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Abstract

This thesis studies Bayesian estimation/detection algorithms for P and T wave analysis in ECG
signals. In this work, different statistical models and associated Bayesian methods are proposed
to solve simultaneously the P and T wave delineation task (determination of the positions of the
peaks and boundaries of the individual waves) and the waveform-estimation problem. These
models take into account appropriate prior distributions for the unknown parameters (wave
locations and amplitudes, and waveform coefficients). These prior distributions are combined
with the likelihood of the observed data to provide the posterior distribution of the unknown
parameters. Due to the complexity of the resulting posterior distributions, Markov chain Monte
Carlo algorithms are proposed for (sample-based) detection/estimation. On the other hand, to
take full advantage of the sequential nature of the ECG, a dynamic model is proposed under
a similar Bayesian framework. Sequential Monte Carlo methods (SMC) are also considered
for delineation and waveform estimation. In the last part of the thesis, two Bayesian models
introduced in this thesis are adapted to address a specific clinical research problem referred to as
T wave alternans (TWA) detection. One of the proposed approaches has served as an efficient
analysis tool in the Endocardial T wave Alternans Study (ETWAS) project in collaboration
with St. Jude Medical, Inc and Toulouse Rangueil Hospital. This project was devoted to
prospectively assess the feasibility of TWA detection in repolarisation on EGM stored in ICD
memories.
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Résumé

Cette thèse a pour objet l’étude de méthodes Bayésiennes pour l’analyse des ondes P et T
des signaux ECG. Différents modèles statistiques et des méthodes Bayésiennes associées sont
proposés afin de réaliser la détection des ondes P et T et leur caractérisation (détermination
du sommet et des limites des ondes ainsi que l’estimation des formes d’onde). Ces modèles
prennent en compte des lois a priori pour les paramètres inconnus (les positions des ondes,
les amplitudes et les coefficients de ces formes d’onde) associés aux signaux ECG. Ces lois
a priori sont ensuite combinées avec la vraisemblance des données observées pour fournir les
lois a posteriori des paramètres inconnus. En raison de la complexité des lois a posteriori
obtenues, des méthodes de Monte Carlo par Chaînes de Markov sont proposées pour générer
des échantillons distribués asymptotiquement suivant les lois d’intérêt. Ces échantillons sont
ensuite utilisés pour approcher les estimateurs Bayésiens classiques (MAP ou MMSE). D’autre
part, pour profiter de la nature séquentielle du signal ECG, un modèle dynamique est proposé.
Une méthode d’inférence Bayésienne similaire à celle développée précédemment et des méthodes
de Monte Carlo séquentielles (SMC) sont ensuite étudiées pour ce modèle dynamique. Dans la
dernière partie de ce travail, deux modèles Bayésiens introduits dans cette thèse sont adaptés
pour répondre à un sujet de recherche clinique spécifique appelé détection de l’alternance
des ondes T. Une des approches proposées a servi comme outil d’analyse dans un projet en
collaboration avec St. Jude Medical, Inc et l’hôpital de Rangueil à Toulouse, qui vise à évaluer
prospectivement la faisabilité de la détection des alternances des ondes T dans les signaux
intracardiaques.
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General Introduction

The human heart, a magical muscular pump which is typically about the same size as a
fist, circulates blood through a human’s body all along their life. Despite the tremendous
efforts that have been dedicated to the cardiology study, the heart has not yet revealed all its
secrets. According to a fact sheet released by the World Health Organization in September
2011, cardiovascular diseases are still the number one cause of death globally [WHO11].

The electrocardiogram (ECG), a graphical representation of temporal differences in poten-
tial electrical forces that lead to the cardiac muscle contraction, has been recognized as the
simplest non-invasive method of collecting electrical signal from the beating heart that provides
extremely useful information to the doctors. It all started when Augustus D. Waller published
the first human ECG recorded with a capillary electrometer in 1887. Subsequently, Willem
Einthoven, who received the Nobel Prize in 1924 for his development of the first lead system
for ECG recording, identified the five deflection points in the cardiac cycle by naming them P,
Q, R, S and T which are still being used in the present standards (see Fig. 1.7). Since then a
huge knowledge base has been generated covering clinical and engineering aspects of electro-
cardiography. ECG analysis has become a routine part of any complete medical evaluation.

In the last few decades electronic recorders have been developed for digital recording of the
ECG signal and they are available in such a compact form that the user can wear them for
ECG recording without much of obstruction in the routine activities. Since a huge volume of
ECG data is generated by the wearable ECG recorders, automated methods are preferred for
analysis of the ECG signal. On the other hand, increasing comfort usually results in signals with
reduced quality. For instance, electrodes that are incorporated in garments generally provide
signals with a lower signal-to-noise ratio (SNR) and more artifacts than contact electrodes
directly glued to the body [GHM07]. Therefore, the development of efficient and robust signal
processing methods for ECG computer-aided detection (CADe) and computer-aided diagnosis
(CADx) is a subject of major importance.

Most of the clinically useful information in ECGs can be obtained from the intervals, ampli-
tudes, and wave shapes (morphologies). The QRS complex is the most characteristic waveform
of the ECG signal. Its high amplitude makes QRS detection easier than other waves. Thus,
it is generally used as a reference within the cardiac cycle. Algorithms for P and T waves
detection and delineation (determination of peaks and limits of the individual P and T waves)
usually begin with QRS detection. Search windows are then defined before and after the QRS
location to seek for the other waves. Finally, an appropriate strategy is used to enhance the
distinctive features of each wave in order to find its peaks and limits. Because of the low slope
and magnitude of P and T waves, as well as the presence of noise, interference, and baseline
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2 General Introduction

fluctuation, P and T wave estimation and detection remain a difficult task. It is also worth-
while to note that there is not any universally acknowledged clear rule to locate the beginning
and the end of wave components, which complicates the P and T wave delineation. Further-
more, in addition to the estimation of wave peaks and limits, an accurate waveform estimation
is certainly relevant for some medical diagnoses (such as T-wave alternans (TWA) detection
[MO04]) or pathology analysis (such as arrhythmia detection [EG96]).

Bayesian interpretation of observations is a powerful method of relating measurements to
their underlying sources. Bayesian models are well suited to the electrophysiological environ-
ment, allowing a direct and natural way to express what is known (and unknown) and to
evaluate which one of many alternatives is most likely the source of the observations. For two
centuries, Bayesian inference moved rapidly but unevenly from the domain of mathematical
statistics into biomedical applications. In part that was because Bayesian interpretation often
required too many steps to be feasible with hand calculation in real applications. As computer
power became widespread in the last few years, use of Bayesian models is now growing rapidly
in electrophysiology [BNP10].

The subject of this thesis is to study Bayesian estimation/detection algorithms suitable for
P and T wave analysis in ECG signals. This problem is of great interest since it allows to
express the relationships between unknown parameters established or limited by physiology or
medicine in a probabilistic sense and “get it into the problem”. Doing so is, in general, rewarded
by improved performance in estimating the unknown parameters from the measurement data.
In this work, different statistical models and associated Bayesian methods are proposed to
solve simultaneously the P and T wave delineation task (determination of the positions of the
peaks and boundaries of the individual waves) and the waveform-estimation problem. These
models take into account appropriate prior distributions for the unknown parameters (wave
locations and amplitudes, and waveform coefficients). These prior distributions are combined
with the likelihood of the observed data to provide the posterior distribution of the unknown
parameters. The posterior distribution depends on hyperparameters that can be fixed a priori
or estimated from the observed data. The usual Bayesian estimators related to the posterior
distribution are the minimum mean square error (MMSE) estimator and the maximum a poste-
riori (MAP) estimator [Van68]. Nevertheless, the posterior distributions of the parameters are
usually too complex to obtain analytical expressions of the classic Bayesian estimator (MMSE
or MAP). To alleviate numerical problems related to the posterior distributions associated to
the P and T wave analysis problem, we first propose to resort to Markov chain Monte Carlo
(MCMC) methods [RC04]. MCMC is a powerful sampling strategy, appropriate to solve com-
plex Bayesian inference problems. It allows to generate samples asymptotically distributed
according to the target distribution. The MMSE or MAP estimators of the unknown parame-
ters are then computed using the generated samples. On the other hand, to take full advantage
of the sequential nature of the ECG, sequential Monte Carlo (SMC) methods [DdFG01] are
also investigated in this thesis under the same Bayesian inference. SMC allows one to update
the posterior distribution as data become available, thus it allows to make the Bayesian models
suitable for real-time ECG analysis. An additional benefit of sequential methods is their lower
memory requirement compared to the window based methods since the data are dealt in a
sequential manner.

The organization of this thesis is described in the following. Chapter 1 introduces the basis
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of the cardiovascular system, electrocardiography and some physiology notions. A literature
review of ECG processing methods is also presented. In Chapter 2, a multiple-beat process-
ing window based Bayesian model for P and T wave delineation and waveform estimation is
studied. Two Gibbs-type sampling methods (a partially collapsed Gibbs sampler and a block
Gibbs sampler) are proposed to generate samples distributed according to the posterior of the
proposed Bayesian model. The generated samples are used to estimate the unknown model
parameters and hyperparameters. The wave detection and delineation criteria based on the
posterior distributions are also presented. Simulation results performed on the standard anno-
tated QT database (QTDB) [LMGM97] as well as a comparison with other state-of-art methods
are also given. In the purpose of making the model more suitable for real-time applications,
a beat-to-beat Bayesian model for P and T wave delineation is proposed in Chapter 3. Gibbs
sampling methods and sequential Monte Carlo method (particle filters) are studied to estimate
the unknown parameters of the beat-to-beat model. A comparison with the window based ap-
proach as well as other alternative methods on QTDB is reported. In Chapter 4, the window
based Bayesian model and the Gibbs sampling methods are first adapted to deal with TWA
detection in surface ECGs. Then, the beat-to-beat approach is applied on real intracardiac
electrograms (EGMs) provided by St. Jude Medical, Inc to deal with endocardial TWA
analysis.

The main contributions of this thesis are summarized below.

• Chapter 1. The physiological basis of the ECG is briefly introduced as four aspects: (1)
physiology of the specific structures of the heart, (2) electrophysiology of the heart and
the origin of the ECG, (3) ECG measurement and registration, (4) ECG interpretation in
clinical context. Based on the initiative of ECG computer-aided detection and computer-
aided diagnosis, a brief review of the ECG signal processing methods proposed in the
literature is given, with the emphasis on P and T wave detection and delineation.

• Chapter 2. We introduce a new Bayesian model based on a multiple-beat processing
window which simultaneously solves the P and T wave delineation and the waveform
estimation problems. This model is based on a modified Bernoulli-Gaussian sequence with
minimum distance constraint [KTHD12] for the wave locations and appropriate priors
for the amplitudes, wave impulse responses and noise variance. A recently proposed
partially collapsed Gibbs sampler which exploits this minimum distance constraint is
adapted to the proposed model to estimate the unknown parameters [LMT10]. Then, a
modified version of this Bayesian model is proposed to consider the baseline within each
non-QRS component and to represent P and T waves by their respective dimensionality
reducing expansion according to Hermite basis functions. The local dependency of the
ECG signal is expressed by a block constraint. To alleviate numerical problems related
to the modified Bayesian model, a block Gibbs sampler is studied [LKT+11, LTM+11].
The proposed PCGS and block Gibbs sampler overcome the slow convergence problem
encountered with the classical Gibbs sampler. The resulting algorithms are validated
using the entire annotated QT database. A comparison with other benchmark methods
showed that the proposed Bayesian methods provide a reliable detection and an accurate
delineation for a wide variety of wave morphologies. In addition, the proposed Bayesian
methods can provide accurate waveform estimation and allow for the determination of
confidence intervals which indicate reliability information about the estimates.
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• Chapter 3. This chapter introduces a modified Bayesian model that enables P and
T wave delineation and waveform estimation on a beat-to-beat basis. The beat-to-beat
Bayesian model uses the P and T waveform estimates of the previous beat as prior infor-
mation for detecting/estimating the current P and T waves. Compared to the window
based model which relies on a non-overlapped multiple-beat processing window to esti-
mate the waveforms, the beat-to-beat model is more suitable to the pseudo-stationary
nature of the ECG signal and to real time applications. The block Gibbs sampler is used
to estimate the parameters of the resulting Bayesian model [LKT+12]. Then, in order to
consider all the available former beats instead of using the last beat only, a SMC method
is studied. Following the SMC analysis principle, the sequential nature of the ECG is
exploited by using a dynamic model under a similar Bayesian framework. Particle fil-
ters (PFs) are then proposed to resolve the unknown parameters of the dynamic model
[LBMT11, LGMT12].

• Chapter 4. The Bayesian model introduced in Chapter 2 is modified to account for a
possible distinction between odd and even beats since a difference between successive T
waves is a sign of a potential cardiac risk. The modified Bayesian model is then used
to perform surface ECG T-wave alternans (TWA) analysis. The odd and even T-wave
amplitudes generated by the block Gibbs sampler are used to build statistical tests for
TWA detection [LMT11]. Furthermore, the beat-to-beat approach is adapted to deal
with TWA analysis in an endocardial context that has special constraints compared to
surface ECGs. The proposed strategies are validated on both synthetic data and and real
EGMs provided by St. Jude Medical, Inc in collaboration with a cardiologist from
the University Hospital Centre of Toulouse.
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Chapter 1

Introduction to Cardiac
Electrophysiology
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1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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1.4 Literature review of ECG signal processing methods . . . . . . . . 24
1.4.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4.2 QRS detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4.3 P and T wave delineation . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.1 Introduction

Before attempting any ECG signal processing, it is important to first understand the physi-
ological basis of the ECG, to review measurement conventions of the standard ECG, and to
review how a clinician uses ECGs for patient care. Understanding the basis of a normal ECG
requires appreciation of four aspects:

• physiology of the specific structures of the heart,

• electrophysiology of the heat and the origin of the ECG,

• ECG measurement and registration,

• ECG interpretation in clinical context.

Around these four topics, we will discuss in the first two sections how the wave of electrical
current propagates through the heart muscle, the physiology of the specific structures of the
heart through which the electrical wave travels, how that leads to a measurable signal on the
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surface of the body, producing the normal ECG, and last how a cardiologist interprets the
ECG. It should be noted that, through decades of investigation, much detail is available about
the electrophysiologic activity of the heart and the introduction in this thesis is therefore only
a highly abbreviated summary. Some of the material and figures in this chapter are taken from
[Mar90, CAM06, CR90, CPD09], to which the reader is referred for a more detailed overview
of this subject.

As mentioned in the general introduction, the detection/estimation and delineation of each
wave component of the ECG signal is a crucial step for ECG interpretation. In the last section
of this chapter, a brief review of ECG signal processing methods proposed in the literature is
given, with the emphasis on wave detection and delineation.

1.2 Cardiology basis

The heart is a muscle that is rhythmically driven to contract and hence drive the circulation
of blood throughout the body. Before every normal heartbeat, or systole, a wave of electrical
current passes through the entire heart, which triggers myocardial contraction. The pattern of
electrical propagation is not random, but spreads over the structure of the heart in a coordinated
pattern which leads to an effective, coordinated systole. This results in a measurable change in
potential difference on the body surface of the subject. The resultant amplified (and filtered)
signal is known as an ECG. To understand the origin of the ECG, one should begin with the
heart structure and its functioning.

1.2.1 Heart anatomy

The heart consists of four chambers (see Fig. 1.1: two atrial chambers (atrium) in the upper
heart and two ventricular chambers (ventricles) in the lower part.). The atrium are the receiving
chambers and the ventricles are the discharging chambers. The heart is mainly constituted by
a specialized type of striated muscle, with properties that functions somewhat differently than
skeletal muscle. Heart cells are connected by gap junctions that allow ions to flow from one cell
to another, allowing for rapid spreading of depolarization. A collection of heart cells connected
in this way constitutes a syncytium. The heart is composed of two syncytiums: an atrial
syncytium and a ventricular syncytium.

The muscle, which is like a wall around the heart, is called the myocardium. The two
ventricles are separated by the ventricular septum, which is thick muscular toward the bottom,
and thick fibrous at the top. Under the myocardium is the endocardium, which lines the
chambers of the heart, and which is mainly composed of epithelial cells. The pericardium is a
double-walled sac that contains the heart and the roots of the great vessels. The outer wall of
the pericardium is composed of dense connective tissue. The portion of the inner wall of the
pericardium that is in contact with the heart (but not in contact with the great vessels) is the
epicardium. The epicardium contains the blood vessels supplying blood to heart muscle (the
coronary arteries) as well as nerve fibers.

The veins of the body terminate in two great vessels that empty into the right atrium: the
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(atrial chamber)
(atrial chamber)

(venticule chamber)

(venticule chamber)

Figure 1.1: Structure diagram of the human heart. Image adapted from [CR90].
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superior vena cava (from the upper body) and the inferior vena cava (from the lower body).
As can be seen in Fig. 1.1 and Fig. 1.2, blood exits the heart through the pulmonary artery
(which takes unoxygenated blood to the lungs from the right ventricle) and through the aorta
(which distributes oxygenated blood to the body from the left ventricle). Oxygenated blood
from the lungs enters the left atrium from the pulmonary vein. The pulmonary artery is the
only artery that carries unoxygenated blood and the pulmonary vein is the only vein that
carries oxygenated blood.

Right lung Left lung

Upper body

Lower body

Figure 1.2: Blood flow diagram of the human heart. Blue components indicate de-oxygenated
blood pathways and red components indicate oxygenated pathways. (Image adapted from
[CR90])

There is a one-way flow of blood from the atria to the ventricles. Reverse flow is prevented
by the atrio-ventricular (A-V) valves: the tricuspid valve (having 3 flaps or “cusps”) on the
right and the mitral valve on the left. The inner flaps of the A-V valves have connective tissue
attachments (“heart strings”) from muscular mounds on the ventricles that prevent the flaps
from bulging too much into the atria during contraction of the ventricles. Flow of blood back
to the ventricles following ejection of blood from the ventricles is prevented by the semilunar
valves: the pulmonary valve on the right and the aortic valve on the left, each of which have
three flaps shaped somewhat like half-moons.

The openings to the right and left coronary arteries (which supply blood to the heart) are
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in the aorta just beyond the cusps of the aortic semilunar valve. The right coronary artery
supplies the right atrium, right ventricle, and most of the posterior surface of the left ventricle
with blood. The left coronary artery branches into the left anterior descending artery (which
supplies the anterior surface of the left ventricle) and the circumflex artery (which supplies the
left atrium and parts of the left ventricle)

1.2.2 Heart operation

The heart pumps blood in a two-step process. The atria pump blood into the ventricles and
then the ventricles pump blood out of the heart. Chambers of the heart fill with blood during a
relaxation phase (diastole) and eject blood during a contraction phase (systole). Atrial systole
precedes ventricular systole. The systole and diastole of the left ventricle correspond to the
systolic (high pressure) and diastolic (lower pressure) phases of blood pressure in the body. As
shown in Fig. 1.2, the right atrium pumps blood from the body into the right ventricle. The
right ventricle pumps blood into the lungs. The left atrium pumps blood from the lungs into
the left ventricle. The left ventricle pumps blood to the body through the aorta. This cycling
of blood by the heart is called the cardiac cycle.

The left ventricle has the most powerful musculature insofar as it must pump blood into
the entire body. For the left ventricle the cardiac cycle can be described in four phases:

1. Period of filling. Volume increases from about 50 milliliters of blood to about 120
milliliters of blood, after which the mitral valve closes. 70% of ventricular filling occurs
passively as blood flows into the atria and through the ventricles while the tricuspid valve
is open. Atrial contraction pushes the final 30% of blood into the ventricle, after which
the tricuspid valve closes.

2. Period of isovolumetric contraction. All valves are closed as pressure rises from 5
mmHg to 80 mmHg while blood volume remains unchanged.

3. Period of ejection. The aortic valve opens and blood is ejected into the body. 70%
of blood emptying occurs in the first third of the ejection period as pressure rises to 120
mmHg. Pressure drops to 100 mmHg during the last two-thirds of the ejection period.
(Stroke volume can double during exercise.)

4. Period of isovolumetric relaxation. Pressure drops to zero after the aortic valve has
closed.

The heart electrical conduction system is presented in Fig. 1.3. Depolarization and con-
traction of cardiac muscle is preceded by depolarization of the cardiac nerve bundles. Depolar-
ization of the heart is initiated at the Sino Atrial node (SA node) located on the right atrium.
Depolarization is transmitted through the Atrio-Ventricular node (A-V node), the His Bundle,
and then through the ventricles by the Purkinje fibers.

The cardiac cycle is initiated in the SA node in the atrium, called atrial depolarization,
which causes contraction of the atrial syncytium. Unlike cardiac cells which have mechanical
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Figure 1.3: Heart electrical conduction system. Image adapted from [hea].

(contractile) function, the cardiac cells having an electrical conduction function not only con-
duct electrical impulses, but spontaneously generate impulses. In a normal heart, the cardiac
cells of the sinoatrial node have the highest rate of spontaneous impulse generation, which
makes the sinoatrial node the ultimate pacemaker of the electrical system of a healthy heart.
Next, the depolarization is delayed at the A-V node before passing to the His bundle and split-
ting into the bundle branches. The A-V node delay, during which time there is no measurable
electrical activity at the body surface, prevents the atria and ventricles from contracting at the
same time. After activity emerges from the A-V node it sends depolarization to the muscle of
the right ventricle and the left ventricle, respectively. Next, there is the septal depolarization.
The septum is the wall between the ventricles, and a major bundle of conducting fibers runs
along the left side of the septum. Then comes the apical depolarization, and the wave of de-
polarization moving left is balanced by the wave moving right. Note that in left ventricular
depolarization and late left ventricular depolarization, there is also electrical activity in the
right ventricle, but since the left ventricle is much more massive its activity dominates. After
the ventricular depolarization, there is a plateau period during which the myocardium has de-
polarized (ventricles depolarized) where no action potential propagates. Finally, the individual
cells begin to repolarize and another wave of charge passes through the heart, this time origi-
nating from the dipoles generated at the interface of depolarized and repolarizing tissue (i.e.,
ventricular repolarization). The heart then returns to its resting state (such that the ventricles
are repolarized), awaiting another electrical stimulus that starts the cycle anew.

1.3 Electrocardiography

The heart electrical conduction can be projected onto different lines of well defined orientation
on the skin surface. The lead in electrocardiography is a line that connects two observation
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points of the electrical activity of the heart from which to measure a difference electric potential.
Each lead reveals the magnitude of the electrical conduction in the direction of that lead at
each instant of time. In this section, a description of how the electrical conduction of a cardiac
cycle results in the pattern of a normal scalar ECG is described, and the clinical interpretation
of the ECG signal is presented.

1.3.1 ECG measurement

ECG monitoring machines generally can register several potential differences at the same time
according the location and number of electrodes located on the body. Additional electrodes
provide more sensitive monitoring of depolarization. Each measurement of the potential corre-
sponds to a lead of the ECG. Note that the term “lead” can be confusing insofar as the standard
limb leads are bipolar (measure the potential difference between two electrodes) whereas the
others are unipolar (single electrode). The 12-lead ECG, which contains six front and six
precordial leads, has been standardized by an international convention. The different vantage
points offered by the 12-lead ECG allow for a three-dimensional representation of the electrical
activity of the heart. The standard 12-lead ECG system is composed as follows:

• 3 Einthoven bipolar limb leads: I, II and III,

• 3 unipolar augmented limb leads: aVR, aVL and aVF,

• 6 unipolar precordial chest leads: V1, V2, V3, V4, V5 and V6.

In the following paragraphs, we present the electrode positions corresponding to each type of
lead.

Einthoven leads

Back to the beginning of the 20th century, Willem Einthoven discovered that depolarization
of the heart can be monitored with three electrodes attached to the body: one on each arm
and one on the left leg. Depolarization spreads from the right atrium (corresponding to the
electrode on the right arm) to the left ventricle (corresponding to the electrode on the left
leg). The electrode on the left arm is neutral. Based on this principle, he invented a three-
lead system of the ECG recording–the standard limb leads–to which has been added three
augmented limb leads and six chest leads in the modern 12-lead ECG. The standard limb leads
are:

• Lead I: potential difference between the left arm (positive electrode) and the right arm
(negative electrode),

• Lead II: potential difference between the left leg (positive electrode) and the right arm
(negative electrode),

• Lead III: potential difference between the left leg (positive electrode) and the left arm
(negative electrode).
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Figure 1.4: The Einthoven’s triangle. Im-
age adapted from [CAM06].

Figure 1.5: Frontal plane limb leads. Image
adapted from [CAM06].

Note that the left arm is positive relative to the right arm and negative relative to the left
leg. There is redundancy in using these three bipolar leads insofar as the voltage recorded at
Lead II is the sum of the voltages of the other two leads (I + III = II). A positive waveform
(positive voltage) is recorded when depolarization flows from a negative electrode to a positive
electrode. For this reason, Lead II typically gives the canonical ECG patterns because the flow
of depolarization from negative electrode (right arm) to positive electrode (left leg) matches
the typical alignment of the heart in the chest: sloping downward toward the left side of the
body.

Augmented leads

Leads I, II, and III give a view of the heart called Einthoven’s triangle (see Fig. 1.4), that
divides a 360◦ circle centered on the heart into three depolarization axes separated by 120◦.
Adding the three augmented Goldberger limb leads divides the heart into six depolarization
axes separated by 60◦ (as illustrated in Fig. 1.5). The augmented limb leads are:

• aVR : potential difference between the right arm (positive electrode) and the center of
the heart,

• aVL : potential difference between the left arm (positive electrode) and the center of the
heart,

• aVF : potential difference between the left leg (positive electrode) and the center of the
heart.

Here “a” denotes augmented, “V” denotes Voltage, and the final letter designates right or left
arm, or the left leg. Including both positive and negative directions of depolarization of both
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the standard and augmented limb leads gives a 360◦ circle divided into twelve 30◦ sections that
is called the hexaxial reference system. Lead I (pointing toward the left arm) is taken as the
reference for 0◦ lead orientation, with increasing positive values in a clockwise direction to 180◦
and increasing negative values in a counterclockwise direction such that −180◦ is the same
orientation as +180◦. Although Lead II, with an orientation of about 60◦ is the most typical
orientation of an axis pointing from atria to ventricles, it is not abnormal for heart orientation
to be in the range of −30◦ to +110◦ which can make Leads aVL, aVF, or III rather than Lead
II the primary indicator of normal cardiac depolarization.

Precordial leads

The 360◦ hexaxial reference system defines what is called the frontal plane of ECG monitoring
- a view of the heart from the front. To provide a view through the horizontal plane - viewing
the heart as if the body was sliced horizontally through the middle of the chest - six additional
“unipolar” precordial (chest) leads (designated V1 to V6) are placed on positions of the left
rib cage forming a quarter-circle around the heart (see Fig. 1.6). The ECG represents the
difference between each of these electrodes (V1-V6) and the central terminal.

Figure 1.6: The six standard precordial leads. Image adapted from [CAM06].

1.3.2 ECG interpretation

Of all the 12 leads, the first six are derived from the same three measurement points. Therefore,
any two of these six leads include exactly the same information as the other four. Over 90%
of the heart’s electric activity can be explained with a dipole source model. To evaluate this
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dipole, it is sufficient to measure its three independent components. In principle, two of the
limb leads (I, II, III) could reflect the frontal plane components, whereas one precordial lead
could be chosen for the anterior-posterior component. The combination should be sufficient to
describe completely the electric heart vector. (The lead V2 would be a very good precordial
lead choice since it is directed closest to the x axis. It is roughly orthogonal to the frontal
plane.) The main reason for recording all 12 leads is that it enhances pattern recognition.
This combination of leads gives the clinician an opportunity to compare the projections of the
resultant vectors in two orthogonal planes and at different angles. The useful information that
can be extracted from the ECG signal as well as the clinical ECG interpretation procedure are
presented in the following paragraphs.

P, QRS and T waves

As explained in 1.2.2, in healthy subjects, each heart cycle consists of the same depolarization
/ repolarization phase from the atria to the ventricles. The surface projection of the heart
electrical action potential is thus a pseudo-periodic signal in the sense that the cardiac cycle
repeats according to heart rate. In each cycle, the locations of different waves on the ECG are
arbitrarily marked by the letters P, Q, R, S, T and U. (see Fig. 1.7) Note that the baseline
voltage of the electrocardiogram is known as the isoelectric line (which is not represented in
Fig. 1.7). Typically the isoelectric line is measured as the portion of the tracing following the
T wave and preceding the next P wave. Here are the definitions of the ECG waves:

• P wave is related to the atrial depolarization. The main electrical vector is directed
from the sinoatrial node toward the A-V node, and spreads from the right atrium to the
left atrium. The P wave generally has small wave amplitude, with rounded, sometimes
biphasic waveform.

• QRS complex reflects the rapid depolarization of the right and left ventricles. They
have a large muscle mass compared to the atria and so the QRS complex usually has a
much larger amplitude than the P and the T waves. By definition, the Q wave is the first
negative wave, R wave is the first positive wave of the complex and the S wave is the first
negative wave after the R wave.

• T wave represents the repolarization of the ventricles. This wave follows the QRS
complex after returning to the isoelectric line. The interval from the beginning of the
QRS complex to the apex of the T wave is referred to as the absolute refractory period.

• U wave is hypothesized to be caused by the repolarization of the interventricular septum.
It normally has a low amplitude, and even more is often completely absent. It always
follows the T wave and also follows the same direction in amplitude.
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Figure 1.7: The P, Q, R, S, T, U waves resulting from one depolarization / repolarization cycle.
Image adapted from [Ala].

ECG intervals

Intervals and segments of the ECG are important parameters for assessing the normality or
abnormality of the space between two electrical events, thus they are generally clinically rele-
vant. Fig. 1.8 illustrates the normal clinical features of the electrocardiogram, which include
wave amplitudes and inter-wave timings (ECG intervals). Note that the inter-beat timing (RR
interval) is not marked. The illustration uses the typical graph-paper presentation format,
which stems from the early clinical years of electrocardiography, where analysis was done by
hand measurements of hard copies. Each box is 1 mm2 and the ECG paper is usually set to
move at 25 mm/s. Therefore, each box represents 0.04 second in time. The amplitude scale is
set to be 0.1 mV per square, although there is often a larger grid overlaid at every five squares
(0.20 second/0.5 mV ) The values for the clinical features indicated on the graph in Fig. 1.8
are typical, although they can vary based upon gender, age, activity, and health.

The clinical interpretation of the ECG segments and intervals can be summarized as fol-
lowing:

• PR (or PQ) interval is measured from the beginning of the P wave to the beginning
of the QRS complex. The PR interval reflects the time the electrical impulse takes to
travel from the sinoatrial node through the A-V node and entering the ventricles. The
PR interval is therefore a good estimate of A-V node function.

• PR segment connects the P wave and the QRS complex. This coincides with the
electrical conduction from the A-V node to the His bundle and the bundle branches
and then to the Purkinje Fibers. This electrical activity does not produce a contraction
directly and is merely traveling down towards the ventricles and this shows up flat on the
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Figure 1.8: Normal features and the intervals of the ECG. Image adapted from [CAM06].



1.3 - Electrocardiography 19

ECG.

• QT interval is measured from the beginning of the QRS complex to the end of the
T wave. It corresponds to the time of ventricular systole from the beginning of the
excitation of the ventricles to the end of their relaxation. A prolonged QT interval is a
risk factor for ventricular tachyarrhythmias and sudden death.

• ST segment connects the QRS complex and the T wave. The ST segment represents
the period when the ventricles are depolarized. Since there is a priori no electrical
propagation, the segment is isoelectric.

• ST interval is measured from the end of the QRS complex (J point) to the end of the
T wave.

• RR interval is measured between two peaks of successive R waves and represents the
cycle of ventricular repolarization. It is associated with the cardiac period.

ECG abnormal patterns

The clinician who uses the electrocardiogram as a diagnostic test wishes to determine cardiac
abnormalities from the body surface potentials. As a rough framework, it is worth thinking
of the heart as three separate systems: a functional electrical system, a functional system of
cardiac arteries to channel nourishing blood to every cell of the myocardium, and a culmination
in an effective mechanical pump. To a first approximation, electrical problems come in two
forms: those which make the heart pump too slowly or infrequently (bradycardias), and those
with make the heart pump too quickly (tachycardias). If the pumping is too slow, the cardiac
output of life-sustaining blood can be dangerously low. If too quick, the cardiac output can
also be too low since the heart does not have time to fill, and also because the heart can suffer
damage (e.g., demand ischemia) when it tries to pump too rapidly. In this paragraph, several
ECG abnormal patterns are showed.

Sinus rhythm One class of heart rate abnormalities arises from abnormal function of
the control system for heart rate. As discussed in Section 1.2.2, there are specialized cells in
the SA node whose function is to act as the heart’s pacemaker, rhythmically generating action
potentials and triggering depolarization for the rest of the heart (recall that once any portion
of the heart depolarizes, the wavefront tends to propagate throughout the entire myocardium).
The SA node has an intrinsic rate of firing, but ordinarily this is modified by the central nervous
system, specifically, the autonomic nervous system.

When the heart rate is controlled by the SA node’s rate of firing, the sequence of beats is
known as a sinus rhythm (see Fig. 1.9). When the SA node fires more quickly than usual (for
instance, as a normal physiologic response to fear), the rhythm is termed sinus tachycardia
(see Fig. 1.10). When the SA node fires more slowly than usual (for instance, either as a
normal physiologic response in a very well-conditioned athlete, or an abnormal response in
an older patient taking too much heart-slowing medication), the rhythm is known as sinus
bradycardia (see Fig. 1.11). An arrhythmia is any abnormal cardiac rhythm. There may be
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Figure 1.9: Normal sinus rhythm. Image adapted from [CAM06].

cyclic variations in heart rate due to breathing, known as sinus arrhythmia (see Fig. 1.12). This
nonpathologic pattern is caused by activity of the parasympathetic system (the sympathetic
system responds too slowly to alter heart rate on this time scale), which is responding to subtle
changes in arterial blood pressure, cardiac filling pressure, and the lungs themselves, during
the respiratory cycle.

Figure 1.10: Sinus tachycardia. Image adapted from [CAM06].

Figure 1.11: Sinus bradycardia. Image adapted from [CAM06].

Ectopy and Fibrillation One category of arrhythmias occurs when the trigger to depo-
larize originates outside of the SA node, in another part of the myocardium (known as ectopic
depolarization). Common causes of ectopy include a drug effect (e.g., caffeine) or a viral in-
fection of the myocardium, or other inflammation or damage of part of the heart. When the
ectopic beat originates in the atrium, it leads to an atrial premature contraction (APC) (see
Fig. 1.13). When it originates in the ventricles, it leads to a premature ventricular beat or
ventricular premature contraction (VPC) (see Fig. 1.14).

In some cases, the unified wavefront of depolarization can break down into countless smaller
wavefronts which circulate quasi-randomly over the myocardium. This leads to a total break-
down of coordinated contraction, and the myocardium will appear to quiver. This is termed
fibrillation. In atrial fibrillation (see Fig. 1.15), the A-V node will still act as a gatekeeper for
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Figure 1.12: Sinus arrhythmia. Image adapted from [CAM06].

Figure 1.13: Atrial premature contractions (indicated by arrowheads). Image adapted from
[CAM06].

Figure 1.14: Ventricular premature contractions (indicated by arrowheads). Image adapted
from [CAM06].
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these disorganized atrial wavefronts, maintaining organized ventricular depolarization distal to
the A-V node with normal QRS complexes. In contrast to atrial fibrillation, the ventricular
fibrillation (see Fig. 1.16) is fatal in seconds to minutes: the appearance of fibrillating ventri-
cles has been likened to a “bag of worms” and this causes circulatory arrest, the termination of
blood flow through the cardiovascular circuit. Note that as pointed out by P. Laguna et al. in
[LJC94], during fibrillation, it is meaningless to measure P, QRS and T wave boundaries and
to analyze the waveforms. This kind of ECG pattern is out of the scope of this thesis work.

Figure 1.15: Atrial fibrillation. Image adapted from [CAM06].

Figure 1.16: Ventricular fibrillation. Image adapted from [CAM06].

Escape Rhythms The other category of arrhythmias is related to excessively slow rhythms,
and abnormal blockages of wavefront propagation. As an extreme case of the heart blockages,
an escape beat (see Fig. 1.17) is similar to an ectopic beat, in that it is the initiation of a
depolarization wavefront outside of the SA node. However, the difference is that the escape
beat is a normal, compensatory response, a normal fail-safe functionality of the heart: there
is a network of cardiac cells able to initiate heart beats, so that a key life-sustaining function
(e.g., pacing the heart) is not exclusively relegated to a microscopic collection cells in the SA
node.

Clinical ECG interpretation procedure

In analyzing the clinical electrocardiogram, it is important to use a systematic approach. Mean-
while, it may also provide a relevant framework in which to apply numerical analysis techniques
to the ECG. The following clinical approach, which is extracted from [CAM06], should not be
considered completely thorough, but simply as a guide to understanding how clinicians identify
abnormalities in the ECG.

1. Identify the QRS complexes. The following observations should be made:
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Figure 1.17: Ventricular escape beat. Note the atrial P wave (black arrowhead) followed by
an evident pause, indicating a failure to conduct through the A-V node. The ventricular
escape beat (white arrowhead) is a fail-safe mechanism so that conduction blocks do not cause
ventricular cardiac arrest. Image adapted from [CAM06].

• What is the ventricular rate?

• Are the QRS complexes spaced at regular intervals?

• Are the QRS complexes identical in shape in a given lead? Are they of normal size
and morphology?

2. Identify the P waves. In some cases this will require careful observation, and the
following questions should be explored:

• Is there a one-to-one relationship between P-waves and QRS complexes?

• Is the PR interval of normal duration?

• Are the P waves identical in shape in a given lead? Are they of normal size and
shape?

3. Examine the QRS complex. Is the QRS axis normal? Overall, are the QRS widths
and amplitudes normal?

4. Examine the ST-T segments. Are there abnormalities (such as elevation or depres-
sion)? Is the abnormality suggestive of ischemia, infarction, or hypothermia?

5. Examine the T waves. Are their shapes normal? In each lead, are they oriented in
the same direction as the QRS complex? If not, is it suggestive of ischemia or ventricular
conduction abnormalities, or a potassium abnormality?

6. Examine the QT interval. Is it over half the RR interval?

As can be seen from this procedure, the detection and delineation of the P and T waves as
well as the estimation of their waveforms are very important steps to the clinical interpretation
of the ECG. Most of the phases in the procedure require a good estimation of the wave fiducial
points (onset, peak and end) and that of the waveforms (wave shapes). This justifies the vital
role of automated P and T wave analysis via signal processing techniques in ECG computer-
aided diagnosis.
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1.4 Literature review of ECG signal processing methods

As presented in the previous section, the ECG data may be composed of single-lead or multiple-
lead ECG signals depending upon the type and configuration of the ECG recorder. Accordingly,
the method of analysis is also different. Single-lead ECG waveform analysis includes wave
shapes (morphologies), spectra and repeatability of the cardiac cycle. On the other hand, multi-
lead ECG processing algorithms can utilize additional information like simultaneous features
from other leads. This may lead to a greater immunity against interference signals [LJC94].
The disadvantage of multiple-lead ECG monitoring lies in increased patient discomfort and
stress, especially for ambulatory testing and wearable ECG recording. For the purpose of basic
cardiac monitoring during ambulatory testing, it is desirable to have fewer leads and hence
single-lead is more suitable for wearable ECG applications [CPD09]. This work focuses on the
single-lead based P and T wave analysis in ECG signals. The following sections review some
of the existing techniques developed for analysis of single-lead ECG signals, with the emphasis
on the P and T wave delineation and waveform estimation.

1.4.1 Preprocessing

It is well known that noise from various sources like muscular activities, 50/60Hz powerline, skin
stretching and electrode motion, movement of heart due to respiration, etc. can contaminate
the ECG signal and hence affect the interpretation of ECG signal. In particular, an automated
analysis requires noise free ECG signal for correct interpretation. However, it is difficult to
control the environment and prevent the interference due to some physiological events like
breathing. Consequently, a pre-processing stage which allows the reduction of noise is generally
believed to be essential in ECG signals.

Powerline noise cancellation

Since spectral bandwidth of ECG can be considered to be between 0 to 250Hz, powerline is the
most usual source of interference in the ECG recording. This kind of interference is caused due
to powerline cords nearby, and its effect can be minimized by moving aways from such sources
of this noise. Usually, the power-lines have a specific frequency of either 50 or 60Hz. Therefore,
the interference is usually removed by using a narrow stop-band filter centered at the powerline
frequency in the frequency response of the ECG equipment, which is usually from 0.05−100Hz.
In [AS85], authors proposed a technique for removing the powerline interference using a non-
recursive finite impulse response. The notch filter for powerline is acceptable by the guidelines
provided in [Gib02] for exercise monitoring ECG equipment. In many places, however, the
powerline noise is not a pure 60Hz (or 50Hz) sinusoid, but is distorted. In this case, the
adaptive filtering technique can be more effective. Furno and Tompkins [FT83] and Sahakian
and Furno [SF83] described filter designs that subtract a 60 Hz sinusoid from ECG. In [TZ91],
adaptive filtering techniques are applied for cancellation of powerline and the electromyograph
(EMG) interference. The powerline interference appears as the common mode signal to the
ECG amplifier and available from the right leg electrode. Hence the signal from the right leg
electrode is used as the reference input signal to the adaptive filter for cancellation of powerline
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noise. Moreover, it has been shown in [Ham96] that the adaptive implementation introduces
less noise in measurement of the ST segment in comparison to that by a non-adaptive notch
filter.

Baseline wandering reduction

Low frequency artifacts and baseline wander may be caused in the chest lead ECG signals by
coughing or breathing, with large movements of the chest, or when an arm or leg is moved
during the ECG data acquisition. Poor contact of the electrodes and perspiration of the
patient under the electrodes may affect the electrode impedance which causes low frequency
artifacts. Baseline drift may sometimes be caused by variations in temperature and bias in the
instrumentation and amplifiers as well. The simplest approach for removal of the baseline is to
filter the ECG signal using high-pass digital filters with a cutoff of ∼ 0.8 Hz [AS85]. However,
as with the powerline cancellation, such a filtering operation introduces distortions in the ST
segment of the ECG which plays a vital role in the diagnosis of different life threatening cardiac
disorders such as coronary artery heart disease. The selection of an optimal cutoff frequency
such that the filter introduces minimum distortion in the ECG is an issue. Some sophisticated
filtering based approaches use adaptive filtering [LJM+92], time varying digital filters using
Short Time Fourier Transform (STFT) for estimation of cutoff filters [Pan96], cubic spline
curve fitting [MK77], linear interpolation between isoelectric levels [CM07] or through wavelet
transform [Zha05, SS07]. A comprehensive comparison of different ECG baseline removal
techniques can be found in [ARA09]. Several widely used methods are introduced briefly as
follows.

Adaptive filtering. Adaptive filtering has been used for baseline removal from the ECG in
[LJM+92] using the architecture shown in Fig. 1.18. In the adaptive filtering based approach,

Figure 1.18: Adaptive Filtering for ECG Baseline Removal. Image adapted from [LJM+92].

only one weight is needed and the reference input is a constant with a value of one. The optimal
weight w is determined using the Least Mean Squares (LMS) algorithm as follows

w(k + 1) = w(k) + 2µe(k)x(k) (1.1)

where x(k) is the recorded ECG, e(k) is the difference between the ECG and the output of the
adaptive filter and µ is the step size. This filter has a zero at 0Hz and consequently it creates
a notch with a bandwidth of

(µ
π

)
Fs where Fs is the sampling frequency. However, as pointed

out in [PLY98], this approach produces severe distortion in the ECG signal, especially in the



26 Chapter 1 - Introduction to Cardiac Electrophysiology

ST segment area.

Cubic spline curve fitting. This method is among the most commonly used approaches
for removal of ECG baseline variation. In this approach [MK77], isoelectric fiducial points
(generally the Q, R, and S peaks) are found in the ECG signal with baseline variation for each
beat using an appropriate approach and a third order cubic spline is fitted on these points
to obtain an estimate of the baseline which is then subtracted from the original ECG signal.
Cubic spline interpolation based baseline removal and other interpolation based techniques
adapt themselves automatically to the heart rate as more reference points become available
with increase in heart rate. However, in the absence of any baseline variation in an ECG
segment, an error in the calculation of the isoelectric reference point or the corresponding level
causes undesired distortion in the ECG. Therefore accurate definition of the isoelectric reference
point is mandatory for proper functioning which can become difficult in the presence of noise in
the ECG signal. Furthermore, as pointed out in [BZB06], the cubic spline interpolation method
and other interpolation based techniques only remove baseline fluctuations at frequencies lower
than heart rate. This makes the residual local baseline in the non-QRS components problematic
for many ECG analysis.

Median filtering. In [CM07], Chouhan et al. give a technique for baseline removal using
median filtering. In this approach, the median of the ECG signal is firstly subtracted from the
ECG signal. Then a fifth order polynomial is fitted to this shifted waveform to obtain a baseline
estimate which is then subtracted from the ECG signal. The baseline drift is further removed
by applying a content median correction, one by one, in each RR interval. This approach also
offers the advantage that the signal is not distorted in the absence of baseline variation and is
computationally efficient.

In-band noise cancellation

The numerous non-cardiac ECG contaminants, such as the EMG noise and the motion artifact
overlap with the cardiac components in the frequency domain, particularly in the 0.01Hz to
100Hz range. It is still a challenging problem to remove this kind of in-band noise reliably
without affecting the cardiac components of the ECG signal. Band-pass filtering is therefore
inadequate to suppress such contaminants. Ensemble Averaging (EA) is a common approach
for the extraction of small cardiac components from the noise contaminated ECG. However, as
EA requires the averaging of many beats, the subtle but important inter-beat variations in the
cardiac cycle are lost in the averaging procedure [LB97]. As an improvement over EA, classical
adaptive filter architectures have been used for the noise cancellation of ECGs containing EMG
noise and motion artifacts [LJM+92, TZ91].

A nonlinear Bayesian filtering framework has been recently proposed for the filtering of
single channel noisy ECG recordings [SSJC07]. This effective framework for the model-based
filtering of noisy ECG recordings is based on a modified nonlinear dynamic model, previously
suggested for the generation of a highly realistic synthetic ECG [MCTS03]. A modified version
of this model is used in several Bayesian filters, including the Extended Kalman Filter, Ex-
tended Kalman Smoother, and Unscented Kalman Filter. An automatic parameter selection
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method is also introduced, to facilitate the adaptation of the model parameters to a vast vari-
ety of ECGs. Superior results compared with conventional ECG denoising approaches such as
band-pass filtering, adaptive filtering, and wavelet denoising are reported in [SSJC07] on real
non-stationary muscle artifacts.

1.4.2 QRS detection

As we have seen in 1.3.2, ECG is a pseudo-periodic signal in the sense that the cardiac cycle
repeats according to heart rate. However, the heart rate may not remain constant. The vari-
ations in the heart rate may affect the durations of PQ and ST segments while the durations
of P wave, QRS complex and T wave may still remain the same for a normal heart. The R
peak in the QRS complex is the dominant feature of the cardiac cycle, which can be distinctly
recognized from the sharp edges and a high amplitude as we have seen in Fig. 1.7. Therefore,
in most circumstances it is relatively easy to locate the QRS complex in the ECG even in the
presence of low frequency noise (like baseline wandering due to respiration) and hence this is
used for determining the current heart beat. The QRS detection forms the basis of most ECG
analysis algorithms, particularly those used for arrhythmia monitoring, wave delineation, in-
terval measurement, etc. This explains the importance of QRS detection in cardiac monitoring
using ECG.

Most extensively used real-time QRS detection algorithms, in general, use the relatively
high energy contents of the QRS complex that lie in 5-25Hz band [PT85, KHO07]. The more
complex QRS detection algorithms involve application of neural network, hidden Markov model
(HMM), syntactic methods, etc. [CSCB90, HTUA93, Suz95, UM90], but they are rarely used
in low computational cost ECG applications. Further details of the QRS detection methods and
the comparisons of their performances in presence of noise and their computational complexities
can be found in [FJJ+90, KHO07]. Most of the simple QRS detection algorithms are based
on one of the following methods: derivatives, wavelets, filter-banks, mathematical morphology
and correlation [FJJ+90, KHO07]. In the following paragraphs a few of the approaches in
literature for QRS complex detection are discussed in brief.

Temporal derivative. The characteristic of higher slopes of the QRS complex inspires
one to use temporal derivatives for its detection. In the derivative based methods such as
the popular Pan and Tompkins method [PT85], the ECG signal is first smoothed with an
appropriate moving average filter for suppressing any high frequency noise outside the 5-25Hz
band. The smoothed signal is differentiated to emphasize the high slopes and to suppress
smooth ECG waves and baseline wanders. The overall response of these two simple arithmetic
operations results in a band-pass filter to match the spectral band of the QRS while suppressing
the relatively low frequencies in P and T waves. The squared magnitude of the derivative
signal is used to enhance further the high derivatives of the QRS complex. A moving average
integration filter with the window length matching the duration of QRS complex is applied after
the squaring operation. The integrated signal is then searched for the local maxima exceeding
an appropriate threshold value. The search is further refined by eliminating the points which
occur within the refractory period of a ventricular activity. A block diagram which describes
different processing steps of the algorithm is shown in Fig. 1.19, and Fig. 1.20 shows signal
examples at various steps.
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Figure 1.19: QRS detection processing steps of Pan and Tompkins algorithm in [PT85].
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Figure 1.20: Results of the Pan and Tompkins algorithm [PT85]: (a) Original signal. (b)
Output of band-pass filter. (c) Output of differentiator. (d) Output of squaring process. (e)
Results of moving window integration. (f) Original signal delayed by the total processing time
with the estimated QRS marks.
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Wavelet transform. Wavelet based methods for QRS detection use the principle of
singularity detection in the wavelet coefficients. Wavelet coefficients of the ECG signal at
several scales are analyzed [LZT95, STB97, KMBB99] to find the local maxima and positions
of matching in two consecutive scales to locate QRS positions. This is based on the assumption
that the energy of the QRS complex is continuously spread over the spectral bands as well as
the temporal scales. The noise in the signal may not have this kind of property and hence false
alarms due to such noise can be reduced using this multiscale approach.

Filter bank. In a filter bank approach of QRS detection, sub-bands at different scales are
combined to confirm the positions of the local maxima [ATNL99]. The filter bank approach is
based on the fact that the QRS complex has simultaneous presence in the sub-bands, whereas
other ECG waves and noise may not exhibit this characteristic behavior. This is similar to
the wavelet based approach of QRS detection. In [BPSN82], a generalized class of filter with a
transform having two factors,

(
1− z−K

) (
1 + z−1)L is given: the first implements a difference

with integer delay K and the other is for a low-pass filter with band width controlled by
an integer parameter L. The integer parameters (K,L) are determined depending upon the
sampling rate. In [EZ79], (K,L) = (5, 4) is used at the sampling rate of 250Hz.

Mathematical morphology. In [ZMJ03], a curve length transform is used for the detec-
tion of QRS complex. The curve length is defined as the sum of Euclidean distances between
pairs of consecutive sample points in the ECG signal. The curve length of the ECG signal
depends on the increments in the sample values and the sampling time of the ECG. For uni-
form sampling in time the curve length is a measure of the increments in sample values. For
QRS detection the curve length of the ECG signal is evaluated in a window with the length
matching with the widest possible QRS complex. When the window is in perfect alignment
with the onset of QRS complex it produces the local maximum in the curve length feature and
is utilized for locating the onsets of the QRS complex. A low-pass filter with 3dB cut-off at
16Hz is used as a preprocessing step to suppress noise.

It should be noted that it is hard to design a single comprehensive preprocessing technique
for achieving simultaneous QRS enhancement and noise reduction effectively in practice. In
[PT85], the trade off between misses and false detections relies on the selection of bandwidth
of the filter and size of the moving-window integrator. The WT-based QRS detector [LZT95]
has the choice problem of mother wavelet and scales to obtain QRS events. Therefore, most
of the works paid attention on constructing suitable decision rules based on the preprocessing
results.

In this thesis work, the Pan and Tompkins algorithm has been chosen to accomplish the
QRS detection because it is extensively implemented in many real-time ECGmonitoring devices
and offers well-recognized performances.

1.4.3 P and T wave delineation

In the previous section we have reviewed some of the QRS detection techniques in the literature.
For automated analysis of the ECG, detection of P and T waves is also important as the P
wave represents atrial activity and the T wave is related to repolarization of ventricles. As
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mentioned before, P and T wave analysis is more complicated because of the low slope and
magnitude of P and T waves. In a cardiac cycle the sequence of occurrence of these waves is
P-QRS-T. Therefore, one can search for P and T waves within appropriate time windows after
the QRS complex is located. Meanwhile, it is recommended in [LJC94] that any fibrillation
condition should be detected using procedures proposed in [TZP90] before proceeding with P
and T wave analysis because it is meaningless to detect P and T waves in such circumstance.

The T wave is the wave with the next highest level of energy in cardiac cycle. The location
of T wave search window from the R peak depends on the current beat period, measured as
the time interval between two consecutive R peaks which is simply called RR interval. In
[LTC+90], the T wave search window is defined from the R peak position in the interval from
140 to 500ms if the RR interval mean is bigger than 700ms and for smaller RR intervals the
search window is defined in the range 100ms to 0.7 times RR interval. In [FS91], the P wave
search window is assumed to occur in a specified time window of 240 to 400ms preceding
the R wave of the QRS complex in each cardiac cycle. Once the search windows are defined
before and after the QRS location, an appropriate strategy is used to enhance the distinctive
features of each wave in order to find its peaks and limits. In the last two decades, a variety
of approaches have been proposed to automatically detect and delineate P and T waves in
the ECG [TZ91, LJC94, LTC+90, Str02, MN92, MP92, LZT95, MAO+04, MSV95, BNY01,
TS90, TRC06, CV06, SS09, GG89, CM08, YLL98, VGP+00, DHC10]. Some of the classical
approaches in the literature are reviewed in the following.

Low-pass differentiation (LPD) based methods

One of the classical methods to detect the ECG wave boundaries is based on low-pass differ-
entiation [LTC+90]. The P and T wave fiducial points (onset, peak and end) are located using
a low-pass filter from the differentiated ECG.

As show in Fig. 1.21, the ECG signal is processed by a derivative filter G1(z) and a
smoothing low-pass filter G2(z) such that:

G1(z) = 1− z−8

1− z−1 , G2(z) = 1− z−6 (1.2)

derivative
filter G1(z)ECG x(n) low-pass

filter G2(z)
wave

delineation
y(n)

Figure 1.21: Block diagram for the P and T wave delineation based on LPD.

The output of the LPD y(n) is then subjected to a thresholding method which adapts to
different wave morphologies to determine the wave boundaries and wave peaks. Take T wave
as an example, Laguna et al. [LTC+90] considered four types of T wave morphologies: normal
T wave (monophasic and positive), inverted T wave (monophasic and negative), ascending
biphasic T wave and descending biphasic T wave. The algorithm in [LTC+90] seeks in each
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T wave search interval, maximum (Tmax) and minimum (Tmin) of signal y(n). Three cases are
then:

• The algorithm finds a T wave maximum before a T wave minimum. In this case, the
method considers the T wave as an ascending biphasic T wave if |Tmax| > 4 |Tmin|,
otherwise the algorithm considers it as a normal T wave.

• The algorithm finds a minimum before a maximum. In this case, if |Tmax| > 4 |Tmin| the
method considers the T wave as a descending biphasic T wave, otherwise it is considered
to be inverted T wave.

• The algorithm finds a minimum before a maximum and another minimum after the
maximum. In this case, if |Tmax| < 4 |Tmin| then the algorithm considers the T wave as
normal, otherwise it is considered as inverted.

Once the T wave morphology type is determined, the algorithm locates the onset, peak and
end points by using experimental thresholding based criteria. Fig. 1.22 illustrates one example
on a normal T wave. The zero-crossing of y(n) is considered as the wave peak (see Tpic in
Fig. 1.22), and the point T2 where y(n) exceeds half the amplitude of the last summit of y(n)
denoted as y(Ti) is considered as the wave end.

Figure 1.22: Detection of the peak and the end of a normal T wave by using the method
[LTC+90]. Image adapted from [Cab08].

The advantage of the LPD based methods is that they are generally simple to implement
and robust. The major drawback is related to the differentiation which is known to be sensitive
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to noise. Another disadvantage is that the delineation criteria require a priori information on
the waveform (the class of morphology) and the delineation performance relies on thresholds
which are chosen arbitrarily according to experimental values.

Wavelet Transform (WT) based methods

Another class of P and T wave delineation methods are based on the wavelet transform (WT).
This transform provides a description of the signal in time-scale domain, allowing the represen-
tation of the temporal features of a signal at different resolutions. Similar to the QRS detection,
this technique has also shown interesting properties to P and T wave detection and delineation
problems. As a pioneer work, Li et al. proposed a method for detecting the QRS complex by
using WT [LZT95]. In their work, Li and coworkers also applied the WT to monophasic P and
T waves delineation problem, although only the QRS detector was validated. In [MAO+04],
a generalization of that method was presented, including the determination of the individual
QRS waves, and a robust delineation of QRS, P and T waves for a wide range of morphologies.
The performance of the WT based strategy was assessed using standard manually annotated
ECG databases, which makes it easier to compare with other methods.

The wavelet transform is a decomposition of the signal as a combination of a set of basis
functions, obtained by means of dilation a and translation b of a single prototype wavelet ψ (t).
Thus, the WT of a signal x (t) is defined as

Wa,b [x(t)] = 1√
a

∫ +∞

−∞
x (t)ψ

(
t− b
a

)
dt, a > 0 (1.3)

The greater the scale factor a is, the wider is the basis function and consequently, the corre-
sponding coefficient gives information about lower frequency components of the signal, and vice
versa. In this way, the temporal resolution is higher at high frequencies than at low frequen-
cies, achieving the property that the analysis window comprises the same number of periods
for any central frequency. In practice, the scale factor a and the translation parameter b can
be discretized. The usual choice is to follow a dyadic grid on the time-scale plane: a = 2k and
b = 2kl. The discrete wavelet transform (DWT) can be formed with basis functions

ψk,l(t) = 2−k/2ψ(2−kt− l), k, l ∈ Z+ (1.4)

Fig. 1.23 shows several simulated waves similar to those in the ECG, together with the first
five scales of their DWT (k ∈ {1, . . . , 5}). The local maxima and minima of the DWT indicate
the local singular points of the considered signal. Note that the same sampling rate is applied
in all scales to keep the time-invariance and the temporal resolution. This is achieved by
removing the decimation stages and interpolating the filter impulse responses of the previous
scale [MAO+04].

Fig. 1.24 summarizes the block diagram of a WT based P and T wave delineator. First,
the DWT of the ECG signal is computed on five scales, wx,k(n) denotes the DWT of x(n) at
scale 2k. The detection of the fiducial points is then carried out across the adequate WT scales,
attending to the dominant frequency components of each ECG wave: QRS waves correspond
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Figure 1.23: WT at the first five scales of ECG-like simulated waves. Image adapted from
[MAO+04].
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to a simultaneous effect in scales 21 − 24, while the T and P waves affect mainly scales 24 or
25. Using the information of local maxima, minima and zero crossings at different scales, the
algorithm identifies the significant points of the QRS complex first, and then those of the P
and T waves.

wavelet
transform

ECG x(n) wave
delineation

wx,k(n)

Figure 1.24: Block diagram for the P and T wave delineation based on WT.

Depending on the number and polarity of the slopes found, a wave morphology is assigned
and boundaries are located using threshold-based criteria [MAO+04]. Let us take a T wave as
an example (Fig. 1.25), the onset of a wave, denoted as no, occurs before the first significant
slope associated with the wave (the first maximum of |wx,4(n)|), at sample nf. In the same
manner, the end of a wave, denoted as ne, occurs after the last significant slope associated with
the wave (the last maximum of |wx,4(n)|), at sample nl. Each boundary is located by selecting
the sample nearest to nf (nl) where one of the following two criteria is satisfied: 1) |wx,4(n)| is
below a threshold ξo(ξe) relative to |wx,4(nf)| (|wx,4(nl)|) and 2) a local minimum of |wx,4(n)|
exists before nf (nl).

Figure 1.25: Detection of a biphasic T wave boundaries by using its DWT. Image adapted
from [AMRL09].

Regarding the purpose of locating different waves with typical frequency characteristics,
the WT is a suitable tool for ECG automatic delineation. The major drawbacks of the WT
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based approach are that a priori information is required on the waveform (delineation criteria
depend on the class of morphology) and width, and rigid arbitrary thresholds are applied to
determine the significance of the wave components to detect the wave and their boundaries.
The performance of the algorithm can be affected by the choice of the threshold values which
may differ among specified ECG datasets. This issue has been recently addressed by Dumont et
al. in [DHC10]. An evolutionary optimization process based on a learning period was proposed
to determine the proper threshold values for WT based methods.

Model-based approaches

The wave delineation can also be based on the concept of fitting a realistic model to the ECG
signal and extracting parameters from the model to determine waveform fiducial points. Par-
ticular attention has been devoted to Gaussian mixture state-space models whose parameters
can be estimated with nonlinear gradient descent [CV06], Kalman filters [SS09] or particle
filters [LBMT11]. This idea originates from the work by McSharry et al. [MCTS03], which
suggested the use of Gaussian mixture models to generate realistic synthetic ECGs. The model
generates a three-dimensional trajectory which consists of a circular limit cycle in the polar
plane that is pushed up and down as it approaches each of the wave centers, as shown in Fig.
1.26. The simplified discrete polar form [SSJC07] of the model is shown as

θk+1 = θk + ωTs

xk+1 = −
J∑
j=1

Ts
αjω

b2
j

∆θj,k exp
(
−

∆θ2
j,k

2b2
j

)
+ xk + ηk

(1.5)

where x1, ..., xK denote the ECG samples and ∆θj,k = (θk − νj) mod (2π), νj denotes some
specific time instants and αj and bj are model parameters which are characterized in the
following. Here, Ts = 1/Fs is the sampling time, ω is the angular velocity and ηk is a random
time variant noise which has been placed to represent the baseline wander. The summation
over j is taken over the number of Gaussian functions (or turning points) J used for modeling
each of the ECG component. In [SSJC07], the authors proposed to use five Gaussian functions
to model the ECG channels containing the P, Q, R, S and T waves such that J = 5. Fig. 1.27
shows the five Gaussian functions with arrows indicating the kernels’ effect intervals. Moreover,
the corresponding parameters of the Gaussian functions, i.e., the amplitude α = [α1 . . . α5]T ,
the angular spread b = [b1 . . . b5]T and the location ν = [ν1 . . . ν5]T were fixed as presented
in Table 1.1.

Table 1.1: Fixed ECG feature parameters proposed in [SSJC07]
Index (j) P Q R S T

αj 1.2 -5.0 30 -7.5 0.75
νj −π/3 −π/12 0 π/12 π/2
bj 0.25 0.1 0.1 0.1 0.4

The space-state model presented in (1.5) can be modified and extended to include the
evolution of the Gaussian function parameters. In the modified dynamical model, the Gaussian
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Figure 1.26: Typical trajectory generated by
the ECG dynamical model [MCTS03] in the
3D space given by (x, y, z). Image adapted
from [MCTS03].

Figure 1.27: Five Gaussian functions with ar-
rows indicating the kernels’ effect intervals.
Image adapted from [SS09].

function parameters are considered as hidden-state variables with first order autoregressive
dynamics and no corresponding observations. This modified model is summarized as follows

θk+1 = θk + ωTs

xk+1 = −
5∑
j=1

Ts
αj,kω

b2
j,k

∆θj,k exp
(
−

∆θ2
j,k

2b2
j,k

)
+ xk + ez,k

αk+1 = αk + eα,k
νk+1 = νk + eν,k
bk+1 = bk + eb,k

(1.6)

where eα,k, eν,k and eb,k are additive mutually independent white noise vectors whose vari-
ances determine how fast the parameters are expected to change with time. Concerning the
observation equation, besides the ECG observations x, Sameni et al. proposed in [SSJ05] to
add the phase φ as a second observation, which can be simply obtained by detecting the R
peaks. Hence, we have two noisy observation vectors φ = (φ1, · · · , φK) and s = (s1, · · · , sK)
(where K is the number of observed samples), corresponding to the state variables θ and x.
Other state variables are considered as hidden states. The resulting observation equation of
the dynamical model can be defined as

φk = θk + uφ,k
sk = xk + us,k

(1.7)

where uφ,k and us,k are observation noises which are assumed to be Gaussian. An EKF-based
Bayesian filtering method was proposed to estimate the unknown parameters of the model (1.6)
in [SS09]. Note that only Gaussian noise is considered in the work of [SS09]. However, in the
presence of motion artifacts, environmental noises and bioelectrical artifacts, non-linearities
or/and non-Gaussian noises can be introduced in the ECG dynamical model. This problem
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was addressed in [LBMT11], where a particle filtering based method is proposed to resolve a
similar Bayesian framework.

Based on the estimates of the model parameters, the locations of characteristic waveforms
and their corresponding fiducial points can be determined by using certain criteria. It is
assumed in [SS09] that each ECG characteristic waveform is symmetric and thus the ECG
waveform peaks correspond to the center parameters of Gaussian functions, where the trajec-
tory reaches to its local maxima/minima. This way, the νj parameter, which stands for the
mean of the j-th Gaussian kernel, determines the wave peak locations. The center positions for
a typical synthetic trajectory are shown in Fig. 1.27 with small filled circles. Concerning the
onset and offset of P and T waves, the spread parameter bj is used. The approximately 99%
confidence bound towards the spread parameters is considered as the termination of the two
Gaussian functions representing these waves. In other words, when any of the two Gaussian
functions representing P and T waves in the dynamical model extends to three times its spread
(equal to 99% confidence bound), it is considered as the onset point. The same is true for the
offset point. The block diagram for the Gaussian mixture model based delineation method is
shown in Fig. 1.28.

phase
calculationECG

extended
Kalman
filter

wave
delineation

Figure 1.28: Block diagram for the Gaussian mixed model-based delineation method.

To conclude the methods of this kind, the advantages are their sequential property which is
suitable for on-line ECG processing and their low computational load. Nevertheless, this class
of methods requires the number of Gaussian kernels known a priori. If the assumption that the
waves are symmetric does not hold, it may have difficulties on handling abnormal morphologies
and rhythms.

Other P and T wave delineation techniques

Finally, we would like to mention other delineation strategies based on length transformation
[GG89], uniform thresholding [CM08], approximating function theory [YLL98], characteriza-
tion of TU complexes [VGP+00] and pattern recognition [TS90]. More recently, Cabasson
proposed in [Cab08] to consider the P and T wave delineation as a time delay estimation prob-
lem. The Woody’s method [AMRL67], which is often used on the identification and analysis
of the delayed signals, was studied to deal with the ECG wave delineation. Note that some
of these methods can only be used to obtain a subset of P and T-wave characteristic points
and most of the methods mentioned here do not allow the estimation of the waveform. Note
also that all the approaches mentioned above are single-lead based methods. Concerning the
multi-lead ECG processing, one solution is to include post-processing decision rules to deal
with multi-lead files by choosing global marks based on the single-lead based sets of locations.
In [AMRL09], a multi-lead methodology regarding boundaries location is proposed and val-
idated. The proposed approach departs from the single-lead WT based system and attends
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to the spatial characteristics of the different available leads, aiming to achieve a more robust
delineation. In this work, we will limit ourself on single-lead ECG processing.
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P and T wave analysis using window
based Bayesian models and MCMC
methods
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2.1 Introduction

In this chapter, we introduce a window based Bayesian model which simultaneously solves
the P and T wave delineation task and the waveform estimation problem. This model takes
into account appropriate prior distributions for the unknown parameters (wave locations and
amplitudes, waveform coefficients). The prior distributions and the likelihood of the observed
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data are combined to provide the posterior distribution of the unknown parameters. This pos-
terior distribution depends on hyperparameters that can be fixed a priori or estimated from the
observed data. This work will consider both possibilities depending on the available informa-
tion regarding the hyperparameters. To alleviate numerical problems related to the posterior
associated to the P and T wave delineation, we propose to resort to Markov chain Monte-Carlo
(MCMC) methods [RC04]. MCMC methods are powerful numerical tools, appropriate to
solve complex Bayesian inference problems. Section 2.3.2 concentrates on a particular MCMC
method referred to as partially collapsed Gibbs sampler (PCGS) whose convergence properties
have been studied in [VP08]. The PCGS has shown interesting properties for electromyography
(EMG) [GCIF11] and optical coherence tomography (OCT) [KNHH09], [KTHD10]. The ECG
state sequence composed of the P wave, QRS complex and T wave parameters is assumed to
be Markovian, since the current state (P-wave, QRS complex, and T wave) only depends on
the previous state. This property motivates our study of a PCGS imposing a strong local
dependency on the wave locations. The local dependency improves the convergence and the
computational efficiency of the Gibbs sampler. The generated samples are used to estimate the
unknown model parameters. The wave detection and delineation criteria based on the poste-
rior distributions are presented in Section 2.3.4. Simulation results performed on the standard
annotated QT database [LMGM97] as well as a comparison among the PCGS, the block Gibbs
sampler and other algorithms are given in Section 2.3.5.

In Section 2.4, the proposed Bayesian model is modified to consider the baseline within each
non-QRS component which was assumed to be filtered out in Section 2.2.2, and to represent P
and T waves by their respective dimensionality-reducing expansion according to Hermite basis
functions. The local dependency of the ECG signal is otherwise expressed by a block constraint,
and a block Gibbs sampler is proposed to estimate the unknown parameters associated to
the modified Bayesian model. The block Gibbs sampler further improves convergence and
computational efficiency. Comparison results with the previously proposed PCGS algorithm
on the QT database are presented in Section 2.4.5. Finally, conclusions are reported in Section
2.5.
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2.2 Window based Bayesian model

It is common to view ECGs as the combination of two elements, namely, QRS complexes
and non-QRS components. The interval between each successive pair of QRS offset and the
subsequent QRS onset constitutes a non-QRS component. Due to the nonstationary nature of
ECGs, detection and estimation must involve a limited set of consecutive beats. In the window
based Bayesian model, we first detect QRS complexes that are the most prominent components
of the ECG signal, and then we shift a non-overlapping D-beat processing window to cover
the whole signal. In the processing window, detected QRS complexes become a reference for
detecting P and T-waves. We define a T search interval and a P search interval for each beat,
relative to the QRS complex boundaries depending on a recursively computed RR interval.
The T and P search regions within the processing window are then extracted individually to
form T and P wave search blocks.

2.2.1 Preprocessing

QRS detection

QRS complexes are detected using Pan and Tompkins algorithm [PT85] based on digital anal-
ysis of the slope, amplitude and width. A brief introduction of this technique is introduced
in Section 1.4.2. The filtering that is done prior to this algorithm is found to be satisfactory.
Thus no additional filtering is required before the delineation of P and T waves. Note that
other QRS detection algorithm mentioned in Section 1.4.2 could be used in this preprocessing
step.

Removal of baseline drift

In the proposed algorithm, waveform coefficients are estimated simultaneously with the wave
locations. Baseline drift causes inaccurate waveform estimation results. For this reason, we
employ the median filtering method proposed in [CM07] to remove both the global baseline
drift and the local baseline in each RR interval (see Section 1.4.1 for more details). Note that
other baseline removal technique discussed in Section 1.4.1 could be used in this preprocessing
step.

Construction of P and T wave search blocks

As shown in Fig. 2.1, in the D-beat processing window, D right-hand neighborhoods of succes-
sive QRS offsets can be extracted to form T wave search windows. Suppose that koff denotes a
QRS offset location, then a T wave indicator can only appear in the right-hand neighborhood
of koff which can be denoted as JT (koff) = (koff + 1, . . . , koff +NT ), where NT denotes the T
wave search region width (NT = RRI/2, where RRI is the length of the current estimated RR
interval). Similarly, D left-hand neighborhoods of D successive QRS onsets can be extracted
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to form P wave search windows. The length of each search interval within a search window is
fixed according to the current estimated RR interval length RRI. Thus it will differ from one
beat to another.
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Figure 2.1: Preprocessing procedure within the D-beat processing window: (a) Located QRS
complexes. (b) T wave search window. (c) P wave search window. RRI is the interval from a
QRS offset to the next QRS onset, and RRI/2 is half of RRI, here we set NT = NP =RRI/2.

2.2.2 Signal model for a D-beat processing window

For a D-beat processing window, the proposed algorithm processes T wave and P wave search
windows individually using the same Bayesian inference. The following paragraphs introduce
the Bayesian model applied to T wave search windows, while it should be noted that this model
is compatible with minor modifications for P wave search windows as well.

Deconvolution models have been widely used in many signal processing applications includ-
ing signal segmentation [DTD07], layer detection [KNHH09], and EMG signal decomposition
[GCF09]. Following these ideas, we propose to model the P and T waves in ECG signal by using
a deconvolution model with deterministic constraints. Note that a similar Bayesian framework
has been previously proposed by Kail et al. to deal with OCT signals. Directly inspired from
all these previous deconvolution models and especially based on the previous work of Kail
et al. [KNHH09], signals in a T wave search window are assumed to be the convolution of
an unknown impulse response h = [h−L, . . . , hL]T with an unknown sparse input sequence
u = [u1, . . . , uM ]T such that

xk =
L∑

l=−L
hluk−l + wk (2.1)

with k ∈ {1, . . . ,K}, where K = M + 2L is the window length, xk is the kth sample of the
observed signal and wk denotes additive Gaussian noise with zero mean and variance σ2

w. Here,
we adopt a zero boundary condition, i.e., the unknown sequence um is assumed to vanish for
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all m /∈ {1, . . . ,M}. In matrix form, (2.1) can be written as

x = Fu+w (2.2)

where x = [x1, . . . , xK ]T , w = [w1, . . . , wK ]T , F is the Toeplitz matrix of size K×M with first
row [h0:−L 0] and first column

[
hT0:L 0T

]T
(0 is a vector of zeros with suitable length).

The sequence u can be further decomposed by using a binary indicator bm ∈ {0, 1} ,m ∈
{1, . . . ,M} indicating the T wave existence (bm = 1) or absence (bm = 0) multiplied by weights
defining the T wave amplitudes contained in the vector a = [a1, . . . , aM ]T , as illustrated in Fig.
2.2. Note that the impulse response h is supposed to be identical for D consecutive T wave
search intervals within the processing window whereas the amplitudes in a vary from one
interval to another. Consequently, (2.2) can be written as

x = FBa+w (2.3)

where B = diag(b) denotes the M × M diagonal matrix whose diagonal elements are the
components of b = [b1, . . . , bM ]T .
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Figure 2.2: Modeling of T wave parts within the T wave search blocks.

2.2.3 Bayesian inference

The unknown parameter vector resulting from the window based signal model presented in
Section 2.2.2 is denoted as θ =

[
bT ,aT ,hT , σ2

w

]T
. This work proposes to estimate θ by using
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Bayesian estimation theory. Bayesian inference on θ is based on the posterior distribution of
θ which is related to the likelihood of the observations and the prior of the parameters via the
classical Bayes rule

p (θ|x) ∝ p (x|θ) p (θ) (2.4)

where ∝ means “proportional to”. The likelihood p (x|θ) and the prior p (θ) for the T wave
delineation problem are summarized below.

Likelihood

Using (2.3) and the fact that wk is white Gaussian, the likelihood of the observed data vector
x can be expressed as

p (x|θ) = 1
(2π)

K
2 σKw

exp
[
− 1

2σ2
w

‖x− FBa‖2
]

(2.5)

where ‖x‖ =
(
xTx

) 1
2 denotes the Euclidean norm.

Prior distributions

The indicator vector b is a deterministic function of the amplitude vector a. Thus, the prior
probability density function (pdf) of the sparse sequence u can be decomposed as p(b,a) =
p (a|b) p (b). Since there are no known relations between the sparse sequence, the pulse shape
and the noise variance, the unknown parameters (b,a), h and σ2

w are assigned a priori statis-
tically independent of each other such that

p (θ) = p (b,a) p (h) p
(
σ2
w

)
= p (a|b) p (b) p (h) p

(
σ2
w

)
. (2.6)

We will now discuss the prior distributions of each of these parameters. As a classical choice
to sparsity modeling, the binary indicator bk is modeled as a Bernoulli sequence

bk ∼ Be (λ) (2.7)

where Be (λ) is the Bernoulli distribution with parameter λ such that P [bk = 1] = λ and
P [bk = 0] = 1 − λ. Because of the physiological constraint of ECGs, each ECG cycle should
contain at most one T wave and P wave. Successive T waves can only appear in search intervals
located in the right-hand neighborhoods of each QRS offset (whereas P waves are located in
the left-hand neighborhoods of each QRS onset). Thus the T wave indicator vector b cannot
have two elements bk = 1 and bk′ = 1 closer than a minimum-distance d, where d depends
on the RR interval length (d is set to RRI/2 in our simulations). The prior of b can then
be defined as the product of the likelihood of independent Bernoulli random variables and a
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minimum-distance constraint indicator function IC(b)

p (b) ∝
[
K∏
k=1

p (bk)
]
IC(b) = λ‖b‖

2
(1− λ)K−‖b‖

2
IC(b) (2.8)

where C represents the minimum-distance constraint, i.e., IC(b) = 1 if b ∈ C and IC(b) = 0 if
b /∈ C.

Similar to the indicators, amplitudes at different k are also modeled as statistically inde-
pendent

p (a|b) =
K∏
k=1

p (ak|bk) (2.9)

For the T wave amplitudes ak at those k where bk = 1 (note that bk = 0 implies ak = 0), we
choose a zero-mean Gaussian prior, i.e.

p(ak|bk) =
{
δ(ak) if bk = 0
N (0, σ2

a) if bk = 1
(2.10)

where δ(·) is the Dirac delta function. Choosing a zero-mean Gaussian prior allows for both
positive and negative amplitudes. It follows that the sparse sequence uk=bkak is a Bernoulli-
Gaussian (BG) sequence with minimum-distance constraints. Consequently, the T wave detec-
tion problem can be seen as a BG blind deconvolution with deterministic local constraints as
in [KNHH09, KTHD10].

The impulse response vector h is assigned a Gaussian prior

p (h) = N
(
0, σ2

hI2L+1
)

(2.11)

where I2L+1 denotes the identity matrix of size (2L + 1) × (2L + 1). Choosing conjugate
Gaussian prior for h simplifies the algorithm since the resulting conditional distribution is also
Gaussian. Here, σ2

a and σ2
h are fixed hyperparameters. The impulse response is normalized to

avoid scale ambiguity (different values of amplitude and impulse response could provide the
same convolution results) such that σ2

h = 1. Moreover, the proposed algorithm normalizes the
ECG signals with different amplitude resolutions by their maximum R-peak amplitude such
that σ2

a = 1 can cover all possible amplitude values.

The noise variance σ2
w is assigned an inverse gamma prior

p(σ2
w) = IG (ξ, η) = ηξ

Γ(ξ)
1

(σ2
w)ξ+1 exp

(
− η

σ2
w

)
IR+(σ2

w) (2.12)

where Γ(ξ) is the gamma function, IR+(x) is the unit step function, and ξ and η are fixed
hyperparameters providing a vague prior. The inverse gamma distribution is convenient (and
commonly used in similar contexts) because it is the conjugate prior of the Gaussian likelihood
function [DTD07].
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Posterior distribution

The posterior distribution of the unknown parameter vector θ can be computed as follows

p (θ|x) ∝ p (x|θ) p (a|b) p (b) p (h) p
(
σ2
w

)
∝ exp

[
−‖x− FBa‖

2 + η

σ2
w

− ‖h‖
2

σ2
h

− ‖a‖
2

σ2
a

]
λ‖b‖

2
(1− λ)K−‖b‖

2
IC(b)IR+(σ2

w). (2.13)

The usual Bayesian estimators related to this posterior are the minimum mean square
error (MMSE) estimator and the maximum a posteriori (MAP) estimator [Van68]. Due to
the complexity of the posterior distribution given by (2.13), it is difficult to obtain closed-
form expressions for these estimators. Markov chain Monte Carlo (MCMC) methods are often
used when the analytic expression of a detector or estimator is too complex to be calculated
directly. The MMSE or MAP estimators of the unknown parameters are then approximated
by a sample-based scheme (as, e.g., in Section 2.3.3), where a sample is generated by means
of an ergodic Markov chain whose stationary distribution is the target distribution from which
the sample realizations are to be drawn. The main principles of MCMC methods can be
found in [RC04]. In this work, we concentrate on a particular MCMC method known as the
Gibbs sampler. An extension of this method referred to as partially collapsed Gibbs sampler
(PCGS) was studied in [VP08]. The idea of the PCGS is to introduce three modifications to
the classical Gibbs sampler (marginalization, trimming and permutation) without changing the
stationary distribution of the Markov chain. The PCGS’s flexibility regarding the choice of
the sampling distributions makes it applicable to many cases in which the posteriors required
by the Gibbs sampler cannot be calculated analytically. In the next section, we first review
the Gibbs sampler and the PCGS principles. Then, we propose a PCGS that exhibits fast
convergence in the presence of a minimum distance constraint to generate samples distributed
according to (2.13).
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2.3 Partially collapsed Gibbs sampler

2.3.1 A review of Gibbs sampler and PCGS

MCMCmethods can be used to sample from probability distributions by constructing a Markov
chain that has the desired distribution as its equilibrium distribution. The state of the chain
after a large number of steps is then used as a sample of the desired distribution. The quality
of the sample improves as a function of the number of steps. Typical use of MCMC sampling
is to approximate the target distribution. The most common application of these algorithms is
numerically calculating multi-dimensional integrals. In these methods, an ensemble of “walkers”
moves around randomly. At each point where the walker steps, the integrand value at that
point is counted toward the integral. The walker then may make a number of tentative steps
around the area, looking for a place with reasonably high contribution to the integral to move
into next. In Bayesian statistics, multi-dimensional integrals often arises. As a consequence,
MCMC methods are widely used to resolve complex Bayesian inference problems [RC04].

Gibbs sampler

The Gibbs sampler is an example of MCMC methods. The algorithm was described by Stuart
and Donald Geman in 1984 [GG84]. Gibbs sampler is applicable when the joint distribution is
not known explicitly or is difficult to sample from directly, but the conditional distribution of
each variable is known and is easy to sample from. The Gibbs sampler generates an instance
from the distribution of each variable in turn, conditional on the current values of the other
variables. It can be shown that the sequence of samples constitutes a Markov chain, and
the stationary distribution of that Markov chain is just the sought-after joint distribution.
The Gibbs sampler is particularly well-adapted to sampling the posterior distribution of a
Bayesian network, since Bayesian networks are typically specified as a collection of conditional
distributions.

The point of Gibbs sampling is that given a multivariate distribution it is simpler to sam-
ple from a conditional distribution than to marginalize by integrating over a joint distribution.
Consider a random vector θ = [θ1, . . . , θL]T , and let θ∼l denote θ without the lth entry θl. To
obtain realizations (samples) from the joint distribution p(θ|x), the Gibbs sampler iteratively
samples each θl from p(θl|θ∼l,x) in an arbitrary order. That is, sample each variable from
the distribution of that variable conditioned on all other variables, making use of the most
recent values and updating the variable with its new value as soon as it has been sampled (see
Algorithm 1). At the tth iteration of the Gibbs sampler, L such sampling steps produce a
new realization θ(t) from p(θ|x). This strategy is known to converge to the target distribution
p(θ|x), which is the stationary distribution of the underlying Markov chain. Since the initial-
ization may strongly influence the first few realizations, only the realizations after a certain
“burn-in period” are used in the sample. The main advantages of the Gibbs sampler are the
generality of its formulation and the fact that it circumvents the “curse of dimensionality.”
However, a known weakness is that statistical dependencies between (some of) the θl tend to
result in slow convergence of the Markov chain to its stationary distribution [GIC11].
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Algorithm 1 Prototype Gibbs sampler.
{Initialization:}
Set appropriate initial values θ(0).
{Iterations:}
for t = 1, 2, . . . , N do
for l = 1, 2, . . . , L do
{Step l of the Gibbs sampler:}
Sample θ(t)

l from p(θ(t)
l |θ

(t)
1 , . . . , θ

(t)
l−1, θ

(t−1)
l+1 , . . . , θ

(t−1)
L ,x)

end for
end for

PCGS

The PCGS is an extension of the Gibbs sampler. Here we present three basic tools for con-
structing a PCGS. They are designed to ensure that the resulting PCGS converges quickly to
the target distribution.

Marginalization. The first step in constructing a PCGS is to marginalize some compo-
nents of θ out of some steps of the sampler. Instead of sampling only the entry θl in step
l, some other entries may be sampled along with θl instead of being conditioned upon. Let
J (l) ⊆ {1, . . . , L}, and let the vectors θJ (l) and θ∼J (l) contain the entries of θ indexed by the
subset J (l) and by its complement {1, . . . , L} \ J (l), respectively. Then step l in Algorithm 1
may sample from p(θJ (l)|θ∼J (l),x) instead of p(θl|θ∼l,x). This can improve the convergence
rate significantly, especially when there are strong dependencies among certain subsets of θ.

Trimming. Trimming here means discarding a subset of the components that were to be
sampled in one or more steps of a Gibbs sampler. With the marginalization, some J (l) for
different l may overlap. That is within one entire PCGS iteration, some θl are sampled several
times. If a θl is sampled several times in consecutive steps, only the last value is relevant,
since the other values are never used. Such unused entries can thus be dropped from the
respective sampling distribution. This can formulated as follows: for any l ∈ 1, . . . , L− 1, let
the vector θJ ′(l) contain those entries of θJ (l) that are not contained in θJ (l+1), i.e., J ′(l) =
J (l) \ J (l + 1). Then step l may sample from p(θJ ′(l)|θ∼J (l),x) instead of p(θJ (l)|θ∼J (l),x),
which may reduce the complexity of the sampling steps. Note that the distributions used
for sampling are generally no longer conditional distributions associated with the full joint
distribution p(θ|x), but conditional distributions associated with certain marginal distributions
of p(θ|x).

Permutation. In the case of a L-step Gibbs sampler (as, e.g., in Algorithm 1), the steps
can be reordered into L! possible permutations. Our goal in permuting the steps is to arrange
them so that as many of the marginalized components as possible are intermediate quantities
that are not conditioned on in subsequent steps. After trimming, permutations are only allowed
if they preserve the justification of the trimming already applied.

These modifications do not change the stationary distribution of the Markov chain [VP08].
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The PCGS’s flexibility regarding the choice of the sampling distributions makes it applica-
ble to many cases in which the posteriors required by the Gibbs sampler cannot be cal-
culated analytically. The following paragraphs propose a PCGS to obtain a sample S ,{
b(t),a(t),h(t), σ

2(t)
n

}N
t=1

from the posterior distribution (2.13). From this sample, the unknown
parameters b, a, h, and σ2

n can be detected or estimated.

2.3.2 Proposed PCGS for P and T wave analysis

Reference sampler

To obtain samples from p
(
b,a,h, σ2

w|x
)
, the Gibbs sampler that does not take into account the

minimum-distance constraint iteratively generates samples from p
(
bk|b∼k,h, σ2

w,x
)
, p
(
a|b,h, σ2

w,x
)
,

p
(
h|a, b, σ2

w,x
)
and p

(
σ2
w|a, b,h,x

)
. This can be summarized in Algorithm 2.

Algorithm 2 One reference sampler iteration:
for k = 1, . . . ,K do
sample bk from p

(
bk|b∼k,h, σ2

w,x
)

end for
sample a from p

(
a|b,h, σ2

w,x
)

sample h from p
(
h|b,a, σ2

w,x
)

sample σ2
w from p

(
σ2
w|b,a,h,x

)
The reference sampler here is a PCGS, not a classical Gibbs sampler, because the sampling

distribution for bk is not a conditional distribution associated with the full joint posterior
(since it is not possible to sample according to p

(
bk|b∼k,a,h, σ2

w,x
)
, the parameter vector a is

marginalized out). However, as pointed out in [KTHD10], this reference sampler is poorly suited
to problems with local constraints because a constraint that excludes parts of the hypothesis
space may even inhibit convergence to p(b,a,h, σ2

w|x) altogether.

Proposed PCGS

In order to improve convergence of the sampler, we propose to split the unknown parame-
ter vector θ into two parts, i.e., (b,a) that contains the constrained parameters and

(
h, σ2

w

)
that contains the unconstrained parameters. To accelerate the convergence of the Gibbs
sampler, we propose a PCGS that takes into consideration the local constraints affecting b
and a. More precisely, denote as Jd (k) a right-hand neighborhood of k with length d, i.e.,
Jd (k) = {k, . . . , k + d− 1}. We recall that d is the minimum-distance constraint: no consecu-
tive non-zero wave indicators can be nearer than d. This neighborhood divides the wave indica-
tor vector b and the wave amplitude vector a into two parts bJd(k) = [bk, . . . , bk+d−1]T , b∼Jd(k) =
[b1, . . . , bk−1, bk+d, . . . , bK ]T and aJd(k) = [ak, . . . , ak+d−1]T , a∼Jd(k) = [a1, . . . , ak−1, ak+d, . . . , aK ]T .
The proposed PCGS iteratively generates bk and ak according to the conditional distributions
p
(
bk|b∼Jd(k),a∼Jd(k),h, σ

2
w,x

)
and p

(
ak|bk, b∼Jd(k),a∼Jd(k),h, σ

2
w,x

)
, which is equivalent to
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jointly sampling (bk, ak) from p
(
bk, ak|b∼Jd(k),a∼Jd(k),h, σ

2
w,x

)
.

The proposed PCGS is different from the reference sampler in Algorithm 2 because the sam-
pling distribution p

(
bk, ak|b∼Jd(k),a∼Jd(k),h, σ

2
w,x

)
is not a conditional distribution associated

with the joint posterior p
(
b,a,h, σ2

w|x
)
. Rather, it is a conditional distribution associated with

p
(
b,a,h, σ2

w|x
)
marginalized with respect to all parameters in the neighborhood Jd(k) without

bk and ak, i.e., marginalized with respect to Jd (k) \ k = {k + 1, . . . , k + d− 1}. Consequently,
bJd(k) and aJd(k) are not contained in the condition for (bk, ak). This difference from the Gibbs
sampler is essential, since it gives the proposed PCGS the freedom required to explore the
restricted hypothesis space efficiently.

To see that the proposed algorithm is a valid PCGS, consider a sampler that samples
(bJd(k),aJd(k)) from p

(
bJd(k),aJd(k)|b∼Jd(k),a∼Jd(k),h, σ

2
w,x

)
. All the sampling distributions

in this sampler are conditional distributions associated with the full joint posterior, and the
proposed PCGS can be seen as a trimmed version of it. The trimming can be justified because
all elements of Jd (k) except k itself are also contained in Jd (k + 1). Thus, they will be sampled
again after the current step before being conditioned upon, which makes them eligible for
trimming. This also explains why it is unnecessary to sample parameters indexed by ∼ Jd (k).

The resulting algorithm is summarized in Algorithm 3 whereas the different conditional
distributions are derived in the Appendix A and detailed below. Note that a similar PCGS
was previously proposed in [KTHD10] for optical coherence tomography and its convergence
was investigated in [VP08].

Algorithm 3 One proposed PCGS iteration:
set k = 1
while k ≤ K do
sample bk from p

(
bk|b∼Jd(k),a∼Jd(k),h, σ

2
w,x

)
if bk = 1 then
sample ak from p

(
ak|bk = 1, b∼Jd(k),a∼Jd(k),h, σ

2
w,x

)
set bJd(k)\k = 0
set k = k + d− 1

end if
set k = k + 1

end while
sample h from p

(
h|b,a, σ2

w,x
)

sample σ2
w from p

(
σ2
w|b,a,h,x

)

Indicators. As explained previously, the sampling distribution for bk is a conditional
distribution associated with the joint posterior p

(
b,a,h, σ2

w|x
)
marginalized with respect to

the remaining parameters in the neighborhood Jd (k) \ k. While the marginalization with
respect to aJd(k) is easily done in closed form, the marginalization of the joint posterior cannot
be analytically obtained with respect to the discrete-valued bJd(k)\k = [bk+1, . . . , bk+d−1]T .
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Indeed, this conditional distribution can be calculated as

p
(
bk|b∼Jd(k),a∼Jd(k),h, σ

2
w,x

)
=

∑
bJd(k)\k

p
(
bJd(k)|b∼Jd(k),a∼Jd(k),h, σ

2
w,x

)
. (2.14)

Thus, we propose to sample bJd(k) from p
(
bJd(k)|b∼Jd(k),a∼Jd(k),h, σ

2
w,x

)
and then use the bk

contained in the sample. Therefore, the sampling distribution for wave indicators is

p
(
bJd(k)|b∼Jd(k),a∼Jd(k),h, σ

2
w,x

)
∝ σ1 exp

(
|µ1|2

2σ2
1

)
p (b)

with

σ2
1 =


∥∥∥F Jd(k)bJd(k)

∥∥∥2

σ2
w

+ 1
σ2
a


−1

µ1 =
σ2

1b
T
Jd(k)F

T
Jd(k)

(
x− F∼Jd(k)B∼Jd(k)a∼Jd(k)

)
σ2
w

where F Jd(k) denotes the columns of F indexed by Jd (k), F∼Jd(k) denotes F without those
columns, and B∼Jd(k) denotes the diagonal matrix diag

(
b∼Jd(k)

)
(see Appendix A for compu-

tational details). Note that, in the case where we sample bk = 1 at position k, this bk = 1 will
force the next d−1 indicators to be zero. Therefore, after generating a 1 for bk, the subsequent
indicators bk+1, . . . , bk+d−1 can be set to zero and the corresponding d−1 sampling steps can be
skipped. This is the consequence of the minimum distance constraint which ensures that there
can not be two successive T waves (or P waves) closer than a certain distance. By exploiting
this property, the proposed PCGS improves the convergence rate of the sampler. This will be
confirmed in the simulation section (see a convergence comparison with the reference sampler
Fig. 2.11).

Amplitudes. Using the fact that p (a) is a conjugate prior, we obtain

p
(
ak|bk = 1, b∼Jd(k),a∼Jd(k),h, σ

2
w,x

)
= N

(
µ1, σ

2
1

)
(2.15)

Note that the amplitude ak is sampled only when bk = 1, i.e., when a wave has been detected.

Waveform coefficients. Because h is a priori Gaussian, straightforward computations
lead to

p
(
h|b,a, σ2

w,x
)

= N (µ2,Σ2) (2.16)

with

µ2 = σ2
2U

Tx

σ2
w

, Σ2 =
(
UTU

σ2
w

+ I2L+1
σ2
h

)−1

where U is the Toeplitz matrix of size K × (2L+ 1) with first row [uL+1:1 0] and first column
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[
uTL+1:K 0T

]T
. Note that Uh = FBa. Thus (2.3) can be represented as x = Uh + w. As

mentioned in 2.2.3, scale ambiguity inherent to the convolution model is resolved by normalizing
h at every iteration.

Noise variance. The conditional distribution of the noise variance is the following inverse
gamma distribution

p
(
σ2
w|b,a,h,x

)
= IG

(
ξ + K

2 , η + 1
2 ‖x− FBa‖

2
)
. (2.17)

An Alternative PCGS

An alternative PCGS, which marginalizes out entirely the parameter vector a in the sampling
substeps for the bk, can be formulated in Algorithm 4. Note that this alternative PCGS has
been proposed previously in [KTHD10].

Algorithm 4 One alternative PCGS iteration:
set k = 1
while k ≤ K do
sample bk from p

(
bk|b∼Jd(k),h, σ

2
w,x

)
if bk = 1 then
sample ak from p

(
ak|bk = 1, b∼Jd(k),a∼Jd(k),h, σ

2
w,x

)
set bJd(k)\k = 0
set k = k + d− 1

end if
set k = k + 1

end while
sample h from p

(
h|b,a, σ2

w,x
)

sample σ2
w from p

(
σ2
w|b,a,h,x

)
The sampling distribution associated to this alternative PCGS is as follows (the sampling

distributions for the waveform coefficients and the noise variance parameters are the same as
the previous proposed PCGS)

p
(
bJd(k)|b∼Jd(k),h, σ

2
w,x

)
∝ |Σ3| exp

(
µT3 Σ−1

3 µ3

)
p (b)

p
(
ak|bk = 1, b∼Jd(k),a∼Jd(k),h, σ

2
w,x

)
= N (µ3,Σ3) (2.18)

with

Σ3 =
( 1
σ2
w

BTF TFB + 1
σ2
a

I

)−1

µ3 = 1
σ2
w

Σ3B
TF Tx.
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Compared to the proposed PCGS, the alternative PCGS is “more collapsed” since its sam-
pling distributions are conditioned on less parameters. Therefore, theoretically, the gain in
convergence rate is slightly bigger than for the proposed PCGS. Nevertheless, the alternative
PCGS is significantly more complex than the proposed PCGS because it requires inversion of
Σ3, which is a K ×K matrix.

2.3.3 Parameter estimation with the PCGS

P and T wave detection and estimation are based on the estimated joint posterior distribution
of wave indicators, wave amplitudes and waveform coefficients. This posterior is computed from
histograms of the samples generated by the PCGS. Unlike most of the approaches found in the
literature, no rigid amplitude threshold is used to determine whether waves are representative
or not.

The posterior distribution of wave indicators carries information regarding the probability
of having a P or T wave at a given location. The indicator posterior probability at position k
can be approximated as follows (the probability of having bk = 1 is equal to E [bk], where E [·]
is the mathematical expectation since bk is a binary random variable)

b̂k,MMSE = 1
Nr

Nr∑
t=1

b
(Nbi+t)
k (2.19)

where b(t)
k denotes the indicator at position k generated at iteration t, while Nr is the number

of iterations used for the estimation and Nbi is the number of burn-in iterations. Note that
(2.19) is the MCMC approximation to the MMSE estimator. The detection results b̂ can be
obtained with various degrees of certainty by using a local MAP strategy: since there are at
most one T wave (P-wave) in each T-searching neighborhood (P-searching neighborhood), the
proposed algorithm compares the highest estimated posterior probability of each neighborhood
to a given probability threshold (γP for P-wave and γT for T wave) in order to decide whether
it is representative or not. The value of γP and γT can be determined by studying the receiver
operating characteristic (ROC) curve (see Section 2.3.5 for details). If the local MAP is higher
than the threshold, the corresponding indicator location can be seen as the estimate wave
location in this searching neighborhood.

For estimating the wave amplitude ak corresponding to a position k where a P or T wave
has been detected, we use the approximated MMSE estimator of ak conditionally upon bk = 1

âk,MMSE = 1
|Tk|

∑
t∈Tk

a
(Nbi+t)
k (2.20)

where a(t)
k denotes the kth entry of the amplitude vector a generated by the Markov chain

at iteration t, Tk is the set of indices t of all iterations satisfying b(t)
k = 1 excluding burn-in

iterations. Note that âk,MMSE is calculated only when a P or T wave has been detected.

The approximated MMSE estimators of the waveform coefficients h and the noise variance
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σ2
n are defined as

ĥMMSE = 1
Nr

Nr∑
t=1
h(Nbi+t) (2.21)

σ̂2
w,MMSE = 1

Nr

Nr∑
t=1

(
σ2
w

)(Nbi+t) (2.22)

where h(t) and
(
σ2
w

)(t) denote respectively h and σ2
w generated at iteration t.

2.3.4 P and T wave delineation criteria

This section introduces the strategy to determine the wave fiducial points (peak, onset and end)
based on the estimates of the wave parameters. The wave peak position are obtained from the
wave indicator estimates whereas the wave boundaries are computed from the estimated peak
position and waveform estimates.

P and T wave peak location

One issue with the blind deconvolution model (2.1) is the so-called time-shift ambiguity [LI06].
This problem is due to the existence of several solutions of (2.1) differing by time-shift opera-
tions. Recall that the signal model in (2.1) can be written as

x = h ? u+w (2.23)

where ? denotes the convolution operator and u is an unknown Bernoulli-Gaussian sequence
satisfying a minimum distance constraint which characterizes the wave location and amplitude,
and h is the unknown impulse response associated with the waveform. The time-shift ambiguity
results from the following equation

h ? u = (dτ ? h) ? (d−τ ? u), ∀τ ∈ Z (2.24)

where dτ is the time delay filter of τ samples.

Following [CCL96], we propose to compensate the time-shift ambiguity by including a time-
shift step after generating the waveform samples in the Gibbs sampler to ensure that the max-
imum of the waveform is always at the middle of the alloted time window h = [h−L, . . . , hL]T ,
i.e.,

|h0| = max
i
|hi| . (2.25)

Enforcing condition (2.25) ensures the identifiability of h and u. Note that an hybrid Gibbs
sampling solution has been proposed in [LI06] to solve the time-shift ambiguity. Instead of
enforcing constraints on the sampler, the method investigated in [LI06] removes time ambigu-
ities by possibly shifting the samples h(t), (b(t),a(t)) w.r.t. the time index, prior to computing
averages. A Metropolis-Hastings step is included in the Gibbs sampler to accept or reject the
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time-shift. Note that in our application, the simple constraint enforcing has been proved to be
sufficient to solve the ambiguity problem. One of the convenient consequences of this shift is
that the wave indicator position indicates directly the wave peak location.

P and T wave boundaries

Since the estimated waveform ĥMMSE carries information regarding the wave morphology, we
propose a delineation criterion which is based on the waveform estimate of each processing
window. The waveform onset and end are estimated as either the first value of ĥMMSE below
appropriate thresholds denoted as ζPon and ζPoff for P waves and ζTon and ζToff for T waves,
(see left part of Fig. 2.3) or the first local minimum of ĥMMSE (see right part of Fig. 2.3).

Since there is no universal rule to locate onsets and ends of waves, the delineation thresholds
have been obtained by minimizing the error between estimates and published annotations. The
following results have been obtained for the QT database

ζTon = 0.02max
(
ĥT
)
, ζToff = 0.1max

(
ĥT
)

ζPon = 0.05max
(
ĥP
)
, ζPoff = 0.1max

(
ĥP
)
.

The general flowchart for the proposed algorithm including preprocessing, PCGS and wave
delineation is shown in Fig. 2.4.

Figure 2.3: Parameters of the wave delineation method.
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as shown in Fig. 2.1
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Figure 2.4: Block diagram for the PCGS P and T wave delineation algorithm.

2.3.5 Simulation results

Many simulations have been conducted to validate the proposed algorithm. First, we show
some posterior distributions and estimation results for one typical example. Then, graphical
evaluations and analytical results on an entire database are provided. Usually, the validation
of the ECG wave detector or delineator is done using a manually annotated database. In this
thesis, we use one of the easily-available standard databases, namely the QT database (QTDB)
[LMGM97]. The QTDB includes 105 records from the widely used MIT-BIH Arrhythmia
database (MITBIH), the European ST-T database and some other well known databases. This
database was developed with the purpose of providing a wave limit validation reference.

One typical example

The first simulations have been obtained by applying the proposed algorithm on the dataset
“sele0136” of QTDB. This example has been chosen because signals from this data set present
rhythm changes with obvious amplitude variations. The processing window length D has been
set to 10 beats to cope with the pseudo-stationary nature of the ECG as in [MO04]. For each P
or T wave search block, we have generated Nr = 100 realizations according to the priors given
in Section 2.2.3 with σ2

a = 1, σ2
h = 1, ξ = 11 and η = 0.5 (these are fixed hyperparameters

that provide a noninformative prior). The value of λ in (2.7) has been fixed by dividing the
number of R peaks within the processing window by the window length K. We considered
Nbi = 40 burn-in iterations and 60 iterations to compute the estimates1. Note that running
100 iterations of the proposed algorithm for a 10-beat ECG block sampled at Fs = 250Hz
(i.e., ECG signals lasting about 10 seconds) takes approximately 11 seconds for a MATLABr

implementation on a 3.0-GHz Pentium IV. However, these codes can be further optimized and
converted to low-level languages for clinical use.

As mentioned before, the estimates of the unknown parameters are derived from their
posterior distributions. Fig. 2.5 (b) shows the posterior distributions of P and T wave indicator

1To determine the values of Nbi and Nr, we have implemented the multivariate potential scale reduction
factor [BG98] (see Fig. 2.11 for details).
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(a)

(b)

(c)

Figure 2.5: (a) an ECG signal portion from the QTDB “sele0136”; (b) posterior distributions of
the P and T wave indicator locations p(bP) (in black) and p(bT) (in dotted red); (c) estimated
P and T-waveforms.

locations estimated using the last 60 Markov chain iterations. The posterior probability is very
high for most of the actual P and T wave locations except for P-wave indicators around time
instant 4.45. Indeed, the algorithm seems less confident to locate P-wave indicators around this
location. If we employ a simple rigid threshold on the entire block, this wave indicator could
be missed in the estimation. However, with the local maximum posterior strategy explained in
Section 2.3.4, a relatively low value of γP can be used to ensure the detection of low magnitude
waves without increasing false positives. Fig. 2.7 shows that the P wave at time instant 4.45
is properly estimated.

Once we have obtained the P and T wave locations, the corresponding wave amplitudes
can be estimated by using (2.20). Fig. 2.6 shows the posterior distributions p(a|x) and the
estimates â of P-wave amplitudes at time 1.500s, 2.304s, 3.152s and 4.452s. The estimated P
and T-waveforms determined using (2.21) are presented in Fig. 2.5 (c). As explained previously,
P and T wave delineation is based on these estimated waveform coefficients. The estimated
P and T-waves and the delineation results of “sele0136” are illustrated in Fig. 2.7 (top) and
Fig. 2.7 (bottom), respectively. The P and T wave estimation and delineation results are very
satisfactory for this example.
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Figure 2.6: Posterior distributions of the P-wave amplitudes p(ak|x) at time instant 1.500,
2.304, 3.152, and 4.452s.
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Figure 2.7: On the top, real ECG signal from the QTDB “sele0136” (dashed blue) and estimated
P and T-waves (red); on the bottom, P and T wave delineation results.
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P and T wave delineation for different wave morphologies

The proposed method estimates the P and T-waveform shapes pointwise for each processing
window, and therefore it adapts to various wave morphologies. This section shows some repre-
sentative results obtained with the proposed method for different ECGs. The first example in
Fig. 2.8(a) considers the QTDB dataset “sel16539”, where both P and T-waves are associated
to normal patients. The delineation results for the P and T-waves are shown in Fig. 2.8(a)(1),
whereas the estimated waveform of P and T wave for a processing window are presented in
Fig. 2.8(a)(2) and Fig. 2.8(a)(3). All kinds of slope, magnitude and polarity for the P and
T-waves are successfully detected and delineated for this example. The second example in Fig.
2.8(b) considers the QTDB dataset “sel808”, where T-waves are inverted. The third example
considers noisy feeble P-waves and ascending T-waves from the QTDB dataset “sele0607”. The
results presented in Fig. 2.9(a) show that the proposed method provides a good waveform esti-
mation for noisy feeble waves. Fig. 2.9(b) shows an example of signals that contain premature
ventricular contractions (PVCs) from the MITBIH dataset “119”. As can be seen in the delin-
eation results, the proposed method can handle non-monotonic morphological abnormalities.
Note in particular that the estimated T wave of the sixth beat has been superimposed with the
estimated P wave of the seventh beat, which is in agreement with the presence of a unique wave
in the non QRS region between seconds 8 and 9. Furthermore, with the help of the proposed
signal model, the sudden T wave amplitude inversions (the first and the last beats) have been
detected, which is a nice property for the PVC detection problem.

ROC for P and T wave detection

Receiver operating characteristics have been studied to select appropriate values of the thresh-
olds γP and γT for P and T wave detection. The ROC curve for P-wave detection has been
computed using three typical datasets and three “no P-wave” datasets available in QT database.
The results depicted in Fig. 2.10(a) show the good performance of the proposed detector. The
threshold γP can be determined from a fixed probability of false alarm (PFA) using this ROC.
For the QT database, we have chosen a threshold γP = 0.4 corresponding to a probability of
detection PD=1 and PFA=0.05. Similarly, the ROC curve for the T wave detection has been
calculated based on three typical datasets from the QT database and three synthesized “no
T wave” datasets (since the QT database does not contain signals classified as “no T wave”).
A good detection performance can also be confirmed as shown in Fig. 2.10(b). For the QT
database, we have chosen γT = 0.55 that corresponds to PD=1 and PFA =0.01.
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Figure 2.8: Results of processing ECG datasets (a) “QTDB-sel16539” and (b) “QTDB-sel808”.
Captions for each subfigure: (1) Delineation results: the vertical lines show the manual anno-
tations by an expert and the markers show the results of the proposed algorithm. (2) Mean
(in blue) and standard deviations (in pink) of the estimated T-waveform for 1 minute of signal
length. (3) Mean (in blue) and standard deviations (in pink) of the estimated P-waveform for
1 minute of signal length.
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(a) QTDB-sele0607

(b) MITBIH-119

Figure 2.9: Results of processing ECG datasets (a) “QTDB-sele0607” and (b) “MITBIH-
119”. Captions for each subfigure: (1) Delineation results: the vertical lines show the manual
annotations by an expert and the markers show the results of the proposed algorithm. (2) Mean
(in blue) and standard deviations (in pink) of the estimated T-waveform for 1 minute of signal
length. (3) Mean (in blue) and standard deviations (in pink) of the estimated P-waveform for
1 minute of signal length.



62 Chapter 2 - P and T wave analysis using window based Bayesian models

0 0.05 0.1 0.15

0.85

0.9

0.95

1
X: 0.05128
Y: 1

False alarm probability

D
et

ec
tio

n 
pr

ob
ab

ili
ty

ROC curve for P−wave detections

(a) ROC curve for P-wave detection

0 0.05 0.1 0.15
0.85

0.9

0.95

1
X: 0.01333
Y: 1

False alarm probability

D
et

ec
tio

n 
pr

ob
ab

ili
ty

ROC curve for T−wave detections

(b) ROC curve for T wave detection

Figure 2.10: ROC analysis for P and T wave detection.

Convergence diagnostic

A crucial issue when using MCMC methods is convergence assessment, which can help us
to determine appropriate values of the numbers of burn-in iterations Nbi and computation
iterations Nr. To monitor the convergence of the proposed PCGS, we have implemented the
multivariate potential scale reduction factor (MPSRF) criterion proposed by Brooks et al. in
[BG98]. This diagnostic is based on the comparison between estimates resulting from p parallel
Monte Carlo chains of length q as follows

MPSRF = p− 1
p

+ q + 1
q

eig
(
V −1

intraV inter
)

(2.26)

where the inter-chain and intra-chain covariance matrices are defined as follows

V intra = 1
p (q − 1)

p∑
j=1

q∑
t=1

(
ψjt −ψj·

) (
ψjt −ψj·

)T
(2.27)

V inter = 1
p− 1

p∑
j=1

(
ψj· −ψ··

) (
ψj· −ψ··

)T
. (2.28)

Here,
{
ψ

(i)
jt , j = 1, . . . , p; t = 1, . . . , q

}
denotes the ith element of the parameter vector ψ in

chain j at time t, ψj· denotes the local mean of the jth chain, ψ·· denotes the global mean of
all chains and eig (V ) is the largest eigenvalue of the positive-definite matrix V . As an example,
Fig. 2.11 shows the MPSRF criterion for signals belonging to the QTDB dataset “sele0136"
with p = 10 independent chains of the proposed PCGS and the classical Gibbs sampler for
ψ = [b,a,h]. Since a value of MPSRF below 1.2 is recommended in [BG98], the criterion
confirms a good convergence of the proposed sampler with Nbi = 40 burn-in iterations. Note
that the PCGS outperforms significantly the reference GS in terms of convergence speed.
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Figure 2.11: Evolution of MPSRF criterion on QTDB dataset “sele0136" for the unknown
parameters (ψ = [b̂, â,h]), the proposed PCGS in blue and the reference GS in red.

Qualitative comparisons with a Gaussian mixture model approach

As introduced in Section 1.4.3, Sayadi et al. have recently proposed an ECG segmentation
approach based on a Gaussian mixture model and Kalman filters (KF) [SS09]. With the help
of O. Sayadi, we have carried out a comparison of the PCGS based method with the KF based
method. Some qualitative comparisons of the two methods on several representative datasets
from the QT database are presented in Fig. 2.12-2.13. It can be seen that the PCGS estimates
are closer to the manual annotations (depicted by vertical black lines) than the estimates
resulting from [SS09]. Meanwhile, Fig. 2.14 shows the absolute errors of Tpeak, Tend, Pon, Ppeak
and Pend for the delineation results of the two methods (the absolute error of a given parameter
vector is defined as the norm of the difference between the actual value of the parameter vector
and its estimate). These results have been obtained for 118 representative signals from the
QT database. It appears that the proposed PCGS provides smaller errors than the KF based
method of [SS09], especially when considering pathological ECG signals (the Gaussian mixture
model studied in [SS09] is more appropriate to normal ECG signals).

It should also be noted that 1) the performance of the KF method depends on its initial-
ization which can be difficult to adjust, 2) the Gaussian mixture model and the KF method
of [SS09] are not really appropriate to ECG signals with abnormal rhythms (the KF method
always determines a fixed number of Gaussian kernels to fit the data) contrary to the PCGS
that estimates the whole P and T wave shapes. Moreover, the algorithm of [SS09] is not able to
handle the absence of T or P wave in some pathological ECGs, contrary to the PCGS method.
As shown in Fig. 2.13(b), the KF method detect P waves in dataset “sel50" from the QT
database (see green circles before the QRS) while the cardiologists have classified all signals
from this dataset as “no P wave" pathologies. Conversely, the PCGS method does not detect
the P waves for these signals, as desired. Finally, it is important to note that the price to
pay for the good performance of the proposed PCGS is its computational complexity which is
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(a) QTDB-sele0136

(b) QTDB-sel16273

Figure 2.12: Delineation results for QT database (a) “sele0136”, which presents some rhythm
changes with different amplitudes between P and T-waves; (b) “sel16273”, where the P-waves
have low slopes. Captions for each subfigure: The upper plot shows the results of the proposed
PCGS method, and the lower plot shows the results of the method proposed in [SS09]. The
vertical lines in both of two plots show the manual detection results provided by cardiologists.
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(a) QTDB-sel308

(b) QTDB-sel50

Figure 2.13: Delineation results for QT database (a) “sel308”, which has giant T-waves; (b)
“sel50”, which is classified as “no P wave” pathology. Captions for each subfigure: The upper
plot shows the results of the proposed PCGS method, and the lower plot shows the results
of the method proposed in [SS09]. The vertical lines in both of two plots show the manual
detection results provided by cardiologists.
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Figure 2.14: Absolute errors between the estimated values of Tpeak, Tend, Pon, Ppeak and Pend
and manual annotations for representative signals from the QT datasets “sel16539”, “sel16273”,
“sele0136”, “sel808” and “sel308” (blue empty circles correspond to the PCGS method whereas
red full circles correspond to the results provided by O. Sayadi associated to the method of
[SS09].
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significantly larger than the KF method of [SS09].

Quantitative comparisons with other classical methods

The analytical evaluation of the P and T wave detection can be performed by calculating the
sensitivity (also referred to as detection rate) Se = TP/ (TP + FN) and positive predictivity
P+ = TP/ (TP + FP ), where TP denotes the number of true positive detections (wave was
present and was detected), FN stands for the number of false negative detections (wave was
present but was missed) and FP stands for the number of false positive (wave was not present
but was detected). The performance of wave delineation is measured by the average of errors
m, which stands for the time differences between cardiologist annotations and results of the
proposed method. The average of the intra-recording standard deviations denoted as s was
also computed.

The validation results obtained with the PCGS-based delineator and the three other meth-
ods of [LJC94, MAO+04, VGP+00] on the QTDB are given in Table 3.1. All ECG signals
used in this paper have been preprocessed by Pan and Tompkins’ QRS detection algorithm,
with an overall QRS detection result of Se = 99.7% and P+ = 99.6%. The beats where QRS
complexes were not well detected were excluded from the P and T wave evaluation.

The detection results for the QTDB show that the proposed method can detect with high
sensitivity the P and T-waves annotated by cardiologists in the ECG signals. We obtained a
sensitivity of Se = 98.93% for the P waves and a sensitivity of Se = 99.81% for the T waves.
These results are slightly better than the ones obtained with the other methods. As for the
positive predictivity, we have obtained very good results since P+ = 97.40% for the P waves
and P+ = 98.97% for the T waves, which clearly outperforms the other algorithms evaluated
in Table 3.1. This is partly because the minimum-distance constraint in Bayesian detection
reduces the probability of false positives. The delineation performance is also presented in
Table 3.1. The proposed algorithm can delineate the annotated P and T waves with mean
errors m that do not exceed two samples (8 ms). The standard deviations s are around four
samples for the P wave and five samples for the T wave, which is quite satisfactory.

Histograms of deviations between the results of the proposed algorithm compared to the
“gold standard" of the manually measured annotations for TP interval (TPint = Tpeak−Ppeak),
P wave duration (Pdur = Pend − Ponset), ST interval (STint = Speak − Tend) and QTp interval
(QTpint = Qpeak − Tpeak) are presented in Fig. 2.15. These histograms are in agreement
with the results of [MKS06] which indicate that typical standard deviations for QT interval
measurement are 20-30 ms. The deviations of the PCGS-based method are also similar to those
obtained with the more recent technique studied in [SS09]. Smaller deviations (mostly below
8 ms) have been obtained for detections which rely on peak points, i.e., TPint and QTpint. For
those detections which rely on peak boundaries, the deviations are also in the acceptable range
(mostly below 20 ms). Note that the proposed method focuses on P and T wave analysis. Thus
deviations of QRS locations are not considered in the validation.



68 Chapter 2 - P and T wave analysis using window based Bayesian models

−20 −10 0 10 20
0

500

1000

1500
TP interval

Deviation (ms)
(a)

N
um

be
r

−20 0 20 40
0

100

200

300

400

500

600
P duration

Deviation (ms)
(b)

N
um

be
r

−30 −20 −10 0 10 20 30
0

100

200

300

400

500

600
ST interval

Deviation (ms)
(c)

N
um

be
r

−40 −20 0 20 40
0

200

400

600

800
QTp interval

Deviation (ms)
(d)

N
um

be
r

Figure 2.15: Histograms of deviations between the results of the proposed automatic algorithm
compared to the “gold standard" of manually measured annotations including (a) TP interval,
(b) P wave duration, (c) ST interval and (d) QTp interval. The vertical lines indicate the 95%
(continuous red) and 99% (dashed red) confidence intervals.

Table 2.1: Delineation and detection performance comparison of the window based partially
collapsed Gibbs sampler method of [LMT10] (PCGS), the Wavelet transform based method
of [MAO+04] (WT), the low-pass differentiation based method of [LJC94] (LPD), the action
potential model of [VGP+00] and the delineation error tolerance of [TCWP85]. (N/A: not
available)

Method Parameters Pon Ppeak Pend Ton Tpeak Tend

multi-beat window annotations 3176 3176 3176 1345 3403 3403
based PCGS Se (%) 98.93 98.93 98.93 99.01 99.81 99.81
(proposed) P+ (%) 97.40 97.40 97.40 96.07 98.97 98.97

m± s (ms) 3.7±17.3 4.1±8.6 -3.1±15.1 7.1±18.5 1.3±10.5 4.3±20.8

annotations 3194 3194 3194 N/A 3542 3542
WT Se (%) 98.87 98.87 98.75 N/A 99.77 99.77

[MAO+04] P+ (%) 91.03 91.03 91.03 N/A 97.79 97.79
m± s (ms) 2.0±14.8 3.6±13.2 1.9±12.8 N/A 0.2±13.9 -1.6±18.1

Se (%) 97.70 97.70 97.70 N/A 99.00 99.00
LPD P+ (%) 91.17 91.17 91.17 N/A 97.74 97.74

[LJC94] m± s (ms) 14.0±13.3 4.8±10.6 -0.1±12.3 N/A -7.2±14.3 13.5±27.0

Action Se (%) N/A N/A N/A N/A 92.60 92.60
potential P+ (%) N/A N/A N/A N/A N/A N/A

model [VGP+00] m± s (ms) N/A N/A N/A N/A -12.0±23.4 0.8±30.3

Tolerance 2sCSE (ms) 10.2 N/A 12.7 N/A N/A 30.6
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2.4 Modified Bayesian model and a block Gibbs sampler

In Section 2.3, the local dependency of the ECG was expressed by a minimum-distance con-
straint: a T wave (P wave) indicator vector cannot have two non-zero elements closer than
a certain distance, where this distance depends on the RR interval length. This is because
successive T waves (P waves) can only appear in search intervals located in the right-hand
(left-hand) neighborhoods of each QRS offset (onset). In this section, we propose to exploit
this local dependency in a different way.

It is common to view ECGs as the combination of two elements, namely, QRS complexes
and non-QRS intervals. Non-QRS intervals are located between a QRS end and the subsequent
QRS onset. The locations of non-QRS intervals are provided by a preliminary QRS detection
step, e.g., resulting from Pan and Tompkins algorithm [PT85]. The non-QRS interval Jn
associated with the nth heartbeat consists of a T wave search interval JT,n, which may contain
a T wave, and a P wave interval JP,n, which may contain a P wave. Different from the
preprocessing procedure defined in Section 2.2.1, the search intervals of this section are only
defined to identify wave indicator constraints, i.e., only the locations of the wave peaks are
constrained to lie within their respective search intervals. Rather than extracting left- and
right-hand neighborhoods of QRS complexes to form two signal portions (one for T waves and
the other for P waves) and processing them individually using the same Bayesian inference,
the whole non-QRS signal component will be considered together in the processing so that the
border situation (where a T or P wave has part of its waveform across the border between JT,n
and JP,n) can be properly handled.

The temporal lengths of the intervals Jn, JT,n, and JP,n are denoted as Nn, NT,n, and
NP,n, respectively. Here, NT,n and NP,n can be determined by a cardiologist or simply as
fixed percentages of Nn. Note that NT,n +NP,n = Nn. Our goal is to estimate the waveforms
and amplitudes of the P and T waves and their locations within their respective intervals.
Due to the pseudo-stationary nature of ECGs, we still adopt the D-beat processing window
strategy to perform detection and estimation only for a limited set of consecutive beats at
once. More specifically, we will consider the beats n ∈ {1, . . . , D} located within a D-beat
processing window of length M (see Fig. 2.16(a)). As shown in Fig. 2.16(b), the signal in each
non-QRS interval can be approximated by two pulses representing the P and T waves plus
a local baseline. The T waveforms within a window are assumed to be equal, whereas the
amplitudes and locations of the T pulses vary with the beat index n. The fact that the whole
non-QRS component is considered together allows us to include the residual local baseline (see
the blue dotted lines in Fig. 2.16(b)) in the signal model and to be estimated simultaneously
with other wave parameters.

Thus, the T waves within a D-beat processing window can be modeled by the convolution
of the unknown T waveform hT = [hT,−L · · ·hT,L]T with an unknown “impulse” sequence
uT = [uT,1 · · ·uT,M ]T indicating the T wave locations and amplitudes (see Fig. 2.16(c)). Note
that at most D entries of uT are nonzero; each of these “impulses” corresponds to one T wave.
Similarly, the P waves within a D-beat processing window are modeled by the convolution
of hP = [hP,−L · · ·hP,L]T with uP = [uP,1 · · ·uP,M ]T . Let J denote the union of all T and
P wave intervals JT,n and JP,n within the window considered, and let K , |J | denote the
corresponding signal length. The non-QRS signal component can then be written as
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Figure 2.16: ECG signal within a D-beat window: (a) QRS and non-QRS intervals (in this ex-
ample, NT,n=NP,n=Nn/2), (b) signal model for the non-QRS intervals, (c) impulse sequences
uT,k and uP,k.

xk =
L∑

l=−L
hT,luT,k−l +

L∑
l=−L

hP,luP,k−l + ck + wk , k∈J , (2.29)

where ck denotes the baseline sequence and wk denotes white Gaussian noise with unknown
variance σ2

w. Note that we assume that uT,k = uP,k = 0 for k /∈J .

2.4.1 Hermite basis decomposition and local baseline

Instead of using a pointwise waveform as in Section 2.2.2, we propose in this modified model to
represent the P and T waveforms by a basis expansion using discrete-time versions of the first
G Hermite functions [HB97]. The Hermite basis was first used for ECG processing by Sörnmo
et al. [SBNP81] for evaluating QRS shape features. It has also shown interesting properties
for ECG data compression [JOLC93]. Thus, the waveform vectors can be written as

hT = HαT , hP = HαP , (2.30)

where H is an (2L + 1) × G matrix whose columns are the first G Hermite functions (with
G ≤ 2L+ 1), suitably sampled and truncated to length 2L+ 1, and αT and αP are unknown
coefficient vectors of length G. By using these expansions, the number of unknown parameters
can be reduced from 2L+ 1 to G for each waveform (e.g., we have chosen G = 20 and 2L+ 1 is
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around 83 for ECGs with heart rate around 60 beats per minute and sampled at 250Hz) and
the out-of-band noise can be properly rejected.

Baseline removal is generally recognized as an important step that is beneficial to ECG
delineation, since most traditional techniques (such as the widely used third-order spline in-
terpolation) only remove baseline fluctuations at frequencies lower than heart rate [BZB06].
Here, we propose to model the residual local baseline within the nth non-QRS interval Jn by
a 4th-degree polynomial, i.e.,

cn,k =
5∑
i=1

γn,ik
i−1, k = 1, . . . , Nn , (2.31)

for each n∈{1, . . . , D}. This local baseline model extends that of [CM07], which assumes that
the local baseline is constant in Jn (i.e., γn,i = 0 for i ≥ 2). In vector-matrix form, (2.31) reads
as cn = Mnγn, with the known Nn×5 Vandermonde matrixMn and the unknown coefficient
vector γn = (γn,1 · · · γn,5)T . The baseline sequence for the entire D-beat window can then be
written as

c = Mγ , (2.32)

where c, M , and γ are obtained by suitably stacking the cn, Mn, and γn as follows

M =



0 · · · · · · · · ·
M1 0 · · · · · ·
0 · · · · · · · · ·
... M2

...
...

... 0
...

...
...

...
...

...
...

...
... MD


K×(5∗D)

. (2.33)

Using (2.30), (2.32) and (2.33), we obtain the following vector representation of the non-
QRS signal components of a D-beat processing window in (2.29)

x = FTuT + F PuP +Mγ +w . (2.34)

Here, FT is the K ×M Toeplitz matrix with first row
[
(HαT)0 · · · (HαT)−L 0

]
, and with

first column
[
(HαT)T0 · · · (HαT)TL 0T

]T
. F P is defined similarly, with αT replaced by αP.

Similar to the signal model in Section 2.2.2, the proposed detection-estimation method is
based on writing the impulse sequences as products uT,k = bT,kaT,k (uP,k = bP,kaP,k) of binary
indicator sequences bT,k∈{0, 1} (bP,k∈{0, 1}) and amplitude factors aT,k∈R (aP,k∈R). Each
bT,k = 1 (bP,k = 1) indicates the location of a T wave (P wave), and the corresponding aT,k
(aP,k) is the respective amplitude. Note that the aT,k (aP,k) are undefined for all k where
bT,k=0 (bP,k=0). Let bT, bP, aT, and aP denote the length-M vectors corresponding to bT,k,
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bP,k, aT,k, and aP,k, respectively. Then (2.34) can be rewritten as

x = FTBTaT + F PBPaP +Mγ +w , (2.35)

with the diagonalM×M matrices BT,diag(bT) and BP,diag(bP).

2.4.2 Bayesian inference

The unknown parameter vector resulting from the above parametrization is θ =
[
θTT θ

T
P θ

T
cw

]T
,

where θT ,
[
bTT a

T
Tα

T
T

]T
and θP ,

[
bTP a

T
P α

T
P

]T
are related to the T and P waves, respectively

and θcw ,
[
γT σ2

w

]T
is related to the local baseline and noise. As expressed by (2.4), Bayesian

detection/estimation relies on the posterior distribution p(θ|x) which is related to the likelihood
of the observations p(x|θ) and the prior of the parameters p(θ). The likelihood p(x|θ) and the
prior p(θ) for the modified signal model in (2.35) are summarized below.

Likelihood

Using our model (2.35) and the fact that wk is white Gaussian noise, the likelihood function is
obtained as

p(x|θ) ∝ 1
σKw

exp
(
− 1

2σ2
w

‖x− FTBTaT − F PBPaP −Mγ‖2
)
, (2.36)

where ‖ · ‖ is the `2 norm, i.e., ‖x‖2 = xTx.

Prior distributions

Since there are no known relations between the impulse parameters (bT,aT), (bP,aP), the
waveform parameters αT, αP, the baseline coefficients γ, and the noise variance σ2

w, all these
sets of parameters are modeled as a priori statistically independent of each other such that

p (θ) = p (θT) p (θP) p (θcw)
= p (bT) p (aT|bT) p (αT) p (bP) p (aP|bP) p (αP) p (γ) p

(
σ2
n

)
. (2.37)

We will now discuss the prior distributions of each of these parameters. Let bJT,n, n ∈
{1, . . . , D} comprise all entries of the T wave indicator vector bT that are indexed by the T
wave interval JT,n. The indicators are subject to a block constraint: within JT,n, there is one
T wave indicator (thus, ‖bJT,n‖ = 1) or none (thus, ‖bJT,n‖ = 0), the latter case being very
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unlikely. Therefore, we define the prior of bJT,n as

p(bJT,n) =


p0 if ‖bJT,n‖ = 0
p1 if ‖bJT,n‖ = 1
0 otherwise,

(2.38)

where p1 = (1− p0)/NT,n and p0 is chosen very small. Note that there are NT,n vectors
satisfying ‖bJT,n‖ = 1 whereas the zero vector is the only vector satisfying ‖bJT,n‖ = 0. Thus
the probabilities in (2.38) sum to one. The bJT,n are statistically independent of each other,
and all remaining entries of the total vector bT (i.e., entries outside the T wave intervals JT,n)
are zero. Thus, the prior of bT is given by

p(bT) =
D∏
n=1

p(bJT,n) . (2.39)

For the T wave amplitudes ak at those k where bk = 1 (recall that bk = 0 implies ak = 0),
the same zero-mean Gaussian prior has been chosen as in Section 2.2.3

p(ak|bk) =
{
δ(ak) if bk = 0
N (0, σ2

a) if bk = 1
(2.40)

Similar to the indicators, amplitudes at different k are also modeled as statistically independent
such that

p (a|b) =
K∏
k=1

p (ak|bk) . (2.41)

It follows that uT,k=bT,kaT,k is a Bernoulli-Gaussian (BG) sequence with block constraints.
Different from the BG sequence with minimum distance constraint prior in Section 2.2.3, the
block constraint considers all the indicators bk within a search interval JT,n as an entirety.
Doing this allows the Gibbs sampler to generate block by block the indicator vector at each
substep instead of position by position (see Section 2.4.3 for more details). Note that the priors
of the P wave indicators bP,k and amplitudes aP,k are defined in a fully analogous way, with
the same fixed hyperparameters p0, p1, and σ2

a.

The T waveform coefficients are modeled as independent and identically distributed (iid),
zero-mean, and Gaussian. The same prior is chosen for the P wave coefficients

p(αT) = N (0, σ2
αI2L+1) (2.42)

p(αP) = N (0, σ2
αI2L+1). (2.43)

where I2L+1 denotes the identity matrix of size (2L+ 1)× (2L+ 1).
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The baseline coefficients γn,i are also modeled as iid zero-mean Gaussian

p(γ)=N (0, σ2
γI5D). (2.44)

The variances σ2
a, σ2

α, and σ2
γ are fixed hyperparameters as in Section 2.2.3. Finally, the noise

variance σ2
w is modeled as a random hyperparameter with inverse gamma distribution (cf.

(2.17))
p(σ2

w)=IG (ξ, η) (2.45)

where ξ and η are fixed hyperparameters providing a vague prior. We recall that choosing
conjugate priors for αT, αP, γ, and σ2

w considerably simplifies our algorithm since the resulting
posterior distributions are also Gaussian and inverse gamma, respectively.

Posterior distribution

The posterior distribution of the parameter vector θ is given by

p(θ|x) ∝ p(x|θ)p(aT|bT)p(bT)p(αT)p(aP|bP)p(bP)p(αP)p(γ)p(σ2
w) . (2.46)

Taking advantage of the block constraint associated to the wave indicator prior, we propose
to use a block Gibbs sampler that generates samples asymptotically distributed according to
p(θ|x). From these samples, the discrete parameters bT and bP are then detected by means
of the sample-based maximum a posteriori detector, and the continuous parameters aT, aP,
αT, αP, γ, and σ2

w are estimated by means of the sample-based minimum mean square error
estimator.

2.4.3 Block Gibbs sampler for P and T wave analysis

Block Gibbs sampler

A block Gibbs sampler is another variant of the Gibbs sampler. It groups two or more variables
together and samples from their joint distribution conditioned on all other variables, rather
than sampling from each one individually. Take the prototype Gibbs sampler in Algorithm 1
as an example, instead of iteratively sampling each θl from p(θl|θ∼l,x) (l ∈ {1, . . . , L}) in an
arbitrary order, a block Gibbs sampler may firstly sample a subset of the parameters θJ ⊆
{θ1, . . . , θL} from their joint distribution conditioned on the rest θ∼J , i.e., from p(θJ |θ∼J ,x).
Then, the parameters indexed by ∼ J can be iteratively drawn conditioned on θJ , i.e., from
p(θl|θ∼J\l,θJ ,x) with l ∈ {∼ J }. As known, the blocked Gibbs sampler works more efficiently
than the ordinary Gibbs sampler if the variables to be inferred are highly dependent.
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Proposed block Gibbs sampler for P and T wave analysis

The proposed block Gibbs sampler for our problem is summarized in Algorithm 5. The sampling
distributions involved are the conditional distributions of p(θ|x) defined in (2.46) and are
detailed below. The sampling distributions of the P wave parameters θP are similar to those
of θT. We note that b∼JT,n denotes bT without the entries indexed by JT,n, and similarly for
a∼JT,n . To see that the proposed algorithm is a valid Gibbs sampler, note that the sampling
steps for bJT,n and aJT,n are equivalent to jointly sampling (bJT,n ,aJT,n) from p(bJT,n ,aJT,n
|θ∼JT,n ,θP,θcw,x), where θ∼JT,n,

(
bT∼JT,n a

T
∼JT,n α

T
T
)T.

Algorithm 5 Block Gibbs sampler for P and T wave analysis.
for n = 1, . . . , D do
Sample the block bJT,n∼ p(bJT,n |θ∼JT,n ,θP,θcw,x) (see (2.47))
for k∈JT,n do
if bT,k=1 then
Sample aT,k ∼ p(aT,k|bT,k=1,θ∼JT,n ,θP,θcw,x) (see (2.48))

end if
end for
Sample the block bJP,n from p(bJP,n |θ∼JP,n ,θT,θcw,x)
for k∈JP,n do
if bP,k=1 then
Sample aP,k ∼ p(aP,k|bP,k=1,θ∼JP,n ,θT,θcw,x)

end if
end for

end for
Sample αT from p(αT|bT,aT,θP,θcw,x) (see (2.49))
Sample αP from p(αP|bP,aP,θT,θcw,x)
Sample γ from p(γ|θT,θP, σ2

w,x) (see (2.50))
Sample σ2

w from p(σ2
w|θT,θP,γ,x) (see (2.51))

T wave indicators. The sampling conditional distribution for the T wave indicator vector
bJT,n is

p(bJT,n |θ∼JT,n ,θP,θcw,x) ∝ σ1 exp
(
µ2

1
2σ2

1

)
p(bJT,n) , (2.47)

with

µ1 =
σ2

1b
T
JT,nF

T
JT,n

σ2
w

(
xT − F∼JT,nB∼JT,na∼JT,n

)
, σ2

1 =
(∥∥FJT,nbJT,n∥∥2

σ2
w

+ 1
σ2
a

)−1
,

where FJT,n contains the columns of FT indexed by JT,n, F∼JT,n is FT without those columns,
xT , x−F PBPaP−Mγ, and B∼JT,n , diag(b∼JT,n). In each iteration, the sampler evaluates
all hypotheses of bJT,n conditioned on the samples of all other parameters. There are NT,n+1
such hypotheses, because bJT,n has either no 1-entry or exactly one 1-entry at NT,n possible
locations (cf. the prior in (2.38)).
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T wave amplitudes. The sampling distribution for the aT,k is

p(aT,k|bT,k=1,θ∼JT,n ,θP,θcw,x) = N (µ1, σ
2
1) . (2.48)

T waveform coefficients. The sampling distribution for αT is

p(αT|bT,aT,θP,θcw,x) = N (µ2,Σ2) , (2.49)

with

µ2 = Σ2H
TUT

T
σ2
w

xT , Σ2 =
(
HTUT

TUTH

σ2
w

+ IL+1
σ2
α

)−1

.

Here, UT is the Toeplitz matrix of size K× (2L+ 1) with first row [uT,L+1 · · · uT,1 0] and first
column

[
uTT,L+1 · · · uTT,M 0T

]T
.

Local baseline coefficients. The sampling distribution for γ is

p(γ|θT,θP, σ2
w,x) = N (µ3,Σ3) , (2.50)

with

µ3 = Σ3M
T

σ2
w

xγ , Σ3 =
(
MTM

σ2
w

+ I5D
σ2
γ

)−1

,

where xγ , x− FTBTaT − F PBPaP.

Noise variance. The sampling distribution for σ2
w is

p(σ2
w|θT,θP,γ,x) = IG(ξ′, η′) , (2.51)

with ξ′= ξ + K
2 and η′ = η + 1

2‖x− FTBTaT − F PBPaP −Mγ‖2.

2.4.4 Parameter estimation with the block Gibbs sampler

Similarly to the PCGS approach, P and T wave detection and estimation are based on the
estimated joint posterior distribution of wave indicators, wave amplitudes and waveform co-
efficients. This posterior is computed from the last samples drawn from p(θ|x) by the block
Gibbs sampler. The posterior distribution of wave indicators carries information regarding
the probability of having a P or T wave at a given location. Thus the wave detection results
(wave locations) can be obtained by using a sample-based MAP estimator. Since we expect at
most one T wave (P wave) indicator in the T search interval JT,n (P search interval JP,n with
n ∈ 1, . . . D), the sample-based blockwise MAP detector of the wave indicator vector b̂ is given
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by

b̂k =


arg max

bk∈{0,1}
pS (bk) , k ∈ JT,n

arg max
bk∈{0,1}

pS (bk) , k ∈ JP,n.
. (2.52)

Here, pS (bk) is a sample-based approximation of the posterior probability p(bk|x) of bk ∈ {0, 1}
defined as the number of realizations that contain the respective value of bk normalized by the
total number of generated samples Ns. Note that compared to the local MAP estimator for the
wave indicator parameter in Section 2.3.3, the advantage here is that no probability threshold
is needed to determine whether the wave is representative or not.

Concerning the other parameters θd =
[
aTTα

T
T a

T
P α

T
P γ

T σ2
w

]T
, the sample-based MMSE

estimation can be given as

θ̂d = 1
Nd

Nbi+Nd∑
i=Nbi+1

θ
(i)
d (2.53)

We recall that Nbi is the number of burn-in iterations, Nd denotes the number of generated
samples corresponding to the estimated wave indicator vector b̂ in (2.52), θ(i)

d denotes the
parameter vector generated at iteration i, and the subscript “d” in θd indicates that the pa-
rameters correspond to the detection indicated by b̂.

2.4.5 Simulation results

Simulations have been conducted on the QTDB to validate the performance of the proposed
algorithm. Some representative results produced by the modified window based Bayesian
model and the block Gibbs sampler are illustrated as follows. Fig. 2.17(a) shows an ECG
signal segment from the QTDB dataset “sele0607", which contains overlapping P and T waves.
Corresponding estimates of the marginal posterior probabilities of having a P or T wave at
a given location are shown in Fig. 2.17(b). We note that the sample-based MAP detector
used in our algorithm detects a wave at a given location if the respective posterior probability
estimate is above 1/2. Fig. 2.17(c) shows the estimated T and P waveforms for the 10-beat
window considered (i.e., D = 10). The wave onsets and ends were determined by using the
delineation criteria presented in Section 2.3.4. Fig. 2.18(a) shows the estimates of the P and T
waves (in red) and of the local baseline (in black), while Fig. 2.18(b) shows the P and T wave
delineation results (i.e., estimated onset, peak, and end of each detected P and T wave). The
close agreement of these estimation and delineation results with the ECG signal shows that
the proposed algorithm can properly handle the stress test ECGs.

An example of signals that contains premature ventricular contractions (PVCs) is also
studied by processing the QTDB dataset “sel803". As shown in Fig. 2.19, the proposed
method can handle these non-monotonic morphological abnormalities. Note in particular that
the posterior probabilities of having a P wave around time instant 7.5 is very low, which is in
agreement with the presence of a unique wave in the non QRS interval. Furthermore, with the
help of the proposed signal model, Fig. 2.20 shows that the sudden T wave amplitude inversion
has been detected, which is a nice property for the PVC detection problem.
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Figure 2.17: (a) an ECG signal portion from the QTDB “sele0607”, (b)posterior distributions
of the P and T wave indicator locations p(bP) (in black) and p(bT) (in dotted red), (c) estimated
P and T-waveforms.
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Figure 2.18: (a) ECG signal “sele0607” (dashed blue), estimated local baseline (black), and
estimated P and T waves (red). (b) Results of P and T wave delineation.
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Figure 2.19: (a) an ECG signal portion from the QTDB “sel803”, (b) posterior distributions
of the P and T wave indicator locations p(bP) (black) and p(bT) (dotted red), (c) estimated P
and T-waveforms.
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Figure 2.20: (a) ECG signal “sele0607” (dashed blue), estimated local baseline (black), and
estimated P and T waves (red). (b) Results of P and T wave delineation.
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Table 2.2: Block Gibbs sampler delineation performance compared to the PCGS.
Method Parameters Pon Ppeak Pend Ton Tpeak Tend

annotations 3176 3176 3176 1345 3403 3403
Block Gibbs sampler Se (%) 99.60 99.60 99.60 100 100 100

P+ (%) 98.04 98.04 98.04 97.23 99.15 99.15
m± s (ms) 1.7±10.8 2.7±8.1 2.5±11.2 5.7±16.5 0.7±9.6 2.7±13.5

annotations 3176 3176 3176 1345 3403 3403
PCGS Se (%) 98.93 98.93 98.93 99.01 99.81 99.81

P+ (%) 97.40 97.40 97.40 96.07 98.97 98.97
m± s (ms) 3.7±17.3 4.1±8.6 -3.1±15.1 7.1±18.5 1.3±10.5 4.3±20.8

For a quantitative analysis, Table 2.2 presents the detection sensitivity (Se), the positive
predictivity (P+) and the means (µ) and standard deviations (σ) of the differences between
the automated delineation results and the manual annotations, for the proposed block Gibbs
sampler algorithm and for the previously introduced PCGS algorithm. It is seen that the
block Gibbs sampler method outperforms the PCGS in terms of both detection sensitivity and
delineation accuracy. This is partially due to the fact that the modified Bayesian model, which
considers the local baseline, is more suitable to the ECG signal and thus can lead to better
waveform estimations.

Based on the comparison of the two Gibbs sampling methods, it also should be noted that
the complexity of the block Gibbs sampler is lower than that of the PCGS. The complexity of
the sampler depends strongly on the number of hypotheses for which the probabilities have to
be evaluated in one iteration. For the block Gibbs sampler, the T wave indicator of the nth
search interval JT,n is sampled by evaluating NT,n + 1 hypothesis (with NT,n the length of the
interval). For a D-beat processing window, the overall complexity per iteration equals the sum
of the each individual T wave search interval length, i.e,

∑D
n=1NT,n. While for the PCGS under

the same condition, the overall average complexity per iteration is about K, which is the length
of the whole D-beat processing window (please refer to [KTHD12] for detailed explication).
Since the search intervals are defined as a fixed percentage of the heart cycles, we always have

D∑
n=1

NT,n ≤ K. (2.54)

This can also be confirmed by the simulation. Running 100 iterations of the block Gibbs
sampler algorithm for a 10-beat ECG block sampled at Fs = 250Hz takes approximately 4
seconds for a MATLABr implementation on a 3.0-GHz Pentium IV, which is more than two
times faster than the PCGS under the same condition.
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2.5 Conclusion

This chapter studied a window based Bayesian model [LMT10] and its modified version [LKT+11,
LTM+11] performing joint P and T wave delineation and waveform estimation. These models
take into account appropriate prior distributions for the unknown parameters (wave locations
and amplitudes, waveform coefficients). The prior distributions and the likelihood of the ob-
served data are combined to provide the posterior distribution of the unknown parameters. The
ECG state sequence composed of the P wave, QRS complex and T wave parameters is Marko-
vian, since the current state (P wave, QRS complex, and T wave) only depends on the previous
state, which means that there are at most one T wave and one P wave within each cardiac cycle.
This property motivates our study of various Bayesian sampling algorithms imposing a strong
local dependency on the wave locations. In our work, the local dependency is first exploited
by a minimum-distance constraint prior on the wave indicator vector, and a PCGS is proposed
to resolve the unknown parameters of this Bayesian model. Note that a similar framework has
been proposed to OCT signal processing by Kail et al. [KNHH09]. Then, a block constraint
prior is proposed to consider simultaneously the whole non-QRS component, and a block Gibbs
sampler is studied to further improve the convergence and the computational efficiency of the
Gibbs sampler. Concerning the parameter estimation, instead of deploying rigid detection and
delineation criterion for all ECG time series, we used a local detection strategy (sample-based
MMSE and blockwise MAP estimators) and a flexible delineation criteria based on the estima-
tion of P and T waveforms in consecutive D-beat processing windows. The main contributions
of this chapter are:

1. PCGS [LMT10]

• The introduction of a window based Bayesian model for P and T wave delineation.
This model is based on a modified Bernoulli-Gaussian sequence with minimum dis-
tance constraint for the wave locations and appropriate priors for the amplitudes,
wave impulse responses and noise variance.
• The derivation of a PCGS allowing for generation of samples distributed according
to the posterior distribution associated to the Bayesian model. The proposed PCGS
which takes into account the strong local dependency of the ECG waves overcomes
the slow convergence problem encountered with the classical Gibbs sampler.
• The proposed Bayesian model allows for simultaneous estimation of the P and T
wave fiducial points and the P and T waveforms, which is rarely done by other ECG
delineation methods.
• The Bayesian simulation methods allow for determination of confidence intervals
which provide reliability information about the estimates (e.g., see error bars in Fig.
2.8). This could be useful for medical diagnosis.

2. Block Gibbs sampler [LKT+11, LTM+11]

• The window based Bayesian model is modified to consider simultaneously the whole
non-QRS component. The local dependency of the ECG signal is otherwise ex-
pressed by a block constraint on the wave locations.
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• A block Gibbs sampler is proposed to resolve the unknown parameters of the modi-
fied Bayesian model. Compared to the PCGS, it further improves the computational
efficiency.
• Benefiting from the fact that the whole non-QRS component is considered together,
the residual local baseline within each non-QRS component is modeled by a poly-
nomial and its coefficients are estimated jointly with other wave parameters by the
proposed block Gibbs sampler.
• Accurate yet parsimonious models are used for the P and T waveforms (modeled by
Hermite expansions).
• A sample-based blockwise MAP estimator is used to estimate the wave indicator
parameter. Compared to the MMSE wave indicator estimator for the PCGS, no
probability threshold is needed to determine whether the wave is representative or
not.

The resulting algorithms were validated using the entire annotated QT database. A com-
parison with other benchmark methods showed that the proposed method provides a reliable
detection and an accurate delineation for a wide variety of wave morphologies. The most signif-
icant improvement was found in the P and T wave detection rate and the positive predictivity.
In addition, the proposed method can provide accurate waveform estimation. Consequently, it
allows for observation of the waveform evolution among processing windows. If we extract the
T wave search region on every other beat rather than successively, the proposed method can be
directly used to perform T wave alternans (TWA) analysis, which can be a pathological sign of
a cardiac problem. Indeed, the wave amplitude can be used to decide the presence or absence
of TWA, while the waveform estimation can reflect the characterization of TWA waveform.
The application of the window based Bayesian model to TWA detection in clinical research
background is presented in detail in Chapter 4.

Note however that the trade off with the good detection and estimation performance is a
higher computational cost when compared to other more classical methods. It is also important
to mention that the proposed Bayesian model relies on a nonoverlapped multiple-beat process-
ing window to estimate the waveforms. More precisely, the waveforms of all P or T waves within
a multiple-beat processing window were assumed to be unique, whereas their amplitudes and
locations varied from one beat to another. Due to the pseudo-cyclostationary nature of the
ECG signal, the P and T waveforms in a given beat are usually similar but not exactly equal
to those of the adjacent beats. Therefore, the performance of P and T wave delineation can be
expected to improve if the waveforms are estimated in a beat-to-beat manner that allows for
temporal variations of waveform morphology across the beats. Moreover, it is interesting to
process data on-line, to reduce storage costs and to ensure rapid adaptation to changing signal
characteristics. Following this initiative, a beat-to-beat based Bayesian model will be discussed
in the next chapter, and associated Bayesian methods are proposed to estimate the unknown
parameters.
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3.1 Introduction

In this chapter, we study Bayesian methods that enable simultaneous P and T wave delin-
eation and waveform estimation on a beat-to-beat basis. First, a beat-to-beat Bayesian model
is proposed by introducing dependencies among waveform coefficients in the multiple-beat-
window-based model studied in Chapter 2. Instead of assigning a white Gaussian prior to the
temporal sequence of waveform coefficients, we use a prior “with memory” that depends on the
estimates of the previous beat. A Gibbs sampler with a block constraint is then used for esti-
mating the parameters of the resulting beat-to-beat model. Simulation results show that the
proposed sequential model and processing improve the convergence of the samplers proposed
in the previous chapter as well as the accuracy of estimating the locations, amplitudes, and
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shapes of the P and T waves. The improved convergence can be explained by a considerable
reduction of the parameter dimension, since only one beat is processed instead of multiple
beats.

In the spirit of taking into account all the information contained in the past of the beat to
be processed rather than considering only one previous beat, a sequential Monte Carlo (SMC)
method is studied in the second part of this chapter. Following the SMC analysis principle, the
sequential nature of the ECG signal is exploited by using a dynamic model under the Bayesian
framework. Particle filters (PFs) are then investigated to estimate the unknown parameters of
the dynamic model. A classical PF is first studied. The key idea of this filter is to represent
the required posterior density function by a set of random samples (particles) with associated
weights and to compute estimates based on these samples and weights. In a second step, a
Rao-Blackwellized PF (also referred to as marginalized PF) is proposed to exploit the linear
Gaussian sub-structure available in the state parameters of the dynamic model to obtain better
estimates and to reduce the algorithm computational complexity. Simulation results show that
the proposed dynamic model and the PFs are promising to resolve the sequential P and T wave
analysis problem in the ECG signals.
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3.2 Beat-to-beat Bayesian model and block Gibbs sampler

3.2.1 Signal model for one non-QRS interval

Similar to the window based approaches presented in Section 2.4, the non-QRS intervals which
are located between the end of a QRS complex and the subsequent QRS onset are provided
by a preliminary QRS detection step, using, e.g., the Pan-Tompkins algorithm [PT85]. The
difference here is that only one non-QRS interval is processed at a given time instant.

As shown in Fig. 3.1, the non-QRS interval Jn associated with the nth heartbeat consists
of two complementary subintervals: a T search interval JT,n, which may contain a T wave,
and a P search interval JP,n, which may contain a P wave. The temporal lengths of the
intervals Jn, JT,n, and JP,n will be denoted by Nn, NT,n, and NP,n, respectively. Note that
NT,n +NP,n = Nn. The lengths NT,n and NP,n can be determined by a cardiologist or simply
as fixed percentages of Nn. Our goal is to estimate the locations, amplitudes, and shapes
(waveforms) of the T and P waves within their respective search intervals JT,n and JP,n. Note
that only the locations of the wave peaks are constrained to lie within their respective search
intervals. The whole non-QRS signal component will be considered together in the processing
so that the border situation (where a T or P wave has part of its waveform across the border
between JT,n and JP,n) can be properly handled.

Figure 3.1: Signal model for the beat-to-beat processing scheme.

The signal in the non-QRS interval Jn can be approximated by two pulses representing
the T and P waves plus a local baseline (see Fig. 3.1). Similar to the blind deconvolution
problem in the multi-beat case, the T and P waves within Jn are modeled by the convolution
of an unknown binary “indicator sequence” bn = (bn,1 · · · bn,Nn)T indicating the wave locations
(bn,i = 1 if there is a wave at location i, bn,i = 0 otherwise) with unknown T and P waveforms
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hT,n = (hT,n,−L · · · hT,n,L)T and hP,n = (hP,n,−L · · · hP,n,L)T . Here, the waveform length 2L+1
is chosen as a fixed percentage of Nn that is large enough to accommodate the actual supports
of the T and P waves. The indicators associated with the T search interval JT,n and the P
search interval JP,n are {bn,k}

NT,n
k=1 and {bn,k}Nnk=NT,n+1, respectively; in each case, at most one

indicator is nonzero because at most one wave may be present in any given search interval.
Note that contrary to the signal models proposed for multi-beat window based approaches
(see Section 2.2.2 and Section 2.4), the amplitude vector associated to the sparse sequence
is omitted in the beat-to-beat model. This is due to the fact that waveform coefficients are
estimated in a beat-to-beat basis which makes the amplitude parameter redundant.

From the above discussion, it follows that the nth non-QRS signal component can be
expressed by the convolution relation

xn,k =
NT,n∑
j=1

hT,n,k−jbn,j +
Nn∑

j=NT,n+1
hP,n,k−jbn,j + cn,k + wn,k , k∈Jn. (3.1)

Here, cn,k denotes the baseline sequence and wn,k is a white Gaussian noise with unknown
variance σ2

w,n. The indicators bn,k are constrained as discussed above. Furthermore, we have
set hT,n,k = hP,n,k = 0 for k /∈{−L, . . . , L}.

Following the idea of Section 2.4.1, the T and P waveforms are represented by a basis
expansion using discrete-time versions of Hermite functions such that

hT,n = HαT,n , hP,n = HαP,n (3.2)

where H is a (2L +1) × G matrix whose columns are the first G Hermite functions (with
G ≤ 2L+1), suitably sampled and truncated to length 2L+1, and αT,n and αP,n are unknown
coefficient vectors of lengthG. Similarly, the residual local baseline within the non-QRS interval
is modeled by using a polynomial of degree 4, i.e.,

cn,k =
5∑
i=1

γn,ik
i−1, k∈Jn . (3.3)

In vector-matrix form, (3.3) reads as cn = Mγn, with the known Nn× 5 Vandermonde matrix
M and the unknown coefficient vector γn = (γn,1 · · · γn,5)T .

Using (3.2) and (3.3), we obtain the following vector representation of the non-QRS signal
in (3.1)

xn = BT,nHαT,n +BP,nHαP,n +Mγn +wn (3.4)

where xn = (xn,1 · · ·xn,Nn)T , wn = (wn,1 · · ·wn,Nn)T , BT,n is the Nn×(2L+1) Toeplitz matrix
with first row (bn,L+1 · · · bn,1 0 · · · 0) and first column (bn,L+1 · · · bn,NT,n 0 · · · 0)T , and BP,n
is the Nn × (2L+ 1) Toeplitz matrix with last row (0 · · · 0 bn,Nn · · · bn,Nn−L) and last column
(0 · · · 0 bn,NT,n+1 · · · bn,Nn−L)T .
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3.2.2 Bayesian inference

Due to the parametrization introduced in Section 3.2.1, the unknown parameters for the nth
non-QRS interval Jn are included in the random vector θn , (bTn αTT,nαTP,n γTn σ2

w,n)T . Note,
in particular, that the noise variance σ2

w,n is modeled as a random parameter. Bayesian detec-
tion/estimation relies on the posterior distribution

p(θn|xn) ∝ p(xn|θn)p(θn) (3.5)

where ∝ means “equal up to a multiplicative positive factor that does not depend on θn”,
p(xn|θn) is the likelihood function, and p(θn) is the prior distribution of θn. The next two
subsections present the likelihood function and priors considered in this study.

Likelihood Function

Using (3.4) and the fact that wn,k is white and Gaussian with variance σ2
w,n, the likelihood

function is obtained as

p(xn|θn) = N (BT,nHαT,n +BP,nHαP,n +Mγn, σ
2
w,nINn) (3.6)

where N (µ,C) denotes the multivariate Gaussian probability density function with mean vec-
tor µ and covariance matrix C and ‖ · ‖ denotes the `2 norm, i.e., ‖x‖2 = xTx.

Prior Distributions

Let the vectors bT,n ∈ {0, 1}NT,n and bP,n ∈ {0, 1}NP,n contain all entries of the wave indicator
vector bn whose locations are, respectively, in the T search interval JT,n and in the P search
interval JP,n. Note that bn = (bTT,n bTP,n)T . The indicators bn,k are subject to a block constraint:
within JT,n, there is one T wave (thus, ‖bT,n‖ = 1) or none (thus, ‖bT,n‖ = 0), the latter case
being very unlikely. Therefore, we define the prior of bT,n as

p(bT,n) =


p0 if ‖bT,n‖ = 0
p1 if ‖bT,n‖ = 1
0 otherwise

(3.7)

where p1 = (1− p0)/NT,n and p0 is chosen very small. Note that there are NT,n vectors
satisfying ‖bT,n‖ = 1 whereas the zero vector is the only vector satisfying ‖bT,n‖ = 0. Thus the
probabilities in (3.7) sum to one. Similarly, within JP,n, there is one P wave or none; therefore,
the prior of bP,n is defined as in (3.7), with the same parameters p0 and p1. The vectors bT,n
and bP,n are assumed to be statistically independent. The prior of bn results as

p(bn) = p(bT,n) p(bP,n). (3.8)
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The wave indicator vectors bn for different search intervals (different n) are assumed to be
statistically independent.

The waveform coefficient vectors αT,n and αP,n for the nth non-QRS interval Jn are sup-
posed to depend on the respective estimates obtained in the (n− 1)th non-QRS interval Jn−1.
This is a major difference from the multi-beat processing window Bayesian model in Section
2.4.2. Consider the T wave as an example. The prior of αT,n is defined as

p(αT,n|bT,n, α̂T,n−1) =

δ(αT,n− α̂T,n−1) if ‖bT,n‖ = 0
N (α̂T,n−1, σ

2
αIG) if ‖bT,n‖ = 1

(3.9)

where α̂T,n−1 is the estimate of the T waveform coefficient vector associated with Jn−1 and
IG is the identity matrix of size G × G. For the variance σ2

α, we choose a value that allows
for a reasonable variability of the waveform coefficients from one interval to another. Note
that when there is no T wave in the search interval (‖bT,n‖ = 0), the prior sets αT,n equal
to α̂T,n−1, i.e., the waveform coefficients are assigned the same values as those estimated in
JT,n−1. The prior of the P waveform coefficient vector αP,n is defined in an analogous way,
with α̂T,n−1 replaced by α̂P,n−1. These definitions of the priors associated with αT,n and αP,n
introduce a memory in the statistical model for the T and P waveforms and, in turn, results
in a sequential type of processing.

Concerning the baseline coefficients and the noise variance, they are assigned similar priors
as in the modified window based Bayesian model in Section 2.4.2. The baseline coefficient
vectors γn for different n are assumed to be independent. Moreover, the baseline coefficients γn,i
for a given n are modeled as independent and identically distributed (iid) zero-mean Gaussian,
i.e.,

p(γn)=N (0, σ2
γI5), (3.10)

with a fixed variance σ2
γ . The noise variances σ2

w,n for different n are modeled as independent
and distributed according to the inverse gamma distribution

p(σ2
w,n)=IG(ξ, η), (3.11)

where ξ and η are fixed hyperparameters providing a vague prior.

Since there are no known relations between (bT,n,αT,n), (bP,n,αP,n), γn, and σ2
w,n, all

these sets of parameters are assumed to be a priori statistically independent. Therefore, the
joint prior for the total parameter vector θn = (bTT,n bTP,nαTT,nαTP,n γTn σ2

w,n)T factors as

p(θn|α̂T,n−1, α̂P,n−1) = p(αT,n|bT,n, α̂T,n−1) p(bT,n)
× p(αP,n|bP,n, α̂P,n−1) p(bP,n) p(γn) p(σ2

w,n) (3.12)

where (3.8) has been used.
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Posterior distribution

The posterior distribution of the parameter vector θn can be derived using Bayes’ rule, i.e.,

p(θn|xn, α̂T,n−1, α̂P,n−1) ∝ p(xn|θn)p(θn|α̂T,n−1, α̂P,n−1) (3.13)

where the different densities have been defined in (3.6), (3.12), and the individual prior distri-
bution have been discussed previously.

Due to the complexity of the resulting posterior distribution, we propose a block Gibbs
sampler that generates samples asymptotically distributed according to p(θn|x, α̂T,n−1, α̂P,n−1)
(see the next section). This sampler has similar structure to the block Gibbs sampler proposed
in Section 2.4.3, except that the sampling distributions for certain parameters are different due
to the dependencies on the estimates of the previous non-QRS component and the steps to
generate wave amplitude samples are omitted. From these samples, the discrete parameters
bn = (bTT,n bTP,n)T are then detected by means of the sample-based maximum a posteriori
(MAP) detector, and the continuous parameters αT,n, αP,n, γn, and σ2

w,n are estimated by
means of the sample-based minimum mean square error (MMSE) estimator, as described in
Section 2.4.4.

3.2.3 Block Gibbs sampler for beat-to-beat wave extraction

The proposed block Gibbs sampler for the nth non-QRS interval Jn is summarized in Algorithm
6. Note that, the interval index n is omitted from all parameters to simplify the notation, while
the index n− 1 is kept to avoid any ambiguity.

Algorithm 6 Block Gibbs sampler
Sample bT from p(bT|bP, α̂T,n−1,αP,γ, σ

2
w,x)

Sample αT from p(αT|b, α̂T,n−1,αP,γ, σ
2
w,x)

Sample bP from p(bP|bT, α̂P,n−1,αT,γ, σ
2
w,x)

Sample αP from p(αP|b, α̂P,n−1,αT,γ, σ
2
w,x)

Sample γ from p(γ|b,αT,αP, σ
2
w,x)

Sample σ2
w from p(σ2

w|b,αT,αP,γ,x)

To see that Algorithm 6 is a valid Gibbs sampler, note that the sampling steps for bT and
αT are equivalent to jointly sampling bT and αT from p(bT,αT|bP, α̂T,n−1,αP,γ, σ

2
w,x), and

similarly for bP and αP. The sampling distributions used in Algorithm 6 are specified in the
following and their derivations are provided in the Appendix C.
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Wave indicators. The sampling distribution for the T wave indicator vector bT is

p(bT|bP, α̂T,n−1,αP,γ, σ
2
w,x)

∝


p0 if ‖bT‖ = 0
σ−Gα

√
|Σ1| exp(µ1Σ−1

1 µ1) p1 if ‖bT‖ = 1
0 otherwise

(3.14)

with

µ1 = Σ1

(
HTBT

Tx̃T
σ2
w

+ α̂T,n−1
σ2
α

)
(3.15)

Σ1 =
(
HTBT

TBTH

σ2
w

+ IG
σ2
α

)−1

. (3.16)

Here, x̃T , x−BPHαP−Mγ. The sampler evaluates all hypotheses for bT conditioned on the
current samples of all other parameters. There are NT+1 such hypotheses, because, according
to (3.14), bT has either no 1-entry or exactly one 1-entry at one of NT possible locations within
JT.

The sampling distribution for the P wave indicator vector, p(bP|bT, α̂P,n−1,αT,γ, σ
2
w,x),

is obtained in an analogous manner, with α̂T,n−1 replaced by α̂P,n−1, BT replaced by BP, and
x̃T replaced by x̃P , x−BTHαT −Mγ.

Waveform coefficients. The sampling distribution for αT is

p(αT|b, α̂T,n−1,αP,γ, σ
2
w,x)

∝

δ(αT − α̂T,n−1) if ‖bT‖ = 0,
N (µ1,Σ1) if ‖bT‖ = 1

(3.17)

with µ1 and Σ1 as defined above. In particular, the samples of αT are given by α̂T,n−1 if
there is no T wave in the search interval (‖bT‖ = 0). The sampling distribution for αP,
p(αP|b, α̂P,n−1,αT,γ, σ

2
w,x), is obtained similarly.

Baseline coefficients. The sampling distribution for γ is

p(γ|b,αT,αP, σ
2
w,x) = N (µ2,Σ2) (3.18)

with

µ2 = Σ2M
T

σ2
w

x̃ (3.19)

Σ2 =
(
MTM

σ2
w

+ I5
σ2
γ

)−1

(3.20)

where x̃ , x−BTHαT −BPHαP.
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Noise variance. The sampling distribution for σ2
w is the following inverse gamma distri-

bution
p(σ2

w|b,αT,αP,γ,x) = IG(ξ′, η′) (3.21)

with

ξ′ = ξ + N

2 , η′ = η + 1
2‖x̃−Mγ‖2.

3.2.4 Wave parameter estimation and threshold-free delineation

Wave detection and parameter estimation

The wave detection and parameter estimation can be obtained similarly to the sample-based
estimation strategy developed in Section 2.4.4 for the window based method. We denote by
S ,

{
b

(i)
T , b

(i)
P ,α

(i)
T ,α

(i)
P ,γ

(i), σ
2(i)
w
}Ns
i=1 the set of samples produced by the beat-to-beat block

Gibbs sampler after a burn-in period. The sample-based blockwise MAP detector for the wave
indicator vector b is given by

b̂T = argmax
b

(i)
T ∈S

pS(b(i)
T ) , b̂P = argmax

b
(i)
P ∈S

pS(b(i)
P ) . (3.22)

Here, pS(bT) is a sample-based estimate of the posterior probability p(bT|x, α̂T,n−1, α̂P,n−1).
More specifically, pS(bT) is defined as the number of samples b(i)

T in S that equal the respective
value of bT, normalized by the total number of samples, Ns. Recall that, due to (3.14), each
sample b(i)

T contains at most one non-null value. Thus, the same is true for b̂T. Analogous
considerations apply to pS(bP) and b̂P.

The detection step described above is followed by sample-based estimation of the waveform
coefficients αT and αP, baseline coefficients γ, and noise variance σ2

w. Let us combine these
parameters into the parameter vector θ∼b , (αTTαTP γT σ2

w)T . Furthermore, we define the set
I as the set of sample indices i such that b(i)

T = b̂T and b(i)
P = b̂P. To estimate θ∼b, we use the

sample mean
θ̂∼b = 1

|I|
∑
i∈I
θ

(i)
∼b (3.23)

where θ(i)
∼b ,

(
α

(i)T
T α

(i)T
P γ(i)T σ

2(i)
w
)T and |I| denotes the number of elements in I. This can

be interpreted as a sample-based approximation of the MMSE estimator given by the posterior
mean E{θ∼b|x, bT, bP, α̂T,n−1, α̂P,n−1}. Thus, θ̂∼b depends on b̂T, b̂P, α̂T,n−1, and α̂P,n−1.

Threshold-free wave delineation

For the wave peak location, the detection/estimation results obtained for the wave indicators
bk and the waveforms hT,k and hP,k (as represented by the waveform coefficients αT and αP)
are ambiguous with respect to their relative locations, in the sense that a temporal shift of bk
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can be compensated for by an inverse temporal shift of hT,k and hP,k. The same technique as in
Section 2.3.4 is applied to resolve this time-shift ambiguity issue. It ensures that the maximum
of the waveform is located at the center k= 0 of the waveform support interval {−L, . . . , L}
and, thus, the position of a nonzero detected indicator b̂k = 1 directly indicates the peak of
the respective T or P wave.

The wave delineation consists of determining the boundaries of the detected T and P
waves. It is broadly accepted that the significant turning points determined by the largest
local maximum of the curvature of the estimated waveform on each side of the detected wave
peak are good estimates of the wave boundaries [TS90, CLK06]. The curvature of the estimated
T waveform ĥT,k is defined as [TS90]

κT,k ,
ĥ

′′
T,k[

1 +
(
ĥ

′
T,k
)2]3/2 , k ∈ {−L, . . . , L} (3.24)

where ĥ′
T,k and ĥ

′′
T,k are discrete-time approximations of the first and second derivatives of ĥT,k

(e.g., ĥ′
T,k is defined as the difference ĥT,k − ĥT,k−1).

Fig. 3.2 illustrates the method by showing the delineation results obtained for three different
T wave morphologies. The largest local maximum of the curvature before and after the wave
peak reveals the most significant turning points of the waveform under visual observation.
Thus they can be seen as the onset and the end of the wave. Note that due to the good
waveform estimation resulting from the Hermite basis decomposition and the proposed beat-
to-beat Gibbs sampler, the corresponding curvature properly reflects the wave morphology
characteristics. Contrary to most of the state-of-art methods and to the criteria proposed in
Section 2.3.4, the delineation method described above avoids the use of rigid detection and
delineation thresholds, which is a nice property for robust wave delineation.

T
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T
peak

T
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Figure 3.2: Delineation results obtained for three different T wave morphologies. Solid blue
line: estimated T waveform, dotted red line: corresponding curvature. The crosses indicate the
estimated peak and boundary locations. (a) Normal sinus T wave from QT database (QTDB)
[LMGM97] dataset sel17453 channel 1; (b) ascending T wave from QTDB sele0203 channel 1;
(c) biphasic T wave from QTDB sele0603 channel 1.
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3.2.5 Simulation results

As in the previous studies of this work, we have evaluated the proposed beat-to-beat wave
detection/estimation/delineation method on the QT database (QTDB) [LMGM97]. In a pre-
processing step, the QRS complexes are detected and the borders of the non-QRS intervals
Jn are determined using the Pan-Tompkins algorithm [PT85]. (The same preprocessing step
was performed in Section 2.3.5 and Section 2.4.5 for the multi-beat processing window based
approach.) T and P search intervals JT,n and JP,n are then defined as the first and second half
of Jn. The proposed method sequentially processes one non-QRS interval Jn after another.
For each non-QRS interval, the block Gibbs sampler generates 100 samples according to the
conditional distributions specified in Section 3.2.3. The first 40 samples constituted the burn-
in period, and the remaining 60 are used for detection/estimation (thus, Ns = 60). The fixed
hyperparameters involved in the prior distributions have been chosen as p0 = 0.01, σ2

γ = 0.1,
σ2
α = 1, ξ = 11, and η = 0.5; these values allow for an appropriate waveform variability from

one beat to another and provide a noninformative prior for the noise variance σ2
w,n. Note that

the non-QRS components are normalized by using the corresponding R peak values to handle
different amplitude resolutions. For the first non-QRS interval (n=1), the previous waveform
coefficient estimates α̂T,n−1 and α̂P,n−1 have been initialized with a 2L + 1 Hanning window
[Har78] whose amplitude is half the R peak.

Qualitative Analysis

In this section, we show the posterior distributions of the indicators bk as well as estimation
and delineation results for some typical examples, and we present a qualitative comparison
with the previously proposed window-based Bayesian method of Section 2.4.

Fig. 3.3(a) shows two consecutive heartbeats from the QTDB dataset sele0136. The cor-
responding sample-based estimates of the marginal posterior probabilities of having a T or P
wave at a given location k, PS(bk = 1), are depicted in Fig. 3.3(b). (For k ∈ JT, PS(bk = 1)
equals the probability PS(bT) of the specific hypothesis bT that contains a 1-entry at position
k, and similarly for k∈JP.) Fig. 3.3(c) shows the T and P waveforms estimated by the pro-
posed beat-to-beat method for each search interval along with the corresponding delineation
results (i.e., the estimated wave onsets, peaks, and ends, which were determined as described in
Section 3.2.4). As can be seen, there are noticeable differences between the two consecutive T
waveform estimates (at time instants 4.92s and 6.10s), as well as between the two consecutive
P waveform estimates (at time instants 5.64s and 6.83s). This confirms the pseudo-stationary
nature of the ECG signal and justifies our introduction of a beat-to-beat processing scheme
that allows for beat-to-beat variations of the T and P waveforms.
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Figure 3.3: (a) Two consecutive heartbeats from QTDB dataset sele0136; (b) estimated
marginal posteriors PS(bk=1); (c) estimated T and P waveforms and delineation results.
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Next, we present a qualitative comparison of the proposed beat-to-beat method with the
recently proposed Gaussian mixture model and extended Kalman filter (EKF) method of [SS09]
and the window-based Bayesian method of Section 2.4. To evaluate the two methods under
real physiological noise conditions, we have added electrode motion (EM) and muscular activity
(MA) noise from the MIT-BIH noise stress test database. Since EM noise is known to be easier
to handle than MA noise, we only present our results with MA noise. Our results with EM
noise were similar or better. Fig. 3.4(a) shows a segment of QTDB dataset sele0136. Fig.
3.4(b) shows the same segment corrupted by MA noise with a signal-to-noise ratio (SNR) of
10dB. Fig. 3.4(c), Fig. 3.4(d) and Fig. 3.4(e) depict the non-QRS signal component obtained
from the noisy signal by the method of [SS09], the window based block Gibbs sampler method
and by the beat-to-beat block Gibbs sampler method, respectively. The original (noise-free)
ECG signal is also shown for comparison. It can be seen that the proposed method provides a
closer agreement with the original ECG signal, especially at the onsets and ends of the waves,
which is a desirable property for wave delineation.

Fig. 3.5 shows analogous results for a segment of QTDB dataset sel803 that contains pre-
mature ventricular contractions (PVCs). The proposed beat-to-beat method is seen to exhibit
good performance even in the presence of nonmonotonic morphological abnormalities. Again,
the estimates obtained with the proposed method are better than those obtained with the
window-based method.

Because the proposed beat-to-beat method processes only one non-QRS interval considered
at any given time, both its memory requirements and its computational load are smaller than
those of the window-based method in Section 2. For instance, for the proposed method using
100 sampler iterations, the processing time per beat is approximately 0.3s for a nonoptimized
MATLAB implementation running on a 3.0-GHz Pentium IV computer, compared to about 2s
for the PCGS based method in Section 2.3 .
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Figure 3.4: (a) Segment from QTDB “sele0136”; (b) noisy version including MA noise with
SNR=10dB; (c) non-QRS signal component estimated by the EKF method of [SS09] (red) and
noise-free original signal (blue); (d) non-QRS signal component estimated by the window-based
method of Section 2.4 (red) and noise-free original signal (blue); (e) non-QRS signal component
estimated by the proposed beat-to-beat method (red) and noise-free original signal (blue).
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Figure 3.5: (a) Segment from QTDB sel803; (b) noisy version including MA noise with
SNR=10dB; (c) non-QRS signal component estimated by the EKF method of [SS09] (red)
and noise-free original signal (blue); (d) non-QRS signal component estimated by the window-
based method of Section 2.4 (red) and noise-free original signal (blue); (e) non-QRS signal
component estimated by the proposed beat-to-beat method (red) and noise-free original signal
(blue).
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Quantitative Analysis

In this section, we provide a quantitative performance comparison of the beat-to-beat method
with the previously proposed window based Bayesian model with a block Gibbs sampler and
several alternative methods [LJC94, MAO+04, VGP+00], based on an exhaustive evaluation
performed on the entire QTDB. For a quantitative analysis of the performance of T and P
wave detection, we have computed the sensitivity (also referred to as detection rate) Se and
the positive predictivity P+ as in Section 2.3.5 and Section 2.4.5. The performance of wave
delineation has been measured by the average (denoted as m) and standard deviation (denoted
as s) of the time differences between the results of the considered method and the corresponding
cardiologist annotations. The indicated time values (in ms) are based on a sampling frequency
of 250Hz. The quantities m and s were computed separately for the wave onset times tP,on and
tT,on, the wave peak times tP,peak and tT,peak, and the wave end times tP,end and tT,end. We
note that while the QTDB includes annotations made by two cardiologists, we have considered
only those of the first cardiologist, who provided annotations for at least 30 beats per dataset.

Table 3.1 shows the results for Se, P+, and m ± s obtained for the entire QTDB with
the beat-to-beat block Gibbs sampler method, the multi-beat block Gibbs sampler method in
Section 2.4.5 and three alternative methods of [LJC94, MAO+04, VGP+00]. It can be seen
that the proposed method detects the T and P waves annotated by the cardiologist with high
sensitivity: the sensitivity Se is 100% for the T waves and 99.93% for the P waves. Similarly
good results were obtained for the positive predictivity P+, which is 99.30% for the T waves
and 99.10% for the P waves. Both the Se values and the P+ values are clearly better than
those obtained with the other methods, including the recently proposed window-based Bayesian
method of Section 2.4.5.

Regarding the delineation performance, it is seen from Table 3.1 that the proposed method
delineates the annotated T and P waves with mean errors m not exceeding 4ms (with one
exception) and with smaller standard deviations s than the other methods (again with one
exception). We note that delineation error tolerances have been recommended by the CSE
Working Party [TCWP85]. In particular, the standard deviation s for tP,on, tP,end, and tT,end
should be at most 2sCSE, which is listed in the last row of Table 3.1. However, a stricter
recommendation proposed in [MAO+04] is s ≤ sCSE. According to Table 3.1, the delineation
results for tP,end achieved by the proposed method comply with the loose recommendation.
For the tT,end results, the proposed method is the only one that complies with the strict
recommendation.
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Table 3.1: Comparison of the detection and delineation performance of the proposed method,
the window based block Gibbs sampler of [LKT+11], the Wavelet transform based method
of [MAO+04] (WT), the low-pass differentiation based method of [LJC94] (LPD), the action
potential model of [VGP+00] and the delineation error tolerance of [TCWP85]. (N/A: not
available)

Method Parameters tP,on tP,peak tP,end tT,on tT,peak tT,end

Beat-to-beat annotations 3176 3176 3176 1345 3403 3403
block Gibbs Se (%) 99.93 99.93 99.93 100 100 100
sampler P+ (%) 99.10 99.10 99.10 98.01 99.30 99.30

(proposed) m±s (ms) 3.4±14.2 1.1±5.3 −2.1±9.8 6.8±16.3 −0.8±4.1 −3.1±14.0

Window based annotations 3176 3176 3176 1345 3403 3403
block Gibbs Se (%) 99.60 99.60 99.60 100 100 100
sampler P+ (%) 98.04 98.04 98.04 97.23 99.15 99.15
[LKT+11] m±s (ms) 1.7±10.8 2.7±8.1 2.5±11.2 5.7±16.5 0.7±9.6 2.7±13.5

annotations 3194 3194 3194 N/A 3542 3542
WT Se (%) 98.87 98.87 98.75 N/A 99.77 99.77

[MAO+04] P+ (%) 91.03 91.03 91.03 N/A 97.79 97.79
m±s (ms) 2.0±14.8 3.6±13.2 1.9±12.8 N/A 0.2±13.9 −1.6±18.1

annotations N/A N/A N/A N/A N/A N/A
LPD Se (%) 97.70 97.70 97.70 N/A 99.00 99.00

[LJC94] P+ (%) 91.17 91.17 91.17 N/A 97.74 97.74
m±s (ms) 14.0±13.3 4.8±10.6 −0.1±12.3 N/A −7.2±14.3 13.5±27.0

Action annotations N/A N/A N/A N/A N/A N/A
potential Se (%) N/A N/A N/A N/A 92.60 92.60
model P+ (%) N/A N/A N/A N/A N/A N/A

[VGP+00] m±s (ms) N/A N/A N/A 20.9±29.6 −12.0±23.4 0.8±30.3

Tolerance 2sCSE (ms) 10.2 N/A 12.7 N/A N/A 30.6
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3.3 Sequential Monte Carlo methods for beat-to-beat P and T
wave analysis

Section 3.2 studied a beat-to-beat Bayesian model that introduced dependencies among wave-
form coefficients. A prior “with memory” (depending on the previous estimates of the P and T
waveforms) was assigned to the current beat. In this section, a sequential Monte Carlo (SMC)
method [DdFG01] is studied to take into account all the information contained in the past of
the current beat to be processed. First, we propose a dynamic model to solve simultaneously
P and T wave delineation and waveform estimation in a beat-to-beat basis. The proposed
dynamic model is similar to the Bayesian models introduced in Section 3.2. However, it adapts
to the morphology variations across the ECG beats by assigning a random walk model to the
waveform coefficients. Following the SMC principle, particle filters (PFs) are introduced to
estimate the unknown parameters of the proposed model. The key idea is to represent the
required posterior density by a set of random samples with associated weights and to compute
parameter estimates from these samples and weights. Despite the simplicity of the PF principle,
its main drawback is its computational complexity especially for large state dimension. This
computational complexity can be reduced for nonlinear dynamic models containing a subset
of parameters which are linear and Gaussian, conditional upon the other parameters. In this
case, the linear parameters can be optimally estimated through standard linear Gaussian fil-
tering. This technique is often referred to as Rao-Blackwellization [DGK01] or marginalization
[SGN05]. In our case, the state equations are linear with respect to a subset of the unknown
parameters. Thus we propose to use a marginalized particle filter (MPF) that dismisses the
states appearing linearly in the dynamics, generates particles in the space of the remaining
states and runs one KF for each of these particles to estimate the “linear” parameters. The
proposed approach is evaluated on the annotated QT database [LMGM97] and compared with
the window-based Bayesian method, the beat-to-beat Bayesian method based on block Gibbs
sampler and with other state-of-art methods.

3.3.1 Dynamic model for non-QRS intervals

As in the previous sections, we assume that the locations of the non-QRS intervals are pro-
vided by a preliminary QRS detection step using the Pan-Tompkins algorithm [PT85]. We
also assume that both the global and local baseline wanderings are removed by the technique
suggested in [CM07].

Signal model

As shown in Fig. 3.6, the non-QRS interval Jn associated with the nth heartbeat consists of
two complementary subintervals: a T search interval JT,n, which may contain a T wave, and
a P search interval JP,n, which may contain a P wave. The lengths of the intervals Jn, JT,n,
and JP,n will be denoted by Nn, NT,n, and NP,n, respectively. Note that NT,n + NP,n = Nn.
The interval lengths NT,n and NP,n can be determined by a cardiologist or simply fixed as
given percentages of Nn. In this chapter, we choose NT,n = NP,n = Nn/2. Our goal is to
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Figure 3.6: Signal model within a non-QRS interval.

estimate the locations and shapes (waveforms) of the T and P waves within their respective
search intervals JT,n and JP,n.

Similar to the blind deconvolution problem introduced previously, the signal xn,k in the nth
T wave interval JT,n is modeled by the convolution of an unknown binary “indicator sequence”
bT,n = (bT,n,1 · · · bT,n,NT,n)T indicating the wave locations (bT,n,i = 1 if there is a wave at
location i, bT,n,i = 0 otherwise) with an unknown T waveform hT,n = (hT,n,−L · · · hT,n,L)T
such that

xn,k =
NT,n∑
j=1

hT,n,k−j bT,n,j + wn,k , k∈JT,n (3.25)

where wn,k is a white Gaussian noise with variance σ2
w,n and hT,n,k = 0 for k /∈ {−L, . . . , L}.

The waveform length 2L + 1 is chosen as a fixed percentage of Nn that is large enough to
accommodate the actual supports of the T wave (e.g., 2L+1 = Nn/3 in this work). The signal
model ensures that the position of a nonzero detected indicator (such that b̂T,n,k = 1) directly
indicates the center k=0 of the waveform support interval {−L, . . . , L}. Note that since there
is at most one T wave in each T wave interval, there will be at most one nonzero entry of bT,n
which corresponds to the T wave location.

Similarly, the P wave within the P wave interval is modeled by the convolution of hP,n =
(hP,n,−L · · · hP,n,L)T with bP,n = (bP,n,1 · · · bP,n,NP,n)T . The P interval signal component xn,k
can then be written as

xn,k =
NP,n∑
j=1

hP,n,k−j bP,n,j + wn,k , k∈JP,n (3.26)
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with hP,n,k = 0 for k /∈{−L, . . . , L}.

Following the idea developed in Chapter 2 and in Section 3.2, we represent the T and P
waveforms by a basis expansion using discrete-time versions of Hermite functions. Thus, the
waveform vectors can be written as

hT,n = HαT,n , hP,n = HαP,n (3.27)

where H is a (2L+1) × G matrix whose columns are the first G Hermite functions (with
G ≤ 2L+1), suitably sampled and truncated to length 2L+1, and αT,n and αP,n are unknown
coefficient vectors of length G.

Using (3.27), we obtain the following vector representation of the T wave interval in (3.25)

xT,n = BT,nHαT,n +wn (3.28)

where xT,n = (xn,1 · · · xn,NT,n)T, BT,n is the (NT,n) × (2L+ 1) Toeplitz matrix with first row
(bn,L+1 · · · bn,1 0 · · · 0) and first column (bn,L+1 · · · bn,NT,n 0 · · · 0)T andwn = (wn,1 · · · wn,NT,n)T
is a Gaussian vector with covariance matrix σ2

wINT,n×NT,n . Note that similar vector representa-
tion can be obtained for the signal vector of the P wave interval xP,n = (xn,NT,n+1 · · · xn,Nn)T.

Prior distributions and dynamic model

This section describes the prior distributions and the dynamic model assigned to the unknown
parameters. The proposed algorithm successively processes the T and P wave intervals within
the same non-QRS component. Note that only the T wave dynamic model is presented in the
following and the subscript indicating T wave is omitted for notation convenience.

Due to the parametrization (3.28), the state parameter vector for the nth T wave interval
(time step n) is given by

θn =
(
bTn , α

T
n

)T
. (3.29)

Concerning the indicator vector bn, since there is no known relation between the wave loca-
tions of each beat, the parameter vectors bn, bn−1, bn−2, . . . are modeled as a priori mutually
independent. The indicators bn,k contained in bn are subject to a block constraint: within JT,n,
there is one T wave (such that ‖bn‖ = 1) or none (with ‖bn‖ = 0). Therefore, we define the
prior of bn as a discrete distribution on the set

{
β0, . . . ,βj , . . . ,βNT,n

}
where βj is a NT,n× 1

vector whose j-th entry is 1 and all remaining entries are zero (β0 is an all zero vector which
represents the case where there is no T wave). The prior of bn can then be defined as

Pr
(
bn = βj

)
= 1
NT,n + 1 , j∈{1, . . . , NT,n} . (3.30)

Since the ECG waveforms are usually similar for two consecutive beats, we propose to
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assign a random walk prior to the T waveform coefficient vector α

αn = αn−1 + vn−1 (3.31)

where αn−1 denotes the T waveform estimates of the (n − 1)th beat and vn−1 is an additive
Gaussian white noise vector denoted as vn−1 ∼ N

(
0, σ2

αIG
)
, where IG is the G × G identity

matrix. The variance σ2
α determines how fast the waveform coefficients are expected to change

with time. Since the non-QRS components are normalized by using the corresponding R
peak values, we propose a non-informative prior of σ2

α = 0.1 to handle all possible waveform
variations in this work. Note that the value of σ2

α can be further adjusted either by an expert or
by calculating the ECG waveform variance of an example ECG portion in an off-line parameter
selection procedure [SSJC07].

The T wave delineation and waveform estimation problem consists of estimating recursively
the wave location bn and the waveform coefficients αn from the measurements xn defined in
(3.28).

3.3.2 Particle filters for beat-to-beat wave analysis

Our goal is to estimate jointly the discrete-valued indicator vector bn and the waveform vectors
αn, i.e., estimate the state vector θn. In a Bayesian framework, all inference is based on
the posterior distribution of the unknown parameters given the set of available observations,
expressed as p (θ0:n|x1:n) with θ0:n = (θ0, . . . ,θn).

Particle filters (PFs) are a class of sequential Monte Carlo (SMC) methods well-suited to
perform the estimation of the hybrid state vector θ0:n. The key idea is to represent the required
posterior density function by a set of random samples (particles) with associated weights and
to compute estimates based on these samples and weights. Let

{
θi0:n, i = 0, . . . , Ns

}
denote a

set of support points (referred to as particles) with associated weights
{
µin, i = 0, . . . , Ns

}
and

θ0:n is the set of all states up to time n (referred to as n-th beat in our case). Then, the target
posterior distribution at time n can be approximated as

p̂ (θ0:n|x1:n) =
Ns∑
i=1

µinδ
(
θ0:n − θi0:n

)
,

Ns∑
i=1

µin = 1 (3.32)

where δ is the Dirac delta function. The weights µin and the particles θi0:n are classically
obtained by applying sequentially the importance sampling (IS) technique. Ideally, the parti-
cles should be sampled directly from the target distribution p (θ0:n|x1:n), and assigned equal
weights. Since it is usually impossible to sample p (θ0:n|x1:n), they are drawn instead from a
proposal distribution q(θ0:n|x1:n), called importance density [AMG02]. Then, the weights are
used to correct the discrepancy between p and q

µin ∝
p(θi0:n|x1:n)
q(θi0:n|x1:n)

(3.33)



104 Chapter 3 - Beat-to-beat Bayesian analysis of P and T waves

where “∝” means “proportional to”.

In the sequential case, one could leave the previous particles θi0:n−1 unchanged by only
simulating at time step n

θin ∼ q(θn|θi0:n−1,x1:n). (3.34)

Then the importance weights can be updated using

µin ∝ µin−1
p(xn|θin)p(θin|θi0:n−1)
q(θin|θi0:n−1,x1:n)

. (3.35)

A common problem with the IS technique is the degeneracy phenomenon, where after a
few iterations, all but one particle have negligible normalized weights. To overcome this inher-
ent limitation, a selection step is introduced which consists of resampling the set of particles
according to the estimated empirical distribution [DdFG01].

A standard particle filter

We propose in a first step a standard particle filter (SPF) which generates jointly the particles
for both the indicator vector bn and the waveform vector αn. The PF recursions are summa-
rized in Algorithm 7. The different steps involved in this algorithm are detailed in the rest of
this section and their derivations are provided in the Appendix D. Note that Ns is the number
of particles.

Proposal distribution for the indicators. It is well-known that the choice of the impor-
tance distribution is a critical issue to design efficient PF algorithms. To generate samples
in interesting regions of the state space, i.e., corresponding to a high likelihood p(xn|θn), a
natural strategy consists of taking into account information from the most recent observations
xn. The optimal importance distribution in the sense that it minimizes the variance of the
importance weights is q(θn|θi0:n−1,x0:n) = p(θn|θi0:n−1,xn) [DGA00].

Since the wave indicator vector bn is independent from b0:n−1, the optimal proposal distri-
bution for bn can be written as

p(bn = βj |αin−1,xn) ∝ exp
(
µ1,jΣ−1

1,jµ1,j

)
(3.36)

with

µ1,j = Σ1,j

(
HTBT

n,jxn

σ2
w

+
αin−1
σ2
α

)
,

Σ1,j =
(
HTBT

n,jBn,jH

σ2
w

+ IG
σ2
α

)−1

.

where Bn,j is the NT,n × (2L+ 1) Toeplitz matrix with first row (bn,L+1 · · · bn,1 0 · · · 0) and
first column (bn,L+1 · · · bn,NT,n 0 · · · 0)T which corresponds to bn = βj .
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Algorithm 7 A standard particle filter (SPF)
{Initialization}
for particles i = 1, . . . , Ns do
Set bi0 = 0Nn×1, αi0 = H−1ĥ0, P i0 = 0G×G, µi0 = 1.

end for
{Iterations}
for n = 1, 2, . . . , do
for particles i = 1, . . . , Ns do
{Particles generation}
Sample bin ∼ Pr(bn = βj |αin−1,xn) (see (3.36))
Sample hin ∼ p(αn|bin,αin−1,xn) (see (3.37))
Evaluate weights

µin = µin−1
∑

j∈JT,n

p(xn|bin = βj ,x1:n−1)p(bin = βj)

end for
{Weight normalization}
for particles i = 1, . . . , Ns do
µin = µin/

∑Ns
i=1 µ

i
n

end for
{ State estimation}
Estimation of bn (see (3.38)) and αn (see (3.39) )
{Particle resampling}
Calculate N̂eff = 1/

∑Ns
i=1

(
µin
)2

if N̂eff ≤ 0.7Ns then
Resample using systematic sampling scheme [DdFG01]

end if
end for

Proposal distribution for the waveform. Concerning the waveform coefficients, the pro-
posal distribution can be written as

p(αn|bin,αin−1,xn) = N (µ2,Σ2) (3.37)

with

µ2 = Σ2

HT
(
Bi
n

)T
xn

σ2
w

+
αin−1
σ2
α



Σ2 =

HT
(
Bi
n

)T
Bi
nH

σ2
w

+ IG
σ2
α


−1

State estimation. The sample-based blockwise MAP detector is used for estimating the
binary sequence bn, while for the waveform coefficients αn, a smooth state estimation (an
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approximation of the MMSE estimator) is applied

b̂n = argmax
bin∈{0,1}

NT,n
p̂(bin|x1:n,α0:n−1) (3.38)

α̂n =
Ns∑
i=1
αinµ

i
n. (3.39)

where p̂(bn|x1:n,α0:n−1) denotes the approximated posterior distribution of the binary sequence
bn. The wave delineation consists of determining the peak and boundaries of the detected T and
P waves. As mentioned previously, the wave indicator estimated by the PF directly indicates
the middle of the allocated waveform time window. Thus, the peak of the respective T or
P wave can be obtained by shifting the indicator to the maximum position of the estimated
waveform. Concerning the wave boundaries, since the estimated waveforms carry information
about the wave morphology, they can be located by using the delineation criterion based on
the waveform estimate as in Section 3.2.4.

A marginalized particle filter (MPF)

While the classical PF introduced before is fairly easy to implement, a main drawback is that
the required number of particles increases quickly with the state dimension. The MPF can
reduce the number of parameters estimated by the particle filtering and therefore the number
of particles can be reduced. More specifically, when there is a linear Gaussian sub-structure in
the state parameters θn, state estimates can be obtained by exploiting this structure. The key
idea is to split θn as follows

θn =
[
(θLn)T , (θNLn )T

]T
(3.40)

where θLn denotes the state parameters with conditionally linear dynamics and θNLn denotes the
nonlinear state parameters. Using Bayes’ theorem we can then marginalize out the linear and
Gaussian state parameters and estimate them using the Kalman filter, which is the optimal
filter for this case. The nonlinear state variables are then estimated using a PF. Note that one
KF is then associated with each particle.

It can be observed from (3.28) that both the discrete parameter vector bn and the continuous
parameter vector αn are linear sub-structures with respect to the observation xn. Since the
continuous parameters are more suitable for the Kalman filtering, we choose θLn = αn and
θNLn = bn. Thus αn can be handled by the KF. Analytically marginalizing out the linear state
variables from p (θ0:n|x1:n) and using Bayes’ theorem yields

p(b0:n,αn|x1:n) = p(αn|b0:n,x1:n)︸ ︷︷ ︸
Optimal KF

p(b0:n|x1:n)︸ ︷︷ ︸
PF

(3.41)

The proposed marginalized particle filter (MPF) is summarized in Algorithm 8. The dif-
ferent steps involved in this algorithm are detailed in the rest of this section.
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Algorithm 8 A marginalized particle filter (MPF)
{Initialization}
for particles i = 1, . . . , Ns do
Set bi0 = 0Nn×1, αi0 = H−1ĥ0, P i0 = 0G×G, µi0 = 1.

end for
{Iterations}
for n = 1, 2, . . . , do
for particles i = 1, . . . , Ns do
{KF and PF propagation}
KF prediction for αin (see (3.42))
Sample bin ∼ Pr(bn = βj |bi0:n−1,x1:n) (see (3.43))
KF correction for αin (see (3.44))
Evaluate weights

µin = µin−1
∑

j∈JT,n

p(xn|bin = βj ,x1:n−1)p(bin = βj)

end for
{Weight normalization}
for particles i = 1, . . . , Ns do
µin = µin/

∑Ns
i=1 µ

i
n

end for
{ State estimation}
Estimation of bn (see (3.38)) and αn (see (3.39) )
{Particle resampling}
Calculate N̂eff = 1/

∑Ns
i=1

(
µin
)2

if N̂eff ≤ 0.7Ns then
Resample using systematic sampling scheme

end if
end for

KF prediction. In KF recursions, the mean and the covariance matrix of the state are
propagated [AM79]. By using (3.31), the prediction step in the KF can be written as follows

αin|n−1 = αin−1, P in|n−1 = P in−1 +Q (3.42)

where αin|n−1 = E
[
αn|x1:n−1, b

i
0:n−1

]
, Q = σ2

αI2L+1 and P in|n−1 = Cov
[
αn|x1:n−1, b

i
0:n−1

]
.

Note that the predicted state vector and its covariance computed by the KF are directly used
to propagate the particles and compute their importance weights.

Proposal distribution for the indicators. Similar to the proposal distribution of the
SPF, the optimal importance distribution in the sense that it minimizes the variance of the
importance weights is q(θn|θi0:n−1,x0:n) = p(θn|θi0:n−1,xn). By inserting the KF prediction of
(3.42), the proposal distribution for bT,n can be written as

Pr(bn = βj |bi0:n−1,x1:n) ∝ N
(
x̃in,j , S̃

i
n,j

)
(3.43)
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with

x̃in,j = Bn,jHα
i
n|n−1

S̃in,j = Bn,jP
i
n|n−1B

T
n,j +R

where Bn,j is the NT,n×(2L+1) Toeplitz matrix with first row (bn,L+1 · · · bn,1 0 · · · 0) and first
column (bn,L+1 · · · bn,NT,n 0 · · · 0)T which corresponds to bn = βj , and R = σ2

wINT,n . Note
that with the marginalization, the proposal distribution for the indicators no longer depends
on the impulse response bn−1 which has been marginalized out while it depends on the past
sequence b1:n−1 whereas this is not the case with the standard particle filter.

KF correction. After receiving the observation at time step n, the waveform coefficients can
be updated for each generated wave indicator particle bin . The KF correction procedure can
be written as

Sin = Bi
nP

i
n|n−1

(
Bi
n

)T
+R

K = P in|n−1

(
Bi
n

)T (
Sin

)−1

αin = αin|n−1 +H−1K(xn −Bi
nHα

i
n|n−1)

P in = (I −KBi
n)P in|n−1 (3.44)

where Bi
n is the Toeplitz matrix (NT,n + L) × (L + 1) corresponding to the wave indicator

particle vector bin.

3.3.3 Boundary issue between P and T wave intervals

Different from the Gibbs sampler based method in Section 3.2 which considers the whole non-
QRS signal component in the processing, the PF based method processes the T and P wave
intervals within the same non-QRS component sequentially one after the other. This is because
for the Gibbs sampler, one can generate samples for the T wave parameters conditioned on
the rest of the parameters including those of the P wave interval in the same iteration, while
this is not feasible for the PF. Since the two intervals can not be considered simultaneously,
the border situation (where a T or P wave has part of its waveform across the border between
JT,n and JP,n) becomes an issue.

In the signal models (3.25) and (3.26), the non zero entry of the wave indicator vector
can be anywhere within the wave search interval. Meanwhile, we adopted a “zero boundary”
assumption, which assumes that for a T wave search interval, the observation sequence xk is
defined for all {JT,n − L, · · · ,JT,n + L} (where L is the delay introduced by the convolution
model), while it is not defined for k /∈ JT,n. However, this assumption is not suitable for signals
that have part of the waveform crossing the border of the P and T wave intervals. Fig. 3.7
shows a typical example with the premature ventricular contraction (PVC) signal, where the
T wave is positioned almost at the middle of the non-QRS interval and the P wave is missing.
In this case, if we only consider the observation within k ∈ JT,n, the T waveform may not be
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estimated correctly.
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Figure 3.7: An example of the boundary problem with PVC signal.

In order to overcome this problem, we propose to include in the T wave interval observations
xT the first L samples of the following P wave interval. As shown in Fig. 3.8, instead of adding
L zeros at the beginning and the end of the T wave search interval JT,n, the first samples of JP,n
are considered to complete the end of xT. Since one non-QRS interval is processed sequentially
from the T wave interval to the P wave interval, the estimated signal within the overlapped
part can be extracted. More precisely, the first L samples of the P wave interval observations
xP, which are overlapped by xT, are obtained by subtracting x̂T from the observation of the
nth non-QRS component x.

x
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L L
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Figure 3.8: A new boundary definition.
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3.3.4 Simulation results

Simulations have been conducted to validate the proposed PF algorithms. To assess the al-
gorithm performance of the two PFs, Fig. 3.9 shows the empirical normalized mean square
error (NMSE) of the estimated non-QRS components x̂ versus the number of particles Ns for
SPF and MPF. The empirical NMSE is defined as the average (over the 100 realizations) of
‖x̂− x‖2 normalized by the average of ‖x‖2. The fixed hyperparameters involved in the prior
distributions were chosen as σ2

α = 0.1 and σ2
w = 0.1. These values allow for an appropriate

waveform variability from one beat to another. Note that the non-QRS components are nor-
malized by using the corresponding R peak values to handle different amplitude resolutions.
The waveform vector ĥ0 was initialized with a 2L + 1 Hanning window whose amplitude was
half the R peak. As can be seen, benefiting from the optimal importance distribution, good
estimation performance is obtained with a moderate number of particles for both SPF and
MPF. Furthermore, it is shown that the MPF requires less particles than SPF to achieve simi-
lar performance. We have chosen the MPF method with Ns = 200 particles for all the following
simulations.
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Figure 3.9: Estimation performance versus the number of particles.

Fig. 3.10 shows qualitative comparisons of the MPF with the previously introduced beat-
to-beat block Gibbs sampler method. Here, muscular activity (MA) noise has been added to
the clean ECG signal as in Figs. 3.4 and 3.5. Fig. 3.10(a) shows a segment of QTDB sele0136.
Fig. 3.10(b) shows the same segment corrupted by MA noise with a signal-to-noise ratio (SNR)
of 10dB. The estimated non-QRS signal components obtained from the noisy signal by the two
methods are depicted in Fig. 3.10(c) and Fig. 3.10(d). The original (noise-free) ECG signal is
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also shown for comparison. It can be seen that the MPF method and the beat-to-beat block
Gibbs sampler method provide similar results. This confirms that the block Gibbs sampler
method performs similarly to the sequential MC method which is the optimal solution for the
ECG beat-to-beat dynamic model. Fig. 3.11 shows analogous results for a segment of sel803
that contains PVCs. As explained in Section 3.3.3, the boundary issue caused by the sequential
processing scheme can be handled by including in the T wave interval observations xT the first
L samples of the following P wave interval, where L is the half of the allocated waveform
length. This allows us to estimate the T waveform even if the wave indicator is located at
the last sample of JT. Since one non-QRS interval is processed sequentially from a T wave
interval to a P wave interval, the estimated T wave portion within the overlapped part can be
extracted. Again, it can be seen that MPF method and the beat-to-beat block Gibbs sampler
method provide similar estimates.



112 Chapter 3 - Beat-to-beat Bayesian analysis of P and T waves

6 6.5 7 7.5 8 8.5 9 9.5

−0.1

0

0.1

0.2

original ECG signal: sele1036

6 6.5 7 7.5 8 8.5 9 9.5

−0.1

0

0.1

0.2

noised observation

6 6.5 7 7.5 8 8.5 9 9.5

−0.1

0

0.1

0.2

estimated non−QRS intervals by using the beat−to−beat block Gibbs sampler

6 6.5 7 7.5 8 8.5 9 9.5

−0.1

0

0.1

0.2

estimated non−QRS intervals by using the beat−to−beat particle filter

(a)

(d)

(c)

(b)

time (s)

Figure 3.10: (a) Segment from QTDB sele0136; (b) noisy version including MA noise with
SNR=10dB; (c) non-QRS signal component estimated by the beat-to-beat block Gibbs sampler
method (red) and noise-free original signal (blue); (d) non-QRS signal component estimated
by the proposed beat-to-beat MPF method (red) and noise-free original signal (blue).
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Figure 3.11: (a) Segment from QTDB sel803; (b) noisy version including MA noise with
SNR=10dB; (c) non-QRS signal component estimated by the beat-to-beat block Gibbs sampler
method (red) and noise-free original signal (blue); (d) non-QRS signal component estimated
by the proposed beat-to-beat MPF method (red) and noise-free original signal (blue).
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For a quantitative comparison between the block Gibbs sampler and the MPF beat-to-
beat methods, Table 3.2 presents the means (m) and standard deviations (s) of the differences
between the automated delineation results and the manual annotations. It is seen that the
detection and delineation results obtained with the two methods are comparable. However,
the MPF method slightly outperforms the block Gibbs sampler method in terms of delineation
accuracy. This can be explained by the fact that the MPF considers all the available beats
while the beat-to-beat block Gibbs sampler considers only the estimates of the last beat. These
two methods have comparable computational complexity, with a slightly higher cost for the
MPF method. Note also that despite the moderate number of particles needed by the MPF,
the fact that one KF is associated with each particle introduces matrix inversion operations
which make the MPF more complex than the block Gibbs sampler. For the MPF using 200
particles, the processing time per beat is approximately 0.5s for a non-optimized MATLAB
implementation running on a 3.0-GHz Pentium IV computer, compared to about 0.3s for the
method of beat-to-beat block Gibbs sampler in Section 3.2.

Table 3.2: Beat-to-beat block Gibbs sampler and the MPF method delineation performance
comparison.

Method Parameters Pon Ppeak Pend Ton Tpeak Tend

Beat-to-beat annotations 3176 3176 3176 1345 3403 3403
Block Gibbs sampler Se (%) 99.93 99.93 99.93 100 100 100

P+ (%) 99.10 99.10 99.10 98.01 99.30 99.30
m± s (ms) 3.4±14.2 1.1±5.3 -2.1±9.8 6.8±19.3 -0.8±14.0 -3.1±14.0

Beat-to-beat annotations 3176 3176 3176 1345 3403 3403
MPF Se (%) 99.45 99.45 99.45 100 100 100

P+ (%) 99.23 99.23 99.23 98.67 99.20 99.20
m± s (ms) 3.1±8.3 1.2±5.3 2.7±9.8 6.5±16.3 -0.4±4.8 -3.8±14.2
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3.4 Conclusion

This chapter studied Bayesian methods for beat-to-beat delineation and waveform estimation
of P and T waves. Based on the multi-beat processing window model, we proposed a new
Bayesian model for the non-QRS components of the ECG signal [LKT+12]. Instead of using
a processing window containing several successive beats characterized by the same T and P
waveforms, the proposed method accounted the T and P waveforms by processing individual
beats sequentially. A sample-based Bayesian method was first studied to estimate the unknown
parameters of the beat-to-beat Bayesian model. Then, in order to take advantage of all the
available information contained in the past of the beat to be processed, a dynamic model is
proposed [LBMT11, LGMT12]. This dynamic model exploited the sequential nature of the
ECG by introducing a random walk model for the waveforms. Both the classical particle
filter and a marginalized particle filter were studied to estimate the unknown parameters of
the dynamic model. The main features and advantages of this chapter can be summarized as
follows:

1. Beat-to-beat block Gibbs sampler [LKT+12]

• The proposed Bayesian model uses the T and P waveform estimates of the previous
beat as prior information for detecting/estimating the current T and P waves.
• By properly accounting for the strong local dependencies in ECG signals and the
sequential nature of ECG signals, the proposed block Gibbs sampler exhibits a
significantly faster convergence compared to the related samplers used in Chapter 2.
• The high accuracy of the proposed technique for T and P waveform estimation allows
a threshold-free delineation technique to be used.
• The beat-to-beat processing mode leads to smaller memory requirements and a
lower computational complexity compared to the window-based Bayesian methods.
Moreover, it is ideally suited for on-line processing and, thus, for real-time ECG
monitoring.

2. Marginalized particle filter [LBMT11, LGMT12]

• Following the sequential Monte Carlo analysis principle, the sequential nature of the
ECG signal is exploited by using a dynamic model under the Bayesian framework.
• A marginalized particle filter is proposed to efficiently estimate the unknown pa-
rameters of the dynamic model. Benefiting from the marginalized particle filtering
scheme, a smaller number of particles is needed compared to the classical particle
filter to achieve a good estimation performance.
• Compared to the beat-to-beat block Gibbs sampler method, the MPF method is
optimal because all the available beats are considered in the waveform estimation.

As in Chapter 2, the resulting beat-to-beat Bayesian algorithms were validated using the
QT database. A comparison with the multiple-processing window based Bayesian methods and
with other benchmark methods demonstrated that both the beat-to-beat block Gibbs sampler
and the MPF methods can provide significant improvements regarding T and P wave detection
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rate, positive predictivity, and delineation accuracy. Meanwhile, the beat-to-beat processing
mode is ideally suited for on-line processing and, thus, for real-time ECG monitoring. Further
advantage includes the possibility of analyzing the beat-to-beat variation and evolution of the
T and P waveforms. The next chapter introduces how the beat-to-beat Bayesian model and
the associated Gibbs sampling method can be applied to a specific clinical research problem:
T wave alternans (TWA) detection in intra-cardiac electrograms.
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4.1 Introduction

This chapter presents an application of the Bayesian models introduced in this thesis to a
specific clinical research topic referred to as T wave alternans (TWA) detection. Invisible
(microvolt-level) TWA detection is one of the most challenging problems in cardiovascular signal
processing. This issue has been the subject of the annual PhysioNet/Computers in Cardiology
Challenge in 2008 [Phy08]. It refers to subtle beat-to-beat alternations in amplitude, shape
or durations of the repolarization waves and has been closely related to the occurrence of
spontaneous malignant ventricular arrhythmias [Nar06, RSS+94, RAC96].

Based on the window based Bayesian model presented in Chapter 2, a Bayesian approach
is first proposed to deal with the surface ECG TWA detection problem. More precisely, the

117



118 Chapter 4 - Application in clinical research: T wave alternans detection

window based Bayesian model introduced in Section 2.4 is slightly modified in order to per-
form T-wave delineation by taking into account a distinction between odd and even beats.
The odd and even T-wave amplitudes generated by the block Gibbs sampler can be used to
build statistical tests for TWA detection. This work concentrates on two tests: the two-sample
Kolmogorov-Smirnov test (which is a non-parametric and robust method for comparing two
samples) and the two-sample Student’s t-test which is based on the assumption of normality
for comparing the mean of two samples [Leh97]. Note that contrary to the statistical test pro-
posed in [SLKG02], the proposed method computes multiple test statistics for each observation
window (one per iteration of the Gibbs sampler) that can be used advantageously to derive
detection performance (detection probability, probability of false alarm, receiver operational
characteristics, etc.). The proposed algorithm is evaluated on real surface ECG signals sub-
jected to synthetic TWA and compared with other classical algorithms. Compared with a test
based on a single estimation, the proposed method provides information about the reliability
of the detection which is important for medical diagnosis. It can also better handle small
processing windows with few beats compared to the spectral analysis [SCV+94].

In Section 4.4, TWA detection on intracardiac electrogram (EGM) signals stored in im-
plantable cardioverter defibrillator (ICD) memories is addressed by using the beat-to-beat
based Bayesian model introduced in Chapter 3. Contrary to the surface ECG, the analysis of
ICD stored signals suffers some important limitations due to the short periods of recordings
(usually 10 to 15 sec, i.e., 10 to 20 beats) which hinder usual spectral and temporal analysis,
and due to the fixed filtering, amplification and sampling rate preventing upstream tailored
signal processing. Furthermore, if surface ECG TWA appears as a consistent fluctuation in the
repolarization morphology on an every-other-beat basis (A-B-A-B. . . ), the EGM TWA could
happen with other patterns (A-B-C-A-B-C. . . , etc.). The proposed beat-to-beat Bayesian
approach is appropriate for EGM TWA detection because it allows a beatwise waveform esti-
mation which enables an analysis of the beat-to-beat variation and evolution of T waveforms.
Besides the wave amplitude, additional parameters exploring the whole repolarisation (see Ta-
ble 4.2) defined by a cardiologist from the Toulouse Rangueil Hospital can also be measured by
using the waveform estimates of the proposed method. Dimensionality reduction techniques
and statistical tests are then employed to exploit these parameters to analyze beat-to-beat T
wave variations. The proposed approach is applied on real clinical data provided by St. Jude
Medical, Inc and is shown to be promising for endocardial TWA detection.
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4.2 TWA detection problem

T wave alternans (TWA) refers to subtle beat-to-beat alternations in amplitude, shape or
duration of the repolarisation waves (T waves) and has been closely related to the occurrence
of spontaneous malignant ventricular arrhythmias and sudden cardiac death [RSS+94]. In
surface ECG, TWA is defined as a consistent fluctuation in the repolarization morphology
which repeats on an every-other-beat basis (see Fig. 4.1 A-B-A-B repetition pattern).

A A AB B

Figure 4.1: (a) ECG signal with visible TWA. (b) Superposition of two consecutive beats. (c)
Alternans waveform: difference between odd and even beats. Image adapted from [MLM09].

Since the first report of non-visible (microvolt-level) TWA by Adam et al. in the 1980s,
intensive research has been conducted on developing TWA detection and estimation algorithms
[AAC81]. A complete and comprehensive review of signal processing methods to detect and
estimate TWA proposed before 2005 can be found in [MO04]. The most widely used techniques
are the spectral method (SM) [RSS+94, SCV+94] and the modified moving average method
[NV02]. Alternative techniques are the statistical test method [SLKG02] and the Laplacian
likelihood ratio method [MOWL06]. More recently new techniques have appeared including the
multilead TWA detection by using principal component analysis [MLM09] and an empirical-
mode decomposition based method [BVCRGLB10]. The fact that TWA amplitude is in the
range of microvolts, together with the presence of the baseline and the physiological noise in the
ECG make the TWA detection a difficult task. The main drawback of existing TWA analysis
approaches is either their sensitivity to the presence of nonalternant components with high
amplitude or their poor sensitivity to low-level TWA. Another problem with existing methods
is that they generally require preprocessing steps for baseline suppression, rough segmentation
or alignment of ST-T complexes. Thus, their performance is strongly influenced by the quality
of these preprocessing procedures. Moreover, few existing methods allow an accurate TWA
waveform estimation, while it has been proved that the TWA waveform characterization is
important, e.g., to detect arrhythmic risk [NS99a]. In this section, the preprocessing procedure
and several widely used methods are briefly reviewed.
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4.2.1 Preprocessing

The aim of the preprocessing step is to condition the acquired ECG for posterior analysis. As
TWA is a beat-to-beat phenomenon and is associated with the cardiac repolarization (ST-T
complex), an alignment and segmentation procedure must be defined. QRS detection and T
wave delineation are, therefore, necessary tasks. Also in this stage, the signal quality can be
enhanced by filtering the signal and by removing the baseline wander. A general preprocessing
scheme for TWA detection is shown in Fig. 4.2 and each step of this stage is listed below.

QRS
QRS detection

complexes
aligned ST−T 

ECG
cancellation

Global baseline T wave

delineation
Linear Filtering

QRS

Figure 4.2: General TWA preprocessing stage.

Linear filtering. First, low-pass linear filtering is used to reject out-of-band noise. Similar
techniques can be used as in the general ECG signal preprocessing procedure introduced in
Section 1.4.1. In the references, the cutoff frequencies range from 50 to 360 Hz (which depend
on the ECG sampling frequency). However, QRS complexes would lose their high-frequency
components, which might degrade QRS detection and alignment. Moreover, the widened QRS
could also invade the adjacent ST-T complex. Note that the requirements of this stage may
also be increased or relaxed depending on the robustness of subsequent stages.

Baseline wander cancellation. Baseline fluctuations can manifest as high amplitude
noise when analyzing the beat-to-beat ECG signal, degrading the analysis performance (mask-
ing subtle TWA or generating false detections). Cancellation of baseline changes in the prepro-
cessing stage is therefore beneficial. As pointed out in [BZB06], the traditional interpolation
methods (such as the widely used third-order spline interpolation [BZM99, MOL00]) allow
removal of only baseline fluctuations at frequencies lower than heart rate, which makes the
residual local baseline problematic for TWA detection.

ST-T complex segmentation. The criteria to define the segments of interest are diverse.
In most methods, QRS locations are provided by a QRS detection. The ST-T complex is then
selected with a fixed or RR-adjusted time window relative to the QRS position. Since the
TWA analysis is affected by the performance of the alignment, T-wave delineator used for
TWA analysis must show inter-beat stability in the fiducial point determination [NS99b].

Our proposed Bayesian approach as a preprocessing step for TWA detection.
The Bayesian delineation algorithms proposed in chapters 2 and 3 can be good candidates for
this preprocessing step. As introduced previously, the proposed Bayesian approaches all rely
on the QRS detection method of [PT85]. The linear filtering that is done prior to this method
is found to be satisfactory. Thus, no additional filtering is required. Moreover, the median
filtering methods proposed in [CM07] are employed to remove the global baseline drift, and the
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local baseline is included in the signal model and jointly estimated with the T wave parame-
ters. Finally, ST-T complex segmentation and alignment is replaced by the proposed Bayesian
algorithms. The Bayesian approaches proposed in this work allow simultaneous estimations of
the T-wave location, amplitude and waveform and have shown good delineation performance.
Thus no additional step is required for TWA analysis.

4.2.2 TWA detection methods

Based on the extracted and aligned ST-T complex, different estimation / detection techniques
have been proposed in the literature to decide about the TWA presence or absence and possibly
estimate the TWA amplitude and its waveform. Due to the transient, non-stationary nature
of TWA, detection and estimation must involve a limited set of neighbor beats. In most cases,
a 2D-beat analysis window is shifted in order to cover the whole signal. Then, detectors and
estimators are computed for the D even and D odd beats within each window. The analysis can
be performed on non-overlapping or overlapping windows, the extreme case being the beat-
by-beat sliding window analysis. Three state-of-the-art TWA detection methods are briefly
introduced in this section. Note that only the basic principles of these methods are presented
here, while many improvements or alternatives to these methods can be found in the literature.
Interested readers are invited to consult [MO04] for more details.

Spectral method (SM)

The SM was first proposed in 1988 by Smith et al. [SCV+94] as a more elaborated version
of the energy spectral method [AAC81]. After ECG beat alignment, the SM computes a
periodogram-based power spectrum estimator for each sample of the segment to be processed.
Since the TWA in surface ECG is defined as a consistent fluctuation in the repolarization
morphology which repeats on an every-other-beat basis, the value of an aggregate spectrum at
0.5 cycles-per-beat is compared with the spectral noise level to decide if TWA is present. A
slightly modified version has been presented by the same group in 1994 [RSS+94]. Since then,
it has been extensively used for clinical research. It is included in commercial equipments, such
as CH2000 and Heartwave (Cambridge Heart Inc, Bedford, MA).

Consider a 2D ×N aligned ST-T complexes matrix associated with a 2D-beat window an
of a 2D-beat processing window

T =

 T1(1) T1(2) . . . T1(N)
...

... . . . ...
T2D(1) T2D(2) . . . T2D(N)

 . (4.1)

The periodogram of the n-th sample is obtained along the columns of T as

Ŝn(f) = 1
2D |TF {Tk(n), k = 1, . . . , 2D}|2 (4.2)
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with n ∈ {1, . . . , N}. And the mean periodogram can be obtained as follows

S(f) = 1
N

N∑
n=1

Ŝn(f) (4.3)

The decision rule is defined in terms of a significance measure called TWA ratio (TWAR)

S(0.5)− µ̂noise
σ̂noise

H1
≷
H0

γ (4.4)

where S(0.5) denotes the estimated mean spectrum at 0.5 cycle-per-beat and where µ̂noise and
σ̂noise are the mean and standard deviation of the equivalent noise measured at a properly
chosen spectral window such as

µ̂noise = 1
Nf

fmax∑
f=fmin

S(f) (4.5)

σ̂2
noise = 1

Nf

fmax∑
f=fmin

(
S(f)− µ̂noise

)2
(4.6)

where Nf is the number of the frequency points within the spectral window [fmin, fmax]. In
the literature, a typical range for the spectral window is defined by the normalized frequencies
fmin = 0.33 and fmax = 0.48. Note that applying a fixed threshold (typically γ = 3) to the
TWAR is equivalent to applying a variable noise-dependent threshold.

The advantage of the SM is its simplicity and possibility to adapt to changing noise condi-
tions. The main drawback is that a large window size (typically 2D = 128) is required to have
a good resolution in the spectral domain. This demands a large amount of ST-T complexes to
be selected (the premature or ectopic beats should be rejected), extracted and aligned by using
various techniques. The detection performance can be affected by these preliminary steps. It
also should be noted that having a good detection performance for a small window length is
required for medical diagnostics.

Modified moving average (MMA)

The MMA method was proposed by Nearing and Verrier in 2002 [NV02]. It is a time-domain
procedure computing “continuously” a recursive running average of odd and even beats, where
a limiting nonlinearity is applied to the innovation of every new beat to avoid the effect of
impulsive artifacts. It is included in commercial equipments such as CASE-8000 (GE Medical
Systems, Milwaukee, WI).

In the MMA method, a moving average is computed for both even and odd T waves. Let
us denote T̄k(n) the moving average of the nth sample of the T wave at the kth beat. This
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moving average is computed recursively as follows

T̄0(n) = T0(n)
T̄1(n) = T1(n)

T̄k(n) = T̄k−2(n) + g

(
Tk−2(n)− T̄k−2(n)

2

)
, k = 2, 3, . . . (4.7)

where Tk(n) denotes the nth sample of the T wave at the kth beat and g(x) is a function which
is used to describe the average T wave evolution. If the T wave is larger (respectively lower)
than the present moving average, the next moving average has to be increased (respectively
decreased). Therefore, the proposed function g is a nonlinear limiting function taking into
account a fraction of the difference between the T wave and the computed moving average

g(x) =


−K if x < −K
x if |x| ≤ K
K if x > K

(4.8)

An arbitrary value of K = 32 was proposed in [NV02].

The TWA at the kth beat is computed as the absolute difference between even and odd
estimates

zk(n) =
∣∣∣T̄k(n)− T̄k−1(n)

∣∣∣ (4.9)

and the global detection statistic of the kth beat is obtained as

Zk = max
n

[zk(n)] = max
n

∣∣∣T̄k(n)− T̄k−1(n)
∣∣∣ (4.10)

with n ∈ {1, . . . , N}. The detection statistic is then compared to a threshold which is de-
termined from the receiver-operator characteristic (ROC) curve based on synthetic or real
data. The main characteristic of the MMA method is its intrinsic robustness to outliers in
the beat-to-beat series compared to linear methods (e.g., SM). However, it still requires the
ST-T complexes to be well aligned and the TP segments that were not relatively isoelectric
(corruption by electronic noise) to be eliminated.

Statistical test (ST)

A student t test has been proposed in [SLKG02] to decide whether the maxima of the odd
and even beats have the same mean or not. More precisely, consider the ST-T complex matrix
defined in (4.1). Let ao,j (j ∈ {1, . . . , D}) denote the maximum values of the D odd ST-T
complexes within the 2D-beat window and ae,j denote the maxima of the even ST-T complexes

ao,j = max [T2j−1(1), T2j−1(2), . . . , T2j−1(N)] ,
ae,j = max [T2j(1), T2j(2), . . . , T2j(N)] . (4.11)
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The TWA detection problem can be formulated as

H0 : µo = µe, H1 : µo 6= µe (4.12)

where µo and µe are the means of ao,j and ae,j . The t-test statistic can then be computed as
follows

T = µ̂o − µ̂e
Ŝeo
√

2
D

(4.13)

with

µ̂o = 1
D

D∑
j=1

ao,j, µ̂e = 1
D

D∑
j=1

ae,j

Ŝeo =

√√√√√ 1
2D − 2

 D∑
j=1

(ao,j − µ̂o)2 +
D∑
j=1

(ae,j − µ̂e)2

.

The p-value 1 of the test is compared to a significance level (the α-level) to make the
decision. Due to the monotonic relation between the p-value and |T |, this decision rule is
equivalent to decide TWA if |T | > γ where γ is the critical value of the test statistic for the
considered α-level. The resulting TWA detection strategy is

|T |
H1
≷
H0

γ. (4.14)

As the SM, the decision rule in the t test is robust to changing noise conditions. The
required significance level can be set by adjusting the parameter γ. The main drawback is
that the test is based on the assumption of normality for the random variables ao,j and ae,j .
If this normality assumption does not hold, the test performance can decrease significantly.
Furthermore, in [SLKG02], the beat features ao,j and ae,j are obtained by a rough estimation
of the ST-T maximum. Thus it is sensible to noise and to the length of the estimation window.

1In statistical significance testing, the p-value is the probability of obtaining a test statistic at least as extreme
as the one that was actually observed, assuming that the null hypothesis is true.
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4.3 TWA detection in surface ECG using the window based
Bayesian approach

4.3.1 Signal model for T waves in a 2D-beat processing window

As presented in Section 4.2, most TWA detection methods are based on consecutive extracted
and aligned T waves. The ST-T complex is usually selected with a fixed or RR-adjusted time
window and then aligned by one of the various existing techniques. However, as it was verified
in [NS99b], TWA analysis can be highly affected by the choice of alignment techniques since
the T-wave delineator used for TWA analysis must show inter-beat stability in the fiducial
point determination.

In this section we propose a modified Bayesian model, which is adapted from the window
based Bayesian model introduced in Chapter 2. This model has the advantage of compensating
the alignment errors and thus to carry out TWA detection. The main differences with the
previous presented method is that the signal model focuses only on T wave estimation and
delineation with a splitting into odd and even T wave sequences. However, to understand how
this modified model is used for TWA detection, the signal model and the associated Bayesian
inference are detailed in what follows.

The proposed method first detects QRS-complexes, which are the most prominent parts of
the ECG signal. A 2D-beat processing window is then shifted in a nonoverlapping way to cover
the whole signal. In the processing window, the right hand neighborhood of each successive
pair of QRS-offset constitutes a T-wave search interval (shown in Fig. 4.3(a)). The length of
the nth T-wave search interval NT,n can be fixed either according to the cardiologists or simply
as a fixed percentage of Nn, which is the length of a non-QRS interval (n ∈ {1, . . . , 2D}). The
T-wave search intervals are divided into odd T-wave blocks denoted as Jo = {Jo,1, · · · Jo,D}
(containing the D odd T-wave search intervals) and even T-wave blocks denoted as Je =
{Je,1, · · · Je,D} (containing the even intervals).

As shown in Fig. 4.3(b), signals within each T-wave search interval can be approximated by
one main pulse representing the T wave plus a local baseline. The odd (resp. even) waveforms
are assumed to be constant within each processing window, contrary to the amplitudes and
locations that vary with n. Therefore, T waves within D odd search intervals can be modeled
by the convolution of an unknown waveform ho = (ho,−L · · ·ho,L)T (of length 2L + 1) with
an unknown “impulse” sequence uo = (uo,1 · · ·uo,M )T indicating the odd T-wave locations
and amplitudes (see Fig. 4.3(c)). The impulse sequences can be defined as the products
uo,k = bo,kao,k of binary indicator sequences bo,k ∈{0, 1} and amplitude factors ao,k ∈R. Each
bo,k = 1 indicates the location of an odd T wave, and the corresponding ao,k is the respective
amplitude. Note that the ao,k are not defined for the k satisfying bo,k = 0. Similarly, the
even T waves within a window are modeled by the convolution of he = (he,−L · · ·he,L)T with
ue = (ue,1 · · ·ue,M )T . Let K denote the corresponding signal length. The ECG signal within
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Figure 4.3: Signal model for TWA Bayesian analysis: (a) T-wave search intervals within the
2D-beat processing window. (b) T waves within each non-QRS region. (c) T-wave amplitudes.
Here we set NT,n = Nn/2.

the processing window can be written as

xk =
L∑

l=−L
ho,l (ao,k−lbo,k−l) +

L∑
l=−L

he,l (ae,k−lbe,k−l) + ck + wk (4.15)

where ck denotes the baseline and wk is the additive white Gaussian noise with unknown
variance σ2

w. Note that only indexes k belonging to a T-wave search interval are considered.

Baseline removal is generally recognized as an important processing step that is beneficial
to TWA detection, while some of the traditional techniques (such as the widely used third-order
spline interpolation) only allow the baseline fluctuations at frequencies lower than heart rate to
be removed [BZB06]. This makes the estimation of local baseline essential for TWA detection.
As in Section 2.4, the local baseline within the nth T search interval JT,n is modeled by using
a 4th-degree polynomial, i.e.,

cn,k =
5∑
i=1

γn,ik
i−1, k = 1, . . . , NT,n (4.16)

for each n∈{1, . . . , 2D}. In vector-matrix form, (4.16) can be written as cn = Mnγn, where
Mn is a known NT,n× 5 Vandermonde matrix and γn = (γn,1 · · · γn,5)T contains the unknown
baseline coefficients. The baseline sequence for the entire 2D-beat window can then be written
as c = (c1, . . . , c2D) = Mγ where M is a K × 10D matrix and γ is a 10D × 1 vector.

Following the idea of Section 2.4.1, the odd and even T waveforms are represented by a basis
expansion using discrete-time versions of Hermite functions to reduce the unknown parameter
dimension

ho = Hαo , he = Hαe (4.17)
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where H is a (2L +1) × G matrix whose columns are the first G Hermite functions (with
G ≤ 2L+1), suitably sampled and truncated to length 2L+1, and αT,n and αP,n are unknown
coefficient vectors of length G.

Let bo, be, ao, and ae denote the M × 1 vectors corresponding to bo,k, be,k, ao,k, and ae,k,
and Bo,diag(bo), Be,diag(be) denote the diagonalM×M matrices whose diagonal elements
are formed by the components of bo and be. By concatenating (4.15) for k = 1, . . . ,K, where
K is the number of ECG signal samples, the following matrix equation can be obtained

x = F oBoao + F eBeae +Mγ +w (4.18)

where F o is the K × M Toeplitz matrix with first row [(Hαo)0 · · · (Hαo)0 0], and first
column

[
(Hαo)T0 · · · (Hαo)TL 0T

]T
, while F e is the Toeplitz matrix of size K ×M with first

row [(Hαe)0 · · · (Hαe)0 0], and first column
[
(Hαe)T0 · · · (Hαe)TL 0T

]T
.

4.3.2 Bayesian inference

The unknown parameter vector resulting from the above parametrization is θ= (θTo θTe θTcw)T,
where θo , (bTo aTo αTo )T and θe , (bTe aTe αTe )T are related to the odd and even T waves, and
θcw , (γT σ2

w)T is related to the baseline and noise. Bayesian detection/estimation relies on
the posterior distribution p(θ|x) ∝ p(x|θ)p(θ) where p(x|θ) is the likelihood function and p(θ)
is the prior distribution of θ.

Likelihood function. Using our model (4.18) and the fact that ω is white Gaussian, the
likelihood function is obtained as

p(x|θ) ∝ 1
σKw

exp
(
− 1

2σ2
w

‖x−FoBoao−FeBeae−Mγ‖2
)
,

where ‖x‖2 = xTx.

Prior distributions. Since there is no known relation between (bo,ao), (be,ae), αo, αe, γ,
and σ2

n, all these sets of parameters are assumed to be a priori statistically independent. We
will now discuss the prior distributions chosen for these parameters. Let bJo,n, n ∈ {1, . . . , D}
contain all entries of the odd T-wave indicator vector bo that are indexed by the odd T-wave
interval Jo,n. The indicators are subject to a block constraint: within Jo,n, there is one T wave
(i.e., ‖bJo,n‖ = 1) or none (i.e., ‖bJo,n‖ = 0), the latter case being very unlikely. Therefore, we
define the prior of bJo,n as

p(bJo,n) =


p0 if ‖bJo,n‖ = 0
p1 if ‖bJo,n‖ = 1
0 otherwise

(4.19)

where p1 = (1− p0)/No,n and p0 is chosen very small. The indicators bJo,n are supposed
independent, and all remaining entries of the total vector bo (i.e., entries outside the search
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intervals Jo) are zero. Thus, the prior of bo is the product of the priors p(bJo,n)

p(bo) =
D∏
n=1

p(bJo,n) .

For the T-wave amplitudes ao,k corresponding to bo,k = 1 (recall that the ao,k are undefined
otherwise), we choose a zero-mean Gaussian prior, i.e., p(ao,k|bo,k=1) = N (0, σ2

a). This allows
for both positive and negative amplitudes. Amplitudes at different k are modeled as statistically
independent. It follows that uo,k=bo,kao,k is the kth element of a Bernoulli-Gaussian sequence
with block constraints. The priors of the even T-wave indicators be,k and amplitudes ae,k are
defined in a fully analogous way, with the same fixed hyperparameters p0, p1, and σ2

a. Moreover,
the even T-wave variables are supposed to be independent of the odd T-wave variables. The
odd T-waveform vector is assigned a zero-mean Gaussian prior, i.e., p(αo) = N (0, σ2

hIL+1),
where IL+1 denotes the identity matrix of size (L+ 1)× (L+ 1). The same prior is chosen for
the even T-wave coefficients, i.e., p(αe) = N (0, σ2

αIL+1). The baseline coefficients γn,i are also
modeled as independent identically distributed zero-mean Gaussian, i.e., p(γ) =N (0, σ2

γI5D).
Note that these prior distributions are similar to those of the window based Bayesian model in
Section 2.4.2.

Posterior distribution. The posterior of the parameter vector θ is given by

p(θ|x) ∝ p(x|θ)p(θ) = p(x|θ)p(θo)p(θe)p(θcw) (4.20)

with p(θcw) = p(γ)p(σ2
w), p(θo) = p(ao|bo)p(bo)p(αo) and p(θe) = p(ae|be)p(be)p(αe). The

block Gibbs sampler introduced in Section 2.4.3 is used to generate samples asymptotically
distributed according to p(θ|x). From these samples, the discrete parameters bo and be can
be detected by means of the sample-based maximum a posteriori (MAP) detector whereas the
continuous parameters ao, ae, αo, αe, γ, and σ2

w can be estimated by means of the sample-
based minimum mean square error estimator.

4.3.3 Bayesian TWA detection

As explained in the last section, the T-wave locations and amplitudes can be sampled according
to their joint posterior within each T-wave search interval, i.e., according to (4.20). Taking
advantage of the Gibbs sampling method, different statistical tests can be carried out on the
T-wave amplitudes generated by the proposed sampler to detect TWA2. First, we consider
the two-sample Kolmogorov-Smirnov (KS) test which is a classical nonparametric method for
comparing two samples. Let a(i)

o =
(
a

(i)
o,1, . . . , a

(i)
o,D

)T
and a(i)

e =
(
a

(i)
e,1, . . . , a

(i)
e,D

)T
denote the

odd and even T-wave amplitudes within the 2D-beat window generated at the i-th iteration
of the Gibbs sampler. The TWA detection problem can be formulated as the following binary
hypothesis test

H0 : Fo = Fe, H1 : Fo 6= Fe (4.21)
2Note that the first iterations belonging to the so-called burn-in period are not considered for parameter

estimation or for TWA detection.
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where Fo and Fe are the cumulative distribution functions of the odd and even T-wave ampli-
tude samples. The KS test statistic is defined as

s(i) = sup
a

∣∣∣F̂ (i)
o (a)− F̂ (i)

e (a)
∣∣∣ (4.22)

where F̂ (i)
o and F̂ (i)

e are the empirical distribution functions of a(i)
o and a(i)

e , respectively.

The two-sample Student t-test can also be applied to compare the means of the two samples
a

(i)
o and a(i)

e . Indeed, the TWA detection problem can be formulated as

H0 : µo = µe, H1 : µo 6= µe (4.23)

where µo and µe are the means of the odd and even T-wave amplitude samples. The t-test
statistic is classically defined as

t(i) = a
(i)
o − a(i)

e

S
(i)
eo
√

2
D

(4.24)

with

a(i)
o = 1

D

D∑
j=1

a
(i)
o,j , a(i)

e = 1
D

D∑
j=1

a
(i)
e,j

S(i)
eo =

√√√√√ 1
2D − 2

 D∑
j=1

(
a

(i)
o,j − a

(i)
o
)2

+
D∑
j=1

(
a

(i)
e,j − a

(i)
e
)2


By computing the test statistics (4.22) or (4.24) at each iteration of the Gibbs sampler, we
obtain Neff = Nr−Nbi (Nr is the number of iterations after convergence and Nbi is the number
of burn-in iterations) samples of the test statistics corresponding to the same 2D-beat block.
Then several solutions can be proposed to deal with the Neff test results.

Since the sampling distribution of the test statistic s(i) or t(i) is known under the null
hypothesis, a first solution could be to compare this distribution to the empirical one of the
Neff observed values of s(i) or t(i). Hence, thanks to a second statistical hypothesis test such as
a Kolmogorov test, it could be possible to conclude on the binary hypothesis test (4.23).

In our case, we have proposed a simpler solution. A test level α is chosen (typically α = 5%),
corresponding to the rejection of the null hypothesis while H0 is true (false alarm). Then the
results of the Neff tests are taken into account with this α level. Based on the percentage of
acceptance or rejection of the null hypothesis, among all these Neff tests, a decision is made.
The interest of such a solution is to be able to give a decision on the binary hypothesis test
(4.23) with reliability index which is defined as

τ = Number of test statistic samples rejecting hypothesis H0
Total number of test statistic samples .

This reliability information about the decision can be useful for medical diagnostics.
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Remark: It is reported that the TWA waveform (difference between two adjacent T wave-
forms) contains interesting information for clinical diagnostics. The TWA waveform estimator
can be obtained by using the MMSE estimators of the T-waveform difference between the odd
and even beats

ĥTWA = 1
Neff

Neff∑
t=1

[
h(Nbi+t)
o − h(Nbi+t)

e

]
(4.25)

4.3.4 Simulation results

Biomedical signal processing techniques are usually evaluated on standard databases, where
the output of the technique is compared to manual expert annotations. However, because
TWA is often non visible due to its low amplitude (sometimes below the noise level), the
lack of validation database has been a major problem for TWA analysis. Simulated alternans
with real nonalternant ECG recordings are widely used in the community [MO04]. In the
following simulations, 20 healthy ECG segments (128 beats each) with no positive TWA have
been selected from different databases. TWA episodes are then simulated by adding and
subtracting alternatively (on a every-other-beat basis) a Hanning window to the delineated T
waves as in [BVCRGLB10]. Fig. 4.4 illustrates the TWA synthesizer scheme. A small TWA
amplitude value of Valt=35µV has been chosen for the evaluations. Two different physiological
noise sources have been considered to evaluate the proposed TWA detectors under real noise
conditions: electrode motion (“em”) and muscular activity (“ma”). Note that the “em” and
“ma” noises have been extracted from the MIT-BIH noise stress test database.

Figure 4.4: TWA synthesizer scheme with real ECG signal.

As a preprocessing step, the QRS complexes have been detected using the algorithm pro-
posed in [PT85]. Based on the detected QRS complex locations, T-wave search intervals have
been defined. The processing window length has been set to 2D=16 beats, which is the smallest
window length among the methods mentioned in [MO04]. Note that having a good detection
performance with a small window length is beneficial for medical diagnostics. The Gibbs sam-
pler studied in Section 2.4.3 has been run for each processing window with Nbi = 40 burn-in
iterations and Neff = 100 iterations to compute the estimates.
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Figure 4.5 shows the estimation results for an ECG signal segment from the European
ST-T dataset “e0303” with synthetic TWA. The “ma” noise has been added to the signal with
SNR=10 dB. Typical estimates for the baseline and odd/even T waves are depicted in Fig.
4.5(a). Fig. 4.5(b) and (c) show the averages of T-wave estimates resulting from 20 Monte
Carlo runs and the corresponding confidence intervals (error bars) for the odd and even beats
within the 16-beat window.

As explained in Section 4.3.3, the KS test and t-test statistics can be determined for each
iteration of the Gibbs sampler according to (4.22) and (4.24) providing Neff = 100 decisions for
each processing window. Fig. 4.6 shows representative situations for three different processing
windows. Fig. 4.6 (a) and (d) show the KS test and t-test decisions for one window of dataset
“e0303" with no synthetic TWA and “ma” noise (SNR=10dB). As can be seen, both tests have
accepted the null hypothesis 100 times, therefore the null hypothesis can be accepted with full
certainty (τ = 0) for this window. Fig. 4.6 (c) and (f) show the decisions for one window of
dataset “e0303” corrupted with synthetic 35 µv TWA and “ma” noise (SNR=10dB). The null
hypothesis can be rejected with full certainty (τ = 1) since both tests have rejected the null
hypothesis 100 times. Fig. 4.6 (b) and (e) show results for a more complicated case where one
window of dataset “e0303” is corrupted with synthetic 35 µv TWA and with a higher “ma"
noise level than in the previous case (SNR=5dB). For this window, the null hypothesis can
be rejected with detection probabilities τ = 0.93 and τ = 0.82 for the KS test and the t-test,
respectively. It can be seen that, depending on signal characteristics (presence of physiological
noise, baseline behavior, etc.), the null hypothesis rejection rate can be exactly unity (Fig.
4.6 (c) and (f)) or just below 1 (Fig. 4.6 (b) and (e)). Note again that using several samples
from the Gibbs sampling iterations provides multiple test statistics allowing decision with an
interesting reliability information.
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Figure 4.5: (a) Segment of dataset “e0303” with synthetic TWA and “ma” noise SNR=10 dB
(black), estimated local baseline (blue), and estimated odd (red) and even (green) T waves.
(b) Odd T-wave estimation averages (black) and the corresponding confidence intervals (blue)
for the 16-beat window. (c) Even T-wave estimation averages (black) and the corresponding
confidence intervals (blue) for the 16-beat window.
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Figure 4.6: The KS-test (top) and the t-test (bottom) decisions made for three different 16-
beat windows: (a) and (d) show the test decisions for one window of dataset “e0303” with no
synthetic TWA and “ma” noise SNR=10dB; (b) and (e) show the test decisions for one window
of dataset “e0303” with synthetic 35 µv TWA and “ma” noise SNR=5dB; (c) and (f) show the
test decisions for one window of dataset “e0303” with synthetic 35 µv TWA and “ma” noise
SNR=10dB.
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For a quantitative comparison, we have implemented two classical methods, the spectral
method (SM) [SCV+94] and the statistical test based on the maximum amplitude of the ST-T
complex (ST) [SLKG02]. Fig. 4.7 shows the detection results achieved with real signals with
synthetic 35µV TWA corrupted by “ma” and “em” noises for the Bayesian Gibbs sampler with
KS test (BGS-KS) and t-test (BGS-T), the SM and the ST methods. Note that 20 Monte Carlo
runs have been carried out for each SNR value, where the noise realizations have been changed
from one simulation to another. The processing window length has been set to 16 beats for
all the methods. As can be seen, the proposed Bayesian tests (referred to as BGS-KS and
BGS-T) yield better results for both “ma” and “em” noise compared to ST and SM (e.g., an
improvement of 10dB is achieved for having PD = 1). The KS test gives slightly better results
than the t-test. Note however that the proposed methods have higher computational costs
especially when using large processing windows (e.g., 128 beats). Thus their use is generally
recommended for small processing windows.
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Figure 4.7: Detection performance for real ECGs with synthetic 35µV TWA. The proposed
Bayesian Gibbs sampler with KS test (green square markers), Bayesian Gibbs sampler with
t-test (blue round markers), the ST method (red diamond markers) and the SM (black triangle
markers) are tested in both “ma" (continuous lines) and “em" (dotted lines) noise conditions.
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4.4 Endocardial TWA detection using the beat-to-beat Bayesian
approach

Section 4.3 presented a Bayesian TWA detection approach for surface ECGs by using the
window based Bayesian model. In this section, a novel detection strategy based on the T wave
beat-to-beat variations is proposed to address the TWA detection issue in the endocardial
context, i.e., for electrocardiograms directly stored from implantable cardioverter defibrillators
(ICDs). This strategy relies on the beat-to-beat Bayesian model introduced in Section 3.2 to
estimate the T waveforms in each beat. Then, ten parameters defined by the cardiologist are
subsequently extracted from the estimated waveforms to explore the whole repolarization. The
absolute values of beat-to-beat differences between consecutive beats are then calculated for
each extracted parameter. Discriminant analysis, uni-variate and multivariate statistic tests
are then proposed to compare the absolute values of beat-to-beat parameter differences of the
control signals (references) and the pre-onset 3 signals (episodes). The methodology developed
in this section serves as a post-hoc analysis tool to the Endocardial T Wave Alternans Study
(ETWAS) project in collaboration with St. Jude Medical Inc. and Toulouse Rangueil Hospital,
which aims to prospectively assess the feasibility of TWA detection in inracardiac electrograms
(EGMs). The contribution of our work is that our beat-to-beat Bayesian model allows a
good beat-wise T waveform estimation and a dimensionality reduction step which enhances
the detection performance. Moreover, the results obtained with our Bayesian algorithm have
been useful to confirm results of other experiments conducted by the engineers from St. Jude
Medical Inc.

4.4.1 TWA detection in ICD-stored intracardiac electrograms

EGMs stored in ICD memories represent a unique opportunity for detecting TWA immediately
before ventricular tachycardia (VT) or ventricular fibrillation (VF) onset in patients prone to
malignant ventricular arrhythmia. Compared to the surface ECG TWA detection problem, the
analysis of ICD-stored signals suffers some important limitations due to

• the short periods of recordings available (usually 10 to 20 beats),

• the nature of observed TWA: contrary to the surface ECG case, where the TWA is only
reported as a 0.5 cycle-per-beat (cpb) phenomenon (A-B-A-B. . . ) [SCV+94], the EGM
TWA could happen with other patterns (A-B-C-A-B-C. . . , etc.).

These limitations hinder usual spectral [SCV+94] and temporal [NV02] analysis which interest
in detecting the alternant in 0.5 cpb. To the best of our knowledge, few papers in the biomedical
engineering literature are related to automated endocardial TWA detection methods. The
surface ECG TWA detection methods are often employed to deal with EGM TWA analysis
problem. The possibility of using spectral methods for long-term EGMs (recorded during more
than 5 min) has been discussed in [CSH+03]. The MMA method has been used to compute

3The term “pre-onset” defines the part of the signal before a cardiac problem such as a ventricular tachycardia
or ventricular fibrillation (see Fig. 4.8).
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repolarization alternans magnitude in porcine EGM signals in [MHI+05]. Moreover, from a
clinical point of view, TWA has been reported up to now to be manually detectable in ICD-
stored EGM in an isolated case [AAC+04] and in a recent study [SCD+11] as an irregular
fluctuation on T wave amplitude.

Control and pre-onset data collection

A study on Endocardial T wave alternans (ETWAS) has been launched by St. Jude Medical to
collect real clinical data and to assert the feasibility of detecting TWA in recorded EGMs. 57
patients from French university hospitals of Toulouse, Montpellier, Nîmes and Aix-en-Provence
were enrolled in this study between November 2006 and December 2007. They were all imple-
mented with single-chamber, dual-chamber or biventricular St. Jude Medical ICDs. First, the
ICDs were programmed to record the EGM at a sampling rate of 128 Hz with 8-bit resolution
and to filter the signal with a band-pass filter of 1.5 to 300 Hz. These values are considered
to be acceptable for detecting beat-to-beat changes in intracardiac T wave, as reported in
[PZG+06, SPN+07, KPP+09]. Second, in order to collect the largest amount of signal before
the onset of each arrhythmia, the pre-trigger duration for stored EGM was programmed to
its maximal value, i.e., 32 seconds. Third, the recorded intracardiac lead was programmed to
be “ring-to-CAN”, which means that the sensor has been positioned such that it yields high
levels of TWA and is intended to explore wider myocardial areas (far-field bipolar recording)
[PZG+06]. Fourth, the setting of amplification was tailored for each patient to record T waves
as large as possible while avoiding signal clipping: this was usually programmed to a value of
±7.4 mV, but was sometimes programmed to ±3.7 mV (when T wave amplitude was smaller
than 3 mV) or to ±10.6 mV (for T wave amplitude larger than 7 mV).

Episode electrograms for which TWA are suspected were automatically stored in the device
memory upon detection of a spontaneous tachyarrhythmia. Following the implantation, all
patients were followed for 12 months with interim visits at 3, 6 and 9 months. All episode
EGMs were retrieved from device memory at each follow-up visit.

Control baseline electrograms (references) were real-time electrograms streamed from the
device memory to an external computer via an analog-to-digital acquisition card DAQcard
6062E (National Instruments, Austin, TX, USA) and a custom software LabWindows CVI.
Real-time electrograms were sampled at 1kHz and 12-bit resolution in order to ensure signal
quality. These EGMs which can be considered as TWA-free were recorded at rest during sinus
rhythm at implantation (prior to anesthesia for ICD-testing) and/or during follow-up visits.

Thus, the real clinical data available consists of two sets:

• a set of “reference” EGMs for which it can be assumed that no TWA is present,

• a set of “episode” EGMs for which TWA is suspected but maybe not present in all signals
from this set.
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Data selection

The recorded EGMs were carefully reviewed by a cardiologist from the Hospital of Toulouse
Rangueil. Patients with paroxysmal atrio-ventricular block or with permanent atrial fibrillation
with spontaneous atro-ventricular conduction were not included in the study. EGM featuring
noise, artefacts, T wave clipping or alternation between intrinsic and paced ventricular beats
were eliminated from analysis. EGMs with atrial fibrillation before arrhythmia onset, EGM
beats suffering from premature ventricular or supraventricular beats, arrhythmia episodes with
a supraventricular origin or whose ventricular origin could not be formally proved were also
eliminated from analysis. The same methodology was applied to select the control reference
EGMs. Fig. 4.8 shows an example of a selected pre-onset episode followed by a ventricular
fibrillation, and Fig. 4.9 shows a sinus rhythm reference signal recorded for the same patient
during rest. Among the total 57 patients enrolled in the study, 16 patients (28.7%) experienced
at least one episode of ventricular tachycardia or fibrillation identified by the cardiologist. Table
4.1 shows the number of selected episodes and references. On average, an episode contains
approximately 30-40 beats (a 32 second window) and a reference has about 100-120 beats.
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Figure 4.8: An example of selected EGM episode signal followed by a ventricular fibrillation.
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Figure 4.9: An example of EGM reference signal recorded for the same patient during sinus
rhythm.
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Table 4.1: Selected pre-onset episodes and control references for each patient.
Patients Number of episodes Number of references

Patient ]1 1 6

Patient ]2 1 3

Patient ]3 1 6

Patient ]4 1 5

Patient ]5 3 12

Patient ]6 1 5

Patient ]7 4 15

Patient ]8 1 6

Patient ]9 1 4

Patient ]10 1 3

Patient ]11 3 16

Patient ]12 3 7

Patient ]13 1 2

Patient ]14 1 6

Patient ]15 13 16

Patient ]16 1 4
Total datasets 37 116
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4.4.2 T wave variation analysis and TWA detection

Beat-to-beat T waveform estimation

In the ETWAS project, selected EGMs (pre-onset and control recordings) were originally seg-
mented and aligned on their QRS using a fixed time window relative to the QRS position.
Despite the simplicity of this method, the segmentation and alignment quality could be af-
fected due to the complexity of the signal nature. To address this problem, a modified version
of the beat-to-beat Bayesian model introduced in Section 3.2 is proposed to estimate simulta-
neously the T-wave location and waveform in each heartbeat. The modified statistical model
and its associated Bayesian model are detailed in the Appendix E. A block Gibbs sampler
is employed to resolve the unknown parameters of the resulting posterior distribution. This
sampler has a very similar structure to the block Gibbs sampler proposed in Section 3.2.3,
except that the sampling distributions for some parameters are different due to the omission of
P wave processing. From these samples, the discrete indicator parameter bn is then estimated
by means of the sample-based maximum a posteriori (MAP) estimator, and the continuous
parameters αT,n, γn, and σ2

w,n are estimated by means of the sample-based minimum mean
square error (MMSE) estimator, as described in Section 3.2.4. The next section discusses the
T wave variation analysis based on the T waveform estimates ĥT,n = Hα̂T,n obtained by the
MMSE estimator for the nth T wave search interval.

T wave parameters

Since the TWA could be more complicated than a simple amplitude or duration variation,
the cardiologist defined six landmarks and P = 10 associated parameters to characterize the
whole T wave. A post-hoc waveform analysis is then carried out based on the values of those
parameters. The landmarks are defined as follows.

• L1: The onset of the T wave.

• L2: The point related to the maximum slope of the initial ascending part of the T wave.

• L3: The peak of the T wave.

• L4: The point related to the maximum slope of the terminal descending part of the T
wave.

• L5: The end of the T wave

• LQRS: The R peak of the associated QRS complex.

As shown in Fig. 4.10, the six landmarks are calculated on the estimated T waveform ĥT.
Note that the T wave onset P1, peak P3 and end P5 can be obtained by using the delineation
strategy proposed in Section 3.2.4. The slope can be obtained by computing the discrete-time
approximation of the first derivative of the estimated T waveform, and the points P2 and P4
can be obtained as the local maxima of the slope before and after the wave peak, respectively.
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Table 4.2 describes the P = 10 parameters related to the landmarks while Fig. 4.11 illustrates
the schema of them on a EGM beat. The absolute values of parameter differences between
consecutive beats are then calculated. For an D+ 1 beat EGM signal portion, these values are
collected into a P ×D difference matrix

∆ = {δp,n}p=1,··· ,P, n=1,··· ,D (4.26)

with δp,n represents the absolute difference of the pth parameter between beats n and n+ 1.

Given one such beat-to-beat difference matrix ∆, the TWA detection can be formulated as
a multivariate two-class problem

H0 : No significant beat-to-beat wave parameter variation.
H1 : Significant beat-to-beat wave parameter variation.

However, the P = 10 parameters may contribute unequally to the characterization of the
beat-to-beat variation. For example, if the TWA is expressed as an amplitude alternation,
the amplitude related parameters (“T_amplitude”, “T_area”, · · · ) will be more discriminant
than wave shape related parameters (“T_max_asc_slope”, · · · ) or rhythm related parame-
ters (“QRS_T_apex_dur”, · · · ). Most of the classifiers are strongly affected by the curse of
dimensionality. In other words, when signals are represented in too high dimensional sub-
spaces, the classifier performance can be impaired by the over-fitting problem. This problem
is reduced by compressing the signal down to a lower-dimensional subspace by using dimen-
sionality reduction techniques [DHS00]. In our case, 10 parameters may not introduce a curse
of dimensionality. However, since these TWA detection algorithms are studied with the aim of
implementing in the defibrillators, performing real-time processing, it is of great importance to
study any implementation cost reduction.
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Figure 4.10: T wave landmarks calculated for each heartbeat.
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Table 4.2: Description of the T wave parameters.
ID Parameter Description

1 T wave amplitude (µV) T wave amplitude from peak (L3) to local baseline(T_amplitude)

2 T wave area (µV·ms) T area between onset (L1) and end (L5)(T_area)

3 Max T wave ascending slope (µV/ms) Absolute value of T wave slope maximal before L3(T_max_asc_slope)

4 Max T wave descending slope (µV/ms) Absolute value of T wave slope maximal after L3(T_max_desc_slope)

5 T wave duration (ms) Timing between points of onset (L1) and end (L5)(T_duration)

6 T wave peak-end duration (ms) Timing between T wave peak (L3) and T wave end (L5)(T_apex_end_dur)

7 R peak-T wave peak duration (ms) Timing of T wave end (L5) relative to R peak (LQRS)(QRS_T_apex_dur)

8 R peak-T wave Max ascending slope duration (ms) Timing of point L2 relative to R peak (LQRS)(QRS_T_max_asc_dur)

9 R peak-T wave Max descending slope duration (ms) Timing of point P4 relative to R peak (LQRS)(QRS_T_max_desc_dur)

10 R peak-T wave end duration (ms) Timing of T wave end (L5) relative to R peak (LQRS)(QRS_T_end_dur)
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Figure 4.11: Schematic representation of the T wave parameters.
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Dimensionality reduction: Fisher score

The Fisher criterion [Fuk90, DHS00] plays an important role for dimensionality reduction. It
aims at finding a feature (parameter) representation minimizing an appropriate within-class
distance and maximizing a between-class distance. Based on the Fisher criterion, two classes
of dimensionality reduction methods have been proposed in the literature. The first class of
methods is classically referred to as Feature Extraction with the Linear Discriminant Analysis
(LDA) as an example. The other class contains feature selection methods, such as the Fisher
score. One can find a thorough introduction of these methods in [DHS00]. In this chapter,
the Fisher score has been used to reduce the dimensionality of the matrix ∆ and to select
the most discriminant parameters to separate different classes. Note that one might think of
using the feature extraction technique LDA. However, since there are only two classes in our
case, the LDA suffers from the weakness of being able to provide only one discriminant axis.
Furthermore, from a clinical point of view, it is also interesting to know which parameters are
more discriminant when the alternation occurs.

The Fisher score can be computed for each parameter independently according to the
criterion introduced in [DHS00]. Let ∆(0) and ∆(1) denote the difference matrices for a (D0+1)
beat control signal portion and for a (D1 +1) beat pre-onset episode portion, respectively. The
mean and variance of the pth parameter difference for the control signal matrix ∆(0) can be
obtained as

µ̂p,0 = 1
D0

D0∑
n=1

δ(0)
p,n, σ̂2

p,0 = 1
D0

D0∑
n=1

(
δ(0)
p,n − µ̂p,0

)2
(4.27)

where δ(0)
p,n is the pth row and nth column of ∆(0). Similarly, the mean and standard deviation

of the pth parameter difference of the pre-onset episode matrix ∆(1) can be obtained as

µ̂p,1 = 1
D1

D1∑
n=1

d(1)
p,n, σ̂2

p,1 = 1
D1

D1∑
n=1

(
d(1)
p,n − µ̂p,1

)2
. (4.28)

Let ∆ =
[
∆(0) ∆(1)

]
denote the joint difference matrix for the two classes. The mean and

variance of the joint matrix corresponding to the pth parameter can be obtained as

µ̂p = 1
D

D∑
n=1

δp,n, σ̂2
p = 1

D

D∑
n=1

(δp,n − µ̂p)2 (4.29)

where D = D0 +D1 and δp,n is the pth row and nth column of ∆.

By using (4.27), (4.28) and (4.29), the Fisher score of the pth parameter can be computed
as follows

F (δp) = D0 (µ̂p,0 − µ̂p)2 +D1 (µ̂p,1 − µ̂p)2

D0σ̂2
p,0 +D1σ̂2

p,1
. (4.30)

After computing the Fisher score for each parameter δp, we have to select the top-M ranked pa-
rameters which yield a normalized cumulative Fisher score superior to a given predefined value
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(95% in our study). In a second step, different statistical tests (univariate t-test, Wilcoxon
test, Kolmogorov Smirnov test and multivariate t-test [Leh97]) can be applied on the selected
parameters. The general flowchart for the proposed EGM T wave beat-to-beat analysis algo-
rithm (including beat-to-beat T waveform estimation), wave parameter extraction (including
discriminant analysis) and statistical test used for TWA detection is summarized in Fig. 4.12.

wave parameter
T waveform

estimation

beat−to−beat

H  /H0 1EGM statistical test
extraction

Figure 4.12: General block diagram for the beat-to-beat T wave variation analysis of EGM
signals.

4.4.3 Clinical results and discussion

This section presents the simulation results of the proposed T wave analysis approach for both
synthetic and real clinical data.

Synthetic data

Synthetic data is first used to validate the algorithm. Among the set of selected reference EGMs,
10 reference signals (approximately 500 beats) from 6 patients are chosen by the cardiologist
as representative reference (control) signals. By using the TWA synthesis scheme presented in
Fig. 4.4, TWA episodes are simulated by adding or subtracting alternatively (still on a every-
other-beat basis) a Hanning window to the delineated T waves. Different TWA amplitude
values of 50µv and 25µv have been chosen for the evaluations. Fig. 4.13 shows an example of
EGM portion with synthetic 50µv and 25µv TWA.

Let ∆ref and ∆syn50 denote the difference matrices computed for the control signals,
and for the signals with synthesized 50µv TWA, respectively. The Fisher score of the two
classes ∆ref and ∆syn50 is obtained by using (4.30). As shown in Fig. 4.14, the wave ampli-
tude and wave shape related parameters “T_amplitude”, “T_area”, “T_max_asc_slope” and
“T_max_desc_slope” are more discriminant than the other parameters to separate ∆syn from
∆ref. This result is coherent with the fact that the TWA has been synthetized by simulating
alternans on the T wave amplitude and shape. Table 4.3 shows the examples of univariate test
decisions for each parameter. Note that the different parameters are classified in descending
order according to their respective Fisher scores and the significance level of the tests is fixed
at 5% (α = 0.05). As can be seen from the table, the first four parameters have a cumulative
Fisher score of 98% and all the three univariate tests returned positive results. This means
that the beat-to-beat variations of the two samples on the four most discriminant parameters
are significantly different, which indicates an amplitude or shape alternation. Finally, in order
to have a general decision on the two examples, a multivariate two sample t test is carried
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out on the first four discriminant parameters which have a cumulative Fisher score superior to
0.95, and a positive decision is obtained.
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Figure 4.13: One EGM portion with synthetic TWA by adding alternatively a Hanning window
to the delineated T waves. (Original reference signal in blue, reference signal with 25 µv TWA
in red and reference signal with 50 µv TWA in black).
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Figure 4.14: Fisher score of each parameter calculated on Beat-to-beat variations of reference
and synthesized 50µv TWA data.

Table 4.3: Univariate test results on two samples ∆syn50 and ∆ref. Note that the parameters
are classified in descending order according to their Fisher scores.

Parameter normalized cumulative
t-test KS-test Wilcoxon-testFisher score Fisher score

T_max_asc_slope 0.3352 0.3352 H1 H1 H1

T_amplitude 0.2859 0.6211 H1 H1 H1

T_area 0.1949 0.8160 H1 H1 H1

T_max_desc_slope 0.1656 0.9816 H1 H1 H1

QRS_T_max_desc_dur 0.0097 0.9913 H1 H0 H1

QRS_T_end_dur 0.0046 0.9959 H0 H0 H0

QRS_T_apex_dur 0.0031 0.9990 H0 H0 H0

T_apex_end_dur 0.0009 0.9959 H0 H0 H0

QRS_T_max_asc_dur 0.0000 1.0000 H0 H0 H0

T_duration 0.0000 1.0000 H0 H0 H0
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Another example is based on the reference signal with synthesized 25µv TWA. Let ∆syn25
denote the difference matrix of the control signals with synthesized 25µv TWA. As can be seen
in Fig. 4.15, the parameters that have high Fisher scores are still the amplitude and wave
shape related parameters as in Fig. 4.14. However, the difference between the maximum and
the minimum Fisher score is much smaller than those obtained in the previous example. This
can be justified by the fact that the synthesized 25µv TWA data has smaller simulated beat-
to-beat variations than those of the synthesized 50µv TWA. Table 4.4 presents the univariate
test results on two samples ∆syn25 and ∆ref. Despite the small simulated alternans, the test
results for the four most discriminant parameters return correct decisions, i.e., indicate an
amplitude or shape alternans. Finally, the multivariate two sample t test carried on the four
most discriminant parameters also provided positive decision.
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Figure 4.15: Fisher score of each parameter calculated on beat-to-beat variations of reference
and synthesized 25µv TWA data.
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Table 4.4: Univariate test results on two samples ∆syn25 and ∆ref. Note that the parameters
are classified in descending order according to their Fisher scores.

Parameter normalized cumulative
t-test KS-test Wilcoxon-testFisher score Fisher score

T_max_asc_slope 0.2511 0.2511 H1 H1 H1

T_amplitude 0.2509 0.5020 H1 H1 H1

T_area 0.1764 0.6784 H1 H1 H1

T_max_desc_slope 0.1083 0.7867 H1 H1 H1

QRS_T_max_desc_dur 0.1021 0.8888 H0 H0 H0

QRS_T_end_dur 0.0511 0.9399 H0 H0 H0

QRS_T_apex_dur 0.0244 0.9643 H0 H0 H0

T_apex_end_dur 0.0197 0.9840 H0 H0 H0

QRS_T_max_asc_dur 0.0090 0.9930 H0 H0 H0

T_duration 0.0070 1.0000 H0 H0 H0

Results on real clinical data

This section presents the results obtained with real clinical data. As introduced in Section
4.4.1, a total of 37 pre-onset episodes of 16 different patients are selected under the guidance
of an expert. For a patient who experiences at least one pre-onset episode, more than 3 control
signals recorded during rest are selected as references. From a clinical point of view, it is more
reasonable to compare a pre-onset episode of a given patient with his own reference data. Thus,
the discriminant analysis and the statistical tests are carried out to compare each episode of a
given patient with his total reference.

Example 1. The first example refers to a patient who has significant alternans in his ICD
recorded episode compared to his reference signals (from the cardiologist point of view). Fig.
4.16(a) shows four consecutive heartbeats from a reference signal of patient ]8. The corre-
sponding sample-based estimates of the marginal posterior probabilities of having a T wave at
a given location are depicted in Fig. 4.16(b). Fig. 4.16(c) shows the T waveforms estimated by
the beat-to-beat Bayesian approach for each search interval. Fig. 4.17 shows the corresponding
simulation results for one episode signal portion of the same patient. The two difference ma-
trices of the reference and episode signals are then calculated from the estimated waveforms,
respectively. Fig. 4.18 shows the Fisher score obtained for each parameter to separate the two
samples. As can be seen, the wave amplitude related parameters are the most discriminant.
Fig. 4.19 shows the box-and-whisker diagram (boxplot) of the beat-to-beat variations of the
three most discriminant parameters. Note that there is a significant difference between the
reference and the episode signals for each parameter. Table 4.5 shows the univariate test re-
sults on each of the parameter of the two samples and most of the test decisions are positive.
The general test decision, obtained by using the multivariate two sample t test on the most
discriminant parameters, also provides a positive decision.
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Figure 4.16: (a) Four consecutive heartbeats from one reference signal of patient ]8; (b) Pos-
terior distribution of the T wave indicators (wave peaks); (c) Estimated T waveforms.
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Figure 4.17: (a) Four consecutive heartbeats from one episode signal of patient ]8; (b) Posterior
distribution of the T wave indicators (wave peaks); (c) Estimated T waveforms.



4.4 - Endocardial TWA detection using the beat-to-beat Bayesian approach 151

0 0.2 0.4 0.6 0.8 1

T_amplitude

T_area

T_max_asc_slope

T_max_desc_slope

T_duration

T_apex_end_dur

QRS_T_apex_dur

QRS_T_max_asc_dur

QRS_T_max_desc_dur

QRS_T_end_dur

Fisher score of T wave parameters

Figure 4.18: Fisher score of each parameter calculated on Beat-to-beat variations of reference
and one episode signals of patient ]8.
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Figure 4.19: Beat-to-beat variation box-and-whisker diagram of the three most discriminant
parameters of patient ]8.
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Table 4.5: Univariate test results on reference and episode signals of patient ]8. Note that the
parameters are classified in descending order according to their Fisher scores.

Parameter normalized cumulative
t-test KS-test Wilcoxon-testFisher score Fisher score

T_area 0.3814 0.3814 H1 H1 H1

T_amplitude 0.1995 0.5809 H1 H1 H1

T_max_asc_slope 0.1953 0.7763 H1 H1 H1

T_max_desc_slope 0.1158 0.8920 H1 H1 H1

T_apex_end_dur 0.0596 0.9516 H1 H1 H1

QRS_T_max_desc_dur 0.0174 0.9690 H1 H1 H1

QRS_T_end_dur 0.0091 0.9781 H1 H1 H1

QRS_T_max_asc_dur 0.0087 0.9868 H0 H1 H1

QRS_T_apex_dur 0.0079 0.9947 H0 H1 H1

T_duration 0.0053 1.0000 H0 H1 H1
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Example 2. The second example is from a patient whose episode signal has no significant
alternans compared to his reference signals. The Fisher scores of the 10 parameters to separate
the episode from the reference signals are shown in Fig. 4.20. The rhythm related parameters
have relatively higher scores yet the difference between the maximum and the minimum is
much smaller than in Fig. 4.18. This is also confirmed by the boxplot of the most discriminant
parameters as shown in Fig. 4.21. Table 4.6 presents the test results on each of the parameter of
the two samples and most of the parameters show no significant difference between the episode
signal and the reference. The parameters which have a cumulative Fisher score superior to 0.95
are included in the multivariate t test, and the general test decision for this episode is negative.
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Figure 4.20: Fisher score of each parameter calculated on Beat-to-beat variations of reference
and one episode signals of patient ]15.
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Figure 4.21: Beat-to-beat variation box-and-whisker diagram of the three most discriminant
parameters of patient ]15.

Table 4.6: Univariate test results on reference and episode signals of patient ]15. Note that
the parameters are classified in descending order according to their Fisher scores.

Parameter normalized cumulative
t-test KS-test Wilcoxon-testFisher score Fisher score

T_apex_end_dur 0.3156 0.3521 H1 H1 H1

T_max_desc_slope 0.5202 0.5809 H1 H0 H1

T_duration 0.6906 0.7763 H1 H0 H1

QRS_T_end_dur 0.7805 0.8920 H0 H0 H0

T_area 0.0596 0.8675 H0 H0 H0

T_amplitude 0.0174 0.9260 H0 H0 H0

QRS_T_max_desc_dur 0.9632 0.9781 H0 H0 H0

T_max_asc_slope 0.9931 0.9868 H0 H0 H0

QRS_T_apex_dur 0.0046 0.9977 H0 H0 H0

QRS_T_max_asc_dur 0.0023 1.0000 H0 H0 H0
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Results on the full database. Table 4.7 shows the statistical test result on the 37 selected
pre-onset signals. Each pre-onset episode has been tested against all the references of the same
patient by using the multivariate t-test. Note that only the parameters which have cumulative
Fisher score superior to 0.95 are included in the test. Among the 37 selected pre-onset signals,
13 (i.e., 35.14%) episodes have been found to have significant beat-to-beat variations compared
to their respective reference signals.

Table 4.7: Statistic test result on the 37 selected pre-onset signals. Each pre-onset episode
has been tested against all the references of the same patient by using the multivariate t-test.
Only the parameters which have cumulative Fisher score superior to 0.95 are included in the
test. Note that the number of pre-onset episodes labeled as positive TWA for each patient is
indicated in the right column.

Patient pseudo Number of Number of
total episodes TWA positive episodes

Patient ]1 1 0

Patient ]2 1 0

Patient ]3 1 0

Patient ]4 1 1

Patient ]5 3 0

Patient ]6 1 0

Patient ]7 4 2

Patient ]8 1 1

Patient ]9 1 1

Patient ]10 1 1

Patient ]11 3 1

Patient ]12 3 1

Patient ]13 1 1

Patient ]14 1 0

Patient ]15 13 4

Patient ]16 1 0

Total 37 13
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Clinical discussion

In this section, we proposed a beat-to-beat Bayesian approach together with discriminant
analysis and statistical tests to analyze the ICD stored EGM recordings provided by St. Jude
Medical, Inc. First, the beat-to-beat Bayesian approach was used to estimate the T waveform
from ICD stored EGM recordings. Then, beat-to-beat variations of various T wave parameters
extracted from the estimated waveforms were subjected to discriminant analysis to reduce the
dimensionality. Finally, univariate and multivariate statistical tests were carried out on the
most discriminant parameters.

From a clinical point of view, the major finding of this prospective and multicenter study is
that the beat-to-beat variations (amplitude, shape or duration) are significantly greater imme-
diately before spontaneous VT/VF in ICD stored EGM recordings than during different types
of control signals. Our results also reflect the highly variable beat-to-beat T wave variations
from one patient to another, since no reproducible T wave behavior was observed in this pop-
ulation. Moreover, this study shows the interest of performing TWA detection in endocardial
context using several parameters characterizing the T waves, while most of the related studies
[SCD+11] focus only on TWA amplitude.
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4.5 Conclusion

This chapter presented applications of the different Bayesian models introduced in this thesis
to a specific clinical research topic referred to as T wave alternans (TWA) detection. First,
an adapted version of the window based Bayesian model presented in Chapter 2 was proposed
to address the surface ECG TWA detection problem. The odd and even T-wave amplitudes
generated by the block Gibbs sampler were used to build statistical tests for TWA detection.
The proposed algorithm was evaluated on real surface ECG signals subjected to synthetic TWA
and compared with other classical algorithms. In the second part of the chapter, the TWA de-
tection problem on intracardiac electrogram (EGM) signals stored in implantable cardioverter
defibrillator (ICD) memories was addressed by using the beat-to-beat based Bayesian model
introduced in Chapter 3. Based on the good waveform estimation provided by the beat-to-beat
Bayesian approach, ten parameters describing the whole repolarisation defined by a cardiologist
were extracted. Dimensionality reduction techniques and statistical tests were then employed
to exploit these parameters to analyze beat-to-beat T wave variations. The proposed approach
was applied on real clinical data provided by St. Jude Medical, Inc.

The main features and contributions of this chapter can be summarized as follows:

1. Window based Bayesian model for surface ECG TWA detection [LMT11]

• The window based Bayesian model introduced in Section 2.4 is modified to perform
T-wave delineation by taking into account a distinction between odd and even beats.
• The odd and even T-wave amplitudes generated by the block Gibbs sampler are
used to build statistical tests (Student’s t-test and Kolmogorov-Smirnov test) for
TWA detection.
• The proposed method computes multiple test statistics for each observation win-
dow (one per iteration of the Gibbs sampler) that can be used advantageously to
derive detection performance and to provide information about the reliability of the
detection.
• The proposed algorithm is evaluated on real surface ECG signals subjected to syn-
thetic TWA and compared with other classical algorithms.

2. Beat-to-beat Bayesian approach for intracardiac TWA detection [LKT+12]

• A modified version of the beat-to-beat Bayesian approach introduced in Chapter 3
is proposed to estimate the T waveform in each heartbeat.
• A waveform characterization procedure which allows the extraction of ten parame-
ters exporting the whole repolarisation from the estimated waveform is proposed.
• Dimensionality reduction techniques are studied to find the most discriminant pa-
rameters.
• The proposed approach is applied on real clinical data and is shown to be promising
to endocardial TWA detection.
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Conclusions and Perspectives

This thesis studied Bayesian estimation/detection algorithms for P and T wave analysis in
ECG signals. In this work, different statistical models and associated Bayesian methods were
proposed to solve simultaneously the P and T wave delineation task (determination of the
positions of the peaks and boundaries of the individual waves) and the waveform-estimation
problem. These models take into account appropriate prior distributions for the unknown pa-
rameters (wave locations and amplitudes, and waveform coefficients). These prior distributions
are combined with the likelihood of the observed data to provide the posterior distribution of the
unknown parameters. Due to the complexity of the resulting posterior distributions, Markov
chain Monte Carlo algorithms were proposed for (sample-based) detection/estimation. On the
other hand, to take full advantage of the sequential nature of the ECG, a dynamic model was
proposed under a similar Bayesian framework and sequential Monte Carlo methods (SMC)
were also investigated.

The first chapter recalled the physiological basis of the ECG. From the point of view of
ECG computer-aided detection and computer-aided diagnosis, a brief review of the ECG signal
processing literature was given, with the emphasis on P and T wave detection and delineation.

In the second chapter, we introduced a new Bayesian model based on a multiple-beat
processing window which simultaneously solves the P and T wave delineation and the waveform
estimation problems. This model is based on a modified Bernoulli-Gaussian sequence with
minimum distance constraint for the wave locations and appropriate priors for the amplitudes,
wave impulse responses and noise variance. A recently proposed partially collapsed Gibbs
sampler which exploits this minimum distance constraint was adapted to the proposed model
to estimate the unknown parameters. To the best of our knowledge, this is the first application
of MCMC methods to P and T wave analysis of ECG signals. Then, a modified version of this
Bayesian model was proposed to consider the baseline within each non-QRS component and
to represent P and T waves by their respective dimensionality reducing expansion according
to Hermite basis functions. The local dependency of the ECG signal was expressed by a
block constraint. To alleviate numerical problems related to the modified Bayesian model, a
block Gibbs sampler was studied. The proposed PCGS and block Gibbs sampler overcame
the slow convergence problem encountered with the classical Gibbs sampler. The resulting
algorithms were validated using the entire annotated QT database. A comparison with other
benchmark methods showed that the proposed Bayesian methods provide a reliable detection
and an accurate delineation for a wide variety of wave morphologies. In addition, the proposed
Bayesian methods can provide accurate waveform estimation and allow for the determination

159
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of confidence intervals which indicate reliability information about the estimates.

The third chapter introduced a modified Bayesian model that enables P and T wave de-
lineation and waveform estimation on a beat-to-beat basis. The beat-to-beat Bayesian model
used the P and T waveform estimates of the previous beat as prior information for detect-
ing/estimating the current P and T waves. Compared to the window based model which relies
on a non-overlapped multiple-beat processing window to estimate the waveforms, the beat-to-
beat model is more suitable to the pseudo-stationary nature of the ECG signal and to real time
applications. The block Gibbs sampler was used to estimate the parameters of the resulting
Bayesian model. Then, in order to consider all the available former beats instead of using
the last beat only, a SMC method was studied. Following the SMC analysis principle, the se-
quential nature of the ECG was exploited by using a dynamic model under a similar Bayesian
framework. Particle filters (PFs) were then proposed to resolve the unknown parameters of the
dynamic model. Qualitative and quantitative comparisons with the window based Bayesian
models showed that the beat-to-beat Bayesian approaches provide better detection and delin-
eation results and they are more suitable to on-line applications. Furthermore, compared to
the recently proposed Gaussian mixture model and extended Kalman filter method (refer to
Section 1.4.3 and [SS09] for details), the proposed beat-to-beat Bayesian models provide bet-
ter results when dealing with pathology signals and they allow a good simultaneous waveform
estimation.

The last chapter presented applications of the different Bayesian models introduced in this
thesis to a specific clinical research topic referred to as T wave alternans (TWA) detection.
First, the window based Bayesian model introduced in Chapter 2 is modified to account for a
possible distinction between odd and even beats since a difference between successive T waves is
a sign of a potential cardiac risk. The odd and even T-wave amplitudes generated by the block
Gibbs sampler are used to build statistical tests for TWA detection. Different from the state-of-
art statistical tests for TWA detection, the proposed method computes multiple test statistics
for each observation window that can be used advantageously to derive detection performance
and to provide information about the reliability of the detection. The comparisons with other
classical algorithms on real surface ECGs subjected to synthetic TWA showed good detection
performance of the proposed method. In the second part of the chapter, the TWA detection
problem on intracardiac electrogram (EGM) signals stored in implantable cardioverter defibril-
lator (ICD) memories is addressed by using the beat-to-beat based Bayesian model introduced
in Chapter 3. Based on the good waveform estimation provided by the beat-to-beat Bayesian
approach, ten parameters indicating the whole repolarisation defined by a cardiologist are ex-
tracted. Dimensionality reduction techniques and statistical tests are then employed to exploit
these parameters to analyze beat-to-beat T wave variations. The proposed approach served
as a post-hoc analysis tool in the Endocardial T wave Alternans Study (ETWAS) project in
collaboration with St. Jude Medical, Inc and Toulouse Rangueil Hospital, which aims to
prospectively assess the feasibility of TWA detection in EGM stored in ICD memories.

Some possible perspectives are illustrated as follows. In this work, the proposed statistical
models and associated Bayesian methods were applied on a specific pathology analysis problem:
TWA detection. As a perspective, the proposed Bayesian methods can serve as preprocessing
tools for numerous other P and T wave pathology analysis problems such as arrhythmia detec-
tion [EG96] and P wave morphology classification [CJO01, DG02]. Furthermore, we focused
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ourselves on single-lead ECG processing in this thesis. Despite that most of the real-time
Holter monitoring systems and the ICD devices provide only single-lead recordings, multi-lead
surface ECG signal (typically the 12-lead ECG) recordings are sometimes available in clinical
or ambulance monitoring (see Chapter 1). Logically, another interesting perspective of this
work is to include multi-lead ECG analysis in a similar Bayesian framework. This can be
realized by including the correlation between parameters estimated for each individual lead
(i.e., wave indicators) into the Bayesian model. A similar technique has already been proposed
in [DTS07] to deal with astronomical time series. Since multi-lead recordings contain spatial
characteristics of the different available leads, a more robust delineation and waveform analysis
result can be expected.
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Appendix A

Sampling distributions for the
PCGS

This appendix derives the expressions of the sampling distributions provided in Section 2.3.2.

Wave Indicators. The sampling distribution for bJd(k) can be obtained as follows
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Using the minimum-distance constraint, there can only be one non-zero wave indicator within
the neighborhood Jd(k). Let k′ ∈ Jd(k) denote this only non-zero indicator location, bJd(k) can
be seen as two parts {
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denotes the set of locations within the neighborhood Jd(k) excluding k′ .
The conditional distribution can be further developed by inserting all the prior distributions
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Wave Amplitudes. The sampling distribution for ak can be obtained as follows
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Consequently, similar to the conditional distribution of bJd(k), the following results can be
obtained
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Waveform coefficients. The sampling distribution for h can be obtained as follows
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Appendix B

Sampling distributions for the block
Gibbs sampler

This appendix derives the expressions of the sampling distributions provided in Section 2.4.3.

T wave Indicators. The sampling distribution for T-wave Indicators p
(
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)
can be obtained as follows
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Using the block constraint, there can only be one non-zero wave indicator within the block
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parts {

bk′ = 1
bm = 0,m ∈ JT,n \

{
k

′
}

where JT,n\
{
k

′
}
denotes the set of locations within the block JT,n excluding k

′ . The conditional
distribution can be further developed by inserting all the prior distributions

p
(
bT,JT,n |bT,∼JT,n ,aT,∼JT,n , bP,aP,αT,αP,γ, σ

2
n,x

)
∝
∫

exp
[
− 1

2σ2
n

∥∥∥∥x− FT,∼JT,nBT,∼JT,naT,∼JT,n − F PBPaP −Mγ︸ ︷︷ ︸
x̃

−FT,JT,nBT,JT,naT,JT,n

∥∥∥∥2
−
aT,k′

2σ2
a

] ∏
m∈JT,n\k′

δ (aT,m) daJT,n p (bT)
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∝
[ ∫

exp
[
− 1

2σ2
n

∥∥∥x̃− fT,k′aT,k′

∥∥∥2
−
aT,k′

2σ2
a

]
daT,k′

]
p (bT)

∝
[ ∫

exp
[
− 1

2

(
aT,k′

(fTT,k′fT,k′

σ2
n

+ 1
σ2
a

)
︸ ︷︷ ︸

1
σ2

1

aT,k′ − aT,k′
fTT,k′ x̃

σ2
n︸ ︷︷ ︸
µ1
σ2

1

−
x̃T fT,k′

σ2
n

aT,k′

)]
daT,k′

]
p (bT)

∝
[ ∫

exp
[
−

(
aT,k′ − µ1

)2

2σ2
1

+ µ2
1

2σ2
1

]
daT,k′

]
p (bT)

∝ σ1 exp
[
µ2

1
2σ2

1

]
p (bT)

where σ2
1 and µ1 contain information about bT,JT,n and are defined as

σ2
1 =


∥∥∥fT,k′

∥∥∥2

σ2
n

+ 1
σ2
a


−1

=


∥∥∥FT,JT,nbT,JT,n

∥∥∥2

σ2
n

+ 1
σ2
a


−1

µ1 =
σ2

1f
T
T,k′ x̃

σ2
n

=
σ2

1b
T
T,JT,nF

T
T,JT,n

(
x− FT,∼JT,nBT,∼JT,naT,∼JT,n − F PBPaP −Mγ

)
σ2
n

.

FT,JT,n denotes the columns of FT indexed by JT,n, FT,∼JT,n denotes FT without those
columns, and BT,∼JT,n denotes the diagonal matrix diag

(
bT,∼JT,n

)
.

T-wave Amplitudes. The sampling distribution for aT,k can be obtained as follows

p
(
aT,k|bT,k = 1, bT,∼JT,n ,aT,∼JT,n , bP,aP,αT,αP,γ, σ

2
n,x

)
∝
∫
p
(
aT,JT,n |bT,aT,∼JT,n , bP,aP, ,αT,αP,γ, σ

2
n,x

)
daT,JT,n\k

∝
∫
p
(
x|bT,aT, bP,aP,αT,αP,γ, σ

2
n

)
p
(
aT,JT,n |bT,JT,n

)
daT,JT,n\k

Consequently, similar to the conditional distribution of bT,JT,n , the following results can be
obtained

p
(
aT,k|bT,k = 1, bT,∼JT,n ,aT,∼JT,n , bP,aP,αT,αP,γ, σ

2
n,x

)
∝
∫

exp
[
− 1

2σ2
n

∥∥∥∥x̃− FT,JT,nBT,JT,naT,JT,n

∥∥∥∥2
+ aT,k

2σ2
a

] ∏
m∈JT,n\k

δ (aT,m) daT,JT,n\k
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∝ exp
[
− 1

2σ2
n

∥∥∥∥x̃− fT,kaT,k∥∥∥∥2
+ aT,k

2σ2
a

]
∝ exp

[
− 1

2σ2
1

(aT,k − µ1)2
]

that can be summarized as

p
(
aT,k|bT,k = 1, bT,∼JT,n ,aT,∼JT,n , bP,aP,αT,αP,γ, σ

2
n,x

)
= N

(
µ1, σ

2
1

)
.

T-Waveform coefficients. The sampling distribution for T-waveform coefficients αT can
be obtained as follows

p
(
αT|bT,aT, bP,aP,αP,γ, σ

2
n,x

)
∝ p

(
x|bT,aT, bP,aP,αT,αP,γ, σ

2
n

)
p (αT)

∝ exp
[
− 1

2σ2
n

‖(x−UPHαP −Mγ)−UTHαT‖2
]

exp
[
− 1

2σ2
α

‖αT‖2
]

∝ exp
[
− 1

2σ2
n

[
‖UTHαT‖2 − 2 (x−UPHαP −Mγ)UTHαT

]]
exp

[
− 1

2σ2
α

‖αT‖2
]

∝ exp
[
−1

2

( 1
σ2
n

‖UTH‖2 + IL+1
σ2
α

)
‖αT‖2 + 1

σ2
n

(x−UPHαP −Mγ)UTHαT

]

Equivalently,
p
(
αT|bT,aT, bP,aP,αP,γ, σ

2
n,x

)
= N

(
µ3,σ

2
3

)
with

µ3 = σ2
3H

TUT
T (x−UPHαP −Mγ)

σ2
n

, σ2
3 =

(
‖UTH‖2

σ2
n

+ IL+1
σ2
α

)−1

.

Local baseline coefficients. Because γ is a priori Gaussian, it can be treated as one
parameter in the Gibbs sampler without introducing excessive complexity. As a consequence,
the sampling distribution for local baseline coefficients p

(
γ|bT,aT, bP,aP,αT,αP, σ

2
n,x

)
can

be obtained as follows

p
(
γ|bT,aT, bP,aP,αT,αP, σ

2
n,x

)
∝ p

(
x|bT,aT, bP,aP,αT,αP,γ, σ

2
n

)
p (γ)

∝ exp
[
− 1

2σ2
n

‖(x−UPHαP −UTHαT)−Mγ‖2
]

exp
[
− 1

2σ2
γ

‖γ‖2
]

∝ exp
[
− 1

2σ2
n

[
‖Mγ‖2 − 2 (x−UPHαP −UTHαT)Mγ

]]
exp

[
− 1

2σ2
γ

‖γ‖2
]

∝ exp
[
−1

2

(
1
σ2
n

‖M‖2 + I5×D
σ2
γ

)
‖γ‖2 + 1

σ2
n

(x−UPHαP −UTHαT)Mγ

]
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Equivalently,
p
(
γ|bT,aT, bP,aP,αT,αP, σ

2
n,x

)
= N

(
µ5,σ

2
5

)
with

µ5 = σ2
5M

T (x−UPHαP −UTHαT)
σ2
n

, σ2
5 =

(
‖M‖2

σ2
n

+ I5×D
σ2
γ

)−1

.



Appendix C

Sampling distributions for the
beat-to-beat block Gibbs sampler

This appendix derives the expressions of the sampling distributions provided in Section 3.2.3.
We recall the definitions θ , (bTT bTP αTT αTP γT σ2

w)T, x̃ , x−BTHαT −BPHαP, and x̃T ,
x−BPHαP−Mγ. As before, the subscript n will be suppressed.

Wave indicators. To derive expression (3.14) for the sampling distribution for bT, we
first note that

p(bT|bP, α̂T,n−1,αP,γ, σ
2
w,x)

=
∫
p(bT,αT|bP, α̂T,n−1,αP,γ, σ

2
w,x) dαT

∝
∫
p(θ|x, α̂T,n−1, α̂P,n−1) dαT

∝
∫
p(x|θ)p(θ|α̂T,n−1, α̂P,n−1)dαT

In the second last and last steps, we used Bayes’ rule and (3.13), respectively. Next, we insert
(3.6) and (3.12) and drop factors that do not depend on bT or αT. This yields

p(bT| . . .) ∝
∫

exp
(
− ‖x̃T−BTHαT‖2

2σ2
w

)
× p(αT|bT, α̂T,n−1) p(bT) dαT . (C.1)

Now, we insert (3.9) for p(αT|bT, α̂T,n−1), and (3.7) for p(bT). For the case where ‖bT‖ = 0
(no T wave in JT), this yields

p(bT| . . .) ∝ exp
(
− ‖x̃T‖

2

2σ2
w

)[ ∫
δ(αT− α̂T,n−1)dαT

]
p0

= exp
(
− ‖x̃T‖

2

2σ2
w

)
p0 . (C.2)
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For the case where ‖bT‖= 1 (one T wave in JT), we obtain

p(bT| . . . ∝
1

(
√

2πσα)G

[ ∫
exp

(
− ‖x̃T−BTHαT‖2

2σ2
w

− ‖αT− α̂T,n−1‖2

2σ2
α

)
dαT

]
p1

= 1
(
√

2πσα)G

[ ∫
exp

(
−1

2(αT−µ1)TΣ−1
1 (αT−µ1)

)
dαT

]
exp

(
− ‖x̃T‖

2

2σ2
w

+ µ1Σ−1
1 µ1

)
p1

=
√
|Σ1|
σGα

exp
(
− ‖x̃T‖

2

2σ2
w

)
exp(µ1Σ−1

1 µ1) p1 (C.3)

with µ1 and Σ1 as defined in (3.15) and (3.16), respectively. In the third case, ‖bT‖ > 1, the
prior in (3.7) is zero, hence (C.1) is also zero. Since the constant factor exp

(
− ‖x̃T‖

2

2σ2
w

)
appears

in both (C.2) and (C.3), it can be dropped. Thus, we obtain (3.14).

Waveform coefficients. To derive expression (3.17) for the sampling distribution for αT,
we again use Bayes’ rule as well as equations (3.13) and (3.12)

p(αT|b, α̂T,n−1,αP,γ, σ
2
w,x)

∝ p(θ|x, α̂T,n−1, α̂P,n−1)
∝ p(x|θ) p(θ|α̂T,n−1, α̂P,n−1)
∝ p(x|θ) p(αT|bT, α̂T,n−1) .

In the last expression, we dropped all factors that do not depend on αT. Inserting (3.6) for
p(x|θ) and (3.9) for p(αT|bT, α̂T,n−1), we obtain for the case ‖bT‖= 0

p(αT| . . .) ∝ exp
(
− ‖x̃T‖

2

2σ2
w

)
δ(αT− α̂T,n−1)

∝ δ(αT− α̂T,n−1)

and for the case ‖bT‖= 1

p(αT| . . .) ∝
1

(
√

2πσα)G
exp

(
− ‖x̃T−BTHαT‖2

2σ2
w

− ‖αT− α̂T,n−1‖2

2σ2
α

)
∝ N (µ1,Σ1) .

Thus, we have derived (3.17).

Baseline coefficients. The sampling distribution for γ in (3.18) is derived in analogy to
that of the waveform coefficients

p(γ|b,αT,αP, σ
2
w,x)

∝ p(θ|x, α̂T,n−1, α̂P,n−1)
∝ p(x|θ) p(θ|α̂T,n−1, α̂P,n−1)
∝ p(x|θ) p(γ) .



175

Inserting (2.5) for p(x|θ) and p(γ) = N (0, σ2
γI5), we obtain

p(γ| . . .) ∝ 1
(
√

2πσγ)5 exp
(
− ‖x̃−Mγ‖2

2σ2
w

− ‖γ‖
2

2σ2
γ

)
∝ N (µ2,Σ2)

with µ2 and Σ2 as defined in (3.19) and (3.20), respectively. Thus, we have derived (3.18).

Noise variance. The distribution in (3.21) is a well-known result (e.g., [LI06]).
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Appendix D

Proposal distributions for the CPF

This appendix derives the expressions of the sampling distributions provided in Section 3.3.2.

Wave indicators. The proposal distribution for bn can be obtained as follows

p(bn = βj |αn−1,yn) ∝ p(yn|bn = βj ,αn−1)p(bn = βj)
∝ p(yn|bn = βj ,αn−1)

∝
∫
p(yn|bn = βj ,αn)p(αn|αn−1)dαn

∝
∫

exp
(
−‖yn −Bn,jHαn‖2

2σ2
w

)
exp

(
−‖αn −αn−1‖2

2σ2
α

)
dαn

∝ exp
(
µ1,jΣ−1

1,jµ1,j

)
with

µ1,j = Σ1,j

(
HTBT

n,jyn
σ2
w

+ αn−1
σ2
α

)

Σ1,j =
(
HTBT

n,jBn,jH

σ2
w

+ IG
σ2
α

)−1

where Bn,j is the NT,n × (2L+ 1) Toeplitz matrix with first row (bn,L+1 · · · bn,1 0 · · · 0) and
first column (bn,L+1 · · · bn,NT,n 0 · · · 0)T which corresponds to bn = βj .

Waveform coefficients. The proposal distribution for αn can be obtained as follows

p(αn|bn,αn−1,yn) ∝ p(yn|bn,αn)p(αn|αn−1)

∝ exp
(
−‖yn −BnHαn‖2

2σ2
w

)
exp

(
−‖αn −αn−1‖2

2σ2
α

)
= N (µ2,Σ2)
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with

µ2 = Σ2

(
HT (Bn)T yn

σ2
w

+ αn−1
σ2
α

)

Σ2 =
(
HT (Bn)T BnH

σ2
w

+ IG
σ2
α

)−1



Appendix E

T waveform estimation using a
beat-to-beat block Gibbs sampler

This appendix introduces the modified beat-to-beat Bayesian model which allows a T waveform
estimation in each heartbeat in EGM signals.

Signal model for one T-wave search interval. The proposed method first detects QRS
complexes and then defines T search intervals which is located to the right hand neighborhoods
of the QRS ends. As shown in Fig. E.1, the T search interval JT,n associated with the nth
heartbeat is defined as the right hand neighborhood of the QRS end set. The temporal lengths
of the non-QRS interval Jn and T search interval JT,n are denoted asNn andNT,n, respectively.
In this work, a value of NT,n = 0.6Nn is recommended by the cardiologist. Our goal is to
estimate the locations, amplitudes, and shapes (waveforms) of the T waves within their search
intervals JT,n. Note that unlike in Chapters 2 and 3, the P wave is no longer the concern of
the problem. Thus the P search interval is not considered in the signal model.

n+1
T,n−1

hT,nhT,n−1

b T,n,i =1

JT,n

=1bT,n,j

^ ^

ECG Signal

local baseline

T−wave

Jn−1 JnQRS

n−1

QRS

n

QRS

J

Figure E.1: Signal model for the beat-to-beat T waveform estimation scheme.
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Similar to the signal model in Section 3.2, the signal in the T search interval JT,n can be
approximated by a pulse representing the T wave plus a local baseline (see Fig. E.1). The T
wave within JT,n is modeled by the convolution of an unknown binary “indicator sequence”
bT,n = (bT,n,1 · · · bT,n,NT,n)T indicating the T wave location (bT,n,i = 1 if there is a wave at
location i, bT,n,i = 0 otherwise) with unknown T waveforms hT,n = (hT,n,−L · · · hT,n,L)T . Here,
the waveform length 2L + 1 is chosen as a fixed percentage of NT,n that is large enough to
accommodate the actual supports of the T waves. Note that at most one indicator is nonzero
because at most one T wave maybe present in any given search interval.

From the above discussion, it follows that the nth T search interval can be expressed by
the convolution relation

xn,k =
NT,n∑
j=1

hT,n,k−jbT,n,j + cn,k + wn,k , k∈JT,n. (E.1)

Here, cn,k denotes the baseline sequence and wn,k is a white Gaussian noise with unknown
variance σ2

w,n.

By applying the Hermite decomposition technique as in the previous sections, the T wave-
form is represented by a basis expansion using discrete-time versions of Hermite functions such
that

hT,n = HαT,n (E.2)

where H is a (2L +1) × G matrix whose columns are the first G Hermite functions (with
G ≤ 2L + 1), suitably sampled and truncated to length 2L + 1, and αT,n is an unknown
coefficient vector of length G. Similarly, the residual local baseline within the T wave search
interval is modeled by using a polynomial of degree 4, i.e.,

cn,k =
5∑
i=1

γn,ik
i−1, k∈Jn . (E.3)

In vector-matrix form, (E.3) reads as cn = Mγn, with the known NT,n× 5 Vandermonde
matrix M and the unknown coefficient vector γn = (γn,1 · · · γn,5)T .

By applying (E.2) and (E.3), we obtain the following vector representation of the T search
interval signal in (E.1)

xn = BT,nHαT,n +Mγn +wn (E.4)

where xn = (xn,1 · · ·xn,NT,n)T and wn = (wn,1 · · ·wn,NT,n)T and BT,n is the NT,n × (2L + 1)
Toeplitz matrix with first row (bT,n,L+1 · · · bT,n,1 0 · · · 0) and first column (bT,n,L+1 · · · bT,n,NT,n 0
· · · 0)T .

Bayesian inference for T wave parameter estimation

Due to the previous parametrization, the unknown parameters for the nth T search interval
JT,n can be summarized in the random vector θn , (bTT,nαTT,n σ2

w,n)T . Note, in particular,
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that the noise variance σ2
w,n is modeled as a random parameter. Bayesian detection/estimation

relies on the posterior distribution

p(θn|xn) ∝ p(xn|θn)p(θn) (E.5)

where p(xn|θn) is the likelihood function and p(θn) is the prior distribution of θn. The next
two subsections present the likelihood function and priors considered in this study.

Likelihood Function. Using (E.4) and the fact that wn,k is white and Gaussian with
variance σ2

w,n, the likelihood function is obtained as

p(xn|θn) = N (BT,nHαT,n +Mγn, σ
2
w,nINn) (E.6)

Prior distributions. The indicators bT,n,k are subject to a block constraint: within JT,n,
there is one T wave (thus, ‖bT,n‖ = 1) or none (thus, ‖bT,n‖ = 0), the latter case being very
unlikely. Therefore, we define the prior of bT,n as

p(bT,n) =


p0 if ‖bT,n‖ = 0
p1 if ‖bT,n‖ = 1
0 otherwise

(E.7)

where p1 = (1− p0)/NT,n and p0 is chosen very small. Note that there are NT,n vectors
satisfying ‖bT,n‖ = 1 whereas the zero vector is the only vector satisfying ‖bT,n‖ = 0. Thus the
probabilities in (E.7) sum to one. The wave indicator vectors bT,n for different search intervals
(different n) are assumed to be statistically independent.

The waveform coefficient vectors αT,n for the nth T-wave search interval JT,n are supposed
to depend on the respective estimates obtained in the (n− 1)th T-wave search interval JT,n−1.
The prior of αT,n is defined as

p(αT,n|bT,n, α̂T,n−1) =

δ(αT,n− α̂T,n−1) if ‖bT,n‖ = 0
N (α̂T,n−1, σ

2
αIG) if ‖bT,n‖ = 1

(E.8)

where α̂T,n−1 is the estimate of the T waveform coefficient vector associated with Jn−1 and IG
is the identity matrix of size G ×G. For the variance σ2

α, we choose a value that allows for a
reasonable variability of the waveform coefficients from one interval to another. Note that when
there is no T wave in the search interval (‖bT,n‖ = 0), the prior sets αT,n equal to α̂T,n−1, i.e.,
the waveform coefficients are assigned the same values as those estimated in JT,n−1. These
definitions of the priors associated with αT,n introduce a memory in the statistical model for
the T waveforms and, in turn, result in a sequential type of processing.

Concerning the baseline coefficients and the noise variance, they are assigned similar priors
as in the beat-to-beat Bayesian model in Section 3.2. The baseline coefficient vectors γn for
different n are assumed to be independent. Moreover, the baseline coefficients γn,i for a given
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n are modeled as independent and identically distributed (iid) zero-mean Gaussian, i.e.,

p(γn)=N (0, σ2
γI5), (E.9)

with a fixed variance σ2
γ . The noise variances σ2

w,n for different n are modeled as independent
and distributed according to the inverse gamma distribution

p(σ2
w,n)=IG(ξ, η), (E.10)

where ξ and η are fixed hyperparameters providing a vague prior.

Since there are no known relations between (bT,n,αT,n), γn, and σ2
w,n, all these sets of

parameters are assumed to be a priori statistically independent. Therefore, the joint prior for
the total parameter vector θn = (bTT,nαTT,n γTn σ2

w,n)T factors as

p(θn|α̂T,n−1) = p(αT,n|bT,n, α̂T,n−1) p(bT,n)p(γn) p(σ2
w,n) (E.11)

Posterior distribution. The posterior distribution of the parameter vector θn can be
derived using Bayes’ rule, i.e.,

p(θn|xn, α̂T,n−1) ∝ p(xn|θn)p(θn|α̂T,n−1) (E.12)

where the different densities have been defined in (E.6), (E.11), and the individual prior dis-
tributions have been discussed previously.

Due to the complexity of the resulting posterior distribution, we propose a block Gibbs
sampler that generates samples asymptotically distributed according to p(θn|x, α̂T,n−1). This
sampler has a very similar structure to the block Gibbs sampler proposed in Section 3.2.3,
except that the sampling distributions for certain parameters are different since the steps to
generate P wave parameters are omitted.
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