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Abstract 

In this thesis, a new concept of finite strip elements is introduced. 
Lagrangian, Hermitian and spline-type interpolations have been 
used independently along the two axes of the plate mid-plane. 
Different plate-bending theories; Mindlin, Reissner and Kirchhoff 
theories have been applied in the derivations of the new finite- 
strip elements, for isotropic and composite materials. The new 
elements have also been extended to work as faceted shell 
elements for the analysis of cylindrical shells, folded plates and 
stiffened plates. 

An efficient modular programming package based on those 
elements was designed, and it is capable of performing linear and 
non-linear stress analysis, buckling analysis and natural frequency 
analysis. The modular package, which was coded in FORTRAN 
has different solvers and a built-in mesh generator for different 
types of plate structures. 

A number of case studies have been employed for the validation 
of the package and testing its different capabilities. The package 
has proved to be an efficient tool for numerical modelling of 
plates, cylindrical shells, folded plates and stiffened plates made 
of isotropic and composite layered materials. 
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Chapter 1 

Introduction 



1. Introduction 

1.1 GENERAL INTRODUCTION 

The finite strip method (FSM) is well known and established as a powerful and versatile 
tool of solution in structural analysis, and for many structures having regular geometric 
planes and simple boundary conditions a full finite element analysis is often both 
extravagant and unnecessary and sometimes even impossible. The cost of the solution is 
very high and sometimes it goes even more expensive when a more refined higher 
dimensional analysis is required. 

The above observations are especially true for static analysis of three dimensional solids 
and for eigenvalue problems. In vibration and buckling analysis of plate and shell 
structures, an alternative method which can reduce the computational effort, but at the 
same time retaining to some extent the versatility of the finite element analysis is evidently 
desirable for these structures. 

These requirements can be satisfied fully by the recently developed FSM. In this method, 
the structure is divided into two dimensional strips or three dimensional (prisms, layers) 
sub-domains, in which one opposite pair of sides (2D) or one or more opposite pairs of 
faces (3D) of such domains are in coincidence with the boundaries of the structures. 

The geometry of the structure is usually uniform along one or two co-ordinate axes, so that 
the width of a strip or the cross-section of a prism or layer will not change from one end 
to the other. Therefore while box girder bridges and slabs are conveniently divided into 
strips or prisms, for thick isotropic or multi-layered plates and shells a division into layers 
would definitely be more suitable. 

The finite strip method can be considered as a special form of finite element procedure 
using the displacement approach. Unlike the standard finite element method (FEM) which 
uses polynomial displacement functions in all direction, the finite strip method calls for use 
of simple polynomial in some directions and a continuously differentiable smooth series 
in other directions, which satisfies a priori the boundary conditions at the ends of the strips 
or prisms. 

Composite materials are widely used in the current design practice of many of today's 
engineering disciplines. The use of composite materials in the automobile and marine 
engineering industries is to be noted in particular and it is envisaged that these materials 
will have still a wider role to play in the future as more is realised of their capabilities 
through continued applied research and development. 

Composites have the advantage of fibre orientation is that a structural component can be 
tailored for a specific requirement simply by controlling the direction of the fibres and 
choosing a favourable ply stacking sequence. 

The mechanical response of composite structural element is significantly different to that 
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of similar conventional metallic components and thus elaborate and detailed analytical 
solution procedures are necessary to account for the complexities associated with the 
anisotropic nature of typical glass and carbon fibre composite materials. Many of the 
design problems in fibre reinforced composite structures stem from the fact that the fibres 

are joined together by a matrix material which has a relatively low strength and stiffness 
through the thickness of a laminated component which can be of the order of a few percent 
of its in-plane longitudinal strength and this gives rise to unusual failure mechanisms 
unique to composite construction. 

The classical implementation of the FSM was based on the use of trigonometric functions 
(harmonics) along the direction with uniform geometry, and from the orthogonality of 
those functions equations associated for each harmonic are decoupled and solved 
independently. 

For the case of general composite layered plates, this decoupling is not possible except for 
linear analysis of symmetric composites. For non-linear stress analysis and buckling 

analysis the full equations for all harmonics have to be solved simultaneously. The main 
advantage of the FSM for such cases is the reduction of finite element modelling time. The 

coupling of harmonics has inspired researchers to use different types of interpolation 
instead of trigonometric series, and the concept of spline finite strip method has been 

created, and used for non-linear and buckling analysis of plates. 

1.2 RESEARCH OBJECTIVES 

The main objective of the PhD research is to derive new and efficient finite strip elements 
and procedures for the nonlinear static, dynamic and instability analysis of composite 
layered plates and box structures. The interpolation theorems employed along the length 

of the plate are piecewise one-dimensional Lagrangian or Hermitian interpolation. A new 
type of finite strip elements will be derived based on the use of different types of one- 
dimensional polynomial interpolation along the plate width, including a spline-type 
interpolation. This may involve the following tasks: 

(i) Derivation of the finite strip equations for composite layered plates using 
Kirchhoff, Mindlin and Reissner plate bending theories. 

(ii) Derivation of linear, nonlinear and dynamic equations using faceted shell finite 
strip elements based on the newly derived plate elements. 

(iii) Investigation of efficient interpolation theories for elements and along strip width. 

(iv) Developing a computer software based on those derivations for the static, buckling 
and natural frequency analysis of composite layered plates and box structures. 
Efficient built-in mesh generators should also be considered. 

(v) Validation and justification of the developed work via case studies, involving 
comparison with finite element solutions. 
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1.3 THESIS LAYOUT 

Chapter 1 gives the general introduction about the research and the finite strip method, 
which leads to the research objectives. It also contains a short summary of the layout of the 
thesis. 

Chapter 2 reviews the latest status of the composite materials, the history of finite strip 
method and the application of the finite strip method to composite materials. It also 
reviews the recent modifications applied to finite strip methods such as the spline finite 
strip method. 

Chapter 3 gives the summary of the constitutive stress-strain equations for a lamina or 
layer of a composite plate with respect to material and local axes. A review of the basic 
plate-bending theories for Kirchhoff-type, Reissner-type and the Mindlin-type elements 
(finite elements or finite strip elements) is presented for the case of transversely isotropic 
composite plates. It also contains a summary of the different one-dimensional interpolation 
theorems employed in this work, including the new spline-type interpolation. The chapter 
ends with a brief description of local and intrinsic coordinates used for trapezoidal strips 
together with the equations of a simple mesh generator as employed in this work. 

Chapter 4 introduces a new type of finite strip elements based upon the Reissner plate 
bending theory. The interpolation theorems employed along the length of the plate are 
piecewise one-dimensional Lagrangian interpolation for in-plane components and 
Hermitian interpolation for the lateral deflection. This chapter also contains the derivations 
of stiffness and mass matrices, and equivalent nodal loading vector for practical cases of 
loading. A new method of derivation, based on strain energy variations, is presented where 
linear and non-linear terms are separated, making it easier to extract the equations for 
buckling analysis. 

Chapter 5 reviews the derivations of Kirchhoff-type finite strip elements using the 
Kirchhoff plate bending theory, and the new approach of applying polynomial 
interpolations along the plate width. Most of the equations can be extracted from those of 
Reissner-type elements given in chapter 4, and only relevant equations for Kirchhoff-type 
elements are summarized in this chapter. 

Chapter 6 introduces the derivations of new Mindlin-type finite strip elements based on 
the same concepts employed for Mindlin finite elements. One-dimensional Lagrangian 
interpolation is employed along x and y directions for all the parameters together with 
appropriate reduced integration schemes, but the method of derivation is similar to that 
employed for Reissner-type and Kirchhoff-type finite strip elements. 

Chapter 7 discusses how the different finite strip elements derived in the previous 
chapters for composite plates can be employed for box structures, stiffened plates, and 
curved shells, and it also contains an algorithm to transform element matrices to the global 
axes for such structures. A non-linear static stress analysis algorithm, dynamic analysis 
(natural frequency analysis) and buckling analysis algorithm based on the equations given 
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in previous chapters are also explained. 

Chapter 8 gives the detailed structure of the finite strip programming package, which has 
a fully modular structure with user-friendly data modules. The package was coded with 
FORTRAN 77 and has different linking options depending on the type of element and the 
type of analysis to be carried out. It has been tested successfully on PC's and Unix 
workstations. 

Chapter 9 is dedicated to the description and discussion of the results by employing a 
number of case studies for the validation of the package. Several case studies made of 
different types of composite layered materials have been considered for linear and non- 
linear static analysis, natural frequency analysis, and buckling analysis. Finite strip results 
have mainly been compared with corresponding finite element results. 

Chapter 10 summarises the final conclusions and some recommendations for future work. 

Linking instructions of FORTRAN files to form the different programs of the package, and 
some samples of input data files are given in the Appendix. 
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Chapter 2 

Literature Review 



2. Literature Review 

2.1 HISTORY OF FINITE STRIP METHOD 

The finite strip method described in general terms in the text of Cheung (1976) has been 
used quite widely in the analysis of rectangular plates and plate structures, in the area of 
vibration and buckling analysis and with the classical plate theory (CPT) used as the model 
of plate bending behaviour. The early work dealing with single plates included that of 
Cheung & Cheung (1971) and Babu & Reddy (1971) within the context to the use of the 
CPT. The analysis of prismatic plate structures has been considered and also by many 
others, such as Cheung (1976), Cheung & Cheung (1971), Turvey & Wittrick (1973), 
Plank & Wittrick (1974), Dawe (1978) and Morris & Dawe (1980). Most of these 
analyses are of single term type either corresponding strictly to diaphragm end conditions 
or to the rather more general complex quantity approach that allows the presence of applied 
shear stress (Plank & Wittrick, 1974). However, a minority of researchers (Cheung & 
Cheung, 1971) have used the multi term type which allows consideration of plates and plate 
structures of finite length which have other than diaphragm end conditions. 

In the context of the use of shear deformation theory to represent out-of-plane behaviour, 
Dawe and his colleagues (1989,1993 and 1999) have examined the application of the 
approximate finite strip method to the solution of buckling and vibration problems. 

For individual plates, this includes analysis of the single-term type for plates with simply 
supported ends (Dawe, 1978) and of the multi-type (Dawe & Wang, 1993) for plates with 
general end conditions and/or applied shear stress or anisotropic material behaviour: For 
prismatic plate assemblies, only the single term approach has been used (Dawe & 
Peshkam, 1989), though this has included adoption of the complex quantity philosophy 
to account for applied shear stress and anisotropic material when dealing with long 
structures (Craig & Dawe, 1987). The numerical applications in (Dawe & Peshkam, 1989) 
broadly demonstrate that depending upon relative thickness and precise material properties 
the effect of through thickness shear deformation can be significant for single plates and 
for plate structures when vibrating or buckling in a local mode, the effect is usually small 
for overall modes of plate structures. 

A stress version of the finite strip method is established by Hu (1997 ) and is applied to 
orthotropic and isotropic rectangular plates. This work is based on the modified 
complementary energy principle and in this method stress in the strip and the 
displacements at the boundaries between the strips are assumed. 

Michael & Averashi (1994) presented an approach to a solution based on combining the 
boundary element method and the finite strip method, taking the advantages of both. The 
finite strip method is installed into the boundary element method by expanding the 
unknown parameters terms of a trigonometric series and evaluating the unknown 
coefficients of this series. It is noted that the finite strip solution gives us a reduction of a 
semi-dimension in the mesh generation and the boundary element method reduces one 
dimension. 
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The finite strip method was extended to dynamic analysis of engine case and supporting 
system (Lu et a1.1994). The engine case was simplified into a revolutionary shell supported 
at a shaft and frame by means of several supporting plates and then was analysed by a finite 
strip method. The effect of the supporting plate on the revolutionary shell was considered 
by adding the transformed stiffness matrices of the plate to the shell stiffness matrix at the 
conditions of the displacement equality of contact points of the plates and the shell. The 
local stress near the plates and shell were obtained from substructure analysis using finite 
element of plate and shell. 

Chan & Chung (1986) introduced a novel analytical method based on the finite strip 
method based on finite strip representation of a structure. By applying the U-transformation 
into the finite strip method, the equations of finite strip elements can be uncoupled so that 
the problem of the whole structure can be simplified into an equivalent problem of the 
single strip element. 

In stress analysis, the energy principles are used in the Rayleigh Ritz method to obtain 
approximate solutions to elasticity problems (Khong, 1991 a). In the Rayleigh Ritz method 
a continuum, infinite number of degrees of freedom system is approximated by a finite 

number of degrees of freedom system. The method thus reduces the problem to that of 
solving a set of simultaneous algebraic equations. This method is employed in the finite 

element method and the finite strip method which is concerned with replacing continuum 
problems with those pertaining to substitute discrete systems. 

A finite strip method is used to model large deflections of plates (Cheung & Li, 1986). In 
this analysis the modified Newton-Raphson iteration method is used for non-linear analysis 
and the initial linear elastic stiffness matrix of the plate is kept unchanged during iteration 
to make the best use of the orthogonal property between different eigenfunctions and 
enhance the efficiency of the analysis but the bending stiffness matrix of the plate has to 
be multiplied by an amplification factor to ensure the convergence of iterations. 

A hybrid finite strip method (Tarn & Sa, 1987) is developed for analysing the bending 
problem of multilayer laminated plates of rectangular shape. This method combines the 
basic ideas of hybrid stress model and the finite strip method. 

2.2 APPLICATIONS OF FSM TO COMPOSITE MATERIALS 

Composite materials are widely used in the current design practice of many of today's 
engineering disciplines. The use of composite materials in the automobile and marine 
engineering industries is to be noted in particular and it is envisaged that these materials 
will have still a wider role to play in the future as more is realised of their capabilities 
through continued applied research and development. 

Composites have the advantage of fibre orientation is that a structural component can be 
tailored for a specific requirement simply by controlling the direction of the fibres and 
choosing a favourable ply stacking sequence. 
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The mechanical response of composite structural element is significantly different to that 
of similar conventional metallic components and thus elaborate and detailed analytical 
solution procedures are necessary to account for the complexities associated with the 
anisotropic nature of typical glass and carbon fibre composite materials. Many of the 
design problems in fibre reinforced composite structures stem from the fact that the fibres 
are joined together by a matrix material which has a relatively low strength and stiffness 
through the thickness of a laminated component which can be of the order of a few percent 
of its in-plane longitudinal strength and this gives rise to unusual failure mechanisms 
unique to composite construction. 

A great many researchers have outlined the importance of anisotropy in composite 
materials. Nemeth (1986) and Grensestedt (1989) have studied the effect of the out-of- 
plane, bending and twisting properties pertaining to symmetrically laminated composite 
plates on compressive buckling capacity, The interactive in-plane and out-of-plane 
coupling properties associated with anti-symmetric laminated plates have been considered 
by Sharma et al. (1980), for the case of compressive loading and by Hui (1984) for the case 
of in-plane shear loading. 

The nonlinear behaviour of rectangular laminated plates and sandwich panels was 
examined by Minguet et al. (1989), who employed the Rayleigh-Ritz method in 
conjunction with a direct energy minimisation technique to solve the buckling problem 
numerically. 

The compressive behaviour of composite stiffened panels have been studied by Starns et 
al. (1985), Sheinmen et al. (1988) and by Snell & Greaves (1990) with regard to buckling 
and strength. 

The effect of inter-laminar fracture toughness on the delamination buckling of composite 
laminates has been given some attention by Donaldson (1987), who determined the critical 
compressive load required to propagate delaminating cracks according to different failure 
criteria. 

The finite strip method has been employed by Chai & Khong (1993) to study the buckling 
response of composite laminated plates. The reduced bending stiffness concept was utilised 
in the development of their finite strip formulation to account for the influence for the 
mechanical couplings. The results reported in these works are for the anti-symmetric cross 
and angle ply plates corresponding to linearly varying compressive loading and for 
different combinations of the support boundary conditions. The finite strip formulation of 
Chai & Khong (1993) uses only a single trigonometric term to represent the strip along its 
length and as such it is clearly limited in its application. Buckling solutions corresponding 
to the in-plane shear loading of composite laminates are, of course, unable to be 
accommodated using this formulation since the single term along the strip length is unable 
to represent the distorted nodal lines of the shear buckling mode and indeed gives a 
geometric stiffness matrix which is identically zero for the shear loading case. It is also 
noted that buckling response of simply supported cross-ply laminates as considered by 
Chai & Khong (1993) is linear. 
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The theoretical study of the shear buckling response of laminated composite plates has 
been undertaken by Hui (1984). In this work consideration is given to symmetric and anti- 
symmetric angle-ply laminates as well as to symmetric unbalanced laminates and 
configurations which are generally unsymmetric in nature. Load combinations of 
compression and shear are dealt with and in order to obtain buckling solution for all the 
lay-ups considered, clamped conditions were made to prevail at the plate boundaries. The 
influence of the applied shear direction on the buckling performance of anisotropic 
laminates is highlighted by Wang & Dawe (1997) in some detail and thus the possibility 
of enhancing the compressive buckling capability of some laminates through the 
introduction of in-plane shear loading is indicated. 

The finite strip method of analysis has been used by Loughlan & Delaunoy (1993) and 
Loughlan (1993) to determine the buckling performance of composite stiffened panel 
structures. The finite strip method is able to predict the complex buckling modes associated 
with in-plane shear loading and the approach can allow for other loading configurations 
whose associated pre- buckling stresses are not so obviously realised. The non-uniform 
per-buckling stress associated with partial edge loading are accounted by Loughlan (1991) 

whilst pure shear loading and combined compression and shear loading are given 
consideration in (Loughlan, 1993). It is also clear from (Loughlan, 1991) that fibre 

orientation has an important role to play in composite materials construction in that a 
structural component can be tailored for a specific requirement by controlling the direction 

of the fibres to provide the best response to loading. For the case of plain flat outstands or 
blade stiffeners attached to one side of a thin composite skin it is shown (Loughlan & 
Delaunoy, 1993) that optimum stiffener depths are realised as the buckling mode changes 
from general to local in nature with increasing stiffener depth. 

A load increment procedure is presented (Lam & Zou, 1999) for the buckling analysis of 
laminated plates when subjected to uniform end shortening using finite strip method. In his 
work the Newton-Raphson procedure is employed and the procedure is developed in the 
context of both classical and first- order shear deformable plate theories. 

In Rayleigh-Ritz types of structural analysis, the choice of the trial displacement functions 
is at utmost importance. Tarn & Sa (1987) presented a finite strip method for the analysis 
of deep beams, shear walls and thin plates with abrupt changes of thickness. 

The buckling stresses and natural frequencies of composite laminated plates and shells 
having arbitrary lay ups and boundary conditions were presented by Dawe & Tan (1999) 
by means of a general spline FSM capability developed in the framework of both the 
classical and the first shear deformation plate and shell theories. 

Finite Strip method (Hu, 1997) is used to evaluate natural frequencies and modes of 
symmetrical, cylindrical honeycomb panels. In this the convergence of high-order natural 
frequencies versus strip division and the constraint conditions at the straight ends are 
considered in detail. It has been found from this work that some natural frequencies 
predicted are independent of the strip division and the finite strip analysis always gives one 
more natural frequency than the analytical solutions. 
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Cheung & Li (1986) have developed a finite strip method for the vibration and stability 
analyses of anisotropic laminated composite plates by using the higher-order shear 
deformation theory. This theory accounts for the parabolic distribution of the transverse 
shear strains through the thickness of the plate and for zero transverse shear stresses on the 
plate surfaces. 

A finite strip method implemented on the buckling analysis of laminated composite panels 
is presented by Khong (1991b). In this analysis, the out of plane behaviour of the 
composite panel is described by thin plate theory and the deformation variations across the 
panel are presented by a fifth degree polynomial function. Elementary beam theory is used 
to account for the in-plane destabilising effects. The Rayleigh Ritz method is employed for 
the formulation of stiffness matrices through minimizing the total potential energy with 
respect to the displacement parameters. 

The buckling analysis of laminated composite plates using the finite strip method was also 
presented by Chai & Khong (1993). In this work the plates are subjected to in-plane 

compression and their boundary conditions on the unloaded edges are simulated to vary 
from the free condition to clamp condition using a quintic polynomial function. Also along 
the loaded edges three different support conditions were simulated using single term 
trigonometric functions. The coupling influence in these laminated plates on the buckling 
behaviour was accounted for in the analysis through the use of the reduced stiffness 
bending concept. 

A finite strip method was developed by Dawe et al. (1993) for predicting the geometrically 
non-linear response of rectangular composite laminates with simply supported ends when 
subjected to uniform end shortening in their plane. At the load ends lateral in-plane 

expansion may be allowed freely or may be prevented completely in different versions of 
the approach. The permitted laminate material properties are quite general in this case. The 
analysis is based on the use of the classical plate theory and the non-linearity is introduced 
in the strain-displacement equations. 

A spline finite strip method (Sheikh, 1997) has been applied to determine the natural 
frequencies of plates and stiffened plates with edges elastically restrained against 
translation and rotation. 

The problem of predicting the geometrically nonlinear response of rectangular laminated 
plates subjected to uniform end shortening is analysed in the context of a first-order shear 
deformation plate theory (Dawe et al. 1993). In this work finite strip method is used as the 
main numerical analysis procedure, with subsidiary use made of the finite element method. 

Free vibration of prismatic plate structures of laminated composite material and having 
diaphragm end supports is considered using the finite strip method. In this method Criag 
& Dawe (1987) have developed stiffness and mass matrices for both out of plane and in- 
plane deformation of a family of strip models. Also the former deformation is based on 
first-order shear deformation plate theory, rather than the classical plate theory. 
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The dynamic stability of rectangular layered plates due to periodic in-plane load is 
presented by Srinivasan & Chellapandi (1986) using the finite strip method with the 
advantage that the problem is reduced to that of one with finite degrees of freedom, then 
following Bolton's procedure, the regions of parametric instability have been determined. 

The prediction of buckling stresses and natural frequencies of prismatic plate structure 
made of composite laminated is considered (Peshkam & Dawe, 1989) using the finite strip 
method. In this work different analysis procedures are outlined, dependent upon whether 
the plate structure has finite length or is long and on whether shear deformation plate 
theory or classical plate theory is used. The spline finite strip method has been applied by 
Cheung et al. (1989) to the free vibration analysis of a singly curved shell panel. 

2.3 SPLINE FINITE STRIP METHOD 

Structures used in engineering applications have openings for functional purposes. The 
elastic analysis of floor slabs with rectangular opening or wide column supports by 
classical plate theory predicts singular moments and shear forces at the corners of such 
openings and supports. Although the FEM guarantees a solution, the rate of convergence 
may be significantly reduced, and to overcome this either the finite element mesh is refined 
locally or a special purpose finite element model based on hybrid stress formulation is used 
(Wang & Dawe 1997). 

The first option leads to a large number of degrees of freedom, thereby increasing the 
computational time. The second option is more complicated and time consuming than the 
displacement based FEM and the FSM will face difficulty in modelling the problems with 
steep stress gradients, due to the higher order continuity of their displacement functions 
(Tham, 1990, Madasamy, 1993, and Cheung & Li, 1986). 

In order to overcome these problems the spline finite strip method (SFSM) based on 
classical thin plates theory has been used. The spline finite strip method was developed by 
Cheung & Fan (1983) as an alternative of FSM. The unknowns in the SFSM are the 
displacement parameters at the intersection knots of the longitudinal nodal lines and 
transverse sections. 

The SFSM adopts B3-splines as displacement function in the longitudinal direction and 
cubic Hermite shape functions in the transverse direction. The B3- splines are continuous 
over four sections and the overall displacement representation in the longitudinal direction 
is given by a linear combination of the local B3-splines. If the section knots are equally 
spaced the B3-spline function has C2 continuity and this order of continuity can be lowered 
to C' or CO near the stress concentration regions by using uneven spacing of the section 
knots. 

The rate of convergence of the deflections and stresses can be increased by using unequal 
section knots of B3-splines in plate bending analysis using SFSM and this has been 
demonstrated by Chen et al. (1991) for rectangular plates. 
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The SFSM results indicated monotonic convergence of stress instead of oscillatory 
convergence of stress (Gibb's phenomenon) encountered while using FSM. The SFSM 
results are more accurate with a fewer global degrees of freedom compared to FSM, as 
discussed by Cheung & Fan (1983). 

The large amplitude free flexural vibration of stiffened plates has been investigated by 
Sheikh, Abdul Hamid (1997) using spline finite strip method. In this work the effect of 
large amplitude have been taken into account by adopting Von Karman's large deflection 
plate bending theory and the formulation has been done in the total Langrangian coordinate 
system. The stiffener has been elegantly modelled so that it can be placed anywhere within 
the plate strip and it need not to follow the nodal lines. 

The stability of shear-deformable plates under constant initial stresses was studied by the 
spline finite strip method (Cheung & Kong, 1995) Third order plate theory was used as the 
basis for developing the strip element. The classical B3-spline function is modified in such 
a way that the resulting spline finite strip element incorporates the merits of spline 
interpolation and the versatility of the finite strip method. 

Dawe & Tan (1997) have used the spline finite strip method to predict the natural 
frequencies and buckling stresses of rectangular plates which have one or more step 
changes in properties along their length. The main step changes of interest are those of 
thickness and such step changes can occur at arbitrary locations in many practical 
situations. 

The spline finite strip method (Tham & Szeto, 1990) was applied to the buckling analysis 
of arbitrary shaped plates. The plate is first mapped into a rectangular domain in the natural 
coordinate planes by the sub-parametric transformation and the mapped plate was 
discretised into a number of strips. The displacements of each strip were described by 
interpolation functions which were given as products of piecewise polynomials and B-3 
spline functions. The eigenvalue matrix equation for the buckling analysis was then 
formulated and solved by the same procedure as that of the standard finite element method. 

The basic disadvantages of the SFSM are the difficulties of the derivation of spline 
functions, and in the associating physical meanings to the nodal values, making it difficult 
to cope with different types of boundary conditions along the strip width. 
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Chapter 3 

Introductory Concepts 



3. Introductory Concepts 

3.1 INTRODUCTION 

In this chapter, the constitutive stress-strain equations for a lamina or layer of a composite 
plate are summarised with respect to material and local axes. For plate analysis, the values 
of ßZ and EZ are negligible or function of other components, and will be excluded from the 
equations. Transverse isotropy may be assumed to simplify the stress-strain equations. 

A review of the basic plate-bending theories for Kirchhoff-type, Reissner-type and 
Mindlin-type elements (finite elements or finite strip elements) is presented for the case of 
transversely isotropic composite plate. A summary of the different one-dimensional 
interpolation theorems employed in this work, including the new spline-type interpolation, 
is given. The chapter ends with a brief description of local and intrinsic coordinates used 
for trapezoidal strips together with the equations of a simple mesh generator as employed 
in this work. 

3.2 STRESS-STRAIN RELATIONSHIPS FOR LAYERED COMPOSITES 

A composite layered plate or shell usually consists of a number of layers (N, ) bonded firmly 
with each other. Each layer is a lamina and it is flat for plates and curved for shells, and it 
represents an assemblage of reinforcing fibres in a supporting isotropic matrix. The 
material properties of the layer are defined with respect to the material principal axes 
x`, y`, z` such that ; the z` axis is normal to the midsurface of the layer and the x`, y 
axes are normal to the z" axis, i. e. they are in the midplane of the layer for the case of plates 
and tangential to the midsurface of the layer for the case of curved shells. 

The material properties which are required for an elastic analysis are: 
EX , Ey , Ey Young's moduli in the xyz` directions respectively, 

VVy vyz , vzX Poisson's ratios, with respect to x`, yz` axes, and 

'Xy, µy\" , P\ Shear moduli, with respect to x`, y`, z` axes. 

In this work different layers will be assumed of the same original composite material, i. e. 
the above properties will be the same for every layer and the density p is also the same for 
all layers. Since the transverse shear stresses and strains are small or negligible, we 
consider the composite material to be transversely isotropic with respect to the y" - z\ 
plane, i. e. E\ = E, v;, = v` µ` =` y+ yz zz+ yz µzX 

The stress and strain states at any point inside a layer may be defined in terms of the 
following stress and strain vectors: 

CF6x1 - 
{ax 

ay aZ iXy iyz izx } (3.1) 
(3.2) E6x1 -{Ex EY EZ YxY YYz Yzx} 
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and for an orthotropic layer, the elastic stress-strain equations may be expressed in the 
following matrix form: 

E` = C` a` (3.3) 

and a` =D` E` (3.4) 

where D' = C`-1 (3.5) 

1 Vyx Vzx 

Ex Ey EZ 

vxy 1 vzy 

Ex Ey` EZ` 

\ VXZ 

and C` = 

\1 VyZ 

E` E` E` XyZ 

000 00 

o00 

000 

000 

1 

µý xy 

000010 
\ 

NyZ 

00000 
1 
\ 

Nzx 

(3.6) 

where ( )` refers to properties measured with respect to xyz` axes, and from the 

symmetry of the C' matrix it can be deduced that: 

\\\\ 
ýyx ýxy uzx ýxz uzy 

- 
Vyz 

-_-, -_-, --- 
Ey Ex Ey Ex Ez Ey 

Using minors and cofactors the C' matrix can be inverted, resulting in the following D` 

matrix: 
\ d 

3x3 

D` = 
03x3 

I 03x3 

----- ----- 

( NXy 00 

ý0 µyZ 0 

ýýý µzX 

(3.7) 
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Ex ý1- vyzvzy) Ex ( vyx + vzxvyz) Ex (vzx + vyxvzy) 

where d3 
X3-1 Q 

Ey (vXy + viyvxz) Ey (1 - vXZvzx) Ey (vzy + vxyvzx) 

Ez ývxz + vyzvxyý Ez (vyz xzvyx) Ez (1- vxyvyx) 

and Q= 1- v` v` - v` v` - v` v` - v` v` v` - v` v` v\ xy yx yz zy zx xz xy yz zx xz zy yx 

(3.7a) 

(3.7b) 

Generally the layers of composite plates or shells are made of the same material, but each 
lamina (layer) has its fibres placed in a different angle, i. e. each layer l will have different 
x`, y` axes, rotated by an angle 0 from element local x, y, z axes. For the case of plates, 

the local z axis is always normal to the layer midplane and in the direction of the material z 
axis, and it is useful to define the material axes with respect to element local axes in terms of 
the angle 0, . 

Using rotated equations for stress and strain matrices, the stress-strain equations with respect 
to the local axes of the element {x, y, z}, can be expressed as follows: 

a6x1 D6x6 E6x1 

where the rotated D matrix can be expanded and represented by the following terms: 

dt i m4d11 + n4d22 + 2m2n2(di2 +2d44) 

d22 

d12 

d13 

d 23 

= n4dl1 + m4d22 + 2m2n2(di2 +2d44) 

m2n2(dii +d22) 

m2d13 + n2d23 

n2d13 + m2d23 

+ (ma +n4)d12 - 4m2n2dä4 

d14 =- mn[n2d22 - m2di + (m2 _n2)(dli +2d44)] 

d24 °- mným2d22 ' n2di1 + (n2'm2)(di2+2d44 

d15 = d16 = d25 = d26 =0 

d33 d33 

(3.8) 
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d3a 

d44 

d35 

d55 

d66 

d56 
dý - s 

and m=cosO, n=sinO. 

(m2 -n2)2d44 

0 

For the lth layer, equation (3.8) can be partitioned as follows: 

ßx 

and 

6y 

Txy 

- mn(di3 _d13) 

m2n2(dii +d22 -2d12) + 

= d36 d45 d46 

2 \2 ý 
m dS5 +n d66 

n2ds5 + m2d66 

mn(dss -d" ) 

= dij 

=D <<ý 

cx 

cy 

Yxy 

'Lxz 
= µ(l) 

Yxz 

iyz Yyz 

d11 

dzt where D(1 

and 

dai 

d55 

d65 

d12 d14 

d22 d24 

d42 d44 

ds6 

d66 

with the d,, as been defined previously. Notice also that for the case with P31 
the transverse shear modulus, then for every layer: 

µ(i) °N 0 

d 
UJ 

0 
N 

- µ32 = 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

pi 
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3.3 PLATE BENDING THEORIES 

3.3.1 Basic assumptions 

Consider a plate defined in terms of a midplane in the Cartesian x-y plane, and a thickness 
distribution h (x, y) measured in the z-direction, as shown in figure 3.1. The upper surface 
of the plate (z =h /2) is considered been subjected to a shear force per unit area qu (x, y) and 
the lower surface (z =- h/2) is subjected to a shear force per unit area q, (x, y). Other 

types of loading may also be considered, as will be discussed within finite strip derivations. 

Plate theories are based upon the following assumptions and approximations: 
(i) The composite material of the plate is homogeneous, and linearly elastic. The stress- 

strain relationships are, therefore, governed by equation (3.8). 

(ii) Displacement gradients are finite, such that Cauchy's strain-displacement relationships 
are no longer acceptable, and large deflection analysis will be considered. However, 
the transverse shear strains are assumed infinitesimal and continuous along the plate 
width. 

(iii) The midplane remains unstrained after bending, i. e. it is a neutral plane in bending. 

(iv) The lateral deflection w, the displacement component in the z-direction, is independent 
of z, i. e. wz w(x, y). 

For thin plates, the following additional assumptions are also considered. 
(v) The transverse shear strains; yxz , yyz are negligible, leading to plane sections initially 

normal to the midsurface remain plane and normal to the midsurface after bending. 

(vi) The transverse normal stress a= is small compared with other stress components and 
can be neglected. 

3.3.2 Transverse stress modelling 

Considering the equation of surface traction at the upper surface of the plate, it can be deduced 
that: 

T 
, xz - tiyz =U+ az - qu 

Similarly, at the lower surface of the plate: 

ixz = iyz = 0, aZ =-q, 

Hence, it can also be deduced that: 
7xz = 'Yyz =0 atz = ±h/2 

(3.13) 

(3.14) 

(3.15) 

Using a three-point Lagrangian interpolation (Hegaze, 2002), then parabolic distributions of yand 
yy, Z may be obtained in terms of their values at the three points; z1=-h/2, Z2= 0' 
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z3 =+h /2, as follows: 

YxZ = Yxz ý x" y) 1 

Yyz = YyZ (x ,Y)1 

4z2 
h2 

4z2 

h2 

(3.16) 

(3.17) 

where yXZ 9 yyt are the values of transverse shear strains at z=0. 

3.3.3 Displacement equations for thin plates 

Using the previous assumptions, and strain-displacement relationships, it can be shown that: 

au aw aw 
az ' xz ax ax 

(3.18) 
av aw aw 
az ýyz ax ay 

where u, v are the displacement components in the x and y directions, respectively. 
Integrating the previous equations with respect to z, it can be shown that: 

u(x, y, z) = u°(x, y) -z ax (3.19) 

v(x, y, z) = v°(x, y) -z 
aw 
y 

where u 0, v° are displacement components at z=0. These equations will be employed 
for Kirchhoff-type elements. 

3.3.4 Displacement equations for thick plates 

It can be deduced from equations (3.16), (3.17) that: 

YxZ = 

and Yyz = 

i. e. 

, Yxz 1_4z2 _ 
au+aw 

jj 2 az ax 

ol_4z2 _avaw 7yZ 
h2 az ay 

au aw o2 

äZ- äx+Yxzj_4 ha 
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and av aW+Y 4z2 1 
az ay y= h2 

Integrating the previous equations with respect to z, it can be proved that: 

u(x, y, z) = u°(x, y) -z 
ax 

+Yxz z- 
3h 3h2 

(3.20) 

4z3 
v(x, y, z) = v°(x, y) -z 

aW 
+Yyz 

3 

4zh 
2 

(3.21) 
y 

To simplify the thick plate problem, transverse shear stresses and strains averaged over the 
thickness may be employed without violating equilibrium or strain energy contributions. 
Defining average transverse shear stresses ixz , iyz so as to maintain internal equilibrium, 

then: 
h12 h/2 

( Qx , Qy )= f( ixZ , iy= ) dz =f (ixZ, iy2 ) dz 
-h12 -h/2 

i. e. i= 
QX 

=20= 
Qy 20 

zz h3µ 
Yxz " iyz 

h3N Yyz 

Defining average transverse shear strains 
contributions, then: 

h/2 h/2 
f txZ ýxz dz 

-f 'Lxz YxZ dz 

-h/2 -h/2 

and 

h/2 h/2 

f iyz yyz dz °f tiyZ Yyz dz 
-h/2 -h/2 

Yxz' Yyz 

(3.22) 

(3.23) 

so as to maintain strain energy 

(3.24) 

(3.25) 

Considering first equation (3.24), then it can be deduced that: 

h txz Yxz 

i. e. 

4p 
-hie 

Yxz = xz 
/56N 

1 _ 
4z2.2dz 
h2 

Similarly, it can be deduced from equation (3.25) that: 

h/2 
9 iXZ 
4µ 

-ti/1) 

Y__ IZ- 
1.. " .acI---ý 

ox 13 h` 

(3.26) 
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5 
Yyz = ýyz 

6N 

Comparing with equation (3.23), it can also be shown that: 
o_ 5- 0_ 5- 

Yxz -4 Yxz' Yyz -4 Yyz 

and equations (3.20), (3.21) can be rewritten as follows: 

3 

u(x, y, z) = u°(X, y) -z 
ax 

+ Txz z- 
3h2 

(3.27) 

(3.28) 

(3.29) 

v(x, y, z) = v°(x, Y)-z 
ýw ayz z- 

4z2 (3.30) 
Y 3h 

which will be employed for Reissner-type elements. 

If averaged displacement components are defined according to strain-displacement equations 
of averaged strains, then: 

arl aw Yxz 
az+ax 

av aw Yyz az + ay 
and it can be deduced that: 

1aW ü(x, y, z) = u°(x, y) -z ax -1'xz 

° u°(x, y) +z6y 

'v(x, y, z) = v°(x, y) -z 
öy W- Yyz 

= v°(x, y) -z8x 

where O= aw 

ay _7yz 

and gy äw 
- ax 

Yxz 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

which are the corresponding average slope angles. Equations (3.33) and (3.34) will be 
employed for Mindlin-type elements. 
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3.4 INTERPOLATION THEOREMS 

Three different one-dimensional interpolation theorems are employed in this work. They are 
summarized for the functions of an intrinsic coordinate 4, where 0s4s1, as follows: 

3.4.1 Lagrangian interpolation theorem 

Defining a function f(ý) in terms of f1, f2, ..., f, at 41,42, ..., 4� then according to Lagrange's 
interpolation theorem (Kopal, 1961): 

f(ý) _ý 
ýý(ý)f (3.37) 

ý=1 
where Lagrange's multipliers are defined as follows: 

H- 4-4, 

r=1,4i - 4r 

r+i 

and for the special case of points at equal distances, or 

&= r-1 
'' n-1 

it can be deduced that: 

n 
ý; (ý) = 

II (n-1)ý-(r-1) 

r=1, 
Z-T 

r"i 

(3.38) 

(3.39) 

(3.40) 

3.4.2 C'-continuous Hermitian interpolation theorem 

Consider a field function f(c) defined in terms of its values, and the values of its first order 
derivative at 41,4z, ... , 4n where 

f, f(4l), A4°df at 4i 

Then using Hermitian interpolation theorem (Kopal, 1961): 
n 

gi(y)ffi + hi(4)fi, 41 i=1 

where gi ()_ [1_2a(_)J 

h, cý) = cý -ý, ) [ý, cý)]2 
n, 

and a, °E 
r=1, 
r. i 

I 
4i -4r 

(3.41) 

(3.42) 

(3.43) 

(3.44) 
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If 4r r -1 
, then 4; 

n-1 
n 

ai =ý 

r=1, 
r. i 

n-1 
i-r 

i-1 
n-1 

3.4.3 C'-continuous spline-type interpolation 

The conditions for this type of interpolation are: 

at 4l: 
at 4n: 

at 
4i9 

f,, fi, 4 
fn' fn, 

4 
1 <i<n: 

are given, 

are given, 

only f is given. 

(3.45) 

Using El-Zafrany & Cookson (1985), the interpolation equation can be expressed as follows: 
n 

gis (4)f + his (ý). fi, ý ý 
r=ý 

where gis(4) = [1+(1 -a, )4] (1 -)U; (, ) 
his(ý) 

Sn(4) = ý1+(1 +an)(1 -4), 4o-n(4) 

hl 
z=-4 

(1 - 4)gn(4) 
and for 1<i<n: 

4( 1 
-4) 

h; s(ý) =0 4ý 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

Notice that when n=2, the previous interpolation is the same as the Hermitian interpolation. 

3.5 STRIP GENERATION AND INTRINSIC COORDINATES 

We shall consider a general trapezoidal panel, as shown in figure 3.2, where the mid-plane is 
defined geometrically in terms of- 

L= Length of the panel in x-direction, 
Bi = First width in y- direction, 

B2 = Second width in y-direction, 

and to define the axes precisely, x will start from the LHS edge and the two lower corners have 
yi, y2 as their given y coordinates. 

, and it can be deduced that: 
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3.5.1 Generation of strip 

A number say ms of n-node strips is assumed, each strip (e) will have the following length: 

I= L/ms = constant (for simplicity). 

The equation of the lower edge of the panel is: 

y -yi 
Y2 _Y1 

or y= yl 

_ 
X-0 
L-0 

('2 yl) 
+x 

L 

and for the strip abcd of number e: 

ms 

xc =e _L = el 

where e= 

Notice also that: 

Xa = Xd = (e - 1) L= (e - 1)l 

ms 

- Ya = yl + 
(e 1) (Y2 - yd 

ms 

e yb = yl +m (y2 - yl) 

S The equation of the upper edge is therefore: 

y-(y1 + BI) 
_x (y2 + B2) - (YI + BI) L 

Hence 
x y= yl + B1 + {(y2-y1) + (B2 - BI)] x 

and it can be deduced that: 

Yd yl + g1 + 
[(Y2 

- yd + (B2-B1)] 

ms 

and y, = y, + B1 +e m) 
[(y2 

- yl) + (B2 - B1)] 
S 

then the widths of the opposite sides of strip abcd are: 

bl = Yd - ya - = Bi + (e 
m 

1) 
(B2 - B1) 

S 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

(3.58) 

(3.59) 

(3.60) 
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b2 = Yc - Yb 

= Bt + (_e )(B2 
-Bl) (3.61) 

ms 

3.5.2 Generation of nodes on x-line 

Every new n-node strip will add only n-1 nodes to the previous one, i. e. 

Total number of nodes N=n+ (ms - 1) (n - 1) 

or N= ms (n - 1) +1 

and for every ith node (as a global number) 

Xi = IN 
- 

i)L 

if all the nodes are equally spaced. 

3.5.3 Topology array for each eth strip 

The first node of each of eth strip is (e - 1) (n - 1) + 1, 

and forjth local node in the eth strip , its global number is: 

TA (e , j) = (e - 1) (n - 1) +j 

3.5.4 Intrinsic coordinates for the eth strip 

We shall use x local measured from LHS edge of the strip with 

4= x/l 

From figure 3.3, the equation of the lower edge ab can be obtained from: 

4=x= Yi (X) Yu 
I Yb - Ya 

ý. e. yl(x) = ya +4 (yb - yü) 
Similarly 

b(x) = bl +4 (b2 - bl) 

An intrinsic coordinate 11, is defined such that: 

(3.62) 

(3.63) 

(3.64) 

(3.65) 

(3.66) 

(3.67) 
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, A) = 
Hence 

Y- yA) 
b(4) 

Y (ý ý ý1) =b (4), q + Y! (4) 

3.5.5 Double integrals over the strip 

Differentiating equation (3.69) at 4= constant: 

dy = b(4) d1 ° Jy(4) do 

where Jy (4) =b (4). 
Similarly, from equation (3.65): 

dx ld4° Jxd4 

where Jx = 1. 

Hence, it can be deduced that: 

11 
fff(4, i1) d. Y dx - ff 

. 
f(4,11) Jy(4) Jx dil d4 

strip 00 

(3.69) 

(3.70) 

(3.71) 

(3.72) 

(3.73) 

(3.74) 

which can be evaluated numerically using the modified Gaussian quadrature (El-Zafrany, 
2000). 
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4. Reissner-Type Finite Strip Elements 

4.1 INTRODUCTION 

This chapter introduces a new type of finite strip element based upon the Reissner plate 
bending theory, in which parabolic distributions for transverse shear strains are assumed. 
The interpolation theorems employed along the length of the plate are piecewise one- 
dimensional Lagrangian interpolation for in-plane components and Hermitian interpolation 
for the lateral deflection. Along the plate width, different types of one-dimensional 
polynomial or harmonic interpolation can be applied. The use of polynomial interpolation 

will result in fully coupled equations, but this is always the case for non-linear and 
buckling analysis. 

We started with Reissner-type elements as they represent the most general elements 
in this work, whilst the special cases of Kirchhoff-type and Mindlin-type elements will be 
summarised in chapters 5 and 6, respectively. 

This chapter contains the derivations of stiffness and mass matrices, and equivalent 
nodal loading vector for practical cases of loading. A new method of derivation, based on 
strain energy variations, is presented where linear and non-linear terms are separated, 
making it easier to extract the equations for buckling analysis. Separate matrices 
associated with different terms (or harmonics) of interpolation along the width are 
formulated thus minimizing computer memory requirements, when programming those 
derivations. 

4.2 STRESS AND STRAIN EQUATIONS 

4.2.1 Displacement equations 

Consider a composite layered plate at an instant of time t consisting of a number of 
orthotropic layers. Let the midplane of the plate be the Cartesian x-y plane, and the total 
thickness at any point (x, y) on the midplane is h, then based on the assumptions and 
approximations given in section 3.3.1, the displacement equations at any point (x, y, z) 
inside the plate can be expressed as follows: 

3 

u(x, y, z, t) = u°(x, y, t)-z TX -, Vy 2z- 
22Z (4.1) 
h 

v(x, y, z, t) = v°(x, y, t)-z 
ýw 

+yix ZZ 
-223 (4.2) 

ay h 

where u °, v °represent the values of u, v at z=o, and 

Yx= 3yyz=yyZ, yry= _o gY xz 'Yxz 

The lateral deflection w will be approximated in this work such that it will be considered 
independent of z i. e. 
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w(X, y, z, t) = w(x, y, t) (4.3) 

The velocity components can be expressed by differentiating equations (4.1)-(4.3) with 
respect to time, i. e. 

3 G(x, y, z, t) = ü°(x, y, t)-z aw --y, 3 
y Zz 

- 
2z3 

ax h2 

3 
V(X, y, Z, t) = V°(X, y, t) -Zä +y/x 3Z_ 2Z 

ay 2 h2 

vi'(x, y, Z, t) = vý (x, y, t) 

where f= of 
at 

(4.4) 

(4.5) 

(4.6) 

Differentiating the above equations again with respect to time, the acceleration components 
can be obtained as follows: 

o aw 3 2z3 ü(x, y, z, t) =ü (x, y, r)-z--yý 2z- ax yha 

o ativ 
kz 2z 3 

v(x, y, z, r) =v (x, y, r)-za+x - 
h2 

(4.7a) 

(4.7b) 

w(x, y, z, t) = w(x, y, t) (4.8) 

2 where af f=. 
ate' 

In the remaining parts of this chapter, except in section 4.7, we shall ignore the parameter 
t, with the understanding that for static analysis element equations are independent of time, 
which has only to be considered for dynamic analysis. 

4.2.2 Strain components 

4.2.2.1 Transverse shear strains 

These are always assumed infinitesimal and are as defined by the following equations 
2 

Yxz = -2Wy(x, Y) 1-42 (4.9) 
h 

YYZ= 3 W, r(x, Y) 
4z2 

2 1- 
h2 

The previous equations can be written in a matrix form as follows: 

Y= 
YXZ 

= ffy 
(z) (x, y) 

I YYZ 

(4.10) 

(4.11) 
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2 
where fY =21-42 (4.12) 

h 

and (x, y) _ 
- Wy 

xvx 

4.2.2.2 Infinitesimal x-y strains 

These are defined by Cauchy strain-displacement equations: 

S au s av s au av 
Ex 

ax 
9 Ey _ 

ay 'Y= 
ay 

4 ax 

Substituting from equations (4.1), (4.2) into the above equations, 
infinitesimal strain can be expressed as follows: 

Ex =-Z-f, (z) 

where 

s=au, -7a2W-f(7)avy ax ax 2 ax 

ýy = ay -zay2 *f4im - s_av° _a2w . "_. ayX 
ay 

(4.13) 

(4.14) 

the components of 

rs = au° + av° -2z a2W +f (Z) - 
awy 

+ 
awx 

xy ay ax axay f ay ax 
3 

A, (z)-2z-22 h 
These previous equations can be written in the following matrix form: 

c (x, Y, z) = Eo (x, y) -z Eb (x, Y) + fy(z) E (x, Y) 

where 

au° 
ax 

Eo (x, y) _ av° 
By 

au° av° 

By ax 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 
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Eb (X, y) = 

r»,, (x, y) = 

a2w 

aX2 
a2w 

aye 
2 a2w 

axay 
ably 

ax 

aWX 
ay 

awx 
- 

aNJ 

ax ay 

and ES ° 
{c: 

Ey Yý J 

4.2.2.3 Finite strain components 

(4.21) 

(4.22) 

(4.23) 

For the case of finite strains, Green's strain-displacement equations are used such that: 

Ex =Ex+£x 

where 

A 

! 
sy 

7XY 

sI Ey = Ey + Ey 

sl 
YXY = YXY + Yxy 

ýý = 11( au) 2+( av) 2+( aw) 2 

2lk ax] k ax) k ax 

=1 (au'2+ av 2+ aW ('2 

2 ay ay ay 

_. ý au au . av av . aw aw = -- ++ 

ax ay ax ay ax ay 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

Hence, the additional (nonlinear) terms due to finite strains can be expressed in the 
following matrix form: 
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EI = Em(x, Y) + Ew(x, Y) - zEme(x, Y) + z2Ee(x, Y) 

where ccc 
and 

Em (x, y) =l 
2 

Ew(x, y) =1 
2 

co (x, Y) =i 2 

Eme(x, y) = 

yI ,} 

(oi2 
+ 

ax 
au° 2 ay° 2 

ay 
+ 

ay 
2 au° au° 

+2 
80 ° av° 

ax ay ax ay 
aw 2 

ax 

aw 2 

ay 
aw aw 

n-. ay 

(a2w2 a2w 2 
ax2 + axay) 
a2w 2 a2W 2 

+ ayax aye 

2 a2W a2w +2 a2W a2w 
ax2 axay axay ay2 

au ° a2W 
+ 

ay ° a2w 

ax ax2 ax axay 
au o a2w ay ° a2w 

ay ayax ay aye 
au ° a2w + au ° a2w + av ° a2w + av ° a2w 

ay axz ax ayax ay axay ax ay2 

Finally the vector of total x-y strain components is: 

E(x, y, z) = ES + Cl 
(Co + sm + c) -z( Eb +2 

mp 0) z2 Ep + f, (z) EW(X, y) 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

(4.36) 
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4.2.2.4 Matrix representation of finite strains 

Defining the following vectors which are functions of x, y: 

9= 
au° av° au° av° 
ax ax av av 

ow = 
aw aw 
ax ay 

a2W a2 w a2W a2 
-W 0I 

axay y ayax ay2 
then it can be deduced that: 

Em =2 Am(x, Y) Om(x, Y) 

Ew =2 Aw(x, Y) Ow(x, Y) 

Em0 = Am O0 = AeOm 

Ee =2 Ae(x, Y) ýe(x, Y) 

where theA matrices are defined as follows: 

au° av° 
ax ax 

Am (x, y) = 

Aw (x, Y) = 

and 

00 

00 öu° öu° 
ay ay 

au° av° au° av° 
ay ay ax ax 

aw 
ax 0 

ý aw 

ay 
aw aw 
ay ax 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

(4.44) 

(4.45) 

Razzaq, PhD Thesis 30 



ax2 axay 
Ae (x, Y) = 00 a2w a2w 

ayax aye 
a2W a2W a2W a2W 

ayax ay2 ax2 axay 

(4.46) 

Notice also that the variation of strain terms can be obtained as follows: 

dcm = Am dOm (4.47) 

dew = Ax, dOw (4.48) 

dEme = A0 dOm + Am dO0 (4.49) 

dE0 = A8 dOe (4.50) 

4.2.3 Strain energy variations 

4.2.3.1 Introduction 

Using equations (3.9) and (3.10) stress components at any point (x, y, z) inside the lth layer 

of a composite layered plate can be expressed in terms of strain components with the 
following matrix equations: 

6x 

and i 

a= 6Y 

T XY J 

"xy 

tiyz 

= DcO E (4.51) 

= µcn Y (4.52) 

where a, c are the x-y stress and strain vectors, and i, y are the vectors of transverse shear 
stress and strain, respectively. 

The variation of strain energy density (strain energy per unit volume) at any point inside 

the plate due to a variation of the displacement field can be expressed as follows: 

8u = Sy`i + SE`a = Sy`i +(SEs + Ss! )a (4.53a) 
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which can also be rewritten as: 

SII = (Sy` i+ SES as) + 8cita + SES a! (4.53b) 

where as = D(0 es (4.54) 

and a, = D(I) C1 (4.55) 

Hence, the variation of the strain energy density can be represented in terms of three parts 
as follow: 

5U= Sllsmall + SIIt +8 Usr 

where 

SUsmall 
-S YtT +8 Es ýs - SÜy + SUs 

(4.56) 

(4.57) 

which represents the variation due to infinitesimal strains and corresponding stresses, with: 

S ilr = Sy ̀T= gy t µco y 

and Sill = 6c as = SasD(O ES 

The part: SII1 = SE1 0 

(4.58) 

(4.59) 

(4.60) 

represents the variation due to a variation of the additional finite strain terms, whilst the 
part: 

BIIsc = SES a (4.61) 

represents a coupling term due to the variation of infinitesimal strains, and the additional 
stresses obtained from the additional finite strain terms. 

Each part of the strain energy variation will be analysed and integrated with respect to z 
along the layers of the composite plate, where the following notation is used: 

h12 

SUl =f 80(x, y, z) dz (4.62) 

-h12 

4.2.3.2 Analysis of the part 8II,,, « 

From equations (4.11) and (4.58) it can be deduced that: 

5 U1(x, y, z) = f2(z) dy (x, y) N(') Y(x, y) (4.63) 
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z 
where ff (z) =21-42 

h 

Defining the following matrix: 

h/2 

NYy =f f2(z) µcß dz 

-h/2 

and integrating equation (4.63) with respect to z, it can be deduced that: 

SUr (x, Y) = SY`(x, Y) µ. i ? (x, y) 

Substituting from equation (4.19) into equation (4.59) then: 

(4.64) 

(4.65) 

(4.66) 

8 IIS = SEö - zSEe + fý, (z) SEý Dýý Co - zEb + fý(z) E (4.67) 

where 

fw(z) = 
2z 

-2h2 

Expanding equation (4.67), we can deduce that: 

(4.68) 

sus = SUoo + SUhh+SUww+lSUob+SUbo)+( SUow+SUWo)+(SUby, +SUtpb) 
- __ ý_ TT 

where 

svao =s Eo(x, Y) Dcn Eo(x, Y) 
Su 

bb = z2SEe(x, Y)Dc4 Eb(x, Y) 

stl, 
vvº _ [f, 

ý(z)]2sEý, 
(x, y)D(O E�(x, y) 

sI1o6 = -zSEö(x, y)D(4 E6(x, y) 

SIIbo = -z s Ee(x, y) D(n Ea(x, y) 

svo, 
v = f,, (z)sEo(x, y)D(4 Ey, (x, y) 

sv. o = fy, (z) sE�'(x, y)D(4£o(x, y) 

Sllby _ -z fy(z) E6(x, y)D(n E, 
ý(x, y) 

SUWb = -zfý(Z)SEý(x, y)D(ý Eb(x, y) 

(4.69) 

(4.70) 

(4.71) 

(4.72) 

(4.73) 

(4.74) 

(4.75) 

(4.76) 

(4.77) 

(4.78) 
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Integrated D matrices are required for the integration of the above equations with respect 
to z and are defined as follows: 

DoQ = 

Dob 

Dbb 

h/2 

f DcO dz 
-h/2 

Dba = 

h/2 

h/2 

fz VO dz 
-h/2 

Jz2 D(O dz 
-h/2 

DWIV = 

hl2 
f fý2 D(l) dz 

-h/2 

Do4, = Dwo = 

h/2 

ffi, (z) D(l) dz 
-h/2 

h/2 

Dbw = Dwb =rzf,, (Z) Dcn dz 
-h/2 

(4.79) 

(4.80) 

(4.81) 

(4.82) 

(4.83) 

(4.84) 

Integrating equations (4.70) - (4.78) with respect to z over the plate thickness, it can be 
deduced that: 

S U/ 00 sEo(x, y) Doo Eo(x, y) 

sEe(x, y)Dbb Eb('x, y) 

sEt, (x, y) Dww Ey, (x, y) 

S U/bb - 

ö u/ %V4! 

SU/ob = 

SU/ bo = 

SU öy 

S U/ 
yo 

SU by 

SU '4ib 

-ö t c. (x, y)Dob 
Eb(x, y) 

- sEe(x, y) Dbo Eo(x, y) 

sEo(x, y) Doy, Ey, (x, y) 

SEe(x, y) D., Eo(x, y) 

-8". 1 A e(x, y) DbW E,, (x, y) 

- Eyi(x, y) Dy, 
b Eb(x, y) 

. 
(4.85) 

(4.86) 

(4.87) 

(4.88) 

(4.89) 

(4.90) 

(4.91) 

(4.92) 

(4.93) 
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4.2.3.3 Strain energy variation part (W, ) 

It can be deduced that from equation (4.60) and equation (4.30) that: 

SIII = SEýa =( Ssm + Ssx, 
t 

- Z8. Emo + z2SEÄ)a 

which can be rewritten as follows: 

SU1= SUm + SUw + 8U. 0 + SUg 

where 

m= 
SEma 80 

w= 
SEwa 60 

S Üm0 = -Z SEmA ß 

5U0 = z2SEea 

and 

a= (Es + E1) 

=&{ (Eo + Em + Ew) -Z (Ab + Em9) + za Co + fv(Z) Ew 1 

Substituting from equation (4.47) into equation(4.95) then: 

öUm = 86mAma ° 80m(x, y) A' (x, y) a(x, y, z) 

Hence 
h/2 h/2 

SUIm =f SIImdZ = SOm Am f adz 
-h/2 -h/2 

or 5 U/m = 80, ̀�(x, Y) A�(x, Y) am(x, Y) 

hl2 

where am(x, y) =f a(x, y, z) dz 
-h/2 

and by using the integrated D matrices: 

ßm= Doo (Eo + e. +' c�) - Dob (Eb+ Em9 )+ Dbb Eo + Do, 
V Eyº 

Using matrix multiplication, equation (4.101) can be rewritten as follow: 

(4.94) 

(4.95) 

(4.96) 

(4.97) 

(4.98) 

(4.99) 

(4.100) 

(4.10 1) 

(4.102) 

(4.103) 
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(4.104) 

where 

and 

Smm 

I2 

r 
6x l2 

2xy j2 M 

[ 
10 

01' a= m 

m 6x 

m 
ßy (4.105) 

m tiXY 

Similarly, it can be shown that 

and 

where 

SIIw = S0H, (x, y) AH, (x, y) a(x, y, z) 

SUiw = SOH, Sxx, Ox, 

'Sww 

mm ax T 
xy 

mm 
TXY ay 'rXY ay 

Substituting from equation (4.49) into equation (4.97) then 

SII, 
ne = (50,,, Ae + 8©m AO) (-za) 

Defining 

then 

h/2 

am9 = (fem =r (-Za)dZ 

-h/2 

(4.106) 

(4.107) 

(4.108) 

(4.109) 

(4.110) 

ame - ae, 
n - -Dob (e. + Em + c�) + Dbb ( Eb + Em8 )- D(3) Ee 

- bx, 
Ew (4.111) 

h/2 

with D(n) =rz "D(') dz, and Dby is defined by equation (4.84). 
-h/2 

Hence it can be shown that: 

where 

au/ t 
m9 = 50 m 

Sm9Oe +8 0e S©m0m 

my my TXy12 6y 12 

mm 

m ýxy I2 

m ay I2 

(4.112) 
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Smü S0m 

Im0 
m0 ßx I2 Txy I2 

m0 m0 
Txy I2 ßy I2 m9 m9 
TXy I2 ßy I2 

Similarly, it can be shown that: 

Sale = doe (x, y)Ae (x, y) { Z2a(x, y, z)} 

Defining 
hpl 2 

CFO J= (z2a)dz 
-h/2 

then 

ae = DbbýEo + Em + Ew) - D(3)(Eb + 910) +D (4)Ee 
+D bbý, Ew 

where 

hl2 
Dbbw °Jz2. f2 D(O dz 

-h/2 

Therefore, it can be deduced that 

SU lo = S©e Soo oo 

where 

e0 
xl2 

Txyl2 
to 

0 tixyl2 ßy l2 TV 1 RV 1 
W_.. an v� aý Ay 4yZ. 

4.2.3.4 Strain energy variation part (SUS1) 

This was defined as follows: 

SOS, = US a 

where SES = SEo -z SEb + f,, (z) SES, 

Substituting from equation (4.120) into equation (4.119) then 

SIISl _(SEö - zSEe + fy, (z) Sý, ) ar 

which can be rewritten as follows: 

ov Inn 
S1r = 

(4.113) 

(4.114) 

(4.115) 

(4.116) 

(4.117) 

(4.118) 

(4.119) 

(4.120) 

(4.121) 
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SUsI (SUo)sl + (SUb)sl + (SUyº)sl 

where 

r (SIIo)Sr = SEoar 

(SUb)Sr =-z SEbar 

(Sýiy)cl = fº(z) SEVºar 

Defining the following integrated stress vector: 
h12 

ao(x, y) =fa, (x, y, z)dz 
-hl2 

then, it can be shown that 

ao(x, y) = Doo(Em + ew) - Dob(Em8) + Dbb(Eo) 

Hence 
h/2 

(S U o)S! 
=f (6 ÜU)Si dz =S Eo ao 

-h/2 

Similarly by defining the following integrated stress vector: 
h/2 

(b(x, y) f zu i(x, y, z)dz 
-h/2 

then it can be proved that: 

ßb(x, y) = -Dob(Em + Ew) + Dbb(Emg) - D(3)(Eg) 

and (8 U lb)St =SE dt 'ff b 

Defining also: 

alv(x, y) = 

Hence 

h/2 

-f fW(z)a, (x, y, z)dz 
-h/2 

aý, (x,. Y) _ -Dayý(Em + Ew) + Dbyr(EmO) - Dbbyý(E0) 

and (S U /yr)Sl 
=8 Ev1 aw 

(4.122) 

(4.123) 

(4.124) 

(4.125) 

(4.126) 

(4.127) 

(4.128) 

(4.129) 

(4.130) 

(4.131) 

(4.132) 

(4.133) 

(4.134) 
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4.3 INTERPOLATED EQUATIONS 

4.3.1 Interpolation in x-direction 

(a) Interpolated parameters using Lagrangian interpolation 

The in-plane displacement components and average shear strains, at the midplane z=0: 
U° (x, y), v°(x, y), Nx (x, y) andyiy (x, y) do not require more than C° continuity and 
can be interpolated in x-direction via Lagrangian interpolation i. e. for an n-node strip: 

n 

u0 (x, Y) =EN, (4) u0 ̀(�) (4.135) 
i=1 

n1 
v° (x, y) 

ý) T' 
Lj `vi(x 7) 

v°i(V) 

i=1 

Wx (x, Y) Ni(4) 
(Xvx(y))i 

ý=i 

lVy N, (4) (wy(Y))i 

ý_ý 

(4.136) 

(4.137) 

(4.138) 

where Ni(4) = II 
4 

_ýýr r= 

[()J (4.139) 

rýi 

which represents one-dimensional Lagrangian shape functions. 

(b) Interpolation of lateral deflection w 

Hermitian or spline-type interpolation can be used to maintain the C1 continuity of w i. e. 
n 

w(x, y) 
[GI(4)wi(y) +Hi (4) wi, 

x(y) 
] 

f Hermitian interpolation: 

Gi(4) = gi(4) , 
Hi (4) = Jxhi (4) 

(4.140) 

(4.141) 

where gi , hi are one-dimensional Hermitian shape functions, as defined by equations 
(3.42) and (3.44) 

f Spline-type interpolation: 

G, (4) =S si(4) 
, H, (4) = Jzhs, (4) (4.142) 

where g1S , hi S are as defined by equations (3.47)-(3.5 1). 
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4.3.2 Interpolation in y-direction 

(a) General expressions 

The nodal functions in the previous expressions are interpolated in y-direction as follows: 

; (Y) _ 0 

vi (Y) = 

(w., 
(Y))i 

(Ivy (Y))i 

wi(Y) = 

m 

fü(ý)uº 
r=1 

ým` 
L. ifv(,, 

)v 

r=1 

m 

ft x 

m 

fý'y (, t) 
r=1 

mEfw(11) 
Wi 

r=1 

m 

wi, x 
(y) -ý fw 01) wi, x 

r=1 

where dy = Jy dry 

(4.143) 

(4.144) 

(4.145) 

(4.146) 

(4.147) 

(4.148) 

(4.149) 

Hence the full x-y interpolated parameters can be expressed for an n-node strip as follows: 

nm 

u°(x, Y) _ Ni(4). fu(i) ui (4.150) 
i=1 r=1 

nm 

v°(x, y) =E ENi (4). fv (11) vr i 
i=1 r=1 

nm1 

Yx(x, y) i=1 r=1 

nr mr 

XVy(( , II 
) 

(X, Y) Ni`4) f, 
l, 
v('1)('Yy/i 

i=1 r=1 

ýn` 
m 

w(x, y) = Lý 
E fr(ii) [Gi(g)Wir 

+ Hi(g)Wi, 
x] 

i=1 r=1 

(4.151) 

(4.152) 

(4.153) 

(4.154) 

(b) Trigonometric interpolation 

This depends on the boundary conditions and for an example, where w, u are restrained 
on the edges 11 = o, it = 1: 
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Slll(l'1LTl) 

fv (T1) = cos (r7c-q) 

fw (ý1) = sin (r7rri) 

fwx O1) = 
af w(ý) 

= (r7r) cos (r1t rj) a,, 
fpy(Tj) = 

, 
fwý? 1) = sin (mil) 

(c) Lagrangian interpolation 

This can be used for u, v, yVx, thy, i. e. 

fur(11) fvr(11) 
- fý, 

z(ý1) 
° fwy0l) = 

mr 
0l) 

where (r1) _ II (m-011 -y-1) 
i=1 r-j jor 

(4.155) 

(4.156) 

(4.157) 

(4.158) 

(4.159) 

(4.160) 

(4.161) 

Notice that we can set boundary conditions at y edges, since u; , vi etc. represent nodal 
values at edge ( 71 = 0) and u; ̀ , v7 etc. represent nodal values at edge (11 = 1) . 

(d) Hermitian interpolation 

This may be used for w if m is an even number, and in this case: 

r fw = Gri(m l, rl) for r= 1,3,5,... 

= Hr, (m', 11) for r=2,4,6,... 
where 

(4.162) 

mm r+ l 
2r=2 

and Gri , Hr, are based on Hermitian interpolation for ml points. The boundary 
conditions at y edges can also be set as follows: 

(i) Edge (ii = 0) : 

The superscript r=1, represents the values w; , w;, X at the edge 11=0, and the superscript 
r=2, represents d w/d y values at that edge, i. e. 

w; ' _( 
dw) 

at node i, T1 = 0, 
y 
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at node i, i1 = 0. w? x °d( 
dz ) 

y 

(ii) Edge (il = 1): 

The values of the superscript r at that edge are: r=m-1, m. Hence, 

wrm -1 = Wt 

Wi, 
x 
m-1 (dx), 

Wim = (dy)i 

at node i and i1 = 1, 

at node i and it = 1, 

at node i and i1 = 1, 

wmI, x d 
(ax )' at node i and 11 = 1. 

Y 

(e) Spline-type interpolation 

This type of interpolation is mainly used for lateral deflection w but it can also be 
employed for other parameters. Defining: m1=m-2, and rI=r-1, then the 
interpolation functions depend on the values of the superscript r, and for the example of 
w they can be listed as follows: 

(i) Case of r=1,2 

_ý1+ (1 A', (Tl) = g, (11) - ill Ii-I, 119 ml, (, Q)l 

CQ mý 
fw (i1) = Jy hi (i1) = Jy ýl ý1- ý1) ý°` 

1 (ý, )] 

where a= 
mý 

E 

k=1 
k"1 

m /-1 
i -k 

(ii) Case of r=m-1, m 

fwm -1 (, n) = gm All) _[ I+ (1 +am i)(1 ' 1)], l Lý m, (I, )] 
fm (T1) = Jy hm i(i1) Jy q (1 - il 

m )m Xrl)] 
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(iii) Case of r=3,4,..., m-2 

gr101) 
ýl 

L 
llr/ llr rl 

with Tjri rt-1 

m'- l 
r-2 ..... .... 
m-3 

Boundary conditions at y edges: 

anti m snouta be greater than i. 

These are similar to the case with Hermitian interpolation, i. e. 
I 

Wi 

I 
Wi, x 

2 
w; 

2 
Wi, x 

M-1 Wi 

M-1 Wi, z 

m Wi 

m Wi, 
x 

= The value of 

= The value of 

= The value of 

= The value of 

= The value of 

= The value of 

= The value of 

= The value of 

w at fl = 0, node i 

dw 
dx 

dw 

dy 
dew 
dxdy 

at it = O, node i, 

at it = 0, node i, 

at fl = 0, node i, 

w at li = 1, node i, 

dw 
dx 

dw 
dy 

dew 
dxdy 

at 11 1, node i 

at 1=1, node i, 

at i1 = 1, node i. 

4.4 ELEMENT LINEAR STIFFNESS MATRIX 

4.4.1 Infinitesimal strain components 

The nodal displacement vector per rth harmonic or y term for an n node strip can be 
partitioned as follows: 

r S 
0 

8r= Sr 
b 

W 
SrJ 

(4.163) 
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where 

Sr 
0 

rrrrrr U1 V1 L12V2 ... llnVnj 

r fr rrrrr Sb = WI Wl. x w2w2. x ... WnWn. x 

Sr 
W 

(4.164) 

(4.165) 

(4.166) =I(, x), 
(, 

y)2 ... 
(, 

x)n 
(r YY)n 

ý 

Using interpolation equations (4.150), (4.151) then equation (4.20) can be written in terms 
of nodal values as follows: 

m 
co = B0i1) So 

r=1 

Nli(4) 

J . 
fuýTl) 

z 

where Bä(4,11) _ 0 

0 

N, (4) 
... ý 

f""10f""101) 
Y 

l (ý) 
r Ni (4) 

, 
fv(n) ... 

. 
Iy ix 

and 

(4.167) 

(4.168) 

dNt df rN 
lr= 

d4 , . 
fü. n = drý , etc. 

Using interpolation equation (4.154), then equation (4.21) can be expressed in terms of 
nodal values as follows 

= Cb 
m 

r=1 

G ll"(ý) 

. 
f(ý) `Z 

w 
'ýx 

where Bb= 
Gi(4) 

fr 
2 x'"ýlýl(ý) Jy 

2Gl, 
(4) 

r 
ix Jy , 

fw 

H" (ý) r 4,01) 
ix 

Hi(4) 
r 

2 
fw, 

n. q0l) 
Jy 

2 
H'; (4) 

fý ,, (ý) JXJy 

and Gi 
dGt 

Gii =d 
2Gt 

r=d 
2fw 

t= dý t dý2 
+. 

fw, 
rýrý 

d1l 2+ etc. 

x 

(4.169) 

(4.170) 
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Substituting from equations (4.152), (4.153) into (4.22) then: 

ý E... = 
m 

' Rr(ý �) Fir 
41 L. "y/\79 'Il "w 

r=1 

0 

where Bß, (4, il) _ 

VY 

+YX 

(4.17 1) 

N l; (4) 
fr ... (t) 

y ix 

0 (4.172) 

N; (4) 
(ý1) ... - fy y 

Jy , 

Substituting from equations (4.152), (4.153) into (4.11) then: 

Y(x"Y) = 

where By(4+i1) = 

+ , VX I r=t 

Ni(4) 
r/ 

JY 
fWx 

nlý) 

Nl; (4) ý 
ý 

fý, 
s(l1) X 

1 
m 

=E By (ý º rl) svº 
r=t 

... 0- Nt (4)f,,; ... 

... Ni 

4.4.2 Strain energy variation and element stiffness matrix 

(4.173) 

(4.174) 

Using equation (4.66) and equations (4.85)-(4.93), the strain energy variation per unit area 
for the case of infinitesimal strains can be expressed as follows: 

8u, 
small 

(8u y+ 8u bo + 5u bb + 8u, 1W) +(S U öb + 8u") 

+ (8u, 
Y+ 

8u, 
yo) + (S U by +5U 't, 

b) 
(4.175) 

Each term will be represented in terms of nodal displacement values and integrated with 
respect to the x-y plane of the strip, where: 

SUaß = frsUapdxdy °ff SUapJxJyd4dgl 
strip 00 

4.4.2.1 Strain energy variation term dU7, 

Substituting from equation (4.173) into (4.66), it can be deduced that: 
mm 

dUy =EE (dSW)` (By)` µrr Br sw 
s=1 r=1 

(4.176) 

(4.177) 
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Therefore, by integrating equation (4.177) over the element x-y area, it can be proved that: 
I1 mm 

dUr = ffwJJddnE (dS, )t Ks Sy, 
00 s=1 r=1 

where K, _ 

I1 

ff (Br)`µý'BrJxJyd4dý 
00 

4.4.2.2 Strain energy variation term dUoo 

Substituting from equation (4.167) into equation (4.85) then 
mm 

dU oo = 
EE(dSö)` (Bö)`DooBo So 

s=1 r=1 

Hence similar to equation (4.178), it can be deduced that 
mm 

dUoo = 1: E (dSö)`Köö Sö 
s=i r=i 

where Kss r 
o0 

11 

= ffBs\tD ( 
oo 

Bö Jx Jy d4 d1l 

00 

4.4.2.3 Strain energy variation term dUbb 

Substituting from equation (4.169) into (4.86) then 
mm 

dU 
bb =EE (döb)t (Bb)t Dbb Bb öb 

s=1 r=1 

and it can be shown that 
m 

ým` T, s dUbb =ý Lý 
(da 6ýrAbb Sb 

s=1 r=1 

where Kbb =ff (B )`D, Bb J., Jyd4d 

00 

4.4.2.4 Strain energy variation term dUW, 
V 

Substituting from equation (4.17 1) into equation (4.87), then 

mm 

dU ww =EE (dS v)` (By)` Dww Br sv 
s=1 r=1 

and by integration over the strip area: 

(4.178) 

(4.179) 

(4.180) 

(4.181) 

(4.182) 

(4.183) 

(4.184) 

(4.185) 

(4.186) 
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mm 
['ý ý (da slý rr dU4141 - 
sj-Ji r-l 

vº/ 
ývývº Svº 

where K; yº 
I1 

=ff (Bw)'DºvaBwJxJyd4 dil 
00 

4.4.2.5 Strain energy variation terms dUob, dUbo 

Substituting from equation (4.167), (4.169) into (4.88), then 
mm 

dU 
ob =EE (dSä)t (Bo)t DobBb Sb 

s=1 r=1 

mm 

and d Uob = EE (dSö)`Kab sb 

s=1 r=1 

where Ksr 
ob 

I1 

=ff (B0s)`DobBbJXJyd4 dil 

00 

Similarly, it can be deduced that 

dUbo 

where Ksr 
bo 

mm 

_EE (dSb)`Kbo Sö 
s=1 r=1 

I1 

=f f(B)tDboBJxJydd11 

00 

4.4.2.6 Strain energy variation terms dUoy,, dUV0 

Substituting from equation (4.167), (4.171) into (4.90), then 
mm 

dU 
oý =EE (dSä)` (Bö)`Doý, B, S, 

s=1 r=1 

and 

ssI r=I 
(dsö)' Köy, Sw 

11 

Jx Jy d4 d rj where Kos, = ff (B°)` D°W Iii, r 
00 

Similarly it can be deduced that 

mm 
dU,, 

o=E 
E 

s=l r=1 

mm 

dvo,,, =EE 

(dSy, )t Ks, 
ýö 

So 

(4.187) 

(4.188) 

(4.189) 

(4.190) 

(4.191) 

(4.192) 

(4.193) 

(4.194) 

(4.195) 

(4.196) 

(4.197) 
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where KK,, 
11 

=ff (8s)D,, 
°B°jxJyd4 

dil 
00 

4.4.2.7 Strain energy variation terms dUby,, dUVb 

Substituting from equation (4.169), (4.171) into (4.92), then 
mm 

dU by _-EE (dSb)t (Bb) DbW BW S, 
s=1 r=1 

and dUb, 
mm 

Sr --EE rdss 
b )tKsr byr w ` 

s=1 r=1 

I1 

where Kby, =f f(B)tDbvBJxJydd11 

00 

Similarly it can be deduced that 
mm 

dUy, b =-EE (dS, )`Kyi6 Sb 
s=1 r=1 

I ('where =J (B'ý)'D'ý'bBbJXJyd4 dil 

00 

4.4.3 Small deflection element stiffness matrix 

(4.198) 

(4.199) 

(4.200) 

(4.201) - 

(4.202) 

(4.203) 

Substituting from equations (4.178), (4.181), (4.184), (4.187), (4.190), (4.192), (4.195), 
(4.197), (4.200), (4.202) into the x-y integration of (4.175), then we obtain: 

d Us, 
nall _ ý; ý; 1(dSw)' KY, rSW + (dSo)ýKooso + (dsb)`Kbbsb + (dsw)tKwwsw 

s=1 r=1 

- (dSo)` KöbS 6- (dS 
bý` KböSä 

- (dS b)` KbWsý, - (dsý)` KWbs 
b 

which can be rewritten as: 
mm 

where 

dUs,,, 1l 'EE (dSs)r Ksr sr 
s=l r=1 

dSo 

dös = döb , S' _ 

Ldsý 

Sr 
0 

Sr 
b 

Sr 
W 

+ (dSö)` Kovv + (dSy, )` KýoSo 

(4.204) 

(4.205) 

(4.206) 
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and 

Ksr = 

Ksr Ksr 00 ob 

Ksr 
bo 

Kbb 

Ksr 
Wo Kwb 

sr 
oyr 

_Kbw 

KWW sr + Ksr 
YY 

(4.207) 

which represents the sr part in the strip stiffness matrix with infinitesimal strains being 
assumed. Notice that for symmetric composites: 

Dob = 0, Doý, = 0, i. e. Kö6 = Kbö = Käy, = K, ö = 0. (4.208) 

4.5 EQUIVALENT NODAL LOADING AND STATIC LINEAR EQUATIONS 

Equivalent nodal loading vector per the rth harmonic, or y term, is partitioned as follows: 

F' ={ Fö Fb Fy, } (4.209) 

and the equivalent loading vector is defined such that it does the same work done by actual 
loads due to a variational displacement field, i. e. 

dW =E (dA')'F' =E 
{(a'oy Fö + (döb)' Fb + (dar F'] 

r=1 r=1 

the work done by the actual load. 

4.5.1 Distributed lateral loading with intensity q 

(4.210) 

If the strip is subjected to distributed loading in the z direction, with intensity q(x, y) (load 

per unit area), then the actual work done by that load due to displacement variation is: 

It 
SW = ffqöwdxdy = ff6wqJJddii 

strip 00 

nm 11 

gfW(11) [Gi (4) wi + Hi (4) wi, xl 
Jx Jy d4 drl (4.211) ff 

i=1 r=1 00 

Comparing equation (4.210) with (4.211), it can be deduced that: 

Fö = 0, F, i, =0 (4.212) 

and 

Fb (Fi)ý Mr (Fi)2 M2 ... (Fi)n Mn } (4.213) 
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where 
11 il 

(Fi) = ffq G; (ý)fw (ý1) JX jy d4 d11, Mi = ffqH1()f(n)JJddn (4.214) 
00 00 

4.5.2 Concentrated forces and moments at node i and i1 = -q j 

These are defined in terms of five components { Fx F Fz Mx My ), where 
Fx, F, FZ are forces at x, y, z directions and Mx, My are the ending moments in x, y 
directions, respectively. Notice that average slope angles can be defined from equations 
(3.35) and (3.36) as follows: 

ý aw ý aw Týy, dx - Ty ýx 

Equivalent nodal loading exists only for the loaded node i, and 
interpolation equations at il = 11j: 

m 
Su°(4j, 11j) 

dy _ ýY Wy, dx = 

8v°(4; t Ili) 

_E fu (, qj) u; 
r=1 

m 

- 
ýfy (llj) sVi 

r=1 

m 
SW(4i, llj) - 

ýfwýýjýSWtr 

r=1 

S6x(4iºIlj) 

S6y(4,, T1j) 

rr 

III 

ýýfý 

Sw 
r 

,Vi 
y 

m 

- fyl, (Il j) l"'YXý! 

fw (lip Sw; x- , fý; 
Y 
r (l1; ) (svVy), 

r=1 

then it can be deduced that: 

SW = 
m 

Fzfu(11j)Su 

r=I 
+ Fyfv(llj)Svi + Fzf�(rlj)Swi 

rfw, týýýj) rrrrr + Mx L Jy 
Sw; - fyýx(ýj) ýz); 

)+ 
My 

[' 
fl ýýj) swi, 

x 

(4.215) 

using the following 

. 
fy; 

y 
(10 (SIVy); 1 

(4.216) 

(4.217) 

(4.218) 

(4.219) 

(4.220) 

(4.221) 

Comparing equation (4.221) with (4.210), then equivalent nodal load components exist 
only at node i and are defined as follows: 

Fä ={00... (FX)i (Fy)t ... 0 0} (4.222) 
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Fb ={00... (Fi)t Mr ... 0 0} (4.223) 

{00... (Mr), (Mr , ... 0 0} (4.224) 
x Y) 

where 

(Fx); = 

(Fy), = 

( FZ); _ 

r M; =- 

(Mx )1 

Fxfu(ýj) 

Fy fv (rlj) 

(4.225) 

(4.226) 

(4.227) 

(4.228) 

(4.229) 

(4.230) 

r 

FZ. fw(1l j) + Mx 
fw,, 

' 
Jy 

My fw (71j) 

- Mx f4; 
x 
(71; ) 

iMy); _'My fyrý, (il j) 

4.5.3 Line loading at ý=4; 

This will be defined in terms of loads and moments per unit length in y-direction; 

z, 
My } and due to a variation in the displacement field, the following { Fy , Fy , FZ , My 

interpolation equations are obtained: 
M 

5u0 (41,11) =E fu, -(Il) 8 u; (4.231) 
r=1 

mr 
fv(IJ) SVt 

r=1 

rn 
fw(Il) sWi 

r=1 

SeX(4;, ll) Sw; _ fý(, n)(SwX)r 
m 

. =1 jY 

m 
S 6y (4i 'll) _ý- . 

fw ý1j) S Wi x- 
fyºy W y) r=1 

At an infinitesimal length Ay, the force and moment components are: 

OFX = FXDy = JyFxL 

OFy = Fy Ay = Jy Fy Ail 
............ 

(4.232) 

(4.233) 

(4.234) 

(4.235) 

(4.236) 

(4.237) 
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OMy = MY Dy = JJ MY All 

Hence, the work done by this line loading can be expressed as follows: 
m 

SW = 

f{Ff(ii)6ul 
+ Fy fv(rl) Svi + FY 

z 
fw(ý) SWi 

(4.238) 

r=1 d (4.239) 
0 

+ MX r 
fw, n (rl) 6wi _ flr (i1) (S XYr); 

]+ 11'ly - fw (Tl) sw 
X_ . 

fwy (rl) (SVVy); 
JJY 

di1 ljy 

and the equivalent nodal loading components, which exist only at node i, can be expressed 
as follows: 

ýFX), _ 

(F; ); = 

I 
f Ff) Jy dri 

0 

I 
f Fy f'(il) Jy drl 

0 

(4.240) 

(4.241) 

1 

(Fz)i = f[Fi fw (11) Jy + Mx fw,, 
1(11) J dý (4.242) 

0 

Mi= 

(Al; ), _ 

(My); = 

i 
- fMf; (1)Jd1 

0 
I 
fMf(1) Jy drl 

0 

I 

fMf(n) Jy drl 
0 

(4.243) 

(4.244) 

(4.245) 

4.5.4 Linear static analysis equation 

Using the principle of virtual work, then the variation of the total potential energy is zero, 

i. e. dx = dU - dW =0 (4.246) 

where dU is the variation of the strain energy and dW is the variation of the work done by 
external loads. For the case of infinitesimal strains it can be deduced from equation (4.204) 
that: 

mm 

d U- dUsmurr -EE (dS s)tKsr sr 
s=1 r=1 

(4.247) 
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Substituting from equations (4.247) and (4.210) into (4.246) it can be shown that: 

KsrSr - FS} dx = E{(dSs)'}frýl 
s=i 

Hence, it can be deduced that: 
m 

E Ksrsr - Fs = 0, s= 1,2,..., m 
r=1 

=o 

which can be rewritten in the following matrix form: 

Ks =F 
where F={ F1 F2 ... F'" } 

f Kl' ... Ki r 

and K= 
... ... ... ... 

KS i ... 
Pr 

... 

... ... ... ... 

Km' 

(4.248) 

(4.249) 

(4.250) 

(4.251) 

(4.252) 

Kmr 

Klm 1 

Ksm 

K'm 

Equation (4.250) represents linear static equation which can be employed for linear static 
stress analysis. 

4.6 NONLINEAR MATRICES AND VECTORS 

4.6.1 Large strain components 

(i) Interpolated 0 vector 

Substituting from equations (4.150), (4.15 1) into (4.37), it can be deduced that 
m 

0m=ý Gm iýýrl) So 

r=1 

where 

G= m 

(4.253) 

N 'j(4). fü (q)/Jx 0 .. 
0N 'j (4). fv (ý)/Jx .. 

N, (4). fur, ý 
0 .. 

(4.254) 

0 Nj(ý). fv', n(ý1)/Jy 
Similarly, it can be shown that: 
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m 
Or =ý Gw ýý, ý1) Sb 

where 

G' _ w 

r=1 

... G'; (4)}'w (ý)/Jx 

... G, (4). fw, n (Tl)/Jy 

m 

and also: 00 = Ge (4, rß) Sb 
r=1 

where 

G= 

G "j(4). fw (i1)/Jx2 

G ', (4)fw,, (11)/JxJy 

G l, (4)ffw,, (rl)/JxJy 

G, (4). fw, nn 
(71)/ Jy2 

Hl; (4)fw(l1)IJx 

H, (4)fw, n(ll)/Jy 

H Il, (4). fw (l1)/Jx2 

H l, (4). fwn (11)IJxJy 

H', (4)fw, n(Tl)lJXJy 
H; (4). fw, nn 

(I1)1Jy2 

(ii) Finite strain values and strain increments 

(4.255) 

(4.256) 

(4.257) 

(4.258) 

Using the previous equations of 0 in equations (4.40) - (4.43), it can be shown that: 

E 

E= 
w 

m 
2 A,,, (x, y) Gm(x, y) sö 

r=1 

m 

2 
AW(x, y) E Gw(x, y) Sb 

r=I 

m 
Eme = Am(x, y) E Ge(x, y) Sb = 

r=1 

m 

Ee -2 Ae(x, y) 1: G, (x, y) Sb 
r=I 

m 
Ae(x, y) E G�, (x, y) Sm 

r=1 

with the following differential values at (x, y): 
m 

dAm = A, > Gm(4, i) dar 
r=1 

m 
dew = Aw E Gw(4,, n) dSb 

r=1 

mm 
dEme = Am E Ge(ý+11) dSb + Ae E Gm(4, rl) A. 

r=1 r=I 

(4.259) 

(4.260) 

(4.261) 

(4.262) 

(4.263) 

(4.264) 

(4.265) 
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m 
dEO = Ae E Ge(4, i1) dar (4.266) 

r=1 

4.6.2 Derivation of non-linear stiffness matrix KQ 

Integrating equation (4.94) over the plate thickness, then: 

dUl, = dU'm + dU'w + dU m9 + dU e 

dUK, 

The terms in the previous equation can be integrated over the area of the strip leading to 
the derivation of the different terms of KQ as follows: 

11mm 

(a) dUm = ff dUlm Jx jd dii =E> (dS )t Kmm b (4.268) 
00 s=1 r=1 

11 

where Km,,, = ff (Gm(4, il))`SmmGm(4, ii)JxJydd d1 (4.269) 
00 

(b) 
mm 

_ýý (dS b)` Kww sr 
s=1 r=1 

sr 
ww where 

(4.267) 

(4.270) 

YY(G, 

1))tsWW =G w(4, rl)JxJyd4 dfl (4.271) 
00 

mm 
s 'sr r s'sr r ýE (dSo) Kme Sb + (dsb) Kem So 

s=1 r=1 

(4.272) (c) dUine 

II 

where K, -,, 'o = ff (G, n(4, i1))Sm0Ge(4, il)J., Jyd4dil 

00 

and Kem 

(d) dU© = 

(4.273a) 

ii 
= ff (Gos (4, rl))`SemGm(4, ý)JxJyd4 drl (4.273b) 

00 

mm 
(dSb)`Keä Sb 

s=1 r=1 

II 

where K0e = ff (G0 (4,1))` See Gor(4, i) JX Jy dd drl 
00 

The strain energy variation part dU, can now be expressed as follows: 
mm 

dU, _J: E (döý KQrSr 
s=1 r=1 

(4.274) 

(4.275) 

(4.276) 
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Using: Sr={ 60 Sb Sy, } then, it can be shown that: 

Ksr = 

Ksr Ksr 
mm m9 0 

Kr sr sr 
os, Kww + Kee o 

OO0 

4.6.3 Derivation of coupling vector IF 1 

Notice that by integrating equation (4.122) over the plate thickness then: 

dUs/, = (dUo/)s, + (dU/b)s! + (dUy, )s1 

(4.277) 

(4.278) 

Substituting from equations (4.167), (4.169), (4.171) into equations (4.128), (4.131), 
(4.134) and integrating over the x-y plane of the strip, then the integrated terms of equation 
(4.278) can be expressed as follows: 

(a) 
m 

(dUo)Si =ý (dSö)' (Fö)r 
s=1 

II 

where (Fö), = ff (B0 (4, I)) t cr. J., Jy d4 dq 
00 

(b) 
m 

(dUb),, =E (dSb)` (Fb)r 
S=1 

where 
1ff 1( 

(Fb)l = 1B6tabJxJyd4 
dil 

00 

m 
(ý) (dUw)sr 

s=i 
!1 

where (Fs, ), = ff (Bs, ` aý, Jx Jy dý dil 

00 

Finally, the strain energy part dUj can be expressed as follows: 
m 

dUs1 =E (dis)' (FS), 
s=1 

where (Fs)! (F. )1 (Fb)1 (Fy, )1 } 

Equation (4.285) can also be written in the following matrix form : 

(4.279) 

(4.280) 

(4.281) 

(4.282) 

(4.283) 

(4.284) 

(4.285) 

(4.286) 
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dUsj = dS`Fl (4.287) 

where F, ={ F, FI2 ... Fs ... Fm 1 

4.6.4 Non-linear static equations 

Notice that it can be deduced from equation (4.56) that: 

dU = dU,.,, + dUr + dUj 

(4.288) 

(4.289) 

Substituting from equations (4.205) 
, 
(4.276), (4.287) into equation (4.289), the variation 

of the strain energy for the case with finite strains can be written in the following matrix 
form: 

dU=döl(K+K)S+dS`F, (4.290) 

From equation (4.290) , (4.210) and the principle of virtual work, it can be shown that: 

dx=dU-dW=dS`{(K+K0)S+F1-F}=0 (4.291) 

Hence, it can be deduced that: 

(K + K6) S+ F1 =F (4.292) 

which represents the non-linear static equation. 

4.7 ELEMENT MASS MATRICES 

4.7.1 Interpolated displacement, velocity and acceleration components at an instant 
of time t 

Using equations (4.150) -(4.154), at an instant of time t, then: 
nm 

u°(x, y, t) =E ENi(4). fü(11)uº(t) 
i=1 r=1 

nm 

v°(x9Y"t) _EE Ni(4)ffv(11)vi(t) 

t=1 r=1 

nm 
w (x, y, t) =EE f', (ll) [ Gi(g) Wr (t) + Hi (g) Wi, x(t) 

ý 
i=1 r=1 

nm 

xNx(x>y"t> N, (4), fý; 
x(ýt)Wxi(t) ý=i r=ý 

(4.293) 

(4.294) 

(4.295) 

(4.296) 
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nm 
yfy(x, y, t) Ni(4). fyºy(ýI)yfyri(t) 

i=1 r=1 

Equations (4.1) , (4.2) can also be written in the following matrix form: 

- gm [: 1 - 

where 

qo 

Similarly from equation (4.3): 

41, 

4w = LwJ 

[ 

Wx, 
(4.299) 

(4.300) 

Substituting from equations (4.293)-(4.297) into equations (4.299) and (4.300) then they 
can be written as follows: 

qo =IIu=E No so it) 
1V 0 r=1 

qe 

aw 
ax 

aw 

m 

_ ENe (ý ý ýl) sb (t) 
r=1 

q, v 

(4.297) 

qo -Z qe - f,, (Z) q,, (4.298) 

a wlax 

v0' 
4e 

a wlay , 

ay 

[WYE 
qw - [w] 

m 

ENysr(t) 
r=1 

m 

=E Nw(ý, i1) Sb(t) 
r=1 

where 

Nocý, ý, ) = 
... Nj(4)fu (il) 0 .. 

... 0 Nl 

r 

U`J'-5' 1_/_/ NVE. n) = 
... Gli (4). fw(Tl)1Jx Hlt(4). fw(rl)/Jx 

... Gi(4). fw., (Il)IJy H; (4). fw. n(ll)IJy ... G i(4)f,,., n(il)/Jy 
H; (4)f, y. n(il 

)/Jy 

\ 

1 

(4.301) 

(4.302) 

(4.303) 

(4.304) 

(4.305) 

(4.306) 

Razzaq, PhD Thesis 58 



Nr 41 

V 

°m 

1i° 
ENö(ýn) ä(t) 
r=1 

Velocity and acceleration equation are obtained by differentiating displacement equation 
with respect to. time, hence 

llm 

4w = 
[w] 

qw ° [w] 
where 

4", 

qw 

Hi(4). fw (il ) ..., 

grn _L.. I _ 
iu 

40= I 1= 

4© = 

v° 

... 0 Ni (4)fly; 
y 
(11) ... 

... -N; (4). fy; 
x(q) 

0 .. 

40 -Z 4e - f, (z) 4, 

q0 
- Zoe - fy, (Z)'y, 

(4.307) 

(4.308) 

(4.309) 

(4.310) 

(4.3 11) 

(4.312) 

(4.313) 

aW 
ax m 

_ ýNe(ýýý1) bct) (4.314) 
aw 
ay 

r=1 

m ýy 
= ENy, (4,1I) S, (r) 

-ýx ral 

[w] = 
m 

ENw(ýýn) Sb(t) 
r=1 

Similarly, it can be deduced that: 

U° m 
go ==E No (ý, ý1) Sö (t) 

v° . =1 

(4.315) 

(4.316) 

(4.317) 
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aw 
qe 

öx m 

_ ENe(ýýý1) bit) 
r=1 

(4.318) 

qy, 

qw 

aw 
ay 

Vf y 
-vx _ Nr, (ý, ýt) Sr , (t) r=1 

(4.319) 

[w] = 
m 

E Nw(ý, ý1) Sb(t) r=1 

4.7.2 Element mass matrix 

(4.320) 

Using D'Alembert's principle, the force vector due to an acceleration q (x, y, z, t) at an 
infinitesimal volume Ax Ay Oz is: 

AF =-q dx Ey Oz (4.321) 

and the work done by that force due to a virtual displacement field dq is 

dWD = -f ff p(dq`q)dxdydz= fff (dWD)dxdydz =f f (dWD) dxdy (4.322) 

where 

dWD= -Pdq' 4 
and 

h/2 

dWD = f(dWD)dz 

-h/2 

From previous equations of displacement and acceleration, it can be shown that: 

dWD = -Pidgr m 
ýIm +d4 t 

wq'w) 

_" P(d4o - zdge "fwd4y, )ý4o " z9e wýIyv 
)- Pdgwgw 

(4.323) 

(4.324) 

(4.325) 

Integrating over z, assuming the density p to be the same at all layers, then it can be 
deduced that: 

h/2 

f pdz = ph 
-h/2 

(4.326) 
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h/2 

fzpdz= 0 
-h/2 

h/2 

f fW (z) p dz =o 
-h/2 

h/2 

fz2pdz = 
-h/2 

h/2 

j _, ý_. ." 10 
-h/2 

h3 
P 12 

r z_f.,. (z) p dz =ph 

h/2 

ff(z)2pdz = 
-h/2 

(4.327) 

(4.328) 

(4.329) 

(4.330) 

(4.331) 17 h 
140 P 

Hence it can be deduced that 

dWD = dW 
0+ 

dW 0+ dW y, + dW iw + dW ew + dW ýe (4.332) 

where 
dW0 =- phdgög0 

dW 0=- 11 ph3 dge 9'0 

dW'.. =- 17 nharlnt ii 
W 140 r '"741-241 

dW 'w =- phqw dg 
N, 

dWeý, ioPh3d4e9ý, 

dW; 
we =- iophadqý, ge 

(4.333) 

(4.334) 

(4.335) 

(4.336) 

(4,337) 

(4.338) 

Substituting from equations (4.301) , (4.317) into equation (4.333) and integrating over 
the x-y area of the strip, then it can be deduced that : 

dWo = 
mm 

-EE (d8ö)' Mö r So 
s=1 r=1 

(4.339) 
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))' 

where M= (Ns, (4,, j))` Nä (4, TI) ph Jx Jy d dri 
00 

Similarly it can be shown that 

dWe 

where Me' 

dWx, 

mm 

- ýý (dSb)rMgrsh 
s=1 r=1 

ffN())tN = 
1e(ý, 

ý1) ph3 JXJy d4 dil 
00 

mm 

(dS6)`MwSb 
s=1 r=1 

II 

where Mw = ff(N())rN, l) PhJ., Jy d4 dil 
00 

mm 
dW =-EE (dSs)'MsrSr ý 

s=1 r=1 
ýý 

11 3 

where Mi, r = ff(N(, n))tiv(, 1) 
17 ph 

140 
00 

dWe,, = 

where 

mm 

-ýý (dSb)`MeW sW 
s=1 r=1 

z Jy d4 drl 

Meý, ffN 
e N, (ý"ý1) ph3 JX Jy d4 drl 

00 

dW, 
ie 

mm 

-EE (dS, )`Myre S6 
s=1 r=1 

11( 3 
where M. s 

o= 
ff 

`Ny, 
(4, i1))t Ne (4,, 1) ph Jx Jy dd dil 

00 
10 

Hence 

(4.340) 

(4.341) 

(4.342) 

(4.343) 

(4.344) 

(4.345) 

(4.346) 

(4.347) 

(4.348) 

(4.349) 

(4.350) 
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dWD 
mm j(d80s)tM0 r so + (dS b)tMö rsb+ (dS 6)tMw Sb 

s=1 r=1 

+ (dSyi)t Myr Sw 

Msr 
0 

which can be rewritten as follows: 
mm 

dWD = -EE (dö s)t Msr 8r 
s=1 r=1 

where 

Msr = 

+ (dS b)' Me, i, 

00 

sý 

O Msr + Msr Msr Aw9 yº 

0 Msr Msr 
yPe w 

Equation (4.352) can also be written as 

dWD =- d8'(t) M8 (t) 

+(dSy, )tMy, A Sb} (4.351) 

(4.352) 

(4.353) 

(4.354) 

4.7.3 Non-linear dynamic equation 

Applying the principle of virtual work at an instant of time t, then 

dx(t) = dU(t) -E dW(t) 

dUs, l1(t) + dU1(t) + dUs, (t) - dW(t) - dWD(t) =0 (4.355) 

and from previous equations, it can be deduced that: 

dx(t) = dö'(t){MS + [K + K0(t)]S(t) + Fi(t) - F(t)} =0 (4.356) 

Hence 

MS"(t) + [K + K6(t)]8(t) + F, (t) = F(t) 

which represents the non-linear dynamic equation. 

(4.357) 
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Chapter 5 

Kirchhoff-Type Finite Strip 
Elements 



5. Kirchhoff-Type Finite Strip Elements 

5.1 INTRODUCTION 

Kirchhoff-type elements are based on Kirchhoff plate-bending theory, which ignores 
transverse shear stresses and strains. This chapter introduces the derivations of Kirchhoff- 
type finite strip elements using the new approach of applying polynomial interpolations 
along the plate width. Composite-layered plates, based on stress-strain equations as given 
in section 3.2, will be considered with: y=0, T=0. 

Most of the equations of these elements can be extracted from those of Reissner- 
type elements given in chapter 4, and only relevant equations for Kirchhoff-type elements 
are summarized in this chapter, for completeness. 

5.2 STRESS AND STRAIN EQUATIONS 

5.2.1 Displacement equations 

Considering a composite layered plate at an instant of time t consisting of a number of 
orthotropic layers, and defining the midplane of the plate as the Cartesian x-y plane, then 
based on the analysis given in section 3.3.3, the displacement equations at any point 
(x, y, z) inside the plate can be expressed as follows: 

u(x, y, z, t) = u°(x, y, t) -z 
az (5.1) 

V(X, y, z, r) = V°(, x, y, t) -z aw 
ay 

w(x, Y, z, r) ý w(x, Y, t) 

where u', v °represent the values of u, vat z=o. 

(5.2) 

(5.3) 

The velocity components can be expressed by differentiating equations (5.1)-(5.3) with 
respect to time, i. e. 

ü(x, y, z, t) = ic°(x, Y, t) z aw 
ax 

(5.4) 

alý v(x, y, z, r) = v°(x, y, r) -z ay 

rv(x, y, z, t) Z r'v(x, y, t) 

(5.5) 

(5.6) 

Differentiating the above equations again with respect to time, the acceleration components 
can be obtained as follows: 
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ü(x, y, z, t) = ü°(x, y, t) -z aw 
ax 

V(x, y, z, t) = V°(x, y, t) -z 
ýw 

y 
w(, x, y, z+t) yv(x, y+t) 

(5.7) 

(5.8) 

(5.9) 

In the remaining parts of this chapter, except in section 5.7, the parameter t is ignored, and 
it has only been considered for dynamic analysis. 

5.2.2 Strain components 

5.2.2.1 Infinitesimal strains 

These are defined by Cauchy strain-displacement equations: 

s au s av Ex = 
ax , Ey = ay , 

Öu+Öv Yxy 
ay ax 

(5.10) 

Substituting from equations (5.1)-(5.3) into the above equations, the components of the 
infinitesimal strain can be expressed at any point inside the plate as follows: 

S= au, _z a2w ex 
ax ax 2 

s av° a2w 
E,. = -7 V-V 

' ay ay 2 
s 

YXY = au° + av° 
- 2z 

a2w 

By ax axay 
which can be written in the following matrix form: 

ES (x, y, z) = co (x, y) -Z EA b (x, y) 

where 

au ° 
ax 

C. (x, y) = 
av° 

ay 
au °+ av ° 

ay ax 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 
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Eb (X, y) = 

a2w 

axe 

a2w 

ay2 
2 

a2w 

axay 

and c°Is: sy YS J ý 

5.2.2.2 Finite strain components 

(5.16) 

(5.17) 

For the case of finite strains, Green's strain-displacement equations are used such that: 

sl Ex = Ex + Ex 

y 
E=Ey+EY 

s 
YXY = YXy + YXY 

(5.18) 

(5.19) 

(5.20) 

where c, ey , yam, are as given by equations (4.27)-(4.29). Hence the additional (nonlinear) 
terms due to finite strains can be expressed in the following matrix form: 

E1 = Em(x, y) + EK, (x, y) - ZEme(x, y) + Z2Ee(x, Y) 

where c1 ={ Ex c yý, } 

and $, n, c, Eme, c are as given by equations (4.32)-(4.35), respectively. 

Finally the vector of total strain components at any point (x, y, z) inside the plate is: 

c(x, y, z) = Es + Cl 

_ýEo + Em + Ewý ZýEAb + EmOý + Z2EO 

where the vectors co , cm, ..., co are all functions of (x, y) only. 

5.2.2.3 Matrix representation of finite strains 

Defining the following vectors which are functions of x, y: 

o=1 au° av° au° av° l 

ml ax ax ay ay J 

(5.21) 

(5.22) 

(5.23) 

(5.24) 
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o __ 
aW aW 

w ax a y 

o= a2W a2w a2W a2w 
0 ax2 axay ayax ay2 

(5.25) 

(5.26) 

then it can be deduced that: 

cm =2 Am(x, Y) Om(x, Y) (5.27) 

Ew =2 Aw(x, Y) 0 
, 
(x, Y) (5.28) 

Eme = Am Oe = Ae Om (5.29) 

Co 2 A0(x, y) Oe(x, Y) (5.30) 

where theA matrices are as given by equations (4.44)-(4.46). Notice also that the variation 
of strain terms can be obtained as follows: 

dem = Am dOm 

dew Aw dOw 

dEmo = Ae dOm + Am doe 

dEe = Ae d0e 

5.2.3 Strain energy variations 

5.2.3.1 Introduction 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

Using equation (3.9) stress components at any point (x, y, z) inside the lth layer of a 
composite layered plate can be expressed in terms of strain components with the following 

matrix equation: 

ßx 

a= ay 

TXY 

= D(O E (5.35) 

where a, c are the stress and strain vectors. 

The variation of strain energy density (strain energy per unit volume) at any point inside 
the plate due to a variation of the displacement field can be expressed as follows: 
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SII = Ssl a=( SES + SE, ) a= SE, ý, as + SE a+ 8c Sa (5.36) 

where as = D(l) ES (5.37a) 

and aI = D(<) E, (5.37b) 

Hence, the variation of the strain energy density can be represented in terms of three parts 
as follow: 

SlI = Sllsmarr + SIIt + SUS, 

where SÜsmau =S Es as =S EsD(<)ES 

(5.38) 

(5.39) 

which represents the variation due to infinitesimal strains and corresponding stresses. The 

part: 8Ü, = SEi a (5.40) 

represents the variation due to a variation of the additional finite strain terms, whilst the 

part: 8Ü1= SEs aI (5.41) 

represents a coupling term due to the variation of infinitesimal strains, and the additional 
stresses obtained from the additional finite strain terms. 

5.2.3.2 Analysis of the part 80 small 

Substituting from equation (5.14) into equation (5.39) then: 

S Usmall 
- 

8,: 
0 -ZSC ^t 

b) DcO 
(Co 

-Z b) 

Expanding equation (5.42), we can deduce that: 

SUsmall = SUoo + SUbb +(SUob +SUbo) 

where 

U. = sEo(X, y)DcO Eo(X, y) 

sUbb =z2s Eb(X, y) D(O Eb(X, y) 

sUob = -z sEö(X, y) D(l) Eb(X, y) 

subo = -z ut D<<> Eo(X, y) 

(5.42) 

(5.43) 

(5.44) 

(5.45) 

(5.46) 

(5.47) 

Integrated D matrices are defined for the integration of the above equations with respect 
to z and are as given by equations (4.79)-(4.81). Integrating equations (5.44) - (5.47) with 
respect to z over the plate thickness, it can be deduced that: 

sv öo = SEo(x, y)Doo Eo(x, y) (5.48) 
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8 U/bb 

5U 'ob 

SU bo 

SEe(x, Y) Dbb Eb(x, Y) 

-& (x, y) Don Eb(x, y) 

sEe(x, Y) Dbo Eo(x, Y) 

5.2.3.3 Strain energy variation part (W 1) 

It can be deduced that from equation (5.21) and equation (5.40) that: 

Silt = SEia ý SEm + $Eyy - ZSEmp + Z2 SE© 

which can be rewritten as follows: 

8U1 = 8U, 
n +8Uw +SUm9 +SUe 

where 6 Um, W 
w, w, 

'U. 0,8 
Üe are as defined by equations (4.95)-(4.98), with 

D(<){(co+Cm+cw) - z(Cb + Cm0) + z2Ee} 

Substituting from equation (5.27) into equation(4.95) then: 

SUm = SOmAma ° 80m(x, y) A' (x, y) a(x, y, z) 

Hence 

SU, 
m 

h/2 

f Sllmdz = 50,,, (x, Y) Am(x, Y) am(x, Y) 
-h/2 

h/2 

where am(x, y) =f a(x, y, z) dz 
-h/2 

(5.49) 

(5.50) 

(5.51) 

(5.52) 

(5.53) 

(5.54) 

(5.55) 

(5.56) 

and by using the integrated D matrices, then for Kirchhoff-type elements: 

am = D. (r.. + Em + Ew) - Dob (Eb + EmO) + Dbb Ee 
(5.57) 

Using matrix multiplication rules, equation (5.55) can be rewritten as follow: 

SU/m = Som Smm 0 
m 

where S,,. is as given by equation (4.105). Similarly, it can be shown that: 

8I1w = SOx, (x, y) Aý, (x, y) a(x, y, z) 

(5.58) 

(5.59) 
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and 8U iw = 80, ̀y Sww 0w 

where S14,,,, is as given by equation (4.108). 

Defining 
h/2 

ame- aem 
f (-za)dz 

= -Dob(Eo + Em + Ew) 

-h/2 

then it can be shown that: 

5u, mý = 50 
m 

Sm© Oe +S Oe Se, n 0m 

(5.60) 

bb(b + EmOý D(3) Ee ý5.61ý 

where Sm© = Soin and are defined from amoby equation (4.113). 

Similarly, it can be shown that: 

8Uä = 800 Soo 00 

where S., is defined from co by an equation similar to (4.118) and 

Qe = Dbb(Eo + Em + Ew) - D(3)(E6 + Em9) + D(4)Eo 

5.2.3.4 Strain energy variation part (SUS1) 

This was defined as follows: 

Si1S, = 8$S, al (Sc0 -z SEb) al 

which can be rewritten in terms of two parts: 

8usl _ (Silo)s, + (SÜb)s! 

where 

(SÜo)sl 
= SEößl 

Üb)Sr z SEea! 

Defining the following integrated stress vectors: 

h12 h/2 

ao(x, y) =fa 1(x, y, z)dz, ab(x, y) =-f' za 1(x, y, z)dz 
-h/2 -h/2 

(5.62) 

(5.63) 

(5.64) 

(5.65) 

(5.66) 

(5.67) 

(5.68) 

(5.69) 
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then ao , ab will have equations similar to (4.127) and (4.130), and the z integrated strain 
energy segments become: 

(8u, )= 
h/2 
f (S Üo)S/ dz = SEö co 

-h12 

h/2 

(S U, b)sr =f (S II b)Sl dz = 
-h/2 

SEbab 

5.3 INTERPOLATED EQUATIONS 

5.3.1 Interpolation in x-direction 

(a) Inter olated parameters using Lagrangian interpolation 

(5.70) 

(5.71) 

The in-plane displacement components at the midplane z=0; u° (x, y), v° (x, y) do not 
require more than C° continuity and can be interpolated in x-direction via Lagrangian 
interpolation and for an n-node strip: 

n 

u0 (x, y) =EN; (4) u °, (y) (5.72) 
u-ý 
i=1 

v°(x, Y) =EN, (4) v°, (Y) (5.73) 

where N1(4) represents one-dimensional Lagrangian shape functions as defined by equation 
(4.139). 

(b) Interpolation of lateral deflection w 

Hermitian or spline-type interpolation can be used to maintain the C1 continuity of w and 
for an n-node strip: 

n 

w (x, y) [G1 (4) w; (y) + Hi (4) wt, x(y) 
] (5.74) 

where G. (4) , Hi (4) represent either Hermitian interpolation shape functions as defined by 
equation (4.141) or spline-type shape functions as defined by equation (4.142). 

5.3.2 Interpolation in y-direction 

(a) General expressions 
The nodal functions in the previous expressions are interpolated in y-direction as follows: 

m 

ui (Y) _ fu" (i1) u; (5.75) 
r=1 
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m 

v (y) _E fr (t) v 
r=1 

in 
E 

. 
f� (11) wi 

r=1 

(5.76) 

(5.77) 

M 

11'i, x (y) _ A", (11) wi, x 
(5.78) 

r=1 

Hence the full x-y interpolated parameters can be expressed for an n-node strip as follows: 
nm 

u°(x, Y) =E ENi(4) fü(ý1) u; (5.79) 
i=1 r=1 

nm 

v°(x, y) Nt(4)fv(T1)ui 
i=1 r=1 

nml 
w (x 

,Y)-ýý ffw 
(q) [ Gi (4)wir + Hi (4)wiz 

J 
i=1 r=1 

(b) Trigonometric interpolation 

(5.80) 

(5.81) 

This depends on the boundary conditions and for an example, where w, u are restrained 
on the edges it = o, i1 = 1: 

fu(11) = 

fv 0 1) = 

fw01) 
- 

sin (r7rrl) 

cos (r7rl) 

sin (r7tl) 

(5.82) 

(5.83) 

(5.84) 

(c) Lagrangian interpolation 

This is used for u, v with equations similar to (4.160) and (4.161) and boundary conditions 
at y edges can also be set similarly. 

(d) Hermitian and spline-type interpolations 

These may be used for w as explained for the Reissner-type elements in section 4.3.2. 

5.4 ELEMENT LINEAR STIFFNESS MATRIX 

5.4.1 Infinitesimal strain components 

The nodal displacement vector per rth harmonic or y term for an n node strip can be 
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partitioned as follows: 

r 8 

where 

Sr 
0 

Sr 
b 

Sr 
0 

Sb 

{ 
ul VI U2 V2 ... 

Irrrr WI Wl, x W2W2, x 

r rl unVn 

rr wn Wn, z 

(5.85) 

(5.86) 

(5.87) 

Using interpolation equations (5.79), (5.80) then equation (5.15) can be written in terms 
of nodal values as follows: 

M 

Ea = BO (, ý1) Sp (5.88) 
r=1 

whereBö(4, ij) is as defined by equation (4.168). 

Using interpolation equation (5.81), then equation (5.16) can be expressed in terms of 
nodal values as follows 

m 
Eb =E Bb(4+rl) Sb 

r=1 
(5.89) 

whereBb is as defined by equation (4.170). 

5.4.2 Strain energy variation and element stiffness matrix 

Using equations (5.48)-(5.51), the strain energy variation per unit area can be expressed 
for the case of infinitesimal strains as follows: 

SUS�na« = SU 
o0 

+ 8u, bb +(S U ob +SU bo) (5.90) 

Each term will be represented in terms of nodal displacement values and integrated with 
respect to the x-y plane of the strip as described in section 4.4.2. 

5.4.2.1 Strain energy variation term dUoo 

This term can be obtained similar to equation (4.18 1), i. e. 
mm 

dUoo (dSo)`Köö 8r 
s=1 r=1 

where Koö 
i 

('i 
JJ 

(B°)ý D0o Bo JX Jy d4dl 
00 

(5.91) 

(5.92) 
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5.4.2.2 Strain energy variation term dUbb 

This can also be expressed similar to equation (4.184) as follows: 

dUbb 
mm 

(dSb)`ýb Sb 
s=1 r=1 

(5.93) 

I1 

where Ka =ff (B b)` Dbb BbJ., Jy d4 d, 9 (5.94) 

00 

5.4.2.3 Strain energy variation terms dUob, dUbo 

These terms are similar to those given by equations (4.190) and (4.192), i. e. 
mm 

dUob = EE (dsö)tKob Sb 
s=1 r=1 

mm 

dUbo (dSb)`Kbo So 
s=1 r=1 

(5.95) 

(5.296) 

I1 

where Kob =ff (B°)` D°b Bb Jx Jy d4 d il (5.97) 

00 
11 

and Kbo = ff (Bb)r DbOB°JXJyd4drl (5.98) 

00 

5.4.3 Small deflection element stiffness matrix 

Substituting from equations (5.91), (5.93), (5.95), (5.96) into the x-y integration of (5.90), 
it can be deduced that: 

in in 
dUs, 

11 ={ (dsä)`KoöÖ0 + (dbb)t Kbbsb - (dso)tKobSb - (döb)tKboso 
} 

s=1 r=1 

(5.99) 
which can be rewritten as: 

mm 
ýUsmull 

'EF, 
(CIiSs) Ksr sr 

S=1 r=1 

where Ksr = 

K sr 
00 

Ka b 
sr 

- K.,. vu 

s _K. ob 

Kbb Kbb 

I 

(5.100) 

(5.10 1) 
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5.5 EQUIVALENT NODAL LOADING AND STATIC LINEAR EQUATIONS 

Equivalent nodal loading vector per the rth harmonic, or y term, is partitioned as follows: 

F'' ={ Fr Fb } (5.102) 

and the equivalent loading vector is defined such that it does the same work done by actual 
loads due to a variational displacement field, i. e. 

dW =E (dö')t Fr=E [&joyFö 
+ (da b)` Fb] (5.103) 

r=1 r=t 
the work done by the actual load. 

5.5.1 Distributed lateral loading with intensity q 

If the strip is subjected to distributed loading in the z direction, with intensity q(x, y) (load 
per unit area), then the actual work done by that load due to displacement variation is: 

11 

SW = ffqwdxdy = ff6wqJJddn 

strip 00 

n in 1I 

E ffqfO1)[G1()wi + Hi (4) wi, Xl 
JX Jy d4 drl (5.104) 

i=1 r=1 00 

Comparing equation (5.103) with (5.104), it can be deduced that: 

L' o=O 
and 

Fb (FZ)i Mr (FZ)2 Mi 

where 
1r 1r 

(Fi) _ 
. I. 1 G1 (4) fr, (11) J., J, dg dý ff 

00 
11 

Mr ,= 
ff q H, (9) fr (11) JX Jy dý dfl 
00 

Fr Mr ( 
z)n ný 

(5.105) 

(5.106) 

(5.107) 

(5.108) 

5.5.2 Concentrated forces and moments at node i and Ti = qj 

These are defined in terms of five components {F., F FZ Mx My }, where Fx , FY , FZ 
are forces at x, y, z directions and M, M are the bending 

moments in x, y directions, 
respectively. Notice that slope angles can be defined for the Kirchhoff-type elements from 
equation (3.19) as follows: 

0 aw 
'0= 

aw (5.109) 
y ax x ay 
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Using the following interpolation equations at ii = i1j: 
m 

m 

- fy (ýj) Svj 

r=1 

m 
ý, ýý - 

wnýýiýSWr 

r=1 
.J/ 

m 
86y (4i , rij )°-ý 

. fw (, t; ) S"'t, x r=1 

(s. i lo) 

(5.111) 

(5.112) 

(5.113) 

then it can be deduced that: 
mr 

Su°(4;, Tlj) 

Sv°(4;, Tlj) 

S6x(4,, Tlj) 

_ fu (7lj) Sut 
r=1 

4r + Fyfv (Tlj) Sv; + Fz fw(llj) Swý 

+ Mafw. 
n (1l j) Swi l Jy - Myfw (ll j) Stivirx 

ý 
(5.114) 

r=1 

Comparing equation (5.114) with (5.103), then equivalent nodal load components exist 
only at node i and are defined as follows: 

F. ={00... (Fx), (Fy)1 ... 00 } 

ýr ib 

where 

_{00... (Fi)i Mr ... 0 0} 

(Fx)i = Fx fu (�j) 

(Fy)r = Fy fv (l1j) 

fr 
(Fz)i - FZ fw ýTlj) + Mx 

Jy 
Mi =' Myfwýrlý) 

(5.115) 

(5.116) 

(5.117) 

(5.118) 

(5.119) 

(5.120) 

5.5.3 Line loading at 4= 4t 
This will be defined in terms of loads and moments per unit length in y-direction; 
{ FX , Fy , FZ , Mx , My } and due to a variation in the displacement field, the following 
interpolation equations are obtained: 

in 
8u0 (4,, rl) =E . 

fü(q) sui (5.121) 
r=1 

m 

fv(ý) Sv; 
r=1 

(5.122) 
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mr 
SW ýýi, '1) - Lý 

fw(rl) Swt 

r=1 

m 
Sexei+ýý 

- 
Efw. 

ý(ll)SW lJy 
r=l 

m 
S 6y E fl ý? l ýS H'i, x 

r=1 

At an infinitesimal length Ay, the force and moment components are: 

OFx = Fz 0y = Jy Fz Ord 

OFy = Fy Ay = Jy Fy E 

............ 

AMy = My Dy = Jy My All 
Hence, the work done by this line loading can be expressed as follows: 

I 
mp 

ýrý__\ c---r Cnr [ý If*. v ýr, . c. ow= L 
r=1 0 

+ Mxfw,, (l1) Sw; lJy - Myfw(ýl) bN'%x}Jydq 

(5.123) 

(5.124) 

(5.125) 

(5.126) 

(5.127) 

(5.128) 

(5.129) 

and the equivalent nodal loading components, which exist only at node i, can be expressed 
as follows: 

1 

(FX); =f Ff(i1) Jy dil 

0 

(Fy); =f Fy. fv (Tl) Jy drl 

0 

(Fz)i 

M; = 

m 

i 
[FY fw(1l)Jy+ Mxfw�(i1)] drl 

0 

I 

- fMf(i)Jdn 

0 

5.5.4 Linear static analysis equation 

For the case of infinitesimal strains it can be deduced from equation (5.100) that: 

(5.130) 

(5.13 1) 

(5.132) 

(5.133) 
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dU - dU3,11 =EE (A s)' Ksr ar (5.134) 
s=1 r=1 

Using the principle of virtual work and substituting from equation (5.103) and (5.134) into 
(4.246) it can be shown that: 

dx = (dSs)`}{ý Ksrsr - rs} s=1 r=1 

Hence, it can be deduced that: 
m 

=0 (5.135) 

E Ksrgr _ Fs = 0, s=1,2,..., m 
r=1 

which can be rewritten in the following matrix form: 

(5.136) 

K8 =F (5.137) 

where F={ F1 F2 ... Fm) 

and K= 

... 
Kl' 

... 
Kl m Kt' 

... ... ... ... 

Ks l Ks r 

... ... ... ... 

Km' ... 
Km r 

... 

Ksm 

Kmm 

5.6 NONLINEAR MATRICES AND VECTORS 

5.6.1 Large strain components 

Using an analysis similar to that given in 
terms of nodal displacements as follows: 

m 

0 

0 w 

G( 4, ý) S ,o r=1 

m 
=ý Cw (4,, l) Sb 

r=I 

ºn 
00 =ý Gor (4,,, )Sn r=1 

(5.138) 

(5.139) 

section 4.6.1 the 0 vectors can be expressed in 

(5.140) 

(5.141) 

(5.142) 

/ 

where Gm , Gx, , Ge are as given by equations (4.254), (4.256), and (4.258), respectively. 
Hence, the strain vectors defined by equations (5.27)-(5.30) can be expressed in terms of 
nodal displacements as follows: 
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Em 

Ew 

m 

-1A ý- ý n., r. . ýr = -Hm 
2 

r=I 

m 

=2 Aw(x, y) E Gw(x+Y) Sb 
r=1 

(5.143) 

(5.144) 

mm 
Eme = Am(x, y) E Ge(x, y) Sb = Ae(x, y) E Gm(x, y) Sm (5.145) 

r=1 r=1 

Lr 

m 

co =; Ae(x, y) 1: Geix, y) Sb 
r=1 

(5.146) 

with differential values similar to those given by equations (4.263)-(4.266). 

5.6.2 Derivation of non-linear stiffness matrix K6 

Using an analysis similar to that given in section 4.6.2, the strain energy variation part dU1 
can be expressed as follows: 

mm 

dUl (dSt)KQrSr 
s=1 r=1 

where 

Ksr 
a 

Ksr 
mm 

Ksr 
Am 

�Sr "me 

Ksr 
ww 

r 

0 

+ K©e 

(5.147) 

(5.148) 

where the sub-matrices K; 
n,,, , 

K; N, 
t, , 

K; Or, Kem , KKö are as given by equations (4.269), 
(4.271), (4.273), and (4.275), respectively. 

5.6.3 Derivation of coupling vector F, 

The strain energy part dql can be expressed as follows: 
m 

dUs, =E (dSs) (FS)! 
S=1 

where (F5), _{ (Fö), (F"), } 

and (F,, ),, (F"), are as given by equations (4.280) and (4.282). 

Equation (5.149) can also be written in the following matrix form : 

dUS, = dötF, 

where F1 F, Fl ... Fis ... F1 } 

(5.149) 

(5.150) 

(5.15 1) 

(5.152) 
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5.6.4 Non-linear static equations 

Integrating equation (5.38) over the volume of the strip, and substituting into the result 
from equations (5.100), (5.147), and (5.149), the variation of the strain energy for the case 
with finite strains can be written in the following matrix form: 

dU=dö'(K+K)6+dötF, 

Hence, it can be deduced from the principle of virtual work that: 

(K+KQ)S+F, =F 

which represents the non-linear static equation. 

5.7 ELEMENT MASS MATRICES 

(5.153) 

(5.154) 

5.7.1 Interpolated displacement, velocity and acceleration components at an instant 
of time t 

Using equations (5.79) and (5.80), at an instant of time t, then: 
nm 

u°(x, y, t) = EENi(4). fü(11)ur(t) 
i=1 r=l 

nm 

v °(x, y, 0=EE Ni (4) fr (i1) v; (t) 
i=1 r=1 

nm 

w(x, y, t) =EE , 
fw(rl) [ Gi(9) wr(t) + Hi(g) wi; x(t) ) 

i=1 r=1 

Equations (5.1) , (5.2) can also be written in the following matrix form: 

qm 
u- 
V 

where 

n=IIn= 

4a - Zoe 

Iu °a wlax 

y°' 
qe 

a wlay 
1. NA- 

I .. rvi -*A i% 

Similarly from equation (5.3): 

4w ° 
[w] 

(5.155) 

(5.156) 

(5.157) 

(5.158) 

(5.159) 

(5.160) 

Substituting from equations (5.155)-(5.157) into equations (5.159) and (5.160) then they 
can be written as follows: 

vu l Lawroy 
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1u° m 

qO ==E Nö ä S(t) (5.161) 
y° r=1 

qe 

aw 
ax 
aw 

ay 

m 

- 
EN9(ý"ý) Sb(t) 

r=1 

j 
mr 

qw = wj ]- !ý 
Nw( 

+ý) 
Sb [ (t) 

r=1 

where N. r, Nor, NW are as given by equations (4.305), (4.306), and (4.308). 

(5.162) 

(5.163) 

Velocity and acceleration equation are obtained by differentiating displacement equation 
with respect to. time, hence 

4m [1 40 - Z4e (5.164) 

4w [w] 
U 

qm - V 

qw = [w] 

qo 'z qe 

(5.165) 

(5.166) 

(5.167) 

where expressions for qm , qe , 4w' '1, n' qe , #,,, in terms of nodal values and shape 
functions areas given by equations (4.313), (4.314), (4.316), (4.317), (4.318), and (4.320). 

5.7.2 Element mass matrix 

Using D'Alembert's principle, the force vector due to an acceleration q(x, y, z, t) at an 
infinitesimal volume Ax Ay Oz is: 

OIý' = -4 Ax Ay Oz (5.168) 

and the work done by D'Alembert's force due to a virtual displacement fielddq will be: 

dWD =- fffp(dqt/)dxdydz 
= ff(dW'D) dxdy (5.169) 

Using an analysis similar to that given in section 4.7.2, then it can be deduced that: 

dWD = dW o+ dW e+ dW'w (5.170) 
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where 
dW0 =- phdq 40 (5.171) 

dWe =-- ph3dq 4e (5.172) 
12 

dW 'x, ph qK, d#,, (5.173) 

Substituting from equations (5.171) - (5.173) into equation (5.170) and integrating over 
the x-y area of the strip, then it can be deduced that : 

mml 

cIWD =-{ (dSo)r Mo r So + (dS ti)t Me rSb+ (d5 b)l MW S 61 
s=1 r=1 

which can be rewritten as follows: 
mm 

dWD =-EE (dös)1 Msrsr 
s=1 r=1 

where 

Msr 
Msr 

0 

0 

0 
sr sr Me +Mw 

(5.174) 

(5.175) 

(5.176) 

and Mör, Mer, Mw as given by equations (4.340), (4.342), and (4.344), respectively. 

Equation (5.175) can also be written as 

dWD =- dd ̀ (t) M9 (t) (5.177) 

5.7.3 Non-linear dynamic equation 

Applying the principle of virtual work at an instant of time t, then 

dx(t) = dU(t) -E dW(t) 

= dU3� ir(t) + dU, (t) + dU1(t) - dW(t) - dWD(t) =0 (5.178) 

and from previous equations, it can be deduced that: 

dx (t) =M (t) {M8+[K+ KQ (t) ]8 (t) +FI (t) -F (t)} =0 (5.179) 

Hence 

M S" (t) + [K + KQ (t) ]S (t) +Fi (t) =F (t) 

which represents the non-linear dynamic equation. 

(5.180) 
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6. Mindlin-Type Finite Strip Elements 

6.1 INTRODUCTION 

Mindlin-type elements represent a simplified version of Reissner-type elements. They 
consider transverse shear stresses and strains but the averaged values over the thickness of 
transverse shear strains are employed so as to obtain in-plane displacement components 
linear in z. For the case of transversely isotropic composite plate, the transverse shear 
moduli for each layer are equal, or: 

913 =923 =9" (6.1) 

This will allow us to represent average shear stresses in terms of average shear strains by 
equations similar to (3.26) and (3.27), i. e. 

T 
xz 6µ 

Yxz' iyz =6N Yyz (6.2) 

Average shear strains lead to the definitions of average slope angles, which are given by 
equations (3.35) and (3.36) as: 

OX 

Ay 

aW - = a- Yyz 
y 

aw 
- ax Yxz 

(6.3) 

(6.4) 

From which the in-plane displacement components at any point (x, y, z) inside the plate can 
be approximated as follows: 

u(x, Y, z) = u°(x, Y) +zO 

v(x, Y, z) = v°(x, Y) -zO 

and the lateral deflection w can also be approximated as: 

w(x, Y, z) = w(x, y) 

(6.5) 

(6.6) 

(6.7) 

where u °(x 
, y) ,v °(x , y) , w(x, y) are displacement components along the x, y, z 

directions, respectively, in the midplane of the plate, defined by z=0. 

Equations (6.3) and (6.4) have led finite element researchers to use the C°-continuous 
Lagrangian interpolation for the parameters w, 0, and O 

Y, thus maintaining the C° continuity 
of u and v without using the more sophisticated Hermitian interpolation. When the 
thickness of the plate is small, then the parameters w, O and O cannot be interpolated 
independently leading to wrong answers. This phenomenon is called shear locking, and has 
been tackled for Mindlin finite elements by using reduced integration (Zienkiewicz & 
Taylor, 2000). 
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This chapter introduces the derivations of new Mindlin-type finite strip elements based on 
the same concepts employed for Mindlin finite elements. One-dimensional Lagrangian 
interpolation will be employed along x and y directions for the parameters u, v, w, ©x, ©y 
together with appropriate reduced integration schemes. The method of derivation is similar 
to that employed for Reissner-type and Kirchhoff-type finite strip elements. 

6.2 STRESS AND STRAIN EQUATIONS 

6.2.1 Strain components 

6.2.1.1 Transverse shear strains 

These are always assumed infinitesimal and are as defined for Reissner-type elements by 

equations (4.9) and (4.10), which can be rewritten as follows: 

226.8 
yxz =21-h2 1'xz $ Tyz =21-h2 yyz () 

The previous equations can also be written in a matrix form as follows: 

Yxz 

= fY (z) Y(x, Y) 
Yyz 

where fr 2.11-. 
2l 

4z2 
h2 

YxY 

and (x, y) _ 
Yyz 

aw 
ax 

aw 

+e y 

e x UY 
6.2.1.2 Infinitesimal x-y strains 

(6.9) 

(6.10) 

(6.11) 

These are defined by Cauchy strain-displacement equations: 

Ex = 
au 

£s _ 
av 

YS = 
au 

+ 
av (6.12) 

ax y ay ý' ay ax 
Substituting from equations (6.5), (6.6) into the above equations, the components of 
infinitesimal strain can be expressed as follows: 

EX _ 
au(, 

+z 
MY (6.13) 

ax ax 

E.. _-Z s av° - 
aox 

y ay ay 
(6.14) 
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Ys = au° + av° 
-- 

aoy aox 
By ax By + ax 

These previous equations can be written in the following matrix form: 

c s 
(x, y, z) = Eo (x, y) -z Eb (x, y) 

where 

Co (X, y) = 

E6 (X, y) = 

_ 
aoy 
ax 

aox 

ay 
aeX 

- 
aey 

ax ay 

and ss ° 
{c: 

Ey "; ' 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

6.2.1.3 Finite strain components 

For the case of finite strains, Green's strain-displacement equations are used such that: 

Ex =Ex+Ex 

ey=Ey+Ey 

SI 

YXY = YXy + Yxy 

(6.20) 

(6.21) 

(6.22) 

where c, sy , y, y are as defined by equations (4.27)-(4.29), respectively. Hence the 
additional (nonlinear) terms due to finite strains can be expressed in the matrix form: 

m(Xry) 
+ Ey(X, y) - ZEmO(X, y) + Z2E E ©(Xry) 

where c, _{c 

au° 
ax 

av° 

ay 
au° av° 

ay ax 

Cy yý } 

(6.23) 

(6.24) 
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au° 2+ aVo 2 

ax ax 

Emix, y) =2 

Ew 
\xfJ /=1 

2 

Ee 
2 

au° 2+ (o2 

ay ay 
2 

au° au° 
+2 

av° av° 
ax ay ax ay 

aw 2 
ax) 

C aw12 
ýyJ 

2 aW aw 
ax ay 

aex 2+ aey 2 
ax ax 

aex 2+ a©y 2 Lay 

ay 

2 
Lox 2-ox 

+2 
Loy aey 

ax ay ax ay 

_ 
au o aey 

+ av o aez 

Emp(x, y) = 

(6.25) 

(6.26) 

(6.27) 

(6.28) 

ax ax ax ax 

_ 
au o aey 

+ av U aez 
ay ay ay ay 

au ° aey 
_ 

au o aey 
+ 

äv o aeX 
+ 

av o aex 
ay ax ax ay ay ax ax ay 

Finally the vector of total x-y strain components is: 

E(x, y, Z) _C+ EI = (Co + Em + Ew) -Z (Eb +c 0) 

6.2.1.4 Matrix representation of finite strains 

Defining the following vectors which are functions of x, y: 

+z2 E0 (6.29) 

ý-f au° av° au° av° l (6.30) 
ml ax ax av av J m 
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o= 
aw awl 

w ax ay 1 
aoy aox aoy aox pe -- ax ax ay ay 

then it can be deduced that: 

Em 

Ew 

=2A, n(x, Y) 0,,, (xºY) 

=Z Aw(x, Y) Ow(x, Y) 

Emo = Am 0e = Ae 0m 

Eo =2 Ae(x, y) De(x, y) 

where theA matrices are defined as follows: 

au° av° 
ax ax 

Am (x, y) = 

00 

00 
au° au° 

ay ay 
au° av° au° av° 

ay ay ax ax 

aw 
0 ax 

Aw (x, y) = 

Ae(x, y) = 

0 away 

aw aw 
ay ax 

_ 
aey aex 
ax ax 00 

oo_ aoy aox 
ay ay 

aoy aox aoy aox 
ay ay ax ax 

Notice also that the variation of strain terms can be obtained as follows: 

(6.31) 

(6.32) 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

(6.37) 

(6.38) 

(6.39) 
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dem = Am dOm 

dew = Aw dOw 

dEmo = Ae dO 
m+Am 

d0e 

dEe = Ae d0e 

6.2.2 Strain energy variations 

6.2.2.1 Introduction 

(6.40) 

(6.41) 

(6.42) 

(6.43) 

Notice that stress components at any point (x, y, z) inside the lth layer of a composite layered 

plate can be expressed in terms of strain components as given by equations (4.51) and 
(4.52). The variation of strain energy density (strain energy per unit volume) at any point 
inside the plate due to a variation of the displacement field can be expressed as follows: 

SII = Sy`ti + WO ° 87`T 

which can also be rewritten as: 

Sit = (87 ̀ t 

where as = D(' ES 

and a, = D(O E1 

+( SEs + SES )a 

+ 82 as )+ SEia + US 

(6.44) 

(6.45) 

(6.46) 

(6.47) 

Hence, the variation of the strain energy density can be represented in terms of three parts 
as follow: 

SII = SÜs, 
ºwu + SIIi + Sus, 

where 
SUsmall = SytT +8 CsQs = SUY +8 US 

(6.48) 

(6.49) 

which represents the variation due to infinitesimal strains and corresponding stresses, with: 

S i1 = Sy ̀i= 
Y 

and 6ÜS = SEs as = SESD(O ES 

The term: 8 Ül = SEi a 

(6.50) 

(6.51) 

(6.52) 

represents the variation due to a variation of the additional finite strain terms, and the third 
term: Sils/ = SEs ai (6.53) 
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represents a coupling term due to the variation of infinitesimal strains, and the additional 
stresses obtained from the additional finite strain terms. 

6.2.2.2 Analysis of the term 8Usmall 

From equations (6.9) and (6.50) it can be deduced that: 

2 6Ü (x, y, z) =f (z) dY`(x, y) µcß Y(x, y) (6.54) 

Integrating the previous equation with respect to z across the layers of the plate, it can be 
deduced that: 

h/2 

s vY (x, Y) °f SUY(x, y, Z) dz = sY`(x, y) N, yY(x, y) 
-h/2 

where µ, r, r 
is as defined by equation (4.65). 

Substituting from equation (6.16) into equation (6.51) then: 

8(1s = ýSEö 
- zSse)DcO (co 

- ZEb) 

Expanding equation (6.56), we can deduce that: 

sUs = sUoa + SUbb+(sUob+sUbo) 

where si/oo = SEö(x, y)D(n Eo(x, y) 

sUbb = z28Eb(x, y)D(O Eb(x, y) 

snob = -z SEö(x, y) D(`) Eb(x, y) 

5 ilbo = -zsEb(x, y)D(O Eo(x, y) 

(6.55) 

(6.56) 

(6.57) 

(6.58) 

(6.59) 

(6.60) 

(6.61) 

Integrating equations (6.58) - (6.61) with respect to z over the plate thickness, it can be 
deduced that: 

SUöo(x, y) = 
h/2 

f SÜoo(x, y, z) dz = Ssö(x, y) D. Eo(x, y) 
-h/2 

(6.62) 

hl2 

S=f= S(x, y)DUbb(X, y) SUbb(X, y, z)dz E6 
bbb(xly) 

-h/2 

(6.63) 

h/2 

Uöh(x, y) =f S11ob(x, y, z)dz = -Sco(x, y)DobEb(x, y) (6.64) 
-h/2 
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h/2 

6Ubo(x, y) =f 6ilbo(x, y, z) dz = -6Eti(x, y)Dbo Eo(x, y) (6.65) 
-h/2 

where Doo, Dbb , 
Dob 

, 
Dbo are as defined by equations (4.79)-(4.8 1). 

6.2.2.3 Strain energy variation term (8 U, ) 

It can be deduced that from equation (6.52) and equation (6.29) that: 

SIIi = Srla = (SEm + 
SEw - ZSEmg + z2SEO)a 

which can be rewritten as follows: 

SÜ, = SÜm + 80 
w+S 

Üme + 809 

(6.66) 

(6.67) 

where S Um ,SUw, 6II O, S (J are as defined by equations (4.100), (4.106), (4.109), and 
(4.111), respectively. These terms can also be integrated with respect to z across the layers 

of the plate, and represented in matrix forms as follows: 

5 vm(x, y> 
h/2 

=f SUm(x, Y, Z)dZ ° SOm Smm0m 
-h/2 

h/2 

SU;, (x, y) =f BÜx, (x, y, z)dz = SOH, S, 
t, xOK, 

-h/2 

I SUme(x ý. Y) 

h12 

=J SIIm©(x, y, Z)dZ = SOm Sm0O0 
-h/2 

h/2 
SUe(x, y) =f SUe(x, y, z)dz = SO©SooOe 

-h/2 

(6.71) 

where Smm , Sww, Sm o, Som, Soo are as defined from am, amo, ao by equations similar 
to (4.105), (4.108), (4.113), (4.118), and the integrated stress vectors am , amo, ao are 
defined for Mindlin-type elements as follows: 

h/2 

am=ra dz = Do (co + C�, + c�) - Dob (Eb+ Em0 )+ Dbb E8 

-h/2 

hl2 

amo =f (-za)dz = -Dob(Eo+Em+Ew) 

-h/2 

+D bb( E Ab + r^-MO) 

(6.68) 

(6.69) 

+5 00 Sem 0m (6.70) 

- D(3)CO 

(6.72) 

(6.73) 
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h/2 

QQ _J (z2 a) dz = Dbb(Eo + Cm + Ew) - D(3)(Eb + E10 )+ D(4) ZO (6.74) 

-hl2 

where 
h/2 

D(n) =fzn D(l) dz. 
-h/2 

6.2.2.4 Strain energy variation term (SIIst) 

This term can be expressed as follows: 

SIIsý = SE` aý _ (SEo - zSEe) ar - (SÜo)sr + (SÜb)sr (6.75) 

where (S Ü0 )st , (S Üb )sl are as defined by equations (4.123) and (4.124). These two parts 
can also be integrated with respect to z over the plate thickness and expressed as follows: 

h/2 

(S U ö)Sl =f (6 Üo)sl dz = Ssö ao 
-h/2 

h/2 

ab (S U lb)sc 'f (S Üb)Sl dz = 56 At 

-h/2 

where ao , ab are as defined by equations (4.127) and (4.130). 

6.3 INTERPOLATED EQUATIONS 

(6.76) 

(6.77) 

Mindlin-type finite strip elements are based on using piecewise one-dimensional 
Lagrangian interpolation along the length of the plate (x direction). Along the plate width 
(y direction) different types of interpolation, including the use of trigonometric functions 
could be used. Nevertheless, Lagrangian interpolation is preferred so as to keep the 
equations of those elements as simple as possible. The full x-y interpolated parameters can 
be expressed for an n-node Mindlin-type strip, with m y-terms (or harmonics) as follows: 

n in 

u°(x, Y) =E ENi(4). f�(Tl) Ur i=1 r=1 

nm 

v°(x"y) =E ENr(4). fv(I1) ui 
t=! r=1 

nm 

w(x, Y) Ni(4)fw(1l) x'i 
J=1 r=1 

(6.78) 

(6.79) 

(6.80) 
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©x(x, Y) = 

A(x, y) = 

nm 
E ENr(4) fer(, l) (©x )t 
i=1 r=1 

nm 
ýE Ni(4) fey(11) cey )i 
i=1 r=1 

(6.81) 

(6.82) 

where N, (4) represents Lagrangian shape functions as given by equation (3.38), and if 
Lagrangian interpolation is employed in y direction then: 

fpm r 
=d (6.83) 

x il . 
fur(Tl) =1 

r(11) 
= fw (, 1) = fey (,, ) =fr(, 1) 9 . 

fo (11) "ý 

mm 

where 
SP (, l) = 11 

1 J"1 
J+r 

(m-1)'1 -U-1) (6.84) 
r -j 

Notice that we can set boundary conditions at y edges, since u; , vi etc. represent nodal 
values at edge (ij = 0) and ui, vi' etc. represent nodal values at edge (rj = I). 

6.4 ELEMENT LINEAR STIFFNESS MATRIX 

6.4.1 Infinitesimal strain components 

The nodal displacement vector per rth harmonic or y term for an n node strip can be 

partitioned as follows: 

8r= 

where 

and 

Sr 
0 

Sb Sr 
b 

rrrrrrr So ={ U1 Vl U2 V2 ... Un Vn 

Sb =1 Wl (ex), (ey)l ... Wn (©x)n (ey)n 
ý 

(6.85) 

(6.86) 

(6.87) 

Using interpolation equations (6.78), (6.79) then equation (6.17) can be written in terms 
of nodal values as follows: 

Bo(4, ý) So 
r=1 

(6.88) 

where Bö (4,11) is as given by equation (4.168). 

Similarly by using interpolation equations (6.80)-(6.82), then equation (6.18) can be 
rewritten in terms of nodal values as follows 

m 
Eb 'ý Bb(4+ý)sb 

r=I 

where 

(6.89) 
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0 
Ni (4)fw( 

'Pl 1__- 
. JW% "1i ... 

Jx 

B(, 1) = 

and 
dNt 

, Ný 
d4 

0 

0 

fr 

0 

Ni(4)fw, 
n, (r1) Jy 

fw,, (i ) 
Jx 

d fr 
w 

Jw, rl dq 
fw, 

qq I 
d2 fr 

drl 2 

0 

Nj(4) 
fw, n(1) jY 

Substituting from equations (6.80)-(6.82) into (6.11) then: 

m 

'(X, Y) = EBY (ý, ýn) Sb r=1 

where 

(6.90) 

(6.91) 

Byr(4, i1) = 
... N, / (ý). fw(I)/ Jx 0 Nj(4). fw(q) ... (6.92) 

L 
... Ni (4)fw, n(1l)/ Jy -Ni(4)fw, n(1l) 

6.4.2 Strain energy variation and element stiffness matrix 

Using equation (6.55) and equations (6.62)-(6.65), the strain energy variation per unit area 
for the case of infinitesimal strains can be expressed as follows: 

8u, small -OU r+ 
SU oo +SU bb) +(8U ob +5U' bo) (6.93) 

Each term can be represented in terms of nodal displacement values and integrated with 
respect to the x-y plane of the strip, as shown for Reissner-type elements in section 4.4.2. 
Hence: 

I1mm 

dUY =ff8 UyJxJyd4 dtl= (dSb)`KSýSb 
00 s=1 r=1 

I1W 

dUoo = ff 5UýJJyd4 dq _ Eý (dSö)tKööSö 
00 s=l r=1 

in m 

(6.94) 

(6.95) 

Razzaq, PhD Thesis 93 



f1f1 
mý 

jmý dUbb =J bb, IxJydK ýdý idSb)`ý6Sb 

00 s=1 r=1 

d Uob 

dUbo 

11mm 
srr 

=ffS obJxJyd4 dil (dSo)'KobSb 
00 s=1 r=1 

1lmm 

' ff SUboJxJyd4 drl (dSb)'KboSo 
00 s=1 rml 

(6.96) 

(6.97) 

(6.98) 

where K77 , KO. it, Kbb , Köb , KKo can be defined by equations similar to those given by 
equations (4.179), (4.182), (4.185), (4.191), and (4.193), respectively. 

6.4.3 Small deflection element stiffness matrix 

Substituting from equations (6.94)-(6.98) into the x-y integration of (6.93), then the 
variation of the strain energy of the strip due to infinitesimal state of strains can be 
expressed as follows: 

Mm 
dU = 

{(dös)`K;; o + (döö)`K Ö+ (dSb)`KbbÖb 
Smarr s=1 r=1 

which can be rewritten as: 
mm 

dUsmall -ýý (dgs)t Ksr sr 
s=1 r=1 

where 

dSS = 

and 

I 
br = 

Sr 
0 

Sb 

+ (d8ö)` Kona r+ (d8b)' Kbosa } 

sr sr K�ý -K ,, 

(6.99) 

(6.100) 

(6.101) 

Ksr =11 (6.102) 

As 

dSb 

f sr 
- Kbo sr Kbb + KYY 

which represents the sr part in the strip stiffness matrix (see equation 6.139) with 
infinitesimal strains being assumed. Notice that for symmetric composites: 

Dob = O, i. e. Kob = Kbo =0. (6.103) 
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6.5 EQUIVALENT NODAL LOADING AND STATIC LINEAR EQUATIONS 

Equivalent nodal loading vector per the rth harmonic, or y term, is partitioned as follows: 

Fr= {FT Fb } 

F'b ={(FZ)1 0 0(FZ)Z 00... (FZ)� 0 0} 

and the equivalent loading vector is defined such that it does the same work done by actual 
loads due to a variational displacement field, i. e. 

dW = (dA')`Fr = 
[ioyF0 

+ (dob)`Fb] (6.105) 
r=1 r=1 

the work done by the actual load. 

6.5.1 Distributed lateral loading with intensity q 

If the strip is subjected to distributed loading in the z direction, with intensity q(x, y) (load 
per unit area), then the actual work done by that load due to displacement variation is: 

I1 

SW = ffq6wdxdy = ff6wqJJddn 
strip 00 

nm1 

= EE ff gNi(4). fw(ll)wiJxJyd4dq 
i=1 r=1 00 

Comparing equation (6.106) with (6.105), it can be deduced that: 

F= 0 

and 

where 

(6.104) 

(6.106) 

(6.107) 

(6.108) 

II 

ffqN, (4)fwr(, q)jxjyd4dq (6.109) 

00 

6.5.2 Concentrated forces and moments at node i and rl =qj 

These are defined in terms of five components { F. F FZ Mx My } where 
Fx , FY , Fz are forces at x, y, z directions and M., My are the ending moments in x, y 
directions, respectively. Equivalent nodal loading exists only for the loaded node i, and 
using the following interpolation equations at il = rlj: 

rm / Su°(K ýý, rlj) = lýfu 
(Tl, 

j) 
sur 

r=1 

(6.110) 
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Km SV°(bl+ljj) 
' 

Ef(,, 
j)Sv 

r=1 

fH, (nj) SWir 

r=1 

m 
Sex(4l+iij) 

- Efeý(rtj)(Sex), 
r=1 

m 
S©y(K; 

+ýjý -ý fey(l, )(Sey), 
r=1 

then it can be deduced that: 

SW =ý 
{ Fx, fu ill j) Su i+ Fy fr (q, ) 

r=1 
sv; + Fz 

. 
fw ýrl j) 

+ Mx fex (11; ) (Sex); + My fey (T1; ) (So; ); l 

(6.111) 

(6.112) 

(6.113) 

(6.114) 

(6.115) 

Comparing equation (6.115) with (6.105), then equivalent nodal load components exist 
only at node i and are defined as follows: 

Fr ={00... (Fx), (Fr)1 ... 0 0} 

Fb ={ 000... (Fz)! (MX), (My)i ... 000 } 

where 
Fx); _ Fx 

.fu 
(i 

j) 

(Fy)t = Fy fv (rl j) 
(Fz)i = Fz fr (11, ) 

(MX); = MX fex (ýl ) 

(My); = My f©y(ýl 

6.5.3 Line loading at 4= 4i 

(6.116) 

(6.117) 

(6.118) 

(6.119) 

(6.120) 

(6.121) 

(6.122) 

This will be defined in terms of loads and moments per unit length in y-direction; 
{ F'', Fy , Fi , Mx , My } and due to a variation in the displacement field, the following 
interpolation equations are obtained: 

m 
8u°g, 

'l1) =E fü(, q) Su; (6.123) 
r=1 

mr 

!ý 
fy(ý)SVi 

r=1 

Sw; 

(6.124) 
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m 
SWTj) 

-ý 
fw(I) SWi 

r=1 

m 
SAX(ý, ýýI) _E 

fe(ý)(S©x); 

rýl 

m 
80y(ý; ýý1) . 

fey(71)(Sey 
r=1 

Hence, the work done by this line loading can be expressed as follows: 
m1 

8W =f {Ff: (i)6u p+ F'y fv (ý) Sv; + FY . fw (11) Sw j r=1 0 
+ MX. fe (ii) (Sex); + My fry (TI) (80y); } Jy dq 

(6.125) 

(6.126) 

(6.127) 

(6.128) 

and the equivalent nodal loading components, which exist only at node i, can be expressed 
as follows: 

I 

(Fx); =f Fxfü (il) Jy dj 

0 

Fy); =f Ff(i1) Jy dq 
0 

I 

(FZr)r = 
fFf(ii)Jdn 

0 

I 

(Mx)r -J Mx fex (ii) Jy drl 
0 

I 
Wy); =f My fey(ý1) Jy dý 0 

6.5.4 Linear static analysis equation 

For the case of infinitesimal strains it can be deduced from equation (6.99) that: 
Mm 

dU - dUsmau = EE (dös)tKsrsr 
s=1 r=1 

and from the principle of virtual work (equation 4.246), it can be shown that: 

(6.129) 

(6.130) 

(6.13 1) 

(6.132) 

(6.133) 

(6.134) 
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dx = ý{(dSs)`}{E KsrSr - FS} =0 (6.135) 
s-1 r-1 

Hence, it can be deduced that: 
m 

EKsrsr - FS = 0, s=1,2,..., m 
r=1 

which can be rewritten in the following matrix form: 

KS =F 

} where F={ F1 F2 ... F' 

f K11 ... Kir ... K1, " 1 

... ... ... ... 

and K= 

r 

Kmr 

Ksm 

Kmm 

Equation (6.137) represents linear static equation which can be employed for linear static 
stress analysis. 

6.6 NONLINEAR MATRICES AND VECTORS 

6.6.1 Large strain components 

(i) Interpolated 0 vector 

Substituting from equations (6.78), (6.79) into equation (6.30), it can be deduced that 
M 

Om =EGmo 
r=l 

where Gm is as given by equation (4.254). Similarly, it can be shown that: 
M 

Uw = Gw (. Tl) Sb 
r=1 

where 

G r, = IY 1I 

and also: 

KS i ... 
Ksr 

... 

... ... ... ... 

Km 1 

... 

... N; (ý). fw, 1(1)/J ... N; (ý). fw, 1(n)/J y 
m 

00r r =ý Go iý. ý, ) Sb 
r=1 

00 

00 l 

(6.136) 

(6.137) 

(6.138) 

(6.139) 

(6.140) 

(6.141) 

(6.142) 

(6.143) 
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where 

G= 

00 - N; g)fw(, q)/j x ... 
(6.144) 

o N; (4). fw,, (I, )1Jx 0 ... 

00-N; (ý). fwn (11) 1J, 
... 

0 N, (4). fw, nn(Tj)/Jy 
0 ... 

(ii) Finite strain values and strain increments 

Using the previous equations of 0 in equations (6.33) - (6.36), it can be shown that: 

E= 
m 

m 

i 
Am(x, Y) E Gn, (x, Y) so 

r=1 

m 
Ew =ý Aw(x, y) EGw(x, y) 8b 

a 
r=1 

mm 

(6.145) 

(6.146) 

Eme = Am(X, Y) E Ge(x, Y) Sb = Ag(x, y) 
E Gm(X, Y) sm (6.147) 

r=1 r=1 

m 
Ee =2 A0(x, y) > Ge(x, y) Sr (6.148) 

r=1 

which have differential expressions similar to those given by equations (4.263)-(4.266). 

6.6.2 Derivation of non-linear stiffness matrix Ka 

Integrating equation (6.67) over the plate thickness, then: 

dU"1 = dU', 
n + dU'w + dU me 

+ dU ö (6.149) 

The terms in the previous equation can be integrated over the area of the strip leading to 
the derivation of the different terms of KQ as follows: 

d Um ff 
in m 

jx Jy 4 dl1 E 1: ýdSö)r Or so 
s=1 r=1 00 

I1mm 

dUw = ff dUwJXJydýdtl = EE(dSb)'Kwwsb 
00 s=1 r=1 

(6.150) 

(6.15 1) 
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11 
mm 

dUme = ffdu0JJddn (dSö) KmÄ Sb + (dSb)tKem Sä, (6.152) 
00 s=1 r-1 

dUo = ffdu J J, d4 drl (dSb)`Kee Sb 
00 s=1 r=1 

II. 119 

(6.153) 

where K, , Kwx, , K, , K03. , Kee will have equations similar to those of Reissner-type 
elements as given by equations (4.269), (4.271), (4.273a), (4.273b), and (4.275), 
respectively. The strain energy variation part dU, can now be expressed as follows: 

d U! 

where 

Ksr 
v 

6.6.3 Derivation of coupling vector F1 

Using an analysis similar to that given in section 4.6.3, it can be shown that: 

dUU1 = (dU0)S, + (dUb)Sl 

where 
I1m 

ff(du)31 JX Jy d4drl (dSo)` (Fo)t 
00 S=1 

11 ýý 

mm 
(dSt)KarSr 

s=1 r=1 

K sr 
mm 

K sr 
9m 

Ksr mA 

sr sr 
, 
', 
w + Kee 1 

11 m 
(dUb)sr ff(du)51 Jx, Jy d4 dq (dSn)` (Fb)t 

sýl 00 

where (Ft),, (Fb)1 are as given by equations (4.280) and (4.282), respectively. 

Finally, the strain energy part dUj can be expressed as follows: 
m 

dUsl = (dö (Fs)r 

s=1 
where (FS)1 = 

{(F: )1 (Fn)1 } 

(6.154) 

(6.155) 

(6.156) 

(6.157) 

(6.158) 

(6.159) 

(6.160) 

6.6.4 Non-linear static equations 

Using equations (6.100) , (6.154), (6.156) then the variation of the strain energy for the 
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case with finite strains can be written in the following matrix form: 

dU = dö`(K + KQ)8 + dö`F1 

Hence, it can be deduced from the principle of virtual work that: 

(K + KQ) S+ F1 =F 

which represents the non-linear static equation. 

6.7 ELEMENT MASS MATRICES 

u °(x, Y, t) = Ni (4) fu (11) u; (t) 

6.7.1 Interpolated displacement, velocity and acceleration components at an instant 

of time t 

Using equations (6.78)-(6.82), at an instant of time t, then: 
nm 

i=1 r=1 

nm 

v°(X, Y, t) _EE Ni(4)fv (1)vi(t) 
i=1 r=1 

nm 

w(X, Y, t) _ Ni(4)fw(q)w (t) 
i=1 r=1 

6x(X, Y, t) =E Ni(4)f; (11)(O. (t))i 
i=1 r=1 

ey(x"Y, t) 'EE Ni (4)for (71)(ey(t))i 
i=1 r=1 

Equations (6.163)-(6.166) can also be written in the following matrix form: 

f 

where 

U 
l! 

m = IV] = 40 - zqe, 4w ° [w] 

(6.16 1) 

(6.162) 

(6.163) 

(6.164) 

(6.165) 

(6.166) 

(6.167) 

(6.168) 

1uo - ey 
qo =vo, qe = OX 

Substituting from equations (6.163)-(6.167) into equations (6.168) and (6.169) then the 
displacement vectors can be expressed in terms of nodal values at an instant of time t as 
follows: 
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qo - 

lu° m 

= 1: Nor (ý, ýt) sö (r) 
V° r=1 

m 

qg =y=E ne(4º11) Sb (r) 9x r=1 

ºn 

qw = 
[w] 

_ý Nw(ý+ý) Sb(t) 

r=1 

where 

No(ý"i) = 

Ne (ý , 1) = 

. -I Y1I -1 

... Nr (4). fü (rl) 0 .. 

... 0 N, 

::: 
00- Nj (4)feY (q) 

0 Ni(4)fer(i1) 0 

Nw(ý, ý) _ 
[... Nj(wwo1) U 0 II 

(6.170) 

(6.17 1) 

(6.172) 

(6.173) 

(6.174) 

(6.175) 

Velocity and acceleration equation are obtained by differentiating displacement equation 
with respect to. time, hence 

ü 
qm -- V 

qm=[: 1 - 

40 - zge, 

qo - zqe, 

qw - [wl 

w- LWJ 

(6.176) 

(6.177) 

where different velocity and acceleration vectors can be expressed in terms of 
corresponding nodal values at an instant of time t by equations similar to (4.170)-(4.172). 

6.7.2 Element mass matrix 

Using D'Alembert's principle, the force vector due to an acceleration q(x, y, z, t) at an 
infinitesimal volume Ax Ay Oz is: 

AF =- g dx oy Oz (6.178) 
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and the work done by that force due to a virtual displacement fielddq is 

dWD =-fffp (dq t q) dx dy dz ° dWo + dWo + dWx, (6.179) 

Using an analysis similar to that of Reissner-type elements as given in section 4.7.2, it can 
be shown that: 

I1mm 

dW0 = -ff ( d4o '#. ) PhJ., Jy dý dtl _ -ý (dSö)' Mö r Sö (6.180) 
00 s=1 r=1 

1/' 1/' mm 
dWe = -JJ(dgege)P(i)JxJyd4 dý = -E E (dSb)`Mö'Sb (6.181) 

00 s=1 r=1 

dWx, = 

I1 
in in 

'f f( d4;, 4w )PhJ., Jy d4 drl (dS b)tMw Sb (6.182) 
00 s=1 r=1 

where M. ' , Mw , Mörare as given by equations (4.340), (4.342), and (4.344). 

Hence 
mmf 

dWD = -EE (dSö)'MörSö 
s=1 r=1 

which can be rewritten as follows: 

mm 
dWD = -EE 

(dS s)r Msr sr 

s=1 r=1 

where 

Msr 
Msr 

0 

0 

0 

Msr + Msr 
0w 

Equation (6.184) can also be written as 

dWD =- d6'(t) M9 (t) 

+ ([ISb)' M©rsb + (dSb)'MwSb} 

6.7.3 Non-linear dynamic equation 

Applying the principle of virtual work at an instant of time t, then 

(6.183) 

(6.184) 

(6.185) 

(6.186) 
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dx(t) = dU(t) -E dW(t) 

= dUsmall(t) + dU, (t) + dUe, (t) - dW(t) - dWD(t) =0 (6.187) 

and from previous equations, it can be deduced that: 

dx(t) = do'(t){MS + [K + Ka(t)]8(t) + Ti(t) - F(t)} =0 (6.188) 

Hence 

MS(t) + [K + K6(t)]8(t) + Fl(t) = F(t) 

which represents the non-linear dynamic equation. 

(6.189) 
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Static and Dynamic Analysis 
of Plates and Shells 



7. Static and Dynamic Analysis of Plates and Shells 

7.1 INTRODUCTION 

In this chapter, we discuss first how the different finite strip elements derived in chapters 
4,5, and 6 for composite plates can be employed for box structures, stiffened plates, and 
curved shells. The element matrices are transformed to the global axes of such structures, 
forming what is usually called the faceted shell element. The degrees of freedom for 
faceted shell elements may be greater or equal to the degrees of freedom for corresponding 
plate elements as will be explained in this chapter. A non-linear static stress analysis 
algorithm, based on the equations given in previous chapters will be explained. Dynamic 
analysis in this work is limited to natural frequency analysis, but the effect of pre-stressing 
on natural frequencies will be shown. A buckling algorithm based on the derivations given 
in previous chapters will also be demonstrated. 

7.2 FACETED SHELL FINITE STRIP ELEMENTS 

7.2.1 Local and global axes 

7.2.1.1 Axes rotation matrices 

All the derivations given in previous chapters are with respect to plate local axes (defined 
here as ,, y, z axes), where the X -y plane is the midplane atz =0 and the layer angles are 
measured with respect to the local x-axis shown in the figure 7.1. For box structures and 
stiffened plates there may be different systems of local axes for the different plate parts 
forming the structure, whilst it is advantageous to use just one unique global system of axes 
for the whole structure. For finite strip analysis, the y-axis will remain the same for all 
axes systems, i. e. the local y-axis is assumed parallel to the global y-axis for all the plate 
parts of the structure. The type of folded or stiffened plate will have uniform width 
(constant or linear) in they-direction, but its x-z section may be as shown in the example 
of figure 7.2. 

Local axes for a finite strip element are defined in terms of the two end points of the strip, 
such that: 

f The local x-axis is from the first end to the second end in the midplane of the strip, 
and normal to the y-axis. 

f The local z-axis is normal to the x -x plane (the midplane z= 0), across the 
thickness. 

If (xl, y1, z1), (x2, y2, z2) are the global coordinates of the two end points of the strip on 
then -z plane , i. e. with y, = y2 = 0, then the angle a between the local x-axis and the 
global x-axis can be defined, as shown in figure 7.1, hence 
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Cosa =2 
-x1, 

sina = 
Z2 - ZI 

LL 
(7.1) 

where L= F(X2I)2 
+ (z2 - zl)2 (7.2) 

which is the length of the finite strip element in the s-direction. Hence the directional 
cosines (ll , ml , n1) of the local x-axis can be defined with respect to the global axes as 
follows: 

1= cosa, ml = 0, ni = sins (7.3) 

and from geometry, it is clear that the directional cosines, (l3, m3, n3) of the local z-axis 
are: 

l3 = -sins, m3 = 0, n3 = cosa (7.4) 

With the local y-axis being parallel to the global y-axis, the directional cosines (12, m2, n2) 
of the local y-axis will be: 

12 =0, m2 = 1, n2 =0 (7.5) 

Hence the rotation matrixR of the local axes (a, x, z) can be defined as follow: 

R 
Cosa 0 sina 
010 

- sins 0 Cosa 

(7.6) 

7.2.1.2 Rotation of a vector 

Notice that if k are unit vectors in the globalx, y, z directions, and ,l are unit 
vectors in the local,, y, z directions then from the definitions of directional cosines it can 
be deduced that: 

I= ll l+ 
ml 

j+ 
nl k 

1ý fl 

.1 =12i+m2l+n2k=. 1 

131 + m3j + n3k 

lý 

l2 

13 

mi nl 

m2 n2 

m3 n3 ý 

which can be written in a matrix form as follows: 

L 

A 

1 
li 

=R 

A 

1 
A 

J 
A 

k 

(7.7) 

(7.8) 
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Similarly it can be deduced that: 

A 

J 
A 

k 

i. e. R-1 = R' 

(7.9) 

(7.10) 

A Cartesian vector V can be represented by its local components (yx, yy 2z) or global 
components (vx, vi,, vz), i. e. 

= vxi + vyj + vzlc V =Yxi+y 
y ,ý 

+Y 
zk 

which can also be written in a matrix form as follow: 

L 

V= [Yx yy y= I 
ý ý 

=I vx vy v= I 

Hence it can be deduced that: 

A 

1 

= R` 

ý L 
A 

ý 

A k 

A 

l 

vX 

vy R` 

vz 

Y 
x 

Y 
Y 

y 
z 

Similarly it can be proved that: 

Y 
x 

Y 
Y =R 

Y 
2 

Vx 

vy 

v= 

^A 

A 

1 
A 

J 
A 

k 

=f LyX yY v, ]R 

A 

1 
A 

J 

k 

7.2.2 Degrees of freedom and rotation matrix for Kirchhoff-type elements 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

It is clear from chapter 5 that the interpolation equations of this element are based upon 
four degrees of freedom per node and per y-term or harmonic, i. e. for the ith node and the 
rth y-term, the nodal displacement values are: uir , vtr , wir , wi x, where u, v, and w are 
by definition the displacement components in the x, y, z directions, respectively and awlax 
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represents a slope angle in y direction, as shown in figure 7.3. Hence it can deduced that: 

r 
Ui 

r Vi 

r Wj 

r w%, 
X local 

where Rk = 

0 
R0 

0 

0001 

lt in, ni 0 

12 m2 n2 0 

13 m3 n3 0 

0001 

r Ur 

r vi 

r Wi 
°R 

wl "X 
r 

Global 

k 

(7.16) 

Equation (7.16 ) is based on the following assumptions: 

f The local axes for each finite element strip are consistent, i. e. the axes rotation 
matrixR is the same at any node within the strip. 

f The matrix R is also the same at any y-term. 

f At the nodes on the intersection of different local planes, consistent interpolation 
in the y direction must be used for all displacement components, i. e. same 
trigonometric functions or polynomial interpolations are employed. 

The element rotation matrix can be defined per one y term or harmonic, since it is the same 
for all y terms or harmonics, and hence for an n-node finite strip element: 

Sr_Sr 
LCaI Global 

4nx1 4nx4n 4nxl 

where R is the element rotation matrix defined as follows: 

ý_ 

rRk Rk 

(7.17) 

Rk l (7.18) 

7.2.3 Degrees of freedom and rotation matrix for Mindlin-type elements 

The interpolation equations of this element are based upon five degrees of freedom 

u, v, w, ©x, ©Y, as shown in figure 7.4. Hence for the ith node and the rth y term or 
harmonic, the nodal local displacement components can be written in terms of 
corresponding global components as follow: 

r Ui 

r Vi 

r 
w; 

(7.15) 

r Wf, x 
]Global 
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r 
ui 

r Wi 

r Vi 

Local 

r 
ui 

=R 
r Vj 

r Wi j 
Global 

(7.19) 

For the faceted version of this element, an additional degree of freedom OZ is required. To 

avoid singular stiffness and mass matrices, we have to distinguish between co-planar nodes 
(such asj1, j2 orj3, j4 for the example shown in figure 7.5) and nodes on the intersection 

of plates such as node i shown in figure 7.5. 

(a) For co-planar nodes: 
We assume that O=0 and 0,0 will always be considered in the directions of 
the local x, y axes. i. e. no rotation is required for co-planar nodes, i. e. for a co- 
planar node j: 

(ex)j 

(0y)1 
(e=)i 

Local 

13x3 

(OX), 

(ey) f, (oi); =0 (7.20) 

(0 i)f Global 

(b) For a node i on the intersection of two plates: 
The global ©Z may not be equal to zero and we use: 

`O; 
) 

(0Y), 

(ez)i 

(Oz), 

=R (©r)l 

r 
Local 

(°z)l 
Global 

(7.21) 

Hence the rotation matrix of the element at any node i and y value r can be defined such 
that: 

r 
ui 

r Vi 

r Wi 

(©x)i 

(©Y), 

(©z), 
Local 

M Rr 

r 
ui 

r Vi 

r Wi 

(r Ox)i 

(0y)t 

(©z), 
Global 

(7.22) 
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where: 
f For co-planar node j: 

RM _ 

R3x3 

0 
3x3 U 

0 I3x3 

f For node i at the intersection of two plates 

RM 
R3x3 0 

.0 
R3x3 

(7.23) 

(7.24) 

Finally for all the components of an n-node finite strip element at the rth y term or 
harmonic, we can deduce that: 

Sr Sr 
Local = t/ W, Global 

6nx1 6nx6n 6nx1 

where J is the element rotation matrix defined as follows: 

= 
rRr R2 ... RM... R'"J 

(7.25) 

(7.26) 

Notice that an additional boundary condition should be implemented for every co-planar 
node j: 

( 0z)j = O, for r=1,2,... , 
(7.27) 

7.2.4 Degrees of freedom and rotation matrix for Reissner-type elements 

The interpolation equations of this element are based upon six degrees of freedom per node 
i and per y term or harmonic r; uir, , v; r , w1r , wt x 

(w. )1, (y/y);, with their directions as 
shown in figure 7.5. Because of rotation an additional degree of freedom (y), is required 
with the following considerations: 
(a) For co-planar nodes: 

We consider yZ =0 at all the y terms or harmonics, whilst ylW , yry are always 
considered in the local directions, i. e. for a co-planar node j: 

(Wx)j 

(yy)j 

(, =)j 
Lnca! 

13x3 

(,, r) j 
(wy)j 

(ýYz) 
j. 

I (, i) =0 

Global 

(7.28) 

Razzaq, PhD Thesis 110 



(b) For a node i on the intersection of two plates: 
This case implies that (Wi)j may not equal zero, and we use the following equation: 

(W: ); 

(Vfy), 
ýl JL. ocal 

(Vr)' 

=R 

ýYx)i 

(yy)j 

(, Z)1 

(7.29) 

Global 

Hence the rotation matrix of the element at any node i and rth y value can be defined such 
that: 

r l[j 

r Vi 

r Wi 

r Wt, x 

"X 

(; ), 

(w., ), 

= Ri 

Local 

7x7 

K 

r Ui 

r vi 

r Wi 

r Wi, x 

(ýxýi 

(IVY); 

(Yz), 

where for a co-planar node j: 

R7 
3x3 "3x4 

04x3 14x4 

and for node i at the intersection of two plates: 

m R- i' 

R3x3 03x1 03x3 

O1x3 1 01x3 

03x3 03x1 R3x3 

and the null matrices are defined as follows: 

000 
03x3 'O00, 

000 

Global 

°3x 
l 

0 
0 9 

01x3 - [o 0 

(7.30) 

(7.31) 

(7.32) 

0], etc. (7.33) 

0 
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Finally for all the components of an n-node finite strip element at rth y term or harmonic, 
we can deduce that: 

r_r S 
Local _Ü Global 

7nx1 7nx7n 7nx1 

where . is the element rotation matrix defined as follows: 

rR' RH ... RH ... 
RHJ 

12tn 

(7.34) 

(7.35) 

Notice also that an additional boundary condition should be implemented for every co- 
planar node j: 

0 with r=1,2, ... ,m 
(7.3 6) 

7.2.5 Element vectors and matrices in terms of global axes 

7.2.5.1 Nodal displacement and force vectors 

From previous sections, local nodal displacement and force vectors at the rth value or 
harmonic can be expressed in terms of corresponding global vectors, as follows: 

rr (7.37) S 
Local =S Global 

rr (7.38) T Local =F Global 

Fr = &F ' (7.39) 
Local Global 

where R is the corresponding rotation matrix for the finite strip element. Notice also 
that: 

&-1 
- _(ttt 

7.2.5.2 Element stiffness matrix 

(7.40) 

From all the derivations of the different finite strip elements discussed in previous chapters, 
the increment of strain energy part due to infinitesimal strains caused by a virtual 
displacement field can be expressed (for any element) as follows: 

m in 
ýj d Usmßll =EE (d S s)ý)Cßil, ý, Cal LoCßl 

(7.41) 
s=I r=I 

Substituting from equation (7.37 ) into (7.41 ) then 
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mm 

_tr 
$ý dUsmall EE (d6-')' 

Global 
r ýL. 

OCUI "' 
S 

Global 
S=1 ral 

in m 
6r 

Global Global Global 
s=1 r-1 

Hence, it can be deduced that: 

r_tr 
Global - 

ýLocal 

(7.42) 

(7.43) 

7.2.5.3 Element Ka 

The increment of U, due to a virtual displacement field, for any element has been defined 
as follows: 

in m 

d U, _ (d S s)ü 
cur 

K« ,", 8Ü, 
cal 

(7.44) 
s-l r-1 

- u/6ül 

Substituting from equation (7.37) into (7.44), it can be deduced that: 

d Ui = 

where 
K sr 

mm 
EE (d S s)cr(, bat KQGI(, 

bat 
a Global 

s=1 r=1 

--aClObal -, --QLocal 

7.2.5.4 Element mass matrix 

(7.45) 

The increment of kinetic energy (KE) due to a virtual displacement field (at an instant of 
time t) can be defined for any of the finite strip elements as: 

Mm 
st cr r d KE _ (d 6 )u, 

cu! 
M 

�cur 
6 

Local 
s=1 r-1 

Hence it can also be shown that: 

dKE = 

where 

mm 
st vr 'r ý (d $ )ct�bur Mýcr,, bur S crobar 

s-1 r-I 

Msr =Rt Msr Global iA)cQl 

(7.46) 

(7.47) 

(7.48) 

Notice that the matrices and vectors are rotated per y term or harmonic, to make the at 

matrix of a small order. This rotation should be carried out before assembling element 
matrices. The resulting equations will be with respect to global axes, i. e. boundary 
conditions should also be defined with respect to global axes (except for those parameters 
defined always with respect to local axes). For stress and strain results, we have to use local 
displacement vectors, to make it easier to represent them with respect to material axes. 

&t 1{_s r& 
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7.3 STATIC STRESS ANALYSIS 

7.3.1 Linear static analysis 

The vectors and matrices in the generalized equation of equilibrium (see equation 4.292, 
5.154, or 6.162) will be evaluated for every finite strip of the component, and except for 
plates they will be rotated to the structural global axes, as shown in section 7.2.5. Then, 
they are assembled to form the structural matrix equation for static analysis, using standard 
FEM assembly rules, which can be written (after applying boundary conditions) as: 

(Kstructure + Ka 
structure - 

rIstructure + rstructure (7.49) 

For simplicity, the subscript structure will be dropped from the remaining equations given 
in this chapter, i. e. we use for the whole structure the following simplified equation: 

(K+KQ)S = F, +F (7.50) 

If the resulting strains are infinitesimal, then large deflection matrices K,, and F1 are 
negligible, and equation (7.50) is reduced to: 

KSo =F (7.51) 

which can be solved using any standard solver for simultaneous equations. Three different 
methods of assembly and solution were adopted in this work; ordinary solver, banded 
solver, and frontal solver, and all based on the Gauss-elimination procedure. Having 
obtained the nodal displacements, elemental nodal displacement vectors are found and 
rotated with respect to strip local axes, and hence the infinitesimal strain components are 
obtained at any point inside the strip by equations similar to those given in sections 4.4, 
5.4, and 6.4. We select to calculate those components for every node and y value at three 
different z-points per each layer of the composite plate; the lower, the middle, and the 
upper points. Corresponding stress vectors will be obtained for each of those points by 
using stress-strain equations similar to equations (4.51) and (4.52). 

7.3.2 Static analysis with geometrical non-linearity 

Having solved linear equations, then strain values can be checked, and if the assumption 
of infinitesimal strains is no longer valid, then equation (7.49) should be considered for the 
stress analysis. In this equation the matrix K,, and the vector F, are functions of stresses. 
They can now be approximated in terms of the stresses obtained from the linear solution, 
and this may lead to violation of the generalized equation of equilibrium, resulting in the 
following residual vector: 

Ro =F-[K 80 + KQ (ao) So + F1(ao) 
(7.52) 

- [Ka(To)öo + I; L((1o)] 
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where co = a(6. ) which represent the stress field resulting from the linear solution. 
Hence, we can rewrite (7.52) as: 

Ro =F- [(K+K0(60))o0+F1(o0)J (7.53) 

If Ro has significant values, it confirms that ,a non-linear analysis should be carried out. 
Therefore defining; S1 = So +A 51, such that equation (7.49) is satisfied, then 

[K+K0(o0+61)][o0+o1]+F, (o0+o1) =F (7.54) 

which can be approximated to 

[K+K0(o0)J[80+Ao1J+F, (o0) =F (7.55) 

or [K+K,, (S0)Jio1 = R, (7.56) 

which can be solved in AS1 and a new residual vector is obtained. 

After t iterations, we have obtained St 
_1 and can calculate corresponding stresses and 

strains, the vector F, (8 and the matrix KQ(St_ 1), then the residual vector can be 
updated as follows: 

Rt-1 =F- [K81_1 + Ka(st-1)Sr-1 + F, (8t-1)] (7.57) 

If it has significant values, we assume 

A=ý .. t "t- I' u"t 

such that 

[K + Ka (8t)1 St + F, (8t) =F 

i. e. IK+ Ka(St-t) ] AS, = Rr-t 
which can be solved in ASr and a new residual vector is defined, an so on. 

Iterations are carried out until convergence is achieved, i. e.: 
AS; OSf 

s1 JsJ 
sa permissioie error 

(7.58) 

(7.59) 

7.4 NATURAL FREQUENCY ANALYSIS 

7.4.1 Case without pre-stressing 

Ignoring the effect of damping on natural frequencies and considering infinitesimal strains, 
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the dynamic equation of the structure, at an instant of time t, modelled via finite strip 
elements will be: 

MS(t) + K6(t) = F(t) (7.60) 

At a natural frequency co, all the particles of the structure are vibrating with the same 
frequency, i. e. we can assume that the nodal displacement vector of the structure at an 
instant of time t will be: 

S(t) =S cos((Ot) (7.61) 

where S represents the nodal amplitudes, hence 

S(t) =6 cos (cot) ] (-(02) (7.62) 

Substituting from equations (7.61) and (7.62) into (7.60) and assuming no load is applied, 
then it can be deduced that 

(K-w2M)S =0 (7.63) 

AA 
or KS=%MS (7.64) 

where ?° w2, and the natural frequencies will be obtained from the condition of non- 
trivial solution to (7.63), or 

IK - XMI =0 (7.65) 

We can use an eigenvalue solver, to find the natural frequencies, from the roots of equation 
(7.65). Since the matrix equation (7.64) usually has K and M with very large orders and 
only relatively few eigenvalues are required, subspace, or simultaneous iteration algorithm, 
which provides a very economical eigenvalue solver (see for e. g. Clint & Jennings, 1970, 
Corr & Jennings, 1976, and Bathe & Wilson, 1976) is employed in this work. The method 
is based on reducing K and M whilst retaining the lowest eigenvalues. The subspace 
iteration algorithm consists of the following steps. 

(i) Assume a set of load vectors: 

YmXr = [y1 Y2 ... yrI (7.66) 

where yr is a vector of order m, r=1,2, ..., p 
m is the total number of unknowns, or the order of the stiffness and mass 

matrices of the component, 
p is the number of the required lowest eigenvalues. 

A reasonable guess is to take Yrs = Srs. 

(ii) Solve the following p sets of equations, using a static analysis solver: 
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Kmxm6r Yr (7.67) 

for r= 1,2,..., p, 

For efficiency, the Choleski-factorization solver is employed, where matrix K is factorized 
into upper and lower triangular matrices with the first set, and then forward and backward 
substitutions are used with all sets of equations. 

(iii) Form the following rectangular matrix of eigenvectors: 

Xmxp = 
[S1 

S2 ... Sn ] (7.68) 

(iv) Obtain the reduced or subspace stiffness and mass matrices as follows: 

r Kpxp -X 
)pxm K,,,.. Xmxp 

t Mpxp -X 
)pxm Mmxm Xmxp 

(v) Solve the subspace, or reduced, eigenvalue problem: 

KPXP SPX 1 MPXP SPX 1 

using any standard eigenvalue solver, as described in section 7.4.2. 

(vi) Form the following square matrix of the reduced eigenvectors: 

XP 
xr = 

[8ý 
S' 2 sn*J 

(vii) Transform back to the original space, i. e. 

=r Xmxp 
new 

_ \Xmxp)old `Ypxp 

(viii) Update the load vectors matrix, using: 
(y 

xP)new 
Mmxm (X 

xp)new 

(ix) Iteration decision: 

" Calculate the maximum error in the eigenvalues, i. e. 

e, ºý = Max (I"' new old 

(7.69) 

(7.70) 

(7.71) 

(7.72) 

(7.73) 

(7.74) 

" If the maximum error is greater than a given permissible error then go to step (ii). 
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7.4.2 Eigenvalue solver 

For natural frequency analysis, usually more than two eigenvalues are required, and we can 
use the simple iteration algorithm (El-Zafrany, 2000) for solving equation 7.71, or finding 
the roots of the following equation: 

IKP'xp - 2, MPxrI =0 (7.75) 

This algorithm converges to the lowest eigenvalues, but can diverge if the matrixK* is not 
positive definite. For the case where no more than two eigenvalues are required a direct 

analytical solution, which is similar to that given by Attia (1996), can be employed as 
summarized next. 

Using the subspace iteration algorithm with two eigenvalues required, equation (7.71) 
can then be rewritten as follows: 

iif" 
KZX2 SZxl 

-ý 
MZ4 52X1 

or explicitly: 

Kl 
l- %M; l 

K21-%M21 

K12 - ýM12 

K22 - W22 

S' i 

02 

(7.76) 

=p (7.77) 

For non-trivial solution, the determinant of the matrix of coefficients should equal to 
zero, i. e. 

# 

Ki l-ý, M#l iK#I2-ý, Mi 2 

K21 -? M2 t KK2 - W22 
0 

which can be expanded to a second degree equation in ?, as follows: 

ao V- al a, + a2 =0 

where ao = Ml 1 M22 - Mt2 M21 °(M*I 

######4# 

al = KilM22 + MliK22 - Ki2M2i - K21M12 

a2 =K 1* iK. 22 -K. 12 K21 K 

Hence, equation (7.79) has the following two roots: 

(7.78) 

(7.79) 
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%1 

X2 

2 a1 t ai -4 ao a2 
2ao 

7.4.3 Case with pre-stressing 

(7.80) 

This is the case when the structure is already loaded and stressed at static equilibrium 
conditions, such as due to centrifugal loading which may cause centrifugal stiffening. The 
state of strain can still be considered infinitesimal and we solve the linear static equations 
under the given load, otherwise we solve the non-linear equations of stress analysis. From 
the stress distribution obtained we can calculate the matrix Ka. Hence, natural vibrations 
from static equilibrium position will have the following dynamic equation: 

MS(t) + [K+Ka]ö(t) =0 (7.81) 

Substituting from equations (7.61) and (7.62) into (7.81) then it can be deduced that: 

(K+Ka-w2M)6=0 

or (K + K(; )6 = ß, M6 (7.82) 

which is similar to equation (7.64), but with Ka been added to K. 

7.5 BUCKLING ANALYSIS 

We assume an initial loading distribution for the buckling mode required and calculate the 
corresponding equivalent nodal loading vector F.. Buckling is instability occurring whilst 
the strains are still infinitesimal, i. e. we solve the following linear static equation first: 

K6. = F. (7.83) 

If the actual load at the onset of buckling is proportional to the initial load by a factor %, i. e. 
the equivalent nodal loading is: 

F=XF. (7.84) 

then the resulting stress vector at any point (a) will be similarly proportional to the 
corresponding stress vector at the same point due to the initial load (ao), i. e. 

a(x, y, z) = 
%, ao(x, yz) (7.85) 

Hence it can be deduced that at the application of the load which causes instability: 

KQ(a) = %Ka(ao) (7.86) 
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and the generalized equation of equilibrium just before the occurrence of buckling will be: 

[K + %K,, ((Yo) ]8=F (7.87) 

Instability means that the displacements assume infinite values, which is the case when the 
value of the determinant of the matrix of coefficients in equation (7.87) goes to zero, or 

IK + , 
%Ka(Qo)I =0 (7.88) 

Equation (7.88 ) will also result as the condition for non-trivial solution of the following 
matrix equation: 

[K + %, Ka(ao) ]S=0 (7.89) 

where 8 represents a vector of buckling mode shape. Rewriting equation (7.89) as: 

K$ X Ka(ao)S Ka(ao)]S (7.90) 

thus we can define a hypothetical mass matrix as follows: 

M° -Ka(a. ) 

and equation(7.90) can be rewritten as: 

KS =), M6 

(7.91) 

(7.92) 

which is similar to equation (7.64). Hence, dynamic eigenvalue solvers can be employed 
to find the eigenvalues X and buckling mode shapes. For most practical applications, the 
minimum value of ? will define the buckling load. If this equation: 

IK +? Ka(ao)I =0 (7.93) 

has no real root, then the loading mode assumed will not cause instability such as the loads 

which produce tensile stresses. 
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Chapter 8 

Programming Package 



8. Programming Package 

8.1 INTRODUCTION 

In this work several types of new finite strip elements have been derived, as explained in 
previous chapters. An efficient modular programming package based on those elements, 
was established, and it is capable of performing linear and non-linear static stress analysis, 
buckling analysis, and natural frequency analysis. The modular package, which was coded 
in FORTRAN 77, has been built in a way that it is possible to use the same solver module 
for different elements or different solvers with the same element, using a linked executable 
program which contains only the relevant modules. The package has two main versions; 
the plate version and the faceted shell version, for finite strip analysis of plates and shells 
made of composite layered materials. 

An attempt has been made in this chapter to describe the different modules used in this 
package, where each module is represented by a different programming file and contains 
a group of subroutines. The modular package has been divided into five main divisions 
according to the different types of elements been considered, which are as follows: 

(i) Mindlin finite strip element division. 

(ii) Kirchhoff finite strip element division. 

(iii) Reissner finite strip element division. 

(iv) Spline-type Kirchhoff finite strip element division. 

(v) Spline-type Reissner finite strip element division. 

Every division can perform static analysis (linear, non-linear, and buckling analysis) and 
dynamic analysis (natural frequency analysis) using ordinary, banded, or frontal solver as 
illustrated in figure 8.1. 

All the divisions use the same data module, solver modules, and shape function modules, 
but the difference is in the subroutines based on a particular element theory, as will be 
explained in this chapter. Then each division has the following groups of modules: 

(i) Data module, which is nearly the same for different types of elements and with 
plate and faceted shell versions. Each version has its own built in mesh generator. 
Element effect is mainly on data associated with degrees of freedom, such as 
loading and boundary conditions, but other data subroutines are the same for all 
elements. 

(ii) Load module, which depends on the element type, and it contains subroutines for 
the evaluation of equivalent nodal loading for a number of practical types of loads. 

(iii) Solver modules, which are independent of elements, and there are three different 
types of solvers; ordinary solver, banded solver, and frontal solver. For every type 
of solver we have four different modules; for linear stress analysis, non-linear stress 
analysis, natural frequency analysis, and buckling analysis. 
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(iv) Element modules, which are mainly for element stiffness matrix and element mass 
matrix generation, and all based on infinitesimal strains. 

(v) Modules for linear stress analysis, which are element dependent, and contain 
subroutines for calculating infinitesimal strains averaged at nodes. They also have 
subroutines for generating output files for displacements, reactions, and nodal 
stresses and strains at different layers. 

(vi) Modules for non-linear stress analysis, which are element dependent and contain 
subroutines for the evaluation of nodal finite strains averaged at nodes, and 
infinitesimal and finite strains at Gauss quadrature points. They also contain the 
subroutines for the generation of Ka and F1 matrices required for non-linear stress 
analysis. 

(vii) Eigenvalue solver modules, which are the same for all elements and contain the 
subroutines for the solution of a standard eigenvalue problem. There are two 
modules; one is based on simple iteration algorithm, and the second has an 
analytical solution for the small eigenvalue problem of buckling, where we are only 
interested in one or two eigenvalues. 

(viii) Shape functions modules, which contain different types of one-dimensional shape 
functions, their derivatives, and their integrations. 

In this chapter the main subroutines of each module will be highlighted, and for those 
associated with an element we usually start with those for Mindlin-type elements, and 
summarise the difference for the other types of elements. 

8.2 DATA AND LOAD MODULES 

8.2.1 Data module 

This module like most of the other modules has a plate version and a faceted shell version, 
and it reads all required data for the analysis, and generates the finite strip mesh. The main 
difference between the two versions is in the mesh generation, where the plate version 
generates a one-dimensional mesh, whilst the faceted shell version generates the mesh of 
one-dimensional elements in two dimensions. 

The main data subroutine calls a group of subroutines for reading the input file, which 
contains all the parameters needed to define the number of degrees of freedom, the number 
of harmonics, the geometry of the structure, the material properties for the composite 
material used in the analysis, the loading, the boundary conditions, the output required and 
the Gauss quadrature data, and all in a user-friendly format. Most of those subroutines 
contain simple error diagnostics, which perform basic checks on the data provided. 
Examples of input data files are given in Appendix B. 

The data module has many subroutines which provide information to the subroutines of 
other modules through common blocks. The basic subroutines used in the Data module are 
summarised as follows: 
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(i) Subroutine SET FILE 
This is the first subroutine to be called by any of the linked package programs, and 
it requires the case name interactively to define input and output files. All files for 
the same case will have the same case name, given by the user, and different three- 
letter extensions are used for different input and output files and are assigned by 
this subroutine. 

(ii) Subroutine HARMONIC 
This subroutine reads the data which defines the number of harmonics (or y terms), 
and the type of interpolation in y direction such as trigonometric, Lagrangian, 
Hermitian or the spline type, which may depend on the type of element been used 
in the analysis. 

(iii) Subroutine STRIP 
The plate version of this subroutine reads the data which defines the dimensions 
of the plate i. e. the plate length, and the widths at the two ends of the plate, to 
facilitate the analysis of trapezoidal plates. It also reads the number of strips to be 

generated and the number of nodes per strip. Then the subroutine generates the 
finite strip mesh in terms of nodal co-ordinates and topology arrays of the strips. 
The faceted shell version, which is suitable for box structures and stiffened plates, 
reads the geometrical data of each plate part of the structure with respect to a 
consistent system of global axes (x-z axes). This may involve defining the axis of 
every plate part in terms of the x-z coordinates of its two end points. It then 
performs the generation of one-dimensional finite strip elements in the two- 
dimensional x-z space, as required and calculates the rotation matrix for every plate 
part, i. e. the rotation matrix for every generated strip will be defined. 

(iv) Subroutine COMPOSITE 
In this subroutine the data for the composite material properties are defined, in 
terms of seven material properties, E11, E22, v12,1112,11131 11231 p, measured with 

respect to material principal axes. This subroutine reads also the number of layers, 
the thickness and the fibre angle of every layer. The faceted shell version also 
considers the case of a structure with different plate parts made of different 
composite materials, with different thicknesses and fibre orientations. 

(v) Subroutine ISO 
This subroutine reads the material data for the special case of an isotropic material, 
allowing the package to consider also the analysis of plates and shells made of 
isotropic materials. 

(vi) Subroutine BOUNDARY 
In this subroutine the data for the boundary conditions are defined for original 
block nodes, i. e. for the nodes defined before generating the mesh. This means that 
the user does not have to examine mesh generation results to define the boundary 
conditions. Boundary conditions along the length as well as the width of the plate 
are possible. 
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(vii) Subroutine LOAD 
This subroutine reads the data which defines the type and magnitude of loads 
applied on particular nodes of the blocks. For non-linear analysis, it also defines the 
number of load increments and the load ratio for each increment. Different types 
of loading have been considered such as distributed loading, point loading, and line 
loading along lines parallel to x or y axis. Each type of loading requires a 
subroutine from the LOAD file to calculate the corresponding equivalent nodal 
loading vector. 

(viii) Subroutine STATIC 
This subroutine defines the type of static analysis; linear, or nonlinear analysis. For 
non-linear analysis, it also reads the maximum number of iterations, the maximum 
permissible error, and a convergence relaxation parameter. 

(ix) Subroutine DYNAMIC 
This subroutine defines the type of natural frequency analysis, i. e. whether or not 
pre-stressing will be considered. It also reads the number of eigenvalues, the 
maximum number of iterations, the maximum permissible error, and an eigenvalue 
shift parameter. For economical considerations, this module is also used for 
buckling analysis. 

(x) Subroutine GAUSSDATA 
It reads the number of original and reduced Gauss quadrature points in x and y 
directions, and calls subroutine GET GAUSS to read the corresponding Gauss 
quadrature data from a given data file (GAUSS. DAT). We have also tried to 
deduce internally the proper numbers of Gauss points for every type of element. 

(xi) Subroutine SOUT 
Based on user request, this subroutine defines two sets of nodes and y positions for 
displacement and stress/strain output results. This facilitates plotting of results for 
different types of elements, as we only need to collect the output files of a 
particular displacement or stress component in a spread sheet for plotting. 

8.2.2 Load modules 

These represent two modules (files) for every type of elements; one for the plate version 
and the other for the faceted shell version. Each module consists of a number of 
subroutines to calculate the equivalent nodal loading vector for a type of loading, and in 
the case of faceted shell version the load vector is also rotated in terms of the structure 
global axes. The main subroutines of a Load Module, for any type of elements, are as 
follows: 

(i) Subroutine DLOAD, for distributed loading. This will involve a double integral 
over each finite strip. 
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(ii) Subroutine NLOAD, for concentrated load acting at a given node and a given y 
position. 

(iii) Subroutine XLOAD, for line loading defined in terms of load components per unit 
length, along a line x= constant. This will involve integration with respect to y 
along that line. 

(iv) Subroutine YLOAD, for line loading defined in terms of load components per unit 
length, along a line y= constant. This will involve integration with respect to x 
along that line. 

8.3 SOLVER MODULES 

These modules are divided according to the four types of analysis used in this work. For 
each type we can select an ordinary solver, a banded solver, or a frontal solver. A brief 
review of each module, based on the ordinary solver is given. Banded solvers have similar 
subroutines but structural matrices (stiffness and mass matrices) are assembled as 
rectangular matrices with the semi-band width being their number of columns. Frontal 
solvers are based on the same strategy set by Irons (Irons, 1970), and is similar to that used 
for finite element analysis. 

8.3.1 Linear static solver module 

This module contains the master program for linear static analysis and have a structure as 
that given in Figure 8.2, with the following subroutines: 

(i) Subroutine ASSEMBLER 
This subroutine calls the element stiffness matrix generator for the case of 
infinitesimal strains as described in section 8.4. Each element matrix is rotated with 
respect to the global axes of the structure (in the faceted shell version) and 
assembled into one global stiffness matrix for the whole structure. 

(ii) Subroutine REDUCER 
In this subroutine the boundary conditions are applied to the assembled equations, 
and a reduced stiffness matrix, and loading vector are obtained. 

(iii) Subroutine SOLVER 
The reduced equations are solved in this subroutine by using the Gauss elimination 
method. 

(iv) Subroutine EXPANDER 
This subroutine is used to expand the reduced solution to the global nodal 
displacement vector. 
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(v) Subroutine DECOUPLE 
This subroutine decouples the global nodal displacement vector into sub-vectors 
for every y term or harmonic. 

8.3.2 Non-linear static solver module 

This module contains the master program for non-linear static analysis and have a structure 
as that given in Figure 8.3. It considers each load increment, and applies an iterative 

algorithm as shown in section 7.3.2. The FORTRAN file of the module has all the 
subroutines described in section 8.3.1, but the element stiffness matrix generator, called 
by the ASSEMBLER subroutine, calls also the non-linear stiffness matrix Ka generator 
and add it to K. Other subroutines are called by the module, as shown in Figure 8.3, but 
these are given in other files. 

8.3.3 Natural frequency solver module 

This module contains the master program for natural frequency analysis based on the 
subspace iteration algorithm given in section 7.4.1. The program calls the following 
subroutines as shown in Figure 8.4: 

(i) DATA, which defines problem parameters as discussed in section 8.2. 

(ii) DASSEMBLER, which assembles the structure stiffness matrix by calling the 
element stiffness matrix generator, and it also assembles the structure mass matrix 
by calling the element mass matrix generator. 

(iii) DREDUCER, which applies boundary conditions so as to obtain the reduced 
stiffness and mass matrices for the structure. 

(iv) INITIATE, which assumes initial loading vectors, to form the rectangular matrix 
Y (see section 7.4.1). 

(v) DSOLVER, which solves sets of equations Kx =y, to form the rectangular matrix 
of eigenvectors X. This is based on Choleski factorization solver. 

(vi) TPRODUCT, which is called twice to form the subspace stiffness and mass 
matrices defined as follows: 

K* = X`KX, M' = X'MX 

(vii) EIGENV. This subroutine is in the EIGEN module (file), and it uses a standard 
eigenvalue solver to find the eigenvalues and the subspace eigenvectors, for the 
reduced problem: 

K* x* = %M* x* 
(viii) TRANSF, which calculates a new Y matrix for the next iteration. 

(ix) DOUTPUT, which outputs the natural frequencies and corresponding mode 
shapes. 
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8.3.4 Buckling analysis solver module 

This module contains the master program for buckling analysis, as shown in figure 8.5. 
After calling subroutine DATA, the master program calls a new subroutine LINEARAN, 
which performs linear stress analysis, as described in section 8.3.1. This will also allows 
the strain vectors to be calculated at all Gaussian quadrature points. Then subroutine 
SUBSPACE is called to find buckling eigenvalues using the subspace iteration algorithm 
as described in section 8.3.3. The so called MASS subroutine here is to calculate the 
hypothetical mass matrix M= -Ka, as described in section 7.5. 

8.4 ELEMENT STIFFNESS MATRIX MODULES 

These are two modules for each type of elements; a plate version, and a faceted shell 
version. Each module is a combination of the main subroutines which lead to the derivation 
of element stiffness matrix. The module starts with subroutine STIF, which is the same 
for all types of elements and is called by the ASSEMBLER subroutine to prepare the data 
for one finite strip element. It then calls subroutine ESMGS to get the element stiffness 
matrix K. For the case of non-linear analysis it also calls subroutine ESMGL, which is in 
the non-linear module, to get the matrix K6 and then it adds it to K. 

For computational efficiency the element stiffness matrix is partitioned into sub-matrices, 
each evaluated by a separate subroutine at the y values (or harmonics) r, s such as 
KZ , Kbt,, etc., as discussed in previous chapters. Then all parts are assembled for all the 
y values to form the complete stiffness matrix of the element. For shell version, the element 
matrix is assembled first for one r-s part according to element local axes, then it is rotated 
with respect to global axes, before being assembled into the full element matrix. This 
makes the rotation process based on a small size rotation matrix for only one y value (or 
harmonic). 

8.4.1 Mindlin-type element module 

Different subroutines used in this file for both the plate version and the faceted shell 
version are as shown in figure 8.6. The stiffness matrix generator subroutines use 
Lagrangian interpolation subroutines from the Lagrangian shape functions module as will 
be discussed in section 8.9.1. The main subroutines for Mindlin-type element module are 
summarized as follows: 

(i) Subroutine ESMGS 
This subroutine calls the subroutines which calculate the different parts of the 
element stiffness matrix at r, s (K") as shown in equation (6.102). For faceted shell 
version, it also rotates it with respect to global axes as shown by equation (7.43). 
Then it assembles the full K matrix for the element as shown by equation (6.139). 

(ii) Subroutine ESMGOO 
This subroutine calculates the part Koö which is defined by an equation similar to 
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equation (4.182), using two subroutines; BMATRIXO and LANGRANGE 
subroutines. The first one is for the calculation of the matrix Bö which is defined 
by equation(4.168) and the second one, which is from the shape functions file, is 
to define Lagrangian shape functions and their derivatives. The double integrals in 
equation (4.182) are evaluated numerically using double summations of one- 
dimensional Gauss quadrature, along x and y directions. The number of quadrature 
points in the integration with respect to 4 is usually equal to the number of nodes, 
whilst the number of quadrature points in the integration with respect to r) is 
usually equal to the number of y terms. 

(iii) Subroutine ESMGBB 
This subroutine calculates the sub-matrix Kti6 which is defined by an equation 
similar to equation (4.185), using the same LANGRANGE subroutine mentioned 
above. It also calls subroutine BMATRIXB to calculate the matrix Bras defined 
by equation (6.90). The double integrals in equation (4.185) are also evaluated 
numerically by Gaussian quadrature schemes similar to that used for KZ. 

(iv) Subroutine ESMGGG 
This subroutine calculates the sub-matrix Krr which is defined by an equation 
similar to equation (4.179), using the same LANGRANGE subroutine for shape 
functions. The matrix Br as defined by equation (6.92) is calculated by calling 
subroutine BMATRIXG YTo 

avoid shear locking, the double integrals used for the 
evaluation of Krr are based on reduced Gaussian quadrature schemes which are of 
order less by one than those employed for Köö and KKb 

(v) Subroutine ESMGOB 
The sub-matrix Köb as defined by equation (4.191) is evaluated in this subroutine, 
using the same LANGRANGE subroutine mentioned above together with 
BMATRIXO subroutine for calculating the matrixBö and BMATRIXB for 
calculating the matrix B. The Gauss quadrature schemes employed here are non- 
reduced. 

(vi) Subroutine ESMGBO 
This subroutine calculates Kbö which is as defined by equation (4.193), using the 
same subroutines employed for the previous subroutine. 

(vii) Subroutine SMALLD 
This subroutine is called once to calculate the integrated D matrices; 
Doo, Dob , Dbb as defined by equations (4.79)-(4.81). 

8.4.2 Kirchhoff-type element module (Hermitian interpolation version) 

This module has the main subroutines as in the Mindlin-type module, which have been 
discussed briefly in the previous section, except that there are some modifications done 
according to Kirchhoff plate-bending theory. The main differences in these subroutines are 
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the number of degrees of freedom which are different as compared to Mindlin finite strip 
element, and in the shape function file where Hermitian shape functions are also added. 
Hence, three new shape function subroutines (HERMITE, DHERMITE, and 
D2HERMINTE) have been used for the evaluation of Hermitian shape functions, and their 
first and second derivatives. The main subroutines used for the calculation of element 
stiffness matrix are illustrated in the following table: 

Subroutine name Matrix calculated 
Defining equation 

Number 

ESMGOO Köö 5.92 

ESMGBB Kbb 5.94 

ESMGOB Koh 5.97 

ESMGBO Kbö 5.98 

Notice that there is no reduced integration needed for that element. 

8.4.3 Kirchhoff-type element module (spline-type interpolation version) 

This module is the special case of Kirchhoff-type element as discussed in section 8.4.2, where 
the subroutines (SPLINE, DSPLINE, and D2SPLINE) have been called instead of the 
subroutines (HERMITE, DHERMITE, and D2HERMINTE) to provide spline-type shape 
functions. Those subroutines are found in spline-type shape functions modules as discussed 
in sections 8.9.3 and 8.9.4. 

8.4.4 Reissner-type element module (Hermitian interpolation version) 

This module has different subroutines for the different parts of the element stiffness matrix 
in a way similar to that employed for the Mindlin-type and Kirchhoff-type finite strip 
elements, which have been discussed in the previous sections, except that there are some 
modifications in terms of degrees of freedom and the shape function files. The subroutines 
BMATRIXO, BMATRIXB, BMATRIXT and BMATRIXG are also used to calculate the 
matrices Bö , Bb r, By, , Bras given by equations (4.168), ( 4.170), (4.172) and (4.174) 
respectively. Notice also that there is no reduced integration needed for that element. The 
module has also subroutine SMALLD, which is called once to calculate the integrated D 
matrices: Doo, Dob , Dbb , Dw, , Do,, , Db, as defined by equations (4.79)-(4.84). 

The main subroutines used for the element stiffness matrix generation are listed in the 
following table: 
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Subroutine name Matrix calculated 
Defining equation 

Number 

ESMGOO Köö 4.182 

ESMGBB Keb 4.185 

ESMGGG Kyy 4.179 

ESMGPP Ký, 4.188 

ESMGOB Köb 4.191 

ESMGBO Kbo 4.193 

ESMGOP Köy, 4.196 

ESMGPO Krs. 4.198 

ESMGBP Kby, 4.201 

ESMGPB KWb 4.203 

8.4.5 Reissner-type element module (spline-type interpolation version) 

This module is the special case of Reissner-type element as discussed in section 8.4.4 where 
the subroutines (SPLINE, DSPLINE, and D2SPLINE) have been called instead of the 
subroutines (HERMITE, DHERMITE, and D2HERMINTE) to provide spline-type shape 
functions. 

8.5 ELEMENT MASS MATRIX MODULES 

These are also two modules for each type of elements for plates and faceted shells. Each 

module contains the main subroutines for the derivation of element mass matrix. The module 
starts also with subroutine MASS, which is the same for all types of elements and is called 
by DASSEMBLER subroutine to prepare the data for one finite strip element and calls 
EMMG to get the element mass matrix M. The element mass matrix is also partitioned into 

sub-matrices, each evaluated by a separate subroutine at they values (or harmonics) r, s. Then 

all parts are assembled for all the y values to form the complete mass matrix of the element. 
For shell version, the element matrix is evaluated first for one r-s part according to element 
local axes, then it is rotated with respect to global axes, before being assembled into the full 
element mass matrix. 
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8.5.1 Mindlin-type element module 

The main subroutines of this module are as shown in figure 8.7 and they are summarized as 
follows: 

(i) Subroutine EMMG 
This subroutine calls the subroutines which calculate the different parts of the element 
mass matrix at r, s as shown in equation (6.185). For faceted shell version, it also 
rotates it with respect to global axes as shown by equation (7.48). Then it assembles 
the full M matrix for the element, in a way similar to that used for the assembly of 
element stiffness matrix as shown by equation (6.139). 

(ii) Subroutine EMMGOO 
This subroutine calculates the sub-matrix Mö r which is defined by equation (4.340). 
This subroutine calls first the subroutine SHAPEF from the shape function file, to 
define element shape functions and then it calls subroutine NMATRIXO twice to 
calculate No rand (NN)`which are defined by equation (6.173). Hence, by performing 
double Gaussian quadrature the sub-matrix Mö r is obtained. 

(iii) Subroutine EMMGWW 
This subroutine calculates the sub-matrix Mwr which is defined by equation (4.342). 
The same procedure is applied as in the above subroutine by calling subroutine 
SHAPEF, then calling subroutine NMATRIXW, which calculates Nx, as defined by 

equation (6.175). 

(iv) Subroutine EMMGTT 
This subroutine calculates the sub-matrix Me' which is defined by equation (4.344) 

using the same procedure adopted in the above two subroutines, but it calls subroutine 
NMATRIXT, which calculates Noras defined by equation (6.174). 

8.5.2 Kirchhoff-type element module (Hermitian interpolation version) 

In this element mass matrix file the same procedure has been adopted as it had been used in 
Mindlin finite strip modules. The different subroutines with their relative equation numbers 
are illustrated in the following table: 

Subroutine name Matrix calculated 
Defining equation 

Number 

EMMGOO 

EMMGWW 

EMMGTT 

Mrs 
00 

Mrs 
WW 

Möe 

4.340 

4.344 

4.342 
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These subroutines call LAGRANGE subroutine for the calculation of Lagrangian shape 
functions, and HERMITE and DHERMITE subroutines are also called for the calculation of 
Hermitian shape functions and their derivatives. They use subroutines NMATRIXO, 
NMATRIXW, and NMATRIXT to calculate the matrices Nor, NW , No which are defined 
by equations (4.305), (4.306), and (4.308) respectively. 

8.5.3 Kirchhoff-type element module (spline-type interpolation version) 

This module is the special case of Kirchhoff-type element as discussed in section 8.5.2 but it 

uses subroutines SPLINE and DSPLINE instead of HERMITE and DHERMITE in all the 
subroutines which call them, to provide spline-type shape functions. 

8.5.4 Reissner-type element module (Hermitian interpolation version) 

In this element mass matrix file, different subroutines with their relative equation numbers are 
illustrated in the following table: 

Subroutine name Matrix calculated 
Defining equation 

No. 

EMMGOO Möö 4.340 

EMMGWW Mww 4.344 

EMMGTT Möö 4.342 

EMMGTP Mey, 4.348 

EMMGPT Mire 4.350 

EMMGPP Mrs,, 4.346 

These subroutines call LAGRANGE subroutine for the calculation of Lagrangian shape 
functions, and call HERMITE and DHERMITE subroutines for the calculation of Hermitian 
shape functions and their derivatives. They also call subroutines NMATRIXO, NMATRIXW, 
NMATRIXT, NMATRIXP to calculate Nor, N©, Ný , Nx, which are defined by equations 
(4.305), (4.306), (4.307) and (4.308) respectively. 

8.5.5 Reissner-type element module (spline-type interpolation version) 

This module is the special case of Reissner-type element as discussed in section 8.5.4 where 
the subroutines SPLINE and DSPLINE are called instead of HERMITE and DHERMITE to 
provide spline-type shape functions. 
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8.6 LINEAR STRESS ANALYSIS MODULES (-LNS FILES) 

The -LNS file contains all additional subroutines for linear stress analysis and results output. 
There are two modules per each type of element for plate and faceted shell versions. Every 
module has the same subroutines, and the difference between them is due to element degrees 
of freedom, shape functions, and number of stress-strain components. The main subroutines 
in each -LNS file are summarized as follows: 

(i) Subroutine DISP 
In this subroutine the full nodal displacement vector is defined from the reduced and 
prescribed vectors. Also the displacement components are listed in the output file at 
every selected node, for the selected y values. 

(ii) Subroutine REACT 
This subroutine calculates the nodal reactions and residual vector R, which is defined 
as: 

R =KS -F 
and lists the results in the output file. 

(iii) Subroutine LNSTRAINN 
This subroutine calculates the x-y parts of the strain vector, averaged at nodes and y 
values. These parts are c, Eb for all elements, for Mindlin and Reissner elements, 
in addition to E for Reissner elements. Every part is calculated by calling the 
appropriate B matrix subroutine (from the ESMG file). 

(iv) Subroutine STRAIN 
This subroutine calculates the actual strain vector for every given node and y value at 
three z-points per every layer; at its lower, middle, and upper surfaces. It then rotates 
the vector with respect to material axes before writing it in the output file. 

(v) Subroutine STRESS 
This subroutine calculates first the actual strain vector for every given node and y 
value at the three z-points per every layer; as before. It then calculates the 
corresponding stress vector by multiplying the layer D matrix by the strain vector. The 
stress vector is also rotated with respect to material axes before writing it in the output 
file. 

8.7 NON-LINEAR STRESS ANALYSIS MODULES (-NLS FILES) 

This file contains all the additional subroutines required for non-linear stress analysis and 
buckling analysis including Ka and F, generators for each type of finite strip elements, as will 
be explained in this section. 
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8.7.1 Kß generators 

These are groups of subroutines which calculate the element KQ matrix. The main subroutines 
for each type of elements are summarized next. 

8.7.1.1 Mindlin-type element subroutines 

Different parts of K6 for Mindlin elements are calculated by different subroutines and 
assembled in one matrix for the element in a way similar to that mentioned in section 8.4.1. 
The main subroutines are summarized as follows: 

(i) Subroutine ESMGL 
This subroutine calls the subroutines which calculate the different parts of the element 
non-linear stiffness matrix at r, s as shown in equation (6.155). For faceted shell 
version, it also rotates it with respect to global axes as shown by equation (7.43). Then 
it assembles the full KQ matrix for the element in a way similar to that shown by 
equation (6.139). 

(ii) Subroutine ESMGMM 
This subroutine calculates the sub-matrix KS,,,,,, using equation (4.269). The matrices Gm 
and Smm needed for that equation are evaluated by the subroutines GMATM and 
SMATMM, which are also in the same file. These two matrices are as defined by 
equations (4.254) and (4.105). The numerical integrations are carried out using double 
Gaussian quadrature. 

(iii) Subroutine ESMGWW 
This subroutine calculates the sub-matrix Kwwusing equation (4.27 1). The terms Gw 
and Sww are defined by equations (6.142) and (4.108) and calculated by the 
subroutines GMATW and SMATWW. 

(iv) Subroutine ESMGTT 
The sub-matrix Köö, as defined by equation (4.275) is calculated by this subroutine, 
using GMATM and SMATTT subroutines for the evaluation of the terms Gö and 
SA0 as defined by equations (6.144) and (4.118). 

(v) Subroutine ESMGMT 
This subroutine calculates the sub-matrix Kmeusing equation (4.273a), and this case 
requires three terms GM r, Ge and SmO as defined by equations (4.254), (6.144) and 
(4.113), and evaluated by subroutines GMATM, GMATT and SMATMM, 
respectively. 

(vi) Subroutine ESMGTM 
This subroutine calculates the sub-matrix Koamusing equation (4.273b), in a way 
similar to that used for the previous sub-matrix. 
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8.7.1.2 Kirchhoff- and Reissner-type element subroutines 

All different types of those elements use similar subroutines for the generation of the 
different sub-matrices defining the matrix KQ" as listed in the following table: 

Subroutine name Matrix calculated 
Defining equation 

Number 

ESMGMM Km.. 4.269 

ESMGWW Kwx, 4.271 

ESMGTT Korso 4.275 

ESMGMT Kr 
, 
'o 4.273a 

ESMGTM Köm 4.273b 

Subroutines GMATM, GMATW, GMATT are called to calculate the matrices Gm , Gw , Ge 
defined by equations (4.254), (4.256), and (4.258), where Hermitian shape functions are 
used with the Hermitian-interpolation version, and spline-type shape functions are used 
with the spline-interpolation version. Subroutines SMATMM, SMATWW, SMATTT are 
also employed for the calculation of matrices Smm 

, 
S,,,, Soo and S, 

no. 

8.7.2 FL generators 

These are groups of subroutines which calculate the element F1 matrix. They depend on the 
type of elements as explained next. 

8.7.2.1 Mindlin-type element subroutines 

These subroutines calculate the elementF, vector in terms of two sub-vectors, and the main 
subroutines are summarized as follows: 

(i) Subroutine FLVECTOR 
This subroutine assembles first the vector F, as defined by equation (6.160), and for 
the faceted shell version it rotates that vector with respect to global axes, before 
assembling the element F, vector. 

(ii) Subroutine FOVECTOR 
In this subroutine the sub-vector (F. ), is calculated according to equation (4.280). 
Subroutines BMATRIXO and SVECO are also called to calculate Bö , aoas given by 
equations (4.168) and (4.127). 
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(iii) Subroutine FBVECTOR 
This subroutine calculates the sub-vector (Tb ), as defined by equation ( 4.282 ), using 
subroutines BMATRIXB, and SVECB, which estimateBh, ab as defined by 
equations (6.90), and (4.130). 

8.7.2.2 Kirchhoff- and Reissner-type element subroutines 

These subroutines are similar to those discussed for the Mindlin-type element, but they use 
Hermitian or spline-type interpolation depending on the element type. For Reissner-type 

elements, there is also an additional subroutine FTVETOR which calculates the sub-vector 
(Fy, )1 as defined by equation (4.284). 

8.7.3 Additional subroutines 

(i) Subroutine CONVERGENCE 
This subroutine calculates an error measure after every iteration, which is defined as: 

Error = 
AS ̀ AS 

sts 
where Ab represents the increment of nodal displacement vector due to residual forces, 
and S is the total nodal displacement vector at the end of the iteration, as explained in 
section 7.3.2. That error measure will be compared with a given permissible error to 
decide whether or not convergence has been achieved. 

(ii) Subroutine LNSTRAING 
This subroutine calculates the x-y parts of the infinitesimal strain vector at Gauss 

o 
for all elements, y for Mindlin and Reissner quadrature points. These parts are c, b c 

elements, in addition to E for Reissner elements. These are required for the evaluation 
of K,, for non-linear and buckling analysis, and F, for non-linear analysis. 

(iii) Subroutine NLSTRAINN 
This subroutine calculates the x-y parts of the finite strain vector averaged at nodes 
using non-linear stress analysis. These are cm , ew , 

Ema 
, 

E© for different types of 
elements. 

(iv) Subroutine NLSTRAING 
In this subroutine the x-y parts of the finite strain vector; Cm , Ew , Co m, 

Eo are 
calculated at Gaussian quadrature points for different types of elements. 

8.8 EIGENVALUE SOLVER MODULE 

This module or file has all the subroutines required to solve a standard eigenvalue problem, 
and is used for natural frequency and buckling analysis. If more than two eigenvalues are 
required, we have a module EIGENV 1 based on the simple iteration algorithm (El-Zafrany, 
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2000). This algorithm converges to the lowest eigenvalues, but can diverge if the matrix (K in 
this case) is not positive definite. This may cause problems in some cases of buckling, if the 
assumed load does not cause buckling, and it is difficult to tell whether or not the divergence 
of the algorithm is due to that. Since the critical buckling load may occur within the first two 
eigenvalues, another module (EIGENV2), which is based on the direct analytical solution 
described in section 8.4.2, can be employed. 

8.9 SHAPE FUNCTION MODULES 

The shape functions module provides all one-dimensional shape functions required for 
interpolation along x and y directions. For efficient programming four different modules have 
been coded for different types of interpolation methods employed, as will be explained in this 
section. Every module is divided into two parts. The first part provides one-dimensional 
interpolation along the x direction for an n-node strip, according to the interpolation methods 
employed for the finite strip element. The second part contains interpolation functions along 
the y direction, and for historical reasons we kept the trigonometric functions as an option. 
Four different types of polynomial interpolation along the y direction are available, and each 
in a separate file, as explained in this section. 

8.9.1 Lagrangian interpolation shape functions module 

This module provides Lagrangian shape functions and their derivatives for use in the 
interpolation along the x direction, which is suitable for Mindlin-type finite strip elements. 
Along the width of the strip (the y direction), two options are provided; trigonometric 
functions and polynomial shape functions based also on Lagrangian interpolation. This means 
that with this module the available polynomial interpolation along the y direction for all 
displacement parameters is the Lagrangian interpolation. Numerical integrations of shape 
functions is also provided for use with the LOAD module subroutines. 

8.9.2 Hermitian interpolation shape functions module 

This module has all the subroutines of the Lagrangian shape functions file with an addition 
of some more subroutines which define the Hermitian shape functions, their first and second 
order derivatives, and their numerical integrations. It is mainly used with Reissner-type and 
Kirchhoff-type elements (Hermitian interpolation version) to provide Hermitian interpolation 
for the lateral deflection w along the x direction. The available polynomial interpolation along 
the y direction is Hermitian interpolation for w and Lagrangian interpolation for all other 
displacement parameters. 

8.9.3 Spline-w interpolation shape functions module 

This module contains all the subroutines in the Hermitian shape functions file, except we have 
some additional subroutines which defines the spline-type shape functions, their derivatives 
and their numerical integrations. It can be used with Reissner-type and Kirchhoff-type 
elements to provide spline-type interpolation for the lateral deflection w along the x direction. 
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The available polynomial interpolation along the y direction is spline-type interpolation for 
w and Lagrangian interpolation for all other displacement parameters. This file is designed to 
be used for Kirchhoff and Reissner elements with spline-type interpolation, but it can also be 

used with the Hermitian version of Reissner-type and Kirchhoff-type elements. 

8.9.4 Spline-all interpolation shape functions module 

This module is similar to the previous one and provides spline-type interpolation for the lateral 
deflection w along both x and y directions. It also provides spline-type interpolation for all 
other displacement components along y direction. This can also be used for all types of 
Kirchhoff and Reissner elements. 

8.10 LINKING AND RUNNING THE PACKAGE 

The programming package has been built of different modules, as discussed in the previous 
sections, which gives the flexibility to link only the relevant modules for the required types 
of analysis. This makes the executable program as small as possible and makes it suitable to 
be run on ordinary PC's. There are four different types of analysis available, and their linking 

structures are summarized in this section. The detailed linking instructions, with the file names 
as used in the package, are listed in Appendix A. 

8.10.1 Linear static analysis 

Figure 8.8 illustrates the modules required to form the executable file for linear static analysis. 
Every module has a plate version and a faceted shell version, to be selected according to the 
type of structure required. The linear solver module is a selection of one module from 

ordinary, banded, and frontal solver modules. The data module is almost the same for different 
types of elements. The other modules; LOAD, ESMG, -LNS and shape functions modules 
depend on the type of element used (Mindlin-type, Hermitian Kirchhoff-type, Hermitian 
Reissner-type, Spline-type Kirchhoff and Spline-type Reissner). For linear static analysis using 
Mindlin-type elements, for example, we have to start the linking with one of the three linear 

static solvers modules and after compilation we link this with the data module, LOAD 

module, ESMG module, -LNS module, for the Mindlin-type element and the Lagrangian 

shape function module. For the analysis with any other type of elements, we use the relevant 
modules of that element. 

8.10.2 Non-linear static analysis 

Figure 8.9 describes the modules required to form the executable file for non-linear static 
analysis. This is similar to the previous case but with the -NLS module added to provide 
additional subroutines required for non-linear stress analysis. 

8.10.3 Natural frequency analysis 

The relevant modules required for natural frequency are as shown in figure 8.10. We start 
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with a dynamic solver module; ordinary, banded or frontal solver module, which contains the 
subroutines for the subspace iteration procedure. This is to be linked with Data module, which 
is the same file for all types of analysis. Then the element dependent modules; LOAD, ESMG, 

and EMMG are added together with an eigenvalue solver module, and the appropriate shape 
functions module. The Lagrangian shape functions module is mainly used with Mindlin type 
elements, the Hermitian shape functions module is used with Kirchhoff and Reissner 
Hermitian elements, and the two spline-type shape functions files; SPLINE-W, SPLINE-ALL 
are used with Kirchhoff and Reissner spline-type elements. 

8.10.4 Buckling analysis 

Figure 8.11 demonstrates the modules required to form the executable file for Buckling 

analysis. We start with a buckling solver module; ordinary, banded or frontal module, which 
has two groups of subroutines; linear stress analysis subroutines and subspace iteration 
subroutines. This is to be linked with Data module, and the element dependent modules; 
LOAD, ESMG, -LNS and -NLS are modules together with an eigenvalue solver module, and 
the appropriate shape functions module, as described in the previous section. 
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Chapter 9 

Results and Discussion 



9. Results and Discussion 

9.1 INTRODUCTION 

Several types of finite strip elements have been derived in this work, using the new concept 
of polynomial and spline-type interpolation along the width of the plate or shell. This can 
lead to a very large number of options by changing the combinations of x and y 
interpolation theorems. It was decided to select a practical number of combinations, 
leading to the following definitions of elements: 

(i) 

(ii) 

(iii) 

Mindlin-type elements, which are based on Lagrangian interpolation for all 
displacement parameters in x and y directions. It is possible to link the programs 
with Hermitian or spline-type shape functions to change the interpolation type 
along they direction, but early tests have proven that such elements were best with 
Lagrangian interpolation in both x and y directions. 

Kirchhoff-type and Reissner-type elements, which are based on Hermitian 
interpolation for the lateral deflection w in both x and y directions, and Lagrangian 
interpolation for other displacement parameters. 
Spline-type Kirchhoff and Reissner elements, which are similar to the previous 
ones but with the default cases having the lateral deflection w interpolated in x and 
y directions with spline-type interpolation. For some cases, it was decided to test 
the elements with spline-type interpolations applied at y direction for all 
displacement parameters. 

It was essential to validate those basic elements for different types of plates and shells and 
with different types of loading and boundary conditions. Due to time limitations, a 
reasonable number of cases have been selected and different types of analysis have been 
tested. Figures of results in this chapter have been generated using a built-in plotter, which 
takes the results files of different elements directly without any interference from the user. 
The package has also its own built-in mesh generator, which facilitates data preparation. 
We have focussed mainly on the p-type convergence of elements, where we use the same 
number of nodes for the same case with different types of elements. Nevertheless in one 
case, which has an analytical solution, we also investigated the h-type convergence. 

9.2 STRESS ANALYSIS OF CANTILEVER PLATE 

9.2.1 Case description 

Several examples based on a rectangular cantilever plate, as shown in figure 9.1, have been 
considered, with 

Length L in x direction = 2m, 

Width B in y direction = lm, 
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and each case consists of 12 layers of a composite material. Two different materials were 
selected, Carbon/Epoxy (C/E) and Glass/Epoxy (E/G), with properties as shown in table 
9.1. Different data files were run with plate and facet versions of the package, to validate 
different types of analysis and to check also that the two versions of the package will give 
identical results for the same case. 

Stress analysis was carried out with three cases of loading: 

(a) Case under tensile load in terms of a uniform line tensile force of intensity: 

f1 =1x 107 N/rn 

(b) Case under in-plane bending, induced by a uniform in-plane line shear force of 
intensity: f2 =1x 106 N/m 

(c) Case under out-of-plane bending, induced by a uniform out-of-plane line shear 
force of intensity: f3 =1x 102 N/m 

Several finite strip meshes were employed, each has 13 nodes for plotting purposes: 

(a) Two-node element meshes which consists of 12 elements. 

(b) Three-node element meshes which consists of 6 elements. 

(c) Four-node element meshes which consists of 4 elements. 

We also compare the finite strip results with those obtained from an in-house FEM 
package, using 9-node Mindlin element, and a mesh with 6x3 square elements, which have 
13 nodes along y= constant lines. All the results compared were plotted for the nodes on 
y=0 line. 

Different plots of deflection have been divided into two groups to avoid too many plots in 
the same figure: 

(a) The first group is with polynomial finite strip elements, these are Mindlin-type 
elements, and Hermitian Kirchhoff-type, and Hermitian Reissner-type elements. 

(b) The second group is with spline-type elements which have Kirchhoff and Reissner- 
type elements, based on spline-type interpolation. 

FEM results have been plotted with the two groups to facilitate comparisons. The 
Carbon/Epoxy plate results will be referred to as the C/E results, whilst the Glass/Epoxy 
results will be referred to as the E/G results. 

9.2.2 Linear stress analysis results 

9.2.2.1 Plate under tensile loading 

Distributions of the axial deflection u have been plotted against x value along y=0 line. 
The results are divided into two groups as previously mentioned. The C/E results are 
shown in figures 9.2 and 9.3 whilst the E/G results are displayed in figures 9.4 and 9.5. It 
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is clear from those figures that the results obtained from all different types of finite strip 
elements agree very well with each other, and with the FEM results. All the curves are 
straight lines, as expected for such a case, with a small discrepancy near the fixed end. This 
is due to the complete fixation assumed there, and plotting the results at the edge (y = 0), 
where the Poisson's effect is maximum. 

9.2.2.2 Plate under in plane bending 

Distribution of the transverse deflection v have been plotted against x for the nodes on the 
x-axis, as shown in figures 9.6 and 9.7 for the C/E plate, and figures 9.8 and 9.9 for the E/G 
plate. It can be noticed from those figures that all the results obtained from different finite 

strip elements have excellent agreement with each other and with the corresponding FEM 

results. 

9.2.2.3 Plate under out-of-plane bending 

For the plates under the out-of-plane bending, distributions of the lateral deflection w have 
been plotted against x for the nodes on the x-axis, as demonstrated for the C/E plate in 
figures 9.10 and 9.11, and for the E/G plate in figures 9.12 and 9.13. Examining those 
figures, we can notice that the Mindlin-type elements, which are based on Lagrangian 
interpolation agree with the FEM results which are based on a similar theory. Kirchhoff- 
type and Reissner-type elements have results close to each other but slightly lower than 
those of the Mindlin-type elements. This is mainly because Kirchhoff-type and Reissner- 
type elements use Hermitian or Spline-type interpolations for the lateral deflection w, 
which are based on a more accurate plate-bending theory. 

9.2.3 Non-linear stress analysis results 

The previous cases of loading were run using non-linear static analysis option. Each load 
was divided into 10 equal increments, and we realised that the full loads considered were 
too high for the E/G plate. This helped us to test the divergence measures in the package, 
including the termination of the program if divergence starts to occur, and using a 
relaxation factor to decelerate divergence. Displacement distributions for the first load 
increment of each loading case are presented, and load/ deflection curves are plotted for 
the cases which took the full load without divergence. 

9.2.3.1 Plate under tensile loading 

The axial deflection u obtained from the first load increment has been plotted against x for 
the two groups of finite elements together with the corresponding FEM results, as shown 
in figures 9.14 and 9.15 for the C/E plate, and figures 9.18 and 9.19 for the E/G plate. 
These figures prove the good agreement between the results of all the elements and the 
FEM results. The C/E plate case has convergence for all load increments, and the 
maximum value of u (at x= L) has been plotted against load ratio as shown in figures 
9.16 and 9.17. These figures show also a good agreement at all load increments, between 
the results of different elements. 
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9.2.3.2 Plate under in-plane bending 

For this case of loading, the significant displacement component is the transverse 
displacement v, which has been plotted against x for the two groups of elements. Figures 
9.20 and 9.21 demonstrate the plots for the C/E results at the first load increment. At this 
small load the results obtained from all element agree very well with each other and with 
FEM results. The maximum value of v (at x= L), has also been plotted against load ratio, 
as shown in figures 9.22 and 9.23. At full load, the higher-order finite strip elements have 

given results slightly higher than Mindlin elements, as they use more accurate interpolation 
theorems. Figures 9.24 and 9.25 show the transverse displacement distributions for the E/G 

plate, which show also a good agreement between the results obtained from different 

elements. 

9.2.3.3 Plate under out-of-plane bending 

The lateral deflection w has been plotted against axial distance x for the first load 
increment, where figures 9.26 and 9.27 show the results for the C/E plate, and figures 9.28 

and 9.29 display the results for the E/G plate. The curves are similar to those obtained with 
linear stress analysis (figures 9.10-9.13), with Mindlin-type elements having results 
slightly higher than those obtained by other elements due to different interpolation 
theorems employed. 

9.3 STRESS ANALYSIS OF SQUARE PLATE 

9.3.1 Case description 

This case represents a square plate made of 8 layers of a composite material with properties 
as shown in table 9.2. The axes and geometry of the plate are as shown in figure 9.30, 

where a side length L =10m was considered with a range of thickness values. The plate 
was subjected to a uniformly distributed loading in the z-direction, with intensity 

q =10ON/m2. 

A full symmetry has been assumed with respect to the plate central axes, allowing one 
quarter (abcd) of the plate to be modelled for finite element and finite strip analyses, with 
the following boundary conditions: 

(a) For all elements: 

u=0 along edge bc, 

v=0 along edge ab, 

w=0 along edges ad, dc. 

(b) For Mindlin elements, the following additional boundary conditions are also 
considered: 
0x =0 along edge ab, 
0y =0 along edge bc. 
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(c) For Kirchhoff-type and Reissner-type elements, they also have the following 
boundary condition: 

wi x=0 along edge bc. 

(d) For Reissner-type elements, they also have the following boundary conditions: 

VX =0 along edge ab, 

Wy =0 along edge bc. 

Several meshes were selected with convenient nodes for plotting, where only the p-type 
convergence was tested. Finite element analysis was carried out using an in-house FEM 

package with 6x6 9-node Mindlin elements. The finite strip meshes had 12 two-node 
elements and 6 three-node elements. 

This case helps to demonstrate the ability of the newly derived finite strip elements to deal 
with such different types of boundary conditions. Different values of length of the quarter 
of the plate over thickness (L12h) ratios have been selected to test element accuracy in a 
wide range of thickness. Linear stress analysis was carried out for all the cases, to facilitate 
comparisons. 

9.3.2 Thin plate results 

This case has L/2 h= 25, which represents a very thin plate. The lateral deflection w was 
plotted against distance on the x-axis, as shown in figures 9.31 and 9.32, for polynomial- 
type and spline-type elements respectively. All the results are close with each other, with 
slightly higher values for cases with more sophisticated interpolation theorems. 
Distributions of the axial stress (ax) through the thickness at the central node is also shown 
in figure 9.33, which shows the agreement of Reissner-type element with Mindlin element. 
Kirchhoff-type elements suppose to provide the most accurate answers for the thin range. 

9.3.3 Thick plate results 

This case has L/2 h=5, which represents a thick plate. The lateral deflection distributions 
over the x- axis are shown in figures 9.34 and 9.35. It is clear that the effect of transverse 
shear has made the results of Mindlin and Reissner-type much higher than those of 
Kirchhoff-type elements. We can also notice that the Reissner theory provides results 
slightly higher than those obtained by the Mindlin theory. The stress distribution (c ) 
through the thickness at the central node is shown in figure 9.36, which reflects also more 
or less similar observations. 

9.3.4 Different thickness cases 

Plates with (L/2 h) ratios of 25,12.5,10,6.25,5,4 and 2.5 were tested and the values of a 
non-dimensional lateral deflection iv at the plate centre was tabulated, for different 
elements, as shown in table 9.3, where 
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w. E h3 
w=` 22 X100 

qL4 
and we is the lateral deflection at the plate centre. The following findings can be noticed 
from the table: 

(a) Kirchhoff-type element non-dimensional results are independent of thickness, 
confirming that they only show bending deformation which is proportional to h3 . 

(b) Mindlin-type elements work accurately for a wide range of thicknesses and provide 
the simplest type. 

(c) Reissner-type element results are slightly higher than Mindlin-type results with the 
difference increasing with thickness. 

(d) Two-node elements and three-node elements have led to almost identical results 
for each type of elements. 

9.4 CURVED SHELL CASE 

9.4.1 Case description 

The main objective of this case is to test the ability of finite strip elements to model 
cylindrical shells. It was decided to test the h-convergence of one type of elements, the 
Mindlin-type. This type of element is based on Lagrangian interpolation, and more 
elements are required for a typical case than the elements of higher interpolation orders. 

A curved cylindrical shell, as shown in figure 9.37 was selected with: 
Mean radius R =100mm, 
Width B =10mm 

Thickness h =1 mm. 

The shell is made of an isotropic material with 
Young's modulus E =106 N/mm2, 

Poisson's ratio v=0.3. 

The choice of an isotropic material will allow the comparisons with an analytical solution, 
but the input data were presented in the form of a composite material with four layers each 
of thickness 0.25mm, with fibre angles (45, -45,45, -45), and Et1 = E22 = E, V12 = V, 
N 12 = µ23 = µ31 = E/2(1 +v) . This idea will enable testing the equations of all the rotated 
D matrices of the composite. Two cases of loading have also been considered: 
(a) Horizontal unit loading in x-direction distributed uniformly at the free edge. 
(b) Vertical unit loading in z-direction, distributed uniformly at the free edge. 

The meshes used for the analysis are: 
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(i) Finite element mesh with 10 four-node Mindlin elements. 
(ii) Coarse finite strip mesh with 10 two-node Mindlin elements. 
(iii) Coarse finite strip mesh with 10 three-node Mindlin elements. 

(iv) A similar mesh to the previous one, but with two y-terms (3/2 mesh) 

(v) Fine mesh with 20 two-node Mindlin-type finite strip elements. 
(vi) Fine mesh with 20 three-node Mindlin-type finite strip elements. 

9.4.2 Case with horizontal loading 

The horizontal and vertical deflections (u, w) have been plotted against x-values for all 
meshes together with the corresponding analytical solutions, as shown in figure 9.38 and 
9.39, respectively. The convergence of finite strip solutions to analytical solution is clear 
from the figures, with the best results obtained from the two-node fine mesh. FEM results 
are higher than the corresponding two-node coarse mesh results. 

The stress ax distribution over the thickness, at the fixed end, was also plotted as shown in 
figure 9.40, which demonstrates a good convergence to the analytical solution with the best 

results obtained from the fine mesh. 

9.4.3 Case with vertical loading 

The distributions of displacement components u and w, along the x-axis are shown in 
figures 9.41 and 9.42. A convergence, with the fine mesh results being very close to the 
analytical solution results, has been achieved. The stress aX distribution over the thickness 
is shown at the fixed end in figure 9.43 which confirms good convergence to the analytical 
solution. 

9.5 STIFFENED PLATE CASE 

9.5.1 Case description 

This case represents an example to demonstrate the ability of the developed elements to 
deal with folded and stiffened plates. A simple stiffened plate with geometry as shown in 
figure 9.44 has been considered, where 

Length in x direction L=2m, 

Width in y direction B =1 m, 
Length of the stiffener in z direction 1=0.5m. 

The plate consists of 12 layers of the C/E composite material with properties as shown in 
table 9.1. However, two cases of thickness have been considered: 
(a) Thin plate with layer thickness 2.5 mm, and total thickness h =0.03m, 
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(b) Thick plate with layer thickness 12.5mm, and total thickness h=0.15m. 

The upper opposite ends of the plate are fixed, and the plate was subjected to two different 
cases of loading: 

(i) A line loading, as shown in figure 9.5, with load intensity =1. Ox l O5N/m, 

(ii) A uniform distributed loading on the upper surface, along z direction, with 
intensity = 0.5x 105N/m2. 

Each load has a total force =1. Ox lOSN, and causes the plate to bend symmetrically in the 
x-z plane. Two finite element meshes of the same number of nodes with four-node and 
nine-node elements, as shown in figures 9.45 and 9.46 were employed to obtain reliable 
FEM results for checking different finite strip results. Several types of finite strip elements 
were tested using meshes with the same node numbers and compatible with finite element 
meshes, i. e. with 25 nodes along the x-axis for the upper plate and 13 nodes along the t- 
axis for the stiffener. 

9.5.2 Thin plate results 

The distribution of the lateral deflection w along the x-axis (and y= 0) for the upper surface 
of the plate has been plotted against x values, using results of different finite strip elements, 
together with FEM results. To make it easy to recognise different plots, the results of the 
two-node finite strip elements and those of the three-node finite strip elements were plotted 
in two different figures with the same scale values. In the captions of the plots, just 
Kirchhoff-type and Reissner-type elements mean that w was interpolated with Hermitian 
interpolation in x and y directions. Spline-w indicates that w was interpolated using spline- 
type interpolation in x and y directions, and spline-A is the same except we use spline-type 
interpolation in y direction for all displacement parameters. 

(a) Case with line loading 

The results of two-node and three-node finite strip elements are shown in figures 
9.47 and 9.48 respectively, together with the results of the two finite element 
meshes in every figure. The FEM results have convergence proving that the finite 
element meshes are adequate. Figure 9.47 proves that most of the two-node finite 
strip elements have results very close to FEM results, except the two-node Mindlin- 
type element which seems to give less accurate results than other elements for the 
same number of elements. Figure 9.48 confirms that the three-node Mindlin-type 
element leads to very accurate results. Notice also that the three-node elements 
have better symmetric results than the two-node elements. 

(b) Case with uniformly distributed loading 

The two-node and three-node elements results are shown in figures 9.49 and 9.50 
respectively. Observations similar to that for the previous case of loading can be 
noticed, with slightly bigger deviation for some cases. The three-node finite strip 
results have shown better symmetric results than FEM results. 

Razzaq, PhD Thesis 147 



9.5.3 Thick plate results 

The distributions of the lateral deflection vv for the upper plate have been plotted in two 
figures for each case of loading, in a way similar to the previous case. 

(a) Case with line loading 

Figure 9.51 demonstrates the results of some two-node finite strip elements, which 
show that the two-node Reissner-type element leads to results close to FEM 
results. Figure 9.52 displays the results of three-node finite strip elements, and it 
is clear that Mindlin-type and Reissner-type elements gave results very close to 
FEM results. It is clear in both figures that Kirchhoff-type elements have given 
lower results than others due to the transverse shear effect, as seen previously in 

section 9.3. 

(b) Case with distributed loading 

The results of two-node strip elements are shown in figure 9.53, whilst the results 
of three- node elements are displayed in figure 9.54. The Kirchhoff-type element 
results are lower than those of other elements as expected, due to the neglection of 
transverse shear effect. The three-node Mindlin-type elements lead to accurate and 
symmetric results. 

9.6 NATURAL FREQUENCY AND BUCKLING ANALYSIS OF 
RECTANGULAR PLATE 

9.6.1 Case description 

This case represents a rectangular cantilever plate, similar to that shown in figure 9.1, but 
with following geometric properties: 

Length in x direction L =180 mm, 

Width in y direction B= 40 mm. 

Two types of materials were selected, C/E and E/G with properties as shown in table 9.4. 
these plates have been actually manufactured at Cranfield University (see Hagaze, 2002). 
Finite strip meshes with 13 nodes along the x direction have been used. 

9.6.2 Natural frequency analysis 

Natural frequency analysis has been carried out using the subspace iteration algorithm. 
Several mixed modes of vibration were obtained from different finite strip elements which 
have no FEM match. To facilitate comparison with FEM results, only the natural 
frequencies of the first three bending modes are listed as shown in tables 9.5 and 9.6 for 
C/E and E/G cases, respectively. It is clear from the two tables that all the finite strip 
elements tested lead to very close natural frequencies for the first bending mode. For the 

Razzaq, PhD Thesis 148 



second bending mode, the two-node Mindlin-type element lead to less accurate results, 
with better results for the third bending mode. 

9.6.3 Buckling analysis 

For buckling analysis, each plate was subjected initially to a compressive line loading 
along x=L edge, with intensity fo =-l ON/mm or a total force F. =-40N. After carrying 
out linear stress analysis, buckling analysis was employed to find the critical load ratio (or 
buckling eigenvalue) X at which a forceF = ß, F0 will cause instability or buckling. Two 
eigenvalues were calculated to check the programs, knowing that buckling will occur at the 
lower one. The buckling eigenvalues for different finite strip elements together with FEM 
results are listed in tables 9.7 and 9.8 for the C/E and E/G plates, respectively. It is clear 
that all the elements tested have led to very close values for the first and second buckling 
modes. 

9.7 TRAPEZOIDAL PANEL CASE 

9.7.1 Case description 

One of the interesting features of our newly-derived elements is their ability to model 
plates with variable width in y direction. The built-in mesh generator can generate elements 
for a trapezoidal panel, as shown in figure 9.55, with the specification of B, and B2, which 
is much simpler than finite element mesh generator. Most of the higher-order finite 
elements for plate bending work only for rectangular or parallelogramical shapes (see 
Attia, 1996, and Hagaze, 2002). This is not the case for finite strip elements. 

To test this claim a trapezoidal cantilever panel as shown in figure 9.55 was selected, 
where: 

The length along x-axis: L= 180mm, 

The width along y-axis, at x=0: B, = 50mm, 

The width along y-axis, at x--L: B2 = 30mm. 

To facilitate the comparison with the previous case of rectangular plate, we use the same 
two materials of properties as shown in table 9.4. We also have the same area of the mid- 
plane which is 0.0072m2. 

9.7.2 Natural frequency analysis 

The natural frequencies of the first three bending modes are listed in tables 9.9 and 9.10 
for the C/E and E/G panels, respectively. Most elements lead to close values for the natural 
frequency of the first bending mode, except Kirchhoff-type element which have higher 
values. Kirchhoff-type and Reissner-type elements with spline-type interpolation give 
accurate results. Comparing with rectangular plate results in tables 9.5 and 9.6, the natural 
frequencies of bending modes for the trapezoidal panel are slightly higher than the 
corresponding natural frequencies for the rectangular plate of the same mass, as expected. 
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9.7.3 Stress analysis tinder compressive loading 

A compressive load of initial value F =-40N, was applied uniformly at the free end. Due 
to the geometrical shape, the in-plane displacement distribution will not be linear, as in the 
tension case of section 9.2. The results for the two cases of materials are summarized next. 

(a) Carbon/Epoxy Panel 

The distribution of the axial displacement component u, along the x-axis (and 
y= 0), as obtained from different finite strip elements, have been demonstrated in 
figures 9.56 and 9.57, for polynomial and spline-type finite strip elements, 
respectively. It is clear from those figures that all elements tested have led to 
identical results. The stress (aX) distributions at x=0, y=0, have been plotted 
through the thickness, as shown in figures 9.58 and 9.59, for the two groups of 
elements. All the results of different elements are close, especially the spline-type 
elements. 

(b) Glass/Epoxy Panel 

The axial displacement distributions along the x-axis , at y=0, have also been 

plotted for the two groups of elements, as shown in figures 9.60 and 9.61, which 
prove that all the finite strip elements lead to identical results. The stress 
distributions through the panel thickness are also plotted at node (x = 0, y= 0), in 
figures 9.62 and 9.63. A very good agreement between the results of the spline-type 
elements has been achieved. 

9.7.4 Buckling analysis 

A compressive load of value F=? F0was assumed after carrying out the previous analysis, 
and the resulting buckling eigenvalues ?, for the first two buckling modes are listed in 
tables 9.11 and 9.12, for the C/E and E/G panels, respectively. The best results agree with 
the observations of stress distributions discussed previously, i. e. the spline-type elements 
lead to results close to the FEM results. The Mindlin-type finite strip elements have also 
led to good results. 
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Chapter 10 

Conclusions 



10. Conclusions 

It can be concluded from previous chapters that the Author has managed to achieve 
successfully most of the research objectives. The main original contribution can be 
summarized as follows: 

(a) A new concept of polynomial and spline-type finite strip elements has been 
introduced for the first time. Although it does not lead to decoupling of harmonics 
as does the use of trigonometric series, but for buckling and non-linear analyses 
this decoupling is not always possible. 

(b) Different plate-bending theories have been employed for the derivation of the new 
elements, allowing them to be used efficiently for thin and thick plates of isotropic 
and composite layered materials. 

(c) The new elements have also been extended to work as faceted shell elements, for 
the analysis of cylindrical shells and folded and stiffened plates. 

(d) The building of a sophisticated programming package, capable of linear and non- 
linear stress analysis, natural frequency analysis and buckling analysis with a built- 
in automatic mesh generator, which facilitates the use of the package for different 
geometrical configurations. 

(e) The newly derived elements allow the use of different boundary conditions along 
any edge of the plate or shell. 

(f) Several practical types of loading have been introduced, with their equivalent nodal 
loading been calculated. 

The developed package has been successfully validated mainly against finite element 
results. Several observations have been noticed in the course of package validation, 
summarized as follows: 

(i) While running the case studies, one can notice the big saving in modelling time and 
size, thus saving Human being time and computer resources. 

(ii) Mindlin-type elements, with reduced integration and Lagrangian interpolation in 
the x and y directions, prove to be simple and accurate for a wide range of plate 
thicknesses, for curved shells and stiffened plates, with its best element for 
different cases being the three-node element. 

(iii) The derived finite strip elements are capable of dealing with stiffened plates, with 
three-node elements behaving better than the two-node elements. 

(iv) The new finite strip elements are much more efficient in modelling trapezoidal 
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plates than finite elements, in terms of modelling time and accuracy. 

(v) The developed package has proved to be an efficient tool for stress, buckling and 
natural frequency analyses of plates and cylindrical shells made of isotropic and 
composite layered materials. 

Recommendations for future work 

There are some recommendations for future work which will make this work more useful 
for industrial applications: 

(i) Investigation of damage assessment including progressive damage analysis and 
delamination. 

(ii) Non-linear dynamic analysis, using the non-linear dynamic equations developed in 
this work. 

(iii) Experimental validation, which may decide the practical limits of accuracy for 
different elements. 
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Tables 

Table 9.1 Material properties of Carbon/Epoxy and Glass/Epoxy plates 

Parameter Carbon/Epoxy [C/E] Glass/Epoxy [E/G] 

Longitudinal Modulus EI 1 [GPa] 134.75 45.37 

Transverse Modulus E22 [GPa] 8.24 15.2 

Shear Modulus in x-y plane P12 [GPa] 7.0 6.0 

Shear Modulus in y-z plane' 23 [GPa] 7.0 6.0 

Shear Modulus in z-x plane 113, [GPa] 7.0 6.0 

Major Poisson's Ratio v12 0.325 0.289 

Number of Layers 12 12 

Thickness of each layer [mm] 2.5 2.5 

Stacking Sequence [- 45,0,45]2s [- 45,0,4512, 

Table 9.2 Material properties of the square plate 

Parameter value 

Longitudinal Modulus E, 1 [MPa] 40.0 

Transverse Modulus E22 [MPaJ 1.0 

Shear Modulus in x-y plane V 12 [MPa] 0.6 

Shear Modulus in y-z plane . t23 [MPa] 0.6 

Shear Modulus in z-x plane pal [MPa] 0.6 

Major Poisson's Ratio v12 0.25 

Number of Layers 8 

Thickness of each layer [mm] 2.5 

Stacking Sequence [0,45, - 45,90], 
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Table 9.3 Non-dimensional central deflection 
for the square plate 

U(2h) Mindlin-Type 
Element 

Kirchhoff- 
Type Element 

Reissner-Type 
Element 

Spline-type 
Kirchhoff 

Spline-type 
Reissner 

2-noded 0.514 0.501 0.528 0.522 0.540 

25.0 3-noded 0.515 0.501 0.528 0.522 0.540 

FEM 0.559 

2-noded 0.539 0.501 0.580 0.522 0.581 

12.5 3-noded 0.540 0.501 0.580 0.522 0.581 

FEM 0.583 

2-noded 0.559 0.501 0.611 0.522 0.608 

10.0 3-noded 0.559 0.501 0.611 0.522 0.608 

FEM 0.602 

2-noded 0.642 0.501 0.718 0.522 0.719 

6.25 3-noded 0.643 0.501 0.718 0.522 0.722 

FEM 0.681 

2-noded 0.718 0.501 0.806 0.522 0.819 

5.0 3-noded 0.718 0.501 0.806 0.522 0.819 

FEM 0.754 

2-noded 0.836 0.501 0.935 0.522 0.971 

4.0 3-noded 0.837 0.501 0.935 0.522 0.971 

FEM 0.869 

2-noded 1.346 0.501 1.456 0.522 1.612 

2.5 3-noded 1.347 0.501 1.456 0.522 1.612 

FEM 1.369 
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Table 9.4 Material properties of Cranfield Carbon/Epoxy 
and Glass/Epoxy plates 

Parameter Carbon/Epoxy [C/E] Glass/Epoxy [E/G] 

Longitudinal Modulus Ell [GPa] 128.0 35.0 

Transverse Modulus E22 [GPa] 11.0 8.22 

Shear Modulus in x-y plane µ 12 [GPa] 4.48 4.1 

Shear Modulus in y-z plane 1123 [GPa] 4.48 4.1 

Shear Modulus in z-x plane µ., l [GPa] 4.48 4.1 

Major Poisson's Ratio v12 0.25 0.26 

Number of Layers 13 12 

Thickness of each layer [mm] 0.25 0.15 

Density p [kg/m3] 1500 2000 

Stacking Sequence [Degrees] [0/ 90/ 4510/ -45/90/ 
0/90/-45/0/45/90/01 

[0/90/45/0/-45/90]` 
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Table 9.5 Natural frequencies for 
Carbon-Epoxy plate (in hz) 

V Natural 
Frequency 

2"' Natural 
Frequency 

3rd Natural 
Frequency 

Mindlin - 
2-noded 1.141 5.224 7.173 

Type 3-noded 1.139 6.142 7.156 
Element 

4-noded 1.139 6.006 7.146 

Kirchhoff 
2-noded 1.143 6.402 7.226 

-Type 3-noded 1.141 6.122 7.152 
Element 

4-noded 1.142 6.088 8.852 

Reissner - 
2-noded 1.130 6.926 7.036 

Type 3-noded 1.132 5.989 6.946 
Element 

4-noded 1.134 5.995 6.923 

S line- 
2-noded 1.144 6.064 7.203 

p 
Type 3-noded 1.147 6.099 7.207 

Kirchhoff 
4-noded 1.141 6.071 7.214 

S line- 
2-noded 1.140 5.978 7.134 

p 
Type 3-noded 1.141 6.010 7.138 

Reissner 
4-noded 1.132 5.980 7.049 

FEM 9-noded 1.135 6.372 7.124 
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Table 9.6 Natural frequencies for 
Glass-Epoxy plate (in hz) 

ist Natural 
Frequency 

2°' Natural 
Frequency 

3`d Natural 
Frequency 

Mi dli 
2-noded 0.299 1.561 1.944 

n n - 
Type 3-noded 0.3055 1.911 2.135 

Element 
4-noded 0.304 1.910 2.131 

Ki hh f 
2-noded 0.308 1.928 2.124 

rc o 
f-Type 3-noded 0.308 1.927 2.013 

Element 
4-noded 0.308 1.928 2.001 

iss R 
2-noded 0.305 1.908 2.036 

e ner - 
Type 3-noded 0.305 1.909 2.002 

Element 
4-noded 0.306 1.915 2.001 

S li 
2-noded 0.309 1.920 2.014 

p ne- 
Type 3-noded 0.309 1.921 2.026 

Kirchhoff 
4-noded 0.309 1.923 2.016 

S li 
2-noded 0.309 1.918 2.009 

p ne- 
Type 3-noded 0.309 1.918 2.021 

Reissner 
4-noded 0.306 1.913 2.011 

FEM 9-noded 0.306 1.913 2.171 
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Table 9.7 Buckling eigenvalues for 
Carbon-Epoxy plate 

First 
Eigenvalue 

Second 
Eigenvalue 

Mi dli 
2-noded 1.610 12.725 

n n - 
Type 3-noded 1.611 14.391 

Element 
4-noded 1.615 14.410 

hh ff Ki 
2-noded 1.623 14.591 

o - rc 
Type 3-noded 1.621 14.572 

Element 
4-noded 1.621 14.572 

R i 
2-noded 1.589 14.165 

e ssner- 
Type 3-noded 1.593 14.193 

Element 
4-noded 1.600 14.249 

li S 
2-noded 1.624 14.595 

ne- p 
Type 3-noded 1.633 14.602 

Kirchhoff 
4-noded 1.620 14.571 

li S 
2-noded 1.617 14.391 

ne- p 
Type 3-noded 1.618 14.406 

Reissner 
4-noded 1.595 14.432 

FEM 9-noded 1.599 14.292 
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Table 9.8 Buckling eigenvalues for 
Glass-Epoxy plate 

First 
Eigenvalue 

Second 
Eigenvalue 

Mindlin- 2-noded 0.0852 0.785 
Type 

Element 3-noded 0.0866 0.779 

4-noded 0.0849 0.782 

Kirchhoff- 2-noded 0.0875 0.787 
Type 

Element 3-noded 0.0872 0.784 

4-noded 0.0875 0.787 

Reissner- 2-noded 0.0853 0.767 
Type 

Element 3-noded 0.0854 0.769 

4-noded 0.0864 0.776 

Spline- 2-noded 0.0875 0.787 
Type 

Kirchhoff 3-noded 0.0881 0.788 

4-noded 0.0875 0.786 

Spline- 2-noded 0.0875 0.786 
Type 

Reissner 3-noded 0.0876 0.786 

4-noded 0.0859 0.789 

FEM 9-noded 0.0857 0.772 

Razzaq, PhD Thesis 163 



Table 9.9 Natural frequencies for C/E trapezoidal panel (in liz) 

Type of 
Element 

Number of 
Nodes 

1" Natural 
Frequency 

2°' Natural 
Frequency 

3`d Natural 
Frequency 

2-noded 1.313 7.522 11.482 
Mindlin 

3-noded 1.327 7.027 7.685 

2-noded 1.740 7.642 8.247 
Kirchhoff 

3-noded 1.670 6.710 8.071 

2-noded 1.676 7.912 8.025 
Reissner 

3-noded 1.648 7.938 8.414 

Spline 2-noded 1.309 6.333 7.542 
Kirchhoff 3-noded 1.339 6.477 7.556 

Spline 2-noded 1.305 6.239 7.466 

Reissner 3-noded 1.330 6.373 7.482 

FEM 9-noded 1.297 7.121 8.284 

Table 9.10 Natural frequencies for E/G trapezoidal panel (in hz) 

Type of 
Element 

Number of 
Nodes 

1" Natural 
Frequency 

2nd Natural 
Frequency 

3`d Natural 
Frequency 

2-noded 0.355 1.642 2.038 
Mindlin 

3-noded 0.358 1.985 2.018 

2-noded 0.471 2.210 2.527 
Kirchhoff 

3-noded 0.451 2.175 2.191 

2-noded 0.353 1.704 2.264 
Reissner 

3-noded 0.446 1.910 2.157 

Spline 2-noded 0.354 2.011 2.089 

Kirchhoff 3-noded 0.362 2.020 2.129 

Spline 2-noded 0.353 2.008 2.084 

Reissner 3-noded 0.360 2.016 2.119 

FEM 9-noded 0.352 1.981 2.708 
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Table 9.11 Buckling eigenvalues for C/E trapezoidal panel 

Type of 
Element 

Number of 
Nodes 

First 
Eigenvalue 

Second 
Eigenvalue 

2-noded 1.737 15.550 
Mindlin 

3-noded 1.756 14.340 

2-noded 2.522 15.352 
Kirchhoff 

3-noded 2.375 15.154 

2-noded 1.877 15.110 
Reissner 

3-noded 2.329 14.797 

Spline 2-noded 1.739 14.661 
Kirchhoff 3-noded 1.786 14.555 

Spline 2-noded 1.732 14.442 

Reissner 3-noded 1.764 14.351 

FEM 9-noded 1.684 13.475 

Table 9.12 Buckling eigenvalues for E/G trapezoidal panel 

Type of 
Element 

Number of 
Nodes 

First 
Eigenvalue 

Second 
Eigenvalue 

2-noded 0.0933 0.783 
Mindlin 

3-noded 0.0944 0.777 

2-noded 0.136 0.829 
Kirchhoff 

3-noded 0.128 0.817 

2-noded 0.120 0.988 
Reissner 

3-noded 0.125 0.801 

Spline 2-noded 0.0938 0.792 

Kiechhoff 3-noded 0.0964 0.785 

Spline 2-noded 0.0937 0.790 
Reissner 3-noded 0.0956 0.783 

FEM 9-noded 0.0916 0.743 
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Figure 7.5 Co-planar and non-coplanar nodes 

Figure 7.6 Degrees of freedom for Reissner-type finite 
strip element 
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Figure 8.2 Linear static analysis solver 
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Non-Linear Static Analysis Solver 
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Figure 8.3 Non-linear static analysis solver 
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[Natural Frequency Analysis Solver 
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Buckling Analysis Solver 
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Figure 8.5 Buckling analysis solver 
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I Calculates M= -Ka 

Subspace iteration 

algorithm as in Fig. 8.4 
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Figure 9.51 Lateral displacement distribution for thick stiffened plate under 
line loading, using two-node finite strip elements. 
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Figure 9.55 Trapezoidal panel 
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Appendix A Linking Instructions 

A. 1 LINEAR STATIC ANALYSIS 

Files to be linked to form the executable programs are listed as follows: 

A. 1.1 Mindlin Elements 

(a) Plate version 

LST-FS-O (or LST-FS-B or LST-FS-F)+STRN-DATA+STRN-ESM + STRN-LNS 
+STRN-LOAD+ NEWL-SHF. 

(b) Faceted shell version 

LST-FF-O (or LST-FF-B or LST-FF-F)+FACM-DATA+FACM-ESM +FACM-LNS + 
FACM-LOAD+ NEWL-SHF. 

A. 1.2 Hermitian Kirchhoff Elements 

(a) Plate version 

LST-FS-O (or LST-FS-B or LST-FS-F)+STRK-DATA+STRK-ESM + STRK-LNS 

+STRK-LOAD+ HERM-W. 

(b) Faceted shell version 

LST-FF-O (or LST-FF-B or LST-FF-F)+FACK-DATA+FACK-ESM +FACK-LNS + 
FACK-LOAD+ HERM-W. 

A. 1.3 Hermitian Reissner Elements 

(a) Plate version 
LST-FS-O (or LST-FS-B or LST-FS-F)+STRH-DATA+STRH-ESM + STRH-LNS 

+STRH-LOAD+ HERM-W. 

(b) Faceted shell version 

LST-FF-O (or LST-FF-B or LST-FF-F)+FACR-DATA+FACR-ESM +FACR-LNS + 
FACR-LOAD+ HERM-W. 

A. 1.4 Spline-type Kirchhoff Elements 

(a) Plate version 
LST-FS-O (or LST-FS-B or LST-FS-F)+STKS-DATA+STKS-ESM + STKS-LNS 

+STKS-LOAD+ SPLINE-W (or SPLINE-ALL) 

(b) Faceted shell version 
LST-FF-O (or LST-FF-B or LST-FF-F)+FCKS-DATA+FCKS-ESM +FCKS-LNS + 
FCKS-LOAD+SPLINE-W (or SPLINE-ALL) 
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A. 1.5 Spline-type Rissner Elements 

(a) Plate version 

LST-FS-O (orLST-FS-B orLST-FS-F)+STRS-DATA+STRS-ESM +STRS-LNS +STRS- 
LOAD+ SPLINE-W (or SPLINE-ALL) 

(b) Faceted shell version 

LST-FF-O (or LST-FF-B or LST-FF-F)+FCHS-DATA+FCHS-ESM +FCIIS-LNS + 
FCHS-LOAD+SPLINE-W (or SPLINE-ALL) 

A. 2 NON-LINEAR STATIC ANALYSIS 

Files to be linked to form the executable programs are as follows: 

A. 2.1 Mindlin Elements 

(a) Plate version 

NST-FS-O (or NST-FS-B or NST-FS-F)+STRN-DATA+STRN-ESM +DTRN-LNS + 
STRN-NLS + STRN-LOAD+ NEWL-SHF. 

(b) Faceted shell version 

LST-FF-O (or LST-FF-B or LST-FF-F)+FACM-DATA+FACM-ESM +FACM-LNS + 
FACM-NLS + FACM-LOAD+ NEWL-SHF. 

A. 2.2 Hermitian Kirchhoff Elements 

(a) Plate version 

NST-FS-O (or NST-FS-B or NST-FS-F)+STRK-DATA+STRK-ESM+STRK-LNS + 
STRK-NLS +STRK-LOAD+ HERM-W 

(b) Faceted shell version 

NST-FF-O (or NST-FF-B or NST-FF-F)+FACK-DATA+FACK-ESM +FACK-LNS + 
FACK-NLS+ FACK-LOAD+ HERM-W. 

A. 2.3 Hermitian Reissner Elements 

(a) Plate version 
NST-FS-O (or NST-FS-B or NST-FS-F)+STRH-DATA+STRH-ESM + STRH-LNS + 
STRH-NLS+ STRH-LOAD+ HERM-W. 

(b) Faceted shell version 
NST-FF-O (or NST-FF-B or NST-FF-F)+FACR-DATA+FACR-ESM +FACR-LNS + 
FACR-NLS+FACR-LOAD+ HERM-W. 
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A. 2.4 Spline-type Kirchhoff Elements 

(a) Plate version 

NST-FS-O (or NST-FS-B or NST-FS-F)+STKS-DATA+STKS-ESM + STKS-LNS + 
STKS-NLS+STKS-LOAD+ SPLINE-W (or SPLINE-ALL) 

(b) Faceted shell version 

NST-FF-O (or NST-FF-B or NST-FF-F)+FCKS-DATA+FCKS-ESM +FCKS-LNS + 
FCKS-NLS+ FCKS-LOAD+SPLINE-W (or SPLINE-ALL) 

A. 2.5 Spline-type Rissner Elements 

(a) Plate version 

NST-FS-O (or NST-FS-B or NST-FS-F)+STRS-DATA+STRS-ESM +STRS-LNS + 
STRS-NLS+ STRS-LOAD+ SPLINE-W (or SPLINE-ALL) 

(b) Faceted shell version 

NST-FF-O (or NST-FF-B or NST-FF-F)+FCHS-DATA+FCHS-ESM +FCHS-LNS + 
FCHS-NLS+ FCHS-LOAD+SPLINE-W (or SPLINE-ALL) 

A. 3 NATURAL FREQUENCY ANALYSIS 

Files to be linked to form the executable programs are as follows: 

A. 3.1 Mindlin Elements 

(a) Plate version 

DYN-FS-O (or DYN-FS-B or DYN-FS-F) + EIGENV 1+ STRN-DATA + STRN-ESM 
+STRN-EMM + STRN-LOAD+ NEWL-SHF. 

(b) Faceted shell version 
DYN-FF-O (or DYN-FF-B or DYN-FF-F) + EIGENV 1 +FACM-DATA + FACM- 
ESM+FACM-LOAD+ NEWL-SHF. 

A. 3.2 Hermitian Kirchhoff Elements 

(a) Plate version 
DYN-FS-O (or DYN-FS-B or DYN-FS-F) + EIGENV 1+STRH-DATA+STRH-ESM + 
STRH-EMM +STRH-LOAD+ HERM-W. 

(b) Faceted shell version 
DYN-FF-O (or DYN-FF-B or DYN-FF-F) + EIGENVI+FACR-DATA+FACR-ESM 
+FACR-EMM + FACR-LOAD+ HERM-W. 
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A. 3.3 Hermitian Reissner Elements 

(a) Plate version 

DYN-FS-O (or DYN-FS-B or DYN-FS-F) + EIGENV 1+STRH-DATA+STRH-ESM + 
STRH-EMM +STRH-LOAD+ HERM-W. 

(b) Faceted shell version 

DYN-FF-O (or DYN-FF-B or DYN-FF-F) + EIGENV 1+FACR-DATA+FACR-ESM 
+FACR-EMM + FACR-LOAD+ HERM-W. 

A. 3.4 Spline-type Kirchhoff Elements 

(a) Plate version 

DYN-FS-O (or DYN-FS-B or DYN-FS-F) + EIGENV 1+STKS-DATA+STKS-ESM + 
STKS-EMM +STKS-LOAD+ SPLINE-W (or SPLINE-ALL) 

(b) Faceted shell version 

DYN-FF-O (or DYN-FF-B or DYN-FF-F) + EIGENVI+FCKS-DATA+FCKS-ESM 
+FCKS-EMM + FCKS-LOAD+SPLINE-W (or SPLINE-ALL) 

A. 3.5 Spline-type Rissner Elements 

(a) Plate version 

DYN-FS-O (or DYN-FS-B or DYN-FS-F) + EIGENV 1+STRS-DATA+STRS-ESM 
+STRS-EMM +STRS-LOAD+ SPLINE-W (or SPLINE-ALL) 

(b) Faceted shell version 

DYN-FF-O (or DYN-FF-B or DYN-FF-F) + EIGENV 1+FCHS-DATA+FCHS-ESM 
+FCHS-EMM + FCHS-LOAD+SPLINE-W (or SPLINE-ALL) 

A. 4 BUCKLING ANALYSIS 

Files to be linked to form the executable programs are as follows: 

A. 4.1 Mindlin Elements 

(a) Plate version 
BUC-FS-O (or BUC-FS-B or BUC-FS-F) + EIGENV2 + STRN-DATA+STRN-ESM + 
STRN-LNS + STRN-NLS + STRN-LOAD+ NEWL-SHF. 

(b) Faceted shell version 
BUC-FF-O (or BUC-FF-B or BUC-FF-F) + EIGENV2 +FACM-DATA+FACM-ESM + 
FACM-LNS + FACM-NLS + FACM-LOAD + NEWL-SHF. 

Razzaq, PhD Thesis 218 



A. 4.2 Hermitian Kirchhoff Elements 

(a) Plate version 

BUC-FS-O (or BUC-FS-B or BUC-FS-F) + EIGENV2 +STRK-DATA+STRK- 
ESM+STRK-LNS + STRK-NLS +STRK-LOAD+ HERM-W 

(b) Faceted shell version 

BUC-FF-O (or BUC-FF-B or BUC-FF-F) + EIGENV2 +FACK-DATA+FACK-ESM 
+FACK-LNS + FACK-NLS+ FACK-LOAD+ HERM-W. 

A. 4.3 Hermitian Reissner Elements 

(a) Plate version 

BUC-FS-O (or BUC-FS-B or BUC-FS-F) + EIGENV2 +STRH-DATA+STRH-ESM + 
STRH-LNS + STRH-NLS+ STRH-LOAD+ HERM-W. 

(b) Faceted shell version 

BUC-FF-O (or BUC-FF-B or BUC-FF-F) + EIGENV2 +FACR-DATA+FACR-ESM 
+FACR-LNS + FACR-NLS+FACR-LOAD+ HERM-W. 

A. 4.4 Spline-type Kirchhoff Elements 

(a) Plate version 

BUC-FS-O (or BUC-FS-B or BUC-FS-F) + EIGENV2 +STKS-DATA+STKS-ESM + 
STKS-LNS + STKS-NLS+STKS-LOAD+ SPLINE-W (or SPLINE-ALL) 

(b) Faceted shell version 
BUC-FF-O (or BUC-FF-B or BUC-FF-F) + EIGENV2 +FCKS-DATA+FCKS-ESM 
+FCKS-LNS + FCKS-NLS+ FCKS-LOAD+SPLINE-W (or SPLINE-ALL) 

A. 4.5 Spline-type Rissner Elements 

(a) Plate version 
BUC-FS-O (or BUC-FS-B or BUC-FS-F) + EIGENV2 +STRS-DATA+STRS-ESM 
+STRS-LNS + STRS-NLS+ STRS-LOAD+ SPLINE-W (or SPLINE-ALL) 

(b) Faceted shell version 
BUC-FF-O (or BUC-FF-B or BUC-FF-F) + EIGENV2 +FCHS-DATA+FCHS-ESM 
+FCHS-LNS + FCHS-NLS+ FCHS-LOAD+SPLINE-W (or SPLINE-ALL) 
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Appendix B Samples of input data files 

Examples of the data files for the stiffened plate and trapezoidal panel cases are listed in 
this section. 

B. 1 STIFFENED PLATE 

B. 1.1 Two-node Mindlin element data file 

** Carbon/Epoxy Composite Stiffened Plate 
** Using Mindlin Finite Strip 2-node Element 
** Linear static analysis under out-ofplane loading 

Harmonics: NHAR, IHAR 
2,2 

Strips: NBN, NBL, NODE/I, XB(I), ZB(I) 
4,3,2 
1,0.0,0.0 
2,1.0,0.0 
3,2.0,0.0 
4,1.0,0.5 
1,1.0,1.0,1,1,2,12 
2,1.0,1.0,1,2,3,12 
3,1.0,1.0,1,2,4,6 

COMPOSITE MODULE 
1 
134.75E9,8.24E9,0.325,7.0E9,7.0E9,7.0E9,800 
12 
1, -45,2.5E-3 
2,0,2.5E-3 
3,45,2.5E-3 
4, -45,2.5E-3 
5,0,2.5E-3 
6,45,2.5E-3 
7,45,2.5E-3 
8,0,2.5E-3 
9, -45,2.5E-3 
10,45,2.5E-3 
11,0,2.5E-3 
12, -45,2.5E-3 

Boundary Conditions 
1 
0,2,1,3 
0,0 

Loads: NLINC, NLN, NLX, NLY, NDL 
010,11010 
1, -13,1,0.0,0.0,1.0E5,0.0,0.0 
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STATIC MODULE 
1 

OUTPUT MODULE 
0 
0,0 
3,13,1,25 

Gauss Quadrature Data (Reduced) 
2,1,2 

B. 1.2 Two-node Kirchoff element data file 

** Carbon/Epoxy Composite Stiffened Plate 
** Using Kirchhoff Finite Strip 2-node Element 
** Linear static analysis under out-ofplane loading 

Harmonics: NHAR, IHAR 
4,2 

Strips: NBN, NBL, NODE/I, XB(I), ZB(I) 
4,3,2 
1,0.0,0.0 
2,1.0,0.0 
3,2.0,0.0 
4,1.0,0.5 
1,1.0,1.0,1,1,2,12 
2,1.0,1.0,1,2,3,12 
3,1.0,1.0,1,2,4,6 

COMPOSITE MODULE 
1 
134.75E9,8.24E9,0.325,7. OE9,7.0E9,7.0E9,800 
12 
1, -45,2.5E-3 
2,0,2.5E-3 
3,45,2.5E-3 
4, -45,2.5E-3 
5,0,2.5E-3 
6,45,2.5E-3 
7,45,2.5E-3 
8,0,2.5E-3 
9, -45,2.5E-3 
10,45,2.5E-3 
11,0,2.5E-3 
12, -45,2.5E-3 

Boundary Conditions 
1 
0,2,1,3 
010 
0 

Loads: NLINC, NLN, NLX, NLY, NDL 
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0,0,1,0,0 
1, -13,1,0.0,0.0,1.0E5,0.0,0.0 

STATIC MODULE 
1 

OUTPUT MODULE 
0 
01 0 
3,13,1,25 

Gauss Quadrature Data (Reduced) 
2,1,2 

B. 2 TRAPEZOIDAL PANEL BUCKLING DATA 

B. 2.1 Three-node Mindlin element data file 

** Carbon/Epoxy Composite 
** Using Mindlin Finite Strip 3-node Element 
** Buckling analysis 

Harmonics: NHAR, IHAR 
3,3 

Strips: NBN, NBL, NODE/I, XB(I), ZB(I) 
2,1,3 
1,0.0,0.0 
2,180.0,0.0 
1,50.0,30.0,1,1,2,6 

COMPOSITE MODULE 
1 
128.0E3,11.0E3,0.25,4.48E3,4.48E3,4.48E3,1500 
13 
1,0,0.25 
2,90,0.25 
3,45,0.25 
4,0,0.25 
5, -45,0.25 
6,90,0.25 
7,0,0.25 
8,90,0.25 
9, -45,0.25 
10,0,0.25 
11,45,0.25 
12,90,0.25 
13,0,0.25 

Boundary Conditions 
1 
0,1,1 
010 

Loads: NLINC, NLN, NLX, NLY, QO 
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0,0,1,0,0.0 
1, -13,1, -13.33333333,0.0,0.0,0.0,0.0 

DYNAMIC MODULE 
-1,8,100,0.1E-8,0.1 

OUTPUT MODULE 
0 
0,0 
0 

Gauss Quadrature Data (Reduced) 
3,2,3 

B2.2 Three-node Spline-type Reissner data file 

** E-Glass Composite 
** Using Reissner Finite Strip 3-node Element 
** Buckling analysis 

Harmonics: NHAR, IHAR 
6,4 

Strips: NBN, NBL, NODE/I, XB(I), ZB(I) 
2,1,3 
1,0.0,0.0 
2,180.0,0.0 
1,50.0,30.0,1,1,2,6 

COMPOSITE MODULE 
1 
35.0E3,8.22E3,0.26,4.1E3,4.1E3,4.1E3,2000 
12 
1,0,0.15 
2,90,0.15 
3,45,0.15 
4,0,0.15 
5, -45,0.15 
6,90,0.15 
7,90,0.15 
8, -45,0.15 
9,0,0.15 
10,45,0.15 
11,90,0.15 
12,0,0.15 

Boundary Conditions 
1 
0,1,1 
o, o 

Loads: NLINC, NLN, NLX, NLY, QO 
0,0,1,0,0.0 
1, -13,1, -13.33333333,0.0,0.0,0.0,0.0 
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DYNAMIC MODULE 
-1,8,100,0.1E-8,0.1 

OUTPUT MODULE 
0 
0,0 
0 

Gauss Quadrature Data (Reduced) 
3,2,3 
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