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Preface 

 

The work presented in this thesis aimed to find a solution to a problem associated with 

many drugs: low aqueous solubility, especially important in the case of intranasal 

delivery, where the administration volume is low, which poses an additional challenge. 

This characteristic makes these molecules hard to formulate as solutions without the use 

of a high amount of organic solvents, which are potentially toxic. We hypothesized that 

a water-soluble prodrug that would be readily converted into its parent drug prior or 

after absorption, even if less permeble, could be a safe and effective alternative of 

increasing these type of drugs’ solubility without having to use potentially harmful 

excipients. Hence, a drug/prodrug pair already existing in the market – phenytoin, a low 

solubility antiepileptic drug, and fosphenytoin, its phosphate ester prodrug – were 

selected. The main objective of this work was, therefore, to serve as a proof of concept 

that phosphate ester prodrugs can be a useful strategy in nasal formulation development 

to safely increase drug strenght of low solubility drugs, consequently increasing their 

bioavailability.  

This thesis is divided into five chapters plus a concise section of overall concluding 

remarks. Most of the data has been previously published – either in international 

scientific indexed journals or as a book chapter. Only Chapter 5 was still under 

preparation for submission at the time this thesis was written.  

Chapter 1 is an introductory contextualization, addressing topics such as epilepsy 

(pathophysiology and treatment) and intranasal administration (how it works, 

advantages and disadvantages, intranasal delivery of antiepileptics), providing a 

theoretical basis for the experimental work. Most of the information presented in this 

chapter was published in the book chapter “Intranasal delivery of antiseizure drugs, 

Drug Delivery Devices and Therapeutic Systems, 2020 (1st ed.), Elsevier Academic Press 

(ISBN: 9780128198384)”. 

Chapter 2 is a systematic review of the scientific literature regarding non-clinical studies 

that assessed the intranasal delivery of small molecule drugs within nanosystems. The 

purpose of this review was to better understand the variables that can influence the 

outcomes of in vivo studies comprising intranasal administration, as well as to assess 

whether there is a specific nanosystem type that is superior at achieving high brain 

targeting through this route. The data presented in this chapter corresponds to the article 
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“Nanosystems in nose-to-brain drug delivery: A review of non-clinical brain targeting 

studies, Journal of Controlled Release, 2018 (DOI: 10.1016/j.jconrel.2017.11.047)”. 

Chapter 3 reports the experimental work regarding the development, in vitro 

characterization and in vivo pharmacokinetic study of simple fosphenytoin 

formulations. The purpose of this work was to assess whether simple formulations 

containing this prodrug could already achieve high brain drug levels despite their 

simplicity, and to determine whether fosphenytoin could reach the brain in an 

unmetabolized form or if it was completely converted to phenytoin by the time it got 

there. This work was published in the article “Intranasal fosphenytoin: the promise of 

phosphate esters in nose-to-brain delivery of poorly soluble drugs, International 

Journal of Pharmaceutics, 2020 (DOI: 10.1016/j.ijpharm.2020.120040)”. 

Chapters 4 and 5 are about the development of nano or microemulsions containing 

phenytoin and fosphenytoin, including in vitro and in vivo characterization. It was an 

effort to produce formulations also containing the drug in the active and diffusible form 

(phenytoin), in addition to the prodrug (fosphenytoin), to assess whether it could make 

brain targeting faster. Chapter 4 was published in the article “Nanoemulsions and 

thermosensitive nanoemulgels of phenytoin and fosphenytoin for intranasal 

administration: formulation development and in vitro characterization, European 

Journal of Pharmaceutical Sciences, 2020 (DOI: 10.1016/j.ejps.2019.105099)”, and 

Chapter 5 was being prepared for submition at the time this thesis was written. 

When including the published works into the thesis, some alterations were made in order 

to increase coherence and uniformity throughout the text, for example by decreasing the 

number of abbreviations or making them homogeneous, or by summarizing the 

“Introduction” sections of the articles to give origin to the brief introductory sections of 

Chapters 2 to 5.  

Finaly, after Chapter 5, a concise section was added as a final discussion of the most 

important aspects of the work, and providing a conclusion for the thesis as a whole. 
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Abstract 

 

In brain-targeted drug delivery, the intranasal route can be a good alternative to 

parenteral administration. In addition to being associated with a greater comfort for the 

patient, intranasal drug delivery can reduce systemic drug distribution, resulting in an 

increased safety, and can allow direct drug transport to the brain, resulting in an 

increased therapeutic efficacy. For example, benzodiazepines administration for the 

treatment of acute epileptic episodes has been proven to be at least as effective as their 

intravenous administration. Nevertheless, their solubilization requires substantial 

amounts of organic solvents, which can cause  lacrimation and nose and throat irritation. 

Additionally, benzodiazepines can cause somnolence, deleterious cognitive effects and 

dependence/tolerance. 

Phenytoin is also an antiepileptic drug, being non-inferior in efficacy, while not having 

these adverse effects. Although its systemic administration can cause other adverse 

events (such as cardiovascular complications or liver toxicity), its intranasal 

administration could increase its safety and even efficacy compared to other non-

invasive routes in the treatment of status epilepticus. Yet, phenytoin has low aqueous 

solubility, being difficult to formulate at a high strength. However, its hydrophilic 

prodrug, fosphenytoin, has high water solubility. Hence, aqueous liquid water-based 

formulations of fosphenytoin for intranasal administration were developed. 

Pharmacokinetic results in mice showed that a fosphenytoin formulation containing 

hydroxypropyl methylcellulose and albumin prolonged drug concentration in the brain, 

also producing a high absolute drug bioavailability. The study demonstrated that 

phosphate ester prodrugs (such as fosphenytoin) can be an efficient strategy to increase 

the intranasal bioavailability of low solubility drugs (such as phenytoin). 

In addition, we hypothesized that if there was phenytoin in the formulation, in the active 

and diffusible form, brain drug delivery could be increased and/or made faster. Thus, 

nano and microemulsions containing phenytoin (internalized in the oil droplets) and 

fosphenytoin (solubilized in the aqueous phase) in combination were developed. A 

microemulsion having good characteristics (reasonably homogeneous, with small 

droplet size and physically stable for at least 1 week) was selected for pharmacokinetic 

evaluation in mice. In addition to the intranasal administration of this selected 

microemulsion, containing both phenytoin and fosphenytoin, a second microemulsion 

was also administered intranasally, having an identical composition but without 
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phenytoin (with fosphenytoin only), for comparison purposes. Despite the existence of a 

small amount of phenytoin in the formulation not inducing accelerated brain drug 

delivery, it led to prolonged and increased drug levels. Moreover, the intranasal 

administration of the microemulsion containing both drugs led to a maximum brain 

concentration that was similar to that obtained with the intravenous fosphenytoin 

solution, also leading to prolonged drug retention. The microemulsion containing both 

drugs also had a higher bioavailability than any of the intranasally administered 

formulations containing fosphenytoin only (microemulsion without phenytoin, and 

simple fosphenytoin formulations). Furthermore, both microemulsions (the one 

containing both drugs and the one containing fosphenytoin only) led to higher drug 

concentrations at initial time points than those obtained with the simple intranasal 

fosphenytoin solution, which suggests that the microemulsion had a drug permeation 

enhancement effect. 

Thus, in general this work allowed to prove that the use of phosphate ester prodrugs can 

be an effective strategy in increasing the intranasal bioavailability of low solubility drugs, 

albumin is a good strategy to prolong brain targeting, the existence of a small amount of 

active drug (in addition to the prodrug), in an emulsified form, can increase drug levels 

at longer time points, and the use of microemulsions can increase brain drug delivery at 

shorter time points. 
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Status epilepticus. 
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Resumo 

 

Na entrega de fármacos ao cérebro a via intranasal pode ser uma boa alternativa à 

administração parentérica. Para além de estar associada a um maior conforto para o 

doente, a via intranasal pode também reduzir a distribuição sistémica de fármaco, 

resultando num aumento da segurança, e possibilitar o transporte direto do mesmo para 

o cérebro, resultando num aumento da eficácia terapêutica. A administração de 

benzodiazepinas para o controlo de crises epiléticas foi já comprovada como sendo pelo 

menos tão eficaz como a sua administração intravenosa. No entanto, a sua solubilização 

requer elevadas quantidades de solventes orgânicos, o que pode causar lacrimejo e 

irritação no nariz e garganta. Adicionalmente, as benzodiazepinas podem causar 

sonolência, distúrbios cognitivos, dependência e tolerância.  

A fenitoína é também um fármaco antiepilético, não sendo inferior em eficácia e não 

apresentando os mesmos efeitos adversos das benzodiazepinas. A sua administração 

sistémica pode causar outros efeitos adversos (por exemplo a nível do sistema 

cardiovascular ou hepático), no entanto a sua administração intranasal poderá aumentar 

a sua segurança e, potencialmente, a eficácia no tratamento do status epilepticus 

comparativamente a outras vias não invasivas. No entanto a fenitoína é um fármaco com 

baixa solubilidade aquosa, o que faz com que seja difícil de formular em dosagem 

elevada. Porém, o seu pró-fármaco hidrofílico, a fosfenitoína, tem uma solubilidade 

aquosa elevada. Assim, foram desenvolvidas formulações líquidas aquosas de 

fosfenitoína para administração intranasal. Os resultados de estudos farmacocinéticos 

em murganhos mostraram que uma formulação de fosfenitoína contendo 

hidroxipropilmetilcelulose e albumina prolongou a concentração de fármaco no cérebro, 

originando uma elevada biodisponibilidade absoluta da fenitoína. Neste estudo foi 

demonstrado que os pró-fármacos ésteres de fosfato (como a fosfenitoína) podem ser 

uma estratégia eficaz e segura no aumento da biodisponibilidade intranasal de fármacos 

pouco solúveis (como a fenitoína). 

Adicionalmente, colocou-se a hipótese de que a presença de fenitoína na formulação, na 

forma ativa e pronta a difundir através das barreiras biológicas, pudesse aumentar a 

rapidez com que o fármaco chegava ao cérebro, e/ou a eficácia com que o fazia. Assim, 

foram desenvolvidas nano e microemulsões contendo fenitoína (internalizada nas 

gotículas oleosas) e fosfenitoína (solubilizada na fase aquosa) em combinação. Foi 

selecionada uma microemulsão com boas características (razoavelmente homogénea, 
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com tamanho de gotícula pequeno e fisicamente estável durante pelo menos uma 

semana) para seguir para estudos farmacocinéticos em animais. Para além da 

administração intranasal da microemulsão selecionada, contendo fenitoína e 

fosfenitoína, foi também administrada pela via intranasal uma microemulsão de 

composição idêntica mas sem fenitoína (só com fosfenitoína), por forma a perceber-se 

se a existência de uma pequena quantidade de fenitoína na forma ativa e permeável (e 

não apenas fosfenitoína) é necessária para obter níveis mais elevados ou acelerar a 

entrega de fármaco ao cérebro. Os resultados sugeriram que, apesar da existência de uma 

pequena quantidade de fenitoína na formulação não ter tornado a entrega de fármaco ao 

cérebro mais rápida, levou a um prolongamento e aumento dos níveis de fármaco. 

Adicionalmente, a administração intranasal da microemulsão contendo ambos os 

compostos (fenitoína e fosfenitoína) levou a uma concentração máxima no cérebro 

semelhante àquela obtida mediante administração intravenosa de fosfenitoína, levando 

também a um prolongamento da retenção de fármaco. A microemulsão contendo ambos 

os compostos teve também uma maior eficácia que qualquer outra formulação 

administrada pela via intranasal contendo apenas fosfenitoína (microemulsão sem 

fenitoína mas com fosfenitoína, e formulações simples de fosfenitoína). Para além disso, 

ambas as microemulsões (contendo ambos os fármacos ou apenas fosfenitoína) deram 

origem a concentrações superiores às obtidas com a solução de fosfenitoína intranasal, o 

que sugere que os excipientes que faziam parte da composição destas formulações 

(nomeadamente os agentes tensioativos) tiveram um efeito de aumento da permeação 

de fármaco. 

Assim, em geral, este trabalho permitiu provar que o uso de pró-fármacos ésteres de 

fosfato pode ser uma estratégia eficaz no aumento da biodisponibilidade intranasal de 

fármacos pouco solúveis, que a albumina é uma boa estratégia de direcionamento 

cerebral, que a existência de uma pequena quantidade de fármaco ativo (em adição ao 

pró-fármaco), em emulsão, aumenta os níveis de fármaco a tempos mais longos, e que o 

uso de microemulsões aumenta a concentração de fármaco no cérebro a tempos curtos. 

 

Palavras-chave 

 

Albumina; Antiepilético; Direcionamento cerebral; Farmacocinética; Fenitoína; 

Fosfenitoína; Hidroxipropilmetilcelulose; Intranasal; Microemulsão; Nanoemulsão; 

Pró-fármaco; Status epilepticus. 
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Resumo alargado 

 

A administração intravenosa de fármacos pode estar associada a um atraso na obtenção 

da resposta terapêutica, uma vez que é uma via de administração que implica o 

estabelecimento de acesso intravenoso, na presença de pessoal com competência para 

tal, o que requer geralmente hospitalização. Isto pode ser potencialmente prejudicial 

para o doente, especialmente em casos de emergência. O facto de a via parentérica ser 

invasiva está também associado a um risco de lesão no local de administração, sendo 

pelo menos desconfortável e, por vezes, até doloroso para o doente. 

Na entrega de fármacos ao cérebro a via intranasal pode ser uma boa alternativa à 

administração parentérica, estando associada a um maior conforto para o doente, e 

tendo ainda outras vantagens, tais como a redução da distribuição sistémica de fármaco, 

que pode levar a um aumento da segurança da preparação, e a possibilidade de o fármaco 

ser transportado diretamente para o cérebro, pelas vias neuronais, que pode aumentar a 

eficácia uma vez que pelo menos parte do fármaco não terá que passar pela barreira 

hemato-encefálica.  

Há hoje em dia vários produtos nasais no mercado, utilizados tanto para efeitos locais 

como sistémicos, sendo fáceis de administrar pelo próprio ou por um cuidador. A 

administração de benzodiazepinas para o controlo de crises epiléticas foi já comprovada 

como sendo pelo menos tão eficaz como a administração intravenosa dos mesmos 

fármacos, tendo chegado recentemente ao mercado duas preparações: Nayzilam®, uma 

formulação contendo midazolam, e Valtoco®, uma formulação contendo diazepam. No 

entanto, a solubilização de benzodiazepinas requer o uso de elevadas quantidades de 

solventes orgânicos na formulação, e estas preparações já demonstraram causar 

lacrimejo e irritação no nariz e garganta. Adicionalmente, as benzodiazepinas podem 

causar sonolência e, em caso de toma excessiva, distúrbios cognitivos, dependência e 

tolerância. 

Tal como as benzodiazepinas, a fenitoína é também um fármaco antiepilético, mas não 

apresenta estes efeitos adversos potencialmente aditivos e nocivos, sendo ainda 

considerada não inferior em termos de eficácia. É um fármaco cuja administração 

sistémica pode causar outros efeitos adversos (por exemplo a nível do sistema 

cardiovascular ou hepático), no entanto a sua administração intranasal poderá aumentar 

a sua segurança e, potencialmente, também a sua eficácia comparativamente a outras 

vias não invasivas, no tratamento do status epilepticus. 
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No entanto, a fenitoína é um fármaco de baixa solubilidade aquosa, o que faz com que 

seja difícil obter uma dosagem elevada sem a utilização de grandes quantidades de 

solventes orgânicos. Porém, o seu pró-fármaco hidrofílico, a fosfenitoína, tem uma 

solubilidade aquosa elevada, pelo que poderá ser uma abordagem mais viável para 

incorporação em formulações líquidas simples, com base aquosa, para administração 

intranasal. Assim, numa primeira fase do trabalho experimental foram desenvolvidas 

formulações contendo água, fosfenitoína e um polímero para aumento do tempo de 

retenção da preparação na cavidade nasal – Pluronic® F-127, um poloxâmero com 

propriedades termossensíveis, ou hidroxipropilmetilcelulose (HPMC), um derivado da 

celulose com propriedades viscosificantes e potencialmente mucoadesivas. Foram 

testadas várias concentrações destes polímeros, sozinhos ou em combinação, e foi 

selecionada para avançar para estudos farmacocinéticos in vivo uma preparação com 

libertação rápida de fármaco e com potencial mucoadesividade – uma formulação 

contendo HPMC (dado que, na sua maioria, as formulações contendo Pluronic davam 

origem a uma libertação prolongada de fármaco). Foi também adicionada albumina à 

formulação selecionada, por forma a tentar aumentar o direcionamento de fármaco para 

o cérebro, uma vez que é sabido que a albumina é transportada para o cérebro a partir 

da cavidade nasal, e que a fenitoína e fosfenitoína têm uma ligação muito elevada a esta 

proteína. A quantidade de fosfenitoína solubilizada na formulação final foi de 34,8 mg/g 

equivalentes de fenitoína. Os resultados da administração intranasal em estudos 

farmacocinéticos em murganhos mostraram que foi quantificável nas matrizes 

recolhidas (cérebro e sangue) apenas fenitoína, o que indica uma conversão rápida de 

pró-fármaco em fármaco ativo na cavidade nasal e/ou após absorção. Contrariamente ao 

esperado, a HPMC não parece ter aumentado a retenção da preparação na cavidade 

nasal, mas a albumina parece ter prolongado a concentração de fármaco no cérebro, 

tendo-se obtido uma biodisponibilidade absoluta elevada (comparação com a via 

intravenosa). Para além disso, os níveis sanguíneos obtidos com as preparações 

intranasais não foram tão elevados quanto os obtidos com a via intravenosa, o que pode 

indicar uma maior segurança (menor distribuição sistémica). Neste estudo 

demonstrámos, então, que os pró-fármacos ésteres de fosfato (como a fosfenitoína) 

podem ser uma estratégia eficaz no aumento da biodisponibilidade intranasal de 

fármacos pouco solúveis (como a fenitoína). 

Contudo, o facto de existir apenas fosfenitoína na formulação poderia estar a atrasar a 

chegada de fármaco ao cérebro, já que tinha que existir tempo para ocorrer a conversão 

a fenitoína (por mais rápida que fosse), e sendo improvável que a fosfenitoína permeasse 

em grande extensão uma vez que é um composto hidrofílico e duplamente ionizado. Para 
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além disso, os níveis de fármaco no cérebro aos tempos mais curtos eram ou muito baixos 

ou nulos (pelo menos com o método analítico aplicado). Pelo que se considerou a 

hipótese de que a presença de fenitoína na formulação, na forma ativa e pronta a difundir 

através das barreiras biológicas, pudesse aumentar a rapidez e/ou a extensão com que o 

fármaco chegava ao cérebro. Posto isto, uma vez que não era possível ter fenitoína em 

elevada concentração sem recorrer a elevadas quantidades de solventes orgânicos, 

pensou-se em formular fenitoína em conjunto com fosfenitoína em nano ou 

microemulsões óleo-em-água, onde a fenitoína estaria internalizada nas gotículas da fase 

oleosa, e a fosfenitoína solubilizada na fase externa aquosa. Assim, numa segunda fase 

do trabalho experimental foram desenvolvidas nanoemulsões e nanoemulgéis de 

formação espontânea, com homogeneização adicional por extrusão por uma membrana 

de pequeno poro para obtenção de tamanho de gotícula pequeno e homogéneo. A 

composição do pré-concentrado incluiu o óleo Miglyol 812, o tensioativo hidrofílico 

Tween 80 e o co-solvente Transcutol (em proporções específicas), mantendo-se uma 

proporção pré-concentrado/fase aquosa de 40:60 (para maximizar a quantidade de 

fenitoína) ou 10:90 (para maximizar a dosagem de fármaco total). Daqui obtiveram-se 

três formulações finais: uma nanoemulsão de viscosidade reduzida e libertação rápida 

(proporção pré-concentrado/fase aquosa 10:90); e uma nanoemulsão de viscosidade 

reduzida (proporção pré-concentrado/fase aquosa 40:60) e um nanoemulgel (proporção 

pré-concentrado/fase aquosa 10:90, com Pluronic na fase externa), ambos com 

libertação prolongada. No entanto, a dosagem de fármaco atingida não ultrapassou os 

22 mg/g ou os 27 mg/g de equivalentes de fenitoína nas nanoemulsões (maior dosagem 

para menor proporção pré-concentrado/fase aquosa) e 16,7 mg/g de equivalentes de 

fenitoína no nanoemulgel, o que era mais baixo que a dosagem obtida para as 

formulações mais simples contendo apenas fosfenitoína. Neste sentido, parecia ainda 

haver espaço para melhoria e aumentar a concentração de fármaco neste tipo de 

formulações. 

E foi assim que se iniciou a terceira fase do trabalho experimental, na qual se tentou 

novamente desenvolver nano ou microemulsões contendo fenitoína e fosfenitoína, mas 

tentando aumentar a dosagem total de fármaco em formulação. Uma vez que tinha dado 

origem a níveis de fármaco no cérebro prolongados no tempo aquando do estudo 

farmacocinético com as formulações mais simples de fosfenitoína, a albumina foi 

assumida como sendo necessária na composição das novas emulsões. Para maximizar a 

quantidade de fenitoína na forma ativa a quantidade de pré-concentrado foi aumentada, 

ficando a proporção pré-concentrado/fase aquosa a 50:50. Ainda para aumentar a 

solubilização de fenitoína na forma ativa (e não como pró-fármaco) foram feitos estudos 
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preliminares de solubilidade em excipientes individuais. Os excipientes de cada categoria 

que melhor solubilizavam a fenitoína foram escolhidos e misturados em diversas 

proporções no pré-concentrado, para que aquando da junção com a fase aquosa dessem 

origem a nano ou microemulsões com boas características (homogéneas, com tamanho 

de gotícula pequeno e fisicamente estáveis durante, pelo menos, algumas horas). Foi 

depois novamente avaliada a capacidade de solubilização de fenitoína, agora nos veículos 

selecionados, no entanto, apesar do esforço na seleção dos excipientes que melhor 

solubilizavam o fármaco em questão, a solubilidade da fenitoína foi similar àquela obtida 

nas nanoemulsões e nanoemulgel previamente desenvolvidos. Assim, por forma a 

aumentar a dosagem de fármaco (atingindo pelo menos à volta de 34,8 mg/g de 

equivalentes de fenitoína, o mesmo que nas formulações mais simples de fosfenitoína) 

aumentou-se a quantidade de fosfenitoína na fase externa. Apenas 2 fórmulas 

demonstraram compatibilidade com as quantidades requeridas de fenitoína, 

fosfenitoína e albumina: uma contendo Capryol 90 (óleo), Kolliphor EL (tensioativo 

hidrofílico) e Transcutol (co-solvente), e outra contendo Capryol 90 (óleo), Kolliphor EL 

(tensioativo hidrofílico) e Imwitor 988 (tensioativo hidrofóbico), em proporções 

específicas no pré-concentrado. Estas fórmulas deram origem a microemulsões de 

tamanho de gotícula pequeno e relativamente homogéneo, com uma viscosidade 

relativamente baixa. Ambas permitiram uma libertação razoavelmente rápida de 

fármaco, sendo muito similares entre si. Uma vez que tinham dosagens de fármaco e 

perfis de libertação semelhantes, selecionámos a microemulsão sem Transcutol para 

seguir para estudos farmacocinéticos em animais, uma vez que seria potencialmente 

menos tóxica. Para além da administração intranasal da microemulsão selecionada, 

contendo fenitoína e fosfenitoína, foi também administrada pela via intranasal uma 

microemulsão de composição idêntica mas sem fenitoína (só com fosfenitoína), por 

forma a perceber-se se a existência de uma pequena quantidade de fenitoína na forma 

ativa e permeável (e não apenas fosfenitoína) é necessária para obter níveis mais 

elevados ou acelerar a entrega de fármaco ao cérebro. À semelhança do estudo 

farmacocinético anterior não foi possível quantificar fosfenitoína, apenas fenitoína. Os 

resultados sugeriram ainda que, apesar da existência de uma pequena quantidade de 

fenitoína na formulação não ter tornado a entrega de fármaco ao cérebro mais rápida, 

levou a um prolongamento e aumento dos níveis de fármaco. Adicionalmente, a 

administração intranasal da microemulsão contendo ambos os fármacos levou a uma 

concentração máxima no cérebro semelhante àquela obtida aquando da administração 

intravenosa de fosfenitoína, apesar desses níveis terem demorado mais tempo a serem 

atingidos, levando também a um prolongamento da retenção de fármaco, o que sugere 

que a administração intranasal desta microemulsão teve um melhor desempenho que a 



 xvii 

solução intravenosa em todos os aspetos exceto na rapidez. A microemulsão contendo 

ambos os fármacos teve também uma maior eficácia que qualquer outra formulação 

administrada pela via intranasal contendo apenas fosfenitoína (microemulsão sem 

fenitoína mas com fosfenitoína, e formulações simples de fosfenitoína), atingindo 

sempre níveis de fármaco iguais ou (na maior parte dos casos) superiores no cérebro e 

no sangue. Para além disso, ambas as microemulsões (contendo ambos os fármacos ou 

apenas fosfenitoína) deram origem a concentrações superiores às obtidas com a solução 

de fosfenitoína intranasal, o que sugere que os excipientes que faziam parte da 

composição destas formulações (nomeadamente os agentes tensioativos) tiveram um 

efeito de aumento da permeação de fármaco. 

Assim, globalmente, este trabalho permitiu provar que o uso de pró-fármacos ésteres de 

fosfato pode ser uma estratégia eficaz no aumento da biodisponibilidade intranasal de 

fármacos pouco solúveis, que a albumina tem um papel importante no prolongamento 

dos níveis de fármaco no cérebro (sendo uma boa estratégia de direcionamento cerebral), 

que a existência de uma pequena quantidade de fármaco ativo (em adição ao pró-

fármaco) aumenta os níveis de fármaco a tempos mais longos, e que o uso de agentes 

tensioativos aumenta a concentração de fármaco a tempos curtos. As estratégias a adotar 

no futuro, para estes ou outros fármacos, irão depender da intenção: se for apenas a de 

fazer aumentar os níveis de fármaco pouco tempo após administração, querendo um 

efeito terapêutico mais rápido mas sem necessidade de o prolongar no tempo, a 

combinação pró-fármaco + promotor da permeação será a mais favorável; mas se o 

objetivo for obter níveis elevados mais rapidamente mas também prolongados no tempo, 

então ter fármaco + pró-fármaco numa emulsão nanométrica + albumina será, das 

estratégias estudadas, a mais promissora. 
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Chapter 1 – Intranasal delivery of antiseizure 

drugs: an introductory contextualization 

 

1.1. Epileptic seizures  

An epileptic seizure is a transient abnormal excessive or synchronous neuronal activity 

in the brain, resulting in the occurrence of characteristic signs and/or symptoms. 

Epileptic seizures could be associated with epilepsies, or not. Acute symptomatic seizures 

(also called situation-related, occasional, reactive, or provoked) can be triggered by high 

fever (mostly in children), infections of the central nervous system, brain trauma, 

intoxication, acute hypoglycemia, or many other pathologies 1,2. Epilepsy is only said to 

exist if the seizure or seizures are unprovoked and there is a high predisposition to the 

recurrence of these episodes. For a diagnosis to be established, the patient must have 

had: at least one unprovoked epileptic seizure, and either a second seizure at least 24 

hours apart, or a high risk of recurrence; or diagnosis of an epilepsy syndrome. An 

epilepsy syndrome is a combination of seizure types, with clinical manifestations and 

diagnosis results that frequently occur together, as well as characteristic comorbidities 3. 

Epilepsy is a high incidence chronic neurological disease (or better said, group of 

diseases). Active epilepsy was estimated as the third most common neurological disorder 

in 2017, with a prevalence of about 27 million people, of which 2.5 million were new cases 

4. Even though it predominately affects children and the elderly, it can target all ages. 

Diagnostic methods include electroencephalography and neuroimaging studies, together 

with other studies exploring the underlying etiology (medical history of the patient, 

physical examination, blood and cerebrospinal fluid analysis) 5. 

According to the most recent classification guidelines of the International League 

Against Epilepsy, epileptic seizures can be classified as focal onset, generalized onset, or 

unknown onset 5. Generalized seizures represent about 30% of cases and affect both of 

the brain’s hemispheres simultaneously, therefore having more widespread symptoms. 

Only some seizure types involve involuntary body movements (convulsions), but these 

are so common that the term “convulsion” is frequently and incorrectly used as a 

synonym for “seizure”, and it is important to distinguish between the two, since 

“convulsions” are a symptom of (some) “seizures”. Focal (also known as partial) seizures, 

on the other hand, happen in a particular area of the brain, and will consequently have 

more localized symptoms, representing about 60% of cases. The remaining 10% of cases 
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are classified as “unknown onset seizures”, which are the ones that the physician cannot 

classify the nature of the seizure onset 5–8. Table 1.1 shows the main types of epileptic 

seizures and their associated symptoms. 

Table 1.1. Main types of epileptic seizures and associated symptoms. Adapted from the institutional website 
for the Epilepsy Foundation 8. 1 

Seizure Type Impairment of 
awareness 

Symptoms 

Generalized 
onset 

Tonic No, or yes but only 
partially 

Sudden stiffening or tensing of the body, arms or 
legs. 

Clonic Yes Rhythmical jerking of the body or parts of the 
body. 

Tonic-clonic Yes Complete loss of consciousness, muscles 
stiffening and jerking, person may have trouble 
breathing and controlling their bladder or bowl. 

Myoclonic No Brief shock-like jerks of a muscle or group of 
muscles. 

Atonic Yes, at least 
partially 

Sudden loss of muscle tone, head or body may go 
limp. 

Absence Yes Person suddenly stops all activity, starts staring 
into space, “blanking out”, sometimes mistaken 
for daydreaming. 

Focal onset Aware (or 
simple partial) 

No Depend on the function of the area of the brain in 
which they occur; person is fully alert and able to 
recall events during the seizure, but may or may 
not be able to respond to others; may experience 
a sense of déjà vu, sensory hallucinations, nausea, 
or migraine (with aura). 

Impaired 
awareness (or 
complex 
partial) 

Yes, at least 
partially 

Depend on the function of the area of the brain in 
which they occur; person usually becomes 
unaware of their surroundings and their ability to 
respond may be impaired; often includes 
automatic movements; may have an aura; may 
also include freezing up or wandering, word or 
phrase repetition, laughing, screaming or crying. 

Focal to 
bilateral tonic-
clonic 

Not at first, but 
yes as the seizure 
progresses 

Person is fully aware in the beginning of the 
seizure, then loses awareness as it progresses; 
different phases have different associated 
symptoms, as described. 

 
 

Epilepsy can originate from known persisting causes, like traumatic brain injury, stroke, 

tumor, central nervous system infection, inflammatory or autoimmune disease, and 

genetic or structural brain abnormalities. Nevertheless, for about half of all epilepsy 

diagnosis the cause is never found 6,7. 
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According to the American Epilepsy Society Guideline, epileptic seizure episodes can last 

less than 5 minutes (brief seizures), between 5 and 30 minutes (prolonged seizures), or 

more than 30 minutes – status epilepticus. Status epilepticus is the most severe 

manifestation of epilepsy. Convulsive status epilepticus is its most common type and is 

also associated with the highest degree of morbidity and, in some cases, even mortality, 

which can reach up to 30% in adults 9.  

 

1.2. Antiseizure treatment 

Treatment depends on the type of seizure, but also on factors that might interfere with 

the therapeutic outcome and patient compliance, such as the patient’s age, other 

medication, and potential side-effects 7. In many low and middle-income countries, there 

is also the issue of drug availability and affordability, thereby limiting the treatment 

options 10. 

To date, there is no cure for epilepsy. Chronic antiseizure treatment is used to control the 

clinical manifestations of the disease, in order to allow the patients to lead a normal daily 

life and to prevent the reoccurrence of an epileptic episode. Therapeutic alternatives have 

become more and more diverse over the years and now include not only pharmacological 

options, but also implantable medical devices, surgical methods, and dietary 

modifications. Nevertheless, the first choice of treatment continues to be oral antiseizure 

(also called antiepileptic or anticonvulsant) drugs 7,11. The purpose of the antiseizure 

treatment (rescue or emergency medication) during an acute epileptic episode (such as 

single seizures lasting more than 5 minutes or seizure clusters) is to end the excessive 

electrical brain activity as fast as possible, in order to prevent permanent neurological 

damage 9,12. There is also evidence that a longer seizure duration is associated with a 

worst prognosis because the patient becomes less responsive to treatment, mainly due to 

the internalization of GABA receptors (making GABAergic drugs less effective) or to the 

up-regulation of drug-efflux transporters 13. 

The first-line treatment of convulsive prolonged seizures or status epilepticus in hospital 

setting is usually a parenteral benzodiazepine, namely intravenous lorazepam, 

intravenous diazepam or intramuscular midazolam. Second-line treatment includes 

intravenous levetiracetam, lacosamide, phenytoin/fosphenytoin, valproic acid or 

phenobarbital. Intranasal midazolam or diazepam have also shown to be as effective as 

the intravenous alternatives. They are also first-line options in pre-hospital setting, along 

with buccal midazolam or rectal diazepam 9,13.  
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The non-invasive routes of administration make it possible for epilepsy patients to have 

these drugs as rescue medication that can be administered by a close relative or other 

informed person, in case of a breakthrough seizure 12. Nevertheless, rectal administration 

has its social barriers, not being well accepted by older children and adults, and buccal 

administration is associated with the risk of aspiration and a very variable, and many 

times incomplete, absorption 14,15. Therefore, in the following sections of this chapter the 

focus will be on the nasal route of administration. 

 

1.3. Intranasal drug delivery 

Nasal anatomy and drug distribution pathways from the nose to the brain have been 

repeatedly and extensively reviewed over the years 16–18. Put simply, the central part of 

the nasal mucosa can be divided into two regions: the respiratory and the olfactory. In 

the respiratory region, which corresponds to the majority of the surface area, drugs can 

either enter the systemic circulation, taking advantage of the highly vascularized and 

permeable epithelium, or diffuse directly to the brain, through the trigeminal nerve 

pathway. In the olfactory region, located in the upper nasal cavity, drugs can be 

transported or diffuse directly to the brain through the olfactory nerve pathway (Figure 

1.1). Of course, only part of the drug is likely to be absorbed locally, since a fraction might 

be lost due to enzymatic degradation and mucociliary clearance (being swallowed). 

Nonetheless, with lipophilic drugs, part of what reaches the systemic circulation will still 

reach the brain indirectly, by passing through the blood-brain barrier.  

 
 

Figure 1.1. Nasal anatomy and drug distribution pathways from the nose to the brain. 1 
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Nasal preparations may exist in the form of powders, liquids or semisolids, and should 

follow some general requirements. For example, none of the components of the 

formulation should be irritant to the nasal mucosa, and the pH of the liquid preparations 

(or the pH resulting from powder dissolution) should preferentially be similar to the 

nasal mucosa’s (5.0 to 6.5). Also, isotonic to slightly hypertonic solutions should be used 

to avoid causing toxicity in the nasal epithelium or enhanced mucociliary clearance. 

Careful consideration should also be given to the preparation’s viscosity and/or particles’ 

bioadhesiveness. In fact, a more viscous/adhesive preparation enhances contact time 

with the nasal mucosa, which can increase permeation. On the other hand, a highly 

viscous preparation might also reduce absorption, because of decreased drug diffusion 

from the formulation itself, or by making it difficult to obtain proper atomization 14,19,20. 

 

 

1.3.1. Advantages and limitations of intranasal drug 

delivery 

Nasal formulations are naturally advantageous to treat local affections and there are 

several preparations in the market for that purpose. They are mainly meant for 

symptoms related to allergies or upper respiratory tract infections, such as nasal 

congestion, rhinitis and sinusitis 19. 

However, there are also several reasons why the development of nasal preparations 

might be considered for systemic effect drugs, in which many authors agree upon 14,17. 

For example, it offers a way to bypass the blood-brain barrier, which is important for 

drugs that cannot cross it, or that undergo extensive active efflux at this site. Moreover, 

it is a non-invasive route, not requiring the manufacturing of sterile products. The 

formulations can be easily administrated by the patients themselves or a caregiver, hence 

not requiring trained professionals or in-hospital setting. It also offers a short onset of 

action, being advantageous for the management of emergency situations, which again is 

good for an outside-of-hospital setting. Furthermore, it does not subject the drugs to the 

harsh environment of the gastrointestinal tract and first-pass hepatic metabolism, which 

is critical for peptides, proteins and a great number of other drugs that have a 

compromised oral bioavailability. It presents itself as well as a suitable alternative for 

patients in conditions associated with vomiting, increased salivation, or inability to 

swallow, and it is, as has been previously stated, better accepted by adults and 

adolescents than the rectal route. The large surface area/volume ratio and high 

vascularization of the nasal cavity also make it a favorable site for systemic drug 

absorption. Furthermore, if direct brain transport or diffusion could be granted, nasal 
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preparations aimed for conditions with a brain etiology could reduce therapeutic drug 

doses, thereby minimizing systemic adverse effects.  

Nevertheless, similarly to all other routes, nasal administration also has its limitations. 

One of them is that only a low volume can be administered, with the human nasal cavity 

usually retaining up to 150-200 μL, and therefore requiring a relatively potent drug. The 

formulation’s residence time in the nasal cavity could also be short, due to anterior 

leakage or posterior drainage, which can limit the time available for drug absorption. 

Moreover, the presence of degrading enzymes (cytochrome P450 isoenzymes, 

peptidases, proteases) and efflux transporters (the most common being P-glycoprotein) 

could also reduce the amount of drug that can be absorbed. Furthermore, it is important 

that the preparations do not have aggressive odors, and taste sensation might not be 

avoided. There is the additional risk of pulmonary inhalation (depending on the formula 

and the administration device), and the administration method and associated device 

could be critical for drug bioavailability 14,17. Mucosal inflammation, with nasal 

obstruction and/or increased mucus discharge, which happens in certain pathological 

conditions, may likewise pose a problem since it might increase drug absorption 

variability or reduce the absorption altogether 14.  

Initiating a drug and/or formulation development process for intranasal delivery will be 

worth taking the risk in some cases more than others. The advantages and disadvantages 

of intranasal drug administration must be weighed together with the challenges 

presented by each drug and the condition to be treated. 

As proof of the potential of intranasal (systemic) delivery, there are also several products 

on the market already, namely for menopausal symptoms, pain control, endometriosis, 

migraine headache, and other conditions, as reviewed by Kumar et al. 19. In addition, 

extensive research exploring the subject of intranasal drug delivery already exists, both 

with preclinical and clinical studies, as discussed in the following sections. 

 

1.3.2. Strategies to overcome the challenges of intranasal 

delivery 

There are several challenges associated with intranasal drug delivery and over the years 

scientists have developed several methods to overcome them (Table 1.2). One of the 

challenges in the delivery of drug molecules through any kind of route is low drug 

solubility. Several strategies have been used to increase solubility, in either hydrophilic 
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or hydrophobic formulations. Small lipophilic molecules have the best chance to bypass 

any biological barrier, but their low aqueous solubility might pose a formulation 

problem. Moreover, since in intranasal administration the drug has to be administered 

in a small volume or, if powdered, needs to be dissolved in the aqueous peri-mucosal 

layer prior to absorption, strategies to increase drug solubility in water have been a major 

focus 14,17. This issue can be tackled, for example, by using a water-soluble prodrug that 

is metabolized in the nasal cavity to produce its parent drug. An example is avizafone, a 

derivative of diazepam that has a lysine moiety attached to its structure, and can be 

converted to its parent drug by proteases 14. Another example is the case of the 

antiepileptic phenytoin and its hydrophilic prodrug fosphenytoin, in which the prodrug 

has been shown to convert to the parent drug in the nasal mucosa itself, and both drug 

forms permeate the mucosa 21. 

Table 1.2. Challenges associated with intranasal delivery and strategies to overcome them. 2 

Problem Solution 

Low aqueous drug solubility Water-soluble prodrug 

pH adjustments to increase ionized drug fraction 

Transient supersaturation 

Surfactants or cosolvents 

Nanocarriers 

Low drug permeability Permeation enhancers 

Nanocarriers 

Drug degradation Enzyme inhibitors 

Nanocarriers 

Short retention time of the formulation in 
the nasal cavity 

Mucoadhesive excipients 

Viscosity increasing excipients  

 
 

Increased water solubility can also be obtained by pH adjustments in the formulation, by 

increasing the ionized drug fraction in solution. If in contact with the neutral pH of the 

nasal cavity, the drugs will become more lipophilic again, being more easily absorbed 

across the mucosal membrane. Other strategies to increase drug solubility include the 

use of transient supersaturation, surfactants, or cosolvents 14. Another way to formulate 

drugs and increase their solubility, while also protecting them from enzymatic and 

chemical degradation, reducing high plasma protein binding, increasing transport 

through biological membranes, and overall promoting brain bioavailability, is the use of 
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nanocarriers. This can be particularly beneficial for molecules that, besides having low 

solubility, also have low permeability 14,22. Polymeric nanoparticles and lipid-based 

systems, such as nano and microemulsions or lipid nanoparticles, have been reported to 

increase drug strength (especially for hydrophobic molecules), while also increasing 

brain bioavailability when administered through the nasal route. This increased brain 

bioavailability has been verified, both in comparison with nasal solutions containing the 

same drugs, and in comparison with the intravenous administration 17.  

Drug permeation in the nasal epithelium can also be improved by using permeation 

enhancers. They can work through several mechanisms: some increase the nasal 

membrane’s fluidity by extracting proteins from it and therefore creating transient 

hydrophilic pores; others decrease the viscosity of the mucous layer; and others can alter 

tight junctions. Bile salts are an example of these enhancers, though they have to be used 

in very small concentrations since they have been reported to be irritant to the nasal 

mucosa. Some more well-tolerated and safer alternatives are fatty acid salts, borneol, 

chitosan and cyclodextrins, all having been shown to improve direct nose-to-brain drug 

transport 6,17. 

Enzyme inhibitors could also be used, which is especially useful when the drugs are 

peptides or proteins, in order to reduce their degradation and hence enhance their 

potential bioavailability. Some permeation enhancers, such as bile salts and fusidic acid 

derivatives, are examples of such inhibitors 6. 

Another issue with intranasal delivery is the short residence time of the formulation in 

the nasal cavity. This can be improved by including a mucoadhesive polymer in the 

formulation, such as pectin, chitosan or sodium alginate, which interacts with the nasal 

mucosa and helps retain the preparation in the nasal cavity. Another option is to increase 

the viscosity of the preparation, by using viscosifiers (such as cellulose derivatives) or 

gelling polymers (such as poloxamers). A solution containing a gelling polymer has the 

ability to undergo a sol-to-gel phase transition upon contact with the nasal epithelium, 

triggered by physiological factors such as temperature or the presence of calcium ions. 

By increasing the preparation’s contact time with the nasal mucosa, these excipients 

potentially lead to an improvement in drug absorption and, consequently, bioavailability 

14,17,23,24. 

Besides selecting and focusing on the drug intended to be administered and the 

formulation we want to administer it within, selecting the nasal delivery device and using 

it properly can also be crucial to obtain the desired outcome. The preparation should be 
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delivered directly to the surface of the mucosa, and if the amount is too large, or the 

administration is too fast, there might be a suboptimal absorption and loss of drug into 

the pharynx, therefore compromising its effectiveness 25. Nasal solutions dispensed by 

instillation tend to be cleared more rapidly than those delivered as sprays, since spray 

tends to deposit on non-ciliated areas of the nasal cavity, while drops are mainly 

distributed on ciliated surfaces 14,15. Furthermore, since during a seizure the medication 

needs to be delivered without active inhalation, sprays or atomized pumps seem to be a 

good choice, whilst also giving good mucosal distribution 15. Moreover, innovative 

devices have been developed and marketed with the aim of achieving direct access to the 

brain, by channeling the drug to the olfactory region of the nasal cavity (Optinose®, Bi-

Directional™ technology) 7. Additionally, and specifically for the intranasal delivery of 

antiseizure drugs, a detail that is often overlooked is the nasal mucus production in 

actively seizing patients, which is usually increased and could, therefore, influence 

therapeutic efficacy. Suction of mucus from the nasal cavity prior to administration could 

increase the likelihood of a satisfactory clinical outcome 26. 

 

1.3.3. Preclinical research and brain targeting  

Preclinical in vivo experiments regarding intranasal drug delivery may be designed with 

different objectives, and are most frequently performed in rodents, such as mice or rats. 

They are a way of obtaining proof-of-concept, compare drugs and/or formulation 

strategies, explore safety, biodistribution and pharmacokinetics, and demonstrate 

increased brain targeting compared to other administration routes. Brain targeting 

studies are quite interesting since they usually compare nasal and intravenous 

administrations, regarding obtained plasma and brain drug concentrations.  

However, when interpreting results from animal experiments regarding brain targeting, 

one should take caution, since these animals possess a proportionally bigger area of 

olfactory mucosa when compared to humans, being overly optimistic models regarding 

direct brain delivery pathways. 

Preclinical research in intranasal delivery usually comprises four different types of 

therapies: small drug molecules, peptides and proteins, nucleic acids, or cells. 

Concerning preclinical studies addressing the intranasal delivery of small drug 

molecules, cancer, neurological disorders, and psychiatric diseases seem to have been 

getting the most attention. Chemotherapy has been thoroughly explored, with intranasal 

delivery being a  better way to access brain tumors (methotrexate, raltitrexed, 5-
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fluorouracil) 16. Intranasal delivery of antiseizure drugs in animal models has also been 

studied to a great extent. For example, several lamotrigine formulations (micelles, 

micronized powders, thermoreversible gels, nanostructured lipid carriers) have been 

shown to increase brain drug bioavailability when compared to a nasal solution, or 

intravenous or oral formulations 6. Other examples include: carbamazepine, clobazam or 

levetiracetam microemulsions; clonazepam microemulsions, nanostructured lipid 

carriers or solid-lipid nanoparticles; diazepam microemulsions or nanoparticles; 

lorazepam microemulsions or nanoparticles; oxcarbazepine nanoparticles; and valproic 

acid nanostructured lipid carriers 7,18.  

The brain delivery of high molecular weight therapeutics poses an additional challenge, 

since macromolecular entities are known for their chemical and biological lability 27. 

Several animal studies have succeeded in the transport of peptides and proteins to the 

brain through intranasal administration, such as: peptide-like substances for brain 

tumors, insulin-like growth factor 1 for the reduction of stroke volume, and nerve growth 

factor for Alzheimer’s disease, depression, and epilepsy 16,17. Antibodies have also been 

shown to reach the brain through this route, for the treatment of amyloid angiopathy and 

plaque pathology in experimental Alzheimer’s disease, and for ischemic injury 17. There 

have also been a few studies regarding the treatment of epilepsy, namely for the 

intranasal administration of botulinum neurotoxin A, nerve growth factor, and 

transforming growth factor beta-1, all of which have shown to have neuroprotective 

effects 28–30. 

Strategies to enhance nucleotides’ bioavailability through intranasal administration have 

been reported as well. Intranasal administration of nanoparticles for gene delivery at 

remote target cancer cells, or nanoparticles encapsulating pDNA for immunization 

studies are examples of such 27. As for the intranasal administration of genetic material 

as a therapeutic option for epilepsy, there have been a few studies regarding microRNA 

reducing epileptic seizure frequency, improving seizure onset and reducing hippocampal 

damage in mice 31,32. 

Intranasal vaccination has also been a widely explored area, with antigens being put into 

a series of different formulations (polymeric or lipidic nanoparticles, liposomes, 

nanoemulsions, microspheres). Targeted diseases include influenza, tetanus, hepatitis B 

or meningitis 19,27. 

A more recent approach has been the brain delivery of stem cells, immune cells, and 

genetically-engineered cells through the nasal route, for example for the treatment of 
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Parkinson’s disease, cerebral ischemia, neonatal brain damage, subarachnoid 

hemorrhage, stroke, intracerebral gliomas and multiple sclerosis 7,16. 

Some of the most promising preclinical results have led to clinical trials 17. As for the 

administration of antiepileptics, intranasal benzodiazepines have been the focus of many 

human trials, and three formulations have even reached the market, which will be further 

discussed in the following section 1.3.4. 

Intranasal drug delivery in pre-clinical studies (and the variables that can influence their 

outcomes) will be further explored in Chapter 2. 

 

1.3.4. Clinical trials 

Clinical trials regarding the intranasal administration of antiepileptics for seizure 

treatment have been entirely focused on the delivery of benzodiazepines, namely 

clonazepam, diazepam, lorazepam and midazolam 7,14. In general, clinical trials’ results 

show that intranasal treatments were at least as effective in stopping seizures and 

preventing their recurrence as the ones that were administered through the intravenous, 

intramuscular, rectal or buccal routes 25,26,33,34. Moreover, confirming the general 

assumption, patients declared being more comfortable with intranasal administration, 

when confronted with the inconvenience of rectal preparations or the invasiveness of 

injections, thereby potentially increasing compliance 17. The preference of intranasal 

administration as opposed to rectal administration has also been shown by caregivers 15. 

In what concerns formulation strategies, drug solubilization was usually achieved by 

adding high amounts of organic cosolvents to the preparations, such as propylene glycol 

or polyethylene glycols. These are potentially toxic excipients, and have consequently led 

to reports of lacrimation, burning and general discomfort in the nose and upper 

respiratory tract 35–39. In the case of midazolam a low pH was also necessary for drug 

solubilization, which also might have caused irritation of the nasal mucosa and upper 

throat 35–37. Nevertheless, these effects are overall considered mild, local, reversible and 

short-lasting, and intranasal administration does not seem to exacerbate active 

substance-related adverse events. 

The first clinical trial regarding intranasal administration of benzodiazepines dates back 

to 1989 and was a small pharmacokinetic study evaluating innovative formulations of 

diazepam or lorazepam 40. As years progressed, the focus moved on to midazolam, which 

seemed to show more promising clinical results when administered through the 
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intranasal route than the other benzodiazepines. Nowadays, attention has also turned to 

diazepam, and what started as an off-label use of intravenous formulations of midazolam 

or diazepam for intranasal administration, to control epileptic seizures in a non-hospital 

setting (or in cases of difficult intravenous access in a hospital setting), has led to the 

development of innovative formulations, with three of them having even already reached 

the market 26,34. 

Nayzilam® is a midazolam nasal spray (5 mg per dose) and was developed by 

Proximagen, Ltd. It has reached the United States’ market, indicated for the acute 

treatment of seizure clusters. Efficacy in single-dose and long-term uses has been studied 

and the treatment has been considered to be well-tolerated over an extended period of 

time, with the maintenance of efficacy suggesting lack of tolerance development 41–47. 

Nevertheless, midazolam’s solubilization was also achieved by using cosolvents, with the 

formulation containing, aside from the drug, ethanol, polyethylene glycol-6 methyl 

ether, polyethylene glycol 400, propylene glycol and water. Hence, as expected, the most 

commonly reported route specific adverse reactions were nasal discomfort, throat 

irritation, and rhinorrhea 48,49. Somnolence was also reported, but as a drug-related issue 

47. 

Nazolam® is a proprietary patented formulation developed for intranasal 

administration, also containing midazolam (2.5 or 5 mg per dose). Although it was 

initially developed for sedation purposes, it is currently used for acute seizure control in 

the Netherlands, in out-of-hospital settings. Nazolam was concluded to be comparable 

to intravenous midazolam and better tolerated than Nayzilam, but with similar adverse 

events (albeit having a lower incidence), since it has ethanol and propylene glycol in its 

composition 50–52.  

Finally, there is ValtocoTM, from Neurelis, a diazepam formulation (5, 10, 15 or 20 mg per 

dose). The vehicle is composed of vitamin E (or similar lipid), ethanol (again, a cosolvent, 

potentially toxic), benzyl alcohol and an alkyl glucoside 53. Pharmacokinetic trials showed 

a very high absolute bioavailability and an improved tolerability profile (compared to 

previous formulations), with nasal discomfort and alteration in taste sensation being the 

most common side effects 54–58. Valtoco’s New Drug Application has been accepted in 

early 2020, with the medication having also already reached the United States’ market 

59.  

Despite favorable results regarding these midazolam and diazepam intranasal 

formulations, there seems to be scope for improvement regarding formulation 
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tolerability. Moreover, benzodiazepines are known sedatives, and sedation has been 

reported as a side effect of these preparations, which also leaves room for wondering 

about the intranasal administration of other (non-sedative) antiepileptics. 

 

1.4. The case of phenytoin and fosphenytoin 

As mentioned above, in a hospital setting, the first-line treatment of convulsive status 

epilepticus is usually an intravenous or intramuscular benzodiazepine, and the second-

line treatment includes the intravenous administration of several other antiseizure drugs 

9. Among them is the drug/prodrug pair phenytoin and fosphenytoin, that have had a 

decrease in use over the years due to systemic side effects (cardiovascular complications, 

liver toxicity, osteopenia, peripheral neuropathy), but seem to be non-inferior in efficacy 

when compared to other antiepileptics 9,11,13,60. In addition, phenytoin is also still widely 

used in oral form for the chronic treatment of epilepsy, and has other established or 

potential therapeutic applications, as it is approved as an antiarrhythmic and has been 

explored throughout the years in neuroprotection, retinoprotection, breast cancer, 

depression, bipolar disorder and wound healing 61–65. That being said, by using strategies 

that could reduce peripheral systemic side effects, such as local or targeted delivery to 

the intended sites, phenytoin could become a drug of great interest once more 11,60.  

The intranasal route could be an alternative to parenteral anticonvulsive drug 

administration due to several (also already mentioned) associated advantages, and the 

intranasal administration of phenytoin could increase its efficacy (direct transport to the 

brain) and safety (reduction of systemic distribution). Also, the intranasal route has 

already shown its potential in the case of benzodiazepine administration. Furthermore, 

when compared with benzodiazepines, phenytoin has the advantage of not having their 

administration route independent side-effects (somnolence, deleterious cognitive effects 

and dependence/tolerance), which could mean it might be safer in comparison, when 

administered intranasally. 

Nevertheless, phenytoin has a very low aqueous solubility, but its hydrophilic prodrug, 

fosphenytoin, solves that issue, even though its anionic nature makes it less prone to 

passive absorption. However, Antunes Viegas et al. demonstrated the presence of 

phosphatase activity within the nasal mucosa, which promotes in situ bioconversion of 

fosphenytoin to phenytoin 21. Additionally, fosphenytoin could partially permeate 

porcine nasal mucosa ex vivo as prodrug, in addition to the permeation of the neutral 

parent drug phenytoin, formed by metabolization. Alternatively, one way of formulating 
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phenytoin would be into a nanosystem with a hydrophobic component, in which the drug 

could be solubilized. Furthermore, if reaching a high drug strength is not possible, 

despite efforts to do so, there might be other applications for this drug requiring lower 

drug strength, such as postsurgical nasal wound healing or trigeminal neuralgia 63,66. 

 

1.5. Thesis’ main objectives, tasks and study 

design 

The research work described in the present document had the final goal of serving as 

proof-of-concept of the hypothesis that phosphate esters can be a useful strategy in nasal 

formulation development of low aqueous solubility drugs, such as phenytoin, 

consequently increasing their bioavailability through this route. To achieve that purpose, 

it included several major tasks, each with their specific objectives: 

1. A systematic review of the existing scientific literature, aiming to: 

1.1. Better understand the variables that can influence the outcomes of in vivo 

studies regarding the intranasal administration of small molecular weight 

drugs within nanosystems; 

1.2. Assess whether there is a specific nanosystem type that is more effective than 

others in brain drug delivery; 

2. Development of liquid and/or semisolid formulations for intranasal administration, 

containing phenytoin only, fosphenytoin only and/or a drug/prodrug combination, 

aiming to: 

2.1. Obtain high drug strength, potentially sufficient to be effective in the 

treatment of status epilepticus, or, if not, to serve for other therapeutical 

applications that may require lower strengths; 

2.2. Achieve formulations with adequate physical/pharmacotechnical attributes, 

in what concerns viscosity, osmolality, pH, droplet size and surface charge 

(mean size, polydispersity index and zeta potential, when applicable), and in 

vitro drug release; 

3. In vivo pharmacokinetic studies aiming to: 

3.1. Compare fosphenytoin solution, mucoadhesive polymer and albumin 

regarding brain-targeted intranasal drug delivery; 

3.2. Assess whether a combination of drug and prodrug could further improve 

intranasal drug delivery. 
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Chapter 2 - Nanosystems in nose-to-brain 

drug delivery: a review of non-clinical brain 

targeting studies 

 

2.1. Chapter overview and main objectives 

There are many variables that can influence the outcomes of in vivo studies comprising 

intranasal administration. This chapter consists of a systematic review regarding non-

clinical studies that evaluated the intranasal delivery of small molecule drugs within 

nanosystems that were compared to an intravenous formulation (and also in some cases 

to an intranasal solution), in order to be able to assess possible brain targeting. The 

present analysis focused on study design, chosen nanosystem class and their 

characterization, and reported output pharmacokinetic parameters, with emphasis on 

searching for associations between brain delivery efficacy and nanosystem type. With 

this analysis we intended to determine which nanoformulation strategy might be better 

for poorly water-soluble drugs such as phenytoin, with the highest brain targeting and 

least systemic distribution. 

 

2.2. Methods 

2.2.1. Systematic bibliographic selection and data 

collection 

Articles considered for data collection, and consequent statistical analysis, were obtained 

via search in the “Web of ScienceTM” database, using the following terms: 

(nanoemulsion$ OR microemulsion$ OR submicron OR emulsion$ OR nanostructured 

OR miniemulsion$ OR nanoparticle$ OR nanosystem$ OR liposome$ OR cubosome$ 

OR transfersome$ OR niosome$ OR polymersome$ OR exosome$ OR dendrimer$ OR 

nanocarrier$ OR micelles) AND brain AND ("in vivo" OR animal OR biodistribution OR 

pharmacokinetics OR pre-clinical OR non-clinical) AND (nasal OR intranasal). Date of 

last search was June 23th 2017 and no publication date restriction was applied. Screening 

for exclusion criteria was done by title, abstract and article content, if needed and in that 

respective order. Those criteria included: being a review article; not comprising an in 

vivo pharmacokinetic study; absent or insufficient presentation of the necessary 

pharmacokinetic data, more precisely brain and blood area under the “drug 
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concentration vs time” curve (AUC) values for (at least) the intranasal nanosystem and 

the intravenous formulation; inexistence of an intravenous comparison route; drug not 

having a low molecular weight (namely protein or gene derived entities); intranasal 

formulation not being a nanosystem; being a vector study only, with no associated drug; 

being a toxicity study only; lack of information and interpretation quality (repeated 

errors); and lastly, journal impact factor inferior to 1. Data was extracted to a spreadsheet 

table format. 

 

2.2.2. Pharmacokinetic ratio’s (re)calculation  

Given the lack of uniformity or absence of the calculation of drug targeting efficiency 

(DTE%), direct transport percentage (DTP%), comparative brain bioavailability (B%brain 

IN/IV) and relative brain bioavailability (RB%brain) ratios, whenever possible these were 

recalculated from reported AUC data. 

DTE% is a measure of brain targeting through intranasal administration, with the 

following mathematical formula: 

𝐷𝑇𝐸% =
(𝐴𝑈𝐶𝑏𝑟𝑎𝑖𝑛/𝐴𝑈𝐶𝑏𝑙𝑜𝑜𝑑)𝐼𝑁

(𝐴𝑈𝐶𝑏𝑟𝑎𝑖𝑛/𝐴𝑈𝐶𝑏𝑙𝑜𝑜𝑑)𝐼𝑉
× 100  (2.1) 

where AUC is the area under the “drug concentration vs time” curve, representing drug 

concentration variation over time (in brain or blood) for the duration of the study [from 

time zero to the last quantifiable drug concentration (AUC0-t)], and IN and IV indicate 

the administration route to which the AUC values correspond to (intranasal and 

intravenous, respectively) 20,67. As the given formula implies, the DTE% value can be 

interpreted as the relative propensity of the drug to accumulate in the brain when 

administered through the intranasal route, over the intravenous route. Values can range 

from 0 to +∞. Values above 100% indicate a more efficient brain targeting through 

intranasal administration when compared to intravenous administration, and values 

below 100% represent the opposite 67. The log10(𝐷𝑇𝐸%) was also calculated (in attempt 

to normalize the distributions) and expressed as Log DTE%. 

Even if useful, DTE% might not offer an easy interpretation of which drug fraction was 

transported through the olfactory and trigeminal nerve pathways and which was not  20. 

As an alternative, the DTP% can be calculated from equation 2.2: 

𝐷𝑇𝑃% =
𝐴𝑈𝐶𝑏𝑟𝑎𝑖𝑛𝐼𝑁−F

𝐴𝑈𝐶𝑏𝑟𝑎𝑖𝑛𝐼𝑁

× 100  (2.2) 
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where AUC values are also AUC0-t, and F is given by: 

𝐹 =
𝐴𝑈𝐶𝑏𝑟𝑎𝑖𝑛𝐼𝑉

𝐴𝑈𝐶𝑏𝑙𝑜𝑜𝑑𝐼𝑉

× 𝐴𝑈𝐶𝑏𝑙𝑜𝑜𝑑𝐼𝑁
 (2.3). 

Since the expected contribution of the indirect pathway to AUCbrain IN is subtracted from 

its total value, DTP% is, as the name suggests, the value that better represents the drug 

fraction undergoing direct transport to the brain  20,67. Values can theoretically range 

from -∞ to 100, although the expected value if there is no transport through the direct 

nose-to-brain pathways is 0. Values higher than 0 indicate the presence of brain 

targeting through the direct pathways, opposite to values from -∞ to 0, which indicate a 

more efficient brain targeting through the intravenous route 67. A value of 100 is only 

possible if the drug does not cross the blood-brain barrier at all (AUCbrain IV = 0), or if it 

is not absorbed to the systemic circulation when administered intranasally (AUCblood IN = 

0). An approximation to the first case is more likely to occur, and it means that drugs 

that are poorly permeable in the blood-brain barrier are more likely to have the highest 

DTP% values. However, DTE% and DTP% can be high despite very low bioavailability in 

the brain.   

B%brain IN/IV is a measure of brain drug accumulation through the intranasal route over 

the intravenous route, considering brain AUC0-t values only (and not blood’s) 68. The 

mathematical formula is:  

𝐵%𝑏𝑟𝑎𝑖𝑛 𝐼𝑁/𝐼𝑉 =
𝐴𝑈𝐶𝑏𝑟𝑎𝑖𝑛𝐼𝑁

𝐴𝑈𝐶𝑏𝑟𝑎𝑖𝑛𝐼𝑉

× 100  (2.4) 

Values above 100 indicate a better brain drug accumulation through intranasal 

administration when compared to intravenous administration. The log10( 𝐵%𝑏𝑟𝑎𝑖𝑛 𝐼𝑁/𝐼𝑉) 

was used and expressed as Log B%brain IN/IV. 

RB%brain is similar to B%brain IN/IV, only intranasal nanosystem delivery is here compared 

with an intranasal drug solution 69, the formula being: 

 𝑅𝐵%𝑏𝑟𝑎𝑖𝑛 =
(𝐴𝑈𝐶𝑏𝑟𝑎𝑖𝑛𝐼𝑁)𝑛𝑎𝑛𝑜𝑠𝑦𝑠𝑡𝑒𝑚

(𝐴𝑈𝐶𝑏𝑟𝑎𝑖𝑛𝐼𝑁)𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
× 100  (2.5) 

Values above 100 indicate a better brain drug accumulation with the intranasal 

administration of the nanosystem when compared to the intranasal solution. The 

log10( 𝑅𝐵%𝑏𝑟𝑎𝑖𝑛) was used and expressed as Log RB%brain. 
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The comparison of the efficiency in brain targeting between intranasal nanosystems and 

intranasal solutions was also verified by calculating the logarithm of relative DTE% (Log 

RDTE%) and of relative DTP% (Log RDTP%), in analogy with Log RB%. The following 

formulas where applied: 

𝐿𝑜𝑔 𝑅𝐷𝑇𝐸% = log10 (
𝐷𝑇𝐸%𝐼𝑁𝑛𝑎𝑛𝑜𝑠𝑦𝑠𝑡𝑒𝑚

𝐷𝑇𝐸%𝐼𝑁𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
× 100)    (2.6) 

𝐿𝑜𝑔 𝑅𝐷𝑇𝑃% = log10 (
𝐷𝑇𝑃%𝐼𝑁𝑛𝑎𝑛𝑜𝑠𝑦𝑠𝑡𝑒𝑚

𝐷𝑇𝑃%𝐼𝑁𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
× 100) (2.7) 

 

2.2.3. Statistical analysis 

Statistical analysis was performed using Prism software, version 6.0, from GraphPad. 

Normality of variables distribution was assessed with the D’Agostino-Pearson omnibus 

normality test. For normal distributions, group mean values were compared with a 

reference value using the one sample t-test (also in the case of insufficient representation, 

with n < 5). In the case of non-normal distributions (and sufficient representation), 

median values and a Wilcoxon signed-rank test were used. Differences between mean 

attribute values of nanosystem groups that were at least minimally represented (n ≥ 5) 

were evaluated by one-way analysis of variance (ANOVA) with the Tukey multiple 

comparisons post-test, as were the general mean differences between intranasal 

solutions, intranasal nanosystems and intravenous formulations (when analyzed as a 

whole). The overall median differences between intranasal solutions and nanosystems 

were evaluated by the Mann-Whitney location test. Conservative outlier analysis was 

performed using the ROUT method (combined Robust regression and Outlier removal) 

setting Q at 0.1%. 

 

2.3. Results and discussion 

2.3.1. Bibliographic search results characterization and 

quality of reported variables 

Of the obtained 243 search results, only 56 met the inclusion/exclusion criteria. 

Interestingly, the countries of origin were India (66%), Egypt (18%), China (12%), and 

Saudi Arabia (4%). All articles selected for analysis were published between 2004 and 

mid-2017, most of them (34%) being published in the year of 2016, and more than half 

in the last 3 years (2014-2016) (Figure 2.1). Therefore, in recent years there seems to 

have been a marked increasing interest in the intranasal delivery of nanosystems and 
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their in vivo brain targeting evaluation. Journal impact factors varied from 1.566 to 5.434 

(median value of 3.773).  

 

 

 

Figure 2.1. Increase in the number of publications on the topic of the present review over time. Data 
correspond to cumulative publication frequency per year of publication. 2 

 

Essential parameters such as animal model, study duration, intravenous formulation, 

intranasal nanosystem type, drug and analytical method were described in every article. 

On the other hand, analytical method validation was only mentioned in 30% of all 

publications, while one should expect to find the validation parameters described. Most 

articles indicated DTE% and most time to reach maximum drug concentration (Tmax) 

values – Tmaxbrain IN, Tmaxblood IN and Tmaxbrain IV. Tmaxblood IV was only mentioned in 75% 

of publications because some consider it to be equal to zero, as the drug is readily 

available in the bloodstream when administered intravenously (a possible reason for 

other values might be considering Tmaxblood IV to be the minimum time at which the blood 

samples were collected). DTP% follows DTE% as the second most reported 

pharmacokinetic ratio. B%brain IN/IV had a low report rate, and RB%brain even lower (close 

to none). Instead, comparative brain AUC fold-changes were sometimes calculated, but 

they quite similar (ratio instead of a percentage value).  

DTE% and DTP%, being ratios that utilize the exact same data, were expected to have a 

perfect monotonic (non-linear) correlation between them. By examining the scatter-dot 

plot representations of the correlation between both ratios as mentioned in the articles 

(Figure 2.2A), it can easily be seen that there was an inconsistency in some of the values 
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calculated by the authors, with some very strong outliers standing out. Meanwhile, 

DTE% and DTP% values recalculated by us, using the above-mentioned formulas, had a 

perfect monotonic correlation (Spearman’s correlation coefficient of 1, Figure 2.2B). 

 

 

Figure 2.2. Correlation of DTE% and DTP% ratios. Representation of DTE% vs DTP% values as given in the 
articles (rs = 0.646) (A) and of DTE% and DTP% when recalculated (rs = 1.000) (B). DTE% – drug targeting 
efficiency; DTP% – direct transport percentage; rs - Spearman’s correlation coefficient. 3 

 

Of all pharmacokinetic ratios, DTE% was the most mentioned, however only 49% of all 

articles exhibited a value that could be considered equivalent to our recalculated ones. 

Some of the reasons for the discrepancies in DTE% were: the use of either the area under 

the “drug concentration vs time” curve from time zero to infinity (AUC0-inf) or a different 

AUC0-t value for the calculation, while we used AUC0-t values corresponding to the 

duration of the experiment (from time zero to the last measurable concentration); the 

use of AUC0-t for calculation, but then only presenting AUC0-inf values, which we used 

since we didn’t have access to additional data; calculation of DTE% using the AUC0-t of 

intravenous nanosystems, while we recalculated them using the AUC0-t of intravenous 

solutions (when reported); and the use of a different formula (or non-disclosure of the 

formula) for the calculation 70–76. As for (many) other cases, we could find no further clear 

justification for the revealed discrepancies. 

For DTP% and B%brain IN/IV, 63% and 35% of the articles reporting these values displayed 

calculated values similar to ours, respectively. Furthermore, it is relevant to mention that 

B%brain IN/IV values were either phrased as “absolute brain bioavailabity”, “nasal 

bioavailability” or “comparative bioavailability”, and also that it was sometimes hard to 

determine whether the authors were referring to brain or blood bioavailability, which 
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made it confusing to interpret. Relative bioavailability values were only provided in 2 

articles, both with natural discrepancies in comparison with the ones we calculated, since 

we used reported AUC0-t and the authors used AUC0-inf 
69,77. All these discrepancies, 

numeric or not, are evidence of a lack of systematization between studies. 

As for formulation attributes, most articles reported nanosystem droplet/particle mean 

hydrodynamic size (determined by dynamic light scattering) and zeta potential. 

However, zeta potential is a measure dependent on both particle charge and salt 

composition of the medium used for particle dilution, and these were not always 

described. It is often taken as a recommendation that its absolute value should be above 

30 mV for maximum stability 78–81. A direct electrostatic adsorptive interaction with the 

mucosa is usually expected with high positive zeta potential values, which justifies that 

chitosan, a natural cationic polymer, is one of the most mentioned mucoadhesive agents 

82–84. The polydispersity index (PDI) was also frequently but not always mentioned, and 

nanosystems’ size is not completely characterized without it 70. The PDI is also very 

important in drug pharmacokinetics, since a lower value indicates an enhanced  

probability of a more uniform absorption through the nasal mucosa, and a higher value 

may lead to pharmacokinetic irregularity and variability in the therapeutic outcome 85,86. 

It is usually recommended that the PDI is below 0.5 71,78,83. On the other hand, pH and 

viscosity were described fewer times. Little more than half of all articles reported 

formulation pH, and in those that did, it ranged from 4.62 to 7.00, which is fairly within 

the human nasal mucosa’s physiologic range 19. In addition to having a low reporting 

rate, viscosity measurements were done at different temperatures (mostly 25 ºC, but also 

33 ºC), rotation speeds and spindle types, which makes it hard to interpret and compare 

between studies. All these formulation attributes can be critical in drug absorption 

and/or safety, and should be reported in every article. 

Other important parameters such as in vitro release and ex vivo permeation of the drug, 

although mentioned in some of the articles, will not be considered for this analysis, since 

only about one half and one third of all publications had, respectively, done these in vitro 

and ex vivo studies. Furthermore, reported release and permeation  studies’ duration, 

temperature and rotation speed varied substantially from one article to another, or were 

not mentioned at all, and membrane pore (in vitro) and nasal mucosa model (ex vivo) 

also varied greatly. 
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2.3.2. Delivered drugs 

In a total of 56 articles, 39 different drugs were studied, with only one article studying 2 

drugs simultaneously (herbal compounds borneol and geniposide, components of the 

same Chinese traditional medicine) 87. They belonged most frequently to the 

antipsychotics, dopaminergic agents, antiepileptics and anxiolytics classes, but many 

other were represented (Table 2.1). This large heterogeneity, although justifiable by the 

need to innovate, and therefore to formulate different drugs, makes it difficult to 

compare, in a direct manner, values of different nanosystems without a great risk of 

introducing a substantial bias into data interpretation. Even in the case of the most 

studied drug, olanzapine, an atypical antipsychotic used for the treatment of 

schizophrenia (which was mentioned in 5 articles) there were 8 different nanosystems: 

mucoadhesive and non-mucoadhesive nano and microemulsions, polymeric 

nanoparticles, transfersomes, liposomes and nanocubic vesicular systems. These 

nanosystems, even if all studied in the same animal model (rat), had different associated 

analytical methods, intravenous comparison formulations, study durations, doses and 

excipients 69,81,88–90. 
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Table 2.1. Anatomical Therapeutic Chemical (ATC) classification of the formulated drugs*, and respective 
reference. 3 

ATC classification Chemical entities Papers 
(ni) 

Ref.s 

A04A Antiemetics and 
antinauseants 

Ondansetron (as hydrochloride) 1 91 

C04A Peripheral vasodilators Ergoloid (as mesylate) 1 92 

C05C Capillary stabilizing agents Rutin 1 73 

C08C Selective calcium channel 
blockers with mainly vascular 
effects 

Nimodipine 2 93,94 

G03F Progestogens and estrogens 
in combination 

Estradiol 1 95 

J05A Direct acting antivirals Saquinavir (as mesylate) 1 96 

L01A Alkylating agents Temozolomide 1 97 

M03B Muscle relaxants Cyclobenzaprine (as 
hydrochloride), Tizanidine 

2 82,98 

N02A Opioids Tramadol 1 75 

N02C Antimigraine preparations Sumatriptan, Sumatriptan (as 
succinate), Zolmitriptan 

4 99–102 

N03A Antiepileptics Carbamazepine, Clonazepam, 
Oxcarbazepine 

5 68,77,86,103,104 

N04B Dopaminergic agents Bromocriptine, Cabergoline, 
Rasagiline, Ropinirole 

6 85,105–107 

N05A Antipsychotics Asenapine (as maleate), 
Haloperidol, Olanzapine, 
Paliperidone, Risperidone, 
Quetiapine (as fumarate) 

13 69,72,109–

112,78,79,81,84,88–

90,108 

N05B Anxiolytics Alprazolam, Buspirone (as 
hydrochloride), Clobazam, 
Diazepam 

5 83,113–115 

N06A Antidepressants Duloxetine, Venlafaxine 3 80,116,117 

N06D Anti-dementia drugs Rivastigmine, Tacrine (as 
hydrochloride) 

2 71,118 

P01B Antimalarials Artemether (as artemisinin 
methyl ether) 

1 119 

Experimental Resveratrol, Tarenflurbil 2 76,120 

Plant derivatives Borneol, Curcumin, 
Demethoxycurcumin, 
Bisdemethoxycurcumin, 
Geniposide, Thymoquinone 

5 74,87,121–123 

ni, - absolute frequency; Ref.s – bibliographic references; * all ATC classification obtained from the DrugBank 
database, Version 5.0.7 124 
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2.3.3. Delivery nanosystems 

From the 56 articles that were analyzed, 31 focused on the study of one formulation of 

one nanosystem type only, while 25 studied two or more. Reasons for studying more than 

one formulation included, most frequently, the addition of a mucoadhesive agent, but 

also other variations in constituents (different surfactants, PEGylation, variation of 

polymers’ molecular weight, addition of cyclodextrins). Fewer times, there was also the 

comparison of two nanosystem types, or drugs (two different drugs, or chemical 

derivatives of the same drug). 

We classified the formulations using a two-level classification system (Table 2.2). On 

level I we grouped them in a minimum number of nanosystem types: emulsions, 

polymeric nanosystems, lipid nanoparticles, and liposome related nanosystems. On level 

II, the detail in nanosystem distinction was increased, using a classical class definition. 

Rare nanosystems, containing phospholipids in their composition, occurring one time 

only, were grouped in the same class and named “other” (niosomes, nanocubic vesicular 

systems, emulsomes and lipidic micelles). 

Table 2.2. Frequency distribution of formulations by nanosystem class using a two-level classification 
system. 4 

Level I  - groups ni Level II - classes ni Formulations 
compared to 
intranasal 
solutions* (ni) 

Emulsions 50 Microemulsions 36 26 

Nanoemulsions 14 12 

Polymeric nanosystems 26 Polymeric nanoparticles 21 19 

Polymeric micelles  5 5 

Lipid nanoparticles 8 Solid lipid nanoparticles 3 2 

Nanostructured lipid 
carriers 

5 4 

Liposome related 
nanosystems 

10 Liposomes 4 0 

Transfersomes 2 0 

Other 4 0 

n 94  94 68 

n - total number of events; ni - absolute frequency; * or drug dispersions (one case). 

 

Regarding the frequency of formulation types in the analyzed data, emulsions were the 

most studied delivery nanosystem group, comprising more than half of all formulations 

(Table 2.2). Within that group, microemulsions were the most studied class. 
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Nanometric emulsions (colloidal liquid in liquid dispersions) include nanoemulsions 

and microemulsions, not always clearly distinguished in the scientific literature. 

Theoretically, while the first have thermodynamic stability, the later do not. 

Nanoemulsions have, nonetheless, a relatively high kinetic stability 75,103,111, a higher 

surface area and higher free energy than macroemulsions, being more stable against 

sedimentation, flocculation, coalescence and creaming 76. Given that water is added to a 

mixture of oil, surfactant and cosurfactant, both types of emulsions are said to form 

spontaneously 19,87. Droplet size range is generally considered to be lower in 

microemulsions (10-100 nm) than in nanoemulsions (20-200 nm). Another definition is 

simply classifying a system as a microemulsion when it is translucent, which is 

questionable since it only means that most droplets are very small in diameter, and 

partially translucent systems could either be macroemulsions or nanoemulsions. Their 

lipophilic nature, good permeability and solubilizing effect also make them promising 

systems for intranasal delivery, in particular for liposoluble drugs 75,78,81,85,96. However, a 

few reports have stated irritation of gastrointestinal or nasal mucosa with the use of these 

preparations, justified by the existence of surfactants in large amounts 92,101. They could 

also undergo rapid nasal clearance, but a mucoadhesive agent can be added to the 

formulations to overcome mucociliary clearance, leading to a higher residence time at 

the site of absorption, and therefore improving bioavailability 82,83.  

Polymeric nanosystems followed emulsions in frequency, polymeric nanoparticles being 

the most frequent class in that group (Table 2.2). Polymeric nanoparticles are compact 

colloidal systems with a highly variable size range within the nanometric scale, composed 

of natural or artificial polymers 19,83. Drugs will be dissolved, entrapped, encapsulated or 

attached to the polymeric matrix 83,113. Surface hydrophobicity, high drug loading and 

controlled release capacity, and the ability to prolong the duration of therapeutic effect, 

are a few of their advantages. As in the case of mucoadhesive nano and microemulsions, 

the integration of mucoadhesive polymers into the polymeric nanoparticles formulation 

is expected to lead to a higher residence time on the nasal mucosa 82,83. Although there is 

scientific evidence suggesting the biodegradability and biocompatibility of the polymers 

that are generally used, some reports mention toxicity, and also formation of aggregates 

with a large size and lack of stability in aqueous dispersion, leading to phase separation 

100,114.  

Even if made of polymers as well, polymeric micelles differ in composition from 

polymeric nanoparticles: they are comprised of amphiphilic block copolymers that will 

self-assembly, forming a hydrophobic core, and a hydrophilic corona. The core can 

solubilize and incorporate a lipophilic drug, while the hydrophilic corona will serve as a 
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stabilizing interface between the hydrophobic core and the external aqueous 

environment. This kinetic stability and self-assembly in water will only occur above the 

critical micelle concentration, which is, however, usually lower than that of small 

molecule surfactants. Described drawbacks include the formation of aggregates with a 

large particle size and lack of stability in aqueous dispersion, resulting in phase 

separation 69,77,94. 

Within the lipid nanoparticles group, the best known are perhaps the solid lipid 

nanoparticles, which are solid matricial nanoparticles made of solid lipids dispersed in 

water or an aqueous surfactant solution 114. They are said to have increased drug stability, 

good biocompatibility and tolerability, and high drug loading, also increasing nasal 

retention time due to an occlusive effect and mucous membrane adhesion 109,114. Despite 

many claims of controlled delivery of hydrophobic drugs, some reports have reached 

opposite results, which authors explain happens because drug and lipid solidification in 

phase-separated crystals precipitate, either in the core or on the surface of the 

nanoparticles, with a consequent slow or pronounced burst release 68. Leakage during 

storage by lipid polymorphism has also been mentioned 79,91. In their turn, instead of only 

having a solid lipid in their composition, nanostructured lipid carriers have a blend of 

solid and liquid lipids that form an imperfect crystal matrix in which drugs can be 

accommodated in 19,119. General advantages include rapid uptake, absence of burst effect 

and good tolerability. Stated advantages over polymeric nanoparticles comprise 

avoidance of the use of organic solvents in production, and over solid lipid nanoparticles 

higher drug loading, smaller particle size and no drug leakage or expulsion during 

storage, with improved long-term stability 79,91,97,117,119,125.  

Within the liposome related nanosystems group, classic liposomes were the most 

represented class. These are biocompatible and biodegradable vesicles composed of 

phospholipid (and cholesterol) bilayers enclosing one or more aqueous compartments 

19,22. Several variations of these particles have been developed. In transfersomes the 

lipidic bilayers’ specific composition and membrane incorporated edge activators give 

the vesicles high flexibility, making it easier for them to interact with the membranes and 

pass through small fenestrations 90. Niosomes are prepared with non-ionic surfactants 

such as monoester of polyoxyethylene fatty acids, free fatty acids and cholesterol, and  

have a high capacity central core that can deliver a large volume of active ingredient 100. 

Nanocubic vesicular systems have polymeric non-ionic surfactants integrated in their 

phospholipidic bilayer, whose very specific ratio in relation to the phospholipid gives the 

vesicles cubic shape 89. Emulsomes have the combined characteristics of emulsions, solid 

lipid nanoparticles or nanostructured lipid carriers, and liposomes: a lipidic core in a 
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solid or liquid crystalline state (instead of an oil fluid phase), surrounded by at least one 

phospholipid bilayer envelope, with an aqueous interface in between (hydrophilic heads 

facing outwards and hydrophobic tails facing inwards). Emulsomes allow high loads of 

lipophilic drugs and a prolonged release time. When compared to other lipid carriers, 

such as solid lipid nanoparticles and liposomes, these particles are described as not 

showing the common preparation methods’ shortcomings, such as high pressure induced 

drug degradation, lipid crystallization, gelation and coexistence of several colloidal 

species 68. Lastly, lipidic polymeric micelles are, just like regular micelles, made of 

amphiphilic block copolymers, but those copolymers are now also attached to a 

phospholipid, which generates a more lipophilic, although larger, nanosystem 94. 

Additionally, it is relevant to mention that in the majority of studies (about 72% of all 

articles) the nanosystems were compared to the respective drug solutions or, in one case, 

drug dispersion (Table 2.2). 

 

2.3.4. Pharmacokinetic study designs and drug assays 

Only two animal models were used: rat (75%) and mice (25%). Study duration varied 

substantially, ranging between 2 and 72 hours, with a median value of 8 hours, which 

was also the duration of almost half of all studies. Every study used the intravenous route 

as a parenteral comparison route, although not all animal subjects were given an 

intravenous drug dispersion, with 39% of all articles administering the nanosystem itself. 

This is a major inconsistency, since the pharmacokinetic profile of the intravenously 

administered drug, in solution or associated to a nanosystem, can be quite different, and 

the calculation of DTE%, DTP% and B%brain IN/IV of the intranasal formulation should be 

made using intravenous drug solution data. For drug assay, the most utilized analytical 

method was liquid chromatography (57%), which included high and ultra-performance 

systems, and was often coupled with a tandem mass spectrometry detector, followed by 

scintigraphy (43%). 

 

2.3.5. Nanosystem attributes  

In what concerns mean particle size (Figure 2.3A), the most homogeneous formulations, 

with the smallest value range, were the microemulsions. They also had the lowest mean 

value, which was significantly lower than that of the polymeric nanoparticles. Polymeric 

nanoparticles had the highest range, having the most heterogeneous particle size 
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distribution out of the 4 groups, which might be explained by the different subtypes of 

nanoparticles and their respective composition and preparation methods. Polymeric 

nanoparticles also had a significantly higher mean than the polymeric micelles and the 

nanoemulsions classes (aside from the microemulsions). All these results are in 

agreement with these nanosystems’ theoretical size definition. 

 
Figure 2.3. Summary of the attributes of the drug delivery nanosystems per class. Particle size (A), PDI (B) 
and zeta potential (C) are shown. Data correspond to median ± inter-quartile interval and range (box-plot) 
plus mean indicated by a small “plus” sign (+). Statistical analysis was done by applying a one-way ANOVA 
with the Tukey multiple comparisons post-test; # p < 0.05; # # p < 0.01; # # # p < 0.001; # # # # p < 0.0001. 
PDI – polydispersity index. 4 
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Homogeneity of particle size distribution is characterized by PDI values (Figure 2.3B), of 

which microemulsions had the lowest mean and polymeric nanoparticles the highest. 

The difference between means of these two classes was significant, and the mean of the 

polymeric nanoparticles class was also significantly higher than that of the polymeric 

micelles and nanoemulsions classes, which is in accordance with what has been 

mentioned above. All PDI values were below the recommended 0.5 threshold. 

As previously mentioned, zeta potential values can either be positive or negative, 

depending on the combined charges and quantities of the drugs and excipients that 

compose the formulation. Positively charged formulations have, in theory, the advantage 

of interacting with the negatively charged nasal mucosal membrane due to the formation 

of electrostatic bonds with the sialic acid residues that are part of its composition. This 

facilitates both adhesion and transport by increasing contact time with said region and 

amplifying the opening of the tight junctions that exist there 70,73,125. About half of all 

nanosystem groups included negatively charged nanosystems only, and for those that 

comprised both positively and negatively charged formulations, most values were also 

negative (Figure 2.3C). Out of the 5 considered classes, microemulsions had the most 

negative mean value, and polymeric nanoparticles the most positive, with the differences 

between the two classes being significant. Polymeric nanoparticles also had significant 

differences when compared to the polymeric micelles, nanoemulsions and 

nanostructured lipid carriers’ classes. The more positive values attributed to the 

polymeric nanoparticles class might be justified by the frequent presence of the positively 

charged polymer chitosan in their composition.  

 
 

2.3.6. Drug pharmacokinetics 

The median values of Log DTE%, DTP% and Log B%brain IN/IV of all nanosystem 

formulations grouped together was superior and significantly different from the median 

values of the 42 solutions that were also evaluated (Figures 2.4A, B and C). Furthermore, 

their value range was extremely high, not only in the nanosystems group, where one 

could already expect it, but also in the solution group. This big variability in drug delivery 

performance of intranasal solutions can only be due to either the drug itself or 

confounding variables related with study design, such as differences in study duration 

and administered dose, both of which can greatly influence the AUC values and, 

consequently, their ratios. Even a conservative outlier analysis (ROUT, Q = 0.1%) 

identified several possible outliers. The very high Log DTE% values in the solution group 

(Figure 2.4A) corresponded to plant derived drugs 73,74, and are probably due to their 
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high hydrophilicity and consequent difficulty in permeating the blood-brain barrier (low 

brain bioavailability through the intravenous route). Some very low DTP% values 

(negative or close to 0, Figure 2.4B) correspond to the nanosystems group, more 

specifically to risperidone liposomes, olanzapine liposomes, olanzapine transfersomes 

and olanzapine nanocubic vesicular systems (3 independent studies 89,90,110). Curiously, 

all these formulations belong to the liposome related nanosystems group. 

 

 

Figure 2.4. Comparison of overall drug delivery by nanosystems and solutions. Log DTE% (A), DTP% (B), 
Log B%brain IN/IV (C) of intranasal solutions and intranasal nanosystems, Tmaxbrain IN (D) and Log AUC ratio 
(brain/blood) IN of intranasal solutions, intranasal nanosystems and all intravenous formulations are 
shown. Potential outliers are signaled by brackets. Data correspond to individual values plus median ± 
quartiles. Statistical analysis was done by applying Mann-Whitney U test when comparing intranasal 
nanosystems to intranasal solutions (control), + + p < 0.01, + + + + p < 0.0001; and by applying one-way 
ANOVA with the Tukey multiple comparisons post-test when comparing intranasal nanosystems, intranasal 
solutions and intravenous formulations, # p < 0.05, # # p < 0.01, # # # p < 0.001, # # # # p < 0.0001. B%brain 

IN/IV – comparative brain bioavailability (intranasal vs intravenous); AUC – area under the “drug 
concentration vs time” curve; DTE% – drug targeting efficiency; DTP% – direct transport percentage; IN – 
intranasal; IV – intravenous; Tmax – time to reach maximum drug concentration. 5 
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In the matter of the amount of time it takes the drug to reach maximum concentration 

in the brain (Tmaxbrain IN), three possible outliers were identified (Figure 2.4D): one 

intranasal zolmitriptan nanoemulsion, one intranasal thymoquinone polymeric 

nanoparticles formulation, and one intravenous thymoquinone polymeric nanoparticles 

formulation, all having Tmax values of 4 hours or greater 101,121. In the case of the 

intranasal zolmitriptan nanoemulsion, the obtained Tmax might be justified by the fact 

that the authors quantified the drug in the cerebrospinal fluid, instead of the brain (which 

is what was done in most articles), a compartment that the drug may take more time to 

reach. In the case of the thymoquinone preparations, the high Tmax value could be due 

to a slow drug release from the nanosystem, as suggested by the release studies 

performed for those same formulations in the considered article. 

Log AUC ratio (brain/blood) also had a couple of extremely high values identified as 

possible outliers (Figure 2.4E), both corresponding to the intranasal geniposide 

microemulsions 87. These high values might be justified by the drugs’ rapid elimination 

from the blood, leading to low blood AUC 126,127. 

The parameters DTE%, DTP% and B%brain IN/IV showed an ample value range within each 

nanosystem class, with DTE% reaching 4 digits (Figures 2.5A, 5C and 5E). This high 

variability could be due to several factors, such as nanosystems’ composition (both drug 

and excipients used) and their properties, in addition to confounding variables (study 

design), as discussed. Considering only the most represented nanosystem classes, all 

mean/median values of Log DTE%, DTP% and Log B%brain IN/IV were significantly higher 

than the respective reference values (0 for DTP%, 2 for Log-transformed ratios). The 

highest Log DTE% mean/median value belonged to the polymeric micelles class, being 

significantly different from the Log DTE% of microemulsions (one-way ANOVA). This 

class also had the second highest Log B%brain IN/IV mean value, which was significantly 

better than the microemulsions class, and, even though no statistical significance was 

found, the highest DTP%. Microemulsions had some of the lowest mean/median values, 

having a significantly lower B%brain IN/IV than polymeric nanoparticles and 

nanostructured lipid carriers, besides polymeric micelles (one-way ANOVA).  
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Figure 2.5. Formulations’ brain targeting and bioavailability summary. Log DTE% (A), Log RDTE% (B), 
DTP% (C), Log RDTP% (D), Log B%brain IN/IV (E) and Log RB%brain (F) are represented for the different 
formulation classes. Data correspond to median ± inter-quartile interval and range (box-plot) plus mean 
indicated by a small “plus” sign (+). Statistical significance of differences between group means evaluated by 
one-way ANOVA with the Tukey multiple comparisons post-test, # p < 0.05, # # p < 0.01; # # # p < 0.001; 
differences between means and reference “no-change” values by one-sample t-test when normal 
distribution, Wilcoxon signed-rank test when not (medians), * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 
0.0001. B%brain IN/IV – comparative brain bioavailability (intranasal vs intravenous); DTE% – drug targeting 
efficiency; DTP% – direct transport percentage; RB%brain – relative brain bioavailability (intranasal 
nanosystem vs intranasal solution); RDTE% – relative drug targeting efficiency; RDTP% – relative direct 
transport percentage. 6 
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It may strike the eye that liposomes and transfersomes perform poorly, and they were 

already discussed as possible outliers. However, all liposomes and transfersomes data 

came from only two articles, therefore possibly being isolated cases of poor performance. 

Furthermore, the direct comparison of nanosystem behavior to the respective drug 

solution could highlight the advantage of using nanosystems, eliminating the effect of 

drugs and confounding variables. To do so, we compared DTE% and DTP% values of the 

intranasal nanosystems and the respective intranasal solutions (only studies comparing 

both were included) by calculating their relative values (RDTE% and RDTP%) plus 

RB%brain, all Log-transformed (Figures 2.5B, 5D and 5F). In the great majority of cases, 

the intranasal nanosystem had better brain drug targeting and direct transport than the 

respective solution. Furthermore, microemulsions, nanoemulsions and polymeric 

nanoparticles classes mean/median values were significantly different from zero 

(Figures 2.5B and 5D, one sample t-test when normal distribution, Wilcoxon signed-rank 

test when not). Relative bioavailability was also improved in all groups (Figure 2.5F, 

same statistical analysis). Nevertheless, we should not consider brain values only, since 

high blood values can lead to undesirable systemic side effects. Differences between 

groups were not statistically significant (one-way ANOVA). 

Taking this analysis into account, among the groups where the analysis had statistical 

power, microemulsions were the ones that performed less well (even if still having an 

improved brain targeting in comparison with the intravenous formulation). Polymeric 

micelles seemed to be the most successful when considering Log DTE% values. However, 

in this last class the evaluation of the relative brain targeting (both Log RDTE% and Log 

RDTP%, Figures 2.5B and 5D) failed to show an evident improvement over the respective 

intranasal drug solutions. This was due to the fact that some of the solutions used in these 

studies performed surprisingly well, and some constituted possible outliers in the 

solutions data set, as previously mentioned (Figure 2.4A). Therefore, the drug itself 

seems to noticeably influence the brain targeting efficiency. In contrast, the increase of 

relative brain/blood bioavailability seems less dependent on the drug, and more on the 

achievement of the nanosystems themselves. In fact, Log DTE% correlated better (and 

negatively) with Log(AUCbrain/AUCblood)IV than it did (positively) with 

Log(AUCbrain/AUCblood)IN, which indicates that good DTE% (and, consequently, DTP%) 

values were mostly due to a low intravenous brain/blood AUC ratio than due to a high 

intranasal brain/blood AUC ratio (Table 2.3 and Figure 2.6). That could be attributed to 

the studied drug’s properties, and its poor blood-brain barrier permeability. Moreover, 

the same correlations happen with B%brain IN/IV, but in a lesser extent, further confirming 
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the influence of intravenous brain AUC values (that are not included in this ratio’s 

calculation). 

Table 2.3. Spearman and Pearson correlations of Log DTE%, Log B%brain IN/IV and logarithm values of relative 
bioavailability through the intranasal and intravenous routes. 5 

  Log DTE% Log B%brain IN/IV 

Log (AUCbrain/AUCblood)IN rs 0.24 0.23 

Spearman p value 0.023 0.022 

rxy 0.29 0.13 

Pearson p value 0.023 0.022 

Log (AUCbrain/AUCblood)IV rs -0.76 -0.44 

Spearman p value < 0.0001 < 0.0001 

rxy -0.73 -0.47 

Pearson p value < 0.0001 < 0.0001 

Log B%brain IN/IV rs 0.68 - 

Spearman p value < 0.0001 - 

rxy 0.68 - 

Pearson p value < 0.0001 - 

AUC – area under the “drug concentration vs time” curve; B%brain IN/IV – comparative brain bioavailability 
(intranasal vs intravenous); DTE% – drug targeting efficiency; rs – Spearman’s correlation coefficient; rxy – 
Pearson’s correlation coefficient. 

 
Figure 2.6. Graphical representation of the correlation of Log DTE% with Log B%brain IN/IV and Log AUC 
ratios; AUC – area under the “drug concentration vs time” curve; B%brain IN/IV – comparative brain 
bioavailability (intranasal vs intravenous); DTE% – drug targeting efficiency; IN – intranasal; IV – 
intravenous. 7 

 

Tmax values’ distribution of each nanosystem class was not able to discriminate 

significant differences among nanosystems (ANOVA, Figure 2.7).  



 35 

 
Figure 2.7. Representation of Tmaxbrain IN values for all nanosystem groups. Data correspond to the median 
± inter-quartile interval and range (box-plot), and the mean, indicated by a small “plus” sign (+). IN – 
intranasal; Tmax – time to reach maximum drug concentration. 8 

 

In what concerns relative values, most mean/median values of log transformed relative 

Tmax in the brain (Log RTmaxbrain) of the intranasal nanosystems compared to the 

intravenous route (Figure 2.8A), and of the intranasal nanosystems compared to the 

respective intranasal solutions (Figure 2.8B), are equal to or below zero, with the small 

gains only reaching statistical significance in the most represented class, 

microemulsions. This indicates that brain delivery through the intranasal route can be at 

least as fast as the intravenous route, making it a good option when there is a need for 

the time to achieve therapeutical effect to be short. 
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Figure 2.8. Representation of the Log of IN/IV (A) and nanosystem/solution (B) ratios of Tmax brain values 
for all nanosystem groups. Data correspond to median ± inter-quartile interval and range (box-plot) plus 
mean indicated by a small “plus” sign (+). Statistical significance of differences between means and reference 
“no-change” values by one-sample t-test when in presence of normal distribution, Wilcoxon signed-rank test 
when not (medians), * p < 0.05; IN – intranasal; IV – intravenous; RTmax – quotient of the time required 
to reach maximum brain concentration between intranasal and intravenous administrations, or between 
intranasal administration of the nanosystem and the respective solution. 9 

 

2.4. Conclusions and final remarks 

Pre-clinical brain targeting studies have generally put in evidence some of the advantages 

of intranasal brain drug delivery and have showed utility in comparing different carrier 

nanosystems, among themselves and with drug solutions. However, this review showed 

that there is a high heterogeneity on how these assays have been conducted, analyzed 

and reported in the scientific literature.  

A greater uniformity in future reports of intranasal brain targeting studies would help 

with the interpretation of the potential value of newly developed formulations. The 

knowledge acquired from making this systematic review has led us to define some 

recommendations: a plain drug solution should be used intravenously instead or in 

addition to the developed nanosystem whenever possible, since the nanosystem itself can 

markedly alter the intrinsic pharmacokinetics and biodistribution of the drug; the 

validation parameters of the analytical methods should be described; pharmacokinetic 

ratios calculation (formulas and definition terms) should always be reported; when 

comparing different formulations, DTE% and B%brain IN/IV should preferably be compared 
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after logarithmic transformation; the animal model could be harder to standardize, due 

to variable resources and administration techniques, but given the elevated number of 

animals required to characterize drug AUC in the brain, the use of mice, and a minimum 

study duration of 8 hours, might be good compromises.  

Regarding the characterization of the formulations, in order to promote the progressive 

understanding of the factors that influence brain targeting, it should be as complete as 

possible. Formulations’ characterization should include the nanosystem itself (mean 

hydrodynamic size, PDI, and zeta potential, detailing the conditions of its 

determination), and the final preparation (osmolality, pH, and viscosity, including 

temperature and velocity dependence), given the relevance of all these factors in nasal 

delivery. Drug release kinetics and the interaction with cells in the nasal mucosa are 

other important factors that can be informative, and further work to promote in vitro 

tests standardization is still required. 

Nevertheless, the existing non-clinical brain targeting studies regarding the intranasal 

delivery of small drugs, although likely naturally biased for success cases, confirmed the 

expectation regarding the advantage of the intranasal route and the use of carrier 

nanosystems. Almost all (reported) nanosystems had favorable targeting ratios, and 

these were higher than the comparative intranasal drug solution. Moreover, success has 

already been obtained for a large group of drugs. 

Regarding nanosystem classes, microemulsions (the most represented class, with the 

lowest mean particle size and lowest value range) and polymeric nanoparticles (the 

second most represented, with the highest mean particle size and highest value range) 

were only significantly different regarding Log B%brain IN/IV, which was higher for 

polymeric nanoparticles, as it was for polymeric micelles and nanostructured lipid 

carriers (also in comparison with microemulsions). These differences were lost when 

considering the comparison of nanosystems with the respective intranasal drug solution, 

especially in the case of polymeric micelles, where the number of reports is still small. 

This happened because some drugs reached the brain so efficiently, even as drug 

solutions, that further benefit from nanosystems became less evident.  That being said, 

it was not possible, from the current global analysis, to clearly discriminate the overall 

superiority of a nanosystem class in relation to another with respect to brain targeting 

and bioavailability. We are only able to conclude that, in the reported works, 

nanosystems seem to be better than the respective drug solutions, particularity regarding 

brain bioavailability.  
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It is important to mention that, given the restrictive nature of the applied 

inclusion/exclusion criteria, it is not possible to generalize our results. In fact, only low 

molecular weight entities were included (protein and gene derived drugs were left out). 

Moreover, some nanosystem classes are underrepresented or have not been represented 

at all, because many studies describing intranasal nanosystem development do not 

design in vivo studies for DTE% or DTP% calculation. 

Other factors, such as drug and nanosystem properties, are variables that might strongly 

influence the relative efficacy of a nanosystem. Furthermore, bias could derive from 

substantial differences in study design. Study duration, intravenous formulation, animal 

model, analytical method and drug strength are all factors that could influence the results 

in a great extent. In any case, we, as others have before us 14, would like to recognize that 

the extrapolation of results from animal models to humans carries a risk, since anatomy 

and physiology and, consequently, nanosystem performance is likely to be considerably 

different. Moreover, performance in both animals and humans might also be influenced 

by the delivery device itself, a variable that is mostly overlooked 19.  
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Chapter 3 – Intranasal fosphenytoin: the 

promise of phosphate esters in nose-to-brain 

delivery of poorly soluble drugs 

 

3.1. Chapter overview and main objectives 

With phenytoin being a low solubility antiepileptic, we hypothesized that using its 

hydrophilic prodrug, fosphenytoin, could be a viable approach for an intranasal 

formulation. Even if it is unlikely for fosphenytoin to undergo free passive absorption 

due to its anionic nature, it can be converted to phenytoin by phosphatases in the nasal 

cavity, as has been reported by Antunes Viegas et al. 21. Our rationale was that the 

substantially increased drug strength, while formulating with safe excipients, and the 

local metabolization to the active diffusible form, could compensate for the reduced 

prodrug diffusion. Furthermore, by choosing a drug/prodrug pair already available in 

the market, this work aimed to serve as proof-of-concept that phosphate esters can be a 

useful strategy for nasal formulation development, to overcome poor bioavailability of 

many other poorly soluble drugs. Moreover, a few of the works included in the systematic 

review shown in Chapter 2 reported that some intranasal drug solutions already had 

quite good brain targeting efficacy, and in a few cases differences in brain targeting 

between the drug solution and the nanosystem were not statistically significant.  

Drug solutions also have the advantage of requiring very simple preparation techniques. 

In order to increase the formulation’s retention time in the nasal cavity, consequently 

allowing more time for drug absorption to occur and potentially increasing brain 

bioavailability, we considered two strategies: adding a mucoadhesive polymer – 

hydroxypropyl methylcellulose (HPMC); and/or adding a thermosensitive polymer – 

Poloxamer 407 (Pluronic® F-127, from now on referred to as Pluronic only) – which 

when heated can undergo sol-gel phase transition, if in solution at sufficient 

concentration. Both polymers have been previously used in nasal formulations’ 

composition, alone or in combination 23,24. The addition of albumin to the formulation 

was also evaluated, since it strongly binds to fosphenytoin and has been described to be 

actively transported from the nasal cavity to the brain 128. The developed mucoadhesive 

and/or thermosensitive formulations of fosphenytoin were characterized regarding 

viscosity, osmolality, pH and in vitro drug release profile. The selected formulations were 
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then administered to mice in an in vivo pharmacokinetic study, to compare and 

characterize their pharmacokinetic profile. 

 

3.2. Materials and methods 

3.2.1. Materials 

Part of fosphenytoin disodium (USP) was a gift sample from JPN Pharma (Mumbai, 

India), and another part was purchased from Jai Radhe Sales (Ahmedabad, India). 

Although it was provided as a hydrated disodium salt, mass concentration in the text will 

be indicated as calculated for the anhydrous acid form. Fosphenytoin and phenytoin 

(USP) reference standards and ketoprofen were acquired from Sigma-Aldrich 

(Steinheim, Germany), as were Pluronic, monobasic sodium phosphate and bovine 

serum albumin. Pentobarbital sodium injection solution (Eutasil®) was purchased from 

Ceva (Libourne, France). HPMC 2910 (USP) was bought from Acofarma (Barcelona, 

Spain). High-performance liquid chromatography (HPLC) grade methanol, analytical 

grade triethylamine, perchloric acid 70% (v/v) and diethyl ether, and sodium chloride 

and sodium hydrogen carbonate were all acquired from Fisher Scientific (Leicestershire, 

United Kingdom). Sodium acetate was bought from Merck (Darmstadt, Germany), 

potassium chloride from Chem-Lab (Zedelgem, Belgium), and dibasic sodium phosphate 

from Acros Organics (Geel, Belgium). Magnesium chloride and sodium hydroxide were 

purchased from Labkem (Barcelona, Spain). Calcium chloride and ortho-phosphoric 

acid 85% (v/v) were acquired from Panreac (Barcelona, Spain). Hydrochloric acid 37% 

(v/v) was bought from Fluka (Seelze, Germany). Water was always of ultra-pure grade 

(Milli-Q water apparatus, 0.22 μm filter, Merck, Darmstadt, Germany). 

 

3.2.2. Formulation preparation 

Formulations were prepared by weighing together all the necessary components: 

Pluronic and albumin were added in powder form; HPMC was added as a 2% (w/w) 

aqueous solution; and fosphenytoin was added either as a more concentrated aqueous 

solution, for preliminary batches with lower drug strengths, or as a powder, for final 

formulations with higher drug strengths. The pH was adjusted to 6 - 7 (nasal pH) for all 

formulations (Orion Star A211 pH meter, Thermo Fisher Scientific, Indonesia) and was 

then verified using universal indicator paper (Nahita, Auxilab S.L., Navarra, Spain). 

Water was also added by measuring the required mass, and formulations’ 
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homogenization was achieved with mechanical or magnetic steering, at 4 ºC for 

preparations containing Pluronic and at room temperature for all others. For 

simplification purposes, percentual w/w concentrations [% (w/w)] will be indicated 

throughout the text as percentage only (%). 

 

3.2.3. Rheology and osmolality 

Viscosity measurements were made with a cone-plate rheometer (DV3T, Brookfield 

Ametek, Massachusetts, USA). Sample volume was 0.5 mL, and one of two spindles was 

selected – CP40Z or CP52Z. Temperature was regulated and maintained using a 

thermostated water bath (MultiTemp III Thermostatic Circulator, Thermo Fisher 

Scientific, New Hampshire, USA). Viscosity was measured at a constant temperature (20 

ºC, mean room temperature, or 32 ºC, mean nasal cavity temperature) and varying shear 

rates. In the present work, we chose to determine and report zero shear viscosity, given 

its relevance for the physical stability of the formulations and for drug diffusion after 

administration, and because reporting this parameter may reduce the difficulty of 

comparison between formulations, and between studies, due to speed and spindle 

variation. For Newtonian fluids, zero shear viscosity was considered to be the value 

measured at the highest rotational speed (within the apparatus measurement range), for 

lower associated measurement error. Gelation was evaluated at a constant shear rate 

(100 s-1) and varying temperatures. Each batch was measured only once, and values that 

were not within the torque interval correspondent to a minimum of 95% measurement 

accuracy were not considered. 

Osmolality was determined using a freezing point osmometer (Osmomat 3000, Gonotec, 

Berlin, Germany). Mean values were calculated using 3 to 5 measurements for each 

batch. 

 

3.2.4. In vitro drug release  

In vitro drug release studies were performed using horizontal Ussing Chambers 

(Harvard Apparatus, NaviCyte, Hugstetten, Germany). Temperature was kept at 32 ºC 

(measured inside the chamber) using a thermostated water bath (Grant Instruments, 

Cambridge, England), and the membranes used in the assay were made of hydrophilic 

polyethersulfone, with a 0.2 μm pore size (Supor® membrane disc filters, Pall Life 

Sciences, Michigan, USA).  
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The bottom chamber was filled with 1.8 mL of nasal fluid simulant buffer, pH 6.5, 

composed of: monobasic sodium phosphate (7 mM), dibasic sodium phosphate (3 mM), 

potassium chloride (30 mM), sodium chloride (107 mM), calcium chloride (1.5 mM), 

magnesium chloride (0.75 mM), and sodium hydrogen carbonate (5 mM) (salt 

composition and concentration adapted from the literature) 129–131. After the chambers 

were fully assembled, 200 μL of this same buffer were placed on the upper side of the 

membrane. After reaching the intended temperature, the buffer on the upper side of the 

membrane was replaced with 200 μL of the formulation. Homogenization of the bottom 

chamber fluid was achieved through magnetic steering (Micro Stirring Bars, 2 mm, 

VWR, United Kingdom). Samples of 100 μL were taken from the receiver chamber at 5, 

10, 20, 40, 60, 80, 100, 120, 140, 160 and 180 minutes, and the volume was replaced 

with new buffer solution at every time point. Subsequently, drug quantification in the 

formulation and in the collected samples was done by spectrophotometry or HPLC, as 

described in the following sections 3.2.4.1. and 3.2.4.2. A simple fosphenytoin aqueous 

solution was used as positive control. 

 

3.2.4.1. Spectrophotometric assay  

Spectrophotometric assay selectivity was assessed by measuring vehicle, matrix and 

empty ultra-violet microplates (Greiner Bio-One, Germany) absorbance at 210 nm in a 

microplate spectrophotometer (xMark, Bio-Rad, Japan). Both the matrix (nasal fluid 

simulant buffer) and the empty wells had a relevant absorbance at the chosen 

wavelength, and thus the corresponding values were subtracted from the ones obtained 

for sample quantification, during data analysis. Vehicle interference was assessed by 

measuring the absorbance of the highest of the chosen polymer concentrations: Pluronic 

at 15% and HPMC at 0.5% (properly diluted). 

Before absorbance reading, samples collected from the Ussing chambers (except the ones 

belonging to formulations containing albumin) were diluted 20-fold in nasal fluid 

simulant buffer. For the quantification of initial drug concentration, a sample was taken 

directly from the preparations and diluted 800-fold.  

Method validation followed the Food and Drug Administration (FDA) guideline 132, for 

evaluation of the method’s limit of quantification, linearity, precision, accuracy and 

selectivity for the analyte (fosphenytoin). Further detailed information can be found in 

the supplementary data (section S1.1.1). 
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3.2.4.2. High-performance liquid chromatography assay 

In vitro drug release test samples belonging to formulations containing albumin were 

quantified by HPLC. The method was adapted from the one developed by Antunes Viegas 

et al. 21. To obtain drug levels within the range of the calibration curves, samples collected 

from the Ussing chambers during the drug release assay were diluted 200-fold in nasal 

fluid simulant buffer, and samples taken directly from the formulations used in the assay 

were diluted 5000-fold. Perchloric acid at 10% (v/v) was then added in order to 

precipitate the albumin that was part of the formulation’s composition.  

Chromatographic apparatus consisted of a HPLC system (LC-2010A HT Liquid 

Chromatography) coupled with a diode-array detector (SPD-M20A), controlled 

automatically by the data acquisition software (LabSolutions, version 5.52), from 

Shimadzu (Kyoto, Japan). Analyte separation was performed at 30 ºC on a reversed-

phase column (C18, 3 μm particle size, 55 × 4 mm) protected by a reversed-phase guard 

column (C18, 5 μm particle size, 4 × 4 mm), LiChroCART® Purospher® STAR models, 

both purchased from Merck (Darmstadt, Germany). Elution was done at 1 mL/min in 

isocratic mode, and the mobile phase was composed of (v:v) 36% methanol and 64% 

sodium phosphate buffer, 10 mM, pH 3, with 0.25% triethylamine, filtered (Nylaflo 

membrane, 0.2 μm pore size, Pall, USA) and degassed for 30 minutes (Branson 

Bransonic® M Mechanical Bath 5800, Missouri, USA) prior to injection. Sample 

injection volume was 20 μL. Analyte detection was done at 215 nm, with 20 minute runs.  

Method validation concerning limit of quantification, linearity, precision, accuracy, 

selectivity and recovery of fosphenytoin followed the FDA guideline criteria 132. Method 

selectivity was also evaluated for the formulation vehicle. Further detailed information 

can be found in the supplementary data (section 1.1.2). 

 

3.2.5. In vivo pharmacokinetic study 

3.2.5.1. Animal experimentation 

In the animal experimentation studies we used adult male CD-1 mice, age ranging 

between 7 and 11 weeks, and weighing between 28 and 42 g. These animals came from 

our own institution’s certified animal facility, and they were housed under controlled 

environmental conditions (12 hours light/dark cycle, 20 ± 2 ºC, 50 ± 5% relative 

humidity) with free access to tap water and standard rodent diet (4RF21, Mucedola, 

Italy). All animal procedures, including those to obtain blank matrices for validation 

experiments, were performed in conformity with the regulations of the European 
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Directive 2010/63/EU, regarding the protection of laboratory animals used for scientific 

purposes, and approved by the Local Animal Ethics Committee and by the competent 

national authority [Portuguese National Authority for Animal Health, Phytosanitation 

and Food Safety (DGAV – Direção Geral de Alimentação e Veterinária)]. 

A total of 176 animals were randomly divided into 4 experimental groups (11 time points, 

4 mice per time point). Prior to formulation administration each mouse was anesthetized 

with a dose of 60 mg/kg of pentobarbital, through intraperitoneal injection. All 

formulations had a target fosphenytoin strength of 50 mg/g. A first group was given a 

slow intravenous tail-vein injection (over approximately 1 minute) of a fosphenytoin 

solution diluted 20-fold in physiological saline solution (sodium chloride 0.9%); a 

second group received a fosphenytoin solution intranasally; a third group received a 

fosphenytoin solution in HPMC at 0.5% (H0.5FOS) intranasally; and a fourth group was 

given a fosphenytoin solution in HPMC at 0.5% plus albumin at 2% (H0.5FOS + 

albumin) also intranasally. For intranasal administrations the mouse’s body was laid on 

its left side, on top of a heating pad (plus a DC Temperature Controller 40-90-8D, FHC, 

Maine, USA). A flexible catheter, attached to a 50 μL syringe (Hamilton, Nevada, USA), 

was then inserted 3 to 4 mm into the right nostril. A volume of 5 μL per 30 g of body 

weight was administered once. After drug administration the mice were left to recover 

from anesthesia in a supine position, in a temperature-controlled environment. 

 

3.2.5.2. In vivo sample collection, processing and high-performance 

liquid chromatography assay 

After euthanasia at specific time points – 5, 10, 15, 30, 60, 120, 240, 360, 480, 720 and 

1440 minutes – mice blood and brain were collected. Blood was collected to tubes 

containing ethylenediaminetetraacetic acid (1 mL capacity, with K3 EDTA, FL Medical, 

Italy), and after mild agitation 300 μL were transferred to an eppendorf tube already 

containing 300 μL of orthophosphoric acid 85% (v/v), making a blood:acid mixture in a 

1:1 (v/v) ratio. The mixture was then kept on ice. Whole brains were homogenized (Ika 

Ultra-Turrax® T25 Basic, Staufen, Germany) in a mixture of water and orthophosphoric 

acid also in a 1:1 (v/v) ratio (1 g of tissue per 4 mL of mixture), and were likewise kept on 

ice. Afterwards, brain homogenates were centrifuged (MIKRO 200R microcentrifuge, 

Hettich, Tuttlingen, Germany) at 14000 rpm, 4 ºC, for 10 minutes. Both acidified blood 

and acidified brain homogenates’ supernatants were stored at -20 ºC (RZ80FHRS 

freezer, Samsung, Seoul, South Korea) until needed. The purpose of the addition of 
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orthophosphoric acid to the tissues was to prevent fosphenytoin conversion to 

phenytoin. 

During processing all samples were kept on ice. Initially, 20 μL of ketoprofen (the 

internal standard) spiking solution were added to 100 μL of brain homogenate 

supernatant sample or 200 μL of blood sample (either a blank matrix plus spiking 

solution, or a direct sample from the in vivo pharmacokinetic study). This was followed 

by liquid-liquid extraction, with 1000 μL of diethyl ether being added to each sample, 

which was subsequently vortexed for 30 seconds and then centrifuged (microcentrifuge, 

Gyrozen, Daejeon, South Korea) for 5 minutes, at 13500 rpm, at room temperature. The 

resulting organic phase was transferred to a glass tube, and the aqueous phase was then 

reextracted twice more, under the same conditions, with the combined organic phases 

being evaporated to dryness under a gas stream at 45 °C, and then reconstituted with 

100 μL of mobile phase. 

The chromatographic apparatus and analyte separation conditions were the same as for 

the quantification of the samples from the drug release study (section 2.4.2), but mobile 

phase was changed to 36% methanol and 64% sodium acetate buffer (10 mM, pH 5, with 

0.25% triethylamine). Furthermore, fosphenytoin and phenytoin detection was done at 

215 nm, but the detection of the internal standard was done at 280 nm. Run time and 

injection volume remained the same (20 minutes and 20 μL, respectively). 

Method validation followed the FDA guideline as well 132, determining the same 

parameters as before, but now for both fosphenytoin and phenytoin (derived from the in 

vivo bioconversion of fosphenytoin). Further detailed information can be found in the 

supplementary data (section 1.1.3). 

 

3.2.6. Data analysis 

Statistical data analysis and graphical representation was done using the GraphPad 

Prism software, version 6.0. The significance level was set at 0.05. 

Zero shear viscosity of non-Newtonian pseudoplastic fluids was estimated by fitting a 

non-linear regression model (one phase decay) to the “viscosity vs shear rate” data and 

determining the zero of the function (Y when X = 0), with or without prior variable 

transformation (X = Log10 X for Pluronic + HPMC formulations at 32 ºC). The half-

gelation temperature (Tgel50) was considered to be the temperature at which viscosity is 
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at 50% of the correspondent to complete gelation, and was determined by applying a 

non-linear regression model [log(agonist) vs. response, variable slope, four 

parameters] to the “viscosity vs temperature” data.  

The determination of the drug release parameters was done taking into account initial 

drug strength. Drug release rates were calculated using the Higuchi model 133,134, in which 

both time (X) and drug release percentage (Y) were transformed: the square root of X 

was calculated (X = √X), and Y was divided by the area of the membrane used in the 

assay (Y = Y/0.64). Then after these transformations a linear regression was applied, 

using mean values for each time point, and late time points for which correspondent 

values fell out of the linear zone were excluded. To assess whether they differed 

significantly between formulations, the drug release rates (slopes) were compared two-

by-two using an F-test. 

The existence of a correlation between total drug release percentage and zero shear 

viscosity at 32 ºC was assessed by using a Spearman’s correlation test, two-tailed. 

Differences between formulations’ drug concentration levels in blood and brain were 

determined by two-way ANOVA analysis with Tukey’s multiple comparisons post-test. 

Pharmacokinetic parameters’ determination was done using the add-in program for 

Microsoft Excel “PKSolver”, a useful and reliable tool with results satisfactorily 

comparable to those of WinNonlin (the Pharmaceutical Industry’s go-to tool) 135. A non-

compartmental analysis was done for all data, and all administrations were considered 

to be extravascular, even in the case of the intravenous group, since the administration 

was done at a slow rate. Maximum drug concentration (Cmax) and Tmax, in both blood 

and brain, were directly derived from the experimental data. AUC0-t was calculated 

through the linear trapezoidal method. AUC0-inf was calculated by adding AUC0-t to the 

last quantifiable drug concentration (with adequate precision and accuracy, Clast) divided 

by the elimination rate constant (kel), with the formula being AUC0-inf = AUC0-t + Clast/kel. 

kel was estimated by applying a log-linear regression to the terminal segment of the “drug 

concentration vs time” curve. The elimination half-life (t1/2el) was calculated by dividing 

ln2 by kel (the formula being t1/2el = ln2/kel), and the mean residence time (MRT) by 

dividing the area under the first moment curve (AUMC) by the AUC0-inf (the formula 

being MRT = AUMC/ AUC0-inf). The percentage of the AUC that was extrapolated, from 

the last quantifiable drug concentration to infinity, was also calculated [AUCextrap (%)].  
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Absolute blood bioavailability (B%blood IN/IV) of the intranasal formulations was calculated 

with equation 3.1: 

𝐵%𝑏𝑙𝑜𝑜𝑑 𝐼𝑁/𝐼𝑉 =
𝐴𝑈𝐶 𝑏𝑙𝑜𝑜𝑑𝐼𝑁

𝐴𝑈𝐶 𝑏𝑙𝑜𝑜𝑑𝐼𝑉

× 100 (3.1).  

Relative blood bioavailability (RB%blood) was used to compare intranasally administered 

formulations to a simple intranasal aqueous drug solution, and it was calculated by 

equation 3.2: 

𝑅𝐵%𝑏𝑙𝑜𝑜𝑑 =
(𝐴𝑈𝐶 𝑏𝑙𝑜𝑜𝑑𝐼𝑁)𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

(𝐴𝑈𝐶 𝑏𝑙𝑜𝑜𝑑𝐼𝑁)𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
× 100  (3.2). 

 

3.3. Results and discussion 

3.3.1. Formulation development with rheology and 

osmolality characterization  

Osmolality measurements and rheological studies were used to support the decision 

making regarding which polymer concentrations should be used in vehicle composition. 

Pluronic alone had an osmolality that ranged from around 130 to 260 mOsmol/kg, 

therefore being almost isotonic at the highest concentration (16%) (Table 3.1). This fact 

limits the amount of drug that can be dissolved in these vehicles without compromising 

the osmotic safety of the preparations. Oppositely, HPMC alone did not contribute 

measurably to the osmolality of the formulations. Consequently, mixed vehicles’ 

osmolality values were similar to those of Pluronic alone. 
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Table 3.1. Viscosity and osmolality of vehicles containing HPMC only, Pluronic only, or mixtures of HPMC 
and Pluronic. Data correspond to 1 representative batch for each different vehicle. Osmolality data are 
presented as mean ± SEM. Viscosity was measured at 20 ºC, and in Newtonian fluids corresponds to the 
value at the highest torque. Viscosity of non-Newtonian fluids is represented as zero shear viscosity, inferred 
by non-linear regression analysis, and is presented as mean ± SEM. 6 

Composition (w/w %) Viscosity at 20 ºC (cP) R2 n Osmolality 
(mOsmol/kg) 

HPMC 0.2% 4.54 ± 0.05 0.9751 10 0 

HPMC 0.5% 25.24 ± 0.15 0.9971 16 0 

HPMC 1% 228.00 ± 1.04 0.9980 12 0 

Pluronic 12% 10.11 - - 132.2 ± 0.5 

Pluronic 13% 12.61 - - 165.0 ± 2.7 

Pluronic 14% 16.12 - - 196.2 ± 3.0 

Pluronic 15% 22.38 - - 222.2 ± 3.9 

Pluronic 16% 29.04 - - 260.8 ± 1.7 

Pluronic 12% + HPMC 0.2% 13.54 - - 135.7 ± 1.2 

Pluronic 13% + HPMC 0.2% 15.71 - - 160.0 ± 1.0 

Pluronic 14% + HPMC 0.2% 19.84 - - 204.0 ± 1.7 

Pluronic 15% + HPMC 0.2% 26.75 - - 245.4 ± 2.4 

Pluronic 16% + HPMC 0.2% 41.97 ± 0.55 0.9455 13 285.8 ± 2.4 

n – number of points (number of different speeds, one measurement per speed); HPMC – hydroxypropyl 
methylcellulose; R2 – linear regression’s coefficient of determination; SEM – standard error of the mean. 

 

The rheological behavior of the vehicles over a range of shear rates, their zero shear 

viscosity and their gelation temperatures (when applicable) were then assessed, first for 

each polymer separately, and then in combination. At 20 ºC, HPMC showed non-

Newtonian pseudoplastic behavior and Pluronic presented Newtonian behavior, for 

concentrations between 0.2 - 1% and 12 - 16%, respectively (not shown). Viscosity 

increased with increasing polymer concentration. For pseudoplastic fluids (HPMC 

dispersions), zero shear viscosity (inferred from regression analysis) was used to 

compare with Pluronic formulations’ viscosity (Table 3.1).  

As for the combination of the two polymers, it was only possible to obtain physically 

stable vehicles with HPMC at 0.2%, since with HPMC at 0.5 or 1% phase separation 

occurred after some time (varying between a few hours to a few days, sooner for higher 

polymer concentrations), and for the highest polymer concentrations a precipitate 

appeared. This physical instability in vehicles containing Pluronic and HPMC in 

combination (at higher polymer concentrations) has not, to the best of our knowledge, 

been previously reported in the scientific literature, even if a wide variety of studies have 

used them. Hence, we decided on combining Pluronic (at various concentrations) with 
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HPMC at 0.2% only. The addition of HPMC to Pluronic at 16% changed its rheological 

behavior from Newtonian to non-Newtonian (pseudoplastic) at 20 ºC (not shown). 

Pluronic undergoes temperature induced sol-gel transitions. If the polymer’s 

concentration is not high enough, it transitions from a low viscous fluid to a more viscous 

one, and not to a solid gel, but going forward we will still refer to it as gelation. With 

dispersions of Pluronic alone, gelation occurred at 15 and 16%, while for polymer 

concentrations equal or below 14% the viscosity only slightly increased with temperature 

increase up to 45 ºC (Figure 3.1A and supplementary data, section 1.2.1). The 

combination of the two polymers slightly increased the viscosity compared to Pluronic 

alone at 20 ºC (Table 3.1), but, more substantially, it also anticipated Pluronic’s gelation 

(Figure 3.1A and supplementary data, section 1.2.1). Moreover, with Pluronic at 14% in 

combination with HPMC a transition to increased viscosity did in fact occur. 

 

Figure 3.1. Viscosity variation with temperature increase at a constant shear rate (100 s-1) for aqueous 
solutions containing Pluronic only (continuous connecting line) or Pluronic + HPMC (discontinuous 
connecting line) (A); evaluation of viscosity as function of the shear rate at 32 ºC of HPMC (B) or Pluronic 
(C) aqueous solutions; and zero shear viscosity at 32 ºC of aqueous solutions containing Pluronic only (clear 
pattern columns) or Pluronic + HPMC (striped pattern columns), determined by non-linear regression (D); 
1 to 3 batches for each formulation. Data are presented as mean ± SEM. H or HPMC – hydroxypropyl 

methylcellulose; P – Pluronic; SEM – standard error of the mean. 10 
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At 32 ºC, both HPMC and Pluronic showed non-Newtonian pseudoplastic behavior 

(Figures 3.1B and 3.1C). For Pluronic at 16% it was not possible to evaluate viscosity over 

a wide shear velocity range, since at lower rotational speeds the torque was too high, with 

a corresponding viscosity above the spindle’s measurement range. Furthermore, the 

addition of 0.2% HPMC to Pluronic resulted in increased zero shear viscosity at 32 ºC 

(Figure 3.1D). 

In what concerns drug incorporation, for vehicles containing HPMC only the 

concentration of 1% was excluded because it led to a high zero shear viscosity at room 

temperature, which could hinder administration, especially through nasal instillation. 

Therefore, we selected the concentrations of 0.2 and 0.5%. Drug incorporation into these 

vehicles increased the zero shear viscosity at both studied temperatures, but not 

substantially (for the highest concentration, 0.5%, it only increased about 3 cP at 20 ºC 

and about 1 cP at 32 ºC) (Figure 3.2A and Tables 3.1 and 3.2). For vehicles containing 

Pluronic only, polymer concentration of 16% was excluded due to its gelation 

temperature being too low (Tgel50 30.4 ºC), having the risk of undergoing sol-gel 

transition at an increased room temperature (on a hot summer day, for example), which 

could also make it difficult to administer. Hence, concentrations from 12 to 15% were 

selected, and drug addition to these vehicles increased zero shear viscosity considerably, 

at both studied temperatures, but more substantially at 32 ºC (for the highest 

concentration, 15%, it increased about 26 cP at 20 ºC and about 122621 cP at 32 ºC) 

(Figure 3.2A and Tables 3.1 and 3.2). Moreover, there was also an effect of drug addition 

on gelation, which was anticipated, hence occurring at lower temperatures, with Pluronic 

at 15% plus fosphenytoin having a sol-gel transition near the mean nasal temperature 

(Figure 3.2B and supplementary data, section 1.2.1). 
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Figure 3.2. Zero shear viscosity at 32 ºC of vehicles (clear pattern columns) and drug formulations (striped 
pattern columns), determined by non-linear regression (A); and viscosity variation with temperature 
increase at a constant shear rate (100 s-1) for Pluronic vehicle (continuous connecting line) and Pluronic drug 
formulation (discontinuous connecting line) (B); 1 to 3 batches for each formulation. Data are presented as 
mean ± SEM. FOS – fosphenytoin; H or HPMC – hydroxypropyl methylcellulose; P – Pluronic; SEM – 
standard error of the mean. 11 

 

Table 3.2. Drug formulations’ viscosity and zero shear viscosity, at 20 and 32 ºC, and osmolality. Three 
batches for each different formulation. Data are presented as mean ± SEM. 7 

Formulation Zero shear 
viscosity at 
20 ºC (cP) 

R2 n Zero shear 
viscosity at 
32 ºC (cP) 

R2 n Osmolality 
(mOsmol/kg) 

Fosphenytoin 
strength 
(mg/g) 

H0.2FOS 4.76 ± 0.01 0.9991 12 3.68 ± 0.01 0.9971 16 263.7 ± 14.9 29.27 ± 2.77 

H0.5FOS 27.73 ± 0.15 0.9983 13 18.56 ± 0.06 0.9983 13 251.1 ± 14.9 26.64 ± 1.93 

P12FOS 16.22 ± 0.39 - - 33.51 ± 0.09 0.9882 16 475.3 ± 20.5 25.93 ± 3.32 

P15FOS 48.54 ± 2.78 - - 154133 ± 
11645 

0.9837 19 616.3 ± 26.0 27.53 ± 1.80 

P12H0.2FOS 21.08 ± 1.11 - - 39.35 ± 0.23 0.9586 13 502.5 ± 22.0 31.24 ± 5.25 

P13H0.2FOS 28.80 ± 1.12 - - 65.94 ± 0.77 0.9790 12 545.6 ± 19.7 30.15 ± 2.84 

n – number of points (number of different speeds, one measurement per speed); FOS – fosphenytoin; H – 
hydroxypropyl methylcellulose; P – Pluronic; R2 – linear regression’s coefficient of determination; SEM – 
standard error of the mean. 

 

As for mixed vehicles, drug incorporation was only possible for the two lowest Pluronic 

concentrations – 12 and 13% (plus HPMC at 0.2%), since for Pluronic at higher 

concentrations fosphenytoin had poor solubility, forming a drug precipitate. Drug 

addition to the selected polymer mixtures gave rise to an increased viscosity (for the 

highest concentrations, Pluronic at 13% and HPMC at 0.2%, it increased about 13 cP at 

20 ºC and about 11 cP at 32 ºC) (Figure 3.2A and Tables 3.1 and 3.2). 
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Drug incorporation into the selected vehicles led to slightly hypotonic formulations for 

preparations containing HPMC only, and moderately hypertonic formulations for 

preparations containing Pluronic only or Pluronic + HPMC (Table 3.2). Although 

hypertonic, these last formulations were still within the established limits for marketed 

nasal preparations 136, at the current drug concentration range. 

In addition to selecting the desired polymers and their concentrations, we sought to find 

a strategy that could potentially increase drug targeting to the brain, and one that was, 

ideally, relatively simple. Therefore, we chose adding albumin at 2% (w/w) to the selected 

preparations, as it has been described to be actively transported from the nasal cavity to 

the brain 128. Nevertheless, for formulations containing just Pluronic, only polymer 

concentrations of 12% allowed the addition of this protein without compromising 

physical stability, with the preparations with Pluronic at higher concentrations acquiring 

a high turbidity. The same happened for the mixed vehicles, regardless of composition. 

On the contrary, formulations containing HPMC only, at both 0.2 and 0.5%, were 

physically stable. Furthermore, the addition of albumin to the vehicles containing 

Pluronic at 12% or HPMC at 0.2 or 0.5% did not noticeably alter their viscosity (data not 

shown). 

 

3.3.2. In vitro drug release 

The viscosity of a formulation may, on the one hand, increase its retention in the nasal 

cavity, consequently increasing bioavailability through this route, but on the other hand 

it can also considerably decrease drug diffusion and release rate, having a 

counterproductive effect. Therefore, to further assist on formulation selection, the in 

vitro drug release rates of the preparations that were selected during the rheological 

studies phase – H0.2FOS, H0.5FOS, P12FOS, P15FOS, P12H0.2FOS and P13H0.2FOS – 

were evaluated using horizontal Ussing chambers, and compared to a fosphenytoin 

aqueous solution (positive control). 

Since HPMC and Pluronic at the highest concentrations (Pluronic at 15% and HPMC at 

0.5%) did not interfere with drug absorption at 210 nm (at the dilution used in the assay), 

a simple spectrophotometric method was developed for fosphenytoin quantification. For 

the formulation H0.5FOS + albumin in vitro drug release assay sample quantification 

was done by HPLC, since albumin showed high absorbance at 210 nm, thereby 

interfering with drug quantification in the spectrophotometric method. Validation 

results for both assays are given in the supplementary data (sections 1.2.2 and 1.2.3).  
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In what concerns percentual drug release (Figure 3.3) and percentual drug release rate 

(Table 3.3) H0.2FOS and P12FOS were not significantly different from the drug solution 

or from each other, although H0.2FOS appeared to release fosphenytoin slightly faster 

than P12FOS. Drug release from H0.5FOS was as fast as from P12FOS, and they both 

reached a total drug release similar to H0.2FOS (at the final time point). P15FOS had a 

more sustained, significantly slower drug release than all other formulations, which was 

to be expected given its very high viscosity at 32 ºC (which was likely to reduce drug 

diffusion), except when compared to P12H0.2FOS and P13H0.2FOS, which despite 

having a much lower viscosity than P15FOS were the slowest in releasing drug over time, 

also releasing the least amount after 180 minutes (3 hours).   

 

Figure 3.3. Fosphenytoin’s percentual drug release between 5 and 180 minutes. FOS – fosphenytoin; H - 
hydroxypropyl methylcellulose; P – Pluronic. 12 

Table 3.3. Fosphenytoin’s percentual drug release rate, calculated by applying a linear regression to the 
plotting of the square root of time (X = √X) versus percentual drug release divided by the area (cm2) of the 
membrane used in the assay (Y = Y/0.64). Significance matrix is shown for the difference between 
formulations (slopes’ comparison using an F test). 8 

Formulation Percentual drug 
release 

Significance matrix 

R2 Drug 

release rate 
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FOS solution 0.9905 18.3 ± 1.3 NS 0.0190 NS < 0.0001 < 0.0001 < 0.0001 

H0.2FOS 0.9902 15.8 ± 0.9 - < 0.0001 NS < 0.0001 < 0.0001 < 0.0001 

H0.5FOS 0.9986 14.3 ± 0.3 - - NS 0.0004 < 0.0001 < 0.0001 

P12FOS 0.9988 14.5 ± 0.3 - - - 0.0260 0.0014 0.0008 

P15FOS 0.9972 11.7 ± 0.3 - - - - 0.0223 0.0036 

P12H0.2FOS 0.9966 10.6 ± 0.3 - - - - - NS 

P13H0.2FOS 0.9981 9.9 ± 0.2 - - - - - - 

FOS – fosphenytoin; H - hydroxypropyl methylcellulose; NS – not significant (statistical difference); P – 
Pluronic; R2 – linear regression’s coefficient of determination. 
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Theoretically, a formulation with a higher viscosity slows down drug diffusion more, 

leading to a more sustained and/or overall lower release. Our results were mostly in 

agreement with that, with a strong negative correlation existing between zero shear 

viscosity at 32 ºC and drug release percentage at the final time point (Spearman’s 

correlation test, two-tailed, p < 0.0001, rS = - 0.756). Nevertheless, the formulations 

combining both the thermosensitive and the mucoadhesive polymers, which were not 

most viscous, had the slowest drug release. This might be due to an interaction between 

the two polymers and the drug. 

Considering osmolality, viscosity and in vitro drug release results, we decided that the 

formulation containing HPMC at 0.5% would be the best choice for further studies, due 

to several reasons: it was potentially mucoadhesive and had a high enough viscosity at 

32 ºC to possibly help retain the formulation in the nasal cavity, but not so high that it 

slowed or decreased drug release in a substantial way; viscosity at 20 ºC allowed 

administration; and regarding osmolality (and osmotic safety) it allowed a higher drug 

strength than the preparations containing Pluronic. 

Hence, from the formulations containing albumin we also chose HPMC at 0.5% and went 

on to verifying whether the addition of albumin to the polymeric preparation altered drug 

release in any way. Results showed that there was no considerable difference in drug 

release from H0.5FOS + albumin, in any of the studied parameters, being similar to those 

obtained for H0.5FOS (data not shown). 

Formulations H0.5FOS and H0.5FOS + albumin were, therefore, selected for further 

evaluation in in vivo pharmacokinetic studies, for administration through the intranasal 

route. Drug strength was increased and set at 50 mg/g, corresponding to an osmolality 

between 300 and 400 mOsmol/kg, values that are regarded as safe for intranasal 

administration 136. 

 

3.3.3. In vivo pharmacokinetic study 

Bioanalytical method validation results are presented in the supplementary data (section 

1.2.4).  

Fosphenytoin is a dianionic molecule with reduced permeability, but in a previous ex 

vivo permeation study a small amount of this prodrug was shown to permeate 21. We 

wished to know whether fosphenytoin could reach the brain in its unmetabolized form 
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when administered intranasally. Despite the developed procedure, preventing 

fosphenytoin conversion to phenytoin after sample collection, fosphenytoin levels were 

always below the limit of quantification of 0.3 µg/mL (blood) and 1.5 µg/g (brain), even 

at short time points (5 or 10 minutes). However, it is not certain whether in vivo the 

absence of fosphenytoin quantification is due to it being converted to phenytoin before 

absorption, or if some fosphenytoin may permeate as such and be converted immediately 

afterwards, since intravenous administration also led to unquantifiable fosphenytoin. In 

fact, fosphenytoin has a short and species-dependent conversion half-life. A few studies 

show that fosphenytoin’s conversion to phenytoin in the blood is complete about 15 

minutes after intravenous infusion in humans, and 10 minutes after intravenous infusion 

or intramuscular administration in rabbits, however in rats conversion is essentially 

complete after 5 minutes 137–139. Moreover, all those studies used higher drug doses, 

varying between 10 and 30 mg of phenytoin equivalents per kg of animal body mass, 

whereas in our study drug doses only reached 5.8 mg/kg. Logically, with lower doses 

conversion is likely to be completed sooner. 

Looking at phenytoin’s brain and blood concentration over time (Figure 3.4), it is 

noticeable that the intravenous solution produced higher concentrations at earlier time 

points (p < 0.01, two-way ANOVA). Tmax in the brain was 120 minutes (2 hours) for the 

intravenous administration and 240 minutes (4 hours) for the intranasal 

administrations (Table 3.4). Even assuming that effective brain concentrations can be 

achieved before Tmax, it still indicates that the intranasal delivery of prodrugs like 

fosphenytoin, at least with the present formulation strategy, may not lead to a fast 

therapeutic effect, as is required in emergency situations. This is possibly explained by 

the need of prodrug conversion occurring before effective drug diffusion through the 

nasal mucosa.  
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Figure 3.4. Curves of phenytoin concentration as a function of time in brain (A) and blood (B). Data are 
presented as mean ± SEM. Only significance levels for significant differences obtained when comparing one 
condition to all others are shown: **** p < 0.0001 and ** p < 0.01, two-way ANOVA analysis with Tukey’s 
multiple comparisons post-test;  FOS – fosphenytoin; H – hydroxypropyl methylcellulose; IN – intranasal; 
IV – intravenous. 13 

Table 3.4. Pharmacokinetic parameters determined for phenytoin levels, in both brain and blood, for all 
tested formulations and administration routes. 9 

Formulation Fosphenytoin solution H0.5FOS H0.5FOS + 
albumin 

Administration 
route 

Intravenous Intranasal Intranasal Intranasal 

Matrix Brain Blood Brain Blood Brain Blood Brain Blood 

Cmax (μg/g or 
μg/mL) 

3.88 5.13 3.32 3.59 3.22 3.44 3.35 3.55 

Tmax (min) 120 5 240 360 240 240 240 240 

t1/2el (min) 176 503 332 584 348 624 1394 553 

kel (min-1) 0.0039 0.0014 0.0021 0.0012 0.0020 0.0011 0.0005 0.0013 

MRT (min) 311 756 579 817 622 1003 2117 839 

AUC0-t (μg.min/g 
or μg.min/mL) 

1570 2751 1185 2523 1049 2297 1885 3110 

AUC0-inf 
(μg.min/g or 
μg.min/mL) 

1703 3325 2149 3069 2050 3076 7226 3734 

AUCextrap (%) 7.79 17.26 44.85 17.80 48.82 25.33 73.92 16.70 

B%blood IN/IV - - 92 - 83 - 113 

RB%blood - - - - 91 - 123 

AUC0-t – area under the “drug concentration vs time” curve, from time zero to the last quantifiable drug 
concentration; AUC0-inf – area under the “drug concentration vs time” curve, from time zero to infinity; 
AUCextrap (%) – percentage of the area under the “drug concentration vs time” curve that was extrapolated, 
from the last quantifiable drug concentration to infinity; B%blood IN/IV – absolute blood bioavailability 
(intranasal formulation vs intravenous solution); Cmax – maximum drug concentration; FOS – 
fosphenytoin; H – hydroxypropyl methylcellulose; IN – intranasal; IV – intravenous; kel – elimination rate 
constant; MRT – mean residence time; RB%blood – relative blood bioavailability (intranasal formulation vs 
intranasal solution); t1/2el – elimination half-life; Tmax – time to reach maximum drug concentration.  



 57 

The brain and blood profiles of the intranasal drug solution and the intranasal H0.5FOS 

formulation largely overlap (Figure 3.4). Therefore, overall HPMC did not benefit nor 

reduce drug absorption. Phenytoin’s Cmax in the brain was relatively similar between all 

formulations and administration routes (3.2 to 3.9 μg/g) (Table 3.4). Blood Cmax was 

also quite similar for all intranasal formulations (3.4 to 3.6 μg/mL) but was substantially 

higher for the intravenous administration (5.1 μg/mL), which suggests that the 

intranasal route could be safer in what concerns maximum systemic drug levels. It is also 

important to mention that this small single dose administration already achieved half of 

the lower limit of these rodents’ therapeutic level, which is around  7-12 μg/mL 140. 

The addition of albumin at 2% to the formulation (H0.5FOS + albumin) prolonged 

phenytoin’s blood and brain drug levels, since phenytoin’s concentration at 480 minutes 

(8 hours) and, more significantly, at 720 minutes (12 hours) was clearly higher that the 

obtained with the other formulations (p < 0.0001, two-way ANOVA) (Figure 3.4). This 

could, hypothetically, be explained by intracellular neural transport to the brain, as 

previously demonstrated for albumin 128, since intracellular transport is slow when 

compared to extracellular diffusion, and/or increased retention in the nasal cavity.  

Given the larger uncertainty obtained in phenytoin’s pharmacokinetic profile in the brain 

after intravenous administration, partially due to the high limit of quantification of the 

method, elimination and AUC parameters are shown (Table 3.4) but are likely less 

reliable in this matrix. Therefore, we decided not to calculate absolute brain 

bioavailability or brain targeting ratios. However, blood bioavailability is for phenytoin 

a good indicator of brain bioavailability as well. All intranasal formulations, and 

especially the formulation with albumin, led to high absolute bioavailability, with the 

formulation containing albumin having a bioavailability about 20% higher than the 

simple aqueous intranasal fosphenytoin solution (Table 3.4). This is clearly associated 

with the sustained phenytoin levels. 

Phenytoin is a good example of a very low water solubility drug, estimated as being only 

0.032 mg/mL for its sodium salt 141. Its marketed solution, to be administered through 

intravenous infusion, reaches a drug strength of 50 mg/mL, but drug solubilization is 

only achieved by using 40% propylene glycol and 10% ethanol, a high percentage of 

potentially harmful organic solvents, and pH 12, a high pH that can also be associated 

with toxicity. Serious and sometimes fatal dermatological reactions have been reported 

to occur, varying from mild irritation and inflammation to tissue necrosis 142. It is, for 

sure, not suitable for nasal administration. A few studies report attempts to increase 

phenytoin’s solubility without the use of potentially toxic excipients, however, achieved 
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drug concentrations have mostly been low. And even though for some therapeutic 

indications a low phenytoin strength (0.01 to 0.2 mg/mL) might be enough, and is even 

desired, such as in topical wound healing, for epilepsy treatment, especially for the 

management of seizures, higher strengths are required 143,144. Self-emulsifying drug 

delivery systems for oral delivery reported phenytoin concentrations reaching up to 25 

mg/mL 145,146. In our study, by using phenytoin’s hydrophilic prodrug, fosphenytoin, we 

obtained a higher strength of phenytoin equivalents than any of the reported works, 

reaching around 34.8 mg/mL (50 mg/mL of fosphenytoin). Furthermore, we could still 

further increase it by 2- or 3-fold, as osmolality was not very high yet (and fosphenytoin 

has a higher aqueous solubility than the concentration we selected) and/or perform 

multiple administrations. Thus, therapeutic levels are likely achievable. Moreover, the 

developed fosphenytoin formulations are simple to prepare and safe to administer, since 

they have no potentially toxic excipients in their composition.  

 

3.4. Conclusion 

In conclusion, intranasal fosphenytoin efficiently permeated and/or was converted to the 

diffusible active form in vivo, reaching high absolute bioavailability. Therefore, the use 

of phosphate ester prodrugs is an efficient and safe way of increasing the intranasal 

delivery of poorly soluble drugs such as phenytoin. Moreover, the addition of albumin to 

the formulation can prolong the drug’s disposition in the brain compared to other 

intranasal formulations, enabling a better drug targeting. 
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Chapter 4 – Nanoemulsions and 

nanoemulgels of phenytoin and fosphenytoin  

 

4.1. Chapter overview and main objectives 

From the results presented in Chapter 2 it was not possible to clearly discriminate the 

overall superiority of a nanosystem class in relation to another in what concerns brain 

targeting and bioavailability. Therefore, the reasons behind the choice of which type of 

nanosystem formulation should be developed for phenytoin solubilization fell upon 

practical advantages. Hence, we chose to develop oil-in-water nanoemulsions, where the 

drug would be solubilized in the internal phase. These nanosystems can be quite easy to 

prepare, since certain formulas emulsify spontaneously just by adding the aqueous phase 

component to the mixture of oil and surfactants in the right proportions 19. Furthermore, 

the results from the systematic review also showed that, in general, nanometric 

emulsions had good brain targeting efficacy. 

Moreover, as mucociliary clearance does not allow much time for drug absorption to 

occur, the addition of a mucoadhesive and/or thermosensitive polymer to the external 

phase of the nanoemulsion could help increase its retention in the nasal cavity, the first 

by allowing adhesion to the nasal mucosa, and the second by increasing the fomulation’s 

viscosity when heated, potentially leading to higher bioavailability. As has been 

previously mentioned, Pluronic F-127 is a thermosensitive polymer, whose viscosity 

increases with temperature increase, having the ability to undergo sol-gel phase 

transition (if at sufficient concentration in solution). It has been extensively used in the 

development of in situ nasal gels, as have carbomers, which in association with 

poloxamers combine viscosity increase and mucoadhesive properties 23,147. These gel 

forming polymers can be used in the preparation of emulgels, a combination of 

emulsions and gels, hence combining the properties of both: increased stability and drug 

solubility (emulsions) and increased viscosity with potentially enhanced retention times 

(gels).  

Thus, the main aim of the work shown in this chapter was to develop liquid formulations 

of phenytoin in a soluble form, suitable for intranasal administration, one with a faster 

release profile, and another with a prolonged release profile, promoting the preparation’s 

retention in the nasal cavity. The chosen formulation strategy was to develop a liquid 

nanoemulsion of phenytoin, which could be prepared by self-emulsification upon 
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mixture of anhydrous and aqueous phases, and derive a second formulation in the form 

of a thermosensitive nanoemulgel for increased retention and sustained drug release. At 

the same time, we aimed to gain understanding about formulation factors’ influence in 

size dispersion, viscosity and gelation temperature of phenytoin nanoemulsions and 

nanoemulgels. 

 

4.2. Materials and methods  

4.2.1. Materials 

The acid form of phenytoin used in formulation development was purchased from Acros 

Organics (Geel, Belgium), whilst the USP reference standard, for HPLC, was bought from 

Sigma-Aldrich (Steinheim, Germany). Fosphenytoin used in formulations was a gift 

sample from JPN Pharma (Mumbai, India), provided as a disodium salt, but mass 

concentration in the text will be indicated as calculated for the acid form. The 

fosphenytoin USP reference standard was acquired from Sigma-Aldrich (Steinheim, 

Germany). HPLC grade methanol, analytical grade triethylamine, sodium chloride and 

sodium hydrogen carbonate were bought from Fisher Scientific (Leicestershire, United 

Kingdom). Dibasic sodium phosphate was bought from Acros Organics (Geel, Belgium) 

and monobasic sodium phosphate from Sigma-Aldrich (Steinheim, Germany). Calcium 

chloride was acquired from Panreac (Barcelona, Spain). Potassium chloride was bought 

from Chem-Lab (Zedelgem, Belgium). Magnesium chloride and sodium hydroxide were 

acquired from Labkem (Barcelona, Spain). Carbopol® 971P was donated by Lubrizol 

(Brussels, Belgium). Miglyol® 812, Tween 80 and Transcutol® P were all acquired from 

Acofarma® (Barcelona, Spain). Hydrochloric acid was bought from Fluka (Seelze, 

Germany). Pluronic® F- 127 was acquired from Sigma-Aldrich (Steinheim, Germany). 

For simplification, excipients will simply be referred to in the text by their common brand 

name. Water was always of ultra-pure grade (Milli-Q water apparatus, 0.22 μm filter, 

Merck, Darmstadt, Germany). 

 

4.2.2. Preparation of nanoemulsions and thermosensitive 

gels 

Emulsion preconcentrates were prepared by weighing together the oil (Miglyol 812), 

surfactant (Tween 80), and cosolvent (Transcutol P). Phenytoin was dissolved in this 

mixture before emulsification. Aqueous phase was made of either water, a fosphenytoin 

aqueous solution in which pH was adjusted to near 7 (Orion Star A211 pH meter, Thermo 
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Fisher Scientific, Massachusetts, United States of America), or a thermosensitive gel 

containing Pluronic and fosphenytoin, either way guarantying that the pH of all 

formulations was close to neutrality. 

Emulsions were prepared by weighing the preconcentrate and adding a small part of the 

aqueous phase in order to create a water-in-oil emulsion, with mild manual or magnetic 

agitation at room temperature. The rest of the aqueous phase was then added to invert 

the emulsion, leading to an oil-in-water system, as desired.   

In the final selected formulations – NFOS 4:6, NFOS 1:9, and TNP+FOS 1:9, two 

nanoemulsions and one thermosensitive nanoemulgel (emulsion with a thermosensitive 

gel as the external phase) – after the formation of the emulsion, an additional 

homogenization was performed, by premix membrane emulsification. It consisted of 

mechanical extrusion, at room temperature, using a mini-extruder set (Avanti Polar 

Lipids, Alabama, United States of America), through a 0.2 μm pore size polycarbonate 

membrane (19 mm, Whatman® Nuclepore™ Track-Etched, Sigma-Aldrich, Steinheim, 

Germany). A summary of the composition of the most relevant formulations is shown in 

Table 4.1. 

Table 4.1. Summary of the composition of the most relevant developed formulations. 10 
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emulsification) %
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w
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NFOS 4:6 8 18.4 13.6 4 
Fosphenytoin aqueous 

solution (4.31%) 

60 25.9 22.0 

NFOS 1:9 2 4.6 3.4 1 90 38.8 27.0 

TGP+FOS
 - - - - 

Pluronic (16%) + 
Fosphenytoin (2.5%) 

100 25.0 17.4 

TNP+FOS 4:6 8 18.4 13.6 4 60 15.0 14.4 

TNP+FOS 1:9 2 4.6 3.4 1 90 22.5 16.7 

FOS – fosphenytoin; N – nanoemulsion; P – Pluronic; TG – thermosensitive gel; TN – thermosensitive 
nanoemulgel. 

 

4.2.3. Mean size, polydispersity index and zeta potential 

Formulations that resulted from internal phase dispersion, in either vehicle or drug-

loaded external phase, were characterized by droplet mean size and PDI, obtained by 

cumulants’ analysis of dynamic light scattering data, and zeta potential, determined by 
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electrophoretic light scattering, using a Zetasizer Nano ZS apparatus (Malvern, United 

Kingdom). Samples were diluted 250-fold in water, and measured at 25 ºC in disposable 

ultra-violet/visible polymethyl methacrylate cuvettes (Kartell, Noviglio, Italy). For zeta 

potential measurements, a Dip Cell (ZEN 1002, Malvern, United Kingdom) was used. 

Analysis was performed automatically three times for each sample, in at least two 

different samples of each batch. 

 

4.2.4. Osmolality and rheology 

Osmolality was determined with a freezing point osmometer (Osmomat 3000, Gonotec, 

Berlin, Germany) and mean values were calculated using 3 to 5 measurements of each 

batch.  

Viscosity measurements were made by means of a thermostated Brookfield DV3T cone-

plate rheometer (Brookfield Ametek, Massachusetts, United States of America), using 

either CP40Z or CP52Z cones, and a sample volume of 0.5 mL. In fluids with Newtonian 

rheological behavior, zero shear viscosity was considered to be the viscosity value 

measured at the highest torque (and consequently, having the lowest measurement 

error). When in the presence of non-Newtonian pseudoplastic behavior, zero shear 

viscosity was inferred from measurements at different shear rates and constant 

temperature (either 32 ºC or 20 ºC). Gelation temperatures were determined at a 

constant shear rate (80 s-1) and varying temperatures. Measured values that were not 

within the torque interval correspondent to a minimum of 95% measurement accuracy 

were not considered for analysis. 

 

4.2.5. In vitro drug release assay 

The in vitro drug release study was performed under similar conditions as described in 

Chapter 3 (section 3.2.4), using horizontal Ussing Chambers, with temperature being 

kept at 32 ºC and using membranes with a 0.2 μm pore size.  

Again, the bottom chamber was filled with 1.8 mL of nasal fluid simulant buffer, pH 6.5, 

having the same composition as described in Chapter 3 (section 3.2.4). Each bottom 

chamber contained the same amount of Transcutol as that of the formulation that was 

being evaluated for release (either 3.4, 13.6 or 30.0% (w/w)), so that phenytoin’s 

solubility would not be reduced, neither in the bottom chamber (phenytoin’s solubility 
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in buffer would only be very low), nor in the upper chamber (due to Transcutol diffusion 

from upper to bottom). When the chambers were fully mounted, 200 μL of this buffer 

was placed on the upper side of the membrane, and the chambers were let to stabilize for 

1 hour in order to reach the intended temperature. Then, the buffer on the upper side of 

the membrane was removed and replaced with 200 μL of the formulation. Samples of 

100 μL were taken from the bottom chamber at 5, 10, 20, 40, 60, 90, 120, 150, 180, 210 

and 240 minutes, and the collected volume was replaced each time with buffer solution. 

Homogenization of the bottom chamber fluid was done through magnetic stirring. 

Aside from the selected nanoemulsions, a positive control of drug release was made with 

an aqueous solution of both phenytoin, at 0.2 mg/g, and fosphenytoin, at 1.3 mg/g, a 1 

to 6.5 proportion (the same as in NFOS 4:6), also containing Transcutol at 30% (w/w) to 

increase phenytoin solubility. In parallel, the equivalent fosphenytoin solutions (with 

and without Transcutol) were also evaluated. 

Collected samples were diluted in two-steps: the first dilution (10-fold) was done using 

the nasal fluid simulant buffer with Transcutol, and the second dilution (7-fold) was done 

using the same buffer but without the cosolvent. For the quantification of initial drug 

concentration in the formulations the second dilution was 70-fold. Drug quantification 

was then done by HPLC. Chromatographic apparatus and conditions were the same as 

before (Chapter 3, section 3.2.4.2): reversed-phase column and guard column, elution at 

1 mL/min, mobile phase made of 36% methanol and 64% aqueous phase (sodium 

phosphate buffer, 10 mM, pH 3, with 0.25% triethylamine), analyte detection at 215 nm 

for both fosphenytoin and phenytoin, 20 minute runs, injection volume of 20 μL. The 

method was validated following the Food and Drug Administration guideline criteria 132 

(further information on validation methods and results in the supplementary data, 

sections 2.1.1 and 2.2.1, respectively). 

 

4.2.6. Data analysis 

Formulation and drug release data analysis was performed using Prism software, version 

6.0, from GraphPad, and the significance level was set at 0.05. 

The zero shear viscosity of non-Newtonian fluids was calculated by fitting a linear 

regression model to the data and determining the zero of the function. Whenever 

required, a logarithmic transformation of the data was performed before regression 

analysis. Statistical significance of the differences between formulations’ viscosity (zero 
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shear for non-Newtonian behavior) and between viscosity values at different 

temperatures was evaluated, after a logarithmic transformation of the viscosity values, 

by two-way ANOVA analysis, followed by a Tukey’s multiple comparisons post-test. 

Tgel50 was calculated by fitting the non-linear regression model log (agonist) vs 

response, variable slope, four parameters to the “viscosity vs temperature” data. The 

significance of the difference between formulations’ Tgel50 was assessed by an F test. The 

maximum acceleration temperature (TaMax), considered as the temperature at which 

gelation starts, was calculated as the maximum of the second derivative of the function 

given by the obtained non-linear regression model. 

A two-way ANOVA analysis, with a Sidak’s multiple comparisons post-test was used to 

assess the statistical significance of differences between formulations’ mean size and 

PDI, and also to compare between a different number of extrusion cycles in the same 

formulation. 

Similarly to the previous drug release assay, for the calculation of the drug release rate 

the Higuchi model was applied 133,134. Both time (X) and drug release percentage or 

accumulated drug quantity (Y) were transformed: X by calculating its square root (X = 

√X) and Y by dividing by the area of the membrane used in the assay (Y = Y/0.64). After 

transformation, a linear regression was applied, and late time points for which 

correspondent values fell out of the linear zone were excluded. The drug release rate 

corresponded to the slopes, which were compared two-by-two using an F test to assess 

whether they differed significantly between formulations. 

 

4.3. Results and discussion 

4.3.1. Phenytoin nanoemulsion development  

The work regarding the preliminary steps of phenytoin nanoemulsion development was 

done in the research group beforehand, in the context of a compounding formula for a 

phenytoin oral self-emulsifying drug delivery system (SEEDS). The lead formula, 

published by Atef and Belmonte 146, was modified by replacing most excipients for others 

that were more easily accessible and commonly used in community and hospital 

pharmacies in Portugal, like the oil Miglyol 812, the hydrophilic surfactant Tween 80, 

and the hydrophobic surfactant Span 80 (unpublished work, not shown). Excipient 

proportion was slightly adjusted as well, but Transcutol was kept at high percentage 

(55%). 
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For having a safe intranasal administration a lower cosolvent amount than the used in 

the oral SEEDS was desired, and formulations should be isotonic to slightly hypertonic 

(within the established limits for marketed nasal preparations) 136. After several tests 

with varying excipient proportions, it was established that, for maximum phenytoin 

solubilization in the formula, either Transcutol proportion should be > 0.25 or Tween 80 

> 0.6 (Transcutol vs Tween 80 proportion). Furthermore, to avoid drug precipitation 

upon emulsification, Transcutol proportion should be within the range of approximately 

0.2 to 0.35. Among the series of tested excipient proportions (screening tests, data not 

shown), one formula achieved good characteristics and maximum phenytoin 

solubilization - 20% oil, 46% surfactant and 34% cosolvent. This preconcentrate 

originated a nanoemulsion at 10% (w/w) in water, with 203.5 ± 4.6 nm mean size, PDI 

of 0.316 and an osmolality of 384 mOsmol/kg. Although this is only slightly above the 

osmolality of plasma, it is in great part due to the presence of Transcutol in the formula, 

since this cosolvent partitions to the water phase. We could not find any information 

about the permeability of Transcutol through the nasal mucosa, but given its low 

molecular weight, neutrality, and miscibility with both hydrophilic and lipophilic 

environments, it is expected to permeate, not contributing to the preparation’s tonicity. 

Nevertheless, it was only possible to incorporate 10 mg/g of phenytoin in the 

preconcentrate without the occurrence of precipitation upon emulsification, and given 

that it was only 10% of the nanoemulsion, the drug concentration upon emulsification 

dropped to 1 mg/g (0.1%). This concentration is most likely too low to try to achieve 

therapeutic levels of phenytoin in the brain after intranasal administration, or even local 

effects, and therefore strategies to increase drug strength were needed. 

Hence, a solution of the soluble prodrug fosphenytoin, at 43.1 mg/g (equivalent to 30 

mg/g of phenytoin), was used as the aqueous phase at 90 or 60% (w/w), originating 

nanoemulsions with a phenytoin strength equivalent to 27 mg/g (NFOS 1:9) or 22 mg/g 

(NFOS 4:6), respectively. These formulations did not form any precipitate after 

emulsification for at least 10 days. Although NFOS 1:9 had a higher phenytoin strength 

equivalent, NFOS 4:6 had more phenytoin in its active form (and hence less prodrug), 

therefore both formulations were considered to be potentially useful for further studies. 

The choice to associate fosphenytoin to phenytoin was supported by previous work, 

which demonstrated that both fosphenytoin permeation and conversion to the active 

form occur in the nasal mucosa 21. In this study, while an initial dose of phenytoin was 

readily available for passive diffusion, in parallel more phenytoin was generated in situ 

due to the conversion of the prodrug to the active form, and some permeation of 

fosphenytoin by alternative pathways also occured. 
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The aqueous phase alone (fosphenytoin solution) was isotonic (283 mOsmol/kg). 

Nevertheless, the resulting emulsions were moderately to highly hyperosmotic (Table 

4.2). However, as discussed above Transcutol is the component that increases osmolality 

most meaningfully, by diffusing to the aqueous phase, and it is not expected to contribute 

to the preparation’s tonicity in vivo. 

Table 4.2. Characterization of the optimized nanoemulsions. Zero shear viscosity was always determined at 
250 rpm (Newtonian behavior) except for NFOS 4:6 at 32 ºC, which showed non-Newtonian behavior, and 
was therefore assessed by measuring at several rotational speeds and inferred from linear regression 
analysis. Mean size, PDI and zeta potential are presented for formulation that underwent 5 extrusion cycles 
(NFOS 4:6), or 9 extrusion cycles (NFOS 1:9). 11 

Formulation  Osmolality 
(mOsmol/kg) 

Mean 
size 
(nm) 

PDI Zeta 
potential 
(mV) 

Viscosity 
at 20 ºC 

(cP) 

Viscosity 
at 32 ºC 

(cP) 

NFOS 1:9 Mean 694.7 216.4  0.305 -20.8 2.15 1.56 

SD 1.5 10.5 0.031 3.9 - - 

RMPS 3 6 6 9 1 1 

n 1 1 1 1 1 1 

NFOS 4:6 Mean 1611.2 209.2 0.263 -18.6 22.73 20.05 

SD 7.1 21.7 0.036 0.5 - 0.10 

R2 - - - - - 0.9753 

RMPS 3 2 2 2 1 1 

n 3 2 2 1 1 1 

FOS – fosphenytoin; n - number of independent formulations that were characterized; PDI – polydispersity 
index; R2 – linear regression’s coefficient of determination; RMPS -  replicate measurements per sample, 
contemplated in mean and SD if n = 1; SD – standard deviation. 

 

 

If the prepared emulsions were left to stand at room temperature for at least 30 minutes 

before size characterization, a thin layer of cream-like appearance was formed. If samples 

were taken from the middle of the rested preparation the droplet size was nanometric, 

but a little above the desired limit, and polydispersity was high, as is to be expected from 

spontaneous emulsification (data not shown). If the preparations were stirred before size 

determination, the polydispersity would be too high for size characterization, due to the 

redispersion of the components that, at rest, accumulated at the surface. To increase size 

homogeneity, premix membrane homogenization was tested, and the results are shown 

in Figure 4.1. This time, characterization was done immediately after homogenization. 
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Figure 4.1. Premix membrane emulsification effect on droplet size dispersion of the NFOS 1:9 and NFOS 4:6 
emulsions. Mean size (A) and PDI (B) dependence on the increasing number of extrusion cycles. Data are 
shown as mean ± SEM. Cross mark signals mean size results that showed poor quality, consequently being 
unreliable. **** p < 0.0001 for formulation factor in two-way ANOVA analysis; # p < 0.05, # # p < 0.01, # 
# # p < 0.001 in Sidak’s multiple comparisons post-test; FOS – fosphenytoin; N – nanoemulsion; PDI - 
polydispersity index; SEM - standard error of the mean. 14 

 

Droplets’ mean size was not significantly different between formulations, but PDI was (p 

< 0.0001), with the post-test showing significance up to the 5th extrusion cycle. Overall, 

the increasing number of extrusion cycles significantly reduced both mean size and PDI 

(p < 0.0001) for both formulations, but there was no further significance from the 3rd 

extrusion cycle on. Thus, 5 extrusion cycles were selected for the homogenization of NFOS 

4:6. Nevertheless, while the statistical analysis and conclusion was similar for NFOS 1:9, 

size (266 ± 40 nm) and PDI (0.396 ± 0.111) remained above the desired limit (around 

200 nm for size, and equal or below 0.3 for PDI). Therefore, for this formulation we 

decided to choose 9 extrusion cycles. A summary of the selected nanoemulsions’ 

characterization parameters is shown in Table 4.2. 

At this stage, while drug strength was successfully increased, viscosity values were low 

(Table 4.2). This might be adequate for nasal administration in spray form, or for fast 

drug release. However, higher viscosity might slow down drug release and promote the 

retention of the preparation in the nasal cavity for longer periods of time, by reducing 

mucociliary clearance 14,19. Hence, for extended drug release we sought to increase the 

preparation’s viscosity. 
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4.3.2. Pluronic thermosensitive nanoemulgel development 

Previous work done in the research group led to the development of a gelling emulsion 

(thermosensitive emulgel), from the former leading preconcentrate, and based on 

previously reported Pluronic/Carbopol thermosensitive gels 148. After screening different 

Pluronic concentrations, the aqueous phase was set at 90%, containing 17% Pluronic 

(w/w), 0.2% Carbopol (w/w) and 22.3 mg/g of fosphenytoin (reduction of fosphenytoin's 

strength to not increase osmolality too much), which resulted in a drug strength 

equivalent to 15 mg/g of phenytoin (1.5%) in the final formulation. But although the 

produced thermosensitive emulgel was relatively stable, with a reasonable amount of 

drug, the gelation temperature was too low for nasal instillation (complete gelation 

occurring between 25 - 30 ºC), especially during the summer, requiring it to be 

refrigerated immediately prior to administration, in order to have a viscosity low enough 

to allow handling. Therefore, we decided to try to increase the formulations’ gelation 

temperature. In contrast, if topical cutaneous application is intended this formulation 

could be beneficial, ensuring that a complete semisolid consistency is obtained shortly 

after spreading on the skin. 

In order to produce formulations with a more desirable viscosity at room temperature, 

for intranasal instillation purposes, we decided to decrease Pluronic’s concentration to 

16% (w/w) and eliminate the Carbopol from the aqueous phase composition, while using 

the same preconcentrate as before, producing formulations with a 40% (TNP+FOS 4:6) or 

10% (TNP+FOS 1:9) preconcentrate proportion. The preconcentrate contained 10 mg/g of 

phenytoin and the aqueous phase contained 25 mg/g of fosphenytoin, thus the drug 

strength for the two studied proportions corresponded to 14.4 and 16.7 mg/g of 

phenytoin equivalents, respectively. 

Both resulting emulsions were white and opaque, but while formula TNP+FOS 1:9 gave rise 

to an apparently homogeneous formulation, TNP+FOS 4:6 contained a few small 

transparent aggregates. These aggregates appeared to be amorphous when viewed under 

an optical microscope, and we suppose they were Pluronic coacervates. In contrast, in 

TNP+FOS 1:9 some cream formation occurred when the formulation was stored at 4 ºC 

overnight. Nevertheless, it was able to return to being homogeneous with mild agitation. 

Both formulations originated dispersions with nanometric but relatively high droplet 

mean size and PDI values (Figure 4.2), suggesting heterogeneity, therefore we decided 

to perform premix membrane homogenization once more. Mean size and PDI were 

significantly different between formulations (p < 0.0001), but the post-test only had 

significance up to the 3rd extrusion cycle. The increasing number of extrusion cycles also 
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significantly reduced both mean size and PDI (p < 0.0001) in general, but there was no 

further significant reduction on either size or PDI from the 3rd extrusion cycle on. Thus, 

5 extrusion cycles were selected for the homogenization of these nanoemulgels. 

 
Figure 4.2. Premix membrane emulsification effect on droplet size dispersion of the TNP+FOS 4:6 and TNP+FOS 

1:9 nanoemulgels. Mean size (A) and PDI (B) dependence on the increasing number of extrusion cycles. Data 
are shown as mean ± SEM. Cross mark signals mean size results that showed poor quality, consequently 
being unreliable. **** p < 0.0001 for formulation factor in two-way ANOVA analysis; # p < 0.05, # # p < 
0.01, # # # # p < 0.0001 in Sidak’s multiple comparisons post-test; FOS – fosphenytoin; P – Pluronic; PDI 
- polydispersity index; SEM - standard error of the mean; TN – thermosensitive nanoemulgel. 15 

 

Noticeably, after extrusion the Pluronic aggregates disappeared from the nanoemulsion 

TNP+FOS 4:6, and did not form again. As for TNP+FOS 1:9, cream formation continued to 

occur with storage at 4 ºC, but agitation still returned the formulations to being 

homogeneous, as before. Furthermore, formulations’ mean size and PDI did not increase 

over at least 2 weeks at 4 ºC, and zeta potential was only slightly negative, in practical 

terms basically neutral, as expected, since all the excipients that were used were neutral 

(Figure 4.3). 
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Figure 4.3. Droplet dispersion characterization in the nanoemulgel TNP+FOS 1:9, over two weeks. Mean size 
(A), PDI (B) and zeta potential (C). Data are shown as mean ± SEM for 3 independent formulation batches. 
Mean size and PDI decreased with time (p < 0.0001 and p < 0.05, respectively, by one-way ANOVA with 
post-test for linear trend). FOS – fosphenytoin; PDI - polydispersity index; SEM - standard error of the 
mean; TN – thermosensitive nanoemulgel. 16 

 

Both nanoemulgels’ rheological behavior was evaluated. The nanoemulgel TNP+FOS 4:6 

exhibited a pseudoplastic non-Newtonian behavior at all studied temperatures. In 

comparison to TNP+FOS 1:9, TNP+FOS 4:6 was more viscous at 20 ºC, but much less viscous 

at 32 ºC (Figure 4.4A), since it did not undergo sol-gel transition at all in the studied 

temperature range (20 to 42 ºC, Figure 4.4B). This might be due to the high proportion 

of Transcutol mixing with the aqueous phase, resulting in Pluronic dilution below the 

minimum concentration required for gelation. As for TNP+FOS 1:9, the gelation was more 

variable and with a slightly but significantly higher Tgel50 (p < 0.0001) in comparison 

with TGP+FOS (the respective thermosensitive gel, with a composition equal to its external 

phase) (Figure 4.4B), which indicated that emulsification delayed the gelation process, 

in relation to the thermosensitive gel alone. Likewise, the TaMax of the nanoemulgel was 

higher than the respective thermogel (Table 4.3), with the nanoemulgel therefore 

initiating the gelation process later, with a TaMax of about 30 ºC, high enough to prevent 

gelation from occurring at most common room temperatures, and still ensuring that it 

will occur at nasal temperature. Even if gelation is not complete at nasal temperature, 

the zero shear viscosity of this formulation at 32 ºC (Table 4.3) is already more than 

enough to be expected to promote retention in the nasal cavity and, consequently, 

sustained release. Other formulation characterization parameters of the final chosen 

thermosensitive nanoemulgel TNP+FOS 1:9 are also shown in Table 4.3, as well as the 

remaining characterization parameters for TGP+FOS and TNP+FOS 4:6. 
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Figure 4.4. Rheological characterization of the nanoemulgels and the respective Pluronic thermosensitive 
gel. Logarithm of zero shear viscosity at different temperatures (A); temperature effect at constant shear rate 
(80 s-1) (B); data are shown as mean ± SEM of 3 independent formulation batches for TNP+FOS 1:9 and 
TNP+FOS 4:6, and of a representative batch for TGP+FOS; FOS – fosphenytoin; P – Pluronic; SEM – standard 
error of the mean; TG – thermosensitive gel; TN – thermosensitive nanoemulgel.  *** p < 0.001, **** p < 
0.0001 in two-way ANOVA analysis and a Tukey’s multiple comparisons post-test, applied after a Log10 
transformation of the viscosity values. 17 

Table 4.3. Osmolality, mean size, PDI, zeta potential and rheological characterization of the thermosensitive 
gel and nanoemulgels. For Newtonian fluids zero shear viscosity was assessed by measuring at several 
rotational speeds and considered to be the value matching the highest torque; for non-Newtonian fluids it 
was inferred from regression analysis (with prior logarithmic transformation for 32 ºC). 12 

 Osmolality 
(mOsmol/kg) 

Mean 
size 
(nm) 

PDI Zeta 
potential 
(mV) 

Zero shear viscosity (cP) Tgel50 TaMax 

At 20 ºC At 32 ºC   

TGP+FOS Mean 599.6 n.d. n.d. n.d. 57.43 116145 29.5 27.6 

SD 14.5 1.64 - 1810; + 1838 0.1 

n 5 3 3 3 

RMPS 3 1 1 1 

R2 - - 0.9995 0.9985 

TNP+FOS 
1:9 

Mean 1375.0 219.7 0.237 -10.7 233.31 168655 33.7 30.3 

SD 52.4 26.8 0.040 2.7 0.42 - 11492; + 12333 0.2 

n 4 7 7 4 3 5 3 

RMPS 3 2 to 3 2 to 3 2 to 3 1 1 1 

R2 - - - - 0.9943 0.9858 0.9990 

TNP+FOS 
4:6 

Mean # 159.8 0.154 n.d. 407.52 352.02 # # 

SD 6.0 0.018 0.89 2.33 

n 3 3 1 1 

RMPS 2 to 4 2 to 4 1 1 

R2 - - 0.9575 0.9443 

FOS – fosphenytoin; n – number of independent formulations characterized; n.d. - not determined; P – 
Pluronic; PDI – polydispersity index; R2 – linear regression’s coefficient of determination; RMPS -  replicate 
measurements per sample, contemplated in mean and SD if n = 1; SD – standard deviation; TaMax – 
maximum acceleration temperature; Tgel50 – half-gelation temperature; TG – thermosensitive gel; TN – 
thermosensitive nanoemulgel; # – not possible to determine, no freezing/no gelling occurred. 
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4.3.3. Drug release study 

Selected nanoemulsions (NFOS 1:9 and NFOS 4:6) and thermosensitive nanoemulgel 

(TNP+FOS 1:9) fosphenytoin and phenytoin release profiles were evaluated. For 

comparison purposes, we also assessed the drug release from an aqueous drug solution 

having fosphenytoin at 1.3 mg/g, phenytoin at 0.2 mg/g and Transcutol at 30% (FPT 

solution). Percentual drug release and percentual drug release rates are shown in Figure 

4.5 and Table 4.4. We expected to have an overall faster, immediate release of 

fosphenytoin from the nanoemulsions and a slower, sustained release from the 

thermosensitive nanoemulgel, due to the much greater zero shear viscosity at 32 ºC of 

the nanoemulgel, which was expected to reduce drug diffusion. Indeed, the percentual 

release of fosphenytoin from NFOS 1:9 was the fastest (p < 0.0001 in relation to all other 

formulations) and its nanoemulgel counterpart, TNP+FOS 1:9, led to a slower release (p < 

0.0001). But the initial hypothesis was not verified for NFOS 4:6, since even while having 

a much lower zero shear viscosity than TNP+FOS 1:9, it was slower at releasing 

fosphenytoin (p < 0.0001). Moreover, TNP+FOS 1:9 also had a higher fosphenytoin 

percentual release than the FPT solution, which given its simple composition and very 

low viscosity was expected to have the most effective release. These results might have 

been due to the higher Transcutol percentage that exists in the FPT solution (30%) and 

also in NFOS 4:6 (13.6%), since NFOS 1:9 had less cosolvent (only 3.4%). Another possibility 

was that since NFOS 4:6 has a higher oil phase proportion it could adsorb fosphenytoin, 

or since it also has a higher amount of phenytoin it could also be interacting with its 

prodrug and slowing its release. 

 
Figure 4.5. Fosphenytoin’s percentual drug release between 5 and 240 minutes, for nanoformulations (A) 
and solutions (B). The aqueous solution containing fosphenytoin only (FOS solution) appears in both 
graphics, since it is the most reliable positive control. FOS – fosphenytoin; FPT – fosphenytoin, phenytoin 
and Transcutol aqueous solution; FT – fosphenytoin and Transcutol aqueous solution; N – nanoemulsion; 
P – Pluronic; PHT – phenytoin; TN – thermosensitive nanoemulgel; wo - without. 18  
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Table 4.4. Percentual drug release rate and significance matrix of the difference between formulations. Rate 
constant calculated by applying a linear regression to the plotting of the square root of time (X = √X) versus 
percentual drug release divided by the area of the membrane used in the assay (Y = Y/0.64). Slopes then 
compared using an F test. 13 
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Formulation R2 
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Drug release 
rate 
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Significance of differences in rate between 
formulations (p value) 
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TNP+FOS 1:9 0.9964 

(0.9809) 

10.4 0.3 **** **** NS NS 0.0122 NS 

NFOS 1:9 0.9980 

(0.9901) 

16.5 0.5  **** **** **** **** **** 

NFOS 4:6 0.9982 

(0.8791) 

6.6 0.4   **** 0.0210 **** 0.0006 

NFOS 4:6 wo 
PHT 

0.9924 

(0.9477) 

9.8 0.5    NS 0.0157 NS 

FPT Solution 0.9992 

(0.8258) 

8.8 0.9     0.0306 NS 

FOS Solution 0.9969 

(0.9909) 

12.3 0.3      0.0104 

FT Solution 0.9982 

(0.9270) 

9.2 0.6       

P
h

e
n

y
to

in
 

TNP+FOS 1:9 0.9770 

(0.8173) 

5.7 0.7 0.0301 NS  NS   

NFOS 1:9 0.9981 

(0.9690) 

7.1 0.2  ****  NS   

NFOS 4:6 0.9972 

(0.6578) 

4.0 0.6    0.0032   

FPT Solution 0.9900 

(0.6909) 

8.1 1.3       

FOS – fosphenytoin; FPT – fosphenytoin, phenytoin and Transcutol aqueous solution; FT – fosphenytoin 
and Transcutol aqueous solution; N – nanoemulsion; NS – not significant (statistical difference); P – 
Pluronic; PHT – phenytoin; R2 – linear regression’s coefficient of determination, using mean values for each 
time point; R2’ – linear regression’s coefficient of determination, using all individual values corresponding 
to each individual time point; SD – standard deviation; TN – thermosensitive nanoemulgel; wo - without; 
**** p < 0.0001. 

 

A fosphenytoin aqueous solution (FOS solution, with no phenytoin and no Transcutol) 

and a fosphenytoin plus Transcutol aqueous solution (FT solution, with no phenytoin) 

were also tested to better clarify the previous results (Figure 4.5B). Indeed, 

fosphenytoin’s release from the FOS solution was significantly faster (p < 0.05) than that 

of the other solutions, which seems to confirm that Transcutol at a higher percentage did 

in fact inhibit the release of fosphenytoin. The presence or absence of phenytoin did not 

seem to affect the release of the prodrug, since the FPT and FT solutions showed no 
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significant differences in percentual drug release rate and their release profiles were very 

similar. Additionally, we also evaluated the drug release from a formulation equivalent 

to NFOS 4:6, but without phenytoin (NFOS 4:6 wo PHT) (Figure 4.5A). The results imply 

that, in this case, the presence of phenytoin does decrease the release of fosphenytoin 

from the nanoformulations, since in NFOS 4:6 wo PHT the prodrug’s percentual release 

was faster than in NFOS 4:6 (p < 0.0001). A possible explanation for this could be an 

attachment of fosphenytoin to the surface of the oil droplets containing phenytoin, 

therefore delaying/inhibiting its release. 

As for the percentual release of phenytoin from the formulations (Figure 4.6 and Table 

4.4), most results were as expected, since FPT solution was the fastest, followed by NFOS 

1:9, and with TNP+FOS 1:9 and NFOS 4:6 coming last. Nevertheless, TNP+FOS 1:9 practically 

matched the release profile of NFOS 4:6. Again, it might be the high amount of Transcutol 

present in NFOS 4:6 that could decrease drug release. Moreover, given its very low 

solubility, we were only able to solubilize, and therefore quantify, low amounts of 

phenytoin, and consequently the linear fit for the data regarding this drug was less good 

than for fosphenytoin, since the error associated with the quantification and variability 

between chambers is more substantial. Nevertheless, when considering the mean values 

for each time point (instead of using all individual values), the linear fit improves 

substantially, which seems to further confirm the influence of the variability between 

chambers. 

 
Figure 4.6. Phenytoin percentual release between 5 and 240 minutes. FOS – fosphenytoin; FPT – 
fosphenytoin, phenytoin and Transcutol aqueous solution; N – nanoemulsion; P – Pluronic; TN – 
thermosensitive nanoemulgel. 19 
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When comparing the percentual drug release of both drugs in the nanoformulations, 

phenytoin was always released in a lesser extent than fosphenytoin. This might have been 

due to the fact that while fosphenytoin is in the external phase, solubilized and free to 

pass through the membrane, phenytoin is most likely to be located inside the internal 

phase’s droplets. Hence, it will either have to be released from the droplets to pass 

through the membrane, or be transported inside the droplets themselves, and although 

droplet mean size may be around 200 nm, a considerable amount of droplets might not 

pass (due to being bigger, because of heteretogeneity). 

In what concerns cumulative drug quantity (Figure 4.7), and comparing the most 

promising formulations only (no controls), NFOS 1:9 had the highest fosphenytoin release, 

which was expected since it had the highest content of this drug. NFOS 4:6 had the highest 

phenytoin release, since the greater oil to water proportion made it the formulation with 

its highest amount. Therefore, if the purpose is to choose the formulation with the 

highest amount of phenytoin in the active form as possible, NFOS 4:6 is the best choice. 

Nevertheless, if considering phenytoin equivalents, NFOS 1:9 has a much higher content 

than any of the other formulations, and should, therefore, be selected. 

 

Figure 4.7. Cumulative drug quantity release for the most relevant formulations, for fosphenytoin (A) and 
phenytoin (B). FOS – fosphenytoin; N – nanoemulsion; P – Pluronic; TN – thermosensitive nanoemulgel. 20 

 

As for the cumulative drug quantity release rate (Table 4.5), the fastest formulations were 

the ones that had a higher amount of each drug: NFOS 1:9 had the fastest fosphenytoin 
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release, followed by TNP+FOS 1:9 and NFOS 4:6; and NFOS 4:6 had the fastest phenytoin 

release, followed by NFOS 1:9 and TNP+FOS 1:9. 

Table 4.5. Cumulative drug quantity release rate and significance matrix of the difference between 
formulations. Release rate was calculated by applying a linear regression to the plotting of the square root of 
time (X = √X) versus cumulative drug quantity divided by the area of the membrane used in the assay (Y = 
Y/0.64). Slopes were compared using an F test. 14 

Drug Formulation R2 

(R2’) 

Drug release rate 
(mg·cm-2·min-1/2) 

Significance of differences in 
rate between formulations (p 

value) 

Mean SD NFOS 1:9 NFOS 4:6 

Fosphenytoin   TNP+FOS 1:9 0.9964 

(0.9809) 

0.454 0.015 **** 0.0099 

NFOS 1:9 0.9980 

(0.9901) 

1.315 0.037  **** 

NFOS 4:6 

 

0.9982 

(0.8791) 

0.362 0.024   

Phenytoin TNP+FOS 1:9 0.9758 

(0.8135) 

0.012 0.002 0.0260 0.0024 

NFOS 1:9 0.9981 

(0.9693) 

0.015 0.001  **** 

NFOS 4:6 

 

0.9970 

(0.6575) 

0.032 0.005   

FOS – fosphenytoin; FPT – fosphenytoin, phenytoin and Transcutol aqueous solution; FT – fosphenytoin 
and Transcutol aqueous solution; N – nanoemulsion; P – Pluronic; PHT – phenytoin; R2 – linear 
regression’s coefficient of determination, using mean values for each time point; R2’ – linear regression’s 
coefficient of determination, using all individual values corresponding to each individual time point; SD – 
standard deviation; TN – thermosensitive nanoemulgel; **** p < 0.0001. 

Given the results, and considering not only release profiles, but also drug strength, we 

conclude that from the developed formulations: 1) NFOS 1:9 (27.0 mg/g of phenytoin 

equivalents) could be useful for fast release, having potential for the treatment of status 

epilepticus or acute pain episodes, where a fast onset is needed; and 2) TNP+FOS 1:9 (16.7 

mg/g of phenytoin equivalents) and NFOS 4:6 (22.0 mg/g of phenytoin equivalents), 

having a more sustained release, could be possibly beneficial for chronic epilepsy or nasal 

wound healing. Nevertheless, the achieved drug strength was, for all final formulations, 

still lower than that of the fosphenytoin formulations (34.8 mg/g of phenytoin 

equivalents, Chapter 3). 

 

4.4. Conclusion  

Phenytoin is a drug with poor water solubility, not solubilizing well in lipids either, but 

having a substantially higher solubility in Transcutol. In this work, it is shown that 
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Transcutol seems to be important in order to have phenytoin in the soluble form, even 

in emulsions, although apparently not enough to promote the desired drug strengths 

when aiming for systemic therapeutic effects. 

The formulation strategy selected for this work implicated a simple procedure of 

spontaneous emulsification, followed by premix membrane homogenization to reduce 

droplet size heterogeneity and mean size. It resulted in the successful development of 

two aqueous liquid nanoemulsions, composed of Miglyol 812, Tween 80, Transcutol, 

phenytoin, and fosphenytoin, (NFOS 1:9 and NFOS 4:6) and one thermosensitive 

nanoemulgel, with the same composition plus Pluronic in the external phase (TNP+FOS 

1:9), all potentially suitable for intranasal administration. The association of the soluble 

prodrug, fosphenytoin, with the parent drug, phenytoin, increased drug strength to the 

equivalent of 22 mg/g or 27 mg/g of phenytoin in the lead nanoemulsions, and 16.7 mg/g 

in the lead nanoemulgel, which could be considered reasonably high for this drug. The 

association of fosphenytoin, however, led to a steep increase in osmolality, since it is a 

disodium salt, limiting its concentration for potential safety reasons. 

The selected low viscosity nanoemulsions had an immediate or prolonged release profile, 

depending of anhydrous phase proportion: for 10% (NFOS 1:9) the formulation had an 

immediate release profile; for 40% (NFOS 4:6) the preparation had a prolonged release. 

The thermosensitive nanoemulgel (TNP+FOS 1:9) showed prolonged drug release, as 

expected. Whether these formulations are more suited for topical effects or therapeutic 

brain delivery is an issue that could be addressed in future studies. However, since final 

drug strength was still lower than the obtained for the fosphenytoin formulations, there 

still seemed to be scope for improvement, and thus a second phase of nanometric 

emulsion development was attempted, as described in the following Chapter 5. 
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Chapter 5 – Microemulsions of phenytoin and 

fosphenytoin  

 

5.1. Chapter overview and main objectives 

In Chapter 3, the use of phosphate ester prodrugs like fosphenytoin as an efficient and 

safe strategy to increase the intranasal bioavailability of poorly soluble drugs was 

demonstrated. The developed formulations reached a drug strength of 34.8 mg/g of 

phenytoin equivalents, and the formulation containing HPMC and albumin prolonged 

drug concentration in the brain over time and led to an increased absolute bioavailability. 

Moreover, since it was not possible to develop formulations containing phenytoin alone 

(not without the use of great amounts of organic solvents), in Chapter 4 we formulated 

both fosphenytoin and phenytoin together in oil-in-water nanoemulsions and 

nanoemulgels, aiming to develop preparations that could result in a faster and/or more 

effective brain targeting, by having a fraction of phenytoin in the active and diffusible 

form. Nevertheless, these formulations’ drug strength only reached between 22 and 27 

mg/g of phenytoin equivalents, a value lower than the obtained for the simpler 

fosphenytoin formulations. 

Hence, the work shown in this chapter aimed to develop nano or microemulsions, 

containing the combination of phenytoin and fosphenytoin, with increased total drug 

strength, while having the maximum amount of drug in the active form. The 

formulations were characterized in what concerned viscosity, osmolality, pH, droplet 

mean hydrodynamic size, polydispersity index, zeta potential, and in vitro drug release. 

The selected formulations’ in vivo pharmacokinetic profile was then determined and 

compared to the previously obtained results for the simpler fosphenytoin formulations. 

 

5.2. Materials and methods 

5.2.1. Materials 

Fosphenytoin disodium (USP) was purchased from Jai Radhe Sales (Ahmedabad, India), 

provided as a hydrated disodium salt, however throughout the text mass concentration 

will be indicated as calculated for the anhydrous acid form. Fosphenytoin and phenytoin 

(USP) reference standards, ketoprofen, monobasic sodium phosphate, bovine serum 



 79 

albumin and Kolliphor® EL (polyoxyl 35 castor oil) were bought from Sigma-Aldrich 

(Steinheim, Germany). High-performance liquid chromatography (HPLC) grade 

methanol, analytical grade triethylamine and diethyl ether, and sodium chloride and 

sodium hydrogen carbonate were acquired from Fisher Scientific (Leicestershire, United 

Kingdom). Sodium acetate was bought from Merck (Darmstadt, Germany), potassium 

chloride from Chem-Lab (Zedelgem, Belgium), and dibasic sodium phosphate from 

Acros Organics (Geel, Belgium). Pentobarbital sodium injection solution (Eutasil®) was 

acquired from Ceva (Libourne, France) and magnesium chloride and sodium hydroxide 

were purchased from Labkem (Barcelona, Spain). Calcium chloride and ortho-

phosphoric acid 85% (v/v) were acquired from Panreac (Barcelona, Spain), and 

hydrochloric acid 37% (v/v) and polyethylene glycol 300 were bought from Fluka (Seelze, 

Germany). Castor oil, Cetiol® V (decyl oleate), glycerol, Miglyol® 812 (medium chain 

triglycerides), soybean oil, polyethylene glycol 400, propylene glycol, Span® 80 (sorbitan 

monooleate), Tween® 20 (polysorbate 20), Tween® 60 (polysorbate 60) and Tween® 80 

(polysorbate 80) were purchased from Acofarma (Barcelona, Spain). Capryol® 90 

(propylene glycol monocaprylate, type II), LabrafacTM PG (propylene glycol 

dicaprylocaprate), Labrasol® ALF (caprylocaproyl polyoxyl-8 glycerides) and 

Transcutol® HP (highly purified diethylene glycol monoethyl ether) were gift samples 

from Gatefossé (Lyon, France). Dynacet® 285 (diacetylated monoglycerides), Imwitor® 

948 (glycerol mono-oleate) and Imwitor® 988 (glycerol monocaprylate) were gift 

samples from IOI Oleochemical (Hamburg, Germany), and Kolliphor® RH40 (polyoxyl 

40 hydrogenated castor oil) was a gift sample from BASF (Ludwigshafen, Germany). 

Water was of ultra-pure grade (Milli-Q water apparatus, 0.22 μm filter, Merck, 

Darmstadt, Germany). 

  

5.2.2. Emulsions preparation and characterization 

Phenytoin was dissolved in the emulsions’ preconcentrates before emulsification, which 

were prepared by weighing together the oil, surfactant, cosurfactant and/or cosolvent. 

The aqueous phase was made of either water (vehicle studies) or a fosphenytoin plus 

albumin aqueous solution (drug formulations), and its pH was adjusted to 6 - 7 (nasal 

pH) (Orion Star A211 pH meter, Thermo Fisher Scientific, Massachusetts, United States 

of America). Then the emulsions were prepared by weighing the preconcentrate and 

adding a small part of the aqueous phase first (to create a water-in-oil emulsion), 

followed by mechanical or magnetic stirring, and then adding the rest of the aqueous 

phase (to invert the emulsion to the desired oil-in-water system), followed by more 
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stirring. Final formulations’ pH was verified using universal indicator paper (Nahita, 

Auxilab S.L., Navarra, Spain). All formulation components were weighted together, and 

final concentrations in the text are percentual w/w concentrations [% (w/w)], indicated 

as percentage only (%) for simplification purposes, unless indicated otherwise. 

The composition of the formulations selected from initial vehicle studies, chosen for drug 

incorporation, is shown in Table 5.1. 

Table 5.1. Composition of emulsions selected for phenytoin incorporation at 5 mg/g. Final formulations’ 
concentrations are indicated as percentual w/w values. 15 

Component Excipient Formulation code name 

 Class Name F1 F2 F3 F4 F5 F3-
FOS 

Pre-
concentrate 

 

 

 

 

Oil Capryol 90 8.66
% 

17.33
% 

24.75
% 

29.70
% 

- 25.00
% 

Imwitor 988 - - 9.90
% 

- - 10.00
% 

Miglyol 812 - - - - 9.90
% 

- 

Hydrophilic 
Surfactant 

Tween 20 25.99
% 

- - 2.48
% 

- - 

Kolliphor EL - 17.32
% 

14.85
% 

17.32
% 

- 15.00
% 

Tween 80 - - - - 22.77
% 

- 

Cosolvent Transcutol 
HP 

14.85
% 

14.85
% 

- - 16.83
% 

- 

Drug Phenytoin 0.50% (5 mg/g) - 

Aqueous 
phase 

Drug Fosphenytoin 4.25% (42.5 mg/g) 

Polymer Albumin 2.00% 

Purified water Qs 100% 

F4 149 and F5 (chapter 4) were adapted from previously developed formulas. 

 

Viscosity measurements were done using a cone-plate rheometer (DV3T, Brookfield 

Ametek, Massachusetts, USA), with a CP40Z spindle and a sample volume of 0.5 mL. 

Measurement temperature was regulated through a thermostated water bath 

(MultiTemp III Thermostatic Circulator, Thermo Fisher Scientific, New Hampshire, 

USA), and was set to a constant value – either 20 ºC (mean room temperature) or 32 ºC 

(mean nasal cavity temperature). After confirmation of the Newtonian behavior of the 

formulations, viscosity was measured at the highest rotational speed (within the 

apparatus measurement range), for lower associated measurement error, and each batch 

was measured only once. 
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Osmolality was measured with a freezing point osmometer (Osmomat 3000, Gonotec, 

Berlin, Germany), and mean values were calculated using 3 measurements for each 

batch. 

Emulsion’s droplet mean hydrodynamic size (simply referred to as “mean size” 

throughout the text) and PDI, obtained by cumulants’ analysis of dynamic light 

scattering data, and zeta potential, determined by electrophoretic light scattering, were 

measured using a Zetasizer Nano ZS apparatus (Malvern, United Kingdom). Samples 

were diluted 50-fold in water (vehicle studies) or phosphate buffer (20 mM, at pH 7, for 

drug formulations), and measured at 25 ºC in disposable ultra-violet/visible polymethyl 

methacrylate cuvettes (Kartell, Noviglio, Italy). Zeta potential was measured using a Dip 

Cell (ZEN 1002, Malvern, United Kingdom). Analysis was performed automatically three 

times for each sample, in at least two different samples of each batch. 

 

5.2.3. Phenytoin solubility tests 

In order to achieve maximum phenytoin solubility in the developed vehicles, a 

preliminary solubility test was done in a series of individual excipients. An excess of 

phenytoin powder was added to 1 g of each excipient. These mixtures underwent 

mechanical stirring for 24 h at room temperature. Afterwards, the tubes were centrifuged 

at 13500 rpm for 5 minutes, and a sample was taken from the supernatant and diluted 

5000-fold in three steps, carefully considered to not let the solubilized phenytoin 

precipitate and to avoid phase separation: the first dilution was done in pure methanol 

or Transcutol (20-fold), the second in Transcutol at 30% (50-fold), and the third in water 

(5-fold). Between dilutions the tubes were vortexed and centrifuged under the same 

conditions as before. Samples were then analyzed by HPLC, using a previously developed 

and validated method (Chapter 4, section 4.2.5). Excipients alone, with no solubilized 

drug, were also processed in the same way, to assess for possible interference in the 

quantification. 

After defining final emulsion composition, phenytoin solubility was also assessed in 

selected formulations, using the same steps as for the individual excipients. Vehicle and 

albumin interference in the quantification method was also determined.  

 

5.2.3.1. High-performance liquid chromatography conditions 
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Chromatographic apparatus comprised a HPLC system (LC-2010A HT Liquid 

Chromatography) coupled with a diode-array detector (SPD-M20A), with automatic 

control of the instrumental parts by the data acquisition software (LabSolutions, version 

5.52) (Shimadzu, Kyoto, Japan). Analyte separation was achieved by means of a 

reversed-phase guard column (C18, 5 μm particle size, 4 × 4 mm) attached to a reversed-

phase column (C18, 3 μm particle size, 55 × 4 mm) (LiChroCART® Purospher® STAR 

models, Merck, Darmstadt, Germany), and performed at 30 ºC. The mobile phase was 

filtered (0.2 μm pore) and degassed (ultrasound, 30 minutes) prior to injection, being 

made of 36% methanol and 64% aqueous phase (sodium phosphate buffer, 10 mM, pH 

3, with 0.25% triethylamine), v/v, with elution being done in isocratic mode at 1 mL/min. 

The injection volume was 20 μL, analyte separation was achieved within 20 minutes of 

each run and detection was done at 215 nm. 

 

5.2.4. In vitro drug release assay 

The in vitro drug release study was performed using horizontal Ussing Chambers 

(Harvard Apparatus, NaviCyte, Hugstetten, Germany). Membranes were made of 

hydrophilic polyethersulfone, with a 0.2 μm pore size (Supor® membrane disc filters, 

Pall Life Sciences, Michigan, United States of America). Temperature was kept at 32 ºC 

using a heating bath (Grant Instruments, Cambridge, England).  

Experimental protocol was based on a previously developed method (Chapter 4, section 

4.2.5), with slight modifications. The bottom chamber was filled with 1.8 mL of nasal 

fluid simulant buffer, plus albumin at 2%, having a pH of 6.5. Once the chambers were 

fully assembled, 50 μL of this buffer solution were placed on the upper side of the 

membrane, until the intended temperature was reached. After that, the buffer on the 

membrane was removed and replaced with 50 μL of the formulation. The bottom 

chamber fluid was homogenized through magnetic stirring (Micro Stirring Bars, 2 mm, 

VWR, United Kingdom), and samples of 100 μL were taken from it at 5, 10, 20, 40, 60, 

90, 120, 150, 180, 210 and 240 minutes, with the volume being replaced with new buffer 

solution at each time. Drug release from positive controls was also assessed, one for each 

drug, at concentrations similar to those found in the developed formulations: phenytoin 

at 5 mg/g, dissolved in Transcutol, and fosphenytoin at 42.5 mg/g, dissolved in water. 

Following sample collection there was a two-step sample dilution: the first dilution (20-

fold) was done in Transcutol at 30%, and the second dilution (5-fold) was done in buffer 

solution. For the quantification of initial drug concentration in the formulations the first 

dilution was higher (400-fold). Sample quantification was then done by HPLC, using a 

previously developed and validated method, as described in section 5.2.3.  
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5.2.5. In vivo pharmacokinetic study 

5.2.5.1. Animal experimentation 

Animal experimentation studies included adult male CD-1 mice from our own 

institution’s certified animal facility, housed under controlled environmental conditions 

(12 h light/dark cycle, 20 ± 2 ºC, 50 ± 5% relative humidity) and with free access to tap 

water and standard rodent diet (4RF21, Mucedola, Italy). Their age ranged between 8 

and 9 weeks and their weight between 25 and 43 g. All animal procedures were done in 

conformity with the regulations from the European Directive 2010/63/EU, regarding the 

protection of laboratory animals used for scientific purposes, and approved by the Local 

Animal Ethics Committee and by the competent national authority [Portuguese National 

Authority for Animal Health, Phytosanitation and Food Safety (DGAV – Direção Geral 

de Alimentação e Veterinária)]. 

Before drug administration each mouse was anesthetized through intraperitoneal 

injection (60 mg/kg of pentobarbital). For the administrations, which were all 

intranasal, the mouse’s body was placed on top of a heating pad, on its left side, and a 

flexible catheter, attached to a 50 μL syringe (Hamilton, Nevada, USA), was inserted 3 to 

4 mm into the right nostril. After drug administration the mice were left to recover from 

anesthesia in a temperature-controlled environment, in a supine position. 

There were two experimental groups, of 44 animals each (11 time points – 5, 15, 30, 60, 

120, 240, 360, 480, 720, 960 and 1440 minutes, 4 mice per time point). In one group a 

microemulsion containing phenytoin and fosphenytoin (F3) was administered 

intranasally, and in the other group a microemulsion containing fosphenytoin only (F3-

FOS) was also administered intranasally. The administered dose was of 5.8 mg/kg of 

phenytoin equivalents for both groups (maximum of 5.9 μL per 30 g of mouse body 

weight). 

 

5.2.5.2. Sample collection, processing and analysis 

After euthanasia mice blood and brain were collected, processed and analyzed using a 

previously developed and validated method (Chapter 3, section 3.2.5.2). Subsequently to 

being collected and manually stirred inside tubes containing ethylenediaminetetraacetic 

acid (1 mL capacity, with K3 EDTA, FL Medical, Italy), 300 μL of blood were transferred 

and mixed with 300 μL of orthophosphoric acid 85% (v/v) inside an eppendorf tube, 

making a 1:1 blood-to-acid mixture ratio (v/v). The addition of orthophosphoric acid was 
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meant to prevent fosphenytoin conversion to phenytoin (enzyme deactivation). With 

that same purpose, whole brains were homogenized (Ika Ultra-Turrax® T25 Basic, 

Staufen, Germany) in a mixture of water and orthophosphoric acid, also in a 1:1 (v/v) 

ratio (1 g of tissue per 4 mL of mixture). Brain homogenates were then centrifuged at 

14000 rpm, 4 ºC, for 10 minutes (MIKRO 200R microcentrifuge, Hettich, Tuttlingen, 

Germany), and the supernatant was kept. All samples were put on ice until stored. 

Acidified blood and acidified brain homogenates’ supernatants were stored at -20 ºC 

(RZ80FHRS freezer, Samsung, Seoul, South Korea) until needed.  

All samples were kept on ice during processing as well, and the experimental protocol 

consisted of adding 20 μL of ketoprofen (the internal standard) spiking solution to either 

100 μL of brain homogenate supernatant sample or 200 μL of blood sample. Then 

followed liquid-liquid extraction with diethyl ether (addition of 1000 μL to each sample), 

vortexing for 30 seconds and centrifugation for 5 minutes, at 13500 rpm, at room 

temperature (microcentrifuge, Gyrozen, Daejeon, South Korea), with the resulting 

organic phase being transferred to a glass tube, and the aqueous phase being re-extracted 

twice more, under the same conditions. The combined organic phases were then 

evaporated to dryness under a gas stream at 45 °C, and reconstituted with 100 μL of 

mobile phase. 

The chromatographic apparatus and analyte separation conditions were the same as for 

the drug solubility and drug release studies (section 5.2.3.1), but instead of having a 

phosphate buffer the mobile phase was made of 64% sodium acetate buffer (10 mM, pH 

5, with 0.25% triethylamine) plus 36% methanol. Fosphenytoin and phenytoin detection 

was still done at 215 nm, but the detection of the internal standard was done at 280 nm. 

 

5.2.6. Data analysis  

Formulation and drug release data analysis was done using Prism software, version 8.0, 

from GraphPad, with the significance level set at 0.05. 

A two-way ANOVA, followed by a Tukey’s multiple comparisons post-test was used to 

compare mean size and PDI values over time after preparation (short-term stability). A 

one-way ANOVA, followed by a Tukey’s multiple comparisons post-test was used to 

compare mean viscosity values between different formulations, and between different 

temperatures for the same formulation. A t-test was used to compare mean size and PDI 

mean values between different formulations. 
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Drug release parameters were determined taking into account initial drug strength. Drug 

release rate was calculated through the Higuchi model 133,134, in which both time (X) and 

drug release percentage (Y) were transformed: X by calculating its square root (X = √X) 

and Y by dividing it by the area of the membrane used in the assay (Y = Y/0.64). A linear 

regression was applied after this transformation, and the drug release rate corresponded 

to the obtained slopes. Late time points with values out of the linear zone were excluded, 

and the slopes were compared two-by-two using an F-test to assess for significant 

differences between formulations. 

Differences between formulations’ drug concentration levels in blood and brain were 

determined by two-way ANOVA analysis, with Tukey’s multiple comparisons post-test. 

Time points that did not coincide between the two pharmacokinetic studies (the one 

presented in this chapter and the one shown in Chapter 3) were excluded from this 

analysis. 

The calculation of pharmacokinetic parameters was done using the add-in program for 

Microsoft Excel “PKSolver”. The analysis was non-compartmental, with the 

administrations being considered extravascular. Blood and brain maximum drug 

concentration (Cmax) and time to reach it (Tmax) were directly derived from the 

experimental data. The area under the drug concentration vs time curve from time zero 

to the last quantifiable drug concentration (AUC0-t) was determined by the linear 

trapezoidal method. The area under the drug concentration vs time curve from time zero 

to infinity (AUC0-inf) was calculated by adding AUC0-t to the last quantifiable drug 

concentration (with adequate precision and accuracy, Clast) divided by the elimination 

rate constant (kel) (the formula being AUC0-inf = AUC0-t + Clast/kel). kel was estimated by 

applying a log-linear regression to the terminal segment of the drug concentration vs 

time curve. The elimination half-life (t1/2el) was calculated by dividing ln2 by kel (the 

formula being t1/2el = ln2/kel), and the mean residence time (MRT) by dividing the area 

under the first moment curve (AUMC) by the AUC0-inf (the formula being MRT = AUMC/ 

AUC0-inf). The percentage of the AUC that was extrapolated from the last quantifiable 

drug concentration to infinity [AUCextrap (%)] was also calculated.  

Absolute blood bioavailability (B%blood IN/IV) of the selected intranasally administered 

emulsions was calculated using equation 5.1: 

 𝐵%𝑏𝑙𝑜𝑜𝑑 𝐼𝑁/𝐼𝑉 =
𝐴𝑈𝐶 𝑏𝑙𝑜𝑜𝑑𝐼𝑁

𝐴𝑈𝐶 𝑏𝑙𝑜𝑜𝑑𝐼𝑉

× 100  (5.1). 
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AUCblood IV values correspond to an intravenous fosphenytoin solution (previous study, 

Chapter 3). 

Relative brain and blood bioavailability (RB%brain and RB%blood, respectively) were also 

calculated for these emulsions, with equations 5.2 and 5.3: 

𝑅𝐵%𝑏𝑟𝑎𝑖𝑛 =
(𝐴𝑈𝐶 𝑏𝑟𝑎𝑖𝑛𝐼𝑁)𝑒𝑚𝑢𝑙𝑠𝑖𝑜𝑛

(𝐴𝑈𝐶 𝑏𝑟𝑎𝑖𝑛𝐼𝑁)𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
× 100  (5.2) 

𝑅𝐵%𝑏𝑙𝑜𝑜𝑑 =
(𝐴𝑈𝐶 𝑏𝑙𝑜𝑜𝑑𝐼𝑁)𝑒𝑚𝑢𝑙𝑠𝑖𝑜𝑛

(𝐴𝑈𝐶 𝑏𝑙𝑜𝑜𝑑𝐼𝑁)𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
× 100  (5.3) 

(AUCbrain IN)solution and (AUCblood IN)solution values correspond to a simple intranasal aqueous 

fosphenytoin solution (previous study, Chapter 3). 

Moreover, in order to compare the results obtained with the developed emulsions to the 

intranasal formulation with which we obtained the best results in the previous study 

(fosphenytoin formulation containing HPMC and albumin, Chapter 3), we calculated 

relative brain and blood bioavailability considering AUC values from that same 

formulation (RB%brain best and RB%blood best, respectively), using formulas 5.4 and 5.5: 

𝑅𝐵%𝑏𝑟𝑎𝑖𝑛 𝑏𝑒𝑠𝑡 =
(𝐴𝑈𝐶 𝑏𝑟𝑎𝑖𝑛𝐼𝑁)𝑒𝑚𝑢𝑙𝑠𝑖𝑜𝑛

(𝐴𝑈𝐶 𝑏𝑟𝑎𝑖𝑛𝐼𝑁)𝑏𝑒𝑠𝑡 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
× 100  (5.4) 

𝑅𝐵%𝑏𝑙𝑜𝑜𝑑 𝑏𝑒𝑠𝑡 =
(𝐴𝑈𝐶 𝑏𝑙𝑜𝑜𝑑𝐼𝑁)𝑒𝑚𝑢𝑙𝑠𝑖𝑜𝑛

(𝐴𝑈𝐶 𝑏𝑙𝑜𝑜𝑑𝐼𝑁)𝑏𝑒𝑠𝑡 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
× 100  (5.5) 

 

5.3. Results and discussion 

5.3.1. Formulation development with assessment of drug 

solubility, rheology, osmolality and droplet size 

characteristics 

In order to maximize the amount of phenytoin in the emulsions (in the active form, not 

as prodrug) we did a preliminary solubility screening in individual excipients. The 

highest phenytoin solubility was obtained with Capryol 90 and Imwitor 988 in the 

hydrophobic excipients category, with Tween 20, Tween 80 and Kolliphor EL in the 

hydrophilic surfactants category, and with Transcutol HP in the cosolvent category 

(Figure 5.1). Therefore, these excipients were selected and mixed in different proportions 

in order to produce nano or microemulsions with good characteristics (homogeneous, 

with small mean size and visually stable for at least a few hours). To maximize the 
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amount of phenytoin in the final formulations, the amount of oil phase was maximized, 

and therefore the preconcentrate-to-aqueous phase proportion was maintained at 50:50.  

 

Figure 5.1. Phenytoin solubility screening test in individual excipients. One batch for each excipient, one 
measurement only. Blue bars correspond to cosolvents, purple bars to hydrophilic surfactants, and maroon 
bars to hydrophobic excipients. 21 

 
A few series of vehicle formulas (without drugs) were screened regarding droplets mean 

size and PDI, in order to select a small number with different composition and acceptable 

droplet size (data not shown). In the selected vehicles there was a general tendency for 

mean size decreasing with increasing dilution before size measurement, which is a 

known characteristic of microemulsions. Moreover, the chosen formulas had mean sizes 

within the characteristic microemulsion’s range (10-100 nm, data not shown) 150. 

In the vehicles containing Capryol 90 (here used as the oil), Tween 20 (hydrophilic 

surfactant) and Transcutol (cosolvent), decreasing the oil-to-surfactant ratio to less than 

1 made the emulsions more homogeneous (decreased PDI) and the mean droplet size 

smaller. In contrast, in the vehicles containing Capryol 90 (oil), Kolliphor EL 



 88 

(hydrophilic surfactant) and Transcutol (cosolvent), increasing the oil-to-surfactant 

proportion was what decreased the PDI and mean size, and the best ratios were ≥ 1. 

Having the decrease of the potential toxicity of the formulations in mind, we also aimed 

for formulas that did not have any cosolvent. Therefore, we developed vehicles 

containing Capryol 90 (oil), Tween 20 or Kolliphor EL (hydrophilic surfactant) and 

Imwitor 988 (hydrophobic surfactant). Results were better for Kolliphor EL than for 

Tween 20, and a hydrophobic excipients-to-hydrophilic surfactant ratio > 1 seemed to be 

beneficial. Here, a high Capryol 90 quantity was needed for good homogeneity. 

In all the developed formulas, replacing Tween 20 or Kolliphor EL with Tween 80 

increased the PDI. Therefore, this excipient was excluded from further studies. 

Additionally, in the existing scientific literature we also discovered an already developed 

formula using some of the selected excipients: Capryol 90 (oil), Tween 20 and Kolliphor 

EL (hydrophilic surfactants) 149. Since it had a droplet size within the microemulsion 

range (around 40 nm) and a reasonable PDI value (0.3 to 0.4), we sought to adapt it 

using our experimental conditions. 

Since all the developed (or adapted) vehicle formulas were, apparently, microemulsions, 

we also adapted a formula of a nanoemulsion that we previously developed, containing 

Miglyol 812 (oil), Tween 80 (hydrophilic surfactant) and Transcutol (cosolvent) (Chapter 

4). This formula required extra homogenization through premix membrane 

emulsification, but was otherwise stable (for at least 2 weeks), relatively homogeneous 

(PDI < 0.3) and had a small mean size (≈ 200 nm), within the nanoemulsion range (20-

200 nm) 150. Nevertheless, for this study we changed the preconcentrate-to-water phase 

proportion, since in the previous study it was either 10:90 or 40:60, and here we set it 

50:50 (again, to maximize phenytoin content). 

After choosing a set of preconcentrates with different composition, a second solubility 

study was then done to assess how much phenytoin could be solubilized in the resulting 

microemulsions, with fosphenytoin in the external phase (at 43.1 mg/g, isotonic 

concentration) plus albumin at 2% (concentration in the final formulation). For the 

previously developed nanoemulsion, F5, phenytoin concentration had already been 

established at 10 mg/g in the preconcentrate, originating 5 mg/g in the nanoemulsion as 

prepared in present work. Even though it had Tween 80 and Transcutol in its 

composition (some of the best excipients in solubilizing phenytoin), the oil was Miglyol 

812, that had a phenytoin solubility over 10 times lower than that of Capryol 90. Hence, 
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the developed microemulsions were expected to solubilize moderately more than 5 mg/g. 

Nevertheless, results showed that, despite efforts to choose the excipients that could 

individually solubilize phenytoin the most, its solubility was for all microemulsions 

between 5 and 6 mg/g (Figure 5.2), which is almost the same amount that F5 was able to 

solubilize. Since that in the solubility test we reach saturation, we decided on having the 

slightly lower concentration of phenytoin, setting it at 5 mg/g for all the developed 

microemulsions (10 mg/g in the preconcentrate), same as for the F5 nanoemulsion. 

 
Figure 5.2. Phenytoin solubility test in the microemulsions. One batch for each different formulation, 5 
measurements per formulation. Data are presented as mean ± SEM. SEM – standard error of the mean. 22 

 
Since it was not possible to increase the amount of phenytoin solubilized in the 

microemulsions as compared with our previous work, in order to reach a total drug 

strength of at least 34.8 mg/g of phenytoin equivalents (same as for the previous study, 

with the formulations containing fosphenytoin only), we tried increasing the 

fosphenytoin amount (solubilized in the external phase) to 42.5 mg/g (concentration in 

the final formulation, 85 mg/g in the external phase). The external phase was no longer 

isotonic, having an osmolality of around 500 mOsmol/kg, but it was still within the 

established limits for marketed nasal preparations 136. With phenytoin at 5 mg/g and 

fosphenytoin at 42.5 mg/g, final drug strength was 34.6 mg/g of phenytoin equivalents, 

which is very near the strength of the formulations used in the previous in vivo study. 

Therefore, we assessed the suitability of adding the drug and prodrug at these 

concentrations, plus albumin at 2% (dissolved at 4% in the external phase), to 

formulations F1 to F5 (all prepared with a preconcentrate-to-external phase proportion 

of 50:50). However, formulations F1 and F5 were not compatible with drug 
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incorporation (plus albumin) into the vehicle, at least at the selected concentrations, 

since they showed immediate physical instability upon addition of the external phase 

(containing fosphenytoin and albumin) to the preconcentrate (containing phenytoin), 

forming a precipitate and showing phase separation. These formulations were, therefore, 

excluded. Microemulsions F2, F3 and F4 were visually homogeneous. However, F4 had 

PDI values between 0.5 and 0.6, thus having a highly heterogeneous size, and therefore 

it was excluded as well.  

On the contrary, formulations F2 and F3 had good PDI values, with relatively small mean 

sizes (Table 5.2). Both formulations were considered to be Newtonian at 20 and 32 ºC, 

and had a higher viscosity at room temperature than at nasal cavity temperature (p < 

0.0001). F2 had lower mean size (p < 0.01), PDI (no statistical significance) and viscosity 

(p < 0.0001) values than F3 (Table 5.2). Zeta potentials were basically considered neutral 

(data not shown), as expected due to the excipients also being neutral. 

Table 5.2. Mean size, PDI and viscosity (at 20 and 32 ºC) characterization of the formulations selected for 
drug release studies. Three batches of each different formulation were used. One or two measurements per 
batch were performed (for viscosity, or mean size and PDI, respectively). Data are presented as mean ± SEM. 
16 

Formulation 
name 

Mean size 
(nm) 

PDI Viscosity at 20 ºC (cP) Viscosity at 32 ºC 
(cP) 

F2 60.9 ± 2.2 0.150 ± 0.015 75.97 ± 0.71 43.33 ± 0.32 

F3 83.2 ± 3.7 0.198 ± 0.023 96.58 ± 1.45 58.44 ± 1.09 

PDI – polydispersity index; SEM – standard error of the mean. 

 

 
As for short-term physical stability, F3 was stable for at least 1 week (Figure 5.3), but not 

2 weeks, since there was a significant increase in mean size and PDI values at the end of 

the second week (p < 0.0001). In what concerns mean size and PDI measurements, F2 

seemed stable for at least 2 weeks, but a small precipitate formed about 48 h after 

preparation, and thus this was considered to be its stability time span. Nevertheless, for 

the purpose of doing further studies (in vitro drug release and in vivo pharmacokinetics) 

1 week and 48 h stabilities were enough to guarantee the good condition of the 

formulations until used. 
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Figure 5.3. Mean size and PDI values’ variation from 0 to 2 weeks. One batch for each different formulation, 
three measurements per time point. PDI – polydispersity index; SEM – standard error of the mean. 23 

 
It is important to point out that, when compared to the previously developed 

nanoemulsions (Chapter 4), these microemulsions were easier to prepare, since they did 

not need additional homogenization through premix membrane emulsification, having 

spontaneous formation upon mixing the external phase with the preconcentrate, which 

is an advantage. As for osmolality, it ranged between 2000 and 2400 mOsmol/kg, which 

is quite high. This might be due to the fact that, since these formulations are 

microemulsions, there is a great number of very small droplets or dissolved components 

contributing to these values. Nevertheless, considering the present objective (hypothesis 

testing) it was important to maximize phenytoin’s strength, so we proceeded with these 

formulations (F2 and F3) for further studies. Despite both being microemulsions, and 

having reasonably similar mean size and viscosity values, F2 had Transcutol and F3 did 

not. In our previous study with nanoemulsions the in vitro drug release results suggested 

that Transcutol could slow down and/or inhibit fosphenytoin and phenytoin drug release 

(Chapter 4). We sought to confirm if the same happened for these microemulsions in the 

following section 5.3.2. 

 

5.3.2. In vitro drug release 

The in vitro drug release profiles of the selected formulations – F2 and F3 – were 

evaluated using horizontal Ussing chambers. Two positive controls were also evaluated 

for drug release, one for each drug – a phenytoin solution in pure Transcutol (drug at 5 

mg/g) and a fosphenytoin solution in water (drug at 42.5 mg/g). The drug release 
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percentage profiles and calculated drug release rates are shown in Figure 5.4 and Table 

5.3. 

 

Figure 5.4. Fosphenytoin (A) and phenytoin (B) percentual drug release between 5 and 240 minutes. 24 

 

Table 5.3. Fosphenytoin and phenytoin percentual drug release rate, calculated by applying a linear 
regression to the plotting of the square root of time (X = √X) versus percentual drug release divided by the 
area of the membrane used in the assay (Y = Y/0.64). Significance matrix is shown for the difference between 
formulations (slopes’ comparison using an F test). 17 

Formulation 

Fosphenytoin Phenytoin 

Percentual drug release 
Significance 

matrix 
Percentual drug 

release 
Significance 

matrix 

R2 
Drug release 
rate (%·cm-

2·min-1/2) 
F2 F3 R2 

Drug release 
rate 

(%·cm-2·min-

1/2) 

F2 F3 

Fosphenytoin 
solution* 

0.8786 27.27 ± 10.14 NS NS - - - - 

Phenytoin 
solution** 

- - - - 0.9843 21.85 ± 1.95 < 0.0001 0.0016 

F2 0.9868 18.55 ± 1.24 - NS 0.9955 11.19 ± 0.31 - NS 

F3 0.9918 15.99 ± 0.84 - - 0.9587 9.76 ± 0.83 - - 

NS – not significant (statistical difference); R2 – linear regression’s coefficient of determination; * 
fosphenytoin aqueous solution (42.5 mg/g); ** phenytoin (pure) Transcutol solution (5 mg/g). 

 

 
Fosphenytoin’s release (Figure 5.4 A and Table 5.3) was likely faster in the solution than 

in the microemulsions, but it was so fast that the few points fitting the linear zone in the 

release profile were not sufficient to calculate its release rate with confidence. Therefore, 
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due to this technical limitation, the differences were not statistically significant. 

However, this tendency accompanies the known effect that a formulation with a higher 

viscosity tends to slow down drug diffusion, giving it a more sustained release profile. F2 

and F3 still released fosphenytoin reasonably fast and almost completely, at similar rates, 

and thus the characteristics of the formulations did not hinder fosphenytoin’s release in 

a substantial way.  

Phenytoin’s release from the solution was not complete, reaching only about 80%, 

despite stabilizing at early time points (Figure 5.4B). Nevertheless, its release rate was 

still, as expected, significantly higher than the microemulsions’ (Table 5.3). Phenytoin’s 

release was slower in the emulsions, but not significantly different between F2 and F3, 

reaching up to 80-90% like with fosphenytoin, meaning that it being internalized in the 

formulation’s droplets did not cause an increased overall retention of the drug, it only 

slowed it down. Also, contrary to what the results from the phenytoin solution and our 

previous study seemed to indicate (Chapter 4), the fact that the drug release is similar 

between the microemulsions seems to indicate that Transcutol did not to interfere with 

either fosphenytoin nor phenytoin’s release in this type of formulation. 

Furthermore, in general, the release from the developed microemulsions was faster than 

from the previously developed nanoemulsions (Chapter 4), since the release rate from 

the nanoemulsion that had a higher oil-to-water proportion (40:60, which was the most 

similar proportion to the one we chose for this study, 50:50) was two to three times lower 

than that of these microemulsions, for both phenytoin and fosphenytoin. This happened 

despite the microemulsion’s viscosity being two to three times higher than said 

nanoemulsion. In the case of fosphenytoin, this could be due to the fact that 

fosphenytoin’s strength was higher in the microemulsions (almost double). As for 

phenytoin, its release rate being higher in the microemulsions might also be due to 

higher strength (although the difference is not substantial, since there was 5 mg/g of 

phenytoin in the microemulsions and 4 mg/g of phenytoin in the mentioned 

nanoemulsion), but it also might be due to the microemulsion’s droplets being smaller 

and passing through the assay membrane’s pores faster and more easily. 

 

5.3.3. In vivo pharmacokinetic study 

Since F2 and F3 microemulsions had similar drug strengths and release profiles, we 

selected F3 to proceed to the in vivo pharmacokinetic studies, since it did not have any 

cosolvent and had a lower hydrophilic surfactant amount, being potentially safer. In 

addition to F3 (containing phenytoin and fosphenytoin) we also administered a 
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modification of this microemulsion, F3-FOS, a formulation having the exact same 

composition but without phenytoin (with fosphenytoin only), to clarify whether there is 

an actual need for the existence of a small amount of phenytoin (the active and permeable 

form) in the emulsions in order to increase and/or accelerate brain targeting, or if having 

fosphenytoin (the soluble and quickly bioconvertible prodrug) could be enough. The 

administered dose was 5.8 mg/kg of phenytoin equivalents for both groups, with the 

administration volume being adapted according to the drug strength within each 

formulation. 

Similarly to the previous study, it was not possible to quantify fosphenytoin in neither 

brain nor blood, only phenytoin, due to a fast prodrug bioconversion, happening either 

before or after absorption. The obtained phenytoin’s brain and blood pharmacokinetic 

profiles are shown in Figure 5.5. For comparison purposes, the profiles corresponding to 

an intravenous fosphenytoin solution (IV solution) and the fosphenytoin formulation 

that produced higher brain levels in the previous study (containing HPMC and albumin, 

IN H0.5FOS + albumin, Chapter 3) are also shown.  

 

Figure 5.5. Curves of phenytoin concentration as a function of time in brain (A) and blood (B) after intranasal 
administration of a microemulsion containing phenytoin and fosphenytoin (IN F3) and a microemulsion 
containing fosphenytoin only (IN F3-FOS), compared with data produced by the same research team and 
previously shown (Chapter 3) – the best intranasal fosphenytoin formulation (IN H0.5FOS + albumin) and 
an intravenous fosphenytoin solution (IV solution). Data are presented as mean ± SEM. X axis is shown with 
a base 2 logarithmic transformation in order to see initial drug levels more clearly. FOS – fosphenytoin; H – 
hydroxypropyl methylcellulose; IN – intranasal; IV – intravenous; SEM – standard error of the mean. 25 

 

Pharmacokinetic parameters and ratios were also calculated for the selected 

microemulsions, and are shown in Table 5.4. Just like in the previous study, given the 

larger uncertainty associated with phenytoin’s pharmacokinetic profile in the brain 

obtained with the intravenous administration, we decided not to calculate brain targeting 

ratios that used intravenous AUCbrain values. Nevertheless, since blood bioavailability is 
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for phenytoin a good indicator of brain bioavailability as well, we calculated absolute 

blood bioavailability (comparison to the intravenous route), as well as brain ratios that 

did not use intravenous AUCbrain values (comparison to intranasal solution and best 

formulation from the previous study). 

Table 5.4. Pharmacokinetic parameters determined for phenytoin levels, in both brain and blood, for 
microemulsions F3 and F3-FOS, both administered intranasally. 18 

Formulation F3 F3-FOS 

Matrix Brain Blood Brain Blood 

Cmax (μg/g or μg/mL) 4.02 4.47 3.52 3.96 

Tmax (min) 240 30 240 60 

t1/2el (min) 653 617 322 526 

kel (1/min) 0.0011 0.0011 0.0022 0.0013 

MRT (min) 1041 925 536 750 

AUC0-t (μg.min/g or 
μg.min/mL) 

2587 3870 1770 2844 

AUC0-inf (μg.min/g or 
μg.min/mL) 

4426 4872 2382 3310 

AUCextrap (%) 41.56 20.56 25.70 14.10 

B%blood IN/IV 141 103 

RB%blood 153 113 

RB%brain 218 149 

RB%blood best 124 91 

RB%brain best 137 94 

AUC0-t – area under the “drug concentration vs time” curve, from time zero to the last quantifiable drug 
concentration; AUC0-inf – area under the “drug concentration vs time” curve, from time zero to infinity; 
AUCextrap (%) – percentage of the area under the “drug concentration vs time” curve that was extrapolated, 
from the last quantifiable drug concentration to infinity; B%blood IN/IV – absolute blood bioavailability 
(intranasal formulation vs intravenous solution); Cmax – maximum drug concentration; FOS – fosphenytoin; 
kel – elimination rate constant; MRT – mean residence time; RB%blood – relative blood bioavailability 
(intranasal emulsion vs intranasal solution); RB%brain – relative brain bioavailability (intranasal emulsion vs 
intranasal solution); RB%blood best – relative blood bioavailability (intranasal emulsion vs best intranasal 
formulation from previous study); RB%brain best – relative brain bioavailability (intranasal emulsion vs best 
intranasal formulation from previous study); t1/2el – elimination half-life; Tmax – time to reach maximum 
drug concentration.  

 

F3 and F3-FOS brain pharmacokinetic profiles overlapped at shorter time points, also 

having the same Tmax value, which indicates that having a small amount of phenytoin 

(and not fosphenytoin only) did not make it faster for the drug to reach the brain. 

Nevertheless, brain (and blood) drug levels were consistently higher with F3 than with 

F3-FOS (p < 0.001 for brain and p < 0.0001 for blood) at later time points, from the Tmax 

(4 h) until the end of the study (24 h) (p < 0.05 for brain at 6 h, and p < 0.05 to 0.01 for 

blood at 30 min and 6, 8 and 24 h). This also led to higher brain and blood AUC values 

with F3 when compared to the other microemulsion. These results suggest that having a 
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small amount of phenytoin in the active and permeable form, in addition to the soluble 

and quickly bioconvertible prodrug fosphenytoin, leads to an overall higher drug 

exposure. 

The brain Cmax of F3 was similar to the brain Cmax of the IV solution (4.02 μg/g for F3, 

3.88 μg/g for the IV solution), although taking longer to achieve (higher Tmax). Moreover, 

F3 had a high absolute blood bioavailability (141%), which suggests that its intranasal 

administration led to better results than the intravenous group, except when concerning 

time to achieve maximum brain drug concentration. The microemulsion containing 

fosphenytoin only, F3-FOS, though, had a lower absolute blood bioavailability value 

(103%) than F3, but suggesting a similar performance when compared to the IV solution. 

This indicates that the importance of having phenytoin (plus fosphenytoin) in the 

formulation is reflected in absolute bioavailability, associated with improved brain and 

blood drug levels at later time points (from 4 h on). A higher brain and blood drug 

residence is also shown by looking at the MRT and t1/2el values, which when compared to 

the intravenous group were higher for both intranasal microemulsions in the brain and 

higher for F3 (and similar for F3-FOS) in the blood (Table 5.4). 

As for comparing the results of the developed microemulsions with the intranasal simple 

fosphenytoin solution from the previous study, both F3 and F3-FOS had an at least 

moderately high relative bioavailability in brain and blood, which show their superiority. 

When compared to the fosphenytoin formulation (with HPMC and albumin) that had the 

best results in the previous study, IN H0.5FOS + albumin, both microemulsions 

produced higher brain and blood levels at shorter time points (p < 0.01 to 0.0001 for 

brain at 15 and 30 min, and p < 0.05 to 0.0001 from 5 to 60 min), which seems to suggest 

that the excipients that were part of the microemulsion’s composition (namely the 

surfactants) did indeed have the expected and known drug permeation enhancing effect 

151. Nevertheless, in what concerns AUC values, overall microemulsion F3-FOS did not 

perform better than IN H0.5FOS + albumin, since the ratios comparing F3-FOS to that 

formulation were below 100%. However, F3 had a RB%blood best value of 124% and a 

RB%brain best value of 137%, which show its superiority when compared to the best 

fosphenytoin formulation from the previous study. 

Furthermore, although it is difficult to know for sure the contribution of each 

component, it is likely that the initial increased brain and blood drug concentrations 

obtained with the microemulsions compared to the simple fosphenytoin solution are a 

result of an increase in the permeability of fosphenytoin solubilized in the external phase 

of the emulsion, either reaching the brain directly (through neuronal transport) or 
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indirectly (through the systemic circulation). But since brain and blood drug levels 

appear to increase simultaneously, and apparently proportionally, the indirect route 

seems to be here the most likely scenario, at least for most of the drug that reaches the 

brain. The higher brain Cmax  obtained with F3 (when compared to F3- FOS) seems to be 

due to the presence of phenytoin, that being internalized in the oil droplets could take 

more time to reach the brain than fosphenytoin, which is supported by it having a slower 

release, as described in section 5.3.2. 

Hence, if there is a need for both faster and prolonged therapeutic effect, an emulsion 

combining both the active drug and prodrug forms would be the chosen option, since the 

prodrug (fosphenytoin) and the surfactants lead to higher drug levels at shorter time 

points (when compared to a fosphenytoin solution or fosphenytoin polymeric 

formulation), and the active drug (phenytoin) leads to a prolonged effect (given it can be 

shown to be safe). Nevertheless, if a faster effect is all that is needed, with no interest in 

prolonging drug exposure, a formulation promoting the fast permeation of fosphenytoin 

would be good enough. 

 

5.4. Conclusion 

In the previous study (Chapter 3) we had already obtained a higher phenytoin strength 

than any of the former reported works by using phenytoin’s hydrophilic prodrug 

fosphenytoin (around 34.8 mg/g of phenytoin equivalents) 143–146. In this study, by using 

a drug/prodrug combination, formulated in the form of an aqueous microemulsion, we 

were able to achieve a similar drug strength, but the absorption was faster and the 

obtained brain and blood drug levels were higher than those reached with intranasally 

administered formulations containing fosphenytoin only. Therefore, in this work we 

again showed that the use of phosphate ester prodrugs can be an efficient way of 

increasing the intranasal delivery of poorly soluble drugs such as phenytoin, with the 

existence of a small amount of the active and liposoluble form (formulated as 

microemulsion) increasing and prolonging drug levels. If there is a need for a faster and 

prolonged therapeutic effect, a drug-prodrug combination is ideal, but if a faster effect is 

all that is needed, having the prodrug alone could be enough, while considering a 

formulation with permeation enhancing components. 
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Concluding remarks 

One of the main purposes of the work presented in this thesis was to prove that 

phosphate ester prodrugs can be an efficient strategy to increase formulation drug 

strength of poorly aqueous soluble drugs and, consequently, their bioavailability, namely 

in brain drug delivery through intranasal administration. To do so we chose an already 

existing low solubility drug/phosphate ester prodrug pair (phenytoin/fosphenytoin).  

Since phenytoin has a very low solubility in water, and does not solubilize well in lipids 

either, without the use of fosphenytoin it would not have been possible to reach high drug 

strengths. Hence, it was not possible to obtain formulations containing phenytoin only, 

and even in nanosystems with a lipidic component, it was necessary to include the 

prodrug in order to increase drug strength. 

Formulations containing only fosphenytoin (without phenytoin) already led to 

reasonably high brain phenytoin levels, with a formulation containing HPMC and 

albumin leading to a high absolute bioavailability. But even though the systematic review 

regarding intranasal delivery of small molecular weight drugs within nanosystems failed 

to discriminate the overall superiority of a nanosystem class in relation to another, in 

general the use of nanocarriers led to higher brain bioavailability than the respective 

drug solution. Hence, we developed oil-in-water nano or microemulsions which allowed 

the existence of a small amount of phenytoin, in the active and diffusible form, in the 

formulation. The selected microemulsion’s in vivo pharmacokinetic results suggested 

that the existence of phenytoin, in addition to fosphenytoin, increased and prolonged 

brain and blood phenytoin levels, when compared with the same microemulsion 

containing fosphenytoin only (without phenytoin), and also when compared with the 

more simple intranasal fosphenytoin formulations. The importance of the permeation 

enhancing effects of the microemulsion was also shown, for early time points, since both 

tested microemulsions (the one containing only fosphenytoin, and the one containg both 

drugs) had increased brain and blood drug levels at shorter times.  

Hence, having a phosphate ester prodrug + permeation enhancer(s) combination seems 

to be ideal when a faster effect is all that is necessary (without the need for prolonged 

drug levels). If a faster and prolonged effect is wanted, then drug + prodrug + permeation 

enhancers + albumin appears to be the best choice (within the studied conditions). 

Nevertheless, while the simpler fosphenytoin formulations were predictably safe (safe 

excipients), being isotonic to slightly hypertonic, the emulsions have potentially toxic 

excipients in their composition, also having very high osmolality values. Even though the 
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selected microemulsion did not include cosolvents, which had the highest potential for 

toxicity, the surfactants that were part of it could also be potentially harmful. Hence, in 

future studies one could try to reduce the preconcentrate-to-water phase proportion in 

the emulsions and assess which is the lowest preconcentrate amount that results in the 

enhanced brain drug levels at shorter time points that were seen with the intranasal 

administration of the selected microemulsions. Moreover, one could try to eliminate the 

surfactants altogether and replace them with other permeation enhancers that could be 

potentially safer.  

This work allowed to confirm the initial hypothesis that the use of phosphate ester 

prodrugs, such as fosphenytoin, can be an efficient strategy to increase the intranasal 

bioavailability of poorly soluble drugs, such as phenytoin, without the conversion from 

prodrug to parent drug delaying the drug reaching the brain (fast bioconversion, at least 

in the used animal model). Moreover, albumin seems to play a crucial role in prolonging 

brain drug exposure, as does the existence of a small amount of the active and diffusible 

form of the drug. Furthermore, the use of microemulsions increases drug levels at early 

time points, making it faster for the drug to reach the brain. 
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Supplementary data 

 

S1. Chapter 3 – Supplementary methods and results 

 

S1.1. Supplementary methods 

S1.1.1. In vitro drug release spectrophotometric assay validation 

The calibration standards were prepared by dilution of a more concentrated simple 

aqueous fosphenytoin solution, using nasal simulant buffer, to obtain drug 

concentrations of 4.11, 8.22, 16.44, 32.88, 65.75 and 105.20 μg/mL. The lower limit of 

quantification (LLOQ) was defined as the lowest analyte concentration that could be 

quantified with acceptable inter/intraday precision and accuracy. To assess linearity, a 

mean calibration curve was determined using data from 6 individual curves (n = 6), each 

done on a different day. Precision’s specification corresponded to a coefficient of 

variation (CV) lower than or equal to 15% (or 20% for the LLOQ) and accuracy (% of bias) 

had to be within ± 15% (or ± 20% for the LLOQ).  

 

S1.1.2. In vitro drug release high-performance liquid chromatography assay 

validation 

For the preparation of the calibration standards a stock solution of fosphenytoin at 5 

mg/mL was made by dissolving the powder in methanol, and from this solution an 

intermediate one at 0.5 mg/mL was prepared by dilution in nasal fluid simulant buffer. 

To obtain the desired concentrations, the final dilution was also made in that same 

buffer, preparing calibration standards with fosphenytoin at 0.25 (LLOQ), 0.50, 2.00, 

5.00, 10.00, 15.00, 20.00 and 25.00 μg/mL. Then 100 μL of each of these calibration 

standards were mixed with 20 μL of perchloric acid at 10% (v/v) by vortexing for 15 

seconds, followed by centrifugation (microcentrifuge, Gyrozen, Daejeon, South Korea) at 

13500 rpm for 5 minutes. The supernatant was then transferred into a glass vial for 

quantification. Quality control (QC) samples were prepared using the same 

methodology, but from an independent stock solution, at 0.75, 12.50 and 22.50 μg/mL 

(QC1, QC2 and QC3, respectively). An additional sample was also prepared at the 

concentration of the LLOQ (QCLLOQ).  
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S1.1.3. In vivo pharmacokinetic study high-performance liquid 

chromatography assay validation 

Individual fosphenytoin and phenytoin intermediate solutions (at 0.1 mg/mL) were 

prepared by dilution from methanol stock solutions (at 5 mg/mL). Finally, for the spiking 

of the calibration standards, we prepared combined solutions of fosphenytoin and 

phenytoin, from either stock or intermediate solutions, by dilution in water-methanol 

(50:50, v/v). Fosphenytoin’s concentration in these solutions was 1.5, 3.0, 10.0, 25.0, 

50.0 or 75.0 μg/mL, and phenytoin’s concentration was 1.5, 3.0, 10.0, 50.0, 100.0 or 

150.0 μg/mL. A separate spiking solution was prepared for the internal standard, 

ketoprofen, at 50 μg/mL.  

The calibration standards were prepared by spiking aliquots of 80 μL of blank matrices 

(either mice acidified blood or brain homogenate) with 20 μL of one of the combined 

spiking solutions (5-fold dilution), being that the final concentration ranges were 0.3 - 

15 μg/mL for fosphenytoin and 0.3 - 30 μg/mL for phenytoin. QC samples were prepared 

at 0.9 (QC1), 7.5 (QC2) and 13.5 (QC3) μg/mL for fosphenytoin and 0.9 (QC1), 15.0 (QC2) 

and 27.0 (QC3) μg/mL for phenytoin.  

After spiking, both calibration standard samples and QC samples were processed as 

described in Chapter 3 (section 3.2.5.2). For linearity assessment the data was analyzed 

according to a previously developed mathematical method 152, being transformed by a 

weighted linear regression, with the functions used as weighting factors being 1/x2 for 

blood samples and 1/y2 for brain homogenate samples. Method selectivity was evaluated 

by processing and analyzing blank acidified blood or brain homogenate samples (matrix 

without analytes or internal standard) from six different mice.  

Short and long-term sample stability was also evaluated, for QC1 and QC3 samples, in 

replicate (n = 5). For the evaluation of preprocessing stability, and attempting to simulate 

predicted handling and storage settings, studied conditions included room temperature 

for 4 hours, 4 ºC for 24 hours, and -20 ºC for 10 and 30 days. Post-processing stability 

was evaluated at room temperature for 24 hours, which is the estimated maximum 

amount of time for which samples are kept in the autosampler before analysis. 

Additionally, the effect of 24 hour freeze-thaw cycles in unprocessed samples was also 

assessed by keeping them at -20 ºC and doing 3 cycles of sample unfreezing/refreezing, 

on three consecutive days. 
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S1.2. Supplementary results 

S1.2.1. Gelation temperatures 

Table S1.1. Gelation temperatures of formulations containing Pluronic at 14, 15 or 16% (w/w), with or without 
HPMC or fosphenytoin. Tgel50 was determined by applying a non-linear regression model (log(agonist) vs. 
response, variable slope, four parameters) to the “viscosity vs temperature” data. TaMax and TaMin were 
correspondingly calculated as the maximum and minimum of the second derivative of the function given by 
the non-linear regression model obtained for the determination of Tgel50. 19 

Formulation TaMax Tgel50 TaMin 

P14H0.2 36.7 38.4 ± 0.7 40.1 

P15 32.7 34.5 ± 0.1 36.3 

P15FOS 31.4 34.0 ± 0.1 36.6 

P15H0.2 29.9 31.8 ± 0.1 33.6 

P16 28.4 30.4 ± 0.1 32.5 

P16H0.2 26.9 28.7 ± 0.1 30.4 

FOS – fosphenytoin; H or HPMC – hydroxypropyl methylcellulose; P – Pluronic; TaMax – maximum 
acceleration temperature, considered as the temperature at which gelation starts; TaMin – minimum 
acceleration temperature, considered as the temperature at which gelation ends; Tgel50 – half-gelation 
temperature. 

 

S1.2.2. In vitro drug release spectrophotometric assay validation 

Linearity ranged from 4.11 to 105.20 μg/mL (R2 ≥ 0.99). The LLOQ was experimentally 

determined and set at 4.11 μg/mL, with adequate precision and accuracy (CV and |bias| 

< 17%), and all the other calibration curves’ samples also showed precision and accuracy 

within the acceptance criteria (CV and |bias| < 10%) (Table S1.2). 

Table S1.2. Precision and accuracy obtained for the calibration curves’ samples in the spectrophotometric 
method developed to quantify in vitro drug release. 20 

Nominal concentration (μg/mL) Precision (CV, %) Accuracy (bias, %) 

4.11  17.07 9.42 

8.22 9.91 1.41 

16.44 7.59 2.46 

32.88 8.84 2.55 

65.75 2.52 -5.55 

105.20 6.04 1.87 

Bias – deviation from nominal value; CV – coefficient of variation; n = 6 for all studied concentration levels. 
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S1.2.3. In vitro drug release high-performance liquid chromatography assay 

validation 

The typically obtained retention time for fosphenytoin was of approximately 4 minutes. 

Method selectivity was assessed by the analysis of blank samples (nasal fluid simulant 

buffer), which confirmed the absence of endogenous interferences at the retention time 

of the analyte of interest. The same occurred for the formulation vehicle (HPMC 0.5% + 

albumin 2%), which also had no interference at that retention time. Linearity ranged 

from 0.25 to 25.00 μg/mL (R2 = 0.9991) using a weighted linear regression analysis 

(previously developed mathematical method 152) and a weighting factor of 1/x2 (lowest 

relative error). The LLOQ was experimentally determined and set at 0.25 μg/mL, with 

adequate precision and accuracy (CV and |bias| < 5%), and the QC samples also showed 

precision and accuracy within the acceptance criteria (CV and |bias| < 6%), in intra and 

interday evaluations (Table S1.3).  

Table S1.3. Intra and interday precision and accuracy obtained for the QC samples (QCLLOQ, QC1, QC2 and 
QC3) in the HPLC method developed to quantify in vitro drug release. 21 

Analyte Matrix Nominal 
concentration 
(μg/mL) 

Intraday 
precision 
(CV, %) 

Intraday 
accuracy 
(bias, %) 

Interday 
precision 
(CV, %) 

Interday 
accuracy 
(bias, %) 

Fosphenytoin Nasal 
simulant 
buffer 

0.25 4.66 -4.71 3.44 0.29 

0.75 3.48 3.25 3.93 5.16 

12.50 0.59 1.99 0.20 0.82 

22.50 0.41 3.15 0.19 2.45 

Bias – deviation from nominal value; CV – coefficient of variation; HPLC – high-performance liquid 
chromatography; QC – quality control; for each concentration level, for interday evaluations n = 3 and for 
intraday evaluations n = 5. 

Absolute recovery of fosphenytoin, determined for 3 concentration levels (QC1, QC2 and 

QC3), was between 97 and 99%, with all values having an associated CV of less than 6% 

(Table S1.4). 

Table S1.4. Absolute recovery of fosphenytoin determined for 3 different QC samples (QC1, QC2 and QC3) in 
the HPLC method developed to quantify in vitro drug release. 22 

Analyte Matrix Nominal 
concentration 
(μg/mL) 

Absolute 
recovery (%) 

CV (%) 

Fosphenytoin Nasal fluid 
simulant buffer 

0.75 98.71 ± 5.44 5.51 

12.50 98.31 ± 0.49 0.50 

22.50 97.29 ± 0.45 0.47 

CV – coefficient of variation; HPLC – high-performance liquid chromatography; QC – quality control; 
absolute recovery values are presented as mean ± standard deviation; n = 5 for each concentration level. 
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S1.2.4. In vivo pharmacokinetic study high-performance liquid 

chromatography assay validation 

The analysis of six blank mice acidified blood or brain homogenate samples (each from 

a different animal) confirmed the absence of endogenous interferences at the retention 

times of the analytes: 4 minutes for fosphenytoin, 9 - 10 minutes for phenytoin (both at 

215 nm) and 15 - 16 minutes for the internal standard (at 280 nm) (Figures S1.1 to S1.4).  

 

Figure S1.1. Chromatogram of a blank mouse acidified blood sample, with detection at 215 nm. 26 

 

 

Figure S1.2. Chromatogram of a blank mouse acidified blood sample, with detection at 280 nm. 27 
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Figure S1.3. Chromatogram of a spiked mouse acidified blood sample, concentration of 2 μg/mL for 
fosphenytoin and phenytoin, and 10 μg/mL for the IS, with detection at 215 nm; FOS – fosphenytoin; IS – 
internal standard; PHT – phenytoin. 28 

 

 

Figure S1.4. Chromatogram of a spiked mouse acidified blood sample, concentration of 2 μg/mL for 
fosphenytoin and phenytoin (not visible), and 10 μg/mL for the IS, with detection at 280 nm; IS – internal 
standard. 29 

 

Linearity was observed at 0.3 - 15.0 μg/mL for fosphenytoin and 0.3 - 30.0 μg/mL for 

phenytoin, in both acidified blood and brain homogenate samples, and for all individual 

and mean calibration curves (R2 ≥ 0.99), using a weighted linear regression analysis 

(previously developed mathematical method 152) to correct heteroscedasticity. 
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The LLOQ’s were experimentally determined and set at 0.3 μg/mL, with adequate 

precision and accuracy (CV and |bias| < 12%) for both matrices (Table S1.5). However, 

in the brain this corresponds to approximately 1.5 μg/g, since 4 mL of diluted acid were 

added to 1 gram of tissue, to produce the brain homogenate used as matrix. The QC 

samples also showed precision and accuracy within the acceptance criteria (CV and |bias| 

< 14%), in intra and interday evaluations. 

Table S1.5. Intra and interday precision and accuracy obtained for the QC samples (QCLLOQ, QC1, QC2 and 
QC3) for fosphenytoin and phenytoin, in blood and brain. 23 

Analyte Matrix Nominal 
concentration 
(μg/mL) 

Intraday 
precision 
(CV, %) 

Intraday 
accuracy 
(bias, %) 

Interday 
precision 
(CV, %) 

Interday 
accuracy 
(bias, %) 

Fosphenytoin Blood 0.3 2.95 -1.30 10.88 8.32 

0.9 7.55 -5.59 10.04 -1.26 

7.5 1.43 -11.52 12.00 -3.09 

13.5 6.68 -8.75 12.15 6.54 

Brain 0.3 1.45 10.45 3.84 1.88 

0.9 5.34 5.07 3.06 0.70 

7.5 4.65 -6.07 4.88 -5.43 

13.5 3.21 -4.62 0.55 -4.40 

Phenytoin Blood 0.3 2.29 -11.86 8.14 -2.57 

0.9 1.44 -12.76 3.59 -13.40 

15.0 4.96 2.72 5.74 6.28 

27.0 2.75 -9.72 8.23 -7.81 

Brain 0.3 3.59 -5.40 2.37 -7.59 

0.9 5.26 -2.61 5.74 -4.22 

15.0 5.26 -7.89 4.98 -8.88 

27.0 1.71 -7.58 1.26 -7.33 

Bias – deviation from nominal value; CV – coefficient of variation; QC – quality control; for each 
concentration level (per analyte and matrix type), for interday evaluations n = 3 and for intraday evaluations 
n = 5. 

 

Absolute recovery was between 50 - 53% and 74 - 79% for fosphenytoin, and 78 - 81% 

and 85 - 89% for phenytoin, in blood and brain, respectively. Absolute recovery of the IS 

was also evaluated and was between 73 - 74% in both matrices. All values had an 

associated CV of less than 11% (Table S1.6).  

  



 122 

Table S1.6. Absolute recovery of fosphenytoin and phenytoin, determined for 3 different QC samples (QC1, 
QC2 and QC3), in blood and brain. Values for the IS are also shown. 24 

Analyte Matrix Nominal 
concentration 
(μg/mL) 

Absolute 
recovery (%) 

CV (%) 

Fosphenytoin Blood 0.9 52.57 ± 5.28 10.04 

7.5 49.68 ± 2.80 5.64 

13.5 49.94 ± 5.44 10.89 

Brain 0.9 77.36 ± 5.04 6.51 

7.5 74.14 ± 4.97 6.71 

13.5 78.63 ± 2.36 3.00 

Phenytoin Blood 0.9 81.11 ± 4.65 5.74 

15.0 78.23 ± 1.93 2.46 

27.0 77.51 ± 2.97 3.84 

Brain 0.9 89.14 ± 5.86 6.57 

15.0 84.74 ± 3.74 4.41 

27.0 86.29 ± 1.22 1.41 

IS Blood 10.0 73.36 ± 3.64  4.97 

Brain 73.72 ± 3.28  4.45 

CV – coefficient of variation; IS – internal standard; QC – quality control; absolute recovery values are 
presented as mean ± standard deviation; n = 5 for each concentration level (per analyte and matrix type), 
except for the IS (n = 15, for each matrix). 

 

Fosphenytoin and phenytoin were stable, before processing, at room temperature for 4 

hours, at 4 ºC for 24 hours, and at -20 ºC for 10 and 30 days, in both matrices (stability 

condition/reference ratio between 89 and 115% for fosphenytoin, and between 85 and 

114% for phenytoin). Samples were also stable after processing while having been kept at 

room temperature for 24 hours (stability condition/reference ratio between 86 and 106% 

for fosphenytoin, and between 103 and 114% for phenytoin). Moreover, 3 freeze-thaw 

cycles in 3 consecutive days showed no substantial sample degradation (stability 

condition/reference ratio between 96 and 101% for fosphenytoin, and between 94 and 

99% for phenytoin). See Table S1.7 for further detail. 
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Table S1.7. Stability of fosphenytoin and phenytoin at variable time and temperature conditions, determined 
for 2 different QC samples (QC1 and QC3), in blood and brain. 25 

Analyte Matrix Nominal 
concentration 
(μg/mL) 

Processed 
sample 

Unprocessed sample 

RT, 24h RT, 4h 4 ºC, 
24h 

-20 ºC, 
10 days 

-20 ºC, 
30 days 

UR 
cycles 

FOS Blood 0.9 88.2 101.1 104.1 112.5 113.8 100.9 

13.5 86.0 105.1 103.6 110.5 114.8 98.4 

Brain 0.9 93.1 97.5 94.1 88.9 111.1 99.6 

13.5 106.0 100.8 104.7 98.4 107.1 95.6 

PHT Blood 0.9 111.4 94.7 94.8 111.2 111.5 98.8 

27.0 113.9 100.1 93.3 107.0 107.7 96.1 

Brain 0.9 103.4 97.0 106.0 85.0 107.4 94.0 

27.0 106.2 100.3 103.7 94.6 113.6 98.8 

FOS – fosphenytoin; PHT – phenytoin; QC – quality control; RT – room temperature; UR – 
unfreezing/refreezing; n = 5 for each concentration level (per analyte and matrix type). 

 

S2. Chapter 4 – Supplementary methods and results 

 

S2.1. Supplementary methods 

S2.1.1. In vitro drug release high-performance liquid chromatography assay 

validation 

For the preparation of the calibration standards, individual stock solutions of 

fosphenytoin and phenytoin were made by dissolving the compounds in methanol, at 5 

mg/mL. From these, intermediate combined solutions were prepared by spiking nasal 

simulant buffer, containing 30% (w/w) Transcutol, with both drugs. The final dilution 

was made using the same buffer, but without the cosolvent, creating calibration 

standards with both drugs at 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 15.0, 25.0 or 40.0 μg/mL. The 

LLOQ was the lowest analyte concentration that could be quantified with inter/intraday 

precision and accuracy within the acceptance criteria. QC samples were prepared in the 

same way, but independently, having separate stock solutions. They comprised three 

different concentration levels, representing the low (QC1), medium (QC2) and high (QC3) 

ranges of the calibration curves. Final concentrations were of 0.3, 20.0 and 36.0 μg/mL 

for both analytes. An additional sample was also prepared at the concentration of the 

LLOQ (QCLLOQ). When not in use, all stock solutions were kept at -80 ºC (U570 Premium 

ultra-low temperature freezer, Eppendorf, Hamburg, Germany) and all intermediate, 

calibration standard and QC solutions were kept at 4 ºC (Liebherr, Kirchdorf, Germany). 
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Linearity was assessed by preparing calibration curves for both analytes using the 9 

defined calibration standards. It was evaluated on three different days (n = 3). The 

obtained data was then analyzed according to a previously developed mathematical 

method 152, through a transformation by a weighted linear regression, using a specific 

function as a weighting factor – in this case, 1/y2. The calibration curves were then 

constructed by putting peak area as function of the corresponding nominal 

concentrations.  

As for precision and accuracy, validation guidelines define that precision (% of CV) must 

be lower than or equal to 15% (or 20% for the LLOQ) and accuracy (% of bias) must be 

within ± 15% (or ± 20% for the LLOQ). Interday precision and accuracy were assessed 

for quality control samples on three consecutive days (n = 3), and intraday parameters 

were determined by analyzing five sets of samples on the same day (n = 5). 

Method selectivity was evaluated by processing and analyzing blank samples (nasal 

simulant buffer with Transcutol) to determine whether matrix substances interfered with 

the retention times of the analytes. Formulation vehicles’ interferences were also tested. 

Absolute recoveries were calculated by comparing peak areas from QC1, QC2 and QC3 

samples to the correspondent aqueous solutions with the same nominal drug 

concentrations. 

Short-term stability was evaluated for QC1 and QC3 samples, in replicate (n = 5). Stability 

samples were compared to previously analyzed QC samples that served as reference. In 

order to consider a given sample to be stable, the percentual deviation of the stability 

samples’ peak area values in comparison with the reference had to be between 85 and 

115%. Stability was evaluated at room temperature for 24 hours, which is the estimated 

maximum amount of time for which samples are kept in the autosampler before analysis. 

The effect of 24 hour freeze-thaw cycles was also assessed, by keeping samples at -20 ºC 

and doing 3 cycles of unfreezing/refreezing, on three consecutive days. 

 

S2.2. Supplementary results 

S2.2.1. In vitro drug release high-performance liquid chromatography assay 

validation 

The validated HPLC method was based on the one developed for the quantification of 

fosphenytoin formulations’ drug release samples (Chapter 3, section 3.2.4.2, and 
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supplementary data, section S1.1.2). Chromatographic conditions were kept the same, 

but sample processing was simplified, since the matrix was only buffer plus cosolvent, 

with no need for the addition of acid. In this case, sample processing consisted of dilution 

only, in order to obtain drug levels within the range of the calibration curves. 

The analysis of blank samples (nasal simulant buffer plus Transcutol at 30%) confirmed 

the absence of substantial interferences at the retention times of the analytes of interest 

(no peak at all, or peak with an area of less than 20% of that of the LLOQ). The same 

occurred for the formulation vehicles, which also had no interferences at those retention 

times. Typical mean retention times were of approximately 4 minutes for fosphenytoin 

and 10 minutes for phenytoin (example chromatogram in Figure S2.1). 

 

Figure S2.1. Chromatogram of a calibration standard, concentration of 5 μg/mL for both fosphenytoin and 
phenytoin, with detection at 215 nm; FOS – fosphenytoin; PHT – phenytoin. 30 

 

Calibration curves’ range was defined as 0.1 - 40.0 μg/mL for both fosphenytoin and 

phenytoin. Linearity was observed for both analytes’ mean curves (R2 = 0.9976 for 

fosphenytoin and R2 = 0.9980 for phenytoin). 

The LLOQ’s were experimentally determined and set at 0.1 μg/mL, with adequate 

precision and accuracy, for both fosphenytoin and phenytoin (|bias| and |CV| < 8%). QC 

samples also showed precision and accuracy within the acceptance criteria in intra and 

interday evaluations (|bias| and |CV| < 5%) (Table S2.1). 
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Table S2.1. Intra and interday precision and accuracy obtained for the QC samples (QCLLOQ, QC1, QC2 and 
QC3) for fosphenytoin and phenytoin. 26 

Analyte Nominal 
concentration 
(μg/mL) 

Intraday 
precision 
(CV, %) 

Intraday 
accuracy 
(bias, %) 

Interday 
precision 
(CV, %) 

Interday 
accuracy 
(bias, %) 

Fosphenytoin 0.1 4.60 7.46 5.30 2.24 

0.3 3.25 0.36 1.87 2.62 

20.0 0.19 -3.77 0.24 -3.62 

36.0 0.13 -1.44 0.27 -1.34 

Phenytoin 0.1 3.65 4.08 7.48 7.99 

0.3 3.48 4.14 4.36 2.77 

20.0 0.17 -0.75 0.11 -2.69 

36.0 0.58 0.25 1.96 -2.38 

Bias – deviation from nominal value; CV – coefficient of variation; QC – quality control; n = 5 for all studied 
concentration levels. 

 

Absolute recovery, determined for 3 concentration levels (QC1, QC2 and QC3), was 

between 93 and 101% for fosphenytoin, and 95 and 100% for phenytoin. All values had 

an associated CV of less than 5% (Table S2.2). 

Table S2.2. Absolute recovery of fosphenytoin and phenytoin, determined for 3 different QC samples (QC1, 
QC2 and QC3). 27 

Analyte Nominal 
concentration 
(μg/mL) 

Absolute recovery 
(%) 

CV (%) 

Fosphenytoin 0.3 100.96 ± 3.77 3.74 

20.0 93.92 ± 0.27 0.29 

36.0 95.62 ± 0.12 0.12 

Phenytoin 0.3 99.72 ± 4.38 4.39 

20.0 95.57 ± 0.19 0.20 

36.0 96.61 ± 0.50 0.52 

CV – coefficient of variation; QC – quality control; absolute recovery values are presented as mean ± 
standard deviation; n = 3 for each concentration level. 

 

Analyte stability was also evaluated by submitting samples, at two concentration levels 

(QC1 and QC3), to different time and temperature conditions, in order to better predict 

possible degradation during handling and/or storage. Both analytes proved to be stable 

while being kept at room temperature for 24 hours, and also when submitted to 3 cycles 

of freeze/thaw, in 3 consecutive days, showing no substantial degradation (Table S2.3). 

 



 127 

Table S2.3. Stability of fosphenytoin and phenytoin at variable time and temperature conditions, determined 
for 2 different QC samples (QC1 and QC3). 28 

Analyte Nominal concentration 
(μg/mL) 

24 hours, room 
temperature 

Three 24 hour 
freeze/thaw cycles 

Fosphenytoin 0.3 101.5 101.5 

36.0 99.4 99.7 

Phenytoin 0.3 102.2 102.4 

36.0 112.9 113.3 

QC – quality control; n = 5 for each concentration level. 

 

 


