
THE UNIVERSITY OF NEWCASTLE UPON TYNE

SCHOOL OF COMPUTING SCIENCE

Supporting Software Processes

for

Distributed Software Engineering Teams

by
Kamal Zuhairi Zamli

Ph.D. Thesis

October 2003

NEWCASTLE UNIVERSITY LIBRARY
201 29764 4



Abstract

Software processes relate to the sequence of steps that must be carried out by

humans to pursue the goals of software engineering. In order to have an accurate

representation of what these steps actually are, software processes can be modelled

using a process modeling language (PML). Some PMLs simply support the

specification of the steps, while others enable the process to be executed (or

enacted). When enacted, software processes can provide guidance, automation and

enforcement of the software engineering practices that are embodied in the model.

Although there has been much fruitful research into PMLs, their adoption by

industry has not been widespread. While the reasons for this lack of success may be

many and varied, this thesis identified two areas in which PMLs may have been

deficient: human dimension issues in terms of support for awareness and

visualisation; and support for addressing management and resource issues that

might arise dynamically when a process model is being enacted. In order to address

some of these issues, a new visual PML called Virtual Reality Process Modelling

Language (VRPML) has been developed and evaluated. Novel features have been

introduced in VRPML to include support for the integration of a virtual

environment, and dynamic creation and assignment of tasks and resources at the

PML enactment level. VRPML serves as a research vehicle for addressing our main

research hypothesis that a PML, which exploits a virtual environment, is useful to

support software processes for distributed software engineering teams.
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Chapter 1 - Introduction

Engineering as a discipline relates to the creative application of mathematical and

scientific principles to devise and implement solutions to problems in our everyday

lives in an economic and timely fashion. To provide a quality solution, it is not

usually sufficient to focus only on the final product. Often, it is also necessary to

consider the processes involve in producing that product. For example, consider an

assembly of a car. From the customer's perspective, it is the final product that

matters (i.e. a quality car). From an engineering perspective, such quality could not

be achieved if some of the processes (e.g. assembly lines) are faulty. Although

additional rework can fix the problems caused by the faulty assembly lines, this

tends to raise the overall costs because it deals only with symptoms of the problem.

In contrast, going to the cause of the problem and improving the process (e.g. the

faulty assembly lines) avoids the introduction of quality defects in the first place

and leads to better results with lower costs. As this example illustrates, it is through

the processes that engineers can observe and improve quality, control productions

costs and possibly reduce the time to market their products.

Similar analogies can be applied in the case of software engineering. To produce

quality software, it is also necessary to place emphasis on the processes by which

the software is produced. In software engineering, these processes are usually

called software processes.

1.1 Overview of Software Processes

Software processes can be defined as sequences of steps that must be carried out by

humans (e.g. software engineers), to pursue the goals of software engineering.

There are many ways that can be used to define a particular software process.

Perhaps the simplest way to define the software process is to use a natural language

such as English. For example, one may describe a software process for the unit

testing stage of software development as the following steps:
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• Step 1: Check out the affected modules from the configuration management

system.

• Step 2: Obtain the test cases from the project manager.

• Step 3: Perform the testing for all the test cases.

• Step 4: Produce the test report for the project manager.

Using a natural language for defining a software process is straightforward but

exhibits a number of difficulties. In general, the description of software process

using a natural language is often imprecise, ambiguous, inconsistent and open to

user interpretation. Typically, such characteristics may lead to discrepancies in the

software process undertaken by software engineers - for example, what is

performed may not be what is required in the description of the software process.

To eliminate such discrepancies, there is a need for a more precise way of

specifying a software process.

In software engineering, such a need is translated into the use of modelling

languages to specify a software process. In particular, software processes can be

specified using a process modelling language (PML) and assisted by an

environment called Process Centred Software Engineering Environment (PSEE).

Through the use of a PML, software processes can be described in a precise way in

terms of what a process comprises and how it is structured and organised. This can

be instrumental in eliminating inconsistencies in the process specification.

As its name suggests, a PML is used to construct a form of model of the actual

software development process. Such a model is often called process model, which

is a representation of the actual software process excluding details which do not

influence its relevant behaviour. As an illustration, Figure 1-1 depicts the process

model for the common software process problem called the ISPW -6 problem [48]

expressed using the PML developed in this research (the Virtual Reality Process

Modelling Language - VRPML).

2



VRPML Graph
for the ISPW-6
Problem

ModifyCodeX DsgnEngr

Figure 1-1 The ISPW-6 problem expressed in VRPML

Briefly, the ISPW -6 problem involves a software requirement change request

occurring either towards the end of the development phase or during the

maintenance and enhancement phase of the software lifecycle. When a software

change request is received, the project manager assigns and schedules specific tasks

to a number of participating software engineers. These tasks includes: Modify

Design; Review Design; Modify Code; Modify Test Plans; Modify Unit Test

Package; and Test Unit. Some tasks may be executed in parallel, while others have

to be executed in a sequential manner. Not all tasks start at the same time (i.e. they

require coordination). Although not completely shown in Figure 1-1, in each task,

there are defined roles, tools, source files, task ordering constraints, and pre-
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conditions and post-conditions which must be respected by the software engineers

to complete the task. While the overall syntax and semantics of VRPML used in

Figure 1-1 has not yet been fully explained (and is defined in detail in Chapter 4 of

this thesis), the above model of the ISPW-6 problem provides some insights into

the modelling of software processes and their degree of complexities.

In addition to being able to support the modelling of software processes, PMLs

may also allow execution of the process models to support the activities of software

engineers. The execution of such processes is usually termed process enactment. A

significant number of PMLs surveyed in this research supports enactment, as will

be discussed in Chapter 2. Enactment is very useful feature of a PML for the

following reasons:

• It provides guidance through the steps to be taken. Such guidance is particularly

useful for junior software engineers.

• It can enforce strict procedures and policies. Enforcement of strict procedures is

sometimes important in cases such as developing critical systems where human

lives depend on a piece of software. An example of such a system would be a

car auto-cruise control system. In this case, the software development team in

charge of developing such a system may require its defined steps to be followed

precisely. For example, evolution of the software in such a system must be

strictly controlled. Ad hoc changes must not be permitted because such changes

may introduce bugs which may not be tested and accounted for. Such bugs

could be dangerous especially if they affect the mechanism to control the speed

of the car in auto-cruise.

• It permits the automation of tasks. In software engineering, there are many tasks

which can benefit from automation. For example, although tasks such as

compiling and linking source codes look simple, they can be painstakingly dull

especially if the source codes are very large and involving multiple modules.

Such mundane tasks, if automated, can relieve software engineers from tedious

routine work (and reduce potential human errors), and consequently, improve

software engineer's productivity.

Enactment raises two main issues concerning the dynamic nature of software

processes and the human dimension. Because software processes are dynamic
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entities, rarely can resources (i.e. in terms of engineers, artefacts and tools

assignments) be completely planned ahead of time. Therefore, as will be seen in

Chapter 2, there is a need to provide support for addressing management and

resource issues that might arise dynamically when a PML is being enacted

Concerning the human dimension, enactment might also downplay the importance

of human in a software development. Human are autonomous and creative and are

unlikely to function well if treated like robots by completely prescribing their

activities. Yet, human are also unpredictable and with degree of variability, as well

as having a tendency to make mistakes, requiring some form of prescription to

ensure necessary steps are faithfully followed (e.g. to define uniform software

processes across different projects). It seems that such characteristics of humans are

two sides of the same coin which warrants careful consideration. The human

dimension issues are equally important in a PML and in its PSEE, although it is the

PML that is main focus of this thesis.

As will be seen in the taxonomy of PMLs presented in Chapter 2, the support for

the human dimension in present PMLs is still lacking, particularly in term of

supporting software engineers working in geographically and temporally

distributed locations. One way of enriching support for the human dimension is to

incorporate issues from related research areas. In particular, cross-fertilisation from

Computer Supported Cooperative Work (CSCW) - a field of study which puts

emphasis on the nature of humans working together collaboratively to achieve a

common goal as well as on the possibilities of technology to support and improve

individual and group effectiveness, seem particularly appropriate [6, 32, 72].

Issues such as user awareness support, process awareness support, and process

visualisation are seen as the key issues for improving the human dimension [72].

A subset of CSCW, Collaborative Virtual Environments (CYE), is of particular

interests in this thesis. CVE advocates the use of a virtual environment to support

collaborative working. By exploiting a virtual environment, a CVE is capable of

providing a level of awareness, in terms of the other users involved and the

processes being undertaken, which closely resembles the concept of awareness in

the real world. This thesis looks into incorporating some of the human dimension
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issues addressed by the CVE into the design and enactment of a PML, in particular,

by exploiting a virtual environment.

The prospect of employing visual notations for a PML is also attractive to address

the human dimension (e.g. in terms of simplifying the task of creating and

comprehending a process model). In fact, a number of PMLs have already

employed visual notations, as will be seen in the survey of PMLs in Chapter 2. The

use of visual notations in a language, often termed a visual programming language,

is not new. The basic idea behind a visual programming language is that computer

graphics (e.g. graphs consisting of icons, nodes, and arcs) are used instead of a

textual representation. The central argument for a visual programming language is

based on an observation that picture is better than text (i.e. a picture is worth a

thousand words). Such an observation can be supported by considering the ISPW-6

model expressed in VRPML in Figure 1-1. It can be seen that many aspects of the

ISPW-6 model in Figure 1-1 should be intuitively obvious to the VIewer even

without knowing the full syntax and semantics of VRPML.

While a visual programming language may not be able to provide a silver bullet to

simplify all aspects of engineering software, a carefully chosen level of abstractions

(e.g. by working at the same level of abstraction as the problem domain) coupled

with easy to understand visual notations may help alleviate the low-level

complexities offered by the textual counterpart. Ideally, this makes a visual

programming language more accessible to non specialist programmers. Because of

such an alluring prospect, visual programming aspects also form an important part

of this research to address the human dimension.

As discussed in preceding paragraphs, this work draws upon findings from research

into CSCW and its subset CVE, and visual programming languages. This is

especially important as generally for a piece of research to be successful, it must

not concentrate solely on one key area, but must draw upon related research areas

to gain depth and context. In line with such a notion, the hypothesis which suggests

that a visual PML which exploits a virtual environment is useful to support

software processes for distributed software engineering teams, is the main topic of

this research.

6



1.2 Thesis Aims and Objectives

The main aim of this research is to produce and evaluate a new visual and enactable

PML, VRPML, which addresses some of the perceived deficiencies in other PMLs.

The main objectives of the work undertaken were:

• To identify salient characteristics and deficiencies in existing PMLs. Although

research into software processes has been conducted for more than a decade,

their usage has not been widespread. Thus, it is appropriate to identify the

salient characteristics of existing PMLs, and to identify potential areas of

omission, the rectification of which could improve the applicability of PMLs.

• To offer an evaluation of the existing PMLs using a common assessment grid.

This provides a road map of the state of the art in the field.

• To build a prototype runtime support system to evaluate the feasibility, the

usefulness, and the problems arising from the approach taken in this research.

This provides insight into the true value of VRPML.

1.3 Thesis Outline

The remainder of this thesis is organised into eight chapters as follows.

Chapter 2 presents a classification and an analysis of the main characteristics of

existing PMLs - forming a taxonomy for PMLs. Five main PML support areas are

discussed: modelling support; enactment support; evolution support; evaluation

support; and human dimension support. Using the taxonomy, a survey of PML is

provided. Towards the end of Chapter 2, an analysis of PMLs is presented which

provides the requirements and justification for the development of VRPML. In

particular, the analysis highlights new areas of research relating to the support for

human dimension issues and the support for dynamic allocation of resources.

Chapter 3 draws upon related work in to supporting software processes in a virtual

environment, and discusses concepts and design choices related to visual

programming which VRPML is based upon. Specifically, flow-based visual

language issues are discussed in terms its suitability for supporting the modelling

and enacting of software processes.
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Chapter 4 discusses and justifies the detailed semantics of VRPML based on

discussion from Chapter 3 and the requirements from Chapter 2. Additionally,

issues related to the enactment model are also explained.

In Chapter 5, a more detailed account of the case study, the ISPW-6 problem, is

given with a step-by-step solution expressed in VRPML. Moreover, additional

experience with VRPML to support the modelling of the waterfall software

development model is also summarised.

Chapter 6 discusses issues relating to implementation. How enactment can be

achieved is also addressed. A prototype implementation is discussed examining the

feasibility of VRPML and allowing further insights into VRPML.

In Chapter 7, the evaluation of VRPML is presented. In particular, the ISPW-6 and

the waterfall development model solutions offered by VRPML in Chapter 5 are

revisited and evaluated against those offered by other PMLs whenever possible.

Additionally, the novel features offered by VRPML are also highlighted.

The conclusion of this work is given in Chapter 8, where the achievements,

contributions and problems are summarised. Additionally, the main research

hypothesis is revisted and the usefulness of VRPML is debated. Conclusions are

drawn from the experience gained from this work and the significance of findings

along with a consideration for future work.
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Chapter 2 - Survey of Software Process Modelling Languages

The previous chapter established the need to model a software process using a

process modelling language (PML). As an analogy, this need is much like the need

to use a programming language to provide a model of a solution of a particular

problem. However, there is a subtle difference between a PML and a programming

language which lies in terms of their computational models.

Unlike the familiar computational model in computer science where sequences of

operations specified by computer programs are automatically executed by the

central processing unit or interpreting system, the computational model demanded

by PMLs is somewhat different. This is because PMLs require some operations to

be executed by (error-prone) software engineers using some defined software tools,

while other operations are suitable for automatic execution (e.g. automation of

routine operations). As such, developing an ideal PML to support such a

computational model poses a challenge to researchers in computer science. In

response to this challenge, many PMLs have been developed and described in the

literature over the last fifteen years.

Despite many potential advances, the use of PMLs in industry has not been

widespread [42]. As PMLs could form a vital feature for future software

engineering environments, it is useful to reflect on the current achievements and

shortcomings, and to identify potential areas of omission. It is also useful to

explore issues emerging from related research areas, the adoption of which could

improve the applicability and acceptance of PMLs. Given such potential benefits,

this chapter presents a critical analysis of existing PMLs identifying each

language's strong points and weaknesses, thereby forming guidelines for the future

design of PMLs.

It is sometimes difficult to separate features of a PML from the Process Centred

Software Engineering Environment (PSEE) supporting that PML. In this thesis, the

focus is placed on features of a PML and its underlying semantics irrespective of

whether some of those features may be supported by the PSEE.
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This chapter begins by giving an overview of the concepts and terminology that

will be used. Then, the following section discusses the salient features of PMLs and

uses these features to form a taxonomy for PML. Using the taxonomy, the chapter

then surveys and analyses existing PMLs. This analysis is then used to provide

justification for the development of VRPML, the language that is the basis of this

thesis. Finally, this chapter closes by providing a short summary.

2.1 Overview

A software process can be viewed as a partially ordered set of activities that must

undertaken by software engineers to manage, develop, maintain and evolve

software systems. To allow better control of a particular software process, a model

of that process (called a process model) can be created using a PML making the

process explicit and open to examination. A process model can show deficiencies

and inconsistencies in the current software process that would otherwise be

obscured, hence making it easier to analyse the process and suggest improvements.

The use of the term model to refer to a software process can sometimes be

misleading. Here, the use of the term model is based on the analogy between PMLs

and conventional programming languages in the sense that conventional

programming languages can be thought of as capturing a model of a (software)

system. Generally, a model is an abstraction of some particular subject (or

phenomenon) using some form of medium (e.g. mathematics). In most cases, a

model captures only important attributes which influence the subject being

modelled (e.g. its behaviour). In the context of this research, the word model can

have a subtle meaning when it is used to refer to a software process (i.e. process

model). While a process model can also be seen as an abstraction of a particular

software process, it can also be the actual software process, that is, when that

process model is being enacted to support the actual software development.

Based on the work of Greenwood et al [34], two types of process model can be

considered: passive and active. A passive model is no more than just a description

of the actual software process. An active model, on one hand, is also a description

of the actual software process. On the other hand, an active model is the actual
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software process when it is enacted. Therefore, it is enactment, the key feature of a

PML, which turns a passive model into an active one.

While active and passive models of a software process are closely related as they

can be both specified by a PML, it is the active model that is of interest in this

thesis. Only through active models can PMLs be used to support the activities of

software engineers in a direct manner. In order to investigate active models of

software processes, it follows that only enactable PMLs will be considered in this

thesis. Non-enactable PMLs are not neglected, as an appendix which briefly

describes some of their main features, is provided towards the end of this thesis.

Having drawn the boundaries of this research work, the next section develops an

analogy of software processes with software engineering in an effort to define the

terminology that will be used in the rest of this thesis.

2.2 Terminology

As discussed earlier, the terminology used to refer to the act of modelling and

enacting software processes has a strong analogy with many concepts in software

engineering. The use of PMLs to develop process models is analogous to the use of

programming languages to develop software systems. Also, enactment of the

process model is much like the execution of a software system. However, it must be

stressed that despite many similarities between PMLs and conventional

programming languages, the latter are inappropriate for modelling software

processes as they lack features to accommodate the special requirements of a

software process.

Similar to the development of software systems, the acts of modelling and enacting

software processes are also performed in a defined lifecycle. For obvious reasons,

this lifecycle is often called the process lifecycle (similar to the term software

engineering lifecycle). The fact that the act of modelling and enacting of software

processes involves a defined lifecycle raises an issue related to the scope of

coverage of PMLs. In software engineering, when the terms implementation

language, specification language or design language are used, they are directly

related to specific parts of the software development lifecycle. However, in the

context of software processes, the distinction between specification languages,
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design languages and implementation languages is not made as they are all referred

to as PMLs. As a consequence, some approaches described in the literature offer

different PMLs for different phases of the process lifecyc1e. Nevertheless, as

highlighted in the previous section, the main emphasis of this research is on the

enactable PMLs which are used in the implementation phase of the process

lifecycle.

In terms of the supporting environments, Software Development Environments,

Software Engineering Environments and Integrated Development Environments are

the environments where the software engineers can edit, compile, debug and run

software. In the same manner, a Process Centred Software Engineering

Environment (PSEE) is the environment where the "process engineers" can define,

modify, analyse and enact a process model. In addition, a PSEE normally provides

some form of task management facilities, for example, in terms of a to-do-list

which captures the specific tasks assignments for software engineers. This is not a

feature normally found in the software developments environments.

Continuing the analogy with conventional software development, a process model

will need to change during the course of its lifecycle. These changes are referred to

as process evolution. Typically, the enactment of a process model is long-lived,

depending on the duration of the development project. As a result, it is likely that

the process model itself requires modification while it is being enacted. The reasons

for modifications might include the fact that the process model itself is faulty and

ineffective, or the context in which the process is applied has changed, for example,

due to shifting business targets or introduction of new technology, methods or

tools.

Evolution of any process model is subjected to a meta-process, that is, a prescribed

process for changing and maintaining a process model. Similar to other activities in

software engineering, the meta-process involves joint intervention of humans and

tools working on the software process and obeying a set of policies (i.e. as defined

by the specific organisation). As will be seen later in the chapter, because it is

crucial to address evolution, the meta-process will also need to be expressed using a

PML.
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Having defined the necessary terminology, the next section focuses on the main

issues relating to PMLs. In particular, the salient features of PMLs are identified

and discussed leading to a taxonomy for PMLs.

2.3 PML Issues

In an attempt to find an ideal PML for the modelling and enacting of software

processes, there has been much research into different language paradigms. Many

of the language paradigms have been adapted following experiences from existing

approaches in software engineering applied in the context of a software process.

There have already been a number of attempts to classify these different language

paradigms. For example, Liu and Conradi [52] identify five categories of PML

language paradigms:

• Active Database PMLs - PMLs which relies on database triggers employing

Event-Condition-Action rules as the basis for the language.

• Rule-based PMLs - PMLs which exploits rule-based planning techniques or

blackboard architectures in the language.

• GraphlNet PMLs - PMLs which utilizes graphs or Petri Nets.

• Process Programming PMLs - PMLs which define a process model as a

computer program based on a general purpose programming language.

• Hybrid PMLs - PMLs which fits into more than one of the above categories.

Although with different headings, Lonchamp [53] proposes a similar classification

of PMLs, consisting of the following categories:

• Graphical PMLs - PMLs which provide a graphical syntax.

• Net-oriented PMLs - PMLs which utilises nets such as Petri nets.

• Procedural PMLs - PMLs which adopts a procedural programming language.

• Object-oriented PMLs - PMLs which utilises some features from object

oriented languages (e.g. objects and inheritance).

• Rule-based PMLs - PMLs which exploits rules-based techniques mainly based

on Prolog.
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• Multi-paradigm PMLs - PMLs which utilizes more than one of the above

categories.

The slight difference between the classification from Liu and Conradi with that

from Lonchamp is that the latter include object-orientation. This object-oriented

categorisation was appropriate at the time because many authors of PMLs were

beginning to incorporate features from object-orientated languages as part of their

PMLs.

Based on the classifications from Liu and Conradi and Lonchamp, Huff [38]

identifies four different categories of PML language paradigms:

• Non-executable PMLs - PMLs which provide defined syntax but without

executable semantics.

• State-based PMLs - PMLs which uses hierarchical state machines, Petri nets, or

formal grammars as the basis of the language.

• Rule-based PMLs - PMLs which rely on a rule-based approach (i.e. based on

Prolog) or database triggers (i.e. based on Event-Condition-Action (ECA)

rules).

• Imperative PMLs - PMLs which rely on a model of computation whereby

software processes are modelled as step by step sequences of commands.

The notable difference between the work of Liu and Conradi, Lonchamp and Huff

is that Huff includes the non-executable category of PMLs. Essentially, the

outcome of Huff's non-executable categorisation is that graphical high-level

notations such as Integration Definition and Function Modelling (IDEFO) and Entry

condition, Tasks, Verification and Exit Criteria (ETVX) can also be considered as

PMLs because of their syntactic abilities to express a software process [38]. It

should also be noted that Huff's non-executable category of PMLs does not

implicitly imply that PMLs in other categories are enactable. This is because some

PMLs can belong to more than one category.

A more recent classification of PMLs is that of Ambriola et al [5]. This

classification breaks away from the earlier classifications, as PMLs are classified
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according the process lifecyc1e that they support rather than being based on their

language paradigm. The main categories are:

• Process Specification Languages (PSLs) - used in the specification phase of the

software process, and typically make use of formal notations.

• Process Design Languages (PDLs) - used to support the design phase of the

software process.

• Process Implementation Languages (PILs)

implementation phase of the software process.

used to support the

In addition to providing a clear distinction between PMLs according to the part of

the process lifecyc1e that they support, the other potential advantage of using the

process lifecyc1e as the main classification of PMLs is that it is straightforward to

distinguish between PMLs which are capable of supporting active and passive

models regardless of the language paradigm.

As discussed earlier, regardless of which classification is used, some PMLs can fit

into more than one category. This is because some PMLs combine different

language paradigms, and therefore cannot be classified under one particular

category. Additionally, such an overlap may also occur because the scope of

coverage of a PML can be very large covering many aspects of the process

lifecycle from the requirement phase to implementation.

As far as assessing the existing PMLs, much research has already appeared.

Lonchamp [53] reports some results of evaluating PMLs using a set of

questionnaires given to the authors of each PML. The questionnaires covered:

• The modelling approach - language constructs used to express activities and

their pre-conditions and post-conditions as well as ordering constraints and

parallelism, input and output artefacts, and roles.

• The underlying language paradigm.

• The PML tools support (e.g. editors, compilers).

• The enactment capability, the meta-process and the evolution support.
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The resulting assessment, however, is limited to the PMLs developed under the

European research consortium called Process Modelling Techniques Research

(PROMOTER).

Building from the work of Lonchamp, Ambriola et al [5] define an assessment grid

for evaluating both PSEEs and PMLs. As far as evaluating PMLs is concerned, the

assessment grid covers:

• The PML scope of coverage - the part of the process lifecycle the PML

supports.

• The underlying language paradigm.

• The modelling approach.

• The support for modularity, composition and reuse.

• The mechanism for process enactment and evolution.

• The PML tool support (e.g. including the support for synchronous and

asynchronous communication tools).

Using the assessment grid, Ambriola et al evaluate some selected PMLs.

Finally, like Ambriola et al, Conradi and Jaccheri [21] also define an assessment

grid in the forms of requirements for PMLs and PSEEs, identifying the primary

and secondary process elements (i.e. in terms of what constitute a software process)

that a PML and a PSEE need to support. In the context of this research work, only

the primary process elements are considered because they constitute the

requirements of PMLs whilst the secondary process elements will be ignored as

they constitute the requirements of PSEEs. According to Conradi and Jaccheri, the

primary process elements consist of:

• Activities, their pre-conditions and post-conditions, ordering constraints, and

parallelism.

• Input artefacts and output artefacts as products.

• Human and their roles representation.

• Tool support.

• Evolution support.
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Using these primary process elements as the basis for the requirements of PMLs,

Conradi and laccheri offer an evaluation of existing PMLs giving particular

emphasis to the PMLs in the PROMOTER context.

As has been shown, there have been a number of attempts to classify and

characterise the requirements of PMLs. However, one aspect perceived to be

lacking in the previous classifications of PMLs is consideration of the human

dimension which relates to the issues surrounding the software engineers (or

process engineers) who create the process models and initiate enactment as well as

the software engineers who are subjected to process enactment.

Paradoxically, human dimension issues have always been a major concern In

research into software processes [6, 19,39,61]. However, current trends in the way

software engineers work (e.g. cross organisational boundary, geographically and

temporally distributed locations) suggest that much more could be done to address

these issues. These issues include: providing support for process engineers in terms

of utilising visual syntax; enactment within a virtual environment; supporting user

and process awareness; process visualisation; virtual meetings; as well as reflecting

that support in the features provided in a PML [70].

Capitalising on these issues relating to the human dimension and building from the

earlier characterisations and requirements of PMLs, Table 2-1 presents an

alternative characterisation of PMLs which forms a taxonomy for PMLs [72]. This

taxonomy for PMLs differs from the earlier work mainly by the inclusion of the

human dimension issues.
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PML Characteristics

Support for expressing both sequential and parallel activities as well as their
constraints

Support for expressing input and output artefacts

Modelling Support for role representations

Support for expressing and invoking external tools

Support for abstraction and modularisation

Enactment
Support for enactment in a distributed environment

Support for dynamic allocation of resources

Evolution Support for reflection

Evaluation Support for collection of enactment data

Support for visual notations
Human Support for user awareness

Dimension
Support for process awareness

Support for process visualisation

Support for virtual meetings

Table 2-1 Taxonomy for PMLs

As depicted in Table 2-1, issues that a PML needs to address include: modelling;

enactment; evolution; evaluation; and human dimension. Each issue will now be

discussed in detail.

Modelling

Demiame et al [26] have identified the following constituent parts of a process

model which therefore have to be represented in a PML:

• Activities - Activities are any actions performed by software engineers or by

computers to achieve certain set goals. Examples of an activity can include high

level design or compilation of a program. In term of enactment, activities can

be sequential or parallel and are always associated with artefacts (described

below) and sets of pre-conditions and post-conditions. In addition, depending

on its needs, an activity may be performed by a single software engineer (e.g.

modify a design) or collaboratively performed by a group of software engineers

(e.g. review a design).
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• Roles - Roles identify the skills required for performing a particular activity. In

many cases, software engineers may assume many different roles based on their

skills.

• Artefacts - Artefacts represent the inputs to and the outputs from an activity.

Generally, artefacts are referred to, produced or maintained when an activity is

performed. Examples of artefacts include: design documents; source code; and

object code. Because artefacts are potentially manipulated by many software

engineers when performing their activities, artefacts often require some

associated access rights. Access rights ensure that artefacts are manipulated in

accordance with the pre-conditions or post-conditions of an activity. For

example, the activity "modify design" may require that design documents are

updated. But, to perform such an update to the design documents, software

engineers may need to refer to the source code with the provision that they may

do so without being able to change the code - that is, the code must have a

read-only access right.

• Tools - Tools are external programs which are needed either to transform

artefacts or to support inter-person communication (e.g. email, video

conferencing program) which is seen as an important aspect of collaborative

activities such as software processes [68].

The last three constituents of a process model from the bulleted list above are often

referred to as resources. Resources are made up of software engineers assuming

certain roles, artefacts, and tools which are assigned to activities before they can be

undertaken. Clearly, resources are needed by an activity for it to be carried out.

In addition to accommodating activities and resources, a process model must be

reusable, that is, a process model developed in one project can also be reused in

other projects. In order to achieve reuse of process models, a PML needs to support

abstraction and modularisation. Through modularisation and abstraction, large

process models for a particular project, for example, can be broken into a number

of smaller process models (or modules). In tum, these smaller process models can

be reused to form other process models for different projects.

In summary, the categories for PML modelling issues are:
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i. Support for expressing both sequential and parallel activities and their

constraints.

ii. Support for expressing input and output artefacts.

iii. Support for role representations.

iv. Support for expressing and invoking external tools.

v. Support for abstraction and modularisation of process models.

Enactment

In order to directly support the activities of software engineers, a process model

needs to be enacted. Through enactment, a process model can assist automation,

guidance and enforcement of software engineering practices and policies.

Enactment of process models requires a PML that has executable semantics. As

software processes often involve software engineers who mayor may not be

collocated, a PML also ought to support enactment of process models in a

distributed environment.

Enactment of a process model raises an Issue relating to resource allocations.

Because software processes are highly dynamic, rarely can resources for a process

model be completely specified ahead of time. For instance, the number of people

assigned (as a resource) for a particular activity, and hence how many instances of

a particular activity are created, must not be fixed since it will depend on the

dynamic needs of a project. Therefore, it is desirable for a PML to support the

dynamic allocation of resources. Here, the dynamic allocation of resources means

that resources are allocated at the last moment, just as the activity is about to be

started. Allowing dynamic allocation of resources as a feature of PML gives the

process engineers the flexibility to consider the current needs of a particular project

before deciding on the necessary resource allocation for a particular activity. As a

consequence, because resources are allocated dynamically, enactment of a process

model can commence even when resources have not yet been completely specified.

In summary, the categories for PML enactment issues are:

i. Support for enactment in a distributed environment.
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ii. Support for dynamic allocation of resources.

Evolution

To handle its evolution in a controlled and integrated manner, a process model also

needs to capture issues concerning the meta-process [18, 56]. As discussed earlier,

the meta-process is in charge of maintaining and evolving the process model

according to specific and desirable rules and procedures. Therefore, the data

manipulated by the meta-process are part of the process model itself.

Because enactment of a process model is typically long-lived and subjected to

unpredictable changes (e.g. to cater for new needs arising from the current

enactment), there is a particular need for the PML to provide a mechanism to allow

the meta-process to be able to access the process model even though it is running. It

has been suggested that reflection, a feature of a PML which allowed enactable

code to be manipulated as data, provides such a suitable mechanism [5, 8, 18, 21,

56]. With reflection, the meta-process can be modelled and enacted as part of the

process model itself. As a result, evolution of the process model (and evolution of

the meta-process itself) can be achieved dynamically, and be supported by the

meta-process. It follows that while an enactable PML without a reflective facility

can be used to support modelling and enacting of software processes, it may not be

able to support an integrated process model consisting of both the software process

and the meta-process, and to support dynamic changes to both during enactment.

In summary, the sole category for PML evolution issues is:

i. Support for reflection.

Evaluation

If a PML, through enactment of the process model, is being used to guide or

enforce software engineering practice, it is vital that issues of importance are

measured in some way so that evaluation of the process can take place. This is

especially important to provide support for software process improvement. Thus, a

PML ought to provide relevant software metrics, although little work is reported in

the literature [32].
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In summary, the sole category for PML evaluation issues is:

i. Support for collection of "enactment" data.

Human Dimension

Because software processes are carried out primarily by people, it is necessary that

human dimension issues are considered. The human dimension can cover issues for

the process engineers (or project managers) who create the process models and

initiate enactment (e.g. facilitating the construction and comprehension of process

models) as well as issues for software engineers who are subjected to process

enactment (e.g. supporting software engineers at work).

In terms of the human dimension issues surrounding the process engineers who

create the process model and initiate enactment, it is obviously desirable to have a

process model which is simple and easy to understand. This places a requirement

on a PML to be intuitive in its syntax and semantics. It is generally believed that

this can be obtained to a certain extent by adopting a visual syntax and notation.

The reason is that "pictures" are normally thought to readily relate to the cognitive

part of the human brain as compared to text. Employing visual notations in a PML

helps create an easy to use yet expressive language, thus making a PML more

acceptable and accessible. There are a number of visual PMLs discussed in the

literature, as will be seen in the next section.

In terms of the issues surrounding the software engineers who are subjected to

process enactment, it is desirable that enactment of a process model provides some

form of awareness in terms of providing information about other parts of the model

such as other users and other activities. In the literature, the importance of

awareness has been established in the field of Computer Supported Cooperative

Work (CSCW), a field of study which places emphasis on the nature of humans

working together collaboratively to achieve a common goal as well as on the

possibilities of technology to support and improve individual and group efficacy.

Clearly, there is a need to include support for awareness as a feature of a PML

since enactment of a process model also involves collaborative work similar to

CSCW. As discussed earlier, the support for awareness seems increasingly relevant

in line with the growing trends in the way software engineers work in
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geographically and temporally distributed locations (e.g. software designers in

London, reviewers in Washington and programmers in New Delhi) and across

organisational boundaries.

There are two types of awareness a PML must support [72]. They are:

• User awareness - User awareness is providing knowledge about other group

members involved in the cooperative system. In general, having user awareness

can often encourage informal interaction. Such informal interaction is normally

useful if people are working on shared artefacts (as in a typical software

process).

• Process awareness - Process awareness is providing knowledge about the tasks

in their working contexts, for example in terms of what the previous task was,

what the next task is and what needs to be done to move along as well as what

resources are required. Typically, having process awareness is valuable as it

gives a sense of where and how the pieces fit together into the whole picture.

Additionally, process awareness should also make people aware of tasks not

only involving themselves but also others. Such awareness may help improve

the process - for instance, people can plan and anticipate their work loads as

needed to meet the project deadline. One way to enhance process awareness is

to provide support for visualisation of the process model. This seems to be a

useful feature to have in a PML as software processes can be very complex and

full of subtleties. Process visualisation can provide multiple views of the same

process with different perspectives which, in tum, enhances human intuition

about the tasks they are involved in.

Apart from supporting awareness and visualisation, there is also a need for a

process model to be able to accommodate meetings as they are an important

characteristic of software engineering. In fact, in the context of supporting software

development over distributed locations, it is desirable to for a process model to

accommodate virtual meetings, that is, meetings that are held online.

Accommodating virtual meetings could reduce costs if meetings would otherwise

have to be held face to face. Thus, a PML needs to be able to specify and support

virtual meeting as part of the process model.

In summary, the categories for PML human dimension issues are:
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i. Support for visual notations.

ii. Support for user awareness.

iii. Support for process awareness.

iv. Support for process visualisation.

v. Support for virtual meetings.

2.4 Analysis of PMLs

This section provides a detailed analysis of existing PMLs using the characteristics

of PMLs identified in the previous section. For each PML, this section presents: a

brief description of the language; an analysis of PML issues related to the

modelling, the enactment, the evolution, the evaluation, and the human dimension;

and some overall observations about the language.

2.4.1 MSL

Marvel Strategy Language (MSL) [45,46], the PML for the PSEE called Marvel,

has been developed at the Columbia University. MSL uses a rule-based approach to

support software processes. Artefacts involved in the software processes are stored

in an object-oriented database.

In MSL, each activity in a software process is encapsulated in a rule that can be

invoked from the software engineer's menu during enactment. An MSL rule has a

name, typed formal parameters, and three optional constructs:

1. Condition: A condition specifies the bindings which are used to locate

artefacts in the object-oriented database, and the pre-conditions which must

be true before the activity can be initiated.

2. Activity: An activity may specify one of the following: a tool envelope for

interfacing with an external tool to operate on the artefacts specified by

bindings in the condition; an activity to be performed offline; or the

selection of another rule set defining other activities [45].
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3. Effects: Effects specify a list of post-conditions which are automatically

selected and asserted based on the outcome of the activity.

Rules are stored in files called strategies. Usually, rules with similar effects are

grouped together into a single strategy file.

When the user (e.g. software engineer) requests a particular activity, MSL rules

defined in the process model are traversed by the runtime system using backward

and forward chaining. Backward chaining occurs when the precondition of a

selected activity is not met, and MSL looks for another activity it can perform to

generate post-conditions that would satisfy the pre-conditions of the current

activity. If successful, that activity is enacted. Otherwise, similar backward

chaining is re-applied. The result of backward chaining is either satisfaction of the

action or a notification to the user that the activity cannot be enacted. Forward

chaining allows opportunistic execution of an activity automatically as soon as its

pre-conditions are satisfied as a result of prior steps being performed.

Analysis of MSL

In terms of the modelling support, MSL does not provide support for all

characteristics identified in Table 2-1 earlier. In particular, MSL does not support

the representation of roles. Support for modelling of activities and their constraints

are indirectly achieved through definitions of rules and specified in strategies.

External tools can be specified in the tool envelope. Parallel activities are supported

in MSL and are handled automatically by the Marvel PSEE. Modularisation and

abstraction are supported using strategies.

In terms of enactment support, the process model expressed by MSL can be enacted

in a distributed client-server environment. No support is provided for dynamic

allocation of resources.

As far as evolution support, MSL does not provide support for reflection. Also, no

support is provided in terms of evolution, evaluation, nor the human dimension

issues identified earlier.
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Observation on MSL

In general, a process model expressed in MSL is non-trivial and can be difficult to

comprehend. This is because the dependencies between activities must be extracted

from the rules and their constraints defined in the strategies. To get the overall

view of the activities, each one of the strategies has to be analysed.

2.4.2 HFSP

Hierarchical and Functional Software Process (HFSP) [47], a PML developed at the

Tokyo Institute of Technology, takes a functional approach to supporting software

processes. In HFSP, software processes are described as a collection of activities

which are characterised by their inputs and outputs. When the activities are

complex, they can be hierarchically decomposed into sub-activities together with

the definitions of their inputs and outputs, until an atomic level where such

activities can be mapped onto an external tool invocation or (atomic) manual

operations.

A HFSP process model consists of three main sections:

1. Type declaration section: A type declaration section allows definition of the

attributes and primitive types used in the model. Apart from standard string

and number types, HFSP also allows enumerations and user-defined types.

2. Tools description section: A tool description section permits definition of

tools which will be used in the particular process model along with lists of

their inputs and outputs. In HFSP, tools definition can be thought of as

representing the most atomic activities in a software process apart from the

atomic manual activities themselves.

3. Activity section: An activity section defines all of the activities involved in

the particular process model. As discussed earlier, activities are defined

along with their inputs and outputs, and can be decomposed. In HFSP,

several alternative decompositions of a particular activity can be defined,

each of which carries its own pre-conditions (called decomposable

conditions).
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In HFSP, the basic flow of controls of activities (i.e. their enactment and

sequencing) is based on the availability of their inputs. If an activity can be

decomposed and several alternative decompositions are defined (discussed above),

only one of the possible decompositions will be selected based on the satisfied

decomposable transition. However, in the case that the selected decomposition

fails to produce the required outputs, HFSP allows backtracking which re-evaluates

other decomposable conditions for alternative decompositions. Nonetheless,

backtracking does not perform restoration of any artefacts which have been

changed.

Additionally, HFSP also allows support for iterations, for example, to support

repeated modification of a design until the design is approved. In such a case, the

outputs of the current iteration become the inputs of the next iteration.

Analysis of HFSP

In terms of the modelling support, HFSP does not directly provide support for all

characteristics identified in Table 2-1 earlier. In particular, HFSP does not support

representation of roles. Artefacts are represented as part of the inputs and outputs of

an activity; they may also be defined using user-defined types. Invoking of external

tools is supported in HSFP. Activities are characterised by their inputs and outputs

and may be decomposable. Activities in HFSP are intrinsically concurrent; unless

there are explicit dependencies on their inputs, they may be evaluated in parallel.

In terms of enactment support, HFSP supports enactment in a distributed

environment. However, no support is directly provided for dynamic allocation of

resources although process models (and resource allocation) can be evolved while

enactment is taking place through reflection.

For evaluation support, HFSP does not provide any support for the collection of

enactment data. Finally, in terms of human dimension support, HFSP also does not

provide any support for the characteristics defined earlier.
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Observation on HFSP

The support for modelling of software processes provided by HFSP is very high-

level in the sense that only what goes into and out of an activity is specified and not

how an activity is performed. This is due to the fact that decomposition of an

activity can be mapped onto either an external tool invocation or onto (atomic)

manual operations. In the case where decomposition is mapped onto an external

tool invocation, the software engineer can be given some flexibility with respect to

how the activity can be performed - for example, they can use their autonomous

judgement depending on the needs of the activity. While in some creative activities,

such as design, flexibility may be sometimes beneficial, a more prescribed

approach might be desirable, for example to guide junior software engineers.

On a positive note, although HFSP is a textual language, it is still relatively easy to

comprehend an HFSP process model. This is because HFSP supports activity

decomposition which can be easily traceable by following the inputs and outputs

dependencies of each activity.

2.4.3 FUNSOFT Nets

FUNSOFT nets [29], the PML for the PSEE called Melmac, is based on high-level

Petri nets called PredicatelTransition nets. To understand the basic features of

FUNSOFT nets, it is necessary to introduce some elementary Petri Nets concepts.

Marked Input Places

Transitions

Figure 2-1 A General Petri Net

Figure 2-1 depicts a general Petri net. A Petri net is a directed graph with two types

of nodes: places and transitions, using circles to denote places and rectangles to

denote transitions. Places and transitions are connected together by arcs. Arcs from
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places to transitions designate input places whilst arcs from transitions to places

designate output places. The firing rule of a Petri net depends on the distribution of

tokens in the input places, called marking. A transition in a Petri net will be fired

when all of its input places are marked. When a transition is fired, tokens are then

distributed to the output places of that transition.

In FUNSOFf nets, activities are represented as transitions called agencies.

Agencies can be decomposed to contain other FUNSOFf nets. Artefacts are

represented as tokens and are stored in places called channels. Within channels,

tokens are typed. Some predefined types include: boolean; integer; real; string; text

and binary. Other types such as structures are also supported using a C-like syntax.

A number of input and output firing rules, which control the way transitions fire,

can be associated with agencies. The actions or constraints associated with each

agency can also be specified using C-like statements. An agency can be associated

with a modification point before enactment commences to allow dynamic

refinement of an activity. Upon reaching a modification point, enactment may be

suspended to allow the behaviour of that activity to be refined. If the refinement

involves only changes to the topology of the net, FUNSOff nets allow the changes

to occur on-the-fly, that is, while enactment is taking place. If the refinement

involves redefining types in channels or actions in agencies, enactment must be

suspended as recompilation is necessary. Once the refining process is completed,

enactment is allowed to commence from that modification point.

Analysis of FUNSOFT Nets

In terms of the modelling support, FUNSOFf nets do not seem to provide support

for most of the characteristics identified in Table 2-1 earlier. The representation of

roles is supported as a user-defined role type in a channel connected to an agency

representing an activity. The agency can only be executed if such a role is available

and willing to conduct the activity. Support for modelling of activities and their

constraints are achieved through agencies, and artefacts and tools are specified in

the channels and expressed by a Petri net. Lastly, modularisation and abstraction

facilities are also supported by FUNSOFf nets through decomposable agencies.
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In terms of enactment support, process models expressed by FUNSOFT nets can be

enacted in a distributed environment. Although supporting (limited) on-the-fly

evolution in terms of changing the topology of the net, FUNSOFT nets do not

provide support for reflection.

No support is provided for the collection of enactment data. In terms of human

dimension support, FUNSOFT nets use both visual notations (based on Petri nets)

and textual syntax based on the C-like syntax.

Observation on FUNSOFT Nets

Although based on visual syntax, it is still quite difficult to comprehend the process

models expressed by FUNSOFT nets. One reason is that FUNSOFT nets employ an

extension of Petri nets with a number of different firing rules (attached to agencies).

Understanding these different firing rules requires evaluation of transitions, tokens

and places. As a PML, this is somewhat of a low-level way of supporting

modelling and enacting of software processes, although FUNSOFT nets do support

abstraction of process models through agencies.

2.4.4 SLANG

SLANG [9], a PML for the PSEE called SPADE, is also based on Petri nets.

However, the semantics of SLANG are defined by high-level Petri nets called

Entity Relations (ER) nets. The main addition that ER nets add to conventional

Petri nets is the ability to incorporate timing as the criteria to fire transitions.

In addition to the usual Petri nets syntax, SLANG provides an interface defined in

terms of input and output places (as entry and exit points), input and output

transitions (as entry and exit actions) as well as shared places to allow sharing of

data, all of which are connected by a sets of input and output arcs. In fact, an

interface serves as a SLANG modularisation facility; an interface may be

decomposed to show the overall internal SLANG net structure.

Besides the normal places and the shared places, SLANG also defines user places.

Normal places and shared places represent place holders for tokens consisting of

typed artefacts stored in an object oriented database, while user places represent
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place holders for tokens consisting of internal messages generated as a consequence

of external events occurring within the PSEE.

In SLANG, transitions designate events. Transitions firing depends upon the

availability of tokens and the defined guards (explained below). Additionally,

timing information, such as the time interval within which an event mayor must

occur, can also be specified by associating time-stamps with tokens and time

changes with actions (described below). In addition, SLANG also allows

transitions to be textually augmented with scripts consisting of three parts:

1. A header containing an event's name and typed parameters which must

match the types of the transition's input and output places.

2. A guard containing a boolean expression which checks the firing rules. A

guard may be thought as the pre-condition for enabling a transition.

3. A set of actions that performs some computation on the input tokens to

produces some output tokens.

There are two types of transitions in SLANG: white transitions and black

transitions. White transitions are similar to procedures in a general purpose

programming language - they receive some input parameters (though the defined

guards that need to be satisfied) and predefined statements are executed in sequence

to produce some output parameters. Black transitions, unlike white transitions,

allow invocation of external tools. The combinations of black transitions and user

places allow SLANG to have some control over the events generated by external

tools. This capability allows SLANG to support automation at external tool levels,

for example, by detecting events such as the opening or the closing of external

tools.

Analysis of SLANG

In terms of the modelling support, SLANG seems to provide support for most of

the characteristics identified in Table 2-1 with the exception of the representation of

roles. In SLANG, activities and their constraints are modelled as sets of actions

associated with transitions. Tokens represent typed input/output artefacts which are

stored in an object-oriented database. Being a Petri net based PML, SLANG
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naturally supports parallelism. Finally, modularisation and abstraction facilities are

also supported in SLANG through interfaces.

In terms of enactment support, SLANG supports enactment in a distributed

environment. However, SLANG does not directly support dynamic allocation of

resource but process models (and resource allocation) can be evolved while

enactment is taking place through SLANG's reflection facility.

No support is provided for the collection of enactment data. As far as the human

dimension support, SLANG only supports visual notations based on Petri nets (and

augmented with textual scripts).

Observation on SLANG

Although based on visual syntax, SLANG is a complex language with numerous

extensions to the original Petri nets. Like FUNSOFT nets, this makes a process

model expressed in SLANG quite difficult to understand. Despite being a highly

expressive PML, the abstraction level for supporting modelling and enacting of

software processes is still somewhat low. This is because a user may still need to

work at the level of the Petri net (i.e. in terms of transitions, tokens and places) to

understand the process model expressed by SLANG.

On a positive note, SLANG excels in its support for process evolution and the

meta-processes. This is achieved through SLANG's reflective feature which

allows enactable process models to be accessed as code and data.

2.4.5 LIMBO and PATE

LIMBO and PATE, the two PMLs for the PSEE called OIKOS [4,55], have been

developed at the University di Pisa, Italy. Because both LIMBO and PATE exploit

the idea of coordination to support a software process as inspired by Linda [33], it

is worth describing the basic idea from Linda.

In Linda, coordination is based on tuples and tuple spaces. A tuple consists of a set

of variables or values. A tuple space can be viewed as a distributed shared memory

into which tuples can be inserted or removed. Each tuple in a tuple space is

produced by some executing thread and it remains in the tuple space until some
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other thread consumes it. When a thread requests specific tuples which do not exist,

the thread may be suspended until those tuples are made available.

Borrowing from Linda, LIMBO and PATE support a software process by

exploiting a reactive system based on threads (called agents) communicating using

shared tuple spaces called blackboards. It must be stressed that the word agents in

this case carries the meaning of execution threads.

LIMBO and PATE originated from Extended Shared Prolog, and adopt a rule-

based approach to the support modelling and enacting of software processes. Using

Ambriola's classification discussed in section 2.3, LIMBO is the specification

language whilst PATE is the implementation language. LIMBO and PATE are

closely related in that it is possible to obtain a PATE process model by successive

refinement of a LIMBO specification. In the context of this thesis, because LIMBO

serves as a specification language for PATE, LIMBO will not be discussed further.

In PATE, a process model is constructed in terms of a hierarchy of agents. Each

agent is connected to its own blackboard when the agent is activated. Agents react

to the presence of tuples (mainly Prolog facts) on their blackboards by removing

tuples, and inserting tuples into their own blackboards or other blackboards that

they know of through a customisable service provided by the PSEE.

The behaviour of an agent is defined by a theory consisting of a set of action and

reaction patterns along with a sequential Prolog program (called the Knowledge

base). Each pattern defines a stimulus and response pair. The stimulus consists of a

Read guard and an In guard. The response consists of a Body and a Success set.

Optionally, a Failure set can also be specified.

A pattern can fire when the tuples (in terms of Prolog facts) in the agent's

blackboard satisfy the read and the in guards; these tuples will be consumed and

removed from the agent's blackboard. Whenever several patterns can fire, one is

chosen non-deterministically and the specified actions are performed (i.e. the

related pattern body and the sequential Prolog program will be executed). The

execution of the pattern body and the sequential Prolog program is achieved in such

a way that no side effects are allowed to the agent's blackboard whose pattern is

fired (as this can only be done by the success set or the failure set).
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The most common use of the sequential Prolog program in terms of supporting a

software process is to invoke external tools to manipulate artefacts. Finally,

depending on the outcome of the execution of both the pattern body and the

sequential Prolog program, some tuples (i.e. a success or a failure set) will be

inserted back onto the blackboard whose name is specified by that pattern. This

sequence of pattern firing can then go on for other agents until the enactment is

completed.

Blackboards can be dynamically created or destroyed by agents during the course

of enactment. Creation of a new blackboard can be achieved by an agent inserting

an activation goal (i.e. Prolog facts) along with a termination condition (also

Prolog facts) and a list of connected agents in its own blackboard. Destruction of a

blackboard occurs when the success set or the failure set matches with the

blackboard termination condition also expressed as Prolog facts, as a result of firing

a pattern. In this case, all the tuples in the blackboard will disappear and all

connection to agents will be aborted.

Analysis of LIMBO and PATE

In terms of modelling support, the modelling of activities and their constraints are

indirectly supported by specifying the theory of each agent (i.e. the action and

reaction patterns and the knowledge base). This can be achieved either from the

LIMBO specification (and later refined to PATE) or directly in PATE. How role

representation is supported in PATE is not clear. Tools can be invoked in pattern

bodies or in the knowledge base. Artefacts are accessed in terms of identifiers

through some standard services provided by the PSEE. Parallel activities can be

readily supported because agents are effectively executing threads communicating

using multiple tuple spaces. However, modularisation and abstraction of process

models are not supported in PATE.

In terms of enactment support, a process model expressed in PATE can be enacted

in a distributed environment. However, PATE does not support dynamic allocation

of resources.

In terms of evolution support, PATE does not support reflection. No support is

provided for the collection of enactment data nor for the human dimension issues.
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Observation on LIMBO and PATE

The abstraction level for supporting a software process provided in LIMBO and

PATE is low. The reason is that the project engineers who model a software

process need to work at the agent level, essentially specifying threads for enabling

enactment, in addition to specifying the process model. Often, this can be difficult

because of the need to consider for deadlock situations.

Nonetheless, the approach taken by LIMBO and PATE is not without merit. In

particular, agents specified by PATE are independent and highly decoupled. Thus,

it may be possible to support (limited) process evolution through a meta process

while a process model is being enacted, such as changing the tools assignments in

the knowledge base, without affecting other agents (including those agents whose

patterns are firing).

2.4.6 BM and PWI PML

Base Model (BM) and Process Wise Integrator Process Management Language

(PWI PML) [65], the two PMLs for the PSEE called PADM [13], have been

developed by the Informatics Process Group at the University of Manchester. BM

adopts temporal logics semantics; PWI PML adopts object-oriented technology.

Using Ambriola's classification, BM can be seen as a process specification

language whilst PWI PML can be seen as a process implementation language.

Actually, BM and PWI PML are two compatible PMLs in the sense that it is

possible to gradually refine the process model specified by BM into PWI PML. In

doing so, a special tool called the BM stepper can be used to assist checking of the

BM specification against the problem description and the refinement of the process

model in PWI PML. Because this thesis concentrates on enactable PMLs,

discussion of BM will not be developed further as it mainly serves as a

specification language for PWI PML.

PWI PML is an object-oriented PML. The primary construct for supporting

modelling and enacting of software processes is the role. The concept of a role in

PWI PML carries a more subtle meaning than that defined in section 2.3. PWI PML

defines two types of roles: User Roles and System Roles. A user role corresponds to
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the identification of skills for performing a particular activity in a software process

whilst a system role may correspond to some abstractions of an activity or a user

role.

A software process model in PWI PML is a set of executing role instances

connected by interactions (described below). A role is a subclass of the pre-defined

PML Role class. Within the subclass the following properties must be specified for

modelling and enacting software processes:

1. Resources describe the data objects (e.g. artefacts and tool definitions)

belonging to the role. These data objects can be derived from some pre-

defined classes in PWI PML.

2. Assocs provides references to the communication channels linking one role

object to another.

3. Actions define the list of interactions and activities which are performed by

the role. Actions may be thought of as sub-activities of a role. Each of these

actions has a name, and is guarded by when conditions which must be

satisfied before the action can be performed.

4. Categories contain conditions to determine the start and stop conditions of a

role.

Enactment is achieved by instantiating roles, and a role may also instantiate other

roles. Each role instance has a separate thread of control with its own local data.

Role instances communicate using message passing via typed one-way

asynchronous communication channels.

PWI PML also offers a set of interfaces known as UserActions. Normally,

UserActions are specified as the first command in the role action properties

discussed earlier. With the help of the PSEE runtime engine, UserActions allow the

construction of agendas, essentially a to-do-list for the software engineers listing all

the possible actions whose guard conditions are satisfied in the particular role that

they play. If the software engineer selects among those possible actions in the

agenda, the selected action is performed.
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Analysis of BM and PWI PML

In terms of modelling support, the modelling of activities and their constraints are

supported using the specification language BM and later refined into PWI PML. In

particular, activities can be abstracted as a sub-class of the Role class, with each

sub-activity representing some actions properties in the role. Parallelism between

activities is supported as each role has its own separate thread. The representation

roles described in section 2.3 are represented as user roles and are considered as

resources of the system roles. Similarly, artefacts and tools are also considered as

resources of the system roles. Finally, modularisation and abstraction in PWI PML

are supported by the role definitions.

In terms of enactment support, PWI PML supports enactment in a distributed

environment. In fact, the latest version of PWI PML also supports enactment over

the World Wide Web [35]. However, PWI PML does not seem to directly support

dynamic allocation of resources although user roles can be bound to system roles

dynamically.

In terms of evolution support, PWI PML provides support for reflection. No

support is provided in PWI PML for the collection of enactment data nor for the

human dimension issues identified earlier. It is worth noting that although PWI

PML is a text-based PML, it utilises a special graphical notation based on the Role

Activity Diagram, that is, a diagram which shows interactions amongst roles along

with the "exchange" of artefacts.

Observation on BM and PWI PML

The fact that system roles need to communicate through defined asynchronous

channels raises an important issue relating to synchronisation and concurrency. It

seems common in PWI PML to handle issues of synchronisation and concurrency

directly. This can be seen, for example, by the need to specify the required

communication channels inside the process model. This seems somewhat low-level

for a PML to handle.
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2.4.7 MERLIN

MERLIN [44] is a Prolog-like PML which has been developed by the University of

Dortmund and STZ - Gesellschaft fur Software-Technologic mbH. In MERLIN,

the act of modelling a software process is assisted by entity relationship diagrams

(a type of diagram which mainly depicts dependencies amongst artefacts) and state

charts (a special type of state transition diagram which depicts the allowable

transitions of an activity or an artefact from its creation to its completion along with

the conditions under which a transition may occur). Based on the created entity

relationship diagrams and state charts, a process model is then mapped to Prolog

rules and facts as a knowledge base about that particular process. A special kind of

fact is used to describe roles (work_on and responsibilities facts), artefacts and

tools (document facts) as well as activities (task rules). Similar to MSL discussed in

section 2.4.1, enactment of a process model expressed by MERLIN is achieved by

the PSEE runtime engine using a forward chaining mechanism to automate an

activity that does not involve human intervention, and a backward chaining

mechanism to select a particular activity for software engineers based on the role

they play.

With the information gathered by the backward chaining mechanism, the MERLIN

PSEE runtime engine incrementally builds a work context for the software

engineers who perform the activity, in the form of a simplified entity relationship

diagram which shows only the artefacts and tools necessary to complete the

activity. In MERLIN PSEE, a software engineer may interact with this diagram in a

hypertext manner to perform their work.

Analysis of MERLIN

In terms of modelling support, the modelling of activities and their constraints,

roles, artefacts and tools are supported by specialised PROLOG facts. Parallel

activities can be readily supported by the PSEE runtime engine. However, it is not

clear how the modularisation and abstraction of process models are supported in

MERLIN.
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In terms of enactment support, the process model expressed by MERLIN can be

enacted in a distributed environment. However, MERLIN does not support

dynamic allocation of resources.

In terms of evolution support, MERLIN does not support reflection. For evaluation

support, no support is provided for the collection of enactment data. Concerning

human dimension support, although MERLIN is a textual language, state charts and

entity relationship diagrams can be used to help construct the MERLIN process

model. MERLIN provides limited support for awareness. Process awareness is

supported but not user awareness. The support for process awareness is achieved by

the MERLIN PSEE runtime engine which automatically builds a work context

from the specified Prolog facts (utilising the backward chaining mechanism) in

terms of only giving a software engineer the necessary artefacts and tools needed to

complete the activity. Finally, MERLIN provides no support for process

visualisation.

Observation on MERLIN

Although MERLIN employs state charts and entity relationship diagrams to assists

the construction of the process model which is mapped to Prolog facts, it is still not

clear how this mapping is done. A state chart and an entity relationship diagram

may provide only a high-level view of the software process but because they do not

have well-defined executable semantics to allow a direct mapping to Prolog, it may

well be that the actual construction of the process model is achieved at the Prolog

level.

Like other rule-based PMLs, the process model expressed in MERLIN is also non-

trivial and can be difficult for humans to comprehend. This is because the

dependencies between activities are not directly available and must be extracted

from the rules (as defined by Prolog facts).

2.4.8 SPELL

SPELL, the PML for the PSEE called EPOS [20], is an object-oriented PML

derived from the Prolog programming language. In SPELL, the main support for

software processes is provided by two pre-defined classes: TaskEntity and
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DataEntity. TaskEntity forms the root of the task type hierarchy whilst DataEntity

forms the root of the data (or artefact) type hierarchy.

Every SPELL task type must be a subclass of TaskEntity which defines a number

of predefined attributes that can be tailored to the needs of the process model.

Among the important type level attributes within a task type are:

1. Pre- and post-conditions: The pre- and post-conditions attributes in a task

type are divided into static and dynamic pre- and post-conditions. They are

specified in first order predicate logic (as in Prolog). Static pre-conditions

and post-conditions are constraints mainly used to build the network of

tasks. This is accomplished by the runtime planner using forward and

backward chaining. Dynamic pre-conditions and post-conditions are

constraints asserted before and after task executions, and are used to

dynamically trigger tasks.

2. Code: The code attribute defines the steps that are performed when the task

is executed. A task's code (specified in Prolog) is responsible for satisfying

the dynamic post-conditions. When the code attribute is empty (i.e. not

specified), the task type is assumed to be composite - that is, the task is not

performed by a specific piece of code, but rather by executing subtasks

(explained below).

3. Decomposition: The decomposition attribute relates to the code attribute

described earlier as it allows subtasks to be specified. In SPELL, the

subtasks may also be a network of tasks. Like the parent task, the network

of subtasks is also created by the runtime planner using the static pre- and

post conditions discussed earlier.

4. Formal: The formal attribute permits the specification of the input and

output artefacts required for the task.

5. Executor: The executor attribute allows the tools used in the task to be

specified.

6. Role: The role attribute represents the role for the task.
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In addition to these attributes, the TaskEntity class also defines a number of meta-

level attributes and methods, essentially allowing further customisation of the

TaskEntity class in terms of its execution. These meta-level attributes and methods

will not be discussed here as they are mainly there to provide support for the

reflection facility in SPELL. Nevertheless, one important aspect that can be

specified at this level is triggers, which are special operations invoked before or

after the occurrence of a method. Triggers specify the constraints defining when the

trigger "codes" should be executed with respect to the method call. With triggers,

various internal states of the task executions can be captured and modified if

needed.

SPELL also defines a family of types derived from the DataEntity class for

specifying artefacts. Typical types used for software processes are a text type and a

binary type which can be further specialised to other types (such as c-source and

object-file).

For process enactment in SPELL, the runtime support system provided by the

PSEE consists of two parts: the runtime planner and the runtime execution

manager. As discussed earlier, the runtime planner generates a network of tasks

from the static pre- and post-conditions by utilising forward and backward chaining

similar to MSL; the top-level network of tasks must be generated by the runtime

planner before enactment commences but the detailed level network of subtasks

can be generated incrementally. The runtime manager executes the given task

network (by executing the specified code attribute in the task type) and works

closely with the runtime planner such that, when a composite task is encountered,

the runtime manager invokes the runtime planner to detail out that composite task

based on its static pre- and post-conditions. In this way, SPELL allows the detailed

network of tasks to be generated only when it is needed.

Analysis of SPELL

In SPELL, support for modelling of activities is provided by inheriting the

TaskEntity class and specifying the various pre-defined attributes discussed earlier.

Parallel activities are supported in SPELL and are handled automatically by the

runtime planner and the runtime manager. The activity constraints are defined by
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the static and dynamic pre- and post-conditions. Role and tool abstractions are

supported through the role and executor attributes of the TaskEntity class. Artefacts

are typed and stored in an object-oriented database called EPOS-DB.

Modularisation and abstraction facilities are also supported through the code and

decomposition attributes of the TaskEntity class.

In terms of enactment support, the process model expressed by SPELL can be

enacted in a distributed environment. SPELL does not directly support dynamic

allocation of resources but process models (and resource allocation) can be evolved

while enactment is taking place through SPELL's reflection facility. No support is

provided for the collection of enactment data nor for the human dimension issues

identified earlier.

Observation on SPELL

Process models expressed in SPELL are quite difficult to comprehend. This is

because the overall task structures are not directly available. To have a clear picture

of the overall task structures, it is necessary to analyse the constraints defined by

both the static and dynamic pre- and post-conditions.

On a positive note, although lacking in human dimension support, SPELL seems to

cover the other PML characteristics very well. In particular, SPELL excels in its

support for process evolution and the meta-processes. This is because SPELL

allows manipulation of methods and attributes at the meta-type level, hence,

enabling it to capture and modify various internal states of the task executions.

2.4.9 MASP/DL

Model for Assisted Software Process Description Language (MASPIDL) [14], the

PML for the PSEE called ALF, has been developed at Nancy University, France. In

MASPIDL, a software process model is modelled as a number of "fragments"

called the MASP descriptions. Each MASP description models a software process

as five components:

1. The Object Model describes the data model representing artefacts.
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2. The Operator Model represents an abstraction of the actual activities which

a software engineer needs to perform in a software process, in terms of

operator types. Operator types allow an individual activity to be described

in terms of pre-conditions and post-conditions along with a definition of

tools.

3. The Characteristics specify a set of consistency constraints on the process

state which are maintained by the runtime engine during the course of

enactment; if they are violated, an exception condition is raised.

4. The Rule Model defines some trigger reactions for predefined events that

occur during process enactment. The events include database operations

(e.g. read, write) and other user defined events.

5. The Ordering Model specifies the flow of control of the operators.

Operators may be executed in parallel, alternatively or sequentially.

Because a MASP description is generic, it must be instantiated (and compiled to a

special format called IMASP) before enactment can be achieved. Instantiation of

MASP description corresponds to the assignment of actual tools and artefacts in the

operator and object models. It should be noted that a particular software process

model can consists of a number of MASP descriptions (or fragments) with each

description defines a number of related activities. So, before enactment can be

achieved, each MASP description must be instantiated (and compiled) individually.

In this manner, instantiation and enactment may interleave so that the part of the

software process that has already been enacted may be taken into account to

instantiate a further part.

Analysis of MASP/DL

In terms of modelling support, the modelling of activities and their constraints in

MASPIDL are supported in the operator and rule models. Parallelism of activities is

supported in the ordering model. The representation of roles is not supported at the

PML level as this is achieved at the PSEE level. Artefacts are described in the

object model. Tools are described in the rule model along with the defined triggers.

Finally, modularisation and abstraction are supported by the MASP descriptions.
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For enactment support, MASPIDL supports enactment in a distributed

environment. However, MASPIDL does not really support dynamic allocation of

resources. This is because resources for each activity defined in a particular

MASPIDL description must be allocated before enactment of that MASPIDL

description can commence, although such allocations can be made based on the

outcome of the instantiation and enactment of the earlier parts.

For evolution support, MASPIDL does not support reflection. Also, no support is

provided for the collection of enactment data nor for the human dimension issues

identified earlier.

Observation on MASP/DL

The approach of treating a particular process model as number of independent

fragments in MASPIDL can be both a burden and a feature.

• As a burden, it may be inconvenient and difficult to support a large scale

software process. This is because in a large scale software process, one may

need to have literally hundreds of MASP descriptions. Each of these individual

MASP descriptions then will have to be individually instantiated and compiled

to IMASP before enactment can be achieved.

• As a feature, by manipulating the abstraction and modularisation of fragments,

MASPIDL can allow enactment even when the overall instantiation has not yet

been completed (although at least one of the MASP descriptions of a particular

process model must already be instantiated).

2.4.10 ADELE and TEMPO

ADELE and TEMPO [12] are two PMLs for the PSEE called ADELE-TEMPO,

which is a commercial database product. To understand how the modelling and

enacting of software processes is supported by the first PML, ADELE, it is

necessary to understand the basic architecture of its PSEE. The PSEE consists of a

centralised database which provides long transaction support for artefacts involved

in the software development project. Each participating software engineer in the

project is provided with their own Work Environment by the PSEE, where artefacts

(organised in terms of files and directories) can be checked out. A software process
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is then modelled in ADELE as a set of defined events and triggers on the artefacts

in the Work Environment.

ADELE events and triggers are based on the event-action-condition CECA)rules.

The ECA rules have the following form:

IF ON event EVALUATE condition EVALUATED {true Ifalse} THEN action

Triggers may fire on any of four events - PRE, POST, ERROR and AFTER - with

respect to a particular activity. In each of the events, some actions (e.g. in terms of

some database transactions or invoking of external tools) can be specified. PRE

triggers are evaluated at the beginning of an execution of an activity. If successful,

the specified action is executed. Similarly, POST triggers are evaluated after the

completion of an activity. ERROR triggers are considered when a transaction fails

and AFTER triggers are applied after a transaction succeeds.

According to Belkhatir [12], because ADELE is too low level and difficult to

understand, the second PML called TEMPO was developed. TEMPO defines a

process model based on the concept of role and connection (described below).

Although a user role is supported [54], the concept of role in TEMPO carries a

subtle meaning than the one defined in section 2.3. A role allows redefinition of

behavioural properties of an artefact based on the defined work context, that is, the

operations that can be done on that artefact and the rules that control these

operations. Roles, in tum, are connected to other roles through a defined

connection, essentially the synchronisation protocol based on temporal-event-

condition-action (TECA) rules (i.e. extended ECA rules with timing dependencies).

Analysis of ADELE and TEMPO

In terms of modelling support, the modelling of activities and their constraints is

indirectly supported in TEMPO by defining roles and their connections. In

ADELE, modelling of activities and their constraints are also indirectly supported

although at a very low level in terms of the ECA rules. Tools can be invoked from

the action part of the TECA rules in TEMPO (and ECA rule in ADELE) as a result

of a condition being fulfilled. In both ADELE and TEMPO, artefacts are defined as

objects in the ADELE database. In TEMPO, parallel activities are supported by
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connections defined by TECA rules (and ECA rules in ADELE). Finally,

modularisation and abstraction are only supported by TEMPO (through the

abstraction of roles).

In terms of enactment support, process models expressed by TEMPO and ADELE

can be readily enacted in a distributed environment. However, neither TEMPO nor

ADELE supports dynamic allocation of resources.

In terms of evolution support, TEMPO and ADELE do not support reflection. For

evaluation support, no support is provided for the collection of enactment data. As

far as the support for the human dimension, TEMPO provides (limited) support for

process awareness. In TEMPO, process awareness is achieved by giving the work

context of a task. No support is provided for user awareness, process visualisation,

and virtual meetings identified earlier.

Observation on ADELE and TEMPO

The approach taken by ADELE and TEMPO to support modelling and enacting

software processes based on database triggers is somewhat low-level. This is

because the complete picture of the overall software processes is not directly

available and must be inferred through the defined ECA rules.

While the database triggers in TEMPO and ADELE may be low-level, it may be

straightforward to implement support for a transactional history of artefacts and

their traceability. In tum, such capabilities could be manipulated to provide support

for the collection of enactment data through measurement and evaluation of the

actual process enactment.

2.4.11 APPUA

APPUA [62], the PML for the PSEE called Arcadia, has been developed at the

University of Colorado. Being based on ADA, APPUA inherits many features

from that language including its type system, module definition style (package),

and task communication paradigm (rendezvous). To support a software process,

APPU A extends the ADA programming language with shared persistence
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relations, concurrent triggers on relation operations, enforceable predicates on

relations, and transaction-like statements.

Relations are syntactically similar to ADA package definitions and package bodies.

Within a relation, persistent storage of data may be defined. Triggers are similar to

ADA tasks and hence are capable of handling multiple threads of control. Unlike

ADA tasks, triggers automatically react to events related to operations on the data

defined in a relation. Enforced predicates are boolean expressions which act as post

conditions on the operation of a relation; no operations may violate the enforced

predicate. Transactions-like statements control access to relations and may affect

the enforcement of predicates.

Analysis of APPU A

In terms of the modelling support, APPU A does not provide support for all of the

PML characteristics identified in Table 2.1. Modelling of activities and their

constraints are supported in APPU A via relations with enforceable predicates.

Parallel activities are supported by exploiting triggers. No direct support is

provided for role representations, artefacts, and tools; rather these can be

represented using the ADA type mechanism. Abstraction and modularisation in

APPUA is mainly based on the ADA procedures and packages.

In terms of enactment support, it is not clear whether or not APPU A supports

enactment in a distributed environment. Additionally, APPUA does not support

dynamic allocation of resources.

In terms of evolution support, APPUA does not support reflection, only offline

process evolution as recompilation is necessary. Finally, no support is provided for

the collection of enactment data nor for the human dimension issues identified

earlier.

Observation on APPU A

The abstraction level provided by APPU A for supporting modelling and enacting

software processes is somewhat low. This is because, in addition to the specific

constructs to support modelling and enacting software processes, APPU A inherits
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many general purpose constructs based on ADA which appear to be unnecessary.

For example, the ADA tasking mechanism and rendezvous seems to be superseded

by triggers. However, it must also be stressed that the presence of general purpose

constructs based on ADA is not without merit. Constructs such as ADA types help

APPU A provides support for the representation of roles, tools and artefacts.

2.4.12 Dynamic Task Nets

Dynamic Task Nets [37], the visual PML for the PSEE called Dynamite, has been

developed at Aachen University of Technology in Germany. Dynamic Task Nets

described a software process as graphs consisting of nodes representing tasks

connected together with arcs (called relations). There are three types of relations:

1. Control-flow relations impose an acyclic ordering of the activities to be

enacted.

2. Dataflow relations are used for data (mainly artefacts) transmitted between

connected tasks.

3. Feedbackflow relations are used to enable feedback from a successor task

back to its predecessor.

There is also another relation supported by Dynamic Task Nets called successor

relations. Unlike the three relations described above, successor relations refer to

nodes rather than arcs. When a task is augmented with a successor relation, that

task is said to have multiple versions. What this means is that when such a task has

to be reactivated (e.g. as a result of feedback relations), a new task version may be

created depending on whether the previous version of the task has completed or

not. If the task has already completed, a new version of the task is created requiring

a new assignment of a software engineer. If the task has not yet been completed,

the runtime system automatically updated the tasks with the new version of the

artefacts.

In Dynamic Task Nets, tasks and their corresponding relations can be defined

dynamically. The behaviour of each individual task (called a task net) can be

customised in the sense that a task can execute even when its predecessor tasks

have not completed (called simultaneous concurrent engineering) or when certain
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input artefacts are available. However, the task completion can only be allowed if

predecessor tasks have already been completed. In Dynamic Task Nets, this

customisation is achieved by modifying the enactment conditions defined in the

PROGRESS specification, which itself is an executable graph rewriting system that

Dynamic Task Nets map to for achieving enactment.

Analysis of Dynamic Task Nets

In terms of modelling support, the modelling of activities and their constraints are

supported by the task nets and their relations, and can be customised at the

PROGRESS specification level. The representation of roles is not directly

supported at the PML level. Artefacts are considered as part of the input and output

interface to a task. Tools abstraction is not supported directly although can be

defined at the PROGRESS specification level. Finally, modularisation and

abstraction are supported by the nodes themselves in the sense that each task net

can be decomposed into other smaller task nets (although Dynamic Task Nets does

not visually differentiate between decomposable task nets and atomic ones).

In terms of enactment support, Dynamic Task Nets support enactment In a

distributed environment. Because the creation of task nets in Dynamic Task Nets is

dynamic, it naturally supports dynamic allocation of resources. In terms of

evolution support, Dynamic Task Nets does not support reflection.

No support is provided for the collection of enactment data. In terms of human

dimension support, Dynamic Task Nets employs a visual PML. No other support is

provided to address the other human dimension issues identified earlier.

Observation on Dynamic Task Nets

Although based on a visual notation, the process model expressed by Dynamic

Task Nets can still be difficult to comprehend. In addition to employing three

different kinds of arcs (consisting of control-flow relations, data flow relations and

feedback flow relations), Dynamic Task Nets also do not distinguish between

decomposable nodes and atomic ones. This can make it difficult to trace out the

execution of the process model.

49



The mam advantage of Dynamic Task Nets lies in the support for on-the-fly

process evolution - that is, process models can be evolved while enactment is

taking place. With on-the-fly process evolution, Dynamic Task Nets are able to

support the dynamic behaviour required in a PML such as dynamic creation of

tasks and dynamic allocation of resources.

2.4.13 LATIN

Language to tolerate Inconsistencies (LATIN) [22], developed at Politecnico di

Milano, Italy, is a PML for the PSEE called SENTINEL. LATIN describes a

software process as a global part and a set of task types. A global part contains

global variables, a global invariant (described below), the declaration of the task

types that will be instantiated during enactment, and the description of the main

task. When the process enactment starts, an interpreter for the main task is created.

All other tasks are instantiated by the main task or, in turn, by previously

instantiated tasks (i.e. their predecessors).

A task type is composed of the following parts:

1. A header defines the name of the task type along with its parameters lists.

Instantiation of a task type constitute assigning the initial state of the task

instance.

2. An import section defines all variables imported from other task types.

3. A declaration section declares the local types and variables. The basic data

types in LATIN can be integer, real, string, boolean, enumerated, as well as

user defined data types such as records and sets.

4. An export section lists the names of all the variables exported to other tasks.

5. An init section lists all initial values assigned in terms of resource

assignments during instantiation.

6. A set of transitions which govern the actual enactment of task type instances

(described below). Transitions can be associated with invoking of external

tools.
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7. A set of invariants which serves as special conditions that must hold true in

any state of the activity described by the task type.

The behaviour of a task type is described by transitions. Transitions are further

characterised by a precondition, called an ENTRY, and a body. The ENTRY defines

the conditions which fire the corresponding transition whilst a body defines actions

(e.g. invoking a tool) and value assignments (e.g. updating variables) through an

EXIT clause.

LATIN actually offers two types of transitions: normal transitions and exported

transitions. A normal transition is automatically executed by the runtime system as

soon as an ENTRY evaluates true. An exported transition is executed upon the

request from the user even if its ENTRY evaluates to false. In such a case, a

transition is said to fire illegally. The outcome of such a firing is that enactment can

now be allowed to deviate from the specified process model, hence introducing

inconsistencies. In LATIN, enactment can continue as long as the invariants of that

task type still hold. But if one of the invariants is violated, enactment is suspended

and a reconciliation activity is started to allow reconciliation of the actual process

and the process model. In such a situation, the PSEE runtime system automatically

performs pollution analysis which gives some analysis of the deviations from the

defined process model and the identification of some polluted data (mainly

artefacts) caused by such deviations.

Analysis of LATIN

In terms of modelling support, the modelling of activities is supported as a set of

task types. The constraints for each activity are specified by the transitions. Task

types may execute in parallel. The representation of roles is not directly supported

at the PML level. Artefacts can be supported by the user defined types. Tools can

be specified and invoked in the transition's action. Finally, modularisation and

abstraction are supported by each individual task type.

In terms of enactment support, LATIN supports enactment in a distributed

environment. Although task types can be dynamically instantiated during

enactment by the main task or the previously instantiated task, LATIN does not

support dynamic allocation of resources. This is because resources need to be
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assigned to the task types as part of their init section before the overall enactment

commences as LATIN does not provide any feature which allows assignment of

resources while enactment is taking place.

As far as evolution support, LATIN does not support reflection. For evaluation

support, no support is provided in LATIN for the collection of enactment data.

Finally, no support is provided for the human dimension issues identified earlier.

Observation on LATIN

The main feature of LATIN is that it supports deviation from the process model by

allowing a start or a completion of any activities to occur even when their pre-

conditions or post-conditions have not been met. This feature can be exploited to

give software engineers the flexibility of exercising their own judgement, based on

the (dynamic) needs of the current development project, as to whether or not to

deviate from the process models. While giving such flexibility may be an important

human dimension issue to be considered by a PML, a closer study reveals that

allowing too many deviations can be problematic as it may be difficult to guide and

prescribe tasks especially involving junior software engineers. Additionally,

allowing too many deviations also puts extra overhead on the overall tasks as extra

steps are needed for reconciliation.

2.4.14 JIL

Ill, [63], developed at the University of Massachusetts at Amherst, is a PML

derived from experiences in developing APPUA. The main construct in Ill, is the

step. A Jll, step represents a step in a software process, that is, a task which a

software engineer or a tool is expected to perform. A Jll. process model can be

viewed as a composition of Ill, steps. The elements that constitute a Ill, step

include:

1. Object and declarations section consists of the declaration of artefacts used

in the step (consisting of ADA-like types).

2. Resource Requirements section specify the resources needed by the step,

including people, software and hardware.
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3. Sub-steps set section provides a list of sub-steps that contribute to the

realisation of the step.

4. Proactive control specification section defines the order in which sub-steps

may be enacted. This is achieved through special JIL keywords such as

ORDERED,UNORDEREDandPARALLEL.

5. Reactive control specification of the conditions or events in response to

which sub-steps are to be executed. This is specified through special JIL

keyword such as REACT.

6. Pre-conditions, constraints and post-conditions section: A set of artefact

consistency conditions that must be satisfied prior to, during, and

subsequent to the execution of the step.

7. Exception handler section: A set of exception handlers for local exceptions,

including handlers for artefact consistency violations (e.g. pre-condition

violations).

Apart from local exception handlers which allow a process to react within its own

scope, JIL also supports global exception handlers. Global exception handlers

allow a process to react to an exception in another process by treating such

exceptions as events which can be handled directly by the reactive control

specification.

Analysis of JIL

In terms of modelling support, the modelling of activities is supported by a

composition of JIL steps. The constraints for each step can be specified as pre- and

post-conditions. The step ordering constraints (e.g. parallel activities) can be

supported using specialised constructs (e.g. ORDERED, UNORDERED,

PARALLEL). The representation of roles is not directly supported at the PML level.

Artefacts can be supported by the ADA-like types; JIL also allows artefact

consistency to be checked as a pre- or post-conditions of a step. Tools can be

invoked directly through the reactive control specification. Finally, modularisation

and abstraction are supported by the JIL step.
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In terms of enactment support, it is not clear whether or not JIL supports enactment

in a distributed environment. Also, JIL does not support dynamic resource

allocation. As far as evolution support is concerned, no support is provided for

reflection.

No support is provided in JIL for the collection of enactment data nor for the

human dimension issues identified earlier.

Observation on JIL

Despite being a complex PML, JIL has a number of strong points. In particular, JIL

excels in combining proactive and reactive controls as well as allowing local and

global exception handling. Proactive control allows one or more process steps to be

imperatively programmed in a JIL step. Reactive control permits responses to

stimuli or events by executing one or more process steps. Global exception

handling allows one process to react to an exception raised in another process

whilst local exception handlers allow a process to react within its own scope.

2.4.15 Little JIL

Little JIL [66], also developed at the University of Massachusetts at Amherst, is a

PML based on JIL. Little JIL is a visual PML, and maintains the notion of a step

from JIL. A process model in Little JIL can be viewed as a tree of steps whose

leaves represent the smallest specified unit of work and whose structure represents

the way in which this work will be coordinated. As an illustration, Figure 2-2

displays the Little JIL step notation.
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Figure 2-2 Little Ill, Step Notation

As shown in Figure 2-2, the Little Ill, step notation has a number of components

which include:

1. Step name section: Every step must be given a name.

2. Interface badge section: Resources needed in the step are carried through

this badge. In Little Jll., resources include the assignment of software

engineers, permissions to use the tools, as well as artefacts. Resources are

also typed and always associated with some access rights.

3. Pre-requisite and post-requisite badge section: Here, pre-conditions and

post-conditions for the step are specified.

4. Control-flow badge section: Little Jll, allows four types of control-flow to

be specified in a step. They are sequential, parallel, choice and try.

Sequential and parallel control-flows allow sequential and parallel steps to

be specified. Choice control-flow allows some choices of alternative steps

to be specified in a step. Try control-flow is associated with handler badges

(described below) to allow an exception to be caught.

5. Handler badge section: Handler badges are used to indicate and fix

exceptional errors during enactment. In Little Jll., exceptions are passed up

the process model tree until a matching handler is found.

6. Reaction badge section: Reaction badges are a form of reactive control

similar to Jll., A reaction badge is always associated with a message which

55



is generated in response to some events. Because a message is global in

scope, any execution step can receive the message and act accordingly if

matches are found.

In terms of its enactment, a step goes through several states. Normally, a step is

posted when assigned to a software engineer, then it progresses to a started state,

and eventually it will be in a completed state. If a step fails to be started as a result

of resource exceptions being thrown, a step may be retracted (and potentially

reposted) or terminated with exception.

Analysis of Little JIL

In terms of modelling support, the modelling of activities is supported by the Little

IIL steps. The constraints for each step can be specified in the pre-requisite and

post-requisite badges. Parallel activities can be defined by selecting the proper

control-flow badge. The representation of roles is not directly supported at the PML

level. In Little IIL, artefacts are typed and have associated access rights. Like

artefacts, tools abstraction is also associated with an interface badge. Finally, Little

JIL does not support modularisation and abstraction of the process models.

In terms of enactment support, Little IIL supports enactment in a distributed

environment. However, Little IIL does not seem to support dynamic resource

allocation as identified in section 2.3, although the authors claim such support is

provided (discussed below). In terms of evolution support, Little IIL does not

support reflection.

No support is provided in Little IIL for the collection of enactment data. In terms of

human dimension support, Little JIL employs visual notation. No support is

provided for process awareness, user awareness and process visualisation.

Observation on Little JIL

In the current implementation of Little IIL, dynamic allocation of resources is

achieved by the runtime system dynamically (and automatically) searching for

software engineers available for assignment to a step [67]. Nonetheless, dynamic

resource allocation is much more than just allocating software engineers. The
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allocations of other resources (e.g. artefacts and tools) must also be dynamic. This

is because these resources may also change due to hardware or software upgrades.

Because assignments of such resources are fixed in Little Ill, this makes it hard to

support such this dynamic behaviour without evolving the process model.

On a positive note, Little Jll, step notation is very intuitive. This makes it

straightforward to understand the process model expressed by Little Jll.,

2.4.16 CSPL

CSPL [15], developed at the National Chiao Tung University in Taiwan, is a PML

that adopts an ADA95-like syntax. Being based on ADA95, CSPL inherits many

features from that language including its type system, module definition style

(package), and task communication mechanism. Additionally, CSPL adds a number

of predefined types and extensions to enable the modelling of software processes

which include:

1. Event type and inform statements: The event type allows description of an

event status of an activity (e.g. approved, completed). The value of an event

derived from event type can be asynchronously assigned by CSPL inform

statements.

2. Doc type: Doc Type, the base type of all object types in CSPL, allows the

description of artefacts and their associated attributes, which can be

extended by inheritance.

3. Work assignment statements are CSPL statements which allow activities,

tools and roles to be assigned to one or more software engineers.

4. Communication related statements allow synchronization and ordering of

tasks with other tasks, similar to the ADA95 rendezvous.

5. Program Units allow assignment of a human to a role (through a Role Unit),

assignment of an actual tool to a tool (through a Tool Unit), and description

of dependencies amongst artefacts (through a Relation Unit).

To support enactment, the CSPL compiler translates the process model expressed in

CSPL into a UNIX shell script.
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Analysis of CSPL

In terms of modelling support, the modelling of activities and their constraints are

supported by the ADA95-like task specification. Parallel activities are supported

through the communication related statements essentially ordering the tasks

specified in CSPL. The representation of roles is supported by the role unit.

Artefacts can be supported by the ADA-like types. Tools can be defined through

the tool unit. Finally, modularisation and abstraction are supported by utilising

package specification.

In terms of enactment support, CSPL supports enactment in a distributed

environment. However, CSPL does not support dynamic resource allocation.

In terms of evolution support, CSPL does not provide support for reflection - only

offline process evolution is supported [16]. For evaluation support, no support is

provided for the collection of enactment data. In terms of the human dimension, no

support is provided for the issues identified earlier.

Observation on CSPL

As it has a blend of both a general purpose programming language and some

specific syntax for the modelling and enacting of software processes, CSPL can be

a powerful and expressive PML. Furthermore, the fact that CSPL supports a form

of object-orientation can be also useful for the usual reasons (e.g. inheritance which

can specialise types).

2.4.17 EVPL

Extended Visual Planning Language (EVPL) [36], developed jointly at the

University of Waikato and University of Auckland in New Zealand, is a PML

derived from the Visual Planning Language (VPL) [64] available commercially

from FUJITSU ICL.

Naturally, many features of EVPL are based on VPL. This includes the notion of

stages which form the main construct of EVPL. In EVPL, a process model (called

Work Plan) consists of stages connected together by arcs carrying events. Parallel
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activities are supported using AND and OR stages. The AND stage waits for all

events from connected stages to arrive before generating a single event, while the

OR stage allows an event to leave as soon as one of the incoming events arrive.

Each stage in EVPL has an identifier and is always associated with a role (called

the stage role). This identifier allows stages to be identified and reused by other

process models. EVPL also includes visual notations to describe how the task is to

be performed in the form of tools and artefacts used in each stage and the

communication needed between stage roles (called the Work Context). In EVPL,

the work context can be thought of as a visual task description as it does not have

any executable semantics.

Enactment is achieved in EVPL through its event process mechanism. This

mechanism is based on a sub-language called Visual Event Processing Language

(VEPL). VEPL notations are based on filters and actions. Filters received events

from stages, artefacts, tools or roles, or other filters and actions, try to match events

against pre-conditions, passing them onto connected filters and actions if the match

succeeds. When actions receive an event, they carry out one or more operations in

response to the event. These operations may update information or generate new

events, which may be detected and acted upon by other filters and actions.

Analysis of EVPL

In terms of modelling support, the modelling of activities is supported by the EVPL

stages. The constraints for each stage can be specified in VEPL as filters and

actions. Parallel activities can be supported by the AND and OR stages. The

representation of roles is supported by associating a stage with a role. Artefacts and

tools execution is supported in the action filters. Finally, modularisation and

abstraction of the process models is supported in EVPL as stages can be further

decomposed to include other stages.

In terms of enactment support, EVPL supports enactment In a distributed

environment. However, EVPL does not support dynamic resource allocation. In

terms of evolution support, EVPL does not provide support for reflection - only

offline process evolution is supported.
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No support is provided in EVPL for the collection of enactment data, although

EVPL's PSEE does allow tracking of the enactment history. Lastly, apart from

adopting a visual notation, EVPL does not provide support for the other human

dimension issues identified earlier.

Observation on EVPL

The unique feature of EVPL is that it adopts a separate visual language (VEPL) to

describe the events related to a software process. Although VEPL may be useful as

it allows wide variety of events to be supported (e.g. by manipulating filters and

actions), it may put an extra burden on the developer of the process model who has

to learn two separate languages.

2.4.18 APEL

APEL [24], developed at Laboratoire Logiciels Systemes, Reseaux in France, is a

visual PML. The central construct in APEL is an activity of which there are two

types: an activity representing a task for an individual; and a multi-instance activity

representing a task for a group of people.

Visually, an activity provides an interface to define input and output artefacts as

well as the roles involved a particular activity. Artefacts, activities and roles are

typed and they are defined in a separate view using state Object Management

Techniques (OMT) diagrams, essentially class diagrams with some defined

relationships (e.g. is-a or has-a). The various states which artefacts and activities go

through during enactment can also be represented using state transition diagrams.

In APEL, a process model is composed of a set of activities connected together by

control-flow and data flow arcs as well as And and Or connectors which carry the

usual semantics. Activities can be decomposed until atomic activities are reached.

To achieve process enactment, APEL relies on the concepts of event and event

capture which can be defined on activities or artefacts. An event and event capture

are defined by pairs comprising an event definition and a logical expression. An

event is captured by an activity or an artefact when it matches the event definition

and the logical expression is true. All events in APEL are broadcast and they are

generated automatically.
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The notable feature of APEL is that activities and their sub-activities, as well as the

flow of artefacts, are shown to the user during enactment (through a desktop

paradigm) in order to give the sense of awareness (discussed below) about other

activities. In addition, the user may also interact with the desktop paradigm to

perform the activity. Finally, unlike other PMLs, APEL also supports measurement

of the process model by employing the Goal Question Metric Model [10]

essentially consisting of self-defined goals, questions related to the process models

achieving that goals, and metrics to quantify such questions.

Analysis of APEL

In terms of modelling support, the modelling of activities and their constraints is

supported in APEL by the activities and their event and event captures. Parallel

activities can be defined by And and Or connectors. Roles, artefacts and tools are

typed and also expressed as part of the process models using OMT diagrams.

Finally, modularisation and abstraction are supported as activities can be further

decomposed into sub-activities.

In terms of enactment support, APEL supports enactment in a distributed

environment. No support is provided for dynamic resource allocation.

In terms of evolution support, APEL does not support reflection. Process evolution

can only be achieved offline; this is assisted by a process state server which

maintains the state of a process model's enactment.

In terms of evaluation support, APEL supports the collection of enactment data

through adaptation of the Goal Question Metric Model. In terms of the human

dimension, APEL provides (limited) support for awareness. Process awareness is

supported but not user awareness. Process awareness is achieved by giving the

work context of the overall activity and its sub-activities along with the flow of

artefacts. Likewise, process visualisation can also be achieved in the same way.

However, no support is provided for virtual meetings.
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Observation on APEL

It can be difficult to comprehend the process models expressed in APEL even

though it uses visual notations. One reason is that APEL uses many notational

supports, for example, using OMT for describing the relationship between artefacts,

role and tools as well as adopting state transition diagrams to depict the states of

activities and artefacts. Furthermore, APEL also employs two types of arcs (the

control-flow and data flow) whose semantics can be difficult to understand (i.e.

based on events and event capture).

The main feature of APEL is that it is the first PML to support some form of

measurement and evaluation of the process models and their enactment.

Additionally, the other main feature of APEL is its support for process awareness

and process visualisation through the desktop paradigm. However, a user needs to

have some understanding of APEL to benefit from the desktop paradigm as it is

given in the form of the process model expressed in APEL.

2.4.19 PROMENADE

Process-oriented Modelling and Enactment of Software Developments

(PROMENADE) [57], developed at Universitat Politecnia de Catalunya Spain, is a

PML derived from the Unified Modelling Language [59], a language for supporting

the object-oriented analysis and design of software systems. In PROMENADE,

software processes are modelled using predefined classes (called the

PROMENADE reference model) consisting of:

1. Document Class represents artefacts involved in the software development.

2. Communication Class represents any document used for communication.

3. Task Class represents an activity in a software process.

4. Agent Class represents an entity playing an active part in a software

process.

5. Tool Class represents any entity implemented through a software tool.
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6. Resource Class represents any supplementary help provided during

enactment of a software process (e.g. an online tutorial). It should be noted

that the word resource in this case carries a different meaning to that used in

section 2.3.

7. Role Class represents identification of the skills of software engineers.

In a process model, the connections between instances of these classes are

expressed using UML association relationships. In PROMENADE, the most

important class is the task class. The task class may be customised to include the

definition of shell scripts, the definition of task parameters consisting of input and

output artefacts and the definition of task pre- and post-conditions. A task class

may also be further broken down to sub-classes consisting of other task classes,

either by aggregation or composition.

PROMENADE has not yet provided support for enactment as work is still on-going

to provide additional language extensions. Nevertheless, it is considered in this

survey because it presents a unique approach of utilising a PML based on UML to

support the modelling and enacting of software processes.

Process enactment is planned in PROMENADE by utilising its support for

precedence relationships, which are textually expressed in each task class in the

process model using a variation of the UML Object Constraint Language (OCL).

Using the precedence relationships, the ordering of tasks can be defined.

Additionally, the precedence relationships also allow enactment of some actions

according to a plan, defined in terms of pre-conditions and post-conditions, and

connections to other task classes. Strong precedence dictates that the current task

must successfully complete before following task can be started. Weak precedence

allows following tasks to start even if the current task has not yet been completed.

PROMENADE is also being extended to provide support for reactive control-flows

that is, enactment of some actions in response to events [57].

Analysis of PROMENADE

In terms of modelling support, the modelling of activities is supported by the class

diagrams and their association relationship. The constraints for each activity are
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specified in the class diagram as pre- and post-conditions expressed by using a

variation of the UML Object Constraint Language. Parallelism can be expressed in

PROMENADE by specifying the precedence relationship in each task class. The

representation of roles and artefacts are supported by the role and artefact classes

respectively. The abstraction of tools is supported by a tool class and an agent class.

Tools also can be invoked directly through the shell script defined in the task class.

Finally, modularisation and abstraction are supported by aggregations and

composition.

In terms of enactment support, it is not clear whether PROMENADE will support

enactment in a distributed environment, and dynamic allocation of resources.

Concerning evolution, the authors claim that PROMENADE will adopt reflection.

No support is provided in PROMENADE for the collection of enactment data. In

terms of human dimension support, apart from being a visual PML, no other

support is provided.

Observation on PROMENADE

As PROMENADE is still in its early stage, it is not clear how process enactment

can be supported. This is because UML, the language that PROMENADE is based

on, does not have any executable semantics. Although it is claimed that enactment

can be achieved by through augmenting PROMENADE with OCL-like scripts, this

has yet to be demonstrated.

2.5 Discussion

Based on the analysis of PMLs given In the previous section, this section

summarises the description of existing PMLs. Although only enactable PMLs are

considered, some of the categorisations of PMLs (e.g. modelling support,

evaluation support) should also be equally applicable to non-enactable PMLs,

although this is not investigated further here.

Table 2-2 presents the digest of the analysis of PMLs discussed earlier. The table

highlights those features that are common to PMLs, and those that are not, and
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therefore identifies areas for research into PMLs that address new combinations of

features which can be explored further.

Enactable Process Modeling Languages
LEGENDS L

F P D I P
Implemented feature OJ U S WM Y T R

0 M H N L P I E S M T A N L J
0

Non supported feature T C E A MS F S A A R P A E P A AI L S V PD ENot enough information L S o N T P L E S M P M T L E P P E NP F G E M I L P P L I I J L LL A
T L N L 0 A T N D

E I
PML Characteristics L E

Sequential and parallel activities as well as
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~their constraints

Input and output artefacts ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~Modelling Role representations x x ~ x x ~ ~ ~ x ~ x x x ~ ~ ~ ~ ~ ~Support
Extemal tools ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Abstraction and modularisation of process models ~ ~ ~ ~ x ~ ~ ~ ~ ~ ~ ~ ~ x ~ ~ ~ ~

Enactment Enactment in a distributed environment ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Support Dynamic allocation of resources x x x x x x x ~ x x x x x x x
Evolution Reflective feature x ~ x ~ x ~ x ~ x x x x x x x x x x x
Support

Evaluation Collection of enactment data x x x x x x x x x x x x x x x x x ~ x
Support

Visual notations x x ~ ~ x x x x x x x ~ x x ~ x ~ ~ ~
Human User awareness x x x x x x x x x x x x x x x x x x x

Dimension
Process awareness ~ x x ~ x ~ xSupport x x x x x x x x x x x x
Process visualisation x x x x x x x x x x x x x x x x x ~ x
Virtual meetings x x x x x x x x x x x x x x x x x x x

Table 2-2 Analysis of PMLs
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Referring to Table 2-2, it can be seen that existing PMLs are deficient in a number

of the identified areas: human dimension issues; dynamic allocation of resources;

collection of enactment data; and support for reflection. These deficiencies will be

discussed next.

The first perceived deficiency, and perhaps the most important, in the surveyed

PMLs is in terms of providing support for human dimension issues. As identified in

Table 2-2, issues in terms of the support for visual notations, user awareness,

process awareness, process visualisation, and virtual meetings seems to be

neglected by most of the surveyed PMLs. Modelling and enacting of software

processes requires much human intervention during its lifecycle - for example,

process engineers (e.g. project managers) model the activities within a software

process for enactment, and software engineers perform the activities during

enactment. Therefore, it seems appropriate to place emphasis on the importance of

human dimension issues.

The second perceived deficiency in the surveyed PMLs is in term of the support for

dynamic allocation of resources. The motivation behind supporting dynamic

allocation as a feature of a PML and its underlying semantics is to ensure that

resources are allocated based on the dynamic needs of a particular project, and as

late as when the activity is about to be started. In this way, the process engineer can

be given flexibility to allocate resources based on the current situation.

The third perceived deficiency in the surveyed PMLs is in term of the support for

the collection of enactment data. Only APEL provides this support, that is, based on

the Goal Question Metrics [10]. By supporting collection of enactment data,

systematic and objective evaluation of a particular process model can be made. In

tum, this evaluation could be used as "indicators" to support process improvement.

Finally, the fourth perceived deficiency in the existing PMLs is in terms of

providing support for reflection. The main reason that reflection is required as a

feature of PML is to support evolution of a process model through a meta-process

[5, 8, 18, 21, 56]. In doing so, enactment of the existing activities must not be

affected. With reflection, the enacting process model can be accessed as data to be

modified by the meta-process, hence allowing the evolution of a process model to

occur while enactment is taking place.
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The above analysis has identified a novel combination of features which existing

PMLs do not provide, thus identifying an area for new PML research. This

combination of features includes the support for:

• Visual notations

• User awareness

• Process awareness

• Process visualisation

• Virtual meetings

• Dynamic allocation of resources

• Collection of enactment data

• Reflection

It is the vision of this research to develop a new PML which addresses all of the

aforementioned features. However, within a scope of a PhD, it would be difficult to

investigate all of these features. Therefore, this research will only concentrate on

the first six items from the list because they are perceived as the most novel and

important aspects for supporting modelling and enacting software processes [69,

70], in line with the main research hypothesis discussed in Chapter 1. The last two

items from the list will be considered as the scope for future work, discussed in

Chapter 8.

To address the support for visual notations, user awareness, process awareness,

process visualisation, and virtual meetings, one novel approach might be to develop

a visual PML which exploits a virtual environment. An example use of a virtual

environment in a similar context, in the sense that it involves collaborative work

among many participants, can be seen in the field of Collaborative Virtual

Environment (CVE) - a subset of CSCW. The attractive characteristics of a virtual

environment, such as the support for three dimensional graphics, immersion and

user interactions, provide a good reason to explore integration of a PML with a

virtual environment. In fact, it is generally believed that a virtual environment may

provide superior user interfaces to the traditional two-dimensional Windows Icon

Menu Pointer (WIMP) user interfaces [23].
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To address the support for the dynamic allocation of resources as a feature of PML ,
the current solution, based on the analysis of PMLs discussed earlier, is by utilising

process evolution while enactment is taking place. This approach can be seen in the

PMLs such as SLANG and SPELL which supports process evolution by utilising

their reflection facilities. Similar support for dynamic allocation of resources using

process evolution can also be seen in Dynamic Task Nets which utilises its

executable graph rewriting system. While evolution is a necessary feature of PML,

utilising it to support dynamic allocation of resources can be difficult and expensive

to achieve because of the need to enact the corresponding meta-process to guide the

evolution process. Therefore, it seems rather unjustified to exploit the process

evolution scheme just to achieve dynamic allocation of resources.

In order to overcome the difficulty faced by the above approach, a solution might

be to investigate a novel enactment model for a PML based on a resource exception

handling mechanism, essentially defining how the run-time system behaves when

failing to allocate resources in order to enact a particular activity in the process

model. The key feature of the enactment model is that it needs to allow the process

engineer to intervene and rectify the resource exception, hence achieve dynamic

allocation of resources.

In short, the two possible solutions to the deficiencies identified earlier suggest a

new visual PML with the following new features: it considers a virtual environment

as a fundamental constituent that is part of the construction of the process model

(e.g. features in the language) as well as being part of the runtime environment; and

supports dynamic allocation of resources through its enactment model. It is the

development of such a visual PML, called Virtual Reality Process Modelling

Language (VRPML), which is the main topic of this research.

2.6 Summary

In this chapter, the desirable characteristics of PMLs have been identified, and a

survey of enactable PMLs has been presented based on these characteristics. PMLs

have also been analysed to provide insights into their strengths and limitations, thus

providing requirements and justification for the development of VRPML.
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Building on the material developed in this chapter, the next chapter looks into

related work of exploiting a virtual environment for the modelling and enacting of

software processes, as well as discussing related design choices for VRPML.
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Chapter 3 - VRPML Design Issues

In the analysis and survey of PMLs in the previous chapter, some limitations were

observed in existing PMLs in terms of their support for user awareness, process

awareness and process visualisation as well as for dynamic allocation of resources.

To address some of these limitations, a new visual PML called VRPML is to be

investigated.

This chapter will examine a number of research issues related to the design of

VRPML. The first issue that will be discussed is whether or not it is useful to

exploit a virtual environment as a way of supporting a software process, in

particular by looking at the related work described in the literature. Being a visual

language, the second issue that will be explored in this chapter relates to visual

programming in terms of what is the suitable computational model for VRPML.

Finally, the third issue that will be examined is a novel enactment model to support

the dynamic allocation of resources.

3.1 Software Processes and a Virtual Environment

Because enactment of a process model requires much human involvement

particularly to undertake the assigned activities, there is obviously a need to address

the human dimension issues. As discussed in Chapter 2, among the human

dimension issues are the need to support process awareness, user awareness, and

process visualisation. Prior work has looked at exploiting virtual environments as a

way of addressing some of these issues.

Doppke et al [27] concentrate on support for visualisation of a software process

within a PSEE. According to Doppke, there are four different types of mappings

for representing a software process:

• Task-Centred Mapping - Using task-centred mapping, each activity in a

software process corresponds to a room in a virtual environment. In this case,

tools and artefacts are objects inside the room.
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• Agent-Centred Mapping - Using agent-centred mapping, a software engineer's

workspace is mapped to a room. In this case, the workspace acts as a

synthesizer of the multiple activities to be carried out by the software engineer.

Similar to task-centred mapping, tools and artefacts are objects inside the room.

• Resource-Centred Mapping - Using resource-centred mapping, a room

corresponds to resource instances within the software process. Being in the

resource's room indicates possession of an instance of that resource. Similar to

both task-centred mapping and agent-centred mapping, tools and artefacts are

objects inside the room.

• Artefact-Centred Mapping / Product-Centred Mapping - Using artefact or

product-centred mapping, artefacts are mapped onto rooms. The main

difference between this mapping and other mappings is that dependency

relationships between artefacts can be expressed as part of the arrangement of

the rooms, for example, if sub-products of the artefacts are defined then they

are represented as separate rooms connected to the parent product room either

by exits or by containment. Similar to other mappings, tools are objects inside

the room.

Becattini et al [11] suggest two slight variations of the mappings defined by

Doppke: workspace-centred mapping; and artefact-centred mapping. A workspace-

centred mapping is similar to the agent-centred mapping suggested by Doppke in

the sense that software engineer's workspace is represented as a room. However, in

a workspace-centred mapping, artefacts and tools are collected on top of desktops,

and each desktop is associated with a task to be executed. Likewise, an artefact-

centred mapping is similar to a product-centred mapping defines by Doppke in the

sense that artefacts are mapped into rooms. However, in an artefact-centred

mapping, rooms and connections correspond to the breakdown structure of the

artefacts being used and developed, thus, representing composition relations

amongst artefacts.

In other work, Dossick and Kaiser [28] concentrate on the support for user

awareness within a PSEE. They develop a (persistent) software engineering support

environment called the Columbia Hypermedia Immersion Environment (CHIME).

CHIME is made up of three components:
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• Groupspaces which provide a persistent organisation of artefacts.

• Groupviews which address multi-user interfaces, including awareness

mechanisms, by generating rooms and connection between rooms based on the

organisation of artefacts in the groupspaces.

• Software Immersion which creates an immersive environment from the artefacts

populating the groupspaces.

In CHIME, software engineers are represented as avatars and can potentially

encounter other avatars in the virtual environment. Artefacts and tools are

organised in a persistent virtual space allowing software engineers to manipulate,

create, modify and maintain them.

As has been shown, supporting software processes via integration with a virtual

environment is not in itself new. However, such integration has mainly been an

issue for the PML support environments (Process Centred Software Engineering

Environments - PSEE) rather than being a feature that can be used in constructing a

process model.

While integration with a virtual environment at the PSEE level is useful, it may be

insufficient to address awareness and visualisation issues effectively in terms of

each activity's work context. This is because although a PSEE may have the

capability to proscribe a software engineer's action, it may not be able to properly

capture each activity's work context. In order to overcome this limitation, there is

obviously a need for a PML support. Through a PML, each activity can be both

prescribed and proscribed based on its work context, hence, awareness and

visualization issues can be supported accordingly. Consequently, the research for

VRPML differs from the work described above by investigating exploitation of a

virtual environment not at the PSEE level but at the PML enactment level.

As will be seen in Chapter 4 and Chapter 6, VRPML allows work contexts for a

particular activity to be defined and later be opened as a workspace in a virtual

environment when that activity is enabled using the task-centred mapping discussed

above. It is, therefore, through a workspace that VRPML supports awareness and

visualisation issues.

72



3.2 Visual Programming

The second issue of importance for the development of VRPML relates to visual

programming. Visual programming can be defined as the use of graphics (e.g.

graphs, icons, nodes, and arcs) supplemented with textual annotations to allow a

user to specify a program. As pictures supposedly fit well into the mental

representation of humans, it is believed that using visual notations may alleviate

some of the difficulties inherent in writing and comprehending complex programs.

As an analogy, one may imagine a visual language as conventional road signage.

Through the judicious use of graphics, drivers around the world can comprehend

the same meaning of the road signs regardless of the language they speak - that is,

graphics can cross language barriers. Such an example demonstrates how intuitive

and powerful graphics can be if they are properly exploited.

Motivated by a number of the existing visual PMLs (e.g. FUNSOFT Nets [29],

SLANG [9], Dynamic Task Nets [37], APEL [24], and EVPL [36] ), a flow-based

visual language paradigm seems to be a suitable choice for VRPML. Normally,

flow-based visual languages are based on directed graphs. Graphs typically consist

of nodes, arcs and sub-graphs. Nodes represent function or actions, arcs carry data

or control-flow signals, and sub-graphs provide abstraction and modularisation.

Operations in graphs follow afiring rule which defines the conditions under which

execution of node occurs.

In the control-flow based model, a visual program consists of nodes connected by

arcs carrying control-flow signals. Arcs depict the control-flow dependencies

amongst connected nodes. The firing rule is based solely on the availability of the

control-flow signals on the node's input arcs - that is, data availability does not

play any part at all.

Conceptually, in the control-flow based model, every program can be thought of as

having an instruction counter and a globally addressable memory which hold

programs and data objects whose contents are updated by program instructions

during execution [2,3]. As far as a visual language associated with the control-flow

model is concerned, for simplicity, it may be viewed as supporting executable

flowcharts.
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In the data-flow based model, a visual program consists of nodes connected by arcs

carrying data. Arcs depict data dependencies amongst nodes. The firing rule is

based on the availability of data on the node's input arcs, and may be data-driven

or demand-driven. With a data-driven firing rule, an arc is used as a supply route to

transmit data from the source node to the destination node. A destination node is

executed as soon as data is available on all input arcs. With a demand-driven firing

rule, an arc is used as a demand route to request data from the source node. A

source node is executed only if there is a demand for its result. For either firing

rule, arcs are conduits for data. In tum, data on an arc is consumed by the executing

node to perform its computation (although some variations of the data-flow based

model also allow an arc to retain data).

According to Agerwala and Arvind [3], the data-flow based model can be

distinguished from the control-flow based model in that it has neither a globally

addressable memory nor a single instruction counter. As the data-flow based model

possesses no global memory, the only data available to a node for its operation is

that from its inputs. In addition, because of the lack of any shared data amongst

nodes, there can be no side effects (one node interfering with other node's data,

potentially causing unexpected results).

As the data-flow firing rule depends solely on the availability of data, nodes whose

data is available can potentially be executed in parallel. The sequencing of the

execution of nodes, for example in terms of the assignment of runtime processes to

processors, is determined solely at runtime by the runtime system. Thus, a data-

flow based model supports parallelism naturally.

Apart from the control-flow or the data-flow based models, one less popular

paradigm is the computational model based on both models. Here, there are two

kinds of arcs with different semantics: the data-flow and the control-flow arc. The

firing rule for this paradigm can be complex because it is based on the combination

of both the data-flow and the control-flow signals. Furthermore, while the problem

of arcs crossing each other and resulting in a cluttered view is inherent in a flow

based visual language based on directed graphs, the fact that two arcs are used here

means that the crossover problem can be even greater. Generally, if there are too

many arc crossovers, the overall program understanding may be compromised.
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Therefore, the option of combining the control and data-flow models will not be

considered as the computational model for VRPML.

Having disregarded the option of adopting both the data-flow and the control-flow

as the computational model for VRPML, there are now only two choices of the

computational model: the control-flow model; or the data-flow based model. The

selection of the computational model for VRPML will be discussed next by taking

into accounts the need of a software process.

In order to support modelling and enacting of software processes, there is a need

for VRPML to support cyclic behaviour. This need can be seen, for example, in the

case where software design fails its review. In the case of the control-flow model,

only one control-flow signal is needed to enable the previous node regardless of the

number of data items required for that node. However, in the case of the data-flow

based model, to enable the previous node requires all the data for that node to be

available. Thus, while both the control-flow and the data-flow based model can

address this need in a straightforward manner, it seems somewhat easier in terms of

implementation to use the control-flow rather than the data-flow model

In addition to being able to support cyclic behaviour, there is also a need for

VRPML to facilitate reasoning about its execution semantics, hence making

enactment of a software process traceable. It is useful to be able to trace the

enactment of the software process to facilitate process awareness and process

understanding which can lead to improved process support. Because the ordering

and enactment of tasks in the data-flow based model strictly depends on the

availability of data at runtime, enactment of a software process may be non-

deterministic. Hence, it is difficult to reason about and to trace enactment in the

data-flow model compared to the control-flow model.

Because some activities in a software process need to be undertaken by more than

one software engineer, there is also a need for VRPML to support shared artefacts.

For example, in the case of an activity such as modify code, it may be that more

than one software engineer is assigned to change the same source code at the same

time. Although both the control-flow and the data-flow based models can address

this need, it seems preferable to use the control-flow rather than the data-flow

model. Because the data-flow model inherently avoids the problem of side effects-
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that is, one node interfering with other node's data, there is a need for copies of

data to be replicated across nodes to enable shared data. In fact, this need may put

an extra burden for process engineers who construct the process model.

Finally, although the data-flow based model is helpful in the sense that parallelism

can be achieved automatically, such a feature may not be a major benefit for

enacting software processes in VRPML. As far as enactment of software processes

are concerned, because software engineers are the "processors" which perform the

computation, it is desirable to have their assignments under human control (e.g.

under the discretion of the project manager). This is because software engineers

have different skills which need to be considered before task assignments can be

made. Thus, in this respect, the data-flow based model has no clear advantage over

the control-flow based model.

While the data-flow based model has some merits, it is the control-flow based

model that has been chosen for VRPML. This choice will be reflected in the design

of VRPML in the next chapter.

3.3 Supporting Dynamic Allocation of Resources

As discussed in Chapter 2, the current approach through which the dynamic

allocation of resources can be achieved in a PML is via enabling evolution of the

process model while enactment is taking place. While enabling evolution is a

necessary feature of a PML, extra overhead may be introduced because of the need

to enable steps in the meta-process to ensure no ad hoc changes and no side effects

might be introduced in the process model. Therefore, because of this extra

overhead, it seems unjustified to exploit on-the-fly process evolution just to achieve

dynamic allocation of resources.

An alternative way of addressing the support for dynamic allocation of resources is

to define a suitable enactment model which is able to cope with the required

dynamic behaviour. A candidate is an enactment model which exploits a resource

exception handling mechanism. Briefly, whenever the runtime system fails to

acquire resources for a particular activity, a resource exception will be thrown

causing the enactment of that activity to be suspended. In tum, another activity is

automatically created and assigned to the process engineer to fix the resource
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exception. Only after the resource exception is properly fixed can enactment of that

activity is resumed. This enactment model will be further discussed in Chapter 4 in

details after the description of VRPML syntax and semantic are developed.

3.4 Summary

This chapter started with a brief survey of the related work which suggests that it is

useful to exploits a virtual environment as a way to address the human dimension

issues at the PML enactment level. Then, a general discussion on visual

programming as well as the justification for the adopting the control-flow model for

VRPML was provided. Finally, a brief remark on the limitation of the current

approaches for achieving dynamic allocation of resources was given, and a novel

alternative approach was identified for VRPML.

Building on the material on this chapter and the characteristics of PMLs given in

Chapter 2, the next chapter looks into the actual syntax and semantic of VRPML.

Additionally, issues relating to the enactment model are developed further.
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Chapter 4 - The VRPML Notation

The previous three chapters gave a broad overview of background research for

VRPML. In particular, they discussed the current state-of-the-art with respect to

PMLs, provided justification and requirements for the development of VRPML as

well as outlined issues related to visual programming together with rationalisation

of design choices which VRPML is based upon. The remainder of this thesis will

focus on the design of VRPML, modelling of the case studies, and prototype

implementation and evaluation.

This chapter starts by giving an overview of VRPML notation by revisiting the

partial solution of the ISPW-6 problem [48] originally introduced in Chapter 1.

Subsequently, the detailed syntax and semantics of VRPML are described. Next,

the enactment model is discussed illustrating how enactment and the support for the

dynamic allocation of resources can be achieved.

4.1 Overview

VRPML is a control-flow based visual language for supporting modelling and

enacting of software processes in a virtual environment. In VRPML, software

processes are generically modelled in that resources (in terms of software

engineers, artefacts and tools) are allowed to be allocated dynamically based on the

specific need of a particular project.

Software processes are written in VRPML as graphs, by interconnecting nodes

from top to bottom using arcs carrying control-flow signals. In terms of its

structure, VRPML graphs are cyclic. As an illustration for VRPML syntax, Figure

4-1 revisits the partial solution of the ISPW-6 problem given in Chapter 1 - the

overall explanation of the VRPML solution of the ISPW-6 problem will not be

fully discussed until the next chapter.
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VRPML Graph
for the ISPW-6
Problem

Figure 4-1 Partial Solution of the ISPW-6 Problem Revisited

Similar to JIL [63] and Little JIL [66], software processes in VRPML are described

using process steps, which represent the most atomic representation of a software

process (i.e. the actual task that software engineers are expected to perform). These

process steps are represented as nodes, called activity nodes (shown as small ovals

with stick figures). VRPML supports a number of different kinds of activity nodes

- some examples are in Figure 4-1, but are discussed further in Section 4.2.3.

The firing of activity nodes is controlled by the arrival of a control-flow signal.

Control-flow signals may be generated at the completion of a node, often from

special completion events called transitions (shown as small white circles with a
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capital letter, attached to an activity node) or decomposable transitions (small black

circles with a capital letter). An initial control-flow signal is always be generated

from a start node (a white circle enclosing a small black circle). A stop node (a

white circle enclosing another white circle) does not generate any control-flow

signals.

VRPML allows activity nodes to be enacted in parallel using multi-instance nodes

(overlapping ovals) or combinations of language elements called merger and

replicator nodes (trapezoidal boxes with arrows inside). To improve readability, a

set of VRPML nodes can be grouped together and replaced by a macro node

(shown as dotted line ovals), with the macro expansion appearing on a separate

graph.

For every activity node, VRPML provides a separate workspace. Figure 4-2 depicts

a sample workspace for the activity node called Review Meeting in Figure 4-1. A

workspace typically gives a work context of an activity as it hosts resources needed

for enacting the activity: transitions, artefacts (shown as two overlapping

documents with arrows for depicting access rights), communication tools (shown as

a microphone, and an envelope), and any task descriptions (shown as a question

mark). Effectively, when an activity node is enacted, the workspace is mapped into

a virtual room, transitions into buttons, and artefacts, communication tools and task

description into objects which may be manipulated by the assigned software

engineer to complete the particular task at hand.

OutcomeNotification Communication Tool

EmaiiTool

RequirementChange

ModifiedDesign DesignReviewFeedback

Figure 4-2 Sample workspace for the Review Meeting in Figure 4-1

Having defined the general flavour of VRPML, the syntax and semantic of

VRPML can now be explained in details.
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4.2 Syntax and Semantic of VRPML notation

This section discusses the syntax and semantic of VRPML notation as well as their

main justification. Where appropriate, an example will be provided from the

VRPML solution of the ISPW-6 problem to demonstrate how the notation should

be used for supporting modelling and enacting of software processes.

4.2.1 Start, Stop and Re-enabled Nodes

As VRPML adopts the control-flow model, it is necessary to be able to generate

and propagate control-flow signals. In addition to the use of transitions (described

below), the way VRPML provides and handles a control-flow signal is through a

start node, a stop node and a re-enabled node. The notations for start nodes, stop

nodes and re-enabled nodes are given in Figure 4-3.

Figure 4-3 Start, Stop and Re-enabled Nodes

A start node generates an initial control-flow signal when the VRPML graph is first

enacted. A stop node serves as an exit point for control-flow signals. A re-enabled

node behaves like a stop node allowing the control-flow signal to exit and

permitting the same control-flow signal to re-enable its own parent's activity node

- their use will be clarified when decomposable transitions are explained below.

4.2.2 Arcs

In VRPML, arcs are conduits for control-flow signals. Arcs also depict

dependencies amongst activity node and their proper sequencing. In VRPML, arcs

are unidirectional and only one control-flow signal may flow on a particular arc at

any particular time. The obvious notation for an arc is given in Figure 4-4.
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Source

l
Destination

Figure 4-4 Arc

4.2.3 Activity Nodes and Workspaces

Process steps are used as the main abstraction for software processes in VRPML, as

in JIL and Little JIL. They are represented as activity nodes and workspaces. The

concepts of activity nodes and workspaces are analogous to package interfaces and

package bodies in the ADA programming language that is, activity nodes and

workspace come in pairs. For every activity node, a workspace must be defined.

In general, an activity node is a parameterised node, accepting a role assignment as

a parameter which may be used to allocate a specific software engineer to the task.

For a particular activity node, a workspace hosts transitions, and artefacts and

communication tools for completing the activity. In addition, for every workspace,

a task description can be optionally specified to informally describe the activity in

natural language and be made available during enactment to guide the software

engineer. In VRPML, the concept of workspaces can be seen as a step toward

supporting process visualisation.

There are three kinds of activity nodes supported by VRPML. They are a general-

purpose activity node, a multi-instance activity node and a meeting activity node.

The visual representation of activity nodes and their workspaces is given in Figure

4-5.
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Activityldentifier
~ Role

Activity Identifier

~ Role

General Purpose Activity
Node and its Workspace

Meeting Activity Node
and its Workspace

Figure 4-5 Activity Nodes and Their Workspaces

Multi-Instance Activity
Node and its Workspace

A general-purpose activity node represents the most atomic part of software

processes which a software engineer is expected to perform. A multi-instance

activity node, a concept borrowed from APEL [24], is a collection of identical

process steps performed by more than one person. A meeting activity node allows

multiple software engineers to meet virtually to make some collective decision.

Although not exemplified in their icons above, both multi-instance activity nodes

and meeting activity nodes have an associated depth, indicating the actual number

of engineers involved (and also the number of identical activities in the case of

multi-instance activity). Depths of multi-instance activity and meeting activity

nodes can be specified during instantiation or dynamically.

As depicted in Figure 4-5, workspaces for different kinds of activity nodes are

unique. The reason for having a unique workspace is to support a sense of process

awareness during process enactment. For instance, software engineers are able to

distinguish whether the process steps that they are undertaking also concurrently

involve other software engineers - the case for multi-instance activities. Such

awareness should encourage inter-person communications, which is seen as one of

the important aspects of supporting collaborative work [68].

4.2.4 Transitions

When a process step specified by an activity node is undertaken in its workspace,

there is obviously a need to be able to indicate its completion (success or failure) or
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cancellation. The way VRPML support such events is through transitions.

Effectively, transitions give a software engineer some flexibility and choice of

control over what happen next. This is an important characteristic, which can also

be seen in other PMLs, particularly Little Jll.. In term of semantics, a transition is

similar to a button (in the engineer's virtual room), which responds to a click-event.

On pressing a transition, a single control-flow signal is generated.

In the case where certain post-conditions would have to be satisfied or some

automated steps would need to be performed before allowing the completion or

cancellation of a process step, VRPML allows transitions to be decomposable.

Decomposable transitions enable automation scripts or sub-graphs to be specified

(and executed if selected). An example of a transition labelled D (representing a

'done' transition) and a decomposable transition labelled A (representing an 'abort'

transition) is given in Figure 4-6.

00
Figure 4-6 Example of Transition and Decomposable Transition

The re-enabled node introduced earlier behaves like a stop node allowing a control-

flow signal to exit through in a decomposable transition and permitting the same

control-flow signal to re-enable its parent's activity node. To illustrate the

behaviour of a re-enabled node, Figure 4-7 depicts a sub-graph representing the

decomposable transition labelled D (for Done) for the activity node Modify Code in

Figure 4-1. If the transition representing Redo (labelled R) in the activity node

Check Compilation in Figure 4-7 is pressed by the assigned software engineer, a

control-flow signal will be generated and will re-enable its parent activity node

Modify Code. On the other hand, if the transition representing Done (labelled D) in

the activity node Check Compilation is pressed by the assigned software engineer,

that is, in the case where codes are successfully compiled, a control-flow signal will

be generated to flow out of the stop node and back to the main VRPML graph in

Figure 4-7 (i.e. towards the merger node).
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Figure 4-7 Example Usage of a Re-enabled Node

ess given to the assigned software engineer for transitions IS handled

ly for different kinds of activity nodes. In a general-purpose activity node,

ned software engineer has sole access to the transitions in that node. In a

stance activity node, each assigned software engineer also has sole access

instance of the transitions but only one control-flow signal will be

d eventually from the node. For this signal to be generated, all of the multi-

transitions must be completed. Control-flows generated for each of these

ns can be thought of as passing through a merger node (described below).

.eting activity node, access to transitions is only given to a designated

: engineer who is expected to moderate the meeting. By convention, the

: engineer assigned to the top general-purpose activity node in a meeting

node is assumed to be the moderator. Meeting activity nodes can also be

support process steps involving multiple software engineers, but access to

ns will be centrally controlled by the moderator.

iIIacro Nodes

iort modularisation of its graphs, VRPML provides a macro facility. A

ode can group one or more nodes together and replace them with a single

reduce the graph complexity. Semantically, a macro node behaves like a

macro in the C programming language. When a control-flow signal

ers a macro node, the enacted VRPML graph is rewritten to include the

mtained in that macro. In this way, a macro may be used in different parts
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of VRPML graphs. The visual representation of a macro node is given in Figure 4-

8.

_----_
/'

/
(
\
-,

Macro Identifier
<,

\
I
/

/
/'-----

Figure 4-8 Macro Node

To illustrate the usage of a macro node, Figure 4-9 shows the expansion of the

macro node called Test Unit in Figure 4-1. Transitions on the Test Analysis node

have been labelled as: B (for Both Feedback); C (for Code Feedback); T (for Test

Feedback); and P (for Passed).

Macro
Expansion
for Test Unit

DsgnEngr

Figure 4-9 Macro Expansion for Test Unit (see Figure 4-1)

4.2.6 Replicator and Merger Nodes

Since software processes in reality are never performed in a sequential manner, a

PML needs to support process steps running in parallel. As well as the use of multi-

instance nodes, in VRPML this parallelism support is enabled using replicator and

merger nodes. Replicator nodes accept a control-flow signal and replicate it as

many times as specified by arcs leaving it. Merger nodes accept many control-flow
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signals and convert them into a single signal. In doing so, a merger node blocks

execution until it receives the control-flow signals on all of its input arcs. The

visual representation of replicator and merger nodes is given in Figure 4-10.

Figure 4-10 Replicator and Merger Nodes

4.2.7 Artefacts

Artefact icons provide access to the actual artefacts and tools needed to complete

the particular process step, and can only be defined inside a workspace. An artefact

has two formal parameters. These parameters are associated with the actual location

of the artefact (e.g. a particular source file) and the corresponding tool and its actual

location (e.g. the compiler to use). Typically, these parameters are set either during

instantiation or dynamically during enactment. Artefacts have 5 modes of access:

read-only; read and write; write-only; local; and exclusive. The default mode of

access for artefacts is read and write. With the exception of exclusive and local,

other modes of access are similar to those in Little JIL. Exclusive access mode is

needed in the case of multi-instance activity nodes and meeting activity nodes

where artefacts are by default shared amongst assigned engineers. By using the

exclusive access mode, certain shared artefacts can be made exclusively accessible

to a particular software engineer. Local access mode allows the definition of

artefacts local to a particular activity node (i.e. similar to "local variable" in a

general programming language). The visual representation of artefacts and their

modes of access is given in Figure 4-11.
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Read R ead/W rite Write Local Exclusive

Figure 4-11 Artefacts and Their Access Rights

4.2.8 Communication Tools

Communication tools support interactions amongst software engineers, which is an

important element when geographically and temporally distributed software

engineering teams are involved In the processes. Synchronous (e.g.

teleconferencing programs or chat-like programs) and asynchronous (e.g. email or

messaging programs) tools are provided as icons and have one formal parameter.

This parameter, which may be set during instantiation or dynamically, relates to the

actual tool and its location. Just as with artefacts, communication tools must be

defined inside a workspace. One way of providing user awareness support is to use

videoconferencing-like systems as the main synchronous communication tool. The

visual notation for synchronous and asynchronous communication tools is given in

Figure 4-12.

Figure 4-12 Synchronous and Asynchronous Communication Tools

4.2.9 Comments

Finally, like other PMLs, VRPML also provides support for specifying comments.

In general, comments allow extra documentation, and provide some justification

pertaining to the chosen approach in the source code. In VRPML, comments can be

placed anywhere. The visual representation of a comment is given in Figure 4-13.
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D
Figure 4-13 Comments

4.3 Enactment Model

An issue of paramount importance relating to VRPML's enactment model is

resources and their allocation. In VRPML, resources include roles assignment,

artefacts and tools (including synchronous and asynchronous communication tools)

in a workspace as well as the depths of multi-instance activity nodes and meeting

activity nodes. Since software processes are highly dynamic, resources can rarely

be specified completely during instantiation (discussed in Chapter 2), and require

dynamic support during enactment. VRPML exploits a resource exception handling

mechanism to provide this support.

If for any reason a graph enactment fails to acquire its resources to enable an

activity, enactment will be blocked until such resources are made available. In this

way, VRPML resource exception handling mechanism is similar to blocking

primitives (e.g. in, read) in Linda [33].

As software processes are typically long-lived, blocking removes the need to

recover from the effect of previously completed process steps, thus, allowing online

rectification of an exception. Ideally, such a feature allows enactment of a process

model even if resources have not yet been assigned.

Figure 4-14 depicts the enactment model for an activity node in VRPML expressed

in terms of a state transition diagram. The behaviour of the runtime systems

supporting such an enactment model can be thought of as consisting of a single

producer (VRPML interpreter) and multiple consumers (engineer's runtime support

system) communicating using a shared tuple space.
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Resources needed for the process
step are successfully acquired

Resource exception
rectified

Resource exception
raised

Suspended Enabled

Process step is
terminated

Process step
is terminated

Process step is
terminated

signal is generated

Engineer undertakes the
process step

Progressing

Engineer selects any of the
possible transitions

Figure 4-14 VRPML Enactment Model

Upon the ani val of a control-flow signal, an activity node will be in an enabled

state. This is the case where the VRPML interpreter attempts to acquire resources

(in terms of role assignments, artefacts, tools as well as depths of activity nodes)

that the activity node needs. If resources are successfully acquired, the VRPML

interpreter then "produces" the process step corresponding to that activity node in

the tuple space. The engineer's runtime support system then "consumes" the

process step putting it into a ready state. Ideally, in this state, the process step is

made available in the to-do-list of the assigned software engineer. If for any

reason, VRPML interpreter fails to acquire resources it needs, a resource exception

will be thrown putting the enactment of that particular process step in the VRPML

graph into a suspended state. In this state, VRPML interpreter automatically

produces a process step in the tuple space for the administrator (in this case, it may

be the project manager or "process engineer") to rectify the resource exception or

completely termjnate the process step (putting it in an aborted state). If a process

step is terminated, the administrator may optionally terminate the overall enactment

of the particular VRPML graph in question or manually re-enact connecting and

enclosing nodes (e.g. in a decomposable transition) by providing the necessary

control-flow signals that they need to fire. If the resource exception is rectified,

enactment of the particular VRPML graph can continue allowing VRPML
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interpreter again to "produce" the process step in the tuple space. This process step

can then be put into a ready state once the engineer's runtime support system has

consumed it. If an engineer selects that particular process step (in the progressing

state), a workspace for that process step will appear as a virtual room with artefacts,

transitions and communication tools as objects which software engineer can

manipulate to complete the task. The process step is in the completed state when

the software engineer selects anyone of the possible transitions regardless of its

outcome (e.g. passed, failed, done, or aborted).

4.4 Summary

In summary, this chapter discussed the syntax and semantics of VRPML intended

to support modelling and enacting of software processes in a virtual environment.

Toward the end, this chapter outlined the VRPML enactment model to illustrate

how enactment and dynamic allocation of resources can be achieved.

The next chapter presents the detailed account of the VRPML solution of the

ISPW-6 problem. Additional experience with VRPML to support the modelling of

the waterfall software development model is also summarised.
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Chapter 5 - Modelling of Two Case Studies Using VRPML

The previous chapter described the VRPML notation in terms of its syntax and

semantics by outlining the partial solution of the ISPW -6 problem. Building from

this material, this chapter presents VRPML solutions of two case study problems:

the complete ISPW -6 problem; and the waterfall software development model. The

main aim of this chapter is, therefore, to investigate whether VRPML provides a

sufficiently rich notation to support the modelling and enacting of software

processes.

5.1 Experience with VRPML

In order to explore the expressiveness of the VRPML notation, there is obviously a

need to apply VRPML to case study problems. One well-known case study

problem for facilitating evaluation of a PML is the ISPW-6 problem [48]. The

ISPW-6 problem represents a standard benchmark for determining whether a new

PML can express a real software engineering process. Furthermore, through use of

this standard benchmark problem, an objective comparison of VRPML with other

PMLs can be made.

Since the ISPW -6 problem is specific to the software change request process, it

may be insufficient to evaluate VRPML completely. Therefore, a more general case

study problem is also needed, particularly involving the software processes for a

complete software development model. These processes must be explicit and well-

defined in terms of their inputs and outputs. Arguably, if one could use an existing

definition of a development model in which activities and their inputs and outputs

have already been well-defined, more effort can be concentrated on the modelling

and enacting issues and less on defining the stages (and activities). The waterfall

software development model seems to fit well into this category.

In general, the waterfall software development model relies on a stage-at-a-time

approach, and consists of a number of well-defined stages. Most of these stages

have fixed constraints, and culminate in formal agreed milestones, many of which
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involve documentation. Thus, the waterfall software development model is a

convenient choice as another case study for VRPML. In the next section, a

discussion of the two case studies will be offered along with their solution

expressed in VRPML.

5.2 The ISPW-6 Problem

The ISPW-6 problem [48] concerns a software requirement change request for an

existing software component, occurring either towards the end of the development

phase or during maintenance phase of the software lifecycle. The ISPW-6 problem

starts in response to a software requirement change request, with the project

manager scheduling and assigning various engineering tasks in the process. These

tasks include: Schedule and Assign Tasks; Modify Design; Review Design; Modify

Code; Modify Test Plans; Modify Unit Test Package; and Test Unit. During the

enactment of these tasks, the project manager is also required to monitor their

progress. Figure 5-1 depicts the flow of tasks in the ISPW-6 problem.

Schedule and
Assign Task

~~
Modify Design Modify Test Plans

.: 1
~ Modify Unit

Modify ~ jaCkag
,

Testnil

Monitor Progress

In each of the tasks, the ISPW -6 problem defines restrictions In terms of the

ordering, the input and output artefacts, and the role responsible for each activity,

Figure 5-1 Flow of tasks in the ISPW-6 Problem
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as well as conditions for each activity initiation and termination. Table 5-1

summarises the role responsibility, inputs and outputs as well as constraints defined

for each of the tasks.

Responsibility: Project Manager

Inputs: Requirement Change, Authorisation, Project Plans

Schedule And Outputs: Updated Project Plans, Notification of Task Assignments and Schedule Dates, Requirement Change
Assign Tasks Constraints:

. Begins as soon as authorisation is given

. Ends when outputs have been provided
Responsibility: Design Engineer
Inputs: Requirement Change, Current Design, Design Review Feedback

Modify
Outputs: Modified Design
Constraints:Design
- Can begin as soon as the task been assigned
- Subsequent iteration can begin if design is not approved by the Review Design
- Ends when outputs have been provided

Responsibility: Design Review Team

Inputs: Requirement Change, Modified Design
Review

Outputs: Design Review Feedback, Approved Modified Design, Outcome NotificationDesign
Constraints:
- Begins on schedule provided the modified design is available at the time
- Ends when outputs have been provided
Responsibility: Design Engineer
Inputs: Requirement Change, Modified Design, Current Source Code, Feedback Regarding Code

Modify Outputs: Modified Source Code, Object Code
Code Constraints:

- Can begin as soon as the task has been assigned even if Modify Design has not begun (discretion)
- Ends when clean compilations are achieved, outputs have been provided and design is approved
- Subsequent iteration can begin if required when test unit has completed
Responsibility: QA Engineer

Inputs: Requirement Change, Current Test Plans
Modify Test Outputs: Modified Test Plans

Plans Constraints:
- Can begin as soon as the task has been assigned
- Ends when outputs have been provided
Responsibility: QA Engineer
Inputs: Requirement Change, Modified Test Plans, Current Unit Test Package, Modified Design,

Source Code, Feedback Regarding Test Package
Modify Unit Outputs: Modified Unit Test Package

Test Package Constraints:
- Can begin as soon as Modify Test Plans has completed
- Subsequent iteration can begin if required as Test Unit has completed
- Ends when outputs have been provided
Responsibility: Design Engineer, QA Engineer
Inputs: Requirement Change, Object Code, Unit Test Package
Outputs: Test Results, Feedback Regarding Code, Feedback Regarding Test Package,

Test Unit Notification of Sucoessful Testing
Constraints:
- Can begin as soon as both Object Code and Unit Test Package are available
- Ends when outputs have been provided
Responsibility: Project Manager
Inputs: Requirement Change, Notification of Completion (from all tasks), Current Project Plans:

Monitor Outcome Notification, Notification of Sucoessful Testing, Decision Regarding Cancellation

Progress Outputs: Updated Project Plans, Notification of Revised Task, Cancel Recommendation

Constraints:
- Persists throughout the duration of the prooess
_Ends when Test Unit has been suooessfully completed or cancellation of the whole ISPW prooess

Table 5-1 Summary of the ISPW -6 Problem
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Furthermore, some tasks defined in the ISPW-6 problem also involve a collective

decision making process: Review Design and Test Unit. In Review Design, there

are three possible outcomes of the review process:

• Unconditional approval - in this case, the design is totally approved and

incorporated into the software design document.

• Minor changes recommended - in this case, minor changes are required and

feedback is provided to the design engineer. The re-review is expected to be

perfunctory.

• Major changes recommended - in this case, major changes are required and

feedback is provided to the design engineer.

In the Test Unit, there are four outcomes of the testing process depending on the

test coverage attained by running the unit test package. The possible outcomes are:

• The Test Unit is successful as 90% test coverage has been achieved (assuming

an automated coverage analyser is employed). In this case, the ISPW-6 problem

completes.

• The source code needs to be modified further. In this case, feedback regarding

the code must be furnished and the task Modify Code has to be restarted.

• The unit test package needs to be modified further. In this case, feedback

regarding the test package must be furnished and the task Modify Unit Test

Package has to be restarted.

• Both source code and unit test package need to be modified further. In this case,

feedback regarding both the code and test package must be furnished. In

addition, tasks Modify Code and Modify Unit Test Package have to be

restarted.

Having described the ISPW -6 problem in detail, the solution expressed in VRPML

can now be presented.

5.2.1 VRPML Solution of the ISPW-6 Problem

From the above discussion, one can observe that there are essentially two different

process models within the ISPW -6 problem. In the first model, the Modify Code is
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started after Modify Design and Review Design. In the second model, Modify Code

is started in parallel with Modify Design and Review Design upon the discretion of

the project manager (i.e. under the assumption that the affected source code is

known in advance). In order to represent both models, VRPML employs two

separate graphs shown in Figures 5-2 and 5-3 respectively.

VRPML Graph
for the ISPW-6
Problem

ModifyTestPlans

~ QAEngr

ModifyUnitT estPackag

~ QAEngr

Figure 5-2 VRPML Graph for the ISPW-6 Problem
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Alternative
VRPML Graph
for the ISPW-6
Problem

ModifyCode

~ OsgnEngr

Figure 5-3 Alternative VRPML Graph for the ISPW-6 Problem

Although the VRPML graphs in Figures 5-2 and 5-3 differ in terms of the ordering

and sequencing of Modify Code, the activity nodes and their workspace definitions

are identical. Thus, for brevity sake, only the VRPML graph in Figure 5-2 will be

developed further below.

At a glance, it might appear that the tasks Schedule and Assign Tasks and Monitor

Progress in Figure 5-1, are not modelled as part of the solution. As discussed in

Chapter 4, scheduling and assignment of tasks in VRPML can be performed

dynamically, that is, by relying on the resource exception handling mechanism that

is part of the enactment model. In fact, scheduling and assignment of tasks also

includes the fact that the project manager needs to choose between the two VRPML
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graphs given earlier. Additionally, the rectification of the resource exception

supported by VRPML can be seen as a way to monitor progress dynamically as

enactment commences. Consequently, the fact that Schedule and Assignment of

Tasks and Monitor Progress are not modelled is not a major issue.

Apart from the above, most of the tasks identified in the ISPW-6 problem appear

directly as activity nodes in the VRPML graph with the exception of Review

Design and Test Unit. Review Design is actually broken down into two activities in

the VRPML graph:

1. Review Design

ii. Review Meeting

The reason for breaking down Review Design into sub-activities is that the review

process often involves two activities relating to the review of the design and the

collective decision making process. In fact, Review Design and Review Meeting

can be thought of as the post-condition checks on Modify Design. This is due to the

fact that the actual completion of Modify Design is decided by both Review Design

and Review Meeting.

Test Unit is broken down into five activities grouped into a macro node called Test

Unit (described below) involving:

i. Test

11. Test Analysis

iii. Feedback for Code

IV. Feedback for Test Package

v. Feedback for Code and Test Package

Similar to Review Design, the main rationale for breaking down Test Unit into five

activities is that, apart from testing, Test Unit also involves a collective decision

making process on the test outcome as well as giving the appropriate feedback on

the test results.
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In terms of enactment, when the VRPML graph in Figure 5-2 is first enacted, a

control-flow signal is generated by the start node. This control-flow signal is then

replicated by the replicator node to enable the Modify Design and the Modify Test

Plans activity nodes. Upon the arrival of the control-flow signals for both activity

nodes, the VRPML interpreter attempts to acquire the resources (in terms of the

artefacts, roles and engineer's assignment) for both activities. If resources have

either not yet been assigned or have been assigned but are not available, a resource

exception will be thrown, and the enactment of the activity whose resource

exception is thrown will be suspended. In tum, the VRPML interpreter

automatically creates a task for the process engineer to fix the resource exception or

terminate the overall enactment. Once resources have been assigned and

successfully acquired, Modify Design and Modify Test Plans can now appear in the

to-do-list of the assigned software engineer. When the assigned software engineer

chooses to undertake the task, the workspace of the task will be opened in its virtual

environment. To allow completion or cancellation of a particular task, the software

engineer may select from anyone of the given transitions which appear as objects

in that virtual environment. In tum, the selected transition will automatically

generate the appropriate control-flow signals to support further enactment.

As the enactment of the VRPML graph in Figure 5-2 is relatively straightforward, it

will not be traced further. However, there are a number of issues relating to

enactment which are worth discussing. Two issues relate to the enactment of the

multi-instance activity node Review Design and the meeting node Review Meeting.

Firstly, as discussed in Chapter 4, the depths of the multi-instance activity node and

the meeting activity node correspond to how many software engineers are involved.

These depths can be specified either before or dynamically during enactment. This

feature again enables VRPML to support the dynamic creation of tasks according to

the (dynamic) needs of a particular project.

Secondly, in the case of Review Design, a control-flow signal will only be

generated if all of the assigned engineers have completed the design, that is, all of

them have already selected the Done transition. Effectively, being a multi-instance

activity, Review Design can be viewed as a combination of general purpose activity

nodes going through a merger node. As an illustration, Figure 5-4 shows the sample

equivalent graph for Review Design assigned to three engineers (Depth = 3).
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Review Design

X DsgnEngr

D

Figure 5-4 Sample Equivalent Graph for Review Design with Depth = 3

In the case of Review Meeting, a control-flow signal will always be generated

when the moderator (by default, the assigned design engineer specified on top of

the meeting activity node) selects any of the possible transitions, regardless of how

many engineers were assigned to the meeting. Furthermore, because a meeting

activity node also supports shared artefacts as a multi-instance activity node, it is

possible to combine Review Design and Review Meeting into a single meeting

activity node. However, the access to the Done transition in such a case will be

given solely to the moderator.

The third enactment issue concerns the decomposable transition representing Done

(labelled D) for the activity node called Modify Code. When the decomposable

transition D is selected, a control-flow signal will be generated to enact the sub-

graph associated with that transition, given in Figure 5-5.

CheckCompilation

SWEngr

D

Figure 5-5 Sub-graph for the Transition Done in Modify Code

In effect, the purpose of allowing sub-graphs to be specified for a decomposable

transition is to ensure that any post-conditions for its parent activity node are
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satisfied before allowing further enactment. For example, in this case, the post-

condition of the activity node Modify Code is that the modified code must compile

successfully. Obviously, if the modified code does not compile successfully, the

assigned software engineer can select the transition representing Redo (labelled R)

in the activity node Check Compilation in Figure 5-5. As a result, a control-flow

signal will be generated and will re-enable the transition's parent activity node

Modify Code through a re-enabled node.

Finally, the fourth issue relates to enactment of the macro node called Test Unit.

When a control-flow signal encounters the Test Unit macro node, the enacted

VRPML graph is rewritten to include the graph contained in that macro (shown in

Figure 5-6). As described earlier, the macro Test Unit consists of five activities:

Test; Test Analysis; Feedback for Code; Feedback for Test Package; and Feedback

for Code and Test Package.

Macro
Expansion
for Test Unit

Test

Figure 5-6 Macro Expansion for Test Unit

ISPW-6 Workspaces

Each activity node must always be accompanied by its workspace along with the

appropriate definitions of resources and transitions. Additionally, task descriptions

can be optionally specified in a workspace using natural language, for example, to
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further document the task. Before the workspaces are presented, it should be noted

that although task descriptions can be useful to guide the software engineers, they

will only be selectively shown here as part of the workspaces defined in the

VRPML solution. This is because certain tasks should be relatively straightforward

(e.g. Modify Code, Modify Unit Test Package) and should require no further

descriptions. Nevertheless, task descriptions will be provided whenever deemed

necessary, for example in the case where workspaces host more than one transition

and the assigned software engineers are required to make a choice (e.g. Review

Meeting, Test Analysis).

In the following paragraph, the workspace definitions will be described for: activity

nodes appearing in the main VRPML graph; the sub-graph for the transition Done

in Modify Code; and the macro expansion of Test Unit.

The first workspace is for the activity node Modify Design. The workspace, shown

in Figure 5-7, consists of a done transition (labelled D), and three artefacts: Current

Design with read and write access; Requirement Change with read-only access; and

Design Review Feedback with read-only access.

RequirementChange

CurrentDesign

DesignReviewFeedback

Figure 5-7 Workspace for Modify Design

The next workspace definition is for the multi-instance activity node Review

Design. The workspace, shown in Figure 5-8, consists of a done transition

(labelled D) as well as a synchronous communication tool to permit inter-person

communication between the software engineers involved in review. The two

defined artefacts are: Requirement Change with read-only access; and Modified

Design with read-only access.
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CommunlcationTool

@t
RequirementChange

ModifiedDesign

Figure 5-8 Workspace for Review Design

Next, the workspace for a meeting activity node called Review Meeting is defined

in Figure 5-9. It consists of two transitions: Passed (labelled P); and Failed

(labelled F). Obviously, the two transitions give the two options to the moderator of

the Review Meeting as required in the ISPW -6 problem, the description of which

can optionally be made available in the task description:

• Transition labelled P should be selected in the case of unconditional approval of

the design.

• Transition labelled F should be selected when minor or major changes are

recommended. In this case, feedback to the design engineer should be given,

and the task Modify Design will be restarted.

Additionally, the workspace also defines four artefacts: Requirement Change with

read-only access; Design Review Feedback with read and write access; Outcome

Notification with read and write access; and Modified Design with read-only

access. Like the workspace for Review Design, the workspace for Review Meeting

has a defined synchronous communication tool, as well as an asynchronous

communication tool (e.g. email tool) to enable inter-person communication

amongst the assigned engineers.
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OutcomeNotification CommunicationT 001

EmailTool

RequirementChange

ModifiedDesign DesignReviewFeedback

Figure 5-9 Workspace for Review Meeting

The workspaces for different types of activity nodes are uniquely defined not only

in terms of the required artefacts but also in terms of their general appearance. This

is to inculcate a sense of awareness, that is, process engineers should be able to

distinguish at a glance among the different types of activities expressed in a

VRPML process model. For example, some activities may concurrently involve

other people, such as in the case of meeting and multi-instance activities. In fact, as

will be seen in Chapter 6, workspaces for different types of activity nodes are also

uniquely represented in their virtual environments during enactment.

The definitions for the rest of the workspace forming the VRPML solution to the

ISPW-6 problem are similar and straightforward and are discussed only briefly.

The workspace definitions for Modify Code, Modify Test Plans, Modify Unit Test

Package and Check Compilation are shown in Figure 5-10.
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~tt ~t [1]
SourceCode ObjectCode

~t
RequirementChange

~t ~t
ModifiedDesign FeedbackRegardingCode

Workspace for Modify Code

~t ~t [1]
SourceCode ModifiedDesign~t
ModifiedTestPlans

~t
RequirementChange ~t~tt Feed backReg arding TestPackag e
CurrentUnitTestPackage

Workspace for Modify Unit Test Package

CurrentTestPlans

Figure 5-10 Workspaces for Modify Code, Modify Test Plans, Modify Unit Test
Package, and Check Compilation

RequirementChange

The workspace to note is that of Modify Code as it has a defined decomposable

transition Done (labelled D). As discussed earlier, transition D is decomposed into

the activity Check Compilation, whose workspace definition is also shown in the

same figure.

Workspace for Modify Test Plans

~t

Finally, the workspace definitions for the macro expansion Test Unit are given in

Figure 5-11. The workspace to note is that of Test Analysis where four transitions

are defined: Passed (labelled P); Code Feedback (labelled C), Test Feedback

(labelled T), and Both Feedback (labelled B). The four transitions provide the

moderator of Test Analysis with the options as required by the ISPW-6 problem.

The description of each transition is given below and can be optionally made

available as part of the task description.

SourceCode

ObjectCode

• The transition labelled P (Passed) should be selected when the Test Unit is

successful, that is, 90% test coverage has been achieved.
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• The transition labelled C (Code Feedback) should be selected when the task

Modify Code has to be restarted and feedback regarding code must be

furnished.

• The transition labelled T (Test Feedback) should be selected when the task

Modify Unit Test Package has to be restarted and feedback regarding the test

package must be furnished.

• The transition labelled B (Both Feedback) should be selected when both tasks

Modify Code and Modify Unit Test Package have to be restarted and feedback

regarding both the code and test package must be furnished.
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CurrentUnitTestPackage
ObjectCode

RequirementChange

TestResult

Workspace for Test

RequirementChange

F edbackForTestPack e
J DsgnEngr

D

FeedbackRegarding TestPackage

Workspace for Feedback for Test Package

EmailTool CommunicationTool

RequirementChange

TestResult
NotificationOfSuccessfulTesting

Workspace for Test Analysis

RequirementChange

FeedbackRegardingCode

FeedbackForCode
J DsgnEngr

D

Workspace for Feedback for Code

FeedbackRegardingTestPackage

Feed ckForCodeAndTest ckage

J DsgnEngr

D

FeedbackRegardingCode

RequirementChange

Workspace for Feedback for Code and Test Package

Figure 5-11 Workspaces for Test, Test Analysis, Feedback for Test Package,
Feedback for Code, and Feedback for Code and Test Package

Summing up, this section has presented a step by step solution of the ISPW-6

problem expressed in VRPML. In doing so, issues arising from the VRPML

solution were discussed. In the next section, the second case study based on the

waterfall development model will be addressed.
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5.3 The Waterfall Development Model

The earliest form of the software processes based on the waterfall model [58] were

introduced by Royce in 1970 [60]. Since then, many variants from the original

waterfall model have been proposed. One of its variants, adopted from DeBellis

and Haapala [25], is shown in Figure 5-12.

Figure 5-12 The Waterfall Model

Among the characteristics of the waterfall model are:

• The model is divided into a number of separate stages from system feasibility to

maintenance.

• Each stage has a clearly delineated activity which is performed in a linear and

sequential manner.

• Each stage is also independent that is, there is no overlap amongst stages.

• Feedback is usually provided to the preceding stage.

• The completion of a stage is determined by a review either formally or

informally and conducted at the end of each stage so that development can
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proceed to the next stage. This is important because the output of the current

stage often becomes the input of the next stage.

In order to support modelling and enacting of software processes implementing the

waterfall model, each stage of the model must be precisely defined in detail.

Building on the work by Sommerville [60] and the waterfall model given earlier,

Table 5-2 in the next page summarises the possible activities along with their inputs

and outputs. It must be stressed that this is only one of the possible list of activities

as there are a number of variations to the waterfall model.

Referring to Table 5-2, the summary of activities involved in each stage of the

waterfall model raises a number of issues. Firstly, the roles associated with each

defined activity have not been identified. In this case, it is assumed that all of the

software engineers involved have the required skills to perform the activities

assigned to them. Hence, the role for each activity will be simply software

engineers.

Secondly, although the ordering of activities in each stage has not been defined,

they can be indirectly inferred from their input dependencies. In fact, activities in a

stage can also be enacted in parallel when they are independent, that is, they do not

require any input from each other. This will be reflected in the VRPML solution

given below.

Finally, in order to highlight only the key aspects of VRPML, only a partial

solution of the waterfall model from Table 5-2 will be presented here. The

complete solution is provided in the appendix.
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Waterfall
Activities Inputs OutputsStages

Analyse and Define Requirements Customer Requirements Draft Feasibility Study
System Draft Requirement Documents

Feasibility
Review System Feasibility Draft Feasibility Study Feasibility Study

Draft Requirement Documents Requirement Documents
Prepare Functional Specification Requirement Documents Draft Functional Specification
Prepare Acceptance Test Plan Requirement Documents Draft Acceptance Test Plan

Requirements Prepare Draft User Manual Draft Functional Specification Draft Preliminary User Manual
Specification Draft Functional Specification Functional Specification

Review Specification Draft Acceptance Test Plan Acceptance Test Plan
Draft Preliminary User Manual Preliminary User Manual

Prepare Architectural Specification Requirement Documents Draft Architectural Specification
Functional Specification

Preliminary Prepare System Test Plan Requirement Documents Draft System Test Plan
Design Functional Specification

Review Preliminary Design Draft Architectural Specification Architectural Specification
Draft System Test Plan System Test Plan

Prepare Interface Specification
Functional Specification
Architectural Specification Draft Interface Specification
Requirement Documents
Functional Specification

Prepare Integration Test Plan Architectural Specification Draft Integration Test Plan
Requirement Documents
Functional Specification

Prepare Design Specification Architectu ral Specification Draft Design Specification
Detailed Draft Interface Specification

Design Requirement Documents
Functional Specification

Prepare Unit Test Plan Architectural Specification Draft Unit Test Plan
Draft Interface Specification
Requirement Documents

Draft Interface Specification Interface Specification
Review Detailed Design Draft Design Specification Design Specification

Draft Integration Test Plan Integration Test Plan
Draft Unit Test Plan Unit Test Plan

Perform Coding
Requirement Documents Draft Program Code
Desion Specification

Module Coding Perform Unit and Module Testing Unit Test Plan Draft Unit Test Report
and Testing Draft Program Code

Review Coding and Testing Draft Program Code Program Code
Draft Unit Test Report Unit Test Report

Perform Integration Testing Integration Test Plan Draft Integration Test Report
Program Code

System Preliminary User Manual
Integration Prepare Final User Manual Functional Specification Draft User Manual

Program Code

Review Integration Testing
Draft Integration Test Report Integration Test Report
Draft User Manual User Manual

System Test Plan
Draft System Test ReportPerform System Testing Acceptance Test Plan

System Program Code
Testing

Program Code
Review System User Manual Final Release

Draft System Test Report

Table 5-2 Waterfall Model Activities, Inputs, and Outputs
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5.3.1 VRPML Solution of the Waterfall Development Model

The main graph of the VRPML solution for the software processes based on the

waterfall model is given in Figure 5-13.

Main VRPML Graph for the
Waterfall Model

Figure 5-13 Main VRPML Graph for the Waterfall Model

Here, the waterfall model is constructed using the top-down development approach,

that is, the modelling starts from the high-level view of macro nodes and works

down to activity nodes. This approach is contrary to the approach taken to construct

the solution to the ISPW -6 problem in the previous section, where the bottom-up

development approach was adopted.

Intentionally arranged like the waterfall model, the VRPML graph in Figure 5-13

clearly resembles the model given in Figure 5-12. The graph consists of seven

macro nodes. To further illustrate the VRPML notation, one of the macros, called

Detailed Design, is shown in Figure 5-14. The presence of macros related to other

stages in the figure is merely to give focus and context to the expansion.
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Macro expansion for
Detailed Design

Figure 5-14 Macro Expansion for Detailed Design
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The macro expansion for Detailed Design consists of four multi-instance activity

nodes (Prepare Interface Specification, Prepare Integration Test Plan, Prepare

Design Specification, and Prepare Unit Test Plan) and one meeting node (Review

Detailed Design). Because Prepare Interface Specification and Prepare Integration

Test Plan are independent of each other, they can be enacted in parallel. However,

Prepare Design Specification and Prepare Unit Test Plan can only be enacted after

Prepare Interface Specification has been completed. This is because both Prepare

Design Specification and Prepare Unit Test Plan require an artefact from Prepare

Interface Specification, called the Interface Specification, as one of their inputs (see

Table 5-2). Actually, once Prepare Interface Specification has been completed, both

Prepare Design Specification and Prepare Unit Test Plan can be enacted in parallel.

Lastly, Review Detailed Design is enacted when all the above activities have been

completed.

In terms of transitions, Prepare Interface Specification, Prepare Integration Test

Plan, Prepare Design Specification and Prepare Unit Test Plan each have only one

defined transition for Done (labelled D) to allow their completion. However,

Review Detailed Design has three defined transitions: Redo (labelled R) in order to

allow loopback to the previous activities; Passed (labelled P) in order to move to

the next stage; and Feedback (labelled F) in order to permit feedback to the

previous stage.

As far as workspaces are concerned, they can be straightforwardly defined by

analysing the inputs for each activity. Therefore, they will not be discussed here but

are given in the appendix.

All of the macros given in Figure 5-13 expand into a combination of multi-instance

activity nodes and meeting activity nodes connected by arcs. The reason for using

multi-instance activity nodes and meeting activity nodes is to demonstrate that

VRPML supports the dynamic creation of tasks, that is, no prior assumption is

made when constructing the model in terms of how many engineers have to be

assigned to any of the activities represented by these nodes.
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5.4 Summary

This chapter has shown two well-known software processes problems expressed in

VRPML. Importantly, it has demonstrated how the VRPML syntax works to

support modelling and enacting of the ISPW-6 problem as well as the waterfall

software development model. In Chapter 7, these two VRPML solutions will be

revisited in order to evaluate the applicability and usefulness of VRPML. As a

complement to the material presented in this chapter, Chapter 6 investigates issues

related to implementation and enactment.
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Chapter 6 - Implementation Issues

The previous chapter has shown how the VRPML notation supports the modelling

of software processes. In particular, process models for the the ISPW-6 problem

and the waterfall model have been demonstrated in VRPML.

This chapter focuses on implementation issues in order to investigate whether

process models expressed in VRPML can actually be enacted, and whether

enactment identifies further issues for consideration. This chapter begins by

outlining the main aim and objectives which act as guidelines for performing the

implementation. Then, the chapter discusses the runtime support environment

which VRPML requires to achieve its enactment. Next, the chapter shows

enactment of the ISPW -6 model in order to demonstrate the main features of

VRPML. Finally, this chapter closes by giving a short summary.

6.1 Aim and Objectives

The main aim of this chapter is to demonstrate that faithful enactment of the

VRPML semantics can be achieved. Considering this aim, the objectives of the

chapter are:

• To demonstrate that enactment of the process model expressed in VRPML can

be achieved in a distributed environment

• To demonstrate that dynamic creation of tasks and allocation of resources can

be supported by exploiting the enactment model

• To demonstrate that integration with a virtual environment is possible at the

PML enactment level. Thus, awareness and visualisation issues can be

supported.
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6.2 VRPML Support Environment

In order to implement VRPML, a number of components for the support

environment can be identified. These components and their interactions are shown

in Figure 6-1.

Project Manager

Graph EditorPSEE

Runtime Client
VRPMLGraph

To-do-list Manager

Resource
Exception Activities and

Resource
Assignments

Compiler

Resource
Roadrnap and

.-_---'-_:...cReso:..::.=;urce Tuples

•

Comm.Jnication Repository Layer Transition
Signals

Workspace
Manager

••
Software Engineers

Runtime Client

Activities and
Resource

Assignments

PSEE

To-do-list Manager Resource
Queries

Resource Manager

Databases

• • • •

Figure 6-1 VRPML Support Environment

The main components of the complete VRPML support environment are:

• Graph Editor - allows the VRPML graphs to be specified.

• Compiler - compiles the VRPML graphs into some immediate format for

enactment.

• Runtime Interpreter - interprets the compiled VRPML graph.
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• Runtime Client - retrieve activities and resource assignments from the

communication repository layer.

• To-do-list Manager - manages the activities assigned to a particular software

engineer.

• Workspace Manager - manages activity workspace in a virtual environment,

manages activity transition, and forward queries to the resource manager.

• Communication Repository Layer - allows communication between the

runtime interpreter, runtime client, and workspace manager.

• Resource Manager - queries the databases for artefacts.

A complete VRPML support environment would require development of all of the

components, a task beyond the time available for the author. Therefore,

implementation efforts were concentrated on essential enactment components, as

will be discussed below.

Graph Editor

Much like a programmer's editor in a textual programming language, the graph

editor would allow VRPML graphs to be drawn and changed. It would also allow

browsing through graphs, and would support examination of every level of the

graph (for instance, by opening further graph-editor windows onto workspaces and

macros) in order to assist awareness issues (i.e. in terms of the readability of the

VRPML graph). Although having a dedicated graph editor for VRPML would be

vital for a complete system, it warrants no further discussion because the

technology of graph editors is essentially already well-established. Consequently,

the graph editor for VRPML has not been developed, and VRPML graphs were

drawn manually.

Compiler

A compiler would perform syntax checking and translate a VRPML graph into an

intermediate format known to the runtime interpreter. In this research work, the

compiler for VRPML has not been developed and the compilation of the VRPML

graphs was performed manually. However, in order to ensure that a compiler could
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be written, research into the information needed for enactment was felt to be

necessary. In particular, an important consideration for compiling VRPML is the

information stored in the intermediate format. Clearly, the topology of the VRPML

graph in terms of the ordering and sequencing of activities together with their

resource assignments (if any) needs to be preserved. One solution shown in Figure

6-2 is to produce a roadmap of how activities are interconnected and to generate

the resource assignments in all the workspaces separately as resource tuples.

Manually Drawn
VRPML Graph

-»>>-- /'-- /'- /'- /'
/'

/'----,A-

Roadmap Resource Tuples

Figure 6-2 Compilation of the VRPML Graph

A format for the roadmap and the resource tuples has been identified (described

below) and used to facilitate the hand-compilation of the VRPML graph, and hence

permit enactment. To illustrate this technique, Figure 6-3 shows an example graph

to be compiled.
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Activity D

~ SWEngr

7 8

Figure 6-3 Simple VRPML Graph

The roadmap that is generated for the above VRPML graph is as follows (where the

number shown on each arc is the internally generated control-flow signal id which

is allowed to flow through the arc):

1, Master 2) ) Master) 3) )
2, Administrator) Activity A) )
3, Administrator) Activity C) )

4, Administrator) Activity A] )
5, Administrator) Meeting B] )

6, Administrator) Activity D))
7 , 8, Master) 9) )
9 , Master] Terminate) )

A number of items in the roadmap need clarification and several terms in the

roadmap need to be defined. "Master" refers to the runtime interpreter itself whilst

"Administrator" refers to the role in charge of rectifying resource exceptions (e.g.

when resource assignments are not specified or not available). The characters" 1
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and) merely serve as separators which are used by the runtime interpreter to parse

the enabling control-flow signal id (shown as a unique number for clarity), the

defined activities and the target activity assignment (e.g. master or administrator).

Resource tuples must be generated for each activity defined in the graph. To

illustrate the contents of a resource tuple, assume that the workspace for activity A

shown in Figure 6-3 is defined below:

EmailTool
DesignDocument

RequirementChange

SourceCode

Figure 6-4 Example Workspace

The resource tuple for activity A is generated as follows with keywords (shown in

bold) used for clarity and human readability.

ActivityName = Activity A, 2,
ActivityType = General Purpose,
Role = DsgnEngr
AssignedEngineer = Unspecified,
Artefact = Design Document, Path/Url for Modified Design,
Read, Path/Url for tool,
Artefact = Requirement Change, Path/Url for Req. Change,
Read, Path/Url for tool,
Artefact = Source Code, Path/Url for Source Code,
Read/Write, Path/Url for tool,
Tool = Email Program, Email, Path/Url for tool,
Transition = D, Transition Done, Non-Decomposable, 5,
Description = Put the description of the activity here.

A resource tuple carries runtime information about the workspace consisting of:

activity name and type; resource assignments including access rights for artefacts;

tool assignments; and the defined transitions as well as the id of each control flow

that will be generated if a particular transition is selected. One important aspect to

observe in order to generate the resource tuple is that the id of each control-flow
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signal to be generated must be consistent with that defined in the roadmap. For

example, transition Done must generate the control-signal id 5 in order to enable

activity B.

Using the roadmap and resource tuples, enactment can easily be achieved. In fact,

by adopting the Linda tuple space [33] as the communication repository layer,

enactment can be achieved in a distributed environment. This issue will be further

developed when the experimental setup is discussed.

Runtime Interpreter

Having considered the graph editor and the compiler, the next component is the

runtime interpreter. Much of the functionality has already been implied in the

earlier discussion. The full list of the runtime interpreter's functions is as follows:

• parse, maintain, and interpret the runtime information held in the roadmap and

the resource tuples

• check for the arrival of control-flow signals in the communication repository

layer, and decide when activities are able to fire

• interact with the resource manager to check for resource availability before

enabling activities and return exceptions accordingly

• detect the termination of enactment and shut down gracefully

Runtime Client

To support enactment in a distributed environment, there is the need to implement a

runtime client which works on behalf of the to-do-list manager (described below) in

order to retrieve the activities and their resource allocations from the

communication repository layer according to a software engineer's assignments.

There are two types of runtime client which can be considered. In the first type, the

runtime client automatically retrieves activities and their resource allocations as

soon as they are assigned. In this case, there is a need for a dedicated channel which

maintains a connection between the runtime client and the communication

repository layer at all times. In the second type, the runtime client only retrieves

activities and their resource allocations when there is an explicit request from the
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software engineer. As far as this research work is concerned, both types are equally

useful. However, the second type has been chosen because it simplifies the

implementation in the sense that there is no need to setup a dedicated

communication channel between the runtime client and the communication

repository layer.

To-do-list Manager

In order to manage the assigned activities, there is also a need for a to-do-list

manager. The full list of the to-do-list manager's functions is as follows:

• create a to-do-list for a particular software engineer

• interact with the runtime client upon request to retrieve the assigned activities

from the communication repository layer

• provide an internal to-do-list queue to store the assigned activities received

from the runtime client

• manage the graphical user interface (GUI) to allow a software engineer to

select, browse, or undertake activities from the to-do-list queue as well as

retrieve the assigned activities from the communication repository layer

• forward an activity and its resource allocations to the workspace manager

(described below) when the activity is selected to be undertaken

• provide an interface to quit the to-do-list

As an illustration, Figure 6-5 shows a sample snapshot of the to-do-list GUI for a

software engineer name Kamal where the current activity in the to-do-list queue is

Review Design. Five buttons are also shown: Retrieve the activity; Perform the

activity; Quit the to-do-list; Set; and Send. These buttons implement the functions

described in the bulleted list above with the exception of the Send button. The Send

button will be described below when the discussion on the workspace manager has

been developed. It must be stressed that implementation efforts have concentrated

on functionality rather than the aesthetics of the interface.
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~[YRPML]- Engineer's To Do List ' ',1,

Figure 6-5 The To-do-list Graphical User Interface

Workspace Manager

The workspace manager generates and maintains each activity's workspace

according to its work context, that is, in terms of the artefacts and tools required to

complete that activity. As discussed in Chapter 2, maintaining work context is

important to give the software engineers a sense of awareness about the activity

that they are currently undertaking.

At a first glance, generating and maintaining each activity's workspace according

to its work context seems like a difficult task. However, a closer look reveals that

this can easily be achieved by the workspace manager parsing the runtime

information stored in the resource tuple. Using this runtime information, each

activity's workspace can be generated when it is enabled.

As far as the implementation is concerned, the chosen approach to generate the

workspace for each activity in a virtual environment was through the use of the

Virtual Reality Modelling Language (VRML), a language for specifying three

dimensional scenes with rich sets of object primitives and events. With VRML, the

workspace can be translated to a VRML scene, and the actual translation may be

facilitated by a freely available CyberVRML97 library package [49] integrated as

part of the workspace manager itself. In this work, efforts have been directed

towards providing functionality and ignoring the aesthetics of the virtual

environment.
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Figure 6-6 below depicts the possible translation of the workspace and

representation in a virtual environment for an activity called Modify Design.

Utilising Doppkes task-centered mapping (discussed in Chapter 3), the activity's

workspace maps into a virtual room with artefacts and tools corresponding to

objects in that virtual room. Artefacts are represented as cylinders, and their access

rights are distinguished by colours. Task descriptions are represented as help boxes.

Transitions are represented as spheres.

Figure 6-6 Sample Workspace in a Virtual Environment

Following a request from the software engineer, the workspace manager needs to

interact with the resource manager in order to query the databases for artefacts and

tools in the workspace to perform the activity. Because VRML supports event

handling, it would be possible for the software engineer to access the objects (e.g.

artefacts, tools, and transitions) in a scene, although this has not been investigated

further as the objective here is to demonstrate that it is feasible to support

integration with a virtual environment at the PML enactment level.

124



However, the fact that in the prototype the representation of transitions in the

virtual environment are not active means that a mechanism is needed to simulate

transitions and hence indicate the completion (or cancellation) of an activity. Thus,

a Send button and a message box are provided in the to-do-list GUI (see Figure 6-

5) to achieve the sending of a control flow signal to the communication repository

layer by the workspace manager.

Communication Repository Layer

The main function of the communication repository layer is to act as an

intermediate mailbox for keeping the assigned activities and their resource tuples as

well as the control-flow signals. There are three main components which interact

with the communication repository layer: the runtime client to allow query of

activity assignments and their resource tuples; the runtime interpreter to allow

assignment of activities and their resources allocations to be made; and the

workspace manager to allow the control-flow signals generated from transitions to

be sent.

As far as implementation is concerned, the distributed shared memory model based

on the Linda tuple space seems to be a suitable choice for the communication

repository layer. The main reason for choosing the Linda tuple space stemmed from

the fact that the VRPML enactment model (discussed in Chapter 4) is based on

Linda, the base language from which the Linda tuple space is derived. In addition,

Linda provides several pre-defined primitives which facilitate pattern matching of

tuples in the tuple space and they can be used to simplify the implementation.

While there are many Linda implementations available, Jada [17], the Linda

implementation based on Java, has been chosen for this research work. Jada permits

the user to setup a client-server based Linda tuple space that uses Java Remote

Method Invocation. As will be seen later in this chapter, it is this tuple space that

facilitates enactment in a distributed environment.

Resource Manager

The last component that needs to be considered for supporting enactment is the

resource manager. The main function of the resource manager is to handle the
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quenes received from the runtime interpreter and the workspace manager. As

discussed earlier, the queries received from the interpreter mainly involve checking

for resource allocation and availability before allowing that activity to be assigned.

The queries received from the workspace manager mainly involve requests to

manipulate existing artefacts and tools or to create new artefacts. In addition to

handling queries, the resource manager also enforces the required access rights

involving artefacts, and supports changes and updates of the shared artefacts by

multiple software engineers.

In terms of implementation, the resource manager can be straightforwardly realised

by a database server with the capability of accessing more than one database at a

time in a distributed environment. Because the technology to access the database

server is well-established, it warrants no further discussions.

6.3 Experimental Setup

Having identified the main components of the runtime system, this section focuses

on the experimental setup. It must be noted that the prototype VRPl\1L support

environment in its current form is not suitable to support the real-world software

engineering activities, and its purpose is to gain insights into the actual enactment.

In this experimental setup, the VRPML process model for the ISPW-6 problem was

adopted for enactment, although only partial enactment will be discussed here.

Referring to Figure 6-7 below, enactment will be demonstrated for the following

activities: Modify Design; Modify Test Plans; Review Design; and Review

Meeting. Furthermore, only resource allocation via role assignment will be

considered.

Another aspect which has also not been addressed in this experiment is the fact that

when the resource exception of a particular activity is raised, that activity can also

be optionally aborted without having to rectify that exception. Because the

mechanism to abort an activity is a straightforward one (i.e. simply by removing it

from the administrator's to-do-list queue and manually generating the required

control flow signal), it was not considered further.
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ISPW-6 problem

• • • • • •

Figure 6-7 Partial Enactment of the ISPW -6 Problem

It is assumed that the above activities involve three software engineers who will be

taking on different roles - they are: Kamal, Pete, and Jon. Kamal and Jon will be

taking the role of design engineers (abbreviated as DsgnEngr). Pete will be taking

the role of quality assurance engineer (abbreviated as QAEngr) and administrator

(or process engineer). It is also assumed that Modify Design is pre-assigned to Jon

whilst Modify Test Plans, Review Design, and Review Meeting are dynamically

assigned. Finally, Kamal, Pete, and Jon are physically isolated, that is, each of them

has access to their to-do-list from a separate machine in a distributed environment.

Enactment in this experimental setup is achieved by the runtime interpreter, based

on the runtime information in the roadmap and resource tuples generated by

compiling the above graph manually. Enactment starts when the start node

produces the necessary control-flow signal. In tum, this control-flow signal will

cause the replicator node to produce two more control-flow signals. Upon receiving

these two control-flow signals, the interpreter queries the resources assignments for

Modify Design, and Modify Test Plans in order to put them in the tuple space.

Modify Design has already been assigned to Jon, but a resource exception will be

thrown for Modify Test Plans. As a result, Modify Test Plans will be automatically

assigned to the administrator (i.e. Pete) so that the resource exception can be
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rectified. Modify Design and Modify Test Plans will appear on Jon's to-do-list and

the administrator's to-do-list respectively as soon as they made the request to

retrieve the activity in the tuple space. As an illustration, Figure 6-8 depicts Jon's

to-do-li st.

~ [VRPML]- Engineer's To Do List '" '. N ~

Figure 6-8 Jon's To-do-list

When Jon selects and undertakes Modify Design from his to-do-list, a workspace

for Modify Design is automatically opened in a virtual environment. The

workspace for Modify Design is similar to that shown in Figure 6-6 and is not

shown here. However, the workspace for Modify Test Plans requires further

discussion to illustrate how the rectification of resource exception achieves

dynamic allocations of resources. When the administrator selects and undertakes

Modify Test Plans from his to-do-list, a workspace to rectify the resource exception

can be opened in a virtual environment. As shown in Figure 6-9 below, this

experimental setup simply uses a text editor to facilitate the updating of resources

assignment. Here, the assigned engineer has been allocated to Kamal.
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ActivityName = Modify Test Plans,3,
ActivityTy~e = General Pur~ose,
Role - QAEngr,
AssignedEngineer = Kamal,
Artefact = Current Test Plans, Path/UrI for Current Test Plans, Read/Write, Path/URL for tool,
Artefact = Req Change, Path/UrI for Req. Change, Read, Path/UrI for tool,
Transition = D, Transition Done, Non-Decomposable.5,
Oescri~tion = Modify Test Plans descri~tions,

Figure 6-9 Resource Allocations for Modify Test Plans

Once resource allocation has been completed, Modify Test Plans will be put back

into the tuple space. This is achieved via the administrator's to-do-list shown in

Figure 6-10. Ideally, the administrator's to-do-list would be no different to an

ordinary to-do-list, as the resource update should be done automatically in the

background by the workspace manager. However, the administrator's to-do-list

GUI is tailored to allow the resource update to be put back manually into the tuple

space through the update button .

• [VRPML]- Administrator's To Do List ! .v~; JiijJ ,-

Figure 6-10 Administrator's To-do-list

Once the resource allocation for Modify Test Plans has been updated, Modify Test

Plans is now assigned to Kamal. Consequently, when Kamal makes the request to

retrieve the activity from the tuple space, Modify Test Plans will appear in Kamal's

to-do-list.
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Going back to Jon, once he has completed Modify Design and selects the done

transition (simulated by the Send button), another control-flow signal will be

generated in the tuple space. Upon receiving this control-flow signal, the interpreter

queries the resources assignments for Review Design (see Figure 6-7). As no

resource assignments have been made, a resource exception will be thrown causing

Review Design to be assigned to the administrator. In turn, when the administrator

makes the request to retrieve the activity from the tuple space, Review Design will

appear in the administrator's to-do-list. Similar to the case of Modify Test Plans

discussed earlier, in order to rectify this resource exception there is a need to update

the resource tuple for Review Design. As Review Design is a multi-instance

activity node, it can be assigned to more than one software engineer through

changing its depth, as illustrated in Figure 6-11.

~Programnler'SFdeEdltor /1,/ ':0;'0:7 I;.;,

ActivityNaAe = Review Design,4,
ActivityType = Multi Instance,
Role = DsgnEngr,
AssignedEngineee = KaAal,
RssignedEngineer = Pete,
AssignedEngineer = Jon,
Depth = 3,
Aetefact = Modified Design, Path/Uel foe Modified Design, Read, Path/Uel foe tool,
Aetefact = Req Change, Path/Uel foe Req. Change, Read, Path/Uel for tool,
Transition = 0, Transition Done, Han-Decomposable,7,
Tool = Uideo Phone, GOAAunication, Path/UrI foe tool,
Tool = Email Program, Email, Path/UrI for tool,
Description = Review descriptions.

Figure 6-11 Resource Allocations for Review Design

By manipulating the Review Design's depth, the number of software engineers

required to review the design (or how many Review Design activities are created)

can be tailored according to the current needs of the project. In this example,

Review Design is assigned to three software engineers: Pete, Kamal, and Jon. Once

resource allocation for Review Design has been completed, it will be put back into

the tuple space through the administrator's to-do-list. As a result, Review Design

will appear in the to-do-list for Pete, Kamal, and Jon when they make the requests

to retrieve the activity from the tuple space.
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In order to inculcate the sense of process awareness, the virtual environment

representing workspaces for a multi-instance activity node such as Review Design

has a different appearance to a workspace for a general purpose activity node (see

Figure 6-6) in terms of the background of the workspace.

As far as the completion of Review Design is concerned, because it is a multi-

instance activity node assigned to Pete, Kamal, and Jon, all of them must complete

the review by selecting the Done transition in their own separate workspaces. Only

after all of the done transitions have been selected can a new control-flow signal be

generated in the tuple space to enable the subsequent activity Review Meeting.

Finally, upon receiving the control flow signal generated above, the interpreter

queries the resources assignments for Review Meeting (see Figure 6-7). As no

resource allocations have been made, a resource exception will be thrown causing

Review Meeting to be assigned to the administrator. Consequently, when the

administrator makes the request to retrieve the activity from the tuple space,

Review Meeting will appear in his to-do-list.

Being a meeting activity node, Review Meeting also has an associated depth which

can be manipulated in order to allocate engineers dynamically based on the needs

of the activity. Using the allocation mechanism described above, the administrator

can assign Review Meeting to Pete and Jon, with Pete being the moderator.

As far as the workspace is concerned, being a meeting activity node, Review

Meeting can have a different appearance as compared to other types of activity

nodes, again, to inculcate the sense of process awareness. In terms of the transitions

associated with Review Meeting, these are only accessible to Pete as he is the

moderator. Therefore, it is Pete who has the final say of whether the modified

design is endorsed or rejected, and only one control-flow signal will be generated

as a result.

If Pete decides to choose the Failed transition, the interpreter reassigns Modify

Design to Jon. Assuming Jon is still part of the development team, Modify Design

will appear in Jon's to-do-list after he makes the request to retrieve the activity

from the tuple space. Otherwise, the resource exception will be thrown. After Jon

completes Modify Design, Review Design will now be reassigned to Pete, Kamal,
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and Jon. After Pete, Jon, and Kamal complete Review Design, Review Meeting

will be reassigned to Pete and Jon. This "looping" sequence of activities will

continue until Pete, being the moderator, selects the Passed transition after

completing Review Meeting.

6.4 Summary

A number of implementation issues have been discussed in this chapter. The main

components of the VRPML support environment have been identified and a

working prototype has been developed. Using this prototype, an experiment has

been conducted which demonstrated enactment by utilising the partial ISPW-6

problem.

Overall, the experiment has successfully achieved its objective of demonstrating

enactment in a distributed environment of a process model expressed in VRPML.

Furthermore, the experiment has also demonstrated the VRPML support for the

dynamic allocation of resources as well as highlighted the possible support for

visualisation and awareness issues. It is believed that this experiment has

demonstrated that VRPML can be used in practice to express a process model and

support its enactment.

While the conversion from the VRPML graph to an intermediate format known to

the interpreter was done manually in the experiment, the translation process was

done as a compiler would have. No expert knowledge, that is making use of

information not available to the compiler, was applied during the translation

process. Therefore, it is believed that an automated compiler support for VRPML is

implementable. Furthermore, as no major hurdles are encountered when developing

the prototype support environments, a complete VRPML support environment

appears to be practicable.

Building on results and experiences in this chapter, the next chapter evaluates

VRPML in detail in order to highlight its strengths and limitations.
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Chapter 7 - An Assessment of VRPML

The previous chapter has demonstrated that VRPML syntax and semantics behave

as expected, and enactment can be achieved in a distributed environment.

Additionally, the previous chapter has also demonstrated the VRPML support for

the dynamic allocation of resources (i.e. by exploiting the enactment model) and

the feasibility of supporting awareness and visualisation issues at the VRPML

enactment level (i.e. integrating with a virtual environment).

Based on the experience gained from the work described in the previous chapter as

well as the modelling of the case study problems discussed in Chapter 5, this

chapter presents an assessment of VRPML. Comparison and contrasts between

VRPML's features and those of other PMLs will also be made, using the ISPW-6

problem as the benchmark where possible.

7.1 Lessons Learned About VRPML

The main issues which are under consideration in this section relate to the

applicability and suitability of VRPML for modelling and enacting software

processes. Such consideration may help improve VRPML by providing the

necessary feedback based on the author's practical experiences [71].

As far as the assessment is concerned, VRPML will be evaluated on three aspects:

the language syntax and semantics, the choice of computational model, and the

novel language claims. This assessment is the subject of the next sub-sections.

7.1.1 LanguageSyntax and Semantics

The main focus of this section relates to the effectiveness of representation and the

expressiveness of the VRPML notation. Where appropriate, suggestions are made

for VRPML improvements.
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Effectiveness of representation

It is believed that the VRPML solutions to the ISPW -6 problem and the software

processes based on the waterfall model have demonstrated that VRPML notation is

simple and intuitive. Among the reasons are that VRPML adopts a visual syntax,

and the general structure of the VRPML graphs resembles the structure of a

conventional flowchart.

Although the UML activity diagram [59] is non-enactable, it can be compared to

VRPML in terms of its graph representation. Figure 7-1 depicts an example of a

software process expressed using the UML activity diagram.

Project Manager Review Team Design Engineer Test Team QA Engineer

•
Figure 7-1 Example of the UML Activity Diagram

The UML activity diagram representation of a software process is simple and

intuitive. Nonetheless, while the UML activity diagram can be used to express

activities in a software process, it lacks features to express the individual role,
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resources, workcontexts, and the completion of activities. Thus, the UML activity

diagram is not particularly suitable as a PML.

Going back to Table 2-2 in Chapter 2, several of the PMLs surveyed in this thesis

also employ a visual notation. They include: FUNSOFT nets [29]; SLANG [9];

"Dynamic Task Nets [37]; Little JIL [66]; EVPL [36]; APEL [24]; and

PROMENADE [57]. Since Little JIL is the only visual PML for which a detailed

solution for the ISPW -6 problem is available for consideration, comparisons will be

mainly focused on Little JIL.

Figure 7-2 reproduces part of the Little JIL solution to the ISPW-6 problem [50]

involving the activity Modify and Review Design.

• CumtDsn
J, WhyRedsn
t ModDsn

J, WhyRedsn
r ModDsn ?
N TaskCompletion ModDsn

ModifyDesign

• Agent: DsgnRvwTeam
J, ModDsn

DsnRvwFdbk
TaskCompletion

ModDsn
• • •

Figure 7-2 Excerpt of the Little JIL Solution to the ISPW -6 Problem

Referring to Figure 7-2, it can be seen that the overall Little JIL notation is quite

simple and intuitive. Nevertheless, unlike VRPML, Little JIL does not make any

visual distinction between activity types. For example, Review Design in Figure 7-

2 uses the same notation as other activities although it represents a decision making

activity involving more than one software engineer. Therefore, it can be difficult at

a glance to accurately interpret a process model expressed" by Little JIL. In
• j

VRPML, there are three visibly distinct types of activity (i.e. general purpose

activity nodes, meeting nodes, and multi-instance activity nodes). The effect of
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distinguishing different types of activities is believed to improve the readability of

the VRPML graph.

Being visual languages, both VRPML and Little JlL are likely to suffer from the

problem of scale, that is, the process models may take a lot of space. However, the

problem of scale appears to be more significant in Little JlL than in VRPML. One

reason is due to the way that Little JlL supports the decomposition of activities into

sub-activities. As activities are represented in a tree structure, activities in Little JlL

are represented as the nodes of the tree with sub-nodes representing decomposition,

and leaves at the bottom representing the actual activities assigned to software

engineers. For example, in Figure 7-2, the activity Modify & Review Design is

decomposed into the activities Modify Design and Review Design which in tum

can be decomposed further. Similarly, activities involving the checking of post-

conditions are also specified as the nodes and leaves of the tree. This is

demonstrated in Figure 7-3 where the activity Modify Code is decomposed to

include activity Check (i.e. to ensure that the modified source code compiles

successfully). The fact that Little JlL relies on the nodes and leaves of the tree to

specify sub-activities tends to make its process models both wide and deep. In

contrast, decomposition of activities in VRPML can be abstracted away from the

main graph using a macro node. Additionally, VRPML permits the use of

decomposable transitions to further abstract activities that involve the checking of

post-conditions. In this way, the process models expressed in VRPML should

occupy less space than a Little JlL equivalent.
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• Agent: DsgnEngr
-J.- WhyRecode
<> ModSrcCode ~<> ObjCode<> CrntSrcCode
N TaskCompletion

WhyRecode 1
CurntSrcCode

-J.- WhyRecode
-J.- CurntSrcCode
l' ObjCode
'T ModSrcCode

• •
T ~ ObjCode
ObjCode
ModSrcCode

MOdsrcco~

-J.-1' ModSrcCode
l' ObjCode
<> ChkRst

CheckManually Codes&Compile

Dsnapproved IJ--.... -
Figure 7-3 Excerpt of the activity Modify Code in Little JIL

Another important difference between VRPML and Little JIL relates to a

separation of concerns. Unlike VRPML, Little JIL depicts both the control-flow

and the data-flow in the same view. Although depicting both flows might be useful

to give the overall context about a particular activity, a counter argument suggests

that it results in a cluttered view. In VRPML, control-flow and data-flow are

completely separated into the graphs and workspaces respectively, essentially

giving two different views: the flow of activities and the individual activity's work

context. The flow-of-activities view gives the overall dependencies amongst

different activities whilst the activity's work context view gives focus to an activity

in question. These views are advantageous to assist reasoning about a software

process as well as to support awareness and visualisation issues.

Finally, as noted by Lee [50], Little JIL is not always suitable for top-down

modelling because in certain situations process abstraction and control abstraction

in the Little JIL step can be in conflict with each other, causing the need to

restructure the overall process model when that conflict occurs. VRPML, on the
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other hand, supports both top-down and bottom-up modelling without any

problems.

Despite the above advantages, it is clear that there are a number of aspects of

VRPML that could be improved. In applying the macro nodes to the modelling and

enacting of the case study problems, it was found that while a macro can improve

the readability of the VRPML graph in question by grouping nodes together, it can

be a somewhat difficult notation to employ especially in the context of achieving

reuse. The difficulty of a macro node stems from the fact that there is a need to

trace out its expansion in terms of arcs going in and coming out, in order to ensure

that proper connections of nodes can be made every time that macro is used. This is

demonstrated by the macro Test Unit from the ISPW-6 problem in Figure 7-4.

./'
./

,/

/
I
(

__ ._-_--- -- -......

Unit

<,
<,

<,
-,
\
I
J
/

/
./

./
./'--- --------

Figure 7-4 Macro Test Unit Revisited

To address this difficulty, labelled connection points could be introduced as part of

the macro for designating input and output arcs so that a macro can be treated as a

black box reusable component. As an analogy, labelled connection points can be

thought of as passing parameters to a procedure in a textual programming language.

This potential amendment to a macro node is demonstrated in Figure 7-5. Here,

white circles indicate input connection points and grey circles indicate output

connection points.
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ToTestUnit ToTestUnit
ToTestUnit

ToTestUnit-FromDoneTransitionFeedback - -- -ForTestPackage /' ,./ <,
<, FromDoneTransitionFeedbackFor

<, CodeAndTestPackage

/
I \
/ \

I I

\ Unit )

\
/
I-, /

/'
<, /'

FromDoneTransitionFeedback <,
/'

ForCode - -- -- --- _-
FromPassedTransition

TestAnalysis

Figure 7-5 Amendment to a Macro Test Unit

It is felt that VRPML's replicator node could be dropped in order to reduce the

complexity of a graph. The semantics of a replicator node could be assimilated by

extending the semantics of an arc, that is, by permitting I:M arcs [51]. An example

use of the replicator node can be seen in Figure 7-6 alongside the proposed I:M arc.

-+-
Figure 7-6 Assimilating Replicator Node with I:M arc

Another possibility for simplifying the notation would be to eliminate the general

purpose activity node. Obviously, a multi-instance activity node could

straightforwardly be used in place of a general purpose activity node by specifying

the depth of that multi-instance activity node to be 1. In fact, the advantage of

employing a multi-instance activity node over a general purpose activity node is

that no prior assumption need be made about the actual number of software

engineers needed to complete that activity. Furthermore, as demonstrated by the
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VRPML solution to the waterfall development model in Chapter 5, multi-instance

and meeting activity nodes were sufficient to construct that process model.

Nevertheless, eliminating the general purpose acti vity node from the notation can

also be disadvantageous. For example, as far as readability of a VRPML graph is

concerned, it can be difficult to distinguish whether an activity will be solely

performed by one person or collaboratively by more than one person. Therefore, it

is suggested that both general purpose activity nodes and multi-instance activity

nodes are kept as part of the notation.

Another aspect that can be considered to improve the readability of a VRPML

graph relates to the naming of transitions. Rather than allowing only a single letter

as a way to identify transitions associated with a node, more meaningful names

could be used. This is especially important if a particular node has many associated

transitions. As an illustration, Figure 7-7 depicts the activity Test Analysis

employing more meaningful names for the transitions.

Figure 7 -7 Example Amendments to Naming of Transitions

Finally, as discussed earlier, VRPML suffers from the problem of scale. Even for a

relatively small problem such as the ISPW-6, VRPML requires two process

models. Each process model requires twelve different activity nodes (including the

macro expansions) as well as twelve corresponding workspaces. Apart from reuse,

there seems to be no solution to this problem as yet although one possibility might

be to investigate the use of a three dimensional space.

Expressiveness

To assess how well VRPML supports the modelling and enacting software

processes, it is necessary to evaluate the expressiveness of its notation. In Chapters

5 and 6, the modelling of the ISPW -6 problem and the software processes based on
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the waterfall model have been demonstrated. Furthermore, enactment has been

demonstrated for the ISPW -6 problem. Given that the ISPW -6 problem has been

formulated by experts in the field of software engineering, it should contain

different types of (subtle) process issues seen in the real world. Thus, the fact that

VRPML was able to support its modelling and enactment is a positive indication of

the expressiveness of the VRPML notation.

Nevertheless, the fact that VRPML is based on the control-flow model raises an

issue relating to the problem of race conditions, whereby two or more control flow

signals compete to enable a particular activity node. Figure 7-8 illustrates the

situation.

Activity C

~ SWEngr

Figure 7-8 The Problem of Race Conditions

Although syntactically correct, the VRPML graph above represents a peculiar

situation where activity C can be enabled when either the done transition of activity

A or the done transition of activity B is selected. As a result, there is a possibility

for activity C to be erroneously enabled twice.

One solution might be to include a merger node connecting arcs from the done

transition from both activities A and B as depicted in Figure 7-9 below.
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Figure 7-9 Avoiding Race Conditions Using a Merger Node

Here, no race conditions will occur as activity C can only be enabled once when

both the done transitions of activity A and B have been selected. Although the

inclusion of merger node solves the race condition problems associated with the

above graph, this solution is not completely satisfactory because it does not prevent

the process engineer from (unintentionally) introducing race conditions in the first

place. Therefore, it is felt that a more general solution is required in VRPML to

effectively handle race conditions.

Instead of permitting multiple incoming arcs, the syntax of an activity node could

be changed to allow only a single incoming arc to connect to it. Consequently,

referring to Figure 7-8, the two arcs connections from the done transitions of

activities A and B to activity C would be syntactically incorrect. In this way, the

possibilities for race conditions would be eliminated.

This proposed change of syntax to activity nodes raises a subtle issue relating to

iterations and "feedback loops". Often, iterations and feedback loops need to be

captured as part of the process model, for example, to specify repeated modification

of a design until the design is approved. If only a single arc is permitted to connect
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to an activity node, feedback loops to a previous activity node are no longer

possible (i.e. VRPML graphs are now acyclic). As an illustration, the VRPML

graph in Figure 7-10 below would give rise to a syntax error during "compilation"

due to the more than one arc connection to activity P (i.e. from the start node and

the transition Redo from activity Q).

Figure 7-10 Example of Feedback Loop in VRPML

As discussed above, the reason for such feedback loops in VRPML is to support the

idea that an activity might not have produced acceptable results and hence has to be

repeated in some manner. This is such a fundamental aspect of software processes

that it is an inherent part of the standard VRPML activity node, represented by

decomposable transitions and re-enabled nodes. The graph shown in Figure 7-10

can be viewed as a generalisation of this situation, where activity Q is viewed as the

post-condition check on activity P. (Of course, in this simple graph activity Q could

have been represented as a decomposable transition on activity P, but the general

case still needs consideration). To permit the general case of a feedback loop in a

VRPML graph a new decomposable cyclic node could be introduced. Figure 7-11

depicts the proposed notation for the decomposable cyclic node.
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//@-------,-
I ,

I, Node Identifier ;
'" ,/

Figure 7-11 The Proposed Decomposable Cyclic Node Notation

Semantically, a decomposable cyclic node permits the specification of sub-graphs

and allows the use of re-enable nodes to re-enable the parent of those sub-graphs

(i.e. the decomposable cyclic node itself). In this way, general feedback loops can

be specified.

An example usage of the decomposable cyclic node called "Activity P and Q"

alongside its decomposition is demonstrated below to express the feedback loop for

the VRPML graph given earlier (see Figure 7-10).

~/W--------,-
(~ ,
( Activity P and Q ;, (

Decomposable Cyclic Node Activity P and Q Decomposition of Activity P and Q

Figure 7-12 Example Usage of the Proposed Decomposable Cyclic Node

Referring to Figure 7-12, when the activity Q fails, the assigned software engineer

can select the transition R (for Redo). As a result, a control-flow signal will be

generated to enable its parent node (i.e. Activity P and Q) through a re-enabled

node (shown as two white circles enclosing black circle). Otherwise, if the activity

Q is successful, the assigned engineer can select the transition D (for Done). In this
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case, the control-flow will be generated and propagated back to the main graph to

enable the connected node.

To further investigate whether or not the proposed decomposable cyclic nodes is

practicable to support feedback loops as well as to remove the possibilities for race

conditions, Figure 7-13 revisits the ISPW-6 problem by applying that node as part

of the VRPML solution.

/~---- ---,
( ModifyDesign ';
\', AndReview ,/

ModifyTestPlans

~ QAEngr

-... __ -----

ModifyCode

~ DsgnEngr

/~-- -----,
I \

( TestUnitAndAnalysis ;
\ /
-, //

Figure 7-13 Using the Decomposable Cyclic Node as part of the VRPML Solution to
the ISPW -6 Problem

Two decomposable cyclic nodes can be used:

I. Modify Design and Review
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11. Test Unit and Analysis

Because the decomposition for Modify Design and Review is relatively

straightforward and similar to the case discussed earlier in Figure 7-12, it will not

be developed further. Instead, only the decomposition for Test Unit and Analysis

will be shown in Figure 7-14 below.

Test

~ DsgnEngr

Figure 7-14 Decomposition of Test Unit and Analysis

The fact that multiple re-enabled nodes may be required to implement the

decomposition cyclic node raises the possibility of race conditions. In effect, more

than one re-enabled node could compete to re-enable the same parent node,

although such situation may not occur in a properly formed VRPML graph such as

146



the one shown above. To ensure that race conditions would never cause problems,

the semantics of a re-enabled node could be changed so that when one fires, an

exception could be thrown if there are running activities within the scope of the

decomposition. In this way, the process engineer could have the flexibility to

decide whether to abort or to allow those activities to continue. Nevertheless,

VRPML needs to provide a mechanism allowing the process engineer to manually

raise a resource exception for a currently running activity in order to permit its

abortion.

Finally, although not illustrated in the graph above, there is also a need to change

the semantics of a stop node in order to address race conditions caused by an ill-

formed VRPML graph. Similar to the semantics of a re-enabled node, when a stop

node is reached, an exception could be thrown if there are running activities within

the scope of the decomposition. The process engineer should then decide whether

or not to abort those activities (by utilising the mechanism described above). If a

stop node is used in the main VRPML graph, reaching a stop node aborts the

overall enactment.

7.1.2 Computational Model

Although a computational model based on control-flow was initially chosen instead

of a data-flow or a combined model (see Chapter 3), the author's experience from

developing VRPML reveals the need to employ both control-flow and data-flow

semantics in order to support the modelling and enacting of software processes.

This is because the concepts of control-flow and data-flow are interrelated: the

program control as well as the execution of an activity depends on the availability

of data, and the flow of data is often governed by some notion of control. While

having control-flow firing rule at the graph level, the VRPML enactment model

also relies on data dependency semantics in order to enact a particular activity.

Therefore VRPML can be viewed as a PML which adopts a combined model,

similar to Little JIL, although the flow of data does not appear directly as part of

the process graphs. As discussed earlier, the fact that the flow of data does not

appear directly as part of process graphs is significant to reduce the visual

complexity of the process models expressed in VRPML.
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Demonstrated by the description of the ISPW-6 problem in Chapter 5 and the

subsequent model expressed in VRPML, software processes tend to be imperative

in nature. Therefore, the computational model based on control-flow at the graph

level appears to be appropriate to express such behaviour.

As the VRPML firing rule at the graph level is based on control-flow, the author's

experience in the modelling of activities within the waterfall development model

showed the need to manually analyse the input and output dependencies in order to

properly sequence those activities. If VRPML were purely based on the data-flow

model, the sequencing of activities would be achieved automatically based on the

availability of data at runtime. In fact, parallelism among activities can be

opportunistically achieved in the same manner. Thus, in this respect, the pure data-

flow model can be helpful to facilitate the construction of process models as the

process engineers need not be concerned about parallelism.

Because activities specified in a process model are often performed by many

engineers, there is a need for a PML to address issues relating to artefact sharing.

In VRPML, artefact sharing can be flexibly achieved in the sense that activities

could be tailored to deal with shared or copies of data. Obviously, there are pros

and cons for either choice. If the process engineer chooses to allocate resources

based on shared data, VRPML ensures that data consistency is maintained via

access control mechanisms associated with artefacts. However, the disadvantage of

working with shared data is that parallelism may be restricted due to runtime data

"locking" imposed by access controls. If the process engineer chooses to allocate

resources based on copies of data (i.e. like most pure data-flow models would),

parallelism may be maximised. Nonetheless, there is a need to utilise a special tool

such as the Concurrent Versions System [1] in order to ensure that data consistency

is maintained if changes to copies of data have to be merged together.

Overall, as the above discussion illustrates, the VRPML computational model

usefully balances control-flow firing rule and data dependency semantics without

adding visual complexity to the language. For this reason, the VRPML

computational model seems appropriate for supporting the modelling and enacting

of software processes. However, as follow-on research, redesigning VRPML and
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adopting the data-flow model whilst subjecting it to the same case study problems

might be helpful in order to allow further evaluation and in-depth comparison.

7.1.3 Novel Language Claims

This section focuses on the evaluation of the VRPML novel language features as

demonstrated throughout Chapter 5 and Chapter 6. These features include: the

support for dynamic allocation of resources, and the support for awareness and

visualisation issues.

Dynamic allocation of resources

The experiment in Chapter 6 has demonstrated the support for dynamic allocation

of resources in VRPML, that is, by exploiting the enactment model and the

resource exception handling mechanism. From the experiment, it can be seen that

such support removes the need to utilise evolution mechanisms in order to cope

with the dynamic changes needed because of the availability of resources. As

discussed in Chapter 2, while enabling support for dynamic evolution is a desirable

feature of a PML (e.g. through reflection), employing it to address dynamic

allocation of resources can be expensive and impractical. Thus, the fact that

VRPML supports dynamic allocation of resources without resorting to evolution

improves its applicability for modelling and enacting software processes.

Concerning its resource exception handling mechanism, VRPML adopts the same

approach as Little Ill, [66] in the sense that resource exceptions are thrown when

assigned resources are unavailable or could not be acquired. There is, however, a

subtle difference between the resource exception handling mechanism in VRPML

and Little Jll., In Little Jll., the handler for every resource exception must be

defined. This is achieved through the handler badge. When no handler for a

particular resource exception is defined, enactment of the activity in question will

be automatically terminated. Even if the handler for a particular exception is

defined, Little Jll, limits the outcome of the activity whose exception is raised to

retracting (for potentially re-posting) or terminating. Little Ill, does not allow the

process engineer to intervene, handle the exception, and resume the activity. In

contrast, resource exceptions are handled in VRPML without the need to define the
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handler. This is achieved by suspending enactment and creating specific tasks for

the process engineers to rectify the resource exception and allow enactment to

resume. As discussed in Chapter 4, VRPML also allows the process engineer to

abort the activity completely and achieve the same effect as termination in Little

JIL. Despite providing a useful resource exception handling mechanism, Little JIL

falls short in not being able to suspend enactment and allow rectification through

human intervention as in VRPML. Therefore, the same support for dynamic

allocation of resources may not be achieved in Little JIL.

Awareness and visualisation support

The experiment in Chapter 6 has demonstrated that the integration with a virtual

environment at the VRPML enactment level is possible, and hence a virtual

environment is available for use. Therefore, the main issue to be considered is

whether or not the awareness and visualisation issues can be better supported as a

result.

In term of awareness support for the software engineers undertaking their assigned

activities, the workspace defines the precise context for performing the activity in

terms of artefacts to manipulate and tools to use. Furthermore, the workspace for

each type of activity node can be straightforwardly distinguished during enactment.

Such awareness is useful to encourage inter-person communication especially if a

particular activity involves more than one person. As demonstrated in Chapter 6,

this can be achieved, for example, by varying the graphical representation as well

as incorporating artefacts and tools according to an activity's work context.

Reiterating the discussion in Chapter 2, there is actually much more to awareness

than being conscious about one's own work context and knowing and

communicating with other engineers (if any) doing the same activity. Although

useful by giving focus to the working context of a particular activity, it is felt that

workspaces provide insufficient coverage in terms of the overall context of an

activity in relation to other activities during enactment. Therefore, awareness issues

concerning the dependencies among activities in a software process have still not

been addressed, although the VRPML graphs could be a starting point as will be

discussed in Chapter 8.
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In demonstrating enactment from the experiment, it was noted that the rectification

of a resource exception in a way can be viewed as a step in a meta-process. Thus,

being an activity in itself, the rectification of resource exceptions would also

benefit from the support for awareness just like other activities in a software

process. Therefore, as an improvement, it follows that VRPML could provide a

unique workspace for supporting the rectification of resource exceptions. One

possibility is to include the list of available engineers, tools and artefacts available

for selection in such a workspace.

Comparatively, the concept of workspaces in VRPML are somewhat similar to

those of Merlin [44] and APEL [24]. Although resources can be dynamically

allocated, VRPML workspaces are static, that is, they are fixed by the work

contexts as envisioned by the process engineers. Merlin, on the other hand, has

dynamic workspaces which are automatically generated by the runtime engine,

based on the forward and backward chaining mechanisms traversing the Merlin's

Prolog-based rules. Being a rule-based PML, the support for dynamic workspaces

in Merlin is potentially advantageous because the process engineers can concentrate

more constructing the rules, as they are relieved from task of specifying the work

contexts in order to model a software process. Nevertheless, despite being dynamic,

Merlin's workspaces are somewhat difficult to comprehend as they are built in the

form of simplified entity relationship diagrams which software engineers need to

interact with in order to perform their assigned activities. Although not completely

implemented in the current prototype, workspaces in VRPML can be made more

intuitive, for example, by representing artefacts and tools using familiar real-life

icons in a virtual environment.

In APEL, activities and their sub-activities, as well as the flow of controls and

artefacts, are shown to the software engineer during enactment through the desktop

paradigm. In addition, similar to Merlin, the software engineer may also interact

with the desktop paradigm to perform the activity. Although useful by giving the

overall dependencies amongst activities in a software process, the desktop

paradigm lacks focus particularly on the working context of an activity. Thus, the

concept of workspaces in VRPML and the desktop paradigm could be usefully

exploited to complement each other.
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As far visualisation is concerned, the support provided by VRPML is still limited.

Although workspaces and the access rights of artefacts are distinguished, artefacts

and tools in a workspace simply map one-to-one to objects in a virtual

environment. Therefore, in order to fully exploit the potential of the integration

with a virtual environment, other types of mapping could be explored to permit a

software engineer to dynamically "switch" between different mappings in order to

enhance visualisation support. This issue will be further discussed in the scope of

future work in Chapter 8.

7.2 Summary

This chapter has presented an evaluation of VRPML in terms of the language

syntax and semantics, the choice of computational model, and the novel language

claims. This evaluation has uncovered strengths and limitations of VRPML and

some improvements to the language have been suggested. Although VRPML has

some characteristics which might be considered unnecessary, it is believed that the

benefits from the use of VRPML outweigh its drawbacks.

In the final chapter, work presented in this thesis is drawn together, summarising

the research undertaken and discussing the impact of the results achieved.

Discussions are offered to evaluate the main research hypothesis, that is, whether or

not VRPML is useful for supporting distributed software engineering teams,

alongside conclusions and suggestions for future work.
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Chapter 8 - Conclusion

The aim of this research work was to develop and evaluate a new visual and

enactable PML, VRPML, which addresses some of the perceived deficiencies in

other PMLs - particularly in terms of the support for the human dimension issues

as well as the support for dynamic allocation of resources. In the context of this

aim, this chapter summarises the important points arising from the earlier chapters

in order to discuss the impacts of the results achieved and the implication for future

work.

8.1 Overview

Chapter 1 set the scene by establishing the need to model a software process using

a PML. Through process enactment, a key feature of a PML, process models are

able to provide automation, guidance, and enforcement of software engineering

practices.

A key point was raised in Chapter 2 that despite much fruitful research into PMLs,

their takeup by industry has not been widespread. It was therefore necessary to

identify areas where progress has been made, and areas where potential

improvements could be achieved. Chapter 2 presented an account of the state-of-

the-art of PMLs by discussing a classification and a taxonomy for PMLs. Using the

taxonomy, Chapter 2 provided a survey of existing PMLs, and revealed a number

of perceived deficiencies. In the scope of this work, some deficiencies relating to

the support for human dimension issues (e.g. awareness and visualisation), and the

support for dynamic allocation of resources were considered in line with the overall

context of supporting distributed software engineering teams. As a result, the

development of a new visual PML, VRPML, was proposed. VRPML is a visual

PML which considers the virtual environment as a fundamental component,

manipulatable as part of the construction of the process model (i.e. via features in

the language) as well as being part of the runtime environment, and supports

dynamic allocation of resources through its enactment model.
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Chapter 3 was dedicated to the design issues for VRPML. The first issue was

whether or not it is useful to exploit a virtual environment as a way of supporting a

software process. The second issue concerned flow-based visual languages as a

basis for VRPML. In particular, two possible computational models for VRPML

were debated: the control-flow model and the data-flow model. Based on the

author's initial evaluation, it was decided that the control-flow model was more

suitable for VRPML process model graphs. Among the main reasons were that the

control-flow model facilitates reasoning about execution semantics and tracing

enactment as well as supporting cyclic behaviour in a straightforward manner.

Finally, a brief discussion of a novel enactment model supporting the dynamic

allocation of resources was outlined.

Chapter 4 presented the proposed design notation for VRPML. A partial solution of

the ISPW -6 problem was used as a way of investigating the syntax and semantics

of VRPML. Additionally, the enactment model for VRPML was also described.

The work in Chapter 5 outlined the modelling of the two case study problems: the

ISPW -6 problem and the waterfall development model. The main aim of

undertaking the two case study problems was to demonstrate that VRPML has a

sufficiently rich notation to support modelling and enacting of software processes.

Part of the aim relating to the modelling aspect was achieved, that is, it was shown

that VRPML notation was successful in providing a sound solution to both

problems. The other part of the aim concerning enactment was considered in

Chapter 6.

8.2 Results

The aim of Chapter 6 was to investigate whether a process model expressed in

VRPML can actually be enacted and whether enactment indentifies further issues

for consideration. Therefore, the chapter concentrated on the issues relating to

implementation. The components of runtime support system and their expected

functionalities were discussed, and several of them were actually built as prototypes

in this work, including:

• Runtime Interpreter

• Runtime Client
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• To-do-list Manager

• Workspace Manager

Although far from being complete, these prototype components were helpful to

demonstrate that the complete support environment could actually be built for

VRPML.

To investigate the novel language claims, the main aspects of VRPML considered

for exploration were:

• Support for enactment in a distributed environment

• Support for dynamic creation of tasks and allocation of resources by exploiting

the enactment model

• Support for integration with a virtual environment at the PML enactment level

so that awareness and visualisation issues can be addressed

One experiment involving enactment of the VRPML solution to the ISPW-6 was

described in order to validate the aforementioned aspects, and hence show that

VRPML syntax and semantic are sound. In particular, the experiment demonstrated

the VRPML enactment model and its resource exception handling mechanism

along with the support for enactment in a distributed environment and the support

for dynamic creation of task and allocation of resources.

Additionally, the experiment also showed the feasibility of supporting awareness

and visualisation issues. This was achieved by demonstrating the integration of a

virtual environment at the PML enactment level. Overall, the experiment described

in Chapter 6 was considered successful as it demonstrated the key features of

VRPML and provided practical evidence of how these features are actually being

used in the context of supporting the modelling and enacting of software processes.

Finally, Chapter 7 was devoted to the evaluation of VRPML. The VRPML solution

to ISPW -6 problem and the waterfall model were revisited and evaluated. The

VRPML solution to the ISPW -6 problem was also compared to Little JlL

particularly in terms of the effectiveness of representation and expressiveness.

Furthermore, some improvements to VRPML were introduced. The author's initial

choice of control-flow as the main computational model for VRPML was also
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evaluated along with the novel language features. Overall, it was found that

although VRPML suffers from some limitations, its advantages outweigh the

disadvantages.

8.3 Discussion

In line with the main research hypothesis discussed in Chapter 1, this section

debates the applicability of VRPML for supporting distributed software

engineering teams. In doing so, this section identifies some of the difficulties

associated with distributed software processes, and analyses whether or not the

features provided in VRPML addresses those difficulties.

Due to the lack of face-to-face contact, coordination of activities involved in a

software process is often difficult when the development teams are not physically

collocated. The fact that VRPML supports the construction of the process model as

well as its enactment in a distributed environment is helpful in this situation. One

reason is that the coordination of activities can be fully automated through

enactment.

Another common problem arising from the lack of face-to-face contact relates to

communication breakdown amongst the team members. Generally, communication

breakdown has a negative effect on the developed software, resulting in bugs and

unnecessary rework. As a consequence, the probability of development project

success can be significantly reduced. Although not fully implemented in the current

prototype, the support for awareness in VRPML may be helpful to address some of

these issues. This is because through awareness, group cohesion may be improved,

and hence encourage informal communication amongst team members.

Nevertheless, communication amongst team members can often be difficult when

the development teams are distributed in multiple sites. Asynchronous

communication tools (e.g. email tools) address this issue to a certain degree, but do

not allow software engineers to hold the rich discussions possible when they are

physically collocated. Thus, the feature of VRPML that permits the specification of

synchronous communication tools (e.g. a tele-conferencing program) as part of the

workspace definition can be helpful to address this issue. Furthermore, VRPML

also provides a special node for virtual meetings. The support for virtual meetings
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is beneficial since meetings are an important characteristic of software engineering.

Additionally, when development teams are distributed over multiple sites, virtual

meetings could help reduce costs if a meeting would otherwise have to be held

face-to-face.

In the context of distributed software engineering teams affected by both

geographical and temporal distribution, collaboration on a shared activity can also

be difficult to achieve. This is because there may be only a small window of

overlap in term of times when the team members can work together. In some cases,

there could also be absolutely no window of overlap at all. The fact that VRPML

permits dynamic allocation of resources might be convenient to address some of the

above issues. One reason is that the assignment of engineers as resources to a

shared activity can be made dynamically not only based on the availability of

engineers but also depending on whether or not there is a temporal overlap for team

members to collaborate.

As has been shown, some of the features of VRPML can be usefully exploited to

address some of the problems associated with distributed software processes.

Therefore, it can be concluded that VRPML is useful for supporting software

processes for distributed software engineering teams.

8.4 Future Work

As the current implementation of VRPML is still in a prototype form, an obvious

starting point for future work would be to complete the implementation. For

example, implementing a compiler and complete workspace manager would be a

useful endeavour, together with support for the additional language features

proposed in Chapter 7.

Referring to the analysis in Chapter 2, other obvious future work for VRPML is to

support reflection and the collection of enactment data. As discussed in Chapter 2,

with reflection, VRPML could support the dynamic evolution of the process model

and the meta-process issues. Through the collection of enactment data, VRPML

could support systematic and objective evaluation of a particular process model, for

example, as indicators for facilitating process improvement.
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As discussed in Chapter 4, the semantics of VRPML have been informally defined,

and captured in the implementation of the run-time interpreter. Further work could

provide a formal specification for VRPML to enable additional insight into the

language and its characteristics to be derived.

Apart from the above, a number of other research avenues could also be

investigated. The fact that VRPML supports integration with a virtual environment

opens up many possibilities for using visualisation to provide multiple views of the

same process model from different perspectives, and hence potentially improving

process understanding. Instead of using a straightforward mapping of workspaces,

that is, a workspace, artefacts, tools and task descriptions map one-to-one to a

virtual room and objects, other meaningful visualisations could also be explored by

defining or using other types of mapping. For example, artefact-centred mapping as

defined by Doppke et al (discussed in Chapter 3) could be used where artefacts are

represented as virtual rooms and their dependency relationships are expressed as

part of the arrangement of the rooms. If sub-products of the artefacts are defined

then they are represented as separate rooms connected to the parent product room

either by exits or by containment, whilst tools and task description can be defined

as objects inside the room. Clearly, by manipulating the types of mapping used,

multiple views of the same process can be achieved. In turn, such views may

enhance the support for awareness.

Another possible area of research is to find other ways of addressing awareness in

VRPML, for example, supporting user awareness by representing software

engineers as avatars in the workspaces during enactment or using live video. Using

avatars or live video can perhaps improve the sense of realism and further

encourage informal communication as engineers can "see" each other. This is

especially useful if the workspaces involve more than one person, and the software

engineering teams are physically distributed.

Although useful by giving focus on a particular activity, the evaluation in Chapter 7

establishes that workspaces defined by VRPML give insufficient working context

particularly about the overall activities, that is, in terms of how the pieces fit

together into the whole picture. In the current VRPML implementation, questions

such as what the previous task was, what the next task is, and what needs to be
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done to move along cannot be easily answered. Therefore, it would be useful to

find ways for VRPML to also give context of the overall activity, for example, by

giving the software engineers access to the enacted VRPML graph in the forms of

animated flow of control during enactment.

Because a software development project often involves hard deadlines, another

possibility for further work is to investigate the inclusion of "timing" criteria as part

of the VRML notation. Perhaps, the timing criteria could be exploited as part of the

workspace definitions, raising an "alarm" when an activity is due to be completed.

As a result, the software engineers can be reminded about the deadlines of the

activities that they are undertaking.

Finally, as VRPML is a domain-specific language for modelling and enacting of

software processes, a more general suggestion for future work is to investigate the

applicability and usefulness of VRPML to support general workflow processes.

8.5 Closing Remarks

Because of the potential benefits in terms of being able to provide automation,

guidance and enforcement of software engineering practices and policies through

enactment, a PML could form an important feature of future software engineering

environments. Ironically, despite the above promise, the adoption of PMLs in

industry has not been widespread. Furthermore, no single existing PML has

emerged dominant as the de Jacto standard for modelling and enacting software

processes. For these reasons, it follows that research into PMLs is still necessary.

In the context of the work reported in this thesis, despite some limitations, VRPML

represents another step forward in the research into PMLs, particularly as it

addresses the dynamic management of resource issues as well as opens up new

possibilities of supporting awareness and visualisation issues in software processes

by exploiting a virtual environment. Based on the experience and the subsequent

evaluation of this research work, the research hypothesis discussed in Chapter 1 has

been proved - integration with a virtual environment in VRPML is indeed useful

for supporting software processes for distributed software engineering teams, and

VRPML provides a significant improvement towards the goal of a practicable

PML.
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Appendix A: Non-Enactable PMLs

This appendix identifies a number of existing non-enactable PMLs. Some of these

PMLs are actually being used in other domain, but have been applied in the context

of supporting the modelling of software processes. Further details about any of

these PMLs and their use can be obtained from the cited reference.

• SOCCA [30] - is a PML which uses the state transition diagram to support the

modelling of software processes, and permits enactment of a process model to

be simulated.

• E3 [7] - is an object-oriented PML employing graphical pre-defined classes and

relations in order to support the modelling of software processes.

• LIMBO [55] - is a PML which serves as the specification language for PATE.

Some characteristics of LIMBO are briefly described in Chapter 2.

• BM [13] - is a PML which serves as the specification language for PWI PML.

Some characteristics of BM are briefly described in Chapter 2.

• STATEMATE [40] - is a PML which is based on state-charts (i.e. enhanced

state transitions diagrams). It allows enactment of a process model to be

simulated.

• UML [59] - is a graphical language for specifying object-oriented software

design. Example usage of UML as a PML can be seen in the work by Franch

and Ribo [31].

• ETVX - is a graphical notation developed by IBM in early 1980s to write work

procedures. Example usage of ETVX as a PML can be seen in the work by

Humprey [41].

• IDEFO - is a graphical notation used to specify the work procedures based on

the Structured Analysis and Design Techniques (SADT). Example usage of

IDEFO as a PML can be seen in the work by Jaccheri and Stalhane [43].
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Appendix B: Complete VRPML Solution for the Waterfall Model

This appendix provides a complete solution for the waterfall model. Further

discussion about the solution can be obtained from the main texts.

Main VRPML Graph for the
Waterfall Model

Figure B-1 The Main VRPML Graph for the Waterfall Development Model

Macro expansion for System
Feasibility

Figure B-2 Macro Expansion for System Feasiblity
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Figure B-3 Workspaces for Analyse and Define Requirements, and Review System

Feasibility
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Macro expansion for
Requirements Specification

Figure B-4 Macro Expansion for Requirement Specification
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Macro expansion for
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Figure B-6 Macro Expansion for Preliminary Design
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Figure B-7 Workspaces for Prepare Architectural Specification, Prepare System

Test Plan, and Review Preliminary Design

Macro expansion for
Oetailed Design

Figure B-8 Macro Expansion for Detailed Design

168



@It
RequirementDocuments

@It Fu ne Uon alS pee ifie a lion

ArchitecturalSpec tncetron

Draftl ntert aceSpecification

Workspace for Prepare Interface
Specification

RequiremenlDocuments Function alSpecification

DraftDeslgnSpecificatlon

@It @It
Draftl ntenaceSpeclfication ArchitecturalSpecific etlon

Workspace for Prepare Design
Specification

Function atspecmcatron

RequirementDocurnents

Ora ftlntegration Tas tPlan

Workspace for Prepare Integration Test
Plan

RequlrementDocuments FunctionalSpeclfica lion

@It

Draftlnten aceSpeclfic ation ArchitecturalSpecification

@It
DraftlnterfaceSpecification

@It

Workspace for Prepare Unit Test Plan

OraftlntegratlonTestPlan

EmailTool

OrartOesignSpecification DraftUnltTestplan

Workspace for Review Detailed Design

Figure B-9 Workspaces for Prepare Interface Specification, Prepare Integration

Test Plan, Prepare Design Specification, Prepare Unit Test Plan, and Review

Detailed Design
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Macro expansion for Module
Coding and Testing

Figure B-IO Macro Expansion for Module Coding and Testing
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Figure B-11 Workspaces for Perform Coding, Perform Unit and Module Testing,
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Macro expansion for System
Integration

"\ System Testing

Figure B-12 Macro Expansion for System Integration
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Figure B-13 Workspaces for Perform Integration Testing, Prepare Final User

Manual, and Review Integration Testing
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Macro expansion for System
Testing

Figure B-14 Macro Expansion for System Testing
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