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SUMMARY 

 
The ‘high-pressure’ atmospheric (TIG) arc plasma is studied by means of a 

multi-Langmuir probe system. In order to determine the appropriate regime 

of operation, definitions of the plasma parameters for the description of the 

argon arc are considered and evaluations are presented. A description of the 

probe basic techniques is followed by an in-depth discussion of the 

different regimes of probe operation. The emphasis is put on atmospheric 

and flowing (arc) regimes. Probe sheath theories are compared and “Non-

idealities” like cooling due to plasma-probe motion and probe emission 

mechanisms are then described.  

The extensive literature review reveals that the existing probe theories are 

inappropriate for a use in the TIG arc, because of ‘high’ pressure 

(atmospheric), broad range of ionization across the arc, flowing conditions, 

and ultimately, to the uncertainty about onset of Local Thermodynamical 

Equilibrium.  

The Langmuir probe system is built to operate in floating and biased 

conditions. The present work represents the first extensive investigation of 

electrostatic probes in arcs where the experimental difficulties and the 

primary observed quantities are presented in great detail. Analysis 

methodologies are introduced and experimental results are presented 

towards a unified picture of the resulting arc structure by comparison with 

data from emission spectroscopy. Results from different measurements are 

presented and comparison is made with data on TIG arcs present in 

literature. Probe obtained temperatures are lower than the values obtained 

from emission spectroscopy and this ‘cooling’ is attributed to electron-ion 

recombination. However, it is believed that probes can access temperatures 

regions not attainable by emission spectroscopy.  

Only axial electric potential and electric field are obtained because of the 

equipotential-probe requirement. Estimations of the sheath voltage and 

extension are obtained and a qualitative picture of the ion and electron 

current densities within the arc is given. 



 

 

1. INTRODUCTION 

 
 
Among high pressure plasmas, the atmospheric (TIG) arc plasma is conventionally 
studied by means of optical emission spectroscopy whose main outcomes are the 
temperature maps. 
Other useful parameters for the prediction of the arc plasma description include particle 
density, arc electrical structure and the determination of transport parameters.  
 
Emission spectroscopy is limited to the core region of the arc because of the Partial 
Local Thermodynamical Equilibrium (PLTE) required for most of the optical methods 
to work. This sets a lower limit of 10,000 K on the temperature achievable and thus (i) a 
maximum radial distance of few millimetres from the arc axis and (ii) a minimum arc 
current of about 50 A. Moreover, even with up-to-date detectors (e.g. CCD) the 
construction of a complete thermal map by optical means requires a long measurement 
time. For instance, a thermal map made of ~ 1000 experimental points requires at least 
two hours, or double this time, if a further wavelength is required which does not fall 
within the monochromator spectral region employed within a single measurement. Two 
hours is believed to be the limiting time beyond which the arc starts showing property 
changes due to cathode erosion. Also, the repetition of the scans for different (‘far’) 
wavelengths implies that a different arc needs to be struck and the homogeneity of the 
data is then put into some question. 
 
A faster technique which can also investigate wider radial distances is therefore required 
and the Langmuir probe method, despite its invasivity, offers appreciable benefit. 
Traditionally, Langmuir probes have been employed successfully in low pressure 
plasmas. Because the handful of published works available for probes in arcs shows 
paucity of theoretical justification and of relevant experimental details, it is of interest to 
establish the basis of the method for these kinds of plasmas. Because the latter show a 
range of parameters which differs considerably from the traditional ‘glow-like’ 
discharge in terms of current, voltage, ionization level, pressure and fluid flow, an 
extensive review is needed in order to (i) establish relevant arc properties and (ii) review 
probe regimes (if existing) from the literature, which is vast on probes, but scarce for 
probes in arcs, before any experiment can be interpreted with success.  
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For this reason, an extensive amount of numerical estimates on the key atmospheric 
pressure plasma (Chapter 2) and plasma-probe parameters (Chapters 3 to 6) has been 
performed in this work to pave the way for the experimental part (Chapters 7 to 15) 
where the measured quantities are discussed along the lines established in this ‘critical 
assessment of the existing literature’ (Chapters 2 to 6). 
 
Outline 
Chapter 2, after some definitions, reports details on cross-sections, ionization and 
electrical conductivity. These inter-related quantities vary considerably depending on 
the location within the arc and therefore on the temperature. To make homogeneous 
comparison among parameters, the Olsen curve for the particle density dependency on 
temperature has been chosen and consistently used in all the further numerical 
determinations, both for numerical estimations as well as in the course of the 
experiments. Ionization and recombination need to be addressed because of their order 
of magnitude influences on mechanism by which charge is maintained or lost in colder 
regions of the plasma. Fluid parameters become relevant in these plasmas because of the 
existence of magnetically generated (‘pinch’) flows and consequently, of the existence 
of boundaries at the plasma-probe interface. With the exception of Chapter 3 which 
outlines the probe methods ‘general’ terms’, all the quantities derived in Chapter 2 are 
used throughout the work. In Chapter 4, where orders of magnitude for fluid boundary 
and electrical sheaths thickness are established, the different models for sheath voltages 
are compared numerically. Chapter 5 examines the probe regimes available in the 
literature, although limited to the ‘high pressure’ regime whose boundaries are set in 
Chapter 2. Despite the theoretical efforts to include ‘real world’ phenomena, these tend 
to interfere with measurements and obscure their interpretation. Therefore, in Chapter 6 
evaluations of heat transfer to the probe are made and different particle emissions 
mechanisms from probes are examined. Also, ‘chemistry’ influences are evaluated in 
order to establish whether plasma cooling and recombination are relevant. 
 
The aim this work is therefore: establish the degree of applicability of Langmuir probes 
to high ionization high pressure flowing (arc) plasmas and to explore the information 
obtainable concerning the arc structure.  
Experimentally, the ‘high-pressure’ atmospheric (TIG) arc plasma is studied by means 
of a multi-Langmuir probe system operated both in floating and in biased conditions. 
Construction details are presented in Chapter 7 and 8 and an analysis methodology, 
mainly aimed at showing how raw data are utilized, is introduced in Chapter 9.  
Because they are central to the theory, the constructed characteristic curves are 
discussed in Chapter 10. Here, the link between directly measured quantities and the 
particles dynamic parameters is established. Chapter 11 discusses the methods 
employed to determine the temperatures by means of probes. Also some simplified 
models for the charge capture are presented. Chapter 12 collects the information gained 



 

on floating and plasma potentials and estimates of the sheath voltage are made, which 
are then compared with the results of Chapter 4. Chapter 13 deals with further 
‘electrical’ parameters (current densities, electric field and electrical conductivity). In 
Chapter 14 several experimental results are presented together in order to gain a unified 
picture of the resulting arc structure and some observations about possible conduction 
structures within arcs are made. 
Finally Chapter 15, after a summary of the whole work, reports the conclusions 
obtained and suggests further investigations. 
 
 
 





 

 

2. THE ATMOSPHERIC PRESSURE 

PLASMA 

 
2.1. Introduction 

The atmospheric pressure arc is produced by an electrical discharge. Electrical 
discharges were studied intensively between the end of the 19th and the beginning of 
the 20th century. Discharges occurring at relatively low pressure and moderately high 
voltage, known as glow discharges were the first whose underlying principles were 
established. Discharges occurring at atmospheric pressure and above, give rise to 
different type of electric arcs [1]. Their use in technological processes varies from 
plasma cutting and ‘gas tungsten arc welding’ (GTAW) or Tungsten Inert Gas (TIG) 
welding to ‘gas metal arc welding’ (GMAW), in which the welding wire is the anode. 
Similar plasmas are the Constricted plasma arc, the wall stabilised arc and the 
atmospheric pressure Inductively Coupled Discharges (ICP) [2]. The object of this study 
is the Tungsten Inert Gas (TIG) arc, with the aim of determine its properties by means 
of electrical exploration techniques.  
The TIG arc is an atmospheric pressure plasma with a wide degree of ionization, 
flowing with non negligible velocity. After a brief resume of its main characteristics, 
some basic definitions of particular interest for the atmospheric plasma are given. 
Descriptions of more general plasmas may be found in books by Schmidt [3] with major 
emphasis on kinetics [4][3]), or on the magnetohydrodynamics [5], [6] or on 
astrophysical plasmas [7], [8]. The books by Raizer [9] and Franklin [10] concentrate on 
the properties of laboratory electric discharges, while the books by Heimann [11], 
Manos and Flamm [12] and Lieberman [13], deal with specific technological 
applications. However, most of these treatments are not appropriate for the regimes 
pertaining to the subject of this work.  
 

2.2. TIG Arc structure and properties 

Only few notions concerning the typical TIG point-plane geometry at atmospheric 
pressure are reported here. Specific arc features will be given where experimental 
results are discussed (cf Chapter 14).  
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 A TIG arc can be produced by a 'moderate' current (10 -500 A) flowing in an inert gas 
(argon, sometimes helium and small amounts of hydrogen may be added), under a 
potential difference between a tungsten pointed rod cathode (often thoriated up to 2%) 
and a plane surface copper anode. The electrodes are connected to a power device able 
to deliver high current, then brought in contact and separated. The electrodes become 
hot at contact and partly vaporize and produce emissions [9]; at the instant of separation 
the arc strikes in a ‘cloud’ ionized with respect to the surrounding gas and the arc starts 
burning. 
TIG arcs are usually a few millimetres long (up to about 10) and have diameters of a 
few millimetres, depending on current, pressure and electrode separation. Visually, two 
regions are visible: the core, very bright, and a more diffused bell-shaped envelope. 
The arc and the weld piece are protected from the external atmosphere by a flowing 
inert gas (shielding gas). The arc can be described by a Voltage-Current characteristic or 
by the potential as a function of the inter-electrode distance. For the argon arc, the 
characteristics have an ill-defined minimum at low currents (“non-thermal arc”) and rise 
slightly at increased currents [1], [14]. 
The current density distribution is not well known, especially in the regions close to the 
electrodes. This is a feature of the vast majority of the models describing the structure of 
the arc, in which the current densities are generally assumed a priori and /or specified as 
input parameter or boundary conditions [15] or sometimes computed [16]. 
 
Three separate regions are considered [1, 14, 17, 18]: 
1. the cathode zone  
2. The central column 
3. the anode zone.  
  
1. The cathode zone extends from one Debye length (sheath, [19]) to some tens of 
microns (pre-sheath) from the cathode tip; the latter is usually made of pure or thoriated 
(1% to 2%) tungsten (in the latter case to lower the electron extraction potential thus 
favouring electron emission). Strong electrical field gradients, of the order of 107 or 108 
Vm-1 and the limited size of this region make experimental investigations difficult. 
The electrons are emitted from the cathode either by thermionic emission [20] or by 
field emission or by a combination of the two. The exact mechanism is uncertain [21]. 
Values of the current density at the cathode are in a range where both phenomena would 
be relevant. Values of 1 to 3⋅108Am-2 are commonly accepted for total arc currents 
varying from 100 to 200 A. The exact value is subject to uncertainty and it influences 
the correct scaling for every current density distribution investigation. Whilst the 
temperature of the plasma adjacent to the cathode is probably the highest of the whole 
arc (up to 24,000 K for a 100 A arc), the cathode tip does not reach the melting 
temperature (tungsten) whose erosion may be thought as due to sputtering phenomena, 
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in which case also secondary emission should be accounted. Temperature gradients of 
the order of 104 K/µm are reported in this region [22].  
The problem is further complicated by the existence of protrusions at the microscopic 
scale, both originally present and induced by erosion; this in turn depends on tip shape, 
angle [23] and material [24] and on the presence of contaminants, e.g. oxygen, 
hydrocarbons and water vapours in the surrounding gas. 
 
2. The arc column extends for few millimetres (5 to 10) from the cathode zone to the anode 
zone. Averaged values of the electric field are typically ≈ 1000 Vm-1 at atmospheric pressure, 
while spectroscopic measurements indicate axial temperatures above 16,000 K, decreasing 
radially outwards to 10,000 K at few mm from the axis; and along the axis down to the anode 
zone (6,000 K). The 10,000 K limit is due to the intrinsic limitation of the spectroscopic 
method and possibly the edge between the plasma and the surrounding shielding gas occurs 
at lower temperatures (thus at greater radii). Also, the notion of isotherm should be 
considered with caution because it is strictly related to an underlying state of Local 
Thermodynamic Equilibrium which is difficult to prove (see section 2.14). 
It is a purpose of this investigation to characterize the values of the radial extension, the 
charged particle density, the electric field and the temperatures. Very few and poorly 
documented attempts have been performed so far to characterize this region by means of 
electrical probes [see Chapter 5]. 
 
3. The anode region extends from the anode surface up to the arc column. Its geometrical 
extension varies upon conditions but in order of magnitude, it should be slightly larger than 
the cathode region. The electrical field is of the order of 107 V/m and the current density 
107Am-2. The influence of vapours from the anode surface makes the study of this region 
even more difficult and few attempts have been made in the past to measure the electrical 
and thermal transfer form the plasma to the anode ([25-27]. A dedicated project to 
investigate this zone is running at Cranfield [28] 
 
2.3. Debye Length and definition of plasma 

Around each charge a cloud of spatial charges of opposite sign reduces the Coulomb 
potential of the single charge down to zero when the ‘screening distance’ is reached. 
Within this distance short-range phenomena intervene, beyond, collective effects will 
dominate. 
According to Golant [29] an ionized gas is called a plasma when the screening distance 
of the electric field generated by an insulated charge is small with respect to the 
‘characteristic length’ of the system". The ‘characteristic length’ may be identified with 
the dimension of the plasma container. The screening distance is called the Debye 
length λD and it is the maximum distance over which concentrations of electrons and 
ions differ sensibly, causing a violation of electrical neutrality. At a global scale electric 
neutrality attains ("Quasi-neutrality" of the plasma).  
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 The expression for the Debye length may be obtained by solving Poisson's equation for 
the potential of an isolated charge, surrounded by a large number of induced charges of 
opposite sign (and assumed to behave according to the Maxwellian distribution). If ion 
and electron concentrations are equal "at infinity" (i.e. far from the source), n = ni = ne, 
the generalized Debye length is 
 

( )

 
e

D 2

ε   
λ

 i e

o
k T Ti

n e T T
=

+
 (2.1) 

written as 
 

D
ε    o

2λ k T
n e

=  (2.2) 

when an appreciable temperature difference exists between ions and electrons. In that 
case, T in (2.1) is the lower of the two (generally, the ion temperature Ti << Te). The 
solution of Poisson’s equation obtained away from the diverging point at the origin r = 
0,  

D/

o

λ( ) e
4π ε

rV r
e

r
−=  (2.3) 

is the "screened potential”, whose expression justifies the alternative definition of the 
Debye length as the distance at which the potential reduces to 1/e of its value at the 
origin.  
Figure 2.1 reports the computed values of the electron density as a function of electron 
temperature for different Debye lengths. The higher temperature limit lies at the starting 
border of a fusion plasma, while its high-density values lie near the "quantum plasmas" 
region. Also shown are the ideal gas region limit and the Debye-Hückel limit outlined in 
the next section.   
 
2.4. The Debye-Hückel theory 

It is possible to represent the plasma by one or more state equations. The simplest relation of 
the first type is the ideal gas state equation, to be corrected for the effect of particle 
interactions, when the pressure approaches atmospheric values and above. A formulation of 
this kind is the Debye-Hückel theory for ionized gases where these corrections are taken into 
account. The fundamental assumption of the theory is that the interaction potential energy 
between neighbouring particles is obtainable from the principle of linear superposition of 
fields so that the potential is proportional to the electric charge [30]. This leads to a form of 
the Poisson's equation whose right hand side contains a factor which is the inverse of the 
Debye length.   
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The main problem with the Debye-Hückel theory lies in the relatively low charge 
concentration that was assumed in its original derivation. A limiting criterion for its 
validity is based on the argument that, at higher densities, the effect of the long-range 
Debye-Hückel potential has to be complemented with short-range electrostatic effects. 
The average distance between particles, of the order of n-1/3 should be smaller than the 
Debye length, and the limiting electron density is 

 

( )

3
lim

3 2

1 1 ε 
2 4π

e
kTn
e

 =  
 

 (2.4) 

This condition implies that the Debye-Hückel theory is already inaccurate at 1020 m-3. 

As seen from figure 2.1 this happens well within the region of interest for the arc, the 

density is therefore too high for Debye-Hückel theory to apply. 
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Figure 2.1. Electron density as a function of electron temperature for some laboratory 
gas discharges at different Debye lengths  
 

2.5. The atmospheric arc Plasma is classical 

Laboratory plasmas are classical objects. If δn is the indetermination on charged particle 
densities, their mean distance, that is the maximum indetermination on the coordinates 
for the description of the particle motion, is δ r ≈ n-1/3; according to Heisenberg’s 
principle, the corresponding momentum indetermination is  

 



11

 1/3δ δ  p r n≈ ≈h h  (2.5) 

where  34/ 2 1.05 10  h J sπ −≡ = ⋅ ⋅h   is the reduced Planck constant. A classical 
description requires that the momentum indetermination must be much less than its 
mean value, i.e. 

 

e eδ 8p p m kT<< ≈  (2.6) 

Using  (2.5), 
( ) ( )3/ 2 3/ 23 22

e e e8 / 3.8 10n m kT T<< = ⋅h  (2.7) 

This result is of course identical with the one obtained from the condition that the De 
Broglie wavelength λDB is much less than the mean inter-particle distance: 

1/3
DBλ / mv n−≡ <<h  (2.8) 

 
2.6. Quasi-neutrality and ideality 

Any neutrality violation in the plasma is contrasted by the rise of intense electric fields 
opposing the displacement of electrons and ions (Due to the large mass ratio between ions 
and electrons, ion displacement can often be neglected). Neutrality in the presence of free 
charged particles implies equilibrium if the differences of electrostatic energy at different 
points are less than the thermal energies.  
The electrons and ions maintain the neutrality in volumes V ≥ Dλ

3
. A perturbation of 

the neutrality caused by a small charge displacement (say ≈λD) involves the oscillation 
of a number of particles nD≈(4/3)πλD

3ne, the number of particles in the Debye sphere. 
The definition of quasi-neutrality, and thus of the plasma, adopted so far makes sense 
only if 
 

 3
D

4 π λ 1
3 e Dn n= >>   

 
or, for the average inter-particle distance l=ne

–1/3 << (4π/3)1/2λD≈2λD.  
More rigorously, nD includes also the ions, 
 

 3
D e i D

4 π( )λ
3

n n n= +  

neglected in the above mentioned oscillation due to their higher mass. 
These conditions determine the minimum concentration of charged particles that make 
the plasma. From figure 2.2 it is readily seen that the system under investigation here 
does not fulfil the revised condition, rather ne

–1/3 ≈λD. This is a common case for 
atmospheric plasmas as pointed out by Goldbach et al [31] who noted that at 
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temperatures about 1 eV (cf Appendix F – Units) the number of particles within a sphere 
of radius λD is of the order of few units. The condition for an ionized gas to be called a 
plasma is no longer satisfied.  
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Figure 2.2. Left axis, continuous curve: electron Debye length as a function of electron 
temperature. Right axis, dashed curve, number of particles per Debye sphere, nD, as 
a function of electron temperature Te.  

 

 
This problem is not academic though. As will be shown in the next paragraph, nD plays 
an important role in the determination of the collision cross-sections. 
 
The criterion for the plasma existence can be modified accordingly, by introducing the 
distance from a point charge at which the vacuum electrostatic energy equals the kinetic 
energy kT, the Landau length lL [29] 

2

L 4 πεo

e
kT

=l                                                                                            (2.9) 

Its value is approximately 8.4⋅10-10 m at T≈20,000 K. The mean plasma inter-particle 
distance n-1/3 must exceed this length, n-1/3>lL, to prevent recombination of ions and 
electrons caused by the strong electrostatic potential at short distances; differently 
stated, to allow for the existence of charge separation. Since the range of the 
electrostatic interactions in the plasma is the Debye length, the inequality n-1/3 >λD 
means low recombination but also absence of “cooperative” interactions between 
particles, e.g. the absence of the plasma state: therefore n-1/3 < λD is required.  
The two inequalities, n-1/3 l > lL and   n-1/3 < λD   merge into 
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 -1/3
L  λ   Dn< <l   (2.10)  

For the atmospheric arc, n-1/3  > lL is satisfied, while n-1/3  ≈ λD only. 
 
Summarizing the situation up to now, it is apparent that the atmospheric arc is called a 
“plasma” in an improper sense, as the number of particles in the Debye sphere nD is of 
the order of few units. In other words, the number of charged particles surrounding a 
single charge (an ion for example) is not enough to shield its potential and [31] the 
potential energy of the charged particles is no longer negligible with respect to their 
kinetic energy. 
 
2.7. Ionization mechanisms and cross sections 

1. In order to ionize a neutral atom it is necessary to provide an amount of energy called 
the ionization potential. The potential needed to strip the first electron, the first 
ionization potential, is indicated by EI; the second by EII and so on. Values for some 
gases of interest are reported in Table 2.1. Even though SI units are used throughout this 
work, the convention is followed to express the ionization potential in electron-volt 
(1eV≈11,609 K). This applies in some cases also to the corresponding temperatures. 
 
 

Gas EI   (eV) EII   (eV) EIII   (eV) 
H 13.598 - - 
He 24.587 54.418 - 
Ar 15.760 27.630 40.74 

Table 2.1. Ionization potential for some gases [17] 
 
 
Observing that a temperature T = 11,609 K is needed to give an atom a kinetic energy of 
1 eV, only at extremely high temperatures does the thermal energy exceed the ionization 
potential. However, an ionization can be achieved even if the mean thermal energy is 
considerably below the ionization potential. In fact, at every temperature there are 
enough electrons in the high-energy tail of the electron distribution function to produce 
ionization.  
 
A complete description of ionization processes should be performed in the frame of 
collision theories, which distinguish between elastic and inelastic collisions. For the 
regimes of interest of this work, the latter play a marginal role. In fact it is known [29] 
p.80) that the most important processes involving inelastic scattering in plasmas occur 
at temperatures of the order of 1 keV at least, corresponding to the thermonuclear 
plasma regime. In arc discharges, the average ion and atom energies do not exceed 10 
eV. An exception is the case of inelastic resonances, among which is the Penning effect 
discovered in He-Ne mixtures [29].  
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Ion-atom and electron-atom processes can be treated in the approximate frame of short 
distance (essentially) binary interaction, while the charged-charged processes are 
intrinsically of long-range nature.  
 
In this work the Ar-Ar, Ar+-Ar, and e-Ar cross sections, were taken from Devoto [32]. 
Older data from Phelps [33] for e-Ar show that the total cross-sections for electron-
argon are two orders of magnitude below the ones of the process Ar+-Ar, and one order 
of magnitude below the Ar-Ar cross sections. For the purpose of comparison, some 
values for the electron-atom cross sections σea were taken from [34]. For the charged 
collision cross sections σei, the values in [32] were compared with the values computed 
using the approximate formula reported in [29] (p.57), actually applicable for any gas. 
These agree within a factor of 2 or so, enough for the present estimations, given the 
considerable uncertainty for the Coulomb cross-sections. Also some values read from 
the plots of Frost and Phelps [35] are reported.  
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Figure 2.3. Cross-sections for Ar-Ar, Ar-Ar+, e-Ar, e-Ar+ collisions in argon. Continuous 
lines, data from Devoto [32]. Scattered points for e-Ar collision by Frost and Phelps [35] 
(crosses), Brown [34] (full-circles) and Golant [29] (open squares) 
 
The cross sections are shown in figure 2.3 as a function of temperature. The lines refer 
to the determination found in [32]. In figure 2.3, crosses, circles and squares refer to 
[35],  [34] and [29] respectively.  
Among the charged particles cross-sections only e-Ar+ were considered as they give the 
major contribution. Higher ionization states and collisions among like charged particles 
were neglected as these are less important energetically, although the latter can 
indirectly modify the electron distribution function [9].  
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 Once estimations for the cross-sections are available, other transport quantities can be 
evaluated.  
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Figure 2.4. Mean free paths as a function of temperature. ei, electron-ion; ea, electron-
atom; ia, ion-atom; i, ion; e, electron. The region between the two vertical lines 
identifies the intermediate ionization region. The horizontal line at 10-4 m is the typical 
probe radius 
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Figure 2.5. Mean free paths selected from figure 2.4. Symbols as in figure1.4  

 

 

In figure 2.4 the mean free paths for the different collisions of figure 2.3 are computed 
as a function of temperature using the definitions from elementary kinetic theory (a), 
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with the contributions of the cross-section weighted with the corresponding number 
density (b): 

ia ea ie
a ia a ea a ie

i e
a ia i i a ea e ei

1 1 1λ ,    λ ,    λ ,     ( )
σ σ σ

1 1λ ,   λ   ( )
σ σ σ σk

k
k

a
n n n

b
n n n n

= = =

= =
+ +∑

 (2.11) 

The curves must be read within the limitations of the different temperature regions 
defined by the different ionization values (see next paragraph). In figure 2.4 the two 
vertical dash-dotted lines represent low ionization, below 7,500 K; intermediate, for 
T<12,000 K; and high, above 12,000 K. In other words, λei should be considered only 
for T >7,500 K, λea and λia should not be considered above about 12,000 K. In the 
intermediate ionization region, λi and λe should be considered (these are computed by 
weighting the contributions of the different cross sections). 
According to these guidelines, the situation in figure 2.5 is obtained. 
 
The degree of continuity has been obtained between the different regions in order to 
estimate the mean free paths for electron and ions in the broad range of arc conditions 
encountered by probes. In Chapters 4 and 5 it will be seen that the mean free paths, 
together with the Debye length shown in figure 2.2 play a central role in the 
classification of the probe regimes. 
 
2. The degree of ionization ς  is defined as the ratio between the charged particle 
density ne≈ni and the total particle number densities nT: i,e i,e Tς ( )n n n= + . When 
ionization is ‘low’, among the kind of collisions considered, which are decisive for an 
estimation of basic kinetics (e.g. mobility, mean free path) or transport properties 
(conductivities, viscosity), the electron-neutral would play the most important role. 
Conversely, for already moderate ionization, Coulomb collisions are dominant. In 
effect, very low degrees of ionization are sufficient for the gas to show electromagnetic 
properties; the electrical conductivity of a gas is about half its maximum at ζ=0.1% and 
reaches its maximum at about 1% of ionization [36]. The atmospheric arc plasma shows 
both a state of ‘low’ ionization (arc fringes) and ‘high’ (i.e. full) ionization (arc core). 
The need to separate these two extremes arises when using different transport models, 
which depend on the collision mechanism.   
 
It is customary to refer to ‘low’ ionization when ζ<10-4 whereas for highly ionized 
gases, ζ>10-4 [36]. A more quantitative criterion is given by Chung, Talbot and Touryan 
(cf [37], appendix, for brevity collectively named CTT in the following) based on the 
relative abundance of the species weighted with the appropriate cross-sections. The 
condition 
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 i ei
w

a ea

σς 0.1
σ

n
n

= ≤  (2.12) 

may be read as  'weak ionization' condition (na atom density, ni ion density, σei electron-
ion cross section, σea electron-atom cross section. The suffix ‘w’ stands for ‘weighted’). 
Conversely 

i ei
w

a ea

σς 0.1
σ

n
n

= >>  (2.13) 

is the condition for "high ionization". In the latter case, the Coulomb collisions 
determine the plasma behaviour (cf Spitzer [38]).  
Using formula (2.12) and the information of figure 2.3 for argon at 1 eV 
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and at 2 eV  
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−
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⋅ ⋅ ⋅
 (2.15) 

 

Even with the uncertainty of a factor 2 in the Coulomb collision cross sections, ‘high’ 
ionization takes place at least from 1 eV upwards (1 eV≈11,600 K).  
Figure 2.6 reports the ionization fraction of pure argon as a function of temperature at 
atmospheric pressure [39]. Similar values can be found in [40], and in [41]. With the 
exception of the last reference, all the references agree in the almost complete ionization 
for temperatures above about 20,000 K. [41] asserts almost full ionization in argon at 
15,000 K. The author was not able to trace back the origin of this discrepancy. 
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Figure 2.6. Degree of ionization for argon as a function of temperature (Data after 
[39]). Left axis, broken line: total number density (nT); continuous curves, no=neutral 
density, ni=ne = single ion/electron density, ni, i=2,3, multiple ion densities. Right axis, 
broken curve ionization fraction ζ 

 
In figure 2.7 the weighted ionization fraction ζw is reported as given by the CTT 
criterion (left axis), together with the absolute ionization fraction 

( )T 1 2 3 Tζ i in n n n n n= Σ = + +  (right axis) on logarithmic scale. The two scales are 
different but the 0.1 limit on the left axis gives the limiting temperature (path A), and 
the absolute ionization can be read on the right axis (path B).  

 

5000 6000 7000 8000 9000 10000 11000

10-3

10-2

10-1

100

101

102
5000 6000 7000 8000 9000 10000 11000

10-4

10-3

10-2

10-1

100

7,500 (K)

A

ζ w
 

T (K)

 CTT average
 CTT 2 eV
 CTT 1 eV

 ζ

6.1 x 10-4

B

ζ=Σini/nT

 
Figure 2.7. Representation of the criterion of Chung et al (‘CTT’) obtained comparing 
the weighted ionization fraction with the absolute ionization. Intersection of line A, 
placed at the ‘0.1 limit’ with the average CTT curve, gives the upper temperature limit 
for ‘low’ ionization. The intersection of the vertical line with the absolute ionization 
fraction ζ gives the corresponding degree of ionization (line B) 
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 Since temperature dependencies of the cross-sections were not available, three different 
weighted ζw were computed using the values for the cross sections given in figure 2.3, 
respectively, dashed, dotted and continuous curves, at 1 and 2 eV, and their averages. 
The criterion (2.12) gives a lower temperature limit at about 7,500 K, below which the 
plasma can be considered ‘weakly ionized’. This correspond to an absolute ionization ζ 
≈ 6⋅10-4. By similar reasoning, the ‘strong ionization’, say at ζw=10 >> 0.1, corresponds 
to an absolute ionization less than 10% at 11,200 K. Therefore, the atmospheric arc core 
mentioned above can be considered always moderately to highly ionized.  
 
2.8. Electrical conductivity 

The attainment of quasi-neutrality depends on how the charges, whose motion is 
inhibited by collisions, respond to an electric field. This capability is called electrical 
conductivity. In the following discussion the symbol σ will be used for both cross-
sections and conductivity, as it is standard use. The former will be always suffixed and 
the context should make it easy to avoid confusion between the two meanings. 
Elementary kinetic theory defines the conductivity through the electric current density 

2
e

e d e e e e
m

v µ σ ,    σ µ e nj en en E E e n
mv

= = = = =  (2.16) 

valid in the weak ionization limit. Due to the high ratio µe/µi of electron to ion mobility, 
the only carriers considered are electrons (Here vd is the drift velocity and E the electric 
field). Conductivity depends on the way collisions influence the motion of the charges, 
through the momentum transfer collision frequency vm (or the transport collision 
frequency) which in turn, depends on the corresponding cross-section. The latter 
depends on the degree of ionization as outlined in the preceding section.  
 
In rigorous terms, [29], [4] use the Boltzmann kinetic equation with a Fokker-Planck 
collision term for electron-ion collisions and a Boltzmann collision term for the 
electron-neutral collisions.   
The problem in the calculation of collision integrals lies in the choice of the interaction 
potential. references [42, 43], use a Coulomb potential truncated at a cut-off distance 
which has to be determined. Under such circumstances, the effective electron-ion 
collision frequency has the form 

( )
2 1/ 22

1/ 2 2s
e 0

0

4 2 ln ,    ,    / 3
3ei

re kTv n b Ze kT
kT m b

π
   = Λ Λ = =   

  
 (2.17) 

where Λ is the cut-off radius and b0 is the minimum impact parameter for ion-electron 
collision. The problem is therefore the determination of the cut-off distance. Complete 
calculations performed both by Devoto [32] and by Murphy [44] span the whole range 
of data in the ionization interval. These data were obtained using the same method and 
agree with each other, as expected, and also with the few available experimental 
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determinations, which however, suffer from an indetermination as much as 30% (see 
e.g. [32], figure 2). 
Other evaluations in terms of elementary kinetic theory can only agree within an order 
of magnitude or so. Nevertheless, some comparisons are presented for the different 
ionization regimes in the following, because these illustrate the different dependencies 
on the charged particle densities. 
 
The different ionization regimes are considered. 
1. Weak ionization 
In the weak ionization limit, formula from elementary kinetic theory  

2 2 2
e e e

e
th m a ea

σ λ
v σ 3

e n e n e n
m mv n mkT

= = =  (2.18) 

shows a dependency on the ionization fraction though the ratio ne/na. Among the 
electron-atom collisions the momentum transfer dominates and the corresponding cross-
section can be taken from figure 2.3 above. 
 
2. High ionization (Full ionization) 
In the limit of full ionization, only Coulomb scattering contributes to the electrical 
conductivity through (many) small angle deflections and (few) large angle collisions. 
The ‘geometrical’ Coulomb cross section should be corrected to account for the latter 
circumstance leading to the formula of the resistivity η [38, 45] 

( ) ( )

2 1/ 2

2 3/ 2
o e

1 πη ln
σ 4πε

e m
kT

≡ ≈ Λ  (2.19) 

Where 

3D
D

λ 12π λ
o

n
b

Λ = =  (2.20) 

is the maximum impact parameters in units of the minimum approach distance bo 
(collision parameter) and the Debye length, because the Coulomb interaction is 
supposed to be smoothed out at distances larger than λD ("screening radius"). The 
average is taken over a Maxwellian distribution, therefore the notion of equilibrium is 
implicitly contained in (2.19). Formula (2.19) is written for convenience in terms of its 
inverse, the conductivity 

( ) ( )2 3/ 2
o e
2 1/ 2

4πε
σ

π ln
kT

e m
≈

Λ
 (2.21) 

 

With respect to formula (2.18) the dependency on ne is only ne
-1/2 in the logarithmic 

factor. This means that a current density j=σE through the plasma would depend only 
weakly on ne. This is in contrast with the weak ionization case where the electrical 
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 current density in (2.18) is proportional to ne (in fact µe depends only on the neutral 
density because of the low ionization, ne,i<<nT). 
 
The ln Λ terms as given by [45] seems inappropriate when there are few number of 
particles in the Debye sphere, in which case nD>>1 is not verified; as shown in the 
previous section this is the case for the atmospheric arc. The consequent incomplete 
screening of the potential leads to a modification of the screening radius in the Coulomb 
logarithm by a factor x>1 [43], i.e. (2.21) should contain an enhanced screening radius 
rs=xλD [31, 46]. The failure of the Coulomb parameter as given by formula (2.21) was 
well known already to Devoto [32] but to the author’s knowledge, this problem has not 
been satisfactorily overcome yet. 
 
3. Moderate ionization 
The Frost’s mixing rule [47] provides the conductivity formula in terms of the weak σ0, 
and the high σei, conductivities 

1

0 ei

1 1σ
σ σ

−
 

= + 
 

 (2.22) 

Formula (2.22), reported also in [36], has been used originally by Frost [47] who states 
that Spitzer’s conductivity applied to his regime could be in error as much as 30%, 
which is not surprising, considering the maximum temperature of 4,000 K of his Cs 
seeded Ar plasma.  
 
The method by Murphy and Arundell has been chosen here [48], based on the method of 
Devoto [32] i.e. on the use of cross-section determined using a (Debye length) shielded 
Coulomb potential. Although it must be emphasized that it relies upon local 
thermodynamical equilibrium (LTE), the data  [44, 49], are in agreement with the few 
available measurements, all dating back to 1967. These are reported together with Spitzer‘s 
formula (2.21) and the Frost “mixing rule” (2.22) in figure 2.8. 
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Figure 2.8. Electrical conductivity as a function of temperature for the different methods 
described in the text 
 
 
Considering that Devoto’s and Murphy’s determinations lie well within 5% of each 
other and that the experimental determinations differ by as much as 30%, the latter limit 
should be considered as the uncertainty on the electrical conductivity. The uncertainty 
in the determination suffers also from the low number of particles in the Debye sphere, 
especially in the temperature range between 13,400 and 15,400 K, where nD is minimum 
(see figure 2.2). 
Spitzer’s and Frost’s calculated values, while in good agreement with each other, were 
computed using the slightly corrected elementary kinetic theory formulae and appear 
outside this 30% uncertainty with respect to Devoto and Murphy. All these 
conductivities were computed here using the same cross-section ([32]) from which the 
corresponding mean free-paths were consistently deduced. 
 
2.9. Recombination 

Some recombination processes are considered with the aim to evaluate an “effective” 
recombination coefficient.  
A recombination process may be considered in many cases as the process inverse to 
scattering. In recombination processes, of the kind e+A+ →A, energy and momentum 
conservation require the presence of a third body, be it an atom, an ion, an electron or a 
photon. The recombination coefficient a is defined [34], [19] 

 2
r

r

,     vσ (v)n an a
t

∂  = − = ∂ 
 (2.23) 
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 Where n is the number density of charged particles, σr(v) is the electron-ion 
recombination cross section and rvσ (v)  is a quantity averaged over the velocity 
distribution. In general, a depends on the electron velocity distribution and therefore on 
the temperature. 

 

2.9.1. Recombination by collision  

At high concentrations of charged particles the process e+A++e→A+e is particularly 
important for electrons that find themselves in the field of an ion for a sufficiently long 
time.  
The order of magnitude of the coefficient of recombination by collision can be found by 
multiplying the Coulomb cross section of scattering in a region whose dimensions 
correspond to the radius of the capture orbit, π rs

2, by the probability that in that region 
a third body is present, πrs

3n: 
2 5

sσ πr nr=   (2.24) 

where 2
s (4πε )or e kT= is the orbit radius, obtained by the equality of kinetic and 

potential energy: 
 

52 2σ  (4πε ) πr on e kT =    (2.25) 

The recombination coefficient is obtained by multiplying the recombination cross 
section (2.25) by the average thermal electron velocity vth = (kTe/me)1/2   
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  (2.26) 

 

Thus ac decreases when electron density lowers and temperature rises. Because these 
values are computed with formula (2.25), which does not contain any species parameter, 
results have to be considered with caution.  
Also, there is no agreement with the values reported by Von Engel [50], ac=10-10 m3s-1.  
In a paper by Sansonnes et al [16] a formula is reported  

44.78 105
2 32 6 1
c

1.353 101.29 10 2      Ta e cm s
T

 ⋅
  − −  ⋅

= ⋅ + 
 

 

valid for a local plasma temperature T>3,200 K. 
 

A different type of ‘collisional’ recombination is the dissociative recombination 
reported by Brown [34]  involving atoms and ions rather than electrons, according to the 
scheme 

2e A A A++ → +  
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Argon molecules were observed by microwave techniques (cf Biondi in reference [34]). 
Coefficients measured for Ar, aD =3⋅10-14 m3 s-1 and He, aD =1.7⋅10–14 m3s-1, are larger 
than three-body recombination (ac ≈6.8⋅10-15m3 s-1 for He and 6.8⋅10-17 m3 s-1 for Ar) and 
in broad agreement with the values computed by using   

8 10 3/ 2
D (10  to 10 ) /( )ea kT− −≈    (2.27) 

which is reported [29] to be applicable in the region below 1 eV.  
 
 
2.9.2. Radiative recombination 

An electron approaching an ion drops into a low lying electron orbit radiating the excess 
energy. Experimentally, the photon emission is detected spectroscopically as a 
continuum placed above the ionization potential of the atom. The probability of a 
transition of an electron to drop into an excited level of the atom leads to a 
recombination coefficients aR ≈ 10-18 m3s-1 [34]. As this process is the inverse of the 
photoionization, the cross section can be obtained by the detailed balance principle [50] 
and the recombination coefficient for energies below the ionization potential is [29], 
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R 1/ 2
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kT

−

≈  (2.28) 

For energies above the ionization threshold, aR decreases sharply for increasing 
temperatures. Its value remains several orders of magnitude below the collisional coefficient, 
but these calculations disagree with experimental determinations by orders of magnitude, 
although measurements are in general quite rare. Brown [34] reports aR = 2⋅10-16 m3s-1 for Ar 
at Te=3,000 K. If one believes the Te –1/2 scaling in (2.28), then at Te ≈ 20,000 K in argon, one 
would obtain 
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Figure 2.10. Recombination coefficients as a function of temperatures. ac, collisional 
(dash-dotted line), computed using ne=(Te) according to preceding section. ac(S), 
collisional according to Sansonnens [16] (short dashed line). Two dissociative 
coefficients aD are shown (continuous curves); according to [29] the determination 
based on (2.28) is valid up to 1 eV (≈11,600 K, vertical line). aR, radiative 
recombination coefficient (continuous curve) 
 
 
 
Values for all three recombination coefficients are reported as a function of temperature 
in figure 2.10. In the computations, the collisional coefficients include explicitly the 
temperature dependency of the electron density. Neglecting the radiative contribution 
there is still an uncertainty of two orders of magnitude considering the region between 
the two dissociative values; however the validity of the latter is limited to the region 
below 1 eV. It is felt that the estimations of the two collisional calculations have to be 
chosen carefully but the uncertainty at lower T is even worse.  
 
2.10. Electric field and distribution functions 

The first successful attempt to deduce an electron distribution function for a gas in an 
electric field was performed by Druyvestein (cf Loeb [51]). In general, this derivation is 
consistent with the hypotheses that make low pressure plasma.  
A higher degree of ionization influences the extent to which electric fields are felt by the 
charged particles in the plasma whose behaviour and in particular their distribution functions 
will be altered. This means that the very common assumption of isotropic and even 
Maxwellian distribution for the charged particles as used in most of the probe theories is not 
always justified. Complete computations are available in literature [29, 51, 52]. Some 
conditions were derived for the occurrence of the field-induced perturbation in the two 
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limiting cases of "high" or "low" plasma ionization for ions and electrons separately (a less 
qualitative meaning of “low” and “high” was given in paragraph 2 of section 2.6).  
The particle distribution functions are usually derived in absence of external fields/forces. 
The influences of the external forces depend on the nature of the particles. Charged particles 
will be accelerated in an electric field with consequent variation in their energy. If, as it often 
occurs, the plasma particles have a 'good contact' with the outer environment (container 
walls or surrounding gas for the TIG arc), the average energy of neutrals is lower than the 
average energy of the other components and the velocity distribution might be closer to 
equilibrium.   
 
1. Weakly ionized plasma. The conditions for an electric field to have an important 
influence on the velocity distributions of the charged particles in a weakly ionized 
plasma are obtained considering the action of the electric field in a time τ during which 
the particles are subject to an acceleration and corresponding average kinetic energy 
increase [29] 
 
The energy balance makes the difference between the average charged and neutral 
particles (K is the kinetic energy for charged particles, Ka the kinetic energy of atoms): 

 
2 2 2

a / κνK K e E m< − >≈   (2.29) 

therefore, the condition for a weak influence of the electric field is 
 

a    K K K kT< − > < > ≈�   (2.30) 

or 
 

p κ κ  / λvE E mkT kT e
e

= =�   (2.31) 

where 

 thv 1λ kT
v v m

≈ ≈  

 is the mean free path. If condition (2.31) is not verified, the average energy of the 
charged particles is much higher than the average neutral particle energy.  
 
• For ions, the energy transfer coefficient κ is 2 2  and (2.31) becomes  

5
pi i ia ia( / ) 0.8 / λ 7 10 ( ) λ ( )E V m E kT e T K m−≈ ≈ ⋅�    (2.32) 

 
If (2.32) is not verified, the average energy and the distribution function differ 
noticeably from the corresponding equilibrium quantities. In that case, for the ions the 
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 thermal velocity and the drift velocity are comparable, vth ≈ vd and the distribution 
function is essentially anisotropic (cf also [9]) 
 
• For electrons the energy transfer coefficient is much lower than one and for elastic 
collisions ea e aκ 2 /m m≈ . Therefore the condition for weak influence of the electric field 
is tighter than for ions [29, 52] 
 

7
pe ea e ea e i e ea e ea( / ) κ / λ 2  / λ 4,5 10 ( ) λ ( )E V m E kT e m m kT e T K m−= ≈ ≈ ⋅�     (2.33) 

  
2. Strongly ionized plasma 
In the electron energy balance, electron collisions with ions have to be added. In this 
circumstance the condition on the field influence can be written as an inequality similar 
to (2.31) where now the correct collision frequency is the sum of the electron-atom and 
electron-ion frequencies. This will affect also the ion-electron mean free path; 
elementary kinetic theory gives λ =1/σn; therefore, if one considers only charged 
encounters, equation (2.31) reads  

p κ κ  σ /vE E mkT kT n e
e

= =�   (2.34) 

It should be noted that the collision frequency (the inverse of the deflection time) varies 
with the third power of the velocity [38], therefore its variation along the particle 
distribution function can be very high; the collision frequency and the mean free path 
are therefore highly uncertain. 
Using the ion-electron cross sections in table 2.1 and assuming the same κ's indicated 
above, one obtains: 
 
• ions 

5
pi i ie ie( / ) 0.8 / λ 7 10 ( ) λ ( ) E V m E kT e T K m−≈ ≈ ⋅�  (2.35) 

In the preceding equations, K is the (relative) collision kinetic energy and the ion 
density has been considered equal to the electrons and equal to a typical high ionization 
value (see figure 2.7).  
 
• electrons 
With the same notation, 

7
pe ea e ei e ei( / ) κ / λ 5.8 10 ( ) / λ ( )E V m E kT e T K m−= ≈ ⋅�  (2.36) 
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Figure 2.10. Electric fields for ions and electrons as a function of temperature in the low 
and high ionization limits. These were evaluated with formulae (2.35) to (2.36). The 
vertical lines indicate the borders between low, intermediate and high ionization. A 
horizontal line is drawn at the experimental limit E=1000 V/m (see text) 
 
 
The conditions expressed by formulae (2.35) to (2.36) are evaluated with the aid of 
figure 2.10 where the corresponding limiting electric fields are reported for ions and 
electrons as a function of temperature, in the limiting cases of strong and weak 
ionization. Two regions can be identified. 
 
High ionization, arc core. Since in a TIG arc plasma axial fields of the order of 1000 
V/m are found at mid-height and in the cathode region respectively [14, 53]. Setting this 
as the ‘high’ experimental limit, it is seen that both ion and electron distribution 
functions are unaffected by the fields, at least down to arc temperatures of 10,000 K, 
figure 2.10 right hand side. 
 
Low ionization, arc fringes. Although precise evaluations of the radial distribution of 
the electric field are not available, estimations of 102 V/m and below are not unrealistic. 
Whilst ions are still unaffected, relatively small electric fields are able to set the average 
electron energy, figure 2.10 left. However, in the bulk of the plasma, independently of 
the field intensity, the electron average velocity vd is much less than the thermal 
velocity vth (vd/vth ≈ κ1/2) and therefore the anisotropy of the electron distribution 
function caused by the field, is small. This is due to the fact that, in every collision, an 
electron is subject to a great change in its direction while the absolute values of the 
velocity and energy change very little (∆K≈κK) or, the electron takes up its energy in 



29

 many small intervals between collisions [29]. It should be mentioned that along the 
discussion, the electric field was computed assuming an equilibrium distribution (by 
using Olsen’s data [39]). 
 
2.11. The influence of the magnetic field 

1. Magnetic field. The self-induced magnetic field is estimated with the aim to ascertain 
its influences on probe operation (if any) by comparing the Larmor radius with different 
scale lengths. The magnetic field can also cause anisotropy in the plasma and in the 
electrical conductivity in particular, when the cyclotron frequency is higher than the 
collision frequency. 
 
Among the possible current density distributions inducing a magnetic field for the axi-
symmetric arc, the Gaussian model chosen here (cf Appendix A) gives 
 

( ) ( )22
0

00
π /µ 1µ 1

( )
2π 2π

j r Ibr I eI e
B r

r r

−− −−
= =  (2.37) 

 
where jo is related to the parameter b (z) by relationship (A.12) given in Appendix A. It 
is worth noting that b depends on z through jo so one needs the dependency law  jo=jo(z) 
while the value very often reported in literature [54, 55] applies to the cathode, 
jo=1.0⋅108 A/m2 or jo=1.2⋅108 A/m2. These values are at the limit of thermionic emission 
from a tungsten cathode at a temperature close to its melting point. As such, these 
values are taken as upper limits 
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Figure 2.11. Magnetic induction evaluated for different arc total current with jo=1.2⋅108 
A/m2 (continuous lines) and jo=1.0⋅108 A/m2 (broken lines) 
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In figure 2.11, the modulus of the induction field, B, is plotted as a function of the radial 
distance for these two different values of jo and three different total arc currents. The 
steep decrease towards the origin is consistent with R�  behaviour for a field inside a 
cylindrical source generated by a uniform current distribution. 
The surface section area comes into play through the arc radius. Different evaluations 
were made for the latter: the radius of the current conducting region (perhaps 5 mm, 
after [14]) up to the maximum radius obtainable from electrical measurements (cf 
Chapter 14).  
 
 
2. Larmor radius. The Larmor radius is the radius of gyration of the curvilinear path of 
a charged particle under the action of a magnetic field  

L
vmr

qB
⊥=  (2.38)  

Where v⊥  is the component of the particle velocity orthogonal to the magnetic 
induction.  
Observing that 

 21 v v 2
2

m E m mE= → =   

and using an ion and electron energy 1  kT eV� , different values are obtained 
depending on the distance from the arc axis. The values corresponding to 2 eV can be 
obtained multiplying the former by 2  with respect to the values reported in Table 2.2. 
 

Larmor radius r L Total arc current 
(A) 

Distance from axis 
(10-3 m ) 

Ions (10-2 m) Electrons (10-6 m) 

0.6 3 136 
5 18 843 

 
100 

10 37 1800 
0.7 2 113 
5 12 566 

 
150 

10 24 1160 
0.8 2 99 
5 9 420 

 
200 

10 17 800 

Table 2.2. Larmor radius for ions and electrons corresponding to the values of the 
magnetic induction of figure 2.12. Probe diameter 200 to 250 µm (see text) 
 
 
The Larmor radius for ions and electrons was estimated at three distances.  
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 The minimum distance reported for each current (first of the three values in the second 
column) corresponds to the maxima of the magnetic induction extracted from figure 
2.11. These vary with the current. The other two distances are the "possible" current 
carrying region edge (5 mm, see [14]) and 10 mm, chosen for comparison.  
 
At increasing magnetic fields, rL decreases and the path of the particle is disturbed with 
respect to the rectilinear trajectory. This can occur at different scales: the arc dimension, 
the probe length and radius, the mean free paths or the Debye length. Therefore the 
values in Table 2.2 are compared with these quantities for both ions and electrons. 
 
• For ions, the Larmor radius is of the order of the cm or more (Table 2.2), larger than 
both the typical probe diameter (200 to 250 µm = 2⋅10-4 to 2.5⋅10-4 m, cf Chapter 8) and 
the ion mean free path (see figure 2.5 and Table 2.2). The shortest Larmor radius, L

ir = 
21 mm, for I=200 A at 0.8 mm from the arc axis, is greater than the maximum arc radius 
(cf Chapter 14). As this is the case also with respect to the Debye length, it can be 
concluded that for ions the effect of the induction field is negligible.  
 
• For electrons, the Larmor radius L

er  is of the order of magnitude of the probe diameter 
in the region of maximum B, less than 1 mm from the arc axis; at greater distances it is 
from 2.8 to 18 times the probe diameter, depending on current and distance.  Also, L

er is 
smaller than the arc radius: many electron gyrations occur within the arc. The question 
is: do these occur within a distance L

er  or over a much greater distance? The electron’s 
mean free path varies broadly, depending on the arc region considered, either the 
weakly or the highly or fully ionized region. In fact, (cf figure 2.5 and 2.6), lower 
temperature means lower ionization and, in general, larger electron mean free path. For 
high ionization, using the electron number density at the two typical temperatures, 7,500 
K, upper limit for ‘low’ ionization and 20,000 K, lower limit of full ionization, the 
electron mean free paths for collisions with ions is estimated as λei ≈ 1 to 2.8⋅10–6 m (by 
means of the cross-sections reported in figure 2.3). This value is about 3% of the 
Larmor radius for electrons in the region where the magnetic field is maximum (See 
Table 2.2). Therefore, electrons collide L ie2π λr ≈200 times along their gyration orbit; 
this means that the orbit itself is destroyed after each collision, i.e. a new curvilinear 
path forms after every collision and the effect of the field in the time between 
subsequent collisions is minimal. This is the ‘worst case scenario’: for larger distances 
from the arc axis, or closer to the axis (with respect to the case where B is maximum), 
the effects of the field on the electron motion are even less perceivable.  
 
For lower ionization, the mean free path is progressively greater and is determined by 
collisions with neutrals. In Ar, -1

ea aλ ( σ)n= , is now of the order of 2.5⋅10-5 m (cf figure 
2.5) which corresponds to region where T is of the order of 5,000 K or less, i.e. more 
than about 5 mm from the axis. There, according to figure 2.12, B ≈ 200 gauss rL ≈4 to 
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8⋅10-4 m depending on the current (Table 2.2). Once again the ratio of the two, rL/λ ≈ 
100 and the considerations of the preceding case apply.  
The Debye length varies from 10-6 (low ionization) to 10-8 m (high ionization) which is 
of the order of or much less than the appropriate Larmor radius. 
 
3. Cyclotron frequency. The electron cyclotron frequency is defined as (see e.g. [56]) 

c
e

ω eB
m

=  (2.39)  

and in order to have a scalar electrical conductivity, i.e. an isotropic plasma, its value 
must be much smaller than the electron collision frequencies, related to the electron 
cross sections through the relationship 

c a ea th2 σ vv n= < >  (2.40) 

For weakly ionized gas, putting na=1024 m-3 and using σea= 2⋅10-20 m2 at a temperature 
between 5,000 K and 7,000 K (see figure 2.3), vc≈1.6⋅1010 s-1. From the values of figure 
2.11 a maximum field of about 350 gauss occurs near the axis at the highest current 
considered, 200 A. However, the mentioned temperatures are likely to occur a few mm 
off the arc axis, probably beyond r=5 mm. There, B ≈100 gauss or less and this would 
produce a cyclotron frequency of ω≈2⋅109 s-1 ≈0.13 vc at most. Therefore, while in this 
worst scenario ω/vc<<1 is not strictly verified (i.e. with the ratio = 0.01 as usually used 
throughout this work to indicate a "strong" inequality), still the anisotropy is limited. 
For higher ionization, the electron-ion cross section becomes dominant; since it is three 
orders of magnitude greater than the electron-atom value, the collision frequency will be 
correspondingly higher (without considering the further but weak reinforcing action of 
the higher temperature contained in the expression of the average thermal velocity). The 
inequality is therefore satisfied within the arc and the electrical conductivity can be 
considered scalar. 

 

4. Relationship between magnetic self-field and electric field. A different criterion for 
the neglect of magnetic effects due to the induced self-field can be found in Allum [57] 
in form of the condition 

oµ v
2π

IE
R

>>  (2.41) 

Here µo =4π10-7 H/m, v is the flow velocity and R is the typical arc radius. Condition 
(2.41) is obtained from Ohm’s law 
 

( )σ= + ×j E v B  (2.42) 

and 

  oµ∇× =B j . 
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 The term vσ × B in (2.42) can be neglected if condition (2.41) applies (in other words, 
if the contribution to the current due to the electric field dominates the contribution by 
B).  Considering the I=50 to 200 A, Rarc=1 to 20 mm and v=50 to 200 m/s, the two 
extremes values for the r.h.s of (2.50) are obtained, 
 

3
o 6.3 10

 /
0.2

µ  v
2π

V mI
R

− ⋅
= 


  

negligibly small with respect to typical arc electric field magnitudes (Allum [57]), 
E=100 to 700 V/m (or the 1000 V/m considered above). 
 
2.12. Fluid parameters  

As a cylindrical probe sweeps through a moving plasma it is of interest to establish the 
nature of the relative plasma-probe flow, i.e. 1) its degree of compressibility, 2) the 
possible onset of turbulence, 3) the flow separation and the influences on the plasma-
probe thermal transfer and 4) the extension of the fluid “boundary layer” (BL). The 
latter denomination should be used only when a free-stream velocity field exists. When 
this is not the case, one should speak of a body induced perturbation region. However, 
for brevity, “boundary layer” will be used in the rest of this work in this loose sense. 
 
In order to clarify whether compressibility, convective and turbulent effects have to be 
accounted for, some non-dimensional fluid parameters are examined. Attention will be 
limited to the sound velocity in argon and to the Reynolds number.  
 
2.12.1 Sound velocity 

The acoustic velocity plays an important role because the ratio of the flow velocity to 
the speed of sound, the Mach number, is an indication of the plasma compressibility. 
From the knowledge of the Mach number, other properties may be inferred. Here its 
interest lies in its influences on the onset of the sheath at a body surface, on the values 
of the sheath potential and on the sheath thickness (see Chapter 4).  
 
Since the flow velocities dealt with here are sensibly lower than the acoustic velocity 
(see below), the flow is assumed uncompressible throughout.  
This can be seen from the condition [58] M<<R 2 that, using the definitions given 
below, translates into vf << cs

2(ρL/ η), where ρ is the Argon gas density, cs is the sound 
velocity defined below, M is the mach number and R the Reynolds number (defined in 
section 2.12.2). Here the characteristic length L is the diameter of a cylinder immersed 
in the plasma with his major axis perpendicular to the flow, assumed in this case to be 
L=2⋅10-4 m (typical Langmuir probe diameter). With the aid of the values reported at the 
end of the chapter (Table 2.3) the above condition reads vf << 1.4⋅105 m/s thus fulfilled 
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by the systems under study here (∼2700 m/s has been taken as sound velocity in Ar, see 
below). 
 
By definition the sound speed is the velocity at which small disturbances propagate 
through the medium adiabatically. Across a sound wave, the properties of the medium 
do not change appreciably. In a fluid the sound speed can be defined as 

ρs
s

pc  ∂
=  ∂ 

 (2.43) 

Where the functional relationship between pressure and density has to be determined. 
If one uses the isentropic relationship γ/ρp const= , the well-known acoustic velocity 
expression is obtained 

s γ ec RT=  (2.44) 

The exponent γ is the ratio of the constant pressure to the constant volume specific 

heats, p vγ /c c= .  

It is worth noting that if the ideal gas relationship is not fulfilled, the passage from 
(2.43) towards (2.44) is not legitimate.  
The proper γ has thus to be defined. Adiabatic coefficient will refer to the traditional 
cp/cv ratio whereas other coefficients are called here 'effective' isentropic coefficients. 
These may be defined by means of a formula like 2γ ρ /i sc p= , knowing the density to 
pressure ratio and where the appropriate sound velocity has to be incorporated. 
However Meyer’s relationship allows the calculation of the sound velocity from the 
formula 

γ 1iv
i

Rc =
−

 (2.45) 

if the gas behaves according to the real gas state equation ρp RT= Ζ , where Z=(1+ζ) is 
the “fugacity”, defined in terms of the ionization fraction ζ [36]. This has the advantage 
that the specific heat is readily available also for real gases. In the following however, 
no typographical distinction will be made among the various γ as it will be clear from 
context which one is used. 
 
In [36] and more recently in Burm et al [59], it is stated that the Mach number of a 
plasma is always lower than the corresponding value for the gas. This is a consequence 
of the value of the isentropic exponent in plasma that, due to additional degrees of 
freedom with respect to the ordinary gas (e.g. ionization), is lower than the adiabatic 
value. In particular, as a consequence of the different behaviour of constant pressure and 
constant volume specific heats, it is found that their ratio is constant also for plasmas 
[59], provided the degree of ionization lies between 5% and 80%. For an atmospheric 
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 plasma, whose temperatures are of the order of the eV, γ=1.16 instead of the γ=1.4 
valid for ordinary gases. 
 
The authors show a formula of the sound speed cs for the non-isentropic case 

( )s h eγ ζc R T T= +  (2.46) 

(cf the isentropic equation (2.44) written above). R is the mass specific gas constant, ζ 
the degree of ionization and T is the appropriate temperature. Th refers to the ion and 
neutral temperatures assumed equal. 
 
According to (2.46) the sound velocity is also function of the degree of ionization and 
depends on the ion temperature. However, the comparison among the different “hot” (Ti 
≈Te) and “cold” (Ti<<Te) cases, with the two limiting values for the isentropic 
coefficient, γ=1.16 or 1.4, non-isentropic and isentropic cases respectively, is quite 
complex if one adds the computed sound speed in pure Ar at 1 bar according to Murphy 
[49], based on a γ(T) not constant with temperature and only marginally approaching the 
value 1.16 from above. Also, if one uses the γ(T), from Murphy in the different 
formulae for the sound speed given above, still different values for the sound speed 
result. To try to tackle this intricacy, the first group, i.e. the sound velocity of argon is 
considered in the two cases of cold and hot ions (γ=1.16, continuous lines) in 
comparison with the isentropic case (γ=1.4), dotted lines (figure 2.12). 
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Figure 2.12. Left-axis: Isentropic (non-adiabatic, γ=1.16) and adiabatic (γ=1.4) sound 
velocity in Ar  for hot (Ti=Te) and cold (Ti=0) ion plasmas at different ionization fractions. 
Right axis, dot-dash curve, ionization fraction. Horizontal lines are placed at the 5% 
and 80% ionization limits [59] 
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The degree of ionization is shown (right axis) together with the 5% and 80% limits by 
[59] (horizontal dashed lines). It is worth noting that the major difference among the 
reported values is due to the hypothesis made on the ion temperature rather than the γ 
coefficient.  
A second group of values is reported in figure 2.13; here the computed sound speed by 
Murphy, and the values computed for the hot and cold cases with γ(T) as given by 
Murphy are reported. No surprise that the sound speed is higher in this case. 
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Figure 2.13. Left axis: sound speed according to Murphy [49], dashed line, compared 
to the two continuous curves, for cold ion and hot ion plasma cases obtained from 
equation (2.66) using Murphy’s γ(T). Right axis γ(T) as given by [49] 
 
The determination by Murphy is adopted here with the justification that it is consistent 
with the other plasma parameters employed. 
 
2.12.2. Reynolds number and boundary layer thickness 

The relative importance of inertia versus viscosity effects is expressed by the Reynolds 
number, R defined by the ratio [58] 

f pρ vρ
η η

rULR = =   (2.47) 

where vf is the flow velocity and the characteristic length is the radius of the flowing 
probe. The viscosity η has been taken from [44]. Reynolds numbers range from R=0.2 
for vf=100 m/s to about R=5 for vf=cs (sound velocity) in Ar (from R=0.2 to R =4.5 in 
He for the same velocities). 
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 High values of R allow disturbances to develop considerable velocity gradients locally 
in the flow, before viscous diffusion has time to smear them out. For low R’s, viscosity 
(or viscous diffusion) would dominate. In formula (2.47) the temperature dependence 
for both the viscosity and the density is incorporated. Their ratio (the kinematic 
viscosity) for pure Ar has been calculated here using the same source [44] and it varies 
by a factor of about six in the temperature range of interest (5,000 to 25,000 K, cf [46]). 
This is the minimum degree of uncertainty that should be kept in mind in the following 
evaluations. In fact, as metallic (and in particular copper) probes sweep through the 
plasma without melting, the fluid temperature in their close neighbourhood cannot 
exceed about 1,357 K (Cu melting temperature) or 3,500 K (W melting temperature). 
This means that the ratio η/ρ (the kinematic viscosity) and therefore the Reynolds 
number given by (2.47) may be considerably lower than evaluated above. However, 
also η and ρ in the boundary may behave differently with respect to the situation 
depicted in figure 2.14. For a cylinder, the inertia terms are negligible [60], up to R = 
0.5. In the range R = 2 to 30 the boundary separates at two symmetrical points and two 
stable counter-rotating eddies are generated in the wake. Behind them, the streamlines 
rejoin so that the wake has a finite extension. For Reynolds numbers greater than about 
30, the eddies tend to elongate up to R = 40 to 70. Here the wake starts to oscillate 
giving rise to differential drags on the cylinder up- and down-surfaces. Considering the 
values for R obtained above, two situations may occur: 1) either there is no boundary 
layer (R<0.2) or, 2) if it exists it leads to a 'gentle' separation with a wake populated by a 
couple of stable eddies. 
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Figure 2.14. Boundary Layer thickness δ as a function of the Reynolds number.  Dotted 
line: flow separation boundary. Inset: low Reynolds numbers region. Dash-dotted line, 
lower limit for the boundary formation. Probe radius 125 µm. 
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The thickness of the boundary layer forming around the cylindrical probe is 
4 -5

pδ 2.2 10    to   4.5 10  r R m−= = ⋅ ⋅   (2.48) 

for the two Reynolds number limits given above in Ar (where the probe radius has been 
taken as 100 µm).  For He the two limiting values are 2.4⋅10-4 m and 4.7⋅10-3 m respectively. 
 
Information about boundary layer stability against turbulence is gained by introducing 
the local Reynolds number [60] 

fvxR x v=  (2.49) 

where vf is the flow velocity at infinite distance, v the kinetic viscosity and the 
characteristic length is now x, the distance from the leading edge of the boundary layer 
(i.e. the point where Rx is computed). Expression (2.49) was introduced for planar 
geometry but with the limitations mentioned above, setting x to πrp/2 (see below), 
where rp =100 µm is the probe radius and using the same source for the viscosity [44], 
Rx = 11.2 to 301.6 for vf=100 m/s and vf=2690 m/s respectively. A criterion for the layer 
stability of a laminar boundary layer [60] would be Rx≤105 while for Rx≥106, a 
transition to turbulence would occur even for smooth surfaces and absence of turbulence 
in the main flow. Within the uncertainty outlined above, the two Reynolds numbers 
evaluated imply a 'thick' boundary layer of laminar nature that is stable with respect to 
the onset of turbulence.  
Also, Massey [60] gives a solution for the constant flow velocity motion and an 
empirical expression for the boundary layer thickness as a function of the distance from 
the leading edge, 

fδ' 4.99 vvx=  (2.50) 

or the ratio of the two as a function of the local Reynolds number (boundary layer 
Reynolds number) 

1 2
δ

δ' 4.99 xR R
x

−= =  (2.51)  

The latter is easily evaluated as δ'/x=1.49 (for Rx= 11.2) or δ'/x =  0.29 (for Rx = 301.6). 
In this case, equation (2.50) gives a boundary thickness δ'=4.7⋅10-5 m or δ'= 2.9⋅10-5 m 
(by posing x=πrp/2), which should be compared with the δ= 4 -52.2 10    to   4.5 10  m−⋅ ⋅  
obtained above for Ar by the use of equation (2.47). 
 
The macroscopic picture discussed so far holds in the limit of a continuum formulation 
which is established by the value of the Knudsen number [58]. The value typical in this 
work, 
 
  Kn = λi,e/rp  =  10-5 m /(100⋅10-6 m) = 0.1 
belongs to a region of transition between the purely fluid and the purely kinetic 
description [61] because for some cases the boundary layer thickness found above 
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 approaches the mean free path for ions, δ ≈ λi. However, this latter circumstance will 
not invalidate the conclusions about the electrical layer thickness to be less than the 
boundary layer thickness (Chapter 4).  
 
The results of this 'purely fluid description’ of the probe boundary layer, can be 
summarized by saying that (i) the fluid flow is laminar in the whole range of Reynolds 
number considered; and (ii) the boundary layer extension has a minimum value of 10-5 
m; it has been anticipated that this is always greater than any of the electrical sheath 
widths evaluated in the following (see Chapter 3). Also, it is possible to show that [46] 
 

•  A flow separation occurs at a position which is a fraction (but of the order of) 
one probe radius from the probe leading surface; 

•  Two stable eddies might form and extend in the wake for a distance of the order 
of one probe radius from the probe downstream surface. According to classical 
fluid dynamics, the majority of the heat transfer to/from the cylinder, should take 
place in this region; 

•  The flow settling time taken as the time needed for the stable structure 
described to develop, including the eddies, appears much shorter than the typical 
probe-in-arc permanence time. However, precise evaluations are not possible 
within this macroscopic picture. 

 
Concerning point (i), observing that argon mass density varies by less than 10% 
between 5,000 K and 30,000 K (actually about 5% between 6,000 K and 30,000 K), the 
effect of compressibility can be neglected over all the range of temperatures of interest.   
That a transition between fluid and kinetic regime occurs can be seen observing that on 
one hand one has a plasma characteristic dimension L=2Rarc≈10-2 m and λ/L=10-3 
(overall Knudsen number) which would justify a continuum treatment. On the other 
hand, the insertion of a small probe with characteristic length of rp=10-4 m leads to a 
Knudsen number of about 0.1, and for these values a purely continuum treatment breaks 
down. 
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2.13. Summary of parameters. 

The physical quantities necessary to define the specific regime of interest for the arc 
plasma are collected in Table 2.3. 
 
 

Physical parameters (Units) Value/Range 
1) Electron temperature Te (K) 1 to 2⋅104 
2) Pressure P (Pa) 105 
3) electron number density ne (m-3) 1021 to 1024 

4) Plasma flow velocity v (m/s) 100 to 150 (400) 
electron mean free path λe   
            low ionization 
            high ionization (at 1023 m-3) 
 

 
 

10-7 to 10-6 

6) ion mean free path λi (m) 
            low ionization 
            high ionization (at 1023 m-3) 

 
1.2⋅10-5 

2.8⋅10-6 (1 eV) or 1⋅10-6 (2 eV) 
7) electr. Mobility µe (m2

⋅V-1⋅s-1) 4.3⋅10-2 or [µe=µi (mi/me)] 
8) Ion mobility µi (m2⋅V-1⋅s-1) 1.5⋅10-4 
9) Viscosity η (kg m-1s-1)  
(at 20,000 K) 

Ar: 0.7⋅10-4 
 

10) Elec. Conductivity σ (Ωm)-1 for Ar, He
and H 

10,000; 8,500; 9,000 

Table 2.3. Physical quantities for order of magnitude estimations for atmospheric arcs. 
Values refer to Argon. References are indicated in the text 
 
 
They should be regarded as rough estimates only (hence, accuracies have not been 
quoted) and specifically with the arc core in mind, where they depart from the typical 
plasma-probe operating conditions found in literature. Some were considered explicitly 
in the preceding sections. A few others are commented in the following.  
 
1) Ignoring the cathode and anode regions, for which uncertainty exists, the electron 
temperature in the core region is allowed to vary by a factor of roughly two. 
Spectroscopic measurements gave 16,000 K [22] to 23,000 K [39], while previous 
values from electrostatic measurements appear lower by a factor two [62]. This 
discrepancy forms part of the present investigation. For the present estimations, Te is 
assumed to be about 20,000 K; this variability is not dramatic since Te enters in many of 
the following formulae as Te

1/2. 
 
2) Pressure is fixed to the atmospheric value (1 bar) in the present investigation on the 
TIG arc. 
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3) The Debye length has been computed by means of formula (2.1), see also figure 2.2. 
Comments about the incomplete shielding of the charges within a Debye sphere, due to 
the low value of the plasma parameters were made in section 2.2.   
 
4) The plasma flow velocity is considered as the value along the axis of a TIG arc. 
Velocity of 80 m/s, calculated from excess gas pressure experiments at the anode for a 
current value of 100 A [57], are in broad agreement with the calculated values of up to 
150 m/s and 200 m/s respectively for the axial and radial velocities [15, 54]. Also, a 
value of about 400 m/s is considered from the work of [63] which relates to a plasma 
arc.  
 
5) The sound speed in Ar plasma show some uncertainty (see section 2.11). However, 
its interest in this work is confined to the order of magnitude estimations of the 
boundary layer thickness compared to the electrical sheath and to the effects of 
compressibility. 
 
6) The number density has been estimated with the aid of figure 2.7 (ionization as a 
function of temperature). This broadly agrees with the values of charged particle 
concentration reported in [22] but is allowed to rise up to two orders of magnitude, as in 
[62], i.e. to account for a higher degree of ionization. Values between 1022 m-3 and 1024 
m-3 are judged reasonable. In most cases ne≈ni will be assumed (in the bulk) but some 
concerns exist about the quasi-neutrality in arc plasmas [64]. 
 
7) The mean free path for electrons in Argon has been estimated in different conditions 
and has been reported in figure1.4. In the low ionization region it has been considered 
as due mainly to electron-atom interactions, λea=1/naσea (where the neutral atom density 
has been used). As the electron-ion collisions start to take over for increasing ionization, 
a value obtained by formula (2.11) was used in broad agreement with the values 
reported by Swift and Schwar [65] p.18)  λe≈1.7⋅10

-6 m, see figure 2.4 (the suffix ‘a’ has 
been dropped). For high ionization, the simplified formula λei=1/neσei was employed, 
where now ne has been used. 
 
8) The mean free path for Ar

+
 ions in argon, has been estimated in similar fashion (i.e. 

using λ=1/nσ) taking into account the variable degree of ionization and the 
corresponding cross-sections (thus λie and λia were computed). The curves are shown in 
figure 2.4 and 2.5.  The data on cross sections for both the Ar-Ar and Ar

+
-Ar collisions 

were taken from [32]. In the intermediate ionization case, the symbol λi was used. 
 
For both electron and ion mean free paths only the first ionization stage was considered 
(i.e. Ar+ only). In the calculated phase diagram for Ar plasmas [40], the density of Ar++ 



 
2. THE ATMOSPHERIC PRESSURE PLASMA                                                                  42                                

ions appears non negligible (with some caution, as in the author's words), and the phase 
diagram reported by Boulos [66], shows an appreciable Ar++ density of 1019 m-3 in 
contrast with the 1023 m-3 of Ar+, at an upper limit of 15,000 K only (but with no 
indications for higher temperatures). More recent values [67], indicate fractional 
densities for Ar++ (normalized to the ion species Ar+ taken as unity), x = 0.001, at about 
19,700 K (1.7 eV), 0.027 at 23,230 K (2 eV) and still only 0.199 at 29,000 K (2.5 eV). 
For the present the choice to limit the attention to monovalent ions only appears 
therefore justified. 
 
9) The data for the electron mobility µe are scarce and sometimes contradictory. The 
values of Brown [34] are chosen (since these seem to be the only measured values 
available). In his book a plot is reported that shows some linearity for the drift velocity 
as a function of E/p between 2 and 4 V/(cm mmHg); this can be adapted (to SI Units) 
dividing the drift velocity by the electric field at 1 bar to give the electron mobility µe ≈ 
4.3⋅10-2 m2(Vs)-1 in argon; this is found to be in disagreement with what can be obtained 
(in absence of experimental data), multiplying the ion mobility by the ratio between 
electron and argon ion masses, µe = (mi/me) µi; in this case a value of 12 m2(Vs)-1 is 
obtained.  
 
10) The ion mobility for Ar+ ions in argon gas µi= 1.5⋅10-4 m2 (Vs)-1 was found in [68] 
and should be compared with the older value given by Brown [34]:  
µi

+= 1.8⋅10-4 m2 (Vs)-1, who also gives the value for A++ as µi
++= 2.8⋅10-4 m2 (Vs)-1 (see 

also below).  
The available data on mobility are usually expressed as a function of reduced electric 
field E/N, where E is the electric field in V/cm and N is the total particle density (in cm-

3).  
This originates from the fact that these values are measured in drift tubes and that the 
mobility multiplied by particle density (pressure) is a constant for a given gas 
(experimentally verified at least when the field is relatively weak and the drift 
contribution is negligible with respect to the thermal contribution [34]).  
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Figure 2.15. Mobility (left axis) as a function of the reduced field (bottom axis) as 
measured; Dash-dot line: calculated (right axis) as a function of the "effective" 
Temperature Teff (top  axis). Data based on [69] 
 
 
A typical plot for Ar+ in Ar is shown in figure 2.15 [69]. The values are expressed in 
standard (non-SI) units. The reduced fields and the mobility in m2/(Vs) were obtained 
multiplying the plotted values by 104. It appears that measured values (left axis 
continuous curves) are relatively few; a polynomial fit was made here (left axis); the 
calculated mobility, according to the relationship 
 

2
eff d

3 3 1 v
2 2 2

kT kT m≈ +  

is shown on the right axis. It is based on a kinetic energy contribution arising from the 
field through the drift velocity (the ≈ sign was used because of the neglect of a 
corrective factor of the order of unity in the last term). It is of some question whether 
these values match with arc plasmas: the measured values are taken in an ambient gas at 
77 K [69] which means that both atom and ions thermal contributions are minimized; 
also the calculated values, while including the effects of the field through the 
incorporated effective temperature, refer to values for the latter which are by far lower 
than any realistic arc plasma ion temperature. In effect, this is the unfortunate 
circumstance of the usage of swarm parameters obtained in neutral gases, to very 
different situations (see e.g. [70]). However, the values are of the order of µi =1.6 to 2.1 
⋅104 m2(Vs)-1, thus not far from the values previously reported in Table 2.3 and they 
match to those when the field is reduced towards zero.  
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11) The viscosity for argon was taken from the plots produced by the numerical 
computations performed by Murphy [44] whose agreement with experimental results 
was good when a comparison was possible [48]. 
 
12) The electrical conductivity revealed the most difficult parameter to estimate. Among 
the different determinations found in literature and reported in figure 2.9, Murphy’s, 
substantially equivalent to Devoto’s have been chosen, with the proviso that the 
comparison with experimental values sets an uncertainty of the order of 30%. 
 
2.14. Summary 

A discussion on atmospheric pressure arc parameters has been conducted, with the aim 
of establishing a general framework for the subsequent discussion on probe theories 
(Chapters 2 to 4) and determine the model/s to be followed both theoretically and 
experimentally. More specifically: 
 
• The criteria discussed in section 2.2 do not allow to term TIG arcs as plasmas. 
Strictly, this applies to the vast majority of laboratory plasmas. However, it is accepted 
to speak about arcs as ‘plasmas’ in a broad sense. 
 
• The degree of ionization spans the whole range from the weakly ionized to the fully 
ionized plasma. As a consequence, the determination of crucial parameters, which 
depend on ionization or on temperature (through degree of ionization) proved to be a 
difficult task. Some were plotted along the whole range of ionization and temperatures 
of interest. The CTT criterion has then be used to put a somewhat arbitrary borderline 
between 'high' and 'low' ionization as this is needed to determine which physical 
scenario is appropriate in the different cases, especially for the assessment of available 
probe theories (see Chapter 4). 
 
• Both the recombination coefficient and the electrical conductivity, of paramount 
importance for any electrical exploration, proved to be the most difficult to evaluate due 
to the high uncertainty in cross-section data.  
 
• The electric field has been estimated in order to determine its influences on the 
particle distribution functions. With this respect it can be considered weak for both 
‘high’ and ‘low’ ionization, even if for the latter case, typical of the arc fringes, the 
electron distribution function is likely to be ‘disturbed’ by a small anisotropy. 
 
• Evaluations of the magnetic induction, the Larmor radius, the cyclotron frequency and 
the comparison with the electric field, has shown that the influence of the magnetic field 
is limited to the motion of electrons in the arc innermost region, although it is expected 
that the effect on probe theories is minimal. 
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• Although is still questionable whether a fluid rather than a kinetic description is the 
most appropriate, macroscopic parameter evaluations allow to depict the arc as an 
almost uncompressible fluid moving at speeds much lower than the speed of sound. The 
boundary layer around a cylindrical body was evaluated and the comparison with results 
from the different sheath scenarios (see Chapter 4) allows anticipating that fluid 
boundaries are always larger than electrical boundaries.  



 

 

3.  LANGMUIR PROBES 

 
 
3.1. Introduction 

Among the various methods of plasma diagnostics, the electrostatic probe method is 
perhaps one of the most commonly used since the pioneering work of Langmuir and 
Mott-Smith [71] from which the device takes its name. Simple in principle, the 
interpretation of the data it provides is rather complicated, because no simple and 
comprehensive underlying theory exists. Up to relatively recent years, Langmuir probes 
have been limited to collisionless plasmas and to ion current collection, but in more 
recent years they have been successfully applied to the characterization of (i) "denser" 
(higher pressure) plasmas where the effect of collisions become dominant [72, 73], and 
(ii) “higher” degree of ionization (non weakly-ionized plasmas) [74, 75] or (iii) of 
systems in which the plasma flow must be considered [76-78], possibly considering the 
cooling effects on the measured parameters [77, 79]. Also, the extension to the 
collection of electronic currents has been developed in the last decade [80], [81]. 
 
The physical quantities inspected depend on the application, but typically they are the 
electron temperature and the electron number density, although some works exist for the 
determination of the electrical conductivity (see for example [82]). While it is quite 
difficult to exhaust the tremendous amount of literature existing on the subject as taken 
in general terms, a very limited selection of published works is available on the use of 
this technique for arc plasma diagnostics and TIG arcs in particular [63], [62].  
 
The apparent simplicity of a typical probe operation necessary to obtain the 
"characteristic curve" is outlined, starting with the simple model pertaining to low-
pressure (i.e. rarefied) plasmas. Langmuir’s work [71] is based on assumptions that are 
used as a starting point in Chapter 4 where the discussion about their validity and the 
consequences of their failures on probe operation in arcs is addressed. There, orders of 
magnitude estimates are developed for atmospheric arc plasma parameters in order to 
determine the appropriate regime of probe operation. Some of the values are taken from 
Chapter 2. Once the regime is established, a discussion of the currents obtained follows. 
A comprehensive inspection of the plasma regimes involved, requires a careful analysis 
of the results from sheath theories in order to correctly relate the electron or ion 
densities ne, ni  or, in general, the electron or ionic distribution functions, and the 
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 temperature(s), to the directly measured quantities (currents). This is considered in 
Chapter 3.  
A discussion of the non-idealities that “real-life” systems introduce is included in 
Chapter 5. There, the main difficulties are explained with particular emphasis on 
emission mechanisms and probe cooling effects. 
 
For most of the present discussion the plasma will be assumed to be in a single 
component "frozen chemistry" state [83], i.e. in absence of chemical reactions, although 
effects of ionization and recombination, covered in Chapter 2 are discussed in 
connection with the classification of the regimes [84] in Chapter 3. In some cases, data 
are compared for different gases of interest, argon, helium and hydrogen. 
 
3.2. Principles of operation 

An electrostatic probe consist of one (single probe) or more (double and triple probe) 
conductors, biased positive or negative to some potential with respect to the medium in 
which these are immersed, either at rest or in motion. The current recorded when 
varying the applied probe potential Vp, defines the "Probe Characteristic Curve" (or 
simply "characteristic"), whose qualitative features for the single probe, depicted in 
figure 3.1, are common to all geometries, and explained as follows. 
 

 
 

Figure 3.1 Left: basic single probe circuit (shaded area: plasma). A, anode 
(reference); C, cathode. Right: typical current-voltage characteristic. Vf, floating 
potential; Vpl, plasma potential (see text) 
 

 
Following Cobine [85], Swift and Schwar [65] Manos et al [12], Raizer [9] and Schott [86] 
the  physics of the device is based on the simplifying assumptions that: 
 
1) electron and ion concentrations are equal; 

2) electron and ion mean free paths are much greater than the probe radius; 

3) electron temperature is much higher than the ion temperature ("Cold plasma"); 

4) the probe radius is much larger than the Debye length; 
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5) electron and ion velocities have a  Maxwellian distribution. 

 
These conditions define the "low pressure plasma regime". In addition, it is often 
assumed that a small probe causes negligible disturbances to the carrier concentration 
and that the distortion due to the probe potential is limited within a region thinner than 
the probe size.  
Assumption 1 seems well justified as long as "frozen chemistry" is assumed (no charge 
disequilibrium exists due to the introduction of electronegative gases for example, but 
by considering ionization and recombination this hypothesis will be somewhat relaxed 
in the following), or only one gas component is present. Assumption 2 is at least 
questionable for the present study with respect to the regimes discussed below (see 
Section 3.1), where in fact, the opposite occurs. Conditions 3 and 5 deal with the more 
general problem of the appropriate distribution of the charge carriers, whether in 
equilibrium or not. Condition 4 can be easily fulfilled with a "suitable" probe radius. 
 
With these limitations it is possible to proceed from the simplest case towards the more 
complicated by removing ‘unsound’ assumptions. In the following the principles of the 
method are outlined. 
 
Referring to figure 3.1 above, the following quantities are defined: 
VAP = potential between the probe surface (p) and reference electrode (A); this is made 
up of the potential drop VAS between the reference A and the sheath boundary plus the 
potential VPS of the probe surface with respect to the sheath edge, thus VAP = VAS + VPS.   
In the following Vp will always indicate the probe potential with respect to the reference 
electrode (thus VAP), Vpl the plasma potential with respect to the same electrode, and Vsh 
the voltage drop between electrode and plasma respectively and the floating potential Vf 
(see below). The current to the probe is Ip and the partial contribution due to electrons 
and ions are Ie and Ii respectively; a suffix ‘o’ is added when referring to saturation 
conditions. 
 
If an insulated probe is allowed to "float" in the plasma, in absence of an applied 
potential difference between probe and plasma, it will attain a negative potential, called 
the floating potential Vf. The floating potential is the potential measured by an insulated 
probe and it is the potential at which no current flows in the external circuit. It should be 
noted that it cannot be the potential assumed by the plasma at the same point before the 
insertion of the probe (the plasma potential Vpl). Since charges reach the electrode 
essentially by thermal motion, the probe will charge negatively due to the higher 
mobility of electrons; the potential will decrease until an equal number of negative and 
positive charges per unit time reach the probe (equalization of the carrier fluxes). A 
positive charge sheath forms in front of the probe and grows until an equilibrium 
between ions and electrons currents is achieved, a situation corresponding to zero net 
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 current to the probe. If the ion and electron temperatures correspond to an energy of 
(say) 1 eV, then the probe potential cannot exceed  −1 V, otherwise the probe would 
continue to collect ions (no more electrons could reach it) until the recovery of the 
original potential. Since the electron mobility is higher than the ion mobility, the 
potential of the insulated probe cannot be equal to the plasma potential.  
 
For "cold" ions (i.e. when Te>>Ti) and in absence of secondary emission from the probe 
surface, Vf  is given by 

 

e i
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=  (3.1) 

 

where e and me are electron charge and mass, mi is the ion mass and K a constant 
discussed below. From equation (3.1) the electron temperature could be obtained. 
Under these circumstances, the probe finds itself in the conditions: 
 
Vp=Vf,     Ie=Ii     and      Ip=0 (3.2) 

 

A probe biased negatively with respect to one of the discharge electrodes will collect 
less and less electrons as its voltage Vp is driven negatively enough (-eVp>>kTe). The 
ions will instead continue to flow towards the probe until a positive space-charge forms 
adjacent to its surface; the resulting random current density or ion saturation current Iio 
will be almost constant as Vp is made more negative (region "E" in figure 3.1(b)) the 
only effect being the change in the thickness of this sheath. Its outer part "reflects" 
further ions, and the plasma is not affected by the probe voltage that is confined within 
the sheath. This ion saturation region (ED in figure 3.1b) can be used to compute either 
the electron temperature or the electron density ne. 
In effect, a further branch is possible in principle, when the potential is highly negative, 
region EF in figure 3.1b; here the ions have such a high impact energy to cause electron 
emissions from the surface [56].  
 
When the voltage is increased (i.e. driven less negative), the fastest electrons begin to 
penetrate the sheath and reach the probe, increasing in number the greater the voltage, 
decreasing the net current. The net current is zero when the floating potential Vf is 
reached. Continuing to increase Vp, an exponential increase in electronic current is 
observed (region DB in figure 3.1). When V rises further, the probe reaches the plasma 
potential Vpl, represented by the knee of the characteristic curve. The knee fixes the 
space (plasma) potential corresponding to a net probe potential near to zero (Sheath 
potential close to zero). In principle, this allows the determination of the plasma 
potential Vpl provided the knee is sharp enough. Here the probe receives the entire 
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random currents due to electrons and ions, the plasma is unperturbed by the probe and 
the sheath region disappears. When this potential equals exactly zero, the probe current 
is equal to the difference between the random ion and random electron currents. The 
steep part of the characteristic (DB, see figure 3.1b), referred to as ion retarding region 
or electron accelerating region, is used to determine the electron temperature Te. 
 
The general expression for the net current density j, the characteristic, that accounts for 
the ion saturation (first term, ji region ED) and the steep electron retarding part of the 
curve (second term, je, region DB), is 
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where V = Vpl-Vp is the difference between the plasma (Vpl) and the probe potentials, Te,i 
the electron or ion temperature, ne the electron density, me,i the electron and ion mass 
and e the electric charge. 
 
When Vpc increases above Vpl, there is only a slow dependence of j on the applied 
voltage, due to the "drift" of the pre-sheath further into the plasma. This region is the 
electronic saturation regime and is depicted in the part BA of figure 3.1, where its slope 
has been exaggerated (but see below for a discussion of the attainability of electron 
saturation). This region is rarely considered in the literature for the purpose of the 
electron temperature determination, although some work has been published in the 
frame of Orbital Motion Limit theories [87]. Also, in [80, 81] this region is used 
because it provides high currents in their relatively low pressure (and low ionization) 
regimes.  
Beyond this region, in a similar fashion as to region EF, the electrons accelerated to the 
probe are in such a high number that the curve does not show saturation (steep part past 
point A in figure 3.1 cf Fuhs [56]). 
The ion saturation and the retarding regions of the characteristic curve are outlined in 
some more detail below. 
 

3.2.1. Ion saturation region: positive ion collection 

In the theory of Langmuir-Mott-Smith [71] the region surrounding the probe is made of 
a positive sheath impermeable to electrons and a unperturbed region in which ni ≈ ne, 
impermeable to the field generated by the potential applied to the probe. Between these 
two regions, a quasi-neutral region forms, the "pre-sheath" where ni ≈ ne is still satisfied, 
but in which the plasma conditions, due to the withdrawal of ions to the probe, have 
been modified; although the potential drop in this region is much smaller than in the 
inner sheath region (i.e. towards the probe), because the mean ion energy is smaller than 
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 the electron mean energy. A small field penetrating the quasi-neutral region is able to 
distort the ion energy distribution at the boundary, causing a directed ion motion to the 
probe. This situation is illustrated in figure 3.2. (A quantitative analysis of the sheath is 
given in Chapter 3). 
 
 

 

 

Figure 3.2. Left: qualitative behaviour of Potential and particle distribution from the 
probe surface (radius rp) outwards for a negatively biased probe. The figure refers to 
the low-pressure ‘orbital theory’. rs s the sheath radius (see text), while ni, ne, ng, n∞ are 
the ion, electron, gas, and equilibrium particle densities. Right: (orbital model) 
behaviour of charged particles towards an attracting spherical or cylindrical probe 
(section); vo initial particle velocity, b impact parameter, rm distance of minimum 
approach 

 
 

This means that the ions are affected in that they are collected not by the sheath 
boundary, but by a surface of larger radius, lying in this quasi-neutral region. 
Considering the sheath boundary as the distance at which the electron concentration ne 
starts to decrease appreciably, the potential difference Vs between the sheath-edge and 
the undisturbed plasma, must be sufficient to prevent the electrons from entering the 
sheath: 

2
s e r s  / 2 ,             <0v / 2e V k T Vm− ≈ ≈  (3.4) 

This gives the radial velocity of the ions arriving at the sheath 
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At the sheath edge  ni ≈ ss ee e 
 exp   (  ) ,    0n n eV k T V

∞
= < , and the ion current, ii = ji 

As, with density  ji = ni e vr (s),   is 
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 (3.6)  

where  en ∞  represents the concentration in the undisturbed plasma and As is the area of 
the sheath surface. It can be shown that using (3.4), and the adsorption radius rs [65] the 
ion current becomes: 

i

e
e si

 κ   k Ti n e A
m∞=  (3.7) 

where the proportionality coefficient κ ≈ 0.6 [65] is related to the ratio reduction of 
density at the sheath edge. From an estimation of i1, together with the thickness of the 
sheath (and therefore the area As), the number density ne∞ of the undisturbed plasma can 
be deduced. 
The usefulness of (3.7) relies upon the fact that the adsorbing and probe radii are 
practically equal and that the current shows saturation. 
 
3.2.2. Retarding region: electron collection 

In the region DB of the curve, some electrons overcome the potential Vp. For 
Maxwellian distributed electrons and pressure low enough to neglect loss of electrons 
by collisions with gas atoms when crossing the sheath edge, the electron current is  

p
e o p

e

 
exp         0

 
e V

i i V
k T

 
= < 

 
 (3.8) 

where the io is the electron current reaching the probe when at plasma potential Vpl: 

e
o e p p

e

1  v      
4 2 π 

k Ti n e A n e A
m∞ ∞= − < > = −  (3.9) 

Ap is the area of the probe surface and <ve> the mean thermal electron velocity within 
the discharge. 
From the last two equations 

p
e o

e
ln( ) ln( )

e V
i i

k T
− = − +  (3.10) 

so that a graph of  ln(ie) versus V is linear with slope e/kTe and allows the determination 
of the electronic temperature. 
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3.3. Determination of plasma properties 

The different regions of the characteristic curve ("V-I curve" in the following) are 
reported for convenience from figure 3.1 in figure 3.3 left. This is the traditional way 
the curve is presented in literature. In the following it will be shown that the 'interesting 
part', D toE in figure 3.3 left, corresponds to the region D to E displayed in figure 3.3 
right. These figures differ for the opposite choice of the reference electrode, taken as the 
anode in this work (cf Chapter 7). 

 

 

 

Figure 3.3 Left: single probe characteristic curve. Right: portion of V-I curve as 
appearing in the present work. The Labels correspond to the traditional picture shown 
on the left.  
 
 
As mentioned in Chapter 2, the different regions available are: 

• The ion saturation region, FE 
• The steep (ion retarding) region, ED(B) 
• The electron saturation region, BA. 

 
It has been mentioned that the latter is of no use in atmospheric pressure plasmas 
because currents of several amperes flow through the probe as a result of a positive bias 
and the perturbation induced in the arc cannot be neglected. The other two regions are 
considered in the following. 
Kagan and Perel [88] consider single cylindrical probes, in both the retarding part and 
the ion saturation region of the characteristic, where the probe potential is negative. For 
the first, the electron velocity distribution function (EVDF) is assumed isotropic and 
homogeneous, and with the aid of energy and momentum conservation, is shown to be 
dependent only on the potential at the probe surface, Vprb. An electron current density is 
then obtained independent of the probe shape provided it is convex, 
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that can be double differentiated to give the EVDF as a function of the measured 
electron current density (Druyvestein)  

 
2 3

e
o o2 2

2π ( )d j e n f eV
dV m

=  (3.12) 

 

If fo is Maxwellian, (3.12) leads to formula (3.3), a part of a geometrical factor. If, 
conversely, the region DB of the V-I curve is rectilinear on a semi-logarithmic plot, then 
the EVDF is Maxwellian, and the slope of its linear part gives the electron temperature 
Te.  
 
Also, the abscissa where the linearity breaks is the location of the space (plasma) 
potential.  
Moreover, the current corresponding to V=Vpl allows to find the electron number density  

o
o

e

4
v
in

e S
=  (3.13) 

 

(S is here the probe surface and <ve> the thermal electron velocity). However, due to 
possible reflections from the probe surface, whose surface conditions are poorly known, 
the value obtained from (3.13) may be overestimated. Langmuir [89] proposed to locate 
the plasma potential where the branch AB intersect DB (see figure 3.1), the 
“intersection method”. 
The influence of ions sets in where the ion and electron current become comparable 
(break of the characteristic curve, see figure 3.3 right). According to Kagan and Perel 
[88], the use of the first derivative of the probe current versus the probe potential 
dip/dVp, is more accurate than the widely used extrapolation of the ion part ED (e.g. the 
accuracy of the “law” on which the latter is based is hard to determine). The 
approximate equality dip/dVp≈- die/dV allows the determination of the electron 
temperature when electron are Maxwellian distributed because in this case a plot of  ln 
(die/dV) versus V is a straight line whose inclination on the V axis is Te. This method is 
especially important when the region DB is distorted or cannot be obtained.  
 
In the ion part of the characteristic curve where the potential is negative, ED in figure 
3.3 right, itot=ii and a theory of the probe attracting ion is necessary. This point is also 
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 considered by Schott [86].  A simplified theory is presented which gives the saturation 
current in terms of 

e
i o s

i

2kTi cn e A
m

=  (3.14) 

(which a part of the constant c coincides with the first term of equation (3.3), except that 
here Ti is neglected). The cylindrical case is obtainable from the spherical geometry by 
projecting the electron velocity vo onto the plane orthogonal to the probe axis, see figure 
3.4.    
 

 
 
Figure 3.4 Left: projection of the quantities used for spherical probes onto the plane 
orthogonal to probe axis, used for cylindrical probes. Right: particle deflection by probe 
potential 
 

 

The method is as follows. At large negative potential, i=ii; from ii and V use Kagan and 
Perel’s formula for ii the ion current per unit length [88]  
 

e i
i p o

e

22π α '(γ),      α '(γ) (γ),    γ
i

kT Ti er n f
m T

= = =  (3.15) 

 

and the electron density is obtained as  

1 i
o

p e2π 2
i mn
er kT

=  (3.16) 

 

Ti is unknown and the factor γ is difficult to evaluate but the situation γ ≡Ti/Te≈0.1 is 
relatively common and in this case αmax≈ 0.8 to 0.6, whereas for γ ≡Ti/Te≈1, αmax≈ 0.43 
to 0.5 (thermal plasma, cf  [88] figure 13). Both the minimum and maximum values of α 
vary slowly with γ, by less than 0.15 in the range γ=0 to 1 (Ti=Te), therefore the error of 
the procedure lies mainly in this approximation. 
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Determine Te using the steep part of the V-I curve if this portion is available (formula 
3.10), where the effects of the ions are negligible; otherwise use the differentiation of 
the characteristic curve. Therefore, the part DC, close to the floating potential is usable.  

 

Summarizing the procedures for the V-I curve,  
1) The saturation part gives either the electron density or the electron (or plasma) 
temperature; 
2) The steep part gives  
the electron temperature from  the couple (ln i ,V); 
the plasma potential Vp from the knee of the V-I curve (intersection method) or from the 
maximum of the derivative di/dV, see section 3.4. 
 
This procedure, (3.15) to (3.16), is therefore feasible if the electron temperature from 
the V-I curve, (3.10), is attainable. If this is not the case, a 'direct' method can be 
employed, based on the use of formulae (3.15) or analogous formulae where some 
known relationship between the density and temperature is employed in order to 
construct a I(T) relationship (See Chapter 4). 
 
The determination of the plasma parameters according to 1) is discussed in the next 
section (3.4) whereas the second point implies the existence of a more or less complete 
characteristic curve, which is not available for atmospheric pressure arcs.  
 
3.4. Floating and plasma potential relationships 

a. Floating potential 
Several formulae express the floating potential in terms of temperatures and/or particle 
density. Some are assessed directly with data in Chapter 12. Their importance lies in the 
determination of the plasma potential and the consequent calculation of the electric 
field. 
 
1) Formula (3.1) for the 'low-pressure' regime which however contains an empirical 
“constant” K difficult to evaluate (perhaps 0.6 [65]) 
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 (3.17) 

 

2) Das et al [90] formula which takes into account pre-sheath effects and removes the 
cold plasma approximation 
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lnkT T mV
e T m

=  (3.18) 
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 but requires the knowledge of the electron to ion temperature ratio, unless used in the 
‘thermal plasma' assumption of equal ion and electron temperatures. 
 
These two formulae coincide for Te/Ti =0.83 (factor 1/(2K) in (3.17)) Also, by inserting 
all the constants in the thermal case (Te/Ti =1), the two formulae differ by less than 1%. 
Moreover, these relationships are substantially equivalent to Raizer's 'low-pressure' 
formula a part of an uncertain numerical factor ([9] p 115). 
 
4) Raizer's 'high pressure regime' formula [9] 
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 (3.19) 

 

obtained using the equality of ion saturation  current at 'high pressure' 
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 (3.20) 

 

and the classical Maxwellian electron current (3.8). In (3.19) the factor γ is given 
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 (3.21) 

 

Formula (3.19) suffers from uncertainties in the various numerical factors and on the 
hypothesis of Maxwellian distributed electrons; furthermore it requires the knowledge 
of the ion mean free path and of the temperatures ratio. 
 
b. plasma potential 
A part of the interception method indicated in section 3.3, other methods for the 
determination of the plasma potential can be adopted that can be used when the (lower) 
inflection point of the characteristic curve is not well defined, namely, 
  
1) By plotting dip/dVp against Vp and defining the plasma potential where the first (or 
the second [88]) derivative is maximum; 
 
2) Using the dependency of the ion saturation current on the probe potential 1/ 2I V∝  
[86, 91]; a plot of I 2 against V is a straight line if the electrons are Maxwellian. Only in 



 
3.  LANGMUIR PROBES                                                                             58 

 

this case the linear extrapolation of the straight line to the V axis intercepts the latter at 
the probe potential  

prb pl e pl prb e  V V kT e V V kT e= + ⇒ = −  (3.22)  

determining the plasma potential from the measured electron temperature Te and the 
probe potential Vprb, or, alternatively, allowing the determination of Te if Vpl is given 
independently.  
 
In practice one can also measure the probe potential with respect to the reference 
electrode and subtract (algebraically) the value of the floating potential as determined 
by the electron temperature if the latter is known. 
 
3) If the “knee” of the V-I curve is not identifiable, then where i = ii (point C, with 
probe floating, e.g. at the probe potential corresponding to zero net current) the 
relationship could be used [88] 
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Where rp1 is the radius of the sheath layer when the probe is at floating potential. If rp1  
≈ rp then V1 is the potential of the plasma relative to point C, point where the probe is at 
the floating potential (figure 3.3) and V1 is thus the plasma potential. 
 
3.5. Discussion 

The assumptions made at the beginning of this chapter are not fulfilled in the high 
pressure regime; in particular, assumption 2, that electron and ion mean free paths are 
much greater than the probe radius is incorrect for the regimes considered in this work, 
given the fixed probe radius of about 10-4 m (see Chapter 2). 
The assumption 3 of "Cold plasma" is easily fulfilled in low pressure regimes. In the 
atmospheric pressure regime the effectiveness of collisions for thermalization of the 
plasma is by no means obvious. Atmospheric arcs are often believed to be in an 
equilibrium state [9] but the opposite might occur (cf Chapter 14) so that also condition 
5 (that electron and ion velocities have a Maxwellian distribution and more generally 
that an equilibrium distribution exists) can fail. This assumption is often made for the 
sake of simplicity, but should be regarded with care as other steady state distributions 
are equally possible [51]. This also implies that the Te >> Ti assumption on which 'Cold 
plasma' probe theories are based is doubtful, whereas the uncertainty on the attainment 
of LTE leaves the question open as whether the 'thermal assumption is justified (Ti=Te). 
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 The modification to the above mentioned hypothesis needed to extract particle 
densities and temperatures from the currents will be reported in Chapter 5. 
 
 



 

 

4. ARC - PROBE D.C.  SHEATHS 

 
 
4.1. Introduction                                              

A sheath is a spatial region forming in the neighbourhood of a body immersed in a 
plasma, in which quasi-neutrality breaks down as a consequence of the perturbations 
induced. Electric fields of considerable amplitude can develop leading to a "medium" 
whose properties can be quite different from the bulk, i.e. collisionless, fully collisional 
or more often in between these two extremes. The sheath thickness plays a crucial role 
in the definition of both the sheath regime and the probe regime. A reliable evaluation 
of the sheath thickness and voltage distribution is a basic step towards the understanding 
of the Langmuir probe operation.  
 
Some remarks [10, 92-94] are reported to illustrate the mathematical difficulties that 
arise in nearly every theoretical attempt to characterize the sheath, but also because they 
give a general idea about the sheath structure, clarifying the role of the Bohm criterion 
for sheath formation (section 4.2). The requirement of a monotonically decreasing 
potential (from the body outwards) means that a cut-off energy (or velocity) exists 
below which the ion distribution function vanishes. For the case of monoenergetic ions, 
this corresponds to the Bohm criterion [92] which imposes the lower limit for the 
formation of the sheath: the ions must approach the sheath edge at the (acoustic) sound 
velocity.  
 
A summary is presented on the widely discussed planar geometry [65] in section 4.3. 
For this group of works, computations are made to evaluate sheath thickness and 
potential distributions. Collisionless models are evaluated (section 4.3.1) following the 
works of Mott-Smith and Langmuir’s [71], the first starting in the 60's (and collected in 
[65, 95]). Collisional models were developed up to these days [92-94, 96] both in the 
frame of hydrodynamical (Two-fluids, [90, 92, 96, 97]) or kinetic models [92]. In 
section 4.3.2 these are briefly illustrated and computations of voltages and thickness 
following Sheridan [97] and Mukherjee [98, 99] are performed. Few experimental 
measurements are considered [84, 91, 98] and attention is paid also to floating 
conditions, when no external bias is applied to the immersed body. 
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 For large electric potentials, that is, highly biased probe or walls the potential 
distribution is given by Child's law [95] originally developed for a vacuum diode [100]. 
Several enhanced versions of this potential law have been developed [90, 101, 102] 
often as “by-products high-potential limiting cases” in works that include however less 
restrictive hypotheses with respect to the original Child’s treatment. 
It is not possible to account for all these works. Also a complete analysis would require 
quite involved formalism leading to treatments that are far beyond the 
phenomenological scope of this work. Furthermore, there is still considerable debate 
about the conditions for sheath formation.  
The basic question addressed here is the character of the sheath (when existing): 
collisional, collisionless or intermediate between the two. 
 
4.2. Sheath formation: The Bohm criterion 

The sheath existence can be predicted from the argument that the electrons have a much 
higher mean velocity with respect to the ions. This is because of the limited fractional 
energy loss for the electron during a collision with the ion. In the elastic case this can 
reach the maximum value 4me/mi, so that the efficiency of energy transfer for electrons 
is much less than for ions. Since the mean electron velocity of the electrons is much 
higher than the ion’s, the random current densities of the two species satisfy the 
inequality 
   

e e e i i iv 4    v 4  = j n n j= < > >> < >   

The electronic current to an insulated body brought to contact with the plasma is 
initially higher than the ionic current and the body will charge negatively until its 
potential is lowered to the point at which the fluxes of ions and electrons equalize. This 
sheath region must repel some of the electrons from the bulk plasma and attract the ions 
that enter it. Consequently, the electron density in the sheath is lowered with respect to 
the bulk plasma and can be considerably lower than the ion density, leading to the 
breakdown of quasi-neutrality. 
 
The basic difficulty of any sheath treatment consists in understanding how/if the sheath 
solutions extend into the plasma.  
 
1. According to Schott [86] the fact that in low pressure plasmas the expressions for 
both ion and electron currents are similar is due to the assumption that for both type of 
charges a well defined edge for space charge effects exists, out of which the potential is 
constant. This is not true when a species has a mean energy substantially lower than that 
of the other species. This case occurs for example when Ti<<Te. The discrepancy 
between measured currents values, higher than the theoretically predicted ones, is due to 
the fact that the ions entering the sheath carry an energy e 2kT , not the thermal one 
(≈ ekT ). For a probe charged at a negative potential with respect to the undisturbed 
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plasma, until the inequality sh e / 2eV kT<  holds, some electrons are able to overcome 
the retarding field of the probes due to their thermal velocity (Vsh is the plasma to probe 
negative potential). The plasma at the probe remains quasi-neutral. Consequently, in the 
range of the negative potentials 
 

 sh e
10 /
2

V kT e< − <   

no space charge is formed in front of the probe. The formation of the space charge 
sheath starts when the probe is made more negative than / 2ekT e−  when all electrons 
are repelled. At probe potentials sh e / 2V kT e>  only the part sh e / 2V kT e−  is due to the 
charge sheath. Therefore, between unperturbed plasma and sheath a quasi-neutral 
intermediate region (pre-sheath) develops in which the probe potential penetrates and 
where ions gain directional energy corresponding to the voltage drop e / 2kT e , which in 
the pre-sheath is virtually independent of the probe voltage. These considerations lead 
to the criterion of minimum ion energy necessary for the set-up of the sheath, which is 
the Bohm criterion (See Appendix B). 
 
2. More formally [92], the mathematical discontinuity which arises when trying to 
match the solutions of the plasma and the sheath can be overcome only by the 
requirement of the limit λD→0 which introduces two scales in the problem: a collision-
free sheath and a quasi-neutral pre-sheath. It is the singularity that arises because of the 
boundary conditions that forces the introduction of an additional “transitional” layer 
between sheath and plasma.  
The screening of the sheath ends at the edge that does not coincide with the unperturbed 
plasma; since Te>>Ti, a field in the region preceding the sheath is necessary to 
overcome the ion inertia and set the velocity values needed to satisfy the Bohm 
criterion. This is the origin of the pre-sheath. The main argument leading to such an 
additional region is constructed using a model consisting of an infinite plane wall [92]. 
The electronic repulsion gives rise to a positive space-charge region that shields the 
neutral plasma from the negative wall. A condition like λ≈λD<<L, where L is the 
characteristic dimension of the system, implies a collision free sheath. However, wall 
losses distort the ion distribution causing the shielding to be impossible unless the 
Bohm criterion is fulfilled: the ions have to enter the sheath with a high velocity that 
cannot be generated by the thermal motion alone; they have to be accelerated by a field 
penetrating a pre-sheath region. The boundary layer is then split into two parts: a 
collision free sheath of the order of the Debye length and a quasi-neutral pre-sheath of 
the order of the mean free paths. The singularity arises at the sheath edge where the two 
regions are required to merge, when λD/λi→0. According to [92] it is the location of this 
singularity which defines the sheath edge and the result of his paper refers to the 
fulfilment of the limit ε=λD/λi small but finite (in a paper of 1997 [103] the order of this 
scale and the conditions are given). 
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This outcome is not universally accepted. According to Godyak et al [87] the correct 
choice of the boundary condition would be a sheath edge occurring at the position 
where the electric field is strong enough to break down the quasi-neutrality of the 
plasma. In this case it appears that the Bohm criterion would not be necessary. It has 
been pointed out that in the intermediate region (pre-sheath), collisions need to be 
accounted for and that in a truly collisional case, the Bohm criterion cannot be fulfilled 
simply because collisions would prevent ions to reach the critical velocity [94].  
 
Formally, by considering "high" and equal carrier densities, the boundary conditions 
assumed at the wall, e i (0)  (0) 0n n≈ = , imply that the potential, electric field and 
charge density diverge because the equality of the fluxes implies instead ni,e≠0. As a 
consequence, a transition sheath from the high-energy plasma to the low energy wall 
arises (the aforementioned pre-sheath) in which considerable field potential differences 
exist and a large charge separation occurs. 
 
The Bohm condition (for a derivation, cf Appendix B) requires 2 2

oz B e iv v /kT m≥ = , 
where voz is the minimum velocity of the ions impinging the wall. Physically it is the 
slower decrease of ni with respect to ne due to the increasing potential that renders the 
formation of a positive space charge shielding possible. The Bohm criterion describes a 
condition to be satisfied near the sheath edge but does not say anything about the global 
sheath structure. The reason is that it is derived in the small scale λD/λi and therefore it 
would be inappropriate to extend its conclusions on a wider scale [92].  
 
The following conclusion can be drawn from the preceding discussion: either the field 
extends beyond the sheath edge into the pre-sheath in order for the Bohm criterion to be 
satisfied. In essence it means that the field is able to impart the necessary velocity to the 
ions in the pre-sheath, which in the opinions of some authors suggests a collisionless 
sheath. Alternatively, the field ends its influence at the sheath edge (the field is 
shielded) and the Bohm criterion is not necessary for the collisional sheaths. In these 
cases, it can be thought that the mechanism that drives the ions towards the sheath is of 
diffusive nature rather than mobility driven.  
However, the main question whether the Bohm criterion is always a necessary condition 
for the sheath formation remains.  
 
3. For Ar ions, the parameters of Table 2.3, give a Bohm velocity of the order of the 
sound velocity in the medium (~2700 m/s for Ar in thermal plasma at 16,000 K).  
A modified Bohm criterion can be obtained by removing the cold ion assumption [90], 
i.e. accounting for the finite ratio γ=Ti/Te of ion to electron temperature as follows: 
 

1 3γM > +  (4.1)  
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Where 0

i Bv vM = is the Mach number, 0
Bv is the “cold” ion Bohm velocity and γ=Ti/Te 

is the temperature ratio. The enhanced Bohm velocity is shown in figure 4.1 together 
with the ‘cold’ case for different γ. 
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Figure 4.1 Bohm velocity as a function of electron temperatures for different γ=Ti/Te 
using formula (4.1) in [90]. The cold case corresponding to γ=0 (‘cold ions’, Ti=0) is 
shown for comparison (lowest continuous curve). Also shown is the sound speed cs 
determined from thermodynamical quantities (non-monotonic continuous curve, after 
[44] 
 
 
It is clear that at the temperatures of interest, the ratio between the thermal (γ=1) and the 
cold (γ=0) case is of the order of two. 
 
As a consequence, also the expression for the floating potential VW is modified with 
respect to the one given by the ‘cold’ formula (cf formulae 4.11 below and 3.1) 
 

e e i
W

i e

lnkT T mV
e T m

=  (4.2) 

(ion flux conservation is assumed within the sheath, i.e. ionization and recombination 
within the sheath are neglected). The effect of the finite ion temperature ratio is to 
reduce the sheath thickness. In fact, since the ions move at a velocity greater than vB, 
they have a larger kinetic energy: more ions hit the boundary and this lowers the 
negative wall potential. The ions recombine with the wall electrons. The reduction of 
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 the wall potential means that the ion attraction reduces and so does the charge 
separation ni-ne, with the effect of a sheath thickness reduction. 
 
4.3. Sheath classification 

Whether or not there is an applied voltage, the study of the planar geometry has its “in-
principle” usefulness even for different geometry. The condition to consider the 
curvature of the surface immaterial is that the boundary layer should be much thinner 
than the probe: δ<<rp. For a radius of 125 µm the ratio of the two is just about three (a 
thickness of 2 to 4⋅10-5 m has been considered in Chapter 2 [see (2.51) or comments 
after (2.54)], thus the mentioned condition is not fulfilled and the curvature must be 
considered. For the electrical sheath the thickness is much smaller than the probe radius 
(δs<<rp) and the planar assumption is more justified. Some 'plane plate models' are 
considered to illustrate the general mathematical difficulties associated with the 
different regions between bulk plasma and body.  
A classification of d.c. sheaths is given which broadly divides sheaths in collisionless 
and collisional [104].   
 
4.3.1. Collisionless sheaths 
Some common features for the collisionless case are considered. The hypotheses 
common to the models are: 
 
1. Maxwellian distributed electrons at a temperature Te; 

2. Cold plasma, i.e. Ti=0; 

3. Quasi-neutrality in the bulk and at the origin of the coordinate, which is the 

plasma sheath edge (x=0); 

4. The potential is zero in the origin. 

The equation of motion is [104] 
1/ 22
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 (4.3) 

Where ns is the charged density at the sheath edge, 2
s i sv / 2K m=  is the ion kinetic 

energy and 2
sv  is the initial ion velocity (at the edge) satisfying the Bohm criterion, vs 

≥vB. Equation (4.3) is non linear. Its first integral, obtainable numerically, is known to 
exist only if the ion velocity exceeds the ion sound speed (Bohm velocity, see Appendix 
B). 
The potential in the pre-sheath, which gives the final ion velocity as the Bohm velocity, 
is  
 

p e 2eV kT=  (4.4)  
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and the electron density at the sheath edge is then 
 

p e
s b b0.61eV kTn n e n−= ≈  (4.5) 

where nb is the bulk plasma electron density. 
The wall potential with respect to the sheath is obtained by the equality between ion and 
electron fluxes 
 

w e/
s B s e e

1v v
4

eV kT
i n n eΓ = = = Γ  (4.6) 

And using the expression for the mean speed for electrons (thermal speed) 
 

e
e

8v
π
kT
m

=  (4.7) 

The potential of the wall with respect to the sheath-pre sheath edge (therefore, under the 
hypothesis of zero field and potential at the edge, with respect to the plasma) is 

 

i
w e

e

ln
2π

meV kT
m

= −  (4.8) 

Remarkably, this depends only on the electron temperature. For Ar ions with thermal 
energy kTe≈1 eV at the edge, the kinetic energy of the impact at the wall would be  

w e4.7 4.7  K kT eV≈ = . This can be compared with the result given by formula (4.2), 
which is Kw~5.6 eV. 
 
In principle, a measurement of the probe potential and the knowledge of the computed 
potential (4.8) would give the plasma potential, which in turn would give the electric 
field, but the latter is supposed known in the derivation of (4.8). Moreover, the plasma 
potential is not always necessary if the field has to be found. In the following, few 
models of collisionless planar sheath are considered. It will be seen that their range of 
validity is severely limited by the necessity of high-biased wall, i.e. high wall potentials. 
Figure 4.2 shoes the choice of the coordinate system used. 
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Figure 4.2 

 

For the boundary conditions in planar 
geometry. Pre-sheath is omitted and 
the origin of the abscissa is taken at 
the sheath edge. 

 

 
1. A ‘matrix’ sheath forms in the case of a highly biased wall or probe substantially free 
of electrons (thus / 0eV kT

e sn n e →� ) and has uniform ion density: integrating twice 
Maxwell equation 
  

s

o o

ρ ,  or  
ε ε

endEE
dx

∇ ⋅ = =  (4.9)  

with the conditions 0,  0,  0x V E= = = , the field and the potential are 
 

2
s s

o o

  and  
ε ε 2
en en xE x V= = −  (4.10) 

And the sheath thickness is obtained in terms of the potential at the sheath edge Vo, by 
posing x=δs  
 

( ) ( )1/ 2s
s 0 0 s D o eδ 2ε / =λ 2 /V en V kT=  (4.11) 

Where s o e
D 2

s

ελ kT
n e

=  is the Debye length at the sheath edge. 

 

2. In the Child-Langmuir law sheath model, assuming the initial ion kinetic energy at the 
sheath edge smaller than the potential 
 

 2
s i s s

1 v
2

K m eV= <<   

the current density is constant, and the ion density is i 0 i( ) vn x j e=  so that and using 
Poisson equation, both the field and the potential are obtained [104] 
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 (4.12) 

 

and the sheath thickness can be written as 
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3/ 4o
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Using again Poisson’s equation with the electric field in (4.11) gives the ion density 
within the sheath as a function of the position within the sheath 
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 (4.14) 

 

Whereas in [62] Brown’s Child-Langmuir formula [95] is quoted as 
 

3/ 2
2 2

s D
4πδ  λ
9

V
T
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  (4.15) 

 

This expression was used in atmospheric TIG arcs and it is based on the hypothesis of 
Local Thermodynamic Equilibrium (LTE), with equal ion and electron temperatures T 
and a thin (i.e. collisionless) sheath. 

 

3. Swift [65] considers Poisson's equation for the particles distributions at equilibrium in 
the origin neo, nio (which is now chosen at the wall) 

 

eo e io i 

i
e i

( )( )
    ,         
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or explicitly, 
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 where ni∞ and ne∞ are the bulk ion and electron densities. The solution of equation 
(4.17) gives the variation of the potential within the sheath. In principle, solving this 
equation will yield the values of the number densities. However, its non-linearity forces 
the approximation of the exponential to the first order, i.e. 

 
2 222

i i e
2

o i o e

 e  e  
 

ε  ε   
Z n nd V V

dx k T k T
∞ ∞

 
 = +
 
 

 (4.18) 

 

provided the two conditions 
 

i p i p e  ,            e   Z e V k T V k T< <  (4.19) 

are fulfilled. This gives the potential  
 

s
p

/δ( )  xV x V e−=  (4.20) 

where δs is  the sheath width 
 

s 2 2 1/ 2
i i o i e o e

1δ
(   / ε    / ε   )Z e n k T e n k T∞ ∞

=
+

 (4.21) 

 

Simplifying in the two limiting cases: 
 

a) Ti=Te = T (“Thermal” plasma) 
 

( )
o

s D2
e i

ε   1δ λ
1  1 i

k T
Zn e Z∞

≈ =
++

 (4.22) 

 
so the greater the n's the shorter δs (it has been assumed ni∞ = ne∞). 
b) Te>>Ti a situation referred to as "cold ion plasma" 

 

o i
s 2

i i

ε   δ
  

k T
n e Z∞

≈  (4.23) 

 

In order to verify the conditions under which the approximation (4.19) was made, 
namely i p i  Z e V k T<  and p e e   V k T< , the potential in the origin, Vp can be calculated 
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assuming the equality for the temperatures, i.e Ti ≈Te≈ T.  At equilibrium, the net current 
fluxes must be zero:  

io i io eo eo   v   vn Z e n e< > = < >  (4.24) 

 

i,e o
i,e

8  v
π 

k T
m

< >=  (4.25) 

 

so that, using (4.16) in (4.24), putting e in n∞ ∞=  and resolving for V gives 
 

i
p

e

  ln  
2  ( 1)i

k T mV
e Z m

=
+

 (4.26) 

 

Since mi >> me and 2(Zi + 1) >1, at best |e| Vo ≈ kT and the conditions (4.19) are not 
valid. However, Swift states that from a practical point of view, a "physical" assumption 
 eV < kT could be assumed everywhere, except for x→0.  But in fact, it is just in this 
limit that the condition becomes questionable; if in the pre-sheath the effect of the field 
is to drive the ions towards the sheath [92, 93] this condition has no real “physical” 
significance: the pre-sheath edge may be well beyond the x→0 limit.  
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Figure 4.3 a, sheath potential distribution according to Matrix model (abscissa is bottom 
axis), for two number densities; and Child-Langmuir for two wall potential (abscissa is 
top axis) [formulae (4.10) and (4.12)].   
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Figure 4.3 b, sheath thickness: “Thermal” (4.22) (Swift), Matrix for different sheath 
number densities and Brown’s C-L (4.29) formulae for different number densities and 
temperatures.   
 
 
In figure 4.3 left the potentials for the matrix and the Child-Langmuir models are 
shown. The Child-Langmuir model depends on the wall potential which has been 
chosen Vw= –10 and –20 V; also, the x dependency (4.12) is expressed in terms of the 
x/δs ratio (upper abscissa). An arbitrary factor 105 has been chosen for the scaling. If the 
sheath is 10-5 m then when the ratio reaches unity, the edge has been reached. For lower 
values of the ratio the sheath extends beyond 1. 
For the matrix model, two different densities have been chosen, generally 100 to 1,000 
times less than the core bulk density (sheath depletion, see figure 5.13 in Chapter 5).  
Figure 4.3 rights, shows the thickness computed for the two potentials of figure 4.3 left. 
Since Child-Langmuir’s depends on electron temperature, a relatively “high”, 15,000 K 
and a “low” 5,000 K value were chosen. Also shown is the value after Swift (formula 
(4.22)). 
Except in the latter case, where it is equal to the Debye length, the thickness varies 
considerably in the other cases. A temporary upper limit of about 10-5 m is taken as 
result of the Matrix model for n=1019m-3, although in this case, it can be expected that a 
correspondingly higher neutral density would be present within the sheath. But the 
collisionless nature of the latter would not break down. This can be seen by comparison 
of this value with the mean free paths evaluated in Chapter 2 (figure 2.5). 
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By using the formulae of this section, it is possible to evaluate and plot the number 
density within the sheath; however, a part of the limitations indicated at the beginning 
of the section, it should be mentioned that both Matrix and Child-Langmuir models 
were developed for highly biased walls. In particular, Child-Langmuir’s was originally 
developed for vacuum tubes and large sheath potentials with respect to the electron 
temperature; therefore, it is only valid for the case of a highly biased wall or probe in 
rarefied plasma. In atmospheric arcs, the wall potential (i.e. the probe) can rarely be 
biased at values above 30 V. Among these collisionless model, Swift’s is the closest to 
the experimental conditions of interest within this work, namely a somewhat ‘lower’ 
wall potential, possibly a floating wall (this also explains the choice of the wall potential 
at 10 and 20 V made above). As mentioned earlier in this section, the validity of the 
assumption used in its derivation turns to be incorrect (condition (4.19) and comments 
thereafter), however it provides an order of magnitude for the sheath thickness. 
 
 
4.3.2. Collisional sheaths 

1. Collisions alter the ion distribution of velocities when entering the sheath [98] but it 
is difficult to account for the different collision mechanisms (rates, cross sections).  
The fact that according to literature, the sheath extends for some Debye lengths gives 
some hints about the degree of collisionality under he circumstances of this work. 
 

1. The Debye length (λD≈10-8 m) is of the order of the mean inter-particle distance, 
n1/3 (see Chapter 2) 

 
2. The number of particles per Debye sphere, 4/3

D D4πλ / 3n = , amounts less than 10 
(cf [31] and figure 2.2) 

 
3. The mean free path of ions, depending on ion collisions, is one to three orders of 

magnitude greater than λD (cf figures 2.2 and 2.4), while for electrons it is 
always at least two orders of magnitude greater than the Debye length. 

 
Therefore, the number of particle encounters within the sheath must be limited. The 
ratio between the ion and neutral number densities within the sheath is important as 
from this number depends the rate of ion-atom collisions and in particular the rate of 
charge exchange reactions. It is of interest to assess the collisional models within the 
parameter range of this work. It will be seen that their limit converges to the 
collisionless conditions. 
In the collisional case the ion mean free path is less than the sheath thickness. Both the 
mobility and mean free path of ions depend on ion velocity, however two extreme cases 
can be considered depending on pressure and ion velocity: either λi ≈ const  or  µi ≈ 
const. 
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1) In the first case, λi ≈ const, the ion density, the electric field, the potential 
(“improved” version of Child-law) and the current density are reported as [104]: 
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with E(0)≈0 at the sheath edge, and 
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where V(0)=0. Since ensvs=jo, putting V=−Vo at the probe position x=ls, the constant 
current density is 
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 (4.29) 

 

which is the collisional form of the Child-Langmuir law at constant mean free path that 
is independent of ion velocity (note that the origin x=0 was chosen at the plasma-sheath 
edge). 
 
2) At higher pressure, the ion collision frequency and therefore the ion mobility µi 
is independent of velocity (‘constant’) and an expression for the ion current density is 
given 
 

2
o

o o i 3
s

9 ε µ
8 δ

Vj =  (4.30) 

 

For very high collisionality the ion velocity at the sheath is different from the Bohm 
velocity and their ratio can be written as [87] 
 

( )
( )s

i De1/ 2
B De i

v 1 2λ / πλ
v 1 πλ / λ

≈ ≈
+

 (4.31) 

 

(where in the last equality a first order expansion was used for λi<<λDe) 
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2. The span from collisionless to fully collisional treatment has been covered in [97] 
who identify a distinguishing criterion in the average number of collisions within the 
sheath (collision parameter) [97, 98] by the product of β=λD/λ and d = δs/λD 

sD

i D

δλβ 
λ λ

d = . 

Thus for βd>3 the solutions obtained by solving the exact sheath equations match the 
ones obtained from a collisional solution [97]. These equations are obtained by 
balancing the forces due to the electrical field with the mobility driven resistance 
contribution (mobility drag). This can be also seen as the neglecting of the convective 
term in the ion momentum equations, which means that the collisional drag term 
dominates the convective term in the momentum equation pertaining to the sheath.  
In the opposite case both terms play a role. In the extreme case of βd very small, the 
convective terms dominate, resulting in the fully collisionless case. 
In [98] attention is drawn on the full range of collisionality in order to determine the 
potential distribution that has to supersede the one given by Child's law (‘Generalized 
Child-Langmuir’). A power law is determined and the ion distribution function within 
the sheath is determined. These results are obtained under conditions of planar geometry 
and cold ions following mono-dimensional trajectories. Further, since a static sheath is 
considered, the electrons are considered in equilibrium; this means also that the 
dynamical aspects of the model can be accepted as long as the time scales of interest are 
larger than the ion plasma period.  
This can be checked comparing the ion plasma frequency ωi with the electron-atom 
collision frequency 2πνea. The first can be taken as ωi = 1011 to 1012 rad/s for the ions of 
interest here (Ar, He, see Chapter 2); the second can be estimated using the electron-
atom collision cross section, σea = 0.15⋅10-20 m2 (for H) or σea=5⋅10-20 m2 (for Ar); using 

ea ea e2 σ vv n= < > where 6
e ev 8 π 1.56 10 /kT m m s< > = = ⋅  (atoms considered at rest 

with respect to electrons), the collision frequency is 2πνea = 2⋅109 to 6.9⋅1010 rad/s  (for 
H and Ar respectively) so that 2πνea < ωi and the hypothesis of a static medium is ‘just’ 
satisfied for Ar. 
The authors consider only electron neutral collisions, which is justified only when the 
degree of ionization is ‘low’. Therefore, for the varying conditions found in the present 
study, these conditions could be of interest far from the arc core if the sheath were 
collisional. On the other hand, the latter circumstance implies a low temperature and 
therefore [98], the neutral density within the sheath is much larger than the charged 
density, a condition that would be always fulfilled in collisional cases. Among the 
different ion neutral interactions, the charge transfer seems to play a predominant role 
[98] and thus is the only collision considered. Other hypotheses are that the electrode is 
perfectly adsorbing and secondary emission arising from ion bombardment is neglected. 
Finally, the pre-sheath existence is not considered as its potential drop is assumed 
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 ‘small’. This is reflected in the choice of the boundary conditions, with potential and 
electric field vanishing at the interface, although the ion impinging velocity is not small.  
The authors solve the ion equation exactly by numerical methods and compare the 
results with approximate analytic solutions. The latter match the numerical outcomes 
better when the electronic contributions are considered.  The potential distribution in the 
sheath and the ion velocity distribution at impact on the electrode are determined. In 
particular, the ion energy distribution from the power-law potential distribution is 
obtained by taking into account the electron contribution. It is found that ions cannot 
acquire the whole energy from the field so that as the parameter β=λD/λi increases, the 
impact velocity at the electrode decreases. 
Similar is the work of [97] where the sheath thickness was computed using the three 
‘dimensioned’ equations for the collisionless and collisional sheath regimes: 

 
A) Collisionless regime: Child-Langmuir formula 
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 (4.32) 

 

where cs is the sound speed. 
 
B) Collisional, specialising the general case given by the author and taking for the ions 
upstream of the wall the sound speed vi=cs≈2,700 m/s  (Chapter 2, [59]), i.e. M=1 to see 
the effect (if any) of the Bohm criterion;  in the two extreme cases 
 

 B1) constant ion mean free path λi, numerically, 
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  B2) constant mobility 
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Formula (4.33) gives the plots in figure 4.4. Unfortunately, case B2 gives unrealistically 
low sheath thickness (10-11 and 10-12 m) and is neglected. 
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Figure 4.4 a continuous curves, sheath thickness (left axis); broken curves, collision 
parameter (right axis) within the sheath as functions of the probe potential for different 
electron temperatures. The collisional case for constant mean free path is shown [97]. 
Ion speed taken as the Bohm velocity at the corresponding temperature. The region 
below βd=1 is collisionless, above βd=3, is fully collisional. (*) The 20,000 K computed 
using ion-electron collision mean free path.  
 

0 2 4 6 8 10 12 14 16 18 20
2x10-8

10-7

6x10-7
0 2 4 6 8 10 12 14 16 18 20

0.1

0.2

0.3

0.4

δ s (
m

)

V (V)

∆Vf

5,000 K

20,000 K (*)

5,000 K

20,000 K (*)

β d

 
 
Figure 4.4 b, Particular of figure 4.4 left. Horizontal broken line at 0.1 is the upper limit 
for convection. The potential for floating probes under atmospheric arc conditions is 
believed to vary between 5 and 9 V (cf Chapter 9).  
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 The regions in figure 4.4 right are subdivided using the criteria given in [99]; for 
number of collisions below 1 (strictly speaking 0.1 in the original paper) the sheath is 
collisionless. In this region the convective term in the ion momentum equation 
dominates. The region above βd=3 (number of collisions) is fully collisional; here the 
drag term (i.e. ion mobility) dominates in the mentioned equation. In between the two 
regions both convective and drag terms play a role. 
However, the highest number of collisions (right axis) reaches unity only for very high 
wall potential (~100 V) and temperature of 20,000 K. At the same temperature, it is 
about 0.6 at 40 V. In contrast with the other temperature cases reported in figure 4.4, the 
sheath thickness at 20,000 K was evaluated as a limiting case using the mean free path 
for ion-electron collision, because ion-atom collisions are negligibly small. 
Correspondingly, the electron density was used. This is difficult to assess because at 
negative probe potential, the electron density is likely to drop within the sheath. Also, it 
is unknown whether substantial cooling would occur within the sheath, driving the 
composition towards lower temperatures and charged particle densities. In these cases 
the thickness curve would lower towards the 12,000 K case. The other cases were 
computed using the neutral density and the ion-atom mean free path, both computed at 
the appropriate temperature (consistently with the parameters of Chapter 2). 
Therefore, it may be concluded that the sheath can be considered collisionless with 
respect to ion-atom interactions; this holds as long as a low ionization ratio is assumed 
which occurs in the edges of the arc. When electron-ion collisions become important, 
the sheath can be considered weakly collisional. 
 
4.4. Varying Sheath  

The “varying” sheath corresponds to the experimental situation of a moving probe 
entering the atmospheric pressure arc from the cooler and less dense outer regions 
towards the hot and dense core. It is likely that the potential and the thickness of the 
sheath will vary with time as the probe varies its position in time during the motion. 
Given probe permanence times between 1 and 10 ms (cf Chapter 9), a true sheath 
variation ‘time scale’ can be introduced by considering the plasma changes in the time 
necessary for the slowest components, namely the ions, to redistribute during the probe 
transit time. This can be considered as the sheath “formation time”.  
The time for the ions to rearrange following a variation in the electric field could be 
estimated as the ratio between the Debye length and the ion thermal velocity [84] 
 

i
D thτ λ v=  (4.35) 

 
or slightly higher when using δsh ≥ λD. Using the values reported in Chapter 2, for Ar at 
20,000 K this gives τ ≈ 8⋅10-11 s, whereas, at 5,000 K, τ ≈ 6⋅10-12 s. Debye length and 
thermal velocity were computed using the temperature dependency of the charged 
particle density (Chapter 2). If one takes as characteristic length the (longer) mean free 
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path, λi ≈10-6 m, the longest characteristic time would still be only ≈ 2 or 4⋅10-10 s. 
Alternatively, one could argue [76] that the time for the plasma (perturbed by the probe) 
to relax back, is the time needed for the flow to move a ‘probe diameter away’, τ=2rp/vf, 
where flow speed is now considered. Under the circumstances of this work, this would 
mean τ≈1.3 µs (vf =200 m/s) to 5µs (vf =50 m/s). This argument was used by Thomas 
[76] to infer the time needed for the sheath to form within a flame, in his case of the 
order of a ms. It is perhaps worth mentioning that in [105] Thomas’s statement is 
applied uncritically, of a “few ms” formation time in conditions which are widely 
different from Thomas’ and in fact closer to those dealt with here. For the conditions 
reported in [105], this time results τ≈ 0.5 µs, thus much shorter than the reported ‘1 ms’.  
According to this picture, 5 µs is the maximum sheath formation time considered here. 
Within the time resolution of the system under study the sheath can be considered 
approximately ‘static’. The latter is obtained as τR~20 µs by taking the minimum spatial 
resolution a=100.4 µm and the probe speed v=5.02 m/s from the experiment (cf Chapter 
8). Therefore, considering the longest among the formations times, 5 µs, as many as 4 
sheaths of the estimated thickness can be formed during the minimum resolved time. 
 
4.5. Summary 

1. From the previous discussion, the following conclusion can be drawn on the validity of the 
Bohm criterion: either the field extends far beyond the sheath edge into the pre-sheath in 
order for the Bohm criterion to be satisfied, suggesting a collisionless sheath; or, the field 
ends its influence at the sheath edge, and the Bohm criterion is of no use for the collisional 
sheaths. However, this conclusion holds only with respect to the charged-atom collisions, 
which dominate where low-ionization levels are attained. In this case, it can be thought that 
the mechanism that drives the ions towards the sheath is of diffusive nature rather than 
mobility driven. When the ionization ratio is higher, higher cross-sections for charged 
encounters (see Chapter 2) imply that electron-ion mean free paths must be used, the field 
‘leakage’ out of the sheath is greater and the validity of the presented models breaks down.  
 
2. The hydrodynamic boundary layer is generally of the order of or thicker than the 
sheath thickness evaluated above. At Reynolds number R=40 (100 m/s) the boundary 
layer is δ=3⋅10-5 m in argon (cf figure 2.14). In the collisionless case, the sheath 
thickness varies from δs=10-5m in the ‘Matrix’ model, down to less than δ=10-6m in the 
Child-Langmuir case. For the collisional regime, δs=2⋅10-6 m (see figure 4.4) [97] only 
for relatively high potentials and at high temperature (20,000 K). The upper limit was 
reported at 100 V although in atmospheric arcs V=-40 V is close enough to the probe-to-
anode breakdown conditions [62]. For lower voltages, at values close to the floating 
potential, say between 5 and 10 V, the sheath thickness is δs=7⋅10-8 m at 5,000 K and 
δs=2⋅10-7 m at 20,000 K (this voltage is "averaged" because it is an overall estimate of 
conditions where the currents drop to zero). 
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 3. The validity of the sheath models presented is largely limited by highly biased walls 
in low ionization plasmas. It is felt that alternative models are needed, which should suit 
the present cylindrical geometry and the lower field, at least for the floating operating 
conditions. 
 
4. It is also clear that some theoretical and experimental evidence is needed towards the 
understanding of the sheath structure and the kind of motion governing the charged 
particle approach to the probe. In the following chapter, a review of the probe operating 
regimes will attempt to clarify whether diffusion, convection or electric field effects are 
the driving mechanism, and then compared with the experimental findings in 
subsequent chapters. 



 

 

5. PROBE OPERATING REGIMES AND 

CURRENTS 

 
 
5.1. Introduction 
Although considerable works on ion (and some on) electron current collection exists, 
the only publications dealing with current amplitudes appropriate for the present work, 
are the paper by Gick et al [62] some technical reports [106], [63] and, to some extent 
[107, 108]. The paper by Schott [86] covers a review of the basic works of Lam [109], 
Cohen [110] and others, but the experimental agreement with the theory is limited to 
relatively low pressures (some mTorr). The book by Swift and Schwar [65] underlines 
the difficulties when dealing with "high" pressure plasmas, where the effect of 
collisions makes the interpretation of the characteristic curve rather involved if not 
impossible [86]. Furthermore, the impressive number of publications by Clements and 
Smy [78, 79, 82, 91, 111-117] while apparently covering a broad range of experimental 
conditions, are mostly limited to the study of flame plasmas. These are characterized by 
electron temperatures varying from 1,500 K to 3,000 K, and in which the electron 
density does not exceed 1018 m-3, some four orders of magnitude below the regimes 
dealt with in this work, although Smy [84, 118], and Smy and Noor [118], mention 
charge density up to 1020-1023  m-3. To the author’s knowledge, the works dealing with 
these high values are only Clements and Smy's paper of 1972 [113] and Holmes et al 
[105]. Also, Dawe et al [81], while stating the validity of the "sheath convection mode" 
(attributed to Smy  [84] for regimes from 1020 m-3 up to 1029 m-3 (evidently a print 
error!), limits his experimental analysis to flames similar to those discussed by 
Clements and Smy [79, 91, 111, 114, 115]. 
Another major difficulty scarcely accounted for in literature on atmospheric plasmas is 
the limited ionization degree. The aforementioned works refer to ionization levels 
always less than 10-4 thus classified as "low" (see Chapter 2). In only one case is the 
question addressed in literature for ionization levels up to 10%  [74] but in this case the 
treatment is limited to stationary and homogeneous plasmas. 
 
This lack of coverage poses serious difficulties for the dramatic scaling up needed for 
the use of the different current formulas derived by these authors (a factor ≈10 for the 
electronic temperature and up to seven orders of magnitude for the electronic density). 
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 Notwithstanding the plausibility of the classifying criteria fulfilled by the atmospheric 
arc, considerable limitations due to the specific hypothesis arise when treating the 
current collection modes. With variations of one or two orders of magnitude, the total 
currents obtained experimentally by all but [107, 108], [62, 106] and [62, 63], are 
always below 0.1 A. Gick [62] presents ion current values of the order of 1 A, even if 
the plasma parameters derived may be subject to some criticism as will be discussed 
later in this analysis [115]. Due to the distinguishing physical similarity to the 
experimental conditions dealt with here, the works of Gick [62, 106] and to a limited 
extent, Allum [63] will be taken as test cases within this review.  
 
In the following, a list of the works of interest in this review is presented together with the 
either measured (when available) or calculated currents corresponding to the present 
experimental conditions, i.e. by using the parameters reported in Chapter 2, provided the 
appropriate regime applies. It should be observed, that the use of the equilibrium n(T) 
dependency as given by Olsen [39] is questionable; however, the use of this hypothesis is 
limited to the search for applicability criteria for one or another probe theory. The values 
obtained for the currents are therefore given as order of magnitude estimates. 
Mention is made of works with some correspondence with the results of the regime 
classification outlined in section 5.2 "Regime classification". All these values refer to 
cylindrical geometry. 
 
Table 5.1 summarizes the parameter values used for the current computations reported 
below. Some are taken from Chapter 2. The probe length has been considered 
approximately equal to the arc diameter, i.e. from about 10 mm to 15 mm even when 
longer; this means that only the ‘active’ part is considered, i.e. that the probe is fully 
immersed in the plasma and its edges might emerge from it (but see also Chapter 6).  
The flow velocity has been assumed to be 100 m/s, a value characteristic for the TIG arc 
[57].  

 

 

Parameter  Value 

Probe radius rp  10-4 m 

Probe length              L 5⋅10-3 m 

Ion mobility               µi 1.2 ⋅10-5 m 

Electron mobility        µe 4.3⋅10-2 m 

Plasma flow Velocity  vf 100 m/s 

Table 5.1. Quantities used for the calculation of the currents 
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The comparison will be made as follows  
 

1) From each model, the expressions for the current (and sometimes for other 
interesting parameters) are reported 

 
2) These are evaluated using the parameters listed in Tables 2.5 and 5.1 

 
3) The plasma parameters that are left free in the above formulas, namely 

temperatures and charge densities, are compared with experimental findings. In 
some cases however, both the charge density and the temperatures are unknown. 
When no formula is given for the derivative of the characteristic curve the 
density must be determined by different means 

 
4) A comparison is made with experimental conditions similar to those of interest 

here (when available). In particular, the currents for the appropriate regimes will 
be compared. 

 
5.2. Some orders of magnitude 

One source of complication in the interpretation of probe signals stems from the fact 
that the electrostatic probe is an intrinsically perturbing device. Its invasive nature is 
reflected by the birth of boundaries in which the plasma equations fall down. Around 
the conductor, the quasi-neutrality condition of the plasma is not fulfilled and a layer 
forms in which the electron and ion densities differ. This layer, called the Debye sheath 
(or simply sheath, see Chapter 4) can develop and sustain high electric fields. The 
sheath existence, geometrical extension, charge and regime depend on the values of the 
plasma parameters (see Chapter 4). The analysis may be further complicated 1) by the 
occurrence of thermionic emission, when the probe temperature is high enough, or 2) by 
the cooling of the electrons when the plasma flow is not negligible. Both effects will be 
discussed in Chapter 6. 
 
To the physical quantities that defined the arc regime in Chapter 2, some are added to define 
the plasma-probe interaction; others are calculated and reported in Table 5.1.  
 
1) The probe radius has upper dimensions limited by an "acceptable" spatial resolution, 
considering the arc length of 3 to 5 mm and an inner radius of the arc column of about 5 
mm, while its lower limit is fixed by simplicity of construction. In most cases in the 
present discussion it will be considered fixed at rp=100 µm. 
 

2) The parameter  α=λD/rp ranges from 3⋅10-4  for charge density ne= 1023 m-3 , to 10-3 
for density of 1022 m-3 at a temperature of 20,000 K and a probe radius of 100 µm. Its 
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 reciprocal, the Debye Number Dλ, interpreted as the number of Debye lengths within a 
probe radius, is shown in figure 5.1. 
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Figure 5.1 ratio of the Debye length to the probe radius (Inverse of the Debye number) as a 
function of temperature.   

 
 
3) The ratio  βi,e=λD/λi,e interpretable as the number of  ion or electron collisions within 
a Debye length ("i" and "e” stand for ions and electrons respectively), is shown in figure 
5.2. 
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Figure 5.2. Ratio of Debye length to mean free paths as a function of temperature. The 
Debye length was taken from figure 2.2 and the mean free paths were chosen 
according to figure 2.5 (i.e. selecting the appropriate temperature range) 
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It ranges from 2⋅10-3 for ions (λi=1.2 10-5 m) to 0.1 or 0.32 for electrons (λe=10-6 m or 
λe=3⋅10-7 m) in the case of charged-neutral collisions (low-ionization). For high 
ionization λi=10-6 m or λi=2.8⋅10-6 m and βi=0.1 to 0.28. 
 
A possible combination of the last two parameters, β/α can be interpreted as the number 
of collisions occurring in a region extending for a probe radius rp. It is the inverse is the 
Knudsen number described below. 
 
4) The Knudsen numbers, Kn=λi,e/rp, for electron are Kne≈ 0.02 (for λe= 1⋅10-6 m), or 
Kne≈ 0.008 (for λe= 3⋅10-7 m); for ions and low ionization Kni≈ 0.1 (for λi= 1.2⋅10-5 m); 
for high ionization (λi= 1⋅10-6 m), Kni≈ 0.02; typical probe radius rp = 1.25⋅10-4. 
Knudsen numbers are shown for some electron and ion mean free paths in figure 5.3. 
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Figure 5.3. Knudsen numbers Kn i,e= λi,e/rp as a function of temperature for some 
electrons and ion mean free paths. The relevant mean free paths are indicated. Probe 
radius fixed at 10–4 m. 
 
The ratio β/α  (the inverse of the Knudsen number), has values 8.3, 99.9 and 333 for 
ions and electrons respectively and for a probe radius of 100 µm.  
 
5) The hydrodynamical Reynolds Number R was defined in Chapter 2 
 

f pρ vρ
η η

rULR = =   
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 where also the thickness of the ‘fluid’ boundary layer forming around the cylindrical probe 
was reported in figure 2.15. 
The hydrodynamic boundary layer is thicker than the sheath thickness evaluated in 
Chapter 4. In particular (see figure 4.3) δs=2 or 3⋅10-5 m in the collisionless Child-
Langmuir regime [97] or δs=2 or 3⋅10-7 m ≈ λD in the collisional case (see figure 4.4), 
while at Reynolds number  R=40 (100 m/s),  δ=3⋅10-5 m. 
Of course when δ>>δs it is immaterial whether the sheath thickness is evaluated in non 
flowing conditions because the plasma flow velocity within δ drops rapidly towards 
zero at the surface (non slip condition) and can be assumed negligibly small at distances 
of 10-5 to 10-7 m  from the  surface. 
 
6) The Electrical Reynolds number, defined as the product of the hydrodynamic Reynolds 
Number and the Schmidt Number [112]: 
 

pf

ei

v   

µ   

r e
Re

k T
=  

where µi is the ion mobility. Re can vary from 40 to about 104, in the range of the flow 
velocity, vf = 100 to 2,700 m/s (Ar sound speed) and an electron temperature Te = 
10,000 or Te = 20,000 K (probe radius rp, =100 µm). Re is plotted in figure 5.4 as a 
function of temperature (left-bottom axes) or flow velocity (top-right axes).  
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Figure 5.4. Electrical Reynolds number Re in Ar as a function of temperature (left-
bottom axes) and of flow velocity (top-right axes). Probe radius rp=10-4 m. 
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7) The reduced potential is a non-dimensional parameter defined as the ratio of the 
electric potential energy eVp supplied to the probe (either through the bias or the floating 
voltage Vp, no distinction between the symbols is made here) and the thermal energy of 
the electrons, kTe. Previous experimental conditions very similar to the ones discussed 
here [62], suggest voltages up to about Vp=40 V before the occurrence of breakdown. 
Numerically, eVp/kTe ≈ 11,600 Vp/Te (V/K) and the two limiting temperatures considered 
7,500 and 12,000 K, see Chapter 2, give 1.5 Vp and 0.9 Vp, while at 20,000 K, eVp/kTe ≈ 
0.6 Vp. The maximum voltage would occur at 7,500 K, and would be 60 V.  
The parameters discussed above are listed in Table 5.2. 
 

 

Physical parameter (Units) Range  

1) Debye length λD (m) 7 ⋅10-8 to 10-7m 

2) Debye number Dλ=α-1=rp /λD 103 to 104 

3) βi,e=λD/λi,e   (LI)  

     βi=λD/λi      (HI) 

2⋅10-1 (i) 2⋅10-3 (e) 

2  to 4⋅10-2 (i,e)             (cf fig. 5.1) 

4) Knudsen numbers  Kni,e = λi,e / rp  

 

 0.01 (i); 0.01 to 0.5 (e)  (LI) 

 0.01 (i,e)    (HI)            (cf fig. 5.2)  

5) Hydrodynamic Reynolds number R 0.2 to 5  (Ar); 0.2 to 4.5 (He) 

6) Electrical Reynolds number Re 40 to 1.2⋅104 

7) Reduced potential χ = eVp/kTe: 0.6 to 1.5 Vp 

Table 5.2. Physical quantities calculated from the parameters of Table 2.3. (LI=Low 
Ionization, HI=High Ionization).  
 
 
Many computed parameters depend explicitly on the mean free path; the latter depends on 
the collision cross-sections, specific of the particles species and interactions, which in turn, 
depend critically on the ionization fraction (see Chapter 2).  
It is worth noting that the probe theories under assessment here were developed for 'low' 
ionization ratio. The consideration of higher ionization ratios is one of the aims of this 
study. 
 
5.3. Remarks and Classification 

In the published literature, the authors that appear to provide a comprehensive review of 
the probe operation theories, are (I) Swift and Schwar [65], (II) Chung, Talbot and 
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 Touryan (‘CTT’ [37, 119]),  (III) Smy [84], Clements and Smy  (collectively ‘CS’ in 
the following, [78, 79, 82, 91, 111-117]), (IV) Tichy et al [120-122] and V) Benilov 
[123]. 
The choice of these works is somewhat arbitrary, however, in the frame provided by 
these groups of publications, mention is made of specific works (like the classical 
papers by Kagan and Perel [88], Su and Lam [73], Su and Kiel [72], Lam [109], Kiel 
[75], Cohen [110], Carrer and Fendell [124], Schott [86] among the others). The choice 
reflects the different points of view that these references provide. In particular a balance 
was deemed necessary between the rigorous theoretical presentations in (I) and (II) 
against the more experimental and practical considerations found in (III). Also, these 
works originate from different fields of research and /or different regimes (Low-
pressure laboratory plasmas (I), re-entry problems of vehicles through atmosphere (II) 
and flame plasmas (III). Although none of these fields resembles very closely the 
medium under investigation in this work, it is a purpose of this review to try to match 
the different limiting cases from opposite directions. The tempting methodology to 
follow a ‘selection by exclusion’ procedure saving the ‘right tools’ for the case under 
study here was found unfeasible. Moreover, a comprehensive and in-depth state of the 
art review on probe operation in “high” pressure regimes was felt necessary (at cost of 
some lengthiness) because very often, special cases are only treated in a sparse fashion. 
 
Four groups of parameters were chosen according to the works found in the literature. 
The first is based on the Debye length and the probe radius (section 5.2.1); the second 
deals with ion and electron mean free path and probe radius (i.e. Knudsen numbers, 
section 5.2.2). The third, takes into account the plasma probe relative motion by means 
of the electrical Reynolds number (section 5.2.3). The fourth analyzes the plasma-probe 
relative motion using a hydrodynamic model and partly incorporates the third. 
Following an identification procedure, the explanation of the terminology is reported.  
For each group this will be done according to the following steps: 

 

• List of the classification criteria; 

•   Description of the different regimes proposed together with the origin of the  

classification criteria; 

•   Evaluation of their key parameters and justification of the choices made. 

 

After the regimes are identified, a review is made of the available experimental methods to 
extract plasma parameters (section 5.7). 
Open questions and problems related to plasma cooling, thermo- and field-emissions 
and the relaxation of the “frozen-chemistry” condition remain and are reported in 
Chapter 6.  
 



 
5. PROBE OPERATING REGIMES AND CURRENTS                                                                88 
 
5.3.1. Classification based on Debye length and probe radius 

The book [65] deals extensively with the basic theory of probe operation dedicating a 
chapter on "Probes in high-pressure plasma"; it also provides a final table summarizing 
the different regimes for high pressure plasma probe operation, based on the ratio of 
Debye length and probe radius and on limits on the probe potential; the references 
however, dated up to the mid 1960s, are limited to low degree of ionization and mostly 
to spherical geometries. The probe current depends on the probe potential also at high 
pressures. The effects of the electrical field in the sheath near the probe are considered 
although evaluations are problematic since the sheath thickness can extend from a few 
to a few hundred mean free paths. 
 

 
Figure 5.5. Probe operating regimes according to Swift and Schwar [65]. The regime 
chosen in the present work is indicated by a box 
 
 
The condition α= λD /rp <<1 is assumed here as prerequisite; the different theories in the 
frame of high pressure plasmas, "continuum" and "continuum plus free-fall" theories, 
are reported according to the sub-criteria depicted in figure 5.5. They are explained as 
follows. 
 
(i) The "Continuum theories" ([110], [73], [72]) in which Kn<<1, in addition require 
(rp/λi)1/3(λD/λi)2/3>>1. These theories consider mobility and diffusion-based flux 
equations in the whole plasma; the sheath thickness δs can extend for many collision 
paths ("thick" sheath). 
 
(ii) The "Continuum plus Free-fall" theories ([125]), that require rp / λD >>1, and a 
"thin" and collisionless sheath around the probe, δs << λ. In the adjacent transition 
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 region and in the rest of the plasma, charge carrier motion is considered mobility and 
diffusion-driven. 
It can be demonstrated [65] that the “Continuum” and the “Continuum plus free fall” 
theories are special cases of the “General theories” from which they can be derived. 
The “General Theories” of Wasserstrom, Su and Probstein [126] use flux equations 
(transport equations) for the ion and electronic current based on the Maxwell-
Boltzmann transfer equation, without assuming an explicit type of flow for the charge 
carriers. When λ<<rp (i.e. Kn<<1) the flow equations describe the collision dominated 
plasma and for highly negative biased probes (Vp<< 0) these theories give expressions 
for the currents in the ion-saturation region of the characteristic curve. The case  λ>>rp 
(i.e. Kn>>1) belongs to the flow of carriers under  the  “Free-fall theory” of ‘Orbital’ 
type, in which the particles ‘fall’ towards the probe without suffering interactions. These 
are adequate for low-pressure regimes not dealt with here. Conversely the "Continuum 
theories” are obtained requiring  λi,e<< rp and  λD >>λi,e, . The "Continuum plus free-
fall" are obtained when λi,e >> λD (or βi,e<<1). The espression “Continuum plus Free-
fall” stems from the fact that the plasma is considered collisional in the undisturbed 
region while the sheath is considered thin and collisionless. 
These two regimes are described below. 
 
5.3.1.1. Continuum theory  

Conditions: α= λD /rp<<1 and λ/λD<<1 therefore, λ<<λD<< rp. 
The theory belongs to Su and Lam [73] and Cohen [110] for the case of spherical 
geometry, and Su and Kiel [72] for cylindrical probes. Results are reported here only for 
the cylindrical geometry. Su and Kiel [72] find the potential in four different regions 
that, starting from the probe and moving radially outwards, are (I) the Diffusion layer, 
(II) the sheath, (III) the transitional region (often called pre-sheath) and (IV) the quasi-
neutral (undisturbed) region. From the knowledge of the potential, the probe current is 
determined, allowing for the construction of the characteristic curve. The assumptions 
are: 
 

• The plasma is only slightly ionized so that collisions between charged particles are 
negligible compared to charge-neutral ones; also, the diffusion coefficients are 
independent of the ionization levels. 
 
• the equality of the carriers both at the probe and in the bulk of the plasma, ni=ne=0   
at the probe, where V=Vp , and ni=ne=n∞ in the undisturbed region, where V=0. This 
means also that ne =exp(eV/kTe)→0 at the probe. The potential is considered to be made 
of three contributions Vp=Vsheath+Vtran+VQn, of the sheath, of the transition and of the 
quasi neutral regions respectively. 
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• Crucial in these works is the assumption of a plasma at rest, formally translated as 
the absence of convection terms so that the continuity equations for the charged species 
are governing diffusion within the plasma, 
 
• It is assumed that the sheath thickness is of the order of several mean free paths.  
 
Within this frame, in steady state conditions the charge motion is described by the 
equations 

i

e

0,        v

0,       v

i
i i i i i

i

e
e e e e e

e

n en D n V
kT

n en D n V
kT

  
∇ ⋅Γ = Γ = = − ∇ + ∇  

  
  

∇ ⋅Γ = Γ = = − ∇ − ∇  
  

  (5.1) 

while the potential distribution is determined by Poisson’s equation. [Γi,e are the ion and 
electron fluxes]. After a change to ellipsoidal coordinates (allowing treatments of 
generic probe shapes) and some rearrangements, Su and Kiel [72] obtain a coupled 
system of equations in the potential for the quasi-neutral region, in which the 
requirement of charge equalities gives the densities and the potential.  A modification of 
the equations for the region near the probe surface is based on the assumption of λD<< 
rp, in which case, assuming a thin sheath, the sheath edge is taken at the probe surface. 
This leads to an approximate form of Poisson’s equation and for the consequent system 
of coupled equations identical to the one of Su and Lam [73], and resolved numerically. 
Ion and electron currents in the saturation regions are 

 

( )i sat e i i p2π µ / ln(π / 4 )I n Lk T T L r∞  = +    

( )e sat e i e p2π µ / ln(π / 4 )I n Lk T T L r∞  = +   (5.2) 

 

where L is the cylinder length, assumed much greater than the sheath radius, 
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are the mobilities and 
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the electrical conductivity. The slope of the characteristic curve in the electron 
accelerating region is 
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=  (5.5) 

This is appropriate for a thin sheath at whose edge, the density is reduced by a factor of 
the order ( )2/3

D pλ / 1r≈ � .  
 

With the aid of Table 5.2 above, the currents (5.2) and (5.3) are numerically 
 

( ) 31
i sat e i 2.921 10  I n T T A−

∞= + ⋅ ⋅  (5.2a) 

( ) 27
e  sat e i 1.047 10  I n T T A−

∞= + ⋅ ⋅  (5.3a) 

( ) 121σ 6.887 10   n Ωm −−
∞= ⋅ ⋅   

is the electrical conductivity  and 
 

( )2/32/3
D pα λ / R= ≈7.884⋅10-3 to 10-2  

is the charge density reduction factor at the sheath edge with respect to the bulk plasma. 
Formulae (5.4) and (5.5) show that once the bulk density n∞ is known, the temperature 
can be derived from the two saturation currents. Alternatively, if the temperature is 
determined by some other mean, the density can be deduced. The electrical conductivity 
can be deduced once the diffusion coefficients are known. 
The two saturation currents are shown as a function of temperatures for the cold plasma 
approximation (Ti<<Te) in figure 5.8 (section 5.3.1.2). The values corresponding to 
thermal plasma are a factor two larger.  
 
It should be emphasized that these currents were evaluated using the (implicit) 
dependency of the electron density on temperature as given in Chapter 2, where 
equilibrium distributions were assumed. 
In principle, the use of both formulae within one experimental run, i.e. the 
determination of the complete characteristic curve, allows both the density and (one of 
the) temperatures to be determined. However, a serious limit is the lack of saturation 
expected when the limit α=rp/λD >>1 is not verified. This is due to the fact that the 
electric field extends beyond the sheath. When the probe collects current the voltage is 
predicted to decay as rp/λD whereas for a complete Debye shielding V∼exp(-r/λD)/(r/λD) 
is needed [110]. 
Moreover, in practical terms, a part of the ability to obtain the complete characteristic 
curve for atmospheric pressure arc plasma, problems might occur at electronic 
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saturation because the electronic current appears too high for a non-perturbative probe 
(several percent for a TIG arc at 100 A). 
 
5.3.1.2. Effects of moderate ionization 

To the author’s knowledge, the only published work dealing with non-negligible ionization 
is Su and Sonin’s work [74]. These authors extend the work of Su and Lam [73] and Cohen  
[110] in the continuum by adding to the fluxes equations two terms 
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[De,i,g binary electron-gas and ion-gas diffusion coefficients, j the current density] which 
account for the contributions of collisions. The asymptotic solutions sought in the limit  
α=rp/λD >>1, show that these ‘corrective terms’ disappear both in the quasi-neutral and in 
the thin sheath. The difference survives in the probe potential terms that incorporate the 
combination (5.6). In the quasi-neutral region the charge unbalance ( ) ( )2

e i e D pλn n n r∞− �  
∼10-4 to 10-6  for our range of parameters and the terms (5.6) scale as βi,e/α2  and as βi,e/α2/3 in 
the thin sheath. Thus these two scale converge to [73, 110].  
For large negative potential the electron current density is zero whereas the ion current 
density is  

isat e ig p isat e ig2 /    and   4πj en D r i eln D∞ ∞= =  (5.7) 

which can be compared to (5.2). Here the D is a binary diffusion coefficient and can be 
related with the mobility through the Einstein relationship provided ion-gas collision is the 
dominant mechanism (thus, the saturation current is not affected by ionization). 

 

When Vp is less negative a transition to a linear V-I portion occurs and in this region 
  

( ) ( )2/3e
e i e

p p

σ 1 β / lnα β βdj
dV r

 = + + +   (5.8) 

which can be compared with (5.5) and where 
 

( )

2
e eg

e

σ
1 β
n e D

kT
∞=
+

 (5.9) 

is the conductivity (cf (5.4))  
It appears that the major influence of non-weak ionization (up to 10% in fact) is limited to 
the linear region of the V-I curve while the saturation currents should not be affected. As 
such, in common with the continuum, it shows lack of saturation when the limit α=rp/λD >>1 
is not verified [110].  
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5.3.1.3. Continuum plus Free Fall theory 

1. Here λ<< rp and λ/λD>>1 therefore,  λD << λ<< rp. 
Chang and Bienkowksi [125] assume 
 

 λ/δs >>1 but  
2/3

s p

λ λ 1
δ

D

R
 

<<  
 

.  

These imply some assumptions about the sheath extension. The inequality λD << λ<< rp 
is consistent with Wasserstrom, Su and Probstein treatment (“dense case”) [126], 
whereas Swift considers this case as “Special” [65] and presents the approximated 
treatment of Waymouth [127] and Little and Waymouth [128] whose results are 
substantially identical with those of [126]. These authors match the ambipolar flux at 
the sheath edge to the free-fall flux crossing the sheath region, unlike Cohen [110] who 
considers diffusion of ions and electrons up to the probe surface. The assumptions for a 
continuum plus free-fall theory to hold are: 
 
Electrons and ions have a Maxwell distribution, with temperatures independent of the 
position and unchanged by the probe; 
The probe radius is small with respect to the plasma container, but greater than both the 
mean free paths and much greater than the sheath thickness (or alternatively the sheath 
thickness is smaller than the mean free paths); 
The ion mobility is small with respect to electron mobility and ions may be considered 
at rest. 
 
The particle number density is sought in the different regions: 
 
A. Sheath edge 
Under the assumptions  

• of thin sheath, rs ≅ rp, (δs << rp for a sheath thickness δs measured from the probe 
surface, while sheath and probe radii, rs and rp, are measured from the centre); 

• ne=ni  at the edge; 

• nis = nes= ns, (the subscript ‘s’ stands for sheath edge) 

The carrier concentration at a radius r in the quasi neutral region is found assuming λi<< 
rp: 

 

( )i ee
edge

e ip
e i

i e

1λ2
λ3 ε ε
λ

T Tnn Tr
T

∞ +
=

+
 (5.10) 

where   
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2
p s

e i s
s e

ε exp ,     ε 1,    0
δ
r V V

V
   

= = <   
   

 (5.11) 

 
2

p s
e i s

s i

ε 1,     ε exp ,    0
r V V
r V

   
= = − >   

  
 (5.12) 

and Vs is the potential drop at the sheath edge. 
 
The carrier concentration at the sheath edge is evaluated for both the “cold” (Ti<<Te)  
and the "thermal" conditions considering the sheath voltage to be positive or negative 
and taking into account  two different electron mean free paths (see Table 5.3). 

  

Particle density at sheath edge nedge (m-3) 

Plasma Cold (TI<<Te ) Thermal (Ti≅Te ) 

m.f.p.  λe 

(m) 

3⋅10-7 10-6 3⋅10-7 10-6 

Vs > 0 2⋅1019 7⋅1019 s i-V /V19 -24 10 /[1+2.5 10 ]e⋅ ⋅
 

s i20 -2 -V /V1.4 10 /[1+8 10 ]e⋅ ⋅
 

Vs < 0 s eV /V192 10 e⋅
 

s e-V /V197 10 e⋅
 

s eV /V19 -22 10 /[ + 2.5 10 ]e⋅ ⋅
 

s eV /V19 -27 10 /[ + 8 10 ]e⋅ ⋅  

Table 5.3 CFF: Particle density at the sheath edge for the cold and thermal plasma 
models and different electron mean free paths (m.f.p.) and sheath voltages 
 
 
In this limit (λi<< rp) these values depend on the ratio between the probe potential Ve,i 
and the sheath voltage drop Vsh in the two saturation regions. A value of the sheath 
potential is thus needed. However, assuming a strong ion attracting probe potential (ion 
saturation region of the V-I curve) and a thermal plasma (because equation (5.8) shows 
that in the cold plasma case,  nedge diverges), one has εe →0, εi→1, nedge≈ 1.6⋅1021  m-3. 
In the opposite case of strong electron attracting probe (electron saturation region) one 
obtains εi →0, εe→1 , nedge≈ 4⋅1019  to 1.3⋅1020  m-3 within a multiplicative factor 2 that 
depends on the “cold” or “thermal” plasma assumption. 
 
B. Saturation currents 
Under the conditions λ<< rp and λD/λ<<1 the saturation currents both for ions and 
electrons under strongly accelerating potentials can be found.  
1. For the positive ion attracting probe, (Vp<<0), εe=0 and εi=1 and the carrier 
concentration at the sheath edge is 
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 ( )i
s i e

p

2λ 1
3

e

i

Tnn T T
r T

∞= +  (5.13) 

i
i sat p i e

e

4π µ 1 TI r n kT
T∞

 
= + 

 
 (5.14) 

For the strongly electron attracting probe (Vp>>0), 
 

( )e
s i e

p

λ2 1 /
3

n n T T
r∞= +  (5.15) 

( )e sat p e i e4π µ 1 /eI r n kT T T∞= − +  (5.16) 

 

Formula 5.13 can be estimated in the thermal case to give 
 

21 3i
s

p

4λ 10  
3

nn m
r

−∞= �  for λ~10-6 m and n~1023 m-3 

 
C. Quasi neutral region 
The probe potential is made of the contributions of the sheath and of the quasi-neutral 
region: 
 

p s q nV V V= +  (5.17) 

The first determines the flux of carriers crossing the sheath and, if Vqn denotes the drop 
across the quasi neutral region s p qnV V V= −  relating Vqn to Vs, Vs to Vp then the 
theoretical probe VI characteristic can be plotted. 
 
It is found that when rp / λD >>1, the probe induced disturbance to the plasma can be 
confined to a region adjacent the probe whose thickness is of the order of 
  

2/31/3 2 /3
pi i

s p
e D e

δ  1
λ
rT Tr

T T

     
=  +     

      
 (5.18) 

   

   

so that  a “continuum assumption” is valid when 
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2/31/3 2 /3
pi i

p
e D e

 1 λ
λ
rT Tr

T T

     
 +  >>    
      

 (5.19) 

or 
 

2/3 1/3 4/9
Dp i ii

p e e

λ
1 1

λ
r T T

r T T

− −     
+ >>           

 (5.20) 

Where 
 

i
D 2i

o i

λ
4π

kT
n e Z

=  (5.21) 

is the ion Debye length and Zi is the charge of the ion (assumed “+1” in (5.21)). It turns 
out that provided the characteristic mean free path of the charged particles is small with 
respect to the characteristic length of the problem, the continuum assumptions reported 
above apply (weak ionization and plasma at rest):  
 
• The plasma is only slightly ionized so that the predominant collision mechanism is 

between charged and neutral particles; this also implies that the diffusion 
coefficients Di and De do not depend on the local ionization levels. The plasma is 
considered as quiescent because the neutral particles are not influenced by the 
presence of the probe.  

 
• The appropriate characteristic length of the problem is taken as the distance from the 

probe surface towards the point where the quasi-neutral region increases in 
importance.  

 

The following results are then deduced: for highly negative potential, the disturbance 
(current) induced by/flowing to the probe is proportional to the square root of the 
potential; for intermediate and ‘near-plasma’ potential, I is a function of  (λi/ rp)1/3 (in 
the latter case with a corrective factor accounting for the ion to electron temperature 
ratio).  
 
2. A more recent treatment of ‘high pressure regime’ dealt with by Schott [86],  fits into 
the CFF classification because of the conditions p i,e D i,eλ  and  λ λr >> <<  and, provided 
the electric field can be considered weak over a mean free path, i,e eλ / 2e V kT∇ < , no 
dependency of the mobility upon E V= ∇  exists and the orbital motion is “destroyed” 
[86] so that the relevant motion equation are of the diffusive type (thus equal to (5.1) of 
the continuum case, cf also [9]) 
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 e e e e eµD n n VΓ = − ∇ ∇m  (5.22) 

 
If in addition, Bohm’s point of view is taken [129] that for probes operated close to 
plasma potential (i.e. limiting the bias voltage) the mobility term can be neglected, the 
preceding equations become 
 

e e eD nΓ = − ∇  (5.23) 

and using the continuity equation with the requirement of negligible volume 
recombination 
 

e eβn∇ ⋅Γ =   

and  negligible carrier production (β is the ionization rate), and Poisson’s equation 
 

i e( ) 4π ( )V V e n n∆ = ∇ ⋅ ∇ = − −    

Laplace equation would result, under the hypotheses of constant diffusion coefficient 
 

e i0,    V n n∆ = ≈  (5.24) 

which has non trivial solutions only for finite length probes. Similarly to Bohm, by 
making use of a formal analogy, after some manipulations, Schott [86] arrives at 
 

e
e e o A

e

d / d 4π ( )
A

A

i eD n C n n
D
Γ

⋅ = = − ∇ ⋅ = − −∫ ∫A A   (5.25) 

where the lower integration limit has to be chosen one mean free path away from probe 
surface A placed at (rp+λi) because the diffusion model holds “sufficiently far” from the 
probe. The current to this surface is then 
 

p pe r +λ e o r +λ4π ( )i C eD n n= − −  (5.26) 

But the current to the probe surface is the random current 
 

pe r +λ e
1 v α
4

i n e A= −  (5.27) 

where α is a factor accounting for possible reflections (α=1 for perfectly adsorbing 
probe). Therefore, eliminating nrp+λ, the general formula is obtained 
 

p

1

e
e o e

r +λ e

v α1 v α 1
4 16π

A
i n e A

C D

−
 
 = − +
 
 

 (5.28) 
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Which can be specialized to cylindrical geometry, ( )p2π λA r l= + , perfect adsorbing 
probe (α=1). Using the classical diffusion coefficient De= (λ<ve>)/3 and the fact that in 
cgs units 

pr λ p λC r+ = + , the result is 
 

1
o p p e

e

π( λ) v 31
2 8λ

n er r li
−+  = + 

 
 (5.29) 

which for the “very high pressure” case rp>>λ reduces to 
 

o p e
e

π v 8λ
2 8λ+3

n er l
i

l
 = −  
 

 (5.30) 

finally, observing that 
  

cgs o SI( / 4πε )i i→   

o p e
e o

π v 8λ4πε
2 8λ+3

n er l
i

l
 = −  
 

 

 

or,  because in present conditions  l>>λ, 
 

( )3/ 2 o p e
e o

v λ
4π ε

3
n er

i = −  (5.31)  

Also (5.31) requires the knowledge of both the mean free path and of the thermal 
electron velocity <ve>, which can be estimated both once the electron temperature is 
known. This can be avoided using the approach of Gick et al [62] (see section 5.3) 
remembering though that (5.31) refers to conditions close to plasma potential. 
It should be emphasized that in Bohm's [129] treatment, which pertains to ions, the 
random model, arising from elementary kinetic theory, which provides a relationship for 
ions equivalent to (5.27), is substantially equivalent to the purely diffusive model,  
provided the ratio of the mean free path to the probe radius is <<1, which is the 
circumstance of this work. Therefore, in the following it is immaterial whether to name 
a current as  'diffusive' or  'random' because under the present circumstances, the two 
yield the same flux of particles. 
 
Evaluation of the criteria 
The parameters mentioned above are shown in figure 5.1 and 5.2 for the atmospheric 
arc. The first is the ratio α=λD / rp ≈10-4 to 10-3 <<1 (figure 5.1). It is seen that its value 
is well below 0.01 (right axis) consistent with the condition α<<1 for both the 
Continuum and the Continuum plus Free-Fall theories to apply. 
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However, β= λD/λi,e is βe ≈ 2⋅10-3 to 10-2 for electrons, but βi ≈ 1 down to 2⋅10-2 for ions, 
thus β is almost less than 1 (cf figure 5.2). These last values are appropriate for the 
“General Theories” in the limit of Free-fall case and thus set the system outside the 
domain of the purely continuum theories.  
For the other condition that Swift [65] sets for the validity of the CFF theory, namely 
δs<<λi, it is seen from figure 4.4 (Chapter 4) that δs ≈ λi for a sheath thickness evaluated 
following the collisional cases of Sheridan [97] although  δs<<λi for the collisionless 
Child-Langmuir case: in effect, a theory built to account for collisions [97] cannot be 
valid for collisionless cases. In addition, the theory requires δs as a prerequisite rather 
than giving it as a result.  
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Figure 5.6. αχ as function of temperature for some selected probe potentials (Left-
bottom axes) and as function of probe potential for some selected temperatures (Right 
top axes) Probe radius 100 µm. Both “1” limits are shown (see text). 

 

 

A way to qualitatively check the sheath thickness is to test whether the non dimensional 
parameter [73] 
 

 D

p

λαχ eV
r kT

≡   

significantly exceeds one. In this case it would be appropriate to talk about “thick” 
sheath. It is in fact believed that the effect of the field is to expand the sheath thickness 
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as the potential increases. This circumstance however is almost never achieved by the 
system under study as can be seen from figure 5.6. Here a family of αχ curves as a 
function of temperature for different probe voltages is shown on the left-bottom axes. 
The same parameter is also shown on the top-right axis as a function of probe voltage 
for some selected temperatures. The probe radius is fixed at 100 µm. It should be noted 
that the left axis family was computed taking into account the Debye length variation 
with temperature, based on the n(T) dependency as given by Olsen [39] and shown in 
Chapter 2. This applies also to the right axis family (in particular taking Olsen’s values 
for the selected temperatures). The probe voltage range has been chosen considering the 
limited values achievable in arc plasmas.  In all cases, except for the ‘low’ 5,000 K case 
(arc fringes), values of αχ well below 0.1 were found. Following to the mentioned 
criterion, a thin sheath is thought to develop. 
 
According to the CFF theory the sheath thickness can be evaluated by means of formula 
(5.14), for a ‘thermal’ plasma (Ti≈Te), the result is shown in figure 5.7 (right axis), 
where also its ratio to the ion and electron mean free paths is shown (left axis). A 
horizontal line at value one for these ratios is shown, and the two borderlines indicating 
‘low’ or ‘high’ ionization are also displayed at T=7,500 and 12,500 K respectively (see 
Chapter 2). The sheath thickness appears always less than the mean free paths except in 
the colder and less ionized regions. Correspondingly, condition (5.16) is fulfilled 
marginally for ions. Therefore, the assumption of a purely continuum regime fails. 
 
Summarizing the above considerations it is apparent that: 
 

• The condition α≡λD/ rp <<1 is fulfilled, setting the system in the realm of ‘high’ 
pressure regimes in contrast with the ‘low’ pressure regime defined by the 
opposite condition. Therefore a “continuum” treatment might appear to be 
appropriate. However: 

 
• Condition (5.16) on the sheath thickness is not fulfilled for the continuum model 

to apply; 
 

• The condition on β for the ‘pure’ continuum theory to apply, namely βi,e>>1 is 
not respected as  βi<<1 for ions, and βe≤1 (only) for electrons. 

 
• The CFF regime is thus more appropriate (with the proviso for electrons). 
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Figure 5.7 Ratio of the sheath thickness (left axis) to the ion and electron mean free 
paths. Right axis: sheath thickness.  
 
 
Also, from the reconsideration of the condition δs <<λi pertaining to the Child-
Langmuir collisionless case, δs ≤ λi (Sheridan collisional case [97], see Chapter 4) and it 
is expected that ‘some’ ion collisions could take place within the sheath. 
 
Furthermore, the consideration of the combination αχ leads to a ‘thin’ sheath, in 
agreement with the evaluation of equation (5.15) where the sheath thickness (10-6 to 10-7 
m) remains well below the probe radii considered in this work (10-4 m). Also Sheridan’s 
sheath thickness [97, 130], visible in figure 4.4, is at least one order of magnitude less 
than the probe radius. Therefore a CFF model can be assumed for a ‘thin’ sheath, 
mostly collisionless (perhaps with some ionic collisions) due to the “2-1/3(rp/λi)1/3(λD/λ
i)2/3 criterion”. 
In the following sections, other discriminating criteria will be considered, which include 
plasma motion. 
Although it was stated that only the CFF appears relevant for the case under study, a 
comparison is made with continuum theory as the values of the current obtained in the 
two cases are equal within a factor of ≈3 (see below), which is reasonable, considering 
the limited accuracy attainable in the measurements. 
The formulae reported by Swift [65] are given for positive strongly ion attracting probe, 
(εe=0 and εi=1, see section 5.2.1)   
 

( )i, sat p i e i e p4 π µ 1 /                0I r n kT T T V∞= + <<  (5.32) 

and for the strongly electron attracting probe  
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( )e sat p e i e p4 π µ 1 /             0eI r n kT T T V∞= − + >>  (5.33)  

Numerically: 
 

( )31
i,sat e i p2.081 10                  0I n T T V−

∞= ⋅ + <<  (5.28a) 

( )28
e,sat e i p7.489 10                  0I n T T V−

∞= ⋅ + >>  (5.29a) 

These currents are plotted together with the continuum case in figure 5.8. 
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Figure 5.8. Continuum () and CFF (…) theory electron (left) and ion (right) saturation 
currents as a function of the electron temperature (cold ion approximation). The 
‘thermal plasma’ currents are obtained by multiplying by a factor 2. 
 

 
These curves were computed for temperatures up to 30,000 K, well above the 
‘moderate’ ionization level (below 12,000 K, see Chapter 2) which is the regime for 
which these models were developed. A comparison of the two models is appropriate 
only in the intermediate region between the two, where λ≈λD and thus, according to 
figure 2.5 in Chapter 2, to temperature below 7,500 K for electrons (and never for ions). 
Under these circumstances the two currents are indistinguishable. A difference of 10% 
would arise at 12,000 K. 
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 5.3.2. Classification based on Knudsen numbers   

Chung, Talbot and Touryan [37, 119] “CTT” in the following) set the domains in which 
the probe can operate as determined by two families of parameters. The first is 
composed of α=λD/ rp and the Knudsen number Kn=λ/ rp, where λD is the Debye length, 
λ is the appropriate mean free path for collisions and rp is the probe radius. The second 
family of parameters comprises the reduced potential χp=eV/kT, the temperature ratio ε
=Ti/Te, and the two Damkohler numbers 1) 2 2

r eo ioe
/k L N D=D   (the degree of thermal 

equilibrium in the plasma between electrons and heavy particles) and  2) D, that 
represent the degree of chemical equilibrium in the plasma by verifying "frozen 
chemistry" conditions (i.e. absence of recombination and ionization). Since the 
interpretation of the regimes by means of this last group is less straightforward, its use 
will be deferred in Chapter 5.   
 
The characterizing criteria are actually somewhat different when looking at the two 
most important literature sources. According to Chung, Talbot and Touryan's book [37] 
the Knudsen number appears as the ‘first level’ discriminating parameter. Then, in the 
frame of continuum models two different criteria follow; the first is based on the 
relative magnitude of probe radius, mean free paths and Debye length. In the paper 
[119], it is the electrical Reynolds number that plays a major role. The following figure 
5.9 reports these two points of view. 
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Figure 5.9. The regime classification according to Chung, Talbot and Touryan; the upper 
part refers to Chung et al [119], the lower to Chung et al [37]. A box surrounds the regime 
chosen in the present study (see text). [CTT=Chung, Talbot and Touryan] 

 

 
In the following, the first group, relating to the stationary probe is analyzed first.  
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The first group of parameters defines six regimes of probe operation under two domains 
(A and B in figure 5.9, upper part) and three transitional cases (C, figure 5.9, upper 
part): 
 
Domain A) Kn >>1, "Classical" thin wire Langmuir probe subdivided in the regimes: 
A1) λ>> rp >>λD, conventional thin sheath; 
A2) λ>>λD>> rp , orbital limit, thick sheath; 
A3) λD>>λ>> rp, collisional thick sheath. 
 
Domain B) Kn <<1, Continuum electric probe split in the regimes: 
B1) rp >>λD >>λ, collisional thin sheath; 
B2) λD≥ rp >>λ, collisional thick sheath; 
B3) rp >>λ≥λD, collisionless thin sheath (dense case). 
 
In between the preceding regimes, the following transitional regions are identified: 
C1) Kn≈1, 
C2 λD≈λ,  
C3) rp ≈ λ≈λD (double transitional case). 
 
 
5.3.2.1. Domains and origin of the criteria 

The nomenclature reported by the authors is briefly summarized from their work as 
follows. The (kinetic theory) Boltzmann equation is applied employing higher order 
expansions in the BBGKY hierarchy (from Bogoljubov, Born, Green, Kirkwood, Yvon, 
see [4]) of the Liouville equation for the particle distribution function in order to 
overcome the problems related to the long-range intermolecular forces occurring in 
partially ionized gases, in contrast to ordinary neutral gases, where the two-body (short-
range) interactions suffice in most cases [29]. The set of equations is made of the 
Boltzmann equations and is closed by the Liouville equation [4, 131]. Ad-hoc physical 
assumptions are needed to solve the system that, even for the case of two equations is 
rather complicated; the first member of the system of k possible permutations of the N 
particles, is expressed as a function of the k+1 permutations  on the right hand side (thus 
‘hierarchy’), so that some truncation rule must be found; moreover, the right hand side 
of the equation that represents the effects of particle interactions (‘collision integrals’), 
is not necessarily an explicit function of the particle distribution function. 
 
The problem is thus governed by the Boltzmann and Poisson's equations for a certain 
distribution function. First, the equations are normalized using appropriate characteristic 
quantities; the first three of which are characteristic lengths, namely (i) the length of the 
"flow system" L; (ii) a length that represents the range of intermolecular forces, 
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assumed as the square root of the collision cross section in the undisturbed plasma; (iii) 
the range of the electrostatic force, i.e. the "shielding" or Debye length λD. As long as 
charged-charged collisions are concerned, the latter two lengths are equal. The 
(molecular) velocities are normalized to the equilibrium Maxwellian factor ~(kT/m)1/2. 
The equations are then solved with boundary conditions describing probe configuration 
and plasma flow conditions. The importance of the different terms is determined by the 
Knudsen number, Kn =λ/L and by the ratio α=λD/L (where L is often but not always 
identified with rp, see below). 
 
Domain A 
The first parameter appears as 1/Kn in the collision terms of the equations, so that as Kn 
→ ∞ means λ→ ∞, there is absence of collisions and the system is found in the classical 
domain (A) investigated by Mott-Smith and Langmuir [71] whose results and following 
developments are reported among the others by [65, 86]. This condition deals with non 
flowing (i.e. stationary) collisionless plasma in which all the mean free paths are much 
larger than the probe dimensions. From the condition Kn →∞ the only characteristic 
length that survives is L that may be then identified with the probe radius rp. The 
Boltzmann equations without collisional terms are referred to as Boltzmann-Vlasov 
equations.  
 
For the second parameter, α, the case rp >>λD (regime A1) means that no charge 
separation can be sustained so that the sheath is necessarily thin [In the opposite case rp 
<<λD a thick sheath may develop (regime A2)]. Here, Langmuir's Orbital Motion 
Theory, can be applied both to monoenergetic or to Maxwellian distributed charged 
particles, for which the (two body) central force problem is solved, showing that none of 
the charges can be prevented from reaching the probe provided that they have sufficient 
energy to do so (thus implying the absence of potential barriers able to reflect the 
particle impinging the probe). This corresponds to the limit of a thick sheath (in effect 
formally infinite, because rp /λD→0). This theory is able to give upper limits for the 
probe current under collisionless conditions because the occurrence of potential barriers 
at finite rp /λD ratios can only reduce the number of particles reaching the probe. 
 
A theory due to Allen, Bernstein and Rabinowitz, known as "ABR" or "radial" [132] 
assumes a cold plasma, in which the condition ε=0, implies an inward radial path for the 
ions attracted to the probe. Ion velocity is shown to arise only from the probe potential. 
Their fundamental equation was found to be the correct basis for subsequent treatments 
by Laframboise [133] and Chen [134] for situations in which ion-ion collisions start to 
become important ("ABR-Chen"), or further, to ion finite temperature by Fernandez 
Palop et al [135]. 
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 The effect of collisions between charged and neutral particles (case A3), still for 
stationary plasmas, but far from the continuum limit, is discussed by Chou, Talbot and 
Willis [136] who obtain an analytical formulation by taking sufficient number of 
moments of the Boltzmann equation in order to determine the unknown parameters of a 
previously assumed particle distribution. The effect of the electric field in the plasma is 
explained by observing that the field necessary to clear all the electrons out of the space 
within one Debye length from the probe is e D o' λ 4πεE en ∞= (where e n ∞  is the electron 
density outside the sheath) and this is thus the maximum value of the electric field that 
can exist locally in the absence of surface emission or breakdown. This can be 
understood as follows. At a time t=0 with zero bias applied to the probe, the electron 
density near the probe surface is ne∞ (neglecting the fact that the probe will attain a 
floating potential Vf). At a certain time t>0 a field at the probe surface is switched on. 
After a relaxation time (unimportant here) the electrons will settle at a distance λD from 
the probe surface; the field necessary to do this is E’=ene∞ λD/(4πεo). For the parameters 
in Table 5.1 and 5.2  E’≅1.4⋅106 V/m. To clear the electrons further away, a field E>E’ 
must be applied. Note that V’=E’λD ≅0.1 V, so even a relatively “small” potential can 
give rise to a noticeable field. 
A field E=VλD larger than E’ applied to the surface will penetrate beyond λD clearing 
the electrons and causing a thickening of the sheath until the potential accommodates, 
because  
E is constant. So when the ion-neutral Knudsen number lowers, the sheath extends 
further  
into the plasma. The region out of the sheath where ni≈ne, is the “ambipolar” or quasi-
neutral region. 
 
Domain B 
It is by no means possible to report the whole work of the authors also because the 
physical picture is similar to Swift’s [65] reported “continuum and continuum plus free-
fall theories” considered above. A brief summary is as follows. 
The domain B is obtained in the limit of small Knudsen numbers (the smaller of the 
two, i.e. the electron Kn). In the quasi-neutral region the predominance of collisions 
establishes the continuum, while in the sheath the regime depends on the value of β-1=λ
e/λD: either λe/λD << 1 (thin B1 and thick B2 sheaths) or λe/λD≈1 (dense collisionless 
case B3). In the latter case the charged particle motion is described by a continuum 
theory in the bulk (with diffusion and mobility phenomena) while in the sheath adjacent 
to the probe the motion is collision-free, the sheath thickness being small with respect to 
the collision mean free path. 
 
The authors [37] present a treatment allowing the determination of the ion current and 
the particle density at the sheath edge that is valuable for a flush-mounted probe (major 
axis parallel to flow) in compressible flow with ‘variable chemistry’ (i.e. unfrozen) 
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plasmas. In particular an expression for the determination of the ion density is given that 
is equivalent to the Bohm criterion for the sheath formation ([37], Chapter 4). Formally, 
this case is complicated by the occurrence of two singularities in the mentioned 
expression (Bohm criterion); in the first, the collision term is of the order of β, so the 
limit β→0 implies a collisionless sheath, while the other term, related to the quasi 
neutral region accounts for the predominance of collisions. The solutions of the 
equations must then be found separately for the two regions and matched thereafter. 
 
5.3.2.2. Evaluations 

Considering the values in Table 5.1 and the diagram CTT II in figure 5.9 above, it is 
seen that, with  Kni,e<< 1 (cf figure 5.2 above), and λ ≥ λD (cf figure 5.6 above), rp >> λ 
≥ λD and regime B3 applies.  
 
The way the two inequalities are fulfilled by electrons suggests that some consideration 
could be given to the double transitional case C3 when the temperature is ‘very low’, 
i.e. probably at the arc outer edges when the electron mean free path reaches perhaps 
50% of the probe radius. However, under these circumstances, the ion mean free path is 
still a factor of 50 or more lower. 
 
It is then seen that the following correspondences between Swift’s and present regimes 
hold: 
The Swift continuum is here identified exactly by regime B1; the continuum plus free-
fall case of Swift requires λ>>λD while here, the closest possible CTT's regime, B3, 
requires only λ≥λD. In any case it is felt that the “continuum” part of the CTT diagram 
(I) should be chosen. 
 
5.3.2.3. Effects of plasma-probe relative motion 

Considering the second part [CTT(II)] of the diagram in figure 5.9, the electrical 
Reynolds number, plotted in figure 5.4 is safely greater than one even at the relatively 
low velocity of 100 m/s, therefore convection effects are important (sub-regime B4 in 
figure 5.9). Considering that in the system under investigation the flow velocity is 
believed to stay below some hundreds of meters per second, the flow can be considered 
laminar and incompressible. Actually, Allum [57] measured vf=80 m/s so that with a 
sound speed of cs~2,700 m/s (cf Chapter 2), the Mach number is M=0.03 to 0.1 and the 
effects of compressibility can be neglected in most cases. 
 
5.3.2.4. Continuum (III) 
Before investigating the values of the parameters reported in the frame of the continuum 
(CTT (III) in figure 5.9), a clarification about some of the symbols is needed. From 
figure 5.9 it is seen that some combinations are given in terms of “thin” versus “thick” 
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 sheath, “high” and “low” convection limits and of “constant” or “variable” plasma 
properties. Nevertheless an attempt is made here to evaluate these parameters, starting 
from the ‘thin/thick’ criterion, figure 5.9 part (III). 
The microscopic characteristic length λDδ is the Debye length at the edge of a 
hydrodynamic boundary layer of thickness δ due to the relative plasma-probe motion 
(Re>>1). The boundary layers thickness has been shown in Chapter 2. Its evaluation 
depends critically on the knowledge of the ion density within the boundary layer. 
Following Smy [84], as a consequence of the inequality λi,e<< rp,  the ionization density 
in the sheath could be depleted down to ni’=niλi/ rp. [In effect this can be discussed in a 
slightly different although equivalent manner (see the following section)]. To put this 
quantity in numbers, for the time being ignoring secondary effects of the flow (like 
cooling) a limiting value of λDδ can be obtained using 
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(cf formula 2.3) for ions and electrons and is shown in figure 5.10. Also shown are the 
values of the charged number density at the sheath edge (broken line) with respect to the 
bulk of the plasma. The decisive parameter that remains to be evaluated in order to 
choose between “thick” and “thin” sheath [figure 5.9, CTT(III)] is the normalized 
potential χ=eV/kTe. For the latter a ratio corresponding to a potential less or equal to 40-
45 V can be set as a limit (before occurrence of breakdown at atmospheric pressure [62]. 
So 0.6 Vp ≤ 45 V means that Vp ≤ 75 V for the CTT(III) inequality to be satisfied to 
better than 1%, i.e. a “thin” sheath develops around the probe.  
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Figure 5.10 (Left axis) charged particle density for bulk () and edge (…) as a function 
of temperature according to Smy [84]. Right axis, Ion and electron Debye length in the 
sheath (cf 5.21) 
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In summary, the criteria of CTT for the system under study suggest a continuum i.e. 
fully collisional plasma in the bulk with a collisionless thin sheath (termed “dense”) 
which is incompressible as the bulk; in this regime convection plays an important role.  
For the case of sheath depletion down to a factor 103 with respect to the bulk (see also 
section 5.3.3), the double transitional regime C3 could into play, although, interestingly 
(and unfortunately), the authors do not extensively cover this case. 
From the practical point of view, the current expressions reported by CTT, are relevant 
for almost planar and “flush-mounted probes”, i.e. for probes whose detecting surface is 
parallel to the flow, whereas in the case under study here, cylindrical probes with main 
axis perpendicular to the flow are considered.  
 
5.3.3. Classification based on Electrical Reynolds number 

A somewhat different approach can be found in the works of Clements and Smy, who 
covered many aspects of probe theory and operation over the last 30 years. Mention is made 
in particular to the work of Smy [84] and to the papers of Clements and Smy [78, 79, 91, 
111, 114], for brevity collectively referred as “CS” in the following. An outline of their 
criteria is reported in figure 5.11; it is not complete, but it contains the criteria that were 
found more "stable" in analyzing their works.  

 

 

Figure 5.11.  Clements and Smy’s classification criteria (CS = Clements and Smy). Symbols 
defined in Table 5.1 and 5.2 above. 
 
Clements and Smy [82, 114] deal with the question about the effects of plasma flow 
velocity. Therefore, their discriminating criteria are based in the first instance on the 
values assumed by the electrical Reynolds number Re. The other parameters are α=λD 
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 /L, where L is a characteristic length of the probe (again identified for our purpose with 
the probe radius), and the "reduced" potential χ = eVp/kTe, where Vp is the probe bias, or 
by different combinations of them. The domains are: 
 
D) Re <1, plasma at rest, for which reference is made to [110] and [72, 73], whose 
works are referred to as "conventional diffusion relations" or "Continuum theories", and 
 
E) Re > 1 ion convection to the probe that they treat in detail, considering the sub-
regimes: 

E1) 2 2 α χ 1eR �  ion convection via diffusion boundary layer, or 
E2) 2 2χ α 1Re � , convection supported ion sheath, provided that the sheath is wider 
than the boundary diffusion layer. This takes into account the "high" plasma flow 
velocity in that charges are transported by convection due to the plasma flow rather 
than by diffusion due to charge concentration gradients. It is further subdivided into 
the two cases E21 (sheath convection), when Reα<1, and E22 (E-field) for Reα>1. 

 
What is more, in a subsequent publication [78] the influence of thermal charged species 
generation (ionization) and recombination was considered introducing a “sheath 
generation regime” whose occurrence depends on the values assumed by a 
“recombination coefficient” a or by the Damkohler number D as the overall charge 
density is increased. This regime is labelled here as “F” (CS (II) in figure 5.11 above) 
and it will be analyzed further in Chapter 6. 
 
5.3.3.1. Domains and origin of the criteria 

The domain D is essentially the one described by the static theories [72, 73, 110] for the 
plasma at rest. This is then what Swift calls the “Continuum regime”. The ion and 
electron equations for the current, together with Poisson’s equation, all in spherical 
geometry, are solved for the two adjacent regions of bulk and sheath; the matching of 
the two solutions in the so-called transition region, for moderate negative probe 
potential, gave the currents in the saturation region and the particle number density in 
exponential form (cf equation (7), sec. 2.4.2), which is appropriate for a thin sheath.  
When the probe potential is highly negative, the sheath expands, with the consequence 
that the probe ion current will no longer saturate but will instead continue its increase 
with the sheath thickness. 
 
Domain E, Re>1 
Here, the flow effects cannot be neglected. The effects of plasma velocity are 
considered by Smy [84] and also by Thomas [76, 77] and Freeston and Kelk [107]. 
Thomas considers the transient behaviour of the probe current in a flowing plasma (vf 

≈3 m/s). The interesting argument for a moving probe is that the plasma in which the 
probe moves is different at different time intervals and the plasma is newly perturbed; 
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this implies that the ions in the ‘new’ region are more numerous than the ions in the 
‘old’ (i.e. the just swept region) and progressively decay in number while collected by 
the probe. Of interest is the time formation of the sheath, that for its experimental 
conditions is of the order of the millisecond (but see Chapter 5). Moreover, in this view 
the relative motion seems to cause an increase in the sheath dimensions. 
 
Lam [109] by considering the electron and ion flow equations in which convective 
terms arise from the flow velocity, obtains an equation made of three terms: a diffusive 
term, a convective one and an ion current driven by the sheath electric field;  the latter is 
shown to be negligible when  2 2 α χ 1eR �  (see below). In this case, the current is 
governed by diffusive and convective terms. This regime is called the “diffusion 
convection” regime E1. The opposite case occurs when the diffusive term, can be 
neglected from his equation. There, in domain E2, convection and sheath effects are 
important; which of the two will dominate depends on the value of the product Re α2, so 
that ions convected to the probe are driven to the probe by the sheath electric field  
when Re α2 <1 (sheath-convection regime). Conversely the sheath field is able to drain 
only a fraction of the ions convected to the sheath, when Re α2 >1 is fulfilled (called, 
perhaps misleadingly, the ‘E-field’ convection regime, after Sonin [75]). It can be noted 
that in Clements and Smy’s [114] the transition cases are studied, where the inequalities 
leading to subregimes E1 or E2 are considered as less stringent (i.e. the strong 
inequalities, ‘<<’ ,  are replaced by weaker ones, ‘<’). 
 
Origin of the criteria 
1) The discrimination between stationary and flowing plasma is based upon the value of 
the electrical Reynolds number; this is seen by recalling that the plasma surrounding the 
probe may be considered stationary if the ambipolar diffusion velocity is greater than 
the flow velocity. In fact, since the mean free paths of ions and electrons are much less 
than the probe diameter, the ionization near the probe is depleted to a level n’= nλ/ rp. 
This case has been show already in the previous section (figure 5.10). Moreover, the ion 
drift velocity is vd≈vi λ/rp; these two relationships imply that the sheath thickness is 
increased by a factor (λ/rp)-1 with respect to the stationary plasma and that the relative 
probe-plasma velocity must be lower than vd≈vi λ/ rp for the plasma to be considered 
stationary. This means that the ion (ambipolar) diffusion velocity is of the order of the 
product of the ambipolar electric field, o p2kT r e  and the ionic mobility µi the condition 
for this diffusion velocity to dominate the flow velocity vf is  
 

o
f i

p

v µ
2
kT
r e

<  (5.35) 

that is equivalent to the condition Re<1 (Re is defined in section 5.1).   
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 2) The Reα2χ2 <<1 criterion is obtained from Lam’s work [109] by considering the 
electron and ion flow equations in which convective terms arise from the flow velocity. 
For an equilibrium plasma with equal ion and electron temperatures and large Reynolds 
numbers, the equation mentioned above is obtained that is made of three terms: a 
diffusive term, a convective term and an ion current driven by the sheath electric field: 
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 (5.36) 

This equation is written for the normalised charge concentration Ni=ni/n, (no is the bulk 
plasma density) the y coordinate in the non-dimensional form η=yRe1/2, α=λD/ rp and 
the normalized potential χ=eV/kT. This equation originates from the flux equations that 
take into account convection in the ion and electron flows, through the convective 
velocity v = (u,v)  whose component are parallel to x and y coordinates respectively. 
These are the boundary layer coordinates with x parallel and y normal to the probe 
surface. The flux equations are considered together with Poisson’s equation.  
 
The three terms to be considered in equation (5.32), from left to right are: a diffusion 
current (related in fact to the Laplacian of a concentration), of the order O(η-2); a 
convective term between parenthesis (left hand side of equation 5.32) in terms of the 
components of v, of the order of 1, and the third, at the right hand side, is the ion current 
driven by the field. It is of the order of Reα2χ2 /η4. Therefore, Reα2χ2 <<1 implies that 
the last term can be ignored and explains the term ‘diffusion/convection’ regime. 
Conversely, if Reα2χ2>>1, the term to be neglected in (5.32) is the first, and the current 
is governed by convective (second term of (5.33)) and sheath effect (right hand side). 
 
The condition on Reα2 derives from the consideration of the Reα2χ2 irrespective of the 
bias potential (in the non-dimensional form χ) that, as seen from the previous 
evaluations can be the ‘transition’ parameter from one regime to the other. More 
precisely, the ions that enter the sheath reach the probe only if the field-induced velocity 
of an ion in the sheath is larger than the flow velocity. This is discussed by Smy [84] 
also in connection to plasma cooling effects (see Chapter 5). For a flat plate of length L 
enclosed in a sheath of thickness δs the ions entering the sheath will reach the probe 
before being swept away downstream only if  µiEvf>δs /L [84]. If  E≈Vp/δs and  δs ≈ 
L(α2χ2/Re)1/2, this condition is satisfied only if Reα2<1. This is the sheath convection 
regime (E2.1 in figure 5.11) although in the analysis by Smy and Noor [118] the limit to 
sheath convection regimes is expressed including χ.  For Reα2>1, the field is able to 
attract to the probe only a fraction of the ions convected to the sheath (E-field 
convection regime, E2.2 in figure 5.11). The physical picture however is the same [84]: 
as the ionization decreases, α increases and the average electric field in the expanding 
sheath decreases until most of the ions convected to the sheath are convected out of the 
sheath and do not reach the probe. 
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5.2.3.2. Evaluations 

Static versus flowing plasma 
In the present case Re ≈ 40 to 10,000, thus regime E ‘flowing plasma’ applies. 
Following Smy [84], the criterion of a small electrical Reynolds number proves to be a 
severe one, because with the values reported in table 2.3 and 5.1, a flow velocity of less 
than 1.6 m/s is required to consider the plasma at rest; in practice therefore, considering 
the reported value of 100 m/s or more typical for atmospheric arcs, the system 
considered within this work is a flowing system. This result is equivalent to the one 
obtained by CTT in the preceding section. 
 
Boundary diffusion versus convection 
The combination Reα2χ2 depends on flow velocity, probe radius, ion mobility, electron 
temperature and therefore number density, and probe voltage. In figure 5.12 the first 
three were held constant (vf=100 m/s, rp= 100 µm, µi=1.6 m2V-1s-1 see figure 2.15). Te 
(and ne consistently) were varied keeping Vp as parameter (figure 5.12 left); or Vp was 
varied taking the temperature as parameter (figure 5.12 right). In both cases, all the 
dependencies with T (implicit or explicit) were accounted for. The horizontal line drawn 
at 0.01 corresponds to the strict borderline (within 1%) of the diffusion-convection 
regime condition. The line at 1 sets a broader limit. The picture shows that in almost all 
cases Regime E1 applies here. 
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Figure 5.12. Reα

2
χ

2
 as a function of temperature (left-bottom axes) for different probe 

voltages; and of probe potential (right-top axes) for different electron temperatures. 
Plasma flow velocity vf = 100 m/s, probe radius rp =10-4 m. Horizontal line at Reα

2
χ

2
 = 

0.01 (dashed) and 1 (continuous) represent Reα
2
χ

2 <<1 (i.e. 1%) and Reα
2
χ

2
=1  

(maximum limit) for the diffusion regimes to apply (see text). Also shown is the 
breakdown limit at –45 V. The two ordinates have a common scale. 
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More precisely, the condition Reα

2
χ

2 <<1 applies strictly (1% limit): 
 

• for electron temperature from 7,500 K (at 5 V and below) to 12,500 K (at 30 V 
and below), see left hand side;  

• probe voltages of about 18 V or less and  Te≥10,000 K, see right hand side; 

 

These limits are shifted towards convection for higher flow velocities. Also, the colder 
the plasma, the less effective is the action of the probe potential in keeping diffusion as 
the dominant mechanism. Or, stated differently, the higher the probe potential, the less 
diffusive the regime will be. Experimentally, some freedom appears to exist in the 
choice of the regime, for instance varying the probe radius. However, the latter is kept 
constant within a factor 2 or so, only the probe voltage and, to some extent, the plasma 
flow velocity can be varied. For the first, mention should be made to the case reported 
by Gick [62] in which in the ion saturation region a probe bias Vp of  -45 V gives rise to 
gas breakdown, for conditions very close to those dealt with in the present work 
(atmospheric arcs). For the flow velocity, this is not a common option in TIG arcs 
because this would require an increase of the electric current (flow velocity scales as 

1/ 2v I∝  [57]) which is one of the properties of the arc inducing variations in the 
parameters under investigation.  
When Reα2χ2>1, regime E2 applies. Therefore, it appears that with respect to probe 
operation, the arc manifests itself as a two-regime environment: diffusive in the hot core 
and convective in the outer cooler regions. 
 
Sheath convection versus 'E-field' regime 
In the latter case, the quantity 
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  (5.37) 

has to be evaluated in order to decide whether Reα2 <<1 and E21 (“Sheath convection”) 
or Reα2 >>1 and E22 (“E-field convection”) sub-regimes apply. It turns out that even 
keeping the temperature (and therefore the electron density) within the lower region of 
figure 5.13, namely at temperatures less than or equal to 12,000 K, this parameter is 
negligibly small even at velocities close to the sound speed. 
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Figure 5.13. Reα

2
χ

2
 as a function of temperature (left-bottom axes) for different probe 

voltages in the Reα
2
χ

2
 high value region of figure 5.12; it is compared to Reα

2
 (right-top 

axes) for different electron temperatures.  
 
 
Therefore, even if Reα2χ2 >>1, still Reα2<<1 and regime E21 “Sheath convection” 
applies down to 6,000 K (or 6,000 K for the weaker inequality). This is true even if the 
sheath charge density is depleted down to 1018 m-3 and if flow velocities are increased 
(figures 5.14 and 5.15 were obtained for vf=100 m/s but clearly, they could scale only of 
factor of the order of unity). 
 
Transition between Boundary diffusion and convection regimes 
The results of the preceding subsections indicate that the range of parameters of interest for 
the arc plasma spans both diffusion and convection regimes. The transition region between 
the two has been investigated in [79, 116] with increasing accuracy. In [116] the effects of 
adiabatic compression are taken into account; when the sheath thickness increases either 
because of the increased probe potential or of the decreasing ionization density, the 
contribution to the probe current arise from both diffusion and convection of ions to the 
probe. The current would therefore be greater than the one given by the two mechanisms 
separately, but less than the sum of the two separate currents [116]. This convection-
diffusion current is shown in broad agreement with measurements obtained in a MHD 
generator (ne≈1018 m-3), systematically higher than either of the two currents. The 
corresponding expression will be given in the next section.  
 
Sheath depletion 
A parameter similar to Reα2, is Reα, obtained considering the maximum space-charge 
electric field attainable as a consequence of inequality of ion and electron densities 
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 across a Debye length distance [84]. E ≈ kTe/eλD≈ 1.7⋅108 V/m. The corresponding ion 
maximum drift velocity is vd=(kTe/eλD)µi  ≈103 m/s, where µi is  the ion mobility. Since 
upstream of the probe the ion velocity is of the order of the flow velocity vf, the 
continuity of ion flux implies that, at the sheath edge, the ionization is much smaller 
than the bulk value (sheath depletion) if vd>vf  or (kTe/eλD)µi>vf, that is equivalent to 
the condition Reα<1. If the drift velocity is high enough across a distance of the order of 
the Debye length, sheath depletion would take place. 
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Figure 5.14. The Reα combination as a function of the flow velocity at different electron 
temperatures (Sound speed: 2700 m/s). Inset: the region 0 to 500 m/s. The region 
where depletion in the ion sheath is expected is limited from above by the horizontal 
line at Reα =1 or 0.1 (see text). 
 
 
An equivalent argument based on a distance comparable to the sheath edge gives values 
of Reα about 10 times higher (see Chapter 4). The situation is depicted in figure 5.14 
where a mobility 1.6⋅10-4 m2/(Vs) has been taken (and the high electric field reported by 
Smy [84] has been corrected for the lack a of factor 4π (cf section 5.3.2.1, Domain A). 
The values at the different temperatures have been computed with the relevant (ne, Te) 
from Olsen (see Chapter 2). It appears that the effect of depletion become less important 
at higher flow velocity or, for higher flow velocity, it is progressively less probable that 
the ion drift velocity can reach and overcome the average flow velocity vf. For the 
“Debye length formulation” all the curves lay below the limit imposed by criterion 
Reα<1 and the sheath is depleted in all cases.  For the “sheath thickness formulation”, 
one may shift the horizontal limit down by a factor 10. In this case, for temperatures 
above 7,000 K, and typical flow of 100 m/s, the sheath is depleted whereas, for lower 
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temperatures, the depletion would be much smaller or negligible (at 5,000 K). In this 
second case, with regard to sheath depletion, the arc appears as a multi-regime object. In 
general however, both the results of this paragraph appear in contradiction with respect 
to the previous sections where a diffusive regime was found applicable. This 
circumstance requires some clarification. A high drift velocity could be thought to cause 
sheath depletion only for sheath larger than the fluid boundary layer. In this case the 
strong electric field (supposing weak shielding due to the neutrality of the surrounding 
particles) would rapidly attract the ions towards the negatively biased probe and repel 
electrons, thus ‘depleting’ the sheath of ions and electrons with respect to the 
‘undisturbed fluid’ boundary layer.  
This question is re-addressed in the next section. 
 
Summary 
Summarizing the results of the criteria reported in this section, the following 
conclusions can be drawn. From the experimental point of view, apart from the probe 
bias voltage, the occurrence of a mixed regime for the system under study in this work, 
is due to the sweeping of the probe through a plasma that is of variable temperature and 
density. It can be concluded that at fixed (low) plasma flow velocity (say a few 
hundreds m/s) and for bias low enough (well below breakdown) the system is in a 
diffusion-convection regime in the central region of the arc plasma. Electrical field 
driven effects of the sheath should appear a) at higher voltages and b) plasma velocities 
c) in the periphery of the arc column where both temperature and charge densities are 
lower (less dense plasma).  But as the outer regions are characterized by lower velocity, 
it appears that the electrical field driven effects can be neglected. 
 
5.3.4. Hydrodynamic models 

According to Benilov [123] a hydrodynamic treatment of the problem is possible under 
absence of thermal and pressure diffusion and of flow velocity limited to weak 
ionization (e.g. absence of electrohydrodynamic effects). For ions, the condition for a 
hydrodynamic treatment to be valid is i pλ r<  (e.g. a small Knudsen number). In case of 
weak electric field the ion mobility and therefore the ion flux µn depends only on 
temperature. In case of high electric field, λeE kT≥ , the diffusion flow is ∼λi/rp of the 
drift flux and therefore negligible; this explains why the Einstein relationship 

iµ /eD kT= is valid even in strong fields. However, µi n = f(T, E/n).  
 
For electrons at least one of the two conditions has to be satisfied 
 

u eλ λ / κ   =  (5.38)  

where e iκ 2 /m m=  is the elastic energy transfer coefficient. For the regimes considered 
in this work (see also Chapter 2) λu∼5⋅10-5 to 10-6 m << rp=1.25⋅10-4 m. In this case the 
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 dominant term in the electron distribution function will depend on T, E/n and the 
coordinate. In case of weak field it will depend on T only.  
The other condition is 
 

( )1/ 2
e ei ee pλ v v r�  (5.39) 

in which case the first term of the electron distribution function is a function of the 
electron temperature only, and e ep nkT= .  
Under the assumptions of perfectly absorbing probe with zero potential at infinity and 
zero density at the surface (boundary conditions justifiable on the basis of estimations of 
the various boundaries, see below), the solution of the hydrodynamic equations are 
sought in form of asymptotic expansions in the following cases: 
1. Large Reynolds number, small Mach number with  Dλ      d∆ ≤� where 

p Rer∆ =  is the scale thickness of the gas dynamic boundary layer and d is the scale 
of reaction length (e.g. recombination); 
2. Probe and plasma at rest with D pλ d r� � , that, by taking d as the mean free path, 
coincides with the Continuum plus Free-Fall regime. 
 
Limiting attention to the first case (the second was considered in section 5.3.1.2), the 
following regions are identified starting from the bulk of the plasma: 
 

• the fluid Non Viscous region (NV) where charged concentrations are equal and 
equal to their value at infinite distance from the probe. The electric field is 
E∼kT/e∆ and drift dominates diffusion; 

• a quasi-neutral Gas Boundary layer (GB) where the particles equality is only 
approximate, whose scale is ∆. Also here E∼kT/e∆  but drift and diffusion are of 
comparable magnitude; 

• a Debye Layer (DL) whose scale yD is discussed below. 
 

For all the three scales, diffusion is possible and its magnitude i,e i,e i,e /J D n ∆�  is 
determined by the scale of the gas boundary layer. 
The DL can be uniform with diffusion equalizing drift  ∼ i,e i,e, /D n ∞ ∆  and the estimates 

i,e i,e, D D/    and   /n n y E kT ey∞ ∆� � , inserted in Poisson’s equation allow the evaluation 
of the thickness ( )1/32

D Dλy ∆ << ∆� .  
Two situations may arise:  
 

• ( )1/32
D D Dλ   but  y y∆ ≥ ∆� ; the layer is non uniform and one recovers Su and 

Lam’s structured sheath including  1) a transitional region that incorporates the 
major part of the GB and where almost all particles are attracted to the probe 
with motion driven by drift; and 2) a diffusion drop region of scale <<yD where 
diffusion and drift are comparable. 
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• Dy << ∆  and a thin DL (‘thin sheath’ in the terminology used so far). In absence 

of particle generation (ionization) the current to the probe is determined by the 
fluxes from the GB to the outer part of the DL (the potential of the probe affects 

            the GB region) and is bounded between 2
i i e p /I eD n r∞≈ ∆  and 2

e e e p /I eD n r∞≈ ∆ . 
 
The Plasma potential (written here as the difference between the probe floating potential 
and the plasma potential, e.g. with respect to the anode as reference electrode) can be 
expressed by 
 

2/32 /3
p pD D i

f pl
p e

λ λln β ln
/ Re

kT kT DV V
e e r D

      − ≈ =       ∆      
 (5.40) 

which requires prior knowledge of the probe temperature, flow velocity and of the 
diffusion coefficients. 
 
The analysis of the V-I curve is performed according to three guidelines: 
1. i eI I I< <  the DL is uniform and the non viscous region dominates the fluxes; the V-I 
is linear; 
 
2. I>Ie, y∼∆, the NV and the DL contribute to the probe-plasma potential difference with 
  

pe e

D

   and   
λ

rkT kT
e e

∆
∆

  

and their ratio is 

 p D D
2

p

λ Reλr
r∆

�  

2a. If  p D
2

λ
1

r
>>

∆
  

then the DL dominates and 

 D
¥ p 2

p p
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i eI I I

dI dIr
dV dV ∞
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the V-I saturates at I=Ie  

2b. p D
2

λ
1

r
∆

�  implies the two region contributions are comparable and no clear electron 

saturation occurs. 
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3. I<Ii, y∼∆, and the ratio of the NV and DL contributions, peβ

rkT
e ∆

, i

e

where β D
D

= , 

e

Dλ
kT
e

∆ p Dλβ
r

∆
, determines whether the ion current saturates (ratio ≈1) or increases 

linearly (ratio >>1).  

 
However, the two saturation approaches (1. and 3.) are not applicable when 
  

p D p D
2 2

λ λ
1   and   β 1

r r
∆ ∆

� �  

although it is not clear whether this is because the problem ceases to be one dimensional 
(each individual region of the probe contributes in a different manner) or saturation 
would not occur at all under these circumstances [123]. With the values recalled in 
Chapter 2 and in table 5.1, the first of the two conditions can be evaluated 

   p D 6 3
2

λ
10  to 10 1   

r − −=
∆

�  

so the saturation currents given by the author do not seem of any use under these 
circumstances. 
 
The linear part of the V-I curve can be employed to determine the plasma conductivity 
through the probe capacitance. The method should not suffer from the limitations of the 
characteristic curve methods outlined above and is valid provided (a) the hypothesis of 
weak field is verified (in addition to the conditions mentioned at the beginning of the 
paragraph). Under these conditions, the plasma bulk electrical conductivity in the region 
of non-viscous and incompressible flow (M<<1) satisfies ( )σ 0V∇ ⋅ ∇ = , with σ∞=σ that 
can be determined from the slope of the characteristic curve (in SI units): 
   

o o p p p
p

σ / ε ,     2πε / ln( )i C C l l r
V ∞= =  (5.41) 

where the cylindrical capacitance for a probe of length lp and radius rp was taken. 
Inverting for the conductivity 
 

p p

p p

ln( / )
σ

2π
l ri

V l
=  (5.42) 

which requires the measurement of the net electron current in the linear part of the 
characteristic curve and the corresponding probe potential. 
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5.3.5. Currents in flowing plasmas 
The current examined in the following pertains to the ion saturation of the characteristic 
curve. As such, it can be used to determine the electron (or plasma) temperatures. Four 
different expressions are reported in [111], depending on the regime chosen.  
1) To assess the effects of plasma motion on ion saturation currents the first is the 
stationary plasma ion saturation current, typical of diffusion regimes, i.e. independent of 
probe bias, given by Su and Kiel [72], 
  

( )
e e i

i
p

4π µ
ln π 4

n kT lI
l r

=  (5.43) 

This is the current given by the continuum equation (5.2) with Te=Ti.  
 
2) The second is Kagan and Perel's ion saturation current as given by (3.15). 
 
3) The Continuum plus Free Fall (CFF) expression reported here for ions in saturation 
conditions  
 

i
iCFF p i e

e

4π µ 1 TI r n kT
T∞

 
= + 

 
 (5.44) 

 
4) The formula of Lam [109] (also reported in [114]) valid in the diffusive and flowing 
regime: 
 

( )1/ 2

i p f e e4   µ vsatI e r kT n=  (5.45) 

5) Clements and Smy [111] compare these currents with two formulae they obtain for 
the sheath convection regime, defined by the occurrence of the condition Reα2χ2>1 (see 
previous section), where the ion motion within the sheath is mobility dominated These 
currents are 
  

( ) ( )1/ 4 1/ 23/ 4
i e f i o p p5.3 v µ εI n e r lV=  (5.46) 

( ) ( )1/ 4 1/ 23/ 4'
i e f i o p p2 v 9πµ ε  I n e r l V=  (5.47) 

 
These differ by a numerical factor of the order of 30% (the ratio of (5.46) to (5.47) is 
about 1.37). Equation (5.46) corresponds to the assumption that the component of the 
flow velocity parallel to the electrode surface is constant and approximately equal to the 
flow velocity vf whereas in (5.47) this assumption is removed. 
 



 

123

 6) In addition, the value of the current in the transition between diffusion and 
convection regimes (cf 5.2.3.2) is reported [116]   
 

1/ 4 1/ 2
p2 2 1/ 4 o f

d d
i p e e

ε v1 1.3(Reα χ ) 1 1.3
µ

VeI I I
r n kT

      = + = +           
 (5.48) 

 
where Id = Ii is given by Lam's equation (5.2) and where the Debye length contained in 
α has been explicitly expressed in terms of the electron temperature. Differently from 
the purely diffusion case, in (5.48) a dependency on the probe voltage appears. 
 
Comparisons are made between the two diffusive currents of [72] and [109] and the 
improved convection formula (5.27) of [111] and the transitional formula (5.48). Since 
the CFF case, considered in the thermal version (Te=Ti) differs from Su and Kiel's 
expression only by the geometrical factor 
  

pCFF

SK p

2 πln 1.15
4

rI l
I l r

 
= ≈  

 
 (5.49) 

 
These currents are reported in figure 5.15 (except CFF which was shown in figure 5.8). 
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Figure 5.15 Ion saturation currents. From bottom, diffusive regime of Su and Kiel [72] 
(stationary), sheath convection regime currents of Clements and Smy [111] for different 
probe voltages (continuous 10 V, short dash 20 V, dash-dot 30 V, dot 40 V; Lam 
diffusive for flowing plasma [109]. Clements and Smy [116] transitional for different 
probe voltages (continuous 10 V, short dash 20 V, dash-dot 30 V, dot 40 V). The CFF 
case can be obtained by multiplying Su and Kiel’s value by 1.15 (see text)  
 
 
In figure 5.15, the flow velocity is vf=100 m/s, the mobility is µi=1.6⋅10-4 m2/(Vs), the 
probe radius is rp=100 µm and the length l = 5 mm. The diffusive stationary plasma ion 
saturation current of Su and Kiel [72], the flowing diffusive regime of Lam [109] are 
compared with the sheath convection regime of Clements and Smy’s [111] and the 
diffusion-convection transitional currents of Clements and Smy [116]. In contrast to 
what would be “expected” from a sheath convection regime, the currents of the latter 
just reach Lam’s diffusion value (instead of exceeding it) and this occurs only at the 
highest bias voltages achievable in arcs. In effect, the regime where these currents are 
believed to be applicable differs somewhat from the circumstances of this work (see 
also [116]). This was recognized by the authors during experimental verification of the 
transition between the two main regimes, diffusion or sheath convection. The authors 
[113, 116] found qualitative agreement between expected and measured transition from 
the saturation characteristic of diffusion regimes to the V1/2 behaviour of sheath 
convection, however, the transition occurred at values of electron density higher than 
expected, leading to an Reα2χ2≈10-3 instead of the expected ~1. Also, the saturation 
currents of the diffusive case were found lower by one order of magnitude with respect 
to the values predicted by (5.45), and very close to the values obtainable by convective 
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 equation (5.46, 5.47). Also, the transitional case described in [116] with the parameters 
dealt within this work, significantly overcomes both the diffusion and the convection 
cases and, contrary to the results in [116], the current is greater than the sum of the two 
cases taken separately.  
 
In [111] the comparison is carried further taking as “measure of inadequacy” of the 
alternative models the Reynolds number or, more precisely, the quantity Reα2χ2. 
However, for the sheath convection regime, critical is the assumption of the rough 
equality between the electric and the viscous boundary layer, whereas the sheath is 
supposed larger than the viscous boundary layer. This is in contrast with the evaluations 
performed above (cf Chapter 2 and Chapter 4) where it has been shown that under the 
present circumstances (TIG arc) the opposite does in fact occur.  
Up to this point, the comparisons in figure 5.15 shows that the different regimes of 
diffusion, for steady or flowing plasma, convection, or even better the transitional case, 
should be easily distinguishable from the experimental point of view. 
  
5.4. Comparison and summary  

Different groups of criteria have been considered in an attempt to: 
 

• fix the operating regime for a probe sweeping through an atmospheric arc with 
experimental conditions similar to the ones dealt with in this work; 

 
• see whether the different schemes converge to a unique description. 

 
The results of the criteria given by the three groups of works considered in this review 
can be summarized as follows: 
 

• The results given by the criteria of Swift and Schwar [65], α<<1 and β<<1 as 
well as 2-1/3(rp/λi)1/3(λD/λi)2/3>>1, put the system in the domain of “Continuum 
plus free-fall theories” characterized by a thin and collisionless sheath. However, 
no mention is made about plasma motion. 

 
• Chung, Talbot and Touryan (CTT [37, 119]), using the small Knudsen numbers 

criterion Kni,e<<1, and by the high electrical Reynolds number criterion Re>>1, 
classify the system as a flowing plasma (B4) with a dense sheath (B3). The 
criterion |χ|(λDδ /L)2 <1 specifies the sheath as thin. Some consideration should 
be given to the double transitional case C3. 

 
• Clements and Smy (CS, [79, 91, 111, 114], [84]), by Re>>1 set the system in the 

flowing plasma regime and, by the Reα2χ2<<1 criterion, in the 'diffusion via 
boundary layer convection' although, when flow velocities, probe bias and/or 
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sheath charged particle depletion are high enough, consideration must be given 
to ion convection regime, either in the sheath convection or in the E-field sub-
domains. This might be particularly true in the periphery region of the electric 
arc, where temperatures and densities are lower than in the bulk of the column. 
Sheath generation effects are difficult to evaluate until a reliable estimation for 
the recombination coefficient a is known, but should become significant only 
when the flow velocity is sufficiently small (This point is specifically addressed 
in Chapter 6).  

 
In summary, the discriminating conditions are reported in Table 5.4, where the regimes 
of probe operation are indicated following the nomenclature described above. 
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Classification following: Chosen regime / applicable 

theory/Notes 
1) Swift and Schwar [65] Continuum plus Free-Fall theory. No 

mention of plasma motion. 
2) Chung, Talbot, Touryan [37, 
119] 

B3/ flowing Continuum plasma with 
“dense” collisionless sheath. 
C3 Double transitional. 

3) Clements and Smy [78, 79, 91, 
111, 113, 114], Smy [84] 

E1 Diffusion-mobility regime. When Te, 
vf  are low enough, sheath electric field 
are effective (E21 and E22). 

Table 5.4. Summary of the classification regimes. Models: C= Continuum theory, CFF 
= Continuum plus Free Fall, DD = Diffusion dominated, CD = Convection Dominated 
 
A comparison of the domain described in the three cases reveals a common 
“Continuum” background. After this has been established, both collisionality and 
thickness of the sheath surrounding the probe has been addressed. For the latter, the 
result in all cases is of a thin sheath. In particular, in the work reported by Swift and 
Schwar [65] the Continuum plus Free-Fall theory has been seen as appropriate to 
establish a collisionless sheath. Although in the static case, this is in agreement with the 
collisionless thin sheath (“dense” case) of CTT. 
 
These results are consistent with the various estimated sheath thickness, always of the 
order or below one ion mean free path. However, since Swift [65] does not account for 
the general problem of plasma flow, only the works of CTT and CS were reported. 
Results from both rely upon the consideration of the high electrical Reynolds number 
leading to a “flowing regime”. CTT’s “Large convection” and CS’s “flowing plasma” 
are thus equivalent. In the frame of CTT’s classification it was possible to re-define a 
“thin” sheath by evaluating the relative depths of the boundary layer and the electric 
sheath. 
 
The next step was obtained by considering the effects of plasma properties and 
geometrical and field effects altogether. This was done in the frame of CS’s 
classification. Here the emphasis was on the investigation about the way the ions reach 
the probe: it has been found that for 1) relatively low probe potentials, 2) low flow 
velocity and 3) high temperatures, ion diffusion via boundary layer convection is the 
dominant process. However, flow velocities and probe potentials high enough lead to 
the opposite case of convection through ion sheath, where the effects of the electric field 
are not negligible. It has been shown that both the “sheath convection” and “E-field” 
sub-regimes can apply for a probe moving through a variable characteristic plasma 
column with lower temperatures and densities in the peripheral regions of the arc.  
Several expressions for ion saturation current have been reported, some belonging to the 
'Continuum' and 'CFF', deliberately ignoring plasma flow effects. The first mainly for 
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comparison purposes; the second, i.e. CFF currents, also because they can be considered 
as starting points for the regimes encountered in this work: after all, they represent well-
established results for the non flowing case.  
Also, a current expression valid in stationary plasma for probes close to plasma 
potential [86] was reported and will be checked against experiment.  
 
It can be expected that in circumstances where flow velocity is not too high, sheath 
depletion (i.e. occurrence of the condition Reα2<1, see figure 5.13) will occur and 
therefore the measured current values could lie close to the values predicted by the CFF 
theory, at least for the ion saturation region of the characteristic curve (figure 5.8). On 
the other hand these current values are considerably lower (down to some mA in the arc 
core region) than any experimental value ever obtained in an atmospheric pressure arc 
(about 1 A). A full verification of the values given by these theories will be possible 
only after further experimental measurements. 
 
The values for the electrical current reported for plasma flowing conditions contain 
several of Clements and Smy's results. Not all of them appear appropriate for the regime 
studied. To the result of Lam [109], see figure 5.15, essentially limited to the flowing 
plasma in a diffusive regime, showing saturation, Clements and Smy add the 
'convective' regime by the two slightly different equations (5.46) and (5.47). The latter 
values are considerably lower than the diffusive values (shown in figure 5.7). In 
particular the 'convective' currents should be comparable with experimental reported 
values [63] only at 'high' electron density, i.e. above  ne=1024 m-3. Therefore, in 
agreement with what emerges from Chapter 4, it appears that Clements and Smy's 
diffusive regime is appropriate for the conditions dealt with in this work. However, as 
stated earlier, high ionization is not contemplated. Moreover, from the experimental 
point of view, the impression is that some of their results are applicable to a range that 
appears contiguous but not superimposed to the experimental conditions of interest in 
this work. The fact that these authors contest the ion current values as measured [62], 
which show to saturate contrary to their V1/2 prediction,  if not their interpretation, 
reinforces this impression. 
 
Of interest is the way they present the current lack of understanding in charge 
generation and recombination within the sheath. In particular, the order of magnitude 
comparison with the current values quoted by [62, 106] and Allum [63], defines a range 
for the "recombination-electron density" combination. It is then possible that 
measurements of the electron density could indicate orders of magnitude estimation for 
the recombination coefficient within the sheath. 
 
The last work considered is due to Benilov [123] in the frame of a hydrodynamic 
plasma with low degree of ionization. Given that the applicability of his theory was 
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 ruled out, of some interest is the possibility to obtain the electrical conductivity by 
measurement of current and voltage to be performed in the steep part of the 
characteristic curve. Whether this method is fully exploitable will be left to the 
experiment. 



 

 

6. NON-IDEALITIES 

 

6.1. Introduction 

The interpretation of experimentally determined parameters, particularly the electric 
current, by means of the theories sketched in the preceding chapters, was based on 
simplifying (“ideal”) assumptions on plasma and probes. Some of these have to be 
removed in order to gain a realistic picture but the greatest difficulty is that in literature 
“non-idealities” are never addressed at the same time. 
These are: 
 
1. The plasma-probe thermal interaction has been ignored except in [63] (cf Chapter 4).  
Probes ‘survive’ into a medium whose temperature is much higher than probe melting 
temperature and plasma cooling by probes could be substantial [137]. Heat transfer is 
treated in section 6.2 and whereas criteria for cooling effects of the plasma by the probe 
are illustrated. 
 
2. The probe is a perfect charge collector. However, it has already been mentioned that 
probes withstand high temperature fields and steep potential distribution in proximity of 
probe surfaces. These two circumstances could lead to thermionic and field emissions; 
they are considered for the two probe constitutive materials (Cu and W) in section 6.3. 
Also, the surface bombardment by the incident ions could cause secondary emissions 
which alter the current sensed with respect to the case where these phenomena were 
absent.  
 
3. Ionization and recombination effects in the region occupied by the probe have been 
almost ignored (“Frozen Chemistry” assumption). For the main bulk of this work a one-
component (Ar) plasma is considered. Therefore, the “chemistry” lies in the 
contribution of ionization and recombination to the charged species both in the bulk and 
in the sheath. The “frozen chemistry” assumption in all but [83] and [78], neglects these 
effects that contribute typically with different rate laws. Evaluations of these hypotheses 
are considered in section 6.4.  
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 4. Several effects of geometrical nature, combined with the ambient pressure determine 
disturbances which distort the electronic portion of the characteristic curve. These are 
discussed in section 6.5. 
 
6.2. Heat transfer to probes: mechanisms 

The fact that both copper and tungsten probes survive many runs without vaporizing 
and actually degrading their behaviour (cf Chapter 8), indicates that the mechanisms of 
direct energy transfer are inhibited by the existence of a thermally insulating layer 
[137]. Moreover, the fact that probes remain much colder than the surrounding plasma 
raises the question about their thermal influence on the plasma and in particular on the 
value of the information extracted (“Plasma Cooling”, [79, 84, 91]). 
In general, the heat transferred to a cylindrical probe sweeping through the hot plasma and 
the probe energy loss may be ascribed to one or more of the following processes: 
 

1. Heat conduction from the plasma to the immersed body and heat losses towards 
the colder gas out of the arc; 

 
2. Radiation from the plasma to the probes and their re-irradiation at different 

wavelength. 
 
1. Heat conducted from the plasma to the body 
A “cold” probe at ambient temperature (300 K) moves across an arc with temperature 
varying from about 5,000 K (edges) to 20,000 K (core). It is assumed that the heat 
transfer is mainly convective across a boundary layer. This thermal boundary layer may 
differ from the viscous boundary layer discussed in Chapter 2. However, based on the 
assumption that the Prandtl number [58, 60] is close to one  [46, 138] it is possible to 
conclude that the two boundaries are of the same order of magnitude.  
Also it is possible to estimate the heat transfer coefficients [46] by assuming the fluid 
ideal and obtain, for tungsten h≈8⋅105 to 4⋅106 Wm-2K-1 or 0.8 to 0.4 Wmm-2K-1 (in the 
range of Prandtl number corresponding to argon temperatures between ambient and 
5,000 K). These heat transfer coefficients can be compared to the values measured by 
Petrie and Pfender [137]. These authors used a tungsten probe in an ‘hot wire 
anemometer’ configuration and inferred both the temperature difference between 
plasma and wire and the heat transfer coefficients h (W/mm °C), by measuring the 
electrical resistance of a wire swept through a 10 mm 200 A arc plasma. The agreement 
between measured and theoretical heat transfer coefficients was stated to vary from 5 to 
15%. It was further assumed that the small current drawn by the wire (1 mA) did not 
alter the heat exchange. Petrie and Pfender’s heat transfer coefficients are of the order of 
the estimation made above.  
One could try to determine the plasma temperature from these coefficients and the 
measured probe temperature, by using a linear law like Newton’s law (a steady 



 
6. NON-IDEALITIES                                                                                                           132 
 
conduction law) applied to two coaxial cylinders with the thermal conductivity replaced 
by a 'global' transfer coefficients h (conduction and convection) [46]. Moreover, the 
maximum temperature difference between plasma and probe can be estimated, as if it 
were due to conduction and convection only [46]. The heat necessary to melt typical 
probes (L=50 mm, rp=10-4m) is q=2.88 J for copper, q=5.80 J for tungsten. Since the 
probe-in-arc permanence time τ is of the order of 5 ms, this gives the heat flux needed 
per unit time to melt the probe within that time: qCu= 576 W  to qW = 1160 W. From this 
steady state ‘cooling’ law, one could infer the maximum plasma-probe temperature 
difference of the order of 500 to 2,000 K. Taking for the probe length 15 mm instead of 
the 50 mm (i.e. only the ‘active’ part of the probe) would increase this differences by a 
factor 3.3 and thus the maximum difference could be about 6,600 K, which added to the 
probe temperature, say 3,000 K for tungsten, would lead to 10,000 K (closer to but still 
lower than accepted values). These temperature differences are lower than commonly 
accepted arc temperatures. The fact that they would rise considerably by considering a 
limited portion of the probe only shows that the knowledge of the radial dependency of 
the heat transfer is mandatory. 
 
2. Radiative  transfer 
It is possible to use the radiative transfer equation [8, 139] to compute the heat produced 
in the plasma and transferred to the probe immersed into it. The radiant energy density 
is negligibly small in comparison to the energy of the fluid provided the gas density is 
not too "low" and the temperature not too "high". The equilibrium radiant energy 
density and the thermal energy density for monoatomic gas, equalize at a density 
n=2.67⋅1025 m-3 (standard air density) and at T=900,000 K (and beyond when 
considering heating with subsequent ionization, [139]). Below these densities the effect 
of the radiant energy density on the fluid motion is negligible. However, effects of 
radiation on fluid motion exist in that the radiant energy lost by the fluid and the radiant 
heat transfer may be appreciable even at lower temperatures. This is due to the low ratio 
of fluid velocity v to the speed of light c, v<< c: the energy flux in the fluid Ev, and the 
radiant energy flux in the fluid Uc can be comparable even if the corresponding 
densities are appreciably different (Uc≈Ev even if U<< E because c>> v [139].  
 
The amount of the radiated heat depends on the optical thickness of the medium [46]. 
An optically thick body looses its radiation from the surface while an optically thin body 
looses it from the whole of the body. Therefore, the radiation spectrum of the thick body is 
closer to the Planck spectrum corresponding to the surface temperature whereas the thin 
body distribution can be very different from the Planck spectrum corresponding to the 
temperature of the body, especially if the absorption coefficient is a strong function of the 
frequency. The energy losses of two bodies at the same average temperature, one with large 
dimensions and optically thick; the other smaller and optically thin, are both less than σT 4. 
The upper limit of global emission from a homogeneous arc at 20,000 K is 
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4σT = 5.67⋅10-8 W/m-2K-4⋅(20,000 K)4=9⋅109 Wm-2 (6.1) 

where σ=5.67⋅10-8 W/m-2K-4 is the Stefan constant. The fraction impinging on the probe 
surface can be obtained multiplying by the probe surface 2πrpl, and the energy 
deposited is obtained by using the probe in arc permanence time (∼ms). This gives about 
1 kJ, well above the melting heat of the probe (cf above, q=2.88 J for copper, q=5.80 J 
for tungsten).  
A better estimate is obtained using the data taken from Menart et al [140] and reported 
in Table 6.1 for the heat radiated by a TIG arc. 

 

Region 

(z,r) 

Radial flux 

Srad (W/m2) 

Axial flux 

Sax (W/m2) 

Source term 

(W/m3) 

T (K) Em. Coeff. 

ε (W/m3sr) 

8.5,0.3 9⋅106 1.2⋅107 2⋅1010 20,000 6⋅1010 

0,6 ≤2⋅106 -5⋅105 (*) 0 8,000 <107 

Table 6.1. For the estimation of arc radiated power. Data points extracted from the arc 
maps shown in [140]. Arc length 10 mm. (*) See text 

 

These authors compare ‘uncoupled’ and ‘coupled’ system, the coupling occurring 
among radiative, flow and thermal fields. Some observations are possible. 
 

1. The temperature gradients are ‘high’ and therefore the estimations performed in 
the following are coarse 

 
2. The radial and axial fluxes are off-axis, which is understandable when one 

accepts that these quantities are both transported values which therefore depend 
not just on local properties but on the global temperature 

 
3. In the anode arc region radiation adsorption prevails on emission (negative value 

for the axial flux reported in table 6.1). The first rows correspond to two extreme 
cases of core region (1.5 mm down the cathode near the axis) and to the anode 
region (6 mm off the axis) of a 10 mm argon arc. 

 
Using these values for axial and radial fluxes (W/m2) in the form ax rad( ) 2J J J< >= +  at 
the two locations; and assuming a distributed source of the order of the probe surface 

p2πr l , the radiant heat flux impinging on the probe surface per probe length l would be 
 

p

6.6   /
/ 2π

471  /
kW m

W l r J
W m


= ⋅ < >= 


 (6.2) 
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corresponding to 99 W and 7.1 W for the 15 mm active region of the probe. Multiplying 
by the ratio of the permanence time (1 to 10 ms) to 1 second, a maximum of Q=0.1 J or 
a minimum of Q=7.1 mJ energy would be released to the probe. These values are both 
much lower than the heat of fusion.  

 

A summary of the order of magnitude evaluations is reported in Table 6.2.  
 

Mechanism Heat per unit surface (W/m2) 

Conduction/convection 1.8⋅108,  7.6⋅1010,  9.1⋅1011 

Radiation 4.5⋅109 (blackbody), 1⋅107 ([140]) 

Table 6.2  Comparison of heat transfer mechanisms. 

 
It can be observed that radiative effects were not considered. At these arc regimes the effects 
of radiation would amount to perhaps a few % of the conductive/convective heat transfer to 
probes. 
  
6.2.1 Plasma-probe motion 

The problem of the ‘low’ probe temperature was considered by Smy [84] and is related 
to probe-plasma relative speed.  
 
(i) stationary plasma 
The effect of cooling is treated by Thomas [76] that extends Su and Lam [73] and Su 
and Kiel [72] theories for probes that are cooler than the gas. Using Fourier equation the 
temperature distribution is determined and taken as the gas temperature around the 
probe; the diffusion-mobility equations are modified and the characteristic curve 
obtained shows that Su and Lam’s [73] and Su and Kiel’s [72] results are still 
applicable. However, these works pertain to low temperature and low ionization media. 
Smy considers flames for which the temperature around the probe is of the order of the 
gas temperature and it is not reduced. This means also that radiation effects are 
completely negligible. 
 
(ii) Moving plasma 
In general, the probe must be at a different temperature with respect to the plasma or it 
will melt or, perhaps emit electrons ([78, 117], cf section 6.3). This heat and mass 
transports appear as an increase in pressure of the order of 0.1 per cent near the probe 
for atmospheric plasmas ("cooling effect") [78, 84, 117]. These authors state that the ion 
saturation current is not altered from the "uncooled value" by a "cold" probe. 
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 The physical picture consists of electrons supposed frozen at the bulk plasma 
temperature. In case of electronic cooling, a useful measurement of electron temperature 
is still possible, provided the ionization fraction is below a critical value (10-6). The 
effects of the heat conduction from the hot species to the probe on the characteristic 
curve would be twofold: the neutral density near the probe could increase, because the 
pressure has to remain constant (p=nkT is assumed). Therefore, the ionic mobility 
decreases according to the kinetic T 1/2 law. In second place, the electrons are cooled by 
collisions with the colder neutrals depressing the electron temperature near the probe. 
A criterion for these phenomena to occur can be found studying the relationship 
between the ratio rp/v∞ of the probe radius and the probe sweep velocity in the 
unperturbed plasma as a function of the non-perturbed electron density ne∞ ; the relative 
plasma-probe motion could be effective in preventing cooling,  provided that [84] 
  

4
p v 10  r s∞

−<  (6.3) 

This should ensure a reliable estimate of the electron temperature Te. The condition is 
fulfilled within one order of magnitude for the values reported in Table 5.2 (Chapter 5), 
since the ratio is now of the order of about 20 µs. The following observations for 
formula (6.3) can be made: 
 

1. The actual regime considered by the authors is quite far from arc conditions 
since the reported electron temperature is Te≈1,800 K and the electron density 
does not exceed 10

15
 m-3 

 
2. The criterion was derived in [91] from an energy balance equation in which 

collisions between charged particles were neglected; this is justified as long as 
either the ionization rate is very low (of the order of 10-6) as in typical flames, or 
a thin collisionless sheath is considered 

 
3. In the original formulation [84] the ‘plasma motion’ is due by the relative 

motion of a steady plasma and a sweeping probe; in the present work the plasma 
flow velocity largely exceeds the probe sweeping speed. In this case, a flow 
velocity of 40 to 200 m/s is much greater than the probe velocity (1 to 5 m/s) and 
the criterion would be fulfilled a fortiori. 

 
Therefore, cooling due to electron energy loss for collisions with neutrals is excluded in 
the region around the probe for ‘low’ temperatures.  
 
In [84] the characteristic cooling time is taken [91] as a balance between electronic heat 
conduction and collisional losses 
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i
c

e i

λτ
v

m
m

=  (6.4) 

where mi is the ionic and me the electronic mass and in which electron and ion–neutral 
mean free paths were considered equal. If the flow time τf (time needed to cover a 
distance X at the velocity vf) is greater than this value, there will be substantial cooling 
and electron and gas temperatures will be in equilibrium. In the opposite case the 
electron temperature will remain ‘frozen’ at Te (e.g. ‘uncooled’). 
In summary, the condition for the depression of the electron temperature would be 
 

i
f

f e i

λτ
v v
X m

m
≡ >  (6.5) 

 
The left hand side is 
 

4 6
p f

3 4
f f

v =10 100=10
=
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 (6.6) 

 

depending on the chosen characteristic length (the probe radius, X= rp=100 mµ or the 
probe length X= l=50 mm). For the right hand side of (6.5) 
 

 i
2

e i i

2.3        (300 )λ 679    
2.7 10       (25,000  )v

Km
Km T -

ìïï» = íï ×ïî
 (6.7) 

where ion diffusion velocity was reported in Chapter 5 (where it was shown that the 
flow velocity dominates the ion velocity because Re>1) 
 

 i
i i

p

v =µ
2
kT
r e

  

 
The ion mean free path and mobility has been taken from Chapter 2 (λi= 1.2⋅10-6 m, µi 
=1.5⋅10-4 m2⋅V-1⋅s-1 cf also Table 5.1). The ion temperature can be considered in between 
the two extremes of a ‘cold' plasma (i.e. gas ambient temperature, Ti=300 K) or the 
"thermal plasma limit" (Ti= Te=25,000 K in the core). In both cases (X = rp or l) 
condition (6.5) is never fulfilled and electron cooling would not occur.  
 
6.3. Probe Emissions 

For a probe to be considered non-perturbing, the current drained must be negligible with 
respect to the current flowing through the arc plasma. The current carried by 
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 atmospheric arc plasmas varies from tens to some hundreds of amperes and within an 
arc column, far from the electrodes, it produces a field 102-103 V/m [14]. If the electrical 
conductivity is of the order of 104 (Ωm)-1, the current density within the arc column 
varies from j = σE = 106 to 107 A/m2.  
Given the typical current estimated in Chapter 5, the question arises whether electron 
emissions occurring as a result of probe temperature (heat transferred, see previous 
section), electric field or impinging particles can produce currents from the probe 
comparable with the probe current in absence of those effects. The result would be a 
modification of the effective amount of charge seen by the probe.   
 
Probe electron emission may be caused by the onset of a critical temperature of the 
emitter that allows the electron to overcome the potential barrier existing at the material 
surface (work function) and escape out of the metal (thermionic emission). Also, a probe 
to plasma potential, giving rise to a sufficiently “strong field” across the sheath can 
cause field emission (or cold emission see below). Secondary emission may occur as a 
result of scattering of electrons or ions that, impinging on a surface could release one or 
more electrons.  
From the experimental point of view it is difficult to discriminate the different emission 
phenomena (“perturbing” effects) with respect to ion-surface recombination that leads 
to the formation of the “true” probe electric signal (current). 
 
The (integrated) emitted current is the product of the emitted current density and of the 
probe surface 4

p p2π 6.28 10   ( )S r l l m−= = ⋅ . For a probe residence time of 1 to 10 ms in 
the arc column, the number of emitted electrons can be compared with the ion flux 
expected at the probe surface in absence of emissions. 
 
6.3.1 Thermionic, Field and Thermionic-Field (TF) emissions 

Thermionic emission from a metal surface at temperature T obeys the Richardson-
Dushman equation [141] 

 

 2 exp( φ / )j AT kT= −  (6.8) 

 

where T  is the metal temperature and the “constant” A is calculated [142] 
 

2
6

3 1.2 10   
2 π 
emkA = = ⋅

h
 (6.9) 

 

or measured, 5 2 2 6 2 2 7.2 10      or  10   A A m K A m K− − − −= ⋅  [141, 143].  
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The exponent ϕ is the metal work function, i.e. the energy needed to release an electron 
from the metal and bring it at rest at infinite (sometimes written as the difference 
between a "potential" ϕ  and the maximum kinetic energy of the escaping electron). It 
varies among metals from 1 to a few eV. Work functions for tungsten and copper are 
ϕ =4.54 eV and 4.65 eV respectively [144]. Oxide layers may lower the value down to 2 
eV for many metals.  
 
If the emitting body is set at a potential much lower than 108 V/m, the electronic current 
as a function of temperature saturates. ‘Long-life’ tungsten at 2,500-2,600 K has a 
saturation emission variable from jsat=3,000 to 5,000 A/m2 [143].  
Relationship (6.8) has no dependency on the electric field. Its modification is then 
necessary due to the following effect. 
When the field is “high” enough, ~ 108 V/m, the probability of an escape from the metal 
surface by means of “Tunnel effect” is not negligible provided the distance of 
application of the field is of the order of 1 nm. One speaks then of “High-Field” 
emission from a Cold cathode, since thermal effects are now of minor importance. 
Since the electrons do not have to overcome a potential barrier, their energy is of the 
order of the Fermi energy EF. 
 
Therefore, in the following equation (6.10) the “external” potential energy ϕ’ must be 
evaluated as a function of the distance from the surface and in the case under 
consideration can be identified with the sheath potential (energy). 
Formula (6.8) is modified to 
 

     ( )2 exp φ φ'( ) /j AT x kT= − −    (6.10) 

where the term ϕ’(x) is the external field (potential) energy subtracted from the work 
function and evaluated at a distance x from the surface.  
The use of Richardson-Dushman equation for tungsten is not legitimate [145] and an 
alternative formula is shown where the current depends on the transmission coefficient 
D. The emitted current density is shown to vary as a function of the electric field, 
between 10-2 (for 1,500 K) to 2⋅105 A/m2 (3,000 K) for virtually zero field, to about 105 
to 108 A/m2 for E= 3⋅109 V/m at the same temperatures. 
The Nordheim-Fowler formula for field emission [18] is 
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where 
 
 b mϕ ϕ ϕ= +   (6.12) 

ϕ is the work function and ϕm is the band potential, i.e. the depth of the electron energy 
band in the metal, estimated by 

 
2/32

19 2/3
m

3 3.65 10    
2 8
h n n eV
me

ϕ
π

− = = ⋅ 
 

 (6.13) 

 
where n is the metal electron number density (~ 1 electron per metal atom). Estimations 
for Cu and W are reported in Table 6.3.  
 

 n (m-3) ϕb=ϕ+ϕm  (eV) C (A/V2) D (V/m) 
Cu 8.46⋅1028 11.68 = 4.65 + 7.03 6.61⋅10-7 6.65⋅1010 
W 6.30⋅1028 10.32 = 4.54 + 5.78 6.73⋅10-7 6.41⋅1010 

Table 6.3. For the determination of the terms of Nordheim-Fowler relationship (6.14) in 
copper and tungsten. 
 
 
(Incidentally, the value of ϕm=9.0 eV for tungsten reported in [18] is incorrect. In the 
table the correct ϕm= 5.78 eV computed here is reported). From these values, the 
emission current can be estimated and are reported in figure 6.1.  
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Figure 6.1 Field-emitted current density jF according to Nordheim-Fowler relationship 
(6.11) in tungsten (solid line) and copper (dash-dot line). 
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It can be observed that the current starts to be appreciable when the field overcomes the 
value E=3⋅109 V/m. Also, the differences between copper and tungsten are minimal. 
Raizer [9] compares the three phenomena of thermionic, field and TF emission as a 
function of the electric field. The values reported in his Table 4.8 [9] for the field 
emission agree with those computed here. 
  
The purely thermionic and the uniform field emissions are now compared. For field 
emission we use the sheath thickness given in Chapter 4, Swift’s (4.21) and (4.22) for 
the thermal and cold plasma; improved Child-Langmuir (4.28); Mukherjee ‘collisional’ 
(figure 4.4) can be used to calculate the voltage at the sheath edge. It is assumed for 
simplicity that in (6.11),  

 
 ( )2 exp φ φ'( ) /j AT x kT= − −     

the ‘corrective’ potential energy ϕ’ is uniform, ϕ’(x) ≈ const = 4 eV (corresponding to 
x=δs=10-7 m where the potential is V= −4V, see figure 6.2). It should be mentioned that 
the choice of the Child-Langmuir solution (fig. 6.2) implies an electric field of the order 
of 5⋅107 V/m, corresponding to the potential variation from Vf =−9 V at the probe 
location, to the –4 V of the sheath edge over the distance δs=10-7 m [The Child-
Langmuir case was just one of the cases dismissed because of its high voltage 
applicability]. The condition eV/kT<<1 is satisfied within present regimes and in 
floating conditions a weaker probe-plasma voltage, perhaps 0.5 V is attained. The 
resulting saturation current densities are shown in figure 6.2 for these extremes.   
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Figure 6.2 Thermionic and field emission current densities as a function of temperature 
for electric field corresponding to sheath potential V=- 4 V or –0.5 V at the sheath edge. 
Tungsten, full lines, copper, dashed lines.  The vertical lines at 1,358 K and 3,695 K 
indicate copper and tungsten melting temperatures. 
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From figure 6.2 several total emitted current can be extracted [46] in a range varying 
from the nA to the tens of A, depending on the probe temperature. In any case: 
 

• The purely thermionic current densities are much lower than field enhanced 
emissions.  

 
• Although precise evaluations are impossible given the steep (exponential) 

dependency on temperature, thermionic emission for tungsten seem difficult to 
be ruled out from these data, whereas for copper figure 6.2 shows negligible 
currents below its melting temperature. 

 
• For field enhanced emission, the current density is of the order of j=1010 Am-2 

and j=1012 Am-2 at copper and tungsten melting temperatures and sheath 
potential V=−4 V; these are by far larger than the values at V=−0.5 V. 

 
It is worth to mention the results computed by Testé et al [145] for tungsten at E=4⋅108 
V/m:  j= 6⋅106 A/m2 at 3,000 K,   j= 8⋅105 A/m2 at 2,500 K,  j= 6⋅102 A/m2 at 2,000 K and  
j= 3⋅10-1 A/m2 at 1,500 K.  These would correspond to the probe currents 
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 (6.14) 

  

A qualitative picture for pure Thermionic, Thermionic plus Schottky, Thermo-field (TF) 
and Field plus Schottky can be obtained by a numerical model ([9], p70) that gives 
emission current densities from which the following conclusions can be drawn: 

1. At temperature of 3,000 K and fields E> 8⋅109 V/m pure field emission 
dominates; 

  
2. At E< 5⋅108 V/m Thermionic plus Schottky dominate; 

 
3. At lower field purely thermionic should occur. 

 
 
6.3.2. Secondary emissions 

Secondary electron emission from a metal surface occurs when an electron impinging 
on a surface has energy high enough to overcome the elastic contribution to the 
scattering. The elastic reflection coefficient is about 0.1 – 0.4 for energy range 3-20 eV 
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of the colliding electrons and decreases at higher energies [29]. For the plasma the 
inelastic contribution is a particle loss, given by an inelastic reflection coefficient 
always less than 0.5 for every material. Other phenomena include the energy loss of 
electrons due to Coulomb scattering with the material.  
 
Secondary emission can also be due to ion impingement on the surface. As such, it is 
also called Auger emission [9, 13]. Ions impinging to the metal surface can lead to 
elastic, inelastic collision, or adsorption, possibly accompanied by electron-ionic 
emission. The electron emission due to ion bombardment can occur for two main 
reasons: if the ion impinging energy is about twice the potential needed for the electron 
to leave the metal, an electron potential-pickup occurs. The state “ion on the metal 
surface” can be considered as an excited state leading to a de-excitation via electron 
capture from the metal surface. The energy released can be transferred to another 
electron (Auger effect). The yield coefficient for monovalent He ions in this process is 
of the order of γi ≈ 0.3 to 0.5, being much lower for other species. However, in case of 
multiply ionized atoms, it can reach values greater than one. Ions ordinarily do not 
posses the high kinetic energy to directly knock out electrons [9]. The ions build a thin 
and low potential barrier at the surface (the sheath). The electrons then tunnel 
neutralizing the ion. If the energy release exceeds the extraction potential, I e e− ϕ > ϕ  a 
further electron is emitted. 
The electron yield on a clean tungsten surface for Ar+ and He+ impinging ions is 
reported in Table 6.4. For He this is a reference value only as a non-monotonic curve is 
instead necessary ([34] p. 230). 

 

Ar+ 0.09 to 0.11          e-/ion 

0.09                      e-/ion 

0.096– 0.095        e-/ion 

0-1000 V ion energy [34] 

≤1 keV ion energy  [9]  

 10 eV-100 eV  (L94) 

He+ 0.30 to 0.25          e-/ion 

0.21                      e-/ion 

0-1000 V ion energy [34] 

100 eV, [13] 

≤1 keV ion energy  [9] 

Table 6.4 Ion secondary emission yields (e-/ion) at different ion energies for Ar and He on 
tungsten. Data after [9, 34] ,  [13] and references therein. 

 

 
The total yield (due both to electrons and ions), can be altered by 'impurity' layers on the 
target surface. It is perhaps worth mentioning the 1/3 reduction of yield for Ar on 
tungsten in presence of a layer of nitrogen (e.g. air impurities [29]). 
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 In general the effectiveness of ion neutralization by a metal surface is relatively high; 
in the region 10 to 1,000 V ion energy almost all positive ions are neutralized at the 
surface [13]. For inert gas ions, the reflection coefficient without neutralization is of the 
order of about 10-1-10-2 % [29]. From the probe operation point of view, this means that 
ions are almost completely 'collected' by the probe surface. 
 
Evaluations 
For a probe at a negative potential (biased or floating), electron emission is due to positive 
ions only. The emission coefficient is taken as γi≈0.1 electrons/ion (cf table 6.4) in Ar and 
γi≈0.3 electrons/ion in He. In order to evaluate the number of electron emitted per unit time 
by the probe surface an estimate of the flux of the impinging ions is necessary. In effect, it 
would be appropriate to consider all the phenomena occurring at the surface as consequence 
of ion striking the probe, i.e. "true absorption", corresponding to ion neutralization at the 
surface; and “true” secondary emission of electrons due to ion impingement, e.g. the surplus 
electron emitted in addition to neutralization. γi≈0.1 in argon means that 10% of the 
impinging ions free one electron from the surface. Experimentally, the measured (e.g. 
electron) current would consist of a 90% due to adsorption, e.g. recombination at the surface, 
and 10% to electron ejection. There is no way to distinguish between an electron that left the 
surface to recombine with the impinging ion (giving rise to the detection of a charge e), and 
the electron ejected from the surface as a result of ion scattering, which may leave either a 
charge e or 2e. 
 
6.3.3. Discussion 

Table 6.5 summarizes the different emission mechanism described in the previous 
sections. The average electron current densities emitted from the probe are compared.  

Mechanism Current density 

A/m2 

Formula/e 

Note 

Thermionic j=6⋅106 Am-2 

j = 7.3⋅103 Am-2 

(6.8) W melting T; 

T=2560 K (W) 

T-F j= 6⋅106 A/m2 at 3,000 K, 

j= 8⋅105 A/m2 at 2500 K, 

j= 6⋅102 A/m2 at 2000 K, 

j= 3⋅10-1 A/m2 at 1500 K. 

 

 

(6.17), [145] 

E=4⋅108 V/m 

 

Field  2

F exp( )j CE D E= − ≈104 A/m2  Nordheim-Fowler 

(6.11) E=3⋅109 V/m 

Secondary 10% (Ar) –30% (He) ? 

Table 6.5 Comparison of different emission currents on a probe 
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Within the great uncertainties outlined above, and taking into account the current 
densities impinging on the probe at 20-25,000 K (i.e. the currents reported in Chapter 5, 
divided by the probe surface) that vary from j≈3⋅102 A/m2 in the CFF model, see figure 
5.8, to the flowing plasma j≈105 A/m2 (Lam) or j≈104 A/m2 (Su and Kiel), see figure 
5.15, it appears that: 
 

• Thermionic emission seems effective only for tungsten: too low current 
densities, j≈10-4 A/m2 are predicted for copper at melting temperature (cf figure 
6.2) 

 
• At comparable temperatures T-F emission dominates thermionic emission at all 

temperatures in both cases of ‘low’ (e.g. 0.5 V) or ‘high’ (-4 V) probe to sheath 
voltage (cf figure 6.2). In particular for the ‘low’ case, copper seems immune 
from T-F emission 

 
• Purely Field emission seems negligible given the fields considered in this work, 

always lower than 109 V/m (at this fields, j≈10-4 A/m2) 
 

• Thermionic and T-F emission currents given above at the tungsten melting 
temperature or slightly below, are always greater than any of the ion saturation 
current densities obtained in Chapter 5 (cf Table 6.5) 

 
• Secondary emission is sensibly independent of temperature but dependent on 

surface and environmental conditions that may be much less than ideal 
(therefore reducing the yield γ) as outlined above. The values of the emitted 
current may be as high as 10% to 30% of the impinging ions, but is not 
distinguishable from the ‘true’ current. The effect would be a comparable 
overestimation of the collected charge as a consequence of surface electron 
depletion. 

 
The ‘worst scenario’ is therefore the one dominated by T-F emission in the region of ‘high’ 
tungsten temperatures, 2,500 to 3,500 K, or the tungsten melting temperature in the 
thermionic scenario, where the current densities are close to j≈106 A/m2, greater than any of 
the probe current densities values reported in Chapter 5: the current to the probe would then 
be mostly determined by emissions and the Langmuir probe would be of no use. 
 
From the characteristic curve point of view, the analysis of thermionic and or field 
emissions was performed by Chang and Bienkowski [125] who studied the influence of 
emissions of half-Maxwellian electrons from the probe surface. They found that 
electron emission was both space-charge and diffusion limited. In their scheme, the 
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 distribution of the potential from the (spherical) probe surface outwards, is 
characterized by the appearance of a maximum between the probe surface and the bulk 
plasma, in correspondence of an electron sheath, followed by a decrease towards the ion 
sheath edge and the transitional region to the quasi-neutral region (“double sheath”). 
According to CTT [37, 119], the consequences on the interpretation of the probe 
characteristic curve would be that the space-charge limitation phenomenon at low to 
moderate probe potentials, would invalidate both the ion and the steep electron 
attracting part of the curve, leaving the electron saturation region unaltered. The ion 
saturation current would be increased by the emission. The electron temperature could 
be determined provided a correction to discriminate the electron contribution from the 
apparent ion current existed.  
This picture however, is relevant for tungsten, a material which is an emitter. The 
results shown above indicate that copper is immune to these problems. 
 
6.4. Chemistry 

In the bulk of the arc, a steady (if not equilibrium) density distribution no is attained, 
perhaps solely by ionization and recombination balance (i.e. neglecting external 
contribution from the power supply). In the vicinity of the probe, this ‘equilibrium’ is 
perturbed by the sheath; the electrical neutrality no longer holds and mass and charge 
diffusion, and heat conduction take place. When recombination and ionization rates are 
high enough, the “frozen-chemistry” may no longer hold (In frozen conditions the 
chemical reactions occur on a time scale much longer than the observer’s time scale). 
This is true when the ionization density is significantly depleted near the probe and/or 
when the ionization rate ani

2 and recombination rate ano
2 differ substantially (a 

[volume/time] is the recombination coefficient, supposed equal to the ionization 
coefficient at equilibrium). The problem was analyzed by Carrer and Fendell [83] who 
considered both the cases of frozen and reacting gas ions, electrons and neutral species. 
The influence of recombination is expressed by the Damkohler number,  
 

2
i p i/n ar D=D  (6.15)  

where a is the recombination coefficient, dependent on temperature and the number 
density is named ‘ambient’ in [36] therefore presumably in the bulk of the plasma. The 
value of the Damkohler number can be seen as a suitable criterion for the departure 
from the frozen-chemistry conditions. According to CTT [37] the condition D<<1 
stands for frozen chemistry condition; conversely, D>>1 would imply equilibrium (or 
relaxed conditions, in which the variations are so quick that on the time scale of interest 
an average stationary situation can be envisaged). Using a characteristic length LD 
through the relationship [37] 
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(Note that here with respect to (6.15) a factor 2 appears). A criterion for limited spatial 
extension of the ‘chemical disturbance’ would read 
 

D Dλ / 1L <<  (6.17) 

implying the occurrence of reactions limited to the ambipolar region of the plasma-
probe region, which for the present circumstances would mean to the pre-sheath (as 
discussed in Chapter 5, the diffusional behaviour dominates outside the collisionless 
sheath)  If instead D Dλ / 1L ≥ , chemical reactions should be accounted for in the sheath. 
According to definitions (6.15) or (6.16), the evaluation of the Damkohler value 
requires the knowledge of the particle densities, the recombination coefficient and the 
ion diffusivity within the sheath. These are evaluated in the following. 
 
Sheath particle densities 
Of the charged particle densities estimated in Chapter 4 the collisionless case expressed 
by equation (4.5) delivered the density at the sheath edge p e

s b b0.61 V kTn n e n−= = . A 
sheath depletion (a factor 100 to 1,000, figure 5.10) was given in the “matrix model”, 
whereas, on the basis of condition Reα<1, a qualitative conclusion of almost certain 
depletion was made (cf figure 5.14). In the continuum plus free-fall theories a charged 
density of the order of 1019⋅ | / |Vs Ve  m-3 can be estimated; provided the sheath edge to 
probe potential Vs is not far from the floating value (say, a few volts; for example, for Vs 
= −4 V and Vf = −9 V, Vs /Vf =0.4 and eVs /Vf ≈1.55; in this case ni≈1019÷20 m-3). 
Alternatively, at the sheath edge, evaluation of (4.17) gave ni≈1021 m-3. 
 
Recombination 
The major sources of recombination within the plasma were considered in section 2.9. 
An average of collisional and radiative recombination will be considered in the 
following for the two assumed (depleted) sheath densities, a=6⋅10-20 m3/s if ni = 1019 m-3 
or a=2.6⋅10-20 m3/s for ni = 1020 m-3. Noticeably, in the bulk plasma the situation is 
rather different: the charged density may be higher by a factor 103, making the radiative 
contribution less important. In this case a ≈ ac=4.4⋅10-11 m3/s, for ne = 1022 m-3 or 
ac=4.4⋅10-10 m3/s, for ne = 1023 m-3.   
 
Ion Diffusivity 
The ion diffusion coefficient can be obtained from Nernst-Einstein relationship 
   

i
i i i

i

µ ,     µ /i
eD D kT e
kT

= =    (6.18) 
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From the three estimated quantities, the Damkohler number (6.16) can be evaluated 
  

2
i p2 i

i p i
i i i

2
2 / 2

µ
n ea r n an a r D

kT T
= = ≈D  (6.19) 

 

Considering the two opposite situation: 
 
a. sheath, with depleted density, ni≈1019÷20 m-3 and µi=1.6⋅10-4 m2 (Vs)-1. For a cold 
plasma with Ti=300 K, 0.03 1≈ <<D  and it appears that the recombination effects in the 
sheath would be negligible. Of course, the use of a thermal temperature Ti=20,000 K, 
would make the contribution even smaller. 
 
b. plasma bulk, ni≈1023 m-3 and µi=1.6⋅10-4 m2 (Vs)-1 and Ti=15,000 K, 85 10 1≈ ⋅ >>D  
and the bulk would be subject to recombination. 
Clearly, the magnitude of the recombination coefficient(s) and the degree of sheath 
depletion are decisive in establishing which of the two circumstances would occur. 
 
CTT’s criterion (6.17) would give, for the recombination coefficients pertaining to the 
bulk of the plasma (because obtained from an expression containing the bulk density 
n∞) in the “thermal plasma” case (say Te=Ti=20,000 K) 
  

o eD

D i i

ελ 3.8 17
µ

a T
L e T

≈ ≈ ÷    (6.20) 

 
and also criterion (6.20) leads to recombination effects important in the bulk of the 
plasma. 
 
Flowing plasma 
In Smy’s work [84] account is taken of the flowing plasma comparing the 
creation/recombination rates for ions (within the ion flux to the probe) occurring within 
a recombination time τ =1/(ano), with respect to the flow time τf = rp/vf. In this terms, 
recombination effects are significant if the time for recombination is greater than the 
time needed for the ion flux to cover a distance comparable to the probe dimensions: 

 

f

f o p

τ 1 v 1
τ  Rea n r

= = >
D  (6.21) 
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According to the value of D found above and using the electrical Reynolds number 0.4 
to 40 evaluated in Chapter 4, it is seen that condition (6.21) is never fulfilled within the 
depleted sheath; whereas recombination effects must be considered in the bulk. 
 
6.5 Limitations due to perturbing action of the probe 

Several perturbing effects on the V-I curve are reported in literature [65, 86, 88]: 
 
1) Influence of the perturbing region with respect to ionization; the assumption that the 
probe current due to ionization is much less than the current drawn by the probe from 
the unperturbed plasma, requires the limitation (at high pressure and Te>>Ti), λi,e<<Rarc,  

 
3/ 2

arc
s arc

i,e

δ 0.2
λ

i

e

R T R
T

 
<<  

 
 (6.22) 

Assuming a ‘worst scenario’ sheath thickness δs ≈ 10-5 m (cf figures 4.3 and 4.4) and 
using the values for the mean free paths reported in Chapter 2, λie≈10-6 m, this condition 
is fulfilled for an arc radius Rarc ≈10 mm (say), in cylindrical geometry. 
 
2) Influence of neglect of ion-electron collisions in the unperturbed region: for the ion part of 
the V-I curve and Te>>Ti, if the scattering parameter b<<λi,e , it is required that 
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 (6.23) 

 
For the electron part 
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 (6.24) 

 
(6.23) is ‘just’ verified if δs ≈10-6 m whereas for smaller values there should be no 
appreciable influence of electron-ion collisions in the unperturbed region on the ion 
current. For thicker sheath or, if the perturbation region is of the order of the ‘boundary 
layer’, then (6.23) is never fulfilled and it is expected that ion-electron collisions alter 
the magnitude of the ion current. 
Instead (6.24) is never achieved under the present circumstances because the electron 
mean free path is now λe≈10-5 m. This is the origin of the statement that the 
characteristic curve method is not exploitable at “high” pressures (cf also Tichy [122]): 
at high pressure collisions destroy the electron part of the characteristic curve. 
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 3) Electron Energy Distribution Function (EEDF). In general, it is disturbed both by 
probe and holder; the particles that recombine at the probe must be replaced by 
collisional ionization within the plasma. These two quantities can be compared as 
follows [86]. At the floating potential (i.e. at current equilibrium) the number of 
particles reaching the probe of length l and radius rp per unit time is 

 

o e ei
p

i

v π2 2π
2

n mi r l
e m

< >
≈  (6.25) 

 

On the other hand, denoting by Rd the extent of the probe disturbance, the charge 
production (ionization) within the (hollow) cylinder of length l and thickness Rd- rp is 

 
2 2

o e d p i2 v π( ) / λn R r l< > −   (6.26) 

so that the extension of the disturbance must be lower than the smallest mean free path 
for collisions with neutrals (λm <Rarc here) 

 

2 2 2ei
d p p m

i

πλ λ
2

mR r r
m

= + <<   (6.27) 

 

With respect to the parameters of this work, the l.h.s. of (6.27) ~4.9⋅10-8 to 8.86⋅10-7 
whereas the r.h.s is ~ 10-8 to 10-12 i.e. (6.27) is never satisfied. Therefore, the extension 
of the perturbation induced by the probe cannot be neglected. This is not surprising as in 
(6.27) the main source of disturbance is the probe radius that, in low-pressure theories, 
is always smaller than any mean free path.  This indicates that the electron part of the 
characteristic curve is not usable under the regimes of interest. The ion part of the 
characteristic curve can be used with perhaps acceptable approximation also in the 
worst case, i.e. in the fringes of the arc or, say, for Te≤ 7,500 K (see Chapter 2). 
 
According to Tichy [122] the “intersection” method for the determination of the plasma 
potential is more accurate than both the tangent method and the determination of the 
maximum of the second derivative of the current. A condition is set for the rounding 
effect of the knee of the characteristic curve to be negligible for the cylindrical probe 
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where Kne is the electron Knudsen number and lp ≈20 mm (‘active portion’) and rp ≈200 
µm, the probe length and radius. The l.h.s of (6.28) is at most 0.4 when λe=10-4 m, but it 
is generally lower, down to 0.02 and 0.002 for shorter electron mean free paths (λe=10-5 
m and λe=10-6 m). Therefore, according to this author, the high-pressure regime implies 
that both the characteristic curve distortion and the rounding of its knee always take 
place. The last consideration, together with the failure of all the conditions 1) to 3) 
under the regime of interest in this work reinforces the conclusions about the low 
pressure theories as inadequate.  
In addition, a part of the obvious requirement of attaining ion saturation, the reason why 
usually ‘high and negative’ probe potentials are used lies in the condition 
 

p i

arc e

λ
λ

r
R

<<   

for the charge drained by the probe to be considered ‘small’ [65]. It can be noted that 
this condition is somewhat difficult to meet in the range λi/λe=1 to 10-2 (see Chapter 2) 
and rp/Rarc=5⋅10-3 for Ti=Te. In fact, one would obtain (cf figure 2.4) 
 

i e

i e

0.12 1,       12,000 ,  moderate to high ionization
0.12 0.01, 7,500 ,  low ionization

T T K
T T K

<< = =
<< = =

 

For non thermal plasma (Ti<<Te) the ratio of the radii can be multiplied by the ion to 
electron temperature ratio, and the condition is easier to fulfil [65]. But it is questionable 
whether Ti<<Te can be used in conjunction with the reported mean free paths, computed 
for thermal plasma. 
 
6.6 Summary  

The following conclusions can be drawn from the analysis performed. 
 
1) Ionization 
Ionization plays a crucial role in determining the regimes for probe operation through 
important kinetic parameters described in Chapter 2. Almost none of the theories of 
probe operations account for degree of ionization higher than about 10-4. These are 
typical of flames or low pressure plasmas. The only work dealing with relatively high 
ionized plasmas is the one by Su and Sonin [74]. The term ‘moderately ionized’ used by 
Su and Sonin is certainly appropriate as they treat ionization ratios up to about 10%, 
which imply for instance a Coulombic electrical conductivity (section 2.6). However, 
this is probably the only work that could be used if the flow effects were accounted for 
(which is not the case). In addition, it was shown that the effects of ‘high’ ionization 
were limited to the steep part of the characteristic curve. 
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 2) Heat transfer and cooling 
The heat balance between arc and probes proves to be a very difficult task. The 
evaluations made suffer from severe assumptions concerning the linearity of heat 
transfer for both the conductive and convective cases. These were found inadequate to 
describe situations in which the temperature gradients are not 'small' (section 6.4.1). It 
has been shown that the latter circumstance is not verified. This is the likely reason why 
unsatisfactory estimates were obtained when comparing conductive and convective 
values with the (few) experimental findings (section 6.4.2).   
 
An upper limit for radiative transfer was evaluated in section 6.4.1 using published data 
(max 107 W/m2 [140]), preferred to the ‘unlikely’ blackbody (109 W/m2).  
The comparison among the different heat transfer mechanisms cannot be made reliably 
until the conduction and convection contributions can be firmly established. A hint can 
be based on the generally agreed ‘low’ contribution of radiative heat transfer (perhaps 
few %) with respect to conduction, for arc currents limited to 100 A. 
 
Within the uncertainties two different criteria were adopted to establish whether cooling is 
effective in depressing electron temperature (section 6.4.3) and in general, to what extent 
cooling could influence the interpretation of the characteristic curve. It has been found that 
both these criteria indicate that plasma cooling due to probes is not substantial, if not absent. 
 
3) Probe emissions 
Among the probe electron emission mechanisms, thermionic and field emission seem to 
play a role mainly for tungsten. Copper seems immune to thermionic effects. 
Problematic is the estimation of the emitted currents due to the steep temperature 
dependency. Also, the use of some information gained from the analysis performed on 
sheaths (Chapter 4) did not shed much light as the use of sheath thickness evaluated 
there to infer sheath electric potential gave values which are presumably too high and 
correspondingly, relatively high values of the current were obtained.  Some values 
computed by different authors were reported. It appears that T-F emission dominates 
thermionic emission and for this reason, copper should be immune once more. 
Secondary emission was difficult to estimate as no theory which includes evaluations of 
'true' current plus 'apparent' or emitted current was found. The use of the empirical 
reduction factor 0.1 to 0.3 only means that if secondary emission occurs then it is of the 
given order of magnitude. The problem lies in the difficulty in discriminating the extent 
of each contribution in the course of measurements. 
 
4) Chemistry 
In inert gas arcs, the chemistry lies in the existence and influence of the ionization and 
recombination processes both in the bulk and in the probe region (the influence of 
metastable states were not considered). While in the former case, some kind of 
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ionization equilibrium can be inferred, of which the ionization curve of figure 2.7 is an 
example (within the restrictions of LTE), the sheath poses its difficulty in the evaluation 
of the charged particle densities and the values for both ionization and recombination 
coefficients.  
Conditions on the Damkohler coefficient based on density in the bulk plasma showed 
that chemistry is not important in the depleted sheath. In the bulk of the plasma, 
incorporating the probe boundary layer, the opposite is true and a charge reduction must 
be expected. A phenomenological version of the Damkohler criterion due to Smy agrees 
with the other criteria. 
 
5) Perturbing action of the probes 
The criteria based on geometrical quantities seem to show that in the limit of their 
applicability (questionable in the thermal case), a certain degree of disturbance 
translates into a non negligible ion-electron collisions when these take place in a region 
wider than the estimated sheath thickness. In this respect, alterations of the ion part of 
the V-I curve can be expected. However, the most important ‘disturbing’ factor is 
related to the electron part of the characteristic curve.  
 
From the above discussion, it is concluded that no comprehensive probe theory exists 
for the highly ionized atmospheric pressure flowing plasma (the TIG arc), which is able 
to describe the effects of high ionization, heat transfer, emissions and recombination on 
the probe signals at the same time. Even if some of the non-idealities can be avoided 
(e.g. emissions by the choice of copper as probe material) the use of the characteristic 
curve in the terms described in Chapter 3 is not justifiable because it emerges that the 
retarding region and the electron saturation region are those which suffer most. For the 
ion part, the conclusions seem to indicate fewer problems. After all, the very few 
experimental works available on arcs show that ion saturation does occur; whether the 
interpretation currently accepted is applicable or not is left to the experiment.  

  





 

7. INTRODUCTION TO THE 

EXPERIMENTAL INVESTIGATION 

 

7.1. General observations on arcs 

The TIG arcs studied in this work have currents limited within the range 50 to 200 A. 
Lower currents give rise to unstable and asymmetric arcs. Runs performed in the range 
10 to 40 A showed unstable arc roots at both the electrodes where spots wandered about 
the cathode tip and across the anode plane. Current fluctuations of the order of 1 A were 
observed, whereas the voltage changed as much as 0.2 V to 0.3 V. These general 
features are independent of the shielding gas flow rate (changed by as much as 50% 
from the 10 slm used for Ar arcs throughout this work).  
At currents from 45 A upwards, the spots at the electrodes tend to locate on the axis and 
the arc stabilizes; current and voltage fluctuations disappear and the common axy-
symmetric bell shape is restored.  It comprises a luminous spot in the core, extending 
from the cathode down to half-length and perhaps 1 mm wide. This region is enveloped 
by a less (but still) luminous region extending radially outwards for some millimetres 
depending on the arc current. 
 

 

 

Figure 7.1 A 100 A argon TIG arc, with typical dimensions 
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The photograph of figure 7.1 shows a 100 A TIG arc in argon. Typical dimensions are 
also shown. 
 
The variation of the arc voltage with the current, the arc characteristic curve, has the 
shape shown in figure 7.2 for the typical 5 mm long arc. The addition of helium and the 
increase of the electrode distance both have the effect of shifting the curve towards 
higher voltages.   
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Figure 7.2 Left, some arc characteristic curves for argon and argon-helium mixtures. 
Right, measured characteristic arc and power curve for pure argon. Arc length 5 mm. 

 
 
 

7.2 Range of parameters accessible to probes 

The present investigation aims at the determination of the arc temperatures, the charged 
particle density, the electron and ion current densities, the electric field and the potential 
distribution within the TIG arc. Also, the onset of a sheath around the probes is 
investigated (sheath thickness and voltage fall). The techniques described in Chapter 3 
will be assessed against experiment. In particular, the use of the characteristic curve 
requires an interpretation of the measured currents, both the ion saturation curve, from 
which the particle number density may be determined, and the steep part of the 
characteristic curve (when available) which could deliver the electron temperature or, in 
more general cases (e.g. non-Maxwellian), the electron energy distribution function 
(EEDF). The measured ion saturation currents will be compared with the predictions of 
the Continuum plus Free Fall theory (cf section 5.3.1.1, figure 5.8), with the diffusive 
regime currents of Lam and Clements and Smy for the arc core (figure 5.14). The 
current-temperature relationship with the “direct method” of Gick and Allum (cf 
sections 5.5 and 5.7.5) will be extended to these cases.  



 
7. INTRODUCTION TO THE EXPERIMENTAL INVESTIGATION 

 

156

A sufficiently extended steep part of the V-I curve would allow the determination of the 
plasma potential although the latter can be estimated from the knowledge of the floating 
potential. 
Attempts will be made to assess the existing methods of determining the plasma 
conductivity as given in section 5.7.4, and to verify whether a direct measurement, 
based on the use of current and voltage measurements is feasible. 
Unbiased conditions and particularly floating conditions, are virtually absent from the 
literature on Langmuir probes in arcs with respect to plasma parameter determination. 
These methods will be described in the appropriate sections; a choice will be attempted 
between the different formulae for the floating potential; this choice can be assessed 
once the electron temperature is known. In general though, unbiased methods will be 
used to infer the electric map of the arc, with some caution with regard to the definition 
of the “electrical arc radius”. The latter will be used for the determination of the local 
arc cross section at a given arc height. As the signals observed in biased conditions 
differ from the floating condition signals, both in extent and shape, a comparison of the 
biased electrical radius can be employed to reconstruct the arc current carrying region.  
More complete schemes of the interrelations among the parameters investigated are 
reported in Chapter 9.  
 
Because the characteristic curve method does not always give straightforward 
responses, an alternative path will be explored, which is based on simple kinetic 
considerations applied to the directly measured flux of particles impinging the probe, 
and to the independent measurement of the power per unit length sensed by the probe 
whilst immersed in the arc. Under a few simplifying hypotheses, these simple 
relationships allow the derivation of the energy per particle when striking the probe 
surface, the local particle density at the edge and the voltage fall across the sheath edge. 
These quantities can in turn be compared with the results obtained from the 
characteristic curve method. Also, to overcome some difficulties in the selection of the 
correct hypotheses, a comparison with independently determined temperatures and 
charged particle densities is made. The latter are determined from emission 
spectroscopy. The ultimate aim is to assess whether electrostatic probes can be 
successfully employed within atmospheric pressure flowing plasmas. Optical 
measurements, being in substantial agreement with other published work on the subject 
for identical experimental conditions, will constitute a framework for the assessment of 
the results obtained from probes. 
 
7.3 Structure of the experimental Part 

In Chapter 8, the experimental set up is described including design and construction 
details for the probe system. The characterisation from the electrical point of view is 
split into unbiased (and floating) and biased operating conditions because the electronic 
signal acquisition, although simple, differs in the two cases. The acquisition program is 
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briefly described leaving the code listings to the appendices. Biased and floating modes 
of operation, mutually exclusive with the present arrangement, are described together 
with the complete experimental procedure.   
General analysis procedures are described in Chapter 9. The analysis of the electric 
signal is strictly related to a correct interpretation of the charge-capture mechanism in 
the plasma. Depending on the model assumed the latter might differ. A discussion of the 
possible line-inversion techniques employed has been performed even if a thorough 
comparison has been made elsewhere [1]. The procedural steps for the data analysis are 
outlined leaving some software implementation details to the appendices. The 
measurements, performed under different arc conditions are then described and a 
complete synopsis is reported of the experimental studies performed. In order to follow 
the complete procedure, this chapter contains some general consideration about the way 
the data are structured, extracted and aggregated. The aim is to single out details at this 
stage whereas the subsequent determination of the physical parameters of interest 
follows a case-by-case strategy in individual chapters. Chapter 10 contains the 
description of the way the different possible characteristic curves are built and how 
these are then used in the following. Also it contains simple kinetic relationships used to 
re-determine some of the physical parameters. 
 
Chapter 11 explores thoroughly the possible method to determine the temperature, both 
by means of the V-I curve method or by the alternative (kinetic) methods outlined in the 
second part of Chapter 10.  
 
In Chapter 12 methods for the determination of the plasma and floating potentials are 
described. Several attempts are presented to obtain these quantities from direct 
measurements as well as ways to derive these from primary measured parameters.  
Attempts are made to evaluate sheath properties in terms of voltage fall and thickness 
according to the results of Chapter 3.  
 
In Chapter 13 ion and electron current densities impinging on probes are shown and 
their relationship with the ‘true’ arc current densities is outlined. Also, requirements for 
a complete determination of electrical conductivity and electrical field are presented. 
The former can be determined directly from the measured current and voltage, or 
indirectly through the knowledge of the temperature. In either case, the use of the 
current density presented in Chapter 13 allows the determination of the field. 
Alternatively, the axial plasma potential can be used to obtain the corresponding electric 
field. 
 
In Chapter 14 some of the results obtained in the previous chapters, are presented 
together in order to obtain a unified view of the TIG arc structure and properties that 
these parameters allow.  In particular electric current densities and temperatures are 
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presented in two-dimensional maps and the notion of the current carrying region is 
explored. 
 
Chapter 15 provides a summary and the conclusions of the whole work, following the 
order of the previous chapters, highlighting the main issues addressed and indicating 
possibilities of further work. 
 
The experimental uncertainties arising in probe measurements are often substantially 
higher with respect to the relatively well established optical methods. This issue will be 
addressed during the discussion but the details of the uncertainty determinations will be 
left to the appendices.  





 

 

8. EXPERIMENTAL DESIGN AND 

PROCEDURES 

 

8.1 The Chamber 

The system considered works either in open atmosphere, with the arc surrounded by air, 
or in closed vessel, ensuring control of the composition of both the ‘environmental’ and 
shielding gas. Arcs with mixed shielding gas were operated both in closed and open 
chamber.  
The Chamber (sometimes ‘vessel’ in the following) has an outer diameter of 48 cm, an 
inner diameter of 43 cm, height of 56 cm up to dome; dome to top about 10 cm, 
approximate volume 85 l, volume of internal set up 12 l (Uncertainties about 10%).  A 
Vyton O-ring seals the chamber to the horizontal base plate; this hosts several 
feedthroughs for the electrical signals, the gas inlets and for the cooling liquid. A dual 
stage vacuum pump (Leybold TRIVAC-D16B, 16 m3/h ≈ 4.4 l/s) is connected to the 
chamber bottom plate and ensures an ultimate vacuum of 10-3 mbar. The pressure inside 
the chamber is controlled by an atmospheric gauge (Druck PMP100, 0-5 bar absolute) 
and a vacuum Pirani gauge (Leybold TR-211 tungsten filament gauge with a gas 
selectable Thermovac TM20 controller).  
Of the two gas lines, one is dedicated to the filling of the chamber (usually with Argon), 
the other leads to the cathode nozzle. The mass flow of the gases is controlled up to 1% 
by means of a Mass Flow Controller (Unit Instrument PRC-3000) capable of delivering 
up to 40 slm (full scale) on the Ar and He channels (see figure 7. 2). 
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Figure 8.1 Left, the vessel hosting the experimental setup with gas and vacuum 
feedthroughs, and the gas system. Right, overview of the experimental basement 
contained in the chamber (“vessel”).  
 

 
Although unfortunate in its denomination, the mass flow is usually expressed in 
standard litre per minute. The standard litre is defined as the mass of specified gas 
occupying a volume of 1 litre at STP, 1 slm = 2.97 ⋅10-5 Kg s-1 of argon. 
 
8.2 The arc system 

The chamber contains a three degree of freedom manipulator supporting the electrode 
assembly and the multi-probe set up (figure 8.1, right). The whole arrangement can be 
moved vertically and horizontally by means of two stepper motors (Time and Precision 
Unislide). A third stepper motor allows the torch vertical motion to ensure arc ignition 
by electrical contact between the anode and cathode.  
 
The TIG arc source is a water-cooled copper block torch. A threaded copper 
feedthrough keeps the cathode tip in place. The gas is fed laterally from a hose entering 
the cathode block (figure 8.2 right). After joining the hollow threaded feedthrough, the 
gas finds its way towards the lower end of the block through several holes oriented 
radially; it is then forced towards the cathode tip by the curved surface of the ceramic 
nozzle. The 3.2 mm tungsten 2% thoriated electrode is ground to a 60° included angle 
and truncated to a 0.2 mm flat top (figure 8.2, right) to prevent erosion, facilitate arcing 
operation and allow reproducibility. Although relatively complex in geometry, it is 
believed that the gas flow at the nozzle exit is laminar on the basis of an estimated 
Reynolds number below 10-4. 
The 37 mm copper anode disk is held in a water-cooled anode block and can be 
substituted after each run. 
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Figure 8.2 Left, particular of the cathode electrode set up and specification of the 
cathode tip. Right, complete arc torch set up. The anode is also visible. 
 
 
 
8.3 The Power supply 

The arc power supply consists of a series-regulated power supply (AWP H350SR by 
GEC Industrial Controls) capable of 350 A, 110 V and specifically built for the uniform 
and stable output of arc currents (output ripple less than 0.1 A). This system was 
originally built to control underwater welding stations and as such, it is made of a 
“Down” station computer which effectively controls the power supply and a “Top 
station” computer where the operator can choose the welding parameters. The two 
computers communicate through a serial link. Current and voltage rising time and 
slopes can be entered and current values can be input either to operate continuously with 
one setting or stepwise with several current values (for a duration of up to 3000 seconds 
each). The arc is struck by contacting the cathode tip and the anode; once the spark 
produced ignites the gas, the cathode is lifted in steps of 0.1 until the desired electrode 
spacing is met. The initial open circuit voltage is 85 V whereas touchdown current and 
voltage are selectable and are kept at 10 A and 1 V respectively throughout this work. 
 
 
8.4 The multi-probe system 

The multi-probe disk is placed inside the chamber on the ‘arc assembly’ (cf figure 8.1 
right) and its individual components are described in the following sections.  
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Figure 8.3 Overview of the experimental apparatus including the acquisition system 
with conditioning circuit. Probe disk assembly and arc power supply. Disk and 
electrodes set up are enclosed within the chamber shown in figure 8.2 

 

  
8.5 Probe Materials 

Thermal  properties 
Langmuir probes are traditionally made of refractory metals like tungsten or 
molybdenum. In this work, copper and tungsten wires where tested against factors 
including workability, and ultimately the choice of copper was made primarily because 
of the ease of fabrication. Also, as mentioned in section 6.3, this rules out emissions, 
possible for tungsten. Some thermal properties of both metals are reported in Table 8.1. 

 

Metal / property Copper Tungsten 

Density ρ(kgm-3) 8,960 19,300 

Melting point (°C) 1,084.62 3,422 

Boiling point (°C) 2,562 5,555 

Fusion enthalpy 
H (kJ/mol) 

13.0 35.2 

Atomic weight 
µ (g/mol) 

 
63.55 

 
183.85 

Table 8.1 Thermal properties of Copper and Tungsten [2] 
 

The heat necessary to melt the probes q=nH is a quasistatic quantity. H is the molar 
fusion enthalpy and n the number of moles of the metal sample. One can use the probe-
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in-arc permanence time τ (of the order of some ms) to infer the heat flux that would be 
needed per unit time to melt the probe within that time. This power would be the upper 
limit of the heat flux to the probes. It should be noticed that the possibility of direct 
vaporization and therefore the use of sublimation heats have been neglected. Taking the 
enthalpy of fusion from Table 8.1, using typical probe geometry (L=50 mm, rp=10-4m), 
q=2.88 J for copper, q=5.80 J for tungsten, an average power qCu= 576 W or qW = 1160 
W is necessary in the two cases to melt the probes within (say) 5 ms. 
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Figure 8.4 Thermal diffusivity of tungsten and copper as a function of temperature 
 
 
From the melting temperature alone, copper should be ruled out as a suitable material. 
However, the thermal diffusivity of the two materials [ratio of thermal conductivity to 
density and specific heat] 

T
p

κ
ρ

D
c

=   

shown in figure 8.4 as a function of temperature, differs by only a factor of about 2 over 
the interesting range of temperatures (i.e. below the melting temperature of copper) 
indicating that copper may be used. 
 
Electrical properties  
Figure 8.5 shows the electrical resistivity (left) and the resistance per unit length (right) 
for both copper and tungsten wires. The probe diameters shown are the typical values 
chosen within this work.  
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Figure 8.5 Left, electrical resistivity of copper and tungsten as a function of 
temperature.  Right, electrical resistance per unit length for some probe diameters (see 
text). Inset: particular for copper wire resistance. 

 

 
It is worth noting that an “equivalent plasma–wire” of comparable size has a resistance 
per unit length varying from 2 to 20 Ω/mm depending on the chosen plasma 
conductivity, taken here between 103 and 104 /(Ωm), see Chapter 2. Thus it is a factor 
1,000 or higher than Cu wires and a factor 500 or more than W probes. This issue will 
be discussed later in connection with probe signal. 
  
Other properties 
Concerning oxide formation due to varying thermal conditions, comparatively low 
temperatures are needed to form Cu and W oxides (below 300 oC for W) while the 
copper and tungsten oxides melt just above 1200 and 1500 oC respectively; WO2 boils 
and Cu2O decomposes at about 1800 oC, which is ‘low’ even when compared with the 
arc fringe temperatures. Oxide formation is not an issue when working in controlled 
atmosphere (closed vessel) as oxides possibly present on surfaces are destroyed in arc 
conditions and cannot reform during cooling outside the arc in an oxygen-free 
atmosphere. However, oxidation might be a disturbing phenomenon when operating in 
open chamber conditions, especially for tungsten probes.  
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8.6 Probes system constructive details  

Probes 
Cylindrical probes (wires) of copper and tungsten with diameter varying from 50µm to 
250 µm have been constructed. The choice of the cylindrical geometry is determined by 
simplicity of construction; the choice of the diameter aims at a “good” spatial 
resolution. The alternative spherical form had to be ruled out because of the need to 
construct holders of insulating material sufficiently small to avoid significant arc 
alterations and ‘spurious’ charge collection. 
 
With an arc of radius 5 mm, characterized by steep variations of physical parameters 
within distances of few microns (temperature for instance, cf section 2.9), attempts were 
made to keep the wires as thin as possible. However, the harsh thermal environment at 
the highest values of the currents (150 A and 200 A) prevented use of copper wires with 
diameter lower than 250 µm; for example, copper probes of 150 µm are destroyed when 
the current reaches 150 A in 5 mm long arcs. These limitations were found by 
considering the compromise between arc current and minimum probe velocity to avoid 
melting. Tests were performed at various probe velocities (0.5 to 5 m/s) to ascertain the 
optimum probe-in-arc permanence time with respect to the characteristics of the signal. 
The chosen diameter corresponds to a lower limit for the spatial resolution of about four 
probes/mm e.g. 40 probe diameters would cover the whole arc section, also implying 
that accuracies less than a probe diameter are meaningless. For tungsten probes, the 
corresponding lower limit for the diameter is 125 µm, doubling the spatial resolution. 
The axial resolution is worse as a limited number of probes was employed (12, but more 
often 11) to scan the electrode spacing along the arc axis. Several types of probes were 
constructed. 
 
1) Tungsten wires (Advent W557512) 0.125 mm diameter, overall length of 40 to 60 
mm 2) Copper wires (Advent code CU510515) 0.250 mm diameter); 3) some 
commercial wire (e.g. copper alloy), diameter 0.125 mm. All the probes were 
straightened manually and individually crimped into copper-nickel sleeves. 
Wires are usually delivered wound on reels of some centimetres in diameter so that 
when freed from the reel these showed a residual curvature which had to be eliminated. 
From the construction point of view, it was much easier to construct straight copper 
wires than straight tungsten wires, especially for diameters greater than 100 µm. Copper 
can be easily straightened by hand using flat pliers and a vice.  
 
Defining a measure of straightness s as the ratio of the average <δ> of the end 
displacements from a straight line passing through the probe mid length, δ1 and δ2, to 
the probe length l, (all lengths in mm), a value less than <δ>s l= =0.5/50 = 0.01 was 
obtained for copper probes, making their shape practically indistinguishable from a 
straight line with the naked eye.  
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A procedure similar to the one used for copper wires was adopted for tungsten but the 
resulting straightness as defined above, s ≈0.05, was poor with respect to copper probes 
and the wires presented additional irregularities along the length.  
 
Disk and motor assembly 
The probe holder consists of a brass disk, 80 mm in diameter, rotating in the horizontal 
plane orthogonal to the arc axis. Its vertical edge surface is drilled with 12 holes where 
the probes can be plugged in. The holes are spaced by 30° on the horizontal plane and 
graded vertically in 0.5 mm steps, starting from 0.1 mm from the lower surface.  
When the disk is kept at the proper distance from the arc centre (from 85 to100 mm, as 
high as possible to minimize the non-parallelism error) the horizontal distance between 
two probes is larger than the arc diameter and only one probe at a time can be within the 
arc. On the disk top surface small holes accommodate precision screws that are used to 
lock the probes in place. 

 

 

 

 
Figure 8.6 Motor and probe disk assembly. Probes mounted at different heights.  

 

 
In almost all the tests conducted, one hole is left empty (“gap”) to facilitate probe 
identification (see Chapter 9). In principle it is possible to mount a few more probes 
instead of the chosen 12, but if only one probe at a time is required in the arc, this would 
make the probes impractically long (beyond about 70 mm). With maximum probe 
lengths of 60 mm, it is believed that the bending induced by drag with the atmospheric 
pressure gas is negligibly small. This was qualitatively assessed by rotating the disk in 
air up to 5 m/s and observing the probe shape using a stroboscopic light system. In any 
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case, permanent (e.g. non elastic) probe deformation after runs in the arc were not 
found. 
 
Two squared section carbon brushes mounted vertically 180 degrees apart collect the 
charge from the disk upper surface towards the acquisition circuit. The choice of two 
instead of one brush placed at symmetric position with respect to the disk axis was 
made in order to balance the mechanical action of the brush and its wear by friction 
against the brass surface.  
 
The disk was rotated by means of a dc motor (Maxon, 0-25 V) able to deliver a rotating 
speed of 700 rpm under disk load (e.g. with the disk mounted) and equipped with a 
special gearbox. The central speed of a probe mounted on the disk is variable from 
‘zero’ (in practice a few mm/s due to friction), to about 5 m/s by means of a dc voltage 
power supply (Farnell Ltd, 0-30 V d.c.). In order to correct for oscillations of the motor 
axis, a system made of conical ball-bearings was mounted between motor and gearbox, 
thus decoupling the disk from the axis oscillation. This resulted in a final oscillation of 
the disk about the horizontal plane not perceivable by the naked eye, but quantifiable in 
few microns at the disk edge, as measured by means of a clock (Dial gauge or Dial Test 
Indicator) placed on the disk surface whilst in rotation. 
 
A certain degree of fluctuation in the angular velocity is unavoidable. This is due to the 
intrinsic fluctuations in the supply voltage, the intrinsic non-uniformity mechanical 
response of the motor and to the friction of the carbon brushes on the disk surface. The 
fluctuation was quantified initially by using a stroboscopic light source, with frequency 
set to follow the motion of the stroboscopic image of a probe holder. To evaluate both 
the rotation speed and its fluctuation, a He-Ne laser beam illuminated the disk lateral 
surface. Attempts were made to keep the probe holder image on the laser spot or, at 
least, at a fixed distance from it, but the image slightly drifted either forward or 
backward with respect to the spot. A crude measurement of the time needed by an 
image to reach the position of the spot back and forth, covering the distance between 
two subsequent holder images, was performed and repeated with the image both drifting 
forward and backward with respect to the spot, and finally averaging the results. The 
angular velocity as a function of voltage imparted to the motor was very irregular at all 
voltages, indicating either a highly fluctuating rotation speed or the inadequacy of the 
stroboscopic instrument used.  
Repeating the measurement with a tachometer put in contact with the disk edge (the 
contact was held ‘as light as possible’), several sets of measurements were recorded at 
each motor voltage and repeated reversing the motor rotation. Results for the angular 
velocity as a function of the motor voltages are reported in figure 8.7 (The error bars 
correspond to an error of less than about 3%). 
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Figure 8.7 Probe disk velocity as measured with a wheel meter system. Error: 2 to 3%. 

 

 
The absolute value of the angular velocity was checked against the value obtainable 
using the analysis of the readings (probe signals). Knowing the radial path of the probe 
Rpath and the time T needed to obtain the same peak (period), the linear probe velocity at 
the corresponding radius is determined, path path ω=v/ , v 2πR R T= . This was found in 
good agreement with the values reported in figure 8.7. In later measurements, this 
‘electronic’ method was preferred for its superior accuracy and because it intrinsically 
incorporates possible speed drifts variations caused by the frictional wear due to carbon 
deposits on the brass disk surface (i.e. the speed is measured as a by-product during 
each probe dataset). 
 
Probe assembling and mounting 
Each probe was obtained by crimping the straightened wire into a holder made of a 
standard electronic “socket /pin” (made of commercial copper alloy) cut at mid-length 
and freed from the external steel layer. Probe lengths varied between 58 and 60 mm. 

 

 
Figure 8.8 Probe mounting. Left, bending at holder edge.  
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The manual insertion of the probe in the holes of the disk does not preserve the 
straightness of the probe and holder assembly; an angle is likely to form at the probe 
close to the socket edge (figure 8.8) and sometimes also the holder is deformed. 
Therefore, after the probes were in place on the disk their straightness was re-checked 
and, when necessary, adjusted manually. It should be noted that this complex series of 
operations results in non equi-spaced probes along the vertical direction in the majority 
of the cases. In some cases also the ‘grading’ along the vertical direction is not 
preserved. For example, measuring probe heights from the anode plane, a probe inserted 
in hole number j might end up at a height hj lower than hj-1. In contrast to conventions 
used in the literature on arcs, the anode disk plane is taken as reference. The vertical 
position of the probes and their straightness was measured with the aid of an ocular with 
micrometric vernier, allowing a maximum precision of up to 0.01 mm (figure 8.9, left).  
The radial alignment was checked with the aid of a common low power He-Ne laser 
mounted on a support with adjustable height: the probes were considered reasonably 
straight when their entire length fell within the laser beam width (Practically when a 
relatively uniform sheath of light enveloped the probe length). The laser was aligned 
with the disk axis and the probe screw; the disk was then adjusted vertically to match 
the beam. The laser beam was made visible with the aid of some smoke.  
 

 

Figure 8.9 Probe vertical positioning with ocular and vernier. Right: laser beam 
enveloping the probe surface (made visible with some smoke) to check for horizontal 
straightness   

 

Probe biasing system 
The probes are biased with the aid of a power supply (see figure 8.3). In the first version 
of the system a bench-top power supply (TTI, 0-35 V, 0-10 A) was connected with the 
negative output to the probe and the positive lead to the anode of the chamber through a 
series resistor. However, this arrangement was unsatisfactory for reasons clarified in 
section 8.7.2. A set of three to four batteries (~12 V, 7 Ah each, Pb-acid type) were 
therefore connected to a manual rheostat (Berco, R=0 to 10.8 Ω, Imax= 8 A). The voltage 
was selectable in the range 0 to ±38 V.  
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Data Acquisition System 
The acquisition consisted of a simple conditioning circuit which is detailed in section 
8.7 and a commercial acquisition board. The first measurements were performed with 
an Amplicon PC30AT ADC board, (0 to 10 V analog input, 12 bit resolution, ±1 
LSB=4.88 mV) operated at its maximum rate of 30 kHz (software sampling) on a single 
channel in floating conditions. In subsequent measurements a four-channels board 
(National Instrument PCI 6110E, 0 to 42 V analog input, 12 bit resolution, max. 
sampling 2 MS/s on each channel, equipped with a signal box SCB-68), was employed 
at up to 70 kHz on each of the three channels used.   
To ensure repeatability, in the early measurements the acquisition program stored up to 
10 data files (150 to 300 ms) per arc current condition. 
The performance of the circuit was tested with respect to the response to an input signal 
with the aid of a signal generator (TTI TG2001) and an oscilloscope. Both sinusoidal 
and square wave form signals were fed at the input terminals, with frequencies varying 
from 10 Hz to 100 kHz. As a result, a small capacitor, C=20 nF was placed in parallel to 
the read-out resistor RDAQ when operating in unbiased (or floating) condition, for 
resistors up to 1 kΩ (but not for the highest used, 211 kΩ). The “load” resistor RL was 
kept to a few ohms (4 Ω in the course of the measurements presented in the following 
chapters). Some circuit details and the choice of the resistor values are discussed in the 
next section. The signal generator was also used to check the timing of the signals when 
operating with the first acquisition board. 
 
8.7. Probe circuits 

The basic requirement in both floating and biased conditions is to draw the least 
possible current from the plasma to avoid perturbations induced by the probe.  
Several unsuccessful attempts were made in order to construct a single circuit suitable 
for the two operating conditions at the same time. To keep the structure simple, it was 
decided to use two alternative set ups, interchangeable during operation. These 
correspond to the two parts separated by the empty circles shown in figure 8.3 and are 
described as follows. 
 
8.7.1. Unbiased and floating conditions 

The circuit shown in figure 8.10 was used for unbiased or floating operation, the two 
conditions being distinguished only by the value of the resistor Rdaq used. The probe 
resistance, sum of the combination probe-tips + disk + carbon brushes + leads was 
considered negligibly small with respect to all other impedances except the arc 
resistance (an actual four-wires measurement supported this statement).  
Referring to figure 8.11, the read-out resistance Rdaq was chosen after a set of 
preliminary runs in order to: 
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• keep the current drawn from the arc to a minimum by ensuring Rdaq >>Rpl. For the 
purpose, an average value for the plasma “resistance” Rpl, can be estimated from the 
slope of the arc characteristic curve. From figure 8.1, at 50 A, Rpl ≈0.3 Ω, whereas at 
200 A, Rpl ≤0.1 Ω. 

 
• keep the voltage drop across the resistor (probe potential) within the typical 0-10 V 

limits of commercial DAQ boards. This was the case for tests performed with the 
earlier board; with a National Instruments board this was not an issue. 

 

 
Figure 8.10 Circuit for floating operation 

 

In the first case, a voltage divider was used to keep the read-out voltage low, but the 
multiplication of the read value by the voltage divider ratio (R2+R1)/R1 added a 
corresponding noise level to the signal. The final choice was made of a Rdaq = R1= R2 
=10 kΩ with the voltage read across R2. The value of the capacitor in parallel with Rdaq 
was felt satisfactory in noise reduction at C=20 nF up to about 1 kΩ. 
In the second case, a single resistor was chosen in the range 149.5 Ω to 219.0 kΩ, to 
perform both unbiased and floating measurements (see section 8.7). 
 
Choice of the read-out resistor 
A range of resistors was tested in order to: 
 

1. Achieve floating conditions by increasing the resistor value from its unbiased 
value. 

2. Operate in unbiased conditions, with the (initial) aim of studying the variation of 
the signal due to resistor changes and possibly of determining the plasma 
conductivity (cf Chapter 13). 

 

1. Even if a ‘high’ Rdaq is chosen, rigorous floating conditions are never achieved as a 
small current iprb=Vprb/ Rdaq will always be collected by the electrode. Voltage and 
current signals are of the kind shown in figure 8.11 (for arc current I=90 A).  
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Figure 8.11 Probe current (upper signals) and voltage (lower signals) for Iarc=90 A. 
Read-out resistor Rdaq ≈15.54  kΩ (see text) 
 
 
In practice however, true floating conditions can be obtained using a sequence of 
increasing resistors.  
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Figure 8.12 Variation of central voltage and probe current for two different probes as a 
function of read-out resistor Rdaq  for Iarc=90 A.  
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It is observed that the increase in probe voltage fall upon Rdaq shows tendency to 
saturation. In the present circumstances, the threshold value of Rdaq for saturation was 
observable just above 15 kΩ, see figure 8.12).   
 
Figure 8.12 refers to the signals shown in figure 8.11. The current is shown on a linear 
scale to emphasize its rapid convergence to small values (Iprb= 5.6⋅10-4 A and 4.6⋅10-4 A 
for the highest and lowest probes respectively, at Rdaq.= 15.98 kΩ). Two curves are 
shown for two different probes (e.g. heights within the arc). Results for other arc current 
conditions and different probes are very similar. 
 
The justification for identifying the onset of voltage saturation as ‘floating conditions’ 
(corresponding to zero probe current in biased conditions) is given below. It is 
anticipated that the difference between these two measured probe potentials, is always 
below the experimental uncertainty. 
  
2. For the purpose of checking whether the plasma conductivity is accessible to 
measurement in unbiased conditions, a series of resistors ranging from a few ohms to a 
few kΩ was employed. It is intuitive that the order of magnitude of the read-out resistor 
must not be too far from the resistance of the plasma resistance, less than 1 Ω. From 
general arguments (see e.g. [3]) it follows that in floating conditions a sheath voltage of 
the order 0.5 kTe is not unreasonable. For kTe ≈1 eV, Vpl ≈0.5 V and therefore the resistor 
must be lower than the one used in floating conditions (for the case considered above 
less than 15.98 kΩ). 
More quantitative observations suggest that one should measure the plasma 
conductivity in the region of (or below) the plasma potential. The latter however is not 
known a priori. If it were, the current corresponding to the condition Vfl<Vpl could 
be estimated and matched against the current shown in figure 8.12 (right axis, I vs Rdaq), 
to read the corresponding resistor. However, the mentioned current has to be determined 
from biased measurements, e.g. from the characteristic curve (see section 8.7.2). It is 
anticipated that depending on arc current and on probe heights the probe voltage 
interval –8 to –3 V should be used. Since the V curve shown in figure 8.13 is rather 
steep, the corresponding resistor interval is relatively broad (from 100 Ω to 3 kΩ).  
 
8.7.2. Biased conditions 

The circuit used fro biased measurements is shown in figure 8.13. A load resistor RL is 
placed in series with the probe, and the current through the probe Iprb = VRL / RL can be 
read upon variation of the battery voltage. The voltage across RL is read as a floating 
signal. The bias voltage Vb is read upon variation of the setting of the rheostat, manually 
operated, whereas the battery voltage is fixed. The probe voltage Vprb is read in this 
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configuration. This redundancy can be used for checking purposes and to determine the 
additional series resistance corresponding to the rheostat setting if needed. 

 

Figure 8.13 Circuit used in biased conditions. Legend: Vprb probe potential; Vbatt, 
constant total battery voltage; RL, load resistor; VRL fall across load resistor; Vb, applied 
voltage (bias), measured from a, b or c and earth. Polarity at battery corresponds to 
‘negative’ bias (see text). Polarities indicated by ‘small’ circles refer to the sign of the 
voltages as seen at the acquisition channel. Right, some voltage references (see text) 

 

 
The polarity of the batteries shown in figure 8.13 refers to a nominal ‘negative bias’, 
when Vb has negative value with respect to the anode (thus ‘nominal’). The polarities 
shown by the smaller circles at the individual voltages points refer to the way the 
signals are connected to the (differential) channels of the acquisition board. For 
example, VRL is positive if the point labelled ‘⊕’ is at a higher potential than the point 
labelled ‘-‘. Similarly, Vb will be negative whenever its ‘⊕‘ (either a, b or c) is at a 
lower potential than the ground (anode), which, from the point of view of the single 
channel acquisition, is ‘negative’, thus labelled ‘-‘. 
 
The value of RL was chosen to be large enough to limit the current drawn by the probe 
(thus higher than the 1Ω used by Gick et al) but low enough to provide sufficient 
sensitivity (see below). The probe biased by regulating the rheostat between the 
positions labelled a to c in figure 8.13. The effective bias will be the value of Vb 
diminished by the voltage fall across the load resistor RL. In what follows it is assumed 
that the plasma potential is not greatly altered by the insertion of the probe in a 
‘sufficiently restricted’ region in the probe surrounding (this questionable assumption is 
made here for simplicity and is discussed further and justified in Chapter 10).  
 
A probe outside the arc is biased at Vprb =Vb, it enters the arc and the effective voltage, 
Vprb, will now differ from the baseline value Vb, e.g. Vprb =Vb – VRL because of the probe 
current flowing through RL. Taking the polarity as shown in figure 8.13, the following 
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scenarios, represented in figure 8.14 and 8.15 (examples of voltage signals), are 
considered. 
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Figure 8.14 I=50 A, probe N.12, z=0.58 mm.  
Left, voltages in biased configuration at zero bias. This correspond to rheostat set at 
position a in figure 8.14. Black line, Vprb. Dash-dotted, VRL; continuous grey, difference 
of the two. Reference to case 1 in main text. 
Right, the same quantities (with inset showing Vprb difference to VRL and Vb in open 
circles, almost indistinguishable from the latter) at a nominal bias Vb=-5.7 V. Rheostat 
at ‘some’ position b in figure 8.13. Reference to case 2 in main text below 

 
 

Case 1. Rheostat shorted, e.g. Vb=0 (figure 8.13, point labelled a). The probe is in 
unbiased (however non-floating) conditions and it will attain a negative potential, 
whose value depends on the resistor RL chosen. The current drawn by the probe, of the 
order of 0.1 to 0.5 A depending on arc conditions and location within the arc, is 
“negative” implying a net draw of electrons from the plasma. The voltages are shown in 
figure 8.14 left.  
 
Case 2. A ‘small’ negative bias is applied to the probe. (Rheostat is at a position b in 
between a and c in figure 8.13). The probe will attain a potential Vprb<Vpl , cf 
dotted line b in figure 8.13 right. Both current and voltage signals are negative. The 
current drawn is now lower than in the previous case (in absolute value) and will 
decrease further upon increase of bias (e.g. Vb more negative) until it reaches 0. The 
corresponding probe potential Vprb is then the probe reading when the probe is at 
floating potential Vprb =VRL +Vb. Tests performed in all the experiments presented in this 
work have shown that this value of the probe potential coincides with the potential 
measured in floating conditions of section 8.7.1 within the limits of the experimental 
error. As in the previous case, down to Vprb = Vpl, probes are positively biased with 
respect to the plasma. Figure 8.14 right, shows the voltages for a bias still ‘positive’ 
with respect to plasma (the current is negative). It can be seen that the difference 
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between the probe potential and the fall on the load resistor, is indistinguishable from 
the bias.  
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Figure 8.15 I=50 A, probe N.12, z=0.58 mm.  
Left, voltages at bias corresponding to ion saturation, Vb≅-22.2 V. Rheostat set at b 
(close to c) in figure 8.13. Black line, Vprb; dash-dotted, VRL; continuous grey, difference 
of the two; open circles, bias Vb. Reference to case 3 in main text. In the main of the 
figure the positive VRL is visible corresponding to a positive current. 
Right, the same voltages at a nominal ‘positive’ bias Vb=+4.80V. Rheostat at ‘some’ 
position b (close to a) in figure 8.13 but with inverted polarities. Reference to case 4 in 
main text 

  

 

Case 3. Decreasing the bias further sets the probe at a negative potential with respect to 
the plasma and the recorded peaks progressively appear more and more positive with 
respect to the baseline (dotted line a, figure 8.13 right). The net current is now positive. 
Also, depending on probe position and on arc current, it can show saturation (ion 
saturation of the V-I curve, cf Chapter 10). An example of voltage signals is shown in 
figure 8.16 left, for a nominal bias Vb = - 22.2 V. 
 
Case 4. Reversing polarity implies that with respect to the case described in Case 1, the 
probe attains a potential more and more positive with respect to the floating potential. 
Relatively modest positive biasing leads to high electron currents whose magnitude is 
comparable with the ion saturation current. Examples of the different voltages are 
shown in figure 8.15 right, for a nominal bias Vb = + 4.80 V (‘nominal positive bias’). 
Whether this is also positive with respect to the plasma potential remains to be seen and 
it is discussed further in Chapter 12. 

 

Choice of load resistor 
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Currents of the order of 1 A and above are very easily drawn from the arc; a part of any 
consequence on the validity of the V-I method, discussed later. This implies that 
considerable power may be drawn into the acquisition circuit. In order to limit the 
power and keep the design as simple as possible, a high power load resistor was chosen.  
The (contrasting) requirements for a ‘good’ load resistor value are: 
 

1. RL should be kept as small as possible to succeed in biasing the probe; in fact the 
location of the resistor (cf figure 8.13) implies that a voltage fall will occur 
before the probe; 

 
2. RL should be kept high enough to prevent a large current being drawn from the 

arc. 
 
The voltage that enters the equation for the power, W=∆VI, is the difference between the 
effective probe voltage and the bias voltage imposed; the latter constitutes a baseline set 
and maintained until the probe is out of the arc and from which the probe voltage peak 
amplitudes depart. Once in the arc, probes sense the local potential and try to 
compensate by drawing a net current.  
 
In previous tests a dc generator (TTI, 0-35 V) was used as biasing system but it was 
abandoned in subsequent measurements. In fact, due to an RC stage at the output of the 
unit, a distortion in baseline and peaks was observed: when the power supply was set at 
zero, and the probe entered the arc sensing a local potential of (say) 5 V the capacitor 
started to discharge with a delay dependent on the τ=RC of the system, see figure 8.16. 
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Figure 8.16 RC-like behaviour with power supply. Few voltage peaks (first enlarged) 
are shown together with the bias voltage (“set value”) 
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A set value of zero bias resulted in a 0.35 to 0.5 V voltage displacement, gradually 
‘compensated’ in a time τ ≈120 ms. When the peak started its “natural” decrease, the 
power supply tried to follow the probe starting a discharge. The effect was observed 
also at biases from –1 to –4 V. In addition, a reversal of polarity revealed a constant 
offset of 0.35 to 0.45 V between the two configurations at nominal zero voltage. Both 
effects disappeared when using batteries. 
 
An observation about the general features of signals reported so far is necessary. The 
preceding discussion implicitly assumed a uniform potential. In fact, every probe 
exhibits a peaked signal each point corresponding to a specific region of the arc at a 
given time. “Plasma potential” and “floating potential” may differ in neighbouring 
points within the plasma and are intended above as a guidance for the discussion. In 
other words, a probe may sense (and a single probe signal may be at) floating potential 
at a specific point and time instant, being above or below this value when in a 
neighbouring point. This will be discussed in connection with the interpretation of the 
data. 
 
Uncertainties 
The overall V read and acquired across Rdaq is subject to uncertainties determined by: 
• class of the resistor 
• resistance variations with time 
• uncertainty of the voltage readings 
 
All the resistors chosen had 1% tolerance. The time variations of the resistances were 
monitored during operation and it was found that during a typical set of measurements, 
a variation of less than 0.5% was normal. This is lower than the error determined by the 
tolerance class. The uncertainty on the voltage depends on the 12 bit resolution of the 
acquisition board which corresponds to 1 LSB=4.88 mV in bipolar mode. The source of 
error on V is determined by the statistical fluctuation of the signal, which is assumed to 
follow a Gaussian distribution. A statistical analysis revealed that it would be consistent 
to take the total uncertainty of the voltage measurement as the standard error of the 
mean, e.g. the standard deviation divided by the number of readings (every dataset, 
corresponding to a complete family of probe signals, is made of 7,500 points).   
 
8.8. Experimental procedure and conditions 

8.8.1 Procedure 

The complete set of operations performed to run the probe system is summarized in the 
following steps and discussed below: 
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1) closure of the bell chamber and pumping down to about  4⋅10-5 mbar; 
2) argon admission at atmospheric pressure followed by new pumping (i.e. ‘flushing’ 
of the chamber); 
3) argon admission and filling of the chamber at a pressure slightly exceeding the 
atmospheric pressure (1.1 bar) to impede impurity entrance from the external 
environment; 
4) preparation of the arc shielding gas mixture either pure Ar or Ar-He (“processing 
gas” in the following) and admission through the arc nozzle (cathode); 
5) regulation of a spill valve in order to compensate for the shielding gas flow entering 
the chamber through the nozzle (e.g. to maintain constant chamber pressure); 
6) arc ignition upon short circuit at controlled current (10 A); 
7) separation of the electrodes with onset of the selected current; the arc voltage varies 
accordingly; 
8) multiprobe motor put in rotation at the selected speed; 
9) start of probe data acquisition program in unbiased and floating conditions by 
changing the acquisition resistor in the specified range during the measurement; 
10) in biased conditions, variation of the probe voltage bias in order to construct the V-I 
curve, by manually regulating the rheostat 
 
Steps 1 to 5 are performed when operating in closed vessel. When operating in open 
vessel condition the sequence starts with step 4 (when dealing with mixtures) or 6 (for 
pure argon arcs). In order to ensure that the arc surroundings are not contaminated with 
ambient moisture the vessel was evacuated in about half an hour to the limiting pressure 
allowed by the pump and the chamber set up. The chamber was then filled with argon 
up to a pressure of 1.1 bar and then flushed through the vacuum pump; this operation 
should reduce residual contaminants. For the same reason the chamber was kept slightly 
overpressure with respect to the external atmosphere. In step 4 the flow controller sets a 
pure Ar or if required, a Ar-He mass flow (mixture within 1%). The use of a manually 
operated spill valve, step 5, is necessary to hold the chamber pressure constant as a gas 
mass flow of 6 to 10 slm would significantly increase the chamber pressure and 
therefore alter the arcing conditions. These steps are necessary when running with gas 
mixtures.  
Step 9 and 10 constitute the measurements of the arc properties by changing the read-
out ‘on the fly’ according to the requirement discussed in section 2.6.  
 
8.8.2 Experimental conditions 

The distance between the electrodes has been kept constant at 5 mm to adhere to the 
conventional TIG arc length conditions prevailing in the literature. The same applies to 
the choice of the shielding gas mass flow range, always between 8 and 10 slm. 
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The rotation speed of the multi-probe disk has was chosen after a careful analysis of the 
signals obtainable. Several factors were considered. In the first place, depending on the 
acquisition speed of the board it was felt that each probe signal could be satisfactorily 
characterised by some hundreds of points; in almost all cases a value of 100 to 300 
points was chosen. Moreover, the inversion procedure needed to extract local 
information is very sensitive to ‘fidelity’ to the original data (cf Chapter 9). This 
restrains the maximum speed. Also, for probe speeds comparable to the plasma flow 
(100 to150 m/s, see Chapter 2), a vectorial composition of probe and plasma flow 
velocity would be needed. To avoid this complication, a value of few m/s was chosen 
accordingly (5.02 m/s for the results presented). Secondly, to avoid probe destruction, 
especially at the higher power, a lower limit for the probe speed had to be set. The 
compromise was in the range 2.5 to 5.1 m/s. Some checks performed within this 
restricted range, did exclude alterations of the signal characteristics (cf Chapter 9). 
The full immersion of each probe within the arc, with the emergence of a portion of a 
comparable (if not equal) length at the opposite side has some advantages. First, 
assuming a cylindrical symmetry of the arc, the probe is homogeneously subject to the 
same electrical conditions when moving from the probe edges towards its centre.  
Moreover, small bodies are especially subject to the well-known “point effect” when 
immersed in a region where a significant electric field exists. As a consequence, the 
increase of the local electric field at the probe end when the latter is immersed in the 
plasma, could cause the drawing of a considerable current by the probe, greatly altering 
the properties of the arc, which is undesirable.  
 
8.8.3 Type of measurements 

It is important to note that a set of measurements is always completed within a few 
minutes ensuring that the experimental conditions (arc, state of the probes and 
electrodes, temperature of the electronics) are reasonably constant. In addition, when 
operating in single component gas, steps 9 and 10 are repeated for all the programmed 
probe biases voltages along a complete sequence of pre-determined arc currents, e.g. 
without interrupting the arc. This was not always possible because of ‘incidents’. With 
the exception of the arc power supply and of the acquisition program, everything else 
was operated manually.  
In the earlier measurements, performed only in floating conditions, the whole range of 
arc currents (50, 70, 100, 150 and 200 A) could be completed in 15 to 20 minutes 
depending on the number of multiple acquisitions per experimental point. In the later 
measurements, 20 minutes were necessary to scan a single arc current (floating, 
unbiased and biased measurement). The whole range of arc currents (50, 70, 100, 150 
and 200 A) could be completed in about 100-110 minutes. It is worth noting that this 
duration is of the order of magnitude of the duration needed for an emission 
spectroscopy experiment to collect data for a single arc current [4]. 
 



 

 

 

9. DATA ANALYSIS PROCEDURES AND 

VALIDATION 

 

9.1 Introduction 

The analysis techniques employed in this work aim at the understanding of the 
operation of the Langmuir probe instrument and at its applicability in the arc 
environment in order to obtain information on arc structure and properties. These two 
purposes cannot be distinguished easily. 
 
In this chapter attention will be limited to the general procedures required for parameter 
extraction from the measured data irrespective of their physical basis. The present 
chapter has the role to ‘filter’ out the procedures which are then employed in the 
following chapters where the discussion will be concentrated on the physical 
information gained. 
In section 9.2 the general methods for the determination of the plasma parameters in 
biased and floating conditions are summarized. General features of the peaks and their 
variations upon bias are reported in section 9.3 whereas an illustration of the use of the 
peaks is presented in section 9.4. A brief discussion on the Abel inversion technique, 
extensively used in this study, is made in section 9.5.  
 
9.2 Procedures description 

9.2.1 Summary 

Figure 9.1 shows a schematic of the links between the measured parameters and the 
possible derived quantities. These are the methods selected on the basis of the review 
performed in part I and believed to be applicable to the present experimental conditions. 
Some correlations, which were assumed at the beginning of the analysis stage (e.g. prior 
to assessment with real data), were dropped because inadequate or unpractical or 
inaccurate for the present conditions.  
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Figure 9.1 Analysis procedures: possible paths for data treatment (see text). Symbols 
as in Notation (pp ii onwards) 
 

 
Using figure 9.1, read from the bottom upwards, a summarized description of the 
various steps follows. 
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9.2.2. Analysis steps 

Raw data are pre-treated using a commercial package, with the purpose of extracting 
single peaks feature from each dataset. These are stored into separate tables, one for 
each dataset and subsequently accessed by independent programs and routines.  
The creation of these tables is the longest and most delicate step. Due to variability of 
probe signals (probes in different position), different biasing conditions, sometimes 
data-set dependent background, this phase of the analysis had to be performed ‘by 
hand’. There are two reasons for this. 
 
• In the acquisition system no trigger is available; therefore when the measurement 
starts, it is not known which probe will be acquired first in the dataset. Due to harsh 
environment no easy technical solution has been found (e.g. photodiode to mark the 
passage of a certain probe). There is obviously the need to assign to each probe signal 
(“peak” in the following) a probe name and therefore a height within the arc. For this 
purpose, as indicated in Chapter 7, a probe position is left empty; from the knowledge 
of the gap angle and duration, the whole probe sequence can be reconstructed. A 
criterion (e.g. a program), based on probe signal to background comparison, could be 
used only in floating mode (because in biased mode the reference is the variable biased 
voltage, different for each dataset) and on the condition that all probes are placed at 
consecutive increasing heights (which is not always the case, cf Chapter 7). Therefore, it 
was abandoned. 
 
• Even if some software tools are available to search and characterize peaks in a 
‘spectrum’ (as in specialized spectroscopic software) there is always a chance of failure 
in both finding a peak and in determine properly its edges. Sometimes within the same 
spectrum, very similar peaks are treated differently. Similarly, a purposely written 
program, based on a clear-cut background criterion also showed variable behaviour 
(‘good’ for one dataset, bad for the following experimental conditions) and was 
therefore abandoned. 
 
The manual procedure is then as follows. The Origin Baseline Tool was used to 
construct a baseline and the "Find Peak" tool to locate peak heights and edges. The 
spectrum was inspected to correct by hand the location of the peak edges and the central 
peak value, if necessary. This procedure is certainly not rigorous and to some extent 
depends on the observer’s judgment. However, tests performed by selecting a point 
rather than the two neighboring ones, at the maximum graphic resolution, showed that 
the error of  ‘judgment’ was certainly much smaller than the error on the read quantities. 
The situation is worse for current peaks close to the floating potential (where the current 
approaches zero) because the judgment of width and height is more uncertain. The 
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alternative (e.g. automated procedure) would be to discard these peaks. It was decided 
to keep these as the situation close to floating conditions is particularly important. 
The central value of the peak instead of the maximum was chosen in this phase; the two 
may differ because of the occurrence of multi-peaked signals. This information was 
used to construct averaged V-I curves (cf Chapter 10). The data subset made of probe 
number-arc height was used throughout the analysis for both averages and local values. 
This procedure was followed for voltage datasets (in floating conditions measurements), 
or for voltage and currents for datasets originated from biased conditions. The resulting 
‘peak feature tables’ (“PF tables”), containing peak center coordinate, voltage or current 
value and peak edges, are central for the subsequent analysis for both biased and 
floating conditions.  
With respect to the first, these tables can be used to determine radially averaged, chordal 
averaged and local V-I curves (cf Chapter 10). 
With respect to unbiased and floating conditions these tables can be used to determine:  
 

• The floating and plasma potential (with consequent estimation of the electron 
temperature; 

 
• The conductivity from direct measurement or as a derived quantity; 

 
• The charge unbalance in unbiased conditions and electron current estimation in 

floating conditions. 
 
The same PF tables were accessed by a subsequent routine to calculate the electrical 
radius as seen by the probes using the known probe speed and the duration of the signal 
both in floating and biased conditions.  
 
A program (“Break”) used the information in the PF tables to split the original dataset 
into individual peak files. These files were then accessed by different programs 
depending on the action needed. Following the flow-chart in figure 9.1 
 

• The local energy, e.g. the integrated power collected by the probe, given by the 
Ip (Vp - Vb) was compared with the charge obtained above to infer an average 
energy deposited per ion. 

 
• The potential curves (floating potential variations in the axial direction) were 

obtained, which allowed the calculation of the axial electric field by 
differentiation).  

 
• Local values of plasma parameters were obtained after performing an Abel 

inversion (NstrOlsn routine, central upper part of the diagram in figure 9.1). Of 
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the very high number of possible local V-I curves obtainable, only a few are 
selected (see discussion in Chapter 10). 

 
Starting from the initial dataset (“ASCII” in figure 9.1), the procedure was as follows. 

 

9.2.3 Background subtraction and Peak individuation 

A typical complete dataset peak is illustrated in figure 9.2 left. It refers to the biased 
configuration, but with zero applied voltage. 
Background subtraction was performed using inter-peak intervals and/or initial/final 
part of the signal "spectrum". The background differs depending on the experimental 
conditions. In most cases, biased voltages presented a contribution with respect to the 
ideal zero baseline of about 25 mV, see figure 9.2 right. 
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Figure 9.2 Left, typical peak family at zero bias in biased operating conditions. The 
data markers (crosses) refer to the ‘maxima’ of the peaks (see text). Right, 
background band of ∼25 mV for a nominal bias Vb=−2V case.  
 
 

For the biased case situation of currents close to zero (e.g. closer to floating conditions) 
the contribution was typically 50 mA (see figure 9.3 left).  
Using Origin (Baseline Tool) it was possible to enter a specific type of baseline and, 
upon request, subtract it from the signal. This was done in the floating case (with 
respect to zero) and for the currents in the biased case. The voltage signal in the biased 
case is referenced to the applied biased voltage, which is the probe voltage prior to 
entrance into the arc.  
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Figure 9.3 Left, portion of peak family in biased conditions Vb=−2V close to plasma 
potential; some peaks are negative others are positive. Right, central peak values 
taken in place of the ‘maxima’ for the floating condition dataset (see text) 
 
 
Upon different biases this reference varied and therefore a subtraction was not 
performed. The other reason why it was not performed is that the peaks present in 
different orientation with respect to this line, either ‘below’ it up to the floating 
potential, or ‘above’ it for increased negative bias (figure 9.3 left). Despite this 
asymmetry, it is worth noticing that the contribution of the background to the relative 
error on the measured voltages is of a few percent therefore totally negligible. 
 
Subtracted or not, the baseline level was used by a subsequent Origin (Find Peaks) 
routine to find peaks maxima and edges. Especially in floating conditions no unique 
peak maximum can be established due to the more complex peak structure, and the 
central coordinate and height are determined by hand (voltage or current, depending on 
the dataset, see figure 9.3, right). This applies also to peak edge positions, sometimes 
shifted considerably with respect to the criterion of ‘intersection’ with the baseline.  
This lengthy procedure was performed by hand on each of the dataset of both biased 
conditions, 21 to 25 files per current condition, plus 4 ‘unbiased’ files (of which one 
floating). Each contains 11 peaks (actually more were recorded for consistency check 
purposes, typically 14 to 15); thus over 300 peaks for each experimental condition. This 
resulted in a set of 21 to 25 “PF tables” (one for each dataset) per experimental 
condition. Since each experimental condition corresponds to one arc current case and 
because the latter are I=50, 70, 100, 150 and 200 A, about 125 of these tables were built 
by hand examining individually over 1,700 peaks. 
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9.3 Some signal features 

9.3.1 Peak shapes 

Although the analysis of the data performed in this work pertains to peaks obtained in 
exactly equal experimental conditions it is of interest to establish whether a dependency 
of the peak shapes on probe velocity exists. This has been checked in two ways: 
1) by comparing peak shapes obtained at different probe velocities; 
2) by looking at the differences between the leading and trailing edges in the peak 
shape. 
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Figure 9.4a. Two peaks chosen for signal structure comparison upon probe velocity 
variation. 

 

As an example, figure 9.4a shows two peaks obtained in floating conditions from the 
same probe (in the same arc), by varying the probe velocity from 2.21 to 5.01 m/s. 
Figure 9.4b shows the two superimposed (time normalization with respect to the 
shortest peak) with area, width and height. 
 

 

 

 
Figure 9.4b 
 
The two peaks of previous 
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In figure 9.4c, the leading and trailing edges of the two peaks were compared with 
respect to time delays/differences between comparable peak features.   
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Figure 9.4c Leading and trailing edges for the two peaks in 9.4a and 9.4b. "1-2" label 
the time intervals compared at the two sides of the peaks 

 

It is quite difficult to establish precisely the equivalent points, but the comparison 
between the different peak features shows: 
 

• The fastest peak leading edge anticipates the slowest by about 0.30 ms whereas 
the trailing edge delays by 0.44 ms; this implies a mismatch of about 0.14 ms 
corresponding to 2.7% of the total peak duration. The latter can be compared 
with the actual probe velocity fluctuation (cf Chapter 7) which was established 
to be between 2 and 3%; 

 
• The leading edge interval "1-2" are ~ equal for the two, whereas the trailing 

edges of the fastest is slightly longer; 
 

• The area of the two peaks differ by up to 5% (here the worst case of the two 
most different peak has been considered, to give an upper limit). As the integral 
of the peaks represents the total charge collected by the probe during the time 
interval, this can be taken as the error on the charge captured; 

 
• The FWHM (Full Width half Maximum) of the two peaks differ by 2% whereas 

the heights differ by 0.8%. 
 
Within the limitations of the experimental accuracy (See Appendix E on Error Analysis) 
it can be said that there is no appreciable difference between peaks upon variation of the 
velocity in the interval from 2 to 5 m/s. 
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9.3.2 Peak behaviour upon bias 

Before proceeding with the analysis of the characteristic curves in Chapter 10, it is 
worth starting from the directly measured quantities to look at their evolution upon 
variation of the applied bias voltage Vb. The purpose is to show the general features of 
the probe potential Vprb in comparison with the probe current IRL, measured by the 
voltage VRL, and demonstrate their evolution with respect to the position of the probe 
both in height (z from anode) and in radial distance (or along the coordinate x, position 
of the probe in the arc). Two probes are analyzed in detail, at an arc current Iarc=50 A: 
probe N.2, at z=4.03 mm and probe N.12, at z=0.58 mm from the anode surface.  
 
1. For probe 2 (z=4.03 mm) the sequence of current peaks reveals an inversion of the 
current peak in correspondence of a bias voltage between -9.39 and -10.0 V. Looking at 
figure 9.5 where the two peaks are reported, the scenario is as follows.  
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Figure 9.5.  I=50 A, prb N.2 z=4.03 mm from anode. Left, Vb=-9.39 V. Right, Vb=-
10.0 V 

 

Referring to figure 9.5 Left, Vb=-9.39 V, as the probe enters the arc (left to right), a 
negative current is felt across the load resistor which increases in amplitude approaching 
the arc centre: in these conditions more electrons are sensed (the probe current I=V/RL, 
RL=4 Ω is negative) and the more so towards the arc centre. On the right of figure 9.5, at 
Vb=-10.0 V, the peak is positive, the bias has the effect of repelling an increasing 
number of electrons (e.g. more ions are collected at the centre of the arc).  It can be 
observed that the inversion of the peak occurs in a quite narrow range of applied bias: 
the variation of bias voltage is ∆Vb=-0.61 V and corresponds to the difference (in sign) 
between the peaks of the two VRL signals shown in the figure. Also, the inversion is 
accompanied by a variation of probe voltage greater in the periphery with respect to the 
centre: the central values shown in figure 9.6 for the two peaks differ by ~0.2 V and the 
current between 0.15 and 0.19 A.  
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Figure 9.6. I=50 A, probe 2, z=4.03 mm from anode. The two cases close to peak 
transition (see text). Left, comparison of probe voltages (Vb=-10 V left axis, Vb =-9.39 
V right axis). Right, comparison of currents (same axes)  

 

The probe voltage shown in figure 9.6 above (left) is enlarged in figure 9.7 left and it is 
compared with the peak obtained in floating conditions (figure 9.7 right) 
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Figure 9.7 Probe potential in biased conditions at Vb=-10.0 V compared with the 
floating conditions probe voltage 

 

Assuming the dashed line at about -10.09 V as the baseline for this peak, this is the 
value for the probe voltage corresponding to floating conditions. It differs by 0.48 V 
from the voltage measured in floating conditions shown on the right.   
Unfortunately, the bias spacing (e.g. the number of cases in this voltage range) is too 
coarse to identify the exact location of the transition. It is by comparison of the 
characteristic curve and the voltages measured in floating conditions that the 
consistency of the evolution can be found (this is discussed in Chapter 10). 
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2. A similar analysis is performed on probe 12 (z=0.58 mm). With respect to the 
previous case, the transition between negative and positive peaks occurs in a narrower 
bias range (here the acquired data points happen to be very close to the transition), as 
can be seen in figure 9.8. Correspondingly, the current peak is very small, at the limit of 
detection capability of the system. 
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Figure 9.8 I=50 A, probe 12, z=0.58 mm from anode. Probe currents at Vb=-6.69 V 
(left) and  Vb =-7.64 V(right) 

 

In this case, for a probe closer to the anode, a characteristic bi-peaked signal is 
observed, especially visible in figure 9.8 left. For the case shown on the right, the 
limited sensitivity does not provide any meaningful information, although the 
corresponding probe potential of figure 9.9 does show this character. The latter is 
observed for probes at low height within the arc when measuring in floating conditions 
(when the peaks are oriented ‘negatively’ as in figure 9.9 left).   
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Figure 9.9 I=50 A, probe 12, z=0.58 mm from anode at Vb=-6.69 V (left) and  Vb =-
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Re-applying the reasoning of the previous higher probe, in figure 9.9 left, the negative 
current increases when the probe is deeper in the arc but, approaching the arc centre it 
drops to values close to zero. Then it increases again to the second maximum and 
disappears when the probe is out of the arc. Therefore, the dominance of the electron 
current lowers at the arc centre, where the contribution of the ions is increased.  When 
increasing the bias to the value shown in figure 9.9 right, ions are more numerous in the 
centre of the arc. The probe potentials measured in these two cases are compared with 
the measured probe potential in floating conditions in figure 9.10. 
 
The value of the probe voltage found when measuring in floating conditions is 
consistently in between the extremes measured in these two biased cases.  
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Figure 9.10 I=50 A, probe 12, z=0.58 mm from anode at Vb=-6.69 V and  Vb =-7.64 V 
shown together (left). The value obtained from the peak in floating conditions (right) is 
also indicated 
 
 
9.4 Use of the individual peaks 

Once the peak features are fixed (especially the coordinates of the peaks edges), a 
dedicated program splits each dataset into individual peak files. Also, several other 
programs access the tables either to directly read information on a specific peak (width, 
central value) or to use the built in probe-peak-height relationship as a primary key for 
data selection and extraction, and the build up of different relationships.  
  
For example, the peak width (expressed in mm) can be used to determine the arc 
electrical radius as a function of height from anode. This ‘electrical radius’ is discussed 
more thoroughly in Chapter 13. 
 
The data contained in the tables are used to generate additional information for both 
biased and unbiased and floating conditions. In particular, it is possible to obtain a range 
of  “radially averaged” (r.a.) parameters.  These are “radially averaged” in that the value 
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used are the convolutions of all the contributions arising from the different lengths of the 
probe within the arc with the probe at the centre, with its longitudinal axis collinear to the 
arc radius (see section 9.3 on Abel inversion). Similarly, ‘chordal averages’ are 
accessible, by considering the contributions of the portions of the probe when the latter is 
off arc center and taking only the contributions that make the signal value at the 
corresponding instant of time. This has the purpose of indicating parameter variations 
along the probe length (cf Chapter 14). Furthermore, to determine arc properties, local 
quantities are obtained by Abel inversion of the signals read. 
 
9.5. Abel inversion 

The use of Abel inversion techniques in plasma physics is well known but almost 
limited to the inversion of optical line intensity obtained from emission spectroscopy 
measurements of axi-symmetric plasmas. The total line intensity, either line peak height 
or area, is obtained for different regions of the arc and plotted as a function of the 
coordinate whose direction is orthogonal to the line of sight. An Abel inversion 
procedure converts this function into a 'source' function (the emission coefficient) which 
depends on the radial coordinate [1]. Gick [5] applied the technique to Langmuir probes 
but the method is different with respect to the optical case. For Langmuir probes 
moving in arc plasmas, the analogue of the intensity function is the height of the probe 
peak read at a given coordinate from the peak centre. This is the integral of the ‘source’ 
function, performed along the probe length (parallel to the observer’s line of sight) 
which determines the particular value of the ‘peak’. The situation is depicted in figure 
C.1 in Appendix C. 
  
It is not possible to cover the vast literature on Abel inversion techniques because this 
has been partly accomplished in previous works [1] where several techniques were 
reviewed and tested with spectroscopic data. In the present work, a choice is made and 
justified in the following section. 
 
9.5.1. Method performance and uncertainty 

The schematics of the techniques together with the basic relationships are reported in 
Appendix C. The earlier methods, compared in [1] and [6], collectively indicated by 
Anderssen [7] as ‘finite difference’ methods, suffer from the error propagation that the 
use of equation (9.3) below induces in the results. The ‘typical case’ is the Nestor Olsen 
method [8] used here in the form Nestor Olsen B” (Appendix C) in order to avoid 
uncertainty propagation due to subtraction between adjacent data points.  
According to Anderssen [7], all these methods generate functions whose errors on the 
inverted datum may be amplified with respect to the original datum (supposed subject to 
a single datum perturbation). Using Nestor Olsen notation (see Appendix C), a single 
inverted value from the relationship 
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With the choice made in this work, of a “natural” step a=100.4 µm, where k ranges from 
1, close to the center of the peak to, say, 150, at the peak edge in floating conditions, 
this would lead to an amplification by a factor of 22.5 for the first inverted point, the 
closest to the peak center (worst case), or of 3.7 close to the peak edge. Therefore, the 
error of the inverted datum is very sensitive on the magnitude of the initial error (on the 
read quantity) and on the position of the datum to be inverted. However, the argument 
([7], formula (2.4) page 331) is based on the computation of a single perturbation which 
would affect only the terms which are multiplied by the matrix elements immediately 
below the diagonal (the matrix B is lower triangular). Because it is difficult to assess the 
procedure solely on this basis, tests were performed using ‘true’ experimental data (and 
not data with artificially generated noise). Moreover, no interpolation in the original 
function (peak) was employed.   
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Figure 9.11 Measured (left) and Abel inverted signal (right) obtained using Nestor 
Olsen for biased conditions (see text) 
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As an example, in figure 9.11 a plot is reported of the original measured signal in biased 
conditions, together with its Gaussian fit (left). The corresponding inverted function 
determined from the Nestor Olsen B is shown on the right, together with its Gaussian 
fit.   
Besides the comparable smoothness of the inverted signal in this specific case, a few 
observations can be made.  
The signal in figure 9.11 left was filtered before inversion using a 4-points adjacent 
average algorithm. There is obviously a certain degree of arbitrariness in any smoothing 
procedure, but the effects on the features of the signal, whose original (e.g. unsmoothed 
form) is visible in figure 9.12, are negligible, whereas the filtering helps towards the 
inversion procedure.  
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Figure 9.12 Original peak corresponding to the case of figure 9.11. Continuous curve, 
Gaussian fit of the four-point adjacent average of the experimental points. Right, 
superposition of the two peak halves  
 
 
This specific case, while relatively common in biased conditions, in a situation 
relatively far from the (local) floating potential, is not the general case. Close to the 
floating potential the current peak tends to disappear (cf figure 9.3 above) and in 
floating conditions, the voltage peak structure is more complex.  
 
 





 

 

10. CHARACTERISTIC CURVES AND 

PARTICLE ENERGY 

 

10.1 Introduction 

Central to the use of Langmuir probes is the notion of characteristic curve (cf Chapter 
3). The V-I curve method requires establishing the relationship between the current 
drawn by the probe as a function of its voltage. It is by no means obvious what this 
means. In fact, characteristic curves can be constructed for probes in the axially 
symmetric arc in four ways: 
 
1. Take the maximum of the read-out probe current peak and plot it as a function of the 
corresponding maximum of the voltage peak; this gives rise to the “averaged” V-I curve 
(in the sense clarified below). 
 
2. Take all values of the current peak as a function of the corresponding values of the 
probe voltage peak, e.g. at the same abscissa along the peak signal (time or x axis); this 
also gives rise to an ‘averaged’ V-I curve, although more ’local’ than case 1.  
 
 
3. Take the Abel inverted values of the currents as a function of the Abel inverted values 
of the peak voltage for equal radial distances; this gives rise to the ‘most local’ V-I 
curves; 
 
4. Take the Abel inverted values of the current peaks as a function the non-inverted 
values of the voltage peak.   
 
The purpose of the procedure/s is to establish local physical parameters for the arc. Case 
1) is the ‘diameter average’ of the current as a function of the instantaneous central (or 
maximum) probe voltage, which can be an average if the probe senses local variations 
of the plasma potential (along its length), or the common probe potential if the probe is 
equi-potential. Case 2) constitutes ‘chordal’ averages where each chord corresponds to 
the probe length within the arc at the time t or position x (and whose length is assumed 
to be half the peak width). 



199 

At first sight, case 3) seems the best choice in terms of local parameters, except that the 
meaning of the inverted voltage (whose dimensions are of a voltage per unit length, V/l) 
is obscure, given that the potential is an intensive and not extensive quantity. Finally, 
case 4) would stand on the assumption that the voltage is the same all along the probe 
length, whereas the current is not. A preliminary discussion of the probe voltage is 
therefore necessary. 

 

10.2 Equipotential probe 

It is clear that to obtain plasma parameters, it is important to establish whether the probe 
is always equipotential  when traversing different regions of the arc, or whether it is 
able to sense local values of the potential (along its length), which certainly exist in the 
plasma in both axial and radial directions. In other words: how can the probe signal be 
representative of a local voltage distribution given that the surface of a conductor 
immersed in an electric field is set ‘instantaneously’ to an equipotential value? The 
charged particle flux (ion flux) will hit the conductor surface and neutralize there; an 
electron pulse will appear at the read-out end of the circuit. The pulse is made up of a 
certain number of conduction electrons on the surface of the probe. If the impinging 
flux is continuous in time, a certain number of electrons will be continuously generated 
and reach the read out circuit as a 'positive current'. The problem of maintaining a 
structured signal at the probe surface can then be formulated as follows; as long as the 
number of impinging ions is ‘high enough’ to replenish the electrons which 
‘instantaneously’ reach the read out circuit, a stable signal will be maintained. 
Conversely, if the impinging flux is low, then the conduction electrons will ‘short’ the 
probe surface and no 'V structure' can be revealed. 
 
The importance of the question lies in the fact that: 
 
• if the probe is always equipotential then the characteristic curve should be built by 

coupling the Abel inverted value of the current with the corresponding equipotential 
value of the probe voltage, which is read at the same time (and thus at the same arc 
transverse position); this would mean that of the four methods outlined above, 
method 4 would be the most appropriate.   

• Conversely, if the probe senses local variations of the potential, thereby its signal 
being made of different contributions along its length, then the V-I curve should be 
built by coupling the local (Abel inverted) value of the potential to the local (Abel 
inverted) current, and method 3 would be valid.  

 
To resolve this issue, consider an equipotential conductor (probe outside the arc) set at a 
potential determined by the bias circuit, and let this potential be much less negative than 
any value of the plasma potential so that when the probe enters the arc, ion saturation 
occurs.  
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When the probe is within the arc, it experiences a flow of ion charges given by the local  
distribution j(r). Different portions of the probe will sense different values of this 
distribution. The impinging ions will neutralize at the probe surface thanks to a 
corresponding number of electrons drawn from the bias circuit. Therefore, the negative 
potential the probe had before entering the arc will be reduced in magnitude. The 
question is then whether different portions of the probe will respond with different 
amount of charges depending on the impinging flux, which means that the electron 
arriving from the circuit neutralize the ions ‘locally’. This implies onset and 
maintenance of a 'V structure' where different points of the probe surface are at different 
voltages. 
From the circuit point of view, the electrons are sent to the probe because of a mismatch 
between the externally imposed bias potential and the instantaneous value sensed 
between probe and reference electrode. It is immaterial whether this unbalance is 
‘distributed’ along the probe or whether it is an integrated quantity (along the probe 
length). This charge flow is measured as a probe current, and being at saturation, is 
identified with the ion saturation current. 

 

 
Figure 10.1 for the construction of the V-I curves Left, probe in arc, current distribution 
on the probe at location k (see text). Right, method 2 (‘chordal’ averages) 

 

Assuming a discrete space/time structure, if the probe is at the position xk, it will stay 
there for a time of approximately τ~(250⋅10-6 m)/(5 m/s)~ 50 µs for a probe velocity of 5 
m/s and a probe radius of 125⋅10-6 m. After, it will be ‘one probe position away’, e.g. at 
xk+1. This time has to be compared with the time needed for an amount of charge q 
collected at a given location along the probe length to redistribute over the probe surface 
(onset of an equipotential state). However, this relaxation time cannot be easily 
computed in the frame of classical theory (see e.g. E.M. Purcell in [9]). As an example, 
one can use the relationship for the conductivity,  
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2

e

τσ ne
m

=  

taking n~1029 m-3 in copper, inserting the constants and inverting for the relaxation time 
15τ 2.1 10 ~ 0.002 s ps−= ⋅ . This number is suspiciously low and, more importantly it is 

independent of any length scale (e.g. the length scale could be set to obtain an electron 
velocity higher than the speed of light!). 
Alternatively, one can take the number of impinging charges form the current density 
(either measured, cf Chapter 13, or a fixed value jo=107A/m2, typical for the column of 
an I=200 A arc [10]) and compare it with the amount of charge available for conduction 
in the probe in the same time interval. If the two quantities are comparable, a potential 
'structure' may persist on the probe surface; otherwise, the latter is the classical 
'electrostatic' equipotential surface of a conductor. First note that the whole of the probe 
volume participates in the conduction because the skin effect is negligible even for 
typical pulse frequency of 300 Hz, which corresponds to the inverse of the pulse 
duration (probe signal about 3 ms). In this case the skin depth would be above δ~3.5 mm 
thus greater than the probe radius (rp=0.125 mm) [The skin depth would become 
important only for frequencies~300 kHz]. 
The chosen volume is the probe 'elementary volume' taken as the sectional area 
multiplied by the probe radius (close to the step length of 100.4 µm set as the spatial 
resolution, see Chapter 8), 
 
 2 12 3

p pπ 6.14 10V r r m−= ⋅ ≈ ⋅  

The number of available electrons in this volume, Ne, is obtained multiplying by the 
average number density of particles in copper, ne=8.45⋅1028 m-3 (see e.g. [11], 
neglecting temperature dependency in first approximation and assuming one conduction 
electron per atom): 17

e e 5.18 10N n V= = ⋅ .  
The chosen plasma current density, jo=107A/m2 corresponds to a particle flux 

7 2 7 19 -2 110  / 10 10 /1.602 oj A m m s−= = ⋅  
 impinging on the surface 8 2

p p p2π 9.82 10S r r m−= ⋅ = ⋅ , e.g. N/τ=6.13⋅1018 s-1, and a 
normalization to the probe-in-arc permanence time is needed. Taking the latter τ=3 ms, 
N=1.84⋅1016 particles impinge on the chosen surface during the whole probe-in-arc 
permanence time. Even considering half of the probe surface as the collecting surface 
(cf Chapter 11), N'= 9.2⋅1015, two out of hundred of the available electrons would be 
used to neutralize the impinging ion (if the ion branch of the V-I curve is considered).  
 
If one considers instead the number of available plasma charges per unit volume as if all 
participated in the conduction, e.g. by using the plasma charged density (normalized to 
the probe volume) say ne=1023 m-3 (cf Chapter 2), then the particles contained in an 
elementary 'probe volume' would be N=1.2⋅1012. This is a much more realistic number 
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for the majority of the arc column: only one out of ~105 of the Ne copper electrons 
would be used to neutralize the impinging charged particle. In other words, the effect of 
the impinging charges on the population of the charges locally available at the surface is 
negligible. Hence, a localized voltage structure cannot be maintained with these flux 
values. This conclusion is supported in Chapter 11 where it will be shown that the order 
of magnitude of the measured number of ions on the elementary probe portion is 
N~1011.  
Having established that the probe is an equipotential surface, the construction of the V-I 
curves according to method 3 is incorrect. The local characteristic curves therefore, 
have to be built according to method 4. The V-I's determined according to methods 1 or 
2 are averaged characteristic curves. The first gives points corresponding to the central 
current and voltage values (maxima of the peaks). The second gives chordal averages.  
In the following, method 1 will be used to determine the central values of the plasma 
parameters, whereas method 4 has will be employed to extract all the local parameters. 
 
10.3. Use of the V-I curves 

The use of the characteristic curve according to the methods described in Chapter 2 
requires the fulfilment of a number of features, namely: 
 
• The occurrence of an electron saturation region and 
 
• of a steep or linear part; 
 
• the identification of the location for the plasma potential; 
 
• the existence of an ion saturation region. 
 
A selection of characteristic curves for method 1 is presented in figure 10.2 a to e for arc 
currents 50, 70, 100, 150 and 200 A. 
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Figure 10.2 a  V-I curves according to method 1 (see text). Arc current 50 A 
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Figure 10.2 b  V-I curves according to method 1 (see text). Arc current 70 A 
 



 
10. CHARACTERISTIC CURVES AND PARTICLE ENERGY 

 

204

-25 -20 -15 -10 -5 0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Ar
I = 100 A

I (
A)

V  (V)

z  (mm)
 4.22
 4.0
 3.49
 3.11
 3.05
 2.74
 1.8
 1.57
 0.81

 

Figure 10.2 c  V-I curves according to method 1 (see text). Arc current 100 A 
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Figure 10.2 d V-I curves according to method 1 (see text). Arc current 150 A 
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Figure 10.2 e  V-I curves according to method 1 (see text). Arc current 200 A 
 

 
Examination of the curves reveals that electron saturation is not achievable because of 
the high electron current that would result from moderate positive bias voltage (with 
respect to the plasma potential). The steep linear part is only partly visible and its 
extension is ill-defined because of the difficulties in identifying the plasma potential 
(see Chapter 12, potentials). The only clearly identifiable part is the ion saturation 
region. For this reason this is the region investigated more closely and as a 
consequence, only a handful of the various V-I methods presented can be used. This is 
the reason why the temperature determination from the V-I curve relies only on ion 
saturation (see Chapter10).   
 
Looking at the curves for the different arc current cases (figure 10.2), some conclusions 
can be drawn. 
 
The highest probes (further from anode) do not show clear saturation at the highest arc 
currents (150 and 200 A). This clear saturation should manifest as a constancy of the 
current upon bias increase, although, saturation with V dependency has been described 
and considered in Chapter 4 (cf formulae (4.13) for the CFF theory or Lam’s (4.45), 
independent of the potential, in contrast to (4.46)-(4.48) for sheath convection regime, 
where the current shows a V1/2 dependency). This implies that for the highest probes the 
currents are underestimated. As a consequence, the corresponding temperatures could 
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be also underestimated (See Chapter 11). An examination of these V-I's shows that any 
attempt to extrapolate the missing current values would fail, as no clear tendency to a 
‘close saturation’ (e.g. for neighbouring values of the probe potential) exists. Moreover, 
the question remains open as to whether these probes would reach saturation at all and / 
or whether the value of the current would be ‘high’ with respect to the requirement of a 
‘negligible’ current drawing from the arc.  
 
By looking at the variability of saturation along the radial coordinate, it is possible to 
identify some specific regions within the arc possibly characterized by different 
physical conditions. This may be related to the selection of the probe theory most 
appropriate to the local arc structure. This means that it is of interest to find the 
geometrical locus in the plane (r,z) where a transition occurs from saturation (and thus 
random/diffusional behaviour) to a voltage dependency of probe current. Since the 
number of experimental points for all the 5 arc currents is limited, and because a clear 
indication of saturation may be established only 'by eye' using as few as 2 or 3 points, 
this curve will be approximate. Finally, there may be circumstances in which saturation 
occurs but not with a flat curve, but a convex saturation curve revealing some I ∝ Vn 
dependency.  
As an example, figure 10.3 reports the case of three probe V-I's at Iarc=200 A and z=3.63 
(a) mm, z=2.95 mm (b) and z=1.12 (c) mm from the anode. For the first, saturation sets 
in perhaps at r=0.6 mm; for both second and third, r= 0.5 to 0.6 mm.  

 

The curve built by examining all the characteristic curves as a function of the radial 
distance for all the probes of the 200 A case, is shown in figure 10.3 d. This curve 
divides the (r,z) plane into a non-saturating (points to the left of the curve) and a 
saturating region (points to the right of the curve). 
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Figure 10.3 a Characteristic curves according to method 4; z=3.63 mm, for the 200 A 
case.  
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Figure 10.3 b Characteristic curves according to method 4; z= 2.95 mm for the 200 A 
case.  
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Figure 10.3 c Characteristic curves according to method 4; z= 1.12 mm for the 200 A 
case.  
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Figure 10.3 d. The transition to ion saturation defined by a radial coordinate exceeding 
the experimental points, r>rsat . I =200 A  
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This operation can be repeated for all the currents. The corresponding curves (full 
symbols) are shown in figure 10.4 a – e, for the arc currents 50, 70, 100, 150 and 200 A. 
For comparison, the current conducting region, defined by the empty circles, is also 
shown (and discussed in Chapter 13). 

 

0

1

2

3

4

5

0 1 2 3 4 5 6

arc axis

Conducting
region

Ion 
saturation

Ar
I = 50 A

r (mm)

z 
(m

m
)

 
Figure 10.4 a Saturation transition curves for I=50 A (see text). Full squares: transition 
between ion non-saturating (left of curve) and saturating (right of curve) characteristic 
curves. Empty circles: current carrying region shown for comparison (cf Chapter 13) 
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Figure 10.4 b Saturation transition curves for I=70 A (see text). Full squares: transition 
between ion non-saturating (left of curve) and saturating (right of curve) characteristic 
curves. Empty circles: current carrying region shown for comparison (cf Chapter 13) 
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Figure 10.4 c Saturation transition curves for I=100 A (see text). Full squares: 
transition between ion non-saturating (left of curve) and saturating (right of curve) 
characteristic curves. Empty circles: current carrying region shown for comparison (cf 
Chapter 13) 
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Figure 10.4 d Saturation transition curves for I=150 A (see text). Full squares: 
transition between ion non-saturating (left of curve) and saturating (right of curve) 
characteristic curves. Empty circles: current carrying region shown for comparison (cf 
Chapter 13) 
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Figure 10.4 e Saturation transition curves for I=200 A (see text). Full squares: 
transition between ion non-saturating (left of curve) and saturating (right of curve) 
characteristic curves. Empty circles: current carrying region shown for comparison (cf 
Chapter 13) 
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The observations on axial and radial behaviour of the V-I curves can be summarized in 
Table 10.1 (cf figure 10.2 to 10.4)   

 

Arc current  

(A) 

Saturation (Complete/Partial) Up to z (mm)/from r (mm) 

50 C Whole arc height, z=4.22 

r=0(>0.3 1 point) 

70 P Whole arc height, z=4.22 

r≥0.5 

100 P Whole arc height, z=4.22 

‘just’ (2 points), r≥0.2 

150 P 2.99, r≥0.3 

200 P 2.95, r≥0.4 to 0.7 

Table 10.1 Ion saturation for different arc currents for central (method 1) and 'hybrid' 
(method 4) V-I curves. Vertical distances measured from anode, radial distances from 
axis. ‘Whole arc’ means up to the highest probe available (see text) and across the arc 
radius. Shielding gas, Ar, mass flow 10 slm=0.297 g/s, length 5 mm 

 
 
The general trend is that saturation occurs almost completely for the lowest current arc, 
I=50 A and less and less completely with increasing arc current, and increasing probe 
height within the arc. Saturation at the highest current almost never occurs in the central 
region (e.g. below 0.5-0.8 mm at 200 A) whereas moving radially outwards, saturation 
occurs again. 
 
10.4 Energy and particle number densities 

Physical parameters are obtainable by considering the probe as an instrument measuring 
the number of impinging particles, and the power released whilst immersed in a particle 
flux (the arc). It is the purpose of this section to investigate the dynamic parameters 
from measured voltages and currents and in particular, the ion flux to the probe, the 
velocity of ions at the probe, their kinetic energy and the charge released. The interest 
lies in the initial values of the kinetic energy and temperature which characterize the ion 
particles in the bulk and pre-sheath.  
Moreover, it is useful to reinterpret the general shape of the V-I curve in terms of the 
variation of the current due to displacement of electrons, which have higher mobility 
and diffusion coefficient. According to this view, the part of the characteristic curve 
which shows ion saturation ‘unveils’ an almost exclusive ion current because the effect 
of the bias is to remove an increasing number of electrons from the probe region. When 
‘ion saturation’ takes place, there are no electrons left to be removed in the probe 
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vicinity. At lower probe bias, e.g. closer to floating conditions, the electrons are 
comparable in numbers to ions (in fact in sufficient number to maintain the probe 
negative with respect to the plasma and the two currents equalize at the floating 
potential).  At plasma potential the electron population dominates and in fact maintains 
the negative plasma potential at the probe surface. The advantage of this point of view is 
that the ion current appears as a ‘background’ present in all the bias conditions. 
Therefore, the expressions for the ion flux and the ion velocity are the same under 
different bias conditions. 
 
We start with the energetics available from the data acquired corresponding to a given 
bias value. The kinetic energy of the impinging particles can be determined from the 
measurement of the probe voltage and current. This can be accomplished in ion 
saturation conditions when a fully developed positive sheath surrounds the probe 
However, the principle is valid at any point of the characteristic curve (provided the 
correct interpretation of the currents in terms of charge components is available) and in 
particular also in the region of the V-I curve where the probe voltage is close to the 
floating and/or plasma potential. 
 
10.4.1 Particle energy and power to the probe 

Any point in the plasma before the insertion of the probe is characterized by the plasma 
potential Vpl. Assuming not too brusque variations of the latter in the undisturbed 
plasma region (which is reasonable), the insertion of the probe is supposed to maintain 
this value of the potential within a short-range distance, of the order of a sheath radius 
(obviously the insertion of the probe at the exact location will greatly alter the plasma, 
now replaced by a portion of copper rod). According to the results of Chapter 4, we 
assume a thin sheath so that the above assumption is justified. The voltage difference 
between plasma and probe is therefore 
 

sh pl prbV V V= −  (10.1)  

We assume that at the sheath edge, the ion, at potential energy ~eVpl, experiences the 
effects of a ‘leaking’ field that will drive it towards the probe, i.e. a pre-sheath. In effect, 
this ‘small leakage’, required to attract the particles to the probe contrasts with the 
requirement that the ion is at the exact local plasma potential (cf Chapter 4 and see 
discussion below). The ion’s initial kinetic energy 

2
io i i

1 v
2

K m=   

will vary along the sheath by the amount eVsh before hitting the probe. The final kinetic 
energy Kif just before impact is 
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 ( )2 2 2
if i f i i sh i i pl prb

1 1 1v v v
2 2 2

K m m eV m e V V= = + = + −  (10.2) 

 

[Suffix ‘i’ refers to ions, ‘o’ to initial and ‘f’’ to final value]. Because the probe is 
negative with respect to the plasma, Vsh is positive and ions are accelerated. 
 
The exact value of Kif will depend on the hypothesis made for the ion velocity. The 
latter can in fact be the (Maxwellian) thermal velocity 
  

e
i

i

8v
π
kT
m

=  (10.3) 

 
or, satisfy the Bohm criterion, the sound speed in the medium (also called ‘thermal 
velocity’ [3]) 
 

e
B

i

v kT
m

=  (10.4) 

or the (Maxwellian) most probable value 
 

e

i

2<v> kT
m

=  (10.5) 

 
10.4.2 Choice of velocity and flux expression 

1. Velocity 
In general, in the pre-sheath both a thermal and a drift term should be considered for the 
charge fluxes. Because the velocity expressions enter the formulae for the fluxes at the 
sheath edge (e.g. not within the sheath), the velocity to be chosen is the velocity in the 
pre-sheath (‘initial’ velocity). Depending on the bias conditions (fully developed sheath 
in ion saturation or small sheath in floating conditions or absence of sheath when the 
probe is at the plasma potential) and the particle type (ions or electrons) the expression 
for the velocity is different. If one assumes an equilibrium (thermal) plasma in the pre-
sheath, the speed of the ions is given by (10.3). This is justified only if the field leakage 
from the sheath into the pre-sheath is negligible. However, to accelerate the ions 
towards the probe region, an ‘initial kick’ is necessary, given by a potential (even if 
relatively weak). The random motion of the ions (far from the probe) is destroyed by the 
leakage of the electric field that extends into the plasma beyond the sheath edge and 
directs the ions towards the probe.  
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If the ions are directed towards the probe already in the pre-sheath, one has to assume a 
non thermal velocity as in equation (10.5): in ion saturation conditions the sheath is 
fully developed, its potential is a maximum and the choice of a purely thermal velocity 
would seem unjustified. The choice made by Gick [5] was the ‘most probable value’, 
formula (10.5). The correct expression of the ion velocity at the sheath edge is 
dependent of the field. If the field is weak (cf section 2.10 and [12]), the ion kinetic 
energy is iE kT=  per degree of freedom, with an electron or an ion temperature 
(depending on the plasma being at equilibrium or ‘cold’). For almost mono-directional 
ions, one degree of freedom implies i iv 2 /E m=  and use of (10.5).  
 
Moreover, both (10.3) and (10.5) overcome the Bohm value (10.4), so it is of question 
whether the latter is at all appropriate. In fact, if a field leaks in the pre-sheath and its 
final effect is to accelerate the ions towards the sheath edge, the initial values of the 
velocity cannot be higher than the Bohm velocity (velocity at the sheath edge). This is 
the reason why the expression (10.4) is abandoned. 
The expression for the kinetic energy variation for the chosen most probable value 
(10.5) is therefore 

 

( ) 2
pl prb i f e

1 v
2

e V V m kT− = −  (10.6) 

 
where vf is the final impact ion velocity at the probe. Formula (10.6) relates the sheath 
voltage fall (and thus a difference between the measured probe voltage and the plasma 
potential) to the electronic temperature at the sheath edge and to the ion final velocity at 
the probe surface.   
 
2. Fluxes 
Similar considerations arise for the particle fluxes whose expressions lie in between the 
mono-directional and mono-energetic Γ=nv; or the flux Γ=nv/4 where only half of the 
particles move towards (a plane) probe surface and where the average is taken of the 
cosine of the angle between the direction of the velocity and the normal to the area 
element [3, 13]. This multiplicative factor (1/4) is subject to uncertainty in view of the 
possible directionality of the charge capture mechanism: if (say) only one-half of the 
probe surface is involved in charge capture, a corresponding factor has to appear in the 
expression for the current. The latter circumstance could also depend on the plasma 
motion characteristics in the vicinity of the probe at a particular bias. 
As seen in the introduction to this section, the expression of the ion current is the same 
under all bias circumstances. The most employed expression inherited from the low-
pressure theory (cf Chapter 2) is the random flux Γ=nv/4 which assumes a directed 
motion perpendicular to a plane surface with a selection of only ‘half’ of the particles. 
The results of Chapter 4 concerning the sheath thickness, showed that in the worst case 
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(thickest sheath) δsh~10-5 m whereas the probe radius is 12.5 times larger. This would 
make it possible as a first approximation to assume the planar form of the flux, because 
the majority of the alternative sheath thicknesses are at least one order of magnitude 
smaller.  
 
10.4.3. Power to the probe 

Voltage and current measurement can be used to determine the total and local power 
released on the probe at a given position within the plasma. In fact, the probe is biased 
to a potential Vb with respect to anode before entering the arc; at this stage, the probe 
and bias potential coincide. When entering the arc the probe potential will change. The 
instantaneous difference between the imposed (fixed) bias and the actual probe voltage, 
gives the potential variation; multiplying by the corresponding current collected per unit 
length (e.g. the Abel inverted current) gives the power per unit length released on the 
probe at the given location. Multiplying by the time interval corresponding to the 
minimum spatial resolution, and by the latter as well (the elementary step in the Abel 
inversion procedure), the total energy collected by the probe in the portion considered is 

 

( )n b prbτ τW Ia V V a
a a

   Ε = = −   
   

 (10.7) 

 
To obtain the energy carried by a single ion it is necessary to divide the latter expression 
by the corresponding number N of particles striking the probe portion at the same time 
and location. This is given by the charge collected, e.g. the integral of the measured 
current over the time elementary time step τ (this translates to a simple multiplication), 
divided by the elementary charge, and multiplied by the elementary (probe) length a 

 

N

( , )

( , )( , ) τ /
r z

q r z IN r z a e
e a

 = =  
 

 (10.8) 

 
Dividing (10.7) by (10.8), the single particle (ion) energy released to the probe is  

 

( )i b prb( , )
z

r z e V VΕ = −  (10.9)  

 
10.4.4. Comparison and identification of the energies 

It is important to look for a relationship between the latter energy and the dynamical 
parameters of the particles (ions). The argument can be outlined as follows. If there 
were no sheath, i.e. when Vprb=Vpl, the power released to the probe would be 

pl prb'W V I W= > , where W refers to ions in saturation conditions.  
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In fact, if one follows the argument [14] that the ion current is always present from ion 
saturation conditions until the point where the probe is in floating conditions, where the 
ion and electron fluxes equalize, then the power released to the probe would consist of 
an additional energy flux due to the electrons, thus greater than the value due to ions 
alone. Moreover, if the probe were at the plasma potential, where the electrons are 
overwhelming, because of the higher electron mobility, the number of impinging 
electrons and therefore the power deposited to the probe would also be larger than at ion 
saturation. Experimentally, this corresponds to the ‘high’ electron current situation, 
where the power released to the probes causes their melting. 
The introduction of probes in ion saturation conditions implies the formation of a sheath 
thus a potential difference which has the result of accelerating the ions and of removing 
the electrons. The question is which voltage should enter the general expression of the 
electrical power transferred, prbW VI= , where Iprb is the probe current. Because the 
probe is at a negative potential Vprb with respect to the plasma, one would be tempted to 
assume this voltage as the candidate. However,  
 
1. the fluxes in floating conditions must be equal; 
  
2. the power in floating conditions must be higher than at ion saturation and 
 
3. the ion flux is fixed. 
 
Hence, the voltage chosen must be numerically less than the plasma potential, whereas 
here prb plV V> . For the same reason, Vb has to be discarded because when biasing 
negatively, always prbb

V V≥  where the equality holds only when in floating conditions 
or when the probe is outside the arc. Therefore, it is proposed that the voltage 
contribution to the expression of the power is b prbV V− , e.g. the difference between the 
nominal bias and the actual probe potential. The two coincide out of the arc and it is 
their difference which causes the ion acceleration. In other words, the identification of 
(10.2) and (10.6) is made in the following and the final kinetic energy at the end of the 
ion travel is 
 

( )i if b prbK e V VΕ = −  (10.10) 

 

As a consequence, the value of the ion final velocity prior to impact with the probe 
surface is 
 

( )2 if
f b prb

i i

2 2v K e V V
m m

= = −  (10.11) 

The latter can be inserted in (10.6) to obtain  
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( ) ( )pl prb b prb ee V V e V V kT− = − −  (10.12) 

 
From this set of relationships, one could obtain: 
 
A. the plasma potential, by inversion of (10.14) to (10.16) if the temperature is known 
 

e
pl b

kTV V
e

= −  (10.13) 

 
B. the temperature, if an independent method to determine the plasma potential is 
available: 
 

( )e pl prb
eT V V
k

= − +  (10.14) 

 
The latter can be compared with the results obtained from the use of the characteristic 
curve. 
 
C. The sheath voltage fall from the variation of the kinetic energy of the particle if the 
temperature is known (either from B or other methods, cf Chapter 11) 
 

( ) e
sh b prb

kTV V V
e

= − −  (10.15) 

 
and compared with the order of magnitudes estimations made in Chapter 4. This is done 
in Chapter 12. 
 
D. Since the voltage sheath fall is the difference between the unknown plasma potential 
and the measured probe voltage, the plasma potential can be estimated 
 

pl sh prbV V V= −  (10.16) 

 
E. Finally, because of the existing relationships between sheath voltage and thickness 
(cf Chapter 4), an attempt can be made to estimate the latter in one of the collisionless 
models available, namely the Swift ‘thermal case’ or the CL (Child-Langmuir) 
approximation. This is investigated further in Chapter 12. 
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11. TEMPERATURES 

 

11.1 Introduction 

The Plasma temperature can be determined by using the only available portion of the V-
I curve, which under the present experimental circumstances, is the ion saturation 
region. In particular, a method employed by Gick [5] can be generalized to several 
current models and the resulting methods are named 'direct methods' in the following. 
These are discussed along with the result these provide in the first part of this chapter. It 
is anticipated that these methods provide temperature values lower than expected (e.g. 
than determined from optical means). Reasons for this ‘apparent cooling’ are 
investigated in view of the flowing nature of arc plasmas. 
 
11.2 Direct methods  

1. Principles of the method 
With "direct methods” it is meant that relationships like  
 

sat [ ( ), ]i f n T T=  (11.1) 

 
can be employed to extract the plasma temperature if the relationship between current 
(per unit length), charged particle density and temperature is known. The various 
formulae for the ion saturation current described in the following depend on the direct 
n(T) relationship data available after Olsen [15] and are based on the read current 
supposed in the form of a flux of the type i iv / 4j ne= , or a continuum plus free-fall 
type, which includes the mobility i i iµ v / 4j k ne= . Diffusive and random flux differ only 
by the choice of the 'factor' multiplying n [16]. 
As shown in section 9.4, the nature of the constants has to be determined according on 
the model assumed for the charge collection. For example, Benilov [17], states that only 
the upstream portion of the probe surface is effective in collecting ions. This would lead 
to a halving of the theoretical current for the simplest diffusive model. If following 
Tsuij [18], the collecting surface consisted of the upstream 240°/360° of the cylinder 
cross section, and a factor 2/3 would be necessary. 
The direct models are examined critically, including the Continuum plus Free-Fall and 
the Su and Kiel models (cf Chapter 5). These all pertain to steady plasmas, but the 
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absence of direct experimental evidence on flow velocity distribution within arcs, 
impedes the use of the formulae where this velocity dependency of the current is 
explicit.  
Comparison with data from emission spectroscopy could deliver an 'empirical' 
correction method, to be used for reconstructing the probe-determined temperatures, in 
cases where information on flow velocity is missing. 
 
The current read in the diffusive case is i iv / 4I ne S= , where S is the probe surface 

p p2π 2π ,   and  100.39µS r l r a a m= = =  is the elementary spatial step (spatial resolution) 
corresponding to the time (resolution) interval τ = 2⋅10-5 s. Accordingly, the current per 
unit length obtained after Abel inversion of the ion saturation current is 
 

pπ
2π ( ) v( )/4= ( ) v( )=θ ( )v( )

2p

rI r n T e T n T e T n T T
a
=  (11.2) 

where the temperature dependency of the ion density at the sheath edge (either n∞ or ns) 
is given according to Chapter 2 (Olsen [15]). In low-pressure probe theory the ion 
density at the edge is ns=0.6 n∞. The constant θ in (11.2) includes the geometry and the 
factors that depend on the choice of the ion velocity.  
 
If a continuum plus free fall model (CFF) is chosen according to formula (4.13), then an 
additional dependency on ion velocity and temperature enters in the expression of the 
current via the mobility, because by using i e i i iµ /   and  λ v 3eD kT D= = , 
 

i i i
i

i i

λ vµ
3

eD e
kT kT

= =  (11.3) 

It should be noted that here the 'thermal assumption' Te=Ti must be made, unless an 
independent means of determining the ion temperature is found. Moreover, the ion 
mean free path was used according to the determination given in Chapter 2 for the 
different temperature ranges, again under the thermal assumption. As in the random 
case also in the CFF model, the different forms of the ion velocity have to be considered 
(depending on whether a pre-sheath is assumed or not) as well as the collecting surface 
variations. 
 
To facilitate the identification of these different possibilities, Table 11.1 reports the 
corresponding constants needed in the calculation of the ion current density per unit 
length at ion saturation. These constants were used to build the property table referred to 
in the next section. On the right hand side, the expression of the current per unit length 
is shown with the possible combinations of constants. The first factor is common to all 
formulae; the others may be present or not (pre-sheath factor) in different combinations 
(probe surface and ion velocity). Note that the temperature is the electron value.   
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Ion velocity Probe surface 

p/ 2πS a r=  

p/ πS a r=  e iv 2 /kT m=
 

p/ 4π 3S a r=  

( )p
n i e e

v, most probablepre-sheah
constant

probe
surface

1
π

  0.61   1/ 2    2 /  ( )  
2

2 / 3

e r
I k m n T T


= ⋅ ⋅ ⋅ ⋅ ⋅



 

Table 11.1 For the determination of the ion current expressions at ion saturation. Left, 
ion velocity, centre surface: whole, half and two-thirds. Right, combinations of the 
constants in the expression for the current (see text) 

 

 
2. Extraction of the information from data 
Due to the high number of V-I curves, radial averaged, chordal-averaged, and the ‘local’ 
curves (cf Chapter 9), it is necessary to automate the information extraction procedure. 
This has been done using the tables of the characteristic curves, and a table containing 
the physical properties as a function of temperature. To clarify the method, the structure 
of these tables is reported in figure 11.1. 
 

 
Figure 11.1. The V-I Tables values for the currents (per unit length) are searched for in 
the “Properties” Table (see text). Legend: Gick, random; IGPsh, Gick model with pre-
sheath, CFF, Continuum plus Free-Fall; S&K, Su and Kiel; T electron temperature/s 

 

Each of the V-I tables available is accessed with the measured currents (normalized to 
the contributing length for the averaged case or to the minimum step size for the Abel 
inverted ones) in order to: 
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• determine the maximum values (three) of the current and average those (after 

verification that the difference within each couple is of the order of the experimental 
error, and thus belong to saturation);  

 
• extract the corresponding probe potential and coordinates (r and z); 
 
• Search for the saturation currents individually within each of the columns in the 

‘properties’ table in order to read, after interpolation, the corresponding 
temperatures. 

 
As can be seen from the different values of the constants, the results differ quite widely 
one from the other.  Also, three major problems occur for this method. 
 
• CFF's currents rely on the mobility, computed through the ion mean free path, which 

in turn, depends on temperature; this may add additional uncertainty to the obtained 
temperature.  

 
• Olsen’s dependency is based on LTE, therefore all the temperatures obtained are 

equilibrium temperatures, Te=Ti. 
 
• For the random cases, the current-temperature relationship is not monotonic above 

~17,800 K as can be seen from figure 11.2 (left). In this case, ambiguities arise in 
the choice of the correct temperature.   
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Figure 11.2 Probe (ion) currents per unit length (A/m) as a function of temperature. 
Left, Random/diffusion currents for different θ coefficients (see text). The non-
monotonicity is indicated by the two lines are drawn at 17,800 K and 18,900 A/m. 
Right, Continuum plus Free Fall (CFF) for whole and partial (2/3) collecting surface 
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Owing to the additional mobility factor and to the different current-temperature 
relationships (cf Table 11.1), this problem is not present for the CFF-type currents 
shown in figure 11.2 right. 
 
The non monotonicity of the I/l versus T curve is due to the corresponding character of 
the n(T) curve shown for clarity in its inverse form in figure 11.3  left. Beyond n~1.6⋅10 
23 m-3 the temperature is not unique (This influences any attempt to determine the 
temperature from the knowledge of the ion density). Figure 11.3 right shows the result 
on the current computed according to the random model with a pre-sheath and a 2/3 
collecting surface. Any current per unit length in excess 6,558 A/m would lead to 
temperature ambiguity. This could be a limitation because the algorithm used in this 
work limits the search only to the first of the possible I-T correspondences. 
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Figure 11.3 Left, non monotonicity of the n(T) function (cf [15] and Chapter 2). Right, 
consequences on the current per unit length as a function of temperature. 
 
 
However, it will be seen that none of the temperatures belonging to this group ever 
reaches the critical value beyond which the curves are not monotonic or more 
appropriately for this experiment, the current per unit length does not reach the critical 
value indicated in figure 11.2 and 11.3 right, in any of the experimental cases 
considered within this work.  
 
11.3 Temperature computations 

The temperatures computed for the different coefficients are shown for each arc current, 
in figure 11.4 a to e for the five arc currents. The series is obtained according to the 
guidelines indicated in Table 11.1 and refers to axial temperatures. For the cases where 
optical measurements were available, the corresponding optical temperatures are also 
shown. 
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Figure 11.4 a I=50 A. Temperatures obtained form probes, compared with optical 
spectroscopic values (available at 50, 100 and 200 A). 
 
LEGEND (see text for definitions): TGPSh/TGPSh23, Gick’s random current 
temperature with pre-sheath / and 2/3 collecting surface; TCFF /TCFF23, Temperature 
from Continuum plus Free-Fall / with 2/3 collecting surface; Topt, Optical (Emission 
Spectroscopy determined) Temperature  
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Figure 11.4 b I=70 A. Temperatures obtained form probes, compared with optical 
spectroscopic values (available at 50, 100 and 200 A). 
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Figure 11.4 c I=100 A. Temperatures obtained form probes, compared with optical 
spectroscopic values (available at 50, 100 and 200 A). 
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Figure 11.4 d I=150 A. Temperatures obtained form probes, compared with optical 
spectroscopic values (available at 50, 100 and 200 A). 
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Figure 11.4 e I=200 A. Temperatures obtained form probes, compared with optical 
spectroscopic values (available at 50, 100 and 200 A). 
 
 
Looking at the graphs for the temperatures in figures 11.4 some observations are 
possible: 
 
1. The probe temperatures appear to be grouped in two classes, a higher, defined by the 
CFF model, and the lower of the random type; 
 
2. the temperatures of the random group are lower by a factor 0.58 to 0.62  with respect 
to spectroscopic determinations;  
 
3. The CFF group temperatures reach 0.7 to 0.8 of the optical values (when available); 
in the 100 A case it exceeds the optical values. 
 
4. Langmuir probe temperature variations are limited to a range between 1,000 K and 
2,000 K, similar to the values from emission spectroscopy in the comparable arc height 
range (z).  
 
6. All the probe temperatures increase from 50 to 100 A and thereafter decrease at 150 
and 200 A. The decrease from 150 to 200 A is perhaps within the experimental error. In 
contrast, the optical determinations increase monotonically with the arc current. 
 
These trends extend to off-axis positions. It should be noted that each of the ion 
saturation currents has been computed under the assumption of a thermal plasma (Te=Ti) 
because it is under this assumption that relationships are available which relate particle 
density and temperature; and because independent ways of determining the particle 
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number densities do not exist or present very poor accuracy. Whilst the existence of 
LTE is in serious doubt for the lower current cases, I=50 and 70 A, and even if 
uncertainty exists about the onset of LTE even for high current arcs, the 200 A case is 
believed to show a good degree of LTE at least in the core region.  
The selection of the proper temperature can be aided by the use of Table 11.2 where the 
observations are grouped per arc current. 

 
 

Iarc (A) Highest T's  
(among probe T's) in 

decreasing order 

Probe T closest to 
Optical 

Notes 

50 TCFF23 
TCFF 

 (TCFF23) - 

70 TCFF23 
TCFF 

- TCFF23 some points out of 
range 

100 TCFF23 
TCFF 

TGPSh23 

TCFF 
TGPSh23 

TCFF up to z=2.5 mm 
TCFF23 overcomes optical 

150 TCFF23 
TCFF 

-  

200 TCFF23 
 

TCFF23 
 

- 

Table 11.2. Summary of observations on temperatures for the different arc currents. 
Nomenclature as in figure 11.4 
 
 
The table allows the following selection considerations. 
 
• Among the probe determined temperatures there is the dominance of the CFF model 

with a prevalence of the reduced collection surface (TCFF23). However, for the 
latter, there is no clear uniformity of behaviour with increasing arc current. At 100 
A, the model overcomes the optical values and is actually beyond the possible 
tabulated values for the given temperature, at arc heights above z=2.8 mm. Since 
there are no optical data available at 70 A it is not possible to determine whether this 
occurs already at 70 A although, CFF probe temperatures at this current, if correct, 
would be comparable with optical determinations at 200 A. 

 
• The probe temperatures most closely approaching the optical values is the TCFF23 

at the extreme current values (50 and 200 A) whereas at 100 A, the closest 
temperature is the simple TCFF which, however, exceeds the optical at z=2.6 mm 
(cf figure 11.4). 
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11.4 Temperature selection 

Of the several temperature candidates a selection is made based both on the proximity 
with the optical values and on considerations on the experimental error. In all cases the 
error on the optical values has been estimated to within 5%. The probe temperature 
errors vary due to the variable error on the read current (see Appendix E) and a 
preliminary conclusion can be made that the discrimination of the correct value among 
the 'random group' (lowest in all the plots) is extremely difficult.  
With the purpose to search for a model valid under all the arc current circumstances, the 
temperatures in the CFF group appear to provide values closer to the optical. The 
CFF23 is the closest to the optical values but it tends to increase steeply with increasing 
arc current. In contrast, CFF seems the most stable [obtained using the whole collecting 
surface, even if not perfectly monotonic (because of the 100 A case) but common to the 
other determinations]. However, because (i) there is the possibility of an unknown 
factor that drops temperatures of the random type and (ii) it is difficult to discriminate 
the best value among the random group, an empirical procedure of selection will be 
followed. 
 
The choice of a temperature based on its proximity with an independent measurement 
must be justified on a physical basis. In the first place, the chain of hypotheses that led 
to the various formulae for these temperatures, imply a choice for the constants that can 
compensate for other more physical phenomena which cannot be excluded, like cooling. 
In other words, the partial agreement between one of the selected probe temperatures 
(the TCFF up to about mid-arc at 100 A, figure 11.4) with the optical temperatures may 
be incidental.  
The CFF temperature determination is based on the collisionless sheath that breaks the 
homogeneity of the continuum plasma; the motion of the ions past the sheath is mobility 
dominated and in fact this is the quantity entering the corresponding relationship (5.14). 
Also, by using the thermal assumption the pre-sheath is assumed to be absent. In 
practical terms, a further 'simplification' has been introduced by the use of the Einstein 
relationship to express the mobility in terms of the diffusion coefficient (which requires 
thermal equilibrium). The diffusion coefficient has been expressed in terms of the ion 
mean free path and thermal velocity.  The mean free path dependency on temperature 
has been used according to the curves given in Chapter 2. All these steps imply a degree 
of a Maxwellian PLTE at least, because on this assumption are based the calculation of 
n(Te), µi(T), λi(T), vi(T) and furthermore Te=Ti was implied as a starting point of formula 
(11.2). 
 
The Random representative, TGPSh23 arises from a thermal motion up to a pre-sheath, 
where the effects of the field start to become important; the field accelerates the ion 
towards the probe thereby modifying the ion velocity which, at the sheath entrance is 
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the velocity of a quasi-monoenergetic flux of particles. This velocity is higher than the 
Bohm velocity required for the sheath formation. 
A provisional choice is made of two temperatures: the CFF model and the highest 
among the closest to the optical in all cases, e.g the TGPSh23 which is the random 
model with most probable velocity v, existence of a pre-sheath factor (~0.61) and partial 
collection surface (2/3).  
Since these two temperatures are both lower than the spectroscopically obtained 
electron temperatures, a method to identify and correct the discrepancy is needed. This 
will be discussed in section 11.5  
Since none of the current models employed contain a dependency on the flow velocity, 
there is some question concerning the use of stationary plasma formulae to describe a 
flowing system. Some attempts to include the flow dependencies into the determination 
of the temperatures are discussed in sections 11.6 and 11.7.  
 
11.5. Correlation between ion saturation temperatures and 
optical temperatures 

The emission spectroscopy electron temperatures are obtained with the Fowler-Milne 
method [1], which assumes PLTE. These temperatures are in good agreement with 
published data on electron temperatures obtained by this method, at least for currents 
greater or equal than 100 A (doubts persist about the attainment of LTE in lower current 
arcs, e.g. I=50 A [19], especially at low arc heights and in the in the fringes [20]). 
 
As an example, figure 11.5 shows typical temperature maps obtained using the 696.54 
nm Ar line with the Fowler-Milne method, for arcs operating at 50 and 200 A. 
 

Figure 11.5 Temperature maps from emission spectroscopy (Fowler-Milne method) in 
Ar. Left, 50 A from 696,54 Argon line, right Ar, 200 A (Fowler-Milne from 696,54 nm Ar 
line (solid lines) and 706.2 nm (dashed lines). 
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If the arc is in LTE, these optical temperatures should agree with temperatures obtained 
by the probe method. In contrast, a plasma which is not in LTE nor in PLTE may still 
be characterized by these electron temperature which then describe the electron 
population ("kinetic temperatures"). Probe temperatures are systematically lower. This 
may be due to the plasma cooling by the probe, which would therefore measure a 
boundary layer temperature at the sheath edge of the undisturbed bulk plasma, perhaps 
in LTE, or it may be due to an LTE violation irrespective of the probe cooling. 
If the plasma is in LTE then the probes could measure a comparable electron 
temperature, even taking into account the cooling, which means that even if the absolute 
values of the electron temperatures obtained by probes were substantially lower, these 
could be reconstructed towards the 'correct' values, provided some correlation between 
the two families of temperatures were available. 
 
The correlation can be looked at by comparing the optical temperatures against the 
probe temperatures obtained from the ion saturation current. The sets of graphs in figure 
11.6 a to f, show a selection of the radial temperatures for arc currents I = 50, 100 and 
200 A. Subsequently, the same probe temperatures are shown as a function of the 
corresponding optical temperature for probes at comparable arc heights in figure 11.7.  
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Figure 11.6 a Selection of temperatures for I=50 A. Optical temperatures (full circles) 
and probe temperatures (empty symbols) at z=0.58 mm 
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Figure 11.6 b Selection of temperatures for I=50 A. Optical temperatures (full circles) 
and probe temperatures (empty symbols) at z=2.99 mm 
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Figure 11.6 c Selection of temperatures for I=100 A. Optical temperatures (full circles) 
and probe temperatures (empty symbols) at z=0.81 mm 
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Figure 11.6 d Selection of temperatures for I=100 A. Optical temperatures (full circles) 
and probe temperatures (empty symbols) at z=3.05 mm 
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Figure 11.6 e Selection of temperatures for I=200 A. Optical temperatures (full circles) 
and probe temperatures (empty symbols) at z=1.12 mm 
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Figure 11.6 f Selection of temperatures for I=200 A. Optical temperatures (full circles) 
and probe temperatures (empty symbols) at z=2.99 mm 
 
 
 
From figure 11.6, the following observations can be made: 
 
1. The trends of the probe and spectroscopic curves as a function of arc height are the 
same across the range of currents examined. 
 
2. The gradients of the probe temperatures are less than the corresponding optical 
measurements but they are determined mainly by the points closer to electrodes, not 
accessible to probes. If one limits to the common region (in the z coordinate), within 1 
mm from the arc centre, this gradient is an increasing function of the arc current, e.g. the 
higher the I, the higher gradT. 
 
3. In the 50 A and in the 200 A case, the probe temperatures are lower than the optical 
temperatures; 
 
The correlation of the two pre-selected probe temperatures with the optical is shown in 
figure 11.7 a to f. 
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Figure 11.7 a. Selection of temperature correlations for I=50 A for the case shown in 
figure 11.6 a 
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Figure 11.7 b. Selection of temperature correlations for I=50 A for the case shown in 
figure 11.6 b 
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Figure 11.7 c. Selection of temperature correlations for I=100 A for the case shown in 
figure 11.6 c 
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Figure 11.7 d. Selection of temperature correlations for I=100 A for the case shown in 
figure 11.6 d 
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Figure 11.7 e. Selection of temperature correlations for I=200 A for the case shown in 
figure 11.6 e 
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Figure 11.7 f. Selection of temperature correlations for I=200 A for the case shown in 
figure 11.6 f 

 
 
 
The two probe temperatures for purely random ion current (labelled "TPSH23", cf Table 
11.2) and of continuum plus Free-Fall ion current model (TCFF) are shown as a 
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function of the optical determined temperature. The ideal correlation is shown by the 
straight line labelled R=1.  
The correlation between the optical and probe temperature can be also looked at by 
plotting the ratio of probe to optical temperatures as a function of the radial distance in 
view of an identification of a possible correction factor. The graphs corresponding to the 
temperatures of figures 11.6 and 11.7 are shown in figure 11.8 a - f. 
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Figure 11.8 a. I=50 A, probe to optical temperature ratios for the case of figure 11.6 a 
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Figure 11.8 b. I=50 A, probe to optical temperature ratios for the case of figure 11.6 b 
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Figure 11.8 c. I=100 A, probe to optical temperature ratios for the case of figure 11.6 c 
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Figure 11.8 d. I=100 A, probe to optical temperature ratios for the case of figure 11.6 d 
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Figure 11.8 e. I=100 A, probe to optical temperature ratios for the case of figure 11.6 e 
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Figure 11.8 f. I=100 A, probe to optical temperature ratios for the case of figure 11.6 f 
 
 
 
Even considering 1) the restricted selection shown here and 2) the relatively high 
uncertainty on the ratios (up to about 12% due to the error on the probe measurements, 
see Appendix E), it is shown that the trends in the three cases are different. The ratios 
for I=50 A and I=200 A can be considered constant to a first approximation (cf figure 
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11.8). This is somewhat confirmed in the ratios shown in figure 11.5. The I=100 A is 
less clear because the probe temperature exceeds the optical one for the CFF case and 
shows a slight tendency to increase for the other case, as the radial distance is reduced. 
So a lack of monotonicity makes the use of the ratio in the intermediate case I=70 A and 
I=150 A difficult (at the two sides of the I=100 A case). 
 
Up to this point, it has been shown that: 
• Of the many possible temperature from random-like expressions at saturation, two 

can be chosen due to their proximity with optical temperatures, the TCFF or because 
of the simple model they suggest, TPSH23 (which does not include mobility 
dependency);  

 
• All probe temperatures, except in one case are lower than the optical values; 
 
• There is no complete monotonic behaviour of the possible corrective factor Tprb/Topt 

in passing from the lowest to the highest arc current although, two out of three cases 
in the CFF case (e.g. 100 A case is an exception) and all of three in the random case, 
show relative constancy of the probe to optical ratio. This is discussed further in 
section 11.9. 

 
Without judging on the validity of the spectroscopic determination (due to excellent 
agreement with previously published data [21]), a few possible explanations for the 
lower temperatures are discussed in the following sections. These include: 
 
• Use of relationships which do not account for plasma motion (cf 11.6 and 11.7) 
 
• The currents measured at saturation are too high, perhaps perturbing the arc (11.8) 
 
• Cooling of the plasma (11.9) 
 

11.6 Inclusion of flow velocity in the expressions for the 
currents 

In order to evaluate the currents in flowing conditions, in addition to the probe potential 
corresponding to 'saturation' (with the exception of Lam's (4.13) diffusive current), the 
flow velocity is required. This quantity is unknown experimentally, therefore some 
evaluations are attempted in the following by taking this quantity as a free parameter in 
the range believed to apply to the TIG arc, for the case, I=50 A, between 50 and 100 m/s 
(cf Chapter 2); for the 200 A up to 400 m/s. In section 11.7 a different approach based 
on the search for a velocity-arc current relationship is followed. 
Some columns of the “properties” table in figure 11.1 were substituted by the flowing 
currents of Lam (4.13) and by Clements and Smy's convection regime (4.46 and 4.47). 
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The last two were computed for comparison, although in the present I=50 A case, ion 
saturation is always observed in contrast to Clements and Smy’s convection model 
(although this is not necessarily be the case for higher arc currents, cf Table 9.2). 
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Figure 11.9 a Temperatures obtained from the ion saturation currents parametrized 
with different but uniform flow velocity and radial distance. r=0.1, mm from centre.  
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Figure 11.9 b Temperatures obtained from the ion saturation currents parametrized 
with different but uniform flow velocity and radial distance. r=0.2 mm from centre.  
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Figure 11.9 c Temperatures obtained from the ion saturation currents parametrized 
with different but uniform flow velocity and radial distance. r=0.5 mm from centre.  
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Figure 11.9 d Temperatures obtained from the ion saturation currents parametrized 
with different but uniform flow velocity and radial distance. r=1.0 mm from centre.  
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Figure 11.9 e Lam's diffusive temperature at vf=50 
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Figure 11.9 f Lam's diffusive temperature at vf=100 m/s 
 
 
The results for the currents at vf=50 and vf=100 m/s for each of the two cases at I=50 A, 
are shown in the first two graphs of figure 11.9. The last two graphs report Lam's 
temperatures for all the radial distances at the two velocities (left vf=50 m/s) and right 
(vf=100 m/s), because this model predicts (correctly) ion saturation (The discontinuity at 
z~3.0 mm has been observed in several temperature determinations but has been left 
unexplained). 
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At first sight, the fact that these temperature values are higher than the values obtained 
for stationary plasmas is encouraging. However, the use of temperatures parametrized 
by the flow velocity is somewhat misleading because the latter could vary with position 
within the arc both radially and axially. In the first case therefore, especially at the 
fringes, the values of the temperatures may be seriously in error (overestimated because 
the velocity is assumed higher than real) with respect to the core of the plasma for 
which those parameters were chosen. Correspondingly, core the temperatures may be 
underestimated. Conversely, because the velocity decreases along the vertical axis the 
temperatures would be underestimated in the anode region. 
Furthermore, with respect to the small temperature gradient along the axis, if flowing 
plasma cooling effects are of relevance, then it can be expected that approaching the 
anode the flow velocity eventually reduces to zero (stagnation point). This would mean 
that errors due to probe cooling decrease approaching the anode. As can be seen from 
figure 11.8, because the ratio of probe to optical temperature is actually constant with 
reducing z, this is not the case. A further comparison is made in section 11.7 where the 
effects of a different flow velocity are addressed. 
 
11.7 Arc current - velocity relationships 

If the cooling of the plasma is due to arc flow velocity, and since some indications of 
monotonic dependency (proportionality) of flow velocity on arc current exist [22], one 
would expect to have greater cooling where the arc current is higher.  
Figure 11.10 left, shows the average axial velocity for two hypotheses of cathode exit 
flow velocities, normalized to the free-stream flow velocity v(∞) [22].  
On the right, arc flow velocity as a function of arc temperature has been computed for 
different arc currents by means of the Reynolds number [22] calculated with the density 
and viscosity temperature dependencies from Murphy  [23] (and shown in Chapter 2). 
These two pictures are used in conjunction. For a given current chosen on the left plot, 
say 100 A on the lower curve, the corresponding velocity can be read as ~100 m/s and 
could be sought in the picture on the right. Here, the curve labeled 100 reaches the 
velocity axis value of 100 m/s at a temperature of 15,000 K. In the first figure, the lower 
value of the normalized velocity is chosen (according to Allum [22] and [24] values), 
thus the lowest of the two curves. This is somewhat in disagreement with the picture 
shown on the right where for instance, a higher value of the temperature would be 
expected for I=200A. A different choice, however, would lead to temperatures which 
are higher than accepted value for the corresponding current (for instance a choice of 
the upper curve on the left graph, would imply an axial temperature close to 30,000 K 
for the 200 A case).  
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Figure 11.10 Left, axial flow velocity as a function of arc current for different 
hypotheses concerning normalized cathode exit flow velocity (a parabolic flow velocity 
profile was assumed; points were taken from figure 2 in [22]). Right, arc flow velocity as 
a function of temperature for different arc currents, evaluated from the Reynolds 
number [22]. 

 

This seems to indicate that the temperature values reported in figure 11.10 right may be 
overestimated by as much as 20%.  
Also by noting that such a dependency can be employed only on the axis of the arc, a 
method can be devised for the determination of the axial arc velocity by using optical 
temperatures with the relationship suggested by figure 11.10 right. The temperature 
gives the velocity for the corresponding arc current. This velocity is then used at the 
same coordinate (z, r=0) in the formulae to give the ion current as a function of 
temperature including the flow velocity contribution (cf [22] p.1050) 
 

1/ 2
o2µ ln 2 ln 20Re

πη 0.95
I ⋅ =  
 

 

 
where the computed Reynolds number is inserted in the definition (1.65) inverted for 
the velocity. The hope is to have an approximation of the probe temperatures by means 
of current formulae that account for the velocity, which is better than the one given in 
figure 11.14 where the velocity was assumed uniform throughout the arc.  
 
The method is then as follows: 
 
• take the optical temperature at the given coordinate and access the temperature 

velocity table based on figure 11.1 
 



247 

• divide the measured probe current by the read flow velocity (according to Lam's 
formula 4.13 its square root) and use the result to access the current-temperature 
table to obtain the temperature.  

 
[Of the available currents in the flowing case only Lam's provides values typical of this 
work, Clements and Smy's similar tables fail here because they provide too low 
currents]. The results are shown in figure 11.11a and b for I=50 and 200 A, and where 
also the axial flow velocity is indicated.  
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Figure 11.11 a Left axes, probe and optical axial temperatures at I=50 A. Probe 
temperatures include variable axial flow velocity (shown on the right axes).  
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Figure 11.11 b Left axes, probe and optical axial temperatures at I=200 A. Probe 
temperatures include variable axial flow velocity (shown on the right axes).  
 
 
The I=100 A case is not shown because the computed currents resulted in too high 
values (e.g. beyond any of the possible values in the tables, greater than 30,000 K). 
It should be emphasized that the non-monotonicity mentioned for the diffusion models 
(cf figures 11.2 and 11.3) and present also in Lam's case, is not an issue because all the 
current measured fall below the region where the problem occurs. 
 
These results can be compared with the results for the two provisory temperatures 
obtained in the steady state plasma shown in figure 11.4, without inclusion of velocity. 
This is done in figure 11.12. 



249 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

8,000

9,000

10,000

11,000

12,000

13,000

14,000

 T
 (K

)

z (mm)

Ar, 10 slm
I=50 A

 T flow
 T CFF
 T PSh23

 
 

Figure 11.12 a Comparison of steady state (no inclusion of velocity, TCFF, TPSh23) and 
variable axial velocity determined temperatures (Tflow) for I=50 A 
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Figure 11.12 b Comparison of steady state (no inclusion of velocity, TCFF, TPSh23) and 
variable axial velocity determined temperatures (Tflow) for I=200 A 
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Also, a comparison with the uniform (constant) velocity case presented in figure 11.9 is 
now shown in figure 11.13 a and b.     
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Figure 11.13 a Comparison of optical and variable velocity temperatures for the arc 
current case I=50 A (velocity v=50 and 100 m/s)  
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Figure 11.13 b Comparison of optical and variable velocity temperatures for the arc 
current case I=200 A (right, v=200 and 400 m/s) 
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Bearing in mind the errors on the steady temperatures and the approximations involved 
in the flow velocity (perhaps up to 20% see section 11.7), figures 11.9 to 11.13 suggest 
the following observations: 
 
• For both the 50 and 200 A cases the random with pre-sheath predictions (TPSh23) 

seem to be exceeded by all the other cases, leaving the CFF model in between the 
steady state and the constant velocity cases. 

 
• In general it appears that at 50 A, the inclusion of the variable velocity flow does not 

change the temperature gradient (substantially equivalent to the optical case) 
although, the inclusion of the flow enhances the temperature with respect to the 
steady-state (figure 11.13 left). This is probably due to the fact that the velocity 
appears as a 1/ v  multiplicative factor. Also, the variable velocity spans the range 
45 to 63 m/s, intermediate between the two extremes given (50 and 100 m/s) and the 
flowing values do not differ substantially (figure 11.13 left). The CFF case therefore 
appears the closest with respect to inclusion of the flow be it of constant or variable 
flow velocity.  

 
• At 200 A the situation is different in that the flowing case ‘flattens’ the temperature 

gradient considerably with respect to the optical case in the region closer to the 
cathode (figure 11.11, 12, 13 right). Even here the CFF model seems the more 
appropriate, matching in fact the flowing cases in the central region but ‘killing’ the 
CFF gradient close to the cathode (figure 11.12 right). In the 200 A case, the 
variability in the flow velocity along the axis does not affect greatly the result in that 
the steady state temperature (Tflow) lies in between the two extremes. Note also that 
the temperature gradient is low in a more limited variability band (~2,000 K for all 
three the temperatures) than the 50 A case (~3,000 K) if the common region between 
z = 1.1 and 3.6 mm in arc height is considered. 

 
 
11.8 Current drawn in ion saturation and arc perturbation 

1. All the models considered are based on a random (or modified random or diffusion) 
current with different multiplying factors (cf formula (11.2) and Table 11.2). The 
question is whether a modification in the expression of the current, for example a 
multiplication by a factor accounting for the geometry, will increase or decrease the 
temperature. This is related to the form of the function (11.2) 
 

( )Ii Cn T T
a

  = 
 
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for the currents. Any factor less than one multiplying the right hand side of (11.2) will 
give rise to a reduction of the current and an increase of the temperature upon enquiry of 
the current-temperature conversion table. A decrease of the constant C by (say) 
multiplying by 2/3 (e.g. collecting surface reduction)  given the same n and T, leads to a 
lower i, or, a lower i is now required to get the same (n, T). So, due to the functional 
dependency on T, analyzed further in section 11.9.1), any reduction in the expression of 
the current (not the current itself, which is measured) implies that the read current will 
correspond to a higher temperature. Conversely, any increasing factor will shift the 
same current (measured) to a lower temperature. Therefore, it is useful to consider 
whether a low temperature may be the result of a 'too high' current.  
 
2. The argument can be looked at from a different point of view. The charged particle 
density obtained from the current density measured by probes could exceed the density 
obtained by use of the optical temperature. In this case the probes would draw a current 
corresponding to a density greater than the available density at the edge. Under these 
circumstances, the probe would greatly perturbing the arc.  As a consequence any 
temperature determined from this density would overestimate the value at the sheath 
edge. From the measured current density it appears that this is the case for I=100 A at 
ion saturation. Is it possible to find a condition such that 'just' the right number of 
particles is drawn? Starting from the known (correct) optical n's there is a need to 
account for cooling from the boundary layer edge down to the sheath edge.  
  
In Chapter 9 it has been emphasized that the probe is a detector sensing a flux of 
impinging particle. If those relationships are correct, this ‘too high’ temperature 
corresponds to a particle density which is in fact higher than the density obtained by 
using the same n(T) relationship from optical temperatures. In other words, by using the 
ion saturation part of the characteristic curve, in the CFF case at 100 A, the current 
drawn is higher than the available number of particles in the probe vicinity. This is more 
the case considering that a cooler boundary layer surrounds the probe so that the density 
inferred from optical temperatures is overestimating the real (boundary layer) number 
density even at LTE.  
 
As an example, the particle number densities obtained from optical measurements and 
probe measurements (measured current) in ion saturation conditions are shown in figure 
11.14 for the highest probe, z=4.22 mm from anode.  
 



253 

0 1 2 3 4 5

0.0

5.0x1022

1.0x1023

1.5x1023

2.0x1023

2.5x1023

3.0x1023

3.5x1023

 nopt
 nTgPH23
 nTCFF

I=100 A
z=4.22 mm

n 
(m

-3
)

r (mm)

 

Figure 11.14 I=100 A, particle (ion) density obtained in ion saturation conditions 
compared with the optical densities at probe height z=4.22 mm. 
 
It is observed that this probe experiences a particle density exceeding the nLTE density, 
so that the current drawn is certainly too high, e.g. perturbing. This is true if the CFF 
model is followed, whereas for the random pus pre-sheath case, the density is greatly 
reduced even at the highest probe height (figure 11.14). In this case the optical number 
density can be used as an upper limit for the point on the V-I curve that has to be 
considered for the collected ions. In other words, it is necessary to limit the number 
density obtained by probes by using the optical density. This way, a different point on 
the V-I curve needs to be selected which corresponds to a lower current. Because ion 
saturation occurs this implies the choice of a point where saturation does not occur. As a 
consequence, the method of the V-I curve would fail for this arc current case.  Because 
the 'violation' occurs only when using the CFF temperature-computed density, and not 
when using the random model (TGPSh23) one may conclude that CFF is incorrect. 
In addition, as indicated in section 5.4, the CFF model predicted ion saturation currents 
of the order of the mA for typical arcing conditions, whereas values of the order of the 
ampere are found here. This explains why an ‘artificially’ higher temperature is 
delivered by this method, given the temperature dependency of the ion current per unit 
length. 
 

11.9 Corrections for the temperature 

A comparison among some of the optical and the corresponding probe temperature was 
shown at the beginning of the chapter. It is the purpose of this section to obtain some 
quantitative information about the temperature ratio along the radial direction as a 
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function of the height in the arc for the three currents for which the optical 
measurements are available in order to reconstruct ‘computed-optical’ temperatures, 
possibly close to a ‘true’ temperature for the two cases where optical data are not 
available. 
 
The ratio for the probes to optical temperatures for the case of random with pre-sheath 
probe temperatures are shown for I=50 A In figure 11.15 a (full region) and 11.15 b 
(inner region). 
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Figure 11.15 a, I=50 A Probe to optical temperature ratios as a function of the radial 
distance, full curves. The numbers in the legend indicate probe height from anode (in 
mm). 
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Figure 11.15 b, I=50 A Probe to optical temperature ratios as a function of the radial 
distance, region  from 0 to 2.4 mm (inner region). The numbers in the legend indicate 
probe height from anode (in mm). 
 
 
Despite the considerable uncertainty, these ratios show the following tendencies for 
higher to lower probes: 
 
1. a minimum of the ratio close to the axis is followed almost monotonically in z by an 
increasing ratio moving radially outwards, up to a point where the ratio stabilizes or 
perhaps drops again; the outer regions are regions where the probe to optical ratio 
increases again; 
 
2. Probe at z=2.03 mm, not far from arc centre, seems more uniform across the radial 
direction; 
 
3. A decrease of the ratio moving radially outwards up to 0.5 mm (z= 0.58 and 0.67 mm) 
to 1 mm (at z=1.67 mm). Thereafter, the probe temperatures regain importance. 
 
In terms of interpretation of cooling due to flowing conditions one could easily identify 
the central minima of the highest probes with the region of the arc where the flow 
velocity is the highest. This region extends probably out to 0.5 mm and down to about 2 
mm from the anode.  
The dramatic increase of the ratios at higher radii could be explained by the absence of 
substantial flow in the periphery of the arc: here the probes sense a more realistic 
temperature. However, the 50 A case is a limit with respect to the correctness of the 
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temperatures, because it is the case furthest from LTE and moreover the optical 
temperatures closer to the anode were obtained with increasing difficulties because of 
larger uncertainties in the intensity maxima. 
 
In figure 11.16a the ratio for the probes to optical temperatures for the case of random 
with pre-sheath probe temperatures are shown for I=100 A; the inner region is shown in 
figure 11.16 b. 
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Figure 11.16 a, I=100 A Probe to optical temperature ratios as a function of the radial 
distance, full curves. Right, region 0 to 2 mm 
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Figure 11.16 b, I=100 A Probe to optical temperature ratios as a function of the radial 
distance, region 0 to 2 mm 

 
 
The trend for the 100 A case is less clear. In general, the ratios of probe to optical 
temperatures are higher than for the 50 A case, as if the cooling due to the flow were 
less effective, especially in the core region where in contrast, the flow velocity is 
expected to be higher. Also the ratios seem to decrease outwards across the arc as if the 
effects of the flow were dominant in the outer edges.  
 
In figure 11.17 the ratio for the probes to optical temperatures for the case of random 
with pre-sheath probe temperatures are shown at I=200 A. 
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Figure 11.17 a, I=200 A Probe to optical temperature ratios as a function of the radial 
distance, full curves. Right, inner region 
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Figure 11.17 b, I=200 A Probe to optical temperature ratios as a function of the radial 
distance, inner region 
 
 
The behaviour of the ratios are similar to the 50 A case in that an inner depression is 
visible, probably due to the greater central velocity. A region of about 2 mm follows 
and the outer edges indicate a progression towards more realistic probe temperatures 
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(less cooled), although the outer regions are limited in validity by the requirement for 
the optical temperatures to be at  or close to LTE. 
 
The trend for these temperature ratios are grouped per radial distance and subsequently 
interpolated along the axial distance; in this way the corresponding values for the 
missing heights are generated. A subsequent interpolation between the 50 and 100 A 
and between the 100 and 200 A case is performed in order to generate the corrective 
factors that need to be applied to obtain ‘missing optical’ temperatures. These are 
computed for the cases I=70 and 150 A.  
 
As an example, figure 11.18 shows some computed optical temperatures as a function 
of arc height for selected radial distances and I=70 A, whereas the case I=150 A is 
shown in figure 11.19 a to d.  
By construction, these preserve some of the features of the probe temperatures (also 
shown in figure 11.12) from which they were partly generated. In particular, the points 
corresponding to the anode and cathode zones are missing as no probe data are available 
in these regions. 
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Figure 11.18 a, I=70 A, optical generated temperatures (Toptcalc) and the 
corresponding probe temperatures that these correct for radial distances r=0.1 mm 
from the arc centre. 
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Figure 11.18 b, I=70 A, optical generated temperatures (Toptcalc) and the 
corresponding probe temperatures that these correct for radial distances r=0.3 mm 
from the arc centre. 
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Figure 11.18 c, I=70 A, optical generated temperatures (Toptcalc) and the 
corresponding probe temperatures that these correct for radial distances r=0.5 mm 
from the arc centre. 
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Figure 11.18 d, I=70 A, optical generated temperatures (Toptcalc) and the 
corresponding probe temperatures that these correct for radial distances r=1.0 mm 
from the arc centre. 
 

 

 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

8000

10000

12000

14000

16000

18000

20000

z (mm)

T 
(K

)

I=150 A
r=0.1 mm

 TGPSH23
 Toptcalc

 
Figure 11.19 a, I=150 A, optical generated temperatures (Toptcalc) and the 
corresponding probe temperatures that these correct for radial distance r=0.1 mm from 
the arc centre. 
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Figure 11.19 b, I=150 A, optical generated temperatures (Toptcalc) and the 
corresponding probe temperatures that these correct for radial distance r=0.3 mm from 
the arc centre. 
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Figure 11.19 c, I=150 A, optical generated temperatures (Toptcalc) and the corresponding 
probe temperatures that these correct for radial distance r=0.5 and 1.0 mm from the 
arc centre. 
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Figure 11.19 d, I=150 A, optical generated temperatures (Toptcalc) and the 
corresponding probe temperatures that these correct for radial distance r= 1.0 mm from 
the arc centre. 
 
 
A cross-check based on the optical temperatures for the neighbouring I=50 A and I=100 
A case and on the number density corresponding to these generated temperatures shows 
these are consistent and of the right order of magnitude. For the latter, the check is 
performed to ensure that none of the measured particle densities based on the electrical 
current and the probe determined temperature exceed the LTE particle density 
(determined by these computed temperatures). For example, the density obtained from 
the probe temperature shown at z=4.03 mm for r=0.1 mm, TPSh23 = 11,600 K is n= 
5.4⋅1022 m-3and for the computed optical, Topt=19,300 K, ne= 1.8⋅1023 m-3.  
Obviously, the approximations involved impede any claim to a high degree of accuracy; 
even assuming a negligible error in the construction procedure, the initial error on the 
ratios of the temperatures, in turn largely determined by the uncertainties on the probe 
temperatures, renders it very difficult to state accuracies better than 20-25%. 
Furthermore, the acceptance of this method is subject to the assessment of the 
underlying physical model. This is discussed in section 11.11. 
 
11.10 Reasons for "Cooling" 

Further possible causes for “cooling” (“depressed probe determined temperatures”) are: 
 
1. Charge depletion by fluid convection 
  
2. Charge depletion by recombination 
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3. Ions energy loss 
 
4. Temperature obtained is a modified ion temperature 
 
Each of these causes is outlined in the following. A more detailed treatment follows in 
separate sections thereafter (except for point 1 below).  
 
1. Charge depletion by fluid convection   
Ions directed to the probe with a velocity forming a non zero angle with the flow will be 
‘deflected’ by the arc flow. The amount of deflection will depend on the ratio of the 
relevant ion velocity to the arc flow velocity and /or to the relative arc-probe velocity.   
The relative probe to arc velocity ratio is of the order of 10% at maximum, as the probe 
velocity is of the order of 5 m/s, whereas the arc flow velocity varies from some tens to 
a few hundreds of m/s depending on the arc current, thus relative arc flow-probe motion 
can be neglected. The ion individual velocity, depending on the arc regime, either 
purely random (thermal) or electric-field driven (drift), is at least a factor of 10 higher 
than the flow velocity. Therefore, in the worst case of ion velocity vector orthogonal to 
the arc flow velocity vector, still the latter can be neglected and in first approximation 
fluid convection appears at least not the major cause of charge flux depletion, if it is a 
cause at all.  
 
2. Ion energy loss 
The ions directed to the probe loose energy by collision with the colder neutrals in the 
boundary layer. The energy loss by collision with neutrals of the same species can be 
very effective in greatly reducing the initial ion kinetic energy after very few collisions.  
The kinetic energy of the ions is now defined by the value of the local temperature. If 
the system persists in an LTE status, this is also the electron temperature. In this case, it 
must also be assumed that the energy transfer mechanism from the field to electrons and 
from these to ions, keeps its effectiveness in maintaining the temperature equality. 
However, irrespective of the LTE onset in the boundary layer, the average of the ion 
kinetic energy does change because of collisions. In fact, although for energies below 
~1 keV, dominant collisions are elastic and the only non elastic collisions are of the 
resonant charge-exchange type, collisions of ions with neutrals do change the 
momentum of the ions considerably. The motion of ions is altered in that ions loose 
their original identity: a fast ion impinging a neutral will be deflected at a small angle 
thus loosing a small fraction of energy. However, after the scattering it may capture an 
electron and become a neutral atom. In contrast, the atom, which is initially 
considerably slower, acquires a charge during the scattering and sensing the effects of 
the field it is accelerated. On the average a slowing mechanism is in place and the 
averaged velocity over the ion population is reduced. 
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3. Charge depletion by recombination 
The assumption of conservation of the number of ions in the boundary layer is not 
justifiable because of recombination. Differently to the previous case, if ions carry a 
kinetic energy reminiscent of the electron temperature, e.g. v is not greatly altered 
during the travel across the boundary layer, the product e ev ( )v( )ne n T T=  transforms to 

e e' v '( )v( )n e n T T=  where n’<n and Te is the original value of the electron temperature 
outside the boundary. The effectiveness of recombination is determined by the local 
value of the temperature. In Chapter 2 the three-body collisional recombination 
coefficient was computed as a function of temperature although it was not explicitly 
stated which temperature was employed. In the absence of further information it is 
assumed that it is an LTE plasma temperature.  
 
The temperature at the boundary layer edge is generally higher than the temperature at 
which the recombination coefficient shows its maximum (cf figure 2.10). The ions are 
progressively reduced in number following the ac curve from the high tail (high T) 
‘back to its maximum (the T is decreasing towards the probe, so there will be a ‘band’ 
in the boundary layer where recombination is the most effective). However, as the ions 
approach the probe less and less electrons will be available to recombine due to the 
lower temperature (ionization is progressively less effective and so will be 
recombination). 
  
4. Temperature is ion temperature 
Following Bohm ([16] see also section 4.3.1.3), the collection of ions is independent of 
the ion temperature provided Ti<Te. In fact it is shown [16] that in the range where Ti 
≤0.5 Te the ion current density increase that would occur by including the ion 
temperature in the expression of the flux, is confined within a 20% value, which is the 
typical order of accuracy in probe determined temperatures. In other words, the ion 
density in the expressions for the ion saturation currents depends mainly on electron 
temperature. However, if the plasma is thermal, Te=Ti this is not necessarily true. 
 
If the ions were in LTE before meeting the cooler layer, thus at a temperature equal to 
the electron temperature, the (kinetic) energy decrease would translate into a ‘loss of 
information’ about the initial electron temperature; the probe temperature could no 
longer represent the electron temperature of the undisturbed plasma. If the number of 
ions did not change during the motion across the boundary layer, the factor 

e ev ( )v( )ne n T T= in the current density would be reduced to e iv' ( )v'( )ne n T T=  when 
impinging the boundary layer edge. Thus it would be determined by the instantaneous 
value of the ion velocity v’<v after the collision(s) and therefore by a lowered value of 
the kinetic energy, e.g. perhaps by a (local) ion temperature.  
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The collisions reduce the ion kinetic energy and after very few collisions, the 
relationship to the electron temperature is lost, unless a mechanism is found to restore it.  
 
If the plasma is not in LTE (as is presumably the case of the boundary layer, assuming a 
practical limit for LTE at T=10,000 K in the spectroscopic measurements) and is 
characterized by ‘cold’ ions (e.g. by a two-population two-temperatures system) the 
probe determined temperature based on the random ion flux can be an electron 
temperature according to Bohm.  In other words, dealing with a cooled plasma as 
implied by the existence of a boundary layer, impedes assessment of whether the 
plasma was originally in LTE before probe insertion. In any case the plasma is ‘cooled’ 
and the probe obtained temperatures, of the order of 10-12,000 K for the random model, 
are close to the limit where onset of LTE is dubious. These must be electron 
temperatures according to Bohm. 
 
11.10.1 Ion energy loss versus recombination 

Assuming the conclusion of the previous paragraph is correct, the cause of the cooling 
has to be ion energy loss or recombination. It is possible to estimate the relative effects 
of energy loss and recombination going back to the functional form of the current-
temperature relationship reported in figure 11.20 Left. The analytical determination of 
the dominant factor within the expression ( ) v( )J Cn T e T= , shown in figure 11.20 left, 
is not achievable.  
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Figure 11.20 a, the function J(T) versus temperature.  
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Figure 11.20 b, total derivative of the function J(T) as a function of temperature. Both 
the density n(T) and the contributions of the partial derivatives of J are shown 
 

 

The ion energy loss, represented by a reduced particle density n, and the cooling 
represented by a reduced velocity (thus temperature) are not separable in factors 
depending on one variable alone. 
The total derivative  
 

v
v

dJ J n J
dT n T T

∂ ∂ ∂ ∂
= +
∂ ∂ ∂ ∂

 (11.4) 

 
contains the variations of the current density with temperature and particle density 
(derivative of the current density with respect to the velocity, which depends on the 
temperature through v B T= ; and with respect to the number density). (11.6) can be 
written in modified form  
 

/ 2T dJ nT n
eB dT T

∂
= +

∂
 (11.5) 

and is shown in figure 11.20 right. A remarkable decrease in the current due to the 
reduction of the number density with increasing temperature (first derivative) causes a 
drop of a factor 5 in the current density in the region between 15,000 K and 20,000 K. A 
further negative contribution takes place above 26,000 K. The latter contribution, where 
n is almost constant above about 15,000 K has little influence.  
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Because we are interested to the relative contributions of cooling (lowering of kinetic 
energy, thus v) and recombination (lowering of n) these two contributions can be 
compared, as the corresponding partial derivatives: 
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n m
J en T

∂
= = =

∂
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=
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 (11.6) 

  

 
Now n increases perhaps exponentially (faster than T4) whereas v goes as T1/2 so at least 
below 15-16,000 K the dominant mechanism with lowering T is the reduction of 
number of particles (cf figure 11.21). This conclusion is supported by the fact that the 
recombination coefficient is a maximum in this range (cf figure 2.10). 
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Figure 11.21 Separate contributions of the partial derivatives of the current density 
function as a function of temperature  

 

Conversely, for temperatures higher than about 17,000 K, a reduction of the current is 
due to the reduction of the kinetic energy of the ions, although in this range, the effect is 
partly masked by an increase of the particle density. 
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The general result of this section can therefore be stated as follows. While there is no 
easy way to compute the relative variation of the current density /J J∆ for a single 
variation of n or v because of the functional form of J, still two temperature regions can 
be identified where either of the two effects dominates. Furthermore, because the probe 
temperatures, accurate or not, are the sign of a intrinsically reduced temperature in the 
'cool' boundary layer, the region beyond 17,000 K is never attained for the chosen 
random model. For this reason, in first approximation the dominant mechanism for the 
apparent 'cooling' in the boundary layer is the reduction of the particle density. 
 
11.11 Models 

The effect of cooling would be to lower the plasma temperature in a region whose 
extension is identified with the boundary layer. In other words the probe would sense a 
fluid boundary temperature (Chapter 2 and 4) and not to the plasma bulk temperature. 
The situation may be depicted in figure 11.22 as follows. For a floating probe in motion 
the sheath is fully embedded in the fluid boundary layer. When a negative bias is 
applied, the electrical sheath expands and progressively more and more ions reach the 
surface of the probe. When the probe is in saturation conditions, either of the two 
extreme cases depicted in figure 11.22 occurs: the sheath, even at its maximum spatial 
extension, is still fully contained within the boundary layer; or it overcomes the 
boundary layer. If the sheath were extending beyond the boundary layer, (figure 11.22 
d) the effect of the field would be dominant and the sheath depletion, by lowering the 
thermal conductivity, would impede substantial cooling; this is the situation common in 
low pressure discharges. In this case the ion saturation current, made up of all the 
particles reaching the uncooled sheath would be representative of the bulk of the plasma 
as would be the obtained temperature. In this case, the temperature given by ions would 
be the electron temperature. In the opposite case of fully developed (but embedded) 
sheath, the particles reaching the sheath edge and therefore the probe are the particles 
arriving from a boundary layer substantially cooler than the plasma bulk (figure 11.22 
c).  
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Figure 11.22 Left, qualitative relationship between fluid boundary layer and electrical 
sheath (includes pre-sheath for simplicity). a) in floating conditions b) 'slightly' biased c) 
high bias, ion saturation with sheath edge approaching boundary layer edge; d) sheath 
overcoming the boundary layer. BL=Boundary Layer (in white), SH=Sheath (in dark 
grey). Right, Schematics of the different layers surrounding the probe for sheath fully 
embedded in BL, e,g. b) or c) on the left. N=collected particles, W, power released, E, 
energy per particle at the probe 

 
 
Thus, referring to figure 11.22 ions travel towards the probe crossing different regions 
present as a consequence of the probe insertion within the plasma. These regions are the 
bulk of the plasma, a boundary layer induced by the relative plasma-probe motion, a 
pre-sheath (possibly embedded within the boundary layer) and the sheath. The existence 
of the pre-sheath seems well established and the choice made of the ion velocity at the 
sheath edge (when considering negatively biased probes) has to reflect this. Hence, the 
most probable value of the velocity is required due to an accelerating potential, 
originating at the probe surface, but leaking outside the sheath edge into the pre-sheath 
(This a second reason for selecting the temperature from the random model). The fate of 
the ions from the bulk of the plasma is now followed towards the probe. 
 
The physical scenario depicted in figure 11.22 right would be as follows. In absence of 
probe, the couple (n,T)LTE defines density and temperature at the probe location (r,z). 
When the probe is inserted at (r,z) a boundary layer and an embedded sheath arise. The 
original density is depressed by ‘cooling’ and a number n' lower than n will be present 
in the boundary layer. Of this number, a fraction n''<n'<n will reach the probe. If n''>n' 
then there would be charge formation by ionization which is excluded. If n''>n the 
sheath would be overpopulated with respect to the boundary layer which is also 
excluded. The assumption made here is that the number density obtainable from the 
number of charges impinging the probe is representative of the sheath edge population, 
embedded in the boundary layer. The density drop across the boundary layer (excluding 
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the sheath) is computable as the difference between the optical (LTE) density and this 
measured quantity.  
 
The temperature drop can be obtained as the difference of the optical (LTE) temperature 
and the temperature computed from n'' assuming LTE. This has been shown in section 
11.9 where from these corrections, ‘computed-optical’ temperatures were presented. 
Figures 11.23 to 11.25 report some radial densities (left) and probe to optical density 
ratios (right), computed for arcs at  I=50, 100 and 200 A. 
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Figure 11.23, I=50 A. Left, charged particle densities obtained from optical temperature 
under LTE assumption (nopt) and probe obtained density from the current and the 
corresponding probe temperature measured at saturation (ncalc). Right, computed to 
optical density ratio. Values shown from top, z= 0.58 2.03, 3.47 and 4.03 mm 
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Figure 11.24, I=100 A. Left, charged particle densities obtained from optical 
temperature under LTE assumption (nopt) and probe obtained density from the current 
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and the corresponding probe temperature measured at saturation (ncalc). Right, computed 
to optical density ratio. Values shown from top, z= 0.81 and 4.0 mm 
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Figure 11.25, I=200 A. Left, charged particle densities obtained from optical 
temperature under LTE assumption (nopt) and probe obtained density from the current 
and the corresponding probe temperature measured at saturation (ncalc). Right, computed 
to optical density ratio. Values shown from top, z= 2.03 mm z= 3.47 mm 
 

 
The values shown for these density reductions in figures 11.23 and 11.25 span the 2 to 
10% range, e.g. the probe computed density is of the order of few % of the optical 
value. This is the order of magnitude of the particle reduction in passing from the bulk 
plasma to the (sheath edge and thus making the flux to the) probe surface.  
It is interesting to compare the last result with the recombination coefficient normalized 
to the volume spanned by the probe in the time needed to cover a distance of the order 
of the boundary layer thickness estimated in Chapter 2 (δ≈0.2 mm = 2⋅10-4 m, in broad 
agreement with some computational results, 3 to 4 probe radii, δ≈0.5 mm = 5⋅10-4 m 
[25]).  
The probe velocity is ~5 m/s thus the time needed to cover this thickness is τ≈0.4 to 1 
ms. Multiplying by the recombination coefficient shown in Chapter 2 (figure 2.10), 
assuming cylindrical symmetry for the spanned region and ignoring the temperature 
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drop law across the boundary layer (which is around 50 to 70%), the reduced 
recombination coefficient is of the order of acNorm=5⋅107 so that it varies from 1 to 7% in 
the temperature region of interest, as shown in figure 11.26. 
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Figure 11.26 Estimates of the (normalized) three-body collisional recombination 
coefficient in the temperature range of interest. vprb, probe velocity, δBL, boundary 
layer thickness, V spanned boundary layer volume 
 
This is the reduction factor to be applied to the particle density per unit volume. Even if 
the approximation used is very coarse, this result substantiates the notion of 
recombination as the ‘cooling’ prevailing mechanism in lowering the temperatures with 
respect to the optical values. 
 
The boundary layer has a lower temperature with respect to the plasma so that thermal 
and concentration diffusion takes places. Ions move from the bulk region towards a 
cooler boundary layer because of diffusion. In this region, electron and ion densities are 
lower than the equilibrium bulk values as recombination takes place reducing the 
charged particle density (depending on temperature, cf Chapter 2). This reduction 
causes further diffusion. The charge density, assuming for now LTE, is characterized by 
the density nBL<n∞.  
 
Ions that happen to be just within the pre-sheath start sensing the field. Since it is 
assumed that the pre-sheath is fully embedded within the boundary layer. Hence, of the 
nBL density, only a fraction nPS will be subject to the effect of the field. Because the pre-
sheath is collisional, a further reduction of density takes places via recombination. Of 
this population, variable with distance from the probe surface, a fraction nSE will fulfill 
the Bohm criterion and actually enter the sheath. In fact, the pre-sheath development 
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ensures that the ion motion is directed and determined by the most probable velocity so 
that the latter condition is automatically satisfied. 
For a developed pre-sheath, low pressure Langmuir probe theory prescribes this density 
as s b0.61n n≈  (cf Chapter 3); here nb must be the boundary layer concentration nBL. 
Because the sheath is collisionless, the density providing the amount of particles 
reaching the probe surface out of the sheath edge population is nSE which is a function 
of the measured current. According to this scenario, the most important mechanisms 
that vary the ion current is recombination which progressively reduces the number of 
ions. 
 
11.12 Summary 

An attempt has been made to obtain plasma temperatures using the direct method of 
Gick et al  [5] extended to different current models, on the basis that several 
mechanisms should be taken into account, including incomplete collection surface, 
possible oversimplification of the purely random models, existence of a pre-sheath, and 
above all, the existence of a boundary layer. The fact that in Gick et al [5, 26] (and in 
the ‘ameliorated version of Allum et al [27]) the obtained temperatures were low but 
nevertheless surprisingly of the ‘correct order of magnitude’ is considered to be 
incidental. In fact, in Gick et al [5, 26] completely neglect cooling effects, but an 
analysis of the perturbing action in terms of collected current was not made. From the 
analysis performed in this work it is evident that the perturbing action of the probe 
manifests in several ways: ‘apparent cooling’ (e.g. temperature reduction) due to 
boundary layer, and perturbation of the arc by collection of a current which is too high 
if use has to be made of the characteristic curve method. The latter circumstance, 
limited to the TCFF model in the 100 A case led to the selection of the random model of 
Gick, modified to include pre-sheath and orientation effect in the collecting surface, 
taken as 2/3 of the probe surface. 
The inclusion of flow velocity dependency, both uniform, figure 11.14, and variable 
(only axially, figures 11.15 to 11.18) has shown temperature variations which are 
relatively minor with respect to the discrepancies with optical values. This is possibly 
due to some missing factor in those formulae or perhaps in the approximations implied 
in these. Qualitatively, one could conclude that a smaller lowering at the fringes is not 
unreasonable. 
From the practical point of view, it has been possible to reconstruct ‘optical-computed’ 
temperatures from probe data by interpolating the values obtained from the optical 
values at different currents, by the use of the ‘corrective factors’ (section 11.9) 
The mechanisms which may account for the temperature reduction, i.e. ‘cooling’ are ion 
energy loss and recombination. To a first order of approximation it has been found that 
recombination seems to be dominant. This is substantiated by a semi-quantitative 
analysis of the current density function in terms of its derivatives and by the fact that 
density reduction factors in crossing the boundary are similar to the reduced collisional 
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recombination coefficient estimated from simplified considerations. This result 
confirms the estimations made in Chapter 6 based on the criteria (6.23) and (6.27), 
predicting ‘reactions’ in the pre-sheath, which according to the model depicted in 
section 11.11 is embedded in the boundary layer. 
 





 

 

12. POTENTIALS 

 

12.1 Plasma and Floating potential  

It was one of the purposes of this work to ascertain whether floating methods can be 
used in conjunction with more conventional characteristic curve methods in order to 
characterize the electric arc. 
Also, because as shown above, the characteristic curve methods cannot be fully exploited 
for the present circumstances, information gained from the measurements of charge and 
energy indicated in section 9.4 will be employed to obtain further information on plasma 
and sheath potentials. 
As mentioned in Chapter 3, a probe free to float within a plasma attains a (negative) 
potential with respect to the plasma potential. Whilst an order of magnitude for this 
difference can be easily estimated as “a few electronvolts” [12, 28], the exact 
determination is difficult with a purely floating method (see the determinations in 
Chapter 4). The literature available on probes in arc plasmas is very poor if compared 
with the literature dealing with the more general plasmas and it is almost exclusively 
devoted to the “characteristic curve methods”. Despite these difficulties, the floating 
methods can be used to infer electrical information on the arc. 
When a Langmuir probe is at the floating potential, the measured probe potential, with 
reference to the anode of the arc discharge, is given by the voltage drop on the read out 
resistor (cf Chapter 7) 

 

prb pl fV iR V V= = +  (12.1)  

 
Where both Vpl and Vf are unknown. The floating potential is the particular probe to 
sheath edge voltage drop corresponding to zero net current. 
 
The following floating potential formulae will be assessed against experiment: 
 
• Das equation (3.18) because it is the only formula which accounts for collisional 
pre-sheaths in the probe 'vicinity'. However, due to the lack of knowledge of the ion 
temperature it has to be employed in the 'thermal' limit Te=Ti; 
 
• Kagan and Perel formula (3.27) 
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for the probe potential in the vicinity of the floating potential, is the only relationship 
that allows a direct computation of the plasma potential (for the insulated probe) if the 
electron temperature is known. In this formula, rp1 is the radius of minimum approach 
of the ions. In the thin sheath approximation (rp= rpl) it gives 
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 (12.2) 

        where  the constant 0.426 has been used for the thermal assumption [29] to apply. 

 

For the latter potential, the procedure would then be as follows.  
1) Determine the plasma potential with (12.2) using the temperature determined in 
Chapter 11; 
  
2) Since the probe potential is measured, use (12.2) in (12.1) for the floating potential 
 

e i
f prb pl prb

e

1ln 0.3
α(γ)

kT mV V V V
e m

  
= − = −   

  
 (12.3) 

 
The latter can be compared with determination (3.18). Moreover the plasma potential 
from (12.2) can be compared with the values determined indirectly through (12.1) from 
the knowledge of the floating potential. 
 
The differences between probe voltages adjacent in height can be used to compute the 
electric field in the hypothesis that a) the radial component of the electric field is zero 
and b) that the variation of the floating potential between adjacent points along the arc 
axis is minimal (ideally zero). This is discussed further in section 12.5 and in Chapter 
12. 
The importance of the plasma potential determination from probes lies in two further 
circumstances: 
 
• The plasma potential allows the characterization of the sheath, both in terms of 

voltage and thickness, using the arguments presented in Chapter 4 and 9.4. This 
point is discussed in section 12.6 
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• For a probe at the plasma potential, the absence of the sheath implies that the 

measured current, purely electron, is of the random type and can be taken as 
representative of the electron current distribution within the arc plasma. This is 
discussed in Chapter 12.  

 

12.2 Observables 

Probe potentials are the directly measured quantities either in floating conditions, using 
a 'high' resistor, or in biased conditions using a 'low' load resistor (cf Chapter 7). For the 
latter, the variability together with the probe current has been illustrated in the 
characteristic curves of Chapter 10. 
In floating conditions the probe voltages correspond to the voltages measured in biased 
conditions at zero current as shown in Chapter 7. Probe potential general behaviour is 
shown in figure 12.1 where the potentials for all the probes are displayed as a function 
of the arc current; the arc characteristic curves are also inserted for comparison. From 
this picture it is clear that the probes follow the general trend of the total arc 
characteristic curve. In particular, increasing arc currents imply lower overall potentials 
in the lower arc current regime and a slight increase past the minimum at higher arc 
currents. 
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Figure 12.1 Left, probe voltages as a function of arc current (only points at common 
height are shown). A portion of the arc characteristic curve of figure 7.1 is also shown 
for comparison. Right, probe voltages as a function of probe heights for various arc 
currents 

 

 
The voltages are also shown as a function of the probe height in the arc for the different 
arc currents in figure 12.1 right. Despite some scattered data at the highest currents, 
there is a degree of monotonic behaviour: the greater the arc current the lower is the 
probe potential at a given location. 
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12.3 Potential measurements 

The purpose of this section is to illustrate the attempts to obtain plasma and floating 
potential independently from each other using the measured probe potential and a 
simplified description of the measuring circuit. The measurements referred to are in 
floating conditions (cf section 7.11, figure 7.7.1). The measured potentials are assumed 
to be valid for true floating conditions on the basis that (i) they show saturation when 
the read out resistor RDAQ is taken sufficiently ‘high’ (see figure 7.13; RDAQ = 67.72 kΩ 
has been used throughout) and (ii) differences with the value obtained form the zero 
current point (on the V-I curve) in biased conditions are below the level of experimental 
error.  
Because RDAQ is not truly infinite, a non-zero current is drawn by the probe in the course 
of the measurements. Depending on arc current, values range typically from 10-5 to 10-4 
A. This could alter the sheath impedance and an error in the subsequent floating and 
plasma potential arises if the presumption is made that the measured potential is the 
probe potential taken in exactly floating conditions.  
 
1. A simplified model of the circuit in floating operation is shown in figure 12.2, where 
all impedances have been considered purely resistive. The plasma and the anode sheath 
have been represented by two resistors to anode. 

  

Figure 12.2 

Simplified model for probe in arc in 
floating conditions. From above, 
cathode, probe with acquisition 
resistance, probe sheath, plasma 
and anode sheath. Nomenclature 
(see text): 

Vf=floating potential 

Vpl=plasma potential 

Vprb= measured probe potential 

Vp=probe potential in exactly floating 
conditions 

 

If Vp is the probe potential in the perfectly floating conditions, then 
 

p pl fV V V= +  (12.4) 
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The sheath contributes with a current that lowers the level pV , to the measured probe 
potential   Vprb,  by an amount sh prbR i  and 

 
prb p sh prb f pl sh prbV V R i V V R i= + = + +  (12.5) 

The model can be described as follows. The measured voltage divided by the read-out 
resistor is the probe current; it is assumed that this is equal to the ratio of floating 
voltage to sheath ‘resistance’, i.e. 

 

prb
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f
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V
i

R
Vi
R


=



 =

 (12.6) 

 

so that eliminating iprb and solving for the resistances ratio 
 

p plsh

DAQ prb

V VR
R V

−
=  (12.7) 

This relationship involves three unknowns, the correct probe potential (e.g. in ‘true’ 
floating conditions), Vp, the plasma potential Vpl and the sheath resistance Rsh. 
Measuring the probe potential Vprb using two different resistors (“RDAQ”) relationship 
(12.7) can be used twice. Under the assumption of constant plasma potential one could 
write in simplified notation 
 

p1 plsh1

1 1
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2 1

k DAQ k k prb k( ) ,   ,    1, 2

V VR
R V

V VR
R V

R R V V k

−
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−
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 (12.8) 

 
The question is whether the sheath voltage fall remains the same for different resistors; 
if it did, then, because of (12.4), f p plV V V= −  and one would obtain 1 1 2 2R V R V= , 
contrary to the observation that the currents measured across two neighbouring resistors 
in floating conditions, differ by a factor of three. Therefore, the two equations in (12.8) 
cannot be equalized to eliminate Rsh. 
It follows that hopes This is only possible under the assumption of negligible sheath 
voltage fall, e.g. neglecting Rshi in (12.5), which turns out to be incorrect.  
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2. Alternatively, the problem can be attacked by constructing graphs of the measured 
probe potential either as a function of the read-out resistor, along the lines of figure 
7.11, or as a function of its inverse and performing extrapolations to the voltage or 
(voltages)-1 axes. In other words, from the study of the limits 

 

DAQ

DAQ

ext prb p1/R 0

ext prb plR 0

(1) lim

(2) lim

V V V

V V V
→

→

= =

= =
 (12.9) 

the value Vext(1) obtained from the (extrapolated) intercept of the measured potential 
with the V axis when RDAQ→∞ would be the true potential corrected for the sheath 
impedance; whereas the second extrapolation, Vext(2) would be the plasma potential.  
As a consequence, the extrapolated probe potential gives the floating potential if the 
plasma potential is known.  
In figure 12.3 the probe voltage as a function of read-out resistor shows the mentioned 
voltage saturation (used in Chapter 7 to assess the occurrence of floating conditions).  
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Figure 12.3 a, 50 A. Measured potential as a function of read out resistors (RDAQ) for all 
probes (height in arc).  
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Figure 12.3 b, 50 A. Particular for the three lowest resistor values of figure 12.3 a 

 
 

However, the extrapolated potentials obtained in the limits (12.10), suffer from the 
following drawback: a whole range of possible values would then result as shown in 
figure 12.3 b and in figure 12.4.  

 

0.0 5.0x10-6 1.0x10-5 1.5x10-5

7

8

9

10

11

12

V
 pr

b (
V)

1/RDAQ  (Ω)-1

 4.03
 3.47
 2.99
 1.67
 0.67

 
Figure 12.4 a, 50 A, detail of figure 12.3 in the region RDAQ →∞. For reasons of 
visibility, the data points have been split in two sets, five probes here and six probes in 
figure 12.4 b. The linear extrapolation towards the V axis is also shown for each case 
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Figure 12.4 b, 50 A, detail of figure 12.3 in the region RDAQ →∞. Six probes of the 11 of 
figure 12.3 

 
 
In fact, it is clear that any attempts to obtain the axis intercept (thus the required V) from 
the intercept with the V axis is destined to failure because the necessary extrapolation 
can be greatly in error. There is no clear functional trend of the curves and the situation 
is complicated by the fact that not all the 'curves' are monotonic with respect to the last 
point-to-point line (towards the axis). This may be due either to scatter intrinsic in the 
measured data or it may indicate a true non monotonic trend. 
The choice as which is the correct extrapolation and the consequent axis intercept is 
open to question even if the initial model can be ameliorated (perhaps considering 
different factors entering the voltage expressions). It is therefore unprofitable to pursue 
this line further. 
By contrast, there is some merit to progressively lowering the read out resistor, which 
will induce a greater and greater current flow towards the probe increasing its negative 
potential towards the plasma value. Therefore, this latter evaluation can be taken as a 
first order estimate of the region where the true plasma potential should lie. However, 
because of the unpredictable way the data approaches the potential axis there is no way 
to establish whether this is a lower or an upper limit. The limitations of this method lie 
almost entirely with the need to perform extrapolations using a very limited (coarse) set 
of points in the axial direction. 
 
12.4 Plasma potential from the V-I curve 

This type of determination of the plasma potential is complicated, considering that the 
arc characteristic curves do not show a clearly defined ‘knee’ in the electron saturation 
region. The technique based on the differentiation of the V-I curve in the ‘linear part’ 
suffers similarly because the steep part is either not linear or not complete in all cases. 
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The use of numeric differentiation on data that are not smooth enough leads to 
inaccuracies. As an example, a determination of the plasma potential by means of the 

derivative method from the V-I curve is shown in figure 12.7. It can be seen from the 
derivative curve and the original V-I curve, limited somewhat arbitrarily to the interval 
V= -12 to –4 V, that a local maximum of dI/dV is hard to define.   
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Figure 12.7 I=50 A, central characteristic curve for probe N. 8, z=2.83 mm from anode 
(empty circles). The vertical line shows the probe potential corresponding to floating 
conditions. For the first derivative of the of the V-I curve (full circles), even limiting to 
the ‘linear’ portion starting at ~ -12 V, the maximum is difficult to define. 
 
 
The policy for the choice was that if the intercept method and the derivative method 
gave greatly different value (well beyond the experimental error on the measured 
voltages) then no plasma potential can be assigned. This procedure is far from error-
free. As an example, at I=150 A, all the values of the plasma potential obtained from the 
V-I curve methods are greater (in absolute value) than the measured probe potential. 
This means that the plasma potential would be negative with respect to the probe 
potential where floating conditions are attained, contrary to the expectation that the 
floating potential location should correspond to a probe negative with respect to the 
plasma. For these reasons it is felt that the determination of the plasma potential directly 
from the V-I curve is not justifiable. 
 
12.5 Floating potential from probe temperature 

1. In the last two sections it has been shown that any attempt to determine either of the 
two relevant potentials independently from each other or from other quantities is 
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destined to failure. The remaining choice is to compute either the floating potential or 
the plasma potential using the temperatures obtained in Chapter 11.  
The choice is made to compute the floating potential from the probe temperature 
obtained under ion saturation conditions. The plasma potential will be subsequently 
computed form relationship (12.1) and compared with literature in section 12.5.1. 
The relationships employed for the determination of the floating potentials are those 
presented in section 12.1. 
 
Figure 12.8 shows the axial floating potential computed according to the temperatures 
which were obtained from the random model formula with partial collecting surface and 
pre-sheath existence employed in Chapter 11. The formula employed for the potential is 
the relationship of Das et al equation (2.28) [30] which accounts for the existence of the 
pre-sheath, and evaluated in the thermal hypothesis (Te=Ti), in line with the probe 
temperature choice. The cases I=50 to 200 A are shown in sequence. Note that the 
absolute value is shown [The correct values are negative]. 
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Figure 12.8 

Floating potential computed from the 
axial temperatures in the TGPSh23 case 
at ion saturation according to the 
formula of Das et al [30]. From above, 
left to right: arc current Iarc=50, 70, 
100, 150 and 200 A 
 

 
The floating potential variation along the arc height decreases by increasing the arc 
current. At 50 A this is of the order of 1 V whereas at the highest current the floating 
potential is practically constant. This constancy of the ‘contact potential’ along the arc 
height is a key hypothesis for the estimation of the axial electric field (cf Chapter 12).  
 
12.5.1 Plasma potential: corrections and comparison with literature 

The plasma potential can be determined using the computed floating potential of figure 
12.8 as the algebraic difference between the measured probe Vp and the computed 
floating potential. Figure 12.9 shows the results obtained.  

 
Figure 12.9  

Plasma potential computed from the 
difference of the measured probe 
voltage and the computed floating 
potential of figure 12.8. In each case a 
fit is shown, linear (full curve) and /or 
2nd degree polynomial (P2, dotted line). 
In the 200 A case a spline through the 
experimental points is also shown 
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It should be observed that while the floating potential is a characteristic of a conductor 
immersed in the plasma, the plasma potential is an intrinsic plasma feature. In other 
words, because the temperatures used in the calculation of Vfl were depressed values, 
the true corrected electron temperature should be used according to Chapter 11. By 
applying this correction, e.g. multiplying the probe temperatures (or, which is the same 
the floating potentials) by a factor which is the ratio of optical to probe temperature 
(variable with z), the plasma potentials shown in figure 12.10 are obtained. It should be 
emphasized that whereas the ‘corrected’ floating potential has no physical meaning 
(because as consequence of probe insertion the true floating potential is the 
“uncorrected” one shown in figure 12.8), the plasma potential is actually fixed by the 
correct temperature. Because the optical temperature is available only for I=50, 100 and 
200 A, it is for these that the correction was applied. 
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Figure 12.10 a Corrected axial plasma potential for I=50 (uncorrected data empty 
circles, corrected values dotted line, both shown with the fits of figure 12.9). 
Comparison is made with measured values of Tanaka et al [31] obtained in the 
anode region (full circles).  
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Figure 12.10 b Corrected axial plasma potential for I=100 A. 
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Figure 12.10 c Corrected axial plasma potential for I= 200 A. Comparison is made 
with the model of Sansonnes and Lowke (S&L [32]) 

 
Perhaps excluding the first value at 50 A, the curves show a common trend of a partially 
negative potential, e.g. of the existence of an inversion point along the axis where the 
potential changes sign. This location in height increases with the arc current. 
 
It can be observed that in all cases the resultant plasma potential is made more positive 
by the use of the higher (optical temperature). In the 50 A case the correction appears 
‘detrimental’ in that the original uncorrected points (empty circles) are closer to the 
measurements of Tanaka et al (full circles,) obtained in the anode region (up to about 
300 µm), than to the corrected value. 
 
The 200 A case shows some agreement with the numerical model of  Sansonnes et al 
[32]. In the present determination the tendency seems the opposite when moving closer 
to the cathode However, other experimental points at higher z are not available to 
confirm this trend. Moreover, there are differences between the present over-all arc 
voltage, 15 V here, and the lower 13.2 V of [32] but the behaviour in the column, where 
the two potentials differ by about 30% is similar; both the determinations show an 
inversion of the potential around mid height. 
 
12.5.2 Computation according to Kagan and Perel [29] 

The values for the plasma potential computed with (3.27) have been obtained using both 
the optical and the probe determined temperature. In figure 12.11 a-c, a comparison is 
made with the values determined in the previous section. 
 



 
12. POTENTIALS 

 

292

 
 

0 1 2 3 4 5

-6

-4

-2

0
 Vpl
 VplCorr
 Tanaka et al ()
 KP Topt
 KP T prb

I=50 A
Pure Ar, 10 slm

V 
pl
 (V

)

z (mm)

 
Figure 12.11 a. I=50 A, Plasma potential according to Kagan and Perel formula (3.27) 
shown for probe temperature (continuous) and optical temperature (dash) together with 
the curves plotted in figure 12.9 and 12.10 for the plasma potentials obtained from the 
floating potential in the uncorrected (empty circles) and corrected case (dotted line) 
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Figure 12.11 b. I=100 A. Plasma potential according to Kagan and Perel formula (3.27) 
are shown for probe temperature (continuous) and optical temperature (dash) together 
with the curves plotted in figure 12.9 and 12.10 for the plasma potentials obtained from 
the floating potential in the uncorrected (empty circles) and corrected case (dotted line) 
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Figure 12.11 c. I= 200 A. Plasma potential according to Kagan and Perel formula (3.27) 
are shown for probe temperature (continuous) and optical temperature (dash) together 
with the curves plotted in figure 12.9 and 12.10 for the plasma potentials obtained from 
the floating potential in the uncorrected (empty circles) and corrected case (dotted line) 
 
 
With respect to the values obtained from the floating potential in the previous section, 
Kagan and Perel's plasma potentials are more negative. Also, the correction performed 
using the optical against the probe temperature shows an opposite trend with respect to 
the determinations of section 12.5.1. In fact, an increase of the temperature from probe 
to optical, shifts the potential towards lower values (e.g. greater in absolute value). This 
is the opposite of what is expected on the basis of a lowering of the potential at greater 
heights within the arc and fixed arc current. Also, the indication that appears from 
measured probe voltages (cf section 12.2) and from the arc characteristic curve (cf 
figure 7. ) is that below the voltage minimum, located around 100 A, an increase of the 
arc current decreases the potential. Therefore, a decrease in voltage is accompanied by 
an increase in temperature (when passing from 50 to 100 A). This is not shown by the 
determinations based on Kagan and Perel where the use of a higher temperature 
(optical) corresponds instead to a higher potential (and thus a lower current). Moreover, 
for currents greater than the voltage minimum of the arc characteristic curve, an 
increase in voltage is accompanied by higher current and thus higher temperatures (from 
100 to 200 A). This is shown in Kagan and Perel determination, but the transition from 
these two behaviours is not shown. Rather, the case 100 and 200 A do not differ very 
much one from the other. In contrast, the values of the difference between uncorrected 
and corrected plasma potential for the determinations obtained from the floating 
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potentials of section 12.5.1 do decrease or increase as expected (cf figure 12.11). For 
these reasons, the determinations based on Kagan and Perel are assumed not correct 

for the present circumstances. 
 
12.6 Sheath voltage and thickness 

If the plasma potential is known across and along the arc, the voltage fall between 
plasma and probe surface, the sheath voltage, can be obtained. The plasma potential 
however, has been determined only along the axis of the arc. The major difficulty in 
obtaining localized values for the latter is associated with the requirement made in 
Chapter 10 that the probe is equipotential. As a consequence it is doubtful that the 
difference between the probe voltage, constant along its whole length and the plasma 
potential, which is presumed to vary along the same coordinate (one sheath thickness 
away from the probe), can be obtained as a local quantity.  
The sheath voltage fall and the sheath thickness along the probe length can be computed 
by the use of the kinetic energy variation of the ions (measured), and in particular by the 
use of the temperature determined in Chapter 11. Within the validity region of the latter 
(as seen above, determined by the matching of the particle densities) it is possible to 
give a qualitative picture of the sheath structure. 
Therefore, some estimates are made using the information gained form the measured 
energy and particle densities. The sheath thickness is computed using the formulae 
given in Chapter 4, Child-Langmuir’s (4.12) and (4.13), representative of a fully 
collisionless sheath (vacuum diode in fact) and Swift’s determination (4.20) and (4.22) 
for the thermal plasma. 
 
The sheath voltage is obtained by use of relationships (10.15) having chosen the random 
with pre-sheath and partial collection surface temperature of Chapter 11. This is an 
independent way with respect to the procedure used for the floating potential; the latter 
cannot be used here, because it holds only in floating conditions. It is worth 
emphasizing that acceptance of the assumption implied in relationship (10.9) that the 
quantity Ei is the final energy per impinged particle is critical. Also, the selection of the 
data has to account for the geometry which now implies variability along the probe y 
direction instead of radial direction. Certainly, when comparing the sheath voltage 
corresponding to biased conditions leading to floating probe, the central value of the 
sheath voltage should coincide with the (central) value of the floating potential because 
the two sheaths must be equivalent.  
 
The voltage is computed irrespective of the model, so its value can be compared with 
the values of Chapter 4 with same parameter in order to see which approaches the 
experiment better. Because the ion sheath develops upon increase in (negative) bias, it is 
interesting to follow its evolution for different probe voltages and probe height. 
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1.  Sheath voltage and thickness for different probes 
In figure 12.12 left a set of sheath voltages is compared for three different arc heights. 
On the right the sheath thickness corresponding to thermal Swift case (formula 4.22) 
and the Child-Langmuir case (formula 4.13) are shown. The probe radius is inserted for 
comparison (r=1.25⋅10-4 m). 
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Figure 12.12. I=50 A. Left, Sheath voltage computed from temperature and particle 
energy to the probe. The nominal bias Vb and the effective probe voltage Vprb are also 
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shown. Right, corresponding sheath thickness according to Swift’s thermal model 
(4.22), (C-L) Child Langmuir’s (4.13). The probe radius is also shown for comparison. 

 

It can be observed that Swift’s case is by construction the ‘thermal’ Debye length for 
equal ion and electron temperature, which differs from the electron Debye length by a 
factor 2  (cf formula 2.3). 
 
The voltage fall across the sheath decreases at lower arc heights as well as its range of 
variability. The sheath thickness of the thermal model is always lower than the Child-
Langmuir model (C-L).  These values can be compared with the predictions shown in 
figure 4.3 for the C-L model and 4.4 for Swift’s thermal model. The ‘wall’ potentials of 
Chapter 4 are here the probe voltages Vprb indicated in figure 12.12 
 
• For the C-L model, figure 4.3 says that, for the probe at z=4.03 mm (top of figure 

12.12), taking the central sheath voltage at 5.81 V and searching for a ‘wall’ of Vprb 
~ -17 V in figure 4.3, a thickness of the order of ~6⋅10-6 m is found, close to the 
~7⋅10-6 m given in figure 12.12 right. Similar agreement can be found comparing the 
values of figure 12.12 for the other two probes with the constructed values of figure 
4.3.   

 
• Swift’s model is independent of the probe voltage and the values shown in figure 

4.4 were computed at fixed temperature. Because for probe 2 at z=4.03 mm the 
temperature is 9,980~10,000 K, thus half way between two values given in figure 
4.4, δsh~ 7⋅10-6 m is obtained, close to the 3⋅10-6 m read from figure 12.12. 

  
This ‘agreement’, is only taken as a measure of likelihood for the correctness of the 
whole chain of computations. The observations made above do not make it possible to 
choose between the two models, as the experimental results were obtained precisely 
because the corresponding C-L or Swift hypotheses were employed. However, the 
representation of figure 12.13 is correct at least qualitatively. Furthermore, by 
comparing the value of the sheath voltage at the centre (y=0) with some values of the 
floating potential from figure 12.8 it is seen that the sheath voltage drop is higher than 
the floating potential as it should be.  
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Figure 12.13 upper, qualitative shape of the sheath thickness along the probe length; 
lower, the amplitude of the voltage fall across the sheath along the probe. 
 

 
2.  Sheath voltage and thickness for different bias 
In general, it is expected that both the sheath voltage and the corresponding layer 
thickness are reduced when moving towards less negative biases. In order to perform a 
more quantitative assessment of the results shown, there are two arguments against 
which the sheath voltage and thickness need to be confronted.  
 
The first relates to the verification of the voltage interval corresponding to the sheath 
existence criterion according to section 4.2.  
The second is related to equation (10.15) which follows from the assumption (10.12). 
These two arguments are tested with the experimental data of figure 12.14 which shows 
different sheath voltages compared with the temperature (expressed in eV) in order to (i) 
study the variation of the sheath voltage with bias and (ii) to determined the limiting 
region for the existence of the sheath according to (12.10). 
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12.14. I=50 A. Selection of sheath voltages for probe at z=2.03 mm (left) and at 
z=0.58 mm (right). The temperature obtained according to the methods of Chapter 11 

is shown compared with sheath voltages obtained under different bias conditions. 
 
 
1. Sheath existence 
In section 4.2 a limiting criterion for the existence of the sheath was formulated by 
means of the inequality  

sh e / 2eV kT>  (12.10) 
 
requiring the sheath fall to exceed half the temperature for the sheath to exist. (This led 
to the Bohm criterion). 
A computation of the voltage sheath and thickness by means of relationship (10.15), 
shown for two probes at I=50 A in figure 12.14, under varying bias conditions shows 
that: 

1. In ion saturation conditions, the sheath fall exceeds the temperature (and half its 
value) and condition (12.10) is verified as it should; 

 
2. The sheath voltage in floating conditions is now negative, and the condition for 

the existence of the sheath is not fulfilled. The negative value implies also that the 
effect of the sheath would be to reduce the ion energy with respect to the value at 
the sheath edge, which is determined by the temperature, thus it would suggest a 
negative sheath, in contrast to what expected in floating conditions. Moreover, the 
absolute value of this voltage at y=0 (centre probe) is lower than the central value 
of the floating potential computed for the same case and shown in figure 12.8. 

 
3. When the probe is at plasma potential (assumed the latter is available) the sheath 

voltage should be zero whereas here it is close to the maximum sheath voltage (at 
ion saturation) and it even overcomes the latter for the z=0.58 mm case. 

 

2. The use of energy relationship and assumption (10.12) 
Relationship (10.12) implies that: 

b prb e0 /V V kT e= − −  

e.g., that the plasma temperature is determined by the difference between applied bias 
and read probe voltage. Under the circumstances of this work (equipotential probe) this 
would mean a uniform plasma temperature along the probe length, contrary to the 
expectation that the temperature should decrease in the peripheral regions of the arc 
(and, with the appropriate geometrical transformation, also along the probe). Moreover, 
at any potential (e.g. at any bias), the sum of plasma potential and temperature would be 
determined by the applied bias 
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pl b e /V V kT e− = −  

This is unacceptable in view of the requirement of a ‘non perturbing probe’. Therefore, 
considering the hypothesis that led to relationship (10.6), it is felt that the equation for 
the final kinetic energy (10.2) and the average ion energy (10.9) are plausible as taken 
separately. However, the identification carried forward by (10.10) is incorrect.  
 
The two groups of arguments lead to the conclusion that: 
 

1. The plausibility of relationship (12.10) for the existence of a sheath does not seem 
unreasonable even if the effect of the pre-sheath required in the present 
formulation were not included (these are required because of the choice of the 
temperature, cf Chapter 11) and therefore the analysis conducted is only semi-
quantitative.  

 
2. The serious difficulty lies in the energy identification implied by (10.6) and 

following relationships. The fact that the energy gained by the ions exceeds the 
energy at the edge is not sufficient per se in attributing to the difference between 
the probe and bias voltages the excess of kinetic energy gained by the ions. 

 
It is the latter problem that makes it impossible to obtain local features of the sheath. 
 

 



 

 

13. CURRENT DENSITIES, ELECTRIC 

FIELD AND CONDUCTIVITY 

 

13.1. Introduction 

It is the purpose of this chapter to present values of electrical parameters which should 
complete the picture of the information that probes in arc can provide. The discussion is 
focused here on individual parameters leaving the ‘integrated picture’ to the next 
chapter (Chapter 14). Data are presented for ion and electron current densities and for 
the electric field. The implications of a comparison between the two are discussed.  
Some attempts made to measure the electrical conductivity directly are presented. These 
would provide an independent mean of determining the electron temperature. 
Unfortunately, this aim was not attained, and the conductivity is therefore obtained 
using the temperature previously determined in Chapter 11.  
The axial electric field can be determined indirectly from the knowledge of the plasma 
potential or directly by using the measured probe voltages, provided the assumption of 
uniformity of the floating potential can be proved. In Chapter 12 it was shown that, 
whereas this hypothesis is fulfilled in the columns of 150 and 200 A arcs, for the lower 
50, 70 and perhaps 100 A, the gradient of the floating potential is not negligible.  
 
13.2. Ion Current densities  

1. Ion current densities measured by probes are representative of the true ion currents 
within the arc provided the current drawn by the probe is not perturbing the arc. As 
shown in Chapter 11, a necessary but not sufficient criterion is that the particle density 
reconstructed from the current measured in ion saturation conditions, should not exceed 
the local equilibrium density determined by the undisturbed (optical) electron 
temperatures. As seen in Chapter 11, with the choice of the correct temperature model, 
this condition is respected. However, because of boundary layer cooling, this limiting 
density is probably shifted to a lower value difficult to evaluate independently. In 
Chapter 11 an order of magnitude estimate for the electron density reduction within the 
boundary layer was given (ratio of optical to probe density ~ 50 to 70, cf figure 11.11) 
and as a similar value is to be expected for the ion densities (because of the dominant 
role of recombination as a cooling mechanism), this factor could be taken as an 
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ameliorated condition for non-perturbation, e.g. p LTE50 to 70 n n≤  where np is the 
number density computed from the current read by the probe. 
 
2. A further condition for ‘representiveness’ lies in the form of the current. The use of a 
random model for the current at ion saturation and the hypothesis of non complete 
collecting surface imply some kind of directionality of the current. This would mean 
that the probe could be thought as of being immersed in a macroscopic flow containing 
charged particles, thus ions directed from the cathode to the anode, contrary to the 
direction of the field that a simple cathode to anode structure suggests. Considering that 
in section 12.4 plasma potential values were presented which suggest inversion along 
the cathode to anode distance the latter statement is not completely unsound. 
 
3. The ion current densities were obtained by taking the points of the characteristic 
curve where the ion current shows saturation. Since the currents obtained from the local 
characteristic curve (Abel inverted) are currents per unit length, a normalization using 
the minimum step of 100.4 µm was used (the minimum spatial resolution corresponding 
to the minimum time resolution). 
 
a. Ion saturation radial current densities for different heights in arc 
A comparison between all the ion saturation current densities measured at I= 50, 70, 
100, 150 and 200 A, is shown in figure 13.1 a to e. 
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Figure 13.1 a Arc current I= 50 A, Ion saturation current densities as a function of 
radius at fixed arc heights  
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Figure 13.1 b Arc current I= 70 A, Ion saturation current densities as a function of 
radius at fixed arc heights  
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Figure 13.1 c Arc current I= 100 A, Ion saturation current densities as a function of 
radius at fixed arc heights  
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Figure 13.1 d Arc current I= 150 A, Ion saturation current densities as a function of 
radius at fixed arc heights  
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Figure 13.1 e Arc current I= 200 A, Ion saturation current densities as a function of 
radius at fixed arc heights  

 

b. Selection of some ion current densities 
There seem to be a dependency of the radial distribution for each height and the total arc 
current. This can be seen from figure 13.2 where a selection of ion current densities 
from the different arc current cases is presented.  
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Figure 13.2 a Selected current densities grouped for comparable arc height at different 
arc currents 
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Figure 13.2 b Selected current densities grouped for comparable arc height at different 
arc currents 
 

 



 305

0 1 2 3

0
1x106

2x106

3x106

4x106

5x106

6x106

7x106

8x106

 Ji50
 Ji70
 Ji100
 Ji150
 Ji200

All z=2.03, 100 z=1.8

J 
is

at
 (A

/m
2 )

r (mm)

 
Figure 13.2 c Selected current densities grouped for comparable arc height at different 
arc currents.  Plot limited to the available data. 
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Figure 13.2 d Selected current densities grouped for comparable arc height at different 
arc currents.  Plot limited to the available data. 
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Since the data were not taken with exactly the same probes for all the arc current cases 
(e.g. some probes were substituted in between the runs), only four groups have been 
taken broadly corresponding to a height of 4, 3.5 and 2 mm from the anode and by 
values closer to the anode, about 1.1 mm, available only for two currents. 
Each plot in figure 13.2 can be read in ascending order of arc current suggesting an 
increase of J for arc current from 50 to 100 A, followed by a decrease for higher arc 
currents. The increase seems verified in the region close to the anode (see 0.58 mm case 
where J70 is higher than J50); the decrease beyond 100 A seems confirmed by the 1.12 
mm case, where J150>J200. At grater arc heights, above 4 mm, unfortunately no further 
data are available to confirm the trend. 
 
13.3. Electron current densities 

The measured electron current density can be obtained when the probe is at plasma 
potential. The determination of the plasma potential was discussed in Chapter 11. The 
peak files (current peaks) corresponding to the point where V=Vpl are extracted and the 
radial distribution of the current density per unit length (as obtained from the Abel 
inversion) divided by the probe radius gives the current per unit surface.  
It must be observed that because the goal is the measured electron current density, the 
uncorrected plasma potential obtained from the floating potential (corresponding to the 
probe determined ‘cooled’ temperature) must be used. 
However, difficulties in the exact location of the plasma potential make the electron 
current density determination complicated. The results shown in Chapter 11 imply that 
the current density for the highest arc currents is not accessible because it should be 
computed from datasets, which actually do not exist. These data are missing because it 
is not possible to draw a high electron current without damaging the probe. As a 
consequence, the values shown in figure 13.4 and 13.5 are limited to the 50 and 70 A 
cases where those datasets were available.  
 
The current densities for the missing 100, 150 and 200 A cases could be determined 
using the following argument. At the plasma potential the current can be considered to 
be entirely carried by electrons as can be seen from the behaviour of the electron density 
as a function of the plasma potential. Supposing that the temperature at two locations 
(1) and (2) on the V-I curve is the same, and using the fact that on the linear part of the 
curve, /

e
eV kTj e−∝  (cf Chapter 3), the ratio of the electron current at the two locations 

with probe potentials V1 and V2 can be written 
 

2 1e( ) /e

e

(1)
(2)

V V kTj e
j

− −≈  (13.1)  

The ‘correction’ of the electron current density would then work as follows 
 



 307

• take the (Abel) inverted current files which show voltage V2 closest to the 
plasma potential, V1 and read the corresponding current density je(2) 

 
• use equation (13.1) to obtain the  ‘corrected’ electron current density je(1). 
 

In formula (13.1) the temperature used is the probe determined temperature of Chapter 
11.  There are a few problems with this correction: 
 
1. A clear linear (“steep”) part of the V-I curve does not exist or is incomplete. 
However, because the value of the probe voltage used is always more negative than the 
plasma potential there would be some justification in using this correction (one is still in 
the region where a linear part would be expected if existing). 
 
2. The voltage difference in (13.1) needs to incorporate a radial dependency, not 
available in neither of the two voltage components: 

 

• The probe potential Vprb in zero bias condition (the ‘closest available voltage’); 
one could use the hypothesis made in Chapter 11 for the determination of the 
plasma potential, that the corresponding current density belongs to the same 
dataset where the probe is subject to the same external conditions (bias). 
However, probes at different position may reach the local plasma potential under 
different bias conditions. This agrees with the general trend of the plasma 
potential with arc height. In the present method, by choosing the same external 
bias file (the ‘closest’) any dependency on probe height is in fact negated 

 
• Because the plasma potential is the difference of floating and measured probe 

potential, despite the availability of a radial dependency for the temperature, 
included in the floating potential, the measured probe potential is not radial 
dependent. In Chapter 10 it was concluded that the local Abel inverted probe 
potential has no physical meaning; because of this, any radial dependency of the 
voltage is not accessible to probes (cf section 10.2). 

 
For these reasons the choice is made to present the electron current density for the two 
cases where the current data corresponding to plasma potential are directly available. 
This is done in figure 13.2.  
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Figure 13.3 a, Comparison between selected electron current densities measured for 
probes at plasma potential. Arc current 50 A 
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Figure 13.3 b, Comparison between selected electron current densities measured for 
probes at plasma potential. Arc current 70 A 

 
 
It can be observed that at 50 A, the current density increases with probe height except at 
the lower heights where an inversion is found (figure 13.3 left).  The 70 A case shows 
non monotonicity with respect to probe height: a higher probe does not necessarily 
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mean greater electron current density (cf figure 13.3 right). A more thorough analysis 
with comparison with ion current densities is presented in section 13.6 whereas a 
method to assess the values obtained so far is presented in the next section. 
 
13.4. Assessment of the current densities 

A way to assess the correctness of the current densities is to invoke conservation laws. 
The integration of the ion and electron current density distributions corresponding to 
different probes should give total currents in agreement with the actual total arc 
currents. In addition, it is necessary to evaluate the magnitude of the error in the 
determination of both the current densities. Whereas the latter, reported in Appendix E, 
shows relative errors of the order of some percents for both ion and electron current 
densities, the first method is used in the following.  Integration of the densities gives 
 

( )

arc S
0

2π ( )
R z

I jdS rj r dr= =∫ ∫  (13.2) 

where an integration around the axis has been performed and the upper limit, the radius 
at the given height, R(z), has to be determined. It can be observed that (13.3) can be 
employed directly with the original data, determining an apparent total arc current as 
seen from a probe which ‘cools’ the plasma; or the corrected values of the particle 
densities shown in figures 10.23 to 10.25, sensing the ‘true’ total arc current. Also, it 
was decided to use the raw data instead of the (often Gaussian) fit because the upper 
radial limit between fitting function and data may differ considerably. An additional 
check is that current continuity along the arc implies that two determinations obtained at 
different heights must deliver the same total arc current. 
The procedure is then as follows. Use the j(r) data multiplied by the local radial 
coordinate and integrate the product from the axial position to the intersection of the 
curve with the abscissa, if any (otherwise use an estimated current carrying radius, cf 
Chapter 14). It is clear that the degree of uncertainty lies in (i) the experimental error on 
the density distribution and in (ii) the width of each individual peak (the radial upper 
integration limit R(z) in equation (13.3)). The computations were performed for both the 
current densities and the results are shown in Table 13.1 

 

ji integral (A) je integral (A) Iarc rJ  correction used 

in formula (13.2) hi lo hi lo 

Matching total 
arc current 
 (ji, je) Y, N 

50 none 
nprb/nopt 
norm. recombination 

3.14 
283 
45.1 

4.7  
534 
24  

5.6 
1,005 
79.9 

4.1 
2,000 
58.3 

N, N 
N, N 
Y, Y 

70 none 
norm. recombination 

31.4 
452 

22 
320 

16.9 
16.9 

15.6 
222 

Y,Y 
N, (Y,N) 

100 none 24.4 27.7 N.A. N.A. N 
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nprb/nopt 
norm. recombination 

572 
349 

585 
394 

N 
N 

200 none 
nprb/nopt 
norm. recombination 

21 
613 
225 

32.7 
2,000 
484 

N.A. N.A. N 
N 
Y 

50 low z=0.67, high mm, z =4.03 mm;  100 low z = 1.18 mm, high z =4.0 mm, 
200 low z =1.12 mm, high z =3,47 mm 

Table 13.1 For the comparison of the integrated current densities (cf (13.3)) with the 
total arc current using: no correction (‘none’, cooled data), nprb/nopt (particle density 
reduction) and normalized recombination coefficient of section 11.11. Two probes per 
each case are used, ‘hi’ highest probe in arc and ‘lo’, lowest probe in arc. Matches 
assumed ‘positive’ (‘Y’) when within a factor of 2 to 3 from the true total arc current. 
N.A. = Not Applicable, refers to the missing electron current densities. The 70 A case 
lacks the n ratio corrections as no optical data are available for this case 

 

It must be emphasized that the result is extremely sensitive to the radial uncertainty. 
Moreover, the indicated error on the densities propagates on the total arc current 
determinations and therefore, additional uncertainties on the latter arise. Despite these 
severe limitations, from the examination of table 13.1, some qualitative observations are 
possible.  
 

• The integration of the ion current density gives internally consistent values in 
that the obtained integrals differ by no more than a factor of the order one. 

 
• The ion current density corrections according to the particle density reduction 

factor of Chapter 11 are systematically higher than the true total arc current by a 
factor which varies with the current, but which is often of the order of 10 or 
more. 

 
• The correction based on the normalized recombination coefficient of Chapter 11 

gives results closer to the total arc current but the method uses a constant value 
close to the maximum of the function (cf figure 10.26). However, even if in this 
determination no account was taken for the temperature reduction (up to 50%, cf 
Chapter 11), the accuracy of this latter reconstruction, of the order of one is not 
worse than the preceding one. 

 
• Similar remarks apply to the electron current density, as the requirement of the 

quasi-neutrality in the bulk and the consequent identical reduced recombination 
coefficient imply the same order of magnitude of the reconstructed currents. It 
can be observed that the almost identical values obtained for the integrals 
contrast somewhat with the central value of the difference i ej j− , always 
positive, as shown in the next section (cf figure 13.3). However, (i) the opposite 
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occurs for the outermost radial values of the electron current density and (ii) at 
50 A the electron current density systematically exceeds the ions’ ji  

 
 
13.5. Comparison of the current densities 

The conclusion of Chapter 11 about the perturbing action of the probe limited to 
recombination in the probe boundary layer makes it possible to assume that the ion 
current density obtained in the ion saturation condition is representative of the ion 
current density within the arc. The directly measured values refer to the ‘cooled’ 
boundary layer and the reduction factor estimated in Chapter 11 permit the 
determination of the ion density in the bulk of the undisturbed plasma. Because the 
latter is assumed to be in thermal equilibrium (LTE) the corresponding electron particle 
density in the bulk must be the same.  
The electron current density presented in section 13.3 has been obtained using the 
plasma potential of Chapter 12. To determine to what extent these values represent the 
‘true’ electron current density within the arc, these could be compared with the electron 
current density in floating conditions. The latter is not directly available, because in 
floating conditions the total current density to the probe is zero. In Chapter 11 it was 
stated that only the electrons are displaced by increasing negative biases and that the ion 
flux, always the same would be ‘unveiled’ by making the bias value more and more 
negative. If this is correct, the ion current density obtained at ion saturation and the 
electron current density in floating conditions must be equal 
 

e isatFCj j=  (13.3) 

As a consequence: 
 

1. The ion current density at saturation, now playing the role of the electron current 
density in floating conditions, must be lower than the current density at plasma 
potential, given that the plasma potential is less negative than the floating 
potential. The opposite, e isat eFC plVj j j= > would imply a plasma potential 
negative with respect to the floating potential which is incorrect. In fact, when the 
probe is more positive than the plasma potential, the electron current density 
should be higher than that of the ions. 

 
2. The ion and electron current densities shown were determined from the cooled 

temperature of Chapter 11, in which the cause of cooling has been found to be 
recombination. The reduction factor applicable to the two current densities should 
be the same for the number densities on this basis of LTE (and consequent quasi-
neutrality). In any case, it will increase the absolute values of both by a factor ~12 
to ~160 depending on the arc radial location (cf section 11.11) 
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These points are addressed in the following. 
1. A comparison between ion and electron current densities is presented in figure 13.4 a-
d for Iarc= 50 A and in figure 13.5 a-d for the Iarc=70 A. 
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Figure 13.4 a, Arc current 50 A. Comparison between selected ion (full circles) and 
electron (empty circles) current densities for the same probes of figure 13.3. To 
facilitate comparison, the vertical scales of the last two values differ by a factor 5 with 
respect to the first two values.  z=4.03 mm from anode 
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Figure 13.4 b, Arc current 50 A, same as before, z=2.99 mm from anode 
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Figure 13.4 c, Arc current 50 A, same as before, z=1.67 mm from anode 
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Figure 13.4 d, Arc current 50 A, same as before, z=0.67 mm from anode 
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Figure 13.5 a, Arc current 70 A. Comparison between selected ion (full circles) and 
electron (empty circles) current densities for the same probes of figure 13.3. To 
facilitate comparison, the vertical scales of the last two values differ by a factor 4 with 
respect to the first two values. z=4.03 mm from anode 
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Figure 13.5 b, Arc current 70 A, same as before, z=2.99 mm from anode 
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Figure 13.5 c, Arc current 70 A, same as before, z=1.67 mm from anode 
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Figure 13.5 d, Arc current 70 A, same as before, z=0.67 mm from anode 

 
 

From the examination of figure 13.4 and 13.5 the following observations are possible: 
 

• The central values of the electron current densities are lower than the ions 
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• For both the 50 A and 70 A cases, a decrease in the probe height is accompanied 
by a decrease in the difference i ej j− , e.g. the two tend to equalize at lower arc 
heights. 

 

The first observation suggests several possible causes 
a. The ion current density is too high. It is difficult to assess this because (i) it 

has been shown that the number of collected ions is non-perturbing with 
respect to the LTE number density. An independent correction to include this 
effect is not possible, because this involves the number density computed at 
LTE; (ii) the integrated values of table 13.1 show that when the comparison is 
made with this kind of correction, it is the electron current density that leads to 
far too high total arc currents (cf the 50 A case). 

 
b. The electron current density is too low because it does not correspond to 

plasma potential, e.g. the latter is incorrect. However, the axial 
determinations shown in Chapter 11 are consistent with what is available in 
the literature. It may well be that the locality of the plasma potential is put into 
question: (i) while the central region of the probe is at the plasma potential, 
other regions may be not and (ii) while a probe is at plasma potential in one 
dataset (e.g. for given bias conditions) other probes might be not. Both are 
contrary to results obtained on sub sets of the entire data base, which 
suggested these working hypotheses were correct. 

 
c. The hypothesis of constancy of the ion current density upon different probe 

bias is incorrect. However, this assumption, which is at the base of the 
interpretation of the V-I curve seems qualitatively well founded because of  
the high ion to electron mobility ratio (e.g. mass ratio). 

 
d. Cooling affects the two species differently. This can only occur if the cooling 

mechanism is different than recombination, contrary to the conclusions 
reached in Chapter 11 (section 11.10.1). 

 
A possibility is to dismiss this determination of the electron current densities altogether 
on the basis that because the jisat ‘is’ representative, the equality with the electrons’ at 
plasma potential ‘must’ hold. However, the second observation made above about the 
current density difference also indicates that, irrespective of which of the preceding 
causes (a to d) occurs, this ceases to be effective at ‘low’ z and beyond a ‘critical’ radius 
rcr. In other words, it would suggest the existence of a region where the electron current 
density is greater or equal than that of the ions, e ij j≥  (cf figure 13.4 and 13.5).  
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Figure 13.6 Qualitative representation of the arc region where current density 
consistency can be ascertained from data and a central region where further analysis is 
required. Left, arc current 50 A, right 70 A 

 

Despite the very qualitative nature of this evaluation, the situation could be represented 
by figure 13.6 where the loci (r,z) of the coordinates where jisat=je |Vpl  have been drawn. 
In each case, these curves separate the (r,z) plane into a region where the experimental 
data allows the conclusion that the j’s could be consistent, by fulfillment of the  
requirement e ij j≥ , to the right of the curve, and an inner region where further analysis 
is required because of the opposite inequality. 
 
13.6. Electrical Conductivity 

1. The electrical conductivity can be determined from the knowledge of the temperature 
if a conductivity-temperature relationship is available (cf Chapter 1). The conductivity 
can be also be used to infer the electric current density from Ohm’s law once the electric 
field is known, or, conversely, it can be determined from the field once the current 
density is known. However, there are methods to determine the conductivity directly 
and this would permit an independent determination of the temperature. 
 
2. The radially averaged electrical conductivity can be determined from the formula  
 

p p p

p arc

ln( / )
σ

4π
I l r
V R

=  (13.4)  

 
reported in Chapter 4 and presented by Benilov [33]. The probe length lp in (13.4) is 
computed at the instant of time t when the corresponding (I, V) couple was recorded, 
therefore it varies with x, the spatial coordinate of the given instant on the time axis. The 
corresponding local value can be obtained using the elementary step ‘a’ in place of lp. 
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3. The continuity model (formulae (4.4) and (4.5) in Chapter 4) gives 
 

pp

p D

3  π σ
π ln ln
4 λ

dI L
rLdV

r

= , 2 ei

i e

σ DZDn e
kT kT∞

 
= + 

 
  

 
4. Use can also be made of the relationship 

 

p
p p sat Vpl p sat pl p p

p

σ ( ) / ,   ,    ,    2π
I

l x S I I I V V V S r l
V
∆

= ∆ = − ∆ = − =
∆

 (13.5) 

 

where the current and voltage variations are taken between points located at the 
‘beginning’ of the ion saturation Vsat, Isat and the location of the plasma potential Vpl, Ipl, 
if known,. Also (13.4) is made local by using the elementary step ‘a’ in place of the 
probe length lp. 
 
5. A different attempt has been made, by using the information gained in unbiased 
conditions in order to compute 

 p
p p p,R1 p,R2 p p,R1 p,R2 p p

p

σ ( ) / ,   ,    ,    2π
I

l x S I I I V V V S r l
V
∆

= ∆ = − ∆ = − =
∆

 (13.6) 

The method involves comparing two datasets obtained in unbiased (but not floating) 
conditions upon variation of the read-out resistors, R1 and R2 (cf. Chapter 7). In (13.5) 
lp(x) is the probe active length at the position x with respect to the centre of the peak, and 
S the corresponding probe surface. The present method, should it provide reliable values 
has the advantage that it does not depend on assumptions about the shape of the V-I 
curve, like a rectilinear steep part, which implies Maxwellian distribution of electrons, nor 
the existence of the latter. 
The choice of the resistors from the biased configuration with no bias applied, R1 = 4 Ω, 
to the smallest among the unbiased configuration, R2=149.5 Ω. The choice to operate in 
unbiased conditions is due to the need to perturb the plasma the least possible. 
However, the difference of these two resistors is too big, implying that the current 
drawn through the higher of the two resistors is 1% of the current drawn when the other 
resistor is applied, thus making the current variation substantially equal to the current 
pertaining to the smaller resistor. Operating in floating conditions would only worsen 
the situation as the chosen high floating resistor (67.72 kΩ), makes this mismatch even 
greater.  
Also the choice of the biased configuration file is not straightforward. The dataset 
corresponding to zero bias brings us back to the steep part of the V-I curve, which is the 
one whose information is destroyed by collisions, so by the same argument used to 
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dismiss the other relationships discussed above, this determination should be discarded.  
By the same token, the least negative among the datasets, e.g. the one corresponding to 
a (nominal) positive bias, is also on the steep portion of the curve; in addition 1) it 
cannot be considered the least perturbative and 2) it provides higher values than the 
preceding choice but this is due to the higher current drawn, which, in turn, is very 
different than (and in fact dominates) the current collected in floating conditions.   
The local values of the conductivity obtained ~10-2 (Ωm)-1, are too low to even access 
the temperature-conductivity tables. As anticipated above, this is due to the very small 
current difference between the two chosen datasets.  
 
From each of these methods, because a conductivity-temperature relationship is 
available (Murphy's σ = σ(T) curves [34], see figure 1.12 Chapter 1), the electron 
temperature can be determined. However, these formulae hold in the ‘linear’ part of the 
V-I curve, and looking at the results of Chapter 10 it is not obvious where the borders of 
this region should be placed. Some attempts were made to use the first three methods 
despite the limited applicability due to lower degree of ionization. These methods 
showed that the temperature determined by inversion of the σ(T) given by Murphy, is of 
the order of 7,000 K in cases 1, 2 and 3. The values obtainable using the Frost’s mixing 
rule conductivity for the intermediate ionization (cf section 2.8) were often below the 
lower limit for the σ(T) relationship, see figure 13.7 left. Spitzer’s full ionization 
formula gave higher temperatures, but still ‘low’ also considering the cooling discussed 
in Chapter 11) which points towards 9,000 to 11,000 K in comparable positions (cf 
section 11.2). The three electron temperatures obtained by use of the three σ(T) 
relationships of section 2.8 are shown together in figure 13.7 for the 50 and 70 A cases. 
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Figure 13.7 Temperatures from the directly measured electrical conductivity. Curves 
obtained using the relationships presented in Chapter 1.  Left, 50 A, right, 70 A 
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These results show that direct determinations of the electrical conductivity which are 
consistent with the temperatures obtained din Chapter 11 cannot be obtained. 
Conversely, using the temperatures obtained in Chapter 11 and the σ(T) relationship 
(after Murphy [34])  the conductivity values obtained are higher. This result is only 
representative of the specific relationship shown in Chapter 2, therefore no examples are 
shown (cf figure 2.8). 
 
13.7. Electric field 

13.7.1 Axial electric field 

1. The voltage as read by the probe in floating conditions is made of the contribution of 
the ‘true’ floating potential and of the local plasma potential. The central value of each 
peak can be plotted as a function of probe height to give the general behaviour of the 
potential in the plasma. The assumption of constant variations of the floating potential 
along the arc axis could make it possible to map the central electric field as a function of 
the height in the arc (measured from the anode). More precisely, it is often assumed that 
the variation of the measured probe potential as a function of height at adjacent points is 
entirely due to variations in the plasma potential [12]. Therefore, floating potential 
variations between adjacent points are considered to be negligible. In Chapter 12, it has 
been shown that this is not the case. Due to the dependency of the floating potential 
upon temperature, this also implies that the temperature differences between adjacent 
points must be small. ‘Small’, means less or comparable to the error on the read 
potential (~ 2%) and this is the allowed variability of the temperature along the arc 
height for the assumption to be founded. This implies that the choice of the distance 
(step size) between adjacent points is crucial in the procedure. Since the distance 
between neighbouring probes can be as much as 1 mm, with corresponding temperature 
variations of 1,000 K or more, the step has to be much smaller. It has been chosen here 
as the spatial resolution obtainable from the time resolution at the operating speed (0.02 
ms at 5.02 m/s for this run, thus 100.4 µm). 
The values of the electric field obtained by this method are shown in figure 13.8 left. 
Before differentiation, the probe potential was fitted to a second degree polynomial.  
 
2. An alternative determination based on the axial derivative of the plasma potential 
(obtained from the floating potential as described in Chapter 12), is shown in figure 
13.8 right. Because the absolute value of the potential is not relevant in the derivative 
and because the corrected version of figure 12.11 exists only for the case where an 
optical temperature is available, the uncorrected value is used for the derivative. This 
also means that both the electric field determinations refer to the cooled boundary layer 
region around the probes. 
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Figure 13.8 Axial probe potential (empty circles with error bar, left axes) and electric 
field (dot-dashed curve, right axes) for arc currents I=50, 70, 100, 150 and 200 A. Left 
column plots represent electric field based on the derivative of the probe measured 
potential. Plots on the right contain fields determined from the derivative of the plasma 
potential. The potentials are plotted positively for commodity, whereas the fields are 
represented with the correct sign. I=200 A shows different fields (see text). 

 

From the examination of figure 13.8, the following observations can be made: 
 

1. The electric field determined from the directly measured probe potential (left plot 
column, dashed curves on right axis) is always steeper than the one determined 
from the derivative of the plasma potential (plot column on the right, dashed 
curves on right axis). Correspondingly, the absolute value of the field is always 
higher for the probe voltage determinations. The exception is the higher arc 
current case, I=200 A. 
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2. The uncertainty on the electric fields obtained from the plasma potential (~6%, cf 
Appendix E) are higher than the ones obtained from the directly measured voltage, 
because they suffer from the inaccuracy on the temperature 

 
3. The sign of the field for the three lowest currents, 50, 70 and 100 A is negative and 

increasing in absolute value from anode to cathode in the region accessible to 
probes. In these cases, the field corresponding to the probe closest to the anode is 
practically zero. At 150 A it changes sign at about mid-arc and at 200 A it is close 
to zero again 

 
In the I=200 A case (cf in figure 13.8) high uncertainty on the filed exist because of the 
inclusion or exclusion of the point located at z=3.63 mm, a circumstance which changes 
the voltage structure and the corresponding electric field dramatically as seen by the two 
curves for the potential and the field (‘with/without z=3.63 mm’).  
 
An assessment of the validity of the presented results has been performed 
  

a. by extrapolating the electric field distribution along the total arc length; its 
integration gives a total arc voltage which can be compared with the one 
known by measurement. Because the electrode sheath voltages are not taken 
into account, this value is a lower limit. The comparison is shown in Table 
13.2 for the voltages of figure 13.8 

 
b. If the arc current density were known, use of Ohm’s law /σE j=  could be 

made. However, the high uncertainty on the current densities makes this 
evaluation very problematic.  

 
 
The primary purpose of the comparison between the two presented methods is to 
establish whether the use of the directly measured probe voltage to determine the axial 
field is justified for those cases where a direct determination of the plasma potential 
cannot be obtained. This hypothesis is sometimes made on the basis that the floating 
potential is independent of arc height [12]. It is worth recalling that the plasma potential 
was obtained in Chapter 12 using the probe determined temperature of Chapter 11 and 
the corresponding floating potential.  
It is apparent that in both methods the determinations provide electric fields which 
depend on the axial coordinate. This means that, as anticipated at the beginning of the 
section, the assumption of negligibly variable floating potential with arc height is not 
justified at any of the arc currents. The electric field can be computed only once the 
plasma potential is known. 
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Moreover, a comparison of the integrated extrapolated electric field obtained according 
to point a above, reported in table 13.2, shows that the two methods give a voltage 
within the correct order of magnitude which are always lower than the total arc voltage 
at every current. The exception is the I=150 A case which approaches more closely the 
value of the total arc voltage. However, considering the extrapolation performed 
without accounting for the electrodes sheaths the 150 A case appears too high: only 3.8 
or 2.1 V would be ascribed to the column voltage in this case. 
 

Arc 
current 

(A) 

E from probe potential 
5

0

z

z

V Edz
=

=

= ∫    (V)  

Measured total 
arc voltage (V) 

E from plasma potential 
5

0

z

z

V Edz
=

=

= ∫   (V) 

50 4.92 15.0 3.89 
70 8.74 14.6 5.16 

100 5.57 14.3 4.24 
150 12.95 14.0 10.23 
200 3.35 15.2 5.86 

Table 13.2 comparison between the measured total arc voltage and the potential 
obtained integrating the fields obtained from probe voltage or plasma potential shown 
in figure 13.8 
 
These result show that, within the limited accuracy, the majority of the voltage fall 
pertains to the electrode zones. Unfortunately, there is no way to attribute a fraction of 
this fall to either of the two electrode zones. 





 

 

14. ARC STRUCTURE 

 

14.1. Introduction 

The structure of the arc as seen from electrostatic probes is both electrical and thermal. 
The major electrical characteristics were determined and shown in the preceding 
chapters, namely, the potential, the electric field, the electrical conductivity, and the 
current densities. Unfortunately, no local structure for the plasma potential or the 
electric field could be obtained and one has to be content with their axial structure 
(shown in Chapter 12 and 13 respectively).  
 
Electrostatic probes can measure and define arc boundaries. When the probe is swept 
across the arc, the width of the peak indicates whether the probes are within or out of 
the arc. The cylindrical symmetry hypothesis allows the definition of an 'electrical 
radius'. Operation of probes in floating conditions shows electrical radii of the order of 
20-25 mm or more for the highest currents. In contrast, when the probes are biased, the 
width of the peak shrinks considerably.  
In section 14.2 the electrical boundaries are identified, whereas hints of a possible 
current structure are shown with the aid of the ion current densities presented in Chapter 
13. 
 
The thermal structure, defined by the temperature maps, is presented in section 14.3. 
Radial maps from optical spectroscopy measurements (cf figure 11.5) are limited by the 
requirement of a Partial Local Thermodynamical Equilibrium (PLTE) in order for the 
optical method to work. This sets a lower limit of the arc thermal edge at about 10,000 
K. Probe determined temperatures can be constructed within the limitations of (i) the 
accuracy of the electrical current measurements and of (ii) the limited spatial region 
accessible to probes, which does not include the electrode region. This is discussed in 
section 14.4. 
Some remarks about the electrical structure of the arc close to the electrodes are made in 
section 14.5 based on the axial values of the potentials shown in Chapter 12. In 
particular it is shown that the anode fall, sometimes ‘determined’ by means of 
extrapolated probe voltages cannot be computed correctly from probe measurements 
performed in the column.  
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In all cases, what is presented here as ‘arc structure’ refers to the cooled boundary layer 
around the probes.  
Methods to correct for both the temperatures and the potentials have been shown in 
Chapter 11 and 12 respectively. 
 
14.2. Electrical radius and current carrying region 

The notion of a core 'current carrying region' is not new and was employed in the frame 
of the so-called 'Channel Model' [12]. A few experimental indications about its 
existence were given by Allum [35].  
The peak structure obtained with probes operating in biased conditions leads to the 
definition of a 'current carrying region', fully contained and generally a fraction (up to 
30%) of the arc width obtained in floating conditions. A visual inspection of a typical 
copper anode disk after arcing shows a series of concentric rings corresponding to the 
thermal transfer at the different currents. Their edges, although not sharply marked, are 
of the order of the current carrying region.  
 
In [35] a single peak obtained in floating conditions was shown for conditions very 
similar to those used in this study (and I = 100 A); it was stated that when biasing the 
probes the floating double peak reduced to a signal as wide as the central part of the 
floating peak. It was suggested that the latter peak width could be identified with a 
current carrying region.  However, despite the broad agreement with the present case (5 
mm total width at 100 A mid-arc in [35]) the biased peak was not shown, nor was it 
indicated to what bias it corresponded or whether this width could vary upon bias 
changes. In the following it is shown that:  
 
• peaks are quite wide in floating conditions 
 
• peak widths change in biased condition, decreasing by increasing (in modulus) the 

bias voltage until ion saturation is reached 
 
• once saturation is reached the width does not appreciably change although a certain 

degree of scatter exists in the observed data  
 
 
Figure 14.1 left reports all the peaks belonging to a single applied bias (-21.1 V). The 
peak width varies with probe height. The right part of figure 14.1 shows the biased 
peaks of the same probe (e.g. same height in the arc) subject to different bias voltages; 
the peak widths vary because of the applied bias voltage.  
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Figure 14.1 a Peak widths. Voltage peaks for all probes under specific bias voltage 
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Figure 14.1 b, Peak widths. Peaks belonging to a single probe for different bias. Inset: 
two specific biases. 
 
 
The width variation under different bias conditions make it possible to define a ‘radius’ 
describing the current carrying region under specific conditions. As an example, the 
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variation of the inverted peak width for a probe at about mid arc at 50 A is shown in 
figure 14.2.  
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Figure 14.2 I=50 A, Probe height z=2.83 mm. Left, comparison between current peak 
widths for different biases. Right, particular of peak widths at ion saturation  
 
On the right, a particular of this variation is visible in the region where this probe V-I 
saturates, showing a certain degree of scatter. Because in Chapter 13 it has been 
concluded that the ion current taken in saturation condition is representative of the true 
arc conduction current, it is proposed here to identify the ion saturation (inverted) peak 
width with the radius of the current carrying region.   
 
In floating condition, charge is detectable at radii up to 25 mm, whereas in biased 
conditions this reduces to about 6 mm at maximum depending on the arc current. This is 
shown in figure 14.2 where the locations of the zero-current (peak edges) are shown on 
a (z,r) map for arc currents varying from 50 to 200 A. The values, which correspond to 
ion saturation (inner curve, empty squares) and floating conditions (outer curve, full 
squares), are the extremes among the possible radii: as shown in figure 14.1, every 
different probe bias results in a measured radius between these two extremes (even for 
nominal positive nominal biases, where the radii are smaller than the floating radius) . 
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Figure 14.2 

Edges (where I=0) of the inverted peaks 
as a function of position, e.g. 'internal' or 
current carrying region and external or 
'halo' electrical radius. From above, left, 
Iarc=50, 70, 100, 150 and 200 A. 
Legend: Isat, ion current in biased 
conditions at saturation; If.c., current in 
floating conditions 

 
 
From figure 14.2 it can be observed that the ‘halo’, defined by the outer electrical radius 
(floating conditions) and the current carrying radius, defined by the ion saturation 
current density, both increase with total arc current. The choice of these two extremes is 
not without uncertainty. Having chosen the temperature, the number of collected ions 
(measured current) has been compared with the number of ions present at the same 
location and temperature based on the hypothesis of LTE. This latter comparison has 
been made in Chapter 11 where it was shown that the collected absolute number of 
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particles (within the probe elemental volume) is up to two orders of magnitude lower 
than the number of particles contained within the same volume in LTE conditions. 
Bearing in mind the degree of uncertainty in both the directly measured and in the 
temperature-computed number of particles, still it appears that the hypothesis of a 
substantially undisturbed 'charge draw' takes place. Therefore, the idea of a probe 
collecting broadly the ‘right’ number of charges locally available seems not unrealistic. 
As suggested in Chapter 13 this implies that the ion current density at ion saturation is 
representative of the plasma ion current density and as a consequence, the inner 
electrical radius could truly represent the extent of the current carrying region.  
 
The shape of the radial distribution seems to qualitatively confirm this indication. By 
collecting all the (j, r) maps discussed in Chapter 13, the ion current density can be 
represented by the two-dimensional plots shown in figure 14.3 for arc currents from 50 
to 200 A. These figures show that by increasing the arc current from 50 to 100 A, an 
increase in the inner (most luminous) region occurs towards the anode. From 150 A 
onwards, the current carrying region seems to expand toward the anode and distribute 
more uniformly along the arc length. 
This is qualitatively in agreement with visual observation of a luminous core extending 
from the cathode down to perhaps mid-arc at the lowest current, 50 A, all enveloped in a 
less luminous halo, and of the wider and almost entirely Gaussian shaped core at 200 A, 
now enveloped along the whole cathode to anode distance in a Gaussian less luminous 
halo (although the region closer to the anode shows constriction in contrast with a 
purely Gaussian profile). 
 
An examination of the electron current density is necessary to complete the notion of 
current carrying region. The electron current density, if correct, corresponds to the least 
disturbed probe in plasma configuration because the sheath is absent and the probe 
collects a purely random electron current. However, as indicated in Chapter 13, a 
thorough comparison between ion and electron current densities cannot be performed as 
long as the accuracies of the measured current densities are of the order of 100% or 
worse.  
What is more, as indicated in Chapter 12, in all case except at I =50 and 70 A, the 
plasma potential was not attained by the probes. As a consequence, only the I =50 and 
70 A cases are shown in figure 14.4. Also, as mentioned in Chapter 13, for the latter 
some doubts remain about the correct attainment of the plasma potential along the 
radial distance.  
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Figure 14.3 

Two-dimensional maps for 
the ion saturation current 
density (A/m2). Arc currents: 
from above, 50, 70, 100, 
150 and  200 A 
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Figure 14.4 Two-dimensional maps for the electron current densities obtained from the 
currents measured at the plasma potential. Iarc=50 and 70 A 

 

The 50 A case of the electron current density does not show a clear structure (figure 14.4 
left), whereas the 70 A seems to have an inner contracted Gaussian-like shape, internal to 
the region defined by the curve ~7.6⋅105 A/m2 and a height of about 1 mm from the 
cathode, down to about mid arc (figure 14.4 right). In contrast, the ion case of figure 14.3 
shows a luminous core from the cathode down to a height of about 4 mm. The intensity in 
the electron case, seems more distributed than in the ion cases at 70 A. For the electrons, 
the decaying factor is close to the unity along the axis; for the ion case the factor is about 
7.  This would suggest a conducting structure, made of different spatial electron and ion 
contributions. However, as mentioned in Chapter 13 the electron density values are lower 
than ion current density in the core (by a factor ~ 5.5 at mid arc, r~0.5 mm, down to ~3 
approaching the arc outer edge). Even if this electron current density did correspond to 
the plasma potential, it is not the value that would be attainable at a hypothetical electron 
saturation region (which does not exist), e.g. it is possible that a higher value for je is 
more realistic, especially considering the rapid increase of the electron current upon 
relatively modest increase in the (positive) probe voltage. In this sense the value shown 
can be considered a lower limit.  
 
It is interesting to compare the widths of the peaks taken in floating conditions with the 
peak widths taken under different biasing conditions. The right hand side of a floating 
peak is shown in figure 14.5 left, whereas its Abel inverted function is shown in the same 
figure on the right for two different probes at 50 A, z=0,58 mm and z=4.03 mm. 
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Figure 14.5 I=50 A, Examples of original and Abel inverted current peaks taken in 
floating conditions. z=4.03 mm and z=0.58 mm 
 
 
Furthermore, a comparison of the Abel inverted current peaks taken under floating 
conditions, biased conditions with zero bias applied (thus electron currents) with the ion 
saturation current could help to reveal possible underlying conducting structures. This is 
done in figure 14.6a and b. 
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Figure 14.6 a I=50 A, probe height z=0.58 mm. Comparison between floating 
conditions current (empty circles) and ion saturation current distribution (full circles). 
Ion saturation current divided by a factor 1,000 
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Figure 14.6 b I=50 A, probe height z=0.58 mm. Comparison between floating 
conditions current (empty circles) and electron current under zero bias conditions (full 
circles). Electron current at zero bias divided by a factor 1,000 
 
 
The structures of the inverted signals present similarities. Figure 14.6 left shows that 
when the ion saturation current (full circles) is maximum, the electron current (empty 
circles) presents a minimum and vice versa.  
The curves on the right (now two electron currents) under no bias (full circles) or in 
floating conditions (empty circles), show a structure which is geometrically similar. In 
other words, this plot could be interpreted (i) by comparing the currents at the same 
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radial coordinates, revealing the same behaviour shown in figure 14.5; or (ii) a 
numerical scaling factor seems to separate the two curves on both the scales so that 
specific features are shifted from one curve to the other. 
A similar comparison performed for a different probe height is shown in figure 14.7 a-b. 
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Figure 14.7 a, I=50 A, probe height z=4.03 mm. Comparison between floating 
conditions current (empty circles) and ion saturation current distribution (full circles). 
Ion current in saturation conditions divided by a factor 5,000 
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Figure 14.7 I=50 A, probe height z=4.03 mm. Comparison between floating conditions 
current (empty circles) and electron current under zero bias conditions (full circles). 
Electron current under no bias condition divided by a factor 5,000 
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The inverted signal structure for the higher z=4.03 mm probe is similar with respect to 
the comparison between the electron currents. In both cases an ion current region of ~2 
mm (full circles) is ‘seen’ also by the floating condition signal (empty circles) with 
consistent radial dimension. For the ion current, the current carrying region seems 
limited to the first two millimetres thus to the first of the ‘bumps’ shown by the floating 
current.  
 
Despite some intriguing structural similarities between the currents obtained under 
different conditions, no systematic study on this issue was performed. In fact, given the 
difficulties to compare the current densities it is not possible to pursue further analysis 
on the structure of the current conducting region in arcs as some hypotheses presented 
in section 13.5 would suggest (cf figure 13.5). It is hoped that direct measurement of 
local quantities by means of coated probes will help solving this issue (cf section 15.3 in 
the conclusions).  
 
14.3. Thermometric maps 

The comparison of the various temperatures examined in Chapter 11 showed that, 
irrespective of the method used (with the exception of the optical temperatures), the 
location of the isotherms is determined by the location and shape of the ion current 
density. Accordingly, the lowest temperature values in the radial direction, correspond 
to the intercept of the ion current with the axis, e.g. the thermal maps coincide in radial 
extension, with the ion current density maps. The thermal maps which refer to probe 
determined temperatures (substantially lower than the optical ones) are shown in figure 
14.8 for the different arc currents. 
As shown in Chapter 11, it is only possible to correct appropriately for the ‘low’ 
temperatures in all the arc current cases, once a precise determination of the flow 
velocity distribution (thus axial and radial) is available for variable arc current. As 
briefly mentioned in the conclusions, some indications about the boundary layer 
extension are experimentally available. From those, a preliminary estimation of the 
Reynolds number can be determined. However, as the latter depends on the viscosity, 
thus an additional parameter depending on temperature, it is felt that for the purpose of 
temperature determinations, the combined use of probe and optical techniques seems 
unavoidable. 
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Figure 14.8 

Two-dimensional probe 
temperature maps obtained 
using the random model with 
incomplete collecting surface 
(Chapter 11). 

Arc currents, from above, 50, 
70, 100, 150 and  200 A 
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However, with respect to the optical determinations, temperatures of the outer regions 
of the arcs seem attainable by probes, as values down to 6,500 K were shown. In optical 
emission spectroscopy the lower limit, corresponding to radial distances up to 4 mm at 
200 A, is determined by the assumption of LTE. In the case of probes, the two-
dimensional maps were obtained in the hypothesis of random motion under the 
equivalent thermal plasma assumption. Therefore, the question is why the probe 
determinations would be correct beyond this radial limits while the optical would not. 
 
14.4 Thermodynamical Equilibrium 

If a system isolated from the outside remains unperturbed for a time longer than the 
mean collision time, then it may be regarded as in equilibrium [36]. If the number of 
molecules per unit volume is large enough for the statistical fluctuations to be 
neglected, no gradient of any macroscopic property will exist either in space or in time 
and the velocity distribution will be constant and isotropic. When possible gradients that 
are forming are ‘small’ and the collision rates ‘high’ enough the velocity distribution of 
each macroscopically small element of the fluid will attain values that are appropriate to 
the local macroscopic properties of the element under consideration as this element 
moves through the gas. From the microscopic point of view, a status of Local 
Thermodynamic Equilibrium (LTE) is attained. At the macroscopic or continuum level, 
this corresponds to the ‘isentropic’ flow. 
The question is then: are there sufficiently extended regions where the system can be 
found in local thermodynamic equilibrium? i.e. are there regions in which this 
equilibrium is at least partial (PLTE)? 
 
Laboratory plasma cannot be considered in equilibrium because these are neither closed 
nor isolated systems. Energy exchanges take place both by radiation and by particle 
exchanges between the plasma and the surroundings (the anode is the material surface 
that will mostly affect the TIG arc). The sustainment of the plasma is achieved by 
external energy sources (and by a continuous mass flow in the cathode region for the 
TIG arc). When the input and output energy fluxes equalize, the system reaches a steady 
state, which is not in thermal equilibrium because these energy fluxes follow different 
channels. In the absence of thermodynamic equilibrium the mean atom, ion and electron 
energies may be different and the respective particle distribution functions may well 
depart from the Maxwellian. However, a partial equilibrium with respect to individual 
processes could take place (PLTE). In a plasma where the density of particles is not too 
high there exists a state where ions and electrons distributions are such that Ti≈Ta but Ti 
≠ Te. Such a plasma is called non thermal. The reason why the density should not be too 
high is that if electrons interact with each other through the electrical field, then their 



 
14. ARC STRUCTURE 

 

340

distribution could be Maxwellian (cf [37]). The distribution function of each single 
species can be close to Maxwellian if the rate of energy exchange from species to 
species and with the external environment is small with respect to the rates of exchange 
within the same species. Since the mass difference between ions and electrons is high, 
the energy transfer between those species is slow. Therefore a partial equilibrium is 
possible separately for the electron and the ion components. In these conditions all the 
processes in which only one components participates, must occur as if the plasma were 
in thermodynamic equilibrium. More precisely, according to [1] a PLTE state is 
characterized by the equality 
 

k s exT T T= =  (14.1) 

where Tk is the kinetic temperature for all the particle species except the ground state, Ts 
is the temperature of ionization equilibrium as given by the Saha equation, and Tex is the 
excitation temperature of the various states (the ground state excluded). 
 
14.4.1 Conditions for LTE / PLTE 
1. A widely used condition for the verification of the occurrence of LTE (for example, 
see [38, 39] is expressed in terms of a “minimum limiting electron density” [40]. 
This involves the consideration of optically thin versus optically thick plasmas. An 
optically thin plasma is a medium where radiation produced at a location is able to 
escape the plasma, without interactions; whereas in the optically thick plasma, the 
radiation emitted at a location is almost entirely adsorbed in the immediate 
surroundings. Experimentally, in the first case a discrete spectrum characteristic of the 
species is seen; in the second case, the radiation emitted as a function of frequency 
appears as a “continuum”. In atmospheric pressure plasmas, an admixture of the two is 
observed.  
Rigorously, a thin medium, where photons are able to escape bringing energy away 
from the plasma, cannot be in equilibrium. However, a necessary condition for LTE for 
optically thin plasma can be based on the requirement that the electron-ion collision rate 
must exceed the radiative rate by at least one order of magnitude (thus reducing the 
amount of ‘energy escape’ to a quantity negligible in first approximation). The 
condition  
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can be reduced by an order of magnitude for media that do not reach states sufficiently 
close to LTE. This has to be intended in the sense that the preceding relationship 
implies full LTE; however, in the words of Griem [40]: “Partial Local 
Thermodynamical Equilibrium (PLTE) may occur as populations of high excited levels 
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are related to the next ion's ground population by Saha-Boltzmann relations... or to the 
total population in all fine-structure levels of the ground state configuration”. A 
reduction of about one order of magnitude with respect to (14.2) arises in the ‘optically 
thicker’ situation where the principal resonance lines are self-adsorbed and the decay 
rate of the first excited state is balanced by the excitation of the ground state [41]; while 
the only radiative mechanism which is not balanced by any inverse process (as required 
in an equilibrium process) is the radiative population for the ground state. Therefore, the 
values obtained with (14.2) should be reduced by a factor of 9. 
In relationship (14.2) α=1/137 is the fine-structure constant, ao=0.5Å is the Bohr radius, 
z is the ionic charge, EH = 11.6 eV is the ionization energy for hydrogen, E2 is the 
(single) ionization potential, E2 =15.8 eV in argon, E2 =24.6 eV in helium. The 
(minimum) limiting electron density for kT=1 eV (T=11,605 K) or 2 eV (T=23,210 K) in 
SI units is ne≈8.14⋅1023 m-3 or ne≈1.15⋅1024 m-3 for argon; ne≈3.07⋅1024 m-3 or 
ne≈4.34⋅1024 m-3 for helium. These values indicate that even the core, i.e. the region of 
the arc with highest charge density, is not in LTE conditions (cf figure 11.5).  This is 
true also if one considers the mentioned reduction of a factor 9 (the ‘one order of 
magnitude’ mentioned above). 
Moreover, spectroscopic measurements [1], see figure 11.5) indicate sharp temperature 
gradients along the arc radius that hardly fulfil the requirement of 'small' temperature 
variations mentioned above (and also reported in [41]. Figure 11.5 shows isotherms for 
the temperature obtained with different emission lines that are located at different radial 
position; therefore the description of the system in terms of different kinetic 
temperatures seems the most appropriate: once again the system cannot be in LTE, 
perhaps only in PLTE. But, comparing the two graphs in figure 11.5, temperature 
gradients of the order of 1,500 K/mm at arc mid-height (2.5 mm) for the 696.5 nm line 
or 2,000 K/mm for the 706.7 nm line are found. This means that gradients of 11 to 15% 
are found, which hardly fulfil the 1T T∇ <<  condition even on a local basis. 
 
2. It is generally believed that an increase in arc current reduces the causes for the 
departure from LTE so that for currents above 50 A, the arc is in LTE [19]. However, as 
reported in [42], earlier studies [43] showed departure from LTE, even in 400 A arcs 
with pressures up to 3 atm. In those cases, the departure is localized in the fringes of the 
arc. This might be due to the radially increasing optical thickness. According to [19] the 
equilibrium departures affect both equilibrium ionization and electron-ion temperature 
differences. The first, ionization equilibrium, is believed to hold in the central region 
(within 2.5 mm from the centre of the 100 A arc studied in [19]), whereas temperature 
equilibrium departures occur further from the axis (at 3.5 mm from the axis Te=8,000 K 
while Ti=5,000 K [19]). 
 
In view of the question posed at the end of section 14.3, the position assumed here is 
that the probe temperatures are accepted within the same geometrical limits in which 
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optical temperatures characterize arc regions in PLTE. The fact that these probe 
temperatures are lower has been attributed to recombination. In view of maintaining the 
quasi-neutrality, ni=ne, this implies that Ti=Te is still valid within the disturbed region 
(‘boundary layer’) even if there the optical temperatures are higher. In other words, it is 
the practical difficulty of obtaining emission intensities below the ones corresponding 
to temperatures of 9,000 to 10,000 K that limits the optical temperatures, rather than the 
intrinsic lack of LTE. In this sense, whether a true state of LTE is attained or not, probes 
can access temperatures that are not attainable by emission spectroscopy. 
 
14.5 Arc electrode zone 

It is sometimes stated [35, 44] that an extrapolation of the directly measured probe 
voltage to the anode should give an order of magnitude for the anode sheath fall. It is 
shown that this assumption is unjustified.  
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Figure 14.9 I=50 A. Plot of the axial measured potential (empty circle), plasma potential 
(uncorrected, full squares or corrected, broken line) as a function of height in arc. The 
values obtained by Tanaka et al [31] in the anode region (full circles) and the total arc 
voltage indicated at the cathode (15.0 V) are also shown (positive values are shown for 
convenience). 
 
Observing the curves shown in figure 14.9, it can be seen that there are several reasons 
why the mentioned extrapolation is incorrect under the present circumstances: 
 

1. The measured probe potential differs from the plasma potential by the floating 
potential shown in figure 12.8. Thus it is the plasma potential that should be 
(possibly) extrapolated. 
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2. The extrapolation performed towards both the electrodes depends crucially on 
the assumption of a linear dependency of the potentials on the arc height and on 
the choice of the ‘limiting’ points (e.g. where do the sheaths start). For the 
cathode region, given the measured total arc voltage of 15.0 V, the probe voltage 
extrapolation would give a cathode fall ~4.4 V, lower than the anode fall, ~ 6,72 
V, perhaps contrary to the expectations of lower fields in the larger anode region 
(cf section 2.2)  

 
3. The plasma potential shown in this work was obtained form the temperature 

determined in Chapter 12 and it refers to a cooled ‘boundary layer’ plasma 
around the probe. The latter circumstance is not considered in these 
extrapolations: the flow velocity has an axial as well as a radial dependency and 
the values closer to the anode should suffer the least inaccuracy, the ones closer 
to the cathode the greatest one. This circumstance could be immaterial if one 
were able to prove that the correction of the plasma potential at the lowest arc 
currents, here 50 A, is not necessary or of limited use because of ‘low’ flow 
velocity (cf section 11.6 and 11.7), as the matching with the values of Tanaka et 
al [31] would suggest. Alternatively, one could argue that the latter suffer form 
the same limitations due to the neglect of the flow when approaching the anode 
surface (‘stagnation point’). 

 
4. The determination of Tanaka et al [31] shows a structure which is inconsistent 

with the idea of a smooth transition from the arc column towards the anode as 
the proposed extrapolation would suggest.  

 
 
The determination of the total sheath fall needs to be accomplished by a dedicated 
experiment, capable of delivering direct measurement of the electric current distribution 
and values of the probe voltage close to the anode. 



 

 

15. SUMMARY, CONCLUSIONS AND 

FURTHER WORK 

 

15.1 Summary 

The aim this work was twofold: to establish the degree of applicability of Langmuir 
probes to high ionization high pressure flowing (arc) plasmas and to explore the 
information obtainable concerning the arc structure.  
 
For this purpose, an extensive critical assessment of the existing literature was 
performed in order to establish whether available probe theories could be employed for 
the interpretation of the data. Each of the presented theories, pre-selected from the much 
wider literature on Langmuir probes, showed some useful features, but none of these 
were found to be suitable to fully account for the major features which differentiate the 
arc plasma from the more usual low pressure plasmas, where probe devices have proven 
so successful in the past. High ionization, flow and consequent perturbation by cooling 
appear to be the major difficulties for the successful operation at high pressures. For this 
reason, the amount of numerical estimates on the key plasma and plasma-probe 
parameters has been quite extensive (Chapter 2). In order to prepare the background for 
the experiment, after an introduction to probe methods (Chapter 3), some questions 
concerning the onset of the sheath were addressed (Chapter 4). It was found that the 
Bohm criterion, widely evoked for many problems of plasma-wall interactions is of 
limited use under atmospheric pressures. Whether it can be generalized to collisional 
plasmas is still an open question in plasma physics (and in mathematical physics).  
The probe regimes were compared in Chapter 5 and the most important findings made it 
possible to conclude that: 
1. Continuum and Continuum plus Free Fall theories (CFF) are the most appealing 
candidates although it was recognized that experimental discrimination between these 
was very difficult if not impossible due to accuracy limitations of the technique.      
2. The consideration of flow effects lead to the inclusion of diffusion-like theories 
which however, have only been proven over a quite narrow range of experimental 
conditions, including high temperature flames, which are not valid for collision 
dominated media where ionisation is high. 
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Estimations of non-ideality effects in the form of cooling of electrons and 
recombination were attempted in Chapter 6 and it was shown that according to a few 
existing criteria, electron cooling did not appear to be a critical issue. The evaluation of 
the Damkohler number revealed instead that within the limited knowledge of data on 
recombination, the latter could be important outside the sheath thus, under the present 
experimental conditions, within the boundary layer. 
 
In the experiment, the selection of the methods to analyze the data has been guided with 
an eye to published results on arcs rather than on probes.  
Some procedural details were given in Chapter 9 with the aim of illustrating both the 
numerous possible interrelations between plasma parameters and the complexity of the 
data structure provided by the experiment. The construction of the characteristic curves, 
a key tool in Langmuir probe theory has been possible in a local sense, e.g. allowing in 
principle the evaluation of all physical parameters through the Abel inversion but at the 
price of establishing, by means of simplified considerations on ‘available particles’, that 
the probe is equipotential (Chapter 10). As a consequence, the problem of the 
interpretation to give to Abel inverted probe voltages (e.g. ‘voltage per unit length’) has 
not been solved. The V-I curves obtained are of limited application under the present 
circumstances. That collisionality or high ionization could impede their full use was 
predicted in Chapter 6 and in effect the only exploitable part was found to be the ion 
saturation region, from which temperature determinations with the direct method of 
Gick were performed (Chapter 11).  
The determination of the key parameters which characterize the arc, namely 
temperatures (Chapter 11) and potentials (Chapter 12) has been particularly difficult. It 
was realized that due to the complex fluid and heat interactions, the probe method alone 
was not sufficient to characterize the arc (thus providing ’new’ information). It was 
therefore decided to use an independent experimental technique to assess the results. 
The author is well aware that very often the comparison of data obtained by different 
techniques complicates rather than simplifies the matter, but in this specific case, the 
advantage has been that the spectroscopic method based on the Fowler-Milne technique 
(even if far from settled with respect to some questions concerning LTE) is relatively 
well established and gave results in agreement with published data [4]. For this reason 
very little detailed information has been given about this method here, the reader being 
referred to the relevant literature on the subject. A review was in fact performed at 
Cranfield a few years ago [1] and was extensively used for the determination of the 
optical results. 
 
Of the several possible temperature candidates, broadly divided in a ‘CFF’ and in a 
random family (modified by multiplicative factors related to geometry or thermal 
plasma assumption) the latter has been chosen, although the level of accuracy did not 
lead to selection with certainty within each family. The appealing proximity of the CFF 
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temperatures to the optical values has been discarded in favour of the random model. 
The choice of (1) the random model with (2) partial collecting surface has been 
motivated by the apparent [17, 18, 30, 33, 45, 46] existence of a sheath and pre-sheath. 
As a consequence the choice of the ion velocity to be the most probable rather than the 
thermal, appeared natural even considering that the opposite choice would have implied 
absence of pre-sheath. [Also, because with this choice the Bohm criterion would be 
satisfied in any case, its usefulness in the present circumstances appears doubtful].   
The comparison of the probe temperature with the optical values made it possible to 
introduce the notion of ‘cooling’ intended in a broad sense to describe temperature 
lowering induced by probes. Despite the fact that this feature could have been foreseen 
as the major source of error from the very beginning, some considerations about the 
structure of the non monotonic, non-factorizable function used in the modified method 
of Gick have been made, with the purpose to exclude the notion that lower temperatures 
could be caused by an inappropriately high or low ion current drawn at saturation. Even 
if it has been found to be impossible to completely rule out this source of perturbation, 
an order of magnitude has been established in the first instance by the requirement that 
the number density computable from the measured current and the subsequent 
temperature must be lower than the density fixed by the optical temperature. This 
criterion has been made more strict by the observation that recombination should be 
inserted in the criterion, via a reduction of the electron density in the boundary layer 
estimated as a factor 50 to 70 (Chapter 11). Moreover, recombination has been 
established as the most likely cause of ‘cooling’ rather than momentum loss by collision 
within the boundary layer.  
The direct determination of the plasma potential and of the electrical conductivity has 
been shown to be unattainable with any degree of reliability in the present conditions, 
mainly because of the incompleteness of the characteristic curve lacking a clearly 
defined steep part and the location of the plasma potential. This circumstance also 
impeded the usual procedure for the determination of the electron temperature (Chapter 
3). However, the use of the temperature obtained in Chapter 11 allowed the computation 
of the (axial) floating potential and, by using the measured probe voltage, made it 
possible to determine the plasma potential. Because the electron temperature was 
depressed with respect to the optical value, a correction was performed using the latter 
and plasma potentials were obtainable which show agreement with published data when 
a comparison was possible. Despite the several steps involved in this construction, 
which may cause incidental agreements, it is felt that this is not the case, because of the 
broad agreement between the axial values of the floating potential. 
 
The sheath potential was obtained using a wholly different approach described at the 
end of Chapter 10. By measuring the total power to the probe and assigning an average 
energy per particle to each ion under the assumption that the final kinetic energy is 
related to the difference between the bias and the probe potential, it was possible to 
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assign values to the sheath potential and, as a consequence, to the sheath thickness. 
These turned out to be close to the estimates of Chapter 4 although a clear-cut selection 
criterion for the choice has not been found. The thickness varying from just below to a 
few Debye lengths, confirmed the essentially collisionless nature of the sheath. 
However, serious doubts exist about the mentioned identification as demonstrated by (i) 
the disagreement between the sheath voltage computed in floating condition and the 
floating potential determined from the temperature and (ii) the only partial fulfilment of 
the condition for the sheath formation (Bohm criterion).  
 
The question as to whether ion and electron current densities are representative of the 
true current flowing in the arc has been partly answered only in terms of reasonable 
assumptions. For the former, some degree of directionality towards the upstream region 
of the probe seems intrinsic in the arc structure; this is at variance with respect to the 
expected motion of charged particles under the action of an electric field alone (e.g. in 
absence of flows). However, the assumption of an ion current density substantially 
independent on probe bias, justified by the high ion to electron mass and thus mobility 
ratio, makes it possible to conclude that the ion current seen by the probe is of the 
correct order of magnitude of the current distribution within the arc.  
For the electron current densities a range of variability has been set in that the lower 
limit would be guaranteed by the attainment of the plasma potential, which, even if not 
coinciding with the higher and unattainable electron saturation, guarantees purely 
electron current in absence of probe sheath, and as such can be thought of as the least 
disturbing condition for the arc. The upper limit would be the value obtainable from 
calculation in the random motion hypothesis with dynamics determined by the optical 
temperature. The latter value appears too high by an order of magnitude or so with 
respect to the limited data available in literature. Also, in this case, no attempts were 
made to the reconstruct a detailed current density structure which would include 
flowing, drift and thermal contributions, very likely of opposite orientation. It is for this 
reason that the optically determined values appear as an upper limit.  
 
The axial electric field was estimated according to two different methods; the first, by 
differentiation of the directly measured probe voltage, which requires the assumption of 
negligible variations of the floating potential with arc height. As shown and discussed in 
Chapter 12 and 13 this assumption appears justified only at the highest arc current (200 
A). In fact, the comparison with the results from the second method, e.g. the 
differentiation of the plasma potential, shows broad at these higher arc current values, 
whereas the lower 50, 70 and (perhaps) 100 A are in disagreement. 
 
The structure of the arc described in Chapter 14 aims at collecting the data presented in 
the preceding chapter in a unified manner in order to extract further information and in 
particular to see whether a 'zone' approach was possible. 
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It has been shown that different operating conditions lead to different arc radii. This is 
attributed to the much lower current collected in floating conditions (to a factor ~ 10-4 

lower). The notion of current conducting zone follows and the observed width increases 
with total arc current are expected. The outer 'floating' radius is somewhat larger than 
the typical heat wave rings observed on the anode disks after arcing. This is 
qualitatively in agreement with the slight constriction of the arc column close to the 
anode. It is thought that due to the much lower charge collected, this radius corresponds 
to the less luminous region of the arc, the 'halo' where ionization is still high enough to 
give rise to luminous phenomena, but where the current is substantially zero. 
 
Both the ion and the electron current densities (when possible) were plotted in two-
dimensional maps and a core region, expanding and elongating in z upon increase of the 
total arc current, is now visible also on paper. The absolute values of the electron 
densities are lower than expected and lower than the ion density but this is thought to be 
connected with the poor location of the local plasma potential.  
It is difficult to draw conclusions about the possible onset of regions where steady 
conduction of charges of different sign might take place. A detailed study of the shape 
of the peaks produced in floating conditions, has been limited to the observation of 
some structural similarities between the Abel inverted ion and electron currents 
obtained under biased and floating conditions. In particular the occurrence of a central 
depressed region suggests that more research in that direction is required.  
The temperature maps shown at the end of Chapter 14 complement the graphs either 
along the z or the r direction shown in Chapter 11, giving a clearer picture about the 
implied variability of the temperature as a function of position. The important issue of 
full attainment of LTE has not been explicitly addressed. Extensive use has been made 
of the ‘thermal’ assumption and of the equilibrium data of Olsen and Murphy, which 
have been the framework for every quantitative evaluation. This limitation has been 
dictated by practical necessity in absence of corresponding non-equilibrium data. 
Whilst the discussion of LTE in section 14.4 concluded that rigorously speaking a status 
of LTE cannot be attained in TIG arcs, the very few literature sources point to ion to 
electron temperature ratios very close to unity. This indicates considerable quantitative 
uncertainties about LTE (or PLTE) attainment in terms of location in the (r,z) plane, 
limiting value of the arc current, ionization level and pressure. Extensive work is still 
required in this direction.  
 
15.2 Conclusions 

To the best of the author’s knowledge, the present work represents the first extensive 
investigation of electrostatic probes in arcs that has been performed exhaustively 
addressing the most likely difficulties. The following quantities are obtained: 
temperature, potentials (floating and plasma) and, indirectly, conductivity and electric 
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field. Moreover, experimental estimations of the main sheath features were presented 
for the first time. 
 
In the first part an in-depth analysis has been carried out to set the ‘framework’ made of 
evaluations of the key arc parameters. In the absence of clearly defined theoretical 
models a ‘what if’ approach to probe physics made it possible to identify and test the 
different regimes. Also, real world non-idealities (probe emissions, cooling, non-frozen 
chemistry) were considered together for the first time.   
Previous works attempted to tackle different problems separately. For instance in [5, 26] 
a temperature determination was attempted which gave results similar to the ones 
obtained here; however, no description of what is truly observed was ever presented and 
no real justification of the model chosen was made. Also, it was previously believed 
[47, 48] that probes cannot be used in atmospheric pressure arcs because of the 
disruption of the V-I curve induced by collisions. It is shown here that this is only partly 
true in that no electron portion of the curve seems attainable in arcs, at least at the arc 
currents of interest in this work. Despite these drawbacks, the ion portion of the V-I 
curve can still be used to obtain the temperatures. Certainly, this requires the 
appropriate interpretation of the mechanisms taking place at the probe surface, but 
once the choice of the latter has been made, the accuracy of the reconstructed 
temperatures, 5%, seems quite respectable (cf Appendix E). In other words, it is only 
the choice of the operating model that limits the accuracy on the reconstructed 
temperature.  
 
The major difficulty in operating probes in flowing plasma is the onset of a perturbation 
region which manifests itself in ‘cooling’ of the plasma. It has been shown here that this 
is mainly due to recombination. Thus, the onset of a fluid-flow induced perturbation 
region, called for simplicity the ‘boundary layer’ (cf Chapter 2), is the major source of 
complication towards the V-I curve interpretation. Therefore, one could argue that 
probes in arcs measure the features of this boundary layer rather than the bulk of the 
plasma. This seems true for the highest arc currents whereas the small influence of the 
inclusion of flow velocity effects at the lowest arc current (50 A) seem to suggest that a 
further lowering of the current (and thus of the flow velocity) could lead to a ‘boundary 
layer’ vanishing and, ultimately merging with the bulk of the plasma.  
For the highest arc currents, even if the results shown here confirm the characterization 
of a cooled region rather than the bulk of the plasma, this is the first time that a 
conscious characterization of such a region has been performed. It is felt that the order 
of magnitude of its influence has been unveiled thanks to comparison with optical data, 
although experimental evidence on flows in arcs and results from numeric models are 
needed in order to predict the full range of influences of probes in arcs. 
An alternative approach based on the direct determination on particle dynamic 
parameters has been attempted which made it possible to estimate the order of 
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magnitude of the sheath voltage and thickness. Once again it is the choice of the model 
that determines the accuracy of these estimations. The experiment shows that it is not 
only the thickness but also its distribution along the probe length that is accessible.  
 
From this work, a further major difficulty emerges about the use of probes in arcs. This 
is related to the asymmetric way currents and voltages are treated. Whilst the Abel 
inverted current has a clear interpretation, the requirement of an equipotential probe 
causes disruption of information about the true local plasma potential. In fact, at the 
plasma potential, the non-existence of a sheath implies that the probe attains a voltage 
uniform along its length which equals the plasma potential. Because it is believed that 
the latter should have a radial distribution, the consequence is that the plasma is shorted 
by the probe under this circumstance, e.g. that local values of the plasma potential are 
not attainable by probes in arcs. Hence, the determination of the electron current density 
is also at risk. The uncertainty about the correct location of the local plasma potential 
makes it difficult to assess the imbalance between the ion and electron current 
distributions within the arc. 
Finally, irrespective of the attainment of LTE, and within the limitations on the onset of 
cooling, it is believed that probes can access temperatures regions which are not 
attainable by emission spectroscopy. 
 
15.3 Future work 

From the foregoing discussion it is evident that several issues were left out of this work 
and in particular more elaborate treatments about heat transfer and effects related to the 
flow, both from the theoretical and the experimental point of view.  
The completion of the study on the arc structure moving from the column towards one 
or both the electrodes is part of an ongoing project [49] in which the author of this work 
is involved. The purpose is to investigate the anode region by means of a dedicated 
‘detector’ which is an enhanced version of the ‘split-anode’ technique [50]. The 
electrical current to the anode will be measured in the same fashion as the probe, but 
additional information about the voltage structure can be gained by matching the results 
from probe runs closer to the surface than in this work, perhaps down to 0.3 to 0.4 mm 
with the data obtained from the anode detector, which is set at the zero of the potential.  
A detailed study of the charge capture mechanism is ongoing by using partially coated 
probes. The purpose is twofold. On the one hand the reduction of the collecting surface 
to a spot of the size of few microns can eliminate the need for the Abel inversion about 
which some doubts persist concerning its applicability in probe conditions. The 
comparison between ‘true’ (directly measured) local parameters, with previously Abel 
inverted quantities will clarify potential discrepancies connected to the application of 
the method to probes.  
On the other hand, by direct comparison between currents measured at different 
locations on the probe, it will be possible to enhance the understanding of the 



 351

directional charge capture mechanism with the ultimate aim to unveil the different 
electric current contributions within the arc. 
 
Finally, recent preliminary measurements performed with probes and optical 
spectrometer simultaneously, indicate the extension of the boundary layer surrounding 
the probe to be about three probe diameters but the experimental errors are still large (~ 
1 probe diameter). Even if the latter figure seems discouragingly high in view of the 
application of the probe method, at least to short (5 mm) point-plane geometry arcs, this 
information can be used to obtain an indication of the flow velocity, which of 
considerable importance for the correct interpretation of the experimental results. 
Moreover, because of these results, (i) an up-scaling of the plasma linear dimensions 
(arc length) and (ii) a down-scaling of the plasma current (thus flow velocity) would 
make the probe method progressively immune to the problems illustrated and extend its 
use for the characterization of other kind of atmospheric plasmas where the effects of 
the flow are relatively minor. 
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APPENDICES 
 
 
APPENDIX A - Current density distribution and magnetic field 

It is supposed that current density and pressure have only radial dependence. This implies 
the only non zero component of the induction field is the azimuthal Bϕ (isotropy). 
Assuming a time independent electrical field, the Ampere law for the total current density 
is satisfied (i.e. the displacement current is zero) and the corresponding Maxwell equation 
in cylindrical geometry is then: 

( )1 rB
r r ϕ

∂ ∇× =  ∂ 
B  (A.1) 

 

The total current is obtained integrating this density from origin to the border R of the 
column: 
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1. Uniform current density 
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Inverting for B: 
 

( ) µ 2πoB r I r=  (A.4) 

Evidently the magnetic induction decreases as 1/r out of the column considered as linear 
conductor. The maximum field is at r=R in (A.3). 
 
2. Parabolic current density 
In the works by [29] the current density is assumed to be: 
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where jo is the axial current density. The suffix z indicating the z component of j is 
omitted. Also, expression (A.5) refers to the height z (i.e. a different expression is needed 
for each z value). 
 
The normalization requirement (current conservation) 
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gives the non arbitrary axial current density related to the arc radius: 
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The field is obtained as in the uniform case by inverting the integral of the Maxwell 
equation in cylindrical coordinates as in the previous section (cf A.2) 
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It can be observed that any power law of the form  
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always gives rise to Bθ ∼1/r whose expressions differ by a multiplicative factor 
containing n.  
 
3. Gaussian current density 
Allum in his model [16] assumes a gaussian current density distribution as based on the 
results of Gvozdetskii (referred to in [16]): 
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where jo is the current density in the axial position and b is a “constant” to be determined 
by the normalization condition (current conservation) which can be written substituting 
the upper integration limit, R, with infinity provided ( , ) 0   for  j r z R→ →∞ (in practice 
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satisfied after few ‘standard deviations’ 3σ 3w,  where  r w FWHM≥ = = (Full Width 
Half Maximum) of the curve). Integration yields 
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Integration of (A.2) and inversion for the induction gives the formula used in the text 
(where µo=4π⋅10-7 H/m) 
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APPENDIX B – The Bohm criterion 

The following treatment is due to Riemann [100, 101] re-derives the Bohm criterion for 
cold ions and sets the mentioned two-scale mechanism for the description of the sheath 
and pre-sheath and thereafter treats the plasma –sheath transition for the case where 
ε=λD/λi  is small but finite. The hypotheses on which the model is based are (I) 
monoenergetic cold ions (II) a Boltzmann distribution for the electrons and (III) the 
existence of a perfect adsorbing wall. 
Moreover, the limit ε=λD/λi→0 is assumed (actually in the original paper a generic 
characteristic length L is assumed whereas here the latter is identified with the ion mean 
free path). The negative wall repels all the electrons whose distribution is therefore not 
disturbed from the Boltzmann and the electron decrease is thought to build up a positive 
space charge that shields the potential distortion within some Debye lengths. Taking the 
latter as the smallest characteristic distance, the sheath can be considered planar, thin and 
collisionless. However, the shielding is questionable to some extent because the ion 
distribution is distorted due to the wall losses (the ion impinges the negative wall where it 
is neutralized). The following quantities are used: 
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thus normalizing the kinetic and potential energies to the electron thermal energy (it is 
customary to attribute a minus sign to the reduced potential; also note that '‘potential'’ 
means here “potential energy”). The electron and ion densities with the charged particle 
density No (in contrast to the rest of this work, where lowercase n’s are dimensioned 
quantities). The space coordinate z, oriented normally to the surface is normalized with 
the Debye length. In these units, the ion continuity equation is 
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the ion energy conservation is 
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the electron Boltzmann factor is 
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χ
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and Poisson’s equation is 
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with the zero subscript referring to the sheath edge (defined below) where the sheath 
merges into the neutral plasma region. Using (B.3) and (B.4) the ion density  
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can be inserted in Poisson’s equation that, after multiplication by dχ/dξ can be integrated 
with the boundary condition 
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implying a potential distortion that tends to zero at the sheath edge. The first integration 
gives 
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The second integration has to be made numerically. The boundary condition (the wall 
potential χ(0) is not essential because involves only a shift of the potential curves because 
the equation is spatially homogeneous). The plot in Riemann's paper for the solution with 
χ(0)=10 for different ion energies yo shows that the boundary condition (B.7) is fulfilled 
only if  yo > 0.5. Smaller ion energies do not allow any shielding. This can be seen 
expanding (B.8) in Taylor’s series for χ→0, 
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Which contradicts equation (B.8) if yo < 0.5. The condition yo ≥0.5, or explicitly 
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is the Bohm criterion (Bohm 1949). The physical picture follows ([46], pp292-4) from a 
plot of the electron ion densities. The electron density decreases exponentially with χ 
according to (B.4). The ion density also falls because ions are accelerated by the wall 
potential (ion acceleration at constant current density). The only way to maintain a 
positive charge sheath (i.e. ni>ne, see eq. (B.5)) is that the ion density decreases slower 
than the electrons when χ→0. This occurs only for sufficiently fast ions fulfilling 
condition (B.10). This facet can be illustrated further by using equations (B.4) and (B.6) 
to write 
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From the linearization of Poisson’s equation (B.5) at the sheath edge 
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one observes that when ρo>0 (Bohm’s criterion fulfilled) the previously assumed 
exponential damped distortions of the potential which correspond to the Debye shielding 
are obtained. On the contrary, when ρo<0 (Bohm’s criterion not fulfilled) equation (B.12) 
provides only oscillatory solutions which contradict the boundary condition (B.7) 
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APPENDIX C - Abel inversion 

1. The measured value at any point along the x=vt axis is the sum of the contributions 
arising from all the portions of the probe which are in the arc at the instant of time t=x/v. 
Each contribution is weighted with an unknown source function, which has to be 
determined. The assumption is that each of the individual contributions is uncorrelated to 
the neighboring. 
 

2

1

( ) ( , ) ,    [ , ]
y

R R
y

f x g x y dy x x x= ∈ −∫  (C.1) 

  
As such, the problem of inverting (C.1) is an integral problem. 
 

 
 
Figure C.1 Geometry of the Abel inversion. Upper, arc section, lower, generation of the 
of the signal value at time t = x/v. 
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Every point on the segment [y1, y2] can be expressed in terms of the radius r(x,y) at the 
point using 
 

2 2 2 2 2
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where the plus sign is chosen for the upper quadrants. Upon conditions of cylindrical 
symmetry, using (C.2) in (C.1) gives 
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and the problem involves the determination of the radial function g(r) on the interval 
[x,R]. 
Different formulae exist for the inversion of equation (C.3). The one employed by Nestor 
and Olsen is 
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2. Method of Nestor and Olsen [5] 
 
The interval [ , ]R Rx x−  is divided into N zones of length a with  
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Upon the transformation 
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Dividing the integral in sub-integrals over each zone and assuming ( )I u A Bu= +  
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The discrete values of the inverted function are 
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With 
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The subtraction between adjacent points implied in (C.7) can be avoided by using the 
matrices B defined as  
 

,
,

, 1 ,

,             
,    

k k
k n

k n k n

A n k
B

A A n k−

− =
=  − ≠

 (C.10) 

 
and the inverted function is 
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This is the version ("Nestor-Olsen B") used in this work. The step a has been chosen 
equal to the spatial distance corresponding to the time interval between subsequent 
experimental points, δτ=0.02 ms, a=v⋅δτ=100.4 µm where v=5.02 m/s is the probe 
velocity considered throughout the experimental data presented.
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APPENDIX  D - Equipotential probes 

Each instantaneous value of the current I(t) forming the peak is made of the contributions 
of charges propagating on the conductor surface along the probe direction (y) when the 
latter is at a given position within the arc.  
 
 
 

 
 

 
 
Figure D.1, up, formation of individual current values I(tk) along the probe length 
(coordinate y). A represents the hypothesis of structured potential, V=V(y). B, 
corresponds to the hypothesis of uniform (equipotential) probe. Lower part, the complete 
peak, with its total area equal to the charge collected by the probe after the arc crossing 
 
By definition if vd is the surface carrier drift velocity (assumed constant around its mean 
value, vd ≡<vd>), the current is d( ) vI t ne= . Its instantaneous (and measured) value at the 
time [0, ]kt τ∈  is determined by the distribution of charge carriers on the conductor 
surface [n in this paragraph] 

k d
0

( ) v ( ) ,    [0, ]
u

I t e n y dy y u= ∈∫  (D.1)   
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Neither of the two cases labelled A or B in figure D.1 is distinguishable by using the 
measured current or from the total charge collected. Case ‘A’ corresponds to the 
hypothesis of structured voltage along the probe, ‘B’ corresponds to the hypothesis of 
uniform potential (equipotential probe). Because of Ohm’s law, ρ /   and  /RS l J I S= = , 
assuming for simplicity constant resistance, we have /i El R=  so that the elementary 
current along the probe is  

dv ( ) ( ) /i e n y dy E y y Rδ δ= =   
and the field is 

d( ) v ( )E y e Rn y=  (D.2) 
Because vd, R and n ≠0 then also E≠0 (as required by the existence of a current). 
Therefore, assuming a conservative field, E V= −∇  and 
 

d
0 0

v ( )
u u

V Vdy e R n y dy= − ∇ = −∫ ∫  (D.3) 

which can be uniform along the probe, V(y)=const, only if n is uniform, in which case the 
probe is equipotential. Otherwise one must have V=V(y). This means that the distribution 
of the potential along the probe is determined by the distribution of charge carriers on the 
probe surface. The question posed in the main text can be restated asking whether/how 
the charge carrier distribution on the probe surface is influenced by the distribution of the 
impinging particles from the plasma. 
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APPENDIX E – Error Analysis 

When possible, the errors were propagated by the use of the exact theory of error (section 
E.2). However, when analytical relationships were not available or the degree of accuracy 
was difficult to evaluate, the more conservative approximate theory has been employed 
(section E.1). 
 

E.1. Approximate error estimation 

A quantity c = a ± b with δa and δb as absolute errors, is subject to an absolute error 
(upper limit) 
 
 δ δ  + δ   c a b≈   (E.1)   
For c = a b or c = a / b an upper estimation for the relative error on c is 
 

/ / /c c a a b bδ δ δ= +  (E.2) 
 
The current density 
  

= / ( )j I S z  (E.3) 
where  S(z) is the arc sectional area at height z given by 
 

2( )=  π ( )
arc

S z R z  (E.4) 

and R(z) is the arc electrical radius (defined in the text) given by the product of probe 
(central) velocity and the peak duration τ 
 

( )=vR z τ  (E.5) 
 
The probe (central) velocity is computed as 
v=2πRpath/T (E.6) 
in which Rpath is the path radius, i.e. the distance from the centre of the probe disk to the 
centre of the arc (cathode tip position). T is the time period of the set of peaks.  
 
The maximum (axial) electric field was considered in text 
 
Emax = −∇Vmax (E.7) 
 
where the uncertainty on Vmax has been established from the standard deviation of the 
mean of a population of voltages belonging to each peak at the 4% level. This is higher 
than the average uncertainty on the single measurement as given by the instrumental 
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resolution at 12 bit (4.88 mV) and of the same order of magnitude (or slightly bigger) 
than the circuitry contact resistances that sum up to few mΩ. 
The error on the field can be obtained by a discretization of the field variability (along the 
height points zk) and the use of the elementary theory of errors, yield the absolute error 
for the field Ei at height zi 
 

1 1

δ δδ 2i i
i i i i

V zE E
V V z z− −

 
+ − − 

~   (E.8) 

In Table E.1 the uncertainties for the 'primary' (i.e. measured) quantities are reported, 
some of which deserve comment. The peak duration uncertainty reflects the degree of 
arbitrariness in the edge-cut criterion (typical peak durations vary from 3 to 6 ms 
depending on conditions. Each peak is made of about 200 experimental points).  
The time period (interval between homonymous peaks in a data-set) is the arithmetic 
average of  5 to 10 data-set values obtained under the same experimental conditions. 
The probe height has been measured with a micrometric device with a 0.01 mm 
uncertainty. The positioning of each individual probe and its 'degree of straightness' were 
evaluated using the same instrument and are of the same order of magnitude; contributing 
to an overall uncertainty in z of ±0.02 mm. 
 

Quantity - symbol Experimental uncertainty 
Peak time  duration τ (ms) δτ= ± 0.1  ms 
Time period T  (ms) δT= ± 1 ms 
probe (central path) Rpath(mm) δRpath= ±  0.1 mm 
probe heights  z (mm) δz = ± 0.02 mm 
Total arc current  It  (A) δIt = ± 1 A 
Probe radius 2rp=0.25 mm (±5% ∅) 

δrp/ rp=2.5%   
    Table E.1.1. Uncertainties for primary quantities (as measured) 
 

E.2 Constants and truncation used 

Several physical constants are used throughout this work. These are assumed free of error 
in the sense that the accuracy given in the updated sources of references are beyond the 
accuracy attainable within the present work. This also means that the 
multiplication/division of these constants by very small/very big numbers is assumed 
negligible on the final result. This is obviously incorrect, but the following example 
clarifies the problem and the choices made here.  An evaluation of the floating potential 
by means of formula   
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23 26
4e ei

f e19 31
e

1.38 10 6.64 10ln ln 4.828562 10
1.60 10 9.11 10

kT TmV T
e m

−
−

− −

   ⋅ ⋅
= − = − = − ⋅     ⋅ ⋅   

 

implies the comparison of mi with me; so the mi used should retain as many digits as the 
minimum digit in me in order to compare the two numbers down to the same least 
significant digit. So, would the constants used have indicated with more significative 
digits, for example as in the following (where also k and T have been increased by 1 
digit) 
 

23 26
4e ei

f e19 31
e

1.380 10 6.63478 10ln ln 4.822668 10
1.602 10 9.1 10

kT TmV T
e m

−
−

− −

   ⋅ ⋅
= − = − = − ⋅     ⋅ ⋅   

 

 
The difference between the two is about 2⋅10-5, corresponding to an uncertainty of  
But the temperature may be determined at best with a 5% uncertainty, so for a T=15,600 
K, the first formula would give Vf = -7.52336208 V whereas the second gives 
Vf =- 7.5296208 V with a difference of 6 mV corresponding to the 0.08%, which is well 
within this limit. Therefore, truncating the two at the second digit after the point, gives 
7.52 V in the first and 7.53 V in the second, a mere 0.1%. A comparison with the typical 
uncertainty of the experimental probe voltages used jointly with Vf , about 1 to 2% (see 
next paragraph) reveals that it would be meaningless to search for a higher accuracy by 
including more significant digits. With this respect, the two versions of the above formula 
are considered equivalent. Consequently, the practical choice has been to 1) use the 
constants in a 'sensible manner', as done above when comparing the masses (and in 
general greatly different numbers) truncating the bigger quantity at the least significant 
digit used for the smaller (as in the second case shown) but 2) for the rest of the cases, by 
taking usually not more than three digits after the point. 
 
 
Name Symbol  Value 
Electric charge e=1.602⋅10-19 C 
Electron mass me=9.11⋅10-31 kg 
Boltzmann constant k=1.38⋅10-23 J/K 
Argon Ion mass mi=6.63478⋅10-26 kg 

Table E.1.2 Constants used (see text for discussion of choice of digits) 
 
2. Some transport properties are determined via the use of Olsen's thermal equilibrium 
n(T) data presented in Chapter 1. Since no explicit formulation for the latter is possible, 
we assume the values of n ‘exact’ within the limitation of Olsen's determination. 
However, the following relationship is used for the determination of the ion mobility in 
CFF's model (Chapter 5) 
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i
i

λv λ 2µ
3 3

eD e e
kT kT m kT

= = =   (E.9) 

So that since the temperature must be evaluated with its error. The current CFF's formula 
may be inverted for the temperature  
 

e
1
λ

IT K
n a

 =  
 

,  

where K includes the numerical constants. In other words, while an error on the mobility 
or on the mean free path (cf 1.18) is not evaluated explicitly, the error induced on the 
temperature via the current formula is propagated on the final temperature. 
 

E.3 Exact formulation 

The relationships used in the following assume gaussian distribution for the uncertainties 
of all the parameters involved. The formulae for the error propagation of the observable 

( )1 2 n, ,...f f x x x=  are based on the total derivative formulae 
 

( )
2

2
k

k 1 k

δ δ ,     k 1, 2,3,...,
n ff x n

x=

 ∂
= = ∂ 
∑  (E.10) 

 
This is applied to the formulae for the temperatures determined by inversion of the ion 
saturation current formulae. As mentioned in the previous section, the fundamental 
physical constants are assumed 'exact' within the choice made for the digits. The 
parameters are evaluated using the table containing the uncertainty on the primary 
measured quantities. 
 
Measured voltage 
The measured probe voltage is subject to an uncertainty of 1%. 
 
Measured current 
The probe current is measured by reading the voltage across the load resistor RL which 
has a 1% tolerance (cf chapter 7), therefore a 1.4% error is found on the read current 
arising from the equal 1% contribution of voltage and read-out resistance. 
 
Inverted current 
There are no simple relationships between measured and inverted quantities for all the 
data points. A possible evaluation would be based on the formula obtained by 
propagating the errors on relationship (13) reported in appendix B and then evaluating the 
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error for some typical k's. Alternatively, one can think of the determination of the 
inverted current as a counting problem (where each bin is determined by the spatial 
resolution) and take the corresponding error on the bin as the square root of the number 
of counts, e.g. assuming a Poisson model. This is not strictly correct, because this 
inverted current is then treated as a primarily measured quantity, but the magnitude of the 
error obtained this way is within a unit of the previous (and more complicated) method so 
that this simpler technique can be used for checking purposes. Using the former method, 
an error of 3.2 to 4.8% is obtained for some sampled values, whereas the latter simpler 
method gives 5% which can be considered as upper limit. 
  
Temperatures by inversion of current formulae 
Two kinds of current formulae were used for the determination of the temperature; the 
first is the random group, of the form 
 

2II C T T
C

 = ⇒ =  
 

 

The second is the CFF group, of the form 
 

II CT T
C

= ⇒ =  

In the first case, the knowledge of the relative error on I and use of relationship (E.9) 
allows to write 
 
δ δ2T I
T I

=  

Whereas in the second case 
 
δ δT I
T I

=  

 
This obviously implies that the temperatures of the first group are less accurate than the 
ones obtained for the CFF family. However, as discussed in the text, in the latter 
determination (e.g. the electric current for the table) a further dependency on the mobility 
is present. An initial estimate purely based on the accuracy of the non inverted current 
would lead to an error of 2%. This is an upper limit because of the use of (E.2) instead of 
the exact (E.10). However, the discussion of the error on the inversion procedure 
mentioned above shows that 5% should be taken as the lower limit for the error on the 
temperatures from probes. Obviously, this does not include any quantitative judgment 
about the accuracy of the formula in describing the ‘correct’ physical picture. 
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Electric field 
Differentiation of the probe potential or of the plasma potential with somewhat scattered 
data makes the evaluation of the quantity and of its error uncertain. The first method, 
based on the measured probe potential, uncertain to 1%, is more accurate than the second 
(when correct) whereas the second requires introduction of the floating potential, in turn 
determined through the temperature. Because the uncertainty on the latter largely 
dominates, the error for the second determination is much higher; using pure statistics a 
5% standard deviation of the mean occurs. This is in broad agreement with, the 
correlation coefficient for the fit from which the quantity was determined, typically 
around 95%. 
 
The determination of the electric field uncertainty based on the plasma potential (cf 
chapter 12) of chapter 11 from the measured probe potential and the temperature obtained 
in chapter 11 
 

e i
pl prb f prb

e

lnkT mV V V V
e m

= − = −  

suffers from an uncertainty on the latter  
 

( ) ( ) ( ) ( )
2

2 22 27
pl prb i e prbδ δ ln δ δ 2.32 10 δkV V m m T V T

e
− = + = + ⋅ 

 
 

composed of the 1% on the measured potential and the 5% on the temperature 
 

( ) ( )2 27 4 2 10 2
pl prb prbδ 0.01 2.32 10 0.05 10 5.8 10V V T V T− − −= + ⋅ = + ⋅  

and for, say,  Vprb = 5 V and T=10,000 K, 
  

pl pl pl
0.25δ 0.25 δ 4.9%

5
V V V V= ⇒ = =  

Therefore for the field (E.2) gives 
 

pl

pl

δδ δz 5.6%
z

i

i

VE
E V

 
≈ + =  
 

 

for the same plasma potential value and a probe height of 3 mm (typical location for this 
measured probe voltage at 50 A). This is the order of magnitude of the error for fields 
determined from the derivative of the plasma potential. (The approximate (E.2) form has 
been used since no direct functional dependency of E on the height has been used in the 
text, unless one uses the fits shown in section 12.6).   
 
Current density 
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Both the ion and electron current densities suffer from the error on the measured ion 
current (relative error ~ 5%) and on the uncertainty on the geometrical factors, namely 
the probe radius: 
 

p2π
I aj
a r a

 =  
 

  (E.11) 

Therefore, propagating according to (E.10) 
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 ≈ ⋅ + ≈ 
 

 ≈ ⋅ + ⋅  
 

 

 
where an uncertainty of 2.5% for the probe radius has been taken (Table E.1) and of 5% 
for the read current per unit length. It is clear that the dominant factor is the uncertainty 
on the probe radius Assuming a current per unit length between 10 A/m, typical for the 
arc fringes or low z probes at 50 A, and 380 A/m, at axial positions for the 200 A case, the 
magnitude of the uncertainty on the measured ion and electron current density is 452 
A/m2 and ~1.2⋅104 A/m2 respectively. 
 

E.4 Non-parallelism error 

In the text it was stated that probe lengths of up to 70 mm were used. This length adds to 
the probe disk radius bringing the probe centre to 90 or 100 mm from the disk centre. 
This might still be an appreciably short distance when compared to arc radii which extend 
up to 15 mm (see  figure E.1). 
 
The probe path at the distance R from the disk centre is l=Rα, while the assumed 
rectilinear path is  lr=2RarE. The relationship between path radius R and arc radius Rarc is 
(see fig. E.1) 
 

αtan 
2

arcR
R

=  (E.12) 
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Therefore, lr=2R tan (α/2) and the ratio of the two paths is ααρ /)2/(tan(2= , which 
varies from 1 at distances R - Rarc , reaches its maximum at R and decreases back to 1 at 
distances R + Rarc (see figure E.1). The assumption made in the text corresponds instead 
to the approximation 2 Rarc ≈ α R. 
Referring only to the central path (where the discrepancy is maximum), with the values 
reported in the text (Rarc from 5 to 15 mm and R up to 100 mm) this ratio varies from ρ= 
1.002 when Rarc = 5 mm  to ρ=1.01 when Rarc =15 mm. This factor should be applied to 
correct each radius measurement.  
 
The problem becomes more complex when dealing with local quantities, in which case 
every point along the time axis is the sum of contributions from a virtually infinite 
number of different paths. 
 

 
 
Figure E.1 Illustrating the non-parallelism error 
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APPENDIX F – UNITS 

 
SI units are used throughout this work. However as customary in atomic and plasma 
physics, it is useful to express the temperature T in electron-volt (eV) through the 
relationship 
 

191 1.602 10eV J−= ⋅  (F.1) 
 
The Boltzmann constant is 
 

23 5 1.3807 10  / 8.6142 10  /k J K eV K−= ⋅ = ⋅   
 
From kinetic energy of a particle, E kT= , the temperature in atomic units reads 
 

5

1 11,608.74 11,609 
8.6142 10  /

eVT K
eV K−= = ≈

⋅
 (F.2) 

 
Therefore the energy of 1eV averaged over an ensemble of particles, corresponds to a 
temperature T=11,609 K. 
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