine dehydrogenase is converted to 

xanthine oxidase during ischaemia. Unlike xanthine dehydrogenase, which uses NAD as its 

substrate, xanthine oxidase uses oxygen; therefore during ischaemia it is unable to catalyse 

the conversion of hypoxanthine to xanthine, resulting in a build-up of excess tissue levels of 

hypoxanthine. With the reintroduction of oxygen during reperfusion, conversion of the excess 

hypoxanthine by xanthine oxidase results in the formation of toxic ROS. 

ROS may cause tissue injury via several mechanisms (as already described in session 2.3 of 

the Introduction). They can directly damage cellular membranes through lipid peroxidation, 

stimulate leucocyte activation and chemotaxis by inducing plasma membrane phospholipase 

A2 or mediated release of arachidonic acid, an important precursor of eicosanoid synthesis 

(e.g. thromboxane A2 and leukotriene B4). Finally, ROS increase leucocyte adhesion molecule 

and cytokine gene expression by activating transcription factors such as nuclear factor κB 

(NF-κB) and activator protein 1 (AP-1). 

 

 

4.2.3 Clinical manifestations of ischemia-reperfusion injury 

4.2.3.1  Myocardial stunning 

Myocardial stunning can be defined as myocardial dysfunction persisting after reperfusion 

despite the absence of irreversible damage. This contractile dysfunction is not permanent and 

fully reversible with time. Mechanisms of myocardial stunning may include decreased ATP 

resynthesis, coronary microvasculature spasm or plugging, ROS-mediated cytotoxic injury 

and altered intracellular calcium release and uptake [224].  

 

4.2.3.2  Reperfusion arrythmias 

Reperfusion arrhythmias are frequent in patients undergoing thrombolytic therapy or 

myocardial surgical revascularization.  Ventricular tachycardia, ventricular fibrillation or 

accelerated idioventricular rhythms are often observed following myocardial I–R in animals 
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with normal coronary arteries, particularly if reperfusion occurs abruptly after 15–20 min of 

ischaemia.  Reperfusion arrhythmias may be in part due to rapid and sudden ion concentration 

changes within ischaemic tissues upon reperfusion [224].  

 

4.3 Coronary endothelial function 

Coronary vessels are required to maintain cardiac homeostasis, as evidenced by the dramatic 

effects of coronary ischemia. In 1980, Furchgott and Zawadski [225] discovered the 

obligatory role of the vascular endothelium in vasomotor tone. Since then, the endothelium 

has emerged as an essential structural and functional element of the cardiovascular system. 

The endothelium is the largest organ in the body and strategically located between the wall of 

blood vessels and the blood stream. It regulates vascular permeability, adjusts the caliber of 

blood vessels to hemodynamic and hormonal demands and maintains blood fluidity. 

Endothelial cells have a central role in these functions by the expression, activation, and 

release of powerful vasoactive substances as well as of numerous other bioactive molecules. 

These substances include vasoconstricting and vasodilating factors, pro- and anticoagulant 

factors, pro- and antithrombotic factors, growth and antigrowth factors, factors that contribute 

to angiogenesis and tissue remodeling, as well as to immune reactions and tissue 

inflammation [226]. Among the vasodilatory substances produced by the endothelium are 

NO, prostacyclin (PGI2), endothelium-derived hyperpolarizing factors (EDHF), and C-type 

natriuretic peptide. Vasoconstrictors include endothelin-1 (ET-1), angiotensin II (Ang II), 

thromboxane A2, and ROS. Inflammatory modulators include NO, intercellular adhesion 

molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), E-selectin, and NF-κB. 

Modulation of hemostasis includes release of plasminogen activator, tissue factor inhibitor, 

von Willebrand factor, NO, PGI2, thromboxane A2, plasminogen-activator inhibitor-1 and 

fibrinogen. The endothelium also contributes to mitogenesis, angiogenesis, vascular 

permeability, and fluid balance. It also senses mechanical stimuli, such as pressure and shear 

stress.   
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Figure 13. Functions of healthy endothelium [227] 

 

Dysfunction of the endothelium has been implicated in the pathophysiology of different forms 

of cardiovascular disease, including hypertension, coronary artery disease, chronic heart 

failure, peripheral artery disease, diabetes, and chronic renal failure. It has been shown that a 

state of endothelial dysfunction is a phenomenon implicated in the atherogenic process, 

preceding the first clinical manifestations [228]. Endothelial dysfunction was initially 

identified as impaired vasodilation to specific stimuli such as acetylcholine or bradykinin. 

Impairement of endothelium-dependent dilatation (EDD) represents the functional 

characteristic of endothelial dysfunction. It is characterized by a shift of the actions of the 

endothelium toward reduced vasodilation, proinflammatory state and prothrombic properties 

[229].  

 

4.3.1 Regulation of the vascular tone 

The primary function of the endothelium is the regulation of the vascular tone and blood flow 

in response to various mechanical or chemical stimuli. The nature of these stimuli determines 

the secretion of substances from the endothelium that regulate the vasodilatation or 

vasoconstriction. These vasoactive substances diffuse to the underlying smooth muscle cells 

where they provoke their relaxation or contraction. 

 

4.3.1.1 Chemical and physical stimuli 

In 1980, Furschgott and Zawadski proposed that an endothelium-derived relaxing factor 
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(EDRF) identified as the NO had a major contribution in the vessel relaxation mediated by 

acetylcholine (Ach). Since then, many other substances such as noradrenaline, bradykinin and 

serotonin are used as pharmacological stimuli to assess endothelial function. These substances 

are recognized by specific G-protein coupled receptors on the endothelial surface [230] and 

induce vasodilatation. Their administration in vivo is done intravenously and in low doses in 

order to avoid side effects on the vascular neurogenic tone and arterial pressure. Recently, 

other factors participating in the EDD by these pharmacological stimuli has been described. 

The EDHF is a substance and/or electrical signal that is generated or synthetized in and 

released from the endothelium that hyperpolarizes vascular smooth muscle cells (VSMC) and 

this way causes their relaxation [231]. 

Shear stress is also widely used as mechanical stimulator of the vasodilator response of the 

endothelium. Shear stress is the tractive force produced by flowing blood upon the endothelial 

cell surface. It contributes to the endothelial production of NO and EDHF via activation of the 

Akt/kinases-dependent pathway. This induces the flow-mediated dilatation (FMD) translated 

to an increase in the blood flow.  

Independently of the nature of these stimuli, the production of NO and EDHF is important for 

the EDD. However, it must be noted that the contribution of these substances to the EDD 

depend on the vascular bed, the vessel diameter and the organism pathology. It has been 

demonstrated that the conribution of EDHF to the EDD increases as the vessel diameter 

decreases. It has also been reported that it mediates a compensatory adaptation when NO 

bioavailability is lost in order to maintain the EDD as in states of obesity.  

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Balance between NO and EDHF release in arteries depending on their internal 

diameter (ID) [232] 
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4.3.1.2 Endothelial Vasodilator substances  

4.3.1.2.1 Nitric oxide (NO) 

One of the most important vasodilating substances released by the endothelium is NO, which 

acts as a vasodilator, inhibits growth and inflammation, and has anti-aggregant effects on 

platelets. In biological systems, NO can be formed both enzymatically and non-enzymatically.  

In the tissues, such as the heart, there are numerous pathways for the generation of NO from 

nitrite, all greatly potentiated during hypoxia, including xanthine oxidoreductase (XOR), 

deoxygenated myoglobin, enzymes of the mitochondrial chain and  protons [233]. 

The enzyme responsible for NO generation in animals is NOS. The NOS enzymes utilize L-

arginine and molecular oxygen to produce the free radical gas •NO and L-citrulline. NO is an 

autocrine and paracrine signalling molecule whose lifetime and diffusion gradients are limited 

by scavenging reactions. There are three NOS isofroms : the inducible, the neuronal and the 

endothelial NOS. nNOS (also known as Type I, NOS-I and NOS-1) being the isoform 1rst 

found (and predominating) in neuronal tissue, iNOS (also known as Type II, NOS-II and 

NOS-2) being the isoform which is inducible in a wide range of cells and tissues and eNOS 

(also known as Type III, NOS-III and NOS-3) being the isoform first found in vascular 

endothelial cells. 

NOS enzymes in their active form are usually referred to as `dimeric'. However, this does not 

include the required calmodulins (CaMs) for their activity. This would mean that they are 

tetramers (of two NOS monomers associated with two CaMs) [136]. They contain relatively 

tightly-bound cofactors ((6R)-5,6,7,8-tetrahydrobiopterin (BH4), FAD, FMN and iron 

protoporphyrin IX (haem)) and catalyse a reaction of L-arginine, NADPH, and oxygen to the 

free radical NO, citrulline and NADP . 

 

 

 

 

 

 

 

Figure 15. Overall reaction catalysed and cofactors of NOS [136] 
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After the production of NO in the endothelial cells, NO diffuses to the adjacent smooth 

muscle cells where it reacts with sGC that helps convert guanosine 5′-triphosphate (GTP) to 

cyclic guanosine 3′,5′-monophosphate (cGMP). Once produced cGMP activates protein 

kinase G (PKG) that leads to activation of myosin phosphatase. In smooth muscle cells, PKG 

is known to lower [Ca
2+

]i by activating calcium-dependent potassium channels, inhibiting 

agonist-dependent activation of phospholipase C (PLC), stimulating Ca
2+

 uptake into the 

sarcoplasmic reticulum (SR) and inhibiting inositol trisphosphate (IP3)-mediated Ca
2+

 release 

from the SR [234]. This in turn leads to relaxation of the smooth muscle cells. It has also been 

shown that, apart from the sGC pathway, NO directly activates calcium-dependent potassium 

channels in VSMCs and leads to their consequent relaxation [235]. 

The sGC pathway requires only picomolar–nanomolar concentrations of NO which can be 

effectively generated by the constitutively expressed isoforms of NOS. This reaction requires 

as a substrate the amino acid L-arginine together with cofactors including BH4, NADH and 

O2. Activation of this mechanism in blood vessels occurs either through the release of Ach at 

parasympathetic nerve endings or signalling activated by shear stress recognition by the 

endothelium, both of which result in an increase in calcium flux in endothelial cells.  

 

4.3.1.2.2 Prostacyclin (PGI2) 

Prostaglandins were the first endothelium-derived relaxing factors to be discovered. In 1976, 

Moncada et al. described an anticlotting agent that was also capable of relaxing vascular 

smooth muscle [236]. This substance was later identified as prostacyclin [237]. Prostacyclin, 

as nitric oxide, is lipid soluble and highly unstable in the body and thus it leaves the 

endothelial cell following its production and acts as a local anticoagulant and vasodilator. 

Interaction between prostacyclin and its receptor in the plasma membrane of vascular smooth 

muscle leads to activation of adenylyl cyclase and an increase in the production of cyclic 

AMP (cAMP). cAMP activates protein kinase A (PKA) that continues the cascade by 

phosphorylating and inhibiting myosin light-chain kinase, which leads to smooth muscle 

relaxation and vasodilatation. 

 

4.3.1.2.3 EDHF 

Based on the place of the events, the basic mechanism of EDHF mediated response can be 

separated into two stages. The endothelial stage of the EDHF-mediated response include an 



INTRODUCTION                                                  Cardiovascular function 
 

 Page 68 
 

increase in calcium concentration [Ca
2+

]i , activation of Ca
2+

-dependent K
+
-channels and K

+
 

efflux followed by hyperpolarization, synthesis of substance or generation of signals capable 

of diffusing through membranes or myoendothelial gap junctions (MEGJ) to VSMCs. The 

following stage reflects the mechanism by which endothelial hyperpolarization is transferred 

to VSMCs. At the level of VSMCs, EDHF activates K
+
-channels and causes endothelium-

dependent hyperpolarization accompanied by closure of voltage-sensitive Ca
2+

-channels that 

results in relaxation [238]. 

Classically, EDHF-mediated response is a hyperpolarization with subsequent relaxation 

maintained after inhibition of NO and prostaglandins, namely PGI2, synthesis. However, it 

must be noted that since both NO and PGI2 in certain circumstances and in some types of 

arteries and/or species may also hyperpolarize the VSMCs, theoretically, they could be 

considered as EDHF.  

 

4.3.1.2.3.1 Epoxyeicosatrienoic acids 

Metabolites of arachidonic acid are strong candidates as EDHF mainly in coronary circulation 

[239]. Epoxygenase CYP-450 products of arachidonic acid, notably 5,6-; 8,9-; 11,12-; or 

14,15 epoxyeicosatrienoic acid (EETs) have been suggested to serve as EDHF, at least, in 

some vascular beds. 

 

4.3.1.2.3.2  Hydrogen peroxide 

Endothelial cells (ECs) are capable of producing superoxide anions (O2•
−
) from sources such 

as eNOS, LOX, COX, CYP450 epoxygenases and NAD(P)H oxidase. These anions are 

precursors of H2O2 [240]. Thus, H2O2 was considered as a possible EDHF for a long time. 

Recently, it has been identified as the transferrable factor mediating flow-induced dilation in 

human coronary arterioles [241]. 

   

4.3.1.2.3.3  Potassium ions 

The activation of endothelial calcium activated potassium (KCa
2+

) channels causes an efflux 

of K
+
 from ECs towards the extracellular space. An increase in extracellular K

+
 from 1 to 10 

mmol/l has been shown to activate an ouabain-sensitive electrogenic Na
+
/K

+
-ATPase and 

potassium  inward-rectifing-channels followed by hyperpolarization and SMC relaxation 
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[242].  

4.3.1.2.3.4  C-type natriuretic peptide 

C-type natriuretic peptide (CNP) has been shown to exert a variety of cardiovascular effects 

including vasodilatation and hyperpolarization of arteries through the opening of KCa+-

channels. CNP is widely distributed in the cardiovascular system and it has been found at high 

concentrations particularly in ECs. Endothelium-derived CNP has been proposed to act as an 

EDHF via specific C-subtype of natriuretic peptide receptor (NPR-C) followed by Gi -

dependent activation of G protein-gated potassium inward rectifing–channels and Na
+
/K

+
-

ATPase in VSMCs, thus bringing hyperpolarization and, thereby, relaxation [243] . 

 

4.3.1.2.3.5 GAP junctions 

The EDHF phenomenon may be further explained by the transmission of endothelial cell 

hyperpolarization to the vascular smooth muscle via gap junctions [244]. These are 

myoendothelial and heterocellular. They couple endothelial cells to other endothelial cells and 

to smooth muscle cells, providing a low-resistance electrical pathway between the cell layers. 

Gap junctions are formed by the docking of two connexions present in adjacent cells that 

creates an aqueous pore permitting the transfer of ions and electrical continuity that 

establishes a uniform membrane potential across cells. Their number increases with 

diminution in the size of the artery, paralleling the importance of EDHF to vessel size with a 

greater influence in the resistance than in the conductance vessels [245]. 
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Figure 16. Mechanisms for endothelial cell mediated relaxation. Adenylyl cyclase: AC; cyclic 

Adenosine monophosphate: cAMP; cyclic guanosine monophosphate: cGMP; soluble 

guanylyl cyclase: sGC; prostacyclin receptor, IP [246]  

 

4.4 Cardiovascular function in aging and obesity 

Aging is accociated with changes of cardiovascular structure and function. There is a mild 

increase in heart weight reflecting some degree of left ventriculrar hypertrophy [247] and 

even though systolic function, heart rate and cardiac output are not altered [248],  there is a 

reduction in the diastolic function [249]. Catecholamine or exercised induced increases in 

heart rate and myocardial contractility are blunted in elderly subjects [250]. Large arteries are 

elongated with enlarged lumen, thickened wall and increased stiffness [251]. Furthemore, 

studies mostly in animal species demonstrate a reduction of the release of NO and EDHF and 

an augmentation of the endothelium-derived vasoconstrictor prostanoids. Studies in vivo in 

young and old people also suggest that endothelium-dependent dilatation decreases 

progressively with advancing age [252]. It must be noted though that most of these studies are 

focused on advanced ageing (cut off point for advanced age in humans around 65 years and 

for rats 18 months). 
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Beyond an unfavorable risk factor profile, overweight and obesity also affects heart structure 

and function [253]. As excessive adipose tissue accumulates, many adaptations and alterations 

in cardiac structure and function occur. Circulating blood volume, plasma volume and cardiac 

output increase to meet the higher metabolic need of the organism [85]. The increased blood 

volume leads to increased venous return to the ventricles eventually producing dilation of the 

cardiac cavities and increasing wall tension [89]. This results in left ventricle hypertrophy 

accompanied by a decrease in diastolic chamber compliance finally leading to increased left 

ventricular filling pressure and left ventricular enlargement. When the left ventricular 

hypertrophy fails to keep along with the progressive ventricular dilation, the wall dilation 

increases and systolic dysfunction occurs. Eccentric LVH is often associated with ventricular 

diastolic dysfunction [254]. Adipose tissue is also a source of inflammatory cytokines and 

CRP is a marker of a chronic inflammatory state that can trigger acute coronary syndrome 

[255]. All these changes predispose to heart failure. Increased risk of arrhythmias and sudden 

death is present in obese individuals even in the absence of cardiac dysfunction [87]. 

Furthermore, obesity has been associated with abnormal endothelial function and decreased 

NO bioavailability related to increased oxidative stress [256, 257]. However, in recent years, 

studies in animals and patients have demonstrated that obesity might maintain or enhance the 

dilator function of coronary microvessels to increase coronary blood flow to higher metabolic 

demand [258-262]. This could indicate an adaptation which may decline with the progression 

of obesity and development of comorbidities such as diabetes and metabolic syndrome [263]. 
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PART II. EXPERIMENTAL RESEARCH  

 

1. Introduction 

 

According to WHO, 17.3 million deaths occurred in 2008 due to CVDs while it is estimated 

that 23.6 million people will die from CVDs by 2030. CVDs are considered worldwide as the 

leading causes of death and disability. Normal aging is closely related to changes in 

cardiovascular structure and function that make the heart more susceptible to damage. Age 

per se is thus considered the major risk factor for CVDs [264]. In United States, 

atherosclerosis and hypertension associated with heart failure and stroke, account for over 

40% of deaths for the people aged 65 years and above. However, the cardiac susceptibility to 

injury is apparent at middle age. The consequences of the changes occurring at the 

cardiovascular level at middle age have been well characterized as well as changes that occur 

in the body composition. Increased body mass, especially fat mass, hyperlipidemia, glucose 

intolerance or insulin resistance develop with aging contributing to cardiovascular incidents. 

In the industrialized societies, the incidence of CVD is even more increased and related to the 

lifestyle habits of the Western world (e.g.  non-healthy diets and physical inactivity). Data 

obtained from WHO, indicate that at least 2.8 million people die each year as a result of being 

overweight or obese. Beyond an unfavorable risk factor profile, overweight and obesity affect 

heart structure and function [253] in a way that favors heart failure. Furthermore, it has been 

demonstrated that the risk of developing obesity and related pathologies such as T2D in later 

life is affected by dietary habits adopted during early life (childhood or adolescence) [265-

267].  

Thus, the general objectif of this work was to characterize the changes that progressively 

occur from youth to middle age on the cardiovascular function in association with the 

mitochondrial function and oxidative stress and to understand the mechanisms involved in the 

increased susceptibility of the middle aged hearts to ischemia. These parameters were also 

studied after a high fat diet protocol applied during this aging period in order to better 

understand the obesity-related alterations on the cardiovascular function at middle age. The 

study of the reactivity of the coronary microvessels had a prominent role in this work since 

alterations of the coronary reserve due to vascular dysfunction may lead to eventual ischemic 

incidents that would compromise the health and welfare of individuals. 
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Aims of the investigation 

Study 1. Earlier studies have demonstrated that advanced aging is associated with a 

diminished functional and adaptive reserve capacity and an increased susceptibility to incur 

damage [268]. NADPH oxidase [269] and mitochondrial ROS through a ROS-induced release 

process [270] have been associated with this pathology. Thus, our first study aimed at 

determining whether middle-aged hearts demonstrate impaired contractile recovery in the 

post-ischemic period as found in the advanced aging and whether this is related to an 

increased mitochondrial ROS release at resumption of the coronary flow. For this reason, the 

hearts of 10-weeks and 52-weeks old animals were perfused and subjected to ischemia 

followed by reperfusion. Parameters of cardiac mechanical activity were evaluated ex vivo 

under normoxia, ischemia and reperfusion as well as the mitochondrial function, the 

mitochondria-derived oxidative stress and the activities of respiratory chain complexes.  

Study 2. This study was designed in order to complete and better understand the results from 

the first study, which demonstrated a lower restoration of the cardiac mechanical activity 

during reperfusion in the middle aged hearts due to impaired recovery of the coronary flow 

and an insufficient oxygen supply. Thus, the influence of the aging during the period from 

youth to middle age on the functional behavior of coronary microvessels and the functional 

contribution of endothelial cells and smooth muscle cells were examined. The mechanical 

function and coronary microvascular reactivity were studied in the ex vivo Langendorff 

perfused heart derived from rats of different ages (3, 6 and 11 months for youth, young 

adulthood and middle age). The results were associated with the state of oxidative stress in the 

organism and the mitochondrial function in terms of oxidative phosphorylation and H2O2 

production. 

Study 3. The results from the second study revealed that major changes occur from youth to 

young adulthood affecting the body composition, the mitochondrial oxidative phosphorylation 

and the coronary microvascular reactivity. Western life is strongly associated with high-fat 

content dietary habits beginning mostly at the early adulthood.  High fat diet is an excellent 

model for excess caloric intake, which contributes to the development of obesity and 

metabolic syndrome. Thus, the aim of our study was to characterize and monitor the changes 

induced by a high-fat diet during adulthood on the i) state of oxidative stress of the organism, 

ii) cardiac mitochondrial function (oxidative phosphorylation and H2O2 production)  and iii) 
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cardiovascular function ex vivo. For this reason, we applied a short- and long-term high-fat 

feeding protocol on Wistar rats during the period from youth to middle age.  

Study 4. Our third study revealed some surprising and interesting information concerning the 

reactivity of the intact coronary microvasculature under high-fat conditions. Thus, we were 

interested in this study to confirm the results found in study 3 regarding the establishment of a 

coronary adaptation in response to the high-fat diet but also to investigate the mechanisms 

involved in this phenomenon. Thus, the hearts of Wistar rats following a 3-month protocol of 

standard or high-fat diet were perfused ex vivo according to Langendorff and the reactivity of 

the coronary microvessels were once again studied. After finding the same results, we 

performed the same manipulations but perfused the hearts in the presence of the inhibitors L-

NAME, indomethacin and tetraethylammonium in order to investigate the contribution of NO, 

COX-derived molecules and potassium channels respectively in the coronary adaptation. An 

evaluation of the fatty acid profile of their cardiac membrane phospholipids was also 

performed to better understand the results of this work. 

Study 5. Study 3 revealed a decreased cardiac mechanical function ex vivo after a high-fat 

diet, which was not accompanied by severe glucose intolerance or diabetes development. In 

this context a number of adaptations occurred including that of the coronary microvasculature, 

which was established at the beginning of the diet. Thus, the aim of this study was to 

determine whether the development of T2D at its early phase can cause this kind of 

modifications in the cardiovascular level. For this reason, the hearts of young ZDF rats and 

their lean littermated were perfused ex vivo according to Langendorff and their cardiac 

mechanical activity and coronary reactivity were evaluated. Finally, the results were 

associated with the diabetic state of the organisms, their levels of oxidative stress and the fatty 

acid profile of the cardiac membrane phospholipids.  
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2. Materials and Methods 

 

2.1 Isolated heart perfusion according to a modified Langendorff mode  

2.1.1 The Langendorff technique  

In 1895, Oscar Langendorff was the first to produce an isolated mammalian heart with full 

contractile activity and the first to demonstrate that the heart receives its nutrients and oxygen 

from blood through the coronary arteries and that cardiac mechanical function is reflected by 

changes in the coronary circulation. The general principle of this method is to provide the 

isolated heart with oxygen and metabolites (usually by using physiological salt solution 

containing bicarbonate which mimics the ionic content of the plasma) via a cannula inserted 

and fixed in the ascending aorta. With the perfusion buffer flowing retrogradely down the 

aorta, opposite to normall physiologic flow, the aortic valve is closed under pressure. This 

constant retrograde flow closes the leaflets of the aortic valve and does not permit the 

perfusion fluid to enter into the left ventricle. Thus, the entire perfusate enters the coronary 

arteries via the ostia at the aortic root during the diastolic period, just as it flows in the normal 

cardiac cycle. The perfusion buffer then continues through the coronary system (left and right 

main coronary arteries  arterial branches  arterioles  capillaries  venules  coronary 

veins) and is then drained into the right atrium via the coronary sinus. Throughout this 

procedure, the ventricular chambers remain essentially “dry”.  

 

 

 

 

 

 

 

 

 

Figure 17. Scheme of the isolated perfused heart according to Langendorff. Perfusion 

solution is flowing retrogadely within the aorta and then orthogradely within the coronaries 

during diastole. A prerequisite is that the aortic valve is closed by the hydrostatic pressure of 

the perfusion solution. 
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2.1.2 Modes of perfusion: constant pressure and constant flow 

There are two modes of retrograde perfusion; at a constant hydrostatic pressure or at a 

constant flow rate with the use of a calibrated roller pump. Both types of perfusions help the 

researchers monitor the change in the mean radius of the coronary arteries which reflects the 

mechanical function of the smooth muscles. However, a direct measure of this parameter is 

difficult. Thus, flow resistance is used for assessing smooth muscle function.  

The resistance of the coronary circulation can be described in analogy to Ohms law as: 

R=ΔP/Φ 

where ΔP= pressure difference (which is in the common Langendorff heart the perfusion 

pressure, since the outflow pressure is almost zero (this is different in working heart models)) 

and Φ= coronary flow. As a consequence for calculation of R either both variables have to be 

measured or only one if the other is kept constant. This has led to the development of two 

forms of the Langendorff heart, the constant pressure model and the constant flow model. 

Since the flow resistance can be described according to Hagen-Poiseuille’s law by the 

equation: 

R = 8ηl/πr
4
 

where l=length, η=viscosity of the solution and r=radius of the tube. A change in the diameter 

of the vessel caused by vasoconstriction or dilation leads to a change in the radius of the 

vessel and thereby to a change in resistance which is proportional to l/r
4
. Thus, if pressure is 

kept constant, the term ΔP(=constant)/Φ is proportional to l/r
4 

in a constant pressure 

Langendorff model and perfusion flow is the variable which can be measured as an indicator 

of l/R or of r. On the other hand, if flow is kept constant the term ΔP/Φ(=constant) is 

proportional to l/r
4 

and in that case the variable pressure has to be measured as an indicator of 

l/r or R. 

Thus, the flow resistance is directly proportional to coronary perfusion pressure and inversely 

proportional to coronary flow. This way it can be easily determined with the use of either of 

these two parameters. The pressure of delivering the perfusion solution can be measured near 

to the aortic cannula with a transducer connected to the perfusion line by a side arm. The 

coronary flow can be measured by flowmeters connected to the line near to the aortic cannula.  
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2.1.3 Experimental procedure of studies 2-5 

The day of the perfusion, the animals were anesthetised by an intraperitoneal injection of 

pentobarbital sodium (60mg/kg) and afterwards heparinised (1500 I.U./kg) via the saphenous 

vein. 30s later, a rapid thoracotomy was performed and the heart was immediately collected 

and immersed in cold perfusion solution (4
o
C to limit any ischemic injury during the period 

between excision and restoration of vascular perfusion). The cannulation of the aorta and the 

re-establishment of the vascular perfusion lasted less than one minute in order to avoid any 

ischemic injury or preconditioning. After the canulation of the aorta, the heart was perfused 

according to the Langendorff mode (Fig. 17) with Krebs-Heinselett buffer. For the studies 2-5 

this buffer containing in (mM) NaCl 119, MgSO4 1.2, KCl 4.8, NaHCO3 25, KH2PO4 1.2, 

CaCl2 1.2 and glucose 11, as sole energy substrate. The buffer was maintained at 37
o
C and 

continuously oxygenated with carbogen (95% O2/5% CO2). CO2 allowed the maintaining of 

the pH at a value of 7.4 with bicarbonates included in the medium.  

The heart was first perfused at constant pressure of 59 mmHg for 30 minutes with a pressure 

gauge inserted into the perfusion circuit just upstream the aortic cannula. A latex balloon 

connected to a pressure probe was inserted into the left ventricle and filled until the diastolic 

pressure reached a value of 7–8 mmHg. The signals, obtained through the use of an amplifier 

connected to a computer, allowed the evaluation of the systolic, diastolic and left ventricle 

developed pressures as well as the heart rate throughout the perfusion protocol. The coronary 

flow for each heart was estimated by weight determination of 1-min collected samples at the 

25
th

 min of perfusion. 

After the 30-min perfusion at constant pressure, the heart was perfused with a peristaltic pump 

(Gilson, Villiers-Le-Bel, France) at the coronary flow previously determined during the 

perfusion at constant pressure. The systolic, diastolic and left ventricle developed pressures as 

well as the heart rates were determined after 10 min of perfusion at forced flow in order to 

allow the heart a satisfying stabilization. The left ventricle developed pressure was calculated 

by subtracting the diastolic pressure to the systolic pressure. The rate pressure product (RPP) 

was defined as the product between the left ventricle developed pressure and heart rate. The 

perfusion flow equaled the coronary flow in this model of aortic perfusion. In our model of 

Langendorff perfusion at forced flow, the aortic pressure reflected the coronary pressure and 

changes in the coronary tone triggered variations of the aortic pressure. All the parameters 

were recorded and analysed using the HSE IsoHeart software (Hugo Sachs Elektronik). 
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2.1.4 Measurement of the coronary reactivity 

The hearts were perfused at a coronary pressure of about 60-70 mmHg for 20 min. Just before 

the end of this period, parameters of the cardiac function were monitored and samples of the 

coronary effluents were collected for determination of lactate and pyruvate concentrations. 

Thereafter, a solution containing a potent constricting agent (U46619, thromboxane analogue) 

was continuously infused into the perfusion system near the aortic canula at a rate never 

exceeding 1.5% of the coronary flow. This allowed the obtainment of a coronary pressure of 

110-130 mmHg.  At this high coronary pressure, the effect of the different dilatation agents 

was maximal. After 15-20 minutes of U46619 infusion, injection of the vasodilator agents 

was performed: 

 acetylcholine (Ach) was used to estimate the Endothelium Dependent Dilatation 

(EDD). The action of Ach on the endothelium is mainly mediated through muscarinic 

receptors, which are members of a G-protein coupled receptor family. This leads to 

increase in the intracellular Ca
2+

 and to eventual activation of endothelial nitric oxide 

synthase (NOS), cyclooxygenase (COX), the putative endothelium-dependent 

hyperpolarization factor(s) EDHF synthase and the synthesis of nitric oxide (NO), 

prostacyclin (PGI2) and EDHF respectively. NO and PGI2 mediate relaxation of 

vascular smooth muscle cells (VSMC) via cyclic GMP and AMP-dependent 

mechanisms respectively and EDHF via, directly or indirectly, opening of a VSMC  

K
+
 channel(s). This results in the dilatation of the vessels. Ach was injected in doses of 

4, 10, 20, 40, 60, 80, 100 picomoles (pm), which allowed functional estimation of the 

two tunica (intima and media) implied in the vascular vasomotricity; 

 sodium nitroprusside (SNP), in doses of 100 pm, 200 pm, 400 pm, 600 pm, 800 pm, 

1000 pm, was used to estimate the Endothelium Independent Dilatation (EID). SNP in 

aqueous solution spontaneously generates NO that directly acts on the smooth muscle 

cells resulting in their relaxation through a cGMP-dependent mechanism. This allowed 

the evaluation of smooth muscle cell function.  

The injections of Ach and SNP triggered a decrease in the coronary pressure, simultaneously 

reflecting reduction of the coronary tone and dilatation (Fig. 18). The dilatation amplitude was 

calculated as the ratio between the maximal decrease in coronary pressure and the coronary 

pressure just before the injection of the dilatation agents. 
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Figure 18. Experimental apparatus for isolated heart perfusion according to a modified 

Langendorff technique. The apparatus combines the two possible types of Langendorff heart 

perfsusion; the constant pressure and constant flow perfusion. Firstly, the position of the 

switch allows the perfusion of the heart at constant pressure (Panel A) where the coronary 

flow of each heart is determined. Then, the switch changes (Panel B) allowing the perfusion 

of the heart at constant flow rate as previously determined during the constant pressure 

perfusion. Then, a vasoconstricting agent (U46619) is constantly infused in order to raise the 

perfusion pressure around 130 mmHg. Finally, injections of acetylcholine (Ach) and sodium 

nitroprusside (SNP) are performed to evaluate the resistance of the coronary vasculature. 

 



EXPERIMENTAL RESEARCH  
 

 Page 80 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Evolution of the coronary pressure during the perfusion. : sudden injections of 

Ach or SNP. Each injection triggers a reduction in the coronary pressure reflecting a 

decrease in the flow resistance and thus the vasodilatation 

 

Since the heart weight and coronary volume varied between subgroups, a correction was 

performed to normalise the amount of vasodilatation agent visualised by the endothelial cells. 

The best estimation of the vascular volume was considered to be the coronary flow and hence 

the amounts of vasodilatation agent were divided by this parameter. The corresponding 

vasodilatation was thus plotted against corrected amounts of Ach or SNP which were specific 

to each animal. This prevented statistical calculations. In order to make statistical 

comparisons between subgroups, the dose-effect curve was fitted to a theoretical curve for 

each heart (% vasodilatation = α x ln (corrected vasodilatation agent amount) + b), where α and 

b represent the coefficients of the theoretical curve. The regression coefficients (R
2
 value) of 

the theoretical curves of acetylcholine (Ach)- and sodium nitroprusside (SNP)-induced were 

close to 1, indicating a good linearity between the % vasodilatation and the natural logarithm 

of the amount of vasodilatation agent. Thereafter, the expected % vasodilatation were 

recalculated at fixed amounts of vasodilatation agents (4, 10, 20, 40, 60, 80, 100 pm for Ach 

and 100, 200, 400, 600, 800, 1000 pm for SNP). Since the amounts of vasodilatation agents 
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became the same in each animal subgroup, this allowed the fulfillment of classical analysis of 

variance.  

In addition to these calculations, the amount of sodium nitroprusside necessary to obtain the 

observed Ach-induced vasodilatation was also estimated from the corrected EDD and EID 

curves. For each heart and each injected Ach dose, the amount of sodium nitroprusside 

(reflecting the amount of all vasodilatation agents) necessary to obtain the same % 

vasodilatation was extracted from the EID curve according to the formula:  

 

endothelial cell vasodilatation activity (ECVA) = e 
[(% Ach-induced dilatation - b) / a]

 

 

where α and b are the coefficients of the theoretical EID curves. The results were expressed in 

nitroprusside equivalents. 

  



EXPERIMENTAL RESEARCH  
 

 Page 82 
 

2.2 Mitochondrial function in isolated organelles 

2.2.1 Mitochondrial respiration 

 

The consumption of oxygen by the mitochondria is measured in an oxygraph (Hansatech 

Instrument) that consists from a closed thermostated and agitated chamber equipped with a 

Clarke electrode [271]. The signals produced by the electrode are collected to the connected 

computer and with specific software (Oxygraph Plus Software, Hansatech) are translated into 

nmol of O2/ml. 

 

 

 

 

 

 

 

Figure 20. Oxygraph chamber (Hansatech Instruments) 

 

The rate of mitochondrial oxygen consumption was measured at 30°C in an incubation  

chamber with a Clarke-type O2 electrode filled with 1 ml of incubation medium (KCl 125 

mM, Tris–Base 20 mM, EDTA 5 μM, pH 7.2, fatty acid-free bovine serum albumin 0.15%, 

KH2PO4 3 mM, CaCl2 10 μM). All measurements were performed using mitochondria (0.2 

mg mitochondrial protein/ml) incubated with one of the following substrates (at final 

concentrations):  

- glutamate (5.5 mM)/malate (2.5 mM). This substrate combination activates dehydrogenases 

with reduction of NADH, then feeding electrons into CI and down the thermodynamic 

cascade through the Q-cycle and CIII of the electron transport system to CIV and O2; 

- succinate (5.5 mM) + rotenone (2.5 μM). These conditions allow the estimation of the 

respiration rate from CII; 

- glutamate (5.5 mM)/malate (2.5 mM)/succinate (5.5 mM). the utilization of these substrates 

together permits the activation of both CI and CII of the ETC; 
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- palmitoyl-carnitine (0.05 mM)/ malate (2.5 mM). This substrate is a long-chain fatty acid 

that can feed the ETC at the levels of CI, CII and ETF. 

The rate of oxygen consumption under these conditions is defined as the state 2 of the 

respiration rate. 

The addition of ADP (1mM) allows the estimation of the state 3 of the respiration rate. State 

3 respiration is the ADP stimulated respiration of isolated coupled mitochondria in the 

presence of high ADP and Pi concentrations, supported by a defined substrate or substrate 

combination at saturating oxygen levels [272]. 

The addition of oligomycin (0.5 µg/ml) permitted the estimation of state 4 of respiration rate. 

This state is representative of the “proton leak” of the respiration since oligomycin, which is 

an inhibitor of ATP synthase, prevents the re-enry of the protons in the matrix.   

 Coupling of the mitochondrial oxidative phosphorylation was evaluated by the values of the 

respiratory control ratio (RCR), which was calculated by the state 3/state 4 ratio.  

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Schematic diagram of the states of the respiratory rate when substrates and 

inhibitors are added. 
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2.2.2 Fluorimetric study of mitochondrial H2O2 release  

The mitochondrial ETC-derived ROS production was estimated by the measurement of H2O2 

production. The Amplex Red (10-acetyl-3,7-dihydroxyphenoxazine) reagent was used to 

detect H2O2 levels. In the presence of horseradish peroxidase (HRP), Amplex Red reacts with 

H2O2 in 1:1 stoichiometry to produce the red fluorescent oxidation product, resorufin (λexcitation 

= 560 nm and λemission = 584 nm).  The measured fluorescence is directly proportional to the 

production of H2O2. 

 

 

 

 

 

Figure 22.Oxidation of Amplex Red by H2O2 

 

The rate of mitochondrial H2O2 production was measured at 30°C with a thermostated 

spectrofluorimeter (Hitachi) connected to a computer permitting the data analysis by 

following kinetically the rate of H2O2 production by isolated mitochondria. Reaction 

conditions were 0.25 mg of mitochondrial protein/ml, 5 U/ml of horseradish peroxidase, 1 μM 

of amplex red, with: 

- glutamate (5.5 mM)/malate (2.5 mM); 

- succinate (5.5 mM) (without rotenone); 

- glutamate (5.5 mM)/malate (2.5 mM)/succinate (5.5 mM); 

- palmitoyl-carnitine (0.05 mM)/ malate (2.5 mM). 

They were added in order to start the reaction in the same incubation buffer with that used for 

measurements of mitochondrial oxygen consumption. Mitochondrial ROS was measured in 

the absence of ADP (state 2 respiration rate) to measure the basal H2O2 production. The CI 

inhibitor rotenone (1 μM) and the CIII inhibitor antimycin A (0.5 μM) were sequentially 

added to determine, respectively, the maximum rate of H2O2 production of complexes I and 

III of the respiratory chain. The addition of rotenone inhibits CI by binding to its ubiquinone 

site; thus, electrons escape and produce O2
-
. Rotenone disrupts this way the electron transfer 

between the terminal Fe-S cluster of CI and ubiquinone [162]. This results to the slowdown of 

the use of NADH (hydrogen donor) and of the coenzyme Q (hydrogen receptor) by CI. The 
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slowdown of the coenzyme Q reduction deprives CIII from its coenzyme hydrogen donor, 

which leads to inhibition of the reduction of the ferric cytochrome c to ferrous cytochrome c. 

This lack of reduced cytochrome c deprives cytochrome oxidase from its coenzyme donor of 

electrons and consequently the enzyme uses less oxygen resulting eventually to the slowdown 

of the respiration. The oxidation reduction at the levels of CI, II and IV are thus disturbed as 

well as the proton transfer from the matrix to the intermembrane space. Antimycin A inhibits 

CIII at the level of its Qi (‘in’) center. It binds to this sit and inhibits the transfer of electrons 

in Complex III from heme bH to oxidized Q. This way antimycin A slows down the use of the 

ubiquinol (QH2), donor of hydrogen, and of the ferric cytochrome c, electron receptor. This 

slowdown of the coenzyme Q reoxidation deprives CI and II from their coenzyme hydrogen 

receptor, which leads to inhibition of the activities of these two enzymes activities and of the 

use of NADH and succinate. In the presence of this inhibitor, cytochrome c oxidase is 

deprived of reduced cytochrome c and thus uses less oxygen. This way the ETC expels less 

protons, the membrane potential collapses resulting eventually to diminished phosphorylation 

of ADP to ATP. 

The H2O2 production was expressed in pmoles of H2O2/mg proteins according to the change 

in fluorescence caused by the addition to the reaction medium containing the mitochondria of 

a known amount of H2O2 equivalent to 450 pmoles (measured by spectrometry (λabsorption 

H2O2 = 240 nm)) obtained by dilution of a stock solution of 30%. 

 

Figure 23. Schematic diagram of 

the fluorimetric measurement of 

mitochondrial ETC-derived ROS 

production when substrates and 

inhibitors are added 
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The fluorimetric measurement of the mitochondrial H2O2 release varies according to the 

substrate used (Fig. 24).  

 

 

 

 

 

 

 

 

 

Figure 24. Schematic representation of the fluorimetric measurement of ROS production  in 

the presence of A: glutamate/malate; B: succinate; C: glutamate/malate/succinate and D: 

palmitoylcarnitine. When glutamate/malate (panel A) is used as a substrate, dehydrogenses 

are activated resulting to reduction of NADH that feed electrons into CI and down the 

thermodynamic cascade through Q-cycle and CIII of the electron transport system to CIV and 

O2. The addition of rotenone slowdowns the transfer of electrons from CI and most of them 

leak at the level of CI producing ROS. Thus, the addition of rotenone indicates the maximum 

ROS production at the level of CI. The further addition of antimycin indicates the maximum 

production of ROS of CI+CIII; thus an estimation of ROS production at CIII can be done. 

The FAD-linked substrate succinate supports the highest rate of H2O2 production in the 

absence of respiratory inhibitors (panel B) that is mediated by the reverse electron flow at CI. 

When rotenone is added, the reverse electron flow is inhibited resulting to the slower rate of 

fluorescence increase reflecting the H2O2 production. When glutamate/malate plus succinate 

are used as substrates, electrons are carried to both CI and CII of the ETC giving a more 

global estimation of the function of the ETC. The substrate palmitoylcarnitine, a long-chain 

fatty acid, gives NADH and FADH2 produced by both fatty acid β-oxidation and the TCA 

cycle, which are used by the electron transport chain at the levels of CI, CII and ETF to 

produce ATP. When it is used as a substrate, a global estimation of the ETC is given. 
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Figure 25. The mitochondrial electron transport chain (ETC) and ATP synthase. Substrates 

such as glutamate associated with malate, succinate or fatty acids provide electrons to the 

respiratoy chain et the levels of CI, CII or ETF. Electrons pass via the ubiquinone to CIV 

where they are used for H2O production. The proton gradient that is created during this 

process is used for generation of ATP by the ATP synthase. CI and CIII are sites of electron 

escape leading to O2
-
 formation. Inhibitors such as rotenone or antimycin A can disrupt the 

electron transfert via the ETC at CI and CIII respectively. Oligomycin is also an inhibitor of 

mitochondrial respiration acting at the level of ATP synthase.   
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3. Experimental Studies 

 

3.1 ARTICLE I 

 

 

“Middle age aggravates myocardial ischemia through surprising upholding 

of complex II activity, oxidative stress, and reduced coronary perfusion” 

 

 

This work is published in the journal “AGE”. 
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3.2 ARTICLE II 

 

“Functional development of the coronary microvasculature with aging as 

regard the energy metabolism and oxidative stress” 

 

 

 

This work is submitted for publish to the journal “Aging Cell”. 

Date of sublission: 12 Septembre 2012  
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Summary 

This study was aimed at characterizing the functional progression of the coronary 

microvasculature endothelial and smooth muscle cells (ECs and SMCs) between youth and 

middle age as well as at determining the mechanisms of the observed changes on the basis of the 

mitochondrial energy metabolism and oxidative stress. Male rats were divided into 3 age groups 

(3, 6 and 11 months for the young (Y), young adult (YA) and middle-aged (MA) animals). The 

cardiac mechanical function, endothelial-dependent dilatation (EDD) and endothelial-

independent dilatation (EID) of the coronary microvasculature were determined in a 

Langendorff preparation. The mitochondrial respiration and H2O2 production were evaluated 

and completed with ex vivo measurements of the oxidative stress. Although the cardiac 

mechanical function was unchanged, the EDD was progressively decreased between youth and 

middle age. The relaxation properties of the SMCs, although high in the Y rats, decreased 

drastically between youth and young adulthood to stabilize thereafter, paralleling a reduction of 

the mitochondrial oxidative phosphorylation. The ECs dilatation activity, low at youth, was 

stimulated in YA animals and returned to their initial level at middle age. The reduction 

occurring between young adulthood and middle age could be due to problems of energy 

metabolism related to the plasma oxidative stress. In conclusion, the progressive decrease in 

EDD occurring with aging is due to different functional behaviours of the ECs and SMCs which 

appear to be related to the energy metabolism and oxidative stress. The decline in EDD could 

progressively reduce the welfare of individuals. 

 

Introduction 

Vascular aging has been extensively studied with a particular focus on the large conduit arteries such 

as the aorta. Indeed, normal aging is characterized by intima-media thickness (Liviakis et al., 2010), 

aortic dilatation (Sawabe et al., 2011), calcification of the aortic smooth muscle cells (SMCs) 
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(Takemura et al., 2010; Burton et al., 2010), disruption of elastin fibers (Sawabe et al., 2010), stiffness 

of the vascular wall (Lee & Oh, 2010) and development of hypertension (Shirwany et al., 2010; Safar, 

2010). Associated with other lifestyle-related abnormalities (lack of physical training, smoking, insulin 

resistance, diabetes, dyslipidemia, etc.), aging progressively contributes to the occurrence of 

cardiovascular diseases including stroke, renal failure, myocardial ischemia, arrhythmias and cardiac 

failure (Takemura et al., 2010). 

Aging is also characterized by a progressive reduction of the physical capacities (Charansonney, 2011) 

of individuals which is partly due to a decline in cardiac function (Froehlich et al., 1978; Capasso et 

al., 1983; Effron et al., 1987). Aside from the pathological events such as atherosclerosis and wall 

thickening (Scott et al., 2011) of the large and medium coronary conductance arteries, this can be 

related to the coronary microvasculature. Indeed, the resistance arteries of the coronary network 

(arterioles and capillaries) finely regulate the blood flow of the heart and thus the maximal capacity of 

that organ to pump blood through the body of the organism. The effect of aging on that 

microvasculature is poorly described in the literature. A morphological study performed in the 

senescent beagle (Tomanek et al., 1991) indicates lower capillary length density and capillary 

numerical density without change in volume density due to the enlargement of the capillary diameter. 

Two physiological studies in humans (Egashira et al., 1993; Chauhan et al., 1996) and one in guinea-

pigs (Toma et al., 1985) emphasize the gradual decrease of the endothelial-dependent dilation (EDD) 

from youth to senescence. However, the relative contributions of ECs and SMCs in that phenomenon 

have not been well documented. The aging-induced decrease in EDD is completely reversed by L-

arginine infusion in the coronary network (Chauhan et al., 1996), highlighting the importance of the 

bioavailability of the endothelial nitric oxide synthase (eNOS) substrate in the age-related disturbance 

of the coronary microvasculature.  

After L-arginine utilisation by the eNOS enzyme, replenishment of its EC pool depends on two 

pathways. The first one is based on the uptake of circulating L-arginine through the system y+ 

transporter (Wyatt et al., 2004), whereas the second one is a rescue pathway which regenerates L-

arginine from citrulline, the product of the eNOS reaction, through an energy-dependent process 
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(Wijnands et al., 2012). This emphasizes the importance of the energy metabolism when L-arginine 

transport is poorly functioning. Yet, the energy metabolism appears profoundly affected by aging. 

Some research teams have described a decline in oxygen consumption (Delaval et al., 2004) or 

oxidation phosphorylation rates (Fannin et al., 1999) in aged cardiac mitochondria. These alterations 

have been related to age-induced modifications of the respiratory chain complex activities with 

complex I appearing to be the most susceptible to age related declines (Sugiyama et al., 1993; 

Castellucio et al., 1994; Lenaz et al., 1997). Age-associated decreases in the activities of complexes III 

(Castellucio et al., 1994; Lesnefsky et al., 2001; Yan et al., 2004) and IV (Castellucio et al., 1994; 

Sugiyama et al., 1993) have also been reported. In contrast, complex II activity appears maintained 

(Sugiyama et al., 1993) or even increased. A possible explanation for these modifications could be the 

attack of the mitochondrial DNA (mtDNA) by reactive oxygen species, since mtDNA encodes for 

some of the subunits of Complexes I, III and IV but not for those of complex II (Ozawa, 1997). The 

oxidative stress known to be increased by aging (Labunskyy & Gladyshev, 2012) can also influence 

the energy metabolism, mainly through inhibition of the energy transfer. Indeed, the creatine kinase 

system is sensitive to the redox potential and its activity is reduced by the oxidative stress 

(Venkataraman et al., 2009). 

This study was aimed at determining the influence of aging from youth to middle age on the functional 

behavior of ECs and SMCs as well as at explaining the mechanism(s) by which the observed 

modifications occurred. The effect of aging on the ECs and SMCs functions was studied in the ex vivo 

Langendorff perfused heart derived from 3 batches of Wistar rats displaying different ages (3, 6 and 11 

months for youth, young adulthood and middle age). The results were compared to the state of 

oxidative stress of various biological compartments (in vivo plasma and ex vivo cardiac cytosol and 

mitochondria) as well as the mitochondrial function (oxidative phosphorylation and H2O2 production). 

Furthermore, oral glucose tolerance tests were performed and the cardiac mechanical activity was also 

determined. 
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Results 

General data 

As shown in table 1, the body weight followed a progressive increase with age. The YA rats had a 

15.3% increase in their body weight which was followed by a further increase of 13.3% for the MA 

animals. This was not the case for the adipose tissue which did not follow the same pattern. More 

specifically, all types of adipose tissue were significantly increased between 3 and 6 months of age 

(+90, +114 and +73% for the epididymal, visceral and retroperitoneal adipose tissues) and stabilized 

thereafter. Consequently, the abdominal adipose tissue estimated as the sum of the retroperitoneal and 

visceral adipose tissues was similarly increased (+88% between 3 and 6 months of age). Triglycerides 

and cholesterol concentrations in the plasma at the moment of the sacrifice were not modified by 

aging. 

There was a significant impact of aging on the basal glycemia. Compared to the values measured in 

the two youngest groups, the ones measured at 11 months of age were lower (Fig. 1.A.). The results of 

the oral glucose tolerance test indicated no difference between the groups as evidenced by the total 

area under the curve (Fig. 1.B.). However, we considered as a valuable measure the delta 180 

(glycemia between time zero and time 180 minutes) in order to evaluate the glucose response. 

According to figure 1.D., there was a significant effect of aging with the middle-aged group having 

slower glucose elimination. 

 

Cardiac function studied ex vivo 

The mechanical function of the perfused isolated hearts was monitored before the infusion of U46619 

(Table 2). Aging had no significant effects on the heart rate, LVDP and RPP. Furthermore, no change 

was observed in the heart rate and coronary pressure before and after the infusion of U46619. 

However, the infusion of U46619 raised the coronary pressure from 80 mmHg to a value close to 125 

mmHg in all groups. 
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Coronary Reactivity 

The responses to Ach of the coronary microvasculature were significantly affected by aging as shown 

in figure 2.A. Indeed, aging triggered a progressive decrease in the EDD, first between 3 and 6 months 

of age (-23% at 60 pmoles of injected Ach) and then between 6 and 11 months (-38.5% at 60 pmoles 

of injected Ach). Figure 2.B. depicts the SNP-induced vasodilatation in the three age groups. 

Interestingly, the EID strongly decreased from youth to young adulthood (-56.7% at 600 pmoles of 

injected SNP) and slightly increased afterwards at middle age (+18.9% compared to the YA group at 

600 pmoles of injected SNP). The calculated vasodilatation activities of the endothelial cells are 

presented in figure 2.C. That parameter was increased between 3 and 6 months (+280% at 60 pmoles 

of injected Ach) but was decreased thereafter reaching the initial level observed at the young age. 

 

eNOS expression and phosphorylation 

No changes were observed between age groups in the levels of total eNOS, phosphorylated eNOS and 

the ratio of phosphorylated to total eNOS (Fig. 3). 

 

Oxidative stress 

The mitochondrial-derived oxidative stress was estimated in cardiac homogenates by the aconitase-to-

fumarase ratio. As shown in figure 4.A., this ratio was never significantly decreased by aging, 

indicating no significant mitochondrial oxidative stress. Similarly, no difference was observed in the 

cytosolic oxidative stress as estimated by the lactate-to-pyruvate ratio in the coronary effluents (Fig. 

4.B.). In the plasma, even though the antioxidant enzyme GPx was not modified (Fig. 4.C.), the global 

antioxidant power as estimated by the FRAP assay was progressively decreased by aging (Fig. 4.D.), 

reaching a significant difference at the age of 11 months (-21% for the MA group compared to the Y 

group). Similarly, the plasma oxidative stress (Fig. 4.E.) measured as the reduction of the plasma thiol 

groups was only decreased in the oldest animals (-15% for the MA group compared to the Y group). 
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Mitochondrial H2O2 production 

The effect of aging on basal glutamate/malate-related mitochondrial H2O2 production (Figure 5.A.) 

was biphasic. After a significant increase between 3 and 6 months of age (+73%), this parameter was 

than reduced between 6 and 11 months (-23%). These differences were erased when rotenone alone 

and in association with antimycine A were added, emphasizing the involvement of the respiratory 

chain complex I in the age effects. 

A similar biphasic pattern was observed for basal succinate-related mitochondrial H2O2 production 

(Figure 5.B.). However, this pattern evolved in the opposite direction. Indeed, the production was 

decreased between 3 and 6 months (-33%) and increased thereafter (+117% at 11 months compared to 

the value measured at 6 months) in order to reach a higher value (+46%) than that measured in the 

youngest animals. The aging-related decrease occurring between 3 and 6 months was inversed by the 

addition of rotenone alone and in association with antimycin A, suggesting that complex I was 

involved in that phenomenon probably through reverse electron flux. However, the maximal H2O2 

production occurring at the level of complex III appeared to be higher in the 6-month old animals. The 

age-related increase observed between 6 and 11 months was erased by the addition of rotenone alone, 

which showed the involvement of complex I by reverse electron flux. It was inversed by antimycin A, 

indicating a return of the complex III-related maximal H2O2 production capacities close to that 

observed at 3 months. 

When glutamate/malate/succinate where used as substrates, the pattern for the basal H2O2 production 

(Figure 5.C.) was different. This parameter was similar in 3- and 6-month old rats and increased only 

in the 11-month animals (+47% compared to the Y group). Although no difference was observed 

between 3 and 6 months, addition of rotenone rendered the 6-month value higher, a difference which 

was erased by antimycin A. Thus, complex I through inverse electron flux and also complex III were 

involved in that production. Furthermore, the increase in basal H2O2 production occurring between 6 

and 11 month was erased and even inversed by rotenone and can thus be attributable to the activity of 

complex I, although a participation of complex III was also likely given the effect of antimycin A. 



EXPERIMENTAL RESEARCH  
 

 Page 113 
 

Mitochondrial respiration 

As shown in figure 6, whatever the substrate(s) used (glutamate/malate, succinate/rotenone, 

glutamate/malate/succinate) and the respiration state studied (state 3 or ADP-stimulated respiration 

and state 4 or rotenone-related respiration), the respiration was reduced between 3 and 6 months (i.e. -

29% for the state 3 of glutamate/malate/succinate) and stabilized thereafter until middle age. 

 

Mitochondrial enzymatic activity 

Aging altered neither the activities of the respiratory chain complexes measured in isolated 

mitochondria nor the mitochondrial density as evidenced by the activity of citrate synthase of cardiac 

homogenates (data not shown). 

 

Discussion 

This study was aimed at determining the effects of aging between youth and middle-age on the 

function of the coronary microvasculature by evaluating the contribution of each cellular type 

(endothelial and smooth muscle cells) in relation to the oxidative stress and mitochondrial energy 

metabolism. The main results were that the EDD and EID were progressively reduced by aging 

whereas the vasodilatation activity of the endothelial cells was decreased between adulthood and 

middle-age after having been noticeably increased from youth to adulthood. 

Aging, coronary flow, cardiac mechanical function and mitochondrial energy metabolism 

In the present study, we were not able to obtain a satisfying evaluation of the coronary flow, since we 

used part of the fresh myocardium to prepare mitochondria. We were thus unable to determine the 

heart weight, a parameter which is essential to estimate the coronary flow. Yet, the heart weight is 

known to increase with age in the rat. One of our recent study (Mourmoura et al., 2011) performed 

with the same batch of animals revealed that the heart weight increased by 28% between the ages of 
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2.5 and 12 months. However, the coronary flow expressed as ml/min/g of dry weight was unchanged, 

suggesting that the coronary bed adapted in parallel with the gain of heart weight in normal aging. 

This confirms the study of Tomanek et al. (1991) which indicates remodeling of the coronary vessels 

with age. This morphological study performed in young and senescent beagles showed that aging 

reduces the capillary numerical density, but maintains their volume density through a compensatory 

increase in capillary diameter. Thus, aging could not modify the coronary flow. We do not know if this 

vessel remodeling occurred in our rats, since species difference could occur and the animals used in 

the present study were not senescent but only middle-aged, but the supposed maintenance of their 

coronary flow with age allows the gratifying estimation of the coronary reserve. It could also be 

responsible for a maintained cardiac mechanical activity in the middle aged animals.  

The results of our study confirmed the age-related maintenance of the cardiac mechanical activity as 

the rate pressure products, left ventricle developed pressures and heart rates were similar in all age 

groups studied. Furthermore, the study that we recently published (Mourmoura et al., 2011) permitted 

to demonstrate that the cardiac mechanical efficiency estimated as the ratio between rate pressure 

product and heart dry weight was the same in young and middle aged animals. This observation is in 

striking contrast with the results of the mitochondrial oxidative phosphorylation observed in our study. 

Indeed, we saw that the transition from youth to young adulthood reduced the oxidative 

phosphorylation whatever the substrate used and the respiration conditions, but stabilized thereafter 

until middle age. These changes were not correlated with modifications of the body weight, but 

paralleled those of the abdominal fat mass, suggesting the involvement of adipocytokines. They agree 

well with the results published in the literature (Fannin et al., 1999; Delaval et al., 2004) which report 

an age-related decline in mitochondrial oxidative phosphorylation, but they are in disagreement with 

results previously obtained in our laboratory, which did not show any modification of the respiration 

between youth and middle age (Mourmoura et al., 2011). However, in this previous study, the 

oxidative phosphorylation was estimated in the absence of calcium, whereas calcium was present in 

this study. Calcium is known to activate several Krebs cycle dehydrogenases (Cox & Matlib 1993). 

This leads to maximally stimulated mitochondrial respirations in states II, III and IV, allowing the 
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emphasis of differences which does not exist in the absence of the divalent cation. Similar were the 

results of the cardiac mechanical function which can also be explained by a low cardiac activity in our 

Langendorff’s mode perfusion at low extracellular calcium concentration. Aging could have reduced 

the cardiac mechanical work if the hearts had been maximally stimulated (working mode with high 

preload and perfusate calcium concentration) as also evidenced by the observation that the decreased 

mitochondrial function was associated with a progressive decline in EDD as the animals got older. 

Oxidative stress 

Advanced aging is known to increase the oxidative stress (Labunskyy & Gladyshev, 2012) notably in 

the mitochondrial fraction at the level of the respiratory chain complex III due to an inhibition of this 

electron transfer system (Fannin et al., 1999; Lesnefsky et al., 2001; Hoppel et al., 2002). In the 

present study, we also evaluated the H2O2 production by isolated cardiac mitochondria derived from 

young, young adult and middle-aged rats in order to detect the initial changes in reactive oxygen 

species (ROS) generation and their localization in the respiration chain. Glutamate/malate, a complex 

I-related substrate, increased the H2O2 generation as soon as the 6
th
 month of life and the phenomenon 

seemed to occur mainly at the level of complex I. In contrast, succinate, a complex II-related substrate, 

increased the H2O2 generation only at the 11
th
 month of life through a production occurring by reverse 

electron flux at the level of complex I. A similar pattern was observed when glutamate/malate and 

succinate were used together. Transition from youth to young adulthood did not favor H2O2 

production, but that occurring from young adulthood to middle age increased it at the level of complex 

I. These results indicate that the increase in mitochondrial H2O2 generation occurs mainly from middle 

age and that the complex III-related overproduction occurring with advanced aging was not observed 

at this period of life. That was confirmed by the results of the respiratory chain complex activities 

which were not affected by age. Finally, it is interesting to emphasize that the increased H2O2 

production observed at middle age paralleled the decreased glucose tolerance measured after glucose 

loading in the animals. 
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The impact of these changes in mitochondrial oxidative stress was estimated ex vivo by evaluating the 

aconitase to fumarase and lactate to pyruvate ratios in the whole perfused hearts. The aconitase to 

fumarase and lactate to pyruvate ratios reflecting the ex vivo mitochondrial and cytosolic oxidative 

stress were not affected by aging. Thus, although producing more H2O2 at the mitochondrial level, the 

middle-aged hearts contained sufficient anti-oxidant reserves to scavenge these toxic molecules. The 

only increase in oxidative stress was noticed in middle-aged animals in the plasma compartment. It 

could result from the activation of NADPH oxidase occurring at this age in the large conduit arteries 

(Oudot et al., 2006) or in the adipose tissue (Furukawa et al., 2004) when its mass augments. Since the 

endothelial and smooth muscle cells contain phosphocreatine (Sterin et al., 2008) and creatine kinases, 

the plasma oxidative stress observed at middle age in our study could depress the energy transfer into 

the vascular cells. 

Aging and coronary reserve 

Our study showed that aging triggered a progressive decrease in EDD, which began as soon as youth. 

That phenomenon is well recognized now with studies in humans (Chauhan et al., 1996; Egashira et 

al., 1993) and laboratory animals (Toma et al., 1985) agreeing well with this age-related decline. 

However, the contribution of each vascular cellular type is not known. Our study allows the 

description of that contribution. The function of the vascular smooth muscle cells of the coronary 

microvasculature was easily depicted in our study through the measurement of the EID, since the nitric 

oxide donor nitroprusside permits the relaxation of those cells. That parameter was high in young 

hearts and drastically decreased as soon as the young adulthood to values which were very close to 

those observed at the middle age. Those results perfectly fit with the observations made by Toma et al. 

(1985) in the isolated guinea pig hearts. Energy is necessary for the relaxation of muscular cells and 

the low oxidative phosphorylation detected in the isolated mitochondria derived from young adult and 

middle age hearts can perfectly explain the age-related decline observed for EID. That decrease 

contributed to the progressive age-related loss of EDD. 
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The function of endothelial cells is more difficult to evaluate. In the present study, we mathematically 

extract from the EDD and EID curves a parameter that depicted the vasodilatation activity of 

endothelial cells. Although that parameter is expressed in picomoles of nitroprusside, it does not 

reflect the vasodilatation activity resulting only from NO production, but it also takes into account all 

the vasodilatation agents emitted by the endothelial cells. Interestingly, the endothelial cell 

vasodilatation activity (ECVA) was strongly increased from youth to young adulthood. As shown by 

the unchanged Western Blot analysis of the total and phosphorylated eNOS forms, the difference in 

ECVA was not due to that enzyme, although the analysis was performed under basal conditions when 

the endothelial cells were not stimulated by acetylcholine. It could be due to an increase in muscarinic 

receptor density or to an increase in acetylcholine-induced calcium influx, since calcium is known to 

stimulate eNOS activity (Haines et al., 2012). It could also result from production of a rescue 

vasodilatation agent different than nitric oxide, in example the endothelium-derived hyperpolarizing 

factor (EDHF) which is known to play an important role in the regulation of the coronary 

microvasculature (Oltman et al., 2001). The reduction of the production of a constrictor factor could 

also intervene. With the transition from young adulthood to middle age, an important decrease in 

ECVA occurred which paralleled the increased plasma oxidative stress observed during this phase. 

The decreased EDD occurring with age with the contribution of the reduced ECVA is known to be 

reversed by L-arginine infusion in the coronary network (Chauhan et al., 1996). Yet, citrulline, the 

degradation product of L-arginine during the production of nitric oxide, is regenerated in L-arginine 

through an energy-dependent process (Wu & Meininger, 1993). The age-induced decrease in 

mitochondrial energy production observed in our study in isolated mitochondria could be related to 

problems of energy transfer due to the plasma oxidative stress and thus contribute to a reduction of the 

L-arginine bioavailability in endothelial cells and the eventual decrease in ECVA occurring between 

young adulthood and middle age. 
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Conclusion 

These data indicate that aging from youth to middle age triggered a decline in EDD which was due to 

functional modifications of both ECs and SMCs. Between youth and young adulthood the EDD 

decrease was due to a strong reduction of the SMCs function, but ECs tried to compensate by 

augmenting their dilatation activity. Thereafter, between young adulthood and middle age, relaxation 

of SMCs stabilized, but EC dilatation activity significantly decreased. These aging-induced alterations 

of the vascular cell function could be explained by abnormalities of the energy metabolism, namely a 

reduction of the mitochondrial oxidative phosphorylation occurring as soon as the young adulthood, 

and a possible systemic oxidative stress-related inhibition of the energy transfer occurring at middle 

age. 

 

Experimental procedures 

Experimental Animals and Diet 

All experiments followed the European Union recommendations concerning the care and use of 

laboratory animals for experimental and scientific purposes. All animal work was approved by the 

local board of ethics for animal experimentation (Cometh, authorization number: 380537). 

Twenty-one male Wistar rats from an inbred colony were housed two per cage in our animal facility at 

3 months of age. Afterwards, they were divided in three age groups of 7 animals; the young (Y), 

young adult (YA) and middle-aged (MA) rats sacrificed at the age of 3, 6 and 11 months, respectively. 

They were fed a standard carbohydrate diet (A04, Safe, France) ad libitum, had free access to water 

and their body weight was recorded twice per week. On the day of the experiment, the rats were 

weighed and heparinized via the saphenous vein (1000 I.U./kg) before their sacrifice. Blood samples 

were collected for further biochemical analysis and their adipose tissue was quantified for 

determination of the abdominal fat mass. 
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Oral Glucose Tolerance Test (OGTT) 

An OGTT was performed two weeks before the sacrifice. Food was removed from rats 18 h before 

they were given orally a glucose dose (1 g glucose/kg body weight, between 08.00 and 10.00 am). 

Blood samples were collected from the tail vein in heparinized tubes immediately before and at 5, 25, 

40, 60 and 180 min after glucose administration to determine the plasma glucose concentrations. 

Glucose concentrations were determined with a glucose analyzer (ACCU-CHECK Active, Softclix). 

The area under the plasma glucose curve (AUC) as well as the difference between the initial glucose 

concentration and that determined at times 25 (delta 25) and 180 min (delta 180) post-administration 

were then calculated in order to evaluate the glucose tolerance as previously used by Cortez et al. 

(1991). 

 

Heart perfusion 

A rapid thoracotomy was performed and the heart was immediately collected in Krebs-Heinselet 

solution maintained at 4
o
C. It was then rapidly (during the first min following thorax opening) 

perfused at constant pressure (59 mmHg) according to the Langendorff mode. The  Krebs–Heinselett 

buffer used contained (in mM) NaCl 119, MgSO4 1.2, KCl 4.8, NaHCO3 25, KH2PO4 1.2, CaCl2 1.2 

and glucose 11 mM as sole energy substrate. It was maintained at 37
o
C and continuously oxygenated 

with carbogen (95% O2/5% CO2). A latex balloon connected to a pressure probe was inserted into the 

left ventricle and filled until the diastolic pressure reached a value of 7–8 mmHg. It allowed the 

evaluation of heart rate, systolic, diastolic and left ventricle developed pressures throughout the 

perfusion protocol. The heart was perfused at constant pressure for 30 minutes with a pressure gauge 

inserted into the perfusion circuit just upstream the aortic cannula. This allowed the estimation of the 

coronary flow for each heart which was evaluated by weight determination of 1-min collected samples 

at the 25
th
 min of perfusion. After the 30-min perfusion at constant pressure, the heart was perfused 

with a peristaltic pump (Gilson, Villiers-Le-Bel, France) at the coronary flow previously determined 

during the perfusion at constant pressure. The systolic, diastolic and left ventricle developed pressures 
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as well as the heart rates were determined after 10 min of perfusion at forced flow in order to allow the 

heart a satisfying stabilization. The left ventricle developed pressure was calculated by subtracting the 

diastolic pressure to the systolic pressure. The rate pressure product (RPP) was defined as the product 

between the left ventricle developed pressure and heart rate. It was used as indicator of the cardiac 

mechanical work (Gobel et al., 1978). All the parameters were recorded and analyzed with a computer 

using the HSE IsoHeart software (Hugo Sachs Elektronik). The perfusion at constant flow was 

continued until the end of the measurement of the coronary reactivity. 

 

Coronary Reactivity 

After the 10-min equilibration period at constant flow, the coronary tone was raised via the constant 

infusion of the thromboxane analog U46619 (30 nM) that was continuously infused into the perfusion 

system near the aortic cannula at a rate never exceeding 1.5% of the coronary flow. This allowed the 

obtainment of a coronary pressure between 110 and 130 mmHg. In our model of perfusion at forced 

flow, the aortic pressure equaled the coronary pressure and changes in the coronary tone triggered 

modifications of this pressure. Changes in aortic perfusion pressure were thus used to monitor changes 

in coronary tone. Relaxation responses to acetylcholine (Ach, 4, 10, 20, 40, 60, 80 and 100 pmoles) 

and sodium nitroprusside (SNP, 100, 200, 400, 600, 800 and 1000 pmoles) injections were then 

determined reflecting the endothelial-dependent vasodilatation (EDD) and endothelium-independent 

vasodilatation (EID) respectively. 

The dilatation amplitude was calculated as the ratio between the maximal decrease in the coronary 

pressure and the coronary pressure just before the injection of the dilatation agents. Since the heart 

weight and coronary volume were subjected to intra- and inter-group variations, a correction was 

performed to normalise the input-function of the vasodilatation agents according to the coronary flow. 

The dose-response curve between the amount of vasodilatation agent injected and the maximal 

vasodilatation was then fitted to a logarithm function for each heart which allowed the fulfillment of 

statistical analyses. Moreover, the vasodilatation activities of the endothelial cells were also estimated 
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from the corrected EDD and EID curves. For each heart and each injected Ach dose, the amount of 

SNP (reflecting the amount of dilatation agent) necessary to obtain the same percentage of Ach-

induced vasodilatation was extracted from the EID curve according to the formula: endothelial cell 

vasodilatation activity (ECVA) = e 
[(% Ach-induced dilatation - b) / a]

, where a and b are the coefficients of the 

theoretical EID curve. The results were expressed in pmoles-equivalents of SNP. At the end of the 

perfusion protocol, a piece of myocardium (about 200 mg) from the apex of the heart was immediately 

freeze-clamped and stored at −80°C for further analysis. The other part of the myocardium was 

immediately used for isolated mitochondria preparation. 

 

Mitochondria preparation 

After the perfusion, atria and the remaining aorta were cut off from the heart. Myocardium was 

minced with scissors in a cold isolation buffer composed of (in mM) sucrose (150), KCl (75), Tris–

Base (50), KH2PO4 (1), MgCl2 (5), and EGTA (1), pH 7.4, fatty acid-free serum albumin 0.2%. The 

pieces of myocardium were rinsed several times on a filter and put in an Elvehjem potter containing 

15 ml of isolation buffer. A protease (subtilisin 0.02%) was added for 1 min to digest myofibrils at ice 

temperature, and the totality was then homogenized with the potter (300 rpm, 5 to 6 transitions). 

Subtilisin action was stopped by addition of the isolation buffer (30 ml). The homogenate was then 

centrifuged (800 x g, 10 min, 4°C), and the resulting supernatant was collected and filtered. 

Mitochondria were then washed through two series of centrifugation (8,000 × g, 10 min, 4°C). The last 

pellet of mitochondria was re-suspended in sucrose 250 mM, Tris–Base 10 mM, EGTA 1 mM, pH 7.4 

at a concentration of approximately 10 mg/ml. 

 

Respiration measurements 

The rate of mitochondrial oxygen consumption was measured at 30°C in an incubation  chamber with 

a Clarke-type O2 electrode filled with 1 ml of incubation medium (KCl 125 mM, Tris–Base 20 mM, 
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EDTA 5 µM, CaCl2 10 µM, KH2PO4 3 mM, pH 7.2, fatty acid-free bovine serum albumin 0.15%). A 

low amount of CaCl2 was added to the medium in order to stimulate the oxidative phosphorylation. All 

measurements were performed using mitochondria (0.2 mg mitochondrial protein/ml) incubated with 

the following substrates: i) glutamate (5.5 mM)/malate (2.5 mM); ii) succinate (5.5 mM) plus rotenone 

(2.5 µM); iii) glutamate (5.5 mM)/malate (2.5 mM)/succinate (5.5 mM) in the presence of ADP 1 mM 

(state 3) and after addition of oligomycin (0.5 μg/ml). The incubation medium was constantly stirred 

with a built-in electromagnetic stirrer and bar flea. Coupling of the mitochondrial oxidative 

phosphorylation was assessed by the state 3/state 4 ratio (respiratory control ratio or RCR). When 

glutamate/malate was used as a substrate, the RCR averaged 6.5 ± 0.3, 6.6 ± 0.9 and 7.3 ± 0.5 in the 

Y, YA and MA groups, indicating a satisfying integrity of our mitochondrial preparations. 

 

Mitochondrial reactive oxygen species release 

The rate of mitochondrial H2O2 production was measured at 30°C on a F-2500 Hitachi 

spectrofluorimeter. It followed the linear increase in fluorescence (excitation at 560 nm and emission 

at 584 nm) due to enzymatic oxidation of amplex red by H2O2 in presence of horseradish peroxidase. 

Reaction conditions were 0.25 mg of mitochondrial protein/ml, 5 U/ml of horseradish peroxidase, 1 

μM of amplex red, with either glutamate/malate, succinate without rotenone, or 

glutamate/malate/succinate (in the same concentrations as in the respiration measurements). They 

were added in order to start the reaction in the same incubation buffer with that used for measurements 

of mitochondrial oxygen consumption. Mitochondrial ROS were measured in the absence of ADP. 

Rotenone (1 μM) and antimycin A (0.5 μM) were sequentially added to determine, respectively, the 

maximum rate of H2O2 production of complexes I and III of the respiratory chain. 
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Oxidative stress measurements 

Plasma oxidative stress 

Protein oxidation in the plasma was evaluated by the disappearance of protein thiol groups (Favier, 

1995). 

The antioxidant status of the plasma was evaluated using ferric reducing antioxidant power (FRAP) 

assay as a global marker of the antioxidant power. The FRAP assay uses antioxidants as reductants in 

a redox-linked colorimetric method. In this assay, at low pH, a ferric-tripyridyltriazine (Fe
III

-TPTZ) 

complex is reduced to the ferrous form, which is blue and monitored by measuring the change in 

absorption at 593 nm. The change in absorbance is directly proportional to the reducing power of the 

electron-donating antioxidants present in the plasma. The absorbance change is translated into a FRAP 

value (in μmol/l) by relating the change of absorbance at 593 nm of test sample to that of a standard 

solution of known FRAP value.  

GPx activity was evaluated by the modified method of Gunzler et al.(1974) using terbutyl 

hydroperoxide (Sigma Chemical Co, Via Coger, Paris, France) as a substrate. 

 

Cytosolic Oxidative stress 

Lactate and pyruvate released in the coronary effluents were spectrophotometrically assayed according 

to Bergmeyer (1974). The lactate to pyruvate ratio was calculated to estimate the cytosolic redox 

potential (Nuutinen, 1984). 

 

Mitochondrial oxidative stress 

The ratio between the activities of aconitase and fumarase of the myocardium was calculated as an 

indicator of ex vivo mitochondrial ROS production. Aconitase and fumarase activities were determined 

according to Gardner et al. (1994). 
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Activities of the respiratory chain complexes and citrate synthase 

Activities of the NADH-ubiquinone oxydo-reductase (complex I), succinate-ubiquinone oxydo-

reductase (complex II), ubiquinol cytochrome c reductase (complex III) and cytochrome c oxidase 

(complex IV) were determined as previously described (Mourmoura et al., 2011) in isolated 

mitochondria. The citrate synthase activity was determined in cardiac homogenates according to 

Faloona and Srere (1969). 

 

Western blot 

The expression of total endothelial NOS (eNOS) and phosphorylated eNOS Ser1177 was evaluated by 

Western blot. Frozen samples were homogenized in ice-cold lysis buffer containing 20 mM Tris (pH 

7.8), 137 mM NaCl, 2.7 mM KCl, 1 mM MgCl2, 1% Triton X-100, 10% (w/v) glycerol, 10 mM NaF, 

1 mM ethylenediaminetetraacetic acid, 5 mM Na pyrophosphate, 0.5 mM Na3VO4, 1 μg/ml leupeptin, 

0.2 mM phenylmethylsulfonyl fluoride  and 1 mM benzamidine. The homogenates were centrifuged at 

5,000 g for 20 min at 4°C, and the protein concentration in the supernatant was determined in each 

aliquot. Protein extracts (50 µg/lane) were loaded onto a 10% SDS gel and separated by 

electrophoresis. Extracts from the control group were loaded on both gels, and the amount of protein 

was accordingly compared pairwise. Proteins were transferred to nitrocellulose membranes. The 

membranes were incubated overnight at 4°C with rabbit antibodies against total eNOS (1:150, 

Thermoscientific, Illkirch, France) and phosphospecific mouse antibodies against eNOS Ser1177 

(1:1,000, BD Biosciences Pharmingen, Le Pont de Claix, France). After being washed in TBS-Tween, 

the membranes were incubated with horseradish peroxidase-conjugated anti-mouse IgG for eNOS 

Ser1177 (1:3000, Jackson Immunoresearch, Montluçon, France) and anti-rabbit IgG for total eNOS 

(1:20000, Jackson Immunoresearch, Montluçon, France) for 1h at room temperature, followed by 

additional washing. Proteins were visualized by enhanced chemiluminescence with ECL advanced 

Western blotting detection kit (Amersham Biosciences, Brumath, France) and quantified using 
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densitometry and Image J software. PAN-Actin (1:1000, Cell Signaling Technology, St-Quentin-en-

Yvelines, France) was used as a loading control. 

 

Other biochemical determinations 

Proteins were measured using the bicinchoninic acid method with a commercially available kit 

(Thermo Scientific, Rockford, IL). 

 

Statistical analysis 

Results are presented as mean ± S.E.M. Animal weight, glycemia, activity of respiratory chain 

complexes and data describing the oxidative stress, the mitochondrial function, the cardiac mechanical 

and vascular function (developed pressure, heart rate, rate pressure product, coronary pressure) were 

contrasted across the three groups by one-way analysis of variance (ANOVA). Measures related to the 

action of the vasodilatation agents were treated with repeated-measures ANOVA to test the effect of 

the age (external factor), that of the amount of dilatation agent (internal factor) and their interactions. 

When required, group means were contrasted with a Fisher’s LSD test. A probability (p) less than 0.05 

was considered significant. Statistical analysis was performed using the NCSS 2004 software. 
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Table 1 Basic characteristics of the animals 

 

The number of experiments was 7 per group. The abdominal adipose tissue weight 

normalized to the body weight is expressed in g of wet weight per g of body weight. AT: 

adipose tissue; BW: body weight; a, b, c: the absence of a common letter indicates a 

significant difference. 

 

 

  

 Y YA MA 

Body weight (g) 386 ± 5
a
 445 ± 8

b
 503 ± 15

c
 

Epididymal AT (g) 7.1 ± 0.5
a
 13.5 ± 1.3

b
 15.4 ± 1.1

b
 

Visceral AT (g) 4.4 ± 0.4
a
 9.4 ± 1

b
 10.7 ± 0.6

b
 

Retroperitoneal AT (g) 7.4 ± 0.6
a
 12.8 ± 1.4

b
 12.7 ± 1

b
 

Abdominal AT (g) 11.8 ± 0.8
a
 22.2 ± 2.2

b
 23.3 ± 21.3

b
 

Abdominal AT/BW 0.03 ± 0.002
a
 0.05 ± 0.005

b
 0.05 ± 0.002

b
 

Triglycerides (g/l) 1.2 ± 0.1 1.3 ± 0.1 0.9 ± 0.2 

Cholesterol (g/l) 0.52 ± 0.02 0.56 ± 0.02 0.63 ± 0.01 
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Table 2 Ex vivo cardiac function  

 

The number of experiments was 7 per group. HR: heart rate; LVDP: left ventricle developed 

pressure; RPP: rate pressure product; CP: coronary pressure 

 

 

 

  

 Y YA MA 

HR (beats/min) 279 ± 20 264 ± 13 249 ± 16 

LVDP (mmHg) 113 ± 11 92.4 ± 9 109 ± 9 

RPP (mHg/min) 31.2 ± 3 23.6 ± 1 26.9 ± 2 

CP  before U46619 (mmHg) 68.2 ± 8 73.6 ± 5 81.5 ± 3 

CP after U46619 (mmHg) 110 ± 15 123 ± 8 132 ± 9 
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Figure captions 

 

Fig. 1 Basal glycaemia (panel A), area under the curve after a glucose loading (panel B), difference 

between the basal glycaemia and those measured 25 min (delta25, panel C) and 180 min (delta180, 

panel D) after the glucose loading. The number of experiments was 7 per group. Y: young animals; 

YA: young adult animals; MA: middle-aged animals; AUC total: total area under the curve; a,b: 

significantly different. 

 

Fig. 2 Coronary reactivity in Y (young) YA (young adult) and MA (middle-aged) rats. The number of 

experiments was 7 per group. EDD (panel A): endothelial-dependant vasodilatation; EID (panel B): 

endothelia-independent vasodilatation; ECVA (panel C): endothelial cell vasodilatation activity; SNP: 

sodium nitroprusside; a,b,c: the absence of a common letter indicates a significant difference. 

 

Fig. 3 Western Blotting of the total endothelial nitric oxide synthase (eNOS), eNOS phosphorylated at 

serine 1177 (peNOS) and actin. p-eNOS/eNOS: ratio between the phosphorylated and total eNOS. 

Panel A: representative immunoblots; panel B: quantification. The number of experiments was 7 per 

group. Y, YA, MA: young, young adult and middle-aged animals. 

 

Fig. 4  Influence of aging on the oxidative stress. Panel A: plasma thiol groups; panel B: antioxidant 

status of the plasma (FRAP); panel C: plasma glutathione peroxidase activity; panel D: lactate to 

pyruvate ratio in the coronary effluents reflecting the cytosolic oxidative stress; panel E: cardiac 

aconitase to fumarase ratio reflecting the mitochondrial oxidative stress. The number of experiments 

was 7 per group. Y, YA, MA: young, young adult and middle-aged rats; a,b: the absence of a common 

letter indicates a significant difference. 



EXPERIMENTAL RESEARCH  
 

 Page 134 
 

 

Fig. 5 Influence of aging on the mitochondrial H2O2 production under basal conditions (absence of 

rotenone and antimycin A), after inhibition of complex I (rotenone alone) and after inhibition of 

complexes I and III (rotenone in association with antimycin A) in the presence of glutamate/malate 

(panel A), succinate (panel B) and glutamate/malate/succinate (panel C) as substrates. The number of 

experiments was 7 per group. Y, YA, MA: young, young adult and middle-aged rats; a,b,c: the 

absence of a common letter indicates a significant difference. 

 

Fig. 6 Influence of aging on the state 3 and state 4 respiration rates of mitochondria oxidizing 

glutamate/malate (panel A), succinate/rotenone (panel B) and glutamate/malate/succinate (panel C). 

The number of experiments was 7 per group. Y, YA, MA: young, young adult and middle-aged rats; 

G/M/S: glutamate/malate/succinate; a,b: the absence of a common letter indicates a significant 

difference. 
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Figure 6 
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3.3 ARTICLE III 

 

 

“Effects of a short- and long-term high-fat feeding protocol on the ex vivo 

cardiac function and reactivity of the coronary microvasculature in 

association with oxidative stress and mitochondrial function” 

 

 

This work will be submitted to the journal “Biochimica et Biophysica Acta: Bioenergetics”. 
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Highlights 

 The effects of high-fat diet for 3 and 7 months are studied. 

 Increased oxidative stress and ex vivo contractile dysfunction are revealed. 

 Mitochondrial and coronary system adaptations are suggested. 

 These adaptations reflect an effort for the heart to maintain adequate perfusion.  
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Abstract 

Diet-induced obesity is characterized by an imbalance between myocardial substrate uptake 

and fatty acid oxidation. The high-fat (HF) diet has been related to the development of cardiac 

as well as endothelial dysfunction mostly in large vessels. We aimed at characterizing the 

changes in cardiovascular and mitochondrial function during a short- and long-term HF 

feeding protocol. Rats followed a standard or HF diet for 3 or 7 months. Mitochondrial 

function was determined in isolated mitochondria whereas biochemical analyses allowed the 

evaluation of the oxidative stress. Cardiac function and coronary microvessels reactivity were 

determined using an ex vivo heart perfusion model. After 3 months of HF diet, adiposity was 

increased in the animals, whose hearts exhibited increased mitochondrial and cytosolic 

oxidative stress and decreased cardiac activity ex vivo. Mitochondrial respiration was not 

affected while a role for electron transfer flavoprotein (ETF) in the mitochondrial ROS 

production was suggested. Interestingly, the responses to acetylcholine (Ach) of the coronary 

microvasculature were enhanced. These changes were established and remained constant until 

the end of the long-term HF protocol where a diminished complex I activity was revealed. 

The age affected significantly the Ach-responses, which were reduced in middle-aged 

animals. The age under HF diet revealed also a diminished mitochondrial H2O2 formation at 

the level of complex I.  Thus, our study shows a temporal pattern of changes occurring during 

a HF diet and an adaptation of the coronary circulation and mitochondrial function in order to 

maintain the cardiac metabolism and an adequate heart perfusion. 

 

Keywords: high-fat diet, mitochondrial function, cardiac function, coronary dilatation, 

oxidative stress 
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Abbreviations 

Ach, acetylcholine; ANT, adenine nucleotide translocator; CI/II/III/IV, complexes I/II/III/IV; 

EC, endothelial cells; ECVA, endothelial cell vasodilatation activity; EDD, endothelium-

dependent dilatation; EID, endothelium-independent dilatation; eNOS, endothelial nitric 

oxide synthase; ETC, electron transport chain; ETF, electron transfer flavoprotein; FRAP, 

ferric reducing antioxidant power; HF, high fat; LDH, lactate dehydrogenase; LVDP, left 

ventricle developed pressure; MUFAs, monounsaturated fatty acids; OGTT, oral glucose 

tolerance test; PUFAs, Polyunsaturated fatty acids; RCR, prespiratory control ratio; ROS, 

reactive oxygen species; RPP, rate pressure product; SFAs, saturated fatty acids; SNP, sodium 

nitroprusside; RCC, recpiratory chain complexes; PC, palmitoylcarnitine. 
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1. Introduction 

The prevalence of obesity is increasing worldwide at an alarming rate counting 2.8 million 

deaths each year (World Health Organization). The “obesogenic” environment of our 

societies [1] promotes sedentariness and excessive food intake (especially high fat foods) that 

are strongly associated with obesity and higher body weight [2]. Obesity is related to 

metabolic abnormalities such as disturbed glucose homeostasis and impaired insulin secretion 

[3, 4], which are mostly attributed to increases in visceral adipose tissue with an associated 

increase in portal vein free fatty acid levels [5]. These changes may result eventually in the 

development of metabolic syndrome, diabetes mellitus and cardiovascular diseases. 

Diet–induced obesity is characterized by increases in circulating plasma non-esterifed fatty 

acids and an imbalance between myocardial substrate uptake and fatty acid oxidative capacity 

that may induce enhanced lipid accumulation and a futile cycle in the heart [6, 7]. A chronic 

exposure of the heart to this excess supply of substrates and the increased reliance of the heart 

in β-oxidation of fatty acids may cause the formation of harmful reactive oxygen species 

(ROS) [6]. ROS could further result in lipid peroxidation that could alter the mitochondrial 

function, structure and metabolism [6, 8].  

 Obese or type 2 diabetic patients have increased myocardial triglycerides content [8] and 

impaired cardiac energy phosphate metabolism that may arise from abnormal mitochondrial 

respiration impairing the ATP synthesis [9]. These changes have been shown to precede 

changes in contractile function [9] and have been related to decrease left ventricular function 

[8]. In rodent heart, it has been demonstrated that an increased lipid influx [10, 11], a 

decreased mobilization of triacylglycerol reserves [12] and an increased fatty acid metabolism 

[13, 14] are associated with cardiac hypertrophy and contractile dysfunction [8, 15, 16] 

probably through alterations of mitochondrial function [15]. However, most of these rodent 

models were genetically modified for cardiac lipotoxicity. Energy production of the heart is 
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almost entirely dependent on oxidative phosphorylation for contraction in relation to 

ventricular wall tension, myocyte shortening, heart rate and contractility [17]. Since the heart 

maintains a very high rate of oxygen extraction at rest, increases in myocardial energy 

production must be met by parallel increases in myocardial oxygen delivery [18, 19]. 

However, it has been recently demonstrated that a HF diet increases mitochondrial fatty acid 

oxidation and uncoupled respiration in the rat heart, and that was related to decreased cardiac 

metabolic efficiency [9].  

States of hyperglycemia and insulin resistance found in obese individuals have been also 

shown to affect the peripheral and coronary vascular function especially that of large conduit 

arteries [20, 21] via reduced nitric oxide production, increased ROS production and 

inflammation. However, the impact of obesity on the coronary microcirculation remains 

controversial. The primary function of the coronary microcirculation is to optimize nutrient 

and oxygen supply to the heart in response to any metabolic demand by coordinating the 

resistances within different microvascular domains, each governed by distinct regulatory 

mechanisms [22]. Resistance to blood flow rises as the vessels diameter decreases; thus, the 

large conduit coronary arteries exert small, if any, resistance. These observations raise the 

need for direct examination of the function of coronary resistance arteries to understand how 

their vasomotor behavior changes and how it relates to coronary blood flow alterations in 

obese individuals. In uncomplicated obesity (absence of comorbid conditions) morphological 

changes in microvessels are quite rare [23]. Furthermore, recent studies on isolated coronary 

arterioles have shown that the endothelium-dependent dilation (EDD) in obese, young 

diabetic or high-fat fed rats are maintained or even enhanced [24-26]. 

However, most of these studies either have studied short-term feeding protocols [27, 28] or 

have investigated the effects of high-fat diets on cardiac metabolism and function in rodents 

of a modified genetic background [15, 29, 30]. It should also be noted that data collected from 
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this type of rodents exaggerate lipid disorders far beyond what is usually observed in patients  

suffering from obesity or diabetes [8]. Furthermore, there are studies that have shown that 

dietary fat can either be neutral or even protective for the heart [27, 31]. 

Another point is that most of the research until now has been focused on the identification of 

risk factors and their consequences at adulthood [32]. However, it has been suggested that 

dietary habits during early life (childhood or adolescence) may affect the risk of developing 

obesity or diabetes mellitus later in life. It has been demonstrated that dietary patterns during 

adolescence increases the risk of type 2 diabetes in middle aged women [32]. Findings from 

the Bogalusa Heart study indicate that risk factors such as high blood pressure, 

hyperinsulinemia and dyslipidemia that begin to cluster during childhood due to unhealthy 

dietary habits can predict adult cardiovascular factors [33]. This clustering of risk factor has 

been linked to unhealthy dietary habits during childhood [34].  

Thus, the aim of our study was to characterize and follow the effects induced by a HF diet 

applied from youth to middle age adulthood on the i) state of oxidative stress of the organism, 

ii) cardiac mitochondrial function and iii) cardiovascular function ex vivo. For this reason, we 

applied a short- and long-term HF feeding protocol on Wistar rats from young to middle aged 

adulthood. HF diet is an excellent model for excess caloric intake, which contributes to the 

development of obesity and metabolic syndrome. We evaluated the levels of oxidative stress 

in their organisms and the cardiac mitochondrial function in terms of respiration, ROS release 

and respiratory complex activities. The cardiac function and reactivity of coronary 

microvessels in terms of endothelium-dependent and endothelium-independent dilatations 

were evaluated ex vivo in a Langendorff model of isolated heart perfusion. The age-matched 

rats fed on a standard rodent chow for the time points examined helped us discriminate diet- 

and age-induced changes. Furthermore, this life-course approach could help our knowledge 

concerning the changes and etiology of obesity and its comorbidities.   



EXPERIMENTAL RESEARCH  
 

 Page 149 
 

2. Materials and Methods  

2.1.Experimental Animals and Diet 

All experiments followed the European Union recommendations concerning the care and use 

of laboratory animals for experimental and scientific purposes. All animal work was approved 

by the local board of ethics for animal experimentation (Cometh) and notified to the research 

animal facility of our laboratory (authorization n° 38 07 23). 

32 male Wistar rats from an inbred colony were housed two per cage in our animal facility at 

3 months of age. Rats were randomly assigned to be maintained on standard carbohydrate (C: 

16.1% proteins, 3.1% lipids, 60% cellulose; A04, Safe, France) or high-fat (HF: 31.5% 

proteins, 54% lipids (50% lard, 4% soya-bean oil w/w), 7% cellulose)  diet over a twelve- or 

thirty-two-week period. This defined 4 groups of rats: the young adults control (YAC), the 

young adults high-fat (YAF), the middle-aged adults control (MAC) and the middle-aged 

adults high-fat (MAF). After analysis of the fatty acid composition of the diets chosen we 

found that the standard diet contained approximately 24% of saturated fatty acids (SFAs), 

23% of monounsaturated fatty acids (MUFAs), 48% of n-6 polyunsaturated fatty acids 

(PUFAs) and 4.5% of n-3 PUFAs while the HF diet contained 37% of SFAs, 46% of MUFAs, 

15% of n-6 PUFAs and 1.2% of n-3 PUFAs. All groups were fed ad libitum with free access 

to water and their body weight was recorded twice per week. The food intake for the rats fed a 

HF diet was measured at the beginning and at the end of the experimental diet period in order 

to assure that there was no caloric restriction due to the type of the diet. It should be noted that 

the protein content of the HF-diet was 2-fold higher because of the lower food intake (g/day) 

in these rats due to the higher energy density. This allowed a similar daily protein intake in all 

rat groups. On the day of the experiment, the rats were weighed and heparinized (1000 

I.U./kg) via the saphenous vein before their sacrifice. Blood samples were collected for 
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further biochemical analysis and their adipose tissue was quantified for determination of the 

abdominal fat mass. 

 

2.2.Oral Glucose Tolerance Test (OGTT)  

An OGTT was performed 2 wks before the sacrifice. Food was removed from rats 18 h before 

they were given orally a glucose dose (1 g glucose/kg body weight, between 08.00 and 10.00 

am). Blood samples were collected from the tail vein in heparinized tubes immediately before 

glucose administration to determine the basal glucose and insulin values and 5, 25, 40, 60 and 

180 min after. Glucose values were determined with a glucose analyzer (ACCU-CHECK 

Active, Softclix). After centrifugation (3000 × g, 7 min, 4
o
C) plasma samples were stored at 

−20°C until insulin determination using a radioimmunoassay kit (SRI-13K, Miilipore, 

Molheim, France).  However, the samples of the middle-aged groups had an important degree 

of hemolysis, which made the detection of their insulin levels impossible. The area under the 

curve (AUC) for glucose was then calculated in order to evaluate the glucose tolerance as 

previously used by Cortez et al. [35].  

 

2.3.Heart perfusion 

A rapid thoracotomy was performed and the heart was immediately collected in Krebs-

Heinselet solution maintained at 4
o
C. It was then rapidly (less than 1 minute from the chest 

opening to avoid problem of cellular damages and preconditioning) perfused  at constant 

pressure according to the Langendorff mode with a Krebs–Heinselett buffer containing (in 

mM) NaCl 119, MgSO4 1.2, KCl 4.8, NaHCO3 25, KH2PO4 1.2, CaCl2 1.2 and glucose 11 

mM as sole energy substrate. The buffer was maintained at 37
o
C and continuously 

oxygenated with carbogen (95% O2/5% CO2). A latex balloon connected to a pressure probe 

was inserted into the left ventricle and filled until the diastolic pressure reached a value of 7–8 
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mmHg. It allowed the evaluation of systolic, diastolic and left ventricle developed pressures 

as well as heart rate throughout the perfusion protocol. The heart was perfused at constant 

pressure (59 mmHg) for 30 minutes with a pressure gauge inserted into the perfusion circuit 

just upstream the aortic cannula. The coronary flow for each heart was estimated by weight 

determination of 1-min collected samples at the 25
th

 min of perfusion. After the 30-min 

perfusion at constant pressure, the heart was perfused with a peristaltic pump (Gilson, 

Villiers-Le-Bel, France) at the coronary flow previously determined during the perfusion at 

constant pressure. The systolic, diastolic and left ventricle developed pressures as well as the 

heart rates were determined after 10 min of perfusion at forced flow in order to allow the heart 

a satisfying stabilization. The left ventricle developed pressure was calculated by subtracting 

the diastolic pressure to the systolic pressure. The rate pressure product (RPP) was defined as 

the product between the left ventricle developed pressure and heart rate. It was used as 

indicator of the cardiac mechanical work [36]. All the parameters were recorded and analyzed 

with a computer using the HSE IsoHeart software (Hugo Sachs Elektronik, March-Hugstetten, 

Germany). The perfusion at constant flow was continued until the end of the measurement of 

the coronary reactivity. 

 

2.4.Coronary Reactivity 

After the 10-min equilibration period at constant flow, the coronary tone was raised via the 

constant infusion of the thromboxane analog U46619 (30nM) which was continuously infused 

into the perfusion system near the aortic cannula at a rate never exceeding 1.5% of the 

coronary flow. This allowed the obtainment of a coronary pressure between 100 and 130 

mmHg. In our model of perfusion at forced flow, the aortic pressure equaled the coronary 

pressure and changes in the coronary tone triggered modifications of the aortic pressure. 

Changes in aortic perfusion pressure were thus used to monitor changes in coronary tone. 
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Relaxation responses to Ach (4, 10, 20, 40, 60, 80 and 100 pmoles) and sodium nitroprusside 

(SNP, 100, 200, 400, 600, 800 and 1000 pmoles) injections were then determined reflecting 

the EDD and endothelium-independent vasodilatation (EID) respectively. 

The dilatation amplitude was calculated as the ratio between the maximal decrease in the 

coronary pressure and the coronary pressure just before the injection of the dilatation agents.  

Since the heart weight and coronary volume were subjected to intra- and inter-group 

variations, a correction was performed to normalise the input-function of the vasodilatation 

agents according to the coronary flow. The dose-response curve between the amount of 

vasodilatation agent injected and the maximal vasodilatation was then fitted to a logarithm 

function for each heart which allowed the fulfillment of statistical analyses. Moreover, the 

endothelial cell vasodilatation activity was also estimated from the corrected endothelium-

dependent-dilatation and endothelium-independent-dilatation curves. For each heart and each 

injected Ach dose, the amount of SNP (reflecting the amount of dilatation agents) necessary 

to obtain the same percentage of Ach-induced vasodilatation was extracted from the EID 

curve according to the formula: endothelial cell vasodilatation activity (ECVA) = e 
[(% Ach-

induced dilatation - b) / a]
, where a and b are the coefficients of the theoretical EID curve. The results 

were expressed in pmole equivalents of nitroprusside. At the end of the perfusion protocol, a 

piece of myocardium (about 200 mg) from the apex of the heart was immediately freeze-

clamped and stored at −80°C for further analysis. The other part of the myocardium was 

immediately used for isolated mitochondria preparation. 

 

2.5.Mitochondria preparation 

After the perfusion, atria and the remaining aorta were cut off from the heart. Myocardium 

was minced with scissors in a cold isolation buffer composed of (in mM) sucrose (150), KCl 

(75), Tris–Base (50), KH2PO4 (1), MgCl2 (5), and EGTA (1), pH 7.4, fatty acid-free serum 
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albumin 0.2%. The pieces of myocardium were rinsed several times on a filter and put in an 

Elvehjem potter containing 15 ml of isolation buffer. A protease (subtilisin 0.02%) was added 

for 1 min to digest myofibrils at ice temperature, and the totality was then homogenized with 

the potter (300 rpm, 5 to 6 transitions). Subtilisin action was stopped by addition of the 

isolation buffer (30 ml). The homogenate was then centrifuged (800 g, 10 min, 4°C), and the 

resulting supernatant was collected and filtered. Mitochondria were then washed through two 

series of centrifugation (8,000×g, 10 min, 4°C). The last pellet of mitochondria was re-

suspended in sucrose 250 mM, Tris–Base 10 mM, EGTA 1 mM, pH 7.4 at a concentration of 

approximately 10 mg/ml. 

 

2.6.Respiration measurements 

The rate of mitochondrial oxygen consumption was measured at 30°C in an incubation  

chamber with a Clarke-type O2 electrode filled with 1 ml of incubation medium (KCl 125 

mM, Tris–Base 20 mM, EDTA 5 µM, CaCl2 10 µM, KH2PO4 3 mM, pH 7.2, fatty acid-free 

bovine serum albumin 0.15%). A low amount of CaCl2 was added to the medium in order to 

stimulate the oxidative phosphorylation. All measurements were performed using 

mitochondria (0.2 mg mitochondrial protein/ml) incubated with the following substrates (at 

final concentrations): i. DL-palmitoylcarnitine (0.05 mM)/ malate (2.5 mM) ii. glutamate (5.5 

mM)/ malate (2.5 mM) iii. succinate (5.5 mM) + rotenone (2.5 μM) iv. glutamate (5.5 mM)/ 

malate (2.5 mM)/succinate (5.5 mM) in the presence (state 3) of ADP 1 mM and after 

addition of oligomycin (0.5 µg/ml) (state 4). The incubation medium was constantly stirred 

with a built-in electromagnetic stirrer and bar flea. Coupling of the mitochondrial oxidative 

phosphorylation was evaluated by the values of the respiratory control ratio (RCR), which 

was calculated by the state 3/state 4 ratio. When glutamate/malate were used as substrates, the 

RCR averaged 6.6 ± 0.9, 8.2 ± 0.7, 7.3 ± 0.5 and 8.1 ± 0.7 in the YAC, YAF, MAC and MAF 
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groups respectively, indicating a satisfying integrity of our mitochondrial preparations. 

However, the efficiency of the mitochondrial respiration was not measured in this study. 

 

2.7.Mitochondrial reactive oxygen species release 

The rate of mitochondrial H2O2 production was measured at 30°C on a F-2500 Hitachi 

spectrofluorometer and followed linear increase in fluorescence (excitation at 560 nm and 

emission at 584 nm). This was due to enzymatic oxidation of amplex red by H2O2 in presence 

of horseradish peroxidase, modified to follow kinetically the rate of H2O2 production by 

isolated mitochondria. Reaction conditions were 0.25 mg of mitochondrial protein/ml, 5 U/ml 

of horseradish peroxidase, 1 μM of amplex red, with i. DL-palmitoylcarnitine / malate ii. 

glutamate/ malate iii. succinate without rotenone (in the same concentrations as in respiration 

measurements). They were added in order to start the reaction in the same incubation buffer 

with that used for measurements of mitochondrial oxygen consumption. Mitochondrial ROS 

was measured in the absence of ADP (state 2 respiration rate). Rotenone (1 μM) and 

antimycin A (0.5 μM) were sequentially added to determine the maximum rate of H2O2 

production of complexes I and III of the respiratory chain respectively. 

 

2.8.Oxidative stress measurements 

2.8.1. Plasma oxidative stress 

Protein oxidation in the plasma was evaluated by the disappearance of protein thiol groups 

[37]. Plasma thiols were assayed in 20 μl of plasma, using 5,5'-dithiobis(2-nitrobenzoic acid 

(DTNB)) for derivating the thiol groups. The calibration curve was obtained by mixing two 

stock solutions of N-acetyl cystein (NAC) in the range of 0.125–0.6 mmol/l. Standards and 

plasma samples were measured spectrophotometrically at 415 nm (Hitachi 912, B Braun 
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Science Tec, France) in the presence of a phosphate buffer 50 mM, EDTA 100 mM, pH 8 and 

bis-5,5'-dithio-bis(2-nitrobenzoic acid) 10 mM.  

The antioxidant status of the plasma was evaluated using ferric reducing antioxidant power 

(FRAP) assay as a global marker of the antioxidant power. The FRAP assay uses antioxidants 

as reductants in a redox-linked colorimetric method. In this assay, at low pH, a ferric-

tripyridyltriazine (Fe
III

-TPTZ) complex is reduced to the ferrous form, which is blue and 

monitored by measuring the change in absorption at 593 nm. The change in absorbance is 

directly proportional to the reducing power of the electron-donating antioxidants present in 

plasma. The absorbance change is translated into a FRAP value (in μmol/l) by relating the 

change of absorbance at 593 nm of test sample to that of a standard solution of known FRAP 

value.  

Glutathione peroxidase (GPx) activity, which is a seleno-enzyme involved in protection 

against hydrogen peroxide was evaluated by the modified method of Gunzler [38] using 

terbutyl hydroperoxide (Sigma Chemical Co, Via Coger, Paris, France) as a substrate instead 

of hydrogen peroxide.  

 

2.8.2.  Cytosolic Oxidative stress 

Lactate and pyruvate released in the coronary effluents were spectrophotometrically assayed 

according to Bergmeyer [39]. The lactate to pyruvate ratio was calculated to estimate the 

cytosolic redox potential [40]. This is a highly specific assay using the enzyme lactate 

dehydrogenase (LDH) to catalyze the reversible reaction of pyruvate and NADH to lactate 

and NAD
+
. The catalytic action of LDH permits spectrophotometric measurement at 340 nm 

(spectrophotometer ULTROSPEC
TM

 2100 pro, Amersham Biosciences, Uppsala, Sweden) of 

lactate production in terms of the generation of NADH in the reaction shown above. To 

measure lactate, the reaction is carried out from right to left with excess NAD
+
. To force the 
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reaction to completion in this direction, it is necessary to trap formed pyruvate with 

hydrazine. The increased absorbance at 340 nm due to NADH formation becomes a mole-to-

mole measure of the lactate originally present in the sample.  

 

2.8.3. Mitochondrial oxidative stress 

The ratio between the activities of aconitase and fumarase of the myocardium was calculated 

as an indicator of mitochondrial ROS production. Aconitase and fumarase activities were 

determined according to Gardner et al. [41], but were measured after extraction with a 

medium supplemented with citrate sodium (1M) in order to stabilize the in vitro aconitase 

activity. Values of aconitase and fumarase activities were determined on the same extract for 

each biological sample.  

 

2.9.Activities of the respiratory chain complexes and citrate synthase 

Activities of the NADH-ubiquinone oxydo-reductase (complex I), succinate-ubiquinone 

oxydo-reductase (complex II), ubiquinol cytochrome c reductase (complex III) and 

cytochrome c oxidase (complex IV) were determined as previously described [42] in isolated 

mitochondria. Heart samples (100 mg) were homogenized at 4°C with 0.9 ml of a potassium 

phosphate buffer 100 mM, pH 7.4. The homogenates were centrifuged (1,500×g, 5 min, 4°C), 

and the resulting supernatants were stored at −80°C until the determination of the citrate 

synthase activity according to Faloona and Srere [43]. The activities of the respiratory chain 

complexes and citrate synthase were expressed in units per mg of proteins.  

 

2.10. Western blot 

The expressions of total endothelial NOS (eNOS) and phosphorylated eNOS at Ser1177 were 

evaluated by Western blot. Frozen samples were homogenized in ice-cold lysis buffer 
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containing 20 mM Tris (pH 7.8), 137 mM NaCl, 2.7 mM KCl, 1 mM MgCl2, 1% Triton X-

100, 10% (w/v) glycerol, 10 mM NaF, 1 mM ethylenediaminetetraacetic acid, 5 mM Na 

pyrophosphate, 0.5 mM Na3VO4, 1 μg/ml leupeptin, 0.2 mM phenylmethylsulfonyl fluoride  

and 1 mM benzamidine. The homogenates were centrifuged at 5,000 g for 20 min at 4°C, and 

the protein concentration in the supernatant was determined in each aliquot. Protein extracts 

(50 µg/lane) were loaded onto a 10% SDS gel and separated by electrophoresis. Extracts from 

the control group were loaded on both gels, and the amount of protein was accordingly 

compared pairwise. Proteins were transferred to nitrocellulose membranes. The membranes 

were incubated overnight at 4°C with rabbit antibodies against total eNOS (1:150, 

Thermoscientific, Illkirch, France) and phosphospecific mouse antibodies against eNOS 

Ser1177 (1:1,000, BD Biosciences Pharmingen, Le Pont de Claix, France). After being 

washed in TBS-Tween, the membranes were incubated with horseradish peroxidase-

conjugated anti-mouse IgG for eNOS Ser1177 (1:3000, Jackson Immunoresearch, Montluçon, 

France) and anti-rabbit IgG for total eNOS (1:20000, Jackson Immunoresearch, Montluçon, 

France) for 1h at room temperature, followed by additional washing. Proteins were visualized 

by enhanced chemiluminescence with ECL advanced Western blotting detection kit 

(Amersham Biosciences, Brumath, France) and quantified using densitometry and Image J 

software. PAN-Actin (1:1000, Cell Signaling Technology, St-Quentin-en-Yvelines, France) 

was used as a loading control. 

 

2.11. Other biochemical determinations 

Proteins were measured using the bicinchoninic acid method with a commercially available 

kit (Thermo Scientific, Rockford, IL). 
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2.12. Statistical analysis 

Results are presented as mean ± S.E.M. Animal weight, glycemia, activity of enzymes and 

data describing the oxidative stress, the cardiac function (developed pressure, heart rate, rate 

pressure product, coronary pressure, coronary flow) were contrasted across the two groups by 

one-way analysis of variance (ANOVA). Measures related to the action of the vasodilatation 

agents were treated with repeated-measures ANOVA to test the effects of age and obesity of 

high-fat fed rats (external factors), that of the amount of dilatation agent (internal factor) and 

their interactions. When required, group means were contrasted with a Fisher’s LSD test. A 

probability (p) less than 0.05 was considered significant. Statistical analysis was performed 

using the NCSS 2004 software. 
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3. Results 

3.1.General data 

We verified that the type of the HF diet chosen did not induce any caloric restriction to the HF 

fed rats by measuring the food consumption at the beginning and the end of the experimental 

protocol for the HF groups. Their food consumption was slightly decreased for the MAF 

group but not significantly (in g/day/cage: YAF: 24.6 ± 2.2, MAF: 20.5 ± 2.8, data not 

shown). As shown in table 1, neither the short-term nor the long-term HF protocol had any 

effect on the body weight of the animals, since no difference was observed between the YAC 

and YAF groups and between MAC and MAF groups respectively. The age for the control 

groups increased the body weight of the animals (+14% for the MAC group compared to the 

YAC one) while the age under the HF diet did not alter this parameter as no difference was 

observed between YAF and MAF groups. The abdominal adipose tissue content of the rats 

was calculated as the sum of the retroperitoneal and visceral adipose tissue. The short-term 

HF protocol significantly increased the adipose tissue content of the YAF animals compared 

to the YAC ones as estimated by the weights of retroperitoneal (+112%), epididymal (+68%), 

visceral (+55%) and abdominal (+87%) adipose tissues. Similar were the results for the long-

term HF diet (+160%, +56%, +58%  and +112% of the retroperitoneal, epididymal, visceral 

and abdominal adipose tissue weights respectively for the MAF group compared to the MAC 

one). The age for the control groups did not modify these parameters and neither did the age 

under HF conditions. Triglycerides concentration in the plasma at the moment of sacrifice 

was modified neither by the HF diet protocols nor by the age. Cholesterol levels though were 

significantly increased by the short-term HF diet (+75% for the YAF compared to the YAC 

group) and by the long-term one (+88% for the MAF compared to the MAC group). The age 

for the control groups or for the HF ones did not alter this parameter. 
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Regarding the glucose metabolism, there was a significant increase after the short-term HF 

diet on the basal fasting glycemia (+11% for the YAF compared to the YAC group) (Fig. 1A). 

No effect was observed on the basal fasting glycemia after the long-term HF protocol. The 

age decreased the basal glycemia for the control groups (-20% for the MAC animals 

compared to the YAC ones) and for the HF ones (-18% for the MAF compared to the YAF 

group). According to the results of the oral glucose tolerance test there was no difference in 

the glucose response or the total area under the curve (AUCtotal) concerning any of the 

manipulations (Fig. 1B and 1C). However, statistical analysis only for the young adult groups 

revealed a significant impact of the short-term HF diet on the AUCtotal (Fig. 1C) with the YAF 

group having higher values that the YAC one (+15%, p=0.016). This difference disappeared 

with the long-term HF protocol. However, since the basal glycemia was not the same for all 

the groups we considered as a valuable measure the delta180 (glycemia between time zero 

and time 180 minutes) in order to evaluate the glucose elimination from the circulation. 

According to Fig. 1E, the short-term or long-term HF diet do not modify this parameter, while 

the age either under control (+540% for the MAC compared to the YAC animals) or HF 

(+166% for the MAF compared to the YAF animals) conditions significantly increased this 

parameter indicating a slower rate of glucose elimination from the circulation in the middle-

aged animals. 

  

3.2.Cardiac function studied ex vivo 

The mechanical function of the perfused isolated hearts was monitored before the infusion of 

U46619 (Table 2). The short-term HF protocol induced a significant decrease in the left 

ventricle developed pressure (LVDP) and RPP (-28 and -34% respectively for the YAF group 

compared to the YAC one). Similar were the results for the long-term HF protocol (-37 and -

25% of LVDP and RPP values respectively for the MAF group compared to the MAC one). 
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The decrease in the RPP was due to the decreased LVDP as the heart rate did not change for 

any group. The age either under control or HF conditions had no effect on these functions 

monitored ex vivo. No changes were observed in the heart rate and coronary pressure before 

and after the infusion of U46619.  The infusion of U46619 raised the coronary pressure from 

75 mmHg to a value close to 120 mmHg in all groups. 

 

3.3.Coronary Reactivity 

The responses to Ach of the coronary microvasculature are shown in Fig. 2A. Interestingly, it 

was observed an enhanced response to Ach after the short-term HF protocol (+18% for the 

YAF group compared to the YAC one at 60 pmoles of injected Ach) but also after the long-

term one (+55% for the MAF group compared to the MAC one at 60 pmoles of injected Ach). 

A decrease in the EDD was observed with age under control (-39% for the MAC compared to 

the YAC group at 60 pmoles of injected Ach) but also under HF conditions (-19% for the 

MAF compared to the YAF group at 60 pmoles of injected Ach).  

Fig. 2B depicts the EID, which reached 25% of dilatation as soon as 600 pmoles of SNP were 

injected. The SNP-responses were not affected by any of the diet or age conditions. Fig. 2C 

represents the endothelial cells vasodilatation activity. The short-term HF protocol tended to 

increase this parameter but not significantly for the YAF compared to the YAC group. Similar 

were the results regarding the long period of HF diet. The age significantly reduced the 

ECVA under both control (-48% for the MAC compared to the YAC group at 60 pmoles of 

injected Ach) or HF conditions (-42% for the MAF compared to the YAF group at 60 pmoles 

of injected Ach).  
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3.4.eNOS expression and phosphorylation 

No changes were induced in the levels of total eNOS, phosphorylated eNOS or the ratio 

phosphorylated eNOS/total eNOS, which was used as an indicator of its activity, by any of the 

diet of age conditions (Fig. 3). It has to be noted though that these results concern the basal 

expression levels of the protein and not upon stimulation of the vasculature with the 

vasodilator agents.  

 

3.5.Oxidative stress 

In the plasma the thiol group concentration, which is inversely correlated to circulating 

oxidative stress, was significantly decreased after the short-term HF protocol (-8% for the 

YAF compared to the YAC group) (Fig. 4A) but it was not modified by the long-term one. 

The presence of plasma thiol groups was also decreased by the age either under control (-15% 

for the MAC compared to the YAC group) or HF (-11% for the MAF compared to the YAF 

group) conditions. The short-term HF protocol, however, increased the total antioxidant 

power (+28% for the YAF compared to the YAC group) (Fig. 4B). Similar were the results 

for the long-term HF diet (+78% for the MAF compared to the MAC group). The age affected 

this parameter neither under control nor under HF conditions. The activity of the antioxidant 

enzyme GPx in the plasma was not modified by any of the diet or age conditions (Fig. 4C).  

The lactate-to-pyruvate ratio of the coronary effluents (Fig. 4d), inversely correlated with the 

cytosolic oxidative stress, was significantly reduced by the short-term HF period (-77% for 

the YAF compared to the YAC group) and by the long one (-87% for the MAF compared to 

the MAC group). The age under control or HF diet did not change its levels. The results for 

aconitase-to-fumarase ratio in cardiac homogenates (Fig. 4E), inversely correlated with the 

mitochondrial-derived oxidative stress, followed the same pattern. More specifically, a 

decrease in this ratio was observed after the short-term HF protocol (-41% for the YAF group 
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compared to the YAC one) and after the long one (-44% for the MAF group compared to the 

MAC one) while the age did not affect it under any diet condition.  

 

3.6.Mitochondrial H2O2 production 

With palmitoylcarnitine, a substrate largely present in the HF diet, no change in the basal 

mitochondrial H2O2 production or after the addition of rotenone in the respiration milieu was 

observed after the short-term HF protocol (Fig. 5A). The addition of antimycin A though 

revealed an increase in H2O2 production (+68% for the YAF compared to the YAC group) 

happening between CI and CIII. The long-term HF protocol followed the same pattern as the 

short one (+78% for the MAF compared to the MAC group when antimycin A was added to 

the respiration milieu). The age under control conditions affected neither the basal H2O2 

production nor that at the levels of CI and CIII. However, the age under HF diet, even though 

it did not modify the basal H2O2 production, decreased it at the level of CI as evidenced with 

the addition of rotenone (-32% for the MAF compared to the YAF group) while the addition 

of antimycin A erased that difference. 

In the presence of glutamate/malate, a CI-related substrate, the short-term HF diet did not 

affect H2O2 production neither under basal conditions nor after adding rotenone alone or in 

association with antimycin A (Fig. 5b). Similar were the results for the long-term HF diet. 

However, the age under control conditions decreased the basal production of H2O2 (-23% for 

the MAC compared to the YAC group). This difference was erased after adding rotenone 

alone or with antimycin A, indicating that CI is implicated at the age-related decrease in basal 

H2O2 production for the control animals. The age under HF diet also decreased the basal H2O2 

production (-21% for the MAF compared to the YAF group). This difference persisted in the 

presence of rotenone (-41% for the MAF compared to the YAF group) while it disappeared 
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with the addition of antimycin A, suggesting that the decreased H2O2 production occurred at 

the level of CIII for the aging under HF conditions. 

When succinate, a CII-related substrate, was used as a source of reduced equivalents the 

results were not the same (Fig. 5C). The short-term HF diet increased the basal H2O2 

production (+66% for the YAF compared to the YAC group) but the addition of rotenone 

alone or in association with antimycin A erased the difference. This could imply a role of 

reverse electron flux to the H2O2 production during the short-term HF diet. However, the 

long-term HF diet did not modify the H2O2 production even after the addition of rotenone 

alone or in association with antimycin A. The age under control conditions induced an 

increase in the basal H2O2 production (+117% for the MAC compared to the YAC group), 

which was erased with the addition of rotenone alone or in association with antimycin A, 

indicating a role of reverse electron flux to this process. The age under HF conditions also 

induced an increase in the basal H2O2 production (+55% for the MAF compared to the YAF 

group). This result was inversed with the addition of rotenone (-16% for the MAF compared 

to the YAF group) and erased with further addition of antimycin A revealing a role of the 

reverse electron flux to this decreased production of H2O2. 

When glutamate/ malate and succinate were used together as sources of reduced equivalents 

the results were different (Fig. 5C). Both the short- and long-term HF diets did not affect 

H2O2 production neither under basal conditions nor after adding rotenone alone or in 

association with antimycin A (Fig. 5d). The age under control conditions induced an increase 

in the basal H2O2 production (+53% for the MAC compared to the YAC group), which was 

inversed with the addition of rotenone alone (-23% for the MAC compared to the YAC group) 

and erased with further addition of antimycin A. These results could imply a major role of 

reverse electron flux to the age-related increase of the basal H2O2 production or even an 

adaptation of the CI to diminish the CI-related ROS release. The age under HF conditions also 
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induced an increase in the basal H2O2 production (+44% for the MAF compared to the YAF 

group). This result was inversed with the addition of rotenone alone (-22% for the MAF 

compared to the YAF group) or in association with antimycin A (-12% for the MAF 

compared to the YAF group) indicating an important role of the reverse electron flux to the 

basal H2O2 production or a diminished maximal capacity of CI and CIII to produce ROS. 

 

3.7.Mitochondrial respiration 

In isolated mitochondria oxidizing PC, all states of the respiration rate were not affected by 

the short-term HF protocol (Fig. 6A). However, the long-term HF diet increased the state 2 of 

the respiration rate (+66% for the MAF compared to the MAC group) but the states 3 and 4 

were unaffected. The age under control conditions did not modify these parameters while the 

age under HF conditions significantly increased the state 2 of the respiration rate (+33% for 

the MAF compared to the YAF group). The yield of mitochondrial H2O2 production (Table 

3), calculated as the ratio of basal mitochondrial H2O2 production divided by the state 2 

respiration rate for each substrate, was not affected by the short-term HF protocol but only by 

the long term one, which decreased it (-23% for the MAF compared to the MAC group).  This 

parameter was not altered by the age under control conditions but only by the age under HF 

conditions resulting to decreased values in the MAF group (-38% compared to the YAF 

group). 

In the presence of glutamate/malate, all states of the respiration rate were not affected by the 

short-term HF protocol (Fig. 6B). The long-term HF diet increased the states 2 and 3 of the 

respiration rate (+51 and +46% respectively for the MAF compared to the MAC group) while 

the state 4 was unaffected. The age under control diet did not change these parameters but the 

age under HF conditions increased the states 2 and 3 of the respiration rate (+38 and +20% 

respectively for the MAF compared to the YAF group) while the state 4 was unaffected. The 
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yield of mitochondrial H2O2 production (Table 3) was not affected by the short-term HF 

protocol but only by the long term one, which decreased it (-28% for the MAF compared to 

the MAC group).  This parameter was not altered by the age under control conditions but only 

by the age under HF conditions resulting to decreased values in the MAF group (-40% 

compared to the YAF group). 

With succinate as respiration substrate, all states of the respiration rate were not affected by 

the short-term HF protocol (Fig. 6C). The long-term HF diet increased the state 2 of the 

respiration rate (+17% for the MAF compared to the MAC group) while the states 3 and 4 

were unaffected. The age under control or HF conditions did not affect the states of the 

respiration rate. The yield of mitochondrial H2O2 production (Table 3) was significantly 

increased by the short-term HF protocol (+84% for the YAF compared to the YAC group) but 

not by the long one. The age under control conditions significantly increased this parameter 

(+157% for the MAC compared to the YAC group) but this did not occur with age under HF 

conditions.  

Finally, when glutamate/malate and succinate were used together as substrates all states of the 

respiration rate were not affected by the short-term HF protocol (Fig. 6D). The long-term HF 

diet did not modify the state 2 of the respiration rate but significantly increased the states 3 

and 4 (+38 and +29% respectively for the MAF compared to the MAC group). The age under 

control conditions did not affect the states of the respiration rate but under HF conditions it 

significantly affected only the states 3 and 4 (+38 and +23% respectively for the MAF 

compared to the YAF group). The yield of mitochondrial H2O2 production (Table 3) was not 

affected by the HF diet protocols. However, it was significantly increased by the age under 

control conditions (+67% for the MAC compared to the YAC group) but not affected by the 

age under HF diet.  
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3.8.Mitochondrial enzymatic activity 

We measured the activity of citrate synthase in cardiac homogenates and the activities of the 

respiratory chain complexes (RCC) in isolated mitochondria (Table 4).  Mitochondrial density 

as evidenced by the activity of citrate synthase was modified neither by the diet nor by the age 

conditions. The short-term HF diet did not affect the activities of the RCC but the long-term 

induced a decrease in the CI activity (-41%for the MAF compared to the MAC group). The 

age under control conditions did not affect the RCC activities while the age under HF 

conditions decreased the CIV activity (-34% for the MAF compared to the YAF group). 
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4. Discussion  

This study aimed at investigating and monitoring the ex vivo cardiovascular function, the 

oxidative stress status and the cardiac mitochondrial function from youth to middle age 

adulthood in a rat model of high-fat diet-induced obesity, in order to better understand the 

consequences of obesity in the absence of overt diabetes. This study used two types of HF 

feeding protocols; short-term of 3 months and long-term of 7 months in order to evaluate the 

progression of changes caused by the diet between youth and middle-age adulthood. The use 

of age-matched control helped in distinguishing between diet and age effects. Our study 

yielded a number of novel observations. 

 

4.1.Effect of short-term HF feeding protocol 

In our rat model of obesity, the short-term HF feeding protocol did not affect the body weight 

or the plasma triglycerides levels but significantly increased the adipose tissue content and the 

circulating cholesterol levels which is consistent with previous findings [9]. It also induced a 

fasting hyperglycemia in the animals, indicating certain glucose intolerance. However, since 

the basal glycemia was not similar between YAC and MAF and delta 25 the same, we 

considered as more valuable measurement for the glucose elimination the delta180 than the 

AUCtotal. This parameter was not modified indicating a similar rate of glucose elimination 

from the circulation for the YAC and YAF groups. This could happen through an increase in 

the insulin secretion as a response to the early development of glucose intolerance as 

previously described in HF-fed rodent models [44, 45]. These metabolic changes 

accompanied modifications in the cardiac mechanical activity measured ex vivo, which was 

also negatively affected as evidenced by the decrease in the rate-pressure product. This was 

mainly due to the decreased left ventricle pressure as the heart rate remained unchanged. A 

limitation of this study is the perfusion of the hearts with glucose as only substrate while it 

would be interesting to perfuse the hearts with glucose together with a lipid substrate, 
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especially in working mode so that the cardiac mechanical activity can be maximal. 

Contractile dysfunction has already been described after as soon as 7 weeks of high-fat diet 

[46]. No changes were found in the coronary pressure. The depressed ex vivo cardiac 

mechanical activity observed in this study could be related to changes in the cardiac 

metabolism, since a decreased cardiac metabolic efficiency has been already shown in high-

fat fed rat hearts [9], or to increased oxidative stress, as previously reported [47]. 

However, the cardiac mitochondrial function did not seem to be affected by the short-term HF 

diet in this study. This was evidenced by measurements of mitochondrial respiration in 

isolated organelles where the states 2, 3 and 4 of the respiration rate were not affected by this 

protocol independently of substrate used. Moreover, the mitochondrial content, as shown by 

the citrate synthase activity, and the RCC activities were not altered. However, it could be 

assumed a reduced activity of ATP synthase or an altered ATP transfer resulting in inefficient 

ATP utilization by the cardiomyocytes eventually leading to decreased mechanical function. 

This could have been related to the status of the oxidative stress found in all cellular 

compartment of the animals after the short-term HF protocol. An increased circulating, 

cytosolic and mitochondrial oxidative stress was present in the YAF animals despite the 

increase in the antioxidant capacity of the plasma. These data imply that ROS defenses were 

not sufficiently increased to circumvent the increased oxidant burden. Thus, these conditions 

could have helped in the development of the observed ex vivo cardiac dysfunction. This 

mechanism could occur via the impairment in the ratio phosphocreatine/ATP [48] as already 

described in obesity-related states. It has been reported that a H2O2 overload may lead 

eventually to de-energization upon total ATP and phosphocreatine depletion in 

cardiomyocytes [49]. The increased oxidative stress could have also affected cardiolipin [50] 

and consequently the adenine nucleotide transporter (ANT). 
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The assessment of H2O2 released from the mitochondrial respiratory chain was helpful to 

understand the origin of mitochondrial oxidative stress. Palmitoylcarnitine (PC) was used as a 

substrate for the electron transport chain (ETC) as it is abundant in high-fat diets. PC is a lipid 

substrate used to assess the ability of the mitochondria to oxidize long-chain lipids. Its 

oxidation yields both NADH and FADH2 stimulating both CI and CII of the electron transport 

chain. In addition, the dehydrogenases of β-oxidation can transfer electrons to the ETF, which 

then reduces ETF-ubiquinone oxidoreductase (ETF-QO) passing electrons to CIII. During this 

process, there is the possibility of electron leakage [51]. The basal mitochondrial H2O2 release 

with this substrate was not affected by the short term HF protocol despite the increased H2O2 

release between CI and CIII as evidenced by the addition of rotenone and antimycin A 

combined. The glutamate/malate-induced basal H2O2 production was not affected whereas the 

succinate-induced H2O2 production was increased due to increased reverse electron flow at 

CI. However, glutamate/malate and succinate together, which were used to stimulate both CI 

and CII of the ETC did not reveal any difference in the H2O2 production between YAC and 

YAF animals. This result was not observed with PC as substrate, even though it feeds also the 

ETC at the levels of CI and CII. This may be due to the fact that PC gives also electrons to 

ETF. Thus, a role of ETF in the ROS formation with the HF diet could be suggested.  

Interestingly, the short-term high-fat feeding protocol induced an increase in the Ach-

responses of the intact coronary microvasculature. Maintained or enhanced responses have 

already been described in the vasculature of rodent models of obesity [25, 26]. In our study, 

this enhanced response to Ach was not due to smooth muscle cells function, since the 

response to SNP did not differ among groups. Thus, a role of endothelial cells, as evidenced 

also by the increase in the ECVA even though it did not reach significance. The activity of 

eNOS, the main enzyme responsible for the production of nitric oxide, seemed unaltered as 

evaluated indirectly by the ratio of phosphorylated eNOS to total eNOS. However, its 
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expression was measured under basal conditions and not upon stimulation by the vasodilator 

agents, thus it is unknown if this parameter was affected under these last conditions. 

Furthermore, the presence of other EC-derived factors contributing in the coronary 

microvessels Ach-responses could be possible. It has already been shown that the 

endothelium-derived hyperpolarizing factor (EDHF) could contribute to EDD of microvessels 

especially as a mechanism of compensation in order for the heart to keep an adequate 

perfusion in states of obesity [52]. Thus, these vascular alterations may reflect an adaptation 

of the coronary microvasculature in order to adjust organ perfusion during physiological 

processes such as exercise, otherwise the heart would not be able to respond to increased 

metabolic demands and lead eventually to ischemic incidents.  

 

4.2.Effect of long-term HF feeding protocol 

The long-term HF feeding affected the basic body and metabolic characteristics of the animals 

in a similar way as the short-term HF protocol. More specifically, the body weight or the 

plasma triglycerides levels were unaltered but the adipose tissue content and the circulating 

cholesterol levels were significantly increased. However, the basal fasting glycemia was not 

modified between MAC and MAF animals in contrast to the short-term protocol effect. The 

rate of the glucose elimination from the circulation was also unchanged by the long-term 

protocol, as evidenced from the AUCtotal and delta180. Interestingly, the fact that the 

difference found in basal glycemia between the young dietary groups disappeard with middle 

age paralleled the disappearance of the circulating oxidative stress. Increased glucose levels 

have been correlated to the production of certain form of oxidative stress [53]; thus, an 

adaptation of the glucose metabolism observed after the long-term diet could explain the 

disappearance of the circulating oxidative stress. The fact that the high-fat fed animals did not 

gain body weight but had increased adiposity after both HF feeding protocols could represent 
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a case of the normal weight obesity syndrome. This syndrome has been described recently and 

is defined as a normal body mass index associated with increased body fat [54, 55].  

The cardiac ex vivo mechanical activity was negatively affected as it did by the short-term HF 

protocol. The RPP was decreased due to the decreased left ventricle pressure as the heart rate 

remained unchanged, while no changes were observed in the coronary pressure. Diets with 

increased content of lipids (45%) have been related to cardiac dysfunction in rats [56]. 

Interestingly, the mitochondrial function studied in vitro by respiration measurements 

indicated an enhancement in this parameter by the long period of the diet.  State 2 of the 

respiration rate was increased with PC, glutamate/malate or succinate as substrates. State 3 in 

the presence of glutamate/malate or glutamate/malate plus succinate was also increased while 

state 4 was increased only in the presence of glutamate/malate plus succinate. The rest of the 

conditions did not affect the mitochondrial respiration. This observed enhanced mitochondrial 

respiration occurred despite an unchanged mitochondrial density, as shown by the activity of 

the citrate synthase, and a decrease in the CI activity. Thus, it could be argued that a 

mechanism of adaptation is taking place with the long-term feeding protocol in order for the 

mitochondria to provide adequate energy to the myocardium to meet the higher metabolic 

demands due to adiposity. However, it seems that this mitochondrial adaptation was not 

sufficient enough to restore the cardiac mechanical activity. The increased cytosolic and 

mitochondrial oxidative stress found after the long-term HF protocol could have an important 

role in the development of the observed ex vivo cardiac dysfunction via the mechanism 

already described for the short-term HF diet. Interestingly, the circulating oxidative stress 

seems to disappear due probably to further increase of the antioxidant plasma capacity.  

The assessment of hydrogen peroxide released form the mitochondrial respiratory chain 

revealed interesting information concerning the ETC function. The basal mitochondrial H2O2 

release with PC had the same results as the short term HF protocol revealing an increased 
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H2O2 release between CI and CIII as evidenced by the addition of rotenone and antimycin A 

combined. The glutamate/malate-induced basal H2O2 production was not affected as well as 

the succinate-induced production. Similar were the results for the glutamate/malate and 

succinate together.  The result of glutamate/malate plus succinate was not observed with PC 

as substrate revealing a possible role of ETF in the observed ROS formation. Furthermore, the 

increased succinate-induced H2O2 production via reverse electron flux observed with the short 

term diet disappeared with the longer period which could be associated with the decreased CI 

activity. This could be due to the increase in β-oxidation in HF fed animals, since β-oxidation 

depends less on CI than does the oxidation of glucose. 

The enhanced Ach responses of the coronary microvasculature observed after the short-term 

protocol were also observed after the long-term one. In the literature, it has been described an 

enhanced vascular reactivity at 20 or 32 weeks of age in rodent models of obesity [57]. 

Interestingly, the difference between MAC and MAF groups was amplified compared to the 

one between YAC and YAF groups.  However, the role of endothelial cells, the functional 

coupling between endothelial and smooth muscle cells and the contribution of other factors in 

the enhanced EDD, as already described for the short-term HF diet, are implied.  

These data suggest that, aside the vascular adaptations observed already after the short-term 

protocol, an adaptation taking place at the level of the mitochondrial respiration, including the 

decreased CI activity, is revealed with the long-term HF diet. Moreover, the circulating 

oxidative stress seems to return to the normal levels probably through increase of the 

antioxidant defenses.  

 

4.3.Effect of age under control conditions 

The period between young and middle aged adulthood under a control diet increased only the 

body weight of the animals while adiposity, circulating triglycerides and cholesterol levels 
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stayed unaffected. However, there was a decrease in the basal fasting glycemia accompanied 

though by a decrease in the glucose elimination rate from the circulation. No changes were 

observed in the measured parameters of the cardiac function studied ex vivo or in the 

mitochondrial respiration independently of substrate used. Mitochondrial density or RCC 

activities were also unchanged. The age induced an increase in the circulating oxidative stress 

occurring probably because of the lack of sufficient antioxidant defenses. However, no 

cytosolic or mitochondrial oxidative stress was developed. These data suggest that the 

maintained mitochondrial respiration was accompanied by a satisfying energy transfer or 

utilization by the heart since no cellular oxidative stress was observed to inhibit it.  

Despite the fact that no mitochondrial oxidative stress was found by the aconitase-to-fumarase 

ratio, the mitochondrial H2O2 release by the electron transport chain was modified by the age. 

More specifically, when PC was used as substrate the H2O2 release was not affected but when 

GM was used the basal H2O2 release was significantly decreased probably due to CI. The 

increased basal succinate-induced H2O2 release seemed to occur mainly via reverse electron 

flow at complex I. The combination of the last two substrates indicated a decrease in the H2O2 

production at the level of CI together with an increase reverse electron flux. The decrease CI 

activity could have contributed to this decreased CI-related H2O2 production. 

Moreover, even though the cardiac function was not changed, age induced a decrease in the 

Ach-responses of the coronary microvasculature, which could be related to the increased 

circulating oxidative stress found in the middle-aged animals. This result occurred mostly at 

the level of endothelial cells since the SNP responses were not affected and the vasodilatation 

activity of the endothelial cells was reduced with age. It has been previously demonstrated 

that vascular NADPH oxidases are in part responsible for increased superoxide production 

during aging [58]. A decreased nitric oxide bioavailability caused by the increased circulating 

presence of ROS could result to the reduced Ach-response. Thus, we may conclude that this 
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aging period affected the glucose metabolism associated with the circulating oxidative status 

leading eventually to a reduced reactivity of the coronary microvasculature while the cardiac 

and mitochondrial functions were less affected. 

 

4.4.Effect of age under HF conditions 

The effects of the age under a HF diet did not induce any changes in the body weight, 

adiposity and circulating triglycerides and cholesterol levels. However, there was a decrease 

in the basal fasting glycemia accompanied by a decrease in the glucose elimination rate from 

the circulation as found also during aging under control conditions. Similarly, no changes 

were observed in the cardiac function studied ex vivo. The mitochondrial respiration, 

however, was increased by the age under HF conditions as evidenced by the state 2 with PC, 

the states 2 and 3 with glutamate/malate and state 3 and 4 with glutamate/malate plus 

succinate. This enhanced mitochondrial respiration was not accompanied by an increase in the 

mitochondrial density or in the RCC activities. In contrast, the CIV activity was found 

decreased by the age under HF conditions. This result in association with the presence of 

oxidative stress could interfere with the production, transfer or utilization of the energy by the 

heart. CIV could be itself a ROS target, since some of its subunits are encoded by 

mitochondrial DNA [59] and would be more susceptible in ROS-induced damages. Thus, the 

age under HF conditions induced an enhanced mitochondrial respiration, which was not 

though reflected to the cardiac mechanical function. 

The age under HF conditions modified the oxidative stress of the organism in a similar way as 

the age under control conditions (increased circulating ROS but unchanged cytosolic and 

mitochondrial oxidative stress). The basal H2O2 released from the mitochondrial respiratory 

chain in the presence of PC was not altered but a decrease production at the level of CI was 

observed. In the presence of glutamate/malate, a decreased basal H2O2 production was 
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observed occurring at the level of CI. When succinate was used as substrate, the basal H2O2 

production was increased occurring via the electron reverse flow at CI while the 

glutamate/malate and succinate together increased the basal H2O2 production despite its 

decreased production at the level of CI and CIII. These data suggest an adaptation of CI in 

order to decrease the ETC-derived ROS formation with the age under HF conditions. 

However, the CIV activity was significantly decreased. These data suggest that the 

mitochondria try to produce more energy to meet the increased cardiac demands of the heart 

due to obesity.  

The Ach-responses of the coronary microvasculature were reduced under these conditions but 

not to the same amplitude as under control conditions. The SNP responses were not affected 

while the vasodilatation activity of the endothelial cells was also reduced. This reduction 

might take place via the same mechanism as already described for the control conditions.  
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5. Conclusions 

Our study reveals important new information regarding the changes that take place during a 

high-fat feeding protocol providing evidence for the existence of a temporal pattern for 

changes that are contingent on the progression of the diet. Furthermore, it is the first study 

that tries to evaluate the overall image of the heart function in terms of oxidative stress, 

mitochondrial and cardiac function, and coronary reactivity. Despite these changes, the 

mitochondria maintained at first and enhanced later the oxidative phosphorylation in an effort 

to supply the heart with energy. However, the presence of increased oxidative stress in all 

cellular compartments established at the beginning of the diet could have affected the system 

of phosphocreatine or even induced an increased calcium content [60] and consequent 

opening of the permeability transition pore (PTP) resulting to inefficient transfer or utilization 

of the produced energy by the heart. A possible role of ETF in the process of ROS formation 

at the beginning of the diet is also suggested. A major finding of our study is the adaptation of 

the coronary microvasculature that took place with the beginning of the HF diet resulting to 

increased Ach-responses which remained until end of the protocol. This phenomenon together 

with the preserved mitochondrial respiration could participate to the better recuperation after 

ischemia-reperfusion found in diet-induced obese rats [61, 62]. This mechanism could also be 

related to the obesity paradox concerning the better survival rates of obese individuals after 

cardiovascular incidents [63]. Whether the detrimental effects of a high-fat diet would 

predominate following a longer duration of HF feeding is unknown. An understanding of the 

mechanism of the enhanced EDD would be helpful in order to understand the factors that are 

implied and could thus be potential therapeutic targets. 
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Figure Captions 

Fig. 1. Glucose metabolism. A: Basal glycemia for the four groups two weeks before 

sacrifice; B: Glucose response of the animals two weeks before sacrifice; C: Total area under 

the curve for the glucose response two weeks before sacrifice; D: Difference between 

glycemia at timepoints zero and 25 derived from the glucose response diagram; E: Difference 

between glycemia at timepoints zero and 180 derived from the glucose response diagram. 

YAC: young adult control group; YAF: young adult HF-fed group; MAC: middle-aged adult 

control group and MAF: middle-aged adult HF-fed group. The number of experiments was 8 

for each group. a, b, c: significantly different; a common letter between two values indicates 

no significant difference 

Fig. 2. Effets of age and high-fat diet on the endothelial-dependent dilatation (EDD, panel A), 

endothelial-independent dilatation (EID, panel B) and endothelial cell vasodilatation activity 

(ECVA, panel C) of the coronary microvascular network of the perfused hearts. YAC: young 

adult control group; YAF: young adult HF-fed group; MAC: middle-aged adult control group 

and MAF: middle-aged adult HF-fed group. The number of experiments was 8 for each 

group. a, b, c: significantly different; a common letter between two values indicates no 

significance 

Fig. 3. Protein expression of total eNOS and phosphorylated eNOS at Ser1177 in cardiac 

homogenates. A: representative immunoblots of total eNOS, phosphorylated eNOS at 

Ser1177 (p-eNOS)  and actin; B: quantified total eNOS and phosphorylated eNOS and ratio 

between the phosphorylated and total eNOS. YAC: young adult control group; YAF: young 

adult HF-fed group; MAC: middle-aged adult control group and MAF: middle-aged adult HF-

fed group. The number of experiments was 6 for each group 

Fig. 4. Oxidative stress measurements. A: plasma oxidative stress estimated by the 

disappearance of the plasma thiol groups; B: antioxidant power of the plasma estimated by the 
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FRAP assay; C: enzymatic activity of GPx in the plasma; D: cytosolic oxidative stress 

estimated by the lactate-to-pyruvate ratio; E: mitochondrial oxidative stress estimated by the 

aconitase-to-fumarase ratio. YAC: young adult control group; YAF: young adult HF-fed 

group; MAC: middle-aged adult control group and MAF: middle-aged adult HF-fed group. 

The number of experiments was 8 for each group. a, b, c: significantly different; a common 

letter between two values indicates no significance 

Fig. 5. H2O2 release from cardiac isolated mitochondria. H2O2 production was measured in 

the presence of substrate, rotenone and antimycin A: palmitoylcarnitine as substrate; B 

glutamate/malate as substrates; C succinate as substrate; D: glutamate/malate plus succinate 

(G/M/S) as substrates. YAC: young adult control group; YAF: young adult HF-fed group; 

MAC: middle-aged adult control group and MAF: middle-aged adult HF-fed group. The 

number of experiments was 8 for each group. a, b, c: significantly different; a common letter 

between two values indicates no significance 

Fig. 6. Mitochondrial respiration studied in cardiac isolated mitochondria. State 2 corresponds 

to respiration in the presence of substrate, state 3 is the respiration in the presence of substrate 

plus exogenous ADP and state 4 corresponds to respiration in the absence of ATP synthesis 

using exogenous oligomycin to inhibit ATP synthase. A: palmitoylcarnitine respiration; B 

glutamate/malate respiration; C succinate respiration ; D : glutamate/malate plus succinate 

(G/M/S) respiration. YAC: young adult control group; YAF: young adult HF-fed group; 

MAC: middle-aged adult control group and MAF: middle-aged adult HF-fed group. The 

number of experiments was 8 for each group. a, b: significantly different; a common letter 

between two values indicates no significance 
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Table 1. Basic characteristics of the animals 

 

Body weight, epididymal, visceral, retroperitoneal and abdominal adipose tissues weights are 

expressed in g of wet weight. The abdominal adipose tissue weight normalized to the body 

weight is expressed in g of wet weight per g of body weight. Triglycerides and cholesterol are 

expressed in g/l. AT: adipose tissue; BW: body weight; YAC: young adult control group; 

YAF: young adult high-fat fed group; MAC: middle-aged adult control group and MAF: 

middle-aged adult high-fat-fed group. The number of experiments was 8 for each group. a, b: 

significantly different; a common letter between two values indicates no significant 

difference. 

 

 

 

 

 

 

 

 

YAC  YAF MAC MAF 

Body weight  443 ± 4
a
  473 ± 11

ab
 503 ± 15

b
 487 ± 30

ab
 

Epididymal AT  13.5 ± 1.3
a
  22.7 ± 1.9

b
 15.4 ± 1.1

a
 24.0 ± 3.3

b
 

Visceral AT  9.4 ± 1
a
  14.6 ± 1.4

b
 10.7 ± 0.6

a
 16.9 ± 2.2

b
 

Retroperitoneal AT  12.8 ± 1.4
a
  27.1 ± 2.4

b
 12.6 ± 0.9

a
 32.5 ± 4.4

b
 

Abdominal AT  22.2 ± 2.2
a
  41.6 ± 3.6

b
 23.3 ± 1.3

a
 49.4 ± 6.5

b
 

Abdominal AT/BW 0.050 ± 0.005
a
  0.086 ± 0.006

b
 0.046 ± 0.002

a
 0.099 ± 0.009

b
 

Triglycerides  1.3 ± 0.1  1 ± 0.08 1.2 ± 0.30 1.2 ± 0.10 

Cholesterol  0.56 ± 0.02
a
  0.98 ± 0.06

b
 0.59 ± 0.11

a
 1.11 ± 0.05

b
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Table 2. Ex vivo cardiac function  

 

HR: heart rate; LVDP: left ventricle developed pressure; RPP: rate pressure product; CP: 

coronary pressure; YAC: young adult control group; YAF: young adult high-fat fed group; 

MAC: middle-aged adult control group and MAF: middle-aged adult high-fat fed group. The 

number of experiments was 8 for each group. a, b: significantly different; a common letter 

between two values indicates no significant difference 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

YAC YAF MAC MAF 

HR (beats/min) 272 ± 11 270 ± 8 253 ± 17 278 ± 17 

LVDP (mmHg) 90.1 ± 4
a
 64.8 ± 6.9

b
 104 ± 9

a
 66 ± 5

b
 

RPP (mHg/min) 23.2 ± 1
a
 15.2 ± 1.6

b
 24.7 ± 2.6

a
 18.5 ± 2.2

b
 

CP  before U46619 (mmHg) 74 ± 5 77 ± 4 82 ± 3 64 ± 4 

CP after U46619 (mmHg) 123 ± 8 129 ± 7 132 ± 9 101 ± 15 
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Table 3. Yield of mitochondrial H2O2 production 

 

The yield of H2O2 production is expressed in pmoles of H2O2/ng atom of oxygen. G/M/S: 

glutamate/malate/succinate; YAC: young adult control group; YAF: young adult high-fat fed 

group; MAC: middle-aged adult control group and MAF: middle-aged adult high-fat fed 

group. The number of experiments was 8 for each group. a, b, c: significantly different; a 

common letter between two values indicates no significant difference 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 YAC YAF MAC MAF 

yield  

of H2O2 

production 

Palmitoylcarnitine  8.0 ± 1.0
a
 7.4 ± 0.9

 a
 6 ± 0.3

a
 4.6 ± 0.5

 b
 

Glutamate/Malate  5.0 ± 0.7
a
 5.2 ± 0.5

a
 4.3 ± 0.2

a
 3.1 ± 0.4

b
 

Succinate  14.7 ± 0.5
a
 27.1 ± 3.3

b
 37.8 ± 2.7

c
 36.9 ± 5.5

bc
 

G/M/S  19.5 ± 3.4
a
 25.2 ± 3.5

ab
 32.5 ± 2.3

b
 31.6 ± 3.9

b
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Table 4.  Activities of mitochondrial enzymes 

 

The results are expressed in mU/mg of proteins. CS: citrate synthase; CI: NADH:ubiquinone 

oxidoreductase; CII: succinate-ubiquinone oxydo-reductase; CIII: ubiquinol-cytochrome-c 

reductase; CIV: cytochrome c oxidase; YAC: young adult control group; YAF: young adult 

high-fat fed group; MAC: middle-aged adult control group and MAF: middle-aged adult high-

fat fed group. The number of experiments was 8 for each group. a, b: significantly different; a 

common letter between two values indicates no significant difference 

 

 

 

 

 

 

 

 

 

 

 

 

 

YAC YAF MAC MAF 

CS 4.75 ± 0.1 5.43 ± 0.15 4.44 ± 0.14 6.1 ± 1.5 

CI 2.39 ± 0.14
ab

 1.82 ± 0.3
a
 2.7 ± 0.06

b
 1.6 ± 0.32

a
 

CII 0.86 ± 0.09 0.79 ± 0.04 0.72 ± 0.05 0.75 ± 0.1 

CIII 2.19 ± 0.09 1.75 ± 0.13 1.87 ± 0.21 1.53 ± 0.53 

CIV 3.59 ± 0.21
ab

 4 ± 0.33
a
 3.51 ± 0.22

ab
 2.64 ± 0.38

b
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Figure 1 
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Figure 5 
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Figure 6 
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3.4 ARTICLE IV 

 

 

 

“Enhanced ACh-response of the coronary microvasculature in high-fat fed 

rats: relative contribution of nitric oxide, cyclooxygenase and K
+
 channels” 

 

 

 

This work will be submitted to the “Journal of Physiology”. 
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Key points summary 

 Previous studies on coronary vessels have led to controversial results concerning the 

effects of obesity on the microvascular reactivity. 

 In this study we focused on the impact of high-fat diet induced obesity on the cardiac 

function and the reactivity of the intact coronary microvasculature perfused ex vivo. 

 We show that the chosen high-fat diet in this study induced enhanced responses to 

ACh of the coronary microvessels despite the depressed cardiac mechanical activity ex 

vivo. 

 The presence of various inhibitors during the heart perfusion revealed an important 

role of nitric oxide and cyclooxygenase in this response. 

 These results suggest that coronary microvessels adapt to maintain correct coronary 

reserve when needed in order to avoid insufficient oxygen supply to the heart. 

Word count: 124  
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Abstract 

Despite the accumulating evidence associating obesity and vascular dysfunction, the impact 

of obesity on the coronary microvessels is controversial. This study aimed at characterizing 

the effects of DIO on the function of the intact coronary microvasculature.  3 month-old rats 

were randomly assigned to follow a standard or a HF diet (54% of fat) protocol for 3 months. 

The ex vivo perfusion of their hearts revealed a decreased cardiac mechanical activity but a 

maintained mechanical efficiency whereas the responses to ACh of the coronary 

microvasculature were enhanced. Inhibition of NOS in the presence of L-NAME reduced the 

response in both dietary groups whereas COX inhibition by indomethacin reduced it 

significantly only in the HF fed group. A synergistic action between NO and COX-derived 

mediators in the ACh-response was revealed with the use of both inhibitors. Blockage of K
+
 

channels with TEA erased almost totally the response indicating a major role of these 

channels in coronary microvessel dilatation and a possible role for EDHF. The cardiac 

membrane phospholipid fatty acid composition demonstrated an increase in the AA content 

that could be related to the results of EDD observed in the presence of indomethacin. Thus, 

these findings suggest that the coronary microvasculature adapts in response to HF diet by 

modulating the NOS and COX pathways. This adaptation may counteract for the decreased 

cardiac mechanical activity observed in the present study in order for the heart to maintain a 

satisfying myocardial pumping activity in physiological processes with increased metabolic 

demand such as exercise.  
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Abbreviations 

AA, arachidonic acid; COX, cyclooxygenase;  DHA, docosahexaenoic acid; ECs, endothelial 

cells; EDD, endothelium-dependent dilatation; EID, endothelium-independent dilatation; 

EDHF, endothelium-derived hyperpolarizing factor; eNOS, endothelial nitric oxide synthase; 

EPA, eicosapentanoic acid; HF, high-fat; LVDP, left ventricle developed pressure; MUFA, 

monounsaturated fatty acid; NO, nitric oxide; NOS, nitric oxide synthase; PUFA, 

polyunsaturated fatty acid; RPP, rate pressure product; SNP, sodium nitroprusside; SFA, 

saturated fatty acid. 
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Introduction 

In Western societies, the prevalence of obesity has increased dramatically in the past decade 

(Flegal et al., 2010). Obesity, and especially central or abdominal obesity, is strongly 

associated with the development of metabolic syndrome and type 2 diabetes mellitus 

conferring increased risk for developing cardiovascular disease and its complications. States 

of hyperglycemia and insulin resistance that may characterize obese individuals are associated 

with increased oxidative stress and inflammation in the organism (Bagi, 2009). These 

metabolic changes affect eventually the peripheral and coronary vascular function especially 

of large conduit arteries (Hashimoto et al., 1998; Kapiotis et al., 2006). A key feature in this 

process is the reduced production of NO, a compound that mediates endothelium-dependent 

vasorelaxation and inhibits inflammation. 

However, the impact of obesity on the coronary microcirculation remains controversial. The 

primary function of the coronary microcirculation is to optimize nutrient and oxygen supply 

to the heart in response to any metabolic demand by coordinating the resistances within 

different microvascular domains, each governed by distinct regulatory mechanisms (Jones et 

al., 1995; Chilian, 1997). The large conduit coronary arteries exert small, if any, resistance 

since resistance to blood flow rises as the vessel diameter decreases. These observations 

underline the need for direct examination of the function of coronary resistance arteries to 

understand how their vasomotor behavior changes and how it relates to coronary blood flow 

alterations in obese individuals.  

One of the early alterations in obesity is considered to be the vasomotor dysfunction of the 

coronary vessels, which leads to the disturbed regulation of tissue perfusion and predisposes 

patients to myocardial ischemia (Caballero, 2003). However, in states of uncomplicated 

obesity, when no comorbid conditions such as hypertension or diabetes exist, morphological 

changes in microvessels are quite rare (Hall et al., 1999; Bagi et al., 2012). Furthermore, 
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recent studies on isolated coronary arterioles have shown that the EDD in obese, young 

diabetic or HF fed rats are maintained or even enhanced (Oltman et al., 2006; Prakash et al., 

2006; Jebelovszki et al., 2008). In the coronary circulation where oxygen extraction is near 

maximal, changes in EDD can have significant consequence if other mediators fail to 

compensate. An increased sensitivity of the soluble guanylate cyclase to NO (Brandes et al., 

2000) and upregulation of COX-2 (Sanchez et al., 2010) have been described in situations of 

obesity and diabetes. 

Moreover, in patients with coronary artery disease, the primary mediator of flow-induced 

dilation in the coronary circulation of healthy patients shifts from NO to an EDHF, which acts 

via Ca
2+

-activated potassium channels (Miura et al., 2001). This shift in mediator balance to 

endothelial-dependent hyperpolarizing factor could be a compensation for the loss of NO. 

Molecules such as the H2O2 (Liu et al., 2011) or AA derived products of cytochrome P-450 

(CYP-450) (Fisslthaler et al., 1999) have been proposed to act as EDHF in different vascular 

beds and species. 

Thus, the aim of this study was to determine the effects of a HF diet on the cardiac function and to assess the 

endothelial function of the intact coronary microvasculature in terms of endothelium-dependent and -

independent vasodilatations in an ex vivo heart perfusion model. We also evaluated the contribution of the main 

vasodilator pathways in the observed EDD by using inhibitors that block NO production, cyclooxygenases or 

potassium channels during the perfusion protocol. Finally, the fatty acid profile of cardiac membrane 

phospholipids was estimated.  
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Materials and Methods  

Ethical approval 

All experiments followed the European Union recommendations concerning the care and use 

of laboratory animals for experimental and scientific purposes. All animal work was approved 

by the local board of ethics for animal experimentation (Cometh) and notified to the research 

animal facility of our laboratory (authorization n° 38 07 23).    

 

 Experimental Animals and Diet 

Male Wistar rats from an inbred colony were housed two per cage in our animal facility at 3 

months of age. They were randomly assigned to be maintained on standard carbohydrate (C: 

16.1% proteins, 3.1% lipids, 60% cellulose; A04, Safe, France) or high-fat (HF: 31.5% 

proteins, 54% lipids (50% lard, 4% soya-bean oil w/w), 7% cellulose) diet over a twelve-week 

period. The energy from fat in this diet typically represents more than 50% of total calories 

(Wilkes et al., 1998; Dobrian et al., 2000) as in an average Western diet. After analysis of the 

fatty acid composition of the diets chosen we found that the standard diet contained 

approximately 24% of SFAs, 23% of MUFAs, 48% of n-6 PUFAs and 4.5% of n-3 PUFAs 

while the HF diet contained  37% of SFAs, 46% of MUFAs, 15% of n-6 PUFAs and 1.2% of 

n-3 PUFAs. All groups were fed ad libitum with free access to water and their body weight 

and food intake were recorded twice weekly as previously described (Vial et al.). It should be 

noted that the protein content of the HF-diet was 2-fold higher because of the lower food 

intake (g/day) in these rats due to the higher energy density. This allowed a similar daily 

protein intake in all rat groups.  

On the day of the experiment, the rats were weighed and heparinized (1,000 I.U./kg) via the 

saphenous vein before their sacrifice. Blood samples were collected for further biochemical 

analysis and their adipose tissue was quantified for determination of the abdominal fat mass. 
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Cardiac function study 

All rats underwent ex vivo Langendorff assessment of their cardiac function. For this reason, a 

rapid thoracotomy was performed and the heart was immediately collected in Krebs-Heinselet 

solution maintained at 4
o
C. It was then rapidly (less than 1 minute from the chest opening to 

avoid problem of cellular damages and preconditioning) perfused at constant pressure 

according to the Langendorff mode with a Krebs–Heinselett buffer containing (in mM) NaCl 

119, MgSO4 1.2, KCl 4.8, NaHCO3 25, KH2PO4 1.2, CaCl2 1.2 and glucose 11 mM as sole 

energy substrate. The buffer was maintained at 37
o
C and continuously oxygenated with 

carbogen (95% O2/5% CO2). A latex balloon connected to a pressure probe was inserted into 

the left ventricle and filled until the diastolic pressure reached a value of 7–8 mmHg. This 

allowed the monitoring of heart rate, systolic, diastolic and left ventricle developed pressures 

throughout the perfusion protocol. A pressure gauge inserted into the perfusion circuit just 

upstream the aortic cannula allowed the evaluation of the coronary pressure. The heart was 

perfused at constant pressure of 59 mmHg for 30 minutes and the coronary flow for each 

heart was evaluated by weight determination of 1-min collected samples at the 25
th

 min of 

perfusion. After this period, the heart was perfused at constant flow conditions, for which the 

flow rate was adjusted in order to obtain the same coronary flow as in the preparation at 

constant pressure. The systolic, diastolic and left ventricle developed pressures as well as the 

heart rates were determined after 10 min of perfusion at forced flow in order to allow a 

satisfying stabilization of the heart. The left ventricle developed pressure was calculated by 

subtracting the diastolic pressure to the systolic pressure. The rate-pressure product (RPP) was 

defined as the product of left ventricle developed pressure and heart rate. All the parameters 

were recorded and analyzed with a computer using the HSE IsoHeart software (Hugo Sachs 

Elektronik, March-Hugstetten, Germany).  
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Coronary Reactivity 

After the evaluation of the cardiac function at constant flow, we assessed the effects of the HF 

diet on the coronary reactivity. After the 10-min equilibration period at constant flow, the 

coronary tone was raised by using the thromboxane analog U46619 (30nM), which was 

constantly infused into the perfusion system near the aortic cannula at a rate never exceeding 

1.5% of the coronary flow. This allowed the obtainment of a coronary pressure between 90 

and 110 mmHg. In our model of perfusion at forced flow, the aortic pressure equaled the 

coronary pressure and changes in the coronary tone triggered modifications of the aortic 

pressure. Changes in aortic perfusion pressure were thus used to monitor changes in coronary 

tone. Furthermore, this experimental model permitted the evaluation of the coronary 

microvasculature reactivity since the coronary resistance vessels determine the overall 

coronary pressure. Relaxation responses to ACh (4, 10, 20, 40, 60, 80 and 100 pmoles) and 

sodium nitroprusside (SNP, 100, 200, 400, 600, 800 and 1000 pmoles) injections were 

determined reflecting the endothelial-dependent vasodilatation (EDD) and endothelium-

independent vasodilatation (EID) respectively. 

The dilatation amplitude was calculated as the ratio between the maximal decrease in the 

coronary pressure and the coronary pressure just before the injection of the dilatation agents.  

Since the heart weight and coronary volume were subjected to intra- and inter-group 

variations, a correction was performed to normalise the input-function of the vasodilatation 

agents according to the coronary flow. The dose-response curve between the amount of 

vasodilatation agent injected and the maximal vasodilatation was then fitted to a logarithm 

function for each heart, which allowed the fulfillment of statistical analyses. Moreover, the 

vasodilatation activity of the ECs was also estimated from the corrected EDD and EID curves. 

For each heart and each injected ACh dose, the amount of SNP (reflecting the amount of 

vasodilator agents) necessary to obtain the same percentage of ACh-induced vasodilatation 
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was extracted from the EID curve according to the formula: endothelial cell vasodilatation 

activity (ECVA) = e 
[(% ACh-induced dilatation - b) / a]

, where a and b are the coefficients of the 

theoretical EID curve. The results were expressed in pmole equivalents of nitroprusside. At 

the end of the perfusion protocol, the hearts were freeze-clamped and stored at -80°C until the 

biochemical analyses were performed. 

 

Fatty acid composition of cardiac phospholipids 

The phospholipid fatty acid composition was determined in cardiac homogenates as 

previously described (Demaison et al., 2001). The lipids were extracted according to Folch et 

al. (Folch et al., 1957). The phospholipids were separated from non-phosphorus lipids using a 

Sep-pack cartridge (Juaneda et al., 1990). After transmethylation, the fatty acid methyl esters 

were separated and analyzed by gas chromatography. 

 

Other biochemical determinations 

All biochemical measures (total cholesterol, triglycerides, glucose) were done in plasma 

samples by using an automated analyser (HITACHI 912, Roche Diagnostics). Chemicals were 

obtained from Roche, (Meylan, France) Proteins were measured using the bicinchoninic acid 

method with a commercially available kit (Thermo Scientific, Rockford, IL). 

 

Perfusion protocols with inhibitors 

A second series of experiments was conducted to further examine the contribution of the main 

vasorelaxant molecules to the EDD. For this reason, we performed the experiments of the 

coronary reactivity in the presence of inhibitors in order to evaluate the contribution of NO, 

COX and potassium channels in the ACh-induced dilatation for both control and HF fed rats. 

To examine the involvement of NO, L-NAME, an inhibitor of NO synthesis, was added 
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extemporaneously to the Krebs solution at a concentration of 0.1 mM and was allowed to 

circulate during the whole perfusion. In separate experiments, indomethacin, a COX inhibitor, 

was added to the bath at a concentration of 2.5 µM and the coronary reactivity of control and 

HF rats was assessed in order to evaluate the role of prostaglandins released by the COX 

pathway. The indomethacin was prepared and diluted in 2% Na2CO3 immediately before use. 

Experiments were also conducted in the presence of both L-NAME (0.1 mM) and 

indomethacin (2.5 µM) in order to evaluate the contribution of other mediators in the EDD. 

Finally, the role of potassium channels was investigated by adding extemporaneously TEA, a 

non-selective K
+
 channel blocker, in the Krebs solution at a concentration of 10 mM. ACh- 

and SNP- responses were then performed as described previously. 

 

 Statistical analysis 

Results are presented as mean ± S.E.M. Animal weight, metabolic parameters and data 

describing the cardiac mechanical and vascular function (developed pressure, heart rate, rate 

pressure product, coronary pressure, and coronary flow) were contrasted across the two 

groups by one-way analysis of variance (ANOVA). Measures related to the action of the 

vasodilatation agents were treated with repeated-measures ANOVA to test the effect of the 

diet (external factor), that of the amount of dilatation agent (internal factor) and their 

interactions. To compare the effect of each inhibitor in each dietary group we used one-way 

repeated measures ANOVA. To determine the effect of each inhibitor in the different dietary 

groups, two-way repeated measures ANOVA with two factors (inhibitor and diet) were 

performed. When required, group means were contrasted with a Fisher’s LSD test. A 

probability (p) less than 0.05 was considered significant. Statistical analysis was performed 

using the NCSS 2004 software. 
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Results 

General data 

As shown in Table 1, the body weight of the rats fed the HF diet was not significantly 

changed. However, the abdominal adipose tissue of the HF rats was significantly increased 

compared to the control group (+113%).  This was responsible for the increase in the ratio of 

abdominal adipose tissue-to-body weight in the HF group (+96%) indicating a change of fat 

and muscle distribution in their bodies.  The heart weight of the control rats did not differ of 

that of the HF animals but the ratio heart-to-body weight was significantly decreased in the 

HF group (-18%). Plasma glucose and insulin concentration was not modified by the HF diet. 

However, a significant increase in the concentration of cholesterol and triglycerides was 

observed in the plasma of the HF rats (+48 and +20% respectively).  

 

Fatty acid composition of cardiac phospholipids 

The fatty acid composition of cardiac phospholipids was modulated by the HF diet (Table 2). 

The SFAs were significantly increased in the HF group (+8%). This increase partly occurred 

at the detriment of the total content of MUFAs (-16%). Indeed, apart from the C18:1n-9 

which was increased (+35%), the others MUFAs were significantly reduced (-52 and -43% 

for the C16:1n-7, and C18:1n-7, respectively). The n-6 polyunsaturated fatty acids (PUFAs) 

were also reduced, not only in their totality (-5%) but also regarding the 18:2n-6 (-22%). 

However, all the other n-6 PUFAs were significantly increased (+128, +130, +17, +94 and 

+109% for C20:2n-6, C20:3n-6, C20:4n-6, C22:4n-6 and C22:5n-6 respectively). The total n-

3 PUFAs were not modified by the diet despite the modifications of C20:5n-3 and C22:5n-3 (-

68 and +117% respectively). Finally, the n-6 to n-3 PUFA ratio of cardiac phospholipids was 

not affected by the HF diet. 

 



EXPERIMENTAL RESEARCH  
 

 Page 212 
 

Cardiac function study 

The results of the ex vivo cardiac function are shown in Table 3. The measured parameters 

were recorded when the heart was perfused at constant flow before the infusion of U46619. In 

the HF group, the developed pressure (LVDP) and the RPP were significantly reduced (-32 

and -27% respectively) compared to the control group. However, the significance disappeared 

when these two parameters were divided by the dry heart weight indicating a maintained 

cardiac mechanical efficiency. No changes were observed in the heart rate and coronary flow. 

The coronary pressures at baseline conditions and after the infusion of U46619 were also 

unaffected.  

 

Coronary reactivity at baseline conditions 

In the absence of inhibitors, ACh produced a dose-dependent vasodilatation (Fig. 1A) for both 

dietary groups. The EDD was significantly greater in the HF compared to the control group 

(+41% at 60 pmoles of ACh). The EID was not modified by the HF diet and reached 

approximately 23% of vasodilatation for both groups as soon as the SNP dose of 600 

picomoles was injected (Fig. 1B). Finally, the calculated ECVA was not significantly 

modified by the HF diet (Fig. 1B), but it tended to be higher in this group.  

 

Coronary reactivity in presence of inhibitors 

We examined the potential contribution of NOS, cyclooxygenase and K
+
 channels to the 

reactivity of the intact coronary microvasculature ex vivo in the control and HF groups in 

terms of EDD (Fig. 2), EID (Fig. 3) and ECVA (Fig. 4).  
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- Effects of L-NAME 

In the presence of L-NAME (Fig. 2A), dilatation to ACh was significantly reduced in both 

groups (-35% for the control and -42% for the HF group at 60 pmoles of injected ACh). The 

ACh-responses in the presence of L-NAME were similar among groups and were not 

influenced by the diet. The difference that was observed in the EDD between control and HF 

groups in the absence of inhibitors was attenuated in the presence of L-NAME, even though it 

was not totally erased. We also examined the response of the smooth muscle cells of the 

coronary microvasculature to increased doses of SNP in order to determine the maximal 

dilatation response. In the presence of L-NAME (Fig. 3A), the responses to SNP were 

significantly increased in both groups (+165% for the control and +120% for the HF group at 

600 pmoles of injected SNP). Finally, we calculated the potential contribution of L-NAME to 

ECVA (Fig. 4). In its presence, ECVA was significantly reduced in both groups (Fig. 4A) and 

almost reached null values (-91% for the control and -89% for the HF group at 60 pmoles of 

injected ACh). 

 

- Effects of indomethacin 

As shown in Fig. 2B, indomethacin did not alter the EDD in the control group but this 

parameter was significantly reduced in the HF group (-33% at 60 pmoles of injected ACh). In 

the presence of indomethacin, the difference observed in the ACh responses between control 

and HF groups in the absence of inhibitors was attenuated (from +41% to +14% at 60 pmoles 

of injected ACh) but it remained significant. The presence of indomethacin did not induce 

modifications of the EID (Fig. 3B) in the control and HF groups. Interestingly, in the presence 

of indomethacin, endothelial cells demonstrated an enhanced ECVA (Fig. 4B) in the control 

group (+50% at 60 pmoles of injected ACh) even though it did not reach significance 
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revealing the inhibition of vasoconstrictors deriving from this pathway. In the HF group, the 

ECVA was not modified by the presence of indomethacin. 

 

- Effects of L-NAME+indomethacin 

In the presence of both L-NAME+Indomethacin, ACh-induced dilatation (Fig. 2C) was 

reduced in both groups (-26 and -48% for the control and HF groups respectively at 60 

pmoles of injected ACh). The association between the two inhibitors erased totally diet-

induced difference of EDD observed in the absence of inhibitors. However, no one of these 

inhibitors, even when used together, erased completely the EDD. The responses to SNP (Fig. 

3C) were significantly increased in both groups (+183 and +84% for the control and HF 

groups respectively at 600 pmoles of injected SNP). However, this parameter was less 

increased in the HF group compared to the control one resulting in lower SNP-induced 

responses for the doses ranging from 600 to 1000 pmoles of SNP  (-26% for the HF group at 

800 pmoles of injected SNP). The ECVA (Fig. 4C) was attenuated in the control group but 

this difference did not reach significance (-69% at 60 pmoles of injected ACh) while it was 

reduced significantly in the HF group (-71% at 60 pmoles of injected ACh). 

 

- Effects of TEA 

TEA reduced dramatically the responses to ACh in both groups as depicted in Fig. 2D (-89 

and -85% for control and HF group respectively at 60 pmoles of injected ACh) reaching 

values close to zero signifying a role of K
+ 

channels for both groups. The difference that was 

observed in the EDD between control and HF groups in the absence of inhibitors was 

attenuated in the presence of TEA. The presence of TEA did not affect the EID (Fig. 3D) in 

the control group but tended to reduce it (-40% at 600 pm of SNP) while decreased it 

significantly in the HF group (-43% at 60 pmoles of injected ACh). The presence of TEA 
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reduced the ECVA (Fig. 4D) in the control group even though it did not reach significance (-

56% at 60 pmoles of injected ACh). In the HF group, ECVA was significantly reduced by the 

presence of TEA (-57% at 60 pmoles of injected ACh).   
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Discussion 

In this study, we aimed at characterizing the impact of HF diet-induced obesity on both the 

cardiac function and the intact coronary reactivity of the microvasculature ex vivo. Previous 

studies have already examined the effects of HF diets on the reactivity of isolated vessels, 

especially that of large arteries (Henderson et al., 2004; Turk et al., 2005; Mundy et al., 

2007). This is the first one that focuses on the function of the intact coronary 

microvasculature. Resistance arteries are of a great physiological importance in the control of 

vascular resistance and organ perfusion and consequently they intervene in the welfare of 

individuals. Findings from previous studies suggest that various mediator factors contribute to 

the regulation of vascular tone and their relative contribution differ among vascular beds and 

size (Chadha et al.; Holzer et al., 1994; Urakami-Harasawa et al., 1997). Thus, since the 

findings obtained in large arteries cannot be generalized there is the need to study the effects 

of a HF diet specifically on microvessels. Furthermore, the isolated heart perfusion model 

used in this study allows the evaluation of the coupling of cardiac mechanical and coronary 

functions that is not feasible in isolated vessels.  

It has been shown that obesity is related to increase incidence of cardiovascular diseases 

(Poirier et al., 2006). HF containing diets can lead to Western diet-associated obesity related 

to changes in the organism such as hyperglycemia, insulin resistance and 

hypercholesterolemia, which are associated with alterations in the endothelial function. In this 

study, obesity was induced by a HF diet containing 54% of fat. This model of diet-induced 

obesity is likely the result of the content of the diet and not of the increased caloric intake as 

happens with the Zucker rats, which are models of overfeeding-induced Type 2 diabetes 

(Clark et al., 1983). After 3 months of diet, the body weight of the animals did not change 

whereas the abdominal adiposity of the HF rats was significantly elevated. This was 

associated with increased circulating cholesterol and triglyceride levels while glucose and 
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insulin were not affected. The high values of plasma glucose observed in our animals could be 

a result of a possible meal since the rats were not fasted before sacrifice. The fact that no 

hyperglycemia was observed after 3 months of HF diet may be due to the type of the dietary 

fat. The fat content of the HF diet was 37% SFAs, 46% MUFAs, 15% n-6 PUFAs and 1% n-3 

PUFAs while for the standard diet was 24% SFAs, 23% MUFAs, 48% n-6 PUFAs and 4% n-

3 PUFAs. The fact that the fat content of the HF diet chosen was not consisted entirely by 

saturated fat might explain the state of obesity that we found in our rats. It could also explain 

any differences concerning the basic characteristics from previous studies (Jebelovszki et al., 

2008). Recently, a new syndrome has been described in humans as normal weight obesity 

(Marques-Vidal et al., 2010; Romero-Corral et al., 2010). This state is defined as an excessive 

body fat associated with normal body mass index. This could be the case for the HF fed rats in 

this study since they do have an increased adiposity but no alteration in their body weight.   

In our isolated heart perfusion model, we found that the HF rats exhibited a decreased cardiac 

mechanical activity ex vivo. Contractile dysfunction has already been described after as soon 

as 7 weeks of HF diet (Ouwens et al., 2005). More specifically, the RPP was decreased in our 

HF rat hearts and that was mainly due to the decreased LVDP as the heart rate remained 

unchanged. This result could be due to decreased cardiac metabolic efficiency that has already 

been shown in HF fed rat hearts (Cole et al., 2011). However, when these parameters were 

normalized to heart weight, these differences disappeared indicating a maintained cardiac 

mechanical efficiency. Taken together these data though, we may hypothesize that the HF-fed 

rat hearts demonstrated a diminished capacity for pumping activity and blood expulsion 

through the body of the organism. Moreover, no changes were observed in the coronary flow 

and pressure. Blood pressure in vivo has been found to be elevated or normal in HF fed rats 

that could have been influenced by intrinsic vasoregulatory mechanisms of the peripheral 

resistance arteries (Wilde et al., 2000; Barnes et al., 2003).  
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The observed cardiac function ex vivo in the HF rats could be related to the fatty acid profile 

of the cardiac membrane phospholipids that may influence lipid-protein interactions, 

inflammation and related metabolic processes (Hunte & Richers, 2008). The HF diet induced 

an increase in the SFAs in cardiac membranes at the detriment of MUFAs. This increased 

degree of saturation could negatively affect the membrane fluidity and increase its rigidity. 

Similarly, n-6 PUFAs were reduced despite the increase of the polyunsaturated fatty acids 

downstream of the linoleic acid (C18:2n-6) suggesting a stimulation of the desaturase 

enzymes in the HF fed rats. n-3 PUFAs were unaltered in their totality despite the reduced 

amount of EPA (C20:5n-3). Also, an increase in the amount of C22:5n-3 was observed 

indicating a stimulation of the elongation enzymes in this dietary group. The low ratio 

EPA/AA in the HF hearts predisposed to a balance of eicosanoids favoring platelet 

aggregation and inflammatory signaling (Abeywardena et al., 1991; Rupp et al., 2004). 

Furthermore, low levels of EPA+DHA (DHA, C22:6n-3) have been related to increased risk 

for sudden cardiac death (Rupp et al., 2004). This was not the case for our HF rats since this 

value was not different between dietary groups. Thus, it seems that the high fat diet favored a 

pro-inflammatory environment in the heart that could be associated with the decreased ex vivo 

cardiac function. Furthermore, this could be associated with a state of increased oxidative 

stress in the plasma, cytosol and mitochondria of the high-fat rats as it was shown by previous 

work in our laboratory (unpublished data). 

Interestingly, in the present study we did not observe endothelial dysfunction of the coronary 

microvessels ex vivo. In contrast, the coronary microvessels of the HF rats demonstrated an 

enhanced endothelium-dependent dilation compared with the control vessels, which could 

reflect an adaptation of the coronary system to protect the heart from ischemic incidents 

related to insufficient oxygen supply. Dilatations to SNP though did not differ among groups. 

The ECVA was not significantly different between groups even though it tended to be 
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increased in the HF rats. These data suggest that mechanisms derived from the ECs or 

mechanisms that mediate the coupling between endothelial and smooth muscle cells could be 

implicated in this increased response to ACh. Previous studies suggest that obesity may 

reduce NO levels mostly through increased oxidative stress (Cai & Harrison, 2000) and  that 

when NO bioavailability is reduced a compensatory mechanism takes place in order to 

maintain a normal coronary function (Bagi, 2009). Adaptation of coronary vessels is 

particularly important, as in the coronary circulation oxygen extraction is near maximal and 

any mismatch between blood supply and metabolic demand would deteriorate myocardial 

contractile function (Tune et al., 2004). Furthermore, the increase in body mass, either 

muscular or adipose, requires higher cardiac output and expanded intravascular volume to 

meet the elevated metabolic requirements (Lavie & Messerli, 1986). Thus, the vascular 

alterations observed in our study could help the coronary microvasculature to adjust the organ 

perfusion during physiological processes such as exercise. Otherwise the heart would not be 

able to respond to increased metabolic demands and lead eventually to ischemic incidents.  

The results of the pharmacology experiments with the use of inhibitors in the perfusate 

revealed a number of novel observations concerning both the control and HF groups. L-

NAME, an inhibitor of NOS, reduced the EDD in both groups. However, the percentage of 

the reduction was greater in the HF group suggesting that the effect of L-NAME was more 

important. An activation of NO biosynthesis elements such as the L-arginine transport has 

been reported in mice fed unsaturated (mono- or poly-unsaturated fat) HF diets (Martins et 

al., 2010) that could be also the case for our animals given the high percentage of 

monounsaturated fat in our HF diet. The significant EDD difference between dietary groups 

in the absence of inhibitors was thus disappeared with L-NAME but not totally erased. This 

was also evident by the results of ECVA, where in the presence of L-NAME no difference 

was found between dietary groups. Interestingly, despite the dramatic reduction of the ECVA 
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the EDD was not totally blocked revealing the existence of other mediators in the ACh-

response. The sensitivity to SNP was also similarly altered in both dietary groups confirming 

that the HF diet induced alterations occuring mostly at the level of ECs. Thus, these findings 

suggest that NOS pathway is implicated in the enhanced ACh response in the HF group, but 

other factors are also involved.   

Interestingly, the presence of indomethacin did not significantly alter the ACh response in the 

control group but only in the HF one indicating an important role of the COX pathway in the 

EDD of the HF animals. However, the EDD difference between dietary groups in the absence 

of inhibitors remained in the presence of indomethacin indicating the important role of NO 

pathway in this phenomenon. The sensitivity to SNP in the presence of indomethacin was the 

same between groups. This was also reflected in the ECVA results. In the control group, the 

inhibition of COX-derived mediators enhanced this parameter suggesting the inhibition of the 

vasoconstrictors (endothelial prostanoids) produced from this pathway (Antman et al., 2005). 

This was not the case for the HF group whose endothelial-dependent dilatation was not 

changed. This could imply an altered balance between COX-derived vasodilators and 

vasoconstrictors in the HF group. The HF diet seems to reduce the availability of 

vasoconstrictor mediators and maintain or even enhance that of vasodilators contributing 

eventually to the enhanced EDD. The analysis of the fatty acid content of the cardiac 

phospholipids also revealed that the AA (C20:4n-6) was increased in the HF rat hearts which 

could lead eventually to an increase in the COX-vasoactive agents (Baber et al., 2005). 

However, no data was obtained concerning the availability of these molecules, which consists 

a limitation of this study.  

The inhibition of both NOS and COX significantly reduced the Ach response in both groups 

but for the HF group their impact was greater than in the control group. This reflected the fact 

that in the HF group the L-NAME or indomethacin alone had greater impact on the ACh 
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response than they had in the control group. This resulted to the complete disappearance of 

the EDD difference between the dietary groups that was observed in the absence of inhibitors. 

The ECVA was also reduced in the presence of these two inhibitors for both dietary groups 

even though it did not reach significance in the control animals. This could be due to an 

important variability of this parameter between control individuals since the reduction 

percentage was almost the same for the two groups. These results suggest a synergistic effect 

of NOS and COX pathways (Cuzzocrea & Salvemini, 2007). It is known that many of the 

same signals such as calcium (Ledoux et al., 2006) that stimulate COX production of 

endothelium-derived prostacyclin also stimulate endothelial NO synthase (eNOS) while the 

similar dilator properties of NO and prostacyclin suggest some degree of interaction 

(Beierwaltes, 2002) as already reported (Cheng et al., 2006). However, a role of smooth 

muscle cells is also revealed for the HF group as shown by the significant EID difference 

between groups in the presence of L-NAME + indomethacin. Moreover, these results revealed 

the existence of other vasoactive agents contributing to the coronary microvessel 

vasodilatation since the action of L-NAME + indomethacin did not abolish the response to 

ACh. This response became almost null with the inhibition of the potassium channels with 

TEA in the dietary groups revealing the major role of the potassium channels in this response. 

TEA also reduced the SNP-responses of both dietary groups even though it did not reach 

significance in the control animals. Similar were the results for the ECVA. This could be due 

to an important variability of this parameter between control individuals since the reduction 

percentage was almost the same for the two dietary groups. Thus, these data indicate a major 

role of potassium channels of endothelial and smooth muscle cells in the coronary 

microvascular reactivity. It has already been described that the relative contribution of 

vasodilating mediators change according to the vessel size and that EDHF is more important 

in small size vessels (Urakami-Harasawa et al., 1997). EDHF acts via activation of K
+
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channels (Murphy & Brayden, 1995) and our findings support an important contribution of 

EDHF in the regulation of coronary microvascular tone. It should be noted thought that NO 

may also act via K
+
 channels (Bolotina et al., 1994), which could explain also the fact that 

EDD was almost totally suppressed with the inhibition of these channels.  

Thus, our observations confirm the importance of potassium channels in the ACh response of 

the coronary microvasculature and the synergistic role of NO and COX-derived vasodilators. 

The findings of the present study suggest that this type of HF diet creates a proinflammatory 

environment in the heart that could be related to the decreased ex vivo cardiac mechanical 

activity. Despite all these alterations, the coronary microvasculature of HF fed obese rats 

adapts resulting to enhanced ACh responses in order to maintain an adequate tissue perfusion 

in cases of physiological processes of enhanced metabolic demand such as exercise. The HF 

diet appears to induce alterations at the level of NOS and COX pathway, which contribute 

together to the enhanced ACh response of the HF coronary microvessels. The HF-induced 

increase in coronary reserve favors the upholding of tissue perfusion and welfare of obese 

individuals. 
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Figure Legends 

Figure 1. Effect of the high-fat diet on the endothelial-dependent dilatation (EDD, panel A), 

endothelial-independent dilatation (EID, panel B) and endothelial cell vasodilatation activity 

(ECVA, panel C) of the coronary microvascular network of the perfused hearts. The number 

of experiments was 8 for each group. HF: high-fat group; ACh: acetylcholine; SNP: sodium 

nitroprusside. *: significantly different. 

Figure 2. Effects of diet and L-NAME (panel A), indomethacin (panel B), L-NAME plus 

indomethacin (panel C) and tetraetylammonium (panel D) on the endothelial-dependent 

dilatation (EDD) of the coronary microvasculature. The number of experiments was 8 for 

each group. HF: high-fat group; Indo: indomethacin; TEA: tetraethylammonium; ACh: 

acetylcholine; SNP: sodium nitroprusside. *: significant difference between control and HF 

groups in the absence of inhibitors; #: significant difference between control and HF in the 

presence of inhibitors; $: significant difference between control groups in the absence and 

presence of inhibitors; †: significant difference between HF groups in the absence and 

presence of inhibitors. 

Figure 3. Effects of diet and L-NAME (panel A), indomethacin (panel B), L-NAME plus 

indomethacin (panel C) and tetraetylammonium (panel D) on the endothelial-independent 

dilatation (EID) of the coronary microvasculature. The number of experiments was 8 for each 

group. HF: high-fat group; Indo: indomethacin; TEA: tetraethylammonium; ACh: 

acetylcholine; SNP: sodium nitroprusside. #: significant difference between control and HF in 

the presence of inhibitors; $: significant difference between control groups in the absence and 

presence of inhibitors; †: significant difference between HF groups in the absence and 

presence of inhibitors. 

Figure 4. Effects of diet and L-NAME (panel A), indomethacin (panel B), L-NAME plus 

indomethacin (panel C) and tetraetylammonium (panel D) on the endothelial cell 
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vasodilatation activity (ECVA) of the coronary microvasculature. The number of experiments 

was 8 for each group. HF: high-fat group; Indo: indomethacin; TEA: tetraethylammonium; 

ACh: acetylcholine; SNP: sodium nitroprusside. $: significant difference between control 

groups in the absence and presence of inhibitors; †: significant difference between HF groups 

in the absence and presence of inhibitors. 
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Table 1. Basic characteristics of the animals 

 

The number of experiments was 8 for each group. ww: wet weight; dw: dry weight; AAT: 

abdominal adipose tissue; BW: body weight; HW: heart weight; C: control group; HF: high-

fat fed group. *: significantly different. 

 

 

 

 

 

 

 

 

 

 

  

 

C HF 

BW (g of ww) 438 ± 7 472 ± 19 

Abdominal adipose tissue (g of ww) 11.9 ± 1.4 25.3 ± 3.3* 

AAT/BW (g of ww/g of BW) 0.027 ± 0.003 0.053 ± 0.006* 

Heart weight (mg of dw) 251 ± 7 222 ± 16 

HW/BW (mg of dw/g of BW) 0.57 ± 0.01   0.47  ± 0.03* 

Glucose (mM) 8.5 ±0.6 9.1 ± 0.1 

Insulin (ng/ml) 1.53 ± 0.17 2.09 ± 0.87 

Triglycerides (g/l) 1.00 ± 0.04 1.20 ± 0.10* 

Cholesterol (g/l) 0.59 ± 0.06 0.88 ± 0.05* 
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Table 2.  Fatty acid composition of cardiac membrane phospholipids  

 

The number of experiments was 5 for each group. Values are expressed as relative amounts of 

the total fatty acid content. DMA: dimethylacetal; SFA: saturated fatty acids; MUFA: 

monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; EPA: eicosapentaenoic acid; 

AA: arachidonic acid; DHA: docosahexaenoic acid; C: control group; HF: high-fat fed group. 

*: significantly different. 

 

Fatty acids (%) C HF 

14:0 0.10 ± 0.01 0.05±0.01* 

DMA16:0 3.19 ± 0.18 3.27 ± 0.20 

16:0 14.01 ± 0.73 10.69 ± 0.49* 

DMA18:0 1.09 ± 0.06  2.54 ± 0.11* 

18:0 21.50 ± 0.37 26.68 ± 0.47* 

SFA 39.90 ± 1.3 43.20 ± 0.80* 

16:1n-7 0.33 ± 0.03 0.16 ± 0.01* 

18:1n-9 3.08 ± 0.15 4.15 ± 0.17* 

18:1n-7 5.25 ± 0.18 2.98 ± 0.06* 

MUFA 8.67 ± 0.20 7.29 ± 0.19* 

18:2n-6 26.59 ± 1.36 20.77 ± 0.95* 

20:2n-6 0.09 ± 0.01 0.20 ± 0.01* 

20:3n-6 0.27 ± 0.03 0.59 ± 0.03* 

20:4n-6 17.14 ± 0.36 19.98 ± 0.82* 

22:4n-6 0.25 ± 0.01 0.48 ± 0.03* 

22:5n-6 0.22 ± 0.02 0.47 ± 0.03* 

n-6 PUFA 44.54 ± 1.20 42.48 ± 0.61*  

20:5n-3 0.14 ± 0.01 0.05 ± 0.01* 

22:5n-3 0.80 ± 0.06 1.74 ± 0.11* 

22:6n-3 5.95 ± 0.45 5.21 ± 0.38 

n-3 PUFA 6.90 ± 0.51 7.00 ± 0.45 

PUFA 

n-6/n-3 

51.40 ± 1.42 49.5 ± 0.83 

6.57 ± 0.40 6.26 ± 0.42 

Total 16:0 17.20 ± 0.87 13.96 ± 0.62* 

Total 18:0 22.60 ± 0.40 29.2 ± 0.50* 

Total 18:1 8.34 ± 0.20 7.13 ± 0.19* 

EPA/AA 0.008 ± 0.001 0.002 ± 0.001* 

EPA+DHA 6.09 ± 0.46 5.26 ± 0.38 
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Table 3.  Ex vivo cardiac function  

 

The number of experiments was 8 for each group. HR: heart rate; LVDP: left ventricle 

developed pressure; RPP: rate pressure product; CF: coronary flow; CP: coronary pressure; C: 

control group; HF: high-fat fed group. *: significantly different. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C HF 

HR (beats/min) 288 ± 29 267 ± 16 

LVDP (mmHg) 92 ± 10 63 ± 3* 

LVDP/HW (mmHg/g dw) 370 ± 42 304 ± 33 

RPP (mHg/min) 22.9 ± 3.1 16.7 ± 1.2* 

RPP/HW (mHg/g dw) 92 ± 9 80 ± 10 

CF (ml/min/g dry weight) 40 ± 5 41 ± 6 

CP  before U46619 (mmHg) 65.6 ± 4.9 67.9 ± 3.7 

CP after U46619 (mmHg) 94 ± 3 112 ± 6. 
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3.6 ARTICLE V 

 

 

“Preserved endothelium-dependent dilatation of the coronary 

microvasculature at the early phase of diabetes mellitus despite the 

increased oxidative stress and depressed cardiac mechanical function ex 

vivo” 

 

 

This work will be submitted to the journal “Cardiovascular Diabetology”. 
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Abstract  

Background 

There has been accumulating evidence associating diabetes mellitus and vascular 

dysfunctions. However, most of the studies are focused on the late stages of diabetes and on 

the function of large arteries. This study aimed at characterizing the effects of the early phase 

of diabetes mellitus on the function of the intact coronary microvasculature. 

 

Materials and methods 

Zucker diabetic fatty rats and their lean littermates fed with standard diet A04 (Safe) were 

studied at the 11
th

 week of age. Biochemical parameters such as glucose, insulin and 

triglycerides levels as well as their oxidative stress status were measured. Their hearts were 

perfused ex vivo according to Langendorff and their cardiac activity and coronary 

microvascular reactivity were evaluated. 

 

Results 

Zucker fatty rats already exhibited a diabetic state at this age as demonstrated by the elevated 

levels of plasma glucose, insulin, glycated hemoglobin and triglycerides. The ex vivo 

perfusion of their hearts revealed a decreased cardiac mechanical function and coronary flow. 

This was accompanied by an increase in the overall oxidative stress of the organism. 

However, estimation of the active form of endothelial nitric oxide synthase and coronary 

reactivity indicated a preserved function of the coronary microvessels at this phase of the 

disease. Diabetes affected also the cardiac membrane phospholipid fatty acid composition by 

increasing the arachidonic acid and n-3 polyunsaturated fatty acids levels.  
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Conclusions: The presence of diabetes, even at its beginning, significantly increased the 

overall oxidative stress of the organism resulting to decreased cardiac mechanical activity ex 

vivo. However, a number of adaptations were adopted at this early phase of the disease 

regarding the cardiac phospholipid composition and the preserved coronary microvascular 

reactivity in order to provide a certain protection to the heart and support the increased cardiac 

work. 

 

Key Words: diabetes mellitus, insulin resistance, coronary reactivity, microvasculature, 

mechanical function, oxidative stress 
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Background 

The prevalence of Type 2 Diabetes (T2D) is increasing at an alarming rate assuming epidemic dimensions in 

industrialized societies [1]. Individuals with T2D have increased risk for developing cardiovascular diseases 

(CVDs), which is the main cause of early mortality and morbidity in the Western world [2]. Insulin resistance 

and T2D usually result from excess intake of deleterious nutrients such as saturated and trans fatty acids [3]. 

Consequent metabolic changes such as hyperinsulinemia and hyperglycemia [4] can provoke vascular lesions 

and endothelial dysfunctions at both micro- and macro-circulations [5-8]. The vulnerability of the coronary 

circulation to the diabetic milieu can lead to endothelial dysfunction at this bed, which consists a significant 

biomarker of early coronary artery disease independently of atherosclerosis [9].  

An accurate experimental model in order to clarify the mechanisms responsible for the 

pathophysiology of diabetes evolution and its complications is the inbred Zucker diabetic 

fatty (ZDF) rat. The homozygous fa/fa Zucker rat exhibits hyperphagia caused by a non-

functioning leptin receptor. This leads to the development of obesity, hyperglycemia, 

hyperinsulinemia and finally diabetes at a young age [10, 11]. Previous studies on these rats in 

the later stages of diabetes have demonstrated that chronic hyperglycemia and hyperlipidemia 

can result to inflammation [12, 13], increased oxidative stress and vascular dysfunction [14, 

15]. Coppey et al. [16] have shown that the endothelium-mediated responses to acetylcholine 

(Ach) are attenuated in epineurial arterioles of the sciatic nerve in diabetic ZDF rats. A key 

feature is the reduced production of nitric oxide (NO), a compound which mediates 

endothelium-dependent vasorelaxation and inhibits inflammation. In T2D, its bioavailability 

can be diminished either by the impaired insulin signaling either by the action of reactive 

oxygen species (ROS) [17].  

Although the consequences of the later stages of T2D on the cardiac and endothelial function 

are well characterized, less is known concerning the early period of the disease where an 

interventional treatment may be more effective. Furthermore, most studies are focused on the 

endothelial function and perfusion of large arteries [18-20] and few on the coronary function 

of resistance vessels. The primary function of the coronary microcirculation is to optimize 
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nutrient and oxygen supply to the heart in response to any metabolic demand by coordinating 

the resistances within different microvascular domains, each governed by distinct regulatory 

mechanisms [21]. Coronary resistance arteries are capable of adapting to acute or chronic 

increases in blood flow leading to an increased NO-mediated relaxation and a consequent 

enlargement of their diameter. Furthermore, endothelial dysfunction in resistance arteries 

seems to precede that of large arteries [22]. Although there is strong evidence indicating that 

T2D is associated with impaired vasodilator responses of both peripheral and coronary 

vessels, Oltman et al. [22] have demonstrated that in diabetic young (8- to 12 wk old) ZDF 

rats the coronary arteriolar dilation to Ach of isolated microvessels is preserved. However, 

these in vitro studies isolate the coronary system from the cardiac environment and its 

influences.  

Thus, the aim of this study was to characterize the diabetic state of young ZDF rats, the levels of the oxidative 

stress in their organisms and the ex vivo cardiac function. We also evaluated the fatty acid profile of cardiac 

membrane phospholipids since any modification at this level leads to functional changes in lipid-protein 

interactions and related signalling pathways. Finally, we assessed the endothelial function of the intact coronary 

microvasculature in terms of endothelium-dependent and -independent vasodilatations in an ex vivo heart 

perfusion model at this phase of T2D. The NO production in aortas and hearts was evaluated indirectly by 

estimating the degree of phosphorylation of the endothelial NO-synthase (eNOS) at serine 1177.  

Methods  

Animals and experimental design 

All experiments followed the European Union recommendations concerning the care and use 

of laboratory animals for experimental and scientific purposes. All animal work was approved 

by the local board of ethics for animal experimentation (Cometh) and notified to the research 

animal facility of our laboratory (authorization n° 38 07 23).     

Ten ZDF rats and eleven Zucker lean (ZL) rats were obtained from Charles Rivers 

(L’Arbresle, France) at 7 weeks (wk) of age. The two groups were fed ad libitum with a 

standard carbohydrate diet (A04, Safe, Augy, France), they had free access to water and their 
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body weight and food intake were recorded twice weekly. The composition of the chosen diet 

by weight is 60% assimilable glucides (52% mainly starch and cellulose), 16% proteins and 

3% fat. After analysis of the fatty acid composition of our diet we found a formula with 

approximately 24% of saturated fatty acids (SFAs), 23% of monounsaturated fatty acids 

(MUFAs), 48% of n-6 polyunsaturated fatty acids (PUFAs) and 4.5% of n-3 PUFAs.  

Plasma glucose and glycated hemoglobin (HbA1c) concentrations were also measured weekly 

via the tail vein. On the day of the experiment, the rats were weighed and heparinized (1500 

I.U./kg) intraperitoneally 30 minutes (min) before their decapitation. Blood samples were 

collected for further biochemical analysis and their adipose tissue was quantified for 

determination of the abdominal fat mass. 

 

Cardiac function study 

All rats underwent ex vivo Langendorff assessment of their cardiac function. For this reason, a 

rapid thoracotomy was performed and the heart was immediately collected in Krebs-Heinselet 

solution maintained at 4
o
C. It was then rapidly (less than one minute to avoid problems of 

cellular damages or preconditioning) perfused at constant pressure according to the 

Langendorff mode with a Krebs–Heinselett buffer containing (in mM) NaCl 119, MgSO4 1.2, 

KCl 4.8, NaHCO3 25, KH2PO4 1.2, CaCl2 1.2 and glucose 11 mM as sole energy substrate. 

The buffer was maintained at 37
o
C and continuously oxygenated with carbogen (95% O2/5% 

CO2). A latex balloon connected to a pressure probe was inserted into the left ventricle and 

filled until the diastolic pressure reached a value of 7–8 mmHg. This allowed the monitoring 

of heart rate, systolic, diastolic and left ventricle developed pressures throughout the perfusion 

protocol. A pressure gauge inserted into the perfusion circuit just upstream the aortic cannula 

allowed the evaluation of the coronary pressure. The heart was perfused at constant pressure 

of 59 mmHg for 30 minutes and the coronary flow for each heart was evaluated by weight 
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determination of 1-min collected samples at the 25
th

 min of perfusion. After this period, the 

heart was perfused at constant flow conditions, for which the flow rate was adjusted in order 

to obtain the same coronary flow as in the preparation at constant pressure. The systolic, 

diastolic and left ventricle developed pressures as well as the heart rate were determined after 

10 min of perfusion at forced flow in order to allow a satisfying stabilization of the heart. The 

left ventricle developed pressure was calculating by subtracting the diastolic pressure to the 

systolic pressure. The rate-pressure product (RPP) was defined as the product of left ventricle 

developed pressure and heart rate and was used as indicator of the cardiac mechanical work 

[23]. All the parameters were recorded and analyzed with a computer using the HSE IsoHeart 

software (Hugo Sachs Elektronik, March-Hugstetten, Germany).  

 

Coronary Reactivity 

After the evaluation of the cardiac function at constant flow, we assessed the effects of 

diabetes on the coronary reactivity. After the 10-min equilibration period at constant flow, the 

coronary tone was raised by using the thromboxane analog U46619 (30nM), which was 

constantly infused into the perfusion system near the aortic cannula at a rate never exceeding 

1.5% of the coronary flow. This allowed the obtainment of a coronary pressure between 120 

and 130 mmHg. In our model of perfusion at forced flow, the aortic pressure equaled the 

coronary pressure and changes in the coronary tone triggered modifications of the aortic 

pressure. Changes in aortic perfusion pressure were thus used to monitor changes in coronary 

tone. Furthermore, this experimental model allows the evaluation of the coronary 

microvasculature reactivity since the coronary resistance vessels determine the overall 

coronary pressure. Relaxation responses to Ach (4, 10, 20, 40, 60, 80 and 100 pmoles) and 

sodium nitroprusside (SNP, 100, 200, 400, 600, 800 and 1000 pmoles) injections were 
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determined reflecting the endothelial-dependent vasodilatation (EDD) and endothelium-

independent vasodilatation (EID) respectively. 

The dilatation amplitude was calculated as the ratio between the maximal decrease in the 

coronary pressure and the coronary pressure just before the injection of the dilatation agents.  

Since the heart weight and coronary volume were subjected to intra- and inter-group 

variations, a correction was performed to normalise the input-function of the vasodilatation 

agents according to the coronary flow. The dose-response curve between the amount of 

vasodilatation agent injected and the maximal vasodilatation was then fitted to a logarithm 

function for each heart which allowed the fulfillment of statistical analyses. Moreover, the 

vasodilatation activity of the endothelial cells was also estimated from the corrected EDD and 

EID curves. For each heart and each injected Ach dose, the amount of SNP (reflecting the 

amount of vasodilator agents) necessary to obtain the same percentage of Ach-induced 

vasodilatation was extracted from the EID curve according to the formula: endothelial cell 

vasodilatation activity (ECVA) = e 
[(% Ach-induced dilatation - b) / a]

, where a and b are the coefficients 

of the theoretical EID curve. The results were expressed in pmole equivalents of 

nitroprusside. At the end of the perfusion protocol, the hearts were freeze-clamped and stored 

at -80°C until the biochemical analyses were performed. 

 

Oxidative stress measurements 

i. Plasma oxidative stress 

Protein oxidation in the plasma was evaluated by the disappearance of protein thiol groups 

[24]. Plasma thiols were assayed in 20 μl of plasma, using 5,5'-dithiobis(2-nitrobenzoic acid 

(DTNB)) for deriving the thiol groups. The calibration curve was obtained by mixing two 

stock solutions of N-acetyl cystein (NAC) in the range of 0.125–0.6 mmol/l. Standards and 

plasma samples were measured spectrophotometrically at 415 nm (Hitachi 912, B Braun 
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Science Tec, France) in the presence of a phosphate buffer 50 mM, EDTA 100 mM, pH 8 and 

bis-5,5'-dithio-bis(2-nitrobenzoic acid) 10 mM.  

The antioxidant status of the plasma was evaluated using ferric reducing antioxidant power 

(FRAP) assay as a global marker of the antioxidant power. The FRAP assay uses antioxidants 

as reductants in a redox-linked colorimetric method. In this assay, at low pH, a ferric-

tripyridyltriazine (Fe
III

-TPTZ) complex is reduced to the ferrous form, which is blue and 

monitored by measuring the change in absorption at 593 nm. The change in absorbance is 

directly proportional to the reducing power of the electron-donating antioxidants present in 

plasma. The absorbance change is translated into a FRAP value (in μmol/l) by relating the 

change of absorbance at 593 nm of test sample to that of a standard solution of known FRAP 

value.  

Glutathione peroxidase (GPx) activity, which is a seleno-enzyme involved in protection 

against hydrogen peroxide H2O2 was evaluated by the modified method of Gunzler [25] using 

terbutyl hydroperoxide (Sigma Chemical Co, Via Coger, Paris, France) as a substrate instead 

of hydrogen peroxide.  

ii. Cytosolic Oxidative stress 

Lactate and pyruvate released in the coronary effluents were spectrophotometrically assayed 

according to Bergmeyer [26]. The lactate to pyruvate ratio was calculated to estimate the 

cytosolic redox potential [27]. This is a highly specific assay using the enzyme lactate 

dehydrogenase (LDH) to catalyze the reversible reaction of pyruvate and NADH to lactate 

and NAD
+
. The catalytic action of LDH permits spectrophotometric measurement at 340 nm 

(spectrophotometer ULTROSPEC
TM

 2100 pro, Amersham Biosciences, Uppsala, Sweden) of 

lactate production in terms of the generation of NADH in the reaction shown above. To 

measure lactate, the reaction is carried out from right to left with excess NAD
+
. To force the 

reaction to completion in this direction, it is necessary to trap formed pyruvate with 
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hydrazine. The increased absorbance at 340 nm due to NADH formation becomes a mole-to-

mole measure of the lactate originally present in the sample.  

 

iii. Mitochondrial oxidative stress 

The ratio between the activities of aconitase and fumarase of the myocardium was calculated 

as an indicator of mitochondrial ROS production. Aconitase and fumarase activities were 

determined according to Gardner et al. [28], but were measured after extraction with a 

medium supplemented with citrate sodium (1M) in order to stabilize the aconitase activity ex 

vivo. Values of aconitase and fumarase activities were determined on the same extract for 

each biological sample.  

 

Respiratory chain complexes and citrate synthase activities 

Activities of the NADH-ubiquinone oxydo-reductase (complex I), succinate-ubiquinone 

oxydo-reductase (complex II), ubiquinol cytochrome c reductase (complex III), cytochrome c 

oxidase (complex IV), NADH cytochrome c reductase (activity of complex I+III) and 

succinate cytochrome c reductase (activity of complex II+III) were determined as previously 

described [29]. Heart samples (100 mg) were homogenized at 4°C with 0.9 ml of a potassium 

phosphate buffer 100 mM, pH 7.4. The homogenates were centrifuged (1,500×g, 5 min, 4°C), 

and the resulting supernatants were stored at −80°C until the determination of the various 

enzymatic activities. Activity of the citrate synthase was determined according to Faloona and 

Srere [30]. The activities of the respiratory chain complexes and citrate synthase were 

expressed in units per mg of proteins.  
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Western blot 

The expressions of total eNOS and phosphorylated eNOS at Ser1177 was evaluated by 

Western blot. Frozen samples were homogenized in ice-cold lysis buffer containing 20 mM 

Tris (pH 7.8), 137 mM NaCl, 2.7 mM KCl, 1 mM MgCl2, 1% Triton X-100, 10% (w/v) 

glycerol, 10 mM NaF, 1 mM ethylenediaminetetraacetic acid, 5 mM Na pyrophosphate, 0.5 

mM Na3VO4, 1 μg/ml leupeptin, 0.2 mM phenylmethylsulfonyl fluoride  and 1 mM 

benzamidine. The homogenates were centrifuged at 5,000 g for 20 min at 4°C, and the protein 

concentration in the supernatant was determined in each aliquot. Protein extracts (50 µg/lane) 

were loaded onto a 10% SDS gel and separated by electrophoresis. Extracts from the control 

group were loaded on both gels, and the amount of protein was accordingly compared 

pairwise. Proteins were transferred to nitrocellulose membranes. The membranes were 

incubated overnight at 4°C with rabbit antibodies against total eNOS (1:150, 

Thermoscientific, Illkirch, France) and phosphospecific mouse antibodies against eNOS 

Ser1177 (1:1,000, BD Biosciences Pharmingen, Le Pont de Claix, France). After being 

washed in TBS-Tween, the membranes were incubated with horseradish peroxidase-

conjugated anti-mouse IgG for eNOS Ser1177 (1:3000, Jackson Immunoresearch, Montluçon, 

France) and anti-rabbit IgG for total eNOS (1:20000, Jackson Immunoresearch, Montluçon, 

France) for 1h at room temperature, followed by additional washing. Proteins were visualized 

by enhanced chemiluminescence with ECL advanced Western blotting detection kit 

(Amersham Biosciences, Brumath, France) and quantified using densitometry and Image J 

software. PAN-Actin (1:1000, Cell Signaling Technology, St-Quentin-en-Yvelines, France) 

was used as a loading control. 
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Fatty acid composition of cardiac phospholipids  

The phospholipid fatty acid composition was determined in cardiac homogenates as 

previously described [31]. The lipids were extracted according to Folch et al. [32]. The 

phospholipids were separated from non-phosphorus lipids using a Sep-pack cartridge [33]. 

After transmethylation, the fatty acid methyl esters were separated and analyzed by gas 

chromatography. 

 

Other biochemical determinations 

Blood glucose concentrations were determined with a glucose analyzer (ACCU-CHECK 

Active, Softclix). Plasma insulin concentrations were determined using a radioimmunoassay 

kit (ICN Pharmaceuticals, Orangeburg, SC). Plasma triglyceride and cholesterol levels were 

measured using commercially available kits from Biomérieux (Craponne, France) and Roche 

(Boulogne-Billancourt, France), respectively. HbA1c levels were evaluated with the kit Bayer 

Healthcare’s analyser A1cNow® determined in blood samples (5 μl) drawn from the rat 

fingers. Proteins were measured using the bicinchoninic acid method with a commercially 

available kit (Thermo Scientific, Rockford, IL). 

 

Statistical analysis 

Results are presented as mean ± S.E.M. Animal weight, heart dry weight, glycemia, activity 

of respiratory chain complexes, aconitase-to-fumarase ratio and data describing the cardiac 

mechanical and vascular function (developed pressure, heart rate, rate pressure product, 

coronary pressure, and coronary flow) were contrasted across the two groups by one-way 

analysis of variance (ANOVA). Measures related to the action of the vasodilatation agents 

were treated with repeated-measures ANOVA to test the effect of the diabetes of ZDF rats 

(external factor), that of the amount of dilatation agent (internal factor) and their interaction. 
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When required, group means were contrasted with a Fisher’s LSD test. A probability (p) less 

than 0.05 was considered significant. Statistical analysis was performed using the NCSS 2004 

software. 
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Results 

General data 

As shown in Figure 1, the food intake was always higher in the ZDF compared to the ZL 

group (+85% at the 9
th

 wk of age), which provoked their increased body weight (+21% at the 

day of the sacrifice). Consequently, based on the analysis of the diet ingredients, the ZDF 

group consumed greater amounts of fat than the lean group. The abdominal fat mass was 

partly responsible for the increased body weight since the mesenteric, retroperitoneal and 

visceral adipose tissues were significantly heavier as shown in table 1. However, the heart 

weight of the ZDF rats did not differ of that of the ZL animals (Table 1). 

Figure 2 shows that the blood glucose concentration of the ZDF rats was increased as soon as 

the 7
th

 wk of age and reached a value close to 5 g/l at the 9
th

 wk (+276% compared to the ZL 

rats). The hyperglycemia triggered an increase in HbA1c already significant at the 9
th

 wk 

(+56%) and a huge augmentation of the insulinemia (+244% at the moment of the sacrifice). 

The plasma triglyceride and cholesterol concentrations were also significantly higher for the 

ZDF rats at the moment of the sacrifice. 

 

Oxidative stress 

The mitochondrial-derived oxidative stress was estimated in cardiac homogenates by the 

aconitase-to-fumarase ratio. As shown in Figure 3A, the ratio was significantly reduced in the 

ZDF group (-41%), indicating an increase in the cardiac mitochondrial oxidative stress. The 

lactate-to-pyruvate ratio in the coronary effluents (Figure 3B) was also decreased in the ZDF 

group (-34%) indicating an increase in the cytosolic oxidative stress. In the plasma, even 

though the antioxidant enzyme GPx was significantly increased in the ZDF group (+21.5%, 

Figure 3C), the global antioxidant power as estimated by the FRAP assay was significantly 
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decreased (-15,6%, Fig. 3D). This was accompanied by a decrease in the plasma thiol groups 

(Figure 3E), which however did not reach significance.  

 

Mitochondrial enzymatic activities 

Citrate synthase was significantly increased (+4.5%) in the ZDF group as shown by the values 

for the ZL versus the ZDF rats in table 3. When normalized to the amount of myocardial 

proteins, the activity of the cytochrome oxidase was increased in the ZDF group (+20%). No 

modifications concerning the activities of the other respiratory chain complexes were 

observed. 

 

 

Fatty acid composition of cardiac phospholipids 

The fatty acid composition of cardiac membrane phospholipids was modulated by the 

development of diabetes (Table 2). The SFAs were significantly increased in the ZDF group 

(+24%), especially the 18:0 (+33%). This increase partly occurred at the detriment of the 

MUFAs. Indeed, all the MUFAs were reduced (-36, -27 and -42% for the 16:1n-7, 18:1n-9 

and 18:1n-7, respectively). The n-6 PUFAs were also reduced, not only in their totality (-

18%) but also regarding the 18:2n-6 (-52%). However, the 20:3 n-6 and 20:4 n-6 were 

significantly increased (+152 and +47%, respectively). The important reduction of the n-6 

PUFAs was accompanied by an increase in n-3 PUFAs (+98%). This was particularly true for 

the 22:5 n-3 and 22:6 n-3 levels (+130 and + 97%, respectively). Finally, the n-6 to n-3 PUFA 

ratio of cardiac phospholipids was reduced by the occurence of diabetes (-60%). 
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Cardiac function study 

The results of the ex vivo cardiac function are shown in table 4. The measured parameters 

were recorded when the heart was perfused at constant flow before the infusion of U46619. In 

the ZDF group, the RPP was reduced (-35%) compared to the ZL group. This was due to a 

reduction of the heart rate (-42%), since the left ventricle developed pressure was slightly 

increased (+18.2%). The changes in the RPP were consequently related to the observed 

decrease in coronary flow (-25%), but the coronary pressure was unaffected. The infusion of 

U46619 raised the coronary pressure from 80 mmHg to a value close to 125 mmHg in both 

groups. 

Coronary reactivity 

Figure 4A depicts an EDD, which was similar in the two groups, reaching 15% of dilatation 

as soon as 40 pmoles of Ach were injected. The EID was significantly increased in the ZDF 

group (Figure 4B) as soon as the SNP dose of 600 picomoles was injected (+14, +16 and 

+18% at the doses of 600, 800 and 1000 pmoles of SNP, respectively). Finally, the ECVA 

was not modified by the occurrence of diabetes (Figure 4C). 

 

eNOS expression and phosphorylation 

The eNOS expression and its phosphorylation at Ser1177 were evaluated in aortic and cardiac 

homogenates of both groups. No difference was observed between groups in the expression 

and phosphorylation of the enzyme neither in the aorta (Figures 5A and 5B) nor in the heart 

(Figures 5C and 5D). 
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Discussion  

Even though several studies have examined the effects of diabetes on the vascular function, 

most of them used techniques of isolated vessels and most of them examined the late stages of 

diabetes [22, 34]. This is the first study that focuses on the effects of T2D on the intact 

coronary microvasculature at the early phase of the disease. This study addressed cardiac 

mechanical function in an isolated heart model that provided also the opportunity to study the 

vascular functionality in the intact coronary circulation. This allowed the analysis of the 

coupling of cardiac and coronary function, which is not feasible in isolated vessels. 

The ZDF rat has been well characterized as experimental model of type 2 diabetes. The ZL 

rats in our study ate a normal amount of diet (approximately 20 g/day) and exhibited low 

blood glucose concentration (1 g/l) and proportion of HbA1c (approximately 4%) between the 

7
th

 and 11
th

 wk of life. Their insulinemia was also low (1 µg/l) at the moment of sacrifice. In 

contrast, the ZDF animals consumed greater amounts of food (more than 30 g/day) that 

resulted to a higher body weight during the whole course of the experiment. Their blood 

analysis revealed a glycemia reaching 5 g/l at the 9
th

 wk of age and a proportion of HbA1c 

close to 9% representing an already established diabetic state. The insulinemia at the 11
th

 

week was almost 4 times higher than that of the ZL control animals, indicating functional β 

cells in the Langerhans islets despite the high blood glucose concentration. Furthermore, their 

plasma triglycerides and cholesterol levels were approximately 2 times higher than those of 

the lean animals. All these characteristics associated with the fact that the visceral fat mass 

was abnormally high, clearly demonstrate that the ZDF animals displayed a severe insulin 

resistance responsible for the development of type-2 diabetes, which corresponds to a stage of 

early human type 2 diabetes.  

In our study, the presence of diabetes provoked an enhanced cytosolic and mitochondrial 

oxidative stress in the hearts of the ZDF rats as observed by the lactate-to-pyruvate and 
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aconitase-to-fumarase ratios respectively. It seems though that the respiratory chain 

complexes (RCC) were not implicated in the development of this mitochondrial oxidative 

stress, especially since the CIV activity was increased in the ZDF animals. It has been 

previously proposed that an up-regulation of CIV activity without any other changes in the 

other RCC or citrate synthase activities may serve to reduce any production of oxidative stress 

by the electron transport chain and improve the electron flux [35]. However, it is probable that 

a lack of mitochondrial antioxidant defenses could result to the increased mitochondrial 

oxidative stress observed in this study. Furthermore, the plasma antioxidant capacity from 

ZDF rats was significantly decreased despite the increase of the GPx enzyme activity. This 

indicates an increased presence of ROS in their plasma as evidenced also by the 

disappearance of the plasma thiol groups, even though it did not reach absolute significance 

(p=0.079, ANOVA).  Thus, an increased oxidative stress was already present in the cardiac 

tissue and plasma at the early phase of T2D despite the effort of the organism (CIV and GPx 

activities) to eliminate it.  

The development of T2D also induced changes in the fatty acid profile of cardiac membrane 

phospholipids that may influence lipid-protein interactions, inflammation and related 

metabolic processes. In particular, an increase in the SFAs in cardiac membranes was 

observed to the detriment of MUFAs. This increased degree of saturation could negatively 

affect the membrane fluidity and increase its rigidity. However, an increase in the PUFAs 

content, in particular the C20:4 n-6 (arachidonic acid, AA), C22:5 n-3 (docosapentaenoic 

acid, DPA) and C22:6 n-3 (docosahexanoic acid, DHA) contents, was observed probably as 

an effort to maintain a proper membrane fluidity degree. Moreover, these increases seem to 

result from stimulation of the desaturation and elongation enzymes in the organism of the 

ZDF rats rather from an increase in the concentration of the initial phospholipids of the 

PUFAs metabolisms (e.g. C18:2 n-6 and C20:5 n-3 for n-6 and n-3 respectively). It has been 
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observed that tissues such as heart, kidney and liver from diabetic rats are characterized by a 

decrease in arachidonylated phospholipids and an increase in phospholipids containing 

linoleic acid (LA, C18:2 n-6). However, these modifications are mostly related to the later 

stages of diabetes. The n-3 and n-6 PUFAs of membrane phospholipids are also responsible 

for the production of anti- and pro-inflammatory molecules respectively. The low ratio 

EPA/AA found in our ZDF rats predisposes to a balance of eicosanoids favouring platelet 

aggregation and inflammatory mediator signalling [36]. The development of a compensatory 

mechanism might thus be in question as the levels of n-3 PUFAs were increased in the ZDF 

group. Low levels of EPA+DHA have been related to increased risk for sudden cardiac death 

[36] and hearts with high DHA content present very low in vivo and in vitro vulnerability to 

arrhythmia [37]. The ZDF hearts have high levels of EPA + DHA in order to reduce pro-

inflammatory eicosanoids and cytokines. These modifications in the PUFAs levels of the 

cardiac membrane phospholipids probably help the heart to resist to any sudden cardiac 

damage at this early phase of diabetes [37].   

In our study, we reported a strong decrease in the ex vivo cardiac function as already shown in 

pre-diabetic [38] and diabetic [39, 40] states. The RPP was significantly reduced, mainly 

because of the decreased heart rate. The T2D-induced reduction of the heart rate has already 

been commonly shown in the diabetic state [41] and it has been explained by an abnormal 

functioning of the cells involved in the generation and transfer of the electric influx triggering 

the cardiac contraction [42]. We also observed a noticeable diabetes-induced decrease in the 

coronary flow. This decrease could also be responsible for the reduction of the heart rate and 

cardiac mechanical work through insufficient oxygen supply. This could not be explained by 

an increase in the vascular tone triggering vasoconstriction and limitation of the oxygen and 

substrate supply since no abnormalities of the vascular function were observed according to 

the results of the vascular reactivity. Finally, the two phenomena could be synergistic and lead 
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to the decreased RPP. In contrast, the left ventricle developed pressure was increased, which 

could compensate for the decreased heart rate. Thus, our data confirm a decrease in the ex 

vivo cardiac function, and particularly in the heart rate, at this model of heart perfusion, which 

is a common characteristic of all types of diabetes.  

The underlying mechanism, which could explain the observed decreased cardiac mechanical 

work, has been already characterized. Several metabolic modifications in our study suggest 

that the reduced ex vivo cardiac function was due to this mechanism. In this study, we found 

an increased plasma triglyceride concentration that could allow the excess free fatty acid 

uptake and stimulation of the peroxisome proliferator-activated receptor alpha (PPARα) [40]. 

This would lead to increased β-oxidation and mitochondrial oxygen consumption [43]. The 

resulting excessive mitochondria-related ROS production, as evidenced by the aconitase-to-

fumarase ratio in our study, would favour the expression of protein 53 (p53).  The observed 

increased activity of the cytochrome c oxidase suggests an increased expression of the 

cytochrome c oxidase 2 (SCO2). Consequently, ectopic lipid accumulation may occur in the 

cardiomyocytes through increased expression of the fatty acid translocase protein FAT/CD36. 

Lipotoxicity then contributes to cardiac cell damages and myocardial dysfunction. A severe 

intramyocardial lipid accumulation, even at 8 wk of age [44] and an increased fatty acid 

oxidation [39] have been observed in ZDF rats. Thus, the altered myocardial substrate 

utilization affecting the mitochondrial function and stimulating the above described 

mechanism could be one of the factors responsible for the development of the T2D-induced 

ex vivo cardiac mechanical dysfunction leading to reduction of oxygen demand and 

subsequent decrease in the coronary perfusion. In our study though we did not observe any 

decrease in the left ventricle developed pressure that could have resulted from this 

mechanism. Instead, the heart rate was the parameter mostly affected by the diabetes in our 

study. However, the conditions of the perfusion model did not allow us to evaluate correctly 
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the left ventricle developed pressure. A future study of heart perfusion at stable heart rate 

(pacing) in order to evaluate the cardiac contractility and relaxation by measuring the 

maximal rate of the ventricular pressure rise (dP/dtmax) and fall (dP/dtmin) respectively could 

enlighten our knowledge concerning this mechanism. Taken together, these observations 

suggest that the lipid accumulation and alterations of substrate utilization in ZDF rats may 

affect firstly the cells responsible for the cardiac contraction that are involved in the 

generation and transfer of the electric influx. Furthermore, hyperglycemia and insulin 

resistance, two states that characterized the ZDF rats in this study, have been related to 

damages in cardiac nodal cells and cardiac electrophysiological properties. 

The effects of the T2D on the function of the coronary resistance arteries were also evaluated 

in this ex vivo model of isolated perfused heart through evaluation of the coronary reactivity. 

This parameter was estimated through changes in the global coronary tone which mainly 

reflects the function of the arteriole network, since atherosclerosis does not occur in the rat 

[45]. The effects of T2D on the heart can thus be evaluated independently of the development 

of coronary artery disease. We also evaluated indirectly the NO production through 

measurements of the expression and phosphorylation of the cardiac and aortic eNOS. In our 

study, diabetes did not modify the expression and phosphorylation of cardiac eNOS, which 

was also the case for the aortas. Furthermore, the coronary EDD was not reduced, but fully 

maintained. This was a surprising finding given the huge amount of studies associating T2D 

and dysfunctions of the coronary microcirculation [46-48]. Factors contributing to these 

discrepancies are the severity of the obesity and diabetic state studied as well as the 

experimental method used. Oltman et al. [22] have reported a preservation of the coronary 

arteriolar dilatation to Ach in isolated vessels of pre-diabetic young (8- to 12-wk old) ZDF 

rats. However, in the present study, the ZDF rats were not in a prediabetic state, but the T2D 

was already developed as indicated by the blood glucose concentration, which was already 
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high from the 8
th

 wk of age. Thus, it seems that the endothelial function of the intact coronary 

microvasculature is not affected from the diabetes at this phase. An unaltered eNOS activity 

and high levels of AA and DHA despite the presence of oxidative stress found in the diabetic 

hearts could have contributed to this phenomenon.  AA [49] and DHA [50] are known for 

their vasorelaxant effects via the production of prostacyclin (PGI2) and the reduction of 

calcium influx in vascular smooth muscle cells.  

As shown by the calculated activity of endothelial cells to induce dilatation and the evaluation 

of eNOS expression the phenomenon of the maintained Ach-mediated vasodilatation was 

partly mediated by the activity of endothelial cells. However, the SNP responses were 

enhanced in the ZDF rats representing an enhanced function of the smooth muscle cells of the 

coronary system contributing to the maintained endothelium-dependent dilatation. This 

enhanced function may be due to a modified NO response, which could increase guanylate 

cyclase activity as already shown in cases of obesity and hypertension [51, 52].   

These vascular alterations may reflect a compensatory adaptation of the cardiovascular system 

to support increased cardiac work since cardiac output and stroke volume are increased in 

obese and diabetic states [53, 54]. Taken also under consideration the decreased ex vivo 

cardiac mechanical function observed in this study, this adaptation seems to be essential to 

adjust organ perfusion during physiological processes such as exercise and pathological 

processes such as ischemic diseases [11]. Otherwise, the heart would not be able to respond to 

the increased metabolic demands.  

 

Conclusions 

Cardiovascular function was evaluated in young diabetic ZDF rats using an ex vivo heart 

perfusion model. Our data suggest that at the early phase of diabetes, increased oxidative 

stress in tissue and plasma is already present and probably responsible for the observed ex 
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vivo cardiac mechanical dysfunction. However, the heart tries to resist by developing a 

number of adaptations. These include the increased GPx and CIV activities, the increase in 

the n-3 PUFAs content of the myocardial membrane and the preserved EDD of the coronary 

microvasculature. This would help the heart to keep an adequate perfusion and respond to any 

acute cardiac incident at this phase. Thus, therapeutic interventions at this early phase of the 

disease aiming at increasing the heart rate and maintaining the observed adaptations could be 

an option for delaying or decreasing the late-stage complications of the diabetes.  
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Figures 

Figure 1 Evolution of the body weight and food intake of the animals. (A) Body weight 

and  (B) Food intake of the animals between the 7
th

 and 11
th

 week of life. ZL: Zucker lean 

rats; ZDF: Zucker Diabetic Fatty rats. The number of experiments was 11 and 10 for the ZL 

and ZDF groups respectively. *: significantly different. 

Figure 2 Evaluation of circulating biochemical parameters. (A) Evolution of blood 

glucose concentration and (B) proportion of glycated hemoglobin (HbA1c) between 7
th

 and 

11
th

 wk of life. (C) Plasma levels of insulin, (D) triglycerides and (E) cholesterol at 11
th

 wk of 

age. ZL: Zucker lean rats; ZDF: Zucker Diabetic Fatty rats. The number of experiments was 

11 and 10 for the ZL and ZDF groups respectively. *: significantly different. 

Figure 3 Oxidative stress measurements. (A) Mitochondrial oxidative stress estimated by 

aconitase-to-fumarase ratio. (B) Cytosolic oxidative stress estimated by lactate-to-pyruvate 

ratio. (C) Enzymatic activity of glutathione peroxidase (GPx) in the plasma. (D) Antioxidant 

power of the plasma estimated by the ferric reducing antioxidant power (FRAP) assay. (E) 

Systemic oxidative stress estimated by the disappearance of the plasma thiol (SH) groups. ZL: 

Zucker lean rats; ZDF: Zucker Diabetic Fatty rats. The number of experiments was 11 and 10 

for the ZL and ZDF groups respectively. *: significantly different. 

Figure 4 Coronary microvascular reactivity ex vivo. (A) Endothelial-dependent dilatation 

(EDD). (B) Endothelial-independent dilatation (EID). (C) Endothelial cell vasodilatation 

activity (ECVA). ZL: Zucker lean rats; ZDF: Zucker Diabetic Fatty rats; Ach: acetylcholine; 

SNP: sodium nitroprusside. The number of experiments was 11 and 10 for the ZL and ZDF 

groups respectively. *: significantly different. 

Figure 5 Protein expressions of total eNOS and phosphorylated eNOS at Ser1177 in 

aortas and hearts. (A) Representative immunoblots of total eNOS, eNOS phosphorylated at 

Ser1177 and actin in aorta. Control is the common sample used for all Western blots. (B) 
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Quantified total eNOS and phosphorylated eNOS in the aortas and ratio between the 

phosphorylated and total eNOS in aorta. (C) Representative immunoblots of total eNOS, 

eNOS phosphorylated at Ser1177 and actin in heart. Control is the common sample used for 

all Western blots. (D) Quantified total eNOS and phosphorylated eNOS in the hearts and ratio 

between the phosphorylated and total eNOS. ZL: Zucker lean rats; ZDF: Zucker Diabetic 

Fatty rats. The number of experiments was 11 and 10 for the ZL and ZDF groups 

respectively. *: significantly different. 
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Table 1 Adipose tissue and heart weights 

 

The number of experiments was 11 and 10 for the ZL and ZDF groups respectively. The 

weight of mesenteric, retroperitoneal, visceral and abdominal adipose tissues is expressed in g 

of wet weight. The abdominal adipose tissue weight normalized to the body weight is 

expressed in g of wet weight per g of body weight. The heart weight is expressed in mg of dry 

weight. The heart-to-body weight ratio is expressed in mg of dry weight per g of body weight. 

ZL: Zucker lean rats; ZDF: Zucker diabetic fatty rats; AT: adipose tissue; BW: body weight; 

*: significantly different. 

 

 

 

 

 

 

 

 

 

 ZL ZDF 

Mesenteric AT 1.77 ± 0.09 4.94 ± 0.22* 

Retroperitoneal AT 1.04 ± 0.07 4.56 ± 0.13* 

Visceral AT 2.81 ± 0.02 9.50 ± 0.32* 

Abdominal AT 3.85 ± 0.22 14.06 ± 0.43* 

Abdominal AT/BW 0.013 ± 0.001 0.039 ± 0.001* 

Heart 203 ± 12 200 ± 6 

Heart weight/BW (mg/g) 0.68 ± 0.03 0.55 ± 0.02* 
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Table 2 Respiratory chain complex and citrate synthase activities 

 

The number of experiments was 11 and 10 for the ZL and ZDF groups respectively. ZL: 

Zucker lean rats; ZDF: Zucker Diabetic fatty rats; CI: NADH:ubiquinone oxidoreductase; CII: 

succinate-ubiquinone oxydo-reductase; CIII: ubiquinol-cytochrome-c reductase; CIV: 

cytochrome c oxidase; CI+III: NADH cytochrome c reductase; CII+III: succinate cytochrome 

c reductase; CS: citrate synthase. The results are expressed in mU/mg of proteins. *: 

significantly different. 

 

 

 

 

 

 

 

 

 

 

 ZL ZDF 

CI 1.06 ± 0.12 1.05 ± 0.08 

CII 0.67 ± 0.04 0.68 ± 0.03 

CIII 0.22 ± 0.03 0.23 ± 0.02 

CIV 0.070 ± 0.006 0.084 ± 0.003* 

CI+III 0.040 ± 0.003 0.040 ± 0.003 

CII+III 0.022 ± 0.002 0.024 ± 0.002 

CS 4.55 ± 0.01 4.75 ± 0.05* 
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Table 3 Fatty acid composition of cardiac phospholipids  

 Values are expressed as relative amounts of the total fatty acid content. The analysis was 

performed on 5 samples randomly selected in each group. ZL: Zucker lean rats; ZDF: Zucker 

diabetic fatty rats; DMA: dimethylacetal; SFA: saturated fatty acids; MUFA: 

monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; EPA: eicosapentanoic acid; 

AA: arachidonic acid; DHA: docosahexaenoic acid; *: significantly different. 

 

 

Fatty acids (%) ZL ZDF 

14:0 0.07 ± 0.01 0.05 ± 0.01* 

DMA16:0 2.67 ± 0.15 4.39 ± 0.60* 

16:0 12.63 ± 0.17 13.25 ± 0.58 

DMA18:0 1.20 ± 0.06 1.29 ± 0.25 

18:0 19.37 ± 0.50 25.70 ± 1.12* 

SFA 35.94 ± 0.80 44.68 ± 1.07* 

16:1n-7 0.56 ± 0.02 0.37 ± 0.02* 

18:1n-9 3.49 ± 0.16 2.53 ± 0.08* 

18:1n-7 5.77 ± 0.22 3.32 ± 0.10* 

MUFA 9.81 ± 0.36 6.21 ± 0.16* 

18:2n-6 32.94 ± 1.83 15.65 ± 2.57* 

20:2n-6 0.17 ± 0.02 0.17 ± 0.01 

20:3n-6 0.40 ± 0.05 1.01 ± 0.11* 

20:4n-6 16.01 ± 0.83 23.62 ± 1.64* 

22:4n-6 0.42 ± 0.04 0.38 ± 0.03 

22:5n-6 0.31 ± 0.01 0.39 ± 0.04 

n-6 PUFA 50.25 ± 0.94 41.23 ± 1.27* 

20:5n-3 0.10 ± 0.01 0.08 ± 0.06 

22:5n-3 0.55 ± 0.06 1.26 ± 0.11* 

22:6n-3 3.31 ± 0.41 6.51 ± 0.55* 

n-3 PUFA 3.95 ± 0.43 7.86 ± 0.64* 

PUFA 

n-6/n-3 

54.20 ± 0.63 49.09 ± 1.17* 

13.51 ± 1.70 5.40 ± 0.47* 

Total 16:0 15.30 ± 0.28 17.63 ± 0.30* 

Total 18:0 20.57 ± 0.54 26.00 ± 0.94* 

Total 18:1 9.26 ± 0.35 5.87 ± 0.16* 

EPA/AA 0.006 ± 0.001 0.004 ± 0.001* 

EPA+DHA 3.4 ± 0.4 6.6 ± 0.6* 
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 Table 4 Ex vivo cardiac function  

 

The number of experiments was 11 and 10 for the ZL and ZDF groups respectively. ZL: 

Zucker lean rats; ZDF: Zucker Diabetic fatty rats; HR: Heart Rate, LVDP: Left Ventricle 

Developed Pressure, RPP: Rate x Pressure Product, CF: Coronary Flow, CP: Coronary 

Pressure. * significantly different. 

 

 

 

 

 

 

 

  

 

ZL ZDF 

HR (beats/min) 294 ± 10 171 ± 23* 

LVDP (mmHg) 99 ± 6 115 ± 6* 

RPP (mHg/min) 29 ± 2 19 ± 2* 

CF (ml/min) 14.1 ± 1.0 10.6 ± 0.8* 

CP  before U46619 (mmHg) 78 ± 8 78 ± 3 

CP after U46619 (mmHg) 121 ± 9 130 ± 8 
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Figure 1 
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Figure 2 
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Figure 3 
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PART III.  GENERAL DISCUSSION 

 

In conclusion, our work demonstrated that there is an age-related pattern of changes occurring 

from youth to middle age which is dramatically changed when a high-fat diet is applied 

during this period. The main findings of our work were: 

 in normal aging, the EDD of the intact coronary microvasculature is progressively 

decreased, while the contribution of ECs and VSMCs in this phenomenon varies 

according to the age. Between youth and young adulthood, the decline in EDD is due 

mostly to a drastic decrease of the VSMCs function while the ECs tried to compensate 

by increasing their dilatation activity. Between young adulthood and middle age, the 

relaxation of VSMCs stabilizes, but ECs dilatation activity significantly decreases 

leading to further decline in EDD; 

 middle-aged hearts are characterized from an impaired recovery of their function 

during reperfusion after ischemia related to reduced coronary perfusion and 

insufficient oxygen supply. The reduced coronary perfusion is related to an increased 

mitochondrial oxidative stress and maintenance of the CII activity; 

 high-fat diet and T2D induce as soon as the beginning of the diet a state of oxidative 

stress in all compartments of the organism and an ex vivo cardiac mechanical 

dysfunction 

 under high-fat conditions an adaptation occurs at the level of the mitochondria in an 

effort to produce more energy; 

 in high-fat diet-induced obesity and T2D, an adaptation of the coronary 

microvasculature is taking place in order to meet the higher metabolic demands of the 

heart due to obesity and to react adequately in states of increased oxygen demand such 

as exercise or ischemic incidents. 
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As already described, aging manifests detrimental alterations in cardiovascular structure and 

function making age per se the major cardiovascular risk factor even in the absence of any 

underlying pathology. These alterations eventually lead to cardiovascular dysfunction and 

disease and are apparent even at middle age. However, nowadays, it is difficult to distinguish 

between normal aging and co-existing pathologies since the prevalence of obesity and 

obesity-related pathologies especially in industrialized societies is increasing exponentially 

[273]. This increase in body mass due to lifestyle habits such as obesogenic diets and 

sedentariness, appear to induce further alterations in the metabolism of the organism but also 

in the function of various organs with final result the development of the insulin resistance, 

MetS and T2D. Even though obesity has been recognized as a major risk factor for the annual 

increase in T2D prevalence [273, 274], it is estimated that the number of patients with type 2 

diabetes will more than double by 2030, even if the prevalence of obesity remains 

constant [77] as a result of increased longevity. This kind of pathologies that accompany 

aging in modern world, affect even more negatively the cardiovascular system resulting to the 

early development of CVDs.  

The aims of this investigation was thus to understand and characterize the progression of 

changes that happen from youth to middle-age adulthood in the body composition and its 

metabolic characteristics and how these changes could be related to the increased 

susceptibility of middle aged hearts to ischemic incidents. Furthermore, we were interested in 

examining the effects of a diet closed to the Western way of life (high-fat content diet) during 

this aging period in order to better understand the etiology and consequences of the obesity-

related cardiovascular changes at middle-age.  

Our work verified that a progressive gain of body weight accompanied aging under normal 

diet conditions from youth to middle age, which was related to an increase in the body 

adiposity of the animals established between youth and young adulthood. This gain of body 

weight was not observed when a high-fat diet containing 54% of fat was followed by the 

animals. However, the adipose tissue content of the high-fat fed rats was almost doubled as 

soon as 6 months of age and remained constant until middle age. Thus, aging both under 

normal and even more under HF conditions is characterized by the presence of increased 

adipose tissue. 



DISCUSSION 
 

 Page 286 
 

The results of our study demonstrated a reduction in protein thiol groups, as a marker of 

oxidative stress, in the plasma of middle-aged animals. These data come in good agreement 

with studies suggesting that systemic oxidative stress correlates with BMI and waist 

circumference [275]. In our study, this increase in the oxidative stress was also related to a 

progressive decrease in the systemic antioxidant defenses. It is interesting though to note that 

our study demonstrated that the increase in the adipose tissue content preceded the 

development of systemic oxidative stress, which was apparent only at middle age. This state 

of increased oxidative stress may have resulted from the activation of NADPH oxidase 

occurring at this age when the adipose tissue mass augments [276]. However, no evident 

oxidative stress was found at the cardiac cytosolic level as already described in advanced 

aging [277, 278] or at the mitochondrial level, despite the increased ETC-derived H2O2 

release when NAD- and FADH-linked respiration substrates were used.  

As previously described, the high-fat diet induced a dramatic increase in the adiposity of the 

animals at the very beginning of the diet. This was directly reflected in the immediate increase 

in the systemic oxidative stress of the HF-fed rats enhancing the hypothesis that systemic 

oxidative stress is due to ROS production from accumulated fat [276]. This was also true for 

the ZDF animals of this work that were characterized from an increased adiposity and 

systemic oxidative stress at the early phase of T2D. In both models of diet-induced obesity, an 

increased oxidative stress was evident at the cytosolic and mitochondrial levels of the hearts 

of the animals. Thus, obesity seems to accelerate the processes of ROS production in the heart 

that would normally appear at advanced age under normal conditions.  

The presence of the increased adipose tissue under all these conditions and the consequent 

systemic oxidative stress have been related to the dysregulation of adipokines production 

[276] involved in the pathogenesis of obesity-associated MetS, thrombosis [279] and 

atherosclerosis [280]. Increased production of TNF-α from accumulated fat is known to 

contribute to insulin resistance [281], while a decrease in plasma adiponectin has been 

inversely correlated with adiposity and insulin sensitivity [282]. Indeed, the glucose 

metabolism appeared to parallel the alterations of systemic oxidative stress occurring from 

young to middle age adulthood in our study that could reflect an alteration in the adipokines 

regulation. Under normal conditions, lower levels of fasting glycemia were observed in the 

middle-aged rats of our study. However, their lower rate of glucose elimination from the 

bloodstream indicated a degree of glucose intolerance, as found also in normal weight men 

with aging [283, 284]. Interestingly, the diminished glucose tolerance and increased 
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circulating oxidative stress observed at middle age under normal conditions, appeared earlier 

under the high-fat diet conditions as happened also for the oxidative stress status. 

Unfortunately, the lack of plasma insulin values does not allow us to have a more global 

estimation concerning the state of insulin sensitivity of our animals. Similar were the results 

of the oxidative stress and glucose metabolism in the ZDF rats. However, the presence of 

diabetes induced a severe insulin resistance in the animals despite the functional β cells in the 

Langerhans islets. 

The enhanced oxidative stress occurring early in both models of diet-induced obesity (DIO) 

(HF-fed and ZDF rats) of our work, were related to a decreased ex vivo cardiac mechanical 

function, a parameter that stayed unaffected during normal aging. However, the reason 

underlying this result appeared to be different in the HF-fed and ZDF rats. Under the HF diet, 

the decreased RPP was due to a diminished LVDP while under the diabetic conditions it was 

due to a diminished heart rate despite the elevation of their LVDP. Thus, it seems that these 

two models of DIO affected differently the cellular types implicated in the mechanical activity 

of the heart. In the case of ZDF rats, a leptin-receptor deficient rat model, it appears that the 

cells first affected were those responsible for the cardiac contraction involved in the 

generation and transfer of the electric influx. These data could complement the results from a 

study in ob/ob leptin deficient mice suggesting that leptin deficiency contributes to cardiac 

contractile dysfunction, impaired intracellular Ca
2+

 homeostasis and ultrastructural 

derangement in ventricular myocytes [285]. Thus, a disturbance in the cells involved in the 

generation and transfer of the electric flux together with the impaired intracellular Ca
2+

 

hemostasis of the cardiomyocytes could result to contractile dysfunction. Similar contractile 

dysfunction has been described in insulin-resistant rats fed a high-fat diet [286]. However, the 

fact that the HF-fed rats in our study demonstrated a hyperglycemia with glucose tolerance 

impairment only at 6 months of age while the ZDF were hyperglycemic and insulin-resistant 

could also explain the difference concerning the reason of the RPP decrease between HF and 

ZDF rats. Hyperglycemia is known to induce cell damage and apoptosis in neural [287] and 

cardiac cells [288] and it has been shown that in streptozotocin-induced diabetes there are 

alterations of the atrioventricular node properties and electric perturbations in the heart [289, 

290]. Another interesting point is the fact that the HF-induced obesity in our study resulted 

from the content of the diet while the obesity of the ZDF rats from increased caloric intake. 

This could result to altered substrate utilization from the heart affecting differently the cardiac 

cellular types responsible for the cardiac activity. Thus, early development of DIO-related 
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oxidative stress was associated with a decreased ex vivo cardiac function due to different 

mechanisms depending on the severity of obesity and related conditions.  

Despite all these negative changes, the mitochondrial oxidative phosphorylation was 

maintained under HF conditions. Thus, the mitochondria appeared to enhance their oxidative 

phosphorylation in an effort to supply the heart with adequate energy but as evidenced by the 

decrease ex vivo cardiac mechanical activity, this was not sufficient enough. However, all 

these observations describe situations occurring ex vivo (for the cardiac function) or in vitro 

(for the mitochondria) and may not reflect exactly what happens in vivo in the organism. It is 

probable that the increased cytosolic and mitochondrial oxidative stress developed at the 

beginning of the HF diet affected the transfer of the energy from mitochondria to intracellular 

sites of energy use or its utilization since no amelioration of the heart function was observed 

despite the normal respiration states. Interestingly, under a normal diet the changes seem to 

happen in a different way. The maintained ex vivo cardiac function seemed to be related to 

functional processes of energy synthesis, transfer and utilization in the myocardium despite 

the decrease in the mitochondrial respiration. This was also confirmed by the delayed 

ischemic contracture that the middle-aged hearts demonstrated which suggested a better 

maintenance of their ATP concentration. Aside from these results, myocardial oxygen 

consumption was found unaltered at middle age as shown in our first study. These maintained 

functions may be due to the absence of cytosolic or mitochondrial oxidative stress in middle-

aged hearts.  

However, aging could have reduced the cardiac mechanical work if the hearts had been 

maximally stimulated (working mode with high preload and perfusate calcium concentration) 

as also evidenced by the observation that the decreased mitochondrial function was associated 

with a progressive decline in EDD as the animals got older. Indeed, a main finding of our 

second study was the progressive decrease of the EDD of the coronary microvasculature with 

age, as already observed in other vascular beds in animals and humans [291, 292]. Since the 

endothelial and smooth muscle cells contain phosphocreatine and creatine kinases, the plasma 

oxidative stress observed at middle age in our study could depress the energy transfer into the 

vascular cells. Our study allowed also the description of the contribution of each vascular 

cellular type in the coronary vasodilatation from youth to middle age.  The function of 

VSMCs was high in young hearts and drastically decreased as soon as the young adulthood to 

values, which were very close to those observed at the middle age. Energy is necessary for the 

relaxation of muscular cells and the low oxidative phosphorylation detected in the isolated 
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mitochondria derived from young adult and middle age hearts may explain the observed 

decline of EID with age. The EID decrease contributed to the progressive age-related loss of 

EDD. Interestingly, the endothelial cell vasodilatation activity was strongly increased from 

youth to young adulthood, which could be related to an increase in muscarinic receptor 

density, an increase in acetylcholine-induced calcium influx, since calcium is known to 

stimulate eNOS activity [293] or to a production of vasoactive agents other than NO such as 

the EDHF. However, from young to middle age adulthood this parameter was drastically 

decreased paralleling the increase in the plasma oxidative stress. 

It appears that the progressive decline of EDD at middle age and the additional development 

of circulating oxidative stress limit the heart from the possibility to react adequately to 

ischemic incidents and/or properly recover from them. This was evident from the results of 

our first study. Indeed, in this work, we verified that the well-known increase in 

ischemia/reperfusion abnormalities occurring with advanced aging [294, 295] also arises in 

middle-aged animals. In this study, the impaired recovery of middle aged hearts during 

reperfusion was related to an impaired recovery of the coronary flow and insufficient oxygen 

supply during reperfusion despite the fact that no modification of the coronary flow was 

observed between the young and middle-age animals under pre-ischemic conditions. 

Tomanek et al. [296] have demonstrated that aging is characterized by a remodeling of the 

coronary vessels that includes a reduction in the capillary numerical density but a 

maintenance of their volume density by compensatory increase in capillary diameter.  These 

observations could explain the fact that the gain of the heart weight was not accompanied by 

changes in the coronary flow in our study. Thus, a parallel adaptation of the coronary bed 

with the heart weight gain in normal aging is suggested. However, the coronary vasculature 

was apparently not able to respond adequately to the ischemic incident which could be 

explained by the impaired reactivity of the coronary microvasculature found at middle age. 

A surprising and interesting finding of our study was that the DIO not only did not induce or 

worsen the age-related decline pattern of the coronary microvasculature reactivity but it 

appeared to ameliorate it.  Indeed, an adaptation of the coronary microvascular reactivity was 

established at the beginning of the HF diet as evidenced by the enhanced EDD of the HF-fed 

hearts. This adapatation was also observed in the diabetic hearts of the ZDF animals but in a 

lesser degree, since their EDD was maintained and not enhanced, and due to different 

mechanisms. The enhanced EDD under HF conditions seemed to occur at the level of the 

endothelial cells for both young and middle aged adult animals while the maintained EDD of 
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ZDF animals was due to an enhanced VSMCs function. This could be related to an enhanced 

sensitivity of sGC to NO as a compensatory mechanism of NO diminished bioavailability 

[297, 298]. However, this parameter was not measured in our study. We cannot exclude the 

possibility that at an even earlier phase of T2D, EDD could have been found enhanced, as 

happened at the beginning of the high-fat diet and that the preserved EDD reflects a 

progressive reduction of this parameter as the disease advances. A progressive decrease in the 

EDD has already been demonstrated in isolated coronary vessels of ZDF rats [262]. 

Moreover, the diabetic ZDF rats demonstrated a severe glucose intolerance and insulin 

resistance that could prevent a better adaptation of the coronary system. These observations 

together with the data for the decreased ex vivo cardiac function of the DIO hearts suggest that 

in these hearts the need for oxygen and metabolites especially during periods of increased 

energy demand (e.g. exercise) is extremely important and could be mediated by an adaptation 

of their coronary microvasculature. Thus, the HF-induced increase in coronary reserve favors 

the upholding of tissue perfusion and welfare of obese individuals. 

In this investigation we were also particularly interested in the vasoactive agents contributing 

to the phenomenon of the enhanced EDD in the HF-fed rats established at 6 months of age. 

According to the pharmacology experiments of our fourth study, this type of HF diet induced 

alterations at the level of NOS and COX pathway, which contributed together to the enhanced 

Ach response of the HF coronary microvessels. More specifically, the NOS pathway seemed 

to be enhanced in the HF-fed perfused hearts but it was not the only responsible for the 

increase in the EDD. Indeed, the results revealed that there is an altered regulation of the 

COX-derived vasoactive agents with the balance leaning more to the vasodilator than the 

vasoconstrictor agent production. This was also evidenced by the increase in the AA (C20:4n-

6) of the HF rat hearts which could lead eventually to an increase in the COX-vasoactive 

agents and the PGI2 [299]. The investigation of the relative contribution of vasoactive agents 

at middle age after a HF diet would be of great interest to better understand this adaptation of 

the coronary system. 

In conclusion, our work demonstrated that major changes concerning the body adiposity, 

mitochondrial energy metabolism and coronary microvascular reactivity occurred from youth 

to young adulthood. Thereafter, glucose intolerance together with increased circulating 

oxidative stress were developed contributing to further decline of the coronary reactivity 

despite the maintained cardiac function. These alterations contributed eventually to the middle 
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age-related susceptibility of the heart to ischemic injury. An intervention close to Western 

dietary habits, such as the HF diet chosen in our work, triggered a number of important 

alterations with particular interest the establishment of increased adiposity at the early 

beginning of the diet. Despite the negative effects on the oxidative stress status and ex vivo 

cardiac function this diet induced also a number of adaptations regarding the mitochondrial 

oxidative phosphorylation and the coronary microvascular reactivity. Whether the detrimental 

effects of a high-fat diet would predominate following a longer duration of high fat feeding is 

unknown. 

Furthermore, the nutritional composition of this diet must be considered in light of our 

findings. The model of HF diet-induced obesity in our study is likely the result of the content 

of the diet and not of the increased caloric intake as happens with the Zucker rats, which are 

models of overfeeding-induced T2D [300]. The fat content of our diets was 37% SFAs, 46% 

MUFAs, 15% n-6 PUFAs and 1% n-3 PUFAs for the high fat while for the standard was 24% 

SFAs, 23% MUFAs, 48% n-6 PUFAs and 4% n-3 PUFAs. The fact that the fat content of the 

HF diet chosen was not consisted entirely by saturated fat might explain the state of obesity 

that we found in our rats. It could also explain any differences concerning basic characteristics 

of the animals from previous studies, such as body weight and glucose levels [297, 301]. The 

fact that the high-fat fed animals did not gain body weight but had increased adiposity could 

represent a case of the normal weight obesity (NWO) syndrome. This syndrome has been 

described recently and is defined as a normal body mass index associated with increased body 

fat [302, 303]. NWO has been also associated with increased inflammation due to the 

presence of increased adipose tissue. Even though in our HF-fed hearts we did not evaluate 

the inflammatory status, their low ratio EPA/AA suggests a predisposition to a balance of 

eicosanoids favoring platelet aggregation and inflammatory signaling. The NWO has been 

identified as risk factor for cardiometabolic dysregulation and cardiovascular mortality. Thus, 

it is extremely important to investigate its origins and consequences especially for the human 

subjects that have a normal BMI but can be characterized as metabolically obese and have 

increased risk of CVD [304]. 

Furthermore, our study revealed that habits that are adopted early in life, in our case in youth, 

impact multiple cellular processes and provokes metabolic changes that establish new 

conditions in the organism at their early beginning. These alterations probably affect functions 

eventually leading to complications apparent at middle age. These observations come in 

agreement with previous studies suggesting that dietary habits during early life (childhood or 
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adolescence) may affect the risk of developing obesity or diabetes mellitus later in life. It has 

been demonstrated that dietary patterns during adolescence increases the risk of type 2 

diabetes in middle aged women [265]. Findings from the Bogalusa Heart study indicate that 

risk factors such as high blood pressure, hyperinsulinemia and dyslipidemia that begin to 

cluster during childhood due to unhealthy dietary habits can predict adult cardiovascular 

factors [266]. This clustering of risk factor has been linked to unhealthy dietary habits during 

childhood [267]. Moreover, it has been shown that postnatal overfeeding in rats can lead to 

moderate overweight in adult rats and higher susceptibility to cardiac injury [305]. Taken 

together these data, it appears extremely important, especially for the Westen societies, the 

type of dietary habits adopted in early life since they can lead to complications in adulthood. 

An interesting question is whether the modifications induced by this lifestyle habits could be 

inversed and at which extent this could prevent the health disturbances in later life. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. Representative diagram of the temporal pattern of changes occurring from youth 

to middle age in rat under normal or high-fat diet. SMCs: smooth muscle cells; ECs: 

endothelial cells; EDD: endothelial-dependent dilatation. 
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Perspectives 

The results of our studies regarding the progressive changes happening from youth to middle 

age as well as the effects of DIO on these aspects encourage further research. 

One of the most interesting and yet surprising result of our work was the enhanced response 

to Ach of the coronary microvasculature induced by the high-fat diet. As already described 

this adaptation was established at the beginning of the diet and remained until middle age. 

Thus, it would be interesting to see how the heart reacts at middle age after this type of diet to 

ischemic incidents. A protocol of ischemia and reperfusion ex vivo would be helpful to 

understand if this enhanced reactivity of the coronary microvasculature serves as mechanism 

of protection to ischemic damage. It should be taken under consideration though the fat 

composition of our diet. In literature, it has been shown that the supplementation of red palm 

oil to a hypercholestermic diet reduces ischemia-reperfusion injury [306]. Interestingly, it has 

also been shown that the onset of diabetes in ZDF rats is not associated with increased 

susceptibility to ischemic injury [307], which could be also associated to the coronary 

adaptation that we observed in study 5. Finally, we observed that this enhanced response to 

Ach at the beginning of the high-fat diet is related to a different regulation of the NOS 

pathway and the balance between COX-derived vasodilatators and vasoconstrictors agents. 

Thus, to understand if these conditions remain or change in a way that other pathways are 

implicated in the enhanced reactivity of microvasculature at middle age would provide useful 

informations concerning the coronary system. Finally, the monitoring of the progression of 

this adaptation following a longer duration of high fat feeding would be of great interest.  

Based on our finding concerning the age, it appears that the gain of adipose weight during 

youth triggers modifications that affect the cardiovascular function later in life, making the 

heart susceptible to damage at middle age. It would be interesting to examine if any 

interventions at this young age to prevent the adipose tissue gain could delay the 

cardiovascular incidents occurring at middle age. Such an intervention could be a protocol of 

physical activity applied from youth until middle age. However, the kind of physical exercise 

chosen would be of great importance since it has been demonstrated that habitual low-

intensity exercise does not protect against myocardial ischemia-reperfusion injury [308] but 

endurance or resistance training does [309, 310]. Regarding our results concerning the 

reactivity of the vessels at middle age, it should be also noted that a physical training protocol 

should try to prevent the decline in EDD of the coronary microvasculature. Spontaneous 

running has been shown to have no effect on large vessels [311] while a training program has 
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been shown to enhance EDD of both large vessels and coronary resistance arteries [312-314].    

Another possible intervention would be a protocol of caloric restriction since it has been 

shown to reverse vascular endothelial dysfunction in old mice [315]. Thus, it would be 

interesting to monitor the changes that happen from youth to middle age under these 

conditions and understand how the cardiovascular function is affected at middle age. An 

intervention such as exercise that aims at reducing the body adiposity would be also of great 

interest to see if we can inverse the changes that occur with high-fat diets. 

Finally, our work revealed that both aging and DIO are closely related to the development of 

oxidative stress either at the systemic or the cellular and mitochondrial level. Thus, it would 

be interesting to test protocols regarding antioxidant treatments in an effort to eliminate the 

increased oxidative stress in aging and DIO. 
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PART IV. ANNEXE 

 

Journal of Cardiovascular Pharmacology 2011 Sep;58(3):284-94. 

“Disruption of chronic cariporide treatment abrogates myocardial ion homeostasis 

during acute ischemia reperfusion” 

Bourahla V, Dubouchaud H, Mourmoura E, Vitiello D, Faure P, Migné C, Pujos-Guillot E, 

Richardson M, Demaison L. 

Abstract 

Cariporide, an Na/H exchanger inhibitor, is a drug with cardioprotective properties. However, 

chronic treatment with cariporide may modify the protein phenotype of the cardiomyocytes. 

Disruption of the equilibrium between a cariporide-modified phenotype and the supply of 

cariporide could be deleterious. The aim of this study was to test the effects of this 

equilibrium rupture (EqR) on cardiac function at baseline and acute ischemia reperfusion. 

Rats were chronically treated with cariporide (2.5 mg·kg·d) or with placebo for 21 days, after 

which isolated Langendorff-mode heart perfusion experiments utilized cariporide-free buffer. 

During this type of perfusion, the drug is rapidly cleared from the cellular environment. After 

30 minutes of stabilization, the hearts were subjected to global zero-flow ischemia (25 

minutes) followed by reperfusion (45 minutes). Measures of mechanical function, oxygen 

consumption, lactate plus pyruvate, CO2 and proton release into the coronary effluent were 

determined. The gene and protein expression of proton extruders was also evaluated. Chronic 

cariporide administration followed by EqR reduced the expression of the Na/H exchanger, 

increased the expression of the HCO3 or Na exchanger, decreased monocarboxylate/H carrier 

expression, reduced the lactate plus pyruvate release but did not change the glucose oxidation 

rate and mechanical function compared with baseline conditions. The resulting low glycolytic 

rate was associated with a stronger contracture during ischemia. During reperfusion, the early 

release of acidic forms was higher and redirected toward the use of the Na/H and HCO3 /Na 

exchangers to the detriment of the safe monocarboxylate/H carrier. Both phenomena were 

assumed to increase the Na uptake and activate the Na/Ca exchanger, resulting in Na and Ca 

overload and further cellular damage. This explains the impaired recovery of the contractile 

function observed in the EqR group during reperfusion. In conclusion, although cariporide is 

usually cardioprotective, a disruption of its chronic treatment followed by an 

ischemia/reperfusion event can become deleterious. 

PMID: 21697734 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Bourahla%20V%5BAuthor%5D&cauthor=true&cauthor_uid=21697734
http://www.ncbi.nlm.nih.gov/pubmed?term=Dubouchaud%20H%5BAuthor%5D&cauthor=true&cauthor_uid=21697734
http://www.ncbi.nlm.nih.gov/pubmed?term=Mourmoura%20E%5BAuthor%5D&cauthor=true&cauthor_uid=21697734
http://www.ncbi.nlm.nih.gov/pubmed?term=Vitiello%20D%5BAuthor%5D&cauthor=true&cauthor_uid=21697734
http://www.ncbi.nlm.nih.gov/pubmed?term=Faure%20P%5BAuthor%5D&cauthor=true&cauthor_uid=21697734
http://www.ncbi.nlm.nih.gov/pubmed?term=Mign%C3%A9%20C%5BAuthor%5D&cauthor=true&cauthor_uid=21697734
http://www.ncbi.nlm.nih.gov/pubmed?term=Pujos-Guillot%20E%5BAuthor%5D&cauthor=true&cauthor_uid=21697734
http://www.ncbi.nlm.nih.gov/pubmed?term=Richardson%20M%5BAuthor%5D&cauthor=true&cauthor_uid=21697734
http://www.ncbi.nlm.nih.gov/pubmed?term=Demaison%20L%5BAuthor%5D&cauthor=true&cauthor_uid=21697734


 

 

 

  



 

 

 

  



 

 



 

 

« Ἓν οἶδα, ὅτι οὐδὲν οἶδα » 

Σωκράτης 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

« Je ne sais qu’une chose, c’est que je ne sais rien »  

Socrates 


