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Abstract 

This thesis is concerned with students’ understanding of the core concept of function 

which cannot be represented by what is commonly called the multiple representations of 

functions. The function topic is taught to be the central idea of the whole of mathematics. 

In that sense, it is a model of mathematical simplicity. At the same time it has a richness 

and has mathematical complexity. Because of this nature, for students it is so difficult to 

grasp. The complexity of the function concept reveals itself as cognitive complications for 

weak students. This thesis investigates why the function concept is so difficult for students. 

In the Turkish context, students in high school are introduced to a colloquial definition and 

are presented with four different aspects of functions, set-correspondence diagrams, sets of 

ordered pairs, graphs and expressions. The coherency in recognizing these different aspects 

of functions by focusing on the definitional properties is considered as an indication of an 

understanding of the core concept of function. Focusing on a sample of a hundred and 

fourteen students, their responses in the questionnaires are considered to select nine 

students for individual interviews. The responses from these nine students in the interviews 

are categorized as they deal with different aspects of functions. The data indicates that 

there is a spectrum of performance of students. In this spectrum, responses range from the 

responses which handle the flexibility of the mathematical simplicity and complexity to the 

responses which are cognitively complicated. Successful students could focus on the 

definitional properties by using the colloquial definition for all different aspects of 

functions. Less successful students could use the colloquial definition for only set-

correspondence diagrams and sets of ordered pairs and gave complicated responses for the 

graphs and expressions. Weaker students could not focus on the definitional properties for 

any aspect of functions. 
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1 CHAPTER 1 – INTRODUCTION 

This research investigates students’ understanding of the function concept in the Turkish 

context where mathematics is taught in a more formal way. The aim of this thesis is to 

reveal Turkish students’ understanding of the function concept, one of the most 

fundamental concepts in mathematics. Their understanding is investigated by focusing on 

Thompson’s (1994) notion of the core concept of function which cannot be represented by 

what is commonly called the multiple representations of function. The coherency of 

recognizing various aspects of functions by focusing on the definitional properties is 

considered as an indication of the core concept of function. 

This thesis suggested a spectrum of performance of students when dealing with different 

aspects of functions. In this spectrum, very few students strongly focused on the core 

concept of function. The majority of the students could not focus on the definitional 

properties. 

1.1 Functions in Mathematics 

The concept of function is one of the most fundamental concepts in mathematics, which 

appears from primary school through to university. At a primary level it is given as ‘guess 

my rule’ activity. Before university, real-valued functions with one variable are studied. 

Function as a special kind such as ‘continuous’ and ‘differentiable’ is the central 

underlying concept in calculus (Vinner, 1992). Beyond calculus, in advanced mathematical 

thinking, functions are used to compare abstract mathematical structures e.g. to show that 

two sets have the same cardinality, that topologies are homeomorphic, that one group is the 

homomorphic image of another. The function x
ey =  tells us that the additive structure of 
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the real numbers is isomorphic to the multiplicative structure of the positive reals (Selden 

& Selden, 1992). 

In its historical development, the function concept was formed long after mathematicians 

dealt with the concept in a variety of contexts. Definitions of the function concept such as 

those proposed by Dirichlet and Bourbaki have taken various forms, from algebraic and 

analytic relations to any arbitrary correspondence (Cajori; 1980; Sfard, 1991). The 

Dirichlet definition was first introduced in 1837: 

‘If a variable y is so related to a variable x  that whenever a numerical value is 

assigned to x  there is a rule according to which a unique value of y  is determined, 

then y  is said to be a function of the independent variable x’ (Boyer, 1968, p. 600). 

The formal ordered pair definition, the so called the Bourbaki definition (A function f is a 

set of ordered pairs with the property that if fyx ∈),(  and fzx ∈),(  then zy = ), was 

reached in 1939. 

There have been different teaching approaches of the concept of function. In textbooks 

from the middle of 19th century until the middle of the 20th century, the function concept 

was introduced as a relationship, a correspondence between two variables (numbers only) 

by an influence of the Dirichlet definition (Bruckheimer et al., 1986). Selden & Selden 

(1992) claim that the Dirichlet definition facilitates the notions of domain, range (co-

domain) and one-to-one-ness. They suggest that although they are technically similar, the 

Dirichlet definition is more easily grasped than the ordered pair definition. This Bourbaki 

definition was first introduced in the curriculum within the New Maths movement in 

1960’s. This set theoretic definition is considered too abstract for a wide range of students 

as an introduction (Malik, 1980; Bruckheimer et al., 1986; Bakar & Tall, 1992). After the 
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New Maths movement, the topic of functions was emphasized for the teaching of algebra 

(Kieran, 1994; Brenner et al., O’Callaghan, 1998; DeMarois & Tall, 1999). 

1.2 Background of the study: Turkish curriculum and function concept 

1.2.1 Basic facts about the Turkish Education System 

In the Turkish education system, compulsory education – so-called “Basic/Primary 

School” – lasts for eight years. There are two phases of compulsory education; Lower 

Level Primary Education/Elementary School (a total of five years) and Upper Level 

Primary Education/Middle School (a total of three years). This is followed by a three year 

of schooling which is called “high school” or “upper-secondary school”. Public schools 

with access to the public without any exam and tuition fees is three years. Some high 

schools, such as private and Anatolian High Schools, last for four years; the first year is for 

foreign language (which is normally English) preparation if desired. Year groups can be 

named as grade 1 until grade 8 of basic education and grade 1, 2, 3 of High School. The 

table below summarizes the year groups: 

School Grade Age  
Nursery  5-6 

Basic Education 
Basic/Primary School 
(Compulsory) 

Grade 1 7 
Grade 2 8 
Grade 3 9 
Grade 4 10 
Grade 5 11 
Grade 6 12 
Grade 7 13 
Grade 8 14 

Foreign language preparation if desired 

High School 
Grade 1 15 
Grade 2 16 
Grade 3 17 

Table 1-1. Grades and year groups across Turkish schools 
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In Turkey, education is centralized by a National Curriculum which is determined by The 

Ministry of National Education (http://www.meb.gov.tr). The Ministry of National 

Education specifies a set of textbooks according to the national curriculum. Among those, 

each school chooses their own textbooks to follow. 

1.2.2 Function topic in Turkish context 

The topic of “functions”, as a topic on its own, is introduced in the first year of high 

school. The development of the topic in the national curriculum can be summarized as 

follows: 

 Grade 1 Grade 2 Grade 3 

O
ct

ob
er

 

Relations. 
Equivalence and ordered 
relations. 
Introduction to the function 
topic with formal definition. 
Binary operations. 

Trigonometric 
functions 

 

N
ov

em
be

r 

Compositions of functions, 
inverse of a function 

  

F
eb

ru
ar

y 

  Finding the domains of the domain of 
a  function 
Function graphs, 1-1 and onto 
functions 
Inverse functions and their graphs 

M
ar

ch
 

  Odd and even functions/increasing 
and decreasing functions/split-domain 
functions/absolute value functions  
Integer functions 
Split-domain absolute value functions 

A
pr

il  Logarithmic 
functions 

 

M
ay

 

Drawing the two degree 
polynomial functions 
Drawing a parabola when the 
two x-intercepts are known 
Drawing a parabola when the 
maximum or minimum points 
and one point are known 
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Ju
ne

 

The regions on the plane divided 
by the line in the form of 

0=++ cbxax  and the graphical 
solutions of second order 
inequalities. 

  

Table 1-2 The development of the topic of “functions” in the Turkish curriculum. 

In the textbook, the definition of function is given as follows: 

Definition: Let A and B be two non-empty sets. A relation from f  from A to B is 
called a function if it assigns every element in A to a unique element in B (Demiralp 
et al., 2000, my translation). 

This definition in the textbook is the formal definition translated into words which has 

colloquial meaning. This definition is followed by a further explanation on the definition 

which will be called the colloquial definition: 

A function f defined from A to B assigns: 

1. All elements in A to elements in B. 

2. Every element in A to a unique element in B. 

This colloquial definition is followed by a visual explanation as follows: 

 
Figure 1-1 - A visual explanation of the function definition 
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An explanation on the notation is given as follows: 

If Ax ∈  and By ∈  and if a function f from A to B assigns x  to y  then it is denoted by 

BAf →: , )(xfyx =→ . 

‘ )(xfy = ’ is read as ‘ y  is equal to f of x ’. 

1.3 Organization of the thesis 

This thesis is based on two previous EdD Projects (Akkoç, 2000 & Akkoç, 2001). The first 

project is a general literature review on functions. The second project is a preliminary 

study to this thesis. This thesis consists of eight chapters, a bibliography and appendices. 

Chapter 2 gives a literature review. It has two parts. The first part focuses on a literature 

review on functions. Previous research which focuses on functions from different 

theoretical frameworks is discussed. The second part gives a brief account on research on 

categorization. The second part of the literature review can be also read after reading 

chapter 3 since the findings from the preliminary study in chapter 3 required a review of 

the literature on categorization. 

Chapter 3 presents brief findings from the preliminary study which helped research 

questions to be refined (Akkoç, H. 2001, Unpublished EdD Project 2). 

Chapter 4 describes the theoretical perspective of this research. Drawing on the literature 

on functions and categorization, it takes Thompson’s (1994) notion of the core concept of 

function as the departure point. The theoretical framework distinguishes between the 

simplicity and complexity of the core concept of function and the cognitive complications 

that students might have. By considering a prototype-exemplar distinction, it defines a 
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focus on the core concept of function as the coherency in focusing on the definitional 

properties for different aspects of functions.  

Chapter 5 defines the methodology. The methodology of this study is a combination of 

qualitative and quantitative approaches, with a qualitative approach having priority. 

Research problems which were refined after the preliminary study are stated in this 

chapter. Description of subjects, methods of data collection are also presented. 

Chapter 6 presents the results from the questionnaires. It gives a broader picture for the 

whole sample of students. Responses from students are categorized and the distribution of 

these categories across the sample is presented. 

Chapter 7 presents the results from the interviews with nine students. The results reveal a 

spectrum of performances which lead to the categorization of students in the next chapter.  

Chapter 8 presents the categorization of students’ responses in the spectrum of responses 

ranging from responses which focus on the simplicity of complexity of the function 

concept to the responses which are cognitively complicated. 

Chapter 9 gives a discussion of the data in relation to the theoretical perspective and the 

related literature. It is discussed that graphs and expressions, as exemplars of functions, 

caused much more cognitive complication because of the incidental properties they have 

while set-correspondence diagrams and sets of ordered pairs caused less complications 

since they were treated as prototypes of functions. 

Chapter 10, concludes the thesis by giving the implications and further research 

possibilities. 
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2 CHAPTER 2 – LITERATURE REVIEW  

In formal mathematics, concepts are clearly specified by their definitions. However, 

students might not always focus on the properties of the definitions when dealing with 

mathematical concepts. For instance, they might consider some examples of functions as 

better examples than others. In other words, students might categorize functions in 

different ways. Considering these, this chapter of literature review is divided into two 

parts. The first part focuses on the literature review on function concept. The second part 

gives a brief account of the research on categorization. 

2.1 Literature review on function 

The topic of functions has been a focus of attention for a few decades. Various research 

investigates the topic from various theoretical frameworks. Below an account of basic 

theoretical frameworks is given, including concept definition and concept image, 

operational and structural conceptions of the function concept, multiple representations of 

functions, vertical and horizontal growth of the function concept. 

2.1.1 Concept definition and concept image  

One of the theoretical frameworks to investigate students’ understanding of the function 

concept introduces the notions of concept definition and concept image and makes a 

distinction between the two. Tall & Vinner (1981) define concept definition as the ‘form of 

words used to specify that concept’ (p. 152). A formal concept definition is one accepted 

by the mathematical community at large. In Vinner (1983), the concept definition is given 

as the ‘verbal definition that accurately explains the concept in a non-circular way’ (p. 

293). As Tall & Vinner (1981) assert, we can use mathematical concepts without knowing 

the formal definitions. To explain how this occurs, they define concept image as ‘the total 
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cognitive structure that is associated with the concept, which includes all the mental 

pictures and associated properties and processes’ (p. 152). They assert that it is built up 

over the years by experience, and that different stimuli at different times can activate 

different parts of the concept image developing them in a way which need not be a 

coherent whole. Vinner (1992) asserts that specific individuals create idiosyncratic images 

and also the same individual might react differently to a concept encountered within 

different situations. In that sense, Tall & Vinner (1981) define the portion of the concept 

image which is activated at a particular time as the evoked concept image. 

In his study, Vinner (1983) identifies students’ concept images for the function concept, 

which may conflict with the most general form of the definition: 

• A function should be given by one rule. If there are two rules, then there are two 

functions.  

• Ignorance of functions given by several rules when their disjoint domains are not 

half lines (e.g. {x ∈  R x 2≤ ) or intervals (e.g. {x ∈  R 1 ≤ x 2≤ ). 

• A function should have a ‘reasonable’ graph. 

• Confusing the definition with one-to-oneness. 

• Every function is one-to-one.  

• Ignorance of the fulfilment of the conditions for functions such as sign or integral 

part function.  

• Ignorance of functions (which are not algebraic) if they are not officially 

recognized by mathematicians (by giving them a name or denoting them by 

specific symbols). 

In the same study, Vinner (1983) gives the main categories for the students’ responses to 

the question of what is the definition of a function: 
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• The textbook definition mixed with elements from the concept image cell. 

Definition by students’ own words.  

• The function as a rule of correspondence.  

• Function as an algebraic expression, a formula, an arithmetical manipulation. Some 

responses influenced by the textbook definition. 

• Some elements of mental pictures e.g. a curved line, correspondence between Venn 

diagrams, etc. as a definition for the concept. 

Students may use their own concept definitions giving idiosyncratic meanings. Tall & 

Vinner (1981) define the personal concept definition as ‘the form of words that the student 

uses for his own explanation of his (evoked) concept image’ (p. 152). It is the personal 

reconstruction by the student of a definition as they suggest. They also call it the “concept 

definition image”.  

Students’ concept images may or may not focus on the definitional properties. Bakar & 

Tall (1992) assert that students’ understanding of the function concept is reliant on the 

properties of the families of the prototypical examples rather than the properties of the 

definition. They claim that everyday concepts such as ‘bird’ are developed by initially 

encountering examples, by focusing on the salient features of the concept and by testing 

other examples against some criteria. They state that ‘when the function concept is 

introduced initially, the examples and non-examples which become prototypes for the 

function concept are naturally limited in various ways, producing conflicts with the formal 

definition’ (p. 50). In their study with A-level students, they found that positive resonances 

with prototypes (e.g. recognizing a circle as a function graph since it is familiar) and 

negative resonances with prototypes (e.g. rejecting a strange looking graph as a graph of a 

function) produced erroneous responses. They also found that students considered the 
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same function as a function when it is in algebraic form but not in the graphical form or 

vice versa. For instance, when students are given the algebraic expression and graph of a 

constant function, they found that 28% of the students considered the constant function as 

a function in its algebraic and graphical form. 29% of the students say the graph 

corresponds to a function but the algebraic expression does not, with only 3% the other 

way round.  

To avoid that, Bakar & Tall (1992) suggest that prototypes should be chosen to be as 

appropriate as possible and a broad spectrum of different representations of function 

should be provided to prevent the identification of any of these representations with the 

function concept (see also Sierpinska, 1992). 

2.1.2 Operational and structural conception of the function concept 

Sfard (1991) discusses structural conception (concepts perceived as objects) and 

operational conception (concepts perceived as processes) of the function concept. She 

suggests that objects have static structures, existing somewhere in space and time, and can 

be manipulated as a whole. Processes, on the other hand, have the potential rather than 

actual entity. In other words, processes are detailed, dynamic or can be considered as a 

sequence of actions. 

Although Sfard (1991) makes such a distinction, she also suggests that operational and 

structural conceptions are in fact complementary. This dual nature provides a deep 

understanding of mathematics. In this duality, the operational conception precedes the 

structural conception, historically and psychologically in relation to particular concepts 

such as ‘number’ and ‘function’. In another paper (Sfard, 1992), she asserts that alternating 

between operational and structural approaches to abstract concepts (just as treating 
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subatomic entities both as particles and waves) is an important skill in mathematics. As an 

example of this dual nature, Sfard (1991) gives the notion of function. She discusses this 

duality by considering both the historical development of the function concept and its 

acquisition by a student (psychologically). She illustrates this dual nature of the function 

concept by giving three representations of a function: graphical, symbolic and as a 

computer program. She asserts that a computer program which computes the value of a 

function for each input of x  corresponds to operational conception since it presents 

computational processes not a unified entity. A graph, on the other hand, corresponds to 

the structural conception and it can be grasped as an integrated whole, as an object. On the 

other hand, the symbolic notation, 4
3xy =  can be considered both operationally and 

structurally. Gray & Tall (1994) introduced the term “procept” to explain this duality 

between process - concept ambiguity. They believe that success in mathematics depends 

on the ability to think in a flexible way using the ambiguity of the notation. For instance, 

for the case of function, this flexibility is present when a student could think of two 

different procedures representing the same function (DeMarois & Tall, 1996, 1999). 

Sfard (1992) asserts that structural approach introducing the function concept with the 

words “A function is a set of ordered pairs such that…” or “A function is a correspondence 

between two sets of elements which…” may be a source of difficulty for students. She 

explains that this is because the function concept is not only abstract for students to create 

meaning for themselves but also the more basic notions of set and element may be too 

fuzzy to be confidently used and operated upon.  

Sfard (1992) found that, for the case of function, the students’ conceptions seem closer to 

operational than to structural even when it is not deliberately promoted. She also found that 

many students developed pseudostructural (neither operational nor structural) conceptions. 
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For instance, students associated functions with algebraic expressions or ignored split-

domain functions. These findings are in parallel with the concept images of students found 

by Vinner (1983), which were mentioned above. 

2.1.3 Multiple representations of functions 

Multiple representations of functions (e.g. graphical, algebraic, tabular representations) 

have been a focus of attention especially with the availability of computers and graphical 

calculators (Confrey, 1994; Kaput, 1992; Keller & Hirsch, 1998; Leinhardt et al., 1990; 

Yerushalmy, 1991, and so on). Research on multiple representations of functions assumed 

that if students could link various representations they would have a better understanding 

of the function concept. The assumption was that part of the meaning is best conveyed by 

each well-chosen representation and links between various representations will aid 

understanding the whole message. Kaput (1988) asserts that making links between various 

representations will reduce the isolation of each topic to be learnt and provide a more 

coherent and unified view (cited in Goldenberg, 1988). Considering this fact, the literature 

focuses on the importance of moving among different representations of functions. 

Yerushalmy (1991) suggests that the ability to operate between several linked 

representation systems is crucial for students to understand a new concept. Keller & Hirsch 

(1998) claim that the connection between a concept and its representation is constructed 

from a student’s preferred representations. They discuss calculus students’ preferences for 

multiple representations of functions by comparing contextualised and non-contextualised 

settings using “Representation Preference Tests”. In their study they found that students 

preferred to use the equation in purely mathematical situations while they preferred to use 

the table or the graph (graph being preferred in high level questions) in contextualised 

tasks, since they try to make sense of the situation by reasoning from the contextual 
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information. As a consequence, this influences their preference for a representation. 

However, when working on a purely mathematical situation they tend to use taught 

recipes. They claim that students shifted from ‘using table of values’ to ‘ using graph’ 

when dealing with a task requiring more interpretation. They also found that students 

preferred to use the graph or the table of values on tasks with less formal, more intuitive 

language, while they preferred to use the equation when formal language is used. This 

shallow symbol manipulation is also found in Monk’s (1992) study. Monk (1992) suggests 

that students rarely assign much meaning to what they are doing. For instance, he uses a 

physical model to represent a functional situation and found that students ‘focus on the 

shape of a graph as having primary significance over particular meaning of the axes’ (p. 

193). Keller & Hirsch (1998) claim that by the availability of multiple representations, 

especially in technology-rich situations, students’ preferences for different types of 

representations become less tied to whether the task is contextualised or not. With multiple 

representations, it may also be possible for students to tie their higher order thinking skills 

in contextualised settings to the purely mathematical situations. However, various studies 

indicate that it is difficult to move flexibly between different representations (e.g. Even 

1998, Yerushalmy 1991, Leinhardt et al. 1990; Hitt, 1998). 

2.1.4 Action-process conception of functions 

Another theoretical framework to investigate students’ learning of the function concept is 

the action-process conception. (Beineke et al., 1992; Breidenbach et al., 1992; Dubinsky  

& Harel, 1992). This theoretical framework is based on APOS theory (acronym for Action, 

Process, Object and Schema) which was first mentioned in Dubinsky (1991) and 

formulated later in Cottrill et al. (1996). (Readers can refer to Czarnocha et al. (1999) for a 

further discussion of the theory or Tall (1999) for a critique of the theory). 
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Breidenbach et al. (1992) assert that understanding the function concept must include a 

process conception. They distinguish between ‘action’ and ‘process’. Action requires an 

explicit recipe or formula, a step-by-step manner. When there is no necessity, for an 

individual, to run all the specific steps in an action, then they suggest that the action has 

been interiorized to become a process. Thus, to have a process conception, one does not 

need an explicit recipe or absolute certainty of the transformation. They suggest that, an 

action is relatively external to our thinking, while a process is more internal. 

Action and process conceptions can be ‘best regarded as opposite ends of a continuum, 

rather than two fully differentiated conceptions’ (Selden & Selden, 1992, p. 3). Students 

who have an action conception of functions are most likely to handle only algebraic 

operations. Students in the middle of the continuum would admit logical branching and 

non-algebraic procedures. Finally, students who have a full process conception might not 

require an explicit algorithm at all (Selden & Selden, 1992).  

Students need to treat functions as objects or entities and as elements of sets, need to act 

upon and transform functions e.g. when finding derivatives and anti-derivatives. However, 

students do not treat functions as objects but rather they carry out operations automatically 

(Selden & Selden, 1992). 

Breidenbach et al. (1992) discusses the following three indications of a better process 

conception. Firstly, students in their study could work not only with functions having 

numbers as the domain and the range but also with, for example, Boolean valued 

functions. The second indication is the students’ ability to imagine certain operations such 

as adding, composing two functions, or reversing a function. The third indication of the 

process conception of function is the ability to de-encapsulate the objects and represent 
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their processes, when dealing with functions as objects (e.g. when functions themselves are 

the elements of the domain of a function). 

2.1.5 A criticism of multiple representations of functions 

The notion of multiple representations of the function concept is criticised by Thompson 

(1994). The following quote is very crucial: 

…the idea of multiple representations, as currently construed, has not been 
carefully thought out, and the primary construct needing explication is the very 
idea of a representation… the core concept of “function” is not represented by 
any of what are commonly called the multiple representations of function, but 
instead our making connections among representational activities produces a 
subjective sense of invariance…it may be wrongheaded to focus on graphs, 
expressions, or tables as representations of function. We should instead focus 
on them as representations of something that, from students’ perspective, is 
representable, such as aspects of a specific situation. (Thompson, 1994, p. 39) 

Thompson (1994) suggests that we should focus on different representations as 

representation of something that is representable (from students’ perspective) rather than 

treating graphs, expressions, or tables as representations of function. He claims that if 

students do not realise that something remains the same as they move among different 

representations then they see each representation as a “topic” to be learned in isolation. As 

Sierpinska (1992) suggests, focusing on different aspects of functions as representing the 

same concept is fundamental for the understanding function. However, this is not easy to 

achieve since students encounter different representations in a variety of contexts in their 

schooling as Eisenberg (1991) mentions. 

As a parallel to Thompson’s (1994) critique, it is worth mentioning DeMarois, McGowen 

& Tall’s (2000a) notion of “function plus”. They suggest that students assign some extra 

properties to the function concept in different contexts. DeMarois, McGowen & Tall 

(2000a) assert that it is not the function concept itself which is studied, but rather it is a 
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special kind of function such as linear, quadratic, trigonometric, given by a formula, 

differentiable etc. Instead of the term ‘function’, they use the term ‘function plus’, where 

‘plus’ refers to the additional properties which change the nature of the function concept. A 

linear function, for instance, is uniquely determined by two pairs of input-output. In other 

words, the whole set of ordered pairs can be determined by the two ordered pairs. They 

mention that the “plus” is extremely subtle if the graph of a function in R  is considered. In 

that case it is assumed that the elements of the domain and range, the real numbers, are 

ordered. This is an extra property that a function may carry. In other words, the concept 

imagery is gained from the examples of “function plus” and this is likely to lead to 

conflicting concept images with the core concept of function. 

2.1.6 Vertical and horizontal growth 

Theoretical frameworks in two different directions, operational and structural conception 

of functions, action-process conceptions on the one hand and multiple representations of 

functions on the other, have been combined together by the work of Beineke et al. (1992), 

Arcavi & Schoenfeld (1992), DeMarois & Tall (1999). Beineke et al. (1992) considers 

horizontal (the breadth of students’ concept image) and vertical growth (the depth of 

students’ formal understanding) of function concept. DeMarois & Tall (1999) explain the 

breadth of students’ concept image by illustrating two dimensions of function concept: ‘the 

links between various representational facets of the function concept and the layers or 

levels of compression in process-object encapsulation’ (p. 257). 
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DeMarois & Tall (1999) found that students enrolled in a developmental algebra course 

improved their flexibility in layers and facets as a result of a function machine approach. 

Interestingly, students are more successful with the symbolic facet compared to graph facet 

both in the pre and post tests. 

2.2 Literature review on categorization 

Mathematically, the category of functions is determined by the definitional properties 

possessed by all the category members. As mentioned in the previous section on the 

literature review on functions, students’ focus of attention is not always on the definitional 

properties. They might consider some aspects as better examples of functions e.g. 

functions which have reasonable graphs (Vinner, 1983). Therefore, students might 

categorize functions in different ways. In that sense, Bakar & Tall (1992) assert that 

Figure 2-2. Possible links between function facets (DeMarois and Tall, 1999, p. 258). 

Figure 2-1. Facets and layers of the function concept (DeMarois and Tall, 1999, p. 258). 
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students’ understanding of the function concept is reliant on the properties of the families 

of the prototypical examples rather than the properties of the definition.  

The next sections of the literature review, therefore, focuses on the issue of categorization. 

It gives a brief account of different views such as prototype and exemplar views of 

categorizations. 

2.2.1 Importance of categorization 

Categorization has great importance for cognition. Lakoff (1987a) emphasizes that  

…there is nothing more basic than categorization to our thought, perception, 
action, and speech. Every time we see something as a kind of thing…we are 
employing categories. Whenever we intentionally perform any kind of 
action…we are using categories. The particular action we perform on that 
occasion is a kind of motor activity…it is in a particular category of motor 
actions…any time we either produce or understand any utterance of any 
reasonable length, we are employing dozens if not hundreds of categories: 
categories of speech sounds, of words, of phrases and clauses, as well as 
conceptual categories (Lakoff, 1987a, pp. 5-6). 

‘Categories allow us to access and use relevant knowledge, even for items we have never 

encountered before’ (Ross & Makin, 1999, p. 205). Rosch (1977) emphasizes that 

categorization is important since it allows organisms to deal with the diversity of stimuli 

and therefore allows them to treat non-identical stimuli equivalently. She states that 

This important function would, thus, seem to be a prime target for theoretical 
accounts – by what principles do humans divide up the world in the way they 
do? Why do we, for example, have “red” and “orange” which are considered 
two different colours and “cats” and “dogs” which are considered two 
different animals while other cultures may cut up these domains in different 
ways? (Rosch, 1977, pp. 1-2) 

Categorization is also important for its implications for reasoning. As Lakoff (1987a) 

suggests categorization is important since our understanding of categorization is closely 

related to our understanding of reasoning that is ‘every view of reason must have an 

associated account of categorization’ (p. 8).  
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2.2.2 Different views of categorization 

There are different views of categorization, that is to say that there are different ways of 

explaining how category knowledge is represented. Early understanding of categorization 

was Aristotelian in nature: ‘Categories are logical, clearly bounded entities, whose 

membership is defined by an item’s possession of a simple set of critical features, in which 

all instances possessing the critical attributes have a full and equal degree of membership’ 

(Rosch, 1975, p. 193). This view is called the classical view of categorization. The 

classical view of categorization explains well-defined categories such as “square”: ‘Any 

closed figure with four equal sides and four equal angles is a square, and all squares have 

these properties’ (Ross & Makin, 1999, p. 208). This view of categorization has 

implications for reasoning. As Lakoff (1987a) suggests the classical view implies a view of 

reason as disembodied symbol-manipulation. The classical view disregards the role of 

imaginative processes such as metaphors, metonymy, and mental imagery. 

Lakoff (1987a) gives a critical review of ideas on categorization which challenged the 

classical view, from the work of Wittgenstein in the 1950’s to the work of Rosch in the 

1970’s. As he points out, the classical view of categorization has been taken for granted 

until the studies of Rosch and her associates. The studies of Eleanor Rosch provided a 

general perspective on categorization. Considering the example from a perceptual domain, 

the concept of colour, Rosch (1975) suggested that categories might have fuzzy 

boundaries. Like the category of colour, some categories are not represented as a set of 

critical features with clear-cut boundaries but rather in terms of a prototype. Rosch 

explains a prototype as the ‘clearest cases’ or ‘best examples’ (Rosch, 1975) or people’s 

judgements of goodness of membership in the category (Rosch, 1978). There are different 
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views on the sources of prototype effects. Lakoff (1987b) gives an account of two common 

interpretations of prototype effects: 

The effects=Structure Interpretation: Goodness-of-example ratings are a direct 
reflection of degree of category membership. 

The prototype=Representation Interpretation: Categories are represented in the 
mind in terms of prototypes (that is, best examples). Degrees of category 
membership for other entities are determined by their degree of similarity to the 
prototype (p. 64). 

In the literature, there are two interpretations of “the prototype=representation 

interpretation”. These are the prototype and exemplar views of categorization as discussed 

by Ross & Makin (1999). Briefly speaking, the distinction between two views is ‘whether 

the knowledge underlying cognitive performance is a general abstraction built up from 

earlier experiences (prototype view) or is a function of more specific instances (exemplar 

view)’ (p. 206). After these views, the rational model, a combination of prototype and 

exemplar views is put forward. Below, a summary account of these three models is given. 

2.2.2.1 Prototype model 

The prototype model assumes ‘a summary representation of the category, called a 

prototype, which consists of some central tendency of the features of the category 

members’ (p. 208). Classification is determined by the similarity to the prototype. The 

following formula from Hampton (1995) formally represent how the similarity to the 

prototype is computed: 

=),( tAS ∑
=

×
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i
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1
)(  

),( tAS : the similarity of t to category A, which for a prototype view means the  

similarity of t to the prototype of A.  

iw : the weight of the ith feature in the prototype. 

itv : the extent to which item t possesses the feature i. (0 ≤ iw , itv  ≤ 1)  

Equation 2-1. Prototype model 
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Ross & Makin (1999) emphasize two important characteristics of the prototype view. First, 

similarity has an additive function across the features. Second, each instance of a category 

is classified with the same single summary representation, the prototype. On the other 

hand, these two characteristics cause some problems. First, instances that are similar to 

studied instances are classified more accurately. Thus, more information than just 

similarity to the prototype is used. Second, not only the central tendency of features, but 

also the range of values of each feature or the correlations of features with each other are 

used in classification. 

2.2.2.2 Exemplar model 

The exemplar model ‘assumes that the categories consist of a set of exemplars and that the 

classification of new instances is by their similarity to these stored exemplars’ (Ross & 

Makin, 1999, p. 212). As Ross & Makin (1999) mention the most prominent exemplar 

model is the “context model” of Medin and Schaffer (1978). In this model, there is not a 

single summary representation as in the prototype model, but a collection of instance 

representations. Ross & Makin (1999) gives the formula, from Medin and Schaffer (1978), 

for the similarity in exemplar model as shown below: 

=),( tAS ∑
∈Aa
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1
  

:),( tAS  the similarity of t to category A.   =),( taS  similarity of t to the exemplar a. 

is : similarity of ith feature. 

Equation 2-2. Exemplar model 

As understood from the formula above, an important characteristic of the exemplar model 

is that the similarity to each exemplar has a multiplicative function.  

Ross & Makin (1999) give various problems of the exemplar model. First of all, exemplar 

model takes away the categoriness of the category. Second, it is questionable that 
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abstractions are never used for classifying an unfamiliar instance. Third, ‘it is not clear 

how to apply the exemplar view to some of the issues in category research, such as 

hierarchical effects or basic levels’ (p. 215). 

Ross & Makin (1999) also discuss that the two characteristics of the exemplar model 

which contrast to the prototype model provide useful information for categorization. First, 

the exemplar model allows for selective use of knowledge. That is, the most relevant 

information arises through focusing on the most similar exemplars. Second, the exemplar 

model takes into account relational information such as features which are possessed by 

more than one exemplar. 

2.2.2.3 Rational model 

Ross & Makin (1999) discuss the rational model, a combination of prototype and exemplar 

view, of Anderson (1991). According to this model, there are miniprototypes of exemplar 

clusters. When a new item is encountered, the model determines whether to add it to an 

existing cluster or start a new cluster. Therefore, the determination is made by calculating 

the similarity of the new item to each of the various existing clusters. Then the new item is 

assigned to the most similar cluster. 

2.2.3 Going beyond prototype effects  

Different views of categorizations discussed so far disregard the problem of which features 

to attend and also the existence of interactional properties. In other words, how particular 

features are chosen in the first place? 

Lakoff (1987b) emphasizes that prototype effects exist but they do not imply anything 

direct about the nature of categorization. He suggests that the existence of prototype effects 

in ungraded and classical categories is due to the idealized character of cognitive models. 
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Although prototype effects indicate nothing direct about the nature of categorization, 

studies of Rosch and her co-workers have been interpreted as if prototype effects reflect 

the nature of categorization (Lakoff, 1987b). The fact that prototype effects indicate 

nothing direct about human reasoning is explained by Osherson and Smith (1981) and 

Armstrong, Gleitman, and Gleitman (1983) by turning back to the classical view of 

categorization. Lakoff (1987b) criticizes their discussion since their explanations do not 

consider metonymic sources of prototype effects: 

‘A major source of such effects is metonymy – a situation in which some 
subcategory or member or submodel is used (often for some limited and 
immediate purpose) to comprehend the category as a whole. In other words, 
these are cases where a part (subcategory or member or submodel) stands for 
the whole category – in reasoning, recognition, and so on. Within the theory of 
cognitive models, such cases are represented by metonymic models’ (p. 71). 

2.2.4 Final remarks 

Two terms, prototype and exemplar, are used to establish the theoretical framework as will 

be discussed in chapter 4. It is useful to mention that the exact mathematical formulas for 

prototype and exemplar models are given just to emphasize the similarities and differences 

between the two models. The main implication from these two numerical models is that 

the prototype model is additive and exemplar model is exclusive. Because the prototype 

model is additive, the more the properties of an instance match the prototype, the more 

likely it is to be considered as a member of the category. However, the exemplar model is 

exclusive since the similarity of an instance has a multiplicative function. A zero entry will 

cause the final result to be zero. Hence if an instance fails to have an important property 

shared by all the exemplars, then it is immediately excluded from the category. 

The theoretical framework does not lead into further discussion on these two models based 

on these formulas. Rather, the aim of focusing on these two views is to make a distinction 
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between prototypes representing general ideas and exemplars referring to more specific 

cases. 
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3 CHAPTER 3 – FINDINGS FROM THE 

PRELIMINARY STUDY  

In this chapter, results from a previous project which was part of the EdD degree are 

reported briefly. Although it is a separate project, it was seen as a preliminary study for this 

thesis. Here, mainly the results from the qualitative data from the interviews will be 

reported since they gave shape to the research questions for this main study. 

3.1 Results from the preliminary study 

The theoretical framework for the preliminary study was based on the notion of an 

‘informally operable definition’ derived from the work of Bills & Tall (1998). They define 

an ‘operable definition’ if students make appropriate logical deductions by focusing on the 

definitional properties. The notion of ‘informally operable definition’ is defined if a 

student could successfully decide whether or not the given item is a function by focusing 

on the definitional properties. The term ‘informal’ refers to the fact that the formal 

definition is not the focus of attention. Rather it is the colloquial definition as given in 

section 1.2.2 on page 5. The term ‘operable’ is used when a student could decide whether 

or not the given item is a function by focusing on the definitional properties. 

Subjects in the preliminary study came from three different grades (grade 1, 2, 3 of high 

school) and three different high schools in Turkey. There were different types of schools; 

one public school, one private school and one selective school. A hundred questionnaires 

were analyzed and based on that analysis eight students were chosen for individual 

interviews. These eight students represented a spectrum of performance in terms of the 

number of correct answers in the questionnaires. 
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3.1.1 Results from the interviews:  

The interviews have two sections. In the first section, students were given various items 

and asked to decide whether or not they are functions and explain how they make their 

decisions. They were given the following: 

• A set of ordered pairs 

• Correspondence between two set diagrams 

• Graphs with coloured domains 

• Equations 

• A verbal statement  

They were also given, in succession, three forms of a constant function: 

• 4=y  

• 4=y  (for all values of x ) 

• 4=y  for 2≥x  

In the second section of the interview, students were asked to explain reasons behind their 

answers to the certain questions in the questionnaire which asked them to decide about 

various forms of functions such as equations, graphs, set diagrams, and set of ordered 

pairs. 

The analysis of the interview data focused on how students make decisions for a variety of 

items. Firstly, different forms of functions are compared by focusing on responses from 

eight students for each form. Secondly, the eight students are compared by focusing on 

each student’s overall responses in the interviews. 
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The first conclusion from the analysis of the interview data is that the students are more 

likely to ‘informally operate’ with the colloquial definition for set-correspondence 

diagrams and sets of ordered pairs than graphs and expressions. Here is a summary for 

how students responded for each form: 

3.1.1.1 Set-correspondence diagrams:  

The eight students in the interviews were given the following set-correspondence 

diagrams: 

       

Figure 3-1. Set-correspondence diagrams in the preliminary questionnaire 

Seven students referred to the definitional properties in the context of set-correspondence 

diagrams. Three of them successfully operated with the colloquial definition. In other 

words, these three students have ‘informally operable definition’ in that context. 

3.1.1.2 Sets of ordered pairs 

The eight students in the interviews were given the following set of ordered pairs: 

Rf →}9,7,3,2,1{: , )}1,9(),1,7(),2,3(),5,2(),3,1{( −=f  

They were asked to explain why they consider or reject it as a function. When deciding 

about this, two students informally operated with the colloquial definition. Three other 

students could focus on the assignment between the domain and the range. 
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3.1.1.3 Graphs 

Students were asked to explain their answers to various graphs in the questionnaires and 

graphs with coloured domain in the interviews such as the following: 

 

Figure 3-2. Coloured-domain graphs in preliminary interviews. 

In the context of graphs, students are more reluctant to refer to the definitional properties. 

Two students could see the role of the domain (which was coloured as red). One student 

used the vertical line test but could only focus on the graph. She could not focus on the 

elements in the domain which were not assigned to any elements in the range. When 

compared to set diagrams and set of ordered pairs, in the context of graphs they easily 

develop prototypical examples. If the presented items do not fit their existing prototypes 

(e.g. graphs in one piece or graphs with smooth shapes) they do not consider them as 

functions. 
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3.1.1.4 Expressions 

The most problematic context was ‘function as an expression’. Students responded to the 

expressions such as: 

• 4=y  

• 4=y  for all values of x 

• 4=y  for x ≥ 2 

• RRf →: , xxf =)(  

• RRf →: , 
x

xf
1

)( =  

• 0=y   (if x  is a rational number) 

• 0=y  (if x  is a rational number)   

      1=y  (if x  is an irrational number) 

None of the students could successfully use the definitional properties when dealing with 

function as an expression. Students had great difficulty especially for the case of constant 

function. None of the students considered all three forms of the constant function as a 

function and gave idiosyncratic meanings to the three forms. 

The second conclusion was based on the comparison of the students for their overall 

responses in the interview. When each student’s response to all questions in the interview 

is considered, two students’ responses were distinguished to be more coherent in focusing 

on the definitional properties for most of the questions. These two students did not rely on 

properties of prototypical examples as the other students often did. 
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3.1.2 Results from the questionnaire 

The main result that concerns our main study is that the frequencies for the correct 

responses for the items of set diagram pictures are remarkably higher than the frequencies 

for the items of graphs, expressions and sets of ordered pairs (Akkoç, 2001). The other 

remarkable result was that the frequency percent of the correct answers for the split-

domain function (which is problematic for students as previous research indicated e.g. 

Vinner, 1983) is higher (72%) than the other expressions. When asked for a definition, 

50% of students referred to the colloquial definition which was given them after they were 

introduced to the formal definition. 40% of them had all the definitional properties of a 

function. 

3.2 Refining the research problem 

The findings from the preliminary study gave shape to the research problem as will be 

discussed in chapter 5 which describes the methodology. The fundamental finding from 

the preliminary study was that more students operated informally with their personal 

concept definitions for the set diagram pictures and sets of ordered pairs compared with 

graphs and expressions. On the other hand, for graphs and expressions, most of the 

students relied on the properties of prototypical examples instead of the definitional 

properties. 

For these reasons, in the main study a more refined analysis was carried out by focusing on 

the distinction between a “prototype” and an “exemplar”. In the Turkish curriculum, 

graphs and expressions appear in various clusters. For instance, trigonometric functions are 

studied as a cluster of related examples at a particular stage of the curriculum (see table 

1.2). Therefore, this has a tendency to emphasise the exemplar view with several distinct 

examples in each cluster rather than a more general prototypical case. 
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4 CHAPTER 4 – THEORETICAL 

FRAMEWORK 

4.1 Overview 

Drawing on the literature on functions and categorization and the results from the 

preliminary study, the theoretical framework aims to investigate students’ understanding of 

the function concept. A theoretical framework is established to investigate the sources of 

difficulties when students deal with different aspects of functions. Thompson’s (1994) 

notion of core concept of function is taken of as a starting point for the theoretical 

framework. Starting with the notion of the core concept of function, the theoretical 

framework takes into account some implications of the research on categorization. It 

makes a distinction between a prototype and an exemplar. Forming a framework by 

making such a distinction between prototype and exemplar of a function, the aim of this 

research is not to validate that these two views of categorization are correct nor to claim 

that human beings categorize things one way or the other. Rather the purpose is to explore 

what happens when students cannot focus on the core concept of function with the help of 

making such a distinction. 

4.2 Departure point: core concept of function 

The departure point for the theoretical framework is Thompson’s (1994) notion of core 

concept of function. As mentioned in section 2.1.5 in the literature review on functions, 

Thompson (1994) critizes the notion of the multiple-representations of the function 

concept and emphasizes a distinction between multiple-representations of functions and 

the core concept of function. He claims that if students do not realise that something 

remains the same as they move among different representations then they see each 
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representation as a ‘topic’ to be learned in isolation. Even when students have various links 

between different representations of functions, overall these links may not imply the core 

concept of function. Therefore, investigating students’ understanding of the function 

concept by focusing on the notion of core concept of function becomes more crucial. 

There are various aspects of a function as given below: 

• Formal set of ordered pair definition* 

• A colloquial definition (in everyday language)* 

• A function box (input-output box) 

• A set of ordered pairs (considered set-theoretically)* 

• A set diagram (two sets and arrows between them)* 

• A table of values 

• Graphs (drawn by hand or computer)* 

• Expressions* 

Starred aspects are the focus of attention in the Turkish context. Therefore, these will be 

focused as the data in this study. 

4.3 Simplicity and complexity of the core concept of function 

Mathematically, the core concept of function has both its simplicity and complexity. The 

words “simplicity” or “simple” will be used in a particular way that may be different from 

their use in everyday language. It is simple in the sense that the properties of it are 

minimal. That is, given two sets, we assign each element in the first set with a unique 
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element in the second set. It is complex in the sense that it has a richness and it gives 

access to a variety of ideas (Akkoç & Tall, 2002). In other words, it acts as a unifying 

concept for different mathematical ideas. Some students focus on the essential of the 

concept definition which is central to the wider complexity. However, for many other 

students, the function concept may continue to be cognitively complicated in the sense that 

poorly connected ideas continue to persist without being coherently linked. For instance, 

some students focus on the details in different contexts, therefore could not overcome the 

complications. 

4.4 Different aspects of functions: Prototypes versus exemplars of functions 

Mathematically, the function concept belongs to a clear-cut category, the category of 

function. Something is either a function or not. However, for students some aspects are 

better examples of functions and these better examples are different for each student. 

Therefore, the category of function might be fuzzy for a student. As discussed in the 

literature review chapter, a category can be represented by prototypes or by exemplars, 

prototypes representing general ideas and exemplars as more specific cases. To explore the 

complications of the function concept, the theoretical framework makes a distinction 

between prototypes and exemplars. 

The fundamental finding from the preliminary study was that the core concept of function 

is not the focus of attention for most of the students when dealing with different aspects of 

functions. Students had much more difficulty with graphs and expressions compared to 

set-correspondence diagrams and sets of ordered pairs. The personal concept definition of 

a student is more likely to be ‘informally operable’ for set-correspondence diagrams and 

sets of ordered pairs than graphs and expressions. This finding was explained by the fact 

that students deal with set diagrams and sets of ordered pairs differently from graphs and 
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expressions. Instead of using the definitional properties, students rely on prototypical 

examples of graphs and expressions. However, when dealing with set diagrams and sets of 

ordered pairs, they do not develop prototypical examples, but are more focused on the core 

concept of function by using the definitional properties. Therefore, in the preliminary 

study, a distinction between using the definitional properties and relying on prototypical 

examples was made. Considering these results, the theoretical framework of this study 

focuses on this distinction from a different point of view. Instead of using the term 

“prototypical example”, the term “exemplar” is used to emphasize that graphs and 

expressions are more specific cases (Akkoç & Tall, 2002). 

Two variations of Prototype=Representation interpretation of prototype effects for 

categorization are chosen to be a starting point to distinguish between set-correspondence 

diagrams and sets of ordered pairs on the one hand, and graphs and expressions on the 

other. As discussed in the literature review in section 2.2.2, one variation of 

Prototype=Representation interpretation suggests that prototype is an abstraction, say a 

schema or a feature bundle. A second variation suggests that the prototype is an exemplar, 

that is, a particular example (Lakoff, 1987b). Instead of using the term ‘prototypical 

examples’ for graphs and expressions as in the preliminary study, function graphs and 

expressions are treated as exemplars, as more specific cases. The aim of making a 

distinction between prototypes and exemplars is not to claim that human beings categorize 

by developing prototypes or exemplars. The reason for starting with a theoretical 

framework which makes such a distinction is that some aspects of functions are taught in a 

prototypical way while some aspects (such as graphs and expressions) are taught in 

clusters. Function graphs and expressions are given to students in different clusters such as 
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linear, polynomial, logarithmic, exponential functions. These are taught as different topics 

at different stages in the curriculum. 

4.5 Core concept of function and prototype – exemplar distinction 

So what is the relationship between the core concept of function and prototype and 

exemplar distinction? As discussed in the preliminary study, students who could not use 

their personal concept definitions, heavily relied on the prototypical examples. As 

discussed in Akkoç & Tall (2002), students’ responses revealed a spectrum of performance 

ranging from students who have strong focuses on the core concept of function to students 

who can hardly refer to definitional properties for different aspects of functions. 

Furthermore, students’ responses to prototypical aspects of functions differed from their 

responses to exemplars. Exemplars of functions caused more complications.  

The theoretical framework of this study considers coherency in recognizing different 

aspects of functions (both prototypes and exemplars) correctly with a strong focus on the 

definitional properties as an indication of the ability of focusing on the core concept of 

function as a cognitive unit. Therefore in the analysis this coherency is considered to 

categorize the performance of students. 
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5 CHAPTER 5 – METHODOLOGY 

5.1 Overview 

This study is followed by a previous Ed.D. project which was considered as a preliminary 

phase to this main study. The aim of the preliminary study was to refine the research 

problem, which was defined roughly in the beginning of the research. Findings from the 

preliminary study, as presented in chapter 3, indicated that students are more likely to 

operate informally with the colloquial definition for particular aspects of functions (set-

correspondence diagrams and sets of ordered pairs). The suggested explanation for this 

phenomenon was that students develop prototypical examples for the other aspects such as 

graphs and expressions instead of referring to the colloquial definition. To investigate the 

phenomenon, the research problem was refined considering the theoretical framework and 

research questions were established.  

The data came from two sources; the questionnaires which were administered to a sample 

of a hundred and fourteen students (in grade 3 in two high schools in Turkey) and the 

interviews with nine students which were selected from the whole sample. These nine 

students to be interviewed were selected to represent deviant cases as well as the typical 

cases. 

5.2 Statement of the research problem 

This research focuses on students’ understanding of the core concept of function as they 

recognize graphs, expressions, set-correspondence diagrams, and sets of ordered pairs as 

functions. The notion of ‘core concept of function’ has great importance for the research 

problem. Many research studies on functions do not make a distinction between the 

concept which is focused in a particular context  (e.g. linear graphs) and the core concept 
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of function. Thompson (1994) emphasizes that ‘the core concept of “function” can not be 

represented by any of what are commonly called the multiple representations of functions’ 

(p. 39). However, when focusing on students’ understanding of the core concept of 

function as a research problem, it is unavoidable to focus on each aspect of function in 

isolation. To be able to investigate students’ understanding of the core concept of function, 

coherency in the way a student reasons about different aspects of functions will be 

considered as an indication of an understanding of the core concept. 

Considering the previous research on functions and the results from the preliminary study, 

a set of research questions and subquestions are established. The main four research 

questions are as follows: 

1. Do students use the core concept of function to recognize a function? 

1a – Do students use the formal definition or colloquial definition or any other method to 

respond to different aspects of functions? 

2. Whatever the response is, what do they do to recognize a function? 

2a –  Which parts of the concept image are evoked for each aspect of a function? 

2b – Does a student use vertical line test for graphs? If so, is the use of vertical line test for 

graphs procedural or conceptual? 

3. How do the various aspects of a function play their part? 

3a – Do students develop clusters of exemplars for graphs and expressions? 

3b – Do students see set-correspondence diagrams and ordered pairs as prototypes to 

abstract definitional properties? If so, how do they use it in a prototypical way? 
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3c – How does a student use the definitional properties for a given aspect of a function? 

3d – How is a student’s overall response to different aspects of functions effected by the 

subtle differences among various aspects?  

4.What do these three research questions imply for students’ understanding of the core 

concept of function? 

4a – How coherent is a student’s response as s/he move from one aspect to the other? 

4b – How do students who give coherent responses to different aspects of functions cope 

with this? 

5.3 Defining the methodology  

This research is mainly qualitative. However, quantitative methods were also combined in 

the research. There are reasons for giving priority to qualitative approach. First of all, the 

nature of the research problem, focusing on the understanding of core concept of function, 

requires a qualitative inquiry. Research questions focus on students’ understanding of the 

core concept of function for various aspects. When doing this, students’ evoked concept 

images for each aspect of function are investigated. Quantitative methods are not seen as 

suitable for that purpose since they focus on the outcome or product rather than the process 

(Denzin & Lincoln, 1994). Furthermore, the process that is focused aims to reveal a 

student’s thinking during reasoning. Therefore, quantitative methods would be insufficient 

for this aim. Also, quantitative methods require predetermined variables and look for 

relations between them. This could not reveal what is in a student’s mind. Sub-questions of 

research question 3, which begin with ‘how’ can not be answered with quantitative 

methods. 
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Although the approach to research is qualitative, quantitative methods are also combined to 

the research. There are various reasons for that.  

The first reason is to select subjects for the interview. Subjects are selected by a 

questionnaire since it allows the researcher to make a selection from a bigger sample. To 

reduce the threats to the validity of quantitative data from the questionnaire, open-ended 

questions are included in the questionnaire. In the questionnaire students are asked to give 

reasons for their answers so that the selection can be based on their reasoning as well as the 

number of correct answers.   

Brannen (1992) discusses two other purposes of combining methods: complementary and 

integrative. For complementary purposes, qualitative and quantitative approaches are used 

in relation to a different research problem or different aspect of a research problem. For 

integrative purposes, qualitative and quantitative approaches focus on the same research 

problem and enhance claims concerning the validity of the conclusions that could be 

reached about the data. In this study, both purposes are relevant. 

For complementary purposes, some of the research questions require quantitative methods 

since they are hypothetical. To explain whether students develop exemplars of function 

graphs, one exemplar cluster, the sine function, is chosen. Various graphs are chosen to be 

either in that cluster or a combination of two exemplars from two different clusters. It was 

hypothesized that if a student has that particular exemplar cluster then s/he would consider 

other graphs as a function which are in that exemplar cluster. For integrative purpose, 

quantitative and qualitative data will be used for triangulation to validate the conclusions to 

be reached. 
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5.4 Method of data collection 

5.4.1 Questionnaire 

Research involves the distribution of a hundred and fourteen questionnaires. The 

questionnaire has two purposes. The first purpose is to select students for the interview. 

The questionnaire was seen to be appropriate for selection since it allows the researcher to 

choose students from a wide population. To be able to make a more precise selection, 

students are asked the reasons for their answers.  

The second purpose of the questionnaire is to obtain a secondary source of data to 

triangulate with the qualitative data. Therefore, some aspects of the research problem could 

be looked at over a bigger sample. 

5.4.1.1 Subjects 

Unlike the preliminary questionnaire (which was administered to grade 1, 2, 3 students in 

high school) the scope of the main study was restricted to only grade 3 of high school (17 

year-old students) since the purpose is not to compare different grades where students have 

different backgrounds on functions. Rather, the focus is on grade 3 students. Ideally the 

aim is to produce a representative sample of students in grade 3 in Turkey. However, only 

two schools were chosen due to the time and sources available. In grade 3, there are three 

different subject groups. The table below shows the distribution of the subjects across 

different subjects and schools: 

 
Maths and 
Science 

Social 
Subjects 

Turkish and 
Mathematics 

Total 

Özel Adana Lisesi 22  – 19 41 
Borsa Lisesi 18 42 13 73 
Total  40 42 32 114 
Table 5-1. Distribution of students in the sample across different subjects and 
schools. 
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The first school, Özel Adana Lisesi, is a private school where parents need to pay tuition 

fees. Private schools are better schools in the sense that they have better resources with 

better teachers. The rate of students going to the university is higher than from public 

schools.  

The second school, Borsa Lisesi, is a public school. Students do not need to pay for tuition 

fees. Compared to the private ones, the population in the classroom is very high and the 

success for entering university is lower. 

In both types of school, teachers follow a national curriculum. Textbooks to follow are 

announced by a board in The Ministry of National Education. Both schools in this study 

follow the same textbook (Demiralp et al., 2000). 

5.4.1.2 Sampling 

Among the probability sampling types, multi-stage sampling is chosen. As Denscombe 

(1998) mentions, multi-stage sampling involves identifying an initial sample (possibly a 

cluster, possibly not) and then choosing a sample from among those in the initial level 

sample. This study focuses on grade 3 students in Turkey who have been studying 

functions for three years. Therefore all subjects were chosen from grade 3 students. 

Students studying three different subjects are chosen to be three clusters and nearly equal 

numbers of students from each cluster are chosen. Two schools mentioned above were 

chosen for practical reasons such as availability in terms of access.  

5.4.1.3 Procedure of administration of the questionnaire 

Students were allowed a time of a whole session  (around 40 minutes) to complete the 

questionnaire. Since I was a full-time student in the UK and since my time available in 

Turkey was limited, a certain number of questionnaires were sent to Turkey by post prior 
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to my arrival to save some time. While administering the rest of the questionnaires by 

myself, I have coded the questionnaires, which were already administered and ready to 

code on my arrival.  

5.4.1.4 Content of the questionnaire  

The questionnaire can be found in Appendix A1. It includes nine question and focuses on 

four different aspects of functions: 

• Graphs 

• Expressions 

• Correspondence between two set diagrams 

• A set of ordered pairs 

Various items of these aspects are included and students are asked whether they are 

functions or not. The reasons behind the answers are also asked after each item. There are 

also questions, which ask students to give a couple of examples of function graphs and 

expressions; a question which asks students to think of a graph and draw if they can see it 

in their minds, a question which asks them to write down an equation that comes to their 

minds. Finally, the last question asks them to write the definition of a function. 

5.4.1.5 Rationale for the questions included in the questionnaire 

Below a rationale is given for explaining why each question is chosen for the 

questionnaire: 

Question1: Give a couple of examples of functions. 

Question 1 is included to investigate which examples come to students’ minds when they 

think about a function and to see whether their evoked concept images are particular 

aspects of a function. 
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Question2: Think of a graph of a function in your mind. 

Can you see it?  

  Yes  ٱ
 No  ٱ

Now draw a sketch of the function here: 

This question is included to reveal each individual student’s typical exemplar of a function 

graph. 

Question 3: Below various graphs are given. Which of the following graphs are graphs of 

a function of x  from R to R? Tick as appropriate. Give reasons for your answers. 

a) 

 

 

b)  

 

 

c) 

  

 

 

d) 

 

e) 
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This question focuses on the issue of exemplars of graphs. Four graphs (3a, 3b, 3c, 3e) are 

chosen to be symbolically in the same exemplar cluster (cluster of xxf sin)( = ): 

xxf sin)( −= , |sin|)( xxf = , yyf sin)( −= , 2sin)( −= xxf . Item 3d is chosen to be a graph 

which is a combination of two exemplars, namely the graph of sine function and a linear 

graph. 

Question4: Below various graphs are given. The domain is coloured as red. Which of the 

following graphs are graphs of a function of x? Tick as appropriate. Give the reason for 

your answer. 

 

a)  
 

b)  

c) 

 

d) 

 

e) 
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Question 4 focuses on the graphs with coloured domains. The aim of this question is to see 

whether or not students consider the role of the domain when recognizing graphs of 

functions. 

Question 5: Write down a function equation which comes into your mind immediately. 

This question is included to see what kind of exemplars of function expressions that 

students have. 

Question 6: Below various equations are given. Which of the following equations 

represent a function of x? Tick as appropriate. Give the reasons for your answers.   

 

a) f : R → R ,   f(x)= 162 −x  

b) f : R → R ,   x 2 +y 2 =1 

c) 5=y  

d) 5=y   (for x≥ 2) 

e) 5=y    (for all values of x) 

f) f : R +  → R ,   f(x)=| x 2 -4| 

g) f : R → R , 

This question includes various expressions which are exemplars and non exemplars of a 

function. Items 6a and 6b are chosen to be expressions which are not functions but similar 

to examples of functions as an expression. Item 6g, which is actually 

)12
2

()( +−= xxsignxf , is included to see whether it is considered as an exemplar. It is 

hypothesized that students might not consider it as a function without the symbolic clue of 

sign. 

Three cases of constant function (6c, 6d, 6e) are also included. The domain of each 

function is not specified. This is done on purpose. By doing that it is aimed to explore the 
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students’ side of the didactical contract about the notion of domain. It was assumed that 

students might or might not need to ask about the domain. 

Question 7: A={1,2,3,4} B={1,2,3}are given. Which of the set of ordered pairs are 

functions from A to B? Tick as appropriate. Give reasons for your answers?  

a) f : A � B    f ={(1,1), (2,1), (3,2), (4,2)} 

b) g : A � B   g ={(1,1), (1,2), (2,2), (3,3), (4,3)} 

c) h :  A � B  h = {(1,1),(2,2)} 

This question is asked to investigate how students deal with sets of ordered pairs and 

whether they can focus on the definitional properties. 

Question 8: Which of the following are functions? Tick as appropriate. Give reasons to 

your answers. 

a) 

 

b)  

  

 

 

c) 

 

c) 
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This question is included to investigate how students deal with set correspondence 

diagrams and whether they can focus on the definitional properties. 

Question9: Give the definition of a function. 

This question is included to investigate students’ personal concept definitions. 

5.4.2 Interview 

The second phase of the data collection involved interviews with nine students. Interviews 

are semi-structured. A set of questions was asked to all students. This standardized 

structure of the interview has the purpose of making comparisons between students for 

their overall successes and making comparisons between different aspects of functions 

(See Appendix B1). 

5.4.2.1 Rationale for interview questions 

The interview schedule can be found in Appendix B1. One set-correspondence diagram 

and a set of ordered pairs, both of which are not functions, were included. It was thought 

that counter examples could assess their understanding better. For graphs and expressions, 

it was thought that a larger number of items should be included. By doing this, it is 

possible to eliminate the exemplar effect from a single item in students’ responses. 

Therefore, it would be more secure to say that students’ responses reveal a coherency if 

they could do so. As in the questionnaire, two types of graphs were included. The first type 

is the graphs defined from R to R. The second type of graph is the coloured-domain graph. 

Part of the x-axis is coloured with red to refer the domain of the function. Some of the first 

type of graph were chosen to be familiar e.g. linear and sine graphs. Some graphs were 

chosen to be non-exemplar graphs. These non-exemplar graphs are not functions. On 

purpose, they were drawn in a way that it is difficult to distinguish if there are two 

corresponding values for a value in the domain. therefore, it was aimed to distinguish 
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students who have a strong focus. Coloured-domain graphs were included to see whether 

students focus on the domain. 

Four of the expressions are the same as in the questionnaire. One expression, “ RRf →: , 

2sin)( −= xxf ”, is included to make a comparison to the results for its graph. 

Finally, transformation from “ RRf →: , 5)( =xf ” to other aspects of functions are asked 

to see the links between different aspects of a function. “ 5)( =xf ” is chosen for a purpose. 

The constant function is a singular case since the term “variable” is often associated with a 

function and the constant function does not vary. It is thought that the transformations from 

the constant function to other aspects might reveal students’ understanding of the constant 

function as well as links between function as an expression and the other aspects.  

5.4.2.2 Selecting students for the interview 

Since I had to administer the questionnaire and carry out the interviews in a limited amount 

of time available while I was in Turkey, I had to choose the sample for the interview 

before the deeper analysis of the questionnaire. Selection of students for the interview is 

based on theoretical sampling. As Mason (1996) asserts theoretical sampling means 

selecting a sample on the basis of their relevance to the research questions and theoretical 

positions to be able to build in certain characteristics or criteria which help to develop and 

test the theory and explanation. Therefore, the criteria for selection are based on the 

research problem under investigation. As discussed in chapter 3, findings from the 

preliminary study indicated that students’ personal concept definitions are more likely to 

be operable for set-correspondence diagrams and sets of ordered pairs than graphs and 

expressions. Students’ responses to the questions in the questionnaire were considered in 

that sense. First, considering the total number of correct answers to questions 3, 4, 6, 7, 8 
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(a total of 24 items), various numbers of correct answers (high, average, and low) were 

selected. Considering these students, reasons behind answers were considered to see 

whether they could use the definition for various aspects of functions. Nine students were 

selected revealing a spectrum of performance. When selecting students, a few deviant 

cases were considered as well as the typical cases supporting the results from the 

preliminary study. As Silverman (2000) mentions deviant cases are the negative instances 

as defined by the theory and they can offer a crucial test of a theory. A typical case could 

be either where a student is successful or unsuccessful for all questions or where a student 

is successful with only set-correspondence diagrams and/or sets of ordered pairs. A deviant 

case is where a student is successful for graphs and/or expressions but not for set-

correspondence diagrams and/or sets of ordered pairs. The table 5.2 below summarises the 

characteristics of the sample for the interview with deviant cases shaded: 

 
Number of 
correct answers 
(among 24 items) 

Set diagrams 
(Four items) 

Ordered pairs 
(Three items) 

Graphs  
(Ten items) 

Expressions  
(Seven items) 

Ali 18 
CD for non-
function items 

CD for two 
items 

CD for coloured 
domain 
items/Finding 
formulas 

No 

Aysel 17 No explanation No explanation CD for some items 
No 
explanation 

Ahmet 14 CD CD CD/VLT CD (wrong) 

Arif 13 CD 
SD/CD (wrong 
for some) 

CD for some CD for some 

Cem 12 No explanation No explanation VH 
No 
explanation 

Belma 9 CD SD No explanation 
No 
explanation 

Belgin 8 CD 
CD for 
some/CD 
wrong 

CD for some 
No 
explanation 

Deniz 5 No explanation No explanation VH 
No 
explanation 

Demet 0 No explanation No explanation No explanation 
No 
explanation 

Table 5-2. Number of correct answers and a spectrum of different responses to reasons behind 
answers for students selected for the interview. 
Abbreviations: CD: Colloquial definition, SD: Set diagram (drawing a set diagram), VLT: Vertical Line Test, 
VH: Visual hints. (Shaded rows stand for the deviant cases). 
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Aysel was considered as a deviant case since she used the colloquial definition only for 

graphs but not set diagrams and ordered pairs. Arif was also considered as a deviant case 

since he used the colloquial definition wrongly for some of the set of ordered pair items 

but used correctly for some of the graph and expression items. Similarly, Belgin used the 

colloquial definition wrongly for the set of ordered pairs and used the colloquial definition 

for some of the graph items.  

A detailed account of how each student responded to each item is given in Appendix B2. 

The reader may note that the names begin with letters A, B, C, D. This relates to the choice 

of pseudonyms at a later stage of analysis which will be discussed in chapter 8. 

5.4.2.3  Background of the students 

The table below shows some background information of students involved in the 

interviews.  

Name Grade Subject School 
Ali 3 Maths and Science  Adana Lisesi 
Aysel  3 Maths and Science Adana Lisesi 
Ahmet 3 Maths and Science  Adana Lisesi 
Arif  3 Turkish and Maths Borsa Lisesi 
Belma 3 Turkish and Maths  Borsa Lisesi 
Belgin 3 Turkish and Maths  Borsa Lisesi  
Cem  3 Social Subjects Borsa Lisesi 
Demet  3 Social Subjects Borsa Lisesi 
Deniz  3 Social Subjects Borsa Lisesi 
Table 5-3. Background of students in the interview 

Each student’s responses to the questions in the questionnaire can be found in Appendix 

B2. 

5.4.2.4 Interviewing technique 

Interviews were semi-structured (See Appendix B.1). All questions are asked to all nine 

students. After each question, follow-up questions are asked to reveal the reasons behind 



Chapter 5 – Methodology 

52 
 

students’ answers. Some features of clinical interviewing method are considered. First of 

all, clinical interviewing aims to understand the underlying thinking of a child, to enter the 

child’s mind rather than evaluating in the same way that a test evaluates. Therefore, in 

clinical interviews questions like “How did you do this?” and “Why?” are asked. 

Questions are asked from a student-centred point of view e.g. “What is your way of adding 

the numbers?” (Ginsburg, 2000). Therefore, in this follow-up questioning part of the 

interview, a “thinking aloud” approach is used. The following phrases are emphasized in 

the beginning of the interview: 

“I want you to think aloud, and tell me what is in your mind. It is not important 

to answer right or wrong. Try to tell me what is going on in your head”. 

These phrases are also emphasized before each question. If students could not say 

anything, they are allowed a sufficient time to think. 

A second feature of a clinical interviewing technique, strength of conviction, is also taken 

into account. As Ginsburg (2000) discusses, Piaget pointed out that children tend to say 

what they believe the adult wants to hear. Piaget’s methods of “repetition” and 

“countersuggestion” aim to obtain a strength of conviction (Ginsburg, 2000). Therefore, 

the phrases like “It is not important to answer right or wrong. Try to tell me what is going 

on in your head” are repeated throughout the interview. If a student explains successfully 

why a given item is a function or not, s/he is asked a non-function item as a 

countersuggestion. Also, when a student gives an explanation to answer successfully, s/he 

is asked the same question from a different angle with a counter-suggestion to his/her 

response to obtain persistency in the responses. If a student seems to be reluctant, they are 
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encouraged to tell what comes into his/her mind, right or wrong. If s/he still does not 

respond, then the next question is asked and that question is asked later on again. 

5.4.2.5 Procedure of interviewing 

In the first school, Özel Adana Lisesi, three students were interviewed. In the second 

school, Borsa Lisesi, six students were interviewed. Students to be interviewed were 

informed on the day of the interviewing. They were interviewed during the Physical 

Education and Religious Education sessions. Permission was obtained from their teachers. 

All interviews were audio taped. Permissions from the students were obtained. All of the 

students accepted being recorded. However, it was observed that the students in the second 

school, Borsa Lisesi, were a bit anxious about the recording while the other three students 

in Özel Adana Lisesi were very relaxed. 

5.5 A framework for analysis 

The analysis is carried out in two parts. Firstly, how students as the whole sample deal 

with different aspects of functions is investigated. To do that, descriptive statistics are used 

to give the percentages of correct answers to the questions and the percentages of different 

kinds of explanations they give for their answers. These results from the questionnaires are 

presented in chapter 6. Secondly, the main data analysis will focus on nine students who 

were chosen for the individual interviews. The aim is to categorize their overall responses. 

This will be done by preparing a grid which summarizes their responses to different 

questions in the interview. Responses of all students to different aspects of functions is 

summarized in chapter 7. These results will be considered to prepare the grid so that a 

categorization is made by focusing on each student’s overall responses. 
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5.6 Validity and reliability 

In this section, the validity and reliability of the questionnaire and the interview are 

discussed. Bell (1999) defines reliability as ‘the extent to which a test or procedure 

produces similar results under constant conditions on all occasions’ (p. 103). As Anderson 

& Arsenault (1998) emphasize, the data in educational research must be reliable if the 

analysis is to have any meaning. Validity is the extent to which an item measures or 

describes what it is supposed to measure or describe (Bell, 1999). Although unreliability 

implies lack of validity, reliability does not imply validity. Anderson & Arsenault (1998) 

discuss two kinds of validity: internal and external validity. Internal validity is related to 

the truthfulness of the results. External validity is concerned with the generalizability of the 

obtained results. 

If we consider the reliability of the questionnaire, as mentioned by Anderson & Arsenault 

(1998), most straightforward multiple-choice questions are answered consistently therefore 

would have higher reliability. In questions 3, 4, 6, 7, 8, there are different kinds of 

multiple-choice items which ask students to choose from three options: “function”, “not a 

function”, “I don’t know”. Although data from multiple-choice items are considered to be 

reliable, they may lack validity (Anderson & Arsenault, 1998). To increase the validity of 

the questionnaire, open-ended sections are included. Students are asked to give reasons for 

their answers. However, including a lot of open-ended sections may result in a high no-

response rate. 

One other aspect of validity of this study is concerned with the curriculum. In the 

curriculum, students may not have met with the type of questions given in the 

questionnaires and interviews. These questions ask them to reason about an item to decide 

whether or not it is a function. In the curriculum the emphasis is on the mechanics of the 
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procedures rather than the meaning of the function concept. However, for the purpose of 

this research, students were asked these questions to investigate whether they can focus on 

the definitional properties. At the same time, the unfamiliarity of the questions they needed 

to answer is taken into account when considering the validity of the results. To do that, 

students are asked why they responded the way they did both in the questionnaires and 

interviews. 

One concern about the validity of the questionnaire arose through a weakness in design. A 

set correspondence diagram in question 1 and a set of ordered pairs in question 2 are 

presented to students. However, both of them are non-function items with the same reason 

(an element in the domain is assigned to more than one element in the range). Therefore, it 

is difficult to investigate whether a student checks all parts of the colloquial definition. 

This could be eliminated in a future study by including items which are functions and 

items which are not functions with a different reason (e.g. where not all of the elements in 

the domain are assigned to an element in the range). 

The coding in the analysis in this research was checked in collaboration with my 

supervisor. The reliability of the results can be tested by analyzing and coding students’ 

responses by multiple readers. It should have been further tested by analysis and coding by 

multiple readers, but this was not possible in the given time-frame. 
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6 CHAPTER 6 – RESULTS FROM THE 

QUESTIONNAIRES 

Although the main purpose of the questionnaire was to choose students for individual 

interviews, the questionnaire is also used to investigate how the whole sample of students 

deal with functions. This chapter gives a brief account of the procedure of coding and the 

results from the questionnaire. The results have two parts. In the first part, there are results 

from the closed-ended questions. In the second part, there are results for the open-ended 

questions. Various categories emerged from the responses to the open-ended questions. 

Later on, they are considered together with the categories from the responses in the 

interview. Both sets of categories are considered together to form a grid which reflects 

students’ overall responses to various aspects of functions. 

6.1 Coding the questionnaire 

There are two kinds of questions in the questionnaire; closed and open-ended. Closed 

questions are pre-determined. For open-ended questions the responses are put into various 

categories. 

6.1.1 Pre-coded closed questions:  

The questionnaire can be found in Appendix A1. It involves twenty-four closed questions 

(3a, 3b, 3c, 3d, 3e, 4a, 4b, 4c, 4d, 4e, 6a, 6b, 6c, 6d, 6e, 6f, 6g, 7a, 7b, 7c, 8a, 8b, 8c, 8d). 

For each of these items students are asked to tick from the following: 

  Function  ٱ
 Not a function  ٱ

 I don’t know  ٱ

The responses for these items are coded to SPSS as nominal variables: 

Function/Not a function/I don’t know/No response 
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6.2 Results from the questionnaire 

6.2.1 Question 1 

In question 1, students were asked to give a couple of examples of functions. Mostly, they 

referred to functions as formulas, graphs and set-correspondence diagrams. Table 6.1 

below summarizes their responses: 

Responses to question 1

25 21.9

21 18.4

18 15.7

12 10.5

9 7.8

5 4.3

3 2.6

21 18.4

114 100.0

Writing formulas

Drawing graphs

Giving set correspondence diagram

Writing composition of functions

Giving examples of one-to-one and onto functions

Writing notations such as f(x), gof(x)

Other

No responses

Total

Frequency Percent

 
Table 6-1. Frequency counts and percentages of categories of examples of functions 
given by students in question 1 in the questionnaire. 

6.2.2 Function as a graph 

6.2.2.1 Question 2 

In question 2, students are asked to think of a graph and to draw it if they can see it in their 

minds. In the Table 6–2 below, frequencies for the categories of students’ responses are 

given: 
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Responses to question 2

33 28.9

10 8.8

8 7.0

16 14.0

47 41.2

114 100.0

Parabola

Straight line

Polynomial

Other

No graph

Total

Frequency Percent

 
Table 6-2. Frequencies and percentages of categories of examples of graphs 
given by students in question 2 in the questionnaire. 

Assuming the fact that people are more likely to list more representative examples when 

asked to draw examples of category members (Lakoff, 1987a), it can be said that parabola, 

straight line and polynomial graphs are more representative examples of graphs for 

students. 

6.2.2.2 Question 3 

In Question 3 students are presented with five graphs. Frequencies of the answers for each 

item are presented in Table 6–3 below. In each cell the first row represents the percentages 

(with frequencies in parenthesis) of answers. The second row represents the percentages 

(with frequencies in parenthesis) of students (in the whole population) who give an 

explanation with their answers. Correct answers are marked in bold: 
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      Frequency %       (count) 
         Explanation[% (count)] 
 
 
N=114 
Question 3 
 

Function Not a function I don’t know 
No 
response  

3a)   

    

47.4% (54) 
 
[30.7% (35)] 

14% (16) 
 
[11.4% (13)] 

37.7% (43) 
 

0.9% (1) 
 

3b)    

 

22.8% (26) 
 
[11.4% (13)] 

25.4% (29) 
 
[15.8% (18)] 

50% (57) 
 

1.8% (2) 
 

3c)     

           

21.9% (25) 
 
[8.8% (10)] 

27.2% (31) 
 
[18.4% (21)] 

50% (57) 
  

0.9% (1) 
 

3d) 

29.8% (34) 
 
[13.2% (15)] 

17.5% (20) 
 
[11.4% (13)] 

49.1% (56) 
 

3.5% (4) 
 

3e)   

 

13.2% (15) 
 
[4.4% (5)] 

39.5% (45) 
 
[25.4% (29)] 

43.9%(50) 
 

3.5% (4) 
 

Table 6-3. Percentages and frequencies of answers to graphs in question 3. 

The results from the questionnaire indicate that the percentages of correct answers to 3a 

(graph of xxf sin)( −= , which was chosen as an exemplar), is the highest (47.4% - 54) 

among other graphs. The percentages decline to 22.8% (26), 27.2% (31), 29.8% (34) for 
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the other graphs in 3b, 3c, 3d. The lowest percentage is for 3e, 13.2% (15). These results 

are consistent with the hypothesis that the graph of xxf sin)( −=  is a more central 

exemplar than the graph of 2sin)( −= xxf . A more detailed analysis of the responses given 

for these two graphs is made in the next chapter where the results from the interviews are 

presented. 

6.2.2.3 Reasons for responses to question 3 

The following categories emerged from students’ explanations for their responses to items 

3a, 3b, 3c, 3d, 3e in question 3. Examples of students’ verbal explanations are given for 

each category: 

• Colloquial definition: Use of the colloquial definition. Making statements to check 

the definitional properties: 

“No element is assigned to more than one element”, “for x  ∈ R, y takes a value 
between 1 and -1” (3a). 

• Colloquial definition wrongly used: Either recalling the colloquial definition wrongly 

or using it in a wrong way: 

“Same values takes different values. For instance, it should be, f(5π)=f(2π)” (3d). 

• First impression/general appearance of the graph: 

“this shape doesn’t look like a function”, “a graph can not be like this” (3a). 

“that’s a wrong graph”, “I haven’t seen such a graph like this before, like mountains 
in a row, like Taurus Mountains” (3d). 

• Specific visual hints: 

“it intersects x  axis at various places”, “function can not be negative on y axis” (3a). 

“A function can’t go only upwards” (3b). 
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“it’s (the graph) on the same surface (probably referring to y axis)” (3c). 

“it’s not a function since it has nothing related to x  axis”, “it doesn’t touch to x  
axis”, “it only passes through y axis” (3e). 

• Other 

• No explanation: Responses like ‘I don’t like maths’ and ‘no responses’ are 

considered in this category. 

Students’ explanations are presented in detail in Appendix A2.1. The distribution of 

students’ explanations for their answers across the categories above are presented in the 

table below: 

Frequencies of categories of reasons for answers to 3a, 

3b, 3c, 3d, 3e
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Table 6-4. Frequencies of categories of reasons for answers to 3a, 3b, 3c, 3d, 3e. 

As seen in the table above, very few students refered to the colloquial definition. The table 

below summarizes students explanations for the correct answers: 
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Frequency percents of categories of reasons for correct answers to 

3a, 3b, 3c, 3d, 3e
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Table 6-5. Frequencies of categories of reasons for correct answers to 3a, 3b, 3c, 3d, 3e. 

As seen in the table above, not all students who correctly gave the correct answers used the 

colloquial definition. Some of them focused on these graphs as exemplars by relying on 

their general appearances or specific visual hints. None of the students used the colloquial 

definition to recognize the graph in 3e (graph of 2sin)( −= xxf ) as a function. Most of the 

students correctly rejected it as a function did so because of the specific visual hints e.g. 

the graph being under the x-axis. 

Those students who answered incorrectly mostly relied on the general appearances of the 

graphs and especially the specific visual hints as seen in the table below: 
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Table 6-6. Frequencies of categories of reasons for incorrect answers to 3a, 3b, 3c, 3d, 
3e. 

6.2.2.4 Question 4 – Coloured-domain graphs 

In question 4, there are graphs with domains which are coloured as red. Table 6–7 below 

shows the frequencies (of responses) for each item. In each cell the first row represents the 

percentages (with frequencies in parenthesis) of answers. The second row represents the 

percentages (with frequencies in parenthesis) of students (in the whole population) who 

give an explanation with their answers. The correct answers are marked in bold: 
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               Frequency % (count) 
               Explanation[% (count)] 
 
 
Question 3 
N=114 

Function 
Not  
a function 

I don’t 
know 

No 
response 

4a)  

7.9% (9) 
[0% (0)] 

50.9% (58) 
[30.7% (35)] 

 
39.5% 
(45) 
 

1.8% (2) 

4b)  

42.1% (48) 
[28.1% (32)] 

20.2% (23) 
[12.3% (14)] 

35.1% 
(40) 

2.6% (3) 

4c)  

 

39.5% (45) 
[22.8% (26)] 

12.3% (14) 
[7% (8)] 

39.5% 
(45) 

8.8% 
(10) 

4d)  

15% (17) 
[5.3% (6)] 

32.7% (37) 
[16.8% (19)] 

49.6% 
(56) 

2.7% (3) 

4e)        

33.3% (38) 
[14.9% (17)] 

22.8% (26) 
[16.7% (19)] 

43.0% 
(49) 

0.9% (1) 

Table 6-7. Percentages and frequencies of answers to graphs in question 4. 

6.2.2.5 Reasons for responses to question 4 

The following categories emerged from students’ explanations for their responses to items 

4a, 4b, 4c, 4d, 4e in question 4. Examples of students’ verbal explanations are given for 

each category: 
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• Colloquial definition: 

“an element in the domain can not be assigned to more than one element in the 
range” (4a). 

“there can’t be elements left in the domain” (4b). 

“some elements of the domain do not have corresponding values” (4e). 

• Colloquial definition wrongly used: 

“It’s a function since all elements are assigned to each other” (4b). 

“it’s not a function since elements in the domain are assigned to more than one 
element” (4c). 

“all of the elements in the domain are assigned to an element” (4d). 

• First impression/general appearance of the graph: 

“it looks like familiar” (4c). 

“there can’t be a function like this, like a graph of a beating heart” (4d). 

• Specific visual hints: 

“the graph doesn’t pass through from integers on the x  axis such as 3 or 4” (4d). 

• Other 

• No explanation 

Examples of students’ verbal explanations are presented in detail in Appendix A2.2. The 

distribution of students’ explanations for their answers across the categories above are 

presented in the table below: 
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Table 6-8. Frequencies of categories of reasons for answers to 4a, 4b, 4c, 4d, 4e. 

The results indicate that students tend to reason about graphs by looking at their general 

appearances or specific visual hints but not using the colloquial definition even when the 

domain is mentioned. As seen in the table below, even the students who gave correct 

answers relied mostly on the general appearances of the graph or specific visual hints: 
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Table 6-9. Frequencies of categories of reasons for correct answers to 4a, 4b, 4c, 4d, 4e. 
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Students’ responses in the interviews reveal a more deeper understanding of their 

reasoning about coloured-domain graphs as will be discussed in the next chapter. 

6.2.3 Function as an expression 

6.2.3.1 Question 5 

In question 5, students are asked to write down a function equation which comes into their 

minds immediately. The following categories emerged from students’ responses: 

Responses to question 5

27 23.6

26 22.8

10 8.7

51 44.7

114 100.0

Polynomial expressions

Linear expressions

Other

No response

Total

Frequency Percent

 
Table 6-10. Frequencies and percentages of categories of the examples of expressions 
given by students in question 5 in the questionnaire. 

Assuming the fact that people are more likely to list more representative examples when 

asked to draw examples of category members (Lakoff, 1987a), it can be said that 

polynomial and linear expressions are more representative examples of expressions. 

6.2.3.2 Question 6 

In Question 6 students are presented with various expressions. Frequencies of answers for 

each item is presented in Table 6–11 below. In each cell the first row represents the 

percentages (with frequencies in parenthesis) of answers. The second row represents the 

percentages (with frequencies in parenthesis) of students (in the whole population) who 

give an explanation with their answers. The correct answers are marked in bold: 
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                      Frequency % (count) 
                  Explanation[%(count)] 
 
N=114 
Question 6               

Function 
Not a 
function 

I don’t know 
No  
response 

6a) RRf →:     16
2

)( −= xxf   
44.2% (50) 

[19.5% (22)] 

10.6 (12) 

[8% (9)] 
42.5% (48) 2.7% (3) 

6b) RRf →: , 122 =+ yx  
34.2 (39) 

[14.9% (17)] 

18.4 (21) 

[7.9% (9)] 
42.1% (48) 5.3% (6) 

6c) 5=y  
24.8% (28) 

[16.8% (19)] 

35.4% (40) 

[14.2% (16)] 
37.2% (42) 2.7% (3) 

6d) 5=y   (for x≥ 2) 
21.9% (25) 

[9.6% (11)] 

24.6% (28) 

[10.5% (12)] 

50.9% (58) 

 
2.6% (3) 

6e) 5=y  (for all values of x) 
21.9% (25) 

[11.4% (13)] 

20.2% (23) 

[7.9% (9)] 
52.6% (60) 5.3% (6) 

6f) RRf →+
: , 

=)(xf | 42 −x | 

46.5% (53) 

[23.7% (27)] 

5.3% (6) 

[0.9% (1)] 
43.0% (49) 5.3 (6) 

6g) RRf →:  

 

47.4% (54) 

[28.1% (32)] 

4.4% (5) 

[1.8 (2)] 
38.6% (44) 9.6 (11) 

Table 6-11. Percentages and frequencies of answers to expressions in question 6. 

6.2.3.3 Reasons for responses to question 6 

Students’ explanations for their answers revealed different categories from those for the 

graph questions. The distribution of students’ explanations for their answers across the 

categories and examples of students’ written explanations are presented in Appendix A2.3. 

The results indicate that students’ explanations are very complicated. Very few of them 

used the colloquial definition for their answers. 



Chapter 6 –  Results from the questionnaires 

69 
 

Very few students (10.6%, 18.4%) rejected the two non function expressions, “ RRf →: , 

16
2

)( −= xxf ” and “ RRf →: , 122 =+ yx ”, as a function. Very few of them used the 

colloquial definition as an explanation. For “ RRf →: , 16
2

)( −= xxf ”, only 5 out of the 

12 students (41.7% of those who correctly rejected it as a function) used the colloquial 

definition. Similarly, for “ 122 =+ yx ”, 2 out of the 21 students (9.5% of those who 

correctly rejected it as a function) used the colloquial definition. Students who used the 

colloquial definition to reject those two expressions, gave some other explanations based 

on specific hints such as the existence of a square root in an expression or absence of “f” at 

the front. Reasons for incorrect answers for “ 122 =+ yx ” are different than “ RRf →: , 

162)( −= xxf ”. Among those students who incorrectly considered “ RRf →: , 

162)( −= xxf ” as a function, 56% (28 out of 50) of them gave no explanation and 16% (8 

out of 50) of them found specific values for x  and/or )(xf . 25.6% (10 out of 39) of them 

considered “ 122 =+ yx ” as a function since it is an equation and has an unknown and 

10.3% (4 out of 39) of them because of specific hints such as the existence of “ RRf →: ”. 

Although the percentages of correct answers for 6f and 6g are higher than the other 

expressions, some students focused on them as exemplars. 46.5% (53 out of 114) of the 

students considered 6f as a function. 7.5% (4 out of 53) of them considered it as a specific 

example, namely the absoloute value function. 47.4% (54 out of 114) of the students 

correctly considered 6g as a function. 7.4% of those (4 out of 54) considered it as a split-

domain function and 16.7% (9 out of 54) as a signum-function. 

6.2.4 Function as a set of ordered pairs – Question 7 

In Question 7, students are presented with three sets of ordered pairs. Frequencies of the 

answers for each item are presented in Table 6–12 below. In each cell the first row 
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represents the percentages (with frequencies in parenthesis) of answers. The second row 

represents the percentages (with frequencies in parenthesis) of students (in the whole 

population) who give an explanation with their answers. The correct answers are marked in 

bold: 

                Frequency % (count) 
             Explanation[%(count)] 
 
N=114 
Question 7  

}4,3,2,1{=A  
}3,2,1{=B              

Function  
Not  
a function  

I don’t  
know  

No 
response  

7a) BAf →:  

)}2,4(),2,3(),1,2(),1,1{(=f  

47.4% (54) 
[37.7% (43 ] 

10.5% (12) 
[3.5% (4) ] 

37.7% (43) 4.4% (5) 

7b) BAg →:  

)}3,4(),2,2(),2,1(),1,1{(=g  

31.6% (36) 
[19.3% (22) ] 

27.2% (31) 
[22.8% (26)] 

38.6% (44) 2.6% (3) 

7c) BAh →: , )2,2(),1,1{(=h  
43.9% (50) 
[29.8% (34)] 

14% (16) 
[7.9% (9) ] 

37.7% (43) 4.4% (5) 

Table 6-12. Percentages and frequencies of answers in question 7. 

6.2.4.1 Reasons for the responses to question 7 

The following categories emerged from students’ explanations for their responses to items 

7a, 7b, 7c in question 7. Examples of students’ verbal explanations are given for each 

category: 

• Colloquial definition: 

“it’s not a function, it’s a relation, 1 has two different values” (7b). 

• Colloquial definition wrongly used: 

“for a value of x  in A, there is a value in B. There aren’t two elements for the same 
value” (7c). 

• Specific visual hints: 

“it’s a function, since it says A →B” (7b), “it’s a function, since it says A →B” (7c). 
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• One to one: 

“The set of ordered pair is a one to one function” (7c). 

• Drawing a set diagram: Drawing set diagram pictures for the given sets of ordered 
pairs.  

• Other 

• No explanation 

Examples of students’ verbal explanations are presented in detail in Appendix A2.4. The 

distribution of students’ explanations for their answers across the categories are presented 

in the table below: 

Frequencies of categories of reasons for answers 

to 7a, 7b, 7c

0
10
20
30
40
50
60
70

7a
(1

14
 re

sp
on

se
s)

7b
(1

14
 re

sp
on

se
s)

7c
(1

14
 re

sp
on

se
s)

Categories of reasons

F
re

q
u
e
n
c
y
 p

e
rc

e
n
t Colloquial definition

Colloquial definition
wrongly used
Specific visual hints

One to one

Drawing a set
diagram
Other

No explanation

 

Table 6-13. Frequencies of categories of reasons for answers to 7a, 7b, 7c. 

The results indicate that students are more likely to use the colloquial definition for the sets 

of ordered pairs compared to the function graphs and expressions. The table below 

illustrates the reasons behind the correct answers: 
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Table 6-14. Frequencies of categories of reasons for correct answers to 7a, 7b, 7c. 

The results indicate that percentages of correct answers to the function and non-function 

sets of ordered pairs are different. It is higher for those ordered pairs which are functions 

than those which are not. Of those giving explanations, a higher percentage of students 

give a correct explanation for the non-function items (61.3%, 44%) than for the function 

item (28%).This might be because some students might have considered the first set of 

ordered pairs, BAf →: , )}2,4(),2,3(),1,2(),1,1{(=f , as a function considering that any set of 

ordered pair is a function. On the other hand, rejecting non-function items as functions is 

more difficult since it requires checking the definitional properties.  

The table below illustrates the reasons behind the incorrect answers: 



Chapter 6 –  Results from the questionnaires 

73 
 

Frequencies of categories of reasons for incorrect answers to 

7a, 7b, 7c

0

10

20

30

40

50

60

70

80

7a(12 incorrect

responses)

7b(37 incorrect

responses)

7c(50 incorrect

responses)

Categories of reasons for answers

F
re

q
u
e
n
c
y
 p

e
rc

e
n
t

Colloquial definition

Colloquial definition wrongly
used

Specific visual hints

One to one

Drawing a set diagram

Other

No explanation

 

Table 6-15. Frequencies of categories of reasons for incorrect answers to 7a, 7b, 7c. 

As seen in the table above, those students, who answered incorrectly, tended to use the 

colloquial definition wrongly rather than focusing on the specific visual hints. 

6.2.5 Function as a set-correspondence diagram – Question 8 

In Question 8, students are presented with four items of set-correspondence diagrams. 

Percentages for each item are presented in Table 6–16 below. In each cell the first row 

represents the percentages (with frequencies in parenthesis) of answers. The second row 

represents the percentages (with frequencies in parenthesis) of students (in the whole 

population) who give an explanation with their answers. The correct answers are marked in 

bold: 
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             Frequency % (count) 
         Explanation[% (count)] 
 
 
 
N=114 
Question 8               

Function 
Not a 
function 

I don’t know 
No 
response  

  8a)   

67.5% (77) 
[50.9%(58)] 

7.9% (9) 
[4.4% (5)] 

21.9% (25) 2.6% (3) 

  8b)  

64% (73) 
[39.5%(45)] 

3.5% (4) 
[1.8% (2)] 

26.3% (30) 6.1% (7) 

  8c)  

27.2%(31) 
[20.2% (23] 

39.5% (45) 
[28.1% (32)] 

28.1% (32) 5.3% (6) 

8d)  

66.7% (76) 
[47.4%(54)] 

6.1% (7) 
[3.5% (4)] 

23.7% (27) 3.5% (4) 

Table 6-16. Percentages and frequencies of answers in question 8.  

Results as presented in table above indicate that frequencies of correct answers to set 

diagrams which are functions are higher than the frequencies of correct answers for the 

other aspects of functions, 67.5%, 62.3%, 66.7%. However, the percentages of correct 

answers to the set diagram which is not a function declines to 39.5%. If we look at 

incorrect answers, it can be seen that the percentage for the non-function set diagram is 

higher than the function set diagrams.  
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6.2.5.1 Reasons for the responses to set diagrams - question 8 

The following categories emerged from students’ explanations for their responses to items 

8a, 8b, 8c, 8d in question 8. Examples of students’ verbal explanations are given for each 

category: 

• Colloquial definition: 

“an element in A can not be assigned to more than one element in B” (8c). 

• Colloquial definition wrongly used: 

“(it’s a function) an element in the domain can be assigned to more than one element 
in the range” (8c). 

• Specific visual hints: 

“(it’s a function) names are connected to numbers” (8a). 

“(it’s a function) since two lines can intersect with each other” (8b). 

• One to one and onto-ness: 

“it’s an onto function”, “it is a one-to-one and onto function” (8c). 

• Constant function: In this category, there are students who considered the set 

correspondence diagram in 8d as a constant function. 

• Other 

• No explanation 

Examples of students’ verbal explanations are presented in detail in Appendix A2.5. The 

distribution of students’ explanations for their answers across the categories are presented 

in the table below: 
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Table 6-17. Frequencies of categories of reasons for answers to 8a, 8b, 8c, 8d. 

These results indicate that the percentages of the students who used the colloquial 

definition for their explanations for the set-correspondence diagrams are the highest among 

other aspects of functions. 

The table below illustrates the reasons behind the corrects answers: 
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Table 6-18. Frequencies of categories of reasons for correct answers to 8a, 8b, 8c, 8d. 
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For the non-function set diagram item, 60% of the correct answers are followed by an 

explanation based on the colloquial definition. On the other hand, this percentage declines 

to (31.2% for 8a, 23.3% for 8b, 19.7% for 8d) for the set diagrams which are functions. 

As seen in the table below, students who gave incorrect answers mostly used the colloquial 

definition in a wrong way or relied on the specific visual hints. 
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Table 6-19. Frequencies of categories of reasons for incorrect answers to 8a, 8b, 8c, 8d. 

6.3 Comparing different aspects of functions 

To compare the responses to different aspects of functions, correct responses are calculated 

with a new variable which represents the number of correct answers to all items in each 

question. Frequency tables are presented in Appendix A2.7. These results indicated that 

students are more successful with the set-correspondence diagrams and the sets of ordered 

pairs compared to the graphs and the expressions. 1.8% of the students answered graphs 

items in question 3 correctly. None of the students answered all coloured-domain graphs in 

question 4 correctly. Similarly none of the students answered all expression questions 

correctly. The percentages increase for questions of sets of ordered pairs and set diagrams. 
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18.4% of the students responded correctly to all set of ordered pairs item in question 7. 

Similarly,  19.3% of the students correctly answer all set diagram items in question 8. 

6.4 Definition of function – Question 9 

Students’ responses to question 9 in the questionnaire are considered as their personal 

concept definitions as described by Tall & Vinner (1981). None of the students gave the 

formal definition of a function. Although a formal mathematical language is used for some 

parts of some responses such as “ ≠A Ø ∧ ≠B Ø, )( BA ×⊂β ”, these are followed by a 

description. Responses revealed the following categories: 

Colloquial definition: Responses in the form of a colloquial definition which includes all 

of the definitional properties are considered in this category. E.g. “(A function) is to write a 

relation from one set to the other with the condition that there can not be elements left in 

the domain and one element can not have more one value”. 

Incomplete colloquial definition: Although some responses are in the form of a colloquial 

definition, they do not involve all of the definitional properties or did not involve correct 

properties. E.g. “ ≠A Ø ∧ ≠B Ø, )( BA ×⊂β ”. If the relation β does not leave any elements 

left and elements are assigned to each other then the relation β is a function in BA× . It is 

denoted by f, g, or h” or “It is a relation which does not have no gap in the domain”. 

Other: e.g. “It is defined from RRf →: ”. 

The percentages for each category are presented in table 6.20 below: 
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Response to question 9 - Definition of function

12 10.5

15 13.2

14 12.3

73 64.0

114 100.0

Colloquial definition

Incomplete colloquial definition

Other

No response

Total

Frequency Percent

 
Table 6-20. Percentages and frequency counts of the responses given for 
the definition of a function. 

Most students used the colloquial definition, a definition in an everyday language. 

However, among those, only 10.5% focused on all properties of the definition correctly. 

13.2% of the students either could not focus on all properties of the definition or could not 

remember the properties correctly. In contrast to the preliminary study, the no response 

rate is very high at 64%. 

6.5 A note on the no responses 

Although the “no response” rates are very low for the closed-ended questions, the 

percentages for “I don’t know” option reveal that there are a lot of students who could not 

decide about the given items (See tables 6.3, 6.7, 6.11, 6.12, 6.16). This might be because 

students either could not decide about the items or they simply did not respond. No 

response rates to open-ended questions are very high as shown in table 6–21 below: 

 All items 
in 
question3 

All items 
in 
question4 

All items 
in 
question6 

All items 
in 
question7 

All items 
in 
question8 

All 
items 

Percentage % 
(Frequency) 

36.8% 
(42) 

36%   
(41) 

43% 
(49) 

45.6% 
(52) 

34.2% 
(39) 

11.4% 
(13) 

Table 6-21. No responses for reasons for the responses in the questionnaires. 

This might be because they gave answers without any reasons or just preferred not to 

respond since it might be problematic for them to give explanations for each answer.  
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6.6 A summary of chapter 6 

The quantitative data obtained from the questionnaire revealed that a hundred and fourteen 

students in this study responded differently for different aspects of functions. They were 

more successful with the set-correspondence diagrams and sets of ordered pairs compared 

to the graphs and expressions. Very few students used the colloquial definition. 

Furthermore, higher percentages of students used the colloquial definition for the set-

correspondence diagrams and the sets of ordered pairs. One limitation of these results is 

that the no response rate for the explanations is high as discussed in section 6.2.8. 

However, inverview results, demonstrating responses from nine students as discussed in 

the next chapter, draw a more complete picture of how students reason about different 

aspects of functions. The results from the interviews with nine students are presented in 

chapter 7 which leads a categorization of the students’ responses in chapter 8. 
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7 CHAPTER 7 –RESULTS FROM THE 

INTERVIEWS 

Although there is a high rate of no responses for the explanations in the questionnaires, 

interview results drew a different picture. The results reveal a range of different 

explanations similar to the results from the preliminary study. A categorization of 

responses is presented in the next chapter. This chapter gives an account of the analysis of 

the data obtained from the interviews with nine students. 

The first step for the analysis of the interviews is description. A descriptive summary is 

made to manage the interview data (Patton, 1990). As presented in the following section, 

the results for each question emerged from the descriptive summary. 

A remark about the drawings of the functions in the interview questions should be made. 

The diagrams have implicit meanings that are not true absolutely. As Hardy (1967) states, 

the quality of the drawings does not matter if the reader has the same sophistication: 

‘Let us suppose that I am giving a lecture on some system of geometry, such as 
ordinary Euclidean geometry, that I draw figures on the blackboard to stimulate the 
imagination of my audience, rough drawings of straight lines or circles or ellipses. It 
is plain, first, that the truth of the theorems which I prove is in no way affected by 
the quality of my drawings. Their function is merely to bring home my meaning to 
my hearers, and, if I can do that, there would be no gain in having them redrawn by 
the most skilful draughtsman. They are pedagogical illustrations, not part of the real 
subject-matter of the lecture’ (Hardy, 1967, p. 125). 

Therefore, the responses from the students in the interviews should be evaluated 

considering the implicit meanings of the drawings presented to them. 
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7.1 The results from the interviews 

In the following sections, the results for each question in the interview are presented. 

Students’ responses revealed a spectrum of performance. A detailed discussion on the 

characteristics of this spectrum is given in the next chapter. However, at this point it should 

be mentioned that there are four different categories in the spectrum. As well as for the 

ethical reasons, students’ names were altered so that the initial letters, A, B, C, D refer to 

the categories from the top to the bottom. In the first category, there are four students Ali, 

Ahmet, Aysel and Arif who could focus on the definitional properties by mostly using the 

colloquial definition. In the second category, there are two students, Belma and Belgin, 

who could use the colloquial definition only for the set-correspondence diagrams and the 

sets of ordered pairs. These two students gave complicated responses when dealing with 

the graphs and expressions. They focused on the properties of the graphs and expressions 

which are irrelevant to the core concept of function. In the third category, there is one 

student, Cem, who used the colloquial definition wrongly for the set-correspondence 

diagrams and the sets of ordered pairs. For the graphs and expressions, he gave 

complicated responses which did not focus on the definitional properties. In the fourth 

category, there are two students, Deniz and Demet, who could not focus on the definitional 

properties for any aspects of the function concept. 

The following sections present the results in summary tables followed by students’ 

explanations. 

7.1.1 Set-correspondence diagram 

In the interview, all students were shown a set-correspondence diagram as shown in Figure 

7–1 below: 
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Figure 7-1. The set-correspondence diagram in the interview. 

Students were asked whether it was a function or not. They were then asked to explain the 

reasons for their answers. Table 7–1 below summarizes all students’ responses: 

 Function or not Explanation  
Ali  Not a function Colloquial definition 
Aysel Not a function Colloquial definition 
Ahmet Not a function Colloquial definition 
Belma Not a function Colloquial definition 
Belgin Not a function Colloquial definition 
Arif Not a function Colloquial definition 
Cem Function Colloquial definition wrongly used 
Deniz Not a function Visual hints 
Demet Not a function Visual hints 
Table 7-1. A summary of students’ responses to the set-correspondence diagram. 

Six out of nine students explained why they did not consider the given set diagram as a 

function in terms of the colloquial definition: 

‘It is not a function. 6 has two values’ (Ali). 

‘Not a function…6 is an element in A and it goes to both 9 and 10’ (Aysel). 

‘Not a function…6 has two values. 6 has two different values in the range’ (Ahmet). 

‘It is not a function…for the same reason. This number 6’ (Belma). 

‘There can be elements left (13 in the range), but elements in the domain can not be 
assigned to more than one element in the range’ (Belgin). 
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‘6 has two corresponding values…13 can be left unassigned’ (Arif). 

One student (Cem) answered in terms of the colloquial definition, which he remembered 

wrongly. He said that it is a function since 6 (in the domain) could go to 9 and 10. He was 

then asked to give a counter example, which is not a function. 

He drew the set diagram in the Figure 7–2 below and said that it was not a function 

‘because it (6) goes to more than two elements: 

 
Figure 7-2. Cem’s written explanation for the set-correspondence diagram. 

The other two students (Demet and Deniz) focused on the visual properties of the diagrams 

which are irrelevant to the core concept of function. Demet did not consider the set 

diagram picture as a function since the arrows intersected one another. To make clear what 

she meant, she was asked to give a counter example, which could be a function. She then 

drew the set diagrams as seen in Figure 7–3 below where the arrows do not intersect one 

another: 

 

Figure 7-3. Demet’s written explanation for the set-correspondence diagram. 
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Deniz did not consider the given set diagram as a function for a similar reason: 

‘For me, it is not a function, because arrows are in a mess…6, 9, 10 they are in a 
mess, it is not a function’ (Deniz). 

To make clear what he meant, he was asked to give a counter example, which could be a 

function. Drawing the set diagrams as shown in Figure 7–4 below, he said that the first 

diagram he drew could be a function since the directions of arrows are from A to B, but not 

the second one: 

 

Figure 7-4. Deniz’s written explanation for the set-correspondence diagram. 

7.1.2 Sets of ordered pairs 

In the interview, all students were shown a set of ordered pairs as shown below: 

}4,3,2,1{=A  

RAf →: , )}3,4(),3,3(),2,2(),2,1(),1,1{(=f  

Students were asked whether it was a function or not. They were then asked to explain the 

reasons for their answers. Table 7–2 below summarizes all students’ responses and their 

explanations: 

 Function or not Explanation  
Belma Not a function Colloquial definition 
Aysel  Not a function Colloquial definition with an explanation with vertical line 

test 
Ahmet  Not a function Colloquial definition using a set-correspondence diagram 
Arif Not a function Colloquial definition using a set-correspondence diagram 
Ali First considered 

as a function 
then changed 
his mind 

Colloquial definition wrongly used. When reminded of 1 
having two different values, he correctly used the 
colloquial definition. 

Cem Not a function Colloquial definition wrongly used 
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Deniz  Not a function Numbers of elements of ordered pairs is not equal to 
numbers of elements of the domain. 

Belgin  Not a function No explanation 
Demet  Function Ploting a point and joining it to the origin. 
Table 7-2. A summary of students’ responses to the set of ordered pairs in the interview. 

Eight out of nine students did not consider this set of ordered pairs as a function. It was 

correctly rejected as a function by five students using the colloquial definition. Unlike the 

use of the colloquial definition for the set diagrams, for the set of ordered pairs the 

colloquial definition was used with an explanation referring to other aspects of functions. 

Aysel used the colloquial definition followed by an explanation with the vertical line test: 

 
Figure 7-5. Aysel’s written explanation for the set of ordered pair. 
 

‘Every value is given, there are no elements left in the domain, but 1 goes to two 
values, and this is like the line intersecting the function twice, it can not go to both 1 
and 2, it is not a function’ (Aysel). 

Ahmet and Arif used the set-correspondence diagram in a prototypical way. In other 

words, they used the set-correspondence diagram to represent general ideas. Ahmet 

referred to the set diagram when using the colloquial definition as shown in Figure 7–6 

below: 

  
Figure 7-6. Ahmet’s written explanation for the set of ordered pairs. 
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‘For the value of 1 it is 1, it is in R, 1 can not have a second value, it is not a 
function’ (Ahmet). 

Arif also used the colloquial definition by drawing a set diagram as shown in Figure 7–7 

below: 

  
Figure 7-7. Arif’s written explanation for the set of ordered pair. 

Referring to the set diagram question where 6 has two different values, Arif said that 1 has 

two corresponding values since there are (1,1) and (1,2) in the set. Therefore he did not 

consider it as a function. 

One student (Ali) used the colloquial definition wrongly to consider it as a function:  

‘From A to R, 1 to 1, 1 to 2, 2 to 2, 3 to 3, 4 to 3…it is a function…because every 
element in the domain has a corresponding value, 4, 3, 2, 1 all have’ (Ali). 

When reminded that 1 has two values he changed his mind and explained as follows: 

  
Figure 7-8. Ali’s written explanation for the set of ordered pair. 
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‘Every element in the domain has a corresponding value, but 1 has two 
corresponding values, in other words when 1)1( =f , also 2)1( =f , therefore it can not 

be a function…but there can be elements left in the range’ (Ali). 

Belma directly used the colloquial definition as follows: 

‘From A to f, one set is given, every set, a set in R is assigned to its elements. 1 with 
2, 2 with 3, 3 with 4, and 4 corresponding to. It is not a function…because an 
element in A is assigned to more than one element, it can not be a function’ (Belma). 

One student (Cem) used the colloquial definition wrongly to consider it not as a function: 

‘From 1 to 1, from 1 to 2, from 3 to 3, from 4 from 3…it is not a function…because 
in brackets only 3 is given, it is (3,3), it shouldn’t be (4,3)’ (Cem). 

He did not consider it as a function since two different values are assigned to 3 in the 

range. To understand how he decided, he was asked a counter example which can be a 

function. He explained as follows as shown in Figure 7–9: 

  
Figure 7-9. Cem’s written explanation for the set of ordered pair. 

‘It is a function because they are in order’ (Cem). 

Deniz did not consider the set of ordered pair as a function since the number of elements of 

ordered pairs is not equal to the number of elements of the domain. 

‘It is not a function…elements of A are known, it is from A to R, R is not known. 
(1,1),(1,2), so elements of this (R) are not known. If R was {1,2,3,4} then it would be 
a function…here first is 1, second should be 2 but it is 1 here, third should be 3 but it 
is 2...the number of elements (of A) is 4 but here (in set of ordered pairs) is 5…there 
are two 1’s, therefore it is not a function’ (Deniz). 
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When he was asked to give a counter example which can be a function, he wrote 

‘ )4,4(),3,3(),2,2(),1,1(=f ’ as shown in Figure 7–10 below: 

  
Figure 7-10. Deniz’s written explanation for the set of ordered pair. 

One student (Belgin) gave no explanation for why she did not consider the set of ordered 

pairs as a function. Only one student (Demet) considered it as a function. She plotted (1,2) 

and joined it to the origin as shown in Figure 7–11 below: 

  
Figure 7-11. Demet’s written explanation for the set of ordered pair. 

‘Function…the function is where these are joined together’. 
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7.1.3 Straight line graph 

In the interview, all students were shown a straight line graph as shown in Figure 7–12 

below: 

 
Figure 7-12. Straight line graph in the interview. 

Students were asked whether it was a function or not. They were then asked to explain the 

reasons for their answers. Table 7–3 summarizes all students’ responses and their 

explanations: 

 Function or not Explanation  

Ali  Function  
Exemplar based focus followed by colloquial definition/ 
use of set diagram 

Aysel Function  Exemplar based focus followed by colloquial definition 

Ahmet Function  Vertical line test with reference to the colloquial definition 

Belma Function  
Action on the graph (assigning numbers on x  to the 
numbers on y ) 

Belgin Function  
Action on the graph (assigning numbers on x  to the 
numbers on y ) 

Arif Function  
Action on the graph (confused with the domain and range 
/ assigning numbers on x  and y  with each other) 

Cem Function  Visual hints 
Demet Function  No explanation 

Deniz 
Could not 
decide 

No explanation 

Table 7-3. A summary of students’ responses to the straight line graph in the interview 
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Eight out of nine students considered the straight line graph as a function. Two of them 

(Ali and Aysel) used the colloquial definition to explain their answers. Both of them 

referred to the exemplars of straight lines. 

For instance, Ali said that it was xxf =)( . He was then asked to think of it as if he did not 

know that it was the graph of xxf =)( . He then responded in terms of the colloquial 

definition by drawing a set diagram picture as shown in Figure 7–13 below: 

  
Figure 7-13. Ali’s written explanations for the straight line graph. 

‘There shouldn’t be elements left in the domain…I said xf =  but it’s not like this. I 

have to know the slope…every x  value has an image in y , the definition’. (Ali) 

Similarly, Aysel first referred to a cluster of exemplars, axy = . She then continued to 

respond in terms of the colloquial definition: 

‘…function definition, it’s a special relation. Every element in the domain goes to 
only one element, there are not elements left in the domain. Everything in x , since it 
goes to infinity, all elements in x  find their places in the function. Furthermore, one 
value in x  does not go to more than one y. Therefore, it’s a function’. (Aysel) 

Ahmet used the colloquial definition by applying the vertical line test as shown in Figure 

7–14 below and said: 
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Figure 7-14. Ahmet’s written explanations for the straight line graph. 

‘It’s a function because for every x  value, there is a y  value. I can’t see two y  

values for x  here. Do we draw lines parallel to x , or to y? One of them. If we draw 
verticals to y  and if it intersects at one point…if it intersected at two points then it 

wouldn’t be a function…if it intersected twice, then there would be two y  values for 

an x ’. (Ahmet) 

Three students (Belma, Belgin, Arif) assigned a few numbers on x  axis to the numbers on 

y  axis. Belma considered it as a function and explained on the first graph in Figure 7–15: 

  
Figure 7-15. Belma’s written explanations for the straight line graph. 

‘It’s a function…because…from R  to R, from the elements of the set of real 
numbers to other elements. In other words every element is met with its 
element…when we give 1 for )(xf , x  is 1’.   

She was then shown another straight line with a different slope (the second graph in Figure 

7–15 above). She again assigned 1 to 1 and drew xy =  rather than focusing on the given 

straight line. 
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Belgin also considered the straight line as a function with a similar reason: 

‘because every value…values in the domain are assigned to the values in the 
range…for instance, if we give 1 for x , then y  is 1…there are no elements left in 
the domain. This is a function’ (Belgin). 

However, when she was given a straight line passing through the origin with a different 

slope as shown in Figure 7–16 below, she did not consider it as a function. She plotted the 

point (1,1) and (referring to 1 on the x  axis) said that there is an element left in the 

domain. 

 
Figure 7-16. Belgin’s written explanations for the straight line graph. 

Arif assigned 3 on the x  axis to 1 in y  axis. However he seemed to be confused with the 

aspects of domain and range: 

“This is a function. Because…if we draw parallel lines here, for every y, an image of 
y  in x , and if we draw on x , an image of x  in y. Suppose y  is 1, and x  is 

3…therefore it’s a function” (Arif). 

Considering the straight line graph as a function, one student (Cem) focused on the visual 

properties of the graph.  

He realized that there weren’t numbers on the axes. Therefore, I have put numbers on the 

axes. He then drew lines from negative numbers on the negative y  axis to the graph as 

shown in the Figure 7–.17 below. However, he did not assign these values to the numbers 

on the x  axis: 
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Figure 7-17. Cem’s written explanations for the straight line graph. 

He was then given a straight line, which did not pass through the origin as shown in Figure 

17 above. Although he considered this as a function, he could not explain the reason 

correctly: 

‘The lines coming vertically from here also come here…to 2− ’. (Cem) 

7.1.4 Straight lines in three pieces 

In the interview, all students were shown a straight line graph in three pieces, as shown in 

Figure 7–18 below: 

 
Figure 7-18. Straight line in three pieces. 

Students were asked whether it was a function or not. They were then asked to explain the 

reasons for their answers. Table 7–4 summarizes all students’ responses and their 

explanations: 
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 Function or not Explanation  
Ali  Not a function Colloquial definition 
Aysel Not a function Colloquial definition 
Arif Not a function Colloquial definition 
Ahmet Function (on a 

restricted domain) 
Colloquial definition by explaining it with a set-
correspondence diagram 

Belma Not sure Visual hints 
Demet Not a function Visual hints 
Deniz Not a function Visual hints 
Cem Not a function Visual hints 
Belgin Function  No clear explanation 
Table 7-4. A summary of students’ responses to the straight line graph in three pieces in 
the interview 

Four out of nine students responded (Ali, Aysel, Arif) in terms of the colloquial definition: 

‘There are elements left. The points here do not have images…here there are gaps’ 
(Ali) (See Figure 7– 19). 

 
Figure 7-19. Ali’s written explanation for the straight line graph in three pieces. 

‘It’s not a function, because there are elements left in the domain. They don’t find 
their places on the function, that’s why for instance let’s say 2 here. 2 is left, there’s 
nothing for )2(f . Since it’s not defined it’s not a function’ (Aysel). (See Figure 7–

20). 
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Figure 7-20. Aysel’s written explanation for the straight line graph in 
three pieces. 

‘It’s not a function…the ones in this area of gap…that x  gap. For instance there is 3 
there, it doesn’t have an image’ (Arif) (See Figure 7–21). 

 
Figure 7-21. Arif’s written explanation for the straight line graph in three 
pieces. 

One student, Ahmet, considered it as a function in a certain domain. He explained his 

response by drawing a set diagram picture as shown in Figure 7–22 below: 

 

Figure 7-22. Ahmet’s written explanation for the straight line graph in three pieces. 

‘from c  to f , it’s a function, also from a  to d . These are left (b  and e ), but these 

are functions’ (Ahmet). 
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His explanation was interpreted as he considered the set-correspondence diagram he drew 

as a function by restricting the domain (excluding b  from the domain) so that it becomes a 

function. His explanation was considered as the use of the colloquial definition. He used 

the set-correspondence diagram to explain how he used the colloquial definition. 

Four out of nine students (Belma, Demet, Deniz, Cem) focused on the visual hints. Belma, 

could not decide whether it is a function or not and focused on the gaps on the graph 

without any reference to the definitional properties. Demet, Deniz and Cem did not 

consider it as a function since the graph was in separate pieces.  

One student, Belgin, could not explain her answer. She considered it as a function: 

 
Figure 7-23. Belgin’s written explanation for the straight line graph 
in three pieces. 

‘This is a function. For instance, 1 is included…there are elements left’ (Belgin). 

However, when she was asked which elements were left in the domain she could not 

explain: 

‘I have no idea about this. I only know that this is a function’ (Belgin). 

7.1.5 Points on xy =  with the domain of projected points 

In the interview, all students were shown a graph as shown in Figure 7–24 below: 
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Figure 7-24. Points on xy =  with the domain of projected points. 

Students were told that the points coloured as red was the domain They were then  asked 

whether it was a function or not. They were then asked to explain the reasons for their 

answers. The table 7–5 below summarizes all students’ responses and their explanations: 

 Function or not Explanation  
Ali  Function Colloquial definition 
Arif Function Colloquial definition 
Ahmet Function Colloquial definition 
Aysel Function Colloquial definition followed by vertical line test 
Belgin Function Colloquial definition wrongly used considering y  axis as 

the domain and x  axis as the range 
Cem  Function Finding the corresponding values of the numbers in the 

domain 
Demet Function Drawing a straight line through the graph 
Deniz Function Drawing a straight line through the graph 
Belma Function Drawing a straight line through the graph 
Table 7-5. A summary of students’ responses to the points on xy =  with the domain of 
projected points. 

All of the students considered this graph as a graph of a function. However only four of 

them used the colloquial definition correctly to consider the graph as a function: 

‘This is a function….because, this time the domain is those mentioned places. All of 
them has an image, therefore it’s a function’ (Ali) (See Figure 7–.25 below). 
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Figure 7-25. Ali’s written explanation for the points on xy =  with the domain of 
projected points. 

‘The corresponding value of 1 in the domain is 1, 2 for 2, 3 for 3. It doesn’t take two 
values. One element in the domain is not assigned to two elements in the range, 1−  
to 1− ’ (Arif). 

Although Ahmet’s focus of attention is not the colloquial definition at first, he referred to 

the definitional properties in his explanation: 

‘From 1 to 1, from 2 to 2… x  is element of integers… x  and y  are elements of 

integers. What if we say xy = . We’ll show the domain. Is this conditional 

function?…for 1, 2, 3 it’s again. 1, 2, 3…for 1 there aren’t two different values in the 
range…is this a constant function? No it’s not, because everything goes to same 
thing for constant function…is this onto function? I think yes, it’s a function’ 
(Ahmet) (See Figure 7–26). 
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Figure 7-26. Ahmet’s written explanation for the points on xy =  with the domain of 

projected points. 

As seen in his explanation, he did not only assign the numbers on x  axis to the numbers on 

y  axis, but also mentioned that one value can not be assigned to two different values. 

Aysel used the colloquial definition followed by an explanation with the vertical line test 

as shown in Figure 7–27 below: 

  
Figure 7-27. Aysel’s written explanation for the points on xy =  with the domain of 
projected points. 
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‘Function. Because…there aren’t any elements left in the domain. For every element 
in the domain, there are elements. For instance 2 for )2(f , 1 for )1(f , it does not go 

to more than one place. If we draw lines, it passes through the function once. I think 
it’s a function’ (Aysel). 

One student (Belgin) used the colloquial definition wrongly: 

‘This is definitely a function since all elements in the domain are assigned to 
elements in the range’ (Belgin). 

However when she was asked which one is the domain, she said that y  axis is the domain 

and x  axis is the range by assigning each element on y  axis with elements on x  axis. 

One student (Cem) assigned the numbers on x  axis to the numbers on y  axis without any 

reference to the definitional properties. 

The other three students (Demet, Deniz, Belma) considered the graph as a function by 

drawing a straight line through the graph. They related this graph to their earlier 

experiences of graph drawing. For instance, Demet drew a straight line as shown in Figure 

7–28 below: 

 
Figure 7-28. Demet’s written explanation for the points on xy =  
with the domain of projected points. 

Referring to first quadrant (which she calles ‘ x  region’) and third quadrant (which she 

called ‘ y  region’), she said that it passed through these two places: 
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‘If it passed through one side, it wouldn’t be a function’ (Demet). 

Deniz drew a straight line through the graph as shown in Figure 7–29 below:  

 
Figure 7-29. Deniz’s written explanation for the points on xy =  with the domain of 
projected points. 

‘It’s a function since x  and y  intersect each other. This line (straight line she drew 
passing through graph) is passing through from this and this (probably referring to 
the points on the graph)’ (Deniz). 

Belma did not draw a straight line. She still considered the graph as a function since she 

considered it a straight line graph: 

‘Shall I consider it as a straight line?…assigning (1 with 1, 2 with 2) we have a 
straight line…it’s a function. xy = , it’s passing through the origin’ (Belma). 

7.1.6 Points on a line 

In the interview, all students were shown a graph as shown below in Figure 7–30: 

 
Figure 7-30. Points on a straight line with the domain of R. 
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Students were told that the x  axis coloured as red was the domain. Then they were asked 

whether it was a function or not. They were then asked to explain the reasons for their 

answers. The table 7–6 below summarizes all students’ responses and their explanations: 

 Function or not Explanation  
Ali  Not a function Colloquial definition 
Aysel Not a function Colloquial definition 
Ahmet Function  Colloquial definition wrongly used 
Belgin Function Colloquial definition wrongly used 
Demet Function  Drawing a straight line 
Arif Function  Drawing a straight line 
Deniz Function  Considering the graph the same as the earlier graph 

which has a different domain  
Cem  Function  Considering the graph the same as the earlier graph 

which has a different domain  
Belma Could not decide 

first, then changed 
to function 

Looking for a formula 

Table 7-6. A summary of students’ responses to the points on a line. 

Two out of nine students (Ali and Aysel) used the colloquial definition and correctly did 

not consider the graph as a function: 

‘It’s not a function, because every element in the domain does not have a 
corresponding value’ (Ali). 

Referring to the numbers which do not have a corresponding value as he sketched in 

Figure 7–31 below, he said that ‘only 1, 2, 3, 1− , 2− , 3−  have (corresponding values)’. 

  
Figure 7-31. Ali’s written explanations for the points on a straight line with the domain 
of R 
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Aysel used the colloquial definition as follows:  

‘I think it’s not, there are elements left here, between 1 and 2, here is domain, all real 
numbers are here, between 1 and 2, it does not go to anywhere, between 2 and 3 too, 
in other words it’s not a function’ (Aysel). 

One student (Belgin) considered the graph as a function by using the colloquial definition 

wrongly. She first assumed that the domain is between 3−  and 3. She was then reminded 

that it is the whole x  axis. She then explained as follows: 

‘It’s also a function…this is like the other one before. All the elements in the domain 
are assigned to elements in the range’ (Belgin). 

To focus her attention to the elements which are left unassigned in the domain, she was 

then asked to find the corresponding value for 2
3 . However, she could not focus on the 

graph and found the value as 2
3  as shown in Figure 7–32: 

 
Figure 7-32. Belgin’s written explanations for the points on a straight line with the 
domain of R 

Two students (Demet and Arif) drew straight lines through the graph and considered the 

graph as a function. Demet drew a straight line as shown in Figure 7–33 below: 
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Figure 7-33. Demet’s written explanations for the points on a straight line with the 
domain of R 

‘As I said before (for the same graph with the domain of }3,2,1,0,1,2,3{ −−− ) this is also 

a function’ (Demet). 

When she was asked whether there is a difference between these two graphs, she could not 

respond. 

Arif drew a straight line through the given graph in the first quadrant as shown in Figure 

7–34 below: 

 
Figure 7-34. Arif’s written explanations for the points on a straight line with the domain 
of R 

He was reminded that the graph is the given points. He then said: 

‘If I don’t draw the line then I can’t find the values…if I draw the straight line, it’s 

like the formula for a graph. There is one formula for a line. If here is 2
3  then I can 

find its (corresponding) value. If it wasn’t a straight line then I couldn’t find it’ 
(Arif). 
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Two students (Deniz and Cem) considered the graph as a function seeing no difference 

between the graph with the previous graph which has a different domain. 

Belma first could not decide about the graph. She was then asked to find the corresponding 

value for 1. She said that it could be 1 or 1− . When she was asked how she found it, she 

said that ‘it depends on the given formula’. She was told to decide by considering the 

graph. She said:  

‘It could be itself (1)…for 3, it could be 4 or itself…it’s a function’ (Belma). 

Explaining on the graph as shown in Figure 7–35 below, Ahmet said the following: 

‘For )1(f , it’s almost 1…are all of the elements between 0 and 1− , and 0 and 1 
assigned to 1?...this is also function, conditional function. No it’s not, because it says 
that x  is an element of reals…1 for 1, 2 for 2…I can’t see anything for   . I think it’s 
still a function…actually we can deduce it from the definition. Our teacher noted 
down two details about it…we study it for the exam’ (Ahmet). 

 
Figure 7-35. Ahmet’s written explanations for the points on a straight line with the 
domain of R 

7.1.7 Graph of smiley face 

In the interview, all students were shown a graph as shown Figure 7–36 below: 
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Figure 7-36. The graph of smiley face. 

They were told that the x  axis which was coloured as red was the domain. They were then 

asked whether it was a function or not. They were then asked to explain the reasons for 

their answers. Table 7–7 summarizes all students’ responses and explanations: 

 Function or not Explanation  
Aysel Not a function Colloquial definition 
Ali  Function/changed 

to not a function 
Colloquial definition wrongly used/ignoring elements left 
in the domain/when mentioned 1 in the domain changed 
his mind 

Arif Function/changed 
to not a function 

Used colloquial definition when reminded of 1−  on x  
axis.  

Ahmet Not sure Vertical line test/drawing of set-correspondence diagrams 
Demet Not sure Focused on x  axis under the areas of three pieces of the 

graph/no further explanation 
Deniz Not a 

function/changed 
to function 

The numbers on y  axis is not the same as the numbers on 

x  axis 

Belma Function  Exemplar based response (the graph is like a parabola) 
Cem Not a function The shape is different 
Belgin Not sure The shape is diferent 
Table 7-7. A summary of students’ responses to the graph of smiley face. 

Aysel used the colloquial definition to consider the graph as a function:  

‘I think this is not a function…like in the other function. There should not be 
elements left in the domain, but 1 does not take any value in y. I think it’s not (a 
function)’ (Aysel). 

She seemed to change her response to consider the graph as a function. Applying vertical 

line test, she did not change her response: 
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‘There are elements left in the domain even I apply verticals…this is a graph of a 
function. Here for instance, I drew one through, 2 takes only one value, it intersects 
once, but at the end 1 also should have taken a value. I think it’s not a function…but 
can there be elements that make function undefined?...no no it’s not (a function)’ 
(Aysel).  

Ali first considered it as a function since he thought of the domain as the line segments 

under the graph. He explained by drawing a set diagram as shown in Figure 7–37 below:  

 
Figure 7-37. Ali’s written explanations for the graph of smiley face. 

‘This is a function…because …2 in y can take the same value, two different values, 
two elements of the domain’ (Ali). 

When his attention was drawn to corresponding value for 1, he changed his mind and did 

not consider it as a function. 

Arif first considered it as a function from R to R. He assigned a few numbers on the x  axis 

with the numbers on y  axis as shown in Figure 7–38 below:  

 
Figure 7-38. Arif’s written explanations for the graph of smiley face. 
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He was then asked to find the corresponding value for 1−  on axis. He said that he could 

not find it. When he was asked whether this affected it being a function, he said that ‘there 

can’t be elements left in the domain, there can be in the range. It’s not a function’. 

Ahmet considered it as a function by applying the vertical line test to one piece of the 

graph on the right, as shown in Figure 7–39 below:  

 
Figure 7-39. Ahmet’s written explanations for the graph of smiley face. 

He then drew set correspondence pictures leaving one element in the domain unassigned 

(See Figure 7–39 above): 

‘This (b) is in the domain but it does not go to anywhere. (Focusing on the graph) 
For instance, 0 is in the domain but it does not go to anywhere in y …there are no 
corresponding values for 1−  and 1’ (Ahmet). 

When asked for 0, he said that its corresponding value is 5.1− . Referring to the second set 

diagram, he said that xaf =)(  but )(bf  is empty. He then focused on 1 on the x  axis, but 

he could not decide whether or not the fact that 1 does not have any corresponding value 

affects the graph to be a function. 
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Demet could not decide about the graph. She focused on the numbers on the x -axis, 2−  

and 3− , 2 and 3 (under the areas of two pieces of the graphs) and 1−  and 2−  (on the y  

axis) as shown in Figure 7–40 below:  

 
Figure 7-40. Demet’s written explanations for the graph of smiley face. 

She could not decide whether it is a function or not. 

Deniz did not consider it as a function because the y axis is labelled between 2−  and 2 

while the x  axis is labelled between 3−  and 3. When he was told that he could put 3−  and 

3 on the y  axis, he considered it as a function (See Figure 7–41 below). 

 
Figure 7-41. Deniz’s written explanations for the graph of smiley face. 

Belma considered it as a function since the graph is similar to a parabola. She tried to join 

the three pieces as shown in Figure 7–42 below: 
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Figure 7-42. Belma’s written explanations for the graph of smiley face. 

‘These are like parabolas, however I can’t say anything more…1 (is assigned) with 
1, 1−  with 1− …function if we join them they are like parabolas, increasing and 
decreasing, sine and cosine…’ (Belma). 

Cem did not consider it as a function since he is seeing such a thing like this for the first 

time.  

Belgin was not sure about the graph. She said the following:  

‘I don’t wanna do this (question), the shapes are very different’ (Belgin). 

7.1.8 Non exemplar graph 1 

In the interview, all students were presented with a graph as shown in Figure7–43 below: 

 
Figure 7-43. Non-exemplar graph 1. 

Students were asked whether it was a function or not. To realize that it is not a function, 

one should focus on it very carefully since the graph bends onto itself. Students were then 
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asked to explain the reasons for their answers. The table 7–8 below summarizes all 

students’ responses and explanations: 

 Function or not Explanation  
Ali  Not a function Vertical line test/colloquial definition 
Aysel Not a function Vertical line test/colloquial definition 
Ahmet Not a function Vertical line test/use of set-correspondence 

diagram/colloquial definition 
Belma Not a function Numbers on axes are irrational.  
Belgin Function  Finding corresponding values of numbers on x  axis 
Arif Not a function/ 

change to 
function  

Finding corresponding values of numbers on x  axis 

Cem Function Visual hints. Numbers on x  axis (-3, -2, -1, 1, 2, 3) are inside 
the graph 

Deniz Not a function General appearance of the graph 
Demet Not a function General appearance of the graph 
Table 7-8. A summary of students’ responses to the non-exemplar graph 1. 

Ali did not consider the graph as a function using the vertical line test as shown in Figure 

7–44 below:  

  
Figure 7-44. Ali’s written explanations for the non-exemplar graph 1. 

He first wanted to know whether or not the part of the graph between x  values of 3.5 and 4 

has a slope:  
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‘Isn’t it passing through the same point, is it? In other words, it’s not vertical, is it? 
Does it have a slope?’ (Ali). 

When he was told that it has a slope, he did not consider the graph as a function:  

‘For instance, here, for two x  values, there are different values of y . For instance, 

for 3.5…it is 1, ½, –½…it’s not a function’ (Ali). 

Aysel did not consider the graph as a function using the vertical line test and the colloquial 

definition as shown in Figure 7–45 below: 

  
Figure 7-45. Aysel’s written explanations for the non-exemplar graph 1. 

‘This isn’t a function, because …it’s the rule of a function. In the domain, it can’t go 
to more than one in the range…’ (Aysel). 

Ahmet did not consider the graph as a function using the vertical line test. He first asked 

whether or not the graph bends onto itself. When he was told that it did bend onto itself, he 

did not consider it as a function by using the vertical line test as shown in Figure 7–46 

below:  
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Figure 7-46. Ahmet’s written explanations for the non-exemplar graph 1. 

When he was asked the reason why, he drew a set diagram picture as shown in Figure 7–

46 above and used the colloquial definition. He first said that two elements cannot be 

assigned to one element in the range. He then changed his mind and said: 

‘one element in the domain is not given to two different values in the range. When I 
draw verticals here, x  gives two different y values, like a parabola, pardon opposite 
parabola. It’s not a function’ (Ahmet). 

Belma did not consider the graph as a function since she considered the numbers on the 

axes are irrational: 

‘From R to R…the values between this and this are rational values. I mean between 
2−  and 3−  (referring to y -axis). From rational numbers to rational numbers. This 

isn’t a function…because there isn’t an integer between 2−  and 3− , not 2 or 1 for 
instance. There are normally irrational numbers between these numbers. That’s why 
(it’s not a function)’ (Belma). 

Belgin considered the graph as a function since she could find corresponding values of 

some values of x  as shown in Figure 7– 47 below: 

‘I have looked at the numbers. They have certain values, therefore it’s a function’ 
(Belgin). 
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Figure 7-47. Belgin’s written explanations for the non-exemplar graph 1. 

Demet did not consider the graph as a function due to the general appearance of the graph: 

‘It’s impossible, this can’t be a function…I can’t think of a function like 
this…function can be on the same plane, and can be proportional, but it starts here 
then goes wavy’ (Demet). 

Deniz did not consider the graph as a function due to the general appearance of the graph: 

‘This is not a function. First of all, the lines didn’t go straight. It goes shape by 
shape. To be able to intersect exactly, it shouldn’t be like this shape’ (Deniz). 

He was then asked to draw how the graph should have been drawn. He then drew straight 

lines close to the graph as shown in Figure 7–48 below: 

 
Figure 7-48. Deniz’s written explanations for the non-exemplar graph 1. 
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Cem focused on some irrelevant visual hints. He considered the graph as a function since 

1− , 2− , 3− , 1, 2, 3, (on x  axis) are inside the graph (between the x  intercepts). 

Arif did not at first consider the graph as a function since he could not find corresponding 

values of x: 

‘For x  value, it’s passing through 3 and 4, nearly 3.5 (on the x  axis). In y, it’s 
passing through 2−  and 3− …I think this isn’t a function…I don’t think I can find 
values by looking at this shape…when I look at the graph, I should be able to find 
the corresponding values for some x. For instance )(xf …I should be able to find the 

image of )(xf , but here I can’t find’ (Arif). 

He considered the graph as a function by finding the corresponding values for a few 

numbers as shown in Figure 7–49 below: 

  
Figure 7-49. Arif’s written explanations for the non-exemplar graph 1. 

‘Before, I said that it’s not a function…because I couldn’t find integer values. But 
then I realized that it shouldn’t be integer values. Because it says that it’s from reals 
to reals…I didn’t take this into account. Since it’s from reals to reals, it’s a function’ 
(Arif). 

7.1.9 Non exemplar graph 2 

In the interview, all students were shown a graph as shown in Figure 7–50 below: 
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Figure 7-50. Non-exemplar graph 2. 

Students were asked whether it was a function or not. To realize that it is not a function, 

one should focus on it very carefully since the graph bends onto itself. Students were then 

asked to explain the reasons for their answers. Table 7–9 below summarizes all students’ 

responses and their explanations: 

 Function or not Explanation  
Ali  Function Colloquial definition 
Aysel Not a function  Colloquial definition 
Ahmet Not a function Coloquail definition/Vertical line test 
Belma Not a function There are two x -intercepts and they are rational numbers 
Arif Not a function No formula to find corresponding values/ relating x  and y 

values without any particular direction 
Cem Not a function General appearance of the graph 
Deniz Not a function General appearance of the graph 
Demet Not a function General appearance of the graph 
Belgin Function  Graph has a formula/Could not tell the formula 

Table 7-9. A summary of students’ responses to the non-exemplar graph 2. 

Ali considered the graph as a function using the colloquial definition: 

‘This is a function…because this coincides with the function definition…I can’t say 
the definition now…every element in the domain has only one image. Two things 
don’t meet’ (Ali). 
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To see whether he decided by using the vertical line test, he was asked whether he was 

taught the vertical line test. Although he said he has not seen such a test, when he was 

given some explanation about it he used it as follows as seen in Figure 7–51: 

 
Figure 7-51. Ali’s written explanations for the non-exemplar graph 2. 

He explained the meaning of the vertical line test by referring to the colloquial definition. 

He then applied the vertical line test and said that an x  value takes two different values. 

Aysel did not consider the graph as a function using the colloquial definition. 

‘I think this isn’t a function. Because here it intersects the axis between 4 and 5 
(referring to negative x  axis) and the function takes the value of 0. If we look at the 
curve under here between 4 and 5 (again referring to negative x  axis), it takes one 
value from here. A value between 4 and 5, one value in the domain takes two values 
in the range. This can’t be a function. Function can’t have two values…here 4.5, it 
takes 0 on the function and a y  value between 1−  and 0 (in negative y -axis). 

Therefore this isn’t a function’ (Aysel) (See Figure 7–52 below). 
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Figure 7-52. Aysel’s written explanations for the non-exemplar graph 2. 

Ahmet did not consider it as a function using the colloquial definition with the vertical line 

test as shown in Figure 7–53: 

  
Figure 7-53. Ahmet’s written explanations for the non-exemplar graph 2. 

‘I think it passes through…I mean it touches…I mean when I draw vertically, at two 
points. Two y values for x . A point between 4−  and 5−  has two different values of 
y . One is in minus y  values, and one in positive y  values. I think it’s not (a 
function)’ (Ahmet). 

Belma did not consider it as a function since the x -intercepts are rational numbers: 

‘Same as before. It’s not a function since it’s passing through two numbers (referring 
to x  intercepts)…(it’s not a function) because they are rational numbers’ (Belma). 
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She was reminded that the function is defined from R to R and asked what a real number 

is. She said that minus numbers are real numbers. When she was asked whether 3
2  is a 

real number, she said that it is not a real number but it is a rational number and she added 

that they are different. 

Belgin considered it as a function since it has a formula:  

‘This is a function…if we take a function and put some values then we find this 
graph…our teacher told us to think of a formula that is appropriate for this graph, for 
instance xx + . We then put some values’ (Belgin). 

However, when she was asked the formula for this graph, she could not say anything about 

it. 

Demet did not consider it as a function since the shape of the graph is different. Sharpening 

one part of the graph as a straight line as shown in Figure 7–54 below, she said that only 

this part is a function: 

  
Figure 7-54. Demet’s written explanations for the non-exemplar graph 2. 

She said that the graph should be like the part where she marked with red. Clearly, she has 

a strong focus on the shape of the graph and she is trying to make the graph look like a 

familiar exemplar she has, namely the straight line. 
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Deniz did not consider the graph as a function since the general appearance of the graph is 

different: 

‘This can’t be. It’s like the Arabic letters, shapes are different. They don’t intersect 
each other…if it was straight, it might be…but it’s not’ (Deniz) (See Figure 7–55). 

 
Figure 7-55. Deniz’s written explanations for the non-exemplar graph 2. 

Cem did not consider the graph as a function because of the general appearance of the 

graph. He said that it could be a function if it was like a straight line as he drew below in 

Figure 7–56: 

  
Figure 7-56. Cem’s written explanations for the non-exemplar graph 2. 
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Arif did not consider it as a function since there was not a formula for the graph. He said 

that if there was a formula then he would consider it as a function. He was then told to 

focus on the graph without thinking of a formula. He then found the corresponding values 

for y . He was then told to do the opposite (finding corresponding values for x ). He 

wrongly found the corresponding value 2 for 2. He then changed his mind and found the 

corresponding values for 1, 2, 3 and 4 correctly as shown in Figure 7–57 below: 

  
Figure 7-57. Arif’s written explanations for the non-exemplar graph 2. 

Although he found the corresponding values for x , he drew a set-correspondence diagram 

assigning 1 in the first set (from y -axis) to two different values in the second set. His 

explanations reveal that he thinks of a function as some kind of relation between x and y  

without it having a particular direction. 

7.1.10 Graph of xxf sin)( −=  

In the interview, all students were presented with a graph as shown in Figure 7–58 below, 

which is the graph of xxf sin)( −= : 
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Figure 7-58. The graph of xxf sin)( −= . 

Students were asked whether it was a function or not. They were then asked to explain the 

reasons for their answers. Table 7–10 below summarizes all students’ responses and their 

explanations: 

 Function or not Explanation  
Ahmet Function Vertical line test followed by colloquial definition explained 

by set-correspondence diagram 
Aysel Function Exemplar based focus/definitional properties/action on the 

graph (assigning values of x  to the graph, but not to the y -

axis). 
Ali Function Exemplar based focus (recognizing as a sine function) 

followed by action on the graph. 
Belma Function Exemplar based focus (recognizing as a sine function because 

of ). 
Belgin Function Exemplar based focus (recognizing as a sine function because 

of ). 
Arif Function Exemplar based focus/familiarity to parabolas 
Deniz Not a function Visual hints irrelevant to definitional properties. 
Demet Not a function General appearance unfamiliar 
Cem Not sure General appearance unfamiliar 
Table 7-10. A summary of students’ responses to the graph of xxf sin)( −= . 

Six out of nine students considered this graph as a function. Only two of them (Ahmet and 

Aysel) refered to the colloquial definition. However, they did not directly use the 

colloquial definition. For instance, Ahmet first used the vertical line test saying that all 

lines intersect once. He then explained the definitional properties by using a set-

correspondence diagram as shown in Figure 7–59: 
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Figure 7-59. Ahmet’s written explanation for the graph of xxf sin)( −= . 

“Here set diagrams come to my mind’ (Ahmet). 

He drew a set-correspondence diagram by putting a , b  and c  in the first set (writing π  

for a and π2  for c ) and x , y , z  in the second set: 

‘The domain is between 1 and 1− . Sorry, the range, for all values of f. In fact, yes for 
all values (of f ) it’s in that interval. I think it’s a function” (Ahmet). 

Aysel first referred to the exemplar cluster of trigonometric functions:  

‘It’s a function, and it’s a trigonometric function’ (Aysel)  

Although she said that ‘every value goes to one value, not many values’ which can be 

interpreted as the use of the coloquial definition, when she was asked to give a few 

examples, she joined 2
π  and 2

π−  to the graph not to the corresponding values on y -axis 

as shown in Figure 7–60 below: 

  
Figure 7-60. Aysel’s written explanation for the graph of xxf sin)( −= . 



Chapter 7 –Results from the interviews 

125 
 

Four students (Ali, Belma, Belgin, Arif) gave exemplar-based explanations without any 

reference to definitional properties. Three of these students recognized it as a sine function 

while one of them found it similar to combinations of parabolas: 

‘I see sine function here, or cosine…From its shape the sine function comes into my 
mind. If 2

π  takes value of 1, at 90 it takes 1, sine function’ (Ali). 

‘I think this is a kind of sine function…I recognize it from π, but I can’t explain why 
it’s a function or not…if it’s the graph of xxf sin)( =  then it’s a function’ (Belma). 

‘Is this π …I think this is a function of sine…I remember it from last year…I 
understand from these π  numbers. I can’t explain why it’s a function or not, because 
I don’t remember…if it’s the graph of sine function then it’s a function’ (Belgin). 

‘I say it’s a function…and there is a shape of a parabola here. Different parabolas, 
here one parabola, here another’ (Arif). 

Arif found the corresponding values of 0, π , π− , π2 , 2
3π , 2

3π− . Although he found 

these corresponding values, he did not seem to refer to the definitional properties. When he 

was asked what 2
π  and 2

π−  correspond to, he could not find them correctly. He said that 

2
π  corresponds to 2

1− , and 2
π−  corresponds to 2

1  (See Figure 7–61 below). 

  
Figure 7-61. Arif’s written explanation for the graph of xxf sin)( −= . 
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Two students (Deniz and Demet) did not consider this graph as a function. Deniz did not 

consider it as a function since the numbers on y axis are not the same as the numbers on x  

axis: 

‘I think it’s not (a function)…numbers are marked up to 2 (probably referring to π2  
on the x  axis), and here there is 1 (referring to y -axis)’ (Deniz). 

When he was asked to explain how we can make it be a function, he said that if the 

numbers on y -axis were the same as the numbers in x  axis then it would be a function. 

Demet did not consider the graph as a function since she found the shape of the graph 

unfamiliar: 

‘This is not a function…because it’s not going on the same plane. It’s going very 
wavy, as long as I know a function can go on the same plane, none of these are on 
the same plane’ (Demet). 

To understand what she meant by ‘a function on a same plane’, she was asked to draw a 

function which is on the same plane. She drew a coordinate system with the same numbers 

on the x  and y -axes. She then plotted )0,( π−  and )1,( −−π  and joined them to the origin as 

shown in Figure 7–62 below and said:  

‘I think it’s like this, we can join them like this’ (Demet). 

  
Figure 7-62. Demet’s written explanation for the graph of xxf sin)( −= . 

One student (Cem) could not decide whether it is a function or not: 
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‘I don’t know very well. It’s different and strange’ (Cem) (See Figure 7–63 below). 

 
Figure 7-63. Cem’s written explanation for the graph of xxf sin)( −= . 

Two of the students (Demet and Deniz) did not give any reason for their answers. Demet 

considered the straight line as a function. Deniz could not decide and said that he had no 

idea. 

7.1.11 Graph of 2sin)( −= xxf  

In the interview, all students were shown a graph as shown in Figure 7–64 below: 

  
Figure 7-64. The graph of 2sin)( −= xxf . 

Students were asked whether it was a function or not. They were then asked to explain the 

reasons for their answers. Table 7–11 summarizes all students’ responses and explanations: 

 Function or not Explanation  
Ali  Function  Colloquial definition 
Aysel Function  Colloquial definition 
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Ahmet Function  
Colloquial definition by applying vertical line test and 
drawing a set diagram 

Arif Function  Assigning x  and y  values to each oher. 

Belgin Function  General shape of the graph (increases and decreases). 
Belma Not a function The graph passes through y -axis only. 

Cem Not a function The graph passes through y -axis only. 

Deniz 
Function/not a 
function 

The graph passes through y -axis only. 

Demet Not a function The graph is below x -axis. 
Table 7-11. A summary of students’ responses to the graph of 2sin)( −= xxf . 

Three out of nine students considered this graph as a function by using the colloquial 

definition: 

Ali used the colloquial definition as follows:  

‘I will consider the definition of a function. I will consider whether a point on x  is 
defined on y and whether a point on x  is defined for two values on y…π  takes 

2− …each value of x  has a corresponding value and only one corresponding value’ 
(Ali) (See Figure 7–65 below). 

 

Figure 7-65. Ali’s written explanation for the graph of 2sin)( −= xxf . 

Aysel did not consider it as a function at first. She then used the colloquial definition 

focusing on the graph as continuing along the whole x-axis: 

‘I first thought that the graph was between π2  and π2− . Then I realized that two 
ends of the graph go on. Each element is assigned to an element, because these (two 
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ends of the graph) continues, and every element with only one element, not more 
than one element. Therefore it’s a function’ (Aysel)  

Ahmet used the colloquial definition by the vertical line test followed by an explanation 

with the set-correspondence diagram as shown in Figure 7–66 below:  

 
Figure 7-66. Ahmet’s written explanation for the graph of 2sin)( −= xxf . 

‘π has only one value, 2
π  has one value on y …I think this is a function…in such 

cases I generally draw vertical lines, vertical to x , parallel to y    It’s to understand 

whether there are more than one value for a value in the domain…. a  can not have 
two values, c  and d …if it (vertical lines) intersect at one point then it’s a function. 
If it (the graph) was  like a letter S, then the vertical line would intersect at three 
points’(Ahmet). 

Arif considered it as a function since the graph passes through 2 (referring to 2−  on y -

axis) and there are elements corresponding to values of x  and y . When he was asked to 

give an example for these values, he drew the following: 

 
Figure 7-67. Arif’s written explanation for the graph of 2sin)( −= xxf . 
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Although he said that there is a value for each element, he was confused with domain and 

range: 

‘When I take 3− , it corresponds to π . There is definitely a value for each value. It’s 
from reals to reals’ (Arif). 

Belgin considered the graph as a function by focusing on its general appearance. She said 

that it is a function since the graph decreases and increases. 

Three students did not consider the graph as a function since it only passes through the y -

axis. Belma did not consider the graph as a function since the graph passed through one 

point only, 2− . She was then given a similar graph passing through x  and y  axes as 

follows: 

 
Figure 7-68. Belma’s written explanation for the graph of 2sin)( −= xxf . 

She considered this as a function: 
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‘This may be a function because, there is a corresponding value when it’s 
assigned…when we give a value for x  we can find its corresponding 
value…corresponding value for 1’ (Belma). 

Cem did not consider it as a function since it passes through only 2− : 

‘This is not a function…because of 2−  (on y -axis)…the graph doesn’t intersect any 

other points…it should also pass through π  and π2 ’ (Cem). 

Deniz first considered it as a function and changed his mind since it only passes through y 

axis: 

‘Generally, there are numbers (on the axes), lines (axes), shapes (the graphs)’ 
(Deniz). 

When he was asked the properties of a function, he said that he did not know. He was then 

asked whether or not the fact that the graph did not touch the x  axis had an effect. He then 

changed his mind: 

‘no this is better, more sensible. It does not pass through the x  line. It only passes 
through the y  line…it’s not a function’ (Deniz). 

Demet did not consider the graph as a function since it is below x  axis. She was then 

asked to draw a graph that can be a function. She drew the following as shown in Figure 

7–69: 

 
Figure 7-69. Demet’s written explanation for the graph of 2sin)( −= xxf . 
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7.1.12 Expression of the split-domain function 

In the interview, all students were shown an expression as shown below: 

RRf →:  

  

Students were asked whether it was a function or not. They were then asked to explain the 

reasons for their answers. Table 7–12 summarizes all students’ responses and explanations: 

 Function or not Explanation  
Ali  Function  Recognizing as signum function. Correct graph. Set-

correspondence diagram. 
Ahmet Function  Recognising as signum function. Although confused about 

the domain, he drew a correct graph applying vertical line 
test.  

Aysel Function  Recognizing as condinitional function. Wrong graph. Set-
correspondence diagram assigning values less than 1 to 1− , 1 
to 0, values greater than 1 to 1. 

Belma Function  Recognizing as split-domain function.  
Belgin Not a function Substituted 1− , 0, 1 in 122 +− xx . 
Arif Function  Recognizing as signum function 
Cem Function  Notational hint: )(xf .  

Deniz Function  Relating the numbers on the right hand side of the 
expressions 0122 >+− xx , 0122 =+− xx , 0122 <+− xx  to the 
numbers of the range, 1, 0, 1−  

Demet Not a function Specific hints. ‘we can’t take a square of a function’. 
Table 7-12. A summary of students’ responses to the expression of the split-domain 
function in the interview. 

Ali considered the expression as a function. Although he did not use the colloquial 

definition, he gave an explanation with its graph and set diagram. He drew a set diagram 

assigning x  and y  to 1 (noting that 1<x  and 1>y ) and 1 to 0, and leaving 1−  in the 

range unassigned (See Figure 7–70 below): 
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Figure 7-70. Ali’s written explanation for the split-domain function expression. 

Belma considered the expression as a split-domain function. She substituted a few 

numbers in the expression, 122 +− xx . She could not assign values in the domain to 1, 0, 

1−  in the range since she focused on them as the elements of the domain instead of the 

elements of the range. She substituted 1 in the expression of the condition, 0122 >+− xx  

(See Figure 7–71 below). 

 
Figure 7-71. Belma’s written explanation for the split-domain function expression. 
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She then ignored 122 +− xx , and said that the function takes -1, for x  values less than 0, 0 

for 0, and 1 for values less than 1. 

Belgin did not consider it as a function. When she substituted 2 in 122 +− xx , she found 4−  

and said that it is not a function since 4−  can not be greater than 0. When she was asked 

how she decided what to substitute in 122 +− xx , she said that her teacher told them to 

substitute 1− , 0, 1 when the function is defined from real numbers to real numbers. 

Deniz considered it as a function by relating the numbers on the right hand side of the 

expressions 0122 >+− xx , 0122 =+− xx , 0122 <+− xx  to the numbers of the range, 1, 0, 

1− : 

‘It is a function…the one at the top is greater than 0. Since the one at the bottom is 
minus it is less than 0. Therefore it is a function. In other words it is directly 
proportional’ (Deniz). 

Cem considered it as a function because of )(xf  notation. He was confused about the 

domain. 

7.1.13 5=y  

In the interview, all students were given the following expression as shown below: 

             5=y  

Students were asked whether it was a function or not. They were then asked to explain the 

reasons for their answers. Table 7–13 below summarizes all students’ responses and 

explanations: 

 Function or not Explanation  
Ali  Function  Drawing the graph/constant function 
Ahmet Function  Drawing the graph/constant function 

Aysel 
Not a function/ 
function 

Specifying the domain as R/Drawing the 
graph/constant function 

Arif Function  Drawing a set-correspondence diagram 
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Demet Function  Marking )0,5(−  as 5 and joining it to 5 

Deniz Function  No explanation 
Cem Function  y equals to 5 
Belma  Not sure  Drawing 5=y /putting values for y 

Belgin  Not sure Looked for )(xf  

Table 7-13. A summary of students’ responses to 5=y . 

7.1.14 5=y  (for x≤ 2) 

In the interview, all students were given the following expression as shown below: 

            5=y  (for 2≤x ) 

Students were asked whether it was a function or not. They were then asked to explain the 

reasons for their answers. Table 7–14 summarizes all students’ responses and explanations: 

 Function or not Explanation  

Arif Function  
Colloquial definition / Assigning values less than or equal 
to 2 to 5.  

Ali  Function Recognising as a constant function /Drawing the graph 
Aysel Function First asking the domain, drew the graph correctly.  

Ahmet Function  
Assigning values less than 2 to 5 and drawing the graph 
correctly/Drawing a set-correspondence diagram. 

Belma Not sure Drawing the graph for all values of x.  

Cem Function  
Considering (for x<2) as a condition with no reference to 
definitional properties 

Belgin Not sure  Looked for f notation. Could not respond.  
Deniz Could not decide There is no relation between 5=y  and ‘ 5=y  (for 2≤x )’. 

Demet 
Function/not a 
function  

5 is not less than two 

Table 7-14. A summary of students’ responses to 5=y  (for x ≤ 2). 

Ali used the colloquial definition as follows: 

‘For x  less than 2 y is equal to 5, this is also a function. Is it a conditional 
function?... 5=y , for every value in the domain which is less than 2…there is 

something called a constant function, )(xf  is equal to…a, x  changes, a does not 

change, this is constant function, since )(xf  is equal to y …erm I’m 

confused…because, for two different values of x, no this is a function…the range is 
only 5, can there be a function like this? No there can’t be a function and graph like 
this’ (Ali) (See Figure 7–72 below). 
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Figure 7-72. Ali’s written explanation for 5=y  (for 2≤x ). 

Aysel considered the expression as a function. She first wanted to know the domain. When 

she was pointed to ‘for 2≤x ’ in brackets she said the following:  

‘for values of x  less than or equal to 2, y is always 5, including 2, here it’s graph 
(drawing the graph correctly as shown below), this is a function, since there is a 
domain’ (Aysel). 

Ahmet considered the expression as a function assigning values less than 2 to 5. He drew 

the graph correctly and sketched a set diagram picture as shown in Figure 7–73 below:  

 
Figure 7-73. Ahmet’s written explanation for 5=y  (for 2≤x ). 

Arif considered it as a function assigning values less than or equal to 2 to 5: 

‘Including 2, all of them, including x, 2, 1, 0. 2 and all values less than 2 take the 
value of 5. This is function’ (Arif). 
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Belma was not sure about the expression. Although she said that values less than or equal 

to 2 are assigned to 5, she drew the graph for all real numbers as shown in Figure 7–74 

below: 

 
Figure 7-74. Belma’s written explanation for 5=y  (for 2≤x ). 

Cem considered ‘for 2≤x ’ as a condition without any reference to the colloquial 

definition: 

‘Yes this is also a function, y is equal to 5. It says what is required for x  less than 2’ 
(Cem). 

Belgin could not decide about this expression. She wrote f(x)=x+2 and substituted 3 in the 

expression. She said that she had chosen 3 since she considered it as the smallest number 

(probably referring to integer) greater than 2. She could not give any more explanations. 

Demet first considered it as a function then changed her mind: 

‘because it says that 5 is both less than and equal to 2, we can take its function, we 
can’t draw it, 5 is not less than 2’ (Demet). 

Deniz was not sure about this expression. He said that 5=y  is a function and he could not 

see any relation between these two. 
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7.1.15 5=y  (for all values of x) 

In the interview, all students were shown an expression as shown below: 

             5=y  (for all values of x) 

Students were asked whether it was a function or not. They were then asked to explain the 

reasons for their answers. Table 7–15 summarizes all students’ responses and explanations: 

 Function or not Explanation  
Ali  Function  Assigning all values of x  to 5. Drawing the graph.  
Aysel Function  Assigning all real numbers to 5. Drawing the graph.  
Ahmet Function  Constant function. Assigning all numbers to 5. Confused 

by the domain. 
Belma Function Recognising it as the same as the other two. Drawing the 

graph.  
Belgin Not sure  Confused by the domain and range. Looking for a 

formula to substitute numbers to get 5. 
Arif Function  Assigning all values of x  to 5.   
Cem Function  Looking for specific values of x. 
Deniz No answer No explanation 
Demet Not sure Giving values for y. 
Table 7-15. A summary of students’ responses to “ 5=y  (for all values of x)” in the 

interview. 

Ali considered the expression as a function mentioning that x  refers to real numbers. By 

referring to the graph he drew for 5=y  he said that he considered for all values of x. 

Aysel assigned all real numbers to 5 by explaining it with the graph she drew as shown in 

Figure 7–75 below: 

 
Figure 7-75. Aysel’s written explanation for “ 5=y  (for all values of x)”. 
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‘for all values of x, real numbers, complex numbers, all of them’ (Aysel). 

Ahmet considered it as a constant function assigning all numbers to 5: 

‘this is a function, because this is also a constant function, for -1, for 3 or 2
1− , all 

come to 5, there is one element in the domain’ (Ahmet). 

However, he was confused by the domain and said that all elements are assigned to 5 in the 

domain instead of the range. 

Cem considered it as a function but could not explain it successfully. He looked for 

specific values for x:  

‘if y is equal to 5, what is required for all values for x?’ (Cem). 

Belgin could not decide about the expression. First she said that y, in the range, is equal to 

5 when we give any value for x. However, she was confused about the domain and range. 

She drew the following as shown in Figure 7–76: 

 
Figure 7-76. Belgin’s written explanation for “ 5=y  (for all values of x)”. 

She looked for a formula such as 1)( += xxf  and substituted numbers for x  to get 5, e.g. 

4+1, 5+0.  

Demet was not sure about the expression and she gave values for y. 

7.1.16 2sin)( −= xxf  

In the interview, all students were given the following expression as shown below: 
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           2sin)( −= xxf  

Students were asked whether it was a function or not. They were then asked to explain the 

reasons for their answers. Table 7–16 summarizes all students’ responses and their 

explanations: 

 Function or not Explanation  
Ali  Function  Colloquial definition 
Aysel Function  Colloquial definition 
Ahmet Function  Exemplar based focus/colloquial definition 
Belgin Function  Exemplar based focus (trigonometric function) 
Arif Function  Finding f(0) 
Deniz Function  Notational hints 
Demet Not a function Drawing a wrong graph 
Cem Not a function  No explanation 
Belma Not sure I don’t know very well 
Table 7-16. A summary of students’ responses to 2sin)( −= xxf . 

Six out of nine students considered 2sin)( −= xxf  as a function. 

Three students (Ali, Aysel and Ahmet) considered the expression as a function by referring 

to the colloquial definition: 

‘If we put a real number for x, we find a value, a value between -3 and -1, since sine 
is between -1 and 1…the co-domain…to be a function, there should be a 
corresponding value for every value we put for f(x) (probably meaning x  in f(x)), 
and there is’ (Ali). 

One student (Aysel) focused on the uniqueness of the assignment as well as the assignment 

of each element in the domain. She found the value of sin0 as 0 with the help of a unit 

circle and used the colloquial definition as follows: 

‘There shouldn’t be elements left…and there should be only one’ (Aysel). 

First considering the expression as a trigonometric function, Ahmet found the values )0(f , 

)90(f , )270(f  and )360(f  as 2− , 1− , 3− , 2−  by drawing a unit circle: 



Chapter 7 –Results from the interviews 

141 
 

‘For any real value that I put for x  in xsin , it’s again a real number. If I subtract a 
real number from a real number, then it’s again a real number’ (Ahmet). 

The way he substituted values of x  in the expression focusing on the domain and range 

(which are real numbers) is considered as using the colloquial definition. 

Two students (Belgin, Deniz) considered 2sin)( −= xxf  as a function without any 

reasonable explanation. Belgin considered it as a function since she recognized it as a 

trigonometric function. Deniz considered it as a function since he could see the notational 

features such as ‘f’, ‘ RR → ’ and the formula ‘ 2sin)( −= xxf ’. 

One student (Arif) found only one value of the function, 2)0( −=f . He was reminded that 

the function is from R to R. He then said that the value of the function can be an integer, 

rational or square root of any number. However, when he was asked to tell the definitional 

properties, he could not respond. 

Two out of nine students (Demet and Cem) did not consider it as a function. Demet tried to 

draw its graph (see Figure 7–77 below). She labeled 2−  on the x  axis and said that it is not 

a function since it is only one point (-2). She also said that if it was sinx, then it would be 

on the other side (referring to 2 on the positive x  axis).  

 
Figure 7-77. Demet’s written explanation for “ 2sin)( −= xxf ”. 
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Cem could not give any explanation as to why he did not consider it a function. One 

student (Belma) could not decide about the expression. 

7.1.17 Drawing the graph of “ RRf →: , 5)( =xf ” 

In the interview, all students were given the following question: 

         Draw the graph of “ RRf →: , 5)( =xf ”. 

Table 7–17 below summarizes all students’ responses and their explanations: 

 Drawing  
Ali  Correct graph 
Aysel Correct graph 
Ahmet Correct graph 
Arif Draws the graph between -2≤x≤2 
Belma Draws the graph of x=5 
Belgin Marking 5 on positive x  and y axes 
Demet Marking 0 and 5 on x  axis and joining them 
Deniz Draws a straight line through (5,0) and (0,5) 
Cem Labeling x  and y axes and trying to plot points 
Table 7-17. A summary of students’ responses to the transformation of 

RRf →: , 5)( =xf  to its graph. 

Three out of nine students drew the graph correctly. Ali, referring to questions about 

constant function, drew the following as shown in Figure 7–78 below: 

 
Figure 7-78. Ali’s written explanations for the graph of “ RRf →: , 5)( =xf ”. 

‘ 5)( =xf , here y indicates 5. For these values, that’s the graph’ (Ali). 
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Aysel drew the following as seen in Figure 7–79: 

 
Figure 7-79. Aysel’s written explanations for the graph of “ RRf →: , 5)( =xf ”. 

‘From real numbers, here is the domain. 5=y , it goes on like this’ (Aysel). 

Ahmet drew the graph as shown in Figure 7–80 below: 

‘For all values of x, 5=y ’ (Ahmet). 

  
Figure 7-80. Ahmet’s written explanations for the graph of “ RRf →: , 5)( =xf ”. 

Arif drew the graph between -2≤x≤2 as shown in Figure 7–81 below: 
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Figure 7-81. Arif’s written explanations for the graph of “ RRf →: , 5)( =xf ”. 

Belma drew the graph as shown in Figure 7–82 below: 

  
Figure 7-82. Belma’s written explanations for the graph of “ RRf →: , 5)( =xf ”. 

Her response reveals that she was confused by the aspects of domain and range. By 

drawing vertical lines to x=5 line, she said: 

‘the only values that we give to y are equal to 5…actually the values that we give to 
x  are also equal to 5 but negatives values of x  are equal to the values which are just 
opposite to them (negative y values). They’re not equal to 5, –1 with –1, –2 with –
2…in other words, the negative values of x  and y are equal to each other. Only 
positive values of y and values of x  are equal to 5. That’s what I think’ (Belma). 

Belgin could not draw the graph. She said that x  and y take the value of 5 and marked 5 on 

positive x  and y axes as shown in Figure 7–83 below: 
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Figure 7-83. Belgin’s written explanations for the graph of “ RRf →: , 5)( =xf ”. 

Demet could not draw the graph. She marked 0 and 5 on the x  axis and joined them 

together as shown in Figure 7–84 below: 

  
Figure 7-84. Demet’s written explanations for the graph of “ RRf →: , 5)( =xf ”. 

Deniz could not draw the graph. He then drew a straight line through (5,0) and (0,5) as 

shown in Figure 7–85 below: 

 
Figure 7-85. Deniz’s written explanations for the graph of “ RRf →: , 5)( =xf ”. 
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Probably 5 in the expression prompted him to mark 5 on the axes and joined them by 

relating to his early experiences of graph drawing. 

Cem could not draw the graph. He first labeled positive and negative y axis and negative x  

axis with integer numbers until 5. He tried to plot a few points as shown in Figure 7–86 

below: 

 
Figure 7-86. Cem’s written explanations for the graph of “ RRf →: , 5)( =xf ”. 

7.1.18 Drawing the set-correspondence diagram of “ RRf →: , 5)( =xf ” 

In the interview, all students were given the following question: 

         Draw the set-correspondence diagram of “ RRf →: , 5)( =xf ” 

Table 7–18 summarizes all students’ responses and explanations: 

 Drawing  
Ali  Correct diagram. Saying that there are infinite number of elements in the first 

set assigned -∞ and +∞ in the first set to 5 in the second set.   
Aysel Correct diagram. Assigning x 1 , x 2 , x 3 , x 4  (which represents all reals) in the 

first set to 5 in the second set.  
Ahmet Correct diagram. Assigning –1, 1, 3 , 2  (which represents all reals) in the 

first set to 5 in the second set.  
Arif Correct diagram.  
Belma Could not draw. 
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Belgin Could not draw. Confusion between domain and range. 
Demet Wrong diagram.  
Deniz Wrong diagram. Assinging 1 to 1, 2 to 2 and so on up to 5. Changed his mind 

and assigned on 1, 2, 3, 4, 5 to 5. 
Cem Wrong diagram.  
Table 7-18. A summary of students’ responses to the transformation of 

RRf →: , 5)( =xf  to the set-correspondence diagram. 

Four students drew the correct diagram. Arif’s diagram (see Figure 7–87  below) is 

considered correct even though it only shows x  values in Ζ : 

 
Figure 7-87. Arif’s written explanation for the set-correspondence diagram of 
“ RRf →: , 5)( =xf ”. 

He said that there could be 11, 100 in the domain and all of them are assigned to 5. He also 

said that there are rationals and irrationals since the function is from R to R. 

Aysel, Ahmet drew the following diagrams as shown in Figure 7–88, Figure 7–89 below: 

 
Figure 7-88. Aysel’s written explanation for the set-correspondence diagram of 
“ RRf →: , 5)( =xf ”. 
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Figure 7-89. Ahmet’s written explanation for the set-correspondence diagram of 
“ RRf →: , 5)( =xf ”. 

Belma could not draw the set-correspondence diagram correctly. She was confused by the 

notation. For 5)( =xf , she put a few numbers in the first set and no numbers in the second 

set. She said that x  is equal to values in its own set since 5)( =xf : 

 
Figure 7-90. Belma’s written explanation for the set-correspondence diagram of 
“ RRf →: , 5)( =xf ”. 

She then draw another diagram considering 5=y  as shown in Figure 7–90 above: 

Belgin could not draw the set-correspondence diagram. She wrote a few formulas for )(xf  

( 1)( += xxf  and 3)( += xxf ). She then tried to substitute a few values in )(xf : 

However, since it’s from R to R we can give values up to 5…if we start from 
negatives (she wrote –1, 0, 1, 2, 3, 4)’ (Belgin). 
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Demet drew a wrong diagram as shown in Figure 7–91 below:  

 
Figure 7-91. Demet’s written explanation for the set-correspondence diagram of 
“ RRf →: , 5)( =xf ”. 

She said she put 1, 2, 3, 4 in the second set since 5)( =xf  expresses the values of x  up to 

5. She then said that 5 may be included. When she was asked the value of f(1) she could 

not find it and said that it is an empty set. 

Deniz drew a wrong diagram as shown in Figure 7–92 below:  

 
Figure 7-92. Deniz’s written explanation for the set-correspondence diagram of 
“ RRf →: , 5)( =xf ”. 
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His use of notation was also wrong. He wrote f(1)=(1,1). He then changed his mind to 

f(1)=(1,5). He then drew the set diagram again by assigning 1, 2, 3, 4, 5 to only 5 as shown 

in Figure 7–92 above:  

When he was asked the value of f(10), he first said that 10 cannot be put for x. He then 

changed his mind and said that ‘whatever we put for x, it’s equal to 5’. 

Cem drew a wrong diagram as shown in Figure 7–93 below: 

 
Figure 7-93. Cem’s written explanation for the set-correspondence diagram of 
“ RRf →: , 5)( =xf ”. 

When he was asked to find )2(f  in the function, he said that it is 5 by referring to )(xf . 

7.1.19 The set of ordered pairs for “ RRf →: , 5)( =xf ” 

In the interview, all students were given the following question: 

         Write the set of ordered pairs for “ RRf →: , 5)( =xf ” 

Table 7–19 summarizes all students’ responses and explanations: 

Aysel )...}5,)...(5,{...()( 21 xxxf =  

Ali  )....}5,3)..(5,2)..(5,1{...(  

Ahmet {(1,5), (0,5), (½,5),…} 
Arif f(x)=(-1,5),(1,5),(2,5),(3,5),(4,5)… 
Belma f={(5,1) (5,2) (5,3)…} followed by f={(1,5), (2,5)…} 
Deniz 5)( =xf   )]5,)(4,)(3,)(2,)(1,([ xxxxx  
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Cem )5,1(),4,1(),3,1(),2,1(),1,1()( =xf  

Belgin Could not write 
Demet Could not write 
Table 7-19. A summary of students’ responses to the transformation of 

RRf →: , 5)( =xf  to the set of ordered pairs. 

Three out of nine students (Aysel, Ali and Ahmet) responded by writing the ordered pairs 

in the brackets with dots in between. Two of them (Aysel and Ali) put dots in both 

directions (negative and positive) to refer to the infinite numbers of ordered pairs. They 

could focus on not only the integers but all real numbers: 

‘I can’t write the set of ordered pairs because I can’t write all values…they can take 
any value, 1, 2, 5  , complex numbers, all of them but I can’t write all of them’ 
(Aysel). 

‘It would last too long…there are loads of x’s in real numbers…shall I put dots’ 
(Ali). 

Ahmet put dots in positive direction writing the pairs in different order: 

‘ ....}1,,0,1{...
2

1=A , }5{=B , BAf →: , B  is the range and it takes 5 for all values’ 

(Ahmet). 

One student (Arif) wrote the set of ordered pairs for integer numbers putting them together 

without brackets. 

Three students (Belma, Deniz and Cem) varied the second coordinate. Belma confused 

domain and range and varied y instead of x . She said she put 5 as the first coordinate 

because 5 is an element of x . When she was asked about the second coordinate, she said 

that they are also elements of x . Since she was confused with ‘ )(xf ’ notation, she was told 

to consider 5=y  instead of 5)( =xf . She then changed her response to ‘ )...}5,2(),5,1{(=f ’. 
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Deniz varied the second coordinate. He said that he put integer numbers 1, 2, 3, 4, 5 since 

the function is given as “ 5)( =xf ” and put “ x ” in the first coordinate since he did not 

know x  and x  is an unknown.  

Cem put integers 1, 2, 3, 4, 5 for the second coordinate and put 1 for the first coordinate. 

When he was asked fo find )1(f  he said that all values take the same value, 5. 

Two (Belgin and Demet) students could not write the set of ordered pairs: 

‘(Writing }5,4,3,2,1{ ) We draw the set of values that 5 can take, form 1 to 5’. She was 

asked which values it can take. She replied: ‘Function of x ’ (Demet). 

7.2 A summary of chapter 7 

Results presented in this chapter revealed that nine students in the interview dealt with 

different aspects of functions in different ways. More students could focus on definitional 

properties for the set-correspondence diagram and the set of ordered pairs. On the other 

hand, the graphs and the expressions caused more difficulties in terms of focusing on the 

definitional properties. They evoked concept images which need not to be a coherent 

whole. 

In the next chapter, the analysis focuses on individual students to categorize their responses 

over a spectrum of performance. To do this categorization, the coherency of each student’s 

overall responses is investigated. 
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8 CHAPTER 8 – CATEGORIZATION OF 

STUDENTS’ RESPONSES 

8.1 An overview 

The aim of this chapter is to focus on each student and to categorize their performances. To 

do the categorization, students’ focus on the core concept of function is investigated. As 

discussed in the theoretical framework chapter, the coherency in recognizing different 

aspects of functions with a strong focus on the definitional properties is considered as an 

indication of the ability of focusing on the core concept of function. Therefore, responses 

from nine students are categorized considering the research questions below: 

• How is a student’s overall response to different aspects of functions affected by the 

subtle differences among different aspects? 

• How coherent is a student’s response as s/he move from one aspect to the other? 

• How do students who give coherent responses to different aspects of functions cope 

with this? 

To do the categorization, a grid is prepared by summarizing the results as discussed in 

chapter 6 and chapter 7.  

8.2 The grid 

Students gave various reasons as they responded to different questions as discussed in 

chapter 6 and chapter 7. Therefore, different categories emerged from their responses to 

different aspects of functions. Summarizing these results to prepare the grid, these 

categories are refined by considering the two criteria of a category system: internal 

homogeneity (responses considered in the same category share common properties as 
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much as possible) and external heterogeneity (each category of responses differ from the 

other categories) as described by Guba (1978) in Patton (1990). Therefore, a new set of 

overall categories is determined. The categories of “Visual hints/ Notational hints” and 

“First impression/General appearance” are considered under the same category called 

“exemplar-based focus”. This has a purpose based on the theoretical framework. As 

discussed earlier, in chapter 6 and chapter 7, the visual hints come from the external 

representations of different aspects of functions. Responses like “numbers on the axes are 

given in equal distances” for a graph, “an expression cannot include a square root” or 

“there is not an f” for an expression, “arrows intresect each other” for a set-correspondence 

diagram” are all considered in the category of “exemplar-based focus”. The reason is that 

those hints are established from students’ earlier experiences. In other words, students 

reject or accept an item as a function because the item does or does not have those hints as 

the previous examples they have experienced.  

Similarly, students’ reliance on the first impressions and general appearances of the items 

are considered as in the category of “exemplar-based focus”. Because the first impressions 

have come from the examples they have experienced so far. They simply accept an item 

since the general appearance of it resonates with those exemplars which were stored 

earlier. 

The new set of categories are presented below. They are labelled with an abbreviation to 

be put in a cell in the grid: 

Colloquial definition (CD): The use of the colloquial definition. Making statements to 

check the definitional properties. 

Colloquial definition wrongly used (CDW): Either recalling the colloquial definition 

wrongly (e.g. saying that two elements in the domain can be assigned to the same element 
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in the range) or using it in a wrong way (missing out that one element in the domain is not 

assigned to any element in the range). 

Exemplar-based focus (EBF): Recalling specific examples e.g. recognising 

  

as a signum function. Responses that focus on the visual hints, the notational hints, the first 

impressions and the general appearances are also considered in this category because of the 

reasons as discussed above. 

Vertical line test (VLT): Drawing vertical lines through the graph. 

Set diagram (SD): Drawing a set diagram to decide whether or not the given item is a 

function. 

Graph (GR): Drawing the graph of the given item. 

Wrong graph (WGR): Drawing the wrong graph for the given item. 

Constant function (CF): Recognizing the given item as a constant function without any 

other explanation. 

Domain-range confusion (DRC): Considering the domain as the range of the function or 

vice versa. 

����:Correct answer for transformation of functions. 

�: Wrong answer for transformation of functions. 

Other (OTH): Other  

No response (---) 

A detailed account of how each student’s responses are labeled with the above categories 

is given in Appendix B3. 

The cells in the grid are coloured as follows: 
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        Colloquial definition (CD) 

        Colloquial definition together with the other categories e.g. CD-SD 

        Colloquial definition wrongly used (CDW) 

        Exemplar-based focus (EBF) 

A spectrum of colour grey reflects a spectrum of performance of the students since as the 

grey colour becomes bolder the focus on the core concept of function gets stronger. 

Therefore, a spectrum of colours reveals a categorization of students.  

The grid is presented in Table 8.1 below: 
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 Ali Ahmet Aysel Arif Belma Belgin Cem Deniz Demet 

SET-

CORRESPONDENCE 
DIAGRAMS 

CD CD CD CD CD CD CDW EBF EBF 

CD 

EBF 
CD --- 

CD 

EBF 
CD 

CD 

EBF 
--- EBF --- 

SETS OF ORDERED 

PAIRS 

CDW

CD 

CD 

SD 
CD 

CD 

SD 
CD --- CDW EBF OTH 

CD 

EBF 

CD 

CDW 
 

SD 

CD 
SDW 

CD 

EBF 
--- EBF --- 

G
  

R
  

A
  
P

  
H

  
S

 

Straight line 
EBF 

CD 

VLT 

CD  

EBF 

CD 
DRC OTH OTH EBF --- --- 

Straight line in 
three pieces 

CD 
CD 

SD 
CD CD EBF --- EBF EBF EBF 

Points graph 
(D=R) 

CD CDW CD EBF OTH CDW OTH EBF EBF 

Points graph 
(D=points) 

CD CD 
CD 

VLT 
CD EBF CDW OTH EBF EBF 

Smiley graph 
(D=R) 

CD 
VLT 

SD 
CD CD EBF EBF EBF EBF EBF 

Non-exemplar 1 
VLT 

CD 

VLT 

SD 

CD 

VLT 

CD 
OTH EBF OTH EBF EBF EBF 

Non-exemplar 2 CD 
CD 

VLT 
CD DRC EBF OTH EBF EBF EBF 

xxf sin)( −=  
graph 

EBF 

VLT 

CD 

SD 

EBF EBF EBF EBF EBF EBF EBF 

2sin)( −= xxf  
graph 

CD 

CD 

VLT 

SD 

CD OTH EBF EBF EBF EBF EBF 

Graphs in the 
questionnaire. 

CD 

EBF 

CD 

VLT 

EBF 

CD 

EBF 

CD 
--- --- EBF 

EBF 

--- 
EBF 

E
 X

 P
 R

 E
 S

 S
 I

 O
 N

 S
 

Signum function 
EBF 

GR 

SD 

EBF 

GR 

VLT 

EBF 

WGR 
EBF EBF DRC EBF OTH OTH 

5=y  GR 

CF 

GR 

CF 

GR 

CF 
SD WGR EBF OTH --- WGR 

5=y  (for x ≤ 2) CF 

GR 

GR 

SD 
GR CD WGR EBF OTH --- OTH 

5=y  (for all 

values of x) 
CD 

GR 

CF 

CD 

CD 

GR 
CD GR DRC OTH --- WGR 

RRf →:  
2sin)( −= xxf  

CD 
EBF 

CD 
CD OTH --- EBF --- EBF WGR 

Expressions in 
questionnaire. 

EBF 
EBF 

CD 
 EBF --- 

EBF 

--- 
OTH 

--- 

EBF 
--- 

5)( =xf  to its graph ���� ���� ���� � � � � � � 

5)( =xf  to its set 

diagram 
���� ���� ���� 

���� --- 
� � � � 

5)( =xf  to the set of 

ordered pair 
���� ���� ���� � � 

--- 
� � 

--- 

Table 8-1: A grid for a summary of students’ responses.Abbrevations: CD: Colloquial Definition; CDW: Colloquial definition 
wrongly used; EBF: Exemplar-Based Focus; SD: Set Diagram; CF: Constant function; VLT: Vertical Line Test; GR: Graph; 
WGR: Wrong graph; OTH: Other; √: Correct transformation; ---: No Response 
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A few more remarks should be made about the grid. Firstly, one cell is assigned to more 

than one label where necessary. The order of labels is also important. For instance, SD-CD 

means that this particular student first draws a set diagram then uses the colloquial 

definition making an explanation on the diagram. 

Secondly, the meaning of colours are not absolute. Rather, the colouring is made to help 

see how overall categories differentiate between each other. In the grid, students are 

presented from the left to the right. Students who have a stronger focus on the core concept 

of function are on the left. As it goes to the right, they are less likely to focus on the 

definitional properties. 

As discussed in the theoretical framework in chapter 4, the coherency in recognizing 

different aspects of functions by referring to the definitional properties is considered as an 

indication of an understanding of the core concept of function. Therefore, the 

categorization is made by focusing on the grid vertically to investigate this coherency. 

When doing the categorization, cells that represent the responses from the interviews are 

given priority. 

8.3 A note on triangulation 

As discussed in the methodology chapter, one of the reasons for combining the qualitative 

and quantitative approaches is for integrative purpose to do the triangulation. The data 

from the questionnaire and the interview is triangulated to increase the validity and 

reliability of the findings. Hammersley & Atkinson (1983) state that triangulation is 

valuable because of the increased quality control achieved by combining methods, 

observers and data sources. However, it does not mean that merely combining different 

kinds of data will unproblematically add up to produce a more complete picture. Multiple 

methods may also serve to magnify error. In other words, each method has some errors 
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associated with it, and some methods have more than others. This has a multiplying effect. 

The different methods must be weighed and considered in terms of their relative biases and 

limitations. Thus, an important aspect of triangulation is to consider the relationships of the 

different kinds of data to counteract the threat to validity of each. (Hammersley & 

Atkinson, 1983). Therefore, nine students’ responses in the questionnaires which are 

summarized in the grid in table 8.1 are considered as a secondary source of data. In other 

words, the cells in the grid which contain data from the questionnaires (the last row for 

each aspect of function as seen in table 8.1) are not given the same importance as the other 

cells which contains the qualitative data. 

8.4 A categorization of the responses of students 

The colours in the grid reveals four different categories. Students from each category are 

named starting with a different letter, A, B, C, D. Grey colours spread across all aspects of 

functions for four students (Ali, Aysel, Ahmet, Arif) as seen in table 8.1. Therefore, these 

four students are considered in the first category. They could focus on the definitional 

properties not only for the set-correspondence diagrams and the sets of ordered pairs but 

also for the graphs and expressions. In the second category, there are two students (Belma 

and Belgin) who could focus on the definitional properties for the set-correspondence 

diagrams and the sets of ordered pairs but not for the graphs or expressions. They gave 

complicated responses for the graphs and expressions. In the third category, there is one 

student (Cem) who could focus on the definitional properties but could not check the 

definitional properties correctly. In the fourth category, there are two students (Deniz and 

Demet) who could not focus on the definitional properties for any aspect of the function 

concept. In other words, they gave very complicated explanations which did not act as a 

coherent whole. 
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Categorization of students revealed that the categories are not homogeneous. Therefore 

there might be alternative ways of categorization. In particular, Arif could be considered in 

the B category, and Cem could be placed in the last category with Deniz and Demet. 

Arif’s responses for the graphs are not as coherent as the responses of Ali, Aysel and 

Ahmet. Therefore he might be considered in the second category. However, he could use 

the colloquial definition for some of the expressions and graphs while students in the 

second category could not. 

Cem the single student in category C could also be considered in category D since he could 

not successfully use the colloquial definition for any aspects of functions. Having alerted 

the reader to this alternative categorization, the initial four categories are kept throughout 

the discussion below. 

8.4.1 First category: Getting closer to the core concept of function 

Ali, Aysel, Ahmet, Arif are considered in this category since they used the colloquial 

definition for all different aspects of functions. Their responses are less likely to be 

influenced by the subtle differences among different items compared to the responses from 

the other students. Although they are the most succesful students among others, some of 

their responses to the graphs, and especially expressions, were complicated in the sense 

that they did not act as a coherent whole to apply in different contexts. 

8.4.1.1 The case for Ali 

Ali’s overall responses for the different aspects of functions were mostly coherent. He 

mostly used the colloquial definition to recognize a function. Although in the questionnaire 

he gave the definition of a function as “a relation with a range which has no elements left”, 

when he referred to the definition he could focus on the definitional properties. Although 
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his overall responses were coherent, his focus on the colloquial definition is disrupted by 

the subtle differences in the way functions are presented as expressions. As seen in the grid 

in table 8.1, his focus on the colloquial definition is stronger for the set-correspondence 

diagrams, the set of ordered pairs and the graphs. In the interview he directly used the 

colloquial definition for the set-correspondence diagram and the set of ordered pairs. In the 

questionnaire, his responses to these aspects were exemplar based, considering a set of 

ordered pairs in 7c as an identity function and a set-correspondence diagram in 8d as a 

constant function. Although he recognized familiar graphs (straight line graph and the 

graph of xf(x) sin−= ) as exemplars, he could use the colloquial definition when he was 

asked to. For non-exemplar graphs, he directly used the colloquial definition. His focus on 

the colloquial definition was not strong for the expressions. He did not use the colloquial 

definition for most of the expressions. He instead used graphs as a stepping stone to 

checking the definitional properties. He drew the correct graphs for some of the 

expressions. For instance, he drew the graph of the split-domain function followed by its 

set-correspondence diagram. He assigned x and y to 1 (noting that 1<x  and 1>y ) and 1 

to 0 leaving 1−  in the range unassigned. This is obviously a use of the colloquial 

definition with an explanation on the set-correspondence diagram. For all three cases for 

constant function, he drew the graphs. Although he used the colloquial definition for 

“ 5=y  (for all values of x )”, he did not use it for the two constant functions (“ 5=y ” and 

“ 5=y  (for 2≤x )”). His overall responses to expressions indicated that his focus on the 

core concept is affected when the context changes to expressions. His responses to the 

transformations of the constant function “ RRf →: , 5)( =xf ” to the other aspects of 

functions reveal that he focused on the constant function as the core concept of constant 

function. 
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In summary, Ali could focus on different aspects of functions using the colloquial 

definition. His use of the colloquial definition is disrupted for some of the expressions. 

However, he could still successfully decide about the expressions by focusing on their 

graphs as a stepping stone to the colloquial definition. 

8.4.1.2 The case for Ahmet 

Ahmet gave coherent responses for all aspects of functions. He was more successful with 

the set-correspondence diagrams and the sets of ordered pairs. He could not focus on all 

definitional properties when giving his own personal concept definition in the 

questionnaire. He wrote it as ‘a relation which has a value for any element in the domain’. 

However, he could successfully use the colloquial definition for the set-correspondence 

diagrams and the sets of ordered pairs in the interview. In the questionnaire, he used the 

colloquial definition wrongly for some of the set of ordered pairs. 

His focus on the definitional properties was not always direct for the graphs. In other 

words, he relied on the vertical line test and drawing the set-correspondence diagrams to 

explain his responses. As seen in the grid in table 8.1, he either used one of them or used 

both of them. For most of the graphs, he could successfully check the definitional 

properties with these methods. For instance, for the two non-exemplar graphs as discussed 

in section 7.1.8 and 7.1.9, using the vertical line test he could strongly focus on the 

definitional properties. He could point out the elements in the domain which have more 

than one corresponding values in the range. The graphs only caused a few complications. 

For instance, for the points on a line graph, as discussed in section 7.1.6, he could not focus 

on the elements on the x  axis which are not assigned to any element. He did not remember 

the colloquial definition wrongly but applied it to the graph in a wrong way. He said that 

the numbers between 0 and -1 and 0 and 1 on the x  axis are assigned to 1. However, in 
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another context, he could focus on the elements which are not assigned to any elements 

and rejected the graph as a function as discussed in section 7.1.7. His overall responses to 

the graphs revealed that he not only relied on the vertical line test but also the set-

correspondence diagrams of the graphs. More importantly, he used the set-correspondence 

diagrams for the graphs in a prototypical way to focus on the definitional properties.  

He also successfully dealt with the expressions. However, it was hard work for him to 

decide about the expressions. For all of the expressions except for “ 2sin)( −= xxf ”, he first 

drew the graphs of the expressions. For instance, for the split-domain function he first 

considered it as an exemplar, namely the signum function. He then drew the graph of it and 

applied the vertical line test to the graph. He considered all three forms of the constant 

function as a function by drawing their graphs correctly. His responses to the 

transformation of “ RRf →: , 5)( =xf ” to other aspects of functions reveal that he could 

focus on the definitional properties of the constant function. 

Ahmet’s overall responses revealed that his responses to different aspects of functions are 

hardly affected by the subtle differences among different items. As summarized in the grid 

in table 8.1, he was more successful with the set-correspondence diagrams and the sets of 

ordered pairs compared to the graphs and expressions. The complexities of graphs and 

expressions still caused a few complications. However, he overcame these by using 

different aspects of functions in a prototypical way, using the set-correspondence diagrams 

for the graphs and drawing the graphs for the expressions. 

8.4.1.3 The case for Aysel 

Aysel’s overall responses were mostly coherent. She used the colloquial definition for four 

different aspects of functions. She was more successful with the set-correspondence 
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diagram and the set of ordered pairs. In the questionnaire she focused on all properties of 

the definition when giving her personal concept definition: 

‘ ≠A Ø and ≠B Ø, for relations in ( BA× ), every element in the domain is assigned to 
one and only one element in the range and if there is no elements left in the domain 
then this relation is a function’. 

She correctly used the colloquial definition for the set-correspondence diagram and the set 

of ordered pairs. She also used the colloquial definition for most of the graphs and for 

some of the expressions. However, the interview results as discussed in chapter 7 revealed 

that her responses to the graphs and expressions were not always coherent.  

For most of the graphs, she used the colloquial definition. Otherwise, she either used the 

vertical line test (with the colloquial definition) or focused on the graphs (straight line 

graph and graph of xxf sin)( −= ) as exemplars. Although she mostly used the colloquial 

definition for the graphs, her responses revealed a few complications. For instance, when 

finding the corresponding values for the numbers on the x  axis for the graph of 

xxf sin)( −= , she focused on the graph rather than the corresponding values on the y axis 

(as discussed in section 7.1.10). Apart from a few complications, she could successfully 

decide about the given graphs. Her explanations to the non-exemplar graphs (as discussed 

in section 7.1.8 and section 7.1.9) reveal that she has a strong focus on the definitional 

properties when the graphs are unfamiliar. She focused on the uniqueness of the 

assignment of each element in the domain. Her responses to the straight line in pieces as 

discussed in section 7.1.4 indicated that she could focus on the elements in the domain 

which are not assigned to any elements in the range therefore she rejected it as a function. 

When the context changes to the expressions, her responses reveal more complications. 

When dealing with the expressions, she referred to the other aspects, graphs and set 



Chapter 8 – Categorization of Students’ responses 

165 
 

diagrams. However, she was not always successful in that. For instance, she dealt with the 

split-domain function by trying different methods. However, she could not check the 

definitional properties correctly. She first considered it as a specific example, namely the 

conditional function. She then tried to draw its graph but she could not draw it correctly. 

She then tried to draw the set-correspondence diagram. However, she still could not find 

which elements are assigned to 1− , 0, 1 in the range. She incorrectly assigned values less 

than 1 to 1− , 1 to 0 and values greater than 1 to 1. 

Her responses to the three forms of constant function were less complicated. She drew 

graphs for these expressions. She did not use the colloquial definition explicitly. For 

instance, for 5=y  she first asked what the domain is. She was told to decide about it. She 

then drew the graph of the constant function by considering all real numbers as the 

domain. She finally said that it is a constant function. For the other two constant functions, 

for “ 5=y  (for 2≤x )” and “ 5=y  (for all values of x )”, she first specified the domain then 

said that all elements are assigned to 5 by drawing the graphs. For the last expression, 

2sin)( −= xxf , she used the colloquial definition. She focused on the uniqueness of the 

assignment as well as the assignment of each element in the domain. To do that she used 

the unit circle to decide the value of 0sin  (section 7.1.16). 

Aysel’s overall reponses revealed that she successfully dealt with most aspects of 

functions. For the set-correspondence diagrams and the set of ordered pairs, she 

confidently used the colloquial definition. When the context changes to the graphs and 

expressions, she could still respond successfully but by applying different methods. She is 

successful with carrying out procedures in various contexts rather than focusing on the 

essential ideas which applies in all contexts. In other words, she could not focus on the 

simplicity of the function concept in every context. 
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8.4.1.4 The case for Arif 

Similar to the other students in this category, the use of the colloquial definition for Arif 

spread across all aspects of functions as seen in the grid in table 8.1. However, Arif gave 

more complicated explanations for the graphs and expressions compared to the other 

students in this category. 

When writing his personal concept definition in the questionnaire, Arif could not focus on 

all properties of the definition. He said the following: 

‘By a function, we mean, we can find the corresponding value of an element in the 
domain and it will be in the range’. 

He used the colloquial definition for the set-correspondence diagram and the set of ordered 

pairs. For his response to the set of ordered pairs both in the interview and the 

questionnaire, he used the set-correspondence diagram in a prototypical way. He focused 

on the definitional properties by drawing a set-correspondence diagram. Although, he used 

the colloquial definition for three of the graphs, some of the graphs (straight line graph and 

the non exemplar graph 2) caused a few complications. For these graphs, he focused on the 

assignment of the elements without having a particular direction. For the other two graphs, 

points on a line and the graph of xxf sin)( −=  as discussed in section 7.1.6 and section 

7.1.10, his focus was exemplar-based. 

His responses to the expressions were also complicated. He could not coherently focus on 

the definitional properties for all expressions. He used the colloquial definition for the two 

expressions “ 5=y  (for 2≤x )” and “ 5=y  (for all values of x )”. On the other hand, he 

focused on the split-domain function as an exemplar. He considered the split-domain 

function as a signum function without any reference to the definitional properties. He 

could not focus on the definitional properties for 2sin)( −= xxf  either. He only found )0(f  
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as 2− . Although he said that the value of the function could be any number, he could not 

focus on the definitional properties when he was asked to do so. 

Overall, Arif seemed to focus on the definitional properties for the set-correspondence 

diagram and the set of ordered pairs while he is less succesful with the graphs and the 

expressions. He responded in more complicated ways to the graphs and expressions 

compared to the other aspects of functions. This indicates that he is less focused on the 

core concept of function compared to the other three students in this category. 

8.4.1.5 An overview of the first category 

Responses from four students (Ali, Ahmet, Aysel and Arif) are considered within the same 

category, a category in which students could focus on the definitional properties in 

different contexts where they recognize various aspects of functions. They successfully 

used the colloquial definition for the set-correspondence diagrams and the sets of ordered 

pairs. 

Although students in the other categories gave complicated responses for the graphs and 

expressions as will be discussed in the following sections, students in this category could 

focus on the definitional properties in these contexts by responding in various ways. For 

instance, for the graphs they used the vertical line test as a conceptual tool or used the set-

correspondence diagrams in a prototypical way to focus on the definitional properties. For 

the expressions, they used the graphs of the expressions to decide about them. 

Although these four students successfully dealt with graphs and expressions as well as the 

set-correspondence diagrams and the set of ordered pairs, even their responses were 

complicated in a few occasions where they could not focus on the definitional properties. 
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Arif is considered as the least successful in this category since his responses to the graphs 

are less focused on the core concept of function. 

8.4.2 Second category 

In the second category, there are two students (Belma and Belgin) who could focus on the 

definitional properties only for the set-correspondence diagrams and the sets of ordered 

pairs but not for the graphs and expressions. These two students gave complicated 

responses for the graphs and expressions. They focused on the properties of the graphs and 

expressions which are irrelevant to the core concept of function. 

8.4.2.1 The case for Belma 

Overall responses from Belma indicated that she could not focus on the core concept of 

function. She could focus on the definitional properties for only two aspects of functions, 

the set-correspondence diagram and the set of ordered pairs. In her responses, the 

complexity of the function concept reveals itself as complications in the context of graphs 

and expressions. 

In the questionnaire Belma gave her personal concept definition as follows: 

‘Let BAf →: . If every element in A  is assigned to B  then this is called a function’ 
(Belma). 

Although her personal concept definition does not focus on all properties of the definition, 

Belma used the colloquial definition correctly for the set-correspondence diagram and for 

the set of ordered pairs. She could focus on the elements in the domain which are not 

assigned to any elements in the range and the elements in the domain which are assigned to 

two elements in the range. However, she could not focus on the definitional properties for 

the graphs and expressions. She instead focused on some other properties which are 
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irrelevant to the core concept of function. She relied on the appearances of the graphs or 

the specific hints from the graphs. Therefore, her evoked concept images were not 

connected to the core concept of function which, in the end, revealed itself through 

complicated explanations. For instance, she rejected the graph of 2sin)( −= xxf  since it has 

only one intercept of the axes as discussed in section 7.1.11 or she simply considered the 

smiley face graph (as discussed in 7.1.7) as a function since it looked like a graph of a 

parabola. 

Belma’s responses to the expressions were very complicated. Her focus of attention was 

not the definitional properties. Mainly speaking, she approached the expressions in two 

different ways; either substituting a few values in the expressions or trying to draw the 

graphs of the expressions. However, she was not successful in doing these. For instance, 

for the split-domain function she focused on the numbers -1, 0, 1 as the elements of the 

domain, and then substituted them in 122 +− xx , the expression of the condition on the 

domain (section 7.1.12). She was not successful to draw the graphs of the expressions 

either. The subtle differences between the two notations for the constant functions, 5=y  

and 5)( =xf  caused a lot of complications. She drew two different graphs for them. 

Although she drew the graphs for the three cases of constant function along the line 5=y , 

when transforming “ 5)( =xf ” to its graph she drew the graph as the line 5=x  as shown in 

figure 8.1 below: 
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Figure 8-1. Belma’s drawings for the two constant functions. 

When the constant function is given in the form of 5)( =xf , she could not focus on x  as a 

variable although she tried to assign the numbers on the x  axis to the 5=x  line. 

8.4.2.2 The case for Belgin 

Similar to Belma, Belgin was more successful with the set-correspondence diagrams and 

the set of ordered pairs and could not focus on the definitional properties when dealing 

with the graphs and expressions. 

In the questionnaire Belgin did not write anything for the definition of a function. 

However, she used the colloquial definition for the set-correspondence diagram (both in 

the interview and some items for the questionnaire) and set of ordered pairs (in the 

questionnaire). However, she did not give any explanations for the set of ordered pairs in 

the interview. For the graphs, she either used the colloquial definition wrongly or focused 

on the graphs as exemplars (see the grid in table 8.1). For instance, she rejected the graph 

of 2sin)( −= xxf  since the general appearance of it was different and considered the graph 

of xxf sin)( −=  as a function because of the visual hint, π  on the x axis. She could not 
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focus on the definitional properties for the expressions either. As seen in the grid in table 

8.1, she either focused on expressions as exemplars or confused the domain with the range. 

For instance, she considered 2sin)( −= xxf  as a trigonometric function without referring to 

the definitional properties. For ‘ 5=y ’ and ‘ 5=y  for 2≤x ’ she did not find the symbol 

)(xf  in the expression therefore did not consider them as functions. 

In summary, Belgin’s overall responses revealed that she gave more complicated responses 

to the graphs and expressions. 

8.4.3 Third category 

In the third category, there is only one student (Cem) who could not use the colloquial 

definition correctly for any aspects of functions. He was considered in a different category 

from the other three students in the fourth category who could not focus on the definitional 

properties for any  aspects of functions since he referred to the colloquial definition 

although without success. 

8.4.3.1 The case for Cem 

Cem used the colloquial definition wrongly for the set-correspondence diagram and the set 

of ordered pairs, not because he could not apply it but he remembered the colloquial 

definition incorrectly. For instance, for the set-correspondence diagram he said that one 

element in the domain (6) can be assigned to two elements but not three elements. For the 

set of ordered pairs he said that it can not contain (3,3) and (4,3) together, instead the set of 

ordered pairs should only contain (3,3). For graphs and expressions he could not focus on 

the definitional properties at all. Both for the graphs and expressions, his responses were 

exemplar-based. For the graphs, he relied on specific hints and general appearances of the 

graphs. For instance, he rejected the straight line in three pieces as a function since it has 
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three parts. He could not focus on the elements in the domain which were not assigned to 

any element in the range. He rejected the graph of 2sin)( −= xxf  as a function since the 

shape of the graph is strange. Similarly, he could not focus on the definitional properties 

for the expressions. Instead, he focused on some other properties of the expressions. He 

considered the split-domain function as a function since there is )(xf  in the expression. 

His responses to the transformations of the constant function “ RRf →: , 5)( =xf ” to the 

other aspects of functions reveal that he could not focus on the definitional properties of 

the expression, “ RRf →: , 5)( =xf ”. For instance, he wrote the set of ordered pairs as 

)5,1(),4,1(),3,1(),2,1(),1,1()( =xf  by varying the second coordinate of the ordered pairs. 

In summary, Cem’s overall responses were complicated. He focused on different 

properties of the given items in different contexts. He could not focus on the definitional 

properties. Although he referred to the definitional properties for the set-correspondence 

diagram and the set of ordered pairs, he could not use the colloquial definition correctly. 

8.4.4 Fourth category 

In the fourth category there are two students (Deniz and Demet) who could not focus on 

the definitional properties for any aspects of the function concept at all. They could not use 

the colloquial definition even for the two aspects, set-correspondence diagram and the set 

of ordered pairs, as the students in the other categories. Their explanations to the questions 

were mostly exemplar-based for all different aspects of functions. 

8.4.4.1 The case for Deniz 

In the questionnaire, Deniz said that he did not know the definition of a function. Most of 

his responses were exemplar-based. For the set-correspondence diagram, he focused on the 

visual hints from the diagram which are irrelevant to the core concept of function. His 
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concept image of a set-correspondence diagram is a diagram in which arrows from the first 

set to the second set do not intersect each other. Similarly, he focused on the irrelevant 

properties of the set of ordered pairs. Without focusing on the definitional properties, he 

said that the number of elements in the set of ordered pairs should be equal to the number 

of elements in the domain. His response to the graphs were completely exemplar-based. 

For instance, he rejected graphs in three pieces without focusing on the elements in the 

domain which were not assigned to any elements in the range. He rejected the graph of 

2sin)( −= xxf  since the graph intersected the axes at only one point. He was more 

reluctant with the expressions. He could not give any reason for his answers to the three 

forms of constant function. He considered “ RRf →: , 2sin)( −= xxf ” as a function 

without focusing on the definitional properties. He said that it was a function because of 

the notational features such as f , RR →  and the formula itself. 

8.4.4.2 The case for Demet 

In the questionnaire Demet said that she did not know the definition of a function. As 

Deniz, she also could not focus on the definitional properties for any aspects of the 

functions. For the set-correspondence diagram, she focused on the properties of the 

diagram which are irrelevant to the core concept of a function. She said that the set 

diagram is not a function since the arrows intersect each other. For the set of ordered pairs, 

she tried to plot a few points and joined them to the origin. All of her responses to the 

graphs were exemplar-based. She did not consider some of the graphs (e.g. the graph of 

xxf sin)( −= , or the non-exemplar graphs 1 and 2) as a function since their general 

apprearances were unfamiliar. Or she rejected some graphs as a function because of the 

visual hints from the graphs. For instance, she rejected the graph of 2sin)( −= xxf  as a 

function since it was below the x-axis. For most of the expressions (‘ 5=y ’, ‘ 5=y  (for all 
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values of x)’ and ‘ 2sin)( −= xxf ’), she drew wrong graphs. For the split-domain function, 

although she related the three conditions to 1, 0, 1−  respectively, she could not focus on 

the definitional properties. 

8.4.5 Final remarks on the categorization of students’ responses 

Students’ responses vary from those which focused on the simplicity of the core concept of 

function to a range of complicated responses which focus on various properties irrelevant 

to the core concept of function. As discussed above, four categories of student performance 

were distinguished. 

Students in the first category gave coherent responses with a focus on the definitional 

properties as the context changed from one to the other. As we move to the second 

category, responses started to be less focused on the definitional properties and got 

complicated. Students in the second category could not focus on the definitional properties 

for the graphs and expressions In the third category there is one student who used the 

colloquial definition wrong for the set-correspondence diagram and the sets of ordered 

pairs and could not focus on the definitional properties for the graphs and expressions. In 

the fourth category, there are responses which were very complicated. Students who gave 

these complicated responses focused on the contextual properties which were irrelevant to 

the core concept of function. 

These four categories reveal that being able to deal with graphs and expressions 

successfully, distinguished the top group from the other students. They are considered as 

having a strong focus on the core concept of function. However, it should be also 

mentioned that even the responses of the students who have a strong focus on the core 
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concept of function might be affected by the subtle differences in the way expressions are 

given. 

Students’ focus on the core concept of function should be evaluated with its own 

limitations. Students in this study have a limited experience with different aspects of 

functions. For instance, functions such as functions with two or more variables or functions 

which define an isomorphism between two mathematical structures have not been 

experienced by these students. However, with the limited experience of functions very few 

students (in the first category) could focus on the essential properties of different aspects of 

functions which are relevant to the core concept. For other students, as their experience 

with different aspects of functions grow, they add on irrelevant properties of these aspects 

into isolated compartments. Therefore, in the end, the simple notion of the core concept of 

function can not be abstracted. 

Students’ responses to transformation from 5)( =xf  to its graph, set-correspondence 

diagram and set of ordered pairs reveal that students who have a stronger focus on the core 

concept of function are more likely to make the links between different aspects. 

8.5 A summary of the chapter 8 

In this chapter, we attempted to categorize students’ responses to various aspects of 

functions. The analysis of the responses from the nine students in the interview revealed a 

spectrum of performances. As discussed above, four categories were distinguished in this 

spectrum. In the first category, there are students who could focus on the core concept of 

function by focusing on the definitional properties for all different aspects of functions in a 

coherent way. In the second category, there are two students who could focus on the 

definitional properties only for the set-correspondence diagram and the set of ordered 

pairs. They gave complicated responses for the graphs and expressions. In the third 
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category, there is one student who used the colloquial definition wrongly for the set-

correspondence diagram and the set of ordered pairs and focused on the irrelevant 

properties of the graphs and expressions. In the fourth category, there are two students who 

gave very complicated responses to all different aspects of functions which were mostly 

exemplar-based. 
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9 CHAPTER 9 – DISCUSSION 

9.1 Going back to the departure point: the core concept of function 

The departure point of the theoretical framework was the notion of the core concept of 

function. Thompson (1994) makes a distinction between different aspects of functions and 

the core concept of function which cannot be represented by what is commonly called the 

multiple representations of functions. Considering this distinction, the theoretical 

framework makes a parallel distinction between the simplicity of the core concept of 

function and the complexity (richness) of the function concept. When analyzing students’ 

responses, it was aimed to investigate the cognitive complications of the function concept 

which is mathematically both simple and complex. Successful students are the ones who 

could develop cognitive structures that can handle the flexibility of the mathematical 

simplicity and complexity of the function concept.  

It was attempted to investigate students’ focus on the definitional properties as they 

respond to various aspects of functions, set-correspondence diagrams, sets of ordered pairs, 

graphs and expressions. The data indicated that students focused on the definitional 

properties by using the colloquial definition. The coherency in using the colloquial 

definition is considered as an indication of an understanding of the core concept of 

function. 

As discussed in chapter 8, the data obtained from the interviews with nine students 

revealed a spectrum of performances. A categorization of students’ responses addressed 

the research questions below: 
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How is a student’s overall response to different aspects of functions affected by the subtle 

differences among various aspects? (3d). 

How coherent is a student’s response as s/he move from one aspect to the other? (4a). 

As discussed in chapter 8, the analysis of responses from nine students in the interview 

revealed four categories. This categorization indicates that very few students strongly 

focused on the core concept of function. Ali is considered as a student who has a strong 

focus on the core concept of function. Two of the other successful students in the first 

category (Ahmet and Aysel) seemed to overcome the possible complications by different 

methods such as applying the vertical line test to graphs. Although Arif used the colloquial 

definition for all different aspects of functions, he gave more complicated responses 

compared to the other three successful students in the first category. 

9.1.1 A limitation of the theoretical framework 

Basically speaking the theoretical framework has two limitations. The first limitation is 

related to what is investigated, namely students’ understanding of the core concept of 

function. The core concept of function is unattainable since students’ experiences with 

functions are limited. For instance, students in this study who were in grade 3 of high 

school (17 year-old students) have not studied functions with two variables, or implicit 

functions or derivatives as functions. Therefore, students’ understanding of the core 

concept of function can only be assessed through concept images which are not rich 

enough for the core concept of function. In other words, the complexity of the function 

concept is not complete since students have not studied functions at a higher level. 

The second limitation is related to how we assess students’ understanding of the core 

concept of function. The theoretical framework considers the coherency in recognizing 
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different aspects of functions correctly with a strong focus on the definitional properties as 

an indication of the ability of focusing on the core concept of function. However, any 

aspect presented to students cannot represent the core concept of function. Especially, the 

drawings of the graphs have some limitations. Carvalho et al. (2002) define a theoretical-

computational conflict as the situations in which representations of a concept are 

contradictory to the formal definition of a concept. In that sense the drawings of the graphs 

have conflicts with the function it is supposed to represent. Some of the students asked 

questions about these conflicts. For instance, Aysel asked whether or not the graph of 

2sin)( −= xxf  continued. She then said that every element is assigned to an element since 

the two ends of the graph continue. Students’ responses to the transformations of 

“ RRf →: , 5)( =xf ” to the set-correspondence diagram revealed that some of the students 

were aware of the conflicts between the diagram and the core concept of function. 

Obviously, an infinite number of elements cannot be listed in a set diagram by using the 

set-container metaphor as Lakoff & Núñez (2000) use the term. Successful students, Ali, 

Ahmet, Aysel and Arif were aware of the limitation of the set-container metaphor. They 

focused on the infinite number of elements in the domain. They said that they cannot put 

all the elements in a set so they represented them by a a few numbers or symbols e.g. “ 1x , 

2x , 3x , 4x ” and “ +∞−∞, ”. Although some students were aware of the conflict, the physical 

drawings have similar potential conflicts for students in general (see also Aspinwall et al., 

1997). 

9.2 Prototypes and exemplars of functions 

In the Turkish context, the set-correspondence digram is used in a prototypical way to 

explain the colloquial definition as presented in Figure 1.1 in section 1.2.2. On the other 

hand, graphs and expressions are taught in clusters of exemplars in various stages in the 
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curriculum. For instance, students study linear functions then trigonometric functions and 

then move onto logarithmic functions and so on (table 1.2). The data in this study indicated 

that students’ cognitive development of learning the function concept followed a similar 

structure. As seen in the grid in table 8.1, the colloquial definition is mostly used for the 

set-correspondence diagram and the sets of ordered pairs. In other words, in these contexts, 

more students focused on the definitional properties. The successful students are the ones 

who could focus on the definitional properties even for the exemplars of functions, namely 

the graphs and expressions. Less successful students such as students in the second 

category, could use the colloquial definition for the set-correspondence diagrams and the 

sets of ordered pairs but not for the graphs and expressions. 

The least successful students, such as students in the third and fourth category, could not 

focus on the definitional properties for any aspects of functions. In other words, the set-

correspondence diagram and set of ordered pairs were also exemplars for them as well as 

the graphs and expressions. 

So, as one of the research questions tried to find out, how do these students who could 

coherently use the colloquial definition both for the prototypes and exemplars achieve this? 

Responses from successful students (Ali, Ahmet, Aysel and Arif) in the first category 

revealed that they used particular aspects of functions in a prototypical way to check the 

definitional properties for the other aspects of functions. They directly used the colloquial 

definition for the prototypes of functions, the set-correspondence diagram. For the 

exemplars of functions, they did not use the colloquial definition directly as summarized in 

the grid in table 8.1. For instance, they used the graphs in a prototypical way to focus on 

the definitional properties when dealing with the expressions. While less successful 

students gave complicated responses for the expressions, those successful students mostly 
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overcame these complications by drawing the graphs of the given expressions and then 

focusing on the definitional properties on those graphs. One student, Ahmet used the set-

correspondence diagram in a prototypical way. He drew the set diagram and put a few 

elements in the sets and checked whether every element in the domain was assigned to a 

unique element in the range.  

Lakoff (1987a) states that according to the classical view of categorization, category 

members only have definitional properties and all category members have those properties. 

However, as discussed in the literature review, human beings do not categorize in such a 

way that all category members share the same definitional properties. In other words, 

people do not treat categories as clear-cut entities. Lakoff (1987a) distinguishes between 

essential and incidental (accidental) properties. Essential properties are ‘those properties 

that make the thing what it is, and without which it would not be that kind of thing’ (p. 

161). Other properties are incidental. They are the properties that things happen to have but 

not the ones that capture the essence of the thing. The function concept, being in a well-

defined category, has essential properties called definitional properties, that is given two 

non-empty sets each element in the first set is assigned to a unique element in the second. 

The analysis of the data indicated that, while successful students focused on these essential 

properties, less successful students focused on the incidental properties such as the visual 

hints from the graphs and diagrams etc. In other words, exemplar based responses are the 

ones which focused on the incidental properties of different aspects of functions. It is 

claimed that the graphs and expressions being introduced in clusters carry more incidental 

properties. Therefore, they caused more complications especially for the students, as 

indicated by the data in this study. Even the successful students responded in exemplar-
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based ways for a few questions. However their overall responses indicated that they 

focused on the essential properties of different aspects of functions. 

The data indicated not only that the students developed exemplars of graphs and 

expressions, but also that they developed exemplars in separate clusters. Since graphs and 

expressions have different incidental properties, students developed exemplars in separate 

symbolic and graphical clusters. In other words, students might reject a graph as a function 

yet accept it as a function in symbolic form. The results reveal that graphically 

xxf sin)( −=  acted like an exemplar while the graph of 2sin)( −= xxf  acted as a non-

exemplar. There is a big difference between the number of students who accept the former 

and latter graphs (table 6.3, section 7.10 and section 7.1.11). On the other hand, 

symbolically this is not the case. More students tend to accept the expression 

2sin)( −= xxf  as a function compared to its graph. This concludes that a function can be a 

non-exemplar as one aspect and an exemplar as another aspect. 

9.3 Cognitive loads and cognitive economy 

Prototype exemplar distinction has implications for the simplicity and complications of the 

function concept. It is claimed that prototypes cause less complications while exemplars 

cause much more complications. To explain the attributes of prototypes and exemplars to 

the possible cognitive complications, two terms will be introduced; cognitive loads and 

cognitive economy. An aspect of a concept is said to have cognitive load, if it has a lot of 

contextual properties which are not necessarily relevant to the core concept. An aspect of a 

concept is said to have cognitive economy, if it does not carry a lot of properties which are 

not relevant to the core concept. It is believed that prototypes provide cognitive economy. 

They are cognitively economic since they can act like a cognitive unit to extract the 

definitional properties. Students do not need to deal with the complexities of the situation. 
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As seen in the grid in table 8.1, not only the successful students in the first category but 

also the less successful students in the second category focused on the definitional 

properties for the set-correspondence diagrams and the sets of ordered pairs. Even the most 

successful students in the first category were much more well-focused on the definitional 

properties for the set-correspondence and the sets of ordered pairs. As discussed in chapter 

8, successful students in the first category directly used the colloquial definition for the set-

correspondence diagram while they applied different methods for checking the definitional 

properties when dealing with graphs and expressions. For instance, they applied vertical 

line test to the graphs, drew the set-correspondence diagrams of the given items and the 

graphs of the given expressions. On the other hand, exemplars do not act like a cognitive 

unit rather they caused cognitive loads due to incidental properties. In the curriculum, 

graphs and expressions are given as clusters in different contexts. These clusters carrying 

out various incidental properties in different contexts are accumulated together. When 

there are so many clusters it becomes difficult, for less successful students, to decide 

whether or not it is a function since they can only decide by relying on their previous 

experiences but not the definitional properties. That is because, for graphs and expressions 

students focus on the properties irrelevant to the core concept. These properties may be 

helpful in one particular context but become an extra load for other contexts Therefore, the 

complexity of the function concept reveals itself as complications for students as they 

attempt to deal with those loads. Weaker students were overwhelmed by those cognitive 

loads, therefore gave very complicated responses. For weaker students, even the prototypes 

caused cognitive complications. For instance, Deniz and Demet in the fourth category, 

focused on the visual properties (which are incidental properties in Lakoff’s (1987a) 

words) of the set diagrams. They did not consider the set-correspondences as functions 

since the arrows intersect each other. For these students, the set-correspondence diagram is 
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not helpful to abstract the definitional properties. They considered the arrows as physical 

objects but not as part of the diagram carrying out the meaning of the assignment between 

two elements. 

The fact that different properties of function concept in different contexts forms concept 

images conflicting to the core concept of function is also found in the previous research by 

DeMarois, McGowen & Tall (2000a). They claim that since students deal with functions in 

different contexts such as function of one variable with domain and ranges as numbers, 

they assign some extra properties to the concept in every different context. DeMarois, 

McGowen & Tall (2000a) assert that it is not the function concept itself which is studied, 

but rather it is a special kind of function such as linear, quadratic, trigonometric, given by a 

formula, differentiable etc. Instead of the term “function”, they use the term “function 

plus”, where “plus” refers to the additional properties which change the nature of the 

function concept. A linear function, for instance, is uniquely determined by two pairs of 

input-output. In other words, the whole set of ordered pairs can be determined by the two 

ordered pairs. They mention that the “plus” is extremely subtle if the graph of a function in 

R  is considered. In that case it is assumed that the elements of the domain and range, the 

real numbers, are ordered. This is an extra property that a function may carry. In other 

words, the concept imagery is gained from the examples of “function plus”. Thus, students 

may have conflicting concept images with any arbitrary function. 

9.4 Limitations of the study 

Any study should be evaluated with its limitations (Cohen & Manion, 1994). As well as 

the theoretical limitations which were discussed in section 9.1.1, this study has some other 

limitations. The first limitation is concerned with the representation of the whole 

population. This study focused on Turkish students’ understanding of the core concept of 
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function. It was aimed to chose a sample of the students from three different subject groups 

(mathematics & science, social subjects, Turkish & mathematics) to represent the variation 

in the whole population. This was achieved by selecting nearly the same number of 

students from each subject group (table 5.1). On the other hand, this study is restricted to 

only two schools, and therefore has a limitation to represent the whole population. 

Secondly, the results from the questionnaires are not as strong as the results from the 

preliminary study. Including an “I don’t know” choice for the answers made the number of 

correct answers decline. However, the interviews revealed a similar picture in both studies, 

a spectrum of performance with a few students who could strongly focus on the core 

concept of function. 

The third limitation is concerned with the methodology. Although features of clinical 

interviewing such as immediate interpretation of the subject’s response and on-the-spot 

hypothesis making and testing are considered in the interviews, according to Piaget, a 

year’s training in the method is required to achieve expertise (Ginsburg, 2000). In that 

sense, interviews may lack validity due to lack of experience in clinical intervewing 

technique. 
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10 CHAPTER 10 - CONCLUSION 

This thesis has attempted to address the research questions which were defined in section 

5.2 in the methodology chapter. The main research questions were defined as follows: 

1. Do students use the core concept of function to recognize a function? 

2. Whatever the response is, what do they do to recognize a function? 

3. How do the various aspects of a function play their part? 

4. What do these three research questions imply for students’ understanding of the core 

concept of function? 

A categorization of students’ responses as discussed in chapter 8 suggested answers to the 

subquestions below: 

• How is a student’s overall response to different aspects of functions affected by the 

subtle differences among different aspects? 

• How coherent is a student’s response as s/he move from one aspect to the other? 

• How do students who give coherent responses to different aspects of functions cope 

with this? 

As an attempt to answer the research questions, mainly the following findings emerged 

from this thesis: 

• There is a spectrum of performance of students when dealing with various aspects of 

functions. In this spectrum, a few successful students could handle the flexibility of the 

mathematical simplicity and complexity of the core concept of function. For most of the 
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students in the interviews, the mathematical complexity of the function concept 

revealed itself as cognitive complications. 

• Students in the interviews treated various aspects of functions in cognitively different 

ways. They dealt with set-correspondence diagrams and sets of ordered pairs as 

prototypes and with graphs and expressions as exemplars. Prototypes caused less 

complications while exemplars caused much more complication. Only successful 

students coped with the complexity of the function concept in different contexts and 

could handle the possible cognitive complications. 

10.1 Implications 

In this study the way students deal with the complexity of different aspects of functions is 

investigated. The data indicated that most of the students dealt with different aspects of 

functions without focusing on the simplicity of the core concept of function. It can be 

claimed that the core concept of function requires a long term dissemination. Because, as 

Bakar & Tall (1992) state, the main obstable is that: 

The learner cannot construct the abstract concept of function without experiencing 
examples of the function concept in action, and they cannot study examples of the 
function concept in action without developing prototype examples having built-in 
limitations that do not apply to the abstract concept. (Bakar & Tall, 1992, p. 13) 

This has an implication about the curriculum design and is illustrated by Figure 10.1 

below: 



Chapter 10 - Conclusion 

188 
 

 
Figure 10-1. Curriculum design and students’ cognitive structures. 

As seen in Figure 10.1 above, there is a contradiction between the way the curriculum is 

designed and the cognitive structures of the students. The Turkish curriculum is designed 

in such a way that function is a foundational concept and an organizing principle. What is 

desired in the curriculum is that the majority of the students would handle the simplicity 

and complexity of the function concept in a flexible way. However, as the data indicated in 

this study, very few students focus on the simplicity of the function concept. On the 

contrary, the way the function concept is taught in the curriculum causes cognitive 

complications for most of the students. Especially, the way graphs and expressions is 

presented, as clusters of exemplars, affects students to focus on the incidental properties of 

different items but not the essential properties which are determined by the definition. 

10.2 Future directions 

It is believed that this study suggests further research in two aspects: 



Chapter 10 - Conclusion 

189 
 

The first is concerned with students’ understanding of the core concept of function at a 

more advanced level. As discussed in section 9.1.1., as a theoretical limitation, potentially 

for students in high school by their levels, the core concept of function cannot be achieved 

since it is applied to various ideas in advanced mathematics. Therefore, it is a possibility 

for further research to look at students’ understanding of the core concept of function at a 

more advanced level to see whether they handle the mathematical simplicity and 

complexity of the function concept in a more flexible way. 

The second possibility for further research is concerned with the teaching of the function 

concept to achieve the core concept of function. It is my belief that teaching functions by 

introducing it with the notion of function box could be beneficial in the sense of reducing 

the cognitive complications. However, this needs to be linked to the subsequent 

development of the concept of function. In addition, this use of function box with its 

implicit meaning both as a process (as input-output) and an object (the box) needs to be 

well-integrated with the subsequent development of the function concept. 

In the Turkish context, the function box is not used. It can be a cognitive root by helping 

the long term dissemination of the core concept of function. It might act as a prototype in 

the similar way the set-correspondence diagram does. 

The function box as a cognitive root is also suggested by DeMarois, McGowen & Tall 

(2000a and 2000b). They claim that the function box, as a generic image, can act as a 

cognitive root for the function concept. A cognitive root is ‘an anchoring concept which 

the learner finds easy to comprehend, yet forms a basis on which a theory may be built’ 

(Tall, 1992, p.497). DeMarois, McGowen & Tall (2000a) give a refined definition of a 

cognitive root. They state that a cognitive root: 
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(i) is a meaningful cognitive unit of core knowledge for the student at the beginning 
of the learning sequence, 

(ii) allows initial development through a strategy of cognitive expansion rather than 
significant cognitive reconstruction, 

(iii) contains the possibility of long-term meaning in later developments, 

(iv) is robust enough to remain useful as more sophisticated understanding develops 
(p. 3). 

It is believed that cognitive complications caused by incidental properties of specific 

exemplars can be lessened by focusing on various aspects which represents the same 

function. The following suggestion, including various aspects in the function box, by 

DeMarois, McGowen & Tall (2000a) has potential to do this: 

 
Figure 10-2. Function box (DeMarois, McGowen & Tall, 2000a, p. 4) 

The study of DeMarois, McGowen & Tall (2000b) indicates that the function box had 

improved the students’ (students who experience difficulty in mathematics and take 

remedial college algebra courses) flexibility in moving between various representations of 

function. It is my belief that function box may act as a cognitive root to the core concept of 
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function. As Thompson (1994) emphasis students should see something, the core concept 

of function, remains the same as they move from one aspect to the other. 
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11 APPENDIX 

Appendix A – Questionnaire 

A1 – Questionnaire 

FUNCTION TEST 

This is a questionnaire based on a doctoral thesis in the University of Warwick, UK. The 
purpose of this questionnaire is not to assess your correct and incorrect answers. It is 
important to see your own explanations, your thinking and what is in your mind in the 
answers. Thanks for completing this questionnaire and good luck… 

First, a couple of questions about yourself: 

Name:      _______________ 
Surname:  _______________ 
School:     _______________ 
Class:        _______________ 
 

Questions 

Question1: Give a couple of examples of functions. 

 

 

 

 

 

Question2: Think of a graph of a function in your mind. 

Can you see it?  

  Yes  ٱ
 No  ٱ

Now draw a sketch of the function here: 
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Question 3: Below various graphs are given. Which of the following graphs are graphs of 
a function of x  from R to R? Tick as appropriate. Give reasons for your answers. 
Example: 

 

 

 

a) 

 

 

 

 

____________________________________________________________________ 

 

b)  
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c) 

  
 
 

 

 

 
 

 

d) 
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e) 

 

 

 

___________________________________________________________________ 

Question4: Below various graphs are given. The domain is coloured as red. Which of the 
following graphs are graphs of a function of x? Tick as appropriate. Give the reason for 
your answer. 

Example: 

 

______________________________________________________________________ 

a) 
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b) 

  

 

 

 

 

c) 

d) 

 

 

 

e) 
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Question 5: Write down a function equation which comes into your mind immediately.  

 

Question 6: Below various equations are given. Which of the following equations 
represent a function of x? Tick as appropriate. Give the reasons for your answers.   

Example: 

f : R → R ,    f(x)=x 2   

 

Reason: 

 

a) 

f : R → R ,   f(x)= 162 −x   

 Function  ٱ

 Not a function  ٱ

 I don’t know  ٱ

Reason:  

 

 

 

 

 

 

b) 

f : R → R ,   x 2 +y 2 =1 

 Function  ٱ

 Not a function  ٱ

 I don’t know  ٱ

Reason: 
 
 
 
 
 
 
 

 
c) 

5=y  

 Function  ٱ

 Not a function  ٱ

 I don’t know  ٱ

Reason: 
 
 
 
d)  

y= 5  (for x≥ 2) 

 Function  ٱ

 Not a function  ٱ

 I don’t know  ٱ

 
Reason: 
 
 
 

e) 

5=y    (for all values of x) 

 Function  ٱ

 Not a function  ٱ

 I don’t know  ٱ

Reason: 
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f) f : R +  → R ,   f(x)=| x 2 -4| 
 
 Function  ٱ

 Not a function  ٱ

 I don’t know  ٱ

 
Reason: 
 
 
 
 
 
 

g) f : R → R , 

 
 
 
 

 
Question 7: A={1,2,3,4} B={1,2,3}are given. 

Which of the set of ordered pairs are functions from A to B? Tick as appropriate. Give 
reasons for your answers?  

a) f : A � B    f ={(1,1), (2,1), (3,2), (4,2)} 

 

 Function  ٱ

 Not a function  ٱ

 I don’t know  ٱ

 

Reason: 
 
 
 

b) g : A � B   g ={(1,1), (1,2), (2,2), (3,3), (4,3)} 

 Function  ٱ

 Not a function  ٱ

 I don’t know  ٱ

 
Reason: 
 
 
 
 
c) h :  A � B  h = {(1,1),(2,2)}  

 Function  ٱ

 Not a function  ٱ

 I don’t know  ٱ

 
Reason: 
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Question 8: Which of the following are functions? Tick as appropriate.Give reasons to 
your answers. 
a)

  

 

 

 

 

b)  

  

 

 

 

c) 

 

 

 

 

d) 

 

 

 

Question9: Give the definition of a function. 
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A2 – Frequencies from the questionnaire 

A2.1 – Reasons for responses to 3a, 3b, 3c, 3d, 3e 

Frequencies

Statistics

114 114 113 113 114

0 0 1 1 0

Valid

Missing

N

Reasons for

the response

to 3a

Reasons for

the response

to 3b

Reasons for

the response

to 3c

Reasons for

the response

to 3d

Reasons for

the response

to 3e

 
Table A - 1 

Frequency Tables 

Reasons for the response to 3a

7 6.1

10 8.8

18 15.8

24 21.1

55 48.2

114 100.0

Colloquial definition

First impression/General appearance

Specific visual hints

Other

No response

Total

Valid

Frequency Valid Percent

 
Table A - 2 

Reasons for the response to 3b

4 3.5

11 9.6

6 5.3

15 13.2

78 68.4

114 100.0

Colloquial definition

First impression/General appearance

Specific visual hints

Other

No response

Total

Valid

Frequency Valid Percent

 
Table A - 3 

Reasons for the response to 3c

6 5.3

8 7.1

6 5.3

14 12.4

79 69.9

113 100.0

1

114

Colloquial definition

First impression/General appearance

Specific visual hints

Other

No response

Total

Valid

SystemMissing

Total

Frequency Valid Percent

 
Table A - 4 
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Reasons for the response to 3d

5 4.4

1 .9

10 8.8

3 2.7

15 13.3

79 69.9

113 100.0

1

114

Colloquial definition

Colloquial definition wrongly used

First impression/General appearance

Specific visual hints

Other

No response

Total

Valid

SystemMissing

Total

Frequency Valid Percent

 
Table A - 5 

Reasons for the response to 3e

2 1.8

3 2.6

20 17.5

13 11.4

76 66.7

114 100.0

Colloquial definition

First impression/General appearance

Specific visual hints

Other

No response

Total

Valid

Frequency Valid Percent

 
Table A - 6 

The percentages are summarized as a bar chart as shown in the table below: 

Frequencies of categories of reasons for answers to 3a, 

3b, 3c, 3d, 3e

0
10
20
30
40
50
60
70
80

3a
(1

14
 re

sp
on

se
s)

3b
(1

14
 re

sp
on

se
s)

3c
(1

14
 re

sp
on

se
s)

3d
(1

14
 re

sp
on

se
s)

3e
(1

14
 re

sp
on

se
s)

Categories of reasons

F
re

q
u

e
n
c
y
 p

e
rc

e
n
t

Colloquial definition

Colloquial definition
wrongly used
First impression/General
appearance
Specific visual hints

Other

No explanation

 
Table A - 7
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To be able to find the percentages of categories for correct and incorrect answers, responses for each item are crosstabulated with 

categories of reasons for each item. These crosstabulations are presented below: 

Case Processing Summary

114 100.0% 0 .0% 114 100.0%

Reasons for the

response to 3a *

Response to question 3a

N Percent N Percent N Percent

Valid Missing Total

Cases

 
Table A - 8 

Reasons for the response to 3a * Response to question 3a Crosstabulation

7 7

13.0% 6.1%

5 2 3 10

9.3% 12.5% 7.0% 8.8%

9 9 18

16.7% 56.3% 15.8%

14 2 8 24

25.9% 12.5% 18.6% 21.1%

19 3 32 1 55

35.2% 18.8% 74.4% 100.0% 48.2%

54 16 43 1 114

100.0% 100.0% 100.0% 100.0% 100.0%

Count

% within Response

to question 3a

Count

% within Response

to question 3a

Count

% within Response

to question 3a

Count

% within Response

to question 3a

Count

% within Response

to question 3a

Count

% within Response

to question 3a

Colloquial definition

First impression/General

appearance

Specific visual hints

Other

No response

Reasons

for the

response

to 3a

Total

Function Not a function I don't know NR

Response to question 3a

Total

 
Table A - 9 
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Case Processing Summary

114 100.0% 0 .0% 114 100.0%

Reasons for the

response to 3b *

Response to question 3b

N Percent N Percent N Percent

Valid Missing Total

Cases

 
Table A - 10 

Reasons for the response to 3b * Response to question 3b Crosstabulation

4 4

15.4% 3.5%

10 1 11

34.5% 1.8% 9.6%

2 3 1 6

7.7% 10.3% 1.8% 5.3%

7 5 3 15

26.9% 17.2% 5.3% 13.2%

13 11 52 2 78

50.0% 37.9% 91.2% 100.0% 68.4%

26 29 57 2 114

100.0% 100.0% 100.0% 100.0% 100.0%

Count

% within Response

to question 3b

Count

% within Response

to question 3b

Count

% within Response

to question 3b

Count

% within Response

to question 3b

Count

% within Response

to question 3b

Count

% within Response

to question 3b

Colloquial definition

First impression/General

appearance

Specific visual hints

Other

No response

Reasons

for the

response

to 3b

Total

Function Not a function I don't know NR

Response to question 3b

Total

 
Table A - 11 
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Case Processing Summary

113 99.1% 1 .9% 114 100.0%

Reasons for the

response to 3c *

Response to question 3c

N Percent N Percent N Percent

Valid Missing Total

Cases

 
Table A - 12 

Reasons for the response to 3c * Response to question 3c Crosstabulation

6 6

19.4% 5.3%

8 8

25.8% 7.1%

3 2 1 6

12.5% 6.5% 1.8% 5.3%

6 5 3 14

25.0% 16.1% 5.3% 12.4%

15 10 53 1 79

62.5% 32.3% 93.0% 100.0% 69.9%

24 31 57 1 113

100.0% 100.0% 100.0% 100.0% 100.0%

Count

% within Response

to question 3c

Count

% within Response

to question 3c

Count

% within Response

to question 3c

Count

% within Response

to question 3c

Count

% within Response

to question 3c

Count

% within Response

to question 3c

Colloquial definition

First impression/General

appearance

Specific visual hints

Other

No response

Reasons

for the

response

to 3c

Total

Function Not a function I don't know NR

Response to question 3c

Total
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Case Processing Summary

113 99.1% 1 .9% 114 100.0%

Reasons for the

response to 3d *

Response to question 3d

N Percent N Percent N Percent

Valid Missing Total

Cases

 
Table A - 14 

Reasons for the response to 3d * Response to question 3d Crosstabulation

5 5

14.7% 4.4%

1 1

5.0% .9%

2 6 2 10

5.9% 30.0% 3.6% 8.8%

1 1 1 3

2.9% 5.0% 1.8% 2.7%

7 5 2 1 15

20.6% 25.0% 3.6% 25.0% 13.3%

19 7 50 3 79

55.9% 35.0% 90.9% 75.0% 69.9%

34 20 55 4 113

100.0% 100.0% 100.0% 100.0% 100.0%

Count

% within Response

to question 3d

Count

% within Response

to question 3d

Count

% within Response

to question 3d

Count

% within Response

to question 3d

Count

% within Response

to question 3d

Count

% within Response

to question 3d

Count

% within Response

to question 3d

Colloquial definition

Colloquial definition

wrongly used

First impression/General

appearance

Specific visual hints

Other

No response

Reasons

for the

response

to 3d

Total

Function Not a function I don't know NR

Response to question 3d

Total
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Case Processing Summary

114 100.0% 0 .0% 114 100.0%

Reasons for the

response to 3e *

Response to question 3e

N Percent N Percent N Percent

Valid Missing Total

Cases

 
Table A - 16 

Reasons for the response to 3e * Response to question 3e Crosstabulation

2 2

13.3% 1.8%

3 3

6.7% 2.6%

20 20

44.4% 17.5%

3 6 3 1 13

20.0% 13.3% 6.0% 25.0% 11.4%

10 16 47 3 76

66.7% 35.6% 94.0% 75.0% 66.7%

15 45 50 4 114

100.0% 100.0% 100.0% 100.0% 100.0%

Count

% within Response

to question 3e

Count

% within Response

to question 3e

Count

% within Response

to question 3e

Count

% within Response

to question 3e

Count

% within Response

to question 3e

Count

% within Response

to question 3e

Colloquial definition

First impression/General

appearance

Specific visual hints

Other

No response

Reasons

for the

response

to 3e

Total

Function Not a function I don't know NR

Response to question 3e

Total
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The results from these crosstabulations are summarized in Table 
A – 18 and A – 19 below. Students’ verbal explanations for each 
category are also given: 

Frequency percents of categories of reasons for correct answers to 

3a, 3b, 3c, 3d, 3e
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Table A - 18 

Colloquial definition: 3a: “No element is assigned to more than 
one element”, “elements in the domain are not assigned to more 
than one element in the range”, “for x  ∈ R, y takes a value 
between 1 and -1”. 

3b: “For all values of x, y takes a value between 0 and 1”, 
“every element in x  is assigned to only one element in y”. 

3c: “Because value of x=1 is assigned to more than one element 
in y axis”, “for values other than -1 and 1, there may not be 
y∈R”. 

3d: “For any value of x, y∈R”, “every element in x  is assigned 
to only one element in y”. 

3e: “For every value of x, y ∈[1,3] (probably meaning [-1,-3])’, 
“Images of all of them is between -1 and -3”. 

First impression/General appearance:  

3a: “there may be a function like this”. 

3c: “this is a wrong graph”, “it’s not symmetrical”, “that’s a 
stupid drawing”. 

3d: “it has symmetry property”. 

Specific visual hints:  

3a: “(it’s a function) since the numbers are given in equal 
length”, “it’s passing through the origin”. 

3b: “because of the numbers on the axes”. 

3c: “it intersects all of the numbers given on the axis (y axis)”, 
“it’s passing through x  and y axes”. 

3d: “the graph increases and decreases towards + and – ”. 
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Frequencies of categories of reasons for incorrect answers
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Table A - 19 

Colloquial definition wrongly used: “Same values takes 
different values. For instance, it should be, f(5π)=f(2π)”. 

First impression/General appearance:  

3a: “this shape doesn’t look like a function”, “a graph can not be 
like this”. 

(3b) “I’ve never seen such a function graph in my life before. I 
can’t believe that it’s a function”, “a graph can’t be like this”. 

3d: “that’s a wrong graph”, “I haven’t seen such a graph like 
this before, like mountains in a row, like Taurus Mountains”. 

(3e) “it doesn’t look like a function”. 

Specific visual hints:  

3a: “it’s continuously on the same surface (probably referring to 
x  axis)”, “it intersects x  axis at various places”, “function can 
not be negative on y axis”. 

3b: “I don’t know what π is for”, “A function can’t go only 
upwards”. 

3c “it’s (the graph) on the same surface (probably referring to y 
axis)”. 

3d: “because, under the graph, it’s empty. Where do the lines 
go? It’s not clear”. 

3e: “it’s out of the domain”, “it’s not a function since it has 
nothing related to x  axis”, “it doesn’t intersect x  axis”, “it 
doesn’t touch to x  axis”, “it only passes through y axis”, “it 
does not pass through neither x  nor y”. 
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A2.2 –Reasons for responses to 4a, 4b, 4c, 4d, 4e 

Frequencies 

Statistics

114 114 114 114 114

0 0 0 0 0

Valid

Missing

N

Reason for

answer to 4a

Reason for

answer to 4b

Reason for

answer to 4c

Reason for

answer to 4d

Reason for

answer to 4e

 
Table A - 20 

Frequency Tables 

Reasons for answer to 4a

3 2.6

29 25.4

4 3.5

5 4.4

73 64.0

114 100.0

Colloquial definition

First impression/General appearance

Specific visual hints

Other

No explanation

Total

Valid

Frequency Valid Percent

 
Table A - 21 

Reasons for answer to 4b

2 1.8

5 4.4

9 7.9

15 13.2

16 14.0

67 58.8

114 100.0

Colloquial definition

Colloquial definititon wrongly used

First impression/General appearance

Specific visual hints

Other

No explanation

Total

Valid

Frequency Valid Percent

 
Table A - 22 

Reasons for answer to 4c

6 5.3

1 .9

4 3.5

12 10.5

14 12.3

77 67.5

114 100.0

Colloquial definition

Colloquial definititon wrongly used

First impression/General appearance

Specific visual hints

Other

No explanation

Total

Valid

Frequency Valid Percent
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Reasons for answer to 4d

1 .9

4 3.5

15 13.2

4 3.5

9 7.9

81 71.1

114 100.0

Colloquial definition

Colloquial definititon wrongly used

First impression/General appearance

Specific visual hints

Other

No explanation

Total

Valid

Frequency Valid Percent

 
Table A - 24 

Reasons for answer to 4e

9 7.9

11 9.6

10 8.8

9 7.9

75 65.8

114 100.0

Colloquial definition

First impression/General appearance

Specific visual hints

Other

No explanation

Total

Valid

Frequency Valid Percent
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The percentages are summarized as a bar chart as shown in the table below: 

Frequency percents of categories of reasons for answers to 

4a, 4b, 4c, 4d, 4e
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To be able to find the percentages of categories for correct and incorrect answers, responses for each item are crosstabulated with 

categories of reasons for each item. Crosstabulations are given below: 

Case Processing Summary

114 100.0% 0 .0% 114 100.0%

Reason for answer

to 4a * Response

to question 4a

N Percent N Percent N Percent

Valid Missing Total

Cases

 
Table A - 27 

Reason for answer to 4a * Response to question 4a Crosstabulation

3 3

5.2% 2.6%

24 5 29

41.4% 11.1% 25.4%

3 1 4

5.2% 2.2% 3.5%

5 5

8.6% 4.4%

9 23 39 2 73

100.0% 39.7% 86.7% 100.0% 64.0%

9 58 45 2 114

100.0% 100.0% 100.0% 100.0% 100.0%

Count

% within Response

to question 4a

Count

% within Response

to question 4a

Count

% within Response

to question 4a

Count

% within Response

to question 4a

Count

% within Response

to question 4a

Count

% within Response

to question 4a

Colloquial definition

First impression/General

appearance

Specific visual hints

Other

No explanation

Reason for

answer to

4a

Total

Function Not a function I don't know NR

Response to question 4a

Total
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Case Processing Summary

114 100.0% 0 .0% 114 100.0%

Reason for answer

to 4b * Response

to question 4b

N Percent N Percent N Percent

Valid Missing Total

Cases

 
Table A - 29 

Reason for answer to 4b * Response to question 4b Crosstabulation

2 2

8.7% 1.8%

3 2 5

6.3% 8.7% 4.4%

4 5 9

8.3% 21.7% 7.9%

11 3 1 15

22.9% 13.0% 2.5% 13.2%

14 2 16

29.2% 8.7% 14.0%

16 9 39 3 67

33.3% 39.1% 97.5% 100.0% 58.8%

48 23 40 3 114

100.0% 100.0% 100.0% 100.0% 100.0%

Count

% within Response

to question 4b

Count

% within Response

to question 4b

Count

% within Response

to question 4b

Count

% within Response

to question 4b

Count

% within Response

to question 4b

Count

% within Response

to question 4b

Count

% within Response

to question 4b

Colloquial definition

Colloquial definition

wrongly used

First impression/General

appearance

Specific visual hints

Other

No explanation

Reason for

answer to

4b

Total

Function Not a function I don't know NR

Response to question 4b

Total
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Case Processing Summary

114 100.0% 0 .0% 114 100.0%
Reason for answer to 4c *

Response to question 4c

N Percent N Percent N Percent

Valid Missing Total

Cases

 
Table A - 31 

Reason for answer to 4c * Response to question 4c Crosstabulation

3 3

6.7% 2.6%

3 1 4

6.7% 7.1% 3.5%

2 2 4

4.4% 14.3% 3.5%

7 4 1 12

15.6% 28.6% 10.0% 10.5%

11 1 1 1 14

24.4% 7.1% 2.2% 10.0% 12.3%

19 6 44 8 77

42.2% 42.9% 97.8% 80.0% 67.5%

45 14 45 10 114

100.0% 100.0% 100.0% 100.0% 100.0%

Count

% within Response

to question 4c

Count

% within Response

to question 4c

Count

% within Response

to question 4c

Count

% within Response

to question 4c

Count

% within Response

to question 4c

Count

% within Response

to question 4c

Count

% within Response

to question 4c

Colloquial definition

Colloquial definition

wrongly used

First impression/General

appearance

Specific visual hints

Other

No explanation

Reason for

answer to

4c

Total

Function Not a function I don't know NR

Response to question 4c

Total
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Case Processing Summary

113 99.1% 1 .9% 114 100.0%

Reason for answer

to 4d * Response

to question 4d

N Percent N Percent N Percent

Valid Missing Total

Cases

 
Table A - 33 

Reason for answer to 4d * Response to question 4d Crosstabulation

1 1

2.7% .9%

2 2 4

11.8% 5.4% 3.5%

8 7 15

21.6% 12.5% 13.3%

4 4

10.8% 3.5%

4 4 1 9

23.5% 10.8% 1.8% 8.0%

11 18 48 3 80

64.7% 48.6% 85.7% 100.0% 70.8%

17 37 56 3 113

100.0% 100.0% 100.0% 100.0% 100.0%

Count

% within Response

to question 4d

Count

% within Response

to question 4d

Count

% within Response

to question 4d

Count

% within Response

to question 4d

Count

% within Response

to question 4d

Count

% within Response

to question 4d

Count

% within Response

to question 4d

Colloquial definition

Colloquial definition

wrongly used

First impression/General

appearance

Specific visual hints

Other

No explanation

Reason for

answer to

4d

Total

Function Not a function I don't know NR

Response to question 4d

Total
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Case Processing Summary

114 100.0% 0 .0% 114 100.0%

Reason for answer

to 4e * Response

to question 4e

N Percent N Percent N Percent

Valid Missing Total

Cases

 
Table A - 35 

Reason for answer to 4e * Response to question 4e Crosstabulation

9 9

34.6% 7.9%

5 6 11

13.2% 23.1% 9.6%

6 2 2 10

15.8% 7.7% 4.1% 8.8%

6 2 1 9

15.8% 7.7% 2.0% 7.9%

21 7 46 1 75

55.3% 26.9% 93.9% 100.0% 65.8%

38 26 49 1 114

100.0% 100.0% 100.0% 100.0% 100.0%

Count

% within Response

to question 4e

Count

% within Response

to question 4e

Count

% within Response

to question 4e
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% within Response

to question 4e

Count

% within Response

to question 4e

Count

% within Response

to question 4e

Colloquial definition

First impression/General
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Specific visual hints

Other

No explanation

Reason for

answer to

4e

Total

Function Not a function I don't know NR

Response to question 4e

Total
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The results from these crosstabulations are summarized in Table A 
– 37 and A – 38 below. Students’ verbal explanations for each 
category are also given: 
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Table A - 37 

Colloquial definition:  

4a: “Same element of the domain can not be assigned to two 
different values”, “an element in the domain can not be assigned 
to more than one element in the range”. 

4b: “(it’s not a function) since most of the elements of the 
domain are left”, “there can’t be elements left in the domain”. 

4c: “all elements are assigned and there isn’t any element left”. 

4d: “there are elements left in the domain”. 

4e: “some elements of the domain do not have corresponding 
values”, “values of x, 2 and -2 are not assigned”. 

Colloquial definition wrongly used:  

4b: “when x, the domain, is R, the range should have been R”, 
“(it’s not a function) since the domain is not R”. 

4c:  “because, in a relation, elements in the domain are not left 
unassigned”. 

 4d: “3/2 is undefined”. 

First impression/General appearance:  

4a: “it doesn’t look like a function”, “it can’t be like this, it’s 
stupid”. 

4b: “(it’s not a function) it’s rather like a straight line”. 

4c: “it looks like familiar”. 

4d: “there can’t be a function like this, like a graph of a beating 
heart”. 

4e: “(it’s not a function) it makes triangles”. 

Specific visual hints:  

4a: “there can’t be such values in a function graph”. 

4b: “(it’s not a function) since there is no drawing”. 

4c: “it passes through x  and y axes”. 
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4d: “the graph doesn’t pass through from integers on the x  axis 
such as 3 or 4”. 

4e: “(it’s not a function). There are gaps on the line”. 

Frequency percents of categories of reasons for incorrect 

answers to 4a, 4b, 4c, 4d, 4e
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Table A - 38 

Colloquial definition wrongly used:  

4b: “It’s a function since all elements are assigned to each 
other”. 

4c: “it’s not a function since elements in the domain are 
assigned to more than one element”. 

4d: “all of the elements in the domain are assigned to an 
element”. 

First impression/General appearance:  

4b: “a bisector line is a graph of a function”. 

4c: “(it’s not a function) it’s rather like a straight line”. 

4e: “I’ve seen such a drawing before”. 

Specific visual hints:  

4b: “(it’s a function) since the numbers on the graph pass 
through the origin”. 

4c: “(it’s not a function) since there is no drawing”. 

4e: “(it’s a function) since the line are joint on x  and y”, “(it’s a 
function) since it passes through a specific point”. 
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A2.3 – Reasons for responses to 6a, 6b, 6c, 6d, 6e, 6f, 6g 

Frequencies for reasons are presented below. Frequency tables are also summarized as 
bar charts. 
 
Frequencies 

Statistics

113 113 113 113 113 114 114

1 1 1 1 1 0 0
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answer to
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answer to
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Table A - 39 

6a) RRf →:     16
2

)( −= xxf  

Frequency Tables 

Reasons for answer to 6a

6 5.3

6 5.3

8 7.1

11 9.7

82 72.6

113 100.0

1

114

Colloquial definition

Specific visual hints

Finding a value for x and/or f(x)

Other

No explanation

Total

Valid

SystemMissing

Total

Frequency Valid Percent
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6b) RRf →: , 122 =+ yx  

Reasons for answer to 6b

2 1.8

6 5.3

14 12.4

4 3.5

87 77.0

113 100.0

1

114

Colloquial definition

Specific visual hints

Equation/unknown

Other

No explanation

Total

Valid

SystemMissing

Total

Frequency Valid Percent
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Frequency percents of categories of reasons for 

answers to 6b
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Table A - 43 

6c) 5=y  

Reasons for answer to 6c

1 .9 .9

7 6.1 6.2

5 4.4 4.4

7 6.1 6.2

16 14.0 14.2

77 67.5 68.1

113 99.1 100.0

1 .9

114 100.0

Colloquial definition

Expression has a value/result

Specific visual hints

Constant function

Other

No explanation

Total

Valid

SystemMissing

Total

Frequency Percent Valid Percent
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Frequency percents of categories of reasons 

for answers to 6c
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6d) 5=y      (for  x≥2) 

Reasons for answer to 6d

1 .9

2 1.8

2 1.8

19 16.8

89 78.8

113 100.0

1

114

Colloquial definition

Specific visual hints

Constant function

Other

No explanation

Total
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SystemMissing
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Frequency Valid Percent
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Frequency percents of categories of reasons 
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6e) 5=y  (for all values of x) 

Reasons for answer to 6e

1 .9 .9

1 .9 .9

3 2.6 2.7

7 6.1 6.2

11 9.6 9.7

90 78.9 79.6

113 99.1 100.0

1 .9

114 100.0

Colloquial definition

Colloquial definititon wrongly used

Specific visual hints

Constant function

Other

No explanation

Total
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SystemMissing

Total

Frequency Percent Valid Percent
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Frequency percents of categories of reasons 

for answers to 6e
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Table A - 49 

6f) RRf →+
: , =)(xf | 42 −x | 

Reasons for answer to 6f

6 5.3

5 4.4

4 3.5

3 2.6

12 10.5

84 73.7

114 100.0

Colloquial definition

Solving f(x)=0 for x

Absolute value function

f(x) has a value

Other

No explanation

Total

Valid

Frequency Valid Percent
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Frequency percents of categories of reasons 

for answers to 6f
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No explanation

 
Table A - 51 

Reasons for answer to 6g

1 .9

4 3.5

9 7.9

22 19.3

78 68.4

114 100.0

Colloquial definition

wrongly used

Split domain function

Signum function

Other

No explanation

Total

Valid

Frequency Valid Percent
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6g) RRf →:  

 

Frequency percents of categories of reasons 

for answers to 6g

0

10

20

30

40

50

60

70

80

6g(114 responses)

Categories of reasons

F
re

q
u
e

n
c
y
 p

e
rc

e
n
t

Colloquial definition
wrongly used

Split-domain
function

Signum function

Other

No explanation

 
Table A - 53 



A2.3 – Reasons for responses to 6a, 6b, 6c, 6d, 6e, 6f, 6g 

228 

To be able to find the percentages of categories for correct and incorrect answers, responses for each item are crosstabulated with 

categories of reasons for each item. These crosstabulations are presented below. Crosstabulations are also summarized as bar charts. 

Students’ verbal explanations for each category are given after each bar chart: 

Case Processing Summary

112 98.2% 2 1.8% 114 100.0%

Reason for answer

to 6a * Response

to question 6a

N Percent N Percent N Percent

Valid Missing Total

Cases

 
Table A - 54 

Reason for answer to 6a * Response to question 6a Crosstabulation

1 5 6

2.0% 41.7% 5.4%

4 2 6

8.0% 16.7% 5.4%

8 8

16.0% 7.1%

9 2 11

18.0% 16.7% 9.8%

28 3 47 3 81

56.0% 25.0% 100.0% 100.0% 72.3%

50 12 47 3 112

100.0% 100.0% 100.0% 100.0% 100.0%

Count

% within Response

to question 6a

Count

% within Response

to question 6a
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% within Response
to question 6a

Count

% within Response
to question 6a

Count

% within Response

to question 6a

Count

% within Response

to question 6a

Colloquial definition

Specific visual hints

Finding a value for x
and/or f(x)

Other

No explanation

Reason for

answer to
6a

Total

Function Not a function I don't know NR

Response to question 6a

Total
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Frequencies of categories of reasons 

for correct answers to 6a
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Table A - 56 

Colloquial definition: 41.7% (5) of the students who responded 
correctly to 6a used the colloquial definition for their 
explanations: 

“If we put 0 for x, then there is a negative number in the square 
root”. 

“It doesn’t satisfy for the interval -4<x<4”. 

“For x=0, f(x)∉R”. 

“If I give 1, then square root is minus. It can’t be minus”. 

“We can’t take square root of negative numbers”. 

Specific visual hints: 16.7% (2) students who responded 
correctly to 6a gave responses based on specific visual hints. 
They said that a function can not include an expression with a 
square root. 
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Table A - 57 

Colloquial definition wrongly used: 2% (1) of the students 
considered 6a as a function by using colloquial definition 
wrongly: 

“for every value of x, we can find another value. It says R → R”. 

Specific visual hints: 8% (4) of the students who incorrectly 
consider 6a as a function gave explanations based on specific 
visual hints: 

“It’s a function...with a square root expression, defined on R 
→R”. 

“it’s a function of a square root expression”. 

The other two students considered it as a function due to hints 
like “f : R →R” and “f”.  
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Finding a value for x  and/or f(x): 16% (8) of the students who 
incorrectly considered 6a as a function, explained their answers 
by finding a value for f(x) and/or x :  
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Case Processing Summary

113 99.1% 1 .9% 114 100.0%

Reason for answer

to 6b * Response

to question 6b

N Percent N Percent N Percent

Valid Missing Total

Cases

 
Table A - 58 

Reason for answer to 6b * Response to question 6b Crosstabulation

2 2

9.5% 1.8%

4 2 6

10.3% 9.5% 5.3%

10 4 14

25.6% 19.0% 12.4%

3 1 4

7.7% 4.8% 3.5%

22 12 47 6 87

56.4% 57.1% 100.0% 100.0% 77.0%

39 21 47 6 113

100.0% 100.0% 100.0% 100.0% 100.0%

Count

% within Response

to question 6b
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to question 6b

Count
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to question 6b

Count
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to question 6b

Count
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to question 6b

Count

% within Response

to question 6b

Colloquial definition

Specific visual hints

Equation/unknown

Other

No explanation

Reason for

answer to

6b

Total

Function Not a function I don't know NR

Response to question 6b

Total
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Frequencies of categories of reasons 

for correct answers to 6b
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Table A - 60 

Colloquial definition: 9.5% (2) of the students who correctly did 
not consider 6b as a function, explained their answers by using 
the colloquial definition: 

“Some of the negative numbers are in the root, therefore they 
don’t have corresponding values”. 

“for x=5, y 2 =-24 and this is not possible”. 

Equation/unknown: 19% (4) of the students who correctly did 
not consider 6b as a function with wrong reasons related to the 
expression being an equation or contains an unknown: 

“The equation is not satisfied”. 

“it’s not a function, it’s an equation”. 

“whatever we substitute for x  and y, the result is 1”. 

“x
2 +y

2 =1, (x+y)(x-y)=1. This is an equation”. 

Specific visual hints: 9.5% (2) of the students who correctly did 
not consider 6b as a function, gave wrong reasons related to 
specific hints such as the absence of f at the front. 

Frequencies of categories of reasons for incorrect 

answers to 6b
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Table A - 61 

Equation/unknown: 25.6% (10) of the students who incorrectly 
considered 6b as a function thought that it was a function since 
it is an equation and numbers can be substituted for the 
unknowns: 

“we can substitute values for x  and y”. 

Specific visual hints: 10.3% (4) of the students who incorrectly 
considered 6b as a function gave explanations related to specific 
hints such as the existence of “f : R → R”. 
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Case Processing Summary

112 98.2% 2 1.8% 114 100.0%
Reason for answer to 6c *

Response to question 6c

N Percent N Percent N Percent

Valid Missing Total

Cases

 
Table A - 62 

Reason for answer to 6c * Response to question 6c Crosstabulation

1 1

3.6% .9%

7 7

25.0% 6.3%

5 5

12.5% 4.5%

7 7

25.0% 6.3%

4 11 1 16

14.3% 27.5% 2.4% 14.3%

9 24 40 3 76

32.1% 60.0% 97.6% 100.0% 67.9%

28 40 41 3 112

100.0% 100.0% 100.0% 100.0% 100.0%
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to question 6c
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to question 6c
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Colloquial definition

Expression has a

value/result

Specific visual hints

Constant function

Other

No explanation

Reason for

answer to
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Total

Function Not a function I don't know NR

Response to question 6c

Total
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Frequencies of categories of reasons 

for correct answers to 6c
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Table A - 64 

Colloquial definition: 3.6 % (1) of the students who considered 
this expression as a function used the colloquial definition for 
his/her response: 

“It’s in the form y=f(x). 5=y  is the corresponding value of 
f(x)” (81). 

Constant function: 25% (7) of the students who considered 
5=y  as a function said that it is a constant function therefore it 

is a function.  

Expression has a value/result: 25% (7) of the students who 
considered 5=y  as a function focused on it as an expression 

which has a value or a result: 

“It says that y is 5”. 

“here the result of the function y is equal to 5. f(x)=y”. 
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Table A - 65 

Specific visual hints: 12.5% (5) of the students who did not 
consider 5=y  as a function responded based on specific hints 

such as the absence of the notation f. 
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Case Processing Summary

113 99.1% 1 .9% 114 100.0%

Reason for answer

to 6d * Response

to question 6d

N Percent N Percent N Percent

Valid Missing Total

Cases

 
Table A - 66 

Reason for answer to 6d * Response to question 6d Crosstabulation

1 1

4.0% .9%

2 2

7.1% 1.8%

2 2

8.0% 1.8%

8 10 1 19

32.0% 35.7% 1.8% 16.8%

14 16 56 3 89

56.0% 57.1% 98.2% 100.0% 78.8%

25 28 57 3 113

100.0% 100.0% 100.0% 100.0% 100.0%

Count
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to question 6d
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to question 6d
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to question 6d
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to question 6d

Count
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to question 6d

Colloquial definition

Specific visual hints
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Other

No explanation

Reason for

answer to

6d

Total

Function Not a function I don't know NR

Response to question 6d

Total
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Table A - 68 

Colloquial definition: 4% (1) of the students who considered 
“y= 5  (for x≥ 2)” as a function used the colloquial definition: 

“The elements of the domain are the ones which are equal to or 
greater than 2. Elements of the domain are assigned to only one 
element of the range”. 

Constant function: 8% (2) of the students who considered “y= 5  
(for x≥ 2)” as a function said that it is a constant function. 

Other: 32% (8) of the students who considered “y= 5 (for x≥ 2)” 
as a function gave various other explanations which can not 
form further categorizations: 

“(It’s a function) since there is an x  in the expression”. 

“there are specific values for x  and y. Its graph can be drawn”. 
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Table A - 69 

Specific visual hints: 7.1% (2) of the students who did not 
consider “y= 5  (for x≥ 2)” as a function explained their answers 
focusing on specific hints such as absence of f. 

Other: 35.7% (10) of the students who did not consider “y= 5  
(for x≥ 2)” as a function gave various other explanations which 
can not form further categorizations. 
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Case Processing Summary

113 99.1% 1 .9% 114 100.0%

Reason for answer

to 6e * Response

to question 6e

N Percent N Percent N Percent

Valid Missing Total

Cases

 
Table A - 70 

Reason for answer to 6e * Response to question 6e Crosstabulation

1 1

4.0% .9%

1 1

4.3% .9%

3 3

13.0% 2.7%

7 7

28.0% 6.2%

5 5 1 11

20.0% 21.7% 16.7% 9.7%

12 14 59 5 90

48.0% 60.9% 100.0% 83.3% 79.6%

25 23 59 6 113
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Table A - 72 

Colloquial definition: 4% (1) of the students who consider 
“ 5=y  (for all values of x)” as a function used the colloquial 
definition correctly: 

“Elements of the domain can be assigned to one element in the 
range”. 

Constant function: 28% (7) of the students who considered 
“ 5=y  (for all values of x)” as a function said that it is a 
constant function. 
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Table A - 73 

Colloquial definition wrongly used: 4.3% (1) of the students 
who did not consider “ 5=y  (for all values of x)” as a function 
used the colloquial definition wrongly: 

“The corresponding values of 5 can not be at more than one 
place”. 

Specific visual hints: 13% (3) of the students who did not 
consider “ 5=y  (for all values of x)” as a function gave 
explanations based on specific hints. All these three students did 
not consider this as a function since there is not an f  in the 
expression. 
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Case Processing Summary

114 100.0% 0 .0% 114 100.0%
Reason for answer to 6f *

Response to question 6f

N Percent N Percent N Percent

Valid Missing Total

Cases

 
Table A - 74 

Reason for answer to 6f * Response to question 6f Crosstabulation

6 6

11.3% 5.3%

5 5

9.4% 4.4%
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53 6 49 6 114
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Table A - 76 

Colloquial definition: 11.3% (6) of the students who considered 
6f as a function used the colloquial definition correctly in their 
explanations: 

“For every x  value, there is a value in the range” 

“f(1)=1 2 -4=-3=+3, for all values of x, there is a value” 

“non of the elements in the domain is left unassigned”. 

“every x  value finds its value”. 

Solving f(x)=0 for x: 9.4% (5) of the students who considered 6f 
as a function solved f(x)=0 for x. 

Absolute value function: 7.5% (4) of the students who 
considered 6f as a function said that it is an absolute value 
function.  

f(x) has a value: 5.7% (3) of the students who considered 6f as a 
function said that it is a function since f(x) has a value. 
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Case Processing Summary

114 100.0% 0 .0% 114 100.0%

Reason for answer

to 6g * Response

to question 6g

N Percent N Percent N Percent

Valid Missing Total

Cases

 
Table A - 78 

Reason for answer to 6g * Response to question 6g Crosstabulation
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Table A - 80 

Colloquial definition: None of the students used the colloquial 
definition for their explanations.  

Split-domain function: 7.4% (4) of the students who considered 
6g as a function said that it is a split-domain function.  

Signum function: 16.7% (9) of the students who considered 6g 
as a function said that it is a signum function.  

Frequencies of categories of reasons for incorrect 

answers to 6e

0

10

20

30

40

50

60

70

6e(23 incorrect
responses)

Categories of reasons

F
re

q
u
e
n

c
y
 p

e
rc

e
n
t Colloquial definition

wrongly used

Specific visual hints

Other

No explanation

 

Table A - 81 

Colloquial definition wrongly used: One student did not 
consider this as a function by using the colloquial definition 
wrongly: 

“For every value of x, there are three values”. 
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A2.4 –Reasons for responses to 7a, 7b, 7c 
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Reasons for response to 7b
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Specific visual hints

Drawing a set diagram

Other

No explanation

Total

Valid

Frequency Valid Percent

 
Table A - 83 

Reasons for response to 7c

7 6.1

7 6.1

4 3.5

3 2.6

5 4.4

20 17.5

68 59.6

114 100.0

Colloquial definition

Colloquial definition wrongly used

Specific visual hints

One to one

Drawing a set diagram

Other

No explanation

Total

Valid

Frequency Valid Percent

 
Table A - 84 
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The percentages are summarized as a bar chart as shown in the table below: 
 

Frequencies of categories of reasons for answers 

to 7a, 7b, 7c

0
10
20
30
40
50
60
70

7a
(1

14
 re

sp
on

se
s)

7b
(1

14
 re

sp
on

se
s)

7c
(1

14
 re

sp
on

se
s)

Categories of reasons

F
re

q
u
e
n
c
y
 p

e
rc

e
n
t Colloquial definition

Colloquial definition
wrongly used
Specific visual hints

One to one

Drawing a set
diagram
Other

No explanation

 

Table A - 85 
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To be able to find the percentages of categories for correct and incorrect answers, responses for each item are crosstabulated with 

categories of reasons for each item. These crosstabulations are presented below: 

Case Processing Summary

114 100.0% 0 .0% 114 100.0%

Reasons for response

to 7a * Response to

question 7a

N Percent N Percent N Percent

Valid Missing Total

Cases

 
Table A - 86 

Reasons for response to 7a * Response to question 7a Crosstabulation

15 15

27.8% 13.2%

4 1 5

7.4% 8.3% 4.4%

3 3

5.6% 2.6%

6 1 7

11.1% 20.0% 6.1%

15 3 3 21

27.8% 25.0% 7.0% 18.4%

11 8 40 4 63

20.4% 66.7% 93.0% 80.0% 55.3%

54 12 43 5 114

100.0% 100.0% 100.0% 100.0% 100.0%

Count

% within Response

to question 7a

Count

% within Response

to question 7a

Count

% within Response

to question 7a

Count

% within Response

to question 7a

Count

% within Response

to question 7a

Count

% within Response

to question 7a

Count

% within Response

to question 7a

Colloquial definition

Colloquial definition

wrongly used

Specific visual hints

Drawing a set diagram

Other

No explanation

Reasons for

response to

7a

Total

Function Not a function I don't know NR

Response to question 7a

Total

 
Table A - 87 



A2.4 –Reasons for responses to 7a, 7b, 7c 

246 
 

Case Processing Summary

114 100.0% 0 .0% 114 100.0%

Reasons for response

to 7b * Response to

question 7b

N Percent N Percent N Percent

Valid Missing Total

Cases

 
Table A - 88 

Reasons for response to 7b * Response to question 7b Crosstabulation

19 19

61.3% 16.7%

7 1 8

19.4% 3.2% 7.0%

3 1 4

8.3% 3.2% 3.5%

3 3

9.7% 2.6%

12 2 3 17

33.3% 6.5% 6.8% 14.9%

14 5 41 3 63

38.9% 16.1% 93.2% 100.0% 55.3%

36 31 44 3 114

100.0% 100.0% 100.0% 100.0% 100.0%

Count

% within Response

to question 7b

Count

% within Response

to question 7b

Count

% within Response

to question 7b

Count

% within Response

to question 7b

Count

% within Response

to question 7b

Count

% within Response

to question 7b

Count

% within Response

to question 7b

Colloquial definition

Colloquial definition

wrongly used

Specific visual hints

Drawing a set diagram

Other

No explanation

Reasons for

response to

7b

Total

Function Not a function I don't know NR

Response to question 7b

Total

 
Table A - 89 
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Case Processing Summary

114 100.0% 0 .0% 114 100.0%

Reasons for response

to 7c * Response to

question 7c

N Percent N Percent N Percent

Valid Missing Total

Cases

 
Table A - 90 

Reasons for response to 7c * Response to question 7c Crosstabulation

7 7

43.8% 6.1%

6 1 7

12.0% 6.3% 6.1%

3 1 4

6.0% 6.3% 3.5%

3 3

6.0% 2.6%

5 5

10.0% 4.4%

17 3 20

34.0% 7.0% 17.5%

16 7 40 5 68

32.0% 43.8% 93.0% 100.0% 59.6%

50 16 43 5 114

100.0% 100.0% 100.0% 100.0% 100.0%

Count

% within Response

to question 7c

Count

% within Response

to question 7c

Count

% within Response

to question 7c

Count

% within Response

to question 7c

Count

% within Response

to question 7c

Count

% within Response

to question 7c

Count

% within Response

to question 7c

Count

% within Response

to question 7c

Colloquial definition

Colloquial definition

wrongly used

Specific visual hints

One to one

Drawing a set diagram

Other

No explanation

Reasons for

response to

7c

Total

Function Not a function I don't know NR

Response to question 7c

Total

 
Table A - 91 
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The results from these crosstabulations are summarized in Table A – 
92 and A – 93 below. Students’ verbal explanations for each category 
are also given: 

Frequencies of categories of reasons for correct answers to 

7a, 7b, 7c

0

10

20

30

40

50

60

70

7a(54 correct

responses)

7b(31 correct

responses)

7c(16 correct

responses)

Categories of reasons for answers

F
re

q
u

e
n

c
y

 p
e

rc
e

n
t

Colloquial definition

Colloquial definition wrongly
used

Specific visual hints

Drawing a set diagram

Other

No explanation

 

Table A - 92 

Colloquial definition: 22.2% (12) of the students who responded 
correctly to 7a explained their answers using the  colloquial 
definition correctly:  

7a: “there isn’t any elements left in the domain”, “all elements of 
the domain have their corresponding values” (49), “all elements in 

the domain are assigned”, “every element of A is assigned to 
elements of B. There aren’t any element left in A”.  

7b: “it’s not a function, it’s a relation, 1 has two different values”, 
“an element in the domain can’t be assigned to more than one 
element”, “this is a relation”. 

7c: “an element in the domain is left”. 

Specific visual hints:  

7a: “it’s a function, since it says A →B”. 

7b: “it doesn’t behave in a regular way”. 

7c: “there shouldn’t be height h in a function”. 

Drawing a set diagram: In this category, there are students who 
drew the set diagram pictures for the given sets of ordered pairs to 
answer 7a and 7b correctly.  
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Frequencies of categories of reasons for incorrect answers to 

7a, 7b, 7c

0

10

20

30

40

50

60

70

80

7a(12 incorrect
responses)

7b(37 incorrect
responses)

7c(50 incorrect
responses)

Categories of reasons for answers

F
re

q
u

e
n

c
y

 p
e

rc
e

n
t

Colloquial definition

Colloquial definition wrongly
used

Specific visual hints

One to one

Drawing a set diagram

Other

No explanation

 
Table A - 93 

Colloquial definition wrongly used: 7a: “first element should come 
from A, and second element should come from B”. 

7b: “there is not an element left in the domain”. 

7c: “for a value of x  in A, there is a value in B. There aren’t two 
elements for the same value”. 

Specific visual hints: 7b: “it’s a function, since it says A →B”. 

7c: “it’s a function, since it says A →B”. 

One to one: 

7c: “The set of ordered pair is a one to one function”. 

Drawing a set diagram: In this category, there are students who 
drew the set diagram pictures for the given sets of ordered pairs to 
answer 7c incorrectly. 
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A2.5 –Reasons for responses to 8a,8b,8c, 8d 

Frequencies 

Statistics

114 114 114 114

0 0 0 0

Valid

Missing

N

Reasons for

response to

8a

Reasons for

response to

8b

Reasons for

response to

8c

Reasons for

response to

8d

 
Table A - 94 

Frequency Tables 

Reasons for response to 8a

24 21.1 21.1

2 1.8 1.8

8 7.0 7.0

17 14.9 14.9

12 10.5 10.5

51 44.7 44.7

114 100.0 100.0

Colloquial definition

Colloquial definition wrongly used

Specific visual hints

One to one and onto-ness

Other

No explanation

Total

Valid

Frequency Percent Valid Percent

 
Table A - 95 

Reasons for response to 8b

17 14.9 14.9

3 2.6 2.6

5 4.4 4.4

15 13.2 13.2

8 7.0 7.0

66 57.9 57.9

114 100.0 100.0

Colloquial definition

Colloquial definition wrongly used

Specific visual hints

One to one and onto-ness

Other

No explanation

Total

Valid
Frequency Percent Valid Percent

 
Table A - 96 
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Reasons for response to 8c

27 23.7 23.7

7 6.1 6.1

5 4.4 4.4

6 5.3 5.3

10 8.8 8.8

59 51.8 51.8

114 100.0 100.0

Colloquial definition

Colloquial definition wrongly used

Specific visual hints

One to one and onto-ness

Other

No explanation

Total

Valid

Frequency Percent Valid Percent

 
Table A - 97 

Reasons for response to 8d

15 13.2 13.2

2 1.8 1.8

6 5.3 5.3

5 4.4 4.4

24 21.1 21.1

8 7.0 7.0

54 47.4 47.4

114 100.0 100.0

Colloquial definition

Colloquial definition wrongly used

Specific visual hints

One to one and onto-ness

Constant function

Other

No explanation

Total

Valid

Frequency Percent Valid Percent

 
Table A - 98 

 
The percentages are summarized as a bar chart as shown in the table below: 

Frequencies of categories of reasons for 8a, 8b, 8c, 8d

0

10
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30

40

50

60

70

8a 8b 8c 8d

Categories of reasons for answers 

F
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e
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Colloquial definition

Colloquial definition
wrongly used

Specific visual hints

One to one and
onto-ness

Constant function

Other

No explanation

 

Table A - 99
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To be able to find the percentages of categories for correct and incorrect answers, responses for each item are crosstabulated with 

categories of reasons for each item. These crosstabulations are presented below: 

Case Processing Summary

114 100.0% 0 .0% 114 100.0%

Reasons for response

to 8a * Response to

question 8a

N Percent N Percent N Percent

Valid Missing Total

Cases

 
Table A - 100 

Reasons for response to 8a * Response to question 8a Crosstabulation

24 24

31.2% 21.1%

1 1 2

1.3% 11.1% 1.8%

6 2 8

7.8% 22.2% 7.0%

17 17

22.1% 14.9%

10 2 12

13.0% 22.2% 10.5%

19 4 25 3 51

24.7% 44.4% 100.0% 100.0% 44.7%

77 9 25 3 114

100.0% 100.0% 100.0% 100.0% 100.0%

Count

% within Response

to question 8a

Count

% within Response

to question 8a

Count

% within Response

to question 8a

Count

% within Response

to question 8a

Count

% within Response

to question 8a

Count

% within Response

to question 8a

Count

% within Response

to question 8a

Colloquial definition

Colloquial definition

wrongly used

Specific visual hints

One to one and onto ness

Other

No explanation

Reasons for

response to

8a

Total

Function Not a function I don't know NR

Response to question 8a

Total

 
Table A - 101 
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Case Processing Summary

114 100.0% 0 .0% 114 100.0%

Reasons for response

to 8b * Response to

question 8b

N Percent N Percent N Percent

Valid Missing Total

Cases

 
Table A - 102 

Reasons for response to 8b * Response to question 8b Crosstabulation

17 17

23.3% 14.9%

2 1 3

2.7% 25.0% 2.6%

4 1 5

5.5% 25.0% 4.4%

15 15

20.5% 13.2%

7 1 8

9.6% 3.3% 7.0%

28 2 29 7 66

38.4% 50.0% 96.7% 100.0% 57.9%

73 4 30 7 114

100.0% 100.0% 100.0% 100.0% 100.0%

Count

% within Response

to question 8b

Count

% within Response

to question 8b

Count

% within Response

to question 8b

Count

% within Response

to question 8b

Count

% within Response

to question 8b

Count

% within Response

to question 8b

Count

% within Response

to question 8b

Colloquial definition

Colloquial definition

wrongly used

Specific visual hints

One to one and onto ness

Other

No explanation

Reasons for

response to

8b

Total

Function Not a function I don't know NR

Response to question 8b

Total

 
Table A - 103 



A2.5 –Reasons for responses to 8a,8b,8c, 8d 

254 
 

Case Processing Summary

114 100.0% 0 .0% 114 100.0%

Reasons for response

to 8c * Response to

question 8c

N Percent N Percent N Percent

Valid Missing Total

Cases

 
Table A - 104 

Reasons for response to 8c * Response to question 8c Crosstabulation

27 27

60.0% 23.7%

7 7

22.6% 6.1%

3 2 5

9.7% 4.4% 4.4%

5 1 6

16.1% 2.2% 5.3%

8 2 10

25.8% 4.4% 8.8%

8 13 32 6 59

25.8% 28.9% 100.0% 100.0% 51.8%

31 45 32 6 114

100.0% 100.0% 100.0% 100.0% 100.0%

Count

% within Response

to question 8c

Count

% within Response

to question 8c

Count

% within Response

to question 8c

Count

% within Response

to question 8c

Count

% within Response

to question 8c

Count

% within Response

to question 8c

Count

% within Response

to question 8c

Colloquial definition

Colloquial definition

wrongly used

Specific visual hints

One to one and onto ness

Other

No explanation

Reasons for

response to

8c

Total

Function Not a function I don't know NR

Response to question 8c

Total

 
Table A - 105 
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Case Processing Summary

114 100.0% 0 .0% 114 100.0%

Reasons for response

to 8d * Response to

question 8d

N Percent N Percent N Percent

Valid Missing Total

Cases

 
Table A - 106 

Reasons for response to 8d * Response to question 8d Crosstabulation

15 15

19.7% 13.2%

2 2

28.6% 1.8%

5 1 6

6.6% 14.3% 5.3%

5 5

6.6% 4.4%

23 1 24

30.3% 25.0% 21.1%

6 1 1 8

7.9% 14.3% 3.7% 7.0%

22 3 26 3 54

28.9% 42.9% 96.3% 75.0% 47.4%

76 7 27 4 114

100.0% 100.0% 100.0% 100.0% 100.0%

Count

% within Response

to question 8d

Count

% within Response

to question 8d

Count

% within Response

to question 8d

Count

% within Response

to question 8d

Count

% within Response

to question 8d

Count

% within Response

to question 8d

Count

% within Response

to question 8d

Count

% within Response

to question 8d

Colloquial definition

Colloquial definition

wrongly used

Specific visual hints

One to one and onto ness

Constant function

Other

No explanation

Reasons for

response to

8d

Total

Function Not a function I don't know NR

Response to question 8d

Total

 
Table A - 107 
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The results from these crosstabulations are summarized in Table A 
– 108 and A – 109 below. Students’ verbal explanations for each 
category are also given: 

Frequencies of categories of reasons for correct answers to 

8a, 8b, 8c, 8d

0

10

20

30

40

50

60

70

8a(77 correct

responses)

8b(73 correct

responses)

8c(45 correct

responses)

8d(76 correct

responses)

Categories of reasons for answers

F
re

q
u

e
n

c
y

 p
e

rc
e

n
t

Colloquial definition

Colloquial definition
wrongly used

Specific visual hints

One to one and
onto-ness
Constant function

Other

No explanation

 

Table A - 108 

Colloquial definition:  

8a: “there aren’t elements left in the domain”. 

8b: “every element in C has a value in D”. 

8c: “an element in A can not be assigned to more than one 
element in B”. 

8d: “every element in A takes the same element, 6, in B”. 

Colloquial definition wrongly used:  

8a: “elements in the domain and range, all of them are 
assigned”.  

8b: “(it’s a function), 1 and 4 are joined to 2”.  

Specific visual hints:  

8a: “names are connected to numbers”. 

8b: “(it’s a function) since two lines can intersect with each 
other”. 

8c: “(it’s a function) since the notations are correct”. 

8d: “(it’s a function) since the notations are correct”. 

One-to-one and onto-ness:  

Students considered 8a, 8b, 8c as a function since they are one-
to-one, onto or one-to-one and onto. One student did not 
consider 8c as a function since it is not one-to-one: 

“it’s not one-to-one. One element should be used once”. 

Constant function: In this category, there are students who 
considered the given items as functions since they are constant 
functions. 
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Frequencies of categories of reasons for incorrect answers to 

8a, 8b, 8c, 8d

0

10

20

30

40

50

60

8a(9 incorrect

responses)

8b(4 incorrect

responses)

8c(31 incorrect

responses)

8d(7 incorrect

responses)

Categories of reasons for answers 

F
re

q
u

e
n

c
y

 p
e

rc
e

n
t

Colloquial
definition

Colloquial
definition wrongly
used
Specific visual
hints

One to one and
onto-ness

Other

 

Table A - 109 

Colloquial definition wrongly used:  

8a: “this is not a function, because to be a function every 
element should go to a unique element”. 

8b: “(it’s not a function) since there is an element in D”. 

8c: “(it’s a function) an element in the domain can be assigned 
to more than one element in the range”. 

8d: “(it’s not a function) since an element in the range is 
assigned to the domain”. 

 

Specific visual hints:  

8a: “(it’s not a function). No element intersects one another”. 

8b: “(it’s not a function). 1, 4, 2 intersect”. 

8c: “(it’s not a function) since the numbers are not equal”. 

8d: “(it’s not a function) since the sign at the top goes to the 
reverse direction”. 

One-to-one and onto-ness:  

8c: “one-to-one function. Every element of A is assigned to an 
element of B. It’s also an onto function”. 

“it’s an onto function”. 

“it is a one-to-one and onto function”. 
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A2.6 – Frequencies for the number of yes responses to the three forms of constant 

function 

Frequencies 

Statistics

Number of yes responses to three constant functions

113

1

Valid

Missing

N

 
Table A - 110 

Number of yes responses to three forms of constant functions

72 63.2 63.7 63.7

15 13.2 13.3 77.0

16 14.0 14.2 91.2

10 8.8 8.8 100.0

113 99.1 100.0

1 .9

114 100.0

0

1

2

3

Total

Valid

SystemMissing

Total

Frequency Percent Valid Percent

Cumulative

Percent

 
Table A - 111 
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A2.7 – Frequencies of total number of correct answers to questions 3, 4, 6, 7, 8: 

Frequencies

Statistics

114 113 113 113 114 114 112

0 1 1 1 0 0 2

Valid

Missing

N

Number of

correct

answers to

question 3

Number of

correct

answers to

question 4

Number of

correct

answers to

question 3

and 4

Number of

correct

answers to

question 6

Number of

correct

answers to

question 7

Number of

correct

answers to

question 8

Number of

correct

answers to

all closed

questions

 
Table A - 112 

Frequency Tables 

Number of correct answers to question 3 (a total of five items)

43 37.7 37.7 37.7

27 23.7 23.7 61.4

19 16.7 16.7 78.1

13 11.4 11.4 89.5

10 8.8 8.8 98.2

2 1.8 1.8 100.0

114 100.0 100.0

No correct answers

1 Correct answer

2 Correct answers

3 Correct answers

4 Correct answers

5 Correct answers

Total

Valid

Frequency Percent Valid Percent

Cumulative

Percent

 
Table A - 113 

Number of correct answers to question 4 (a total of five items)

32 28.1 28.3 28.3

27 23.7 23.9 52.2

39 34.2 34.5 86.7

11 9.6 9.7 96.5

4 3.5 3.5 100.0

113 99.1 100.0

1 .9

114 100.0

No correct answers

1 Correct answer

2 Correct answers

3 Correct answers

4 Correct answers

Total

Valid

SystemMissing

Total

Frequency Percent Valid Percent

Cumulative

Percent

 
Table A - 114 
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Number of correct answers to question 3 and 4 (a total of ten items)

26 22.8 23.0 23.0

8 7.0 7.1 30.1

18 15.8 15.9 46.0

24 21.1 21.2 67.3

12 10.5 10.6 77.9

15 13.2 13.3 91.2

4 3.5 3.5 94.7

4 3.5 3.5 98.2

2 1.8 1.8 100.0

113 99.1 100.0

1 .9

114 100.0

No correct answers

1 Correct answer

2 Correct answers

3 Correct answers

4 Correct answers

5 Correct answers

6 Correct answers

7 Correct answers

8 Correct answers

Total

Valid

SystemMissing

Total

Frequency Percent Valid Percent

Cumulative

Percent

 
Table A - 115 

Number of correct answers to question 6 (a total of seven items)

31 27.2 27.4 27.4

17 14.9 15.0 42.5

11 9.6 9.7 52.2

13 11.4 11.5 63.7

21 18.4 18.6 82.3

12 10.5 10.6 92.9

6 5.3 5.3 98.2

2 1.8 1.8 100.0

113 99.1 100.0

1 .9

114 100.0

No correct answers

1 Correct answer

2 Correct answers

3 Correct answers

4 Correct answers

5 Correct answers

6 Correct answers

7 Correct answers

Total

Valid

SystemMissing

Total

Frequency Percent Valid Percent

Cumulative

Percent

 
Table A - 116 

Number of correct answers to question 7c (a total of three items)

42 36.8 36.8 36.8

23 20.2 20.2 57.0

28 24.6 24.6 81.6

21 18.4 18.4 100.0

114 100.0 100.0

No correct answers

1 Correct answer

2 Correct answers

3 Correct answers

Total

Valid

Frequency Percent Valid Percent

Cumulative

Percent

 
Table A - 117 
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Number of correct answers to question 8 (a total of four items)

28 24.6 24.6 24.6

8 7.0 7.0 31.6

9 7.9 7.9 39.5

47 41.2 41.2 80.7

22 19.3 19.3 100.0

114 100.0 100.0

No correct answers

1 Correct answer

2 Correct answers

3 Correct answers

4 Correct answers

Total

Valid

Frequency Percent Valid Percent

Cumulative

Percent

 
Table A - 118 

Number of correct answers to all closed questions (a total of twenty four items)

13 11.4 11.6 11.6

2 1.8 1.8 13.4

5 4.4 4.5 17.9

8 7.0 7.1 25.0

4 3.5 3.6 28.6

4 3.5 3.6 32.1

5 4.4 4.5 36.6

6 5.3 5.4 42.0

7 6.1 6.3 48.2

5 4.4 4.5 52.7

4 3.5 3.6 56.3

5 4.4 4.5 60.7

9 7.9 8.0 68.8

6 5.3 5.4 74.1

16 14.0 14.3 88.4

5 4.4 4.5 92.9

3 2.6 2.7 95.5

2 1.8 1.8 97.3

2 1.8 1.8 99.1

1 .9 .9 100.0

112 98.2 100.0

2 1.8

114 100.0
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SystemMissing

Total
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Cumulative

Percent

 
Table A - 119 



B1 – Interview schedule 

262 

Appendix B - Interview 

B1 – Interview schedule 

I will give you various questions on these papers. You can use this pen if you need to. I 

want you to tell me what is on your mind. It is not important that you are right or wrong. I 

want to know what is in your mind so think aloud. 

Then I show them the following items and asked them: 

Is this a function?...Can you explain why? 

1 – Set-correspondence diagram 

 

2 – Set of ordered pairs 

}4,3,2,1{=A  

RAf →: , )}3,4(),3,3(),2,2(),2,1(),1,1{(=f  

 

3 – Graph 1 

RRf →:  

 

 

4 – Graph 2 

RRf →:  

 

 

5 – Graph 3  
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6 – Graph 4 

 

7 – Graph 5 

 

 

8 – Graph 6 (Non exemplar graph1) 

 

9 – Graph 7 (Non exemplar graph 2) 

 

10 – Graph 8 

RRf →:  

 

11 – Graph9 

RRf →:  

 

12 – Expression 1 

RRf →:  
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13 – Expression 2  

5=y  

 

14 – Expression 3 

5=y  (for x≤ 2) 

15 – Expression 4 

5=y  (for all values of x) 

 

16 – Expression 5 

RRf →:    2sin)( −= xxf  

 

 

Taking account of individual explanations, follow up questions are asked to reveal 

students’ reasoning about each item.  

Then students are given the constant function  “ RRf →: , 5)( =xf ” and are asked to 

transform it to a graph, a set-correspondence diagram and a set of ordered pairs: 

17 –  Transformation 1 

Draw the graph of “ RRf →: , 5)( =xf ”. 

18 – Transformation 2 

Draw the set-correspondence diagram of “ RRf →: , 5)( =xf ”. 

19 – Transformation 3 

Write the set of ordered pais for “ RRf →: , 5)( =xf ”. 
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B2 – Interviewees’ answers and explanations in the questionnaires 

Ali 

Definition: ‘Is a relation with a range which have no elements left’ 

Graphs:  

3a 3b 3c 3d 3e 
Function  Function Function  Not a function Function  

Table B2-1 

When working with graphs in question 3, he found the formulas for each graph. He first 

found the formula for the first graph, y=sinx. Based on that formula he found the formulas 

for the other graphs as follows: |sin|)( xxf =  for 3b, xxf =)(sin  for 3c, 2sin)( −= xxf  for 

3e. He did not consider item 3d as a function since he could not find the formula for it. He 

wrote the following for the reason: 

‘same elements take different values. For example it should be f(5)=f(2)’ 

4a 4b 4c 4d 4e 
Not a function  Not a function Function Function Not a function 

Table B2-2 

When dealing with graphs with coloured domains in question 4, he used the definitional 

properties. For instance, he did not consider 4a as a function and wrote: 

‘an element in the domain can not be assigned two different values’ 

He could also distinguished the elements in the domain which are not assigned to any 

elements, therefore he did not consider 4e as a function.  

Expression:  

6a 6b 6c 6d 6e 6f 6g 
Function  Function Function Function Function Function  Function 

Table B2-3 

When dealing with expressions he could not give any reasons for his answers except the 

cases for constant functions (6c, 6d, 6e) and item 6g. He considered 6c, 6d, 6e as a 

function because they are all constant functions. He wrote that he could not see any 

difference between ‘ 5=y ’ and ‘ 5=y  (for all values of x)’. As a reason for ‘ 5=y  (for 

x≥2)’ he wrote ‘according to the domain, it is a constant function’. He considered 6g as a 

absolute value function.  
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Ordered pairs:  

7a 7b 7c 
Function  Not a function Function  

Table B2-4 

In question 7, he correctly answered 7a and 7b by using the definitional properties. 

However, he incorrectly consider 7c as a function and wrote that it is an identity function.  

Set diagrams:  

8a 8b 8c 8d 
Function  Function Not a function Function 

Table B2-5 

In question 8, he considered 8a as a one to one and onto function and 8b as an onto 

function. He correctly did not consider 8c as a function since 6 has two different values. 

He considered 8d as a function since it is a constant function.  
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Aysel 

Definition: ‘A≠Ø and B≠ Ø, for relations in (A×B), every element in the domain is 

assigned to one and only one element in the range and if there is no elements left in the 

domain then this relation is a function’. 

Graphs:  

3a 3b 3c 3d 3e 
Function  Function Not a function Function Not a function 

Table B2-6 

For 3a she wrote that elements in the domain are not assigned to more than one element in 

the range. She could not give any reason for 3b. She did not consider 3c as a function since 

x=1 has more than one value on the y-axis. As a reason for  3d she referred to 3a.   

4a 4b 4c 4d 4e 
Not a function  Function Function Function Function  

Table B2-7 

She did not give any reason for her answers except 4b. She considered 4b as a function 

since it is the constant function f(x)=0.  

Expression:  

6a 6b 6c 6d 6e 6f 6g 
Function  Not a 

function 
Function Function Function Not a function Function 

Table B2-8 

She did not give any reasons for her answers. 

Ordered pairs:  

7a 7b 7c 
Function  Not a function Function  

Table B2-9 

She did not give any reason for her answers. 

Set diagrams:  

8a 8b 8c 8d 
Function  Function Not a function Function 

Table B2-10 

Again, she did not give any reasons for her answers. 
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Ahmet 

Definition: ‘It is a relation which has a value for any elements in the domain’.   

Graphs:  

3a 3b 3c 3d 3e 
Function  Function Not a function Function Function  

Table B2-11 

Ahmet could give reasons for his answers by using definitional properties e.g. for 3a he 

wrote that y takes values between 1 and -1 for x ∈R. He gave similar reasons for 3b, 3e. 

For 3d he wrote that for any value of x, y ∈  R. He did not consider 3c as a function since 

for values of x  other than -1 and 1, there may not be any elements y ∈R.   

4a 4b 4c 4d 4e 
Not a function I don’t know I don’t know Function I don’t know 

Table B2-12 

Ahmet used vertical line test for 4a and 4d. He did not consider 4a as a function and wrote 

that if lines are drawn parallel to y axis it intersects twice. He considered 4d as a function 

because lines parallel to y axis intersect once.  

Expression: 

6a 6b 6c 6d 6e 6f 6g 
Not a 
function 

Not a 
function 

Function Function Function Function Not a 
function 

Table B2-13 

He did not consider 6a and 6b by giving examples of values of x  where the function is 

undefined. He considered 6c, 6d, 6e as a function because they are all functions. He did 

consider 6f as a function because it is absolute value function and takes value of Z + . He 

did not consider 6g as a function because for every element of x  there are three different 

values  

Ordered pairs: 

7a 7b 7c 
Function  Not a function Function  

Table B2-14 

Ahmet used the definitional properties correctly for 7a and 7b. However, he considered 7c 

as a function since he could only focus on the uniqueness of the elements in the domain but 

not the elements left in the domain. 
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Set diagrams: 

8a 8b 8c 8d 
Function  Function Not a function Function 

Table B2-15 

For all set diagram, items he could successfully use the definitional properties. He could 

also focus on 8a as a one to one and onto function and 8d as a constant function.  
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Arif 

Definition: ‘By a function, we mean, we can find the corresponding value of an element in 

the domain and it will be in the range’. 

Graphs:  

3a 3b 3c 3d 3e 
I don’t know  Function I don’t know No response I don’t know 

Table B2-16 

He could not give any reasons for his answers except 3b which he considered as a constant 

function.  

4a 4b 4c 4d 4e 
I don’t know Function  I don’t know Not a function Not a function 

Table B2-17 

He did not give any reason for 4a and 4c. He considered 4b as the graph of y=x. for 4d, he 

wrote that it is not defined at 3/2 (probably thinking of 3.2). For 4e, he could focus on the 

domain and wrote that there is no corresponding value for 2 and the function is not defined 

at 2.  

Expression:  

6a 6b 6c 6d 6e 6f 6g 
Function  Function  Function Not a 

function 
Function Function Function  

Table B2-18 

He incorrectly considered 6a as a function and wrote that for every value the 

corresponding value can be found because of R → R. 6b was considered as signum 

function. He wrote that it takes the values 1, 0, -1 probably referring to maximum values of 

x  and y. He also wrote that the values of x  and y are 1 and 0 and the sum is 1. He 

considered ‘ 5=y ’ and ‘ 5=y  (for all values of x)’ as a function but not ‘ 5=y  (for 

x≥2)’. He wrote that the y value has the value 5 and note that he did not know the equation 

for it. For ‘ 5=y  (for all values of x)’ he only wrote that it is constant function. The reason 

why he considered ‘ 5=y  (for x≥2)’ is that y ca not be 3 or 4. For 6f he found f(1)=3 and 

wrote that for every value there is another value. He considered 6g as a function because it 

is a signum function.  
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Ordered pairs: 

7a 7b 7c 
Function  Not a function Function  

Table B2-19 

Arif draw set diagrams for all sets of ordered pairs. He did not consider 7b as a function 

because one element in the domain can not have two values. However, he could not focus 

on the elements left in the domain.  

Set diagrams: 

8a 8b 8c 8d 
Function  Function Not a function Function 

Table B2-20 

Arif used definitional properties successfully for the first three set diagrams. He considered 

6d as a function since it is constant function. 
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Belma 

Definition: ‘Let BAf →: . If every element in A is assigned to B then this is called 

function’.  

Graphs:  

3a 3b 3c 3d 3e 
Function  I don’t know I don’t know I don’t know No response 

Table B2-21 

Belma could not give any reasons for her answers in question3. She noted that she did not 

understand or could not explain.  

4a 4b 4c 4d 4e 
I don’t know Function  Function  I don’t know I don’t know 

Table B2-22 

She could not give explanations for her answers except 4b and 4c. For 4b and 4c she wrote 

that elements are assigned to each other.  

Expression:  

6a 6b 6c 6d 6e 6f 6g 
I don’t 
know  

I don’t 
know 

Not a 
function 

Not a 
function 

I don’t 
know 

Functio
n 

Not a 
function 

Table B2-23 

Belma could not give any reasons for her answers in question6. For 6g she put 1, 0, -1 in 

succession for 122 +− xx >0, 122 +− xx =0, 122 +− xx <0. She did not consider this as a 

function since the three conditions on the domain do not satisfy them.  

Ordered pairs: 

7a 7b 7c 
Function  Not a function  Function  

Table B2-24 

Belma drew set diagrams for each item in question7. She could not focus on the elements 

left in the domain for 7c.  

Set diagrams: 

8a 8b 8c 8d 
No response  Not a function Not a function Function 

Table B2-25 

For 8b, 8c and 8d, she correctly used the definitional properties. 
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Belgin 

Definition: Belgin did not write anything for the definition of a function. 

Graphs:  

3a 3b 3c 3d 3e 
No response  No response I don’t know No response I don’t know 

Table B2-26 

Belgin did not give any explanations for question 3.  

4a 4b 4c 4d 4e 
No response Function  Function  No response I don’t know 

Table B2-27 

She only gave explanations for 4b and 4c. She wrote that all elements are assigned to each 

other.  

Expression: 

6a 6b 6c 6d 6e 6f 6g 
I don’t 
know  

Not a 
function 

I don’t 
know 

I don’t 
know 

I don’t 
know 

Function I don’t 
know 

Table B2-28 

Belgin only gave explanations for 6b and 6f. She did not consider 6b as a function since 

whatever is given to x  and y the result is 1. She considered 6f as a function since it is 

absolute value function. She wrote that when values are given to x, one positive one 

negative value are found, therefore every number is definitely assigned to a number. 

Ordered pairs: 

7a 7b 7c 
Function  Not a function  Function  

Table B2-29 

Belgin successfully used the definitional properties for 7a and 7b. However, she did not 

consider the elements left in the domain and considered this as a one to one and onto 

function. 

Set diagrams: 

8a 8b 8c 8d 
Function  Function Not a function Function 

Table B2-30 

Belgin used definitional properties for items in question8. As well as the definitional 

properties she considered 8d as constant function. 
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Cem 

Definition: ‘functions are line segments that are constructed by the intersection of two line 

segments. It is a group of the elements of two sets’. 

Graphs:  
3a 3b 3c 3d 3e 
Not a function Function Function I don’t know Not a function 

Table B2-31 

Cem did not consider 3a as a function since the graph intersects the x  axis more than once. 

He did not give any explanations for 3b, 3c and 3d. He did not consider 3e as a function 

since the graph is below the x  axis. 

4a 4b 4c 4d 4e 
Not a function Function Not a function Not a function Function  

Table B2-32 

Cem could not use the definitional properties in question 4.   

Expression: 

6a 6b 6c 6d 6e 6f 6g 
Not a 
function 

Not a 
function 

Not a 
function 

Not a 
function 

Function Function Function  

Table B2-33 

Among three forms of constant functions he only considered ‘ 5=y  (for all values of x)’ 

as a function since ‘for all values of x’ is mentioned and wrote that the line is drawn 

according to the values of x.  

Ordered pairs: 
7a 7b 7c 
Function Function Not a function 

Table B2-34 

Cem could not use the definitional properties for sets of ordered pairs. He considered 7a 

and 7b as a function since he could see the values in the domain and range in the sets of 

ordered pairs. He did not give any reason for 7c.  

Set diagrams: 

8a 8b 8c 8d 
Function  Function Not a function Function  

Table B2-35 

Cem could not use the definitional properties for set diagrams. For 8a and 8b he only wrote 

that elements in two sets are joined together. 
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Demet 

Definition: ‘I don’t know’ 

Graphs:  

3a 3b 3c 3d 3e 
Not a function I don’t know Not a function Not a function I don’t know 

Table B2-36 

For 3a Demet wrote that it is drawn wrong and it is continuously on the same surface 

probably meant that the graph repeats itself. She gave the same reason for 3c. She did not 

explain the other items.  

4a 4b 4c 4d 4e 
I don’t know I don’t know I don’t know I don’t know I don’t know 

Table B2-37 

Expression: 

6a 6b 6c 6d 6e 6f 6g 
I don’t 
know  

I don’t 
know  

I don’t 
know 

I don’t 
know 

I don’t 
know 

I don’t 
know  

I don’t 
know 

Table B2-38 

Ordered pairs: 

7a 7b 7c 
I don’t know  I don’t know  I don’t know  

Table B2-39 

Set diagrams: 

8a 8b 8c 8d 
I don’t know  I don’t know  I don’t know  I don’t know  

Table B2-40 
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Deniz 

Definition: ‘ I don’t know’ 

Graphs:  

3a 3b 3c 3d 3e 
I don’t know Function  Not a function Not a function Not a function 

Table B2-41 

Deniz did not give any explanations for 3a and 3b. He did not consider 3c and 3d as a 

function since the shape of the graph is very different. He did not consider 3e as a function 

since it does not pass through the x  axis.    

4a 4b 4c 4d 4e 
I don’t know Not a function Function Not a function Not a function 

Table B2-42 

Deniz did not consider 4b as a function since x  axis is a different line. That is probably 

because of the way x  axis is drawn in a different colour. He considered 4c as a function 

and wrote that there is a good intersection. He did not give a clear explanation for 4d. He 

did not consider 4e as a function since there are gaps in the intersection.  

Expression: 

6a 6b 6c 6d 6e 6f 6g 
Not a 
function 

Function I don’t 
know 

Function I don’t 
know 

I don’t 
know  

I don’t 
know 

Table B2-43 

Deniz did not consider 6a as a function since a function can not include root. He 

considered 6b as a function since there is a result for it. Among three cases of constant 

functions, he only considered 5=y  (for x≥2) as a function since there is an explanation 

for it probably referring to explanation in the brackets.   He did not gave any explanation 

for 6f. For 6g he wrote that it was too long.   

Ordered pairs: 

7a 7b 7c 
Function Not a function Not a function 

Table B2-44 

Deniz could not use definitional properties for sets of ordered pairs. He did not give any 

clear explanations for 7a and 7b. He did not consider 7c as a function since there can not 

be height in a function. 
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Set diagrams: 

8a 8b 8c 8d 
I don’t know  Not a function I don’t know  Not a function 

Table B2-45 

Deniz did not use the definitional properties for set diagrams. For 8b he used the 

uniqueness property in the opposite direction and wrote that 2 is intersects with 1 and 4.  



Hata! Başvuru kaynağı bulunamadı. 

 

B3 – Labeling students’ responses to prepare the grid in table 8.1 

1. Set-correspondence diagram 

 Function or not Explanation  Label 
Ali  Not a function Colloquial definition CD 
Aysel Not a function Colloquial definition CD 
Ahmet Not a function Colloquial definition CD 
Belma Not a function Colloquial definition CD 
Belgin Not a function Colloquial definition CD 
Arif Not a function Colloquial definition CD 
Cem Function Colloquial definition wrongly used CDW 
Deniz Not a function Visual hints EBF 
Demet Not a function Visual hints EBF 

Table B3 - 1 

2. Set of ordered pairs 

 Function or not Explanation  Label 
Belma Not a function Colloquial definition CD 
Aysel  Not a function Colloquial definition with an explanation with 

vertical line test 
CD 

Ahmet  Not a function Colloquial definition using a set-correspondence 
diagram 

CD-SD 

Arif Not a function Colloquial definition using a set-correspondence 
diagram 

CD-SD 

Ali First considered 
as a function 
then changed his 
mind 

Colloquial definition wrongly used. When 
reminded of 1 having two different values, he 
correctly used the colloquial definition. 

CDW-
CD 

Cem Not a function Colloquial definition wrongly used CDW 
Deniz  Not a function Numbers of elements of ordered pairs is not equal 

to numbers of elements of the domain. 
EBF 

Belgin  Not a function No explanation --- 
Demet  Function Ploting a point and joining it to the origin. OTH 

Table B3 - 2 

3. Straight line graph 

 Function or not Explanation  Label 

Ali  Function  
Exemplar based focus followed by colloquial 
definition/ use of set diagram 

EBF-
CD 

Aysel Function  
Exemplar based focus followed by colloquial 
definition 

EBF-
CD 

Ahmet Function  
Vertical line test with reference to the colloquial 
definition 

VLT-
CD 

Belma Function  
Action on the graph (assigning numbers on x  to the 
numbers on y) 

OTH 

Belgin Function  
Action on the graph (assigning numbers on x  to the 
numbers on y) 

OTH 

Arif Function  
Action on the graph (confused with the domain and 
range / assigning numbers on x  and y with each 

DRC 
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other) 
Cem Function  Visual hints EBF 
Demet Function  No explanation --- 

Deniz 
Could not 
decide 

No explanation 
--- 

Table B3 - 3 

4. Straight line in three pieces 

 Function or not Explanation  Label 
Ali  Not a function Colloquial definition CD 
Aysel Not a function Colloquial definition CD 
Arif Not a function Colloquial definition CD 
Ahmet Function (on a 

restricted domain) 
Colloquial definition by explaining it with a 
set-correspondence diagram 

CD-
SD 

Belma Not sure Visual hints EBF 
Demet Not a function Visual hints EBF 
Deniz Not a function Visual hints EBF 
Cem Not a function Visual hints EBF 
Belgin Function  No clear explanation --- 

Table B3 - 4 

5. Points on a line with the domain of projected points 

 Function or not Explanation  Label 
Ali  Function Colloquial definition CD 
Arif Function Colloquial definition CD 
Ahmet Function Colloquial definition CD 
Aysel Function Colloquial definition followed by vertical line 

test 
CD-
VLT 

Belgin Function Colloquial definition wrongly used considering y 
axis as the domain and x  axis as the range 

CDW 

Cem  Function Finding the corresponding values of the numbers 
in the domain 

OTH 

Demet Function Drawing a straight line through the graph EBF 
Deniz Function Drawing a straight line through the graph EBF 
Belma Function Drawing a straight line through the graph EBF 

Table B3 - 5 

6. Points on a line 

 Function or not Explanation  Label 
Ali  Not a function Colloquial definition CD 
Aysel Not a function Colloquial definition CD 
Ahmet Function  Colloquial definition wrongly used CDW 
Belgin Function Colloquial definition wrongly used CDW 
Demet Function  Drawing a straight line EBF 
Arif Function  Drawing a straight line EBF 
Deniz Function  Considering the graph the same as the earlier 

graph which has a different domain  
EBF 

Cem  Function  Considering the graph the same as the earlier 
graph which has a different domain  

OTH 
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Belma Function Looking for a formula OTH 
Table B3 - 6 

7. Graph of smiley face 

 Function or not Explanation  Label 
Aysel Not a function Colloquial definition CD 
Ali  Function/not a 

function 
 

Colloquial definition wrongly used/ignoring 
elements left in the domain/when mentioned 
1 in the domain changed his mind 

CD 

Arif Function/not a 
function 

Used colloquial definition when reminded of 
-1 on x  axis.  

CD 

Ahmet Not sure Vertical line test/drawing of set-
correspondence diagrams 

VLT-
SD 

Demet Not sure Focused on x  axis under the areas of three 
pieces of the graph/no further explanation 

EBF 

Deniz Not a function/ 
function 

The numbers on y axis is not the same as the 
numbers on x  axis 

EBF 

Belma Function  Exemplar based response (the graph is like a 
parabola) 

EBF 

Cem Not a function The shape is different EBF 
Belgin Not sure The shape is diferent EBF 

Table B3 - 7 

8. Non-exemplar graph 1 

 Function or not Explanation  Label 
Ali  Not a function Vertical line test/colloquial definition VLT-CD 
Aysel Not a function Vertical line test/colloquial definition VLT-CD 
Ahmet Not a function Vertical line test/use of set-

correspondence diagram/colloquial 
definition 

VLT-SD-
CD 

Belma Not a function Numbers on axes are irrational.  EBF 
Belgin Function  Finding corresponding values of numbers 

on x  axis 
OTH 

Arif Not a function/ 
change to 
function  

Finding corresponding values of numbers 
on x  axis 

OTH 

Cem Function Visual hints. Numbers on x  axis (-3, -2, -
1, 1, 2, 3) are inside the graph 

EBF 

Deniz Not a function General appearance of the graph EBF 
Demet Not a function General appearance of the graph EBF 

Table B3 - 8 

9. Non-exemplar graph 2 

 Function or not Explanation  Label 
Ali  Function Colloquial definition CD 
Aysel Not a function  Colloquial definition CD 
Ahmet Not a function Coloquail definition/Vertical line test CD-

VLT 
Belma Not a function There are two x- intercepts and they are rational 

numbers 
OTH 
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Arif Not a function No formula to find corresponding values/relating 
x  and y values without any particular direction 

DRC 

Cem Not a function General appearance of the graph EBF 
Deniz Not a function General appearance of the graph EBF 
Demet Not a function General appearance of the graph EBF 
Belgin Function  Graph has a formula/Could not tell the formula EBF 

Table B3 - 9 

10. Graph of xxf sin)( −=  

 Function or 
not 

Explanation  Label 

Ahmet Function Vertical line test followed by colloquial definition 
explained by set-correspondence diagram 

VLT-CD-
SD 

Aysel Function Exemplar based focus/definitional properties/action on 
the graph (assigning values of x  to the graph, but not to 
the y axis). 

EBF 

Ali Function Exemplar based focus (recognizing as a sine function) 
followed by action on the graph. 

EBF 

Belma Function Exemplar based focus (recognizing as a sine function 
because of ). 

EBF 

Belgin Function Exemplar based focus (recognizing as a sine function 
because of ). 

EBF 

Arif Function Exemplar based focus/familiarity to parabolas EBF 
Deniz Not a 

function 
Visual hints irrelevant to definitional properties. EBF 

Demet Not a 
function 

General appearance unfamiliar EBF 

Cem Not sure General appearance unfamiliar EBF 
Table B3 - 10 

11. Graph of 2sin)( −= xxf  

 
Function or 
not 

Explanation  
Label 

Ali  Function  Colloquial definition CD 
Aysel Function  Colloquial definition CD 

Ahmet Function  
Colloquial definition by applying vertical line test 
and drawing a set diagram 

CD-
VLT 

Arif Function  Assigning x  and y values to each oher. OTH 

Belgin Function  
General shape of the graph (increases and 
decreases). 

EBF 

Belma Not a function The graph passes through y axis only. EBF 
Cem Not a function The graph passes through y axis only. EBF 

Deniz 
Function/not a 
function 

The graph passes through y axis only. 
EBF 

Demet Not a function The graph is below x  axis. EBF 
Table B3 - 11 
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12. Split domain function 

 Function or not Explanation  Label 
Ali  Function  Recognizing as signum function. Correct graph. 

Set-correspondence diagram. 
EBF-
GR-SD 

Ahmet Function  Recognising as signum function. Although 
confused about the domain, he drew a correct 
graph applying vertical line test.  

EBF-
GR-
VLT 

Aysel Function  Recognizing as condinitional function. Wrong 
graph. Set-correspondence diagram assigning 
values less than 1 to -1, 1 to 0, values greater than 
1 to 1. 

EBF-
WGR 

Belma Function  Recognizing as split-domain function.  EBF 
Belgin Not a function Substituted -1, 0, 1 in x 2 –2x+1.  DRC 

Arif Function  Recognizing as signum function EBF 
Cem Function  Notational hint: f(x).  EBF 
Deniz Function  Relating the numbers on the right hand side of the 

expressions x 2 –2x+1>0, x 2 –2x+1=0, x 2 –
2x+1<0 to the numbers of the range, 1, 0, -1 

OTH 

Demet Not a function Specific hints. ‘we can’t take a square of a 
function’. 

OTH 

Table B3 - 12 

13. 5=y  

 Function or not Explanation  Label 
Ali  Function  Drawing the graph/constant function GR-CF 
Ahmet Function  Drawing the graph/constant function GR-CF 

Aysel 
Not a function/ 
function 

Specifying the domain as R/Drawing the 
graph/constant function 

GR-CF 

Arif Function  Drawing a set-correspondence diagram SD 
Demet Function  Marking (-5,0) as 5 and joining it to 5 WGR 
Deniz Function  No explanation --- 
Cem Function  y equals to 5 OTH 
Belma  Not sure  Drawing 5=y /putting values for y WGR 

Belgin  Not sure Looked for f(x) EBF 
Table B3 - 13 

14. )2(5 ≤= forxy  

 Function or not Explanation  Label 

Arif Function  
Colloquial definition / Assigning values less 
than or equal to 2 to 5.  

CD 

Ali  Function 
Recognising as a constant function 
/Drawing the graph 

CF-GR 

Aysel Function 
First asking the domain, drew the graph 
correctly.  

GR 

Ahmet Function  
Assigning values less than 2 to 5 and 
drawing the graph correctly/Drawing a set-
correspondence diagram. 

GR 

Belma Not sure Drawing the graph for all values of x.  WGR 
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Cem Function  
Considering (for x<2) as a condition with 
no reference to definitional properties 

OTH 

Belgin Not sure  Looked for f notation. Could not respond.  EBF 

Deniz 
Could not 
decide 

There is no relation between 5=y  and 

5=y  (x≤2). 

--- 

Demet 
Function/not a 
function  

5 is not less than two 
OTH 

Table B3 - 14 

 

15. 5=y  (for all values of x ) 

 Function or not Explanation  Label 
Ali  Function  Assigning all values of x  to 5. Drawing the 

graph.  
CD-GR 

Aysel Function  Assigning all real numbers to 5. Drawing 
the graph.  

CD-GR 

Ahmet Function  Constant function. Assigning all numbers to 
5. Confused by the domain. 

CF-CD 

Belma Function Recognising it as the same as the other two. 
Drawing the graph.  

GR 

Belgin Not sure  Confused by the domain and range. 
Looking for a formula to substitute numbers 
to get 5. 

EBF 

Arif Function  Assigning all values of x  to 5.   CD 
Cem Function  Looking for specific values of x. OTH 
Deniz No answer No explanation --- 
Demet Not sure Giving values for y. OTH 

Table B3 - 15 

16. 2sin)( −= xxf  

 Function or not Explanation  Label 
Ali  Function  Colloquial definition CD 
Aysel Function  Colloquial definition CD 

Ahmet Function  
Exemplar based focus/colloquial 
definition 

EBF-CD 

Belgin Function  
Exemplar based focus (trigonometric 
function) 

EBF 

Arif Function  Finding f(0) OTH 
Deniz Function  Notational hints EBF 
Demet Not a function Drawing a wrong graph WGR 
Cem Not a function  No explanation --- 
Belma Not sure I don’t know very well --- 

Table B3 - 16 

 

17. Drawing the graph of RRf →: , 5)( =xf  

 Drawing  Labe



B2 – Interviewees’ answers and explanations in the questionnaires - Deniz 

 284 

l 
Ali  Correct graph ���� 

Aysel Correct graph ���� 
Ahmet Correct graph ���� 
Arif Draws the graph between -2≤x≤2 � 

Belma Draws the graph of x=5 � 

Belgin Marking 5 on positive x  and y axes � 

Demet Marking 0 and 5 on x  axis and joining them � 

Deniz Draws a straight line through (5,0) and (0,5) � 

Cem Labeling x  and y axes and trying to plot points � 
Table B3 - 17 

18. Drawing the set-correspondence diagram of RRf →: , 5)( =xf  

 Drawing  Label 
Ali  Correct diagram. Saying that there are infinite number of elements 

in the first set assigned -∞ and +∞ in the first set to 5 in the second 
set.   

���� 

Aysel Correct diagram. Assigning x1 , x 2 , x 3 , x 4  (which represents all 

reals) in the first set to 5 in the second set.  

���� 

Ahmet Correct diagram. Assigning –1, 1, 3 , 2  (which represents all 
reals) in the first set to 5 in the second set.  

���� 

Arif Correct diagram.  ���� 
Belma Could not draw. � 

Belgin Could not draw. Confusion between domain and range. � 

Demet Wrong diagram.  � 

Deniz Wrong diagram. Assinging 1 to 1, 2 to 2 and so on up to 5. Changed 
his mind and assigned on 1, 2, 3, 4, 5 to 5. 

� 

Cem Wrong diagram.  � 
Table B3 - 18 

19. Write the set of ordered pairs for RRf →: , 5)( =xf  

 Drawing  Label 

Aysel f(x)={…( x1 ,5)…( x 2 ,5)…} ���� 

Ali  {…(1,5)..(2,5)..(3,5)….} ���� 
Ahmet {(1,5), (0,5), (½,5),…} ���� 
Arif f(x)=(-1,5),(1,5),(2,5),(3,5),(4,5)… � 

Belma 
f={(5,1) (5,2) (5,3)…} followed by f={(1,5), 
(2,5)…} 

� 

Deniz 5)( =xf  ( [x,1) (x,2) (x,3) (x,4) (x,5) ] � 

Cem f(x)=(1,1), (1,2), (1,3), (1,4), (1,5) � 

Belgin Could not write --- 
Demet Could not write --- 

TableB3-19 
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