
University of ~ e\\'castle upon Tyne
School of Computing Science

The
Theory and Practice of

Refinement-After-Hiding

by

Jonathan Burton
N[WCA~TL[UNIV[~~ITY LICRARY

203 0~780 1

-

\'v--- -E....S"\ 'S L I "- - "S s.:;

PhD Thesis

June 2004

Contents

Acknow ledgements

Abstract

1 Introduction
1.1 Need for formal verification

1.1.1 Constituent elements of a verification method

IX

X

1
1
1

1.2 Types of "reification" . 2
1.3 Further motivation 4
1.4 Correctness in context 6

1.4.1 External behaviour decomposition from fault tolerance 7
1.5 A new notion of correctness-in-context 8
1.6 Organisation of the thesis 11
1. 7 Contributions of the thesis . . 12

2 Modelling concurrent systems
2.1 Brief introduction to CSP
2.2 Processes and syntax .

2.2.1 Operators
2.2.2 Syntactic sugar . .
2.2.3 Finite non-determinism.

2.3 Notation.........
2.4 Process semantics

2.4.1 The traces model
2.4.2 The stable failures model.
2.4.3 The failures divergences model.
2.4.4 Process denotations and refinement

13
13
15
16
17
17
18
20
20
22
23
26

2.4.5 Semantics of recursion 26
2.4.6 Indexing operators 28
2.4.7 Parallel composition, hiding and network composition. 28
2.4.8 Relationships between denotations 29

CONTENTS ii

2.4.9 Alternative denotations in the failures divergences model 30
2.5 Process alphabets 30
2.6 Useful algebraic laws 31
2.7 Contexts and environments 32
2.8 Maximality and monotonicity 34

2.8.1 Maximality of failures 34
2.8.2 Monotonicity 34

2.9 Determinism........ 35
2.10 Constructing processes . . 36

2.10.1 Finite set of traces 37
2.10.2 Single failure and finite set of traces. 37
2.10.3 Refusal-maximal failure and traces of specified process 38
2.10.4 Refusal-maximal failure, finite set of traces and process 39

2.11 Further consideration of parallel composition. 39
2.11.1 Traces 40
2.11.2 Stable failures. . . . 40

2.12 Model-checking CSP 42
2.12.1 Additional operators 42
2.12.2 Channels and data types 43
2.12.3 Immediately diverging process 44

2.13 Running example 44

3 Towards a theory of refinement-after-hiding 46
3.1 The basic framework 47

3.1.1 Applying>. in the traces model 51
3.2 Sets used in the theory 51

3.2.1 ~imp" ~spec and BTrace. 53
3.2.2 Considering AllBet 53
3.2.3 Implementation processes and process alphabets . 55
3.2.4 Basic results regarding MinBet, AllBet and>. . 56
3.2.5 Using [[X]] for X ~ ~impl 58
3.2.6 Restrictions..... 58
3.2.7 Finally visible events . . . 60
3.2.8 Summary 60

3.3 RAH1-3 in the traces model and applying>. to operators 61
3.3.1 Applying>. to operators 62

3.4 Sufficient conditions in the traces model 63
3.4.1 Additional comments 65

3.5 The stable failures model 66
3.5.1 Applying>. to process denotations in the stable failures

model 66
3.5.2 Working in the stable failures model 67

CONTENTS iii

3.5.3 Parallel composition 68
3.5.4 From processes to individual behaviours 68
3.5.5 Sufficient conditions for refinement-after-hiding 70
3.5.6 Further comment regarding SFS4 72
3.5.7 A comment on process alphabets 72

3.6 The failures divergences model. 73
3.7 Further consideration of B Trace and related issues . 76

3.7.1 The role of restriction R1 and proposition 3.11 76
3.7.2 The role of BTrace I I

3.7.3 Deriving the statement in definition 3.5(2) 78
3.8 Conclusion.................... 78

4 A concrete notion of refinement-after-hiding 80
4.1 Extraction patterns in the traces model. . . . 81

4.1.1 Universe of extraction patterns 83
4.1.2 Implementation and specification contexts 8.!
4.1.3 Implementation processes and their interpretation 84
4.1.4 Process alphabets 85
4.1.5 Communication capabilities 86
4.1.6 Restrictions on implementation networks 87
4.1. 7 Extraction pattern for running example. 87

4.2 Refinement-after-hiding in the traces model 88
4.2.1 Introducing a rely-guarantee condition . 88
4.2.2 Defining refinement-after-hiding 91

4.3 Extraction patterns in the stable failures model 92
4.3.1 Mapping refusals when An Fvis = 0 93
4.3.2 Mapping refusals when A ~ Fvis . 96
4.3.3 From "local" to "global" definitions . 96
4.3.4 Running example 96

4.4 Refinement-after-hiding in the stable failures model 97
4.4.1 Role of Dom-SF -check 98
4.4.2 Soundness of refinement-after-hiding 100

4.5 The failures divergences model. 100
4.6 Equivalence 101
4.7 The absence of BTrace and defining implementation alphabets 102
4.8 Discussion............. 104

4.8.1 General role of the theory . 109

5 Related work 110
5.1 Action refinement and related approaches. 110
5.2 Choosing a semantic over a syntactic mapping 113
5.3 External behaviour decomposition (interface refinement) II.!

CONTENTS IV

5.4 Abstraction through hiding 115
5.5 Relaxation of atomicity. . 116
5.6 Data reification in Z . 119

6 Automatic verification 121
6.0.1 Algorithms for automatic verification 121
6.0.2 Verification using FDR2 . 122

6.1 Preliminary detail. 123
6.1.1 Useful notation . . . 123
6.1.2 Process alphabets. . 124
6.1.3 Recursive definitions 124

6.2 Verifying Dom-T-check . . . 125
6.2.1 Alternative means of constructing QProj 126

6.3 Preprocessing the implementation process 127
6.4 The traces model 128

6.4.1 Constructing the TEi . '" .. : . 129
6.4.2 Extracting the traces of Q . 132
6.4.3 Example.......... . 133
6.4.4 Further comments on defining Di and TEj 134

6.5 Verifying Dom-SF-check 135
6.5.1 Defining the "tester" process. 136
6.5.2 Transforming the implementation process. 137
6.5.3 The verification . . 138
6.5.4 Example.............. . 138

6.6 The stable failures model. 140
~

6.6.1 Interpreting the behaviours of Q . . 143
6.6.2 Preprocessing the specification process P 146
6.6.3 Final result 147
6.6.4 Example......... 148

6.7 The failures divergences model. 150
6.8 Conclusion............ 151

7 Case study 153
7.1 Asynchronous communication . 153

7.1.1 Simpson's 4-slot mechanism . 154
7.2 Verifying the 4-slot mechanism. . . 156

7.2.1 Standard approaches 157
7.2.2 Checking these conditions . 158

7.3 Modelling the 4-slot in CSP 160
7.3.1 The process used 160
7.3.2 A simple environment .. 164
7.3.3 The register and a corresponding environment 164

CONTENTS

7.3.4 Issues related to modelling the 4--slot in CSP . 166
7.4 Restricting the (traces) extraction mapping. 168
7.5 The traces model 170

7.5.1 The extraction mapping 171
7.5.2 Defining extr ar 173

7.6 Automatic verification in the traces model using FDR2 176
7.6.1 Deriving extraction mappings 176
7.6.2 The CSP version of extr ar and applying it to T FSlot 178
7.6.3 Verifying the environment 181
7.6.4 A comment on compositionality 182

7.7 The stable failures and failures divergences models. . 183
7.7.1 Refusal bounds and environments 186

7.8 Data independence 186
7.9 Discussion................. 187

7.9.1 What the verification means . . . 188
7.9.2 Lessons learned and further work . 188

8 Conclusion 193
8.1 Further work 195

8.1.1 Refinement-after-hiding and "completeness" . . . 195
8.1.2 Barbed congruence and refinement-after-hiding 195
8.1.3 Mapping refusals 195
8.1.4 Improving the means of automatic verification 196
8.1.5 Further case studies. 196

A Proofs from chapter 3 197
A.l Proofs from section 3.2 . 197
A.2 Proofs from section 3.3 . 200
A.3 Proofs from section 3.4 . 203
A.4 Proofs from section 3.5 . 208
A.5 Proofs from section 3.6 . 230

B Proofs from chapter 4
B.l Proofs from section 4.1
B.2 Example processes used in proofs
B.3 Proofs from section 4.2
B.4 Proofs from section 4.4
B.5 Proofs from section 4.5

C Proofs from chapter 6
C.l Proofs from sections 6.2 and 6.3
C.2 Proofs from section 6.4
C.3 Proofs from section 6.5

237
· 237
.238
.239
.246
· 253

258
· 258
· 262
· 267

CONTENTS

CA Proofs from section 6.6
C . .5 Proofs from section 6.7

D Processes used in verification from chapter 7
D.1 Explaining TEar further

· 268
· 281

282
· 292

E Lists of conditions, notations and processes 294
E.1 General notation 29-1
E.2 List of labelled conditions and definitions . 296
E.3 List of processes. 298
EA Notation from chapter 3 300
E.5 Notation from concrete notion of refinement-after-hiding . 300
E.6 Notation from chapter 6 . 301
E.7 Semantic notations . 302
E.8 Operators 303

Bibliography 304

Index 311

List of Figures

1.1 Fault-tolerant communication

2.1 Composing traces in parallel, where s, u E I:*, y, y' E Y ~ I:
and z, z' E I: - Y 21

2.2 Semantics of processes in the traces model, where G ~ I: x I:
and A, Y ~ I: . 22

2.3 Semantics of processes in the stable failures model, where
G ~ I: x I: and A, Y ~ I: 24

2.4 Semantics of operators in the failures divergences model, where
A, Y ~ I: 25

2.5 Deriving alphabets . 31

3.1 Defining A over contexts, where V, VI, V2 are process variables
and A, Y ~ I: . 49

3.2 Conditions from which the theory will be derived, where P, Q
are implementation processes, X E {T, SF, FD} and A, Y ~ I: 50

3.3 Rendering RAH1-3 in the traces model, where P and Q are
implementation processes .. 62

3.4 Sufficient conditions. .. 64
3.5 Rendering RAH1-3 in the stable failures model, where P and

Q are implementation processes 68
3.6 Sufficient conditions in the stable failures model, where t is a

trace, R, S ~ I: and A E MinSet 71
3.7 Rendering RAH2 in the failures divergences model. . 74
3.8 Sufficient conditions in the failures divergences model 1'5

4.1 Conditions on extraction patterns. 81
4.2 Considering the universe of extraction patterns. . . . 83
4.3 Global definitions in the traces model, ,,,here Q is an imple-

mentation process . 85
4.4 A rely-guarantee condition in the traces model, where Q is an

implementation process .. 90
4.5 Defining refinement-after-hiding in the traces model, where Q

is an implementation process and P is a process 92

vii

LIST OF FIGURES viii

4.6 Conditions on extraction patterns in the stable failures model 93
4.7 Mapping refusals when A ~ Fvis 96
4.8 Global definitions in the stable failures modeL where Q is an

implementation process. 97
4.9 Extra condition on failures, where Q is an implementation

process. 98
4.10 Defining refinement-after-hiding in the stable failures model,

where Q is an implementation process and P is a process . .. 99
4.11 A final condition on extraction patterns 101
4.12 Defining refinement-after-hiding in the failures divergences mo-

del, where Q is an implementation process and P is a process 102

7.1 Simpson's 4-slot mechanism ...
7.2 A register
7.3 Data type and channel definitions
704 Representing the bit variables latest and reading.
7.5 Representing slot
7.6 Representing the data array
7.7 Ordering behaviour of global variables
7.8 An environment for FSlot
7.9 A CSP version of the register
7.10 A corresponding environment for the register.
7.11 Simpson's 4-slot mechanism annotated
7.12 Defining extr ar

B.1 Processes in proofs from chapter 4

D.1 A copy of the data array
D.2 A copy of Slots
D.3 Process used to extract write events - part 1
Do4 Process used to extract write events - part 2
D.5 Process used to extract read events - part 1
D.6 Process used to extract read events - part 2
D.7 Defining prePar ..
D.8 Defining extractar .
D.9 Defining domainar .

155
157

· 161
· 161
· 162

163
· 164
· 165
· 165
· 166
· 172
· 177

· 238

.284

.284

.285
· 286
.288
.289
.290
· 291
· 292

Acknowledgements

The work which appears in chapter 7 grew out of initial discussions with
Steve Paynter and Neil Henderson and benefited from further conversations
with Ian Clark and Fei Xia. Thanks are due to the ASL group at Newcastle
who listened to talks on earlier versions of some of the work which appears in
this thesis. I would also like to thank my supervisor, ~Iaciej Koutny, for the
time and effort he put into collaborating on early work, providing valuable
advice and guidance and then reading drafts of this thesis. Finally, I would
like to thank Cathy for her support and understanding during the long hours
it took to complete this thesis.

IX

Abstract

In software or hardware development, we take an abstract view of a process
or system - i.e. a specification - and proceed to render it in a more
implement able form. The relationship between an implementation and its
specification is characterised in the context of formal verification using a
notion called refinement: this notion provides a correctness condition which
must be met before we can say that a particular implementation is correct
with respect to a particular specification. For a notion of refinement to be
useful, it should reflect the ways in which we might want to make concrete our
abstract specification. In process algebras, such as those used in [28,50,63]'
the notion that a process Q implements or refines a process P is based on the
idea that Q is more deterministic than P: this means that every behaviour
of the implementation must be possible for the specification.

Consider the case that we build a (specification) network from a set of
(specification) component processes, where communications or interactions
between these processes are hidden. The abstract behaviour which con
stitutes these communications or interactions may be implemented using a
particular protocol, replication of communication channels to mask possible
faults or perhaps even parallel access to data structures to increase perfor
mance. These concrete behaviours will be hidden in the construction of the
final implementation network and so the correctness of the final network
may be considered using standard notions of refinement. However, we can
not directly verify the correctness of component processes in the general case,
precisely because we may have done more than simply increase determinism
in the move from specification to implementation component. Standard (pro
cess algebraic) refinement does not, therefore, fully reflect the ways in which
we may wish to move from the abstract to the concrete at the level of such
components. This has implications both in terms of the state explosion prob
lem and also in terms of verifying in isolation the correctness of a component
which may be used in a number of different contexts.

We therefore introduce a more powerful notion of refinement, which we
shall call refinement-after-hiding: this gives us the power to approach ver
ification compositionally even though the behaviours of an implementation
component may not be contained in those of the corresponding specification,

x

Xl

provided that the (parts of the) behaviours which are different will be hidden
in the construction of the final network. We explore both the theory and
practice of this new notion and also present a means for its automatic verifi
cation. Finally, we use the notion of refinement-after-hiding, along with the
means of verification, to verify the correctness of an important algorithm for
asynchronous communication. The nature of the verification and the results
achieved are completely new and quite significant.

Chapter 1

Introduction

1.1 Need for formal verification

In software or hardware development, we take an abstract view of a process
or system - i.e. a specification - and render it in a more implementable
form. An integral part of the development process is then gaining confidence
that the implementation derived is valid with respect to its specification.
The most common way of doing this is using testing, whereby inputs to the
implementation are generated and the resulting behaviour is compared with
what the specification requires on those inputs. It may often be difficult to
test processes exhaustively, however, because of the large state spaces which
they may have. An alternative approach is to employ formal verification:
this is the process of showing, using mathematical methods, that an imple
mentation meets its specification.

Formal verification is of particular interest when we corne to develop
concurrent systems, which are systems composed of components operating in
parallel with each other. This is for a number of reasons. To begin with, the
behaviours of such systems are extremely complex due to the many different
possible interactions in which their components can engage. This means that
concurrent systems can be very difficult to design, while the importance of
guaranteeing their correctness is increased by the fact that they are being
used more and more in safety critical applications. Yet testing is of limited
value here: the non-determinism inherent in the executions of such systems,
along with the state explosion from which they may suffer, means that it is
impossible to test more than a small proportion of their possible behaviours.

1.1.1 Constituent elements of a verification method

Four elements are necessary in order to carry out formal verification.
These are:

1

1.2. Types of "reification" 2

• A means of representing the specification.

• A means of representing the implementation.

• A notion of what it means for the implementation to be correct with
respect to the specification.

• A method for checking whether or not the implementation is, in fact.
correct.

Process algebras, such as those in [28,50,63], are intended for the descrip
tion and verification of concurrent systems, coming equipped with a language
for process description ~ the same language is used to describe both spec
ification and implementation processes ~ and a semantics which ascribes
meaning to processes expressed in that language. In general, although dif
ferent process algebras take different approaches, that an implementation
process is correct with respect to a particular specification process means
that the implementation is more deterministic than the specification. (We
say that the implementation refines the specification according to a par
ticular notion of refinement.) :yforeover, since the primary focus is on the
interactions which occur between concurrent processes, the semantics ab
stracts away from the internal behaviour of processes, focusing only on their
externally observable behaviour.

1.2 Types of "reification"

We shall refer to the process of transforming an abstract specification into
an (more concrete) implementation as reification. 1 In order to classify the
limitations of existing methods of refinement in process algebras and to en
able comparison of the work presented in this thesis with related work, it is
necessary to present a taxonomy of types of reification. The purpose of this
taxonomy is simply to provide a useful framework for discussion and other
taxonomies may legitimately be proposed. Note that each type of reification
may also be classified as either internal or external: this distinction is useful
due to the distinguished role played by external behaviours in process alge
braic semantics. The effects of external reification are directly visible to any
observer since they alter the (externally visible) behaviours of the process;
those of internal reification may be observed only indirectly.

• Data reification. Data abstraction is a useful tool in system specifica
tion: for example, at the specification level we may store some data

IThis will avoid a confusing mUltiple use of the term refinement.

1.2. Types of "reincation" 3

as a set because we are not interested in duplicates or in any ordering
information relating to the individual data items. In any final im
plementation, we shall need to represent this set in a structured way,
perhaps as a tree, and so it will be necessary to show that the concrete
data representation is a correct implementation of the abstract data
representation. The standard approach taken is to regard two differ
ent data representations as equivalent if they induce the same external
behaviours. For example, data reification in [30] is characterised us
ing a homomorphism and a similar approach is taken in VDM ([33])
and Z ([70]). In process algebras, data structures are represented as
processes or parameters to processes and the behavioural view of data
types is forced on us by the interest only in external behaviours. Data
reification, by its definition, is classified as internal reification .

• Behaviour decomposition. Behaviour abstraction is fundamental to the
process of producing a specification. In the move from a specification to
an implementation we will often wish to implement abstract, high-level
actions and behaviours at a lower level of detail and in a more con
crete manner. For example, an abstract communication event may be
implemented using a series of events which implement a particular com
munication protocol (see example in section 1.4.1 below). Behaviour
decomposition can occur both internally and externally.

• Relaxation of atomicity. The complexity introduced by concurrency
may be managed at the specification stage by assuming the atomic ex
ecution of certain sequences of events: for example, we may assume
that database read and write transactions are executed atomically -
i.e. the executions of distinct transactions do not overlap - whereas
this will not be guaranteed at the implementation level. We may then
reason about the (less complex) sequential specification and only later
introduce concurrency. Relaxation of atomicity may also arise through
the use of behaviour decomposition, since the respective implementa
tions of discrete abstract events may interleave at the implementation
level. Relaxation of atomicity may occur both internally and externally.

If these different types of reification are to be employed in system de
velopment, we need corresponding notions of refinement in order that we
may verify the correctness of any particular implementation against the rel
evant specification. Standard notions of process algebraic refinement can be
used to show correctness in all cases that reification is internal, since the
semantics is concerned only with externally visible behaviours. However, it
is not possible in the general case to use such notions to verify correctness

1.3. Further motivation 4

when an implementation has been derived from a specification using exter
nal behaviour decomposition and/or external relaxation of atomicity, even
though such types of reification are an integral part of the process of stepwise
development.

This has the following consequences. Consider a (specification) network
which we may build from a set of (specification) component processes, where
communications or interactions between these processes are hidden. The
abstract behaviour which constitutes these communications or interactions
may be reified using (external) behaviour decomposition and/or (external)
relaxation of atomicity.2 These reified behaviours will be hidden in the con
struction of the final implementation network and so the correctness of the
final network may be considered using standard notions of refinement. How
ever, since standard (process algebraic) refinement does not fully reflect the
ways in which we may wish to move from the abstract to the concrete at
the level of component processes, we cannot verify directly the correctness
of individual component processes in the general case. This has implications
in terms of the state explosion problem and also in terms of verifying in
isolation the correctness of a component which may be used in a number of
different contexts.

In the remainder of this thesis, we are specifically interested in the pro
cess algebra CSP [8,9,31,63] (see chapter 2 for a presentation of the language
and semantics of CSP). The semantics of CSP focuses only on external be
haviours and CSP refinement generally equates to an increase in determinism.
More specifically, refinement in CSP is defined in terms of containment of
behaviours: that is, Q implements P if and only if the behaviours of Q are
contained within those of P (it follows immediately that CSP refinement
cannot generally show correctness when external behaviour decomposition
and/or external relaxation of atomicity have occurred).

1.3 Further motivation

We have discussed different types of reification and shown that a number
of these are not compatible with standard process algebraic refinement, in
cluding CSP refinement. Before proceeding, we comment further on the
desirability of developing a notion of correctness which can deal with these
types of reification; otherwise, it is simply an academic curiosity that CSP
cannot deal with them. The most obvious justification is that they are a
standard part of the software or hardware development process: the more
concrete a process representation becomes, the more concrete data represen
tation becomes, the more specifically external behaviours are defined and the

2These reifications are external to the particular component under consideration.

1.3. Further motivation 5

greater the likelihood that behaviours which were originally specified to be
atomic can now overlap and potentially interfere with each other.

Although many examples abound to illustrate this point, we take one from
the paper [24], which paper was concerned with a problem similar to that
which we address here (see discussion in chapter 5). Kote that the interface
events referred to in the following example are simply external events in our
approach.

Consider a network of server tills that interfaces with customers.
At an abstract level, it might be convenient to describe a bank
ing transaction at some till as a single atomic interface event that
checks the banking card and PIN code, dispenses the requested
amount and charges the account. During subsequent reification
steps, such events will be broken up. Inserting the card, checking
the PIN code, obtaining the amount to be dispensed need to ap
pear as separate and new interface events. :'vfore interesting, the
need for a centralized database of client accounts will have to be
recognized, which has an asynchronous interface with the tills (at
least if one aims for a standard implementation). Consequently,
although from the point of view of a client his transaction ends
with the money being dispensed, the system will view the trans
action's end only when the account has been charged. However,
because these updates occur asynchronously it is now possible
that a client, possibly the same, initiates a second transaction
before the first one is completed. Clearly, there is a big difference
between the computations that are described by the top-level
specification and the corresponding low-level ones. If one looks
at what happens at a single server till, then the high-level be
haviour will be a sequence of atomic transaction events and the
state in between events will always describe properly balanced
accounts. The low-level behaviour looks different: first of all,
the low-level events that "implement" some high-level transac
tion appear distributed along the sequence of events; moreover,
the states in between events may now show unbalanced accounts
because money may have been dispensed without the account yet
showing it.

If it is agreed that an example such as this makes sense, then we need
a notion of refinement which may be used to formalize the above reification
steps, something which cannot be done with standard CSP refinement. Al
though we do not consider this example any further, the types of reification
used here reappear in the example from chapter 7: high-level, atomic read
and write transactions are implemented at a lower-level as a series of events;

1.4. Correctness in context 6

moreover, the read and write implementations may overlap since communi
cation is now asynchronous at the lower level.

1.4 Correctness in context

Standard CSP refinement has an extremely useful property, in that it is
"context-insensitive". This means that, if Q refines P, there is no restricton
on the context into which we might place Q to give a correct implementa
tion network: whatever the context, the resulting implementation network
will always refine the specification network which results from placing P
in the same context. This follows from the fact that CSP refinement is a
pre-congruence with respect to the operators of the language (the operators
are monotonic with respect to the ordering induced by behaviour contain
ment). More formally, if S[P] returns the semantic meaning of a syntac
tic process term P, F denotes a CSP context taking n process arguments,
WI, ... , Wn is a set of syntactic CSP terms and Vi is a process term for
some 1 ::; i ::; n where S[Vi] ~ S[Wi], then S[F(Wl, ... , Vi, ... , Wn)] ~
S[F(Wl' . .. , Wi, ... ,Wn)]. However, it is precisely this property of context
insensitivity which is incompatible with the types of reification which we
would like to apply at a component process level.

In general, we do not use particular components independently of a par
ticular context. It is therefore possible to consider a notion of correctness
which may be called correctness-in-context, whereby we prove the correctness
of a particular implementation component in relation to a restricted set of
contexts. Correctness will be preserved if the context is "valid" but may not
be if this is not the case. Such a notion has been considered previously in [45]
with respect to bisimulation equivalence (see [50] for more details on bisimu
lation equivalence). The approach to verification of concurrent systems used
by the rely-guarantee method (see [18] or [23] for example) also uses a notion
of correctness-in-context to an extent: we rely on the fact that the context
in which our component is placed meets certain properties and, in the event
that it does, we can guarantee correct behaviour of our component. If the
context does not have the properties it is meant to then we cannot guarantee
the correctness of our component. Dingel's thesis ([21]) also uses a similar
notion of correctness-in-context as he develops a refinement calculus to be
used in the derivation of parallel programs.

We now give a smaller but more fully realised example than that discussed
in the previous section (it will later be used to illustrate new concepts and
techniques as they are introduced). It constitutes an instance where stan
dard CSP refinement fails to show correctness but we do have correctness
when placed in context. From this example we shall move to give a general

1.4. Correctness in context 7

statement of the problem which we attempt to solve in this thesis and shall
distinguish from those described above the notion of correctness-in-context
which is required here. (Note that the example used here is deliberately
simple in order to convey the basic premise behind the work in this thesi~.
See chapter 7 for a more significant example, where we have to deal simul
taneously with data reification, external behaviour decomposition and also
external relaxation of atomicity.)

1.4.1 External behaviour decomposition from fault tol
erance

in
-I LeftImpl

data

aCK

: out RightImpl r--~--=-'::''----o

Figure 1.1: Fault-tolerant communication

Figure 1.1 shows a specification network and a corresponding implementa
tion network, each consisting of two component processes where the commu
nication between those two processes is hidden. The abstract communication
between the two processes in the specification network has been rendered in
the implementation network in a more concrete fashion using a particular
communication protocol. The specification network consists of two single
slot buffers, Lejt8pec and Right8pec, connected by a channel send. The spec
ification network, where communication on send is hidden, thus gives us a
2-slot buffer.3 In the implementation network, we assume that data trans
mission between the buffers is actually unreliable: therefore, we have the
(unreliable) channel data and also a channel which transmits acknowledge
ments. We assume that transmission of a single data item can fail at most
once - failure is signified by the transmission of no on the channel ack - and

3We shall give a proper CSP definition of these processes in chapter 2 once we have
defined and explained the syntax of the language.

1.5. A new notion of correctness-in-context 8

so retransmission is guaranteed to succeed. When a value is received on the
channel in by Leftlmpl, it attempts to send that value on the channel data.
If the transmission is successful - i.e. the value yes is transmitted on ad
- then Leftlmpl is ready to receive input again. If transmission fails, then
the value is resent on data and Leftlmpl is once again ready for input. Once
RightImpl has successfully received a value on channel data, it outputs that
value on channel out. The implementation network, where behaviour on the
channels data and ack is hidden, has the same behaviour as the specification
network, where behaviour on channel send is hidden, and this can be shown
using standard CSP refinement. However, we could not use standard CSP
refinement to show that Leftlmpl implements LeftSpec, nor that RightImpl
implements RightSpec since we have used external behaviour decomposition
in the move from specification component to corresponding implementation
component.

This can be illustrated using the following example. Let us assume that
the data values being transmitted are bit values. Then (in.O, data.O, ack.yes)
would be a possible trace4 of Leftlmpl. The corresponding trace of LeftSpec
would be (in.O, send.O). Refinement would obviously fail because the two
traces are different. Yet, intuitively, they are doing the same thing and would
both cause the value a to be transmitted on channel out in their respective
networks.

To verify correctness in such a case we need some way, for example, of
interpreting (in.O, data.O, ack.yes) as (in.O, send.O). To do this requires an
interpretive mapping from traces to traces and so the existing operators in
CSP of hiding and renaming are not powerful enough to perform the neces
sary interpretation in the general case. For example, as well as interpreting
(in.O, data.O, ack.yes) as (in.O, send.O), (in.O, data.O, ack.no) would have to
be interpreted as (in.O).

1.5 A new notion of correctness-in-context

The notions of correctness-in-context from other authors which are described
above are based on a simple premise. This is the fact that, when we compose
processes in parallel, the resulting behaviours are compatible with each other
according to the synchronization scheme used. In other words, the nature
of the context forces the removal of certain behaviours from the implemen
tation: the remaining behaviours will meet certain properties according to
the restrictions placed upon the behaviours of the context and so ''incorrect''
implementation behaviours will be discarded. Crucial, therefore, is the use

4 A trace is a sequence of visible actions which may be performed by a process. Traces
are denoted using a sequence of actions contained within a pair of angled brackets (...).

1.5. A new notion of correctness-in-context 9

of parallel composition to join the implementation with any suitable con
text. In the example given in figure 1.1, the components are also joined
using parallel composition. Of most importance, however, is the fact that, in
the construction of the final implementation network, we hide those parts of
the implementation components where external behaviour decomposition has
taken place. We therefore aim to develop a notion of correctness-in-context
based primarily on hiding rather than on parallel composition (although par
allel composition will still play an important role), which notion we shall call
refinement-afer-hiding.

Central to the development of such a notion is the ability to partition the
events of both implementation and specification components into potentially
finally visible - referred to hereafter as finally visible - and finally invisible
events.5 The set of finally visible events are those which may be left visible
when we construct our final networks; in general, they are the same for both
specification and implementation components. (They need not all be left
visible, however, and some may still be hidden.) Finally invisible events must
be hidden when we construct our final networks, whether implementation or
specification. The events on channels data and ack would be the finally
invisible events in the implementation network from figure 1.1; the events
on channel send would be the finally invisible events from the corresponding
specification network. The events on channels in and out would be the finally
visible events.

We now give a more formal, though rather abstract, characterisation of
what it means to constitute a notion of refinement-after-hiding. Let Fspec
and Fimp/ be two process contexts, each taking n process arguments, where
Fspec is a specification context and Fimp/ is the corresponding implementa
tion context.6 Fimp/(QI,"" Qn) is then an implementation network and
Fspec(g, . .. , Pn) the corresponding specification network, where ~ is in
tended to specify Qi in some sense for 1 ~ i ~ n. Fimp/ must hide all finally
invisible events from the processes QI, ... ,Qn and F spec must hide all finally
invisible events from PI,' .. , Pn . For the example in figure 1.1, Fimp / would
hide the events on the channels data and ack; Fspec would hide the events on
the channel send. It should then be the case that, if Qi refines-after-hiding
Pi for 1 ~ i ~ n, Fimp/(QI,"" Qn) refines F spec(P1 , • •• , Pn) according to
standard CSP refinement.7

SIt is possible that a particular component may engage only in finally visible events or
only in finally invisible events.

6The relation between these two contexts will be made more formal in the next chapter;
intuitively, however, they contain the "same" operators, although those operators may be
parameterised with different sets of events according to the external reification which has
taken place.

7This is a kind of soundness requirement. The issue of completeness - i.e. that
Qi should refine-after-hiding Pi for 1 ~ i ~ n whenever Fimp/(Ql, ... , Qn) refines

1.5. A new notion of correctness-in-context 10

Using this simple definition, we are able to present some basic conditions
which should be met by any notion of refinement-after-hiding. Rendering
these in each of the models used to give a semantics to CSP allows us to
derive in each model a theory of this notion ofrefinement. Using these results,
it was possible to modify and extend a previously published ([12]) concrete
notion of refinement-after-hiding.8 In view of the theory, it is much easier to
identify those aspects of the concrete notion which are the result of choice
and those which are crucial to the fact of presenting a notion of refinement
after-hiding. One of those crucial properties is that of compositionaZity: that
is, the operator allowed for process composition9 is monotonic with respect
to the ordering induced by the new refinement relation.

Intuitively, our concrete notion of refinement-after-hiding requires the in
terpretation of the behaviours of the implementation, leaving finally visible
events as they are and manipulating finally invisible events. \Ve then check
for containment of these interpreted behaviours in the behaviours of the
specification. For example, we would interpret (in.D, data.D, ack.yes) from
Leftlmpl in figure 1.1 by leaving events on channel in unchanged - events
on this channel are finally visible - and interpreting events on data and ack
as occurring on send. This would allow us to interpret (in.D, data.D, ack.yes)
as (in.D, send.D), that is, as a trace of the corresponding specification. We
are therefore able to verify the correctness of the implementation components
Leftlmpl and RightImpl and thereby infer the correctness of the implementa
tion network without actually having to build it or the specification network
(this, of course, relies on the compositionality of the scheme presented). And,
more generally, we can verify correctness when external behaviour decom
position and/or external relaxation of atomicity occur in tandem with any
internal reification such as data reification.

Tool support is crucial to the successful application of any means of verifi
cation, although tool development may be a very lengthy process. Encoding
as a CSP context the interpretive mapping used in our notion of refinement
after-hiding allows us to use the existing tool FDR210 as a means of auto
matic verification. This confers a number of the benefits of a mature tool
without requiring the effort usually needed to reach this level of maturity,

Fspec(Pl, . .. ,Pn) according to standard CSP refinement - is not considered in this thesis,
although it is identified in chapter 8 as an area for further work. Nonetheless, the work
presented in chapter 3 is important with respect to this in that it attempts to establish a
framework which allows the refinement-after-hiding relation to be as large as possible.

8By "concrete" notion of refinement-after-hiding we simply mean one that may be used
in practice, in contrast to the more abstract notion given by the theory.

9 A single operator, combining both parallel composition and hiding, is used for com
position in the concrete notion. The reason for following this approach in practice is
discussed in chapter 4.

laThe tool is produced by Formal Systems; see [63] or [64] for more details.

1.6. Organisation of the thesis 11

which effort would have been beyond the scope of this thesis. Finally, we use
this means of automatic verification to verify that a particular mechanism
for asynchronous communication is a correct implementation of a register
or variable. Since moving from the register to the asynchronous commu
nication mechanism uses data reification, external behaviour decomposition
and external relaxation of atomicity, we are able to employ the notion of
refinement-after-hiding to show correctness where we could not have done so
using standard esp refinement.

1.6 Organisation of the thesis

The thesis is organised as follows:

• Chapter 2 gives detail on the syntax and semantics of esp, along
with a more formal description of the processes given in figure 1.1,
which processes are used as a running example. Useful notation and
concepts are also introduced.

• Chapter 3 presents a theory of refinement-after-hiding in each of the
three semantic models of esp.

• Chapter 4 gives a concrete notion of refinement-after-hiding for each
semantic model.

• Chapter 5 considers related work.

• Chapter 6 details the manner in which the existing tool FDR2 may be
used to verify automatically the concrete notions of refinement-after
hiding presented in chapter 4.

• Chapter 7 uses this means of automatic verification to verify the cor
rectness of an asynchronous communication mechanism as described
above.

Note also the following:

• For the purposes of presentation, proofs generally appear in the ap
pendix. Where they do not appear in the appendix, they will appear
in the main body of the text alongside the relevant result or an informal
justification of the result will be given instead.

• A list of notation and page numbers of the various definitions used in
the thesis can be found in appendix E.

1.7. Contributions of the thesis 12

1.7 Contributions of the thesis

An earlier version of chapter 4 was published as [12] and formed part of
the book chapter [15]. An updated version of the work in [12] appeared as
a technical report ([13]), a version of which report has been published in
Fundamenta Informaticae ([16]). The algorithms for automatic verification
which are discussed in chapter 6 were published as [ll] and appear in an
updated form in [16]. Other than these algorithms, the work in chapters 3, 6
and 7 is solely that of the author. Chapter 4 gives more detail on the aspects
of the work there which are new.

Chapter 2

Modelling concurrent systems

As indicated in chapter 1, we shall use the process algebra CSP to describe
and give meaning to concurrent systems. We first give a brief and informal
introduction to esp and its semantics before proceeding to consider these
areas in more detail.

2.1 Brief introduction to CSP

esp is a process algebra, which comes equipped with a language for process
description and a denotational semantics which ascribes meaning to processes
expressed in that language. It is intended for the description and verification
of concurrent systems and is consequently equipped with operators for defin
ing processes which are suited to that task. In particular, both specification
and implementation processes are described using the same language. Since
the primary focus of the formalism is on the interactions which occur be
tween concurrent processes, the semantics abstracts away from the internal
behaviour of processes, focusing only on externally observable behaviour. As
a result, the behaviour of a process is characterised by the events which it
may offer to any environment. A tool, FDR2([62-64]) , is available for the
purposes of automatically verifying the correctness of processes expressed
using esp.

The denotational semantics of CSP is designed to enable us to reason
about both safety and liveness properties of processes. 1 Traces - execution
sequences which abstract from the occurrence of internal actions - are used
to reason about safety properties. Divergences - traces after which a pro
cess may engage in an infinite sequence of internal actions - are used to

1 Informally, a safety property stipulates that "bad" things do not happen during a
process execution and a liveness property stipulates that "good" things do eventually
happen ([41]).

13

2.1. Brief introduction to cSP 14

model the possibility of livelock. Trace/refusal pairs (failures) are used to
model the possibility of deadlock: if a process P may refuse a set of events R
after a particular trace t, and the environment after the execution of t only
offers events from within R (where that environment must synchronize with
P on every event in R), then deadlock may arise when P is composed in par
allel with the environment. Divergences and failures may be used together
to reason about liveness properties. Intuitively, the CSP semantics was de
signed in order to allow us to detect (and thereby avoid) the possibility of
deadlock and also of livelock. In this sense, the liveness issue with which we
are primarily concerned is that of ensuring that a process will always make
progress, rather than of the exact nature of that progress.

There are three semantic models in which the behaviours of CSP processes
may be denoted: these are the traces, stable failures and failures divergences
models.2 The traces model is sufficient for reasoning about safety properties.
The stable failures model allows us to reason about both safety properties and
the possibility of deadlock. The failures divergences model allows us to reason
about safety properties, the possibility of deadlock and also the possibility of
livelock. In each of these models, a (semantic) specification consists of a set of
behaviours in the relevant semantic model. An implementation also consists
of a set of behaviours. Refinement in CSP is defined in terms of containment
of behaviours: that is, Q implements P if and only if the behaviours of Q are
contained within those of P. If Q implements P in the failures divergences
model, then Q is at least as deterministic as P.

If Q implements P in the traces model, we know that Q will never execute
any traces which P cannot execute; if Q implements P in the stable failures
model, after any trace t Q cannot refuse any more than P refuses after t;
and Q may not livelock after t if that is not also possible for P when Q
implements P in the failures divergences model. Intuitively, if we may place
P in a context and the resulting network will suffer from neither deadlock
nor livelock, then the same will be true of the network resulting from the
placing of Q in the same context. (This latter only holds, of course, if Q
implements P in the failures divergences model.)

We now consider in more detail the syntax and semantics of the language.
Note that our treatment of CSP is based firmly on that flavour of it presented
in [63]. However, the treatment in [63] models the fact of termination by
including a distinguished termination event in the semantics; it also includes
a sequential composition operator, ; , the semantics of which is defined in
terms of this termination event. We do not model the fact of termination
here - its consideration is orthogonal to the issues in which we are primarily

2Each of these models denotes processes using a different combination of traces, failures
and divergences. The failures divergences model - as the name suggests - uses failures
and divergences, giving the fullest and most accurate picture of processes.

2.2. Processes and syntax 15

interested - and so do not use the sequential composition operator.

2.2 Processes and syntax

A CSP process may be regarded as a black box which can communicate with
its external environment. Atomic instances of this communication are called
events or actions and must be elements of the universal alphabet, ~. ~ is a
finite set containing all events or actions which may be communicated by any
process in the universe of processes under consideration. In semantic models
incorporating failures, a process will refuse all those events from ~ which
it does not offer. The most important assumptions about (communication)
events in CSP are the following:

• An event occurs only when all of its participants are ready to execute
it. As soon as all of the participants are ready to execute an event then
it (or some other event) must occur.

• Event occurrences are instantaneous, as we abstract their duration into
single moments. They are non-overlapping as we use an interleaving
semantics.

We shall say that a process may engage in a particular event when it is
possible for it to communicate that event at some point during its lifetime.
Events in CSP occur on communication channels. The type of a channel c
is given by a (possibly empty) sequence of data types T 1, ... , Tk (note that
the product T 1.T2 . .. Tk-1.Tk may itself be regarded as a data type and so
the type of c is also T1.T2 .•. Tk-1.Tk). Events which may be communicated
on channel c are then of the form

where Vi E Ti for 1 ::; i ::; k. In the event that k = 0, c denotes a simple
event with no explicit data content. It will also be useful to be able to refer
to ac, the alphabet of channel c, which gives all events which may occur on
that channel:

It is required that ac ~ ~ for any channel which is defined. By the
finiteness of ~, this means that channels may be defined using only finite
types. We may also use a to "complete" partially defined events on channel
c, where 1 ::; j ::; k and Vi E Ti for 1 ::; i ::; j:

2.2. Processes and syntax 16

2.2.1 Operators

The nullary operator STOP is used to denote the deadlocked process, while
DIV is used to denote the immediately diverging process. a --+ P (referred
to as the prefix operator) gives the process which first engages in the event a

(where a E ~) and then proceeds to behave like P. D denotes deterministic
choice; PDQ is a process where the initial events of P and Q are offered
simultaneously. n denotes non-deterministic choice; in P n Q we may be
offered the initial events of P or the initial events of Q but not both. :\Iore
over, we have no control over which is offered. The operators D and n are
both commutative and associative in each of the three semantic models used
here and thus may be indexed over finite sets. (This issue of indexing is
considered further in section 2.4.6 below.)

Let P be a process and A ~ ~; then P\A is a process that behaves like
P with the actions from A made invisible (\ is the hiding operator and \.4.
hides the events in A). \A is left associative: i.e. P \ A \ A' is defined as
(P\A) \A'. Parallel composition P Ily Q (where Y ~ ~) models synchronous
communication between P and Q in such a way that each of them is free
to engage independently in any action which is not in Y but they have to
engage simultaneously in all actions that are in Y. (We say that the parallel
composition synchronizes on the set of events Y or that P and Q synchronize
on Y.) The interleaving operator III is used to denote 110. III is commutative
and associative in all three semantic models and so may be indexed by finite
sets.

Let G ~ ~ x ~ be a relation (called a renaming relation) and P a process.
Then P[G] is a process that behaves like P except that every action a has
been replaced by

G(a) t. {b I a G b}.

Wherever the action a might have been enabled in P, each of the events in
G(a) will be enabled in its place in P[G]. Note that the relation G need not
be (explicitly) total over the events of P: for a not in the domain of G, we
assume that G(a) = {a}. (This mirrors the way in which renaming relations
are used in FDR2.)

Recursion is introduced using a special equational style of definition. In
the simplest case, we may define the process N in terms of the arbitrary
CSP term P using N = P, where this simply means that N is taken to be
the process defined by P. This gives rise to a single recursion if the name N
occurs somewhere in P. More generally, mutual recursion may be introduced
using a collection of equational definitions Ni = Pi for 1 ~ i ~ l, where each
Pi may contain zero, one or more of the process names N j for 1 ~ j ~ l.
We assume that all process names which appear in any syntactic definition
to which a semantics is to be given are defined exactly once. In other words,

2.2. Processes and syntax 17

we deal only with closed tenns. (Note that such equational definitions need
not only be used to introduce recursion and they are often used simply to
make clearer the presentation of syntactic definitions.)

The notation N x = P or N(x) = P is used to represent the family of
processes N v or N(v) such that N v = P[v/x] (respectively N(v) = P[v/x])
where v is a concrete data value and P[v/x] denotes the process P with all
occurrences of the parameter x replaced by v. This notation generalizes in
the obvious way to parameterization with multiple data values.

2.2.2 Syntactic sugar

From chapter 4 onwards, we use an operator which is not part of the standard
CSP syntax and which is, in fact, shorthand for a particular combination of
two operators already seen. The network composition operator, 0y, is such
that

In view of this, we need not define specifically the semantics of this oper
ator and will derive it where necessary from the semantics of the parallel
composition and hiding operators.

2.2.3 Finite non-determinism

In the failures divergences model, divergence is introduced in P \ X when
P can perform an infinite consecutive sequence of events in X. However,
the failures divergences model only includes information on finite traces, not
infinite ones. If a process possesses an infinite trace t, then u will be a (finite)
trace of that process for all u < t. However, in the general case, the converse
may fail: it may be possible that t is not an infinite trace of the process even
though u is a trace of the process for all u < t. If this latter case is allowed
to arise, then it is not possible to give an exact definition of the semantics of
hiding in the failures divergences model.

It is possible to represent a CSP process operationally as a labelled tran
sition system or LTS (see [63] for details). If, for any node P in an LTS C,
there are only finitely many nodes we can reach from P under a single ac
tion, then C is said to be finitely non-deterministic. In other words, for any
particular action that we engage in, there are only a finite number of possible
states we can end up in. By Koenig's Lemma, if the LTS representation of
a CSP process is finitely non-deterministic, then t is an infinite trace of that
process if and only if u is a (finite) trace of the process for all u < t. (For
proof see [63].)

Since ~ is finite, none of the operators which we use are capable of intro
ducing infinite non-determinism. As a result, all processes under consider-

2.3. Notation 18

ation may be represented operationally by a finitely non-deterministic LTS
and so it is possible to define exactly the semantics of the hiding operator.

2.3 Notation

The following notations will prove to be useful, where t, u, t l , t2 , .. . are traces;
A is a set of actions; 7, T are non-empty sets of traces; G ~ E x E is a
relation; and X is a set of sets. Note that traces are assumed to be finite
unless otherwise stated.

• t = (aI, ... ,an) is the trace whose i-th element is action ai, and length,
Itl, is n. Moreover, events(t) 6. {al,"" an} and, provided that n ~ 1,
tail(t) 6. an. If n = 0 then t is the empty trace, denoted O.

• A, IAI denotes the cardinality of A.

• tau is the trace obtained by appending u to t.

• A * is the set of all traces - i.e. sequences - of actions from A,
including the empty trace, ().

• AW is the set of all infinite traces of actions from A.

• 7* is the set of all traces t = tl 0" ·otn (n ~ 0) such that t l ,···, tn E 7
(note that t = 0 when n = 0).

• ::; denotes the prefix relation on traces, and t < u if t ::; u and t =1= u.

• Pref(T) 6. {u I (::It E 7) u ::; t} is the prefix-closure of 7. (In the
event that 7 is the singleton set {t}, we may use Pref(t) in lieu of
Pref(T)·)

• 7 is prefix-closed if 7 = Pref(T)·

• t fA is a trace obtained by deleting from t all the actions that do not
occur in A.

• t \ A is a trace obtained by deleting from t all the actions that do occur
in A.

• The definitions of f and \ may be lifted to sets of traces in the obvious
way: 7fA 6. {tfA I t E 7} and 7\A 6. {t\A I t E 7}.

• t l , t2 , ••• is an w-sequence of traces iftl ::; t2 ::; ••• and lim;--too Itil = 00.

2.3. Notation 19

• A mapping f : T ~ T' is monotonic if t, u E T and t ~ u implies
f(t) ~ f(u), and strict if 0 E T and f(O) = O.

• The definition of G may be lifted to sets of events, traces and sets of
traces:

- G(A) [). U{G(a) I a E A}.

- (al,"" an) G (bl , ... , bm) {:} n = m /\ 'Vi ~ n, O-j G bi .

- G (T) [). {u I (3t E T) t G u}.

In the event that T is the singleton set {t}, we may use G (t) in lieu of
G(T). Moreover, if G(t) = {u} for some trace u then we shall denote
this G(t) = u. Similarly, if G(a) = {b} for some action a then we write
G(a) = b.

• G-I [). {(b, a) I a G b} is the inverse of G.

• Sub(X) [). {W ~ X I X E X} is the subset-closure of X.

• X is subset-closed if X = Sub(X).

• 28
[). {X I X ~ S} gives the power set of S. For purposes of presenta

tion, we will sometimes use lP(S) in lieu of 28 .

• We introduce containment and equality between pairs of sets in the
obvious way. Let B, B', C, C' be sets.

- (B, C) ~ (B', C') if and only if B ~ B' and C ~ C'.

- (B, C) = (B', C') if and only if B = B' and C = C'.

• For an arbitrary set of objects 0 and a partial ordering; j over the
elements of 0,

max ~ (0) [). {e E 0 I (,tid E 0) e j d /\ e # d}.

In the event that max~(O) = {e} for some element e, we shall write
max~(O) = e.

3 A partial ordering is reflexive, transitive and antisymmetric.

2.4. Process semantics 20

2.4 Process semantics

In this section we consider each of the three semantic models in more detail ,
including the semantic definitions in each model of the operators introduced
so far and how the semantics of (syntactic) processes may be derived using
these definitions. Before doing this, however, we make the following impor
tant observations.

At various points in this thesis, we will work with (syntactic) processes,
semantic denotations of such processes in anyone of three semantic models
and sets of behaviours which may not be derivable as the semantics of any
process. It is only necessary to explicitly calculate the semantics of processes
in chapter 6, as we show how to use FDR2 for automatic verification of
our notion of refinement-after-hiding; moreover, we only derive semantics
in the failures divergences model in that chapter with respect to the hiding
operator. For this reason, semantic definitions for the full range of operators
are given only for the traces and stable failures models. Chapters 3 and 4
use only the hiding and parallel composition operators and this is why only
the semantics for these two operators are given for the failures divergences
model. 4 Chapter 3 deals primarily with sets of behaviours and pairs of sets of
behaviours and so requires the definition of hiding and parallel composition
over such sets and over such pairs. As a result, we define three different
versions of the parallel composition and hiding operators. The first version
gives a semantic operator which may be applied to a set or sets of behaviours
as appropriate; the second gives a semantic operator which may be applied to
pairs of sets of behaviours; the third version gives a syntactic operator which
is used in process definitions.5 Note that we have already defined in the
previous section the effect of applying the hiding operator to sets of traces.
Note also that the semantic and syntactic versions of a particular operator
will be indistinguishable textually and the particular version being used will
be clear from the nature of the object or objects to which it is being applied.

In what follows, the semantics of recursion is left until all other operators
have been considered, since it is treated in a rather different manner.

2.4.1 The traces model

In the traces model, a process is denoted by a (possibly infinite) set of finite
execution sequences of visible actions (i.e. actions from ~). For any process
P, we denote the traces of Pas rP. The following condition always holds of

4The interested reader may find the omitted definitions in [63].
5In the traces model, we actually define hiding and parallel composition over individual

traces, sets of traces and processes. In the failures divergences model, we define the
operators only over pairs of sets of behaviours and over processes.

2.4. Process semantics 21

s lIy u u Ily s.

o IlyO ~ {O}·
() Ily (y) ~ 0.

() Ily (z) ~ { (z)}.

(y) 0 s Ily (z) 0 u ~ {(Z) 0 v I v E ((y) 0 s lIy u)}.

(y) 0 S Ily (y) 0 U ~ {(y) 0 v I v E (s lIy u)}.

(y) 0 s Ily (y') 0 u ~ o if y i- y'.

(z) 0 s Ily (z') 0 u
c,

{(z) 0 v I v E (s Ily (z') 0 u)} u
{(z') 0 v I v E ((z) 0 s Ily u)}.

Figure 2.1: Composing traces in parallel, where s, u E ~*, y, y' E Y ~ ~
and z, z' E ~ - y

Tl T P is non-empty and prefix-closed.

Figure 2.1 shows how the effect of parallel composition is defined in terms
of its effect on individual traces. This operator has the following important
property:

TRP For traces sand u and Y ~ ~,ift E (s Ily u) then try = sry = ury.

Where T and T' are sets of traces7 , we may define (semantic) parallel
composition over such sets in the following manner (we assume Y ~ ~):

T Ily T' c, U{ s Ily u I sET /\ u E T}.

The semantics of any process (minus recursion) in the traces model may then
be derived according to the detail in figure 2.2.

6This condition and others like it which are introduced in the remainder of this chapter
are theorems which may be derived in the algebra of CSP processes and their denotations.

7Neither need be the denotation of a particular process in the traces model and so they
need not meet condition Tl. In general, none of the sets of behaviours or pairs of such
sets to which semantic operators may be applied need be (a component of) the denotation
of a process.

2.4. Process semantics 22

r8TOP ~ {O}·
rDIV ~ {O}·
r(a -+ P) ~ {O} U {(a) 0 sis E rP}.

r(P 0 Q) ~ rPUrQ.

r(P n Q) f),.

rPUrQ.

r(P \ A) ~ (rP) \ A.

r(P Ily Q) ~ rP Ily rQ.

r(P[G)) ~ G(rP).

Figure 2.2: Semantics of processes in the traces model, where G ~ E x E
and A,Y ~ E

2.4.2 The stable failures model

In the stable failures model, a process P is denoted by a pair (r P, ¢P), where
¢P - the stable failures8 of P - is a subset of E* x 2E. If (t, R) E ¢P then P
is able to refuse Rafter t. Intuitively, this means that if the environment only
offers R as a set of possible events to be executed after t (and the environment
must synchronize with P on every event in R) then P can deadlock when
placed in parallel with the environment. A process P is deadlock-free if and
only if, for every (t, R) E ¢P, R is a proper subset of E.

The following conditions always hold of r P and ¢P:

SFl r P is non-empty and prefix-closed.

SF2 (t, R) E ¢P =* t E rP.

SF3 (t,R) E ¢P /\ S ~ R =* (t,S) E ¢P.

SF4 (t,R) E ¢P /\ to (a) ¢ rP =* (t,RU {a}) E ¢P.

We will consider a set of stable failures F to be subset-closed if:

(t,R) E F /\ S ~ R ~ (t,S) E F.

8 Intuitively, a failure is stable if no invisible events are enabled at the state which
generates the failure. Invisible events are classed as urgent in CSP and do not require
synchronization with the environment before they occur. This means that we can never
deadlock at a state at which an invisible event is enabled. Since the stable failures model
is primarily interested in the possibility of deadlock, we need not record information on
states at which it can never occur.

2.4. Process semantics 23

Where F and F' are sets of stable failures and Aye L we may define , -, ..
semantic operations of hiding and parallel composition as follows: 9

F\A

F Ily F'

{(t\A,X) I (t,XUA) E F}.

{(t,XUZ) IX-Y=Z-Y /\ ((:3s,u) (s,X) EF/\

(u, Z) E F' /\ t E s Ily un.
These definitions then lift to pairs of sets of behaviours in a straightfor

ward manner, where T, T' are sets of traces, F, F' are sets of stable failures
and A,Y ~ L:

(T, F) \ A (T\A,F\A).

(T, F) Ily (T', F') (T Ily T', F Ily F').

The stable failures of any process (minus recursion) may be derived ac
cording to the detail in figure 2.3 (the traces of the process may still be
derived according to the detail in figure 2.2 10). The following equalities then
hold, where P, Q are processes and A, Y ~ L:

• (r(P \ A), ¢(P \ A)) = (rP, ¢P) \ A .

• (r(P lIy Q), ¢(P Ily Q)) = (rP, ¢P) Ily (rQ, ¢Q).

2.4.3 The failures divergences model

In the failures divergences model, a process P is denoted as a pair (¢l..P, r5P),
where r5P - the divergences of P - is a subset of L* and ¢ l..P - the failures
of P - is a subset of L* x 2L. If t E r5P then P is said to diverge after t. In the
CSP model this means that the process behaves in a totally uncontrollable
and unpredictable way: ¢l..DIV = L* x 2L and r5DIV = L*. Semantically,
divergence obscures all other behaviours after it arises and we can make no
guarantees post-divergence regarding what a process will offer or refuse at
any point in time: this is reflected in conditions FD4 and FD5 below.

We introduce the notation rl..P and define it as rl..P [),. {t I (t,0) E ¢l..P}.
As we shall see in section 2.4.8 below, rl..p = rP U r5P. The following
conditions then always hold of r.l..P, ¢.l..P and r5P:

9The particular definition of parallel composition used here reflects the following in
tuition. If two processes are composed in parallel, synchronizing on the set of events Y,
then the composition can refuse after a particular trace all events from Y which at least
one process refuses, along with all events which both refuse.

lOIn other words, for any process P, TP has the same meaning whether we are working
in the traces model or in the stable failures model.

2.4. Process semantics

¢>STOP ~ {((),X) I X ~ ~}.

¢>DIV ~ 0.

¢>(a ---* P) ~ {((), X) I a ¢ X ~ ~} U
{((a) 0 s, X) I (s, X) E ¢>P}.

¢>(P 0 Q) 6. {((),X) I ((),X) E ¢>pn¢>Q} U
{(s,X) I (s,X) E ¢>PU ¢>Q A s i= ()}.

¢>(P n Q) ~ ¢>P U ¢>Q.

¢>(P \ A) 6. (¢>P) \ A.

¢>(P Ily Q) 6. ¢>P Ily ¢>Q.

¢>(P[G]) ~ {(s', X) I (3s) s G s' A (s, G- 1 (X)) E ¢>P}.

Figure 2.3: Semantics of processes in the stable failures model, where
G ~ ~ x ~ and A, Y ~ ~

FDl TJ..P is non-empty and prefix-closed.

FD2 (t, R) E ¢>J..P A S ~ R ~ (t, S) E ¢>J..P.

FD3 (t,R) E ¢>J..P A to (a) ¢ TJ..P ~ (t,RU {a}) E ¢>J..P.

FD4 s E oP AtE ~* ~ sot E OP.

FD5 t E oP ~ (t,R) E ¢>J..P for R ~~.

We now define semantic operators of parallel composition and hiding in
this model. By their nature, they can only be defined over pairs of sets of
behaviours rather than over single sets of behaviours. Where:F is a set of
failures, we use TJ..:F 6. {t I (t,0) E :F}. In the following definitions, :F, :F1 ,

:F2 and :F' are sets of failures, V, Vi, V 2 and V' are sets of divergences and
A,Y~~ .

• (:F1 , Vd Ily (:F2, V 2) 6. (:F, V) where:

- V = {tov I (3s E TJ..:Fi,U E TJ..:F2) t E s Ily U A
(s E Vi VuE V2)}'

2.4. Process semantics 25

rS(P Ily Q) ~ {tovl (3SETl.P,UETl.Q) tEsllyu A
(s E rSP VuE rSQn.

¢l.(P Ily Q) ~ {(t, Xu Z) I X - y = Z - Y A ((3s, u)
(S,X) E ¢l.P A (u,Z) E ¢l.Q AtE s Ily un U

{(t,X) It E rS(P lIy Q) A X ~ I;}.

rS(P \ A) ~ {(s \ A) 0 tis E rSP} U

{(u \ A) 0 t I u E I;w A (u \ A) is finite
A ((\Is < u) s E Tl.pn.

¢l.(P \ A) 6- {(t \ A, X) I (t, X U A) E ¢l.P} U

{(t, X) It E rS(P \ A) A X ~ I;}.

Figure 2.4: Semantics of operators in the failures divergences model, where
A, Y ~ I;

- F = {(t, Xu Z) I X - Y = Z - Y A ((3s, u)
(s,X) E F1 A (u,Z) E F2 AtE s Ily un U

{(t, X) It E V A X ~ I;}.

• (F, V) \ A 6- (F', V') where:

- V' = {(s \ A) 0 tis E V} U
{(u \ A) 0 t I u E I;w A (u \ A) is finite A

((\Is < u) s E Tl.Fn.

- F' = {(t \ A, X) I (t, X U A) E F} U
{(t,X) It E V' A X ~ I;}.

Figure 2.4 gives the semantic definitions of the syntactic operators of hid
ing and parallel composition. They are not defined in terms of the semantic
operators so that it is easier to see how the individual components of a par
ticular denotation pair may be derived. However, since Tl.(¢l.P) = Tl.P, the
following equalities hold, where P, Q are processes and A, Y ~ I;:

• (¢l.(P Ily Q), rS(P Ily Q)) = (¢l.P, rSP) Ily (¢l.Q, rSQ).

• (¢l.(P \ A), rS(P \ A)) = (¢l.P, rSP) \ A.

2.4. Process semantics 26

2.4.4 Process denotations and refinement

[P] x denotes the semantic meaning of the process P in the model X E

{T, SF, FD} (T gives the traces model, SF the stable failures model and FD
the failures divergences model). In other words:

• [P]T TP.

• [P]SF = (TP, ¢P).

• [P]FD - (¢.LP,8P).

We shall also use the shorthand P =x Q to indicate that ~P~x = [Qh.
That Q is an implementation of (or refines) P in a particular semantic model
X E {T, SF, FD} is denoted Q ~x P. This means that the behaviours of Q
in the relevant model are contained in those of P. In other words:

• Q ~T P if and only if [Q] T ~ [P] T (i.e. TQ ~ TP).

• Q ~SF P if and only if [Q]SF ~ [P]SF (i.e. TQ ~ TP and ¢Q ~ of).

• Q ~FD P if and only if [Q]FD ~ [P]FD (i.e. ¢.LQ ~ ¢.LP and 8Q ~
8P).

2.4.5 Semantics of recursion

We now show how to define the semantics of recursive terms. Since we
never have to calculate the semantics of recursive processes in the failures
divergences model, we deal explicitly here only with the traces and stable
failures models. We will consider a single recursion N = P and also a mutual
recursion Ni = ~ for 1 :::; i :::; k. The fundamental law of recursion is given
by the following condition, which effectively states that a recursively defined
process satisfies the equation defining it.

REC If N = P is a recursive definition, then N =x P for X E {T, SF, FD}.

Before proceeding, we introduce some notation which will be useful.

• N denotes the set of natural numbers.

• For any function Sand n 2: 2, sn(x) l!;. s(sn-1(X)), where S1 l!;. S.

• P[Y/N] denotes the process P with the process Y substituted for the
name N.

• -.IT is used to give the denotation of STOP in the traces model: i.e.
-.IT l!;. [STOP]T = {O}.

2.4. Process semantics ·r -I

• l..SF is used to give the denotation of DIV in the stable failures model:
i.e. l..SF f), [D1l1sF = ({O},0).

• (Xl"'" X k) will be used to denote the vector with elements Xl, ... ,Xk .

We then assume:

- Y is a vector of processes (YI , •.• , Yk).

- N is the vector of names (NI , ... , Nk).

- P is the vector of processes (P1, ... , Pk).

- ~[Y / N] denotes the process ~ with the process }j substituted
for the name Nj for all 1 :::; j :::; k such that Nj occurs somewhere
in ~.

Single recursion

The single recursion N = P induces a (syntactic) function, F, which maps
syntactic terms to syntactic terms such that, for any process Y, F(Y) f),

P[Y/N]. In the model X E {T, SF}, S is the (semantic) function from
process denotations to process denotations such that, for any process Q,
S([Q]x) f), [F(Q)]x. For example, S(rQ) f), rF(Q). [N]x is then given by
UnEN sn(l..x).

If N does not occur anywhere in P then S is a constant and its value
gives directly the semantic interpretation of N: i.e. [N]x = S.

Mutual recursion

The mutual recursion Ni = ~ for 1 :::; i :::; k induces a set of syntactic
functions Fi such that, for any vector of processes Y, Fi(Y) f), ~[Y / N]. In
the model X E {T, SF}, S may then be taken to be the (semantic) function
from vectors of process denotations to vectors of process denotations such
that, for any vector of processes Q = (Q1,"" Qk),

[Ni]x is then given by the ith element of UnEN sn((l..x, . .. , l..x)).

Guardedness

A process name N is guarded in process expression P if either:

• N does not appear in P or;

• P does not contain the hiding operator and every occurrence of X is
within the scope of an occurrence of the prefix operator.

--

2.4. Process semantics 28

If all names occurring in P are guarded then we say that P itself is
guarded. If P is guarded, then all recursive equations used to define the
semantics of P have a unique solution. All recursive processes for which
we have to derive semantics in chapter 6 are guarded and this justifies the
inductive derivation of semantics which is used there. ll

Guardedness and divergence

Guarded processes have the following important property:

DF If Ni = ~ for 1 :::; i :::; k and all processes Pi are guarded, then
oNi = 0 for 1 :::; i :::; k.

2.4.6 Indexing operators

Further comment is required with respect to the indexing of the operators
0, n and III. We consider the generic process

EBzEZP(z),

where EB E {D, n, III} and Z is a finite set. In the event that IZI ~ 2, then
EBzEZP(z) may be represented in an obvious and straightforward manner
using the binary version of EB. However, it is less clear what should be the
semantics of EBzEZP(z) if IZI = 1 or Z = 0. We first observe that the non
deterministic choice operator, n, may not be indexed by the empty set (this
is disallowed by FDR2). For our purposes, we also assume that III may not
be indexed by the empty set. The remainder of the relevant cases are covered
by the following definition.

Definition 2.1. Let EB E {D, n, III} and X E {T, SF, FD}. Then the follow
ing hold:

1. If Z = {v}, then EBzEZP(z) =x P(v).

2. If Z = 0, then DZEZP(z) =x STOP.

2.4.7 Parallel composition, hiding and network com-
position

We shall also need a semantic version of the network composition operator,
®y, which is defined as follows for processes P and Q, y ~ L: and X E

{T, SF, FD}:

11 Note that the definition of guardedness given here is stronger than the usual definition,
namely that every occurrence of N in P is prefixed by an action that cannot be hidden.
However, the definition given suffices for our purposes and is simpler to present.

-

2.4. Process semantics 29

The following important results then show the consistency in all models
of the syntactic and semantic versions of hiding, parallel composition and
network composition. They may be proved easily using the definitions given
so far in section 2.4.

Proposition 2.1. The following hold, where P and Q are processes, A, Y ~
~ and X E {T, SF, FD}:

1. [Q\A]x = [Q]x \A.

2. [P Ily Q]x = [P]x Ily [Q]x·

Corollary 2.2. Let P and Q be processes, Y ~ ~ and X E {T, SF, FD}.

Then [P 0y Q]x = [P]x 0y [Q]x·

2.4.8 Relationships between denotations

The following conditions always hold and concern relationships which exist
between denotations in the various semantic models.

DR! TJ.P = TP U oP.

DR2 ¢J.P = ¢P U {(t, R) I t E oP 1\ R ~ ~}.

DR3 TP = {t I (t,0) E ¢P} U (TP n oP).

Note that T P n oP gives those divergent traces which are actually gen
erated operationally by P. In view of these conditions, the following result
holds:

Proposition 2.3. If oP = 0 then:

1. ¢P = ¢J.P.

2. TJ.P = TP = {t I (t,0) E ¢P}.

2.5. Process alphabets 30

2.4.9 Alternative denotations in the failures divergen
ces model

For a number of different reasons, we would prefer to work only with stable
failures and traces even when working in the failures divergences model. 12 To
facilitate this, we consider the notion of minimally-divergent traces, defined
as follows for any process P:

Definition 2.2. min6P c. {t I t E 6P A (,Bu E 6P) u < t}.

The minimally-divergent traces are a subset of those divergent traces
which are generated operationally by the process under consideration rather
than being present only by virtue of FD4. The following property always
holds of them:

MD For any process P, min6P ~ TP.

Using min6P allows us to deal with divergent traces in the same way as
ordinary traces from T P. It is easy to see, by definition 2.2 and FD4, that
the following result holds.

Proposition 2.4. 6P = {t a V It E min6P A V E ~*}.

Using this result and DR2, 1>l.P and 6P may be reclaimed from ¢P and
min6P.

2.5 Process alphabets

Process alphabets do not play any semantic role in the the treatment of CSP
used here. Instead, they are simply used to define an upper bound on the set
of events in which any process may engage and so a lower bound on the set
of events which any process will always refuse. The alphabet of a process P,
denoted aP, must always be such that f3(P) ~ aP, where f3(P) is calculated
according to the rules in figure 2.5. 13 We are free to assign to aP any value
we wish, provided that f3(P) ~ aP, although we will always explicitly state
what we take the alphabet of a particular process to be before that alphabet
is used for any purpose. Since f3(P) ~ aP, the following two conditions hold:

PAl TP ~ (aP)*.

12The reasons for this choice are discussed at the relevant points in chapters 3 and 4.
13Process alphabets are used only (with respect to denotations) in the traces and stable

failures models, which is why (J(DIV) = 0. The particular treatment given to recursive
processes is necessary so that the procedure for deriving the alphabet of such a process
will terminate.

2.6. Useful algebraic laws

f3(STOP) ~ 0.

f3(DIV) ~ 0.

f3(a -+ P) ~ {a}Uf3(P).

f3(PO Q) ~ f3(P) U f3(Q).

f3(P n Q) ~ f3(P) U f3(Q).

f3(P Ily Q) ~ f3(P) U f3(Q).

f3(P \ A) ~ f3(P) - A.

f3(P[G]) ~ G(f3(P)).

Let Ni = Pi for 1 ~ i ~ k be a recursive definition and let
STOP denote the vector (STOP, ... , STOp) of length k.
Then:

Figure 2.5: Deriving alphabets

PA2 (t, R) E ¢P => (t, R U (~ - o:P)) E ¢P.

31

PA2 is a consequence of PAl and SF4 (impossible events can always be
refused).

2.6 Useful algebraic laws

We include here some useful equivalences which exist between syntactic terms
in all three semantic models, some of which have already been mentioned.
Although they are not used formally, they are important in allowing us to
provide as input to FDR2 process definitions which are less likely to suf
fer from state explosion when their operational semantics is calculated. (=
is used in the following equations to denote semantic equality in all three
models.)

• 0, n and III are commutative and associative in all three models, mean
ing that they may be indexed by finite sets .

• Hiding is associative in that (P \ A) \ A' = P \ (A U A').

2.7. Contexts and environments 32

• P \ A = P if aP n A = 0.

• (P Ily Q) \ A = (P \ A) lIy (Q \ A) if Y n A = 0.

Parallel composition is symmetric but not associative in the general case.
As a result, expressions involving parallel composition should always be
bracketed appropriately.14 It is, however, possible to define a weak asso
ciativity property, if we can guarantee that the two participants in a parallel
composition will synchronize on at least those events that they have in com
mon:

P IIA (Q liB R) = (P lie Q) liD R

where

• A = apna(Q liB R) and a(Q liB R) = aQUaR.

• B = aQnaR.

• C=apnaQ.

• D = a(P lie Q) n aR and a(P lie Q) = aP U aQ.

A similar result holds with the network composition operator, ®, substi
tuted for II.

2.7 Contexts and environments

The term "environment" will be used to denote a cSP process with which
another CSP process might be composed. The term "environment" is to
be distinguished from the term "context", where a context is a process term
containing free process variables for which particular processes might be sub
stituted. A component process is therefore composed with an environment
(using an additional operator to combine the two processes) while a compo
nent is placed in a context (using substitution).

For our purposes, a process context F represents a syntactic term con
taining exactly one instance of each of the free process variables V1 to Vn and
only the parallel composition and hiding operators (or the network compo
sition operator, ®y, which may be represented using only hiding and par
allel composition). F(Pt, ... , Pn) is used to denote the process where, for
1 :::; i :::; n, process Pi has been substituted for variable Vi. This means that

14In chapter 3 we are usually able to dispense with such brackets and do so for the
purposes of presentation; however, they are always used in chapter 7 and appendix D in
the definition of processes to be used with FDR2.

2.7. Contexts and environments 33

F(PI , . .. , Pn) is a closed term and so contains no further free (process) vari
ables (although the l1 may contain process names which have been defined).
Strictly speaking, [F]x for X E {T, SF, FD} should be used to denote the
semantic meaning of F (which is a mapping from a set of n process deno
tations to a process denotation). However, we shall simply denote it using
F. This is because the defining expression VI Ily V2 makes sense whether
VI and Y2 represent syntactic terms or semantic objects; the same applies to
VI \ A and VI 0y V2 . In moving from the defining expression of (syntactic)
F to the defining expression of [F] x' all that has changed is the type of the
free variables. It will always be clear when it is used what sort of object is
represented by F.

We also introduce a useful notation to be used with respect to pro
cesses built around a context F. During evaluation of the semantics of
F(PI , ... , Pn), we evaluate the subterms of F(PI , . .. , Pn) in a unique or
der and this ordering may be used to define a set of intermediate processes
which are used to construct F(PI , ... , Pn). For example, in constructing
(P Ily Q) liz P', the intermediate processes would be P, Q, P Ily Q and
(P Ily Q) liz P' itself. We therefore define Imp(F(PI , ... , Pn)) in order
to return this set of processes for F(Pl, ... , Pn). (Note that l±J denotes the
disjoint union operator.)

Definition 2.3. For processes PI"'" Pn, and A, Y ~ L:, Imp(F(PI, ... , Pn))
is defined inductively as follows:

Imp(PI \ A) 6 { PI, (PI \ A)}. •
Imp(Pt Ily P2)

~ {PI,P2 , (PI Ily P2)}.

Imp(PI 0y P2)
6 {P1,P2 , (PI 0y P2)}.

Imp(F(PI, ... ,Pn) \ A) ~ {F(PI, ... ,Pn)\A} U

Imp (F(PI , ... , Pn)).

• Where F', F" are contexts,
F(Pt, . .. , Pn) = F'(Pill . .. , l1m) Ily F"(Pill · .. , Pile)
and {I, ... , n} = {il , ... , im } l±J {jl,'" ,jk}:

{(F(P1, .. . , Pn)} U

Imp(F'(l1!, .. . ,Pim)) U

Imp (F"(PiI , ... , Pile))'

• Where F', F" are contexts,
F(Pt, . .. ,Pn) = F'(l1ll' .. , l1m) 0y F"(Pill · .. ,Pile)
and {I, ... , n} = {il , ... , im } l±J {jl,'" ,jk}:

2.8. Maximality and monotonicity 34

- Imp (F(P1 , ... , Pn)) I). {(F(P1, .•• , Pn)} U

Imp (F' (Pill ... , ~m)) U

Imp (F"(Pj1 , ... '~k)).

This notation will be used to reclaim the operators and processes which
are used to define any process F(P1 , ... ,Pn).

2.8 Maximality and monotonicity

2.8.1 Maximality of failures

Let F be a set of failures. We define two notions of maximality with regard
to the elements of that set .

• (t, R) E F is refusal-maximal if and only if there does not exist (t, X) E

F such that ReX .

• (t, R) E F is maximal if and only if there does not exist (s, X) E F
such that t < s or such that t = sand ReX.

We shall denote max(F) = {(t, R) E F I (t, R) is maximal }. In the event
that max(F) = {(t, R)} for some failure (t, R), we write max(F) = (t, R).
Refusal-maximality is mainly used in the statement and proofs of results
from chapter 3. Its important property is captured by the following result,
which follows directly from SF2 and SF4:

Proposition 2.5. If (t, R) E cpQ is refusal-maximal, then to (a) E rQ for
every a E (~ - R).

The notion of maximality is also used in the proofs of results from chap
ter 3.

2.8.2 Monotonicity

The following are standard results which may be proved straightforwardly.

Proposition 2.6. For traces sand u and A ~ ~, if s :S u then s \A :S u \A.

We define the ordering j over sets of traces T, T' such that T j T' if
and only if, for every t E T, there exists u E T' such that t :S u.

Proposition 2.7. Let Y ~ ~ and s, u, v, w be traces such that v :S s, w :S u
and s Ily u =1= 0. Then (v Ily w) j (s Ily u).

2.9. Determinism 35

Proposition 2.8. Let A, Y E ~ and P, P', Q, Q' be either sets of traces;
pairs of sets of traces and sets of stable failures; or pairs of sets of failures
and sets of divergences.

1. If P ~ P', then P \ A ~ P' \ A.

2. IfP ~ P' and Q ~ Q', then P Ily Q ~ P' Ily Q'.

3. If P ~ P' and Q ~ Q', then P ®y Q ~ P' ®y Q'.

Corollary 2.9. Let P, P, Q, Q' be processes, X E {T, SF, FD} and A, Y E ~.

1. If [P]x ~ [P']x, then [P \ A]x ~ [P' \ A]x.

2. If [P]x ~ [P']x and [Q]x ~ [Q']x, then [P Ily Q]x ~ [P' Ily Q']x.

3. If [P]x ~ [P']x and [Q]x ~ [Q']x, then [P ®y Q]x ~ [P' ®y Q'h·

2.9 Determinism

Definition 2.4 (Determinism). A process P is deterministic if:

1. 8P = 0.

2. ¢P = {(t, R) It E TP 1\ R ~ (~ - {a Ito (a) E TP})}.

If P is deterministic, it is completely characterised by T P; in particu
lar, it always responds in the same manner to the same external stimulus.
We are interested in the property of determinism with respect to processes
which might be used during verification using FDR2 and so which can be
represented operationally using a finite-state LTS. (Note that FDR2 may be
used to check for the determinism of any such process.) Any such "finite
state" process which is deterministic may be represented syntactically using
only indexed deterministic choice, the prefix operator, recursion and STOP.
Before showing how to construct such a representation, we introduce some
additional notation, where T is a prefix-closed set of traces:

• init(T) f). {a I (a) 0 s E (T - {O})} gives the initial events of all traces
from T .

• aft(T, a) f). {s I (a) 0 sET} gives the set of traces from T which are
possible after the "execution" of a.

For a prefix-closed set of traces T, NT is defined as:

NT = DaEinit(T) (a -+ Naft(T,a)) where N{()} = STOP.

The following condition always holds for "finite-state" P:

DE If P is deterministic, then P =x NTP for X E {T, SF, FD}.

2.10. Constructing processes 36

2.10 Constructing processes

In the proofs of results from chapter 3, it is sometimes necessary to construct
syntactic processes with exactly specified semantics (in the traces or stable
failures models). In this section, we show how to do this. Before proceeding
to define the specific processes which we shall need, we define some useful
sub-processes. In the following definitions, a E E is an event, s is a trace and
R ~ E is a set of events.

• TPO = DIV.

• TP(a)os = (a ~ TP s) ° DIV.

• FP((),R) = 0aE(I:-R) (a ~ DIY).

• FP((a)os,R) = (a ---t FP(s,R)) 0 DIV.

TP and FP are standard constructions taken from [63] (this is why the
statements of their semantics in propositions 2.10 and 2.11 below are given
without proof). Before proceeding to give the semantics of these processes
we observe an important property of DIV in the stable failures model, which
is important to us here and also in the construction of processes which are
used in chapter 6 for the purposes of automatic verification. Recall that
¢DIV = 0 and, according to figure 2.3, the stable failures semantics of ° is
defined as follows:

¢(P ° Q) t:, {(O,X) I (O,X) E ¢pn ¢Q} U
{(s, X) I (s, X) E ¢P U ¢Q 1\ s =f. O}.

Hence, for any process P,

¢(PDDIy) = {(t, R) I (t, R) E ¢P 1\ t =f. O}·

We can therefore use DIV, along with the deterministic choice operator,
to effectively remove (stable) failures when necessary. The traces, stable
failures and alphabets15 of TPt and FP(t,R) are then as follows.

Proposition 2.10. Let t be a trace. Then the following hold:

1. TTPt = Pref(t).

2. ¢TPt = 0.

3. f3(TPt) = events(t).

15 Alphabets are calculated here using f3 and so using the detail in figure 2.5

2.10. Constructing processes 3,

Proposition 2.11. Let (t, R) be a failure. Then the following hold:

1. TFP(t,R) = Pref(t) u {t 0 (a) I a E (~- R)}.

2. <jJFP(t,R) = {(t,X) I X ~ R}.

3. (3(FP(t,R)) = events(t) U (~ - R).

Note that, in deriving results on the remainder of the constructions given
here, we shall always appeal implicitly to the detail from section 2.4 and that
from figure 2.5.

2.10.1 Finite set of traces

Where T is a finite, non-empty set of traces (not necessarily prefix-closed),

FST(T) 6 0tETTPt .

The identifier FST is used to indicate finite set of traces. In the event that T
is the singleton set {t}, we may use FST(t) in lieu of FST(T). The necessary
properties of FST(T) are then given by the following result, which follows
easily from proposition 2.10.

Proposition 2.12. Let T be a finite, non-empty set of traces. Then the
following hold:

1. T FST(T) = Pref(T).

2. (3(FST(T)) = UtET events(t).

2.10.2 Single failure and finite set of traces

We now show how to construct a process around a single failure and a finite,
non-empty set of traces. We use the identifier SFT here to indicate single
failure and traces and, where T is a finite, non-empty set of traces and (t, R)
is a failure, define:

SFT((t, R), T) 6 FP(t,R) n (OuETTPu).

The necessary properties of SFT((t, R), T) are given by the following
result, which follows from propositions 2.10 and 2.11.

Proposition 2.13. Let T be a finite, non-empty set of traces and (t, R) be
a failure. Then the following hold:

1. TSFT((t, R), T) = Pref(T) U Pref(t) U {t 0 (a) I a E (~ - R)}.

2. <jJSFT((t,R), T) = {(t,X) I X ~ R}.

3. (3(SFT((t, R), T)) = events(t) U (~ - R) U U{ events(u) I u E T}.

2.10. Constructing processes 38

2.10.3 Refusal-maximal failure and traces of specified
process

Before proceeding to give the definition of the process which is used here, we
observe the following standard result (recalling that III denotes 1I.I2J)'

Proposition 2.14. The following hold:

1. T(PIIIDIV) = TP.

2. 4>(PIIIDIV) = 0.

3. ,8(PIIIDIV) = ,8(P).

We now show how to construct a process around a single failure (which
will be refusal-maximal in practice) and the traces of a specified process.
We use the identifier MFP here to indicate maximal failure and process and,
where P is a process and (t, R) is a failure, define:

MFP((t, R), P) /). FP(t,R) n (PIIIDIV).

The necessary properties of MFP((t, R), P) are given by the following result.

Proposition 2.15. Let P be a process and (t, R) E 4>P be refusal-maximal.
Then the following hold:

1. TMFP((t, R), P) = TP.

2. 4>MFP((t, R), P) = {(t, X) 1 X ~ R}.

3. ,8(MFP((t, R), P)) = ,8(P).

Proof. 1. By proposition 2.11 (1) and proposition 2.14(1), we observe that

TMFP((t, R), P) = TP U Pref(t) U {t 0 (a) 1 a E (~- Rn·

Since (t, R) E 4>P, we have that t E TP by condition SF2 and so Pref(t) ~ TP
by SF 1. Moreover, we have that {t 0 (a) I a E (~- Rn ~ T P by proposition
2.5. The proof of this part follows.

2. The proof of this part follows by proposition 2.11(2) and proposition
2.14(2).

3. By proposition 2.11(3) and proposition 2.14(3), we observe that

,8(MFP((t, R), P)) = ,8(P) U events(t) U (~ - R).

By the proof of part 1 of the proposition,

{t} U {t 0 (a) 1 a E (~ - Rn ~ T P.

If we take aP = ,8(P), it follows by PAl that TP C ,8(P)* and hence
events(t) U (~ - R) ~ ,8(P). 0

2.11. Further consideration of parallel composition 39

2.10.4 Refusal-maximal failure, finite set of traces and
process

Finally, we show how to construct a process around a single failure (which
will be refusal-maximal in practice), a finite, non-empty set oftraces, and the
traces and failures of a specified process. \\Te use the identifier MFTP here
to indicate maximal failure, traces and process and, where P is a process. T
is a finite, non-empty set of traces and (t, R) is a failure, define:

MFTP((t, R), T, P) 6 SFT((t, R), T) n P

The necessary properties of MFTP((t, R), T, P) are given by the following
result.

Proposition 2.16. Let P be a process and T a finite, non-empty set of
traces. Let the failure (t, R) be such that (t, X) E c/JP is refusal-maximal and
X ~ R. Then the following hold:

1. TMFTP((t,R), T, P) = Pref(T) U TP

2. c/JMFTP((t, R), T, P) = {(t, Z) I Z ~ R} U c/JP.

3. (3(MFTP((t, R), T, P)) = (3(P) U U{events(u) I u E T}.

Proof. 1. By proposition 2.13(1),

TMFTP((t,R), T, P) = Pref(T) U Pref(t) U {t 0 (a) I a E (E - R)} U TP.

By a proof similar to that of part 1 of proposition 2.15 and since X ~ R, we
have that Pref(t) U {t 0 (a) I a E (E - R)} ~ TP.

2. The proof of this part follows by proposition 2.13(2).
3. By proposition 2.13(3), (3(MFTP((t, R), T, P)) is given by:

(3(P) U events(t) U (E - R) U U{events(u) I u En.

By a proof similar to that of part 3 of proposition 2.15 and since X ~ R, we
have that events(t) U (E - R) ~ (3(P). 0

2.11 Further consideration of parallel compo
sition

In the traces and stable failures models, we almost always use a restricted
form of parallel composition, where processes (and sets of behaviours) have
to synchronize on at least those events in which they can both engage. The
following results concern the semantics of this restricted form of parallel
composition. In general, they will be appealed to implicitly when needed.

....

2.11. Further consideration of parallel composition -10

2.11.1 Traces

Theorem 2.17. Let P, Q be processes and Y = aP n aQ. Then:

T(P Ily Q) = {t E (aPU aQ)* I (3s E TP,U E TQ) traP = s
1\ tr aQ = u}.

Proof. The proof in both directions proceeds by a straightforward induction
on the length of traces using PAl, the definition of Ily given in figure 2.2 and
the fact that:

• If a E Y then a E aP and a E aQ .

• If a ¢ Y then a cannot be in both aP and aQ.

2.11.2 Stable failures

A similar result is given here with respect to the stable failures of (syntactic)
parallel compositions. However, we first give a more generic result in terms
of parallel composition of sets of failures. This allows us to prove what we
need here and is also reused in chapter 3. Since alphabets are calculated
syntactically and so cannot be generated as such for an arbitrary set of
failures, R is used to capture the property of process alphabets which is
crucial here.

Definition 2.5. Let F be a set of stable failures. Then R(F) is the set of
all A ~ ~ such that

(t,R) E F~ (t,RU (~- A)) E F.

The following result shows that any parallel composition of subset-closed
sets of failures also enjoys the property of subset-closure.

Proposition 2.18. If F1, F2 are subset-closed sets of stable failures and
Y ~ ~, then F1 Ily F2 is also subset-closed.

Proof. Let (t, R) E F1 Ily F2 and Z ~ R. We show that (t, Z) E Filly F2.
By definition of Ily in section 2.4.2, there are (s,5) E F1, (u, U) E F2 such
that:

t E (s Ily u), R = 5 U U and 5 - Y = U - Y.

Let 5' = 5 n Z and U' = un Z. Then 5' - Y = U' - Y. Moreover, since
Z ~ 5 U U, 5' U U' = (5 n Z) U (U n Z) = (5 U U) n Z = Z. Hence, the only
thing left to prove is that (s,5') E F1 and (u, U') E F2, which follows by the
subset-closure of F1 and F2. 0

2.11. Further consideration of parallel composition 41

We now give the generic result, before using it to prove the final result
we want.

Proposition 2.19. Let F1, F2 be subset-closed sets of stable failures, Al E
R(F1), A2 E R(F2) and Al n A2 = Y. Then:

FIlly F2 = {(t, S U U U Z) I Z ~ (~ - (AI U A2)) /\
((3(8, S) E F1 , (u, U) E F2) t E (8 Ily u) /\
S ~ Al /\ U ~ A2)}

Proof. (~) Let (t, R) E (FIlly F2). Moreover, let C = R n (AI U A2), D =
R - (AI U A2) and so CUD = R. By proposition 2.18, (t, C) E (FIlly F2).
By definition of Ily in section 2.4.2, there are (8, S') E Fl and (u, U') E F2
such that:

t E (8 Ily u), C = S' U U' and S' - Y = U' - Y.

The latter and Al n A2 = Y means that S' - Al = U' - Al and S' - A2 =
U' - A2 •

Let S = S' - (A2 - AI) and U = U' - (AI - A2). We have S ~ Al
and U ~ A2 and, by the subset-closure of F1 and F2, (8, S) E Fl and
(u, U) E F2. Hence, since D ~ (~ - (AI U A2)), the only thing to prove is
that S' U U' = S U U. We have:

SUU (S' - (A2 - AI)) U (U' - (AI - A2))
(S' - A2) U (S' n Al n A2) U (U' - Ad
U (U' n Al n A2)
(S' - A2) U (U' - A2) U (S' n Al n A2) U
(U' - AI) U (S' - AI) U (U' n Al n A2)
S'uU'.

(2) Let t, (8, S), (u, U), Z be as in the definition of X. We have to show
that (t, S U U U Z) E (FIlly F2), where Ily is as defined in section 2.4.2.

Let S' = Z uS U (U - Y) and U' = Z U U U (S - Y). Since U ~ A2 and
Y = Al n A2, (U - Y) n Al = 0. Hence, (Z U (U - Y)) ~ (~ - Ad and
so (8, S') E F1 by definition 2.5 and by the subset-closure of Fl. Similarly,
(u, U') E F2 • Moreover,

S' U U' = Z U S U (U - Y) U Z U U U (S - Y) = Z U S U U.

Hence, the only thing we need to show is that S' - Y = U' - Y. In other
words, that

(Z uS U (U - Y)) - Y = (Z U U U (S - Y)) - Y

2.12. Model-checking CSP

which is equivalent to

Z U (S - Y) U (U - Y) = Z U (U - Y) U (5 - Y)

which clearly holds.

Theorem 2.20. Let P and Q be processes and Y = aP n aQ. Then:

c/J(P Ily Q) = {(t, 5 U U U Z) I Z ~ (~- (aP U aQ)) A

((:3(s, 5) E c/JP, (u, U) E c/JQ) t E (s Ily u) A

5 ~ aP A U ~ aQ)}

42

o

Proof. By the definition in figure 2.3, c/J(P Ily Q) = c/JP Ily c/JQ. By SF3, c/JP
and c/JQ are both subset-closed. By PA2, aP E R(c/JP) and aQ E R(c/JQ).
The proof follows by proposition 2.19. 0

2.12 Model-checking CSP

The tool FDR2 may be used to perform model-checking of CSP processes.
Specifically, we may check whether or not one process refines another in each
of the three semantic models, as well as performing checks for determinism,
deadlock-freedom and divergence-freedom. The tool takes as input a text
file containing process descriptions written in the machine-readable dialect
of esp. (See [63J or the FDR2 manual ([64]) for details.) Any operators used
in this thesis to define processes to be supplied as input to FDR2 have a
direct counterpart in the machine-readable syntax.

2.12.1 Additional operators

There are two operators and one construct which are used in defining pro
cesses in chapter 7 and appendix D which have not yet been introduced.
(Note that they are not used in any processes for which we have to derive a
formal semantics.)

if B then P else Q is the process which behaves like P if the boolean
expression B evaluates to true and otherwise behaves like Q. (In defining
boolean expressions, we use tests for equality, ==, tests for inequality, ! =,
and the connectives "and" and "or".)

Where c is a channel and x is a variable, c?x -+ P(x) denotes the process
which waits for input on channel c; when it receives a value v on c, it then
proceeds to behave as P with v substituted for x in P. Due to the finiteness
of channel data types, c?x -+ P(x) may be represented as Dc.xEacC.x -+ P(x).
A more general version of this construct is also used, where data transfer can

2.12. Model-cbecking CSP .13

be in several directions at once. For example, where the type of channel C

is given by the types T I , .•• ,T5 , and Xi is a variable and Vj E Tj a concrete
value for 1 ::; i, j ::; 5,

may be used to input values into the variables Xl and X4 and to communicate
the concrete data values V2, V3 and V5: in such a data transfer, ? is used to
denote the input of a value into the variable immediately to its right; ! is used
to denote the communication or output of the concrete value immediately to
its right. C?XI!V2!V3?X4!V5 -+ P(XI,X4) may be represented as:

Note also that ! should only be used to the right of the first occurrence
of? Thus,

C.VI·V2· V3 ?X4!V5 -+ P(X4)

is the correct way to write the process which, on its first event, communicates
the concrete values VI, V2, V3 and V5 and reads data into the variable X4, while

is incorrect.
The other new construct used is the let within notation, used to make

definitions local to an expression. It is generally used in the following manner:

P(X,y, V)

let P(v) = ...

within P(V).

In such a case, we are effectively defining the process P(v), which will have V

initialised to V and within which X and yare constants, for example channel
names. It allows us to easily define a family of processes which differ only in
the values stored by the constants X and y. (See chapter 7 for examples of
this.)

Further details on all of these language features can be found in [63J.

2.12.2 Channels and data types

The following are the constructs which we shall need to declare channels and
data types in FDR2. A channel C with data type d is declared as follows:

channel c: d

2.13. Running example 44

A set may be assigned an identifier as in the construct:

data = {O, I}

data is then regarded as a data type. The data type d which consists of
the product of the data types d1, d2 ... ,dn may be declared:

Note also that d1.d2 •.. dn-1.dn may be regarded itself as a data type.
Finally, the data type d which consists of the constants C1 , C2 , ... ,Cn may
be declared:

datatype d = C1 I C2 I ... I Cn

Note that none of the constants Ci need exist prior to such a declaration.

2.12.3 Immediately diverging process

The immediately diverging process does not have a distinguished syntactic
representation in FDR2 and so we define DIV thus:

DIV 6. X \ {a} where X=a~X.

Processes which include DIV in their definition may still be treated as
guarded (even though the definition given here for it introduces hiding), since
we have a direct statement of its semantics and so may still regard it as a
syntactic constant.

2.13 Running example

We are now in a position to give a CSP rendering of the example processes
given in figure 1.1. They are used in the remainder of the thesis as an
aid to explanation. We assume that channels in, out, send and data all
communicate values from {O, I}; we also assume that all events which may
be communicated on channels in and out are finally visible. The specification
network from the figure, which we denote SpecNet, is defined as follows

SpecNet 6. LejtSpec @Q:send RightSpec

where

• LejtSpec = DvE{O,l} (in.v ~ send.v ~ LejtSpec) .

• RightSpec = DvE{O,l} (send.v ~ out.v ~ RightSpec).

2.13. Running example

The specification network effectively functions therefore as a two-slot , ,
buffer. The implementation network, ImplNet, is defined as:

ImplNet t:. LejtImpl0(QdatauQack) RightImpl

where

LejtImpl = DVE{o,l} (in.v ~ data.v ~ LI(v))

LI(x) = (ack.yes ~ LejtImpl) 0 (ack.no ~ data.x ~ LejtImpl)

and

RightImpl = DvE{o,l} (data.v ~ (RI(v) n RI'))

RI(x) = ack.yes ~ out.x ~ RightImpl

RI' = ack.no ~ DWE{O,l} (data.w ~ out.w ~ RightImpl).

Here, LejtImpl sends on the channel data the value it has just received;
in the event that a negative acknowledgement is subsequently received (Le.
ack. no occurs) then the value is resent on data. The non-deterministic choice
operator in RightImpl is used to model the possibility that the message trans
mission on data may be lost or corrupted: if it is lost or corrupted, then
RightImpl communicates the event ack.no and waits for the value to be re
sent; otherwise it communicates ack.yes and outputs on the channel out the
value it has just received.

Chapter 3

Towards a theory of
refinement-after-hiding

In the papers [39], [40] and [12] one can observe the evolution of a notion of
refinement-after-hiding which has its roots in [49] and an attempt to present
a formal notion of what it means for one process to be a valid implemen
tation of another when replication 1 is used as a reification technique. Two
main issues were raised on completion of the work in [12]. Firstly, the notion
of refinement-after-hiding presented there could not be used to verify compo
sitionally that an implementation network refined a specification network in
terms of standard CSP refinement in anything other than the traces model.
Once failures were introduced, the refinement relation whose existence could
be proved was non-standard. Secondly, the conceptualisation of the existing
notion was based quite closely on the fault-tolerance mechanisms, such as
replication, which had inspired it originally. This had the effect that there
was no characterisation in the most general sense of what it meant to be a
notion of refinement-after-hiding. One of the major consequences of this was
that it was not clear which parts of the existing framework were absolutely
necessary and which could be dispensed with or altered.

The work in this chapter aims, therefore, to address each of these issues.
We take from [12] the most fundamental features of the treatment given
there. These are essentially the use of an interpretive mapping, along with
certain restrictions on the sets which may be hidden and on which paral
lel composition may occur as we build our implementation networks (these
restrictions are stated in section 3.2.6). We then present a statement of
what it means to constitute a notion of refinement-after-hiding in a gen
eral sense, along with a basic set of conditions on our interpretive mapping
which are sufficient to guarantee that it may be used as a basis for such a
notion. From these rather abstract conditions we derive in each of the three

lSee [49] for a description ofreplication.

46

3.1. The basic framework 47

semantic models a set of more detailed conditions which themselves define
a notion of refinement-after-hiding. At a stroke this generates a solution to
the problems encountered when working in models incorporating failures. It
also gave, among other things, a framework within which extensions and im
provements to the work in [12] could be considered; this issue is discussed
at greater length in chapter 4, where such extensions and improvements are
presented.

3.1 The basic framework

We assume the existence of a semantic mapping,2 ,x, from process denotations
to sets of behaviours or pairs of sets of behaviours as appropriate.3 Intuitively,
,x transforms an implementation process so that the resulting behaviours may
be compared directly with those of the specification.4 It is best regarded as a
meta-mapping, representing all possible concrete mappings which we might
use in practice. We use Q ~1c P to indicate that the process Q refines
after-hiding the process P, under the mapping ,x, in the semantic model
X E {T, SF, FD} and define it as follows.

Definition 3.1. Q ~1c P if and only if ,x([Q]x) is defined and ,x([Q]x) ~
[P]x'

Component processes will be placed in context to form a network and we
shall restrict the form of the contexts which may be used so that networks
may be built only from component processes and the hiding and parallel
composition operators. A (syntactic) context, Con, may be defined using
the following grammar, where V, Vb V2 represent process variables and A, Y
represent sets of events. 5

2We choose to work with a semantic rather than a syntactic mapping for a number of
reasons. These are considered in chapter 5, in the context of a discussion of related work.

3The sets of behaviours returned will be traces, failures or divergences as appropriate.
4This implies that A is an interpretive mapping which makes behaviours more abstract,

since "specification behaviours" are usually abstract and "implementation behaviours"
more concrete. However, there is nothing in the theory developed here which requires this
and so A may also be used to interpret abstract behaviours at a more concrete level: this
might be necessary if we wanted to show that a particular specification network refined
the corresponding implementation network in order to show that the two were equivalent.
As a result, it is perhaps best to view "implementations" as simply those processes which
are interpreted using A and "specifications" as those processes in whose behaviours we
check for containment of those interpreted "implementation" behaviours.

5Strictly speaking, brackets should also be placed around any parallel composition.
However, their absence will not cause us any problems in this chapter and so we omit
them for purposes of presentation. (Recall that the hiding operator is left-associative and
so it need not be bracketed.)

..

3.1. The basic framework 48

Con = V\A I Vi Ily V2 ICon \A I ConllyCon I Con Ily V I V Ily Con.

In order to relate an implementation context to the corresponding spec
ification context, we overload the mapping, A, and apply it to that imple
mentation context. This means that A must be defined over contexts, which,
in turn, necessitates its definition over the parallel composition and hiding
operators. The effect of applying A to a context is defined recursively in
figure 3.1; for A, Y ~ ~, A(\A) returns \B for some set of events B and
A(lly) returns liz for some set of events Z (we shall see in section 3.3 how to
characterize Band Z exactly).

Definition 3.2. Let A, Y ~~. Then A(\A) = \B and A(lly) =liz, for some
B,Z~~.

Effectively, A transforms a context by transforming in turn each operator
contained therein: more specifically, it transforms the set of events with which
the relevant operator is parameterized to reflect the fact that implementation
processes may be expressed at a different level of abstraction to specification
processes. Note that definition 3.2 defines A over both the syntactic and
semantic operators6 of hiding and parallel composition, since the textual
representation of the syntactic version of either hiding or parallel composition
is the same as that of its semantic counterpart. Of course, we assume that
A applied to a syntactic operator returns a syntactic operator and A applied
to a semantic operator returns a semantic operator.

We introduce the notation Fvis to denote the set of finally visible events,
in which both implementation and specification processes may engage. In
order for ~1 for X E {T, SF, FD} to constitute an acceptable notion of
refinement-after-hiding, the following condition must then be met, where
Fimpl and Fspec - each containing n process variables - are implementation
and specification contexts respectively and Fspec b. A(Fimpl); also, QI, ... , Qn
and PI, ... ,Pn are processes.

Condition 1. If Qi ~1 Pi for 1 ::; i ::; nand aFimp/ (QI, Q2, ... ,Qn) ~ Fvis,
then Fimpl(QI, Q2, ... , Qn) ~x Fspec(PI, P2, ... , Pn).

For 1 ::; i ::; n, Qi is a component implementation process and Pi is the
corresponding component specification process. Fimpl(Qb Q2, . .. , Qn) then
gives an implementation network and F spec (PI , P2, . .. , Pn) the correspond
ing specification network.7 Intuitively, if the implementation network may

6Recall that syntactic operators take processes as arguments and semantic operators
take sets of behaviours or pairs of sets of behaviours as arguments.

7Note that we will use the generic term implementation process to refer to any Q E
Imp(Fimpl(QI, Q2, ... , Qn». (Imp is defined in definition 2.3 in section 2.7.) What it
means to constitute an implementation process will be made more formal in section 3.2.

...

3.1. The basic framework 49

A(V \ A) ~ V A(\A).

A(Vt Ily Y;) ~ VI A(lIy) Y;.

A(Con \A) ~ A(Con) A(\A).

A(Con Ily Con) ~ A(Con) A(lIy) A(Con).

A(Con Ily V) ~ A(Con) A(lIy) V.

A(V Ily Con) ~ V A(lly) A(Con).

Figure 3.1: Defining A over contexts, where V, VI, V2 are process variables
and A, Y ~ E

engage only in finally visible events then any external behaviour decomposi
tion and/or relaxation of atomicity which was used in deriving Qi from Pi,
where 1 ~ i ~ n, has been hidden. This means that the implementation and
specification networks may be related using standard CSP refinement.

In view of condition 1, the main problem in defining a notion of refinement
after-hiding in practice lies not in giving a general definition of A which has
the required properties.8 Rather, it is to define equations on A such that
the property of condition 1 is met and our refinement-after-hiding relation
is as large as possible. This is another significant factor leading us to derive
a notion of refinement-after-hiding rather than building from the bottom up
a set of conditions which happen to imply condition l.

We therefore need an appropriate high-level approximation of condition 1
which is as weak as possible and from which such a set of equations may
be derived. The conditions RAHl-3 given in figure 3.2 fulfil this role: by
theorem 3.1 below they are sufficient to imply condition 1, while imposing
few restrictions on A and so on any notion of refinement-after-hiding based
thereon.

Theorem 3.1. If conditions RAHl-3 hold of A, then condition 1 also holds.

Proof. Let Ql,"" Qn and PI"'" Pn be processes; let Fimpl and F spec be
contexts each containing n process variables such that A(Fimpl) = F spec' We
assume Qi ;;;;)1 ~ for 1 ~ i ~ n - i.e. A([Qi]X) is defined and A([Qi]X) ~

8For example, the identity mapping would suffice here but would not give us any extra
power: in fact, in this case, our notion of refinement-after-hiding would be equivalent to
standard CSP refinement.

..

3.1. The basic framework 50

RAHI If aQ ~ Fvis then A([Q]X) is defined and A([Q]X) = [Q]x.

RAH2 If A([Q]X) is defined and A(\A) = \B, then A([Q \ A]x)
is defined and A([Q \ A]x) = A([Q]X) \ B.

RAH3 If A([P]X)' A([Q]X) are defined and A(lIy) =lIz then:

- A([P lIy Q]x) is defined.

- A([P lIy Q]x) = A([P]X) liz A([Q]X)

Figure 3.2: Conditions from which the theory will be derived, where P, Q
are implementation processes, X E {T, SF, FD} and A, Y ~ ~

[Pi]x - and aFimpl(Ql, Q2, ... , Qn) ~ Fvis. By induction on the number of
operators in Fimpl using conditions RAH2 and RAH3 and also the information
in figure 3.1, we have

A([Fimpl(Ql, Q2, ... ,Qn)]x) = Fspec(A([Qdx), A([Q2]X),· .. ,A([Qn]x))·

By inductive application of proposition 2.8,

Fspec(A([Qdx), A([Q2]X)' ... ,A([Qn]x)) ~ Fspec([Pdx, [P2] x , ... , [Pn] x).

By inductive application of proposition 2.1,

Fspec([P1]x, [P2]x,· .. ,[Pn]x) = [Fspec(Pl' P2, . .. , Pn)]x·

Hence, by RAH1,

[Fimpl(Ql, Q2, ... , Qn)]x ~ [Fspec(Pl' P2, .. ·, Pn)]x·

Comments on RAHl-3

D

The roles of the conditions RAHl-3 are made clear by their use in the proof
of theorem 3.1 and this proof also makes clear the role of the finally visible
events from Fvis. That RAHl-3 are stated in terms of equalities - for exam
ple, we have A([Q\A]x) = A([Q]x)\B rather than A([Q\A]x) ~ A([Q]x)\B
- is crucial as we derive the theory which is presented in this chapter. How
ever, the detailed conditions which form this theory are only sufficient in
general to imply versions of RAH2 and RAH3 with ~ substituted for =.
Were they to imply the original versions of these conditions, they would
place restrictions on A which would make it difficult to use in practice. This
is why condition 1 uses containment and refinement rather than equality and
equivalence. These issues are discussed at greater length at the appropriate
points below.

3.2. Sets used in the theory 51

3.1.1 Applying A in the traces model

In general, we define the effect of applying>. to a particular process deno
tation in terms of applying it to the individual behaviours which constitute
that denotation. Since it is needed in the next section, we give here the
necessary definition for the traces model.

Definition 3.3. Let T be a set of traces and u a trace. If >.(u) is defined,
then >. (u) Tetums a trace. Moreover:

1. >.(7) is defined if and only if >.(t) is defined for every t E T.

2. If >'(7) is defined, >.(7) e:, {>.(t) I t E T}.

We shall also require the monotonicity of >. defined over traces and the
fact that the domain of >. over traces is prefix-closed:

TR-MONO If >.(t) and >.(u) are defined and t ~ u, then
>.(t) ~ >.(u).

PREF-CLOS If >.(u) is defined and t ~ u, then >.(t) is defined.

The fact of monotonicity means that receiving more information regard
ing a particular implementation trace cannot reduce our knowledge about
the corresponding specification trace. ~10reover, condition PREF-CLOS is a
natural requirement once we have assumed monotonicity. In the proofs of
results from this chapter, we sometimes have traces t, u such that >.(u) is
defined, t ~ u and we wish to show that >.(t) ~ >.(u). In order to do this,
it is necessary to appeal to both TR-MoNO and PREF-CLOS. However, in
practice, we usually appeal explicitly only to TR-MoNO and assume it is
understood that PREF-CLOS is also appealed to.

3.2 Sets used in the theory

This section introduces a number of different sets which will be used in the
derivation of the theory in this chapter, along with certain restrictions to be
placed on implementation networks if they are to be verified using refinement
after-hiding. One of the most important of these sets is AllSet, a set of sets
of events: we shall require that all alphabets of implementation processes
used in this chapter are taken from AllSet and that any hiding operator used
to define an implementation context, Fimpl , must be parameterized by a set
from AllSet; we shall also impose a restriction on the parallel composition
to be used in building an implementation network from a set of component
processes, so that the composition always synchronizes on a set from AllSet.

3.2. Sets used in the theory 52

Further details on AllSet and on these restrictions are given in the remainder
of this section.

Before proceeding to the derivation of the theory proper, therefore, we
fix some notions regarding the nature of the sets we shall use. There are six
main sets which we shall need to deal with, two of which have already been
introduced. The sixth of these sets is introduced after the other five. (In
general, these should be viewed as meta sets, representing all possible such
sets with which we might work in practice.)

• Eimp/, denoting the set of events in which implementation processes
may engage.

• E spec , denoting the set of (specification) events which may be "engaged"
in by sets of behaviours produced by applying>. to (the denotation of)
an implementation process.

• Fvis, denoting the set of finally visible events.

• A llSet , containing all possible sets with which we may parameterize
the hiding and parallel composition operators used to construct imple
mentation networks. That we will restrict the sets with which these
operators may be parameterized reflects the approach of [12].

• BTrace, a non-empty finite 9 set of implementation traces such that >.(t)
is defined for every t E BTrace.

Intuitively, BTrace contains only implementation traces which may be
regarded as "atoms" or as indivisible in some sense: that is, implementa
tion traces which it does not make sense to decompose further into sub
traces. lO More specifically, we assume that each specification action in Espec

may be implemented by a (finite) number of implementation traces and
that BTrace consists of exactly those traces. For example, send.D from
the running example may be implemented by both (data.D, ack.yes) and
(data.D, ack.no, data.D) and both traces would be members of BTrace. It
does not make sense to decompose further into sub-traces these particular
implementation traces since it is not possible to decompose the high-level
action which they are being used to implement.

9 Although the proofs of certain results in this chapter as they are presented at the
moment require the property of finiteness, it has been realised that they may be presented
in such a way that this property is not needed. In any case, the property of finiteness is
not needed at all as we prove the sufficiency as a notion of refinement-after-hiding of the
conditions which are derived in this chapter.

lONote, however, that we do not assume these traces to be "atomic" in the sense that
they will execute as indivisible entities: i.e. it is not the case that, when one "atom" is
executing, no others may be executing. In practice, they may be interleaved with each
other and with other traces not contained in BTrace.

•

3.2. Sets used in the theory 53

3.2.1 E impZ , Espec and BTrace

For any implementation process Q, the possibility should exist that "\(7Q)
is defined. In view of this and definition 3.3, ~impl and ~spec may be char
acterised more formally as follows. (That Fvis ~ ~impl in the following
definition reflects the intuition that implementation processes should be free
to engage in any of the finally visible events.)

Definition 3.4. We assume that Fvis ~ ~impl ~ ~, Fvis =f=. 0 and ~spec ~ ~.
Moreover:

1. ~impl 6 U{events(t) I "\(t) is defined} 6 U{events(t) It E BTrace}.

2. ~spec 6 U{ events ("\(t)) I "\(t) is defined} 6 U{ events("\(t)) I t E

BTrace }.

Conditions are also imposed on BTrace as part of this definition: namely
that the traces it contains cover exactly the events from ~impl and, after the
application of "\, exactly the events from ~spec. We note that this definition
is consistent with the intuition given above with respect to the members of
BTrace. With respect to part 2 of the definition, we assume that, for every
a E ~spec, there exists at least one trace, t, such that "\(t) = (a): i.e. such
that t implements a. By the intuition given above, BTrace would consist
of all such tY With respect to part 1 of the definition, we assume that all
traces which an implementation process may execute can be built in some
way from the "atoms" in BTrace and so the events of these "atoms" will give
exactly the events in ~impl. However, it must also be noted that definition
3.4 gives the only formal statement we have of the properties of BTrace -
other than the statement in the previous subsection that it is finite and that
"\(t) is defined for every t E BTrace - and so the intuition that it contains
only "atoms" is not recorded formally. In other words, this intuition plays
no role in this chapter in the derivation of conditions sufficient to define
a notion of refinement-after-hiding, nor does it appear in those conditions
themselves. In fact, it is used solely to justify (informally) the restrictions on
hiding and parallel composition which have been mentioned above and which
are imposed in section 3.2.6. Further consideration of the nature of BTrace
is given in section 3.7, once the theory has been presented in its entirety.

3.2.2 Considering AllSet

We now consider AllSet and its definition. In doing so, MinSet is introduced,
the sixth of the sets with which we will have to deal: ~impl may be partitioned

11 Since we assumed above that each a E ~8pec is implemented by a finite number of
traces and since ~8pec is finite, then BTrace constructed in this way would also be finite.

•

3.2. Sets used in the theory 54

using the traces of BTrace as a basis and MinBet is defined as the set of sets
comprising this partition.

Definition 3.5. MinBet is a partition of ~impl such that, if t, U E BTrace
and A, B E MinBet where A =1= B:

1. If events(t) n A =1= 0, then events(t) ~ A.

2. If events(t) ~ A and events(u) ~ B, events('\(t)) n events('\(u)) = 0.

The sets from MinBet essentially group together (the events from) the
traces from BTrace into disjoint sets, where the events from any particular
trace in BTrace are contained in only one of the sets. Moreover, the sets in
MinBet also enjoy a property of disjointness after applying ,\ to the traces
from BTrace whose events they contain. Each set in AllBet is then defined
as the union of a number of sets from MinBet (although AllBet also contains
the empty set).

Definition 3.6. AUBet 6 {U X I X E lP(MinBet)}.

By virtue of definitions 3.4 and 3.5, the events of each "atom" in Brr·ace
are totally contained in exactly one set from MinBetP Definition 3.6 then
means that, for each t E BTrace and A E AUBet, either events(t) ~ A or
events(t) n A = 0. Due to the restrictions which are imposed on imple
mentation processes and networks in section 3.2.6, the hiding and parallel
composition operators used to build implementation networks from compo
nent implementation processes may be parameterized only with sets from
AUBet, which means that those operators will regard the traces from BTrace
as indivisible entities. That is, either all events from such a trace will be
hidden or none will; either we require synchronization in parallel on all the
events of such a trace or on none of them. In general, MinBet defines the
smallest sets which may be hidden or on which we may synchronize in parallel
while still regarding the traces from BTrace as indivisible. 13

In view of definition 3.6, A = UiEI Ai for any set A E AllBet, where I is
an indexing set into MinBet and so Ai E MinBet for every i E I. In the event
that A = 0, then I = 0. Moreover, MinBet ~ AUBet and so A E AllBet
for any A E MinBet. The following notation, used to define the smallest set

12In terms of the running example, {data.D, data.I, ack.yes, ack.no} could constitute
a set from MinSet: this set contains all events from the atoms (data.D, ack.yes),
(data.I, ack.yes), (data.D, ack.no, data.D) and (data.I, ack.no, data.I).

13We have considered here only the consequences ofthe restriction imposed by definition
3.5(1). That we ignore definition 3.5(2) is simply because it may actually be derived as
part of the theory (see section 3.7). It appears as a definition rather than as a derived
theorem since the fact that it could be derived was realised only on a final revision of this
thesis.

3.2. Sets used in the theory 55

from AllSet in which another specified set is contained, will also prove useful.
(In respect of this, note that E impl E AllSet by definitions 3.5 and 3.6.)

Definition 3.7. For X ~ E impl , [[X]] denotes the smallest set A E AIlSet
such that X ~ A.

When the notation [[X]] is used in what follows, we will only show explic
itly that X ~ E impl if it is not clear from the context that this is the case.
In respect of this, we observe that the following hold by definition 3.4.

• events(s) ~ E impl for s E BTrace.

• events(t) ~ E impl for any trace t such that events(t) ~ Fvis.

• events (u) ~ E impl for any trace u such that >.(u) is defined.

We also define the application of >. to sets from AllSet. This will prove
to be useful when considering the effect of applying>. to operators.

Definition 3.8. >'(A) 6 U{ events (>.(t)) I t E BTrace A events(t) ~ A)}
for A E AllSet.

3.2.3 Implementation processes and process alphabets

The following definition is used to characterise implementation processes in
terms of Eimpl .

Definition 3.9. Let Q be a process. Q is an implementation process if and
only if f3(Q) ~ E impl ·

In view of this, the following result is immediate.

Proposition 3.2. Let P, Q be implementation processes and A, Y C E.
Then:

1. P \ A is an implementation process.

2. P Ilv Q is an implementation process.

Proposition 3.2 shows that, for an implementation context Fimpl and com
ponent implementation processes Ql, ... , Qn. Q E Imp (Fimpl (Ql , Q2, ... , Qn))
is also an implementation process. (Recall that the notation Imp is defined
in definition 2.3 in section 2.7.) The alphabet of any implementation process
is then defined as follows.

3.2. Sets used in the theory 56

Definition 3.10. Let Q be an implementation process. Then QQ 6 [[,B(Q)]]
and so QQ E AllSet.14

Since ,B(Q) ~ ~impl for any implementation process Q, then QQ is defined
for any such process. In the proofs of some of the results in this chapter, it
is necessary to construct, using the definitions in section 2.10, processes Q'
which have a certain pre-defined semantics. All of these processes are such
that,B(Q') ~ ~impl and it will be clear from the relevant definitions that this is
the case. We will therefore regard them as implementation processes without
further comment and consider that QQ' is defined for any such Q'. Indeed, as
a general rule, definition 3.9 and proposition 3.2 regarding implementation
processes will only be appealed to implicitly in proofs of results from the
remainder of this chapter.

The following result shows that the alphabets of implementation pro
cesses relate to those of their components in the way that we would expect
in view of the detail in figure 2.5, provided that the hiding and parallel com
position operators used are parameterized with sets from AllSet. This latter
restriction will be imposed in general in section 3.2.6.

Proposition 3.3. Let P, Q be implementation processes and A, Y E AllSet.

1. Q(P\A) = (aP) -A.

2. Q(P Ily Q) = Qp U QQ.

It is possible that we may have an implementation process Q where
,B(Q) ~ ~imp/, even though).([Q]x) is defined. This can arise due to the
use of parallel composition: for example, ,B(P Ily P') = ,B(P) U ,B(P'), while
it is possible that (P Ily P') never engages in any events from ,B(P') due to
the nature of P and the choice of Y. In such a case, in lieu of Q, we would as
sume the implementation process to be Q \ Z, where Z = ~ - (~impl n,B(Q)).
All events in which Q may engage are contained in ~impl since).([Q]x) is
defined (this will turn out to hold in general); moreover, all events in which
it may engage are also contained in ,B(Q). As a result, [Q]x = [Q \ Z]x,
while ,B(Q \ Z) ~ ~impl'

3.2.4 Basic results regarding MinSet, AllSet and A

We are now able to give some basic results characterising the sets from
MinSet and AllSet and the application to them of).. The first reflects the

14That aQ for any implementation process Q is taken from AllSet reflects the approach
of [12). Taken with restriction R2 from section 3.2.6 below, it means that any parallel
composition operator used to build an implementation network from component processes
must be parameterized by a set from AllSet (see proposition 3.11, also in section 3.2.6).

3.2. Sets used in the theory 57

fact that each set in AllSet is constructed from a number of sets in .'!inSet
and distinct sets in MinSet are disjoint.

Proposition 3.4. Let A E MinSet and B E AllSet be such that An B =1= 0.
Then A ~ B.

The following result shows a useful way of characterising any set from
AllSet.

Proposition 3.5. A = U{events{t) I t E BTrace 1\ events(t) ~ A} for
A E AllBet.

The next result shows that A distributes across the set union operator
when the latter is used to compose sets from MinSet.

Proposition 3.6. A(UiEI Ai) = UiEI A(Ai), where I is an indexing set into
MinSet.

The following result shows that if we apply A to disjoint sets then the
results of that application are also disjoint.

Proposition 3.7. If A n A' = 0 for A, A' E AllSet then A(A) n A(A') = 0.

The next result shows that AllSet is closed under the application of the
set operators of subtraction, union and intersection; moreover, A distributes
across the same operators when they are applied to sets from AllSet.

Proposition 3.B. Let A, BE AllSet and EB E {-, u, n}. Then:

1. A EB B E AllSet.

2. A(A EB B) = A(A) EB A(B).

This final result further characterises the relationship between Eimp/, Espec
and AllSet.

Proposition 3.9. The following hold:

1. E imp/ E AllSet.

2. Espec = UAEMinSet A(A).

3. For every A E AllSet, A ~ Eimp/ and A(A) ~ Espec.

3.2. Sets used in the theory 58

3.2.5 Using [[X]] for X C Eimp1

The following result concerns the [[Xl] notation, used to return the smallest
set A E AllSet such that X ~ A. It will usually be appealed to implicitly
whenever it is needed.

Proposition 3.10. Let A E AIlSet and R, S, X ~ Eimpl .

1. If X ~ A then [[Xl] ~ A.

2. [[R U 8]] = [[Rl] U [[8]].

3.2.6 Restrictions

In the remainder of this chapter, we impose the following restrictions on all
implementation networks Fimpl (Ql, ... ,Qn), where Ql, ... ,Qn are compo
nent implementation processes. (Recall that the notation Imp is defined in
definition 2.3 in section 2.7.)

Rl Let \A be used in the definition of Fimpl ' Then A E AllSet.

R2 Let (P Ily Q) E Imp (Fimpl (Ql, ... , Qn)). Then Y = o:P n o:Q.

These are essentially the restrictions imposed in [12], although they are
not stated explicitly as such in that paper; similar restrictions are also im
posed in [59], which presents an implementation relation that is effectively a
notion of refinement-after-hiding.15 Condition R2 enforces the requirement
that the parallel composition operator used to build any implementation
network is that given by Tony Hoare in [31] and used in [12]. The following
important result follows from condition R2.

Proposition 3.11. Let Ql, . .. , Qn be component implementation processes
and Fimpl (Ql, ... , Qn) an implementation network. Let lIy be such that it is
used in the definition of Fimpl ' Then Y E AllSet.

Condition R1 and the result from proposition 3.11 are essential for the
derivation of the theory presented in this chapter: their most immediate prac
tical effect is that we are able to characterise exactly the result of applying A
to the hiding and parallel composition operators respectively (see theorems
3.16 and 3.17 in section 3.3). This characterisation then has far-reaching
implications in the remainder of the chapter (this issue is discussed further

15Note that Rl and R2 are restrictions only on the operators which are used to build
implementation networks from component implementation processes. They do not restrict
the nature of the operators which may be used to construct the component implementation
processes themselves.

•

3.2. Sets used in the theory 59

in section 3.7). Moreover, the restrictions imposed by R1 and proposition
3.11 make sense in practice, as has been discussed above: since the traces in
BTrace are to be regarded as atoms, then they should be treated as such by
hiding and parallel composition. (Recall that by definitions 3.5 and 3.6, for
any t E BTrace and A E AllSet, either events(t) ~ A or events(t) n A = 0.)

For example, consider the case that t E BTrace is used to implement the
specification event a E ~BPec. When hiding behaviours in any specification
process in which a appears, it is only possible to hide all of a or to leave it
visible. Thus, it does not make sense to be able to hide a non-empty subset of
the events of t, as this could leave a partial implementation for a still-visible
a or a "dangling" partial implementation which no longer has a correspond
ing specification event. Similarly, when composing specification processes in
parallel, it is only possible to either synchronize on all of a or not synchronize
on it at all. If we are able to synchronize on a non-empty subset of the events
of t, then we may end up with an implementation trace which is neither a
single execution of t nor two interleaved executions of t: it is not clear how
this relates to what is possible for a in the specification (i.e. a single occur
rence of a if we have to synchronize on it or two occurrences of a if we do not
have to synchronize on it). For example, the trace (data.D, ack.yes) is used
to implement send.D in the running example. If we were to able to compose
two instances of (data.D, ack.yes) in parallel, synchronizing only on {data.D},
then the resulting trace would be (data.D, ack.yes, ack.yes). It would not
make much sense to view this as an implementation of (send.D, send.D) -
i.e. the composition in parallel of two instances of (send.D) when we do not
synchronize on {send.D} - but nor does it make sense to regard it as an
implementation of (send.D), which would arise if we did have to synchronize
on {send.D}.

We choose to impose condition R2 and then derive proposition 3.11 rather
than simply imposing directly the statement from the proposition because
R2 is useful in its own right. In particular, the semantic definition of parallel
composition in the stable failures model without the assumption of R2 is
difficult to work with; by virtue of R2 the definition becomes much more
tractable (see theorem 2.2D in chapter 2). In any case, R2 simply means we
work with the parallel composition operator which is defined in Hoare's book
on CSP ([31]).

In the statement of the conditions RAH1-3 in figure 3.2, the only restric
tion placed on the sets A and Y used there is that they should be subsets
of~. In view of R1, we impose the further restriction that A E AllSet for
the set A used in the statement of RAH2; in view of R2, we impose the
restriction that Y = apnaQ in the statement of RAH3. We do this because
we wish RAH1-3 to be as weak as possible. These additional restrictions will
be reflected in the rendering of RAHl-3 as necessary in each of the three

3.2. Sets used in the theory 60

semantic models.

3.2.7 Finally visible events

We impose one extra condition on AllSet, in relation to finally visible events.
This reflects the intuition that, given an implementation process, it should
be possible to hide exactly the finally invisible events, leaving visible exactly
those events from Fvis in which the process may engage.

HIDE-INVIS Let Q be an implementation process. If >.([Qj r) is
defined, there exists A E AllSet such that
aQ - A = aQ n Fvis.

In view of this condition, we are able to derive the following result, namely
that Fvis is a set in AllSet.

Proposition 3.12. Fvis E AllSet.

3.2.8 Summary

In the following sections, we present the derivation of the theory proper in all
three semantic models. In particular, the conditions RAHl-3 are rendered
in each of the semantic models and conditions are then derived which refer
to the effect of >. defined over individual behaviours rather than over process
denotations as a whole. Before proceeding, we recall the sets which have
been introduced in this section.

• ~impl denotes the set of events in which implementation processes may
engage.

• ~spec denotes the set of (specification) events which may be "engaged"
in by sets of behaviours produced by applying>. to (the denotation of)
an implementation process.

• Fvis denotes the set of finally visible events.

• BTrace is a set of traces, each of which may be regarded as an "atom"
and so as an indivisible entity which may not be decomposed further
into sub-traces.

• MinSet is a set of sets of events. It partitions the events of ~impl in
such a way that, for each trace in BTrace, the events of that trace are
fully contained in one of the sets of the partition.

3.3. RAHl-3 in the traces model and applying,X to operators 61

• Each set in AllBet is the union of a number of sets from MinBet and,
in building implementation networks, we may only hide or compose in
parallel on members of this set. (Recall, though, that AllBet also con
tains the empty set.) This essentially means that any set to be hidden
or synchronized on during parallel composition as we build implemen
tation networks regards traces from BTrace as indivisible.

3.3 RAHl-3 in the traces model and applying
A to operators

As indicated above, we shall define our notion of refinement-after-hiding in
terms of the effect of applying ,X to individual behaviours. In order to move
towards that goal in the traces model, in this section we derive counterparts
to RAHI and RAH2 which refer to individual traces in place of process deno
tations. (It turns out that a counterpart to RAH3 is not needed.) These are
used in the next section to derive the final conditions defining refinement
after-hiding in the traces model. In addition, we prove results which show
how to define exactly the result of applying ,X to the hiding and parallel
composition operators respectively.

As a first step, we render the conditions RAHl-3 in the traces model
(recall that the original statement of the conditions in figure 3.2 was param
eterized by the variable X to denote one of the three semantic models; here
we substitute T for X). We also impose here the restrictions on hiding and
parallel composition that were introduced in section 3.2.6. This means that
any set to be hidden (from RAH2) will be taken from AllBet and any two
processes composed in parallel (in RAH3) must synchronize on the events in
the intersection of their respective alphabets. The new conditions, denoted
TIl, TI2 and TI3, are given in figure 3.3. Using TIl and TI2, we are able
to derive conditions RAHl-T and RAH2-T below which refer to the applica
tion of ,X to individual traces rather than to process denotations as a whole.
There is no equivalent condition given in relation to parallel composition and
derived from TI3, since we do not need such a condition in any of the proofs
which follow. This is not to say, however, that TI3 is redundant, since it is
used in the proof of theorem 3.17 below and in the proof of a result from the
next section.

Theorem 3.13 (RAH1-T). Let t be a trace such that events(t) ~ Fvis.
Then ,X(t) is defined and ,X(t) = t.

Theorem 3.14. ,X(() is defined and ,X(() = ().

Proof. Since events(O) = 0, events(O) ~ Fvis. The proof follows by
RAHl-T. 0

3.3. RAHl-3 in the traces model and applying A to operators

Til If aQ S;;; Fvis, then A([Q]T) is defined and A([Q]T) = [Q]T.

TI2 If A([Q]T) is defined, A E AllSet and A(\A) = \B, then
A([Q \ A] T) is defined and A([Q \ A] T) = A([QIT) \ B.

TI3 If A([P]T)' A([Q]T) are defined, Y = aP n aQ and A(lIy) =lIz,
then:
- A([P lIy Q] T) is defined.

- A([P Ily Q]T) = A([P]T) liz A([Q]T)·

62

Figure 3.3: Rendering RAHl-3 in the traces model, where P and Q are
implementation processes

Theorem 3.15 (RAH2-T). Let t be a trace and A E AllSet, where A(\A) =
\B. If A(t) is defined, then:

• A(t \ A) is defined .

• A(t\A)=A(t)\B.

3.3.1 Applying A to operators

We now show how the application of A to operators is defined. Before prcr
ceeding, we first require a condition to reflect the intuition that mapped-to
sets of behaviours may only engage in events from Espec and so mapped-to
operators should only be parameterised by subsets of Espec.

Definition 3.11. By definition:

1. Let A(\A) = \B. Then B S;;; Espec.

2. Let A(lly) =llz. Then Z S;;; Espec.

The following results playa crucial role in the remainder of this chapter
and also in general. For they tell us that, provided we use in practice only
sets which have the properties of those from AllSet, we have no discretion in
defining the effect of A applied to the operators we use.

Theorem 3.16. Let A E AIlSet. Then A(\A) = \A(A).

Theorem 3.17. Let Y E AllSet. Then A(lly) =lb.(Y).

When we appeal to RAH2-T in what follows, we shall implicitly use the
orem 3.16 as well: that is, we shall use A(A) in place of B from RAH2-T.

3.4. Sufficient conditions in the tra.ces model 63

3.4 Sufficient conditions in the traces model

In this section, we present the sufficient conditions which must be met by our
mapping if it is to function as a basis for a notion of refinement-after-hiding
in the traces model. We will need the following additional results, which
concern the application of A to traces.

Theorem 3.18. Let A E MinSet be such that A £; Fvis. Let t be a trace
such that events(t) £; A. Then A(t) is defined and A(t) = t.

Proof. The proof is immediate by RAHI-T. o

Theorem 3.19. Let to (a) be a trace such that a E A E MinSet.

1. A(t) and A((t 0 (a))f A) are defined if and only if A(t 0 (a)) is defined.

2. If A(t 0 (a)) is defined then A(t 0 (a)) = A(t) 0 r, where the trace r is
such that:

(aj A((t 0 (a))fA) = A(trA) 0 r.

(bj events(r) £; A(A).

Figure 3.4 then presents those conditions which are sufficient to define a
notion of refinement-after-hiding in the traces model. Note the compositional
nature of the definition of A - encapsulated in conditions 85 and Ts4 -
which means that it need only be defined directly over sets from MinSet and
over traces t such that events(t) £; A E MinSet. 16 One of the main roles
played by the sets in MinSet is illustrated by condition Ts4. By Ts4, we
define A(t 0 (a)), where a E A E MinSet, in terms of A(t) and A((t 0 (a))fA).
In a sense, A((to (a))fA) is a function from a trace, trA, and an event, a, to
the trace extension r which is used in the statement of Ts4. This means that
A tells us what we need to know of t in order to determine the additional
information which is given to us by the occurrence of a after t.

A comment is also required with regard to condition 81(d) and what
it means to constitute an implementation process. In order to simplify the
proofs of results in the remainder of this chapter, 81 (d) is only appealed to
implicitly whenever it is needed. In particular, for any implementation pro
cess Q we will assume without further comment that f3(Q) £; ~imp" meaning
that [[f3(Q)]] and so aQ are defined. Moreover, on the basis of proposition
3.2, it is implicit that any new process constructed from an implementation
process or processes using hiding and parallel composition will also be an
implementation process.

16Examples given in chapter 4 show how we may then define in practice the result of
applying the mapping to such a trace t.

3.4. Sufficient conditions in the traces model

81 (a) BTrace is a non-empty set of traces such that A(t) is
defined for every t E BTrace.

(b) I: imp/ and I:spec are as defined in definition 3.4.
(c) MinSet and AllSet are as defined in definitions 3.5

and 3.6.
(d) Q is an implementation process if and only if

(3(Q) ~ I: impl .

82 If Q is an implementation process, then aQ (). [[(3(Q)]]
and so aQ E AllSet.

83 Fvis E AllSet and Fvis i:- 0.

84 For A E MinSet,
A(A) (). U{ events(A(t)) It E BTrace /\ events(t) ~ An.

85 Let A E AllSet be such that A = UiEI Ai, where I is an
indexing set into MinSet. Then A(A) = UiEI A(Ai).

86 If A E AllSet, then A(\A) = \A(A).

87 If Y E AllSet, then A(lly) =II.>.(Y).

(a) Conditions on sets.

T81 Let T be a set of traces and u a trace. If A(U) is defined,
then A (u) returns a trace. Moreover:

- A(T) is defined if and only if A(t) is defined for every t E T.
- If A(T) is defined, A(T) (). {A(t) It E T}.

T82 Let t be a trace, A E MinSet such that events(t) ~ A ~ Fvis.
Then A(t) is defined and A(t) = t.

T83 Let to (a) be a trace such that a E A E MinSet. Then A(t)
and A((t 0 (a))f A) are defined if and only if A(t 0 (a)) is
defined.

T84 Let to (a) be a trace such that a E A E MinSet. If A(t 0 (a))
is defined then A(t 0 (a)) = A(t) 0 r, where:

- A((t 0 (a))fA) = A(trA) 0 r.
- events(r) ~ A(A).

(b) Conditions on traces

Figure 3.4: Sufficient conditions

64

3.4. Sufficient conditions in the traces model 65

That the conditions in figure 3.4 are sufficient to define a notion of
refinement-after-hiding follows from theorem 3.2D. In order to prove this
result, we use only the conditions SI-7 and Tsl-4 and no other results or
conditions which have already appeared in this chapter. 17 To emphasise this
fact, some necessary supporting results which have already appeared are re
stated and reproved (in the appendix) using only SI-7 and Tsl-4. Recall
also before we proceed that conditions Rl and R2 are imposed on any im
plementation network Fimp/(Ql, Q2, ... , Qn).

Theorem 3.20. Let Fimp/ and Fspec be implementation and specification con
texts respectively, containing n process variables, such that >.(Fimp/) = F spec.

Let Ql, ... Qn be component implementation processes and P1 , . .• , Pn be pro
cesses. Assume that conditions Sl-7 and TSl-4 from figure 3.4 all hold.
If Qi ~~ Pi for 1 ::; i ::; nand aFimp/ (Ql, Q2, ... ,Qn) ~ Fvis, then
Fimp/(Ql, Q2, ... , Qn) ~T Fspec(P1, P2, ... , Pn).

3.4.1 Additional comments

Proposition A.15 in the appendix is weaker than its counterpart TI3, since
the former uses set containment, ~, in its statement while the latter uses
equality, =. The reason for this is the form taken by proposition A.12, which
effectively states that, where >.(8) and >.(u) are defined:

t E 8 Ily u ===} >.(t) E >.(8) liz >.(U).

In other words, we are only able to prove that >.(8 Ily U) ~ >.(8) liz >.(u)
rather than >.(8 Ily u) = >.(8) liz >.(u). However, this limitation is a positive
benefit since the latter result would place requirements on >. which are too
restrictive to be of use in practice. Consider the case that>. is a mapping
which makes behaviours more abstract. For traces 8, u, it may be that
8 Ily u = 0, while >.(8) liz >.(u) =/:. 0 - i.e. >.(8 Ily u) =/:. >.(8) liz >.(u) -
for an otherwise sensible mapping >.. For example, consider the traces 8 =

(data.D, ack.no, data.D) and u = (data.D, ack.ye8) from the running example.
If we attempt to compose in parallel on Y = adata U aack, then 8 Ily u = 0
and so >.(8 Ily u) = 0. However, we would expect that >.(8) = >.(u) =
(send.D) (data retransmission always succeeds) and so >.(8) liz >.(u) will be
non-empty whatever the value of z. It is also difficult to avoid the fact in
general that >.(v Ily w) c >.(v) liz >.(w) for traces v, w when>. is being used
to make behaviours more concrete.

17We do, however, assume that definitions 3.1, 3.2 and 3.7 still hold.

3.5. The stable failures model 66

3.5 The stable failures model

In our consideration of refinement-after-hiding in the stable failures model,
we assume that we work within the same framework of definitions and re
strictions employed in the traces model. The only changes are the fact that
we now have to define >. over process denotations in this new model and
also have to render RAH1-3 in this model. This means that all definitions,
conditions and restrictions which were stated in sections 3.1 and 3.2 are still
in force here. As a result, we may appeal here to any and all results proved
in those sections.

3.5.1 Applying A to process denotations in the stable
fail ures model

Consider an implementation process Q. In order to apply>. to [Q]sp we
effectively apply it separately to TQ and ¢Q. The necessary detail is given
in the following definition.

Definition 3.12. Let Q be an implementation process.

1. >.([Q]sp) is defined if and only if >'(TQ) is defined and >.(¢Q) is defined.

2. If >.([Q]sp) is defined then >.([Q]sp) f). (>'(TQ) , >.(¢Q)).

3. Let (t, R) be a failure. >.(R, t) is defined if and only if R ~ ~impl and
>.(t) is defined. If >.(R, t) is defined, then >.(R, t) ~~. Moreover:

(a) >.(¢Q) is defined if and only if >'(R n aQ, t) is defined for every
(t,R) E ¢Q.

(b) If >.(¢Q) is defined then:

>.(¢Q) f). ((>.(t) , X) I (3(t, R) E ¢Q) R ~ aQ A
X ~ >.(R, t) u (~- >.(aQ))).

We present the definition of >. here in terms of process denotations, rather
than in terms of arbitrary sets of behaviours as is done in definition 3.3, sim
ply because we need to use the syntactic notion of an alphabet. In order
to compute >.(¢Q), we apply>. separately to the trace component and the
refusal component respectively of each of the failures (t, R) E ¢Q such that
R ~ aQ. In actual fact, we apply>. to each refusal/trace pair (R, t), since
what it means for a process to refuse a particular set of events may differ
according to the trace after which they are refused. In terms of the running
example, it would make no sense for LejtImpl to offer either ack.yes or ack.no
after the trace (in.O) - i.e. before it had attempted any communication

3.5. The stable failures model 67

along channel data - and so it should be perfectly acceptable for it to ex
hibit the failure ((in.D), {ack.yes, ack. no}). However, were LeftImpl to refuse
{ack.yes, ack.no} after (in.D, data.D) then that would be more significant: it
would signify that the implementation process was refusing to progress its
implementation of send.D and so we might need to refuse {send.D} at the
corresponding point in the specification. As a result, it may be necessary to
allow t from any failure (t, R) to influence what R is mapped to.

Only refusals contained in the alphabet of the process under consideration
have the mapping applied to them and we then close up the refusal sets
returned using L; - >.(aQ). This reflects the fact that our mapped-to set
of behaviours will only engage in events from >.(aQ) - if events(t) ~ A.
for A E AllSet then events(>.(t)) ~ >'(.4.) - and so may refuse all other
events. Note also that the failures of >.(¢Q) are subset-closed. This plays
an important role in allowing RAHI to be met in this model: if aQ ~ Fvi8
then >.(¢Q) = ¢Q and so >.(¢Q) must meet the consistency condition SF3,
requiring the subset-closure of failures.

We also impose some additional conditions on the mapping applied to
refusal/trace pairs. REF-MoNO makes the mapping over refusal/trace pairs
monotonic in the refusal argument. REF-BoUND simply guarantees that, for
a failure (t, R), >'(R, t) is bounded according to the nature of t and R; this
will prove to be useful in what follows. Note that >'(R, t) is not required to
be defined in the statement of REF-MoNO. This is simply because, if >'(S, t)
is defined and R ~ S, then >'(R, t) will be defined by definition 3.12(3).

REF-MONO Let t be a trace, R, S ~ L; and >'(S, t) be defined.
If R ~ S then >'(R, t) ~ >'(S, t).

REF-BOUND Let t be a trace, R ~ L; and A E AllSet be such
that >.(.4.) = B and >'(R, t) is defined. If
events(t) U R ~ A, then >'(R, t) ~ B.

3.5.2 Working in the stable failures model

We now render in the stable failures model the conditions RAHl-3, under
the restrictions on hiding and parallel composition that were introduced in
section 3.2.6. The new conditions, denoted SFIl-3, are given in figure 3.5.
They may be used to show that the conditions TII-3 hold in this model.

Theorem 3.21. If conditions SFIl-3 hold then conditions TIl-3 also hold.

Theorem 3.21 allows us to derive in the stable failures model all results
given in sections 3.3 and 3.4 and so means that we can appeal to them here.
Among other things, this means that we are able to reuse the conditions

3.5. The stable failures model

SFIl If aQ ~ Fvis, then:

- ..\([Q]sp) is defined.

- ..\([Q]sp) = [Q]sp·

SFI2 If ..\([Q]sp) is defined, A E AllSet and "\(\A) = \B, then:

- ..\([Q \ A]sp) is defined

- ..\([Q \ A]sp) = ..\([Q]sp) \ B.

SFI3 If ..\([P]sp), ..\([Q]sp) are defined, Y = aP n aQ and
..\(lly) =llz, then:
- "\([P lIy Q]sp) is defined.

- "\([P lIy Q]sp) = "\([P]sp) liz ..\([Q]sp)·

68

Figure 3.5: Rendering RAHl-3 in the stable failures model, where P and Q
are implementation processes

from figure 3.4 when stating conditions sufficient for refinement-after-hiding
in this model.

3.5.3 Parallel composition

In certain circumstances, for implementation processes P and Q we shall
need to evaluate the result of composing "\(¢P) in parallel with ..\(¢Q). The
following result lets us do that in terms of the alternative semantics of parallel
composition given in section 2.11. It will generally be appealed to implicitly
whenever it is needed.

Theorem 3.22. Let P and Q be implementation processes such that ..\(¢P)
and ..\(¢Q) are defined. Let Y = aP n aQ and Z = "\(Y). Then:

"\(¢P) liz ..\(¢Q) = {(t, S U U U R) I R ~ (~- (..\(aP) U ..\(aQ))) A

((3(s, S) E "\(¢P), (u, U) E ..\(¢Q)) t E (s liz u) A

S ~ ..\(aP) A U ~ ..\(aQ))}.

3.5.4 From processes to individual behaviours

We now move on to to derive conditions governing the application of ..\ to
individual refusal/trace pairs. In order to do this, we require equations gov
erning the application of ..\ to sets of failures rather than to complete process

3.5. The stable failures model 69

denotations. We therefore derive the following results, which effectively re
cast conditions SFI1-3 in terms offailures alone (these restatements also take
advantage of theorems 3.16 and 3.17).

Proposition 3.23. Let Q be an implementation process. If aQ ~ Fuis, then
)..(¢JQ) is defined and)..(¢JQ) = ¢JQ.

Proposition 3.24. Let Q be an implementation process. If)..([Q]SF) is
defined, A E AllSet and)"(A) = B, then:

1.)..(¢J(Q \ A)) is defined.

2.)..(¢J(Q \ A)) =)..(¢JQ) \ B.

Proposition 3.25. Let P, Q be implementation processes. If)..([P]SF)'
)..([Q]SF) are defined, Y = aP n aQ and)"(Y) = Z, then:

1.)..(¢J(P Ily Q)) is defined.

2.)..(¢J(P Ily Q)) =)..(¢JP) liz)..(¢JQ).

These results are used to derive conditions RAHI-SF, RAH2-SF and
RAH3-SF below, which are the counterparts at the level of refusal/trace
pairs of RAH1-3. RAH1-SF gives with regard to refusal/trace pairs the
standard result that).. is the identity (in the refusal argument) where be
haviours contained in Fvis are concerned. RAH3-SF shows that).. applied
to refusal/trace pairs enjoys a distributivity property with respect to set
union (by theorem 2.20, the effect of parallel composition on sets of refusals
is given by set union). RAH2-SF(1) ensures that an implementation failure
will be destroyed by hiding A only if the corresponding specification fail
ure is destroyed by hiding)"(A). RAH2-SF(2) will allow us to define)..(R, t)
compositionally (for certain R, t) in terms of)"(RnA' , tr A') for A' E MinSet.

Theorem 3.26 (RAHl-SF). Let t be a trace and R ~ 'E be such that
events(t) U R ~ Fvis. Then)..(R, t) is defined and)"(R, t) = R.

Before giving the other two results, we make the following observation.
Let P be a process and (t, X) E ¢Jp be refusal-maximal. Then, by PA2,
'E - aP ~ X. As a result, we may partition any such X into X n aP and
'E - aP. We take advantage of this fact in the statement and proofs of the
following two results.

Theorem 3.27 (RAH3-SF). Let P and Q be implementation processes
such that),,([P]SF) and)..([Q]SF) are defined. Let (8, 8u ('E - aP)) E ¢Jp be
a refusal-maximal failure such that 8 ~ aP. Let (u, U U ('E - aQ)) E ¢JQ be
a refusal-maximal failure such that U ~ aQ. Moreover, let 8, u be such that
8 Ily u = it}, where Y = aP n aQ. Then),,(8 U U, t) =),,(8,8) U)"(U, u).

3.5. The stable failures model 70

Theorem 3.28 (RAH2-SF). Let P be an implementation process such that
-X([P]SF) is defined. Let (t, Ru (E - uP)) E ¢P be a refusal-maximal failure
such that R ~ aP. Let A E AllSet and -X(A) = B. Then:

1. If A ~ R then B ~ -X(R,t).

2. -X(R - A, t \ A) is defined and -X(R - A, t \ A) = -X(R, t) - B.

In the proofs of RAH2-SF and RAH3-SF, we construct processes such that
the (refusal-maximal) failures given in the respective theorem statements are
maximal in those constructed processes; moreover, it is also necessary that
-X is defined over the denotation in the stable failures model of any such
constructed process. It is for this to be possible that the failures given in the
respective statements of RAH2-SF and RAH3-SF are required to be refusal
maximal. Note also that RAH2-SF(2) contains a result on definedness; this
is simply to ease the proof of theorem 3.32(1) below. This is why RAH3-SF
lacks a similar result. In general, it is not necessary to deal explicitly in
such results with the definedness of -X over refusal/trace pairs, since this can
usually be established using definition 3.12(3) and results derived in previous
sections with respect to the traces model.

3.5.5 Sufficient conditions for refinement-after-hiding

Using conditions RAH1-SF, RAH2-SF and RAH3-SF, we are able to derive
conditions sufficient to define a notion of refinement-after-hiding. Theo
rems 3.29 and 3.30 give conditions which must hold of -X applied to re
fusal/trace pairs at the level of MinSet. They are the counterparts at this
level of RAH1-SF and RAH2-SF(1) respectively.

Theorem 3.29. Let t be a trace, R ~ E and A E MinSet be such that
events(t) U R ~ A ~ Fvis. Then -X(R, t) is defined and -X(R, t) = R.

Proof. The proof is immediate by RAH1-SF. 0

Theorem 3.30. Let t be a trace such that events(t) ~ A E MinSet. If
-X(A, t) is defined then -X(A, t) = -X(A).

Theorems 3.31 and 3.32 then give two different compositional rules with
respect to defining -X over refusal/trace pairs. The requirement in each of
them that -X(to(a)) is defined for every a in a certain set of events is essentially
the counterpart here to the requirement in RAH2-SF and RAH3-SF that the
failures under consideration are refusal-maximal. If (t, R U (E - aP)) E ¢P
is refusal-maximal, where R ~ aP, then to (a) E TP for every a E aP - R.
Moreover, if -X([P]SF) is defined then A(TP) is defined and so A(t 0 (a)) is
defined for every a E aP - R. In theorem 3.31, A plays the role of aP while,
in theorem 3.32, it is played by [[events(t) U RJ].

3.5. The stable failures model

SFSI The conditions in definition 3.12 are assumed to hold.

SFS2 If events(t) U R ~ A ~ Fvis, then)..(R, t) is defined and
)..(R, t) = R.

SFS3 If events(t) U R ~ A and)..(R, t) is defined then
)..(R, t) ~)"(A).

SFS4 If events(t) ~ A and)..(A, t) is defined then)"(A, t) =)"(A).

SFS5 If)"(S, t) is defined and R ~ S, then)..(R, t) ~)"(S, t).

SFS6 If)..(R, t),)"(S, t) are defined, events(t) U R U S ~ A and
)..(t 0 (a)) is defined for every a E (A - R) U (A - S)
then)..(R US, t) =)..(R, t) U)"(S, t).

SFS7 If)..(R, t) is defined and)..(t 0 (a)) is defined for every
a E [[events(t) U R]]- R then:

-)"(RnA',tfA') is defined for every A' E MinSet.
-)..(R, t) = UA'EMinSet)..(R n A', tf A').

71

Figure 3.6: Sufficient conditions in the stable failures model, where t is a
trace, R, S ~ ~ and A E MinSet

Theorem 3.31. Let t be a trace and R, S ~ ~ be such that)..(R, t),)"(S, t) are
defined and events(t)URUS ~ A E MinSet. Moreover, assume that)..(to(a))
is defined for every a E (A-R)u(A-S). Then)"(RUS, t) =)..(R, t)U)..(S, t).

Theorem 3.32. Let t be a trace and R ~ ~ such that)"(R, t) is defined and
)..(t 0 (a)) is defined for every a E [[events(t) U R]]- R. Then:

1.)..(R n A, tf A) is defined for every A E MinSet.

2.)..(R, t) = UAEMinSet)..(R n A, tfA).

Figure 3.6 gives those conditions which, along with the conditions from
figure 3.4, are sufficient to define a notion of refinement-after-hiding in the
stable failures model. That this is the case is shown by theorem 3.33. Note
also that SFs3 from figure 3.6 is a restatement of REF-BoUND at the level
of sets from MinSet; moreover, SFs5 is simply REF-MoNO. The part of
condition SFs7 - taken from theorem 3.32(1) - which refers to definedness
is not strictly necessary since it can be derived from other conditions in
figures 3.4 and 3.6. However, it is included because it makes certain of the
proofs more straightforward.

3.5. The stable failures model 72

Theorem 3.33. Let Fimpl and Fspec be implementation and specification
contexts respectively, containing n process variables, such that ..\(Fimpl) =
Fspec. Let Ql, ... Qn be component implementation processes and PI, ... ,Pn
be processes. Assume that the conditions in figures 3.4 and 3.6 all hold.
If Qi ~~F I{ for 1 ~ i ~ nand o:Fimpl(Ql, Q2, ... , Qn) ~ Fvis, then
Fimpl(Ql, Q2,···, Qn) ~SF Fspec(Pr, P2,···, Pn).

3.5.6 Further comment regarding SFS4

Proposition A.28 in the appendix is weaker than its counterpart SFI2, since
the former uses set containment, ~, in its statement while the latter uses
equality. This is for the following reason. It is possible to derive a version of
RAH2-SF(1) as follows:

A ~ R if and only if "\(A) ~ ..\(R, t).

Had we proved this stronger version, then we could have derived a stronger
version of SFs4 as follows, where we assume that events(t)UR ~ A E MinSet
and ..\(R, t) is defined:

..\(R, t) = "\(A) if and only if R = A.

And had such a condition been given in figure 3.6, then it would have been
possible to prove a version of proposition A.28 which uses = in place of ~ and
so which is equivalent to SFI2. However, had we used the stronger version
of SFs4, it would have placed restrictions on ..\ which would have been too
restrictive to be of use in practice. In particular, the means given in chapter
4 to define ..\ over refusal/trace pairs does not meet this condition. This is
because, in the approach from chapter 4, ..\(R, t) for events(t) U R ~ A E

MinSet such that An Fvis = 0 can only return 0 or "\(A). Thus, it is
often the case that, in order to guarantee (an equivalent condition to) SFs6
is always met, ..\(R, t) = "\(A) even though RcA.

3.5.7 A comment on process alphabets

By SFsl (definition 3.12(3b)), it can be seen that the value of ..\(l/JQ) is
dependent on the value of o:Q. It may be the case that processes with the
same stable failures have different alphabets. However, the result of applying
..\ to the respective sets of stable failures will yield the same result whatever
the alphabet. This is illustrated by the following result.

Theorem 3.34. Let P and Q be implementation processes such that ..\(rP),
..\(rQ) are defined and l/JP = l/JQ. Then ..\(l/JP) = ..\(l/JQ).

3.6. The failures divergences model 73

We require here, for example, that .>t(T P) is defined rather than that
.>t([P]sp) or .>t(¢P) are defined, because the latter two can be reclaimed from
the former. Moreover, as is shown by proposition A.34, if .>t([PjpD) is defined
then .>t(T P) is also defined. This therefore makes clear the fact that theorem
3.34 is still valid in the failures divergences model: i.e. if .>t([P]PD) and
.>t([Q]PD) are defined and ¢P = ¢Q, then theorem 3.34 may be used to show
that .>t(¢P) = .>t(¢Q).

3.6 The failures divergences model

We now move to consider the failures divergences model. The approach we
take here is different to that followed with regard to the other two semantic
models. In particular, our goal here is not to derive a theory as such. Rather,
it is simply to derive a condition or conditions which may be used to augment
those in figures 3.4 and 3.6 in order to define a notion of refinement-after
hiding in the failures divergences model. As a result, we assume that all of
the conditions and restrictions imposed in section 3.5 still hold here. This
means we can assume that all of the results derived earlier with respect to
the stable failures and traces models still hold. The reason for this change of
approach is that, were we to render RAHl-3 in this model, it is not clear how
we would proceed. In sections 3.4 and 3.5, we relied on the fact that processes
could be constructed in which there was a unique maximal behaviour, as a
result of which an equality expressed in terms of process denotations - such
as that given by TI2 - could be translated into an equality expressed in
terms of individual behaviours, such as RAH2-T. This is no longer possible
in the failures divergences model, partly because of the additional behaviours
which are automatically generated by the closure conditions Fn4 and Fn5
and partly because the immediately divergent process can no longer be used
to obscure failures as in the stable failures model. In relation to this latter
point, recall that the process constructions used in the derivations of RAH2-
SF and RAH3-SF in the previous section use extensively the fact that DIV
can be used to obscure failures in the stable failures model.

The definition of applying .>t to processes in the failures divergences model
is therefore given in terms of its application to stable failures and minimally
divergent traces (since mintSP ~ T P for any process P by Mn, this means
that minimally divergent traces may effectively be treated in the same way
as non-divergent traces). In any case, this allows for a cleaner treatment
since, by Fn4 and Fn5, it is unlikely that .>t would be defined over all di
vergent traces and with respect to all (non-stable) failures of any particular
implementation process.

Definition 3.13. Let Q be an implementation process.

3.6. The failures divergences model

FDI Let Q be an implementation process such that A([Q]PD) is
defined. Moreover, let A E AllSet where A(\A) = \B. Then
A([Q \ A]FD) is defined and A([Q \ A]FD) = A([Q]FD) \ B.

Figure 3.7: Rendering RAH2 in the failures divergences model

1. A([Q]PD) is defined if and only if A(¢>.LQ) and A(8Q) are defined.

2. If A([Q]PD) is defined then A([Q]FD) I:. (A(¢>.lQ), A(8Q)).

74

3. A(8Q) is defined if and only if A(TQn8Q) is defined. If A(8Q) is defined,
then A(8Q) I:. {A(t) 0 u I t E min8Q /\ U E ~*}.18

4· A(¢>.LQ) is defined if and only if A(¢>Q) and A(8Q) are defined. If
A(¢>.LQ) is defined, A(¢>.LQ) I:. A(¢>Q) u {(t, R) It E A(8Q) /\ R ~ ~}.

It turns out that we need only render RAH2 in this model and the rele
vant condition, FDI, is given in figure 3.7. However, it is necessary to impose
the following additional condition. 19

SEQ Let ... , ti, . .. be an w-sequence such that each A(tj) is defined.
Then there exists a deterministic implementation process Q
such that TQ = Pref({ ... ,ti, ... }).

This reflects the intuition that any w-sequence with which we might have
to deal in practice may be generated by a syntactic term. That this condition
is rather strong and is simply imposed is not so significant now that we are
no longer aiming to derive a theory as such.

18Note that minc5Q ~ (rQ n c5Q) by MD and since minc5Q ~ c5Qj thus, >'(minc5Q) is
defined if >.(rQ n c5Q) is defined. We require that >.(rQ n c5Q) is defined rather than simply
that >.(minc5Q) is defined because it allows us to infer the definedness of >.(rQ) from
the definedness of >'([Q]FD) (see proposition A.34 in appendix A.5). This is necessary
if we are to define refinement-after-hiding in the failures divergences model using the
conditions and results presented with respect to the stable failures model. In any case,
minimally divergent traces are used here because the minimality property eases the proofs
significantlYj in practice - i.e. if defining algorithms for verification over (variants of)
transition systems - we would work with rQ n c5Q because of the difficulty of establishing
the minimality of any particular divergent trace and so would require>' to be defined over
rQ n c5Q. The notion of definedness used in the failures divergences model in chapter 4 is
similar in that it, too, requires definedness over divergent traces to which the mapping is
not actually applied. Note that, by TR-MoNo and the definition of >'(c5Q) , working with
rQ n c5Q in place of minc5Q would not alter the result of any verification.

19 { ... , ti, ... } is used to denote the set of traces which constitute the w-sequence
... , ti," ..

3.6. The failures divergences model

FDSI The conditions in definition 3.13 hold.

FDS2 Let A E MinSet. Let ... , ti , ... be an w-sequence such that
A(ti) is defined and events(ti) ~ A for each ti. Then
... ,A(ti), ... is also an w-sequence.

Figure 3.8: Sufficient conditions in the failures divergences model

75

Using Fm and SEQ, we are able to derive the following result, which is the
only extra condition we need - other than those relating to the definition of >.
applied to process denotations in this model- in order to define refinement
after-hiding in the failures divergences model.

Theorem 3.35. Let A E MinSet. Let ... , ti , ... be an w-sequence such that
>.(ti) is defined and events(ti) ~ A for each k Then ... , >.(ti), . .. is also an
w-sequence.

This result is essentially used to guarantee that if a sequence of traces
in an implementation process may lead to the presence of divergence after
hiding then the corresponding sequence of traces in the specification process
will also give rise to divergence after hiding. Note again the fact that we
need only enforce the condition at the level of sets from MinSet.

The extra conditions from the failures divergences model are given in
figure 3.8. We are then able to prove that these conditions, along with those
used in the traces and stable failures models, are sufficient to define a notion
of refinement-after-hiding in this model. Note that, in the results used in the
proof of theorem 3.36, we sometimes introduce explicit specification processes
rather than dealing only with mapped-to sets of behaviours. This is intended
to simplify the presentation and to avoid the need to introduce additional
notation in order to extract the failures and divergences respectively of any
arbitrary failures/divergences pair. (Previously we avoided this problem by
proving separately results relating to traces and to stable failures; however,
it is not possible to separate the treatment of failures and divergences, due
to the way in which they are calculated.)

Theorem 3.36. Let Fimp/ and Fspec be implementation and specification con
texts respectively, containing n process variables, such that A(Fimpl) = Fspec.
Let QI, ... Qn be component implementation processes and PI, ... ,Pn be pro
cesses. Assume that the conditions in figures 3.4, 3.6 and 3.8 all hold.
If Qi ~~D Pi for 1 ~ i ~ nand aFimp/(QI, Q2, . .. , Qn) ~ Fvis, then
Fimp/(QI, Q2, ... , Qn) ~FD Fspec(PI' P2, ... , Pn).

3.7. Further consideration of BTrace and related issues 76

3.7 Further consideration of B Trace and re
lated issues

In this section, we revisit some of the issues which have been highlighted
through the course of this chapter, mainly in relation to BTrace and the
restrictions that are imposed on sets by R1 and R2.

3.7.1 The role of restriction R1 and proposition 3.11

In section 3.2.6, we impose restrictions R1 and R2 on the hiding and parallel
composition operators which may be used to build implementation networks
from component implementation processes. R2 is then used to derive propo
sition 3.11 and both R1 and proposition 3.11 are of crucial importance in
the derivation of the theory which has been presented in this chapter. 20 We
here give further consideration to the roles which they play.

In the first instance, they allow us to characterise exactly the effect of
applying .\ to the hiding and parallel composition operators which may be
used to build implementation networks (see theorems 3.16 and 3.1 I) . .\fore
specifically, we are able to take advantage of the property that, for t E BTrace
and A E AUSet, either events(t) ~ A or events(t) n A = 0 by definitions 3.5
and 3.6. This allows the resolution of unknowns in certain equations, which
then allows the use of those equations in the respective proofs of theorems
3.16 and 3.17. For example, RAH2-T states that .\(t \ A) = .\(t) \ B for any
trace t such that .\(t) is defined and A E AllSet, where '\(\A) = \B. In
this equation, there are two unknowns, namely .\(t \ A) and B. If we take
t to be a member of BTrace, we can resolve .\(t \ A) into either .\(()) = ()
or .\(t) and so can derive useful results on the nature of B. This approach
is used in the proof of theorem 3.16, where we show that '\(\A) = \'\(A)
for A E AUSet. If it were possible for A to be an arbitrary set, then this
resolution of unknowns would not be possible. Similar comments apply with
respect to the use of TI3 in the proof of theorem 3.17, which result shows
that .\(lly) =11>.(y) for Y E AUSet.

The derivation of theorems 3.16 and 3.17 then has two main effects.
Firstly, theorem 3.16 allows us to translate condition RAH2-T which refers to
hiding into an equivalent condition which refers to projection: in other words,
we are able to derive that .\(trA) = .\(t)P(A) for trace t and A E AllSet (see
proposition A.3 in appendix A.3). This then lets us derive condition Ts4
from figure 3.4, which gives a straightforward, compositional way to define
the effect of .\ applied to traces. Secondly, theorems 3.16 and 3.17 allow us

20 Recall that Rl and proposition 3.11 require that the hiding and parallel composition
operators which may be used to build implementation networks can be parameterized only
by sets from AIlSet.

3.7. Further consideration of BTrace and related issues 77

to apply). to the operators of hiding and parallel composition in what is
effectively the same manner: we simply apply). to the set with which the
relevant operator is parameterized. This has the consequence that, in prov
ing the sufficiency of the conditions from figure 3.4, condition Ts4 can be
used to define the effect of). when applied to traces generated using either
hiding or parallel composition. This is significant because Ts4 is derived
only from conditions - such as TI2, RAH2-T and theorem 3.16 - which
refer to the interaction between). and the hiding operator: one would expect
that a similar condition would have to be derived from conditions like TI3
which refer specifically to the parallel composition operator.

3.7.2 The role of BTrace

In section 3.2, a very specific intuition behind BTrace was presented, namely
that each specification action in ~spec may be implemented by a (finite)
number of implementation traces and that BTrace consists of exactly those
traces. Thereafter, BTrace is used in the definition of MinSet and so AllSet,
and so plays a role in restricting those sets which are candidates for AllSet.
Since implementation networks may be built using only hiding and parallel
composition operators which are parameterized with sets from AllSet, the
nature of BTrace plays a very significant role in determining the range of
systems to which the theory presented in this chapter might be applied.
There are, however, a number of comments to be made with regard to this.

Firstly, the intuition recalled above regarding the nature of BTrace is not
recorded formally anywhere and plays no role in this chapter in the derivation
of conditions sufficient to define a notion of refinement-after-hiding, nor does
it appear in those conditions themselves. Although we would expect the
intuition given to make sense in most cases where refinement-after-hiding
might be used, it does not limit the systems to which the theory might be
applied. Of course, we would still expect the traces contained in BTrace
to be "atoms" or indivisible to the extent that it would not make sense to
decompose them further into sub-traces, so that the restrictions imposed
by Rl and proposition 3.11 may still be justified. Furthermore, there is
no explicit counterpart to BTrace in the concrete notion of refinement-after
hiding which is presented in chapter 4, although such a notion may sometimes
be used implicitly. The reasons for and consequences of this fact are discussed
more fully in that chapter, once the concrete notion has been presented. It
should be noted, however, that the absence of BTrace as an explicit notion
in practice does not indicate a mismatch with the theory, nor does it mean
that the sets in MinSet and AliSet could be made smaller in practice than is
possible in the theory: i.e. it does not mean that the restrictions on hiding
and parallel composition may be made lighter in practice.

3.8. Conclusion 78

3.7.3 Deriving the statement in definition 3.5(2)

Definition 3.5 states that MinSet is a partition of ~impl such that, if t, u E
BTrace and A, B E MinSet where A =f:. B then:

1. If events{t) n A =f:. 0, then events{t) ~ A.

2. If events{t) ~ A and events{u) ~ B, events{A{t)) n events{A{u)) = 0.

In section 3.2, we stated that definition 3.5(2) may actually be derived as
part of the theory, although this was realised only on a final revision of the
thesis. Here, we show how to do that using only results which do not use
definition 3.5(2) in their respective proofs.

Proposition 3.37. Let t, u E BTrace and A, B E MinSet, where A =f:. B. If
events{t) ~ A and events{u) ~ B then events{A{t)) n events{A(u)) = 0.

Proof. By RAH2-T and theorem 3.16, A(t \ A) = A(t) \ A(A) and '\(u \
B) = '\(u) \ '\(B). Hence, events(A(t)) ~ A(A) and events('\(u)) ~ '\(B) by
theorem 3.14. We prove that events('\(t)) n events('\(u)) = 0 by assuming
there exists a E events(A(t)) n events(,\(u)). Hence, a E '\(A). Again by
RAH2-T and theorem 3.16, '\(u \A) = '\(u) \A(A). Thus, A(U) \A(A) =f:. '\(u)
since a E '\(u) n '\(A) and so '\(u \ A) =f:. A(U). Hence, events(u) n A =I 0

and so An B =f:. 0, which contradicts the fact that MinSet is a partition by
definition 3.5(1). 0

We observe that three results are appealed to in the proof of proposition
3.37: RAH2-T and theorems 3.14 and 3.16, none of the proofs of which refer
to definition 3.5(2). The only derived results referred to in the proof of
RAH2-T are from chapter 2. The only derived results referred to in the proof
of theorem 3.16 are RAH2-T and theorem 3.14. Theorem 3.14 is a special
case of RAH1-T and that part of the proof of RAH1-T which deals with this
special case uses only a single derived result, from chapter 2. Hence, there
is no circularity involved in the use of these results to derive the condition
from definition 3.5(2).

3.8 Conclusion

Starting from a high-level statement of what it means to constitute a notion
of refinement-after-hiding, we have presented in each of the three semantic
models a set of conditions sufficient to define such a notion. Of particular
significance is the fact that we need define directly the result of applying the
mapping only at the level of sets from MinSet and any conditions imposed
on it are enforced at this level. This allows any mapping used in practice

3.B. Conclusion 79

to be defined compositionally and so allows for reuse of predefined mapping
components. In the next chapter, we present a concrete notion of refinement
after-hiding which may be used in practice and in the development of which
the conditions given here played a role. Since this was the intended purpose
of the work in this chapter, we postpone until then a detailed discussion of
its significance.

Chapter 4

A concrete notion of
refinement-after-hiding

We now move on to present a concrete notion of refinement-after-hiding which
may be used in practice. If we are to follow the template laid out in the
previous chapter, we need three main things in order to proceed:

• counterparts to the sets from MinSet and counterparts, at the level of
those sets, to the mapping defined over sets, traces and refusal/trace
pairs.

• a set of compositional rules to allow general definitions to be built up
from these component definitions.

• a structure within which these components can actually be defined.

The compositional rules used here are direct counterparts of 85 and Ts4
from figure 3.4 and 8FS7 from figure 3.6. For the rest, we introduce the
notion of extraction pattern. l An extraction pattern consists of a tuple and a
set of conditions imposed on the constituent elements of that tuple; the exact
nature of the tuple and these conditions depends on the semantic model in
which we are working.

We first introduce extraction patterns in the traces model. All of the
detail presented with respect to that model will continue to be relevant when
we consider the other two semantic models. In particular, this is true of
the detail on constructing a universe of extraction patterns, defining process
alphabets and considering implementation networks and contexts.

1 Extraction patterns appear in [16,39,40] among other papers; the name refers to the
fact that they are used to "extract" specification behaviours from an implementation.
Modifications made here to the notation are explained and highlighted in section 4.8.

80

4.1. Extraction patterns in the traces model

EPI A is a non-empty set of events, called the implementation
alphabet and B is a non-empty set of events called the
specification alphabet. Moreover, if A n Fvis =1= 0 then
A ~ Fvis.

EP2 e is a possibly empty set of events such that 8 ~ A.

EP3-T Dom is a non-empty, prefix-closed set of traces over the
implementation alphabet.

EP4 extr is a strict, monotonic mapping defined for traces in
Dom; for every t E Dom, extr(t) is a trace over the
specification alphabet.

(a) General conditions.

If A ~ Fvis then:

EPI-FVI A = B.

EP3-FVI Dom = A*.

EP4-FVI If events(t) ~ A then extr(t) = t.

(b) Over finally visible events.

Figure 4.1: Conditions on extraction patterns.

81

4.1 Extraction patterns in the traces model

An extraction pattern in the traces model is a tuple

ep t:. (A, B, 8, Dom, extr)

satisfying the conditions given in figure 4.1. (We assume that Fvis still
denotes the set of finally visible events, as in the previous chapter.) The
conditions from figure 4.1(a) relate to extraction patterns in the general case.
Ep3-T is used to denote the third condition there, rather than Ep3, because
it will be superseded by a different condition when working in the stable
failures and failures divergences models. The conditions from figure 4.1(b)
relate to the specific case that the extraction pattern is being used to interpret
behaviours over finally visible events. They are labelled so as to relate each
one to the corresponding condition from figure 4.1(a). We now relate these
components and conditions to the sufficient conditions from the previous

4.1. Extraction patterns in the traces model 82

chapter where that is possible.2

The general case

The extraction pattern component A gives a set from MinSet, while B effec
tively gives A(A). Moreover, extr gives the mapping over traces from A*; it is
defined for all t E Dom. The domain, Dom, of the mapping extr is given ex
plicitly because it is used as part of the condition of refinement-after-hiding
in all three semantic models. e is used as part of a condition relating to
traces which makes our refinement-after-hiding relation larger than it would
otherwise be: without it, it would be significantly more difficult to use the
relation successfully in practice. Both of these features are discussed further
where they are used.

Condition 84 from figure 3.4 implies that B should be fully characterised
by extr and Dom in the following way:

B = U{ events (extr(t)) I t E Dom}.

By Ep4, however, we may only infer that

U{events(extr(t)) It E Dom} ~ B.

Similarly, we only have by Ep3-T that U{ events(t) I t E Dom} ~ A rather
than U{ events(t) I t E Dom} = A. Proceeding in this way simply gives
greater flexibility and makes it easier to define these sets in practice: for
example, if every event from any trace t over which extr is defined occurs on
a channel b, it is easier to set A as ab even if not all of the events from ab
are used. Finally, the part of Ep4 which states that extr(t) is a trace over
the specification alphabet B is a counterpart to the second part of Ts4 in
figure 3.4.

The reader may observe that no explicit counterpart to BTrace is used
in the definition of the extraction pattern components A and B; moreover,
no such counterpart plays any role in the formal definition of the notion of
refinement-after-hiding which is presented in this chapter. The reasons for
this and other related issues are considered in section 4.7 at the end of the
chapter.

Finally visible events

TIuning to figure 4.1(b), EpI-FvI is a direct result of conditions 81(c) (def
inition 3.5), 84 and Ts2 from figure 3.4. It is necessary because we state B

2Where this is not possible, it is generally the case that a feature which does not appear
in the theory has been introduced in order to make things work better in practice.

4.1. Extraction patterns in the traces model

EP-UNIl Let ep, ep' E EP be such that ep i= ep'. Then
ep.A n ep'.A = 0 and ep.B n ep'.B = 0.

EP-UNI2 Let a E Fvis. Then there exists ep E EP such that
a E ep.A.

Figure 4.2: Considering the universe of extraction patterns

83

directly and do not give a means of deriving it from A. Ep3-FvI recognises
the fact that, by Ts2, if events(t) ~ A and A ~ Fvis then extr(t) is defined.
Ep4-FvI also comes from condition Ts2. Note that, for any extraction pat
tern ep such that ep.A ~ Fvis, we may dispense with the component 8. The
reason for this will become clear when its role is discussed in section 4.2.

4.1.1 Universe of extraction patterns

During any verification procedure, we assume the existence of a universe of
extraction patterns, EP, containing all extraction patterns which may be
used in the current verification. We impose on this universe the conditions
Ep-UNI1 and Ep-UNI2 given in figure 4.2.3 That ep.A n ep'.A = 0 in Ep
UNI1 comes from 81(c) (definition 3.5) in figure 3.4; that ep.B n ep'.B = 0

comes from 81(c) (definition 3.5(2)) and 84. In the absence of an (explicitly
stated) equivalent notion to ~imp/, Ep-UNI2 essentially gives the fact that
Fvis ~ ~impl' as stated in 81(b)(definition 3.4).

EP may be used to define a counterpart to AllSet, as in the manner of
81(c) (definition 3.6), which we shall call here ImplSet.

Definition 4.1. ImplSet [), {U C ICE JP({ep.A I ep E EP} n·
We shall also need the equivalent of 'x(A) for any A E ImplSet. We denote

this extrset(A) and define it as follows.

Definition 4.2. Let A E ImplSet be such that A = UiEI ePi.A, where I is

an indexing set into EP. Then extrset(A) [), UiEI ePi·B .

This effectively gives us the mapping applied to sets which is given in
condition 85. Finally, Ep-UNI2, definition 4.1 and Ep1 effectively give a
counterpart to 83: i.e. Fvis E ImplSet.

3Note that we use ep.A to denote the implementation alphabet, A, of the extraction
pattern ep. Similarly, we may refer to ep.B, ep.0 and so on.

4.1. Extraction patterns in the traces model 84

4.1.2 Implementation and specification contexts

We again use Fimpl and Fspec to denote corresponding implementation and
specification contexts, each containing n free process variables, although they
are slightly different to those used in chapter 3. In particular, Fimp/ may
be defined using only the network composition operator, ®y, where Y E

ImplSet. 4 Where Vi, ... , Vn and Wi, ... , Wn are free process variables:5

• Fimp/ A (Vi ®Yl 112 ®Y2 ... ®Yn- 1 Vn)

• Fspec A (Wi ®Zl W2 ®Z2 ... ®Zn-l Wn), where extrset(Yi)
1 :::; i :::; (n - 1).

Implicit in the definition of Fspec are the conditions S6 and S7 from
figure 3.4: we have mapped the operator we use by simply applying the nec
essary mapping to the sets with which it is parameterised. Since F imp/ may
only be defined using network composition, as soon as two implementation
processes are composed in parallel during the construction of an implemen
tation network, the set of events on which synchronization has occurred must
be hidden. This has two effects, both of which are necessary. The first is that
events may only be hidden after they have been synchronized on during par
allel composition. This is relevant due to an issue raised when working with
traces. The second is that only two processes in a particular network may
synchronize on any particular set of events. The reason for this is bound up
with the way in which the mapping is applied to refusals in practice. These
issues are discussed further in sections 4.2 and 4.3 respectively.

4.1.3 Implementation processes and their interpreta
tion

We define implementation processes as follows.

Definition 4.3. Q is an implementation process if and only if, for every
a E {3(Q), there exists ep E EP such that a E ep.A.

This definition is a counterpart to Sl(d) from figure 3.4 in the absence
of an equivalent notion to ~impl; as in the case of S 1 (d), it will generally
be appealed to implicitly. The following result states that the composition
of any two implementation processes is also an implementation process and
may be proved easily using definition 4.3 and the detail in figure 2.5.

4That Y E ImplSet does not pose a restriction in practice due to corollary 4.4 below
and the restriction REPI which is imposed on implementation networks in section 4.1.6.

5For the purposes of presentation, we have not bracketed here the expressions denoting
the two contexts. In general, however, this would be necessary because of the fact that
network composition, like parallel composition, is not associative.

4.1. Extraction patterns in the traces model

TR-GLOBALI DOmEP(Q) is the set of t E (Al U ... U Am)·
such that tf ~ E Domi for 1 ~ i ~ m.

TR-GLOBAL2 - extrEP(Q)(O) ~ O.
- Let to (a) E DOmEP(Q) be such that a E Ai

for epi E EP(Q). Then
extrEP(Q)(t 0 (a)) ~ extrEP(Q)(t) 0 u, where U

is such that extri(tf~ 0 (a)) = extri(tfAi) 0 u.

85

Figure 4.3: Global definitions in the traces model, where Q is an implemen
tation process

Proposition 4.1. Let P, Q be implementation processes and Y ~ E. Then
P ®y Q is also an implementation process.

For any implementation process, Q, we shall need a set of extraction
patterns with which to interpret its behaviour. For such a process Q we shall
denote this set EP(Q), defined as follows.6

Definition 4.4. EP(Q) ~ {ep E EP I ep.An,B(Q) =I- 0}.

For every event a in which Q may engage, there will therefore be ep E

EP(Q) such that a E ep.A. We assume throughout this chapter and chapter
6 that m gives the cardinality of EP(Q) and EP(Q) = {epi 11 ~ i ~ m} (m
gives this cardinality only for implementation processes with the label Q).
Moreover, the various components of the extraction patterns in EP(Q) can
be subscripted to avoid ambiguity, giving ePi = (Ai, Bi, Gi , Domi, extri) for
ePi E EP(Q). We then lift some of the notions introduced with respect to
individual extraction patterns to the set EP(Q). These are given in figure 4.3.
TR-GLOBALI is similar in character to Ts3 from figure 3.4 and describes
a domain of traces DOmEP(Q)' TR-GLOBAL2 is a counterpart to Ts4 and
describes a mapping extrEP(Q) which is defined for all traces in DOmEP(Q)'

4.1.4 Process alphabets

For any implementation process, Q, the alphabet of Q is defined as follows.

Definition 4.5. aQ ~ U{Ai I ePi E EP(Q)}.

6It can be seen that EP(Q) depends on the syntactic form of Qj as in the previous
chapter, however, the outcome of any verification will be the same for two processes with
the same denotation.

4.1. Extraction patterns in the traces model 86

In view of definitions 4.4 and 4.1, this definition effectively gives 82 from
figure 3.4. The following important result is easy to prove using definitions
4.3, 4.4 and 4.5.

Proposition 4.2. If Q is an implementation process then f3(Q) ~ QQ.

Since the network composition operator is used only in a restricted way in
the building of implementation networks - which restriction is imposed in
section 4.1.6 as REP1- we are able to show, among other things, that EP(Q)
is effectively defined compositionally (proposition 4.5) and aQ behaves in the
way one would expect according to the detail in figure 2.5 (proposition 4.6).

Proposition 4.3. Let P, Q be implementation processes and Y = apnaQ.
Then Y = U{Ai I ePi E EP(P) n EP(Q)}.

Corollary 4.4. Let P, Q be implementation processes. Then aP n aQ E
ImplSet.

Proposition 4.5. Let P, Q be implementation processes and Y = apnaQ.
Then EP(P ®y Q) = (EP(P) U EP(Q)) - (EP(P) n EP(Q)).

Proposition 4.6. Let P, Q be implementation processes and Y = apnaQ.
Then a(P ®y Q) = (aP U aQ) - (aP n aQ).

4.1.5 Communication capabilities

We shall also need an additional notion relating to the sets of events in
which any implementation process Q may engage, which will be used to
restrict the nature of compositions which can occur. For any ePi E EP(Q),
we identify the communication capability of Q with respect to A, given by
Comm(Ai, Q), as either Left or Right. We will then require that two processes
may synchronize on Ai only if it is labelled as Left in one and Right in the
other. Further discussion of what this labelling actually means and is used
for appears in sections 4.2 and 4.3.7

It is also necessary to define Comm compositionally with respect to the
network composition operator (that we refer in this definition only to extrac
tion patterns in EP(P)-EP(Q) and EP(Q)-EP(P) follows from proposition
4.5).

Definition 4.6. Let P, Q be implementation processes and Y = aP n aQ.

7The designation of a set of events as either Left or Right with respect to a particular
process is arbitrary to an extent. However, extraction pattern components whose use in
defining refinement-after-hiding is dependent on this designation must be defined with it
in mind. This applies to 0 and ref, the latter being introduced in section 4.3.

4.1. Extraction patterns in the traces model

1. Let ePi E EP(P) - EP(Q). Then
Comm(~, P ®y Q) /),. Comm(~, P).

2. Let ePj E EP(Q) - EP(P). Then
Comm(Aj, P ®y Q) /),. Comm(Aj, Q).

4.1.6 Restrictions on implementation networks

87

Where Ql,"" Qn are component implementation processes, the following
restrictions are imposed on any implementation network Fimp/(Qb"" Qn).
(Recall that the notation Imp is defined in definition 2.3 in section 2.7.)

REPl Let (P ®y Q) E Imp(Fimp/(Ql, ... , Qn)). Then Y = Qp n QQ.

REP2 Let (P ®y Q) E Imp(Fimp/(Ql,"" Qn)) and ePi E EP(P) n EP(Q).
Then Comm(Ai, P) i= Comm(Ai, Q).

Condition REPI is similar to R2 from chapter 3. REP2 is imposed for
reasons bound up with the way in which the mapping is applied in practice to
sets of refusals (see section 4.3 for further details), although it is also used in
part of the condition for defining refinement-after-hiding in the traces model.

4.1.7 Extraction pattern for running example

We show here how we may construct an extraction pattern, ep ack' to interpret
in the traces model the behaviours of the processes LeftImpl and RightImpl
from figure 1.1.8 We first assume Comm(QdataUQack, LeftImpl) = Left and
Comm(Qdata U Qack, RightImpl) = Right. We also define:

Complete /),. {(data.D, ack.yes), (data.D, ack.no, data.D),

(data.l, ack.yes), (data.l, ack.no, data.l))*.

The components of ePack = (Aack, Back, Sack, DOmack, extrack) are then
defined as follows:

• Aack = Qdata U Qack .

• Back = Qsend.

8We do not explicitly give an extraction pattern to interpret the behaviours over chan
nels in and out, since ainUaout ~ Fvis and so the relevant structures may be constructed
from the conditions in figure 4.1(b) and the fact that the e component is null in such cases.
In any case, when we come to consider automatic verification in chapter 6, we need never
explicitly construct such extraction patterns.

4.2. Refinement-after-hiding in the traces model 88

• Sack = 0 (the reason for this choice is explained in section 4.2) .

• Domack = Pref(Complete).

extr ack is defined as follows, where t E Complete and t 0 u E Dom:

o iftou=O
extrack(t) 0 (send. v) if u = (data.v, ack.yes)

or u = (data.v, ack.no, data.v)
extr ack (t) otherwise

Here, intuitively, (send.O) may be implemented by two sequences of com
munications: (data.O, ack.yes) and (data.O, ack.no, data.O) (and similarly for
(send.I)).

4.2 Refinement-after-hiding in the traces mo
del

We now move on to consider refinement-after-hiding proper in the traces mo
del. The way in which processes are interpreted in this model is virtually
the same as in the previous chapter. However, there is one significant dif
ference. In chapter 3, A([Q]T) was defined if and only A(t) was defined for
every t E TQ and verification could only proceed in the event that A([Q]T)
was actually defined. Here, a less restrictive approach is taken.

4.2.1 Introducing a rely-guarantee condition

In order to explain this change of approach, consider RightImpl from the
running example. In particular, we observe that RightImpl may engage in
the trace (data.O, ack.no, data.I): this trace may arise when a communi
cation on channel data has been lost - hence the receipt of the negative
acknowledgement - and RightImpl is ready to receive a retransmission of
the data.9 Since RightImpl should not know anything of the content of the
failed transmission, then it must be ready to receive any possible retrans
mission: i.e. either data.O or data.1. However, (data.O, ack.no, data.I) is
not a member of Domack (see definition in section 4.1.7), since it is not
clear what such a trace should be intended to implement. This means that
extrack is not defined for (data.O, ack.no, data.I) and so, by TR-GLOBAL2,

extrEP(Rightlmpl) is not defined for that trace either. Yet Lejtlmpl can never

9See process definitions in section 2.13.

4.2. Rennement-after-hiding in the traces model 89

perform a trace of which (data.D, ack.no, data.I) is a sub-trace and so all
such "problem" traces from RightImpl will disappear after composition with
LeftImpl (recall that LeftImpl and RightImpl synchronize on Aack = o:data U

o:ack). Moreover, LeftImpl ®Aack RightImpl is a correct implementation of
LeftSpec ®Back RightSpec, even though extrEP(Rightlmpl) is not defined over ev
ery trace of RightImpl. Thus, we shall allow an implementation process Q to
engage in behaviours which are outside of the domain DOmEP(Q) , provided
that composition with suitable implementation processes would remove these
problem behaviours. 1o The extraction pattern components 8 i and Domi and
the notation Comm(~, Q) for epj E EP(Q) are used for this purpose.

If Comm(Ai, Q) = Left, then 8 i denotes those actions from Ai on which
Q may go outside of the domain Domj. If Comm(Ai, Q) = Right, then
(Ai - 8 i) denotes the actions from Ai on which Q may go outside of the
domain Domi. If implementation processes P and Q are composed during the
building of an implementation network then Comm(~, P) =j:. Comm(Ai, Q)
for ePi E EP(P) n EP(Q), because of condition REP2. This means that the
traces of P and Q respectively may move outside of Domj only on different
events. As a result, composition will remove all behaviours which move
outside ofthe domain on any ofthe events from Ai for epj E EP(p)nEP(Q):
i.e. it will remove all behaviours which move outside of the domain on events
on which we have to synchronize during the composition. Proj EP(Q) , from the
following definition, is used to give the set of actions from the entire process
Q on which we may legitimately move outside of the domain DOmEP(Q).

Definition 4.7. The following hold by definition, where Q is an implemen
tation process and epj E EP (Q):

1. If Ai ~ Fvis then Projj /),. 0.

2. If Ai n Fvis = 0,

3. ProjEP(Q) /),. U{Projj I epj E EP(Q)}.

if Comm(Aj, Q) = Left
if Comm(Aj, Q) = Right

lONote that a single composition need not remove all non-domain behaviours; however,
all such behaviours will have been removed by the time that the implementation network
under consideration engages only in finally visible events. I\" ote also that the use of the
network composition operator - instead of allowing the separate application of hiding
and parallel composition - means a particular set of events can only be hidden after we
have composed in parallel on them: this is necessary in order to make the proofs work in
this section now that behaviours need not be contained in DOmEP(Q).

4.2. Refinement-alter-hiding in the traces model

Dom-T-check IftrprojEP(Q) E (DomEP(Q)rProjEP(Q») for t E TQ
then t E DOmEP(Q).

90

Figure 4.4: A rely-guarantee condition in the traces model, where Q is an
implementation process

Condition Dom-T -check from figure 4.4 is then imposed on implementa
tion processes; it is essentially a rely-guarantee condition in the sense of [18].
Provided that it holds of an implementation process Q, if we can rely on the
fact that a particular trace t E TQ does not stray outside of DOmEP(Q) on
the set of events on which it is allowed to, then we can guarantee that t is a
member of the domain DOmEP(Q). By definition 4.7(1), we are able to ignore
events from Fvis when considering Dom-T -check: this is acceptable because,
by Ep3-FvI, ep.Dom = (ep.A)* if ep.A ~ Fvis.

If we return to the running example, we have that e ack = 0. Since
Comm(Aack' Leftlmpl) = Left, then Proj EP(Leftlmpl) is given by 0 (recall that
ain ~ Fvis). Thus, Dom-T-check for Leftlmpl becomes:

• If () E {()} for t E T Leftlmpl, then t E DOmEP(Left1mpl).

In other words, every trace of Leftlmpl has to be in DOmEP(Leftlmpl)
and this does, in fact, hold. Since Comm(Aack, RightImpl) = Right, then
Proj EP(Rightlmpl») is given by Aack - 8 ack = Aack (recall that aout ~ Fvis)
and so Dom-T -check for RightImpl becomes:

• IftrAack E (DomEP(Rightlmpl)rAack) = Domack for t E TRightImpl, then
t E DOmEP(Rightlmpl).

This holds trivially by Ep3-FvI and TR-GLOBALI and so Dom-T-check
places no restriction at all on RightImpl. Because Dom-T-check requires
that t E DOmEP(Left1mpl) for every t E TLeftlmpl, then trAack E Domack for
all such t by TR-GLOBALl. Thus, for u E TRightImpl, we need not require
that U E Dom EP(Rightlmpl) - i.e. that u r Aack E Domack - because no u for
which this does not hold will be able to synchronize in parallel with any trace
from Leftlmpl and so any u for which it does not hold will be destroyed by
composition with Leftlmpl.

In general, Dom-T-check makes our notion of refinement-after-hiding
larger than it would otherwise be: without it, we might dismiss component
processes such as RightImpl as being incorrect, even though they may be used
to build networks which are themselves correct. It is of most importance with
respect to the input channels of any implementation process Q, which may

4.2. Refinement-after-hiding in the traces model 91

be ready to receive all possible values that they can communicate, while
DOmEP(Q) may not permit this.ll This is acceptable in practice provided
that the correponding output channel - to which the input channel will be
connected - may only engage in the allowed behaviours. In such a situation,
if Comm(Ai, Q) = Left for ePi E EP(Q) such that ~ n Fvis = 0, we may
define 8 i to be the set of all input events from Q which are contained within
Ai· Thus, Dom-T-check will allow Q to move outside the domain DomEP(Q)
on the events in 8 i , while any process, P, with which Q might be composed
would be allowed to move outside its domain on events in Ai - 8 i .12 If
Comm(Ai, Q) = Right, then we could define 8 i to be such that A.i - 8 i was
the set of all input events from Q which are contained within Ai: i.e. 8 i

would be the set of all output events contained within Ai. Note, however,
that we do not define 8 ack to be aack, even though ack is an input channel
in Leftlmpl and Comm(Aack, Leftlmpl) = Left: this is because RightImpl
fails to meet Dom-T-check when 8 ack = aack.

4.2.2 Defining refinement-after-hiding

The use of Dom-T -check means that, when we interpret the traces of an
implementation process Q, we refer only to those which are also contained in
DOmEP(Q) and these are given using the notation TDomEP(Q)Q. (The following
definition will generally be appealed to implicitly in proofs of results from
this chapter.)

Definition 4.8. TDomEP(Q)Q ~ TQ n DOmEP(Q).

The mapping extr EP(Q) is then overloaded to apply it to process denota
tions in the traces model and the fact that Q refines-after-hiding P in the
traces model according to the set of extraction patterns EP (Q) is denoted
as Q ~~P(Q) P. Condition TR-DEF1 from figure 4.5 shows how we interpret
process denotations in the traces model and TR-DEF2 shows how refinement
after-hiding is defined here. Note that neither of these conditions contain any
reference to the issue of definedness. Where Q is an implementation process,
extrEP(Q)(t) is always defined for t E TDomEP(Q)Q by definition 4.8 and so
extrEP(Q)(TQ) is always defined by TR-DEFl.

Using these conditions, we are able to show that ~~P(Q) does indeed con
stitute a valid notion of refinement-after-hiding (see theorem 4.8). (Theorem
4.7 shows that we have generalised standard CSP refinement in the traces
model, under the assumption that aQ contains only finally visible events.)

11 This is the problem faced by RightImpl with respect to the channel data and the trace
(data.O, ack.no, data. I).

12The events from 0 i would occur on output channels in Pj the events from Ai - 0 j

would occur on output channels in Q and so on input channels in P.

4.3. Extraction patterns in the stable failures model

TR-DEFI extrEP(Q)(rQ) lJ. {extrEP(Q)(t) It E rDomBP(Q)Q}.

TR-DEF2 Q ::J~P(Q) P if and only if extrEP(Q) (rQ) ~ rP and Q
meets Dom-T -check.

92

Figure 4.5: Defining refinement-after-hiding in the traces model, where Q is
an implementation process and P is a process

Recall also before we proceed that conditions REP1 and REP2 are imposed
on any implementation network Fimpl(Ql, Q2, . .. , Qn).

Theorem 4.7. Let Q be an implementation process such that aQ ~ Fvis
and let P be a process. Then Q ~~P(Q) P if and only if Q ~T P.

Theorem 4.8. Let Fimpl and Fspec be implementation and specification con
texts respectively, as defined in section 4.1.2. Let Ql, ... Qn be component
implementation processes and PI, . .. ,Pn be processes. If Qi ~~P(Qi) Pi for
1 ~ i ~ nand a Fimpl (Ql, Q2, ... , Qn) ~ Fvis, then
Fimpl(Ql, Q2, ... , Qn) ~T Fspec(P1, P2, ... , Pn).

4.3 Extraction patterns in the stable failures
model

We now move on to consider the stable failures model and the notion of
extraction pattern which must be used there. An extraction pattern in the
stable failures model is a tuple

ep lJ. (A, B, 8, dom, extr, rej),

where the component dom replaces Dom and we add the component ref. All
conditions from figure 4.1 are assumed to hold as before, except that Ep3-
SF from figure 4.6 is used instead of Ep3-T from figure 4.1; note, however,
that Ep3-SF implies Ep3-T. Moreover, we assume that Pref(dom) returns
the original Dom used in the traces model; in other words, we start with
Dom and construct dom such that dom ~ Dom and, for every t E Dom,
there exists t ~ U E dom. In addition, conditions Ep3A-FvI and Ep5 from
figure 4.6 are also imposed.

Neither dom nor ref are features of the theory from the previous chapter
and both are introduced for the purposes of mapping refusal/trace pairs in
practice. dom denotes those traces from Dom which are "complete" in some
sense, while ref effectively defines a set of upper bounds on the refusals which

4.3. Extraction patterns in the stable failures model

EP3-SF dom is a non-empty set of traces over the
implementation alphabet; Dom is given by its
prefix-closure.

EP3a-FVI If A ~ Fvis, then Dom = dom.

EP5 ref is a mapping defined for traces in Dom such that
for every t E Dom:

ref(t) is a non-empty, subset-closed family of
proper subsets of A.

- if a E A and to (a) rf- Dom then
Ru {a} E ref(t), for all R E ref(t).

93

Figure 4.6: Conditions on extraction patterns in the stable failures model

a process may exhibit after a particular trace (the roles of both of these com
ponents are discussed in more detail below). Ep3A-FvI from figure 4.6 states
that behaviour over finally visible events is always complete, the significance
of which will become clearer below. The second part of Ep5 is a counterpart
in terms of refusal bounds to SF4, which guarantees that impossible events
can always be refused. We now define extrreJ , the mapping applied to re
fusal/trace pairs whose events are contained in A (this is effectively >'(R, t)
for events(t) U R ~ A' E MinSet).

4.3.1 Mapping refusals when An Fvis = 0

In order to define the mapping of refusal-trace pairs when An Fvis = 0, we
use the notion of refusal bound, given by the extraction pattern component
ref. Intuitively, refusal bounds are used to enforce progress after composi
tion: if both participants in a parallel composition respect a particular set
of bounds at some point in their joint evolution, then there will be at least
one event which they both offer at that point and so on which they may
synchronize in parallel (of course, due to the use of the network composition
operator, this event would immediately be hidden after synchronization had
occurred) .13 If a bound should be breached by a process Q - i.e. if Q should
refuse too much at a particular point in time - then this places an obligation
on the corresponding specification process to refuse a certain set of events.
These issues are illustrated below using the running example. For reasons
also explained below, the bounds used with respect to the two participants in
a composition are asymmetric: that is, ref will be used to define the bounds

13See section 4.4.1 for a discussion of the significance of enforcing progress in this way.

4.3. Extraction patterns in the stable failures model 94

for one of the participants, while another set of bounds is generated for the
other process. Thus, for t E Dom, we also introduce the notation ref(t) and
define it as follows.

Definition 4.9. ref(t) 6 {X ~ A I (V Y E ref(t)) Xu Y i- A}.

As a result, X E ref(t) if and only if X ~ A and, for every Y E ref (t),
there exists a E A - Y such that a E A - X. In section 4.3.4 below, we
define ref ack' the set of refusal bounds used in the verification of the running
example. ref ack (()) is given by:

{R E 2a:dataua:ack I a data C£. R}.

In other words, in order for this set of bounds to be respected, the relevant
process must offer at least one event on channel data if it has not yet engaged
in any communication on channels data and ack: 14 intuitively, the process
must be ready to output a value on data. By definition 4.9, ref ack (()) is given
by {R I R ~ aack} and so an implementation process must offer both events
on channel data if these bounds are to be respected: intuitively, it must be
ready to input a value on data. As a result of this, if one participant in a
communication on channels data and ack respects the refusal bounds defined
by ref ack (()) and the other respects the bounds defined by ref ack (()), then
the processes will be able to synchronize in parallel on at least one event on
channel data. Likewise, if one of the processes breaches its refusal bounds,
then it may be the case that parallel composition leads to (a local) deadlock
on channels data and ack.

The refusal bounds defined by ref and ref are then used in the definition
of extrreJ , the mapping applied to refusal-trace pairs whose events are con
tained in A. For t E Dom, R ~ A and implementation process Q such that
ep E EP(Q), extrreJ (R, t, Q) is defined as follows.

Definition 4.10. If An Fvis = 0:

extrreJ (R, t, Q) 6

o if (Comm(A, Q) = Left /\ R E ref(t)) V

(Comm(A, Q) = Right /\ R E ref(t))

B if (Comm(A, Q) = Left /\ R ¢ ref(t)) V

(Comm(A, Q) = Right /\ R ¢ ref(t))

This definition is asymmetric in the sense that the outcome of applying
the mapping to R, t is affected by whether Q is the "left" or "right" partic
ipant in any communication using the events A. In particular, the refusals

14That the process has not yet engaged in any communication on channels data and ack
is indicated by the use of () as an argument to ref ac/,·

4.3. Extraction patterns in tbe stable failures model 95

of Q will be considered with respect to ref if it is the left-hand participant
and with respect to ref if it is the right-hand participant. ~oreover, if a
particular process breaches the bounds imposed on it, then extr rej will force
the corresponding specification process to refuse B at the appropriate point:
we have seen above in reference to the running example that a breach of
refusal bounds may lead, after composition, to deadlock on the set of events
Aack and so extrrej would force the specification to deadlock on Back if this
should occur. 15

That the definition of extr rej (R, t, Q) is asymmetric in the sense described
above is necessary since communication is generally asymmetric in nature.
If b is regarded as an input channel in a particular process, then that process
will usually offer all of the events on b; if it is an output channel, then the
process may only offer a single event on b. As a result, the two parties to a
communication may refuse very different sets of events from ab and so may
respect very different refusal bounds, while still guaranteeing the progress
after composition which we want.

This fact of asymmetricity is one of the reasons why we compose pro
cesses using only the network composition operator. Consider two imple
mentation processes P and Q, where ePi E EP(P) n EP(Q), Y = aP n aQ
and Comm(Ai, P) =1= Comm(Ai, Q). Then it is not clear whether we should
take Comm(Ai, (P Ily Q)) = Left or Comm(Ai, (P Ily Q)) = Right. In fact,
neither makes much sense and so Ily may not be used in the definition of
implementation contexts. In P ®y Q, by contrast, all events from A are
hidden16 and, by proposition 4.5, ePi tJ. EP(P ®y Q).

We now consider how the definition of extr rej relates to the conditions
given in figure 3.6. We first note that it meets implicitly condition SFs3.
Condition SFs4 may be translated here to mean that extr rej (A, t, Q) = B
and it is easy to show that it is met. By Ep5 from figure 4.6, any set
in ref(t) must be a proper subset of A and so A tJ. ref(t). By definition
4.9, it cannot be the case that A E ref(t). Hence, extr rej (A, t, Q) = B
whether Comm(A, Q) = Left or Comm(A, Q) = Right. Condition SFs5 on
the monotonicity of the mapping in the refusal argument is met since both
ref(t) and ref(t) are subset-closed (the former follows by Ep5 and the latter
by definition 4.9).

That processes may be combined using only the network composition op
erator means condition SFs6 is not meaningful in the approach we takeY

151n some circumstances, we will actually disallow any breaching of refusal bounds: see
condition Dom-SF-check in figure 4.9 and the related discussion in section 4.4.l.

16This is similar to the approach taken in ees (see [50]): communication there is
asymmetric since we can only synchronize an action a with its complement a and the
result of the synchronization is hidden from view.

17Let P, Q be implementation processes. 'x(RU S, t) from SFs6 refers to R and S where

4.3. Extraction patterns in the stable failures model

EP5-FVI Let Q be an implementation process. If A ~ Fvis and
events{t) U R ~ A, then extrre/ (R, t, Q) l!. R.

Figure 4.7: Mapping refusals when A ~ Fvis

96

However, extrre/ meets a similar condition which is sufficient in view of
the restrictions placed on process composition. The condition is the fol
lowing, where P, Q are implementation processes, ep E EP(P) n EP(Q),
Comm{A, P) =J Comm(A, Q), R U 5 ~ A and t E Dom:

if R U 5 = A, then extr re
/ (R, t, P) U extr re

/ (5, t, Q) = B.

If RU 5 = A then, by definition of ref and ref, either extr re/ (R, t, P) = B or
extr re/ (5, t, Q) = B. A possible alternative means of defining the mapping
applied to refusals is given in section 4.8 below. It was suggested by the
nature of condition SFs6 and so does meet it.

4.3.2 Mapping refusals when A C Fvis

In this case, the necessary definition is given by condition Ep5-FvI in fig
ure 4.7. It is a direct counterpart of condition SFs2 from figure 3.6.

4.3.3 From "local" to "global" definitions

As with Dom in TR-GLOBALI, the notion of dom is lifted to the set of
extraction patterns EP (Q). It is also necessary to do the same with extr ref .
The relevant definitions are given in figure 4.8. Condition SF-GLOBAL2 is a
counterpart of SFs7 from figure 3.6. When dealing with sets of extraction
patterns, note that the components dom, ref, ref and extrre

/ may all be
subscripted as in the traces model in order to avoid ambiguity.

4.3.4 Running example

We extend here the extraction pattern ep ack so that it may be used to inter
pret in the stable failures model the processes Leftlmpl and RightImpl from
figure 1.1. domack is defined as follows:

domack l!. {(data.D, ack.yes), (data.D, ack.no, data.D) ,
(data.I, ack.yes), (data.I, ack.no, data.I))·.

R is part of a refusal from P, S is part of a refusal from Q and R U S is part of a refusal
from P Ily Q for Y = aP n aQ.

4.4. Retinement-after-hiding in the stable failures model

SF-GLOBAL! dOmEP(Q) is the set of t E (AI U ... U Am)·
such that tr Ai E domi for 1 :::; i :::; m.

SF-GLOBAL2 Let R ~ aQ and t E DomEP(Q). Then

extr~~(Q)(R, t, Q) /), Ul~i~m extr':' (R n Ai, trAi , Q).

97

Figure 4.8: Global definitions in the stable failures model, where Q is an
implementation process

"Completeness" here - i.e. membership of domack - means that a par
ticular communication over the channels data and ack has been completed.
Since Domack is given as the prefix-closure of domack, its definition has not
changed (see section 4.1.7). The component ref ack' where t E domack and
t 0 u E Domack, is defined as:

{

20data if u = (data.v)

ref ack(t 0 u) /), {R E 2odataUoack I adata ~ R} if u = 0
{R E 2odataUoack I data.v ¢ R} if u = (data.v, ack.no)

Recall that Comm(adata U aack, Leftlmpl) = Left and Comm(adata U
aack, RightImpl) = Right. This means that Leftlmpl is considered with re
spect to ref ack and RightImpl is considered with respect to ref ack. Assuming
that both processes always respect the refusal bounds, then the following
will hold. When behaviour is complete, Leftlmpl will offer at least one event
on the channel data; RightImpl will be ready to receive any event on that
channel (see statement of ref ack(0) in section 4.3.1 above). After a single
data transmission, Leftlmpl will accept any event on channel ack and so,
by definition 4.9, RightImpl need only offer one of those events. Finally, af
ter a negative acknowledgement has been communicated, Leftlmpl will offer
the necessary data retransmission and RightImpl will be ready to receive it.
Thus, if both implementation components respect the refusal bounds, they
will always synchronize on at least one event from the channels data and ack
when they are composed in parallel.

4.4 Refinement-after-hiding in the stable fail
ures model

We now move on to consider how the above detail may be used to define
a notion of refinement-after-hiding in the stable failures model. Before pro
ceeding, note that all definitions, conditions and restrictions from sections

4.4. Refinement-after-hiding in the stable failures model

Dom-SF-check Let (t, R) E ¢DomEP(Q)Q be such that R ~ aQ. Let
ePi E EP(Q) be such that Ai n Fvis = 0. If
extrre! (R n Ai, tr~, Q) = Bi then tr Ai E domi.

98

Figure 4.9: Extra condition on failures, where Q is an implementation process

4.1 and 4.2 are assumed to still apply in this model. Where Q is an imple
mentation process, we shall not wish to consider those failures of Q whose
trace component is not in DOmEP(Q). In addition, it will also be necessary to
isolate those failures whose trace component is from dOmEP(Q). We therefore
introduce the following notation. (As for definition 4.8, this definition will
generally be appealed to implicitly in proofs of results from this chapter.)

Definition 4.11. Let Q be an implementation process. Then the following
hold by definition.

1. ¢DOmEP(Q) Q is the set of those stable failures of Q in which the trace
component belongs to DOmEP(Q).

2. ¢dom EP(Q) Q is the set of those stable failures of Q in which the trace
component belongs to domEP(Q).

In chapter 3, >..(¢Q) was defined by applying>.. to R, t for all (t, R) E ¢Q
(provided that R ~ aQ). Here, however, we shall apply extr~~(Q) only to
refusal/trace pairs from failures in ¢dOmEP(Q)Q: that is, those failures whose
trace components are complete in some sense. It is for this reason that the
dom component is introduced (see section 4.4.1 for more details). In tandem
with taking this approach, we also require that condition Dom-SF -check from
figure 4.9 is met. As a result of this, the notion of refinement-after-hiding
used in the stable failures model - ~~;(Q) - is as defined in figure 4.10.
(extr EP(Q) is again overloaded and may be applied to denotations in the
stable failures model or to sets of stable failures.) As in the traces model,
and for similar reasons, we do not consider explicitly issues of definedness
in the conditions in figure 4.10. Note also that, by proposition B.14 in ap
pendix B, domEP(Q) ~ DOmEP(Q) for any implementation process Q and so
extr~~(Q)(R, t, Q) is defined in the statement of SF-DEF2.

4.4.1 Role of Dom-SF-check

We first discuss briefly how the condition Dom-SF -check actually works be
fore considering why it is necessary to use it. This will highlight the need for
the dom component.

4.4. Refinement-after-hiding in the stable failures model

SF-DEFt extrEP(Q)([Q]sp) 6 (extrEP(Q) (TQ), extrEP(Q) (4)Q)).

SF-DEF2 extrEP(Q)(4>Q) 6 {(extrEP(Q) (t), X) I (t,R) E 4>domEP(Q)Q
/\ R r;, aQ /\

99

X r;, extrr;~(Q) (R, t, Q) U (~ - extrset(aQ))}.

SF-DEF3 Q ~~;(Q) P if and only if extrEP(Q) ([Q]sp) r;, [P]sp and
Q meets Dom-T -check and Dom-SF -check.

Figure 4.1D: Defining refinement-after-hiding in the stable failures model,
where Q is an implementation process and P is a process

Dom-SF -check amounts to the requirement that refusal bounds may only
be breached when behaviour is complete (recall that, by Ep3A-FvI, be
haviour over finally visible events is always complete) .18 This forces progress
- that is, the enabling of at least one event - after parallel composition on
the set of events ep.A, where ep.A n Fvis = 0, when behaviour is not com
plete with respect to ep. dom. 19 Since all events on which synchronization
occurs are immediately hidden, this enabled event will be hidden and so the
corresponding state will not contribute to a stable failure of the composition.
This is why, by SF-DEF2, it is only necessary to find a matching failure in the
specification component when behaviour in the implementation is complete
according to domEP(Q).

It would be possible to define a sound notion of refinement-after-hiding
in this model where domEP(Q) in condition SF-DEF2 in figure 4.10 was
replaced by DOmEP(Q) and condition Dom-SF-check was dispensed with.
Were we to do such a thing, however, then the practical applicability of the
method would be much reduced.2o This can be illustrated using the follow
ing small example. We assume a (deterministic) specification process which
executes the trace (in.D, send.D, out.D) and which refuses all other events.
All events on the channels in and out are assumed to be contained in Fvis.
Consider an (deterministic) implementation process, Q, which executes the
trace (in.D, aI, ... ,ak, out.D) E DOmEP(Q) and refuses all other events, where
(al,' .. ,ak) implements (send.D) in some way. In the general case, where
t = (in.D, al, . .. ,a,) for 1 < k, it is possible that extrEP(Q)(t) = (in.D, send.D).
In other words, it may be the case that we interpret send.D as having oc-

ISIf extr;ef (RnAi , tf Ai, Q) = Bi as in the statement of the condition, then this signifies,
by definition 4.10, that the relevant refusal bounds have been breached.

19See the discussion in section 4.3.4 of the refusal bounds used in relation to the running
example.

20 A similar issue is considered in [56] in a bisimulation-type setting; see chapter 5 for
further details.

4.5. The failures divergences model 100

curred before its implementation has actually completed; although this seems
counter-intuitive, it can be necessary in practice and examples of the need for
this can be seen in chapter 7. After executing a" the implementation process
refuses all events but a'+I. If we consider R to be the largest set refused
after t in Q such that R ~ aQ, then out.O E R. It follows by SF-GLOBAL2
and Ep5-FvI that out.O E extr';~(Q)(R, t, Q). But the specification does not
refuse out.O after extrEP(Q)(t) = (in.O, send.O) and so this verification would
fail. However, if we use condition Dom-SF-check and a set of refusal bounds
which allow us to refuse after t everything but a,+! then the verification could
succeed.2I

The problem therefore stems from the interaction between the possibil
ity of interpreting that a high-level event has occurred before its low-level
implementation has completed and the fact that finally visible events must
be preserved when refusal sets have the mapping applied to them. Thus,
we only relate implementation to specification failures when behaviour is
complete according to domEP(Q). Behaviours over finally visible events are
regarded as always complete by Ep3A-FvI since this problem cannot arise
with regard to them.

4.4.2 Soundness of refinement-after-hiding

We now proceed to show that -;;;J~;(Q), defined in figure 4.10, does indeed
constitute a valid notion of refinement-after-hiding in the stable failures mo
del, after first showing that it generalises standard CSP refinement when
aQ ~ Fvis.

Theorem 4.9. Let Q be an implementation process such that aQ ~ Fvis
and let P be a process. Then Q -;;;J~;(Q) P if and only if Q -;;;JSF P.

Theorem 4.10. Let Fimp/ and Fspec be implementation and specification con
texts respectively, as defined in section 4.1.2. Let QI,.·· Qn be component
implementation processes and PI, . .. ,Pn be processes. If Qi -;;;J~;(Qi) Pi for
1 ::; i ::; nand aFimp/(QI, Q2, ... , Qn) ~ Fvis, then
Fimp/(QI, Q2, . .. ,Qn) -;;;JSF Fspec(P1, P2, ... ,Pn).

4.5 The failures divergences model

We finally consider the case of the failures divergences model. We assume
that an extraction pattern is defined here as in the stable failures model and
that all conditions and restrictions imposed in that model still hold here. We

21 We would assume that behaviour in the implementation was incomplete according to
domEP(Q) after the execution of a1 and prior to the execution of ale·

4.6. Equivalence

EP6 Let ep E EP. If ... , tj, ... is an w-sequence in Dom, then
... , extr(tj) , ... is also an w-sequence.

Figure 4.11: A final condition on extraction patterns

101

then impose an extra condition on the mapping over traces, as a counterpart
to condition FDS2 in figure 3.B. This condition is given in figure 4.1l.

Behaviours in this model are interpreted in a manner directly analogous
to that given in definition 3.13 in the previous chapter: see figure 4.12 for
details.22 We denote the fact that Q refines-after-hiding P in the failures
divergences model as Q ~~~(Q) P; its definition is given as condition FD-

DEF4 in figure 4.12. We show that ~~~(Q) generalises standard CSP refine
ment when aQ ~ Fvis before showing that it constitutes a valid notion of
refinement-after-hiding in the failures divergences model.

Theorem 4.11. Let Q be an implementation process such that aQ ~ Fvis
and let P be a process. Then Q ~~~(Q) P if and only if Q ~FD P.

Theorem 4.12. Let Fimpl and Fspec be implementation and specification con
texts respectively, as defined in section 4.1.2. Let Q1, . .. Qn be component
implementation processes and PI, . .. ,Pn be processes. If Qi ~~~(Qi) Pi for
1 ::::; i ::::; nand aFimpl (Q1, Q2, ... , Qn) ~ Fvis, then
Fimpl (Q1, Q2, ... , Qn) ~FD Fspec(P1, P2, ... , Pn)·

4.6 Equivalence

Thus far, we have defined conditions in each of the three semantic models
which allow us to show that an implementation network refines the corre
sponding specification network. If we wish to show that the two networks
are equivalent, it is simply necessary to show that each specification com
ponent refines-after-hiding the corresponding implementation component, as
well as the fact that each implementation component refines-after-hiding the
corresponding specification component.23 (Different - though not neces
sarily disjoint - sets of extraction patterns would be used in each case of

22 As in chapter 3, the use of stable failures and minimally divergent traces allows us
to build refinement-after-hiding in the failures divergences model on top of the treatment
presented for the traces and stable failures models. Also as in chapter 3, it allows for a
cleaner treatment due to the difficulty of making sure that any mapping used is defined
over arbitrary divergent traces and with respect to arbitrary (non-stable) failures of any
particular implementation process.

23With regard to the notion of refinement-after-hiding presented here, and as in the
previous chapter, the terms "implementation component" and "specification component"

4.7. The absence of BTrace and defining implementation alphabets 102

FD-DEFI extrEP(Q)([QhD) tJ. (extrEP(Q) (<I>.lQ) , extrEP(Q) (c5Q)).

FD-DEF2 extrEP(Q)(c5Q) tJ. {extrEP(Q)(t) 0 u I t E DOmEP(Q)
1\ t E minc5Q 1\ u E ~.}.

FD-DEF3 extrEP(Q)(<I>.lQ) tJ. extrEP(Q)(<I>Q) U

{(t, R) It E extrEP(Q)(c5Q) 1\ R ~ ~}.

FD-DEF4 Q ~~~(Q) P if and only if extrEP(Q)(1Q~FD) ~ [P]PD and
Q meets Dom-T-check and Dom-Sf-check.

figure 4.12: Defining refinement-after-hiding in the failures divergences mo
del, where Q is an implementation process and P is a process

course.) When verifying a specification process against an implementation
process in either the stable failures or failures divergences models, it should
generally be possible to regard all behaviours as complete (i.e. to assume that
DOmEP(Q) = dOmEP(Q)). As a result, and by SF-GLOBAL1, Dom-Sf-check
would be met trivially and so could be dispensed with. This is possible since
the problem which Dom-SF-check is intended to address should not arise.

4.7 The absence of BTrace and defining im
plementation alphabets

In chapter 3, BTrace is used to provide an exact characterisation of the sets
which constitute MinSet and of the effect of applying), to members of that
set. These precise characterisations are necessary in order to derive certain
results which are part of the theory presented in that chapter. However,
when working in practice, we simply impose as a condition or definition any
results which were previously derived and so these exact characterisations are
no longer needed; thus, BTrace need not be an explicit part of the treatment
in practice. For example, for ep, ep' E EP such that ep i= ep', ep.A and
ep'.A are effectively sets from MinSet, while ep.B and ep'.B give),(ep.A) and
),(ep'.A) respectively. In chapter 3, the use of BTrace plays an important role
in the derivation of the requirement that ep.B n ep'.B = 0. Here, however,
we simply impose that condition directly using Ep-UNI1 from figure 4.2.

indicate respectively the process whose behaviours are to be interpreted and the process
in whose behaviours we will check for containment of those interpreted behaviours. They
have no further significance than this and an extraction mapping may function either to
make behaviours more abstract or to make them more concrete (or it may leave the level
of abstraction the same if we are dealing only with relaxation of atomicity).

4.7. The absence of BTrace and denmng implementation alphabets 103

BTrace also plays a role in chapter 3 in defining those sets which are
possible candidates for MinSet (and so thereby restricts the sets which can be
used to parameterize the operators used to build implementation network(24).

Nonetheless, the absence of BTrace as an explicit notion in practice does not
indicate a mismatch with the theory. In order to explore this issue further,
we consider how extraction pattern implementation alphabets - which are
the counterpart here to sets from MinSet - might be constructed in practice.

Assume that we are engaged on the verification of an implementation
process, Q, and so it is necessary to define a set of extraction patterns,
EP(Q), to interpret Q's behaviours. In particular, we wish to make the
implementation alphabets of these extraction patterns as small as possible, so
that the restriction on building implementation networks which is imposed by
REPl becomes as light as possible.25 TR-GLOBAL2 from figure 4.3 consitutes
one of the main conditions from this chapter which is in opposition to this
desire, as it effectively places a lower bound on the size of any particular
implementation alphabet. Let t 0 (a) E DOmEP(Q) be such that a E Ai
for ePi E EP(Q) and extrEP(Q)(t 0 (a)) = extrEP(Q)(t) 0 u. Then, by TR
GLOBAL2, u is evaluated according to the following equation: extri(trAi 0

(a)) = extri(tr Ai) 0 u. Thus, Ai must be large enough so that is possible
to evaluate extri(trAi 0 (a)) in practice. In other words, Ai must be large
enough so that t r A?6 gives sufficient information to allow us to intepret
what additional information - i.e. u - is given to us by the occurrence of
a after t (this issue was discussed briefly in section 3.4). This means that
the implementation alphabets to be used in any particular verification in
practice must be built around (the events of) traces in terms of which we
are able to evaluate directly the result of applying the extraction mapping.
Moreover, in order to make those alphabets as small as possible, the traces
around which they are built must be "atoms" or ''indivisible'' in the sense
that they cannot be decomposed further for the purposes of interpretation:
this reflects the use of BTrace - containing traces which may be regarded
as atoms or as indivisible in some sense27 - in defining MinSet in section

24Recall that AliSet is defined in terms of MinSet.
25By definition 4.5, the bigger the implementation alphabets of the extraction patterns

used then the bigger the alphabets of the implementation processes to be composed and
so, by REPl, the bigger the sets on which they have to synchronize in parallel.

26Recall that a E Ai by definition.
27The particular intuition given in section 3.2 with respect to BTrace - namely that

each specification action in Espec may be implemented by a (finite) number of implemen
tation traces and that BTrace consists of exactly those traces - may best be regarded as
an aid to explanation. The significant property of BTrace is the fact that it consists only
of traces which may be regarded as indivisible in some sense. As mentioned in section 3.7,
it is this property which is necessary if the restrictions imposed in section 3.2.6 by Rl and
proposition 3.11 are to make sense. Konetheless, even if we do make the assumption that

4.8. Discussion 104

3.2. Thus, there is no inconsistency between the use of BTrace as a device
to aid the derivation of the theory presented in chapter 3 and the fact that
it does not appear as part of the notion of refinement-after-hiding which is
given in this chapter.

The previous paragraph gives some indication of how the implementation
alphabets used in any particular verification may be arrived at. In practice,
we would probably have a different implementation alphabet for each ''por
tion" of communication in which our process engaged. For example, we might
have (at least) a different implementation alphabet - and so a different ex
traction pattern - for each process with which our implementation process
communicated: if that part of the behaviour of our implementation process
which is visible at the relevant interface makes sense to the process on the
other side of that interface, then it should usually be possible to define an
extraction mapping to interpret those behaviours. However, the process of
deriving implementation alphabets to be used in practice is still very much
an area for further work and development of a methodology with respect
to this will rely on the application of refinement-after-hiding to a far wider
range of case studies than has so far been considered.

As a final comment, note that BTrace may appear implicitly in the defi
nition of extraction mapping domains and in the definition of the mappings
themselves. For example, the traces used in the definition of Complete in
section 4.1.7 could constitute traces from BTrace were such a notion to be
used explicitly here and both Domack and extr ack are defined in terms of
them. Indeed, the definition of extr ack shows one way of giving a composi
tional definition of an extraction mapping over traces whose events fall com
pletely within a particular implementation alphabet (the formal definition of
refinement-after-hiding is silent on this issue).

4.8 Discussion

We now proceed to discuss the way in which the concrete notion of refinement
after-hiding presented in this chapter relates to its predecessors and the
way in which its development has been impacted on by the theory devel
oped in the previous chapter. Predecessors of the work in this chapter in
clude [10,12,16,39,40]. [39] and [40] treat differently the case of cyclic and
acyclic implementation networks and impose on specification components a
number of restrictions, such as the fact of never refusing any input. These
treatments were combined into a single notion of implementation relation in

each specification action in E8pec may be implemented by a (finite) number of implemen
tation traces, we would generally expect each such trace to be regarded as indivisible for
the purposes of interpretation.

4.8. Discussion 105

[10] (on which [12] is based) and the presentation in these latter two papers
formed the beginning of the work in this thesis.

In addition to the extensions and modifications discussed below - which
were contributed solely by the author - there is a major difference of pre
sentation between the work given here and its predecessors. Previously, the
treatment was confined to the failures divergences model, whereas here we
deal individually with each of the three semantic models. In addition, the mo
tivation behind this earlier work was to develop an implementation relation
which could be used to relate an implementation component to its corre
sponding specification component in the event that the communications of
the latter had been implemented in the former using some form of fault tol
erance, possibly replication. In fact, considering the correctness of replicated
processes was the main motivation behind [39]. The conception of the work
was therefore far less general than it is here.

Mapping refusals and finally visible events The implementation rela
tion given in [12] was lacking in one important property: it effectively failed
to meet the condition that >.(cjJQ) = cjJQ when aQ ~ Fvis. This problem was
solved immediately due to condition SFs2 from figure 3.6 and this constitutes
one of the most important contributions made by the theory from the pre
vious chapter. Previously, the mapping of refusal/trace pairs at the level of
individual extraction patterns was carried out in the same manner whatever
the implementation alphabet of the extraction pattern under consideration.
More specifically, there was no equivalent of condition Ep5-FvI from fig
ure 4.7. Although given in a different form to Ep5-FvI, this modification to
the presentation in [12] first appeared in [13] and [16].

An alternative means of mapping refusals We consider here the issue
of mapping refusal/trace pairs at the level of individual extraction patterns
and consider an arbitrary extraction pattern epj. (Note that the following
detail is simply sketching out a possible approach and is not intended to
be a fully realised and formal presentation.) Although condition SFs6 from
figure 3.6 deals only with refusals which are maximal in a certain sense,
the means of mapping refusals given in definition 4.10 does not impose this
restriction. If we remove from SFs6 the condition relating to maximality
and translate to the notation used in this chapter, then we are given the
following:

This immediately suggests the following way of mapping refusal/trace
pairs in practice, where t E Domj and R ~ Ai:

4.8. Discussion 106

extr,('(R,t) 6 U extr;e'({a}~t).
aER

Once we have adopted this compositional definition, SFs6 will be met how
ever we proceed. Condition SFs2, requiring that extr,(' (R, t) = R if Ai ~
Fvis, can be met easily by simply requiring that

extr'('({a},t) 6 {a} for a E Ai ~ Fvis.

The question remains, therefore, of what extr;e' ({ a}, t) should return in
the general case. Before presenting a possibility, we define the set Rfi(t),
which gives all those events from Bi which cannot extend extri(t) when we
apply extri to any to x E Domi. For t E Domi,

Rfi(t) 6 {b E Bi I (,Bx E An to x E Domi /\ extri(t) 0 (b) ~ extri(t 0 x)}.

As a counterpart to SF4, we first require that Rfi(t) ~ extr,(' (R, t) for
any R ~ Ai: in other words, events which are impossible after the extraction
of t must be contained in the extracted refusals. Then, for to (a) E Domi,
it is possible to relate a to the high-level event or events which it is being
used to implement when it occurs after t. extr,(' ({ a}, t) would return this
set of high-level events along with Rfi(t). For a E Ai such that to (a) ¢
Domi, extr'('({a},t) would simply return Rf·(t). In terms of the running
example from figure 1.1, we would take extr~({data.j}, 0) to be {send.j}
for j E {O, 1}. This is because data.j is being used to implement send.j
when it occurs after () (of course, it is used to implement send.j whenever
it occurs). Moreover, Rf~~k would be empty.

It is immediate that such an approach would meet SFs3, which requires
that extr,(' (R, t) ~ Bi and it is also immediate that SFs5, requiring the
monotonicity of the mapping, would be met. It is also easy to show that
SFs4 is met; that is, that extr,(' (Ai, t) = Bi. In order to show this, by SFs3
it is only necessary to show that Bi ~ extr,(' (Ai, t). For b E Bi n Rfi(t) , the
proof is immediate. For b E Bi - Rfi(t), there must be an event a E ~ such
that to (a) E Domi and a is used to implement b. Thus, b E extr,(' (~, t) in
this case as well.

The intuition behind this possible approach is as follows: if we can refuse
a after t at the implementation level, then we may be unable to offer, after
extri(t) at the specification level, any b which this occurrence of a is being
used to implement. Whether this intuition makes sense in terms of practical
verification is something that would need to be assessed on concrete examples.
Note that refusal bounds would still need to be retained in order to deal with
condition Dom-SF -check.

4.8. Discussion 107

Dealing with divergence In [12] and [16], it is assumed that specifica
tion components are divergence-free and that they will be composed in such
a way that the resulting specification network will also be divergence-free.
Moreover, one of the conditions imposed on any implementation component
Q is that no trace from TDomEP(Q)Q should also be a member of 8Q. Finally,
the condition is imposed that applying the extraction mapping over traces
to an w-sequence from TDomEP(Q)Q should return another w-sequence. This
guarantees that divergence will not be introduced on composition of the im
plementation components since it is not introduced when the corresponding
specification components are composed.

The move from this treatment to that used here, which allows us to deal
smoothly with divergences, was again indicated by the theory in the previous
chapter, specifically condition FDS2 from figure 3.8 and the detail from sec
tion 3.6. Once we have removed the restriction that implementation and spec
ification networks/component processes must be divergence-free and have
applied the extraction mapping to (minimally) divergent traces, the original
condition on w-sequences is actually sufficient to give us what we need, since
it is effectively equivalent to FDS2. Nonetheless, the move to imposing the
condition on individual extraction patterns rather than on component imple
mentation processes is important: it saves on verification effort by making
the check part of the construction of the extraction pattern rather than part
of the verification of the process. Moreover, the role played by minimally
divergent traces - which do not appear in earlier work - in the proofs of
results from this chapter is crucial to extending refinement-after-hiding to
the failures divergences model.

Role of implementation alphabet That events occur on channels was
an explicit part of the presentation in [12] and [16] and was integral to the
notion of refinement-after-hiding presented there. Channels in specification
components were partitioned into input and output channels and the spec
ification alphabet of any particular extraction pattern could only contain
events from input channels or events from output channels but not both.
This led to two main differences to the treatment given here. Firstly, it was
not necessary to introduce communication capabilities or the fact that com
position over a particular implementation alphabet could only occur if one
participant was denoted as Left and the other as Right; composition was
controlled implicitly, at the specification level, by the fact that input chan
nels may only be connected to output channels and vice versa. In addition,
the extraction pattern component e was not used: an extraction pattern
dealing with input events allowed deviation from the domain on any of the
events in its implementation alphabet, while an extraction pattern dealing
with output events did not allow any deviation at all.

4.8. Discussion 108

The decision was made to abandon this treatment for two connected rea
sons, one more theoretical and the other practical. Condition Ts4 from
figure 3.4 was present in the predecessors of the work in this chapter (it is
given here as TR-GLOBAL2 in figure 4.3). However, its appearance in the
theory as a necessary condition served to highlight with a certain amount
of clarity the role played by the implementation alphabets of the extraction
patterns used in any particular verification (represented in the previous chap
ter by the sets contained in MinSet). Assume that Q is an implementation
process, to (a) E DOmEP(Q) and a E Ai for ePi E EP(Q). By TR-GLOBAL2,
we define extrEP(Q)(t 0 (a)) in terms of extrEP(Q)(t) and extri((t 0 (a))fAJ
In a sense, as discussed in section 3.4, extri((t 0 (a))fAi) is a function from
a trace, tr~, and an event, a, to the trace extension u which is used in the
statement of TR-GLOBAL2. This means that Ai tells us what we need to
know of t in order to determine the additional information which is given to
us by the occurrence of a after t.

As a result, the aforementioned partitioning of extraction patterns only
makes sense if we can always interpret a when it is used to implement input
events by only knowing about the other events contained in t which are also
used to implement input events, and similarly for output events. In the
general case, however, this is not true and a specific example arose during
the verification of the asynchronous communication mechanism described
in chapter 7. At the specification level, the mechanism engages in read
(output) and write (input) events: however, in order to interpret events used
to implement a write it is necessary to know about the read behaviour of the
mechanism so far and similarly for events used to implement a read. Using
the approach from [12] and [16], it was therefore not possible to successfully
verify the mechanism.

Equivalence Although the detail does not appear in the conference pa
per [12], [10] defines additional extraction pattern components and extra
conditions which can be used to prove "equivalence" of an implementation
and specification network.28 An additional trace mapping, inv - a partial
inverse of the extraction mapping - is provided to relate abstract traces
to concrete traces. It is required that it is a trace homomorphism: in other
words, inv((al, ... , an)) = inv((al))o ... oinv((an)). The restriction is placed
on specification components that after any trace, on any input channel, either
all events must be refused or all events must be offered. Finally, an additional
condition relating to the mapping of refusals from the specification is also
imposed. Together, these last two conditions amount to using the standard

28The equivalence which may be proved is not standard CSP equivalence because of
issues relating to mapping refusals, as detailed above.

4.8. Discussion 109

notion of refusal bounds but with a fixed set of bounds to be applied regard
less of the particular specification process under consideration. It became
clear in deriving the conditions in chapter 3 that there were no theoretical
reasons for treating the verification of specification against implementation
differently from that of implementation against specification. 1foreover, the
requirement on inv that it be a homomorphism would be too restrictive if we
were to deal with equivalence during the verification presented in chapter 7:
there, communication events in the specification are implemented in different
ways depending on the (specification) events which have preceded them. In
other words, the full generality of a mapping from traces to traces is needed.

4.8.1 General role of the theory

We have highlighted above a number of areas in which the notion of refinement
after-hiding presented here differs from earlier versions, which changes were
all introduced under the influence of the work in the previous chapter. In
general, where changes were not suggested, the conditions derived in chapter
3 were useful in that they confirmed the soundness of earlier work and clar
ified our understanding of that work. For example, the results on mapping
operators by simply mapping the sets with which they are parameterised,
and on the way in which the mapping is to be applied to such sets, were very
important. They confirmed that the approach taken in practice in earlier
work was correct and not subject to alteration. Where the change required
was not so great, such as in the case of divergences, the impact of the the
oretical treatment should not be underestimated since it pinpointed exactly
the approach to be taken and saved time and effort in the search for possible
alternative ways of proceeding.

The issue of mapping refusals perhaps illustrates most fully the role which
the theory can play. It highlighted immediately a solution to an earlier
problem. It gave a framework for analysis within which the current use of
refusal bounds in the mapping of refusal/trace pairs could be easily assessed
and understood. Finally, the theoretical treatment suggested a new approach
to the mapping of refusals and gave, in conditions SFs2-6, a straightforward
way of assessing the soundness of any new method chosen.

Chapter 5

Related work

When behaviour decomposition and relaxation of atomicity are referred to
in what follows, it is assumed we mean the external forms of these types of
reification, since the internal versions can always be dealt with quite straight
forwardly (at least in CSP).

5.1 Action refinement and related approaches

Action refinement (see [25] for a survey of this approach) is one of the main
approaches which allows us to perform behaviour decomposition in a process
algebraic setting and a great deal of work has been done in this area. In gen
eral, each action in the specification process under consideration is replaced
by a precise, low-level behaviour which is defined by a refinement function.
In this respect, it is related to the idea of top-down design in sequential sys
tems, where high-level instructions are expanded into a lower-level module
until the result is an implementation that may be executed. Action refine
ment is primarily concerned, therefore, with the derivation of an (correct)
implementation and not with verification after the fact, in contrast to our
notion of refinement-after-hiding. It suffers from two problems, however.
Only a single implementation is possible for any particular specification and
refinement function pair. Moreover, causal relations between events in the
specification must be preserved in the implementation. For example, if a

precedes b in the specification, then all of the events which form the im
plementation of a must precede in the implementation all of those events
which form the implementation of b. Some forms of action refinement are
able to perform relaxation of atomicity to the extent that, if a and b occur
concurrently in the specification, then their respective implementations may
interleave. However, this is the limit of the relaxation of atomicity which is
possible.

[32] and [60,71] use a dependency relation and a weak form of sequential

110

5.1. Action refinement and related approaches 111

composition in order to allow additional relaxation of atomicity in an action
refinement framework. Any action of the first argument to the new com
position operator must precede all actions from the second argument with
which it is dependent. However, an action from the second argument may
precede one from the first provided that the two actions are independent.
Nonetheless, there is still only one possible implementation for a particular
specification (for any given refinement function and dependency relation).

In order to deal with these twin problems of action refinement - only
a single implementation possible and only restricted relaxation of atomicity
allowed - Rensink and Gorrieri presented the work in [59] (earlier versions
appeared as [57] and [58]; an alternative presentation of some of the material
appeared in [25]). The paper [59] works in the process algebraic context and
details a notion of refinement termed vertical implementation, which may be
used to verify correctness when behaviour decomposition has occurred in the
move from specification to implementation, along with a degree of relaxation
of atomicity. We first list some of the aims behind this work, taken from [59],
to illustrate the fact that it is similar in concept to ours.

• the vertical implementation relation is parametric with respect to a
mapping.

• flexibility: multiple implementations are allowed for a given specifi
cation and a strict ordering is not dictated for the low level actions
implementing a high level one;

• simplicity: the introduction of a concurrency model more complex than
any of the standard interleaving ones is not required;

• the vertical implementation relation "collapses" to a standard notion
of refinement when the mapping is the identity;

• deadlock properties carryover from the abstract to the concrete level;

• compositional verification is allowed in the same sense as our approach.

The fact that the vertical implementation relation "collapses" to a stan-
dard notion of refinement when the mapping is the identity, along with the
way in which the operators used interact with the refinement mapping, means
that the notion of vertical implementation is essentially a form of refinement
after-hiding, although it is not presented in such terms. However, there are
important differences in terms of concept and also in terms of technical exe
cution which exist between the work in this thesis and that in [59].

The motivation behind our work was to explore a means of generalising
refinement in CSP in order that both behaviour decomposition and relax
ation of atomicity could be accommodated in the general case. Rensink and

5.1. Action refinement and related approaches 112

Gorrieri start from the premise that action refinement has the shortcom
ings described above and seek to remedy them. Inherent in their treatment,
therefore, is the restriction that the vertical implementation relation is to be
parameterized with an action refinement mapping. This means that the do
main of the mapping contains only individual (specification) events, although
each event may be mapped to a process. Although we map to individual be
haviours rather than processes, there do seem benefits to be gained from
using our more general type of mapping. In particular, we can (attempt to)
verify correctness in the event that relaxation of atomicity has occurred with
out behaviour decomposition: it is not obvious how the same thing could be
done using an action refinement mapping. Moreover, in the general case, it
need not be true that the same high-level action is always implemented in the
same way wherever it occurs: this certainly applies to the asynchronous com
munication mechanism whose verification is considered in chapter 7. This
suggests the need for an abstraction mapping and one which takes account
of the history of any particular event to which it is applied. As a general
point, if the aim is to allow multiple implementations for a single specifi
cation then using an abstraction mapping from possible implementations to
specifications seems a more sensible way to proceed than using a mapping to
make behaviours more concrete.

Where our treatment is based around a semantic mapping, Rensink and
Gorrieri provide as a foundation of their notion of vertical implementation
a set of (syntactic) proof rules. If a concrete relation is to be viewed as a
valid vertical implementation relation, then these rules must be sound with
respect to that relation. As a result, the rules define both what it means to
be a vertical implementation relation and also give a proof system for any
such concrete relation: this latter is something we are lacking with respect
to refinement-after-hiding. Many of these rules playa similar role to the
conditions RAHl-3 from chapter 3, although they are given with respect to
the full range of operators. In addition, a rule is given on relaxing causality
when refining actions (in addition to the interleaving which is allowed when
the events being implemented are independent at the specification level).

In [59], communication is treated symmetrically: both parties to a com
munication are required to offer all of the relevant events used to implement
a particular high-level event. However, [25] does introduce a version of ver
tical implementation whereby one party to a communication must offer all
relevant events, while the other party need only offer some of those events.
Such a treatment is similar to the use of refusal bounds in our concrete no
tion of refinement-after-hiding, although it is not quite as general as using
(the equivalent of) refusal bounds: it seems similar to disallowing the refusal
of any events on one side of the communication and simply requiring the
offering of one of the possible events on the other.

5.2. Choosing a semantic over a syntactic mapping 113

Similar conditions on readiness to communicate are also a feature of the
paper [56]. Using a notion of abstraction, it sets out to answer the question
of when a set of fine-grain execution steps may be contracted into an abstract
atomic action and so aims to explore notions of correctness which are useful
when considering relaxation of atomicity. It does this in a restricted setting,
considering the interactions between a client or agent and a server: the
client may invoke a method of the server, to which invocation the server will
(eventually) respond. The aim is for the relevant notion of ''implements''
to hold whenever the client cannot see the difference between the "atomic"
and the "non-atomic" servers: that is, whenever the result of composing the
respective servers with the same client is two "equivalent" systems. This is
similar to our initial characterisation of refinement-after-hiding.

Of most interest, however, is the operational characterisation of the de
sired notion of implementation, which is based on coupled simulation ([52,
53]). The choice of such a basis on which to build the notion of abstraction
is justified in the following terms. Intuitively, if the concrete state s "imple
ments" the abstract state Sf, standard bisimulation relations such as weak
bisimulation might also require that Sf "implements" s. The use of coupled
simulation allows that the abstract Sf need only implement the concrete s
when behaviour at s is complete in a sense similar to that used in our no
tion of refinement-after-hiding. This feature of the relation is not needed for
soundness, rather it makes it weaker and allows more systems to be verified
as correct. It seems that it may fulfil a similar requirement to the use of con
dition Dom-SF-Check in our work; in any case, it is an issue which invites
further exploration. In particular, it may have implications for any future
attempt to transfer the work presented here to a bisimulation setting.

5.2 Choosing a semantic over a syntactic map-
• pIng

In this thesis, we have chosen to use a semantic rather than a syntactic
mapping. Here, we consider reasons behind this choice, with some reference
to the discussion above on action refinement and vertical implementation.

Were we to use a syntactic mapping, it would effectively have to be de
fined over individual events due to the difficulty of defining it directly over
arbitrary processes. As a result, using a syntactic mapping would mean
using a refinement mapping to make behaviours more concrete. However,
as discussed above in relation to the notion of vertical implementation, it
seems more sensible to (be able to) use an abstraction mapping if we wish
to allow multiple implementations for a single specification. :\1oreover, also
as mentioned above, defining a mapping over individual events means that

5.3. External behaviour decomposition (interface reEnement) 114

each specification event must be implemented in the same way whenever it
occurs. This need not be true in general and is certainly not the case wi th
regard to the asynchronous communication mechanism whose verification is
considered in chapter 7. Of course, we could deal with this problem by ann~
tating different instances of the same event and having events with different
annotations implemented in different ways: however, determining how a par
ticular event should be annotated - at least in the case of the asynchronous
communication mechanism from chapter 7 - would rely on knowledge of the
history of the process up to its occurrence. This would effectively require a
mapping over sequences of events rather than over individual events and so
would require a semantic mapping. ::.. 1 ore over , the same syntactic occurrence
of an event may have different histories on different executions and so may
be implemented in different ways in different executions: thus, it may not be
possible to give a particular syntactic event a unique annotation.

5.3 External behaviour decomposition (inter
face refinement)

Two papers which explicitly set out to deal with the issue of interface refine
ment are [7] and [24].

The approach followed in [7] is termed there "interface displacement". In
this approach, the aim is to take the abstract interface of two specification
components, P and Q, and transform it into a more concrete one. The
interface change is then encoded in a process I: I is composed in parallel with
P on the set of abstract interface actions and these actions are then hidden
to give the implementation process pI, with the more concrete interface. In
order to give to Q the concrete interface, the process I is "subtracted" from
Q in a sense, giving the implementation process Q'. Q' is such that, if I were
composed in parallel with it on the concrete actions of the (new) interface
and those concrete actions hidden, then the result would be the original
process Q. It is in this sense that the interface is "displaced". [7] therefore
gives a means of carrying out the process of interface refinement rather than
verifying its correctness after the fact. There is an interesting similarity with
predecessors of the work in this thesis: namely, the interface transducers play
a role comparable to that of the disturbers and extractors of [39], although
there is no notion of "displacement" in [39] and all interfaces are treated in
a uniform manner.

There are, however, a number of differences between the approach pre
sented here and that in [7]. The latter is focused on the refinement of a
(specification) compound system, where the components interact through a
well-defined interface, into a compound implementation system, where that

5.4. Abstraction through hiding 115

interface has been refined. This interface refinement is then justified on the
grounds that the compound implementation system is guaranteed to be a
correct implementation of the specification system in terms of a standard
implementation relation such as traces or failures inclusion. There is no
notion of being able to relate individual implementation and specification
components - refinement of a particular process interface must be done
in tandem with that of its environment - and so no notion of any sort of
vertical implementation relation in the terminology of [59].

The paper [24] gives an initial formulation of a notion of interface re
finement which is similar in outline to our notion of refinement-after-hiding.
Working in a temporal logic framework, low-level (infinite) behaviours are
related to high-level (infinite) behaviours using a device which is similar to
our extraction mapping. Moreover, according to the examples discussed, it
seems that the method has the power to deal simultaneously with both be
haviour decomposition and relaxation of atomicity. However, it lacks the
power of compositionality: that is, it is not shown that any operators on
processes are monotonic with respect to this relation. This means that, if
the interface between two components composed in parallel is to be refined,
it is necessary to verify the composed implementation against the composed
specification (the interface actions are not hidden in this composition).

It is the avowed intention of the authors in [24] to define a notion of inter
face refinement which is as unrestricted as possible. The result of this appears
to be, however, that it is not clear what it actually means that one system
implements another nor what properties are preserved from specification to
implementation. Lack of compositionality may be crucial in this respect: for
example, in our treatment, compositionality (conditions RAH2 and RAH3)
and the condition RAH1 (expressing a kind of "collapse" property) are the
criteria against which the validity of any notion of refinement-after-hiding is
judged and they essentially invest such notions with meaning.

5.4 Abstraction through hiding

Looking at the general issue of behaviour abstraction, some approaches (for
example, that described in [1]) describe system behaviour by sequences of
state tuples with an internal component; they then require that, for every
possible state sequence of a correct implementation, there should exist one
of the specification such that the two sequences coincide after deleting the
internal state component. A similar treatment is presented in [38], using
infinite action sequences (i.e. infinite traces) instead of state sequences: the
interface of the specification must be a subset of the interface of the imple
mentation and it is required that every trace of the implementation can be

5.5. Relaxation of atomicity 116

turned into one of the specification by deleting actions not in the specifica
tion's interface. These two approaches and other comparable ones, such as
[47], are based on abstraction by hiding. In contrast, our notion of abstrac
tion is essentially based on the interpretation of behaviours over a particular
alphabet as behaviours over another alphabet. As illustrated by the example
given in section 1.4.1 in chapter 1, abstraction by interpretation may not be
reduced to abstraction by hiding in the general case. Nonetheless. abstrac
tion through hiding is certainly useful and is comparable to our work to the
extent that we expect to eventually hide any interpreted behaviour, leaving
implementation and specification systems which may engage in the same set
of visible events. However, refinement-after-hiding gives a means of verifying
that abstraction through hiding will give correct behaviour before we actually
compose the components of a system and hide the necessary behaviour: in
this sense, it gives a compositional means of verifying a notion of abstraction
through hiding.

5.5 Relaxation of atomicity

Some of the action refinement-related papers already discussed - such as
[56], [59], [60J and [71J - have some capacity to deal with the issue of relax
ation of atomicity, as did the work presented in [24J. Here we consider other
work where managing relaxation of atomicity is/was the principal aim.

One of the major areas of work where this issue has been addressed is that
of databases and transaction-processing systems. In this area, a specification
is given in terms of a set of sequential behaviours: this generally means that
the transactions occurring in a particular specification behaviour are totally
ordered and their executions do not overlap.l An implementation is then
allowed to execute (parts of) some transactions in parallel, provided that
the resulting parallel behaviour is equivalent in some sense to an acceptable
sequential behaviour. In general, this notion of "equivalence" consists of two
factors: the first is that, using some suitable dependency relation, the events
of the implementation behaviour under consideration may be transformed
into a (sequential) specification behaviour by commuting events regarded as
independent; secondly, the result of executing the implementation behaviour
is the "same" as the result of executing the corresponding specification be
haviour. This latter point is generally framed as the requirement that an
observer would be unable to distinguish the implementation behaviour from
the specificiation behaviour. (This notion of observer may not always be

1 Note, however, that a specification will not usually be given explicitly in the database
domain and "specification" behaviours are usually those sequential behaviours which are
possible for the implementation.

5.5. Relaxation of atomicity 117

treated explicitly, however.) Relevant notions from the literature include
serializability (see, for example, [2]) and the notion of "atomicity" defined
in [48]. Related notions in the more general context of managing paral
lel access to shared memory in a multi-processor architecture are sequential
consistency ([42]) and linearizability ([29]). Sequential consistency requires
that the dependency relation used to commute implementation events to
give sequential behaviours preserves the ordering of events which occur in
the same process; linearizability requires in addition that we preserve the
global (external) ordering of non-overlapping operations.

Similar to an extent is the work by Lamport in [43], where executions of
a low-level (non-atomic) system and those of a high-level (atomic) system
are related on the basis of orderings which exist between events at a partic
ular level of abstraction. Although Lamport's work effectively allows for the
possibility of moving across levels of abstraction - we may contract a set of
low-level actions into a single high-level action - that of the others does not:
in general, sequential processes engage in the same events as non-atomic pr~
cesses. It is difficult to compare directly our notion of refinement-after-hiding
and the work discussed in this section, not least because dependencies be
tween events do not form part of our treatment. Nonetheless, an interesting
avenue for future work might be to explore possible relationships between
refinement-after-hiding and such dependency-based notions of correctness:
for example, since dependencies between events play such a fundamental
role in the move from sequential to parallel behaviours, how do they affect
our ability to derive an extraction mapping which relates those behaviours?

As indicated in chapter 1, Dingel's thesis ([21]) uses a notion of correctness
in-context based on the rely-guarantee approach as he develops a refinement
calculus to be used in the derivation of parallel programs. This work ob
viously allows for the possibility of relaxation of atomicity. However, this
relaxation is not permitted to manifest itself at the semantic level once those
behaviours have been ignored which fail to meet the relevant rely condition.
In other words, the behaviours of the implementation which will be pre
served after it is placed in context can be compared directly with those of
the specification and no alternative notion of refinement is needed.

The papers [34,35,37] introduce transformations on objects that increase
concurrency: these increases in concurrency are possible due to restrictions
imposed on the visibility of references to object instances, which restrictions
limit the extent of any interference which may occur. The papers also es
sentially raise the challenge of proving the validity of these transformations,
where a particular transformation may be regarded as ''valid'' if no context
can tell the difference between the original sequential object and the "con
current", transformed object.2 [36] presents informal reasoning in support of

2The contexts under consideration are limited by the properties of the language in

5.5. Relaxation of atomicity 118

the validity of some of these transfonnations, using arguments in terms of
the 7r-calculus (see [67] for further details on the 7r-calculus).

In [66], Sangiorgi proves the correctness of one of these transfonnations
using a typed version of the 7r-calculus and a typed notion of behavioural
equivalence. The type discipline is that of uniform receptiveness (see [66] for
a brief description), where the receptiveness part of the condition is similar
to the input-enabledness property of the i/o automata in [47]. It is likely
that the property of receptiveness plays a similar role in preserving liveness
as do our conditions involving the consideration of refusal bounds, such as
Dom-SF -Check.

However, the most interesting part of Sangiorgi's treatment is the use of
barbed congruence ([51]) as the notion of behavioural equivalence. The idea
behind this is to equip an observer with a minimal ability to observe actions
and/or process states, which ability induces an equivalence relation between
processes. This equivalence relation induces in turn a congruence, namely
equivalence in all contexts. In the notion of barbed bisimulation, an observer
can observe invisible transitions and the state they lead to; he/she can also
detect when a process offers a visible event but cannot see its identity or the
state to which it takes us. Barbed bisimulation is then used to induce barbed
congruence and it is shown in [51] that this congruence is equivalent to strong
bisimulation. What is most interesting, however, is that barbed congruence
is strictly weaker than strong bisimulation if the set of contexts into which
a process may be placed is restricted; the same applies with respect to weak
bisimulation and a weak notion of barbed congruence, the latter being used
in [66].3 For example, the sequential object and the transformed, concurrent
object from [66] are not even trace-equivalent; however, they can be related
using the typed notion of barbed congruence.

Our goal in this thesis was to develop a notion of behaviour refinement
which related behaviours much more loosely than standard CSP refinement,
by effectively reducing the set of events which could be directly observed
of our processes (the "directly observable" events are those that are finally
visible). This has the effect of giving a notion of refinement strictly weaker
than standard CSP refinement but which implies refinement according to the
standard semantics after processes are composed to fonn a suitable network.
Moreover, the contexts into which processes can be placed when using the
notion of refinement-after-hiding are also restricted, which is crucial to the
success of the scheme. In the restriction of what is visible and the restriction

which objects are described.
3In [66], Sangiorgi restricts contexts in a once-and-for-all way using a notion of typing;

our contexts are restricted in the sense that Dom-T-check and Dom-SF-check must be
met and an implementation context must be correct with respect to the corresponding
specification context.

5.6. Data reification in Z 119

of acceptable contexts, typed notions of barbed congruence may be related
conceptually to our notion of refinement-after-hiding, although they do not
allow us to cross levels of abstraction and their development was motivated
by totally separate concerns. Further work is needed to explore in more detail
the relationship between the two approaches - which itself may necessitate
a transference of ours to a bisimulation setting - but it may be that aspects
of the barbed congruence approach can be put to good use in developing an
"improved" notion of refinement-after-hiding. Some areas for future work
are:

• Exploring ways in which barbed bisimulation could be adapted so that
it may relate implementation and specification processes where the for
mer has been derived from the latter using behaviour decomposition.

• Verification for typed notions of barbed congruence is carried out using
laws stating equivalences between sytactic terms. Might it be possible
to characterise typed barbed congruence in the manner of standard
bisimulation, which would allow for automatic verification? Might some
notion of explicit mapping be needed then to relate implementation
and specification behaviours, as in the presentation of our notion of
refinement-after-hiding?

• How weak can we make the restrictions on contexts and still use barbed
congruence when relaxation of atomicity has occurred? How well will
barbed congruence transfer to the general case of dealing with relax
ation of atomicity, instead of just dealing with the specific example in
[66]?

• In our approach, what it means for one process to implement another
is based firmly on the standard notion of refinement in esp, due to
condition RAHI. Once contexts have been restricted and the relation
given by barbed congruence is weaker than standard equivalences, what
does it actually mean that one process implements another according
to that relation? Might it be the case that, if all "finally invisible"
events are hidden due to implementation and specification processes
being placed in context, then we reclaim standard (weak) bisimulation
or similar?

5.6 Data reification in Z

Z ([70]) is a specification language which considers each specification to de
fine an abstract data type (ADT). That an abstract ADT A is refined by
a more concrete ADT C is defined in terms of an input/output relation: C

5.6. Data reification in Z 120

refines A if, for every sequence of inputs, the outputs produced by C after
executing a particular sequence of operations are a subset of those possible
for A after executing the sequence of corresponding operations. Refinement
is therefore quantified over all possible programs (sequences of operations);
its verification is made tractable using the method of simulation (see [22])
and it is in this sense that it may be related to process algebraic refinement.
Standard data refinement in Z requires that input and output must be the
same in both specification and implementation; moreover, there should be a
one-to-one correspondence between abstract and concrete operations. The
papers [3,4,19,20] detail how these restrictions may be relaxed. It is shown
how inputs and outputs may be refined so that a concrete ADT may input
and output data using a different representation of it to the corresponding
abstract ADT4; moreover, it is shown how an abstract operation may be
implemented using a sequence of concrete operations, in a manner similar
to action refinement. The setting in which this is carried out is sequen
tial: because we are interested only in the input/output relation induced by
programs, it is easy to justify splitting at the concrete level the operations
which consitute those programs, as it is to justify the transformation of data
in some way on the first and final steps of those (concrete) programs. In [5],
results are given on representing CSP failures divergences refinement in a Z
relational setting, one of the aims being to allow the use of Z refinement in
a concurrent framework. It would be interesting to see the extent to which
the results from [3,4,19,20] might also be transferred to such a setting.

4The 1-0 transformers used for this purpose playa similar role to the extractors and
disturbers from [39].

Chapter 6

Automatic verification

This chapter considers two different means of automatic verification of the
notion of refinement-after-hiding presented in chapter 4. Firstly, we consider
(briefly) algorithms for this purpose. Secondly, and at greater length, we
consider the use of the tool FDR2 (see, for example, [63] or [64]).

6.0.1 Algorithms for automatic verification

Initial effort to verify automatically our notion of refinement-after-hiding
was focused on the development of algorithms for this verification. Such
algorithms were published in [11], referring to the implementation relation
which appears in [12]. The paper [16] contains an updated set of algorithms
to verify the notion of refinement-after-hiding which it describes. In these
papers, both processes and extraction patterns are represented as (variants
of) labelled transition systems. 1 The various components of the implementa
tion relation are then given what is effectively a graph-theoretic restatement.
For example, during the verification that extrEP(Q)(TQ) ~ TP, we extract
the traces of Q by taking the product of the transition system representing
Q itself and those representing the necessary extraction mappings. That the
extracted traces of Q are contained in those of P can then be verified using
a standard algorithm to check for trace containment. (Further details can be
found in [16].)

However, rather than provide an implementation of these algorithms (at
least in the short term), the decision was taken to develop an alternative
means of verification using FDR2. This was for a number of reasons. De
veloping a usable and efficient tool is a costly undertaking in terms of time
and would likely have been beyond the scope of this thesis. Having been
in development for ten years or more, FDR2 is mature, bug-free (in the

IThe representations of processes are similar to those employed in FDR2, these being
described in [62) for example.

121

122

author's experience) and has a number of means built-in of improving the
space-efficiency of the tool. These have been of use when carrying out the
verification detailed in chapter 7. Perhaps more importantly, FDR2 takes
as input text files containing CSP process expressions; an implementation of
the algorithms from [16] would have required the implementation of a CSP
parser and compiler. Finally, the means of verification detailed below has
allowed a rapid move to employing our notion of refinement-after-hiding in
the verification of a real-world example: as mentioned in section 4.8 with
respect to the role of implementation alphabets, this provided feedback for
the development of that notion.2

6.0.2 Verification using FDR2

Since Domi for ePi E EP is simply a set of traces, one of the most obvious
ways to define that set of traces is using the CSP language itself: that is, we
define a process to represent Domi' It turns out that it is also possible to en
code the extraction mapping over traces as a CSP context. The application
of the mapping to refusals cannot be handled so cleanly and some modifi
cations need to be made to the specification under consideration. However,
once these modifications have been made, we are able to encode the mapping
of refusals as a CSP context. This enables us to present the checking of our
notion of refinement-after-hiding in the various semantic models as a series
of standard CSP refinement checks, which in turn allows us to use FDR2 for
the purposes of automatic verification.3

Note, however, that the means of verification presented in this chapter
may only be used under a certain restriction. For any implementation pro
cess, Q, where to (a) E DOmEP(Q), it must be the case that:

lextrEP(Q)(t 0 (a))1 ::; I extrEP(Q)(t) I + 1.

In other words, the occurrence of a further implementation event can cause
the occurrence of at most one extra specification event after extraction. The
extraction mapping used in chapter 7 violates this restriction in a single case
and it is explained there how the problem may be addressed for that case.
Note also that this restriction precludes the use of the approach described
in this chapter to verify a specification against its implementation, since
the occurrence of any individual specification event will usually lead to the
extraction of more than one implementation event.

2The report [14] contains a preliminary version of the work in this chapter and this was
used to verify the notion of refinement-after-hiding from [16].

3In the failures divergences model, we check only the restricted case that the relevant
specification component process is divergence-free. See section 6.7 for more details.

6.1. Preliminary detail 123

6.1 Preliminary detail

In the remainder of this chapter, we assume the existence of a fixed imple
mentation process, Q, and a fixed specification process P, against which Q
is to be verified.

6 .1.1 Useful notation

The following notation will prove to be useful.

Definition 6.1. inv ~ {i I ePi E EP(Q) 1\ An Fvis = 0}.

inv therefore gives the set of subscripts of those extraction patterns used
to interpret behaviours over finally invisible events. 4 By Ep1, i ¢ inv will
be used as shorthand for the fact that ePi E EP(Q) and Ai ~ Fvis. The
extraction pattern components A, B, Dom and dom may then be lifted to
the set inv.

Definition 6.2. The following hold by definition:

The following definition is a counterpart in terms of inv to conditions
TR-GLOBAL1 and SF-GLOBALl in chapter 4.

Definition 6.3. The following hold by definition:

1. Dominv is the set oft E (Ainv)* such that tfAi E Domi for i E inv.

2. dominv is the set of t E (Ainv)* such that t r Ai E domi for i E inv.

The mapping Nexti : Domi -t 2A; is defined for every i E inv and gives
the possible extensions to any trace t E Domi such that the resulting trace
is still a member of Domi. It is defined as follows.

Definition 6.4. Nexti(t) ~ {a Ito (a) E Domi}.

Finally, Nexti can be lifted to Dominv in the following way, where Next inv :
Dominv ----+ 2A;nv.

4It will not be necessary to construct a CSP representation for those extraction patterns
which are used to "interpret" finally visible events.

6.1. Preliminary detail 12.,1

6.1.2 Process alphabets

During the course of this chapter, we will present a number of different
CSP processes to be used in the means of verification which is detailed here.
In general, it will be necessary to define an alphabet, a, for each of these
processes. We first note that aQ is as defined in definition 4.5 in section
4.1.4. For any other process, W, and by the detail in section 2.5, we are free
to assign whatever alphabet we wish provided that ,B(W) ~ aW. Before the
alphabet of any process is used for any purpose, we will always state what
we take it to be.

6.1.3 Recursive definitions

In this chapter, we define a number of different CSP processes which are pa
rameterized by the traces in Domj. As an example we introduce the simplest
of these processes, Di for i E inv, which is used in the next section:5

By definition 6.4 and since 0 E Domj by Ep3-T, then t E Domj for
any t such that Di(t) is a term used in the definition of D j • Thus, Next j is
defined whenever it is used in the definition of D j • Moreover, it is easy to
see that T Di = Domi' However, since Domj may be an infinite set of traces
in the general case, D j is a process with a potentially infinite description.
This is not a problem for the following reason. For such a definition, we
assume the existence of a finite equivalence relation over the traces in Domj
such that processes parameterized by equivalent traces have the same seman
tics.6 In fact, in practice, a single distinct process name would usually be
used to represent each set of processes parameterized by equivalent traces,
with the result that two processes parameterized by equivalent traces will
actually have the same syntactic definition. As a result, the definition of D j

used in practice in any verification would be finite: the representation given
here is effectively the syntactic unfolding or unwinding of the definition used
in practice. That the semantics of the finitely-represented process and its
unwinding D j are the same stems from the detail given in section 2.4.5 (note
that D j is guarded). Similar comments apply to the other processes which
are defined in this chapter.

5Note that we use ~ when we wish to assign a label to a particular syntactic term for
ease of reference; as such, ~ should not be regarded as an operator of the language under
consideration and is not to be confused with the recursion operator, =.

6In the case of D i , the equivalence relation could be induced by the nature of the
(necessarily finite) description of Domi: see, for example, the definition of DOmad, in
section 4.1. 7.

6.2. Verifying Dom-T-check 125

For example, where ePl = ePack' the process Dl would be used in practice
to represent Domack defined in section 4.1.7:

where
Dl(X) = (ack.yes ~ Dd D (ack.no -+ data.x -+ Dd.

Sections 6.4.3, 6.5.4 and 6.6.4 define the other processes used to verify the
running example: further insight into the points made here can be gained
by relating those processes to the relevant generic process definitions given
in sections 6.4, 6.5 and 6.6 respectively.

6.2 Verifying Dom-T-check

We first recall the definition of condition Dom-T -check from figure 4.4 before
proceeding to show how it may be verified:

Dom-T-check If tr Proj EP(Q) E (DomEP(Q) r Proj EP(Q)) for t E TQ

then t E DOmEP(Q).

Before proceeding, recall that Proj EP(Q) gives those events on which Q

may move outside of the domain DOmEP(Q); it is defined in definition 4.7 in
section 4.2. In order to verify Dom-T-check, it is necessary to define a process
to encode Domi for each i E inv, along with another process which gives the
set of traces t E TQ such that trProjEP(Q) E (DomEP(Q)rprojEP(Q)). The
first process is D i , used in the previous section as an example, and defined
as follows for i E inv:

As mentioned above, it is easy to see that TDi = Domi for i E inv. The
second process we must define here is Q Proj, in the definition of which the
following auxiliary processes are used:

DCi 6 Di \ (Ai - Proji) for i E inv and DC 6 IlliEinvDCi.

TDCi for i E inv gives Domirproj/ and TDC gives DOmEP(Q) r Proj EP(Q)·

Q Proj is then defined as follows:

QProj 6 Q IlprojEP(Q) DC.

7Recall that Proj i gives the set of events on which a process may move outside the
domain Dom;. It is defined in definition 4.7 in section 4.2.

6.2. Verifying Dom-T-check 126

The following results give two different ways of verifying Dom-T -check
using these processes.

Theorem 6.1. QProj \ Fvis ~T (1IIiEinvDi) if and only if Q meets Dom-T
check.

Theorem 6.2. QProj \ (aQ - Ai) ~T Di for every i E inv if and only if Q
meets Dom- T-check.

The second of these results would most likely be used as the basis of any
verification in practice because it avoids the need to construct the interleaving
of the processes D i , the state space of which could be quite large. However,
the choice is left to the user and, for smaller (1IIiEinvDi), the verification of
Dom-T-check may be carried out using a single refinement check by virtue of
theorem 6.1. (Note that, by proposition C.1 in appendix C and PAl, Fvis in
the statement of theorem 6.1 could be replaced with aQ n Fvis = Uiiinv Ai.)

By virtue of theorem 6.2 and using the definitions given above, process
Dl defined in section 6.1.3 to encode Domack was used to successfully verify
that both Leftlmpl and RightImpl from the running example meet condition
Dom-T -check.

6.2.1 Alternative means of constructing QProj

Since (3(DCi) ~ Proji for i E inv and (3(DC) ~ Proj EP(Q) - see proof of
proposition C.1 in appendix C - we may take aDCi = Proji for i E inv and
aDC = Proj EP(Q). Hence, by Ep2 and definitions 4.5 and 4.7, aDCi ~ aQ
for i E inv and aDC ~ aQ. Moreover, for i,j E inv such that i -::j:. j,
aDC in aDC j = 0 by Ep-UNI1. AB a result of this and the detail in section
2.6 on the associativity of parallel composition,

where inv = {jl,j2 ... ,jd. This latter syntactic construction would be used
in practice because it avoids the need to create an intermediate process DC
during verification in FDR2 which may be much larger than the final process
Q Proj. The original construction is used in the text because it eases the
necessary proofs. Similar comments apply in the remainder of this chapter
wherever processes representing a particular extraction pattern component
- such as extr or ref - are interleaved before being composed in parallel
with another process.

6.3. Preprocessing the implementation process 127

6.3 Preprocessing the implementation process

In this and subsequent sections in this chapter, we assume that Q has already
been shown to meet condition Dom-T -check. During verification, we are
interested only in behaviours (whose trace component is) from DomEP(Q).
Q is therefore preprocessed in p-der to remove all non-domain behaviours,
thereby creating a new process Q. Although this preprocessing actually adds
some new failures, rather than simply taking a subset of the failures of Q, it
does so in such a way that the answers to the verification questions in which
we are interested are the same for Q as they are for Q (see theorem 6.5). In
order to preprocess Q, it is composed in parallel with IlliEinvDi, where Di for
i E inv is as defined in the previous section:

We observe that, for i E inv, (3(Di) ~ Ai by Ep3-T and definition 6.4. By

definitions 4.3 and 4.4, (3(Q) ~ Ul<i<m Ai and so (3(Q) ~ (3(Q) ~ Ul<i<m Ai·
Thus, the following result holds by definitions 4.3, 4.4 and 4.5. - -

Proposition 6.3. The following hold:

1. Q is an implementation process.

2. EP(Q) = EP(Q).

3. aQ = aQ.

We also assume that Comm(Ai, Q) = Comm(Ai, Q) !or ePi E EP(Q).
The following result then characterises the behaviours of Q.

~

Proposition 6.4. The following hold of Q:

~

2. ¢>Q {(t, S U U) I (t, S) E ¢>DomEP(Q)Q 1\

U ~ (Ainv - Nextinv(tfAinv))}.

3. minoQ = {t I t E minOQ 1\ t E DOmEP(Q)}.

Under the assumption that Q meets Dom-T -check, the following result
allows us to verify that Q ~~P(Q) P for X E {T, SF, FD} by instead verifYing
that the necessary conditions from figures 4.5, 4.10 and 4.12 hold of Q. p
view of this and proposition 6.4, we shall always refer in what follows to TQ,
¢>Q and minoQ in lieu of TDomEP(Q)Q, ¢>DomEP(Q)Q and minOQ n D0r;!EP(Q)

respectively. (It will still be necessary to consider directly ¢>domEP(Q)Q how
ever.)

6.4. The traces model 128

Theorem 6.5. The following hold:

1. extrEP(Q)(TQ) = extrEP(Q)(TQ).

2. Q meets Dom-SF-check if and only if Q meets Dom-SF-check.

3. extr EP(Q) (c/>Q) = extr EP(Q) (c/>Q).

4. extrEP(Q)(6Q) = extrEP(Q)(6Q).

5. extrEP(Q)(c/>l..Q) = extrEP(Q)(c/>l..Q).

Since EP(Q) = EP(Q) by proposition 6.3(2), we shall always refer to
EP(Q) rather than EP(Q) in the remainder of this chapter; this serves to
emphasise the fact that we do not alter any of our interpretive constructs
simply because we work with Q rather than Q.

6.4 The traces model

We now show how to verify that extrEP(Q)(TQ) ~ TP. To do this, it is
necessary to 2efine a process context which encodes the extraction mapping
over traces. Q is then placed into that context, thus defining a process which
has exactly the traces of extr EP(Q) (TQ). It is therefore necessary to encode a
function from traces to traces as a CSP context, since extrEP(Q) over traces
is such a function.

The basic approach followed is similar to that employed to extract traces
in the algorithms given in [11] and [16]. Intuitively, for each extraction pat
tern ePi where i E inv, we wish to define a process TEi (Trace Extraction),
the traces of which are essentially pairs of traces. The left-hand trace of
each pair would be x E Domi and the right-hand trace would be extri(x).
In practice, of course, it is not possible to define a process which has pairs
of traces. However, a similar effect can be achieved by effectively defining
events as pairs. Using this approach, if t E TTEi such that It I = k,

We may then consider t to be given by (x, y), where x = (Xl, X2, . .. , Xk) and
Y = (Yl, Y2, . .. , Yk); moreover, x E Domi and extri(X) = y.8

8Note that, for 1 ~ j ~ k, it may be the case that Yi is effectively a "null" event. This
will happen if extri((XI, ... ,Xi-I) = extri((Xb ... ,Xi)· In such a case, the event pair
(Xj,Yj) would be represented by Xj alone and Yj would not appear in y.

6.4. The traces model 129

Events from Q are renamed in order that they may be synchronized during
parallel composition with those from the set of TEi for i E inv. The result
of this parallel composition is a process, S, where if

U = ((Xl, Yd, (X2, Y2), ... , (Xl, Yl)) E 7S

then (XI,X2, ... ,XI) E 7Q and (YI,Y2,.·.,YI) = extrEP(Q)((XI,X2, ... ,XI)).
Finally, events in S are hidden and renamed as necessary so that, for such
a u E 7 S, (YI, Y2, ... , Yl) is substituted for u. This means that the resulting
process has exactly the traces of extr EP(Q) (7Q).

6.4.1 Constructing the TEi

We now show how to construct the processes TEi for i E inv. The first
problem to address is the nature of the events that will be used to represent
the pairs of events described above. Let (a, b) be an event pair. In the case
that b is a null event - i.e. the occurrence of a does not cause the extraction
of a specification event - the pair is simply encoded as a, as described above.
If this is not the case, however, a pair of events have to be encoded by a single
event occurring on a single channel. As a result, we are required to define a
number of new channels, with corresponding new data types. The name of
the new channel will encode the name of the channel on which the event a

was transmitted; the data type of the new channel will need to represent the
data type of the channel on which a was transmitted, along with both the
name and data type of the channel on which b was transmitted. In general,
the approach to be taken will be as follows.

Let a = cna.dva and b = cnb.dvb. Thus, a is an event occurring on
channel cna which transmits the data value dva. Similarly, b is an event
occurring on channel cnb which transmits dVb. Moreover, assume that dta is
the type of channel cna and dtb is the type of cnb. We define a new channel,
called extmct cna , where the name of the original channel on which a occurred
- i.e. cna - may be derived from the subscript of the new name.9 The
data type of this new channel is dta.name.dtb, where name is a data type
containing a single value, namely the label of the channel cnb.IO As a result,
the event pair (a, b) would be encoded as:

9Note that, in machine-readable esp, we cannot define channel names containing sub
scripts. We use the device here for the purposes of presentation and, in practice, would
define the new channel name to be the concatenation of the string "extract" and the string
denoting the name of the original channel.

IONote that, in machine readable esp, we may not actually define a data type containing
a channel name as a data value: we take that approach here for ease of presentation in
stating generic definitions and, in practice, name would store a capitalized or abbreviated
version of the channel name (see the verification of the running example in section 6.4.3
below).

6.4. The traces model 13D

If we consider the running example from figure 1.1 and ePack introduced
in section 4.1.7, the trace (data.D, ack.yes) extracts to (send.D). If it were
possible to use the notion of event pairs directly, we could encode this ex
traction using the trace (data.D, (ack.yes, send.D)). (Note that data.D re
mains in its original form since its occurrence does not cause the extrac
tion of an additional event.) Since we cannot use such pairs directly, in
the CSP representation of the extraction mapping this trace would become
(data.D, extractack.yes.Send.D) (note that we use the label Send to repre
sent the channel name send as a data value). As another example, con
sider (data.D, ack.no, data.D) , also extracting to (send.D). In this case, us
ing event pairs we would have (data.D, ack.no, (data.D, send.D)) In the ex
traction mapping representation the trace would become (data.D, ack.no,
extractdata.D.Send.D). Note that we have both an occurrence ofthe unchanged
data.D and also an occurrence of data.D modified to allow the extraction func
tion to be encoded.

Defining TEi for i E inv

Let i E inv. Then we define the process TEi to encode the extraction map
ping extri, where TEi 6 TEi (()) and

TEi(t) = OaE Next;(t) ?Ti (a, t) -+ TEi(t 0 (a)).

For ease of expression, the function ?Ti is used here to encode the mod
ifications that must be made to the events in Ai, although its effects must
be implemented directly in any input supplied to FDR2, since it cannot be
encoded as such in CSP (see the example below in section 6.4.3). It is defined
as follows. 12

Definition 6.6. Let to(a) E Domi such that a = cna.dva and let b = cnb.dvb.
Then:

11 Note, of course, that alternative encodings are also possible and a slightly different
one is used in the verification which is presented in chapter 7. In that chapter, the channel
name cnb is actually represented by appending it to the new channel name extractcn".

12Recall that, by TR-GLOBAL2 and the restriction imposed in section 6.0.2, if t 0 (a) E
Domi is such that extri(to (a}) = extri(t) or for some trace r, then either r = () or r = (b)
for some event b.

6.4. The traces model 131

By definition 6.4 and since () E Domi by Ep3-T, t E Domi for any t such
that TEi(t) is a term used in the definition of TEi. Moreover, to (a) E Domi
for any a E Nexti(t). Thus, 1ri(a, t) is defined whenever it is used in the
definition of TEi . Observe that 1ri(a, t) simply returns a if the extraction oft
is identical to the extraction of t 0 (a). In the other case - namely that the
extraction of t is a strict prefix of the extraction of t 0 (a) - we are effec
tively encoding the fact that a is the left-hand component of an event pair
and b is the right-hand component. We assume that any event of the form
extractcn".dva.cnb.dvb which is returned by 1ri is distinct from all other events
in UePi EEP ~ (recall that EP gives the universe of all extraction patterns).
This assumption is encapsulated in the following condition.

DIS Let to (a) E Domi for i E inv be such that
extri(t 0 (a)) = extri(t) 0 (b) for some event b.
Then 1ri(a, t) ¢ UePi EEP Ai'

The following result on the events in which TEi may engage is due to the
detail in figure 2.5, definition 6.4 and the fact that () E Domi by Ep3-T.

Proposition 6.6. f3(TEi) = {1ri(a,t) I to (a) E Domi}'

Renaming functions

We now give the renaming functions13 which, for i E inv, can be used to
reclaim Domi and {extri(t) I t E Domi} respectively from TTEi. The re
naming domain: UiEinv f3(TEi) -+ Ainv will return the former and extract:
UiEinv f3(TEi) ~ Binv will return the latter.

Definition 6.7. The following hold by definition, for i E inv:

1. Let t 0 (a) E Domi' Then domain(1ri(a, t)) 6 a.

2. Let to (a) E Domi be such that extri(t 0 (a)) = extri(t) 0 (b). Then
extract(1ri (a, t)) 6 b.

We first note that, as stated in chapter 2 (page 16), partial renam
ings behave as the identity mapping when applied to any event over which
they are not explicitly defined. By proposition C.4(1,2) in appendix C.2,
T(TEi [domain]) = Domi for i E inv. extract is defined explicitly only for
those events in UiEinv f3(TEi) which encode an event pair with a non-null
right-hand component: i.e. those event pairs (a, b) where the occurrence
of a leads to the extraction of b. By proposition CA in appendix C.2,

13 Although, in the general case, we use renaming relations, it happens that these are
functions: this follows from definition 6.7 itself and also definition 6.6.

6.4. The traces model 132

T((TEi \ ~)[extract]) = {extri(t) I t E Domd for i E inv. (The hiding
of events in Ai removes all those "event pairs" encoded by a single event: i.e.
those which represent an implementation event occurrence which does not
lead to the extraction of a specification event.)

6.4.2 Extracting the traces of Q
It is unnecessary to define processes TEi for ePi such that i ¢ inv, since extri
is the identity mapping in such cases by Ep4-FvI (recall that Ai ~ Fvis if
i ¢ inv). We thus define as follows the process TEintJ! which will be used to
extract the traces of Q:

TEinv t:,. IlliEinv TEi.

Once TEinv has been defined, it must be composed in parallel with Q
before applying the hiding and renaming which will mimic the application
of the extraction mapping. In order for Q to synchronize in parallel with
TEinv, its events must be renamed: each event from Ainv in which Q may
engage is renamed to all those "event pairs" in f3(TEinv) = UiEinv f3(TEi) of
which it forms the left-hand component. The renaming used for this purpose
is prep: Ainv X f3(TEinv), which is defined as follows.

Definition 6.B. Let i E inv and a E Ai be such that there exists a trace u
such that u 0 (a) E Domj. Then:

Note that, for t 0 (a) E TQ such that a E Ai for i E inv, t r Ai 0

(a) E Domi by proposition 6.4(1) and TR-GLOBALl. The following pro
cess, TraceExtract, then has exactly the traces of Q after extraction, which
fact is shown by theorem 6.7.

t:. '"] TraceExtract= ((Q[preplllprep(A;nv) TEinv) \ Ainv)[extract

Theorem 6.7. extrEP(Q)(TQ) = TTraceExtract.

Corollary 6.B. extrEP(Q)(TQ) ~ TP if and only if TraceExtract;;;;;!T P.

Corollary 6.8 therefore allows us to verify automatically using FDR2 that
extrEP(Q)(TQ) ~ TP.

6.4. The traces model !33

6.4.3 Example

Here we show how to apply the results in this section to verify that the
extracted traces of Leftlmpl are contained in those of LeftSpec. (Note that the
components defined here can be used without modification to verify that the
extracted traces of RightImpl are contained in those of RightSpec.) Let Q be
Leftlmpl after the application of the necessary preprocessing. Let epi be ePacJc
defined in section 4.1.7. Recall that Al = adata U aack and BI = asend.
We then define TEl to encode extrl:

TEl = DXE{O,I}data.x ~ TI(X)

where TI(X) is defined as:

((extractack.yes.Send.x ~ TEl) D (ack.no ~ extractdata.x.Send.x ~ TEd).

The concrete renamings prep and extract used in this example are as follows:

prep b. {(ack.yes, extractack.yes.Send.a),

extract

(ack.yes, extractack.yes.Send.!), (data.a, data.a),
(data.!, data.!), (ack.no, ack.no),
(data.a, extractdata .a. Send .a), (data.!, extractdata.1. Send.!)}.

{(extractack.yes.Send.a, send.a),
(extractack.yes.Send.!, send.!),
(extractdata.a.Send.a, send.a),
(extractdata.1.Send.!, send.!)}.

Note that here TEinlJ = TEl and A inlJ = AI' Using the process expressions
defined here, we were able to define TraceExtract as above and, by virtue of
corollary 6.8, verify automatically using FDR2 that the extracted traces of
Leftlmpl are contained in those of LeftSpec. In a similar manner, we were
able to verify that the extracted traces of RightImpl are contained in those
of RightSpec. Thus, since both Leftlmpl and RightImpl meet Dom-T -check,
since almplNet ~ Fvis l4 and by theorem 4.8, we may infer that

ImplNet ~T SpecNet.

14Recall that £lin U £lout ~ Fvis. Recall also that

- ImplNet £. LeftImpl ®(odataUoack) RightImpl.

- SpecNet £. LeftSpec ®osend RightSpec.

6.4. The traces model 134

6.4.4 Further comments on defining Di and TEi

Determinism Due to the need to calculate here the semantics of pro
cesses Di and TEi from their syntactic representation, they are effectively
presented in a particular normal form, namely using only (indexed) deter
ministic choice, the prefix operator and recursion. Provided that a CSP
process P to be used with FDR2 is deterministic then there is a process P'
constructed using only indexed deterministic choice15 , prefix and recursion
which is semantically indistinguishable from P (see condition DE in section
2.9). As a result, candidates for Di and TEi respectively which are to be
used in practice need only be deterministic, rather than defined using this
restrictive syntax. (FDR2 can be used to check the determinism of CSP
processes.) Of course, candidates for TEi should still be defined so that they
engage only in event pairs which may be generated by 1l"i.

Defining extraction mappings In practice, it need not be the case that
the extraction pattern used in the verification of any particular implementa
tion process will exist prior to that verification. In other words, extraction
patterns may simply be created according to our needs during any particular
verification. This is what happens in the verification of the asynchronous
communication mechanism described in chapter 7. As a result, the only di
rect definition of Domi for i E inv which we have may be given by the traces
of the implementation process under consideration: this is one reason why it
may not actually be possible to define Di and TEi using only choice, prefix
and recursion. In the verification in chapter 7, a single extraction pattern,
which we shall denote ePi' is used in the verification of the implementa
tion process described there, which process we shall call Q'. Since we have
no direct statement of Domi we take it to be TQ', which guarantees that
any mapping used will be defined for all traces of Q'. Assuming the exis
tence of a suitable renaming domain, it is difficult to define TEi such that
T (T Ei [domain]) = TQ', since to do so would require direct syntactic modifi
cation of the implementation process itself. The approach taken, therefore,
is to define TEi such that TQ' C T(TEi[domain]). Using such an approach,
it is as if we take some larger mapping and assume that extr i is defined as its
restriction to the domain Domi. The restriction to Domi will then occur au
tomatically when the process TEi is composed in parallel with the renamed
Q'.

15If we index the deterministic choice operator with the empty set then this is semanti
cally equivalent to STOP.

6.5. Verifying Dom-SF-check 135

6.5 Verifying Dom-SF-check

y!'e now move on to consider the verification of condition Dom-SF -check for
Q:

Dom-SF-check Let (t, R) E 4>Q be such that R ~ o:Q. Let
ePi E EP(Q) be such that Ai n Fvis = 0. If

ref
extri (R n Ai, tr Ai, Q) = Bi then tr Ai E domi.

We show in this section how the verification of this condition can be
transformed into a check for deadlock freedom16 on a (number of) process(es)
derived from QY This transformation is based on a simple consideration of
the respective definitions of extrref , ref and ref. (Recall that, for i E inv and
t E Domi, refi(t) gives the set of all X ~ Ai such that, for every Y E refi(t),
X U Y =I Ad Before proceeding we define RefSeti for i E inv, which is used
extensively in what follows:

Definition 6.9. Let i E inv. Then:

if Comm(Ai, Q) = Right
if Comm(Ai, Q) = Left

Note that RefSeti associates the communication capability Left with refi
and Right with refi for i E inv; in contrast, the definition of extr;ef in
definition 4.10 associates Left with refi and Right with refi. This will prove
to be crucial in what follows: in particular, it allows us to characterise in
terms of RefSeti whether or not Dom-SF-check is met.

Let i E inv and (t, R) E 4>Q such that R ~ o:Q and tr A; ¢ domi. If Q
meets Dom-SF -check, then extr;ef (R n A;, t r A;, Q) = 0. In the case that
Comm (Ai, Q) = Right, this means that R n Ai E ref i (t r Ai) by definition
4.10. Hence, by definitions 4.9 and 6.9, there does not exist X E refi(trA;) =
RefSeti(tr Ai) such that XU (Rn Ai) = Ai. In the case that Comm(A;, Q) =
Left then R n Ai E refi(tr Ai) and so, again by definitions 4.9 and 6.9, there
does not exist Y E refi(tr Ai) = RefSeti(tr Ai) such that Y U (R n Ai) = A;.

Consider, then, the case that Q does not meet Dom-SF-check. Then there
exists (t, R) E 4>Q such that R ~ o:Q and i E inv such that tr A; ¢ domi,
where extrr;ef (R n Ai, tr Ai, Q) = Bi· Hence, by definitions 4.9, 4.10 and
6.9, there exists X E RefSeti(tr Ai) such that X U (R n A;) = Ai. In a

16Recall that a process W is deadlock-free if and only if R c E for every (t,R) E tPW.
17This is similar in some respects to the use of tester processes in [6], where the question

of whether one process implements another is transformed into a question of deadlock
freedom of the implementation composed in parallel with the tester process.

6.5. Verifying Dom-SF-check 136

suitable process, deadlock will occur due ~to the refusal of all events in A;,
thus indicating that extr;el (R n~, tr Ai, Q) = Bi and so Dom-SF-check has
been breached. We therefore define a process (to be interpreted in the stable
failures model) for each i E inv such that its refusals after t E (Dom; -
domi) are given by Re!Seti(t) and where t E dom; does not form the trace
component of any failure. Each such process for i E inv is composed in
parallel with a modified Q so that the resulting process deadlocks - due to
refusing all events in ~ - if and only if condition Dom-SF -check is not met
with respect to ePi (Le. extr;el (R n Ai, tr Ai, Q) = B; while tr A; ~ dom;).

6.5.1 Defining the "tester" process

We first show how to define the "tester" process DSF; for i E inv (we need
not define such a process for i ~ inv by the definition of Dom-SF -check). This
definition makes use of the semantic definition of DIV - the immediately
diverging process - in the stable failures model: recall that the meaning of
DIV in this model is ({ O}, 0). Where P is a process and by the semantic
definition of D in figure 2.3, we have that:

¢(P D DIY) = {(t,R) E ¢P I t =1= O}.

For example, ¢((a -+ STOP) D DIY) = {((a),R) I R ~~} (see the
use of DIV in the definition of processes TP and FP in section 2.10). We
may therefore use DIV to obscure failures in which we are not interested,
specifically those where the trace component is t E dom; since these can be
ignored by the definition of Dom-SF -check. We therefore define the process
DSFi for i E inv, the failures of which are defined by Dom; - dom; and
Re!Seti (see lemma 6.9 below).

Let i E inv. For t E Domi, we define re!tt (t) as the set of sets from
re!i(t) which are maximal in the subset-ordering.

Definition 6.10. re!tt(t) 6 {R E re!;(t) I CllS E re!i(t)) ReS}.

We first give the definition of DSF; when Comm(~, Q) = Right. (Note
that t ~ domi is used as shorthand for the fact that t E Dom; - dom;.) In
this case, DSF; 6 DSF~(()) and:

{

(DaENext;(t)a -+ DSF~(t 0 (a))) D DIV

DSF~(t) = ((DaENext;(t)a -+ DSF~(t 0 (a))) D DIY) n
(nREre1r(t) (DaE(A;-R)a -+ DIY»)

if t E dom;

if t ~ dom;

We now give the definition of DSF; when Comm(A;, Q) = Left. In this
case, DSF j 6 DSFf(0) and:

6.5. Verifying Dom-SF-check 137

{

(OaENezti(t)a -t DSFf(t 0 (a))) ° DIV

DSF~(t) = ((L
, OaENezti(t)a -t DSFi (t 0 (a))) ° DIY) n

(OREreft'(t) (naE(Ai-R)a -t DIY»)

if t E domi

Note that, by Ep5 and definition 6.10, n is never indexed by the empty
set in either of these definitions; similarly, 0 is never indexed by the empty
set in the last line of the definition of DSFf(t) (this latter is important in
the proof of lemma 6.9). By definition 6.4 and since () E Domi by Ep3-T,
t E Domi for any t used to parameterise a term in the definition of DSFi .

Hence, reftt is defined wherever it is used. The two versions of DSF i are
almost identical: in fact, the only difference is the ordering of the operators
o and n in the last line of the respective definitions. This line is used to
encode (the refusals from) RefSeti and the difference reflects the fact that it
is given by ref i in one case and by refi in the other. The stable failures of
DSF i are characterised by the following lemma.

Lemma 6.9. The following holds, for i E inv:

4>DSFi = ((t,XUY) It E Domi-domi /\ X E RefSeti(t) /\ Y ~ (E-A i)}.

Examples of such processes DSFi can be seen below in section 6.5.4.

6.5.2 Transforming the implementation process

Let i E inv. We now show how to transform the implementation process
Q, such that its failures are projected onto~: that is, if (t, R) E 4>Q then
(tr~, (R n ~) U (E - Ai)) is a failure of the transformed process. This
transformation is effected using the process ProCj.

ProCj = ((OaEaQa -t ProCj) 0 DIY) n (OaeA,a -t DIY).

Q is composed in parallel with ProCj with the result that, for every failure
(t, R) E 4>Q, the refusal R has aQ - Ai added to it. This means that
the refusal R n Ai will survive the hiding of the events in aQ - ~: i.e.
(tr Ai, R n Ai) will be a failure of the process resulting from the hiding of
aQ - Ai. We therefore define the following process:

Qi 6 (Q lIaQ ProCj) \ (aQ - Ai)·

The stable failures of Qi are given by the following result.

Lemma 6.10. The following holds, for i E inv:

4>Qi = {(tr Ai, R) I (3(t, X) E 4>Q) R ~ (X n Ai) U (E - Ai)}.

6.5. Verifying Dom-SF-check 138

6.5.3 The verification

We are now in a position to define the process FinaUmpl~, for i E inv, upon
which the check for deadlock-freedomI8 will be carried out:

......
Theorem 6.11. Q meets condition Dom-SF-check if and only if, for every
i E inv, Finallmplei is deadlock-free.

The above result allows us to proceed to automatic verification of condi
tion Dom-SF -check.

6.5.4 Example

We now show how to define the relevant process expressions used to ver
ify that Leftlmpl and RightImpl respectively meet condition Dom-SF -check.
Note that, in both cases, the condition need be checked only with respect to
the extraction pattern ePack, the relevant components of which are restated
here.

domack is defined as follows:

domack [),. {(data.a, ack.yes), (data.a, ack.no, data.a),

(data.1, ack.yes), (data.l, ack.no, data.l))-.

Recall that Domack is given by the prefix-closure of domack' The ref ack
component, where t E domack and to u E Domack, is given as:

{

20data

refack(tou) [),. {R E 2odataUoack I adata CZ:. R}

{R E 2odatauoack I data.v ¢ R}

if u = (data.v)

ifu = 0
if u = (data.v, ack.no)

We assume ePI is epack' where Al = adata U aack.

Verifying RightImpl:

In this case, Comm(Al' RightImpl) = Right. Assume that Q is RightImpl
after the application of preprocessing as described in section 6.3. We also
assume the existence of an extraction pattern eP2 to ''interpret'' the events
occurring on channel out (recall that aout ~ Fvis), where A2 = aout. Thus,
by proposition 6.3(2) and definition 4.5, aQ = adata U aack U aout. Assume
that Procl is defined according to the template given above in section 6.5.2,

18Recall that a process W is deadlock-free if and only if R c E for every (t,R) E ¢W.

6.5. Verifying Dom-SF-check 139

by substituting adata U aack U aout for aQ and adata U aack for Ai-
..... t:.

We then define Q1 = (Q lIaQ Proc1) \ aout. The tester process DSF 1 used
here is defined in terms of two auxiliary processes DSF~ (x) and DSF~ (x).

DSF1

DSF~(x)

DSF~(x)

(D XE {O,1}(data.x ~ DSF~(x)) ° DIV

((ack.yes ~ DSF1 0 ack.no ~ DSF~(x)) ° DIV) n
(nRE{adata}(DyE(A1-R) y ~ DIV))

((data.x ~ DSF r) ° DIV) n
(nRE{Al-{data.x}}(DyE(Al-R) y ~ DIV)).

From these process expressions, we were able to define FinalImplel for
eP1 = ePack and RightImpl, and check it for deadlock freedom using FDR2,
as a result of which we successfully verified condition Dom-SF-check for
RightImpl.

Verifying Leftlmpl:

In this case, Comm(A1' Left1mpl) = Left. Assume that Q is Leftlmpl after
preprocessing. We also assume the existence of an extraction pattern eP2
to "interpret" the events occurring on channel in (recall that ain r;; Fvis) ,
where A2 = ain. Thus, by proposition 6.3(2) and definition 4.5, aQ =
adata U aack U ain. Assume that Procl is defined according ~ the
template given above, by substituting adata U aack U ain for aQ and
adata U aack for Ai' We then define Q1 t:. (Q IlaQ Procl) \ ain. The
tester process DSF 1 used here is defined in terms of two auxiliary processes
DSF~(x) and DSF~(x).

DSF l

DSF~(x)

DSF~(x)

(DXE{O,l} (data.x ~ DSF~(x)) ° DIV

((ack.yes ~ DSFl 0 ack.no ~ DSF~(x)) ° DIV) n
(DRE{adata}(nYE(Al-R) y ~ DIV))

((data.x ~ DSFl) ° DIV) n
(DRE{Al-{data.x}}(nyE(Al-R) y ~ DIV)).

From these process expressions, we were able to define Finallmplel for
ePl = ePack and Leftlmpl, and check it for deadlock freedom using FDR2, as a
result of which we successfully verified condition Dom-SF-check for Leftlmpl.

6.6. The stable failures model 140

6.6 The stable failures model

We now consider how to verify that extr EP(Q) ([Q]SF) ~ [P]SF' which requires
the interpretation of both the traces and stable failures of Q. Section 6.4
showed how to do the former. The challenge faced here, therefore, is to
encode as a CSP context the mapping applied to refusal/trace pairs. Before
we show how to do this, an important issue must be raised.

Condition SF4 given in section 2.4.2 defines the following relationship
which exists between the traces and failures of any process W in the stable
failures model:

(t, R) E </>W A to (a) ¢ TW ::::} (t, R U {a}) E </>W.

But extr EP(Q) (TQ) and extr EP(Q) (</>Q) may not respect this relationship.
Consider a refusal-maximal failure (w,X) E extrEP(Q) (</>Q). Then, by SF
DEF2, there exists (t, R) E </>domEP(Q)Q such that

extrEP(Q)(t) = w and X = extr~~(Q)(R, t, Q) U (L: - extrset(aQ)).

It may be the case that, for ePi E EP(Q) where i E inv, X n B j = 0 since
extrr;ef(Rn Ai, trAi , Q) = 0. However, it need not hold that extrEP(Q)(t) 0

(b) E extr EP(Q) (TQ) for every b E Bi and usually it will not. This means
that, in the general case, there need not be a (syntactic) process the se
mantics of which is given by extr EP(Q) ([Q] SF). One consequence of this is
that, although the extracted traces of Q are represented directly in the syn
tactic term we define, its extracted failures are represented in an encoded
form (see section 6.6.1 for further details). Another consequence is that the
specification process P has to be modified before the verification question
under consideration here can be framed as a refinement check in FDR2 (see
section 6.6.2).

The interdependency between traces and failures also gives rise to an
other problem. In particular, if we apply to Q the machinery necessary to
extract traces then this will modify the failures of the result~g process: we
no longer have a (syntactic) record of the original failures of Q and so would
be unable to apply further syntactic manipulations in order to encode the ex
tracted failures of Q. Similarly, syntactic manipulations which are necessary
to encode the extraction of the failures of Q will have possibly undesirable ef
fects on the traces of the resulting process. For example, consider the simple
implementation process W = a --+ STOP, where:

• TW={O,(a)} and

• </>W = {(O,R) I R ~ L: A a ¢ R} U {((a),R) I R ~ L:}.

6.6. The stable failures model 141

In the event that extr EP(W) ((a)) = (), we would have to hide {a} in order
to extract the traces of W. However, the only failure of the resulting process
would be {(O,R) I R ~ ~}. In the event that extrEP(W)((a)) = (b), then
a would eventually be renamed to b and this would alter the refusals of the
process. Similarly, any attempt to extract the refusals of W would im'olve
some manipulation of the event a and so the traces of the process would also
be affected.

In order to solve this problem, we introduce the notion of primed events:
this allows us to separate the events used to generate the traces of any process
under consideration from those used to generate the refusals. For example,
we could represent W as

W' = ((a -t STOP) 0 DIV) n (a' -t DIV),

where

• TW' = {O, (a), (a')} and

• ¢W = {(0, R) I R ~ ~ " a' ¢ R} U {((a), R) I R ~ ~}.

Thus, the event a could be manipulated as necessary in order to extract
the traces of W' but this would not affect the refusals of the process (it
would, of course, affect the trace component of one of the failures but that
trace component would need to be extracted as well anyway). Similarly, a'
could be manipulated during the extraction of refusals but this would not
affect the trace (a) (the additional trace (a') can effectively be ignored). This
approach of using primed events to generate refusals and unprimed events
to generate traces is employed below in the definition of the processes REi
for i E inv described in section 6.6.1 (these processes are used to extract the
refusals of Q).

Priming events and related issues

Before proceeding, we introduce three renaming relations which will allow us
to prime events.

Definition 6.11. The following hold by definition:

1. If a E Ainv U B inv then prime(a) 6 a' .

2. If a E Ainv then pQ(a) 6 {a, a'l.

3. If a E Binv then pP(a) 6 {a, a'l.

6.6. The stable failures model 142

prime converts an event from Ainv U Binv into its primed counterpart. pQ
returns both the original event and its primed version for finally invisible
implementation events; pP does the same for finally invisible specification
events. It is assumed that the set of primed events contains only "fresh"
events: i.e. it does not contain any events already used in defining Q, P or
EP (Q), or which are used in any other capacity as part of the verification of
Q.

The act of priming an event cannot be done directly in (machine-readable)
CSP and so the approach taken is as follows. We take the event to be primed
and define a new channel with the same type as the original channel on which
the event occurred and whose name is a concatenation of the original name
and some other "reserved" word, such as prime. The new event will then
occur on the new channel, whilst communicating the same data value as the
original event. For example, if we were to "prime" the event data.O, the
result could be dataprime.O (see section 6.6.4 for further examples). Note, of
course, that we cannot use channel names containing subscripts in machine
readable CSP: they are used here simply for the purposes of presentation
and, in practice, we would use something like dataprime.

In the course of extracting the refusals of Q, it will also be necessary to
rename each event in prime(Aj) for i E inv to a distinguished event di .

19

The set of such events is labelled dinv .

Definition 6.12. dinv A {di liE inv}.

The renaming of events in prime(Ai) to di for i E inv is carried out using
the renaming aQ. (aP is also defined, to rename events in prime(Bi) to dj:
it is used in preprocessing the specification).

Definition 6.13. Let i E inv.

1. If a E prime(Ai) then aQ(a) Adj.

2. If a E prime(Bj) then aP(a) Adj.

The events di for i E inv are used to encode the extraction of refusals.
In order to relate this encoding to extr~~(Q)' we introduce the mapping

extrFDR~~(Q).
~

Definition 6.14. Let t E DOmEP(Q) and R ~ aQ. Then

extrFDR~~(Q)(R,t,Q) A U extrFDRref(RnAi,tr~,Q), where:
l~i~m

19Each such c4 is assumed to be a "fresh" event not used or introduced elsewhere.

6.6. The stable failures model 143

1. Let i ¢ inv. Then extrFDR;-e' (R n~, tr~, Q) 6 R n Ai.

2. Let i E inv. Then:

(a) if extr;-e' (R n~, tr~, Q) = Bi then
extrFDR;-e'(RnAi,trAi,Q) 6 {di}.

(b) ifextr:-e'(RnAi,trAi,Q) =0, extrFDR;-e'(RnAj,trAi,Q) 6 0 .

In relation to definition 6.14(1), recall that Ai ~ Fvis if i ¢ inv and so
extr;-e' (R n Ai, tr Ai, Q) = R n Ai by Ep5-FvI.

" 6.6.1 Interpreting the behaviours of Q
In 1Jlis section, we show how to simultaneously extract the traces and failures
ofQ.

Extracting refusals

The extraction of refusals uses a set of processes REi for i E inv which are
similar to the DSFi defined in the previous section for verifying Dom-SF
check. The only differences are that refusals are generated here using primed
events and only traces in domi form the trace components of the stable
failures of the process. This latter is because, by SF-DEF2 in figure 4.10, we
are ultimately only interested in failures the trace component of which is in
dOmEP(Q).

Let i E inv and note that t ¢ domi is again used as a shorthand for the
fact that t E (Domi - domi). We first give the definition of the process REi
when Comm(Ai, Q) = Right. In this case, REi 6 Ref (0) and

{

(OaENext;(t)a ---t REf(t 0 (a))) 0 DIV

REf(t) = ((OaENext;(t)a ---t REf(to (a))) 0 DIV) n
(nREre,nt) (OaEprime(A;-R)a ---t DIV))

if t E domi

We now give the definition of REi when Comm(Ai, Q) = Left. In this
case, REi 6 REf'(0) and

{

(OaENext;(t)a ---t REf'(t 0 (a))) 0 DIV

REf'(t) = ((OaENext;(t)a ---t REf'(t 0 (a))) 0 DIV) n
(0 REre,tt (t) (naEprime(A;-R)a ---t DIV))

if t ¢ domi

if t E domi

Similar comments apply to these definitions as were made with respect
to the definitions of DSFi in the previous section. In particular, by Ep5

6.6. The stable failures model 144

and definition 6.10, n is never indexed by the empty set in either of these
definitions; also, 0 is never indexed by the empty set in the last line of the
definition of REf'(t). By definition 6.4 and since 0 E Domi by Ep3-T, then
t E Domi for any t used to parameterise a term in the definition of REi and
so ref:: is defined wherever it is used. Also as before, the two definitions of
REi are similar: again, the only difference is the ordering of the operators 0

and n in the last line of the respective definitions, due to the fact that this
line encodes (the priming of) RefBeti.

We also define the process, Trim.

Trim is composed in parallel with I I liEinv REi in order to ensure that
primed events only appear at the end of traces in the resulting process,
REinv , which process will be used to extract the refusals of Q:20

The following result characterises the behaviours of REinv (recall that, by
definition 6.3, Dominv 6 (1IIiEinvDomi) and dominv 6 (1IIiEinv domi)).21

Lemma 6.12. The following hold of REinv:

1. TREinv = Dominv U T, where
T ~ {t 0 (prime(a)) It E Dominv A ((::Ii E inv) a E Ai)}.

2. ¢>REinv = {(t, prime (X) U Y) I t E dominv A X ~ Ainv A
Y ~ (~ - prime(Ainv)) A

((Vi E inv) X n Ai E RefBetj(trA;))}.

Before composing REinv in parallel with Q, it is necessary to prime the
events of Q using pQ. This essentially gives two copies of every event from
Q which is in Ainv: after composition with REinv , the un primed events effec
tively define the traces of the resulting process and the primed events define
the refusals, as they do in REinv . Prior to composition with REinv it is also
necessary to compose the renamed Q with the following process, Trim Two,
to create the process Interim. TrimTwo plays a role similar to Trim defined

20rr primed events could appear elsewhere in the traces of REinv , it would interfere with
the extraction of the traces of Q.

21 Note that, in the definition of T in lemma 6.12(1), dominv could have been used in
place of Dominv without invalidating the result. We use Dominv because it is sufficient
for our purposes in the remainder of this section and because it eases the proof of both
this result and a later result.

6.6. The stable failures model 145

above: it ensures that events from prime (A jnv) only occur at the end oftraces
in Interim. We therefore define:

TrimTwo = (OaEaQa --t TrimTwo) 0 (OaEPrime(Ai",,)a --t DIY)

and
Interim 6 Q[pQ) IlaQuprime(A

i
",,) Trim Two.

Consider a failure (t, R) E ¢JdomEP(Q)Q and let i E inv. Once REjnv has
been composed in parallel with Interim, the resulting process will refuse
prime(~) after t if extr';' (R n Ai, tr Ai, Q) = B j • (This behaviour is sim
ilar to that induced when DSF j is composed in parallel with Qj, as de
scribed in section 6.5.) Similarly, only a strict subset of prime(~) will be
refused after t if extr';' (R n ~,tr~, Q) = 0. The events from prime(~)
are then renamed to di using aQ . This has the result that {di } is refused
after t if extr';' (R n Ai, t r Ai, Q) = Bj; moreover, {dj} is not refused after t
if extr';' (R n~, tr~, Q) = 0.22

We therefore define PreImple, a process which has the extracted refusals
of Q but whose traces have not yet been extracted:

PreImple 6 (Interim IIAi""Uprime(Ai",,) REjnv) [aQ
).

We introduce the notation A Fvis as follows.

Definition 6.15. AFvis 6 Ui!tinv Ai = o:Q n Fvis.

The behaviours of PreImple are then given by the following result.

Lemma 6.13. The following hold:

1. TPreImple = TQ U T, where T ~ {t 0 (d j) It E TQ /\ dj E dinv }.

2. ¢JPreImple ={(t, XU Y) I (3(t, R) E ¢JdomEP(Q)Q) R ~ o:Q /\
X ~ extrFDR~~(Q)(R, t, Q) /\ Y ~ (~- (AFvis U dinv))}.

22 According to the detail in section 2.4.2, for some process W and renaming G,

¢(W[G]) ~ {(81
, X) I (38) 8 G 81

/\ (8,G- 1(x)) E ¢W}.

Since (aQ)-l ({ £4}) = prime (Ai) U {di} for i E inti, then prime(~) must be refused before
renaming with aQ if {£4} is to be refused after renaming has been applied (note that {di }

itself is always refused before application of the renaming).

6.6. The stable failures model 146

Extracting traces

We now define the process FinalImple. This will constitute the implementa
tion process supplied to the !efinement check in FDR2 which is used to verify
whether or not extrEP(Q)([Q]SF) ~ [P]SF. This final syntactic transforma
tion is used to "extract" the traces of PreImple. (Note that extract, prep and
TEinv are as defined in section 6.4.)

FinalImple 6 (((PreImple[prep]) Ilprep(A;nv) TEinv) \ Ainv)[extract]

The behaviours of FinalImple are given by the following result.

Lemma 6.14. The following hold:

1. TFinalImple = extrEP(Q)(TQ) U T, where
T ~ {extrEP(Q)(t) 0 (di) It E TQ /\ di E dinv }.

2. fjJFinalImple =((extrEP(Q) (w), Xu Y) I (3(w, R) E fjJdomEP(Q)Q)
~ f ~

R ~ aQ /\ X ~ extrFDRr;p(Q)(R, w, Q)
/\ Y ~ (~ - (AFvis U dinv))}.

6.6.2 Preprocessing the specification process P

Before proceeding, we introduce an additional notation which will prove use
ful in characterising the behaviours of the preprocessed specification.

Definition 6.16. Let (t, R) E fjJP. Then DB(R) 6 {di E dinv I Bi ~ R}.

In addition, we assume the alphabet of P to be as follows:

As indicated above, it is necessary to modify the specification process P
before it is used in any refinement check in FDR2. There are two related
reasons for this. Firstly, as indicated by lemma 6.14(1), certain traces from
T FinalImple may be ended by an event di E dinv . It is therefore necessary to
add di for i E inv to the end of every trace in the specification. Secondly,
refusals in FinalImple are effectively defined only in terms of finally visible
events and the events from dinv ; all other events are always refused. The
refusals from the specification therefore have to be modified in order to reflect
this fact. These changes are effected using the auxiliary process Proc. (Recall
that Binv 6 UiEinv Bi by definition 6.2(2).)

Proc = ((DaEaPa -+ Proc)) ° DIY) n
(DaE((aP-B;nv)Uprime(B;nv))a -+ DIY) n
((DYEd;nvY -+ DIY) ° DIY).

6.6. The stable failures model 147

The events from P are primed using pP in order to give two copies of each
event in B inv - the primed events will be used to define refusals and the
unprimed events to define traces - and Proc is then composed in parallel
with the renamed P, synchronizing on aP U prime(Binv)' We refer to the
resulting process as W. For every (t, R) E ¢Proc, t E (aP)* and

Thus, W will always refuse all events in Binv since Binv ~ extr,et(aQ) ~ aP;
however, refusals from P which are contained in B inv will appear in a primed
form in W. In other words, if (t, R) E ¢P is such that R ~ Binv , then
(t, prime(R)) E ¢W. Finally, the renaming uP is applied to W with the effect
that all events from prime (Bi) for i E inv are renamed to di . This means that
the new specification process, NewSpec, will refuse {d;} for i E inv after a
trace t if and only if P could previously refuse Bi after t (see lemma 6.15(2)
and recall the definition of DB in definition 6.16). NewSpec is therefore
defined as follows.

NewSpec will constitute the specification process supplied to the refine
ment check in FDR2 which is used to verify whether or not extr EP(Q) ([Q]sp) ~
[P]sP. Its behaviours are characterised by the following result.

Lemma 6.15. The following hold:

1. rNewSpec = rP U {t 0 (di) It E rP /\ di E dinv }.

2. ¢NewSpec = {(t, R) I (3(t, X) E ¢P)
R ~ (X n (aP - Binv)) U DB(X) U

(~- ((aP - B inv) U dinv))}

In this result, aP - Binv denotes a combination of finally visible events
and "other" events. This reflects the fact that P may engage in events other
than those in the specification alphabets of the extraction patterns used to
interpret Q (Le. other than those in Ul~i~m Bi).

6.6.3 Final result

We now give the final result which lets us verify using FDR2 whether or not
extrEP(Q)([Q]sp) ~ [P]sp·

Theorem 6.16. extrEP(Q)([Q]sp) ~ [P]sp if and only if FinalImple ~sp
NewSpec.

6.6. The stable failures model 148

6.6.4 Example

We now show how the results given above can be used to define inputs
to FDR2 to verify automatically that the extracted behaviours of Leftlmpl
(respectively RightImpl) in the stable failures model are contained in the
behaviours of LeftSpec (respectively RightSpec) in the same model.

In both cases - i.e. in the verification of both Leftlmpl and RightImpl
- let ep 1 be ep ack. We therefore have that inv = {I}. Also, dinlJ = {dt},
Al = A inlJ = adata U aack and Bl = B inlJ = asend. Assuming the existence
of suitable extraction patterns to "interpret" events occurring on channel in
in Leftlmpl and on channel out in RightImpl,23 we have:

• aRightSpec = aout U asend .

• aLeftSpec = ain U asend.

We define new channels dataprime, ackprime and sendprime with the same
types as data, ack and send respectively on which will occur the necessary
primed events. The renaming prime which is used here is defined as:24

pnme {(send.O, sendprime.O) , (send.l, sendprime .l),
(data.O, dataprime.O), (data.l, dataprime.1),
(ack.yes, ackprime.yes), (ack.no, ackprime.no)}.

The renaming pQ used here is defined as:

{(data.O, data.O), (data.O, dataprime.O),
(data.l, data.l), (data.l, dataprime. 1) , (ack.yes, ack.yes),
(ack.yes, ackprime.yes) , (ack.no, ack.no), (ack.no, ackprime.no)}.

The renaming pP used here is defined as:

{(send.O, send.O), (send.O, sendprime.O) , (send.1, send.1),
(send.1, sendprime .l)}.

The renaming (J"Q used here is defined as:

{(dataprime.O, d1), (dataprime.1, dt), (ackprime·Yes, d1),

(ack prime . no, d1)}.

23These are the extraction patterns whose existence was assumed in section 6.5.4.
24Note that all renamings used here are the same whether we are verifying Leftlmpl or

RightImpl.

6.6. The stable failures model 149

The renaming uP used here is defined as:

Using the detail above, NewSpec could be constructed for both LeftSpec
and RightSpec after taking account of the following important point. In the
generic syntactic definitions given in this section, the renaming prime is ap
plied to different sets of events. However, renamings may not be applied to
sets in FDR2 (that approach is used in definitions for ease of expression). In
practice, we supply directly the events from the primed set under considera
tion. For example, where a deterministic choice operator in Proc is indexed
by a E (... U prime(Binv)), we would instead give directly the set of primed
events: in the example here, we would use a E (... U asendprime) rather than
a E (... U prime(asend)). In the definition of REi in section 6.6.1, a choice
operator is indexed by R E refr (t) and then a subsequent choice operator
is indexed by a E prime(Ai - R). In practice, we take advantage of the fact
that prime(Ai - R) = prime (Ai) - prime(R). The first of the two choice op
erators is therefore indexed over the set of prime(R) such that R E refr (t),
where the prime(R) are supplied directly. The second choice operator is then
indexed by a E prime(Ai) - X, where prime(Ai) is supplied directly and X
represents a member of the set of prime(R) such that R E refr (t). This
approach is illustrated by the definition of the processes REI below.

Below, X 6. aackprime U {dataprime.O} and Y 6. aackprime U {dataprime.1}.
These sets are used to represent the primed maximal refusals bounds when
behaviour is complete (recall that ref ack(t) = {R E 2adatauaack I adata Cl R}
for t E domack).

Verifying RightImpl:

In this case, Comm(AI, RightImpl) = Right. Assume that Q is RightImpl
after the application of preprocessing as described in section 6.3. Then, as
shown in section 6.5.4, aQ = adata U aack U aout. The process REI
for the extraction pattern epi = ePack is defined in terms of two auxiliary
processes R~ (x) and REt (x):

((OxE{o,l}data.x -t R~ (x)) ° DIY) n
(nRE{X,y} (OYE((adataprimeUaackprime)-R) Y -t DIY)).

R~(x) (ack.yes -t REID ack.no -t REt(x)) ° DIV.

(data.x -t REI) ° DIV.

6.7. The failures divergences model 150

Verifying Leftlmpl:

In this case, Comm(AI, Leftlmpl) = Left. Assume that Q is Leftlmpl after
preprocessing. Then, as shown in section 6.5.4, a:Q = a:data U a:ack U a:in.
The process REI for the extraction pattern ePI = ePack is defined in terms
of the following two auxiliary processes REr (x) and RF1: (x):

REr(x)

RF1{(x)

((D xE{o,l}data.x -t REr(x)) ° DIV) n
(DRE{X,y}(nYE((adatapnmeuaackpnme)-R) y -t DIV)).

(ack.yes -t REID ack.no -t RF1:(x)) ° DIV.

(data.x -t REt) ° DIV.

Using the components defined above, along with TEl, prep and extract
described in section 6.4.3, we were able to define all necessary process ex
pressions needed for the current verification. By supplying them as inputs
to FDR2, we were then able to verify automatically that the extracted be
haviours of Leftlmpl (respectively RightImpl) in the stable failures model are
contained in the behaviours of LeftSpec (respectively RightSpec) in the same
model.

Thus, since both Leftlmpl and RightImpl meet Dom-T -check and Dom
SF-check, since a:lmplNet ~ Fvis and by theorem 4.10, we may infer that

ImplNet ;;;:;)SF SpecNet.

6.7 The failures divergences model

Finally,we show how to verify automatically that extrEP(Q)([Q]FD) ~ [P]FD
when 8P = 0.25 By working under this restriction, the condition that is ver
ified here is similar to the notion of refinement-after-hiding presented in [16].
Before proceeding to the verification of the condition proper, it is necessary
to show how to verify condition Ep6.

25This restriction is imposed because it lets us verify the condition while still working in
the stable failures model: the use of DIV in extracting refusals would distort the outcome
of any verification check in the failures divergences model. It is a minor restriction in any
case, since one would usually expect a (component) specification process to be divergence
free. Moreover, it should be stressed that the specification network may still contain
divergent traces.

6.8. Conclusion 151

Verifying EP6

We recall condition Ep6 from section 4.5 and observe that it must be verified
for every extraction pattern ePi E EP(Q) such that Ai n Fvis = 0, that is,
such that i E inv (it is met trivially when i ¢ inv by Ep4-FvI).

EP6 Let ep E EP. If ... , tj , ... is an w-sequence in Dom, then
... , extr (tj), ... is also an w-sequence.

In practice, Ep6 would be verified of the extraction patterns indepen
dently of the actual system verification: in other words, it would be verified
of any particular extraction pattern when that extraction pattern was first
created. The following result shows how this verification may be carried out,
where TEi is as defined in section 6.4.

Theorem 6.17. Let ePi E EP(Q) be such that i E inv. Then ePi meets Ep6
if and only if 6(TEi \ Ai) = 0.

The verification proper
......

We assume that Q has already been shown to meet conditions Dom-T-check
and Dom-SF-check. As is shown by the following result, two checks are then
required in FDR2 to verify that extrEP(Q)([Q]PD) ~ [P]FD when 6P = 0
(NewSpec and FinalImple are as defined in section 6.6) .

......
Theorem 6.18. Let 6P = 0 and assume that Q meets conditions Dom- T-
check and Dom-SF-check. Then extrEP(Q)([Q]PD) ~ [P]FD if and only if
6Q = 0 and FinalImple ~SF NewSpec.

Using the above detail, we were able to verify automatically that Leftlmpl
refines-after-hiding LeftSpec and RightImpl refines-after-hiding RightSpec in
the failures divergences model. Thus, by theorem 4.12, we may infer that
ImplNet ~FD SpecNet.

6.8 Conclusion

We have presented here a means of automatic verification of our notion of
refinement-after-hiding, albeit under certain restrictions.26 Moreover, it has
been built on top of an existing industrial-strength tool, with all of the bene
fits which that confers. This means of verification is used in the next chapter

26The extraction mappings which may be used must be restricted as described in section
6.0.2 and component specification processes must be divergence-free when working in the
failures divergences model.

6.8. Conclusion 152

to verify the correctness of an algorithm for asynchronous communication
and we postpone until then a more detailed discussion of it.

Chapter 7

Case study

Thus far, we have considered the theory behind notions of refinement-after
hiding in CSP, presented a concrete such notion and described a means of
automatically verifying it using a pre-existing tool. The next step is to
apply these latter two things in practice. To do this, we attempt to wrify
the correctness of a particular asynchronous communication mechanism or
ACM.l

7.1 Asynchronous communication

In an ideal world, where we could guarantee instantaneous, atomic2 data
transfer - whatever the type of the data being transferred -- shared mem
ory communication between two concurrent processes could be implemented
directly using single variables or registers, without any attendant access con
trol policies or mechanisms. However, such atomic data transfers are not
possible and if, for example, a reader and writer process were allowed uncon
strained access to such a variable or register, interference would occur due to
the overlapping of read and write events.

Usually, if communication is to take place between two concurrent pro
cesses via a shared memory area, some form of synchronization3 will be re
quired in order to avoid interference. Such synchronization may take the
form of a critical section or handshake communication. However, this may

1 Although the purpose of this case study is to apply in practice the machinery developed
in previous chapters, it is also intended as an illustration of the general power of refinement
after-hiding: the results given in this chapter are therefore important in their own right.

2In this chapter, we shall describe (sequences of) events as "atomic" (with respect to
each other) if their occurrences do not overlap in time and so their respecth'e executions
cannot interfere with each other.

3Synchronization here means that the two communicating processes have to co-ordinate
their activities in some way, possibly via a third-party mechanism such as a critical section.
It does not refer to communication which is regulated by some sort of global clock.

153

7.1. Asynchronous communication 154

force one or both of the communicating processes to wait or block while the
other completes a data transfer; this may be undesirable, particularly in a
real-time environment. Even a buffer, unless of infinite capacity, is not fully
asynchronous: if it becomes full, a writer process may have to wait and, if it
becomes empty, a reader process may have to wait.

It is to solve this problem that asynchronous communication mechanisms
or ACMs have been introduced. Such mechanisms are characterised by the
fact that, if used by a single reader and writer, neither the reader nor the
writer will ever have to wait before it is allowed to interact with the mecha
nism. As a result, a writer may always write to an ACM and the reader may
always read from it: that is, writes are destructive and may overwrite data
already written, while reads are non-destructive and so re-reading is allowed.
In order to allow such unconstrained access, despite the reality of non-atomic
data transfer, ACMs combine some sort of access logic with multiple data
slots. The multiple data slots allow a read and a write to proceed concur
rently without interfering with each other, while the access logic ensures the
reader and writer processes never access the same slot at the same time. The
specific ACM we consider here is Simpson's 4-slot mechanism ([68]).

7.1.1 Simpson's 4-slot mechanism

The software version of the mechanism from [68] is given in figure 7.1; we
assume that it will be used to manage data transfer between a single reader
and a single writer, which communicate with the mechanism using the read
and write procedures respectively. It contains - as the name suggests -
four data slots, arranged into two pairs of two slots. Each of these slots stores
a value of type datatype4 and together they constitute a 2-dimensional array,
data, which is a global variable. The first dimension of the array represents
the pair, the second the two slots within that pair. Intuitively, the writer
tries to avoid the reader as it seeks to write into the mechanism, while the
reader chases after the writer in order to read the last piece of data written.

Three global variables are used in order to manage the behaviour of the
reader and writer respectively. These are latest, reading and slot. latest is a
bit variable indicating the pair to which the writer last wrote, while slot[iJ
tells the reader which slot was last written to in pair i. The bit variable
reading tells the writer the pair from which the reader is about to read or
from which it has just read. Note also that pair and index are local variables.

The behaviour of the reader is relatively straightforward to understand.
It ascertains the pair to which the writer last wrote and places this value in

4Jn the general case, datatype will be a complex type whose reading and writing are
not guaranteed to be atomic by the underlying system on which the 4-slot mechanism is
implemented.

7.1. Asynchronous communication

Global variables: reading, latest: bit
slot: array of bit
data: array of (array of datatype)

procedure write
var
begin

procedure

end;

read:
var
begin

end

(item : datatype);
pair, index : bit;

pair := not(reading);
index := not(slot[pair));
data[pair, index] := item;
slot[pair] := index;
latest := pair;

datatype;
pair, index: bit;

pair := latest;
reading := pair;
index := slot[pair];
read := data [pair, index];

Figure 7.1: Simpson's 4-slot mechanism

155

7.2. Verifying the 4-s1ot mechanism 156

the local variable pair. It then indicates to the writer that it is going to read
from this pair by storing the value in reading, before discovering the slot last
written to in the pair by interrogating the variable slot. Finally, it reads the
data item stored in data at the relevant pair and slot. Note that the data
transfer from data which represents this read will not occur atomically in the
general case.

As indicated above, the writer aims to avoid the slot and pair combination
in which the reader finds itself. It first decides to write to the pair in which the
reader has not indicated an interest via reading (we assume that not(O) = 1
and not(l) = 0). It then decides to write to the slot in that pair which
contains the oldest value. This means that it is impossible to immediately
overwrite the last data value written into the mechanism. It also means
that the writer avoids the reader in the event that the latter is reading from
this pair. (This may happen despite the efforts of the writer to choose the
alternative pair due to the arbitrary interleaving of the commands contained
in the respective read and write procedures.) The relevant data value is then
written - non-atomically - into the correct pair and slot combination. slot
is updated to indicate which slot was written to in the relevant pair before,
finally, latest is updated to indicate to the reader the pair in which the last
write occurred.

As indicated above, a call to the read procedure and a call to the write
procedure may proceed concurrently and so the commands they contain can
be arbitrarily interleaved. This is obviously necessary if we are to have non
blocking - and so asynchronous - communication. And it is this fact of
arbitrary interleaving, along with the fact that data transfers are non-atomic,
which leads to the need for verification to ensure that the mechanism does,
indeed, behave as desired.

7.2 Verifying the 4-s1ot mechanism

As hinted above, the 4-slot is intended to mimic the functionality of a register
despite the fact that we cannot guarantee atomicity of read and write opera
tions (see figure 7.2 for a procedure-based representation of a register, where
it is assumed that the read and write procedures do execute atomically). In
moving from the register to the 4-slot, a variety of types of reification have
occurred:5

• Data reification: The single memory slot of the register has been re
placed by four data slots, along with a number of variables to control
access to those slots.

SIt is exactly this combination of different types of remcation, exhibited by a mechanism
whose definition is relatively concise, which led us to choose the 4-s1ot as a case study.

7.2. Verifying the 4-s1ot mechanism 157

Global variable: data : datatype

procedure write (item : data type);
begin

data := item;
end;

procedure read: datatype;
begin

read := data;
end

Figure 7.2: A register

• (External) behaviour decomposition: The register transfers data in terms
of individual read and write events, while the 4-slot uses a number of
different events to implement a read or a write.6

• (External) relaxation of atomicity: In the register, reads and writes
are atomic; in the 4-slot, the read and write procedures may proceed
concurren tly.

Due to the nature of this reification, standard CSP refinement could not
be used to verify that (our CSP representation of) the 4-slot is a correct im
plementation of (our CSP representation of) the register. Using the concrete
notion of refinement-after-hiding from chapter 4, however, we are able to
show that the 4-slot implements the register and the remainder of this chap
ter is concerned with doing so. Before proceeding, we look briefly at some
other approaches which have been used to verify the correctness of the 4-slot;
some of the concepts introduced thereby will be useful in what follows. We
will also take advantage of one of the results that has been shown, in order
to simplify our verification.

7.2.1 Standard approaches

The standard approach taken in the literature is not to consider correctness
with respect to a register. Rather, certain intuitive properties are identified

6The 4-slot mechanism given in figure 7.1 and the register from figure 7.2 present the
same procedural interface to the outside world and so it does not seem that external
behaviour decomposition has occurred. However, as can be seen below in section 7.3, we
actually represent the 4-slot as a CSP process in which the events used to implement the
read and write procedures are all externally visible. The reasons for this are discussed in
section 7.3.4.

7.2. Verifying the 4-s1ot mechanism 158

which it is felt must hold ofthe 4-slot7 ifit is to work in an acceptable manner,
which properties are expressed at the level of abstraction of the 4-slot itself.
Arguably the three most important such properties are data coherence, data
freshness and data sequencing (see, for example, [17]).

Data coherence Data coherence is preserved if and only if a reader process
and a writer process may not simultaneously access the same slot in the 4-
slot. It is essentially a mutual exclusion property - only one of the processes
may be in a particular slot at anyone time - and is used to guarantee that
the 4-slot behaves as if data items were actually transferred atomically. This
means that reads and writes at the 4-slot level will behave as if they had
been ordered atomically in some sequence. In this respect, the requirement
for data coherence is similar to that of serializability in databases (see, for
example, [2]).

Data freshness When a read is executed, it is not enough to guarantee
that the value read is a genuine value written into the mechanism; we also
need to guarantee that it was written into the mechanism as recently as pos
sible. The property of data freshness is therefore as follows: the oldest value
which may be read by a read procedure is that written into the mechanism
by the most recent write procedure whose execution had completed by the
time at which the execution of this read procedure began.8

Data sequencing This condition is concerned with the order in which
values are read from the 4-s1ot. It stipulates that, once we have read a
particular value, x, we cannot subsequently read a value, y, which was written
into the mechanism earlier than x. Note that data freshness does not imply
data sequencing, due to the fact that we can read an "old" value and still
meet the data freshness condition.

7.2.2 Checking these conditions

A number of authors have considered the problem of checking these condi
tions for the 4-slot and have approached it in various ways; moreover, the
conditions have all been shown to be met, under the assumption that the

7These properties have been used in the verification of a number of different ACMs but
we shall concentrate here on the 4-slot.

8We cannot simply give the definition as the read procedure must read the last value
written into the mechanism: the last-but-one value written may be read if the read pro
cedure begins interrogation of the necessary control variables before the current write has
finished updating them after writing a particular data item into the mechanism.

7.2. Verifying the 4-s1ot mechanism 159

control variables used in the 4-slot will never suffer from metastability (see
below).

Simpson himself developed and presented the role-model approach in [69],
which involves dynamically allocating (possibly multiple) 'roles' to the pairs
and slots in the array which stores the data written into and read from the
4-slot. On the occurrence of an event used in the implementation of a read or
write procedure, the role of any pair or slot may change. A transition system
is then constructed, the states of which are given by the roles allocated to the
slots and pairs. Model-checking is carried out on this state space in order to
determine that the relevant properties hold: for example, if the property of
data coherence is met, no reachable state can exist where both reading and
writing roles are assigned to the same slot. In his PhD thesis ([17]), Clark set
out to present a unified means of checking the correctness of various ACMs
(see [17] also for a survey of other approaches to this problem). This was
accomplished using an approach involving Petri Nets ([55]) and the resulting
method was used to successfully verify all three of the above properties for
the 4-slot. In [65], Rushby uses model-checking to verify the same properties.

All three of these approaches have in common the fact that they abstract
from the data values transmitted by the 4-slot mechanism and specify the
properties to be checked independently of these values. Since we verify the 4-
slot against a specification process, we are unable to employ data abstraction
in such a way and have to address squarely the issue of the data values which
we shall communicate in our model of the 4-slot (see section 7.3.4).

These three authors also all highlight the issue of whether accesses to the
control variables used in the 4-slot algorithm are atomic. The phenomenon
of metastability (see [17] for an explanation and a list of references) ensures
that they are not atomic in the general case. However, Simpson takes an
engineering view and states that, in practice, it is possible to design and
implement underlying hardware so that metastability is a negligible prob
lem, from which the 4-slot can recover immediately in any case. As a result,
he works from the assumption that accesses to control variables are atomic.
Both Clark and Rushby carry out verification without this assumption and
show that the 4-slot mechanism is not correct. (They relax it in different
ways: Clark allows for the possibility of metastability while Rushby assumes
that control variables are built using registers which may return any valid
value if reads and writes overlap.)9 The choice which we make in our mod
elling of the 4-slot is discussed in section 7.3.4.

The recent papers [26,27] also concern themselves with the fact of verify
ing that the 4-slot respects the property of data coherence. The first of these

9Their results are challenged, however, by the paper [54]: the authors of this paper
claim that a more accurate modelling of metastability allows them to show that the 4-slot
is, in fact, correct under metastable operation.

7.3. Modelling the 4-s1ot in CSP 160

uses data refinement in VD:M ([33]) to carry out this verification, although it
restricts the degree to which the events of the read and write procedures in
the 4-slot may be interleaved. The second paper uses a rely-guarantee proof
method in conjunction with data refinement and this allows the restrictions
from the previous paper to be lifted.

7.3 Modelling the 4-slot in CSP

In order to verify the 4-slot using our notion of refinement-after-hiding, we
need to render both it and the register in CSP.I0 In our modelling of the 4-
slot, we assume that the problem of metastable operation will not arise (see
section 7.3.4 below). Under such an assumption, all of the authors discussed
in the previous section have shown that the 4-slot enjoys the property of
data coherence. As a result, the mechanism behaves as if it transfers data
items atomically and we use this fact to simplify our CSP model: i.e. our
model will transmit data items atomically. This simplifies considerably the
extraction mapping which is needed to interpret the behaviours of the 4-slot.

7.3.1 The process used

Six basic processes are used in the CSP representation of the 4-slot. There
is a process to represent each of the global variables latest, reading and slot,
while another process represents the data array. Finally, two processes are
used to impose the necessary ordering of event executions.

Figure 7.3 details most of the data types and channels which are required
in the construction of the processes which we shall use. Channel data is
used for (atomic) data transmission: it has fields to indicate whether a read
or write operation is occurring, to indicate the pair/slot combination where
the data will be written to or read from and, finally, a field to store an
integer value from dataintY The channels latest, reading and slot are used
to communicate with the control variables. 12 Channel slot has an additional
field to indicate which of the processes is carrying out the relevant action,
since both the reader and writer need to read from the global variable slot.
The operation not is defined as not(first) = second and not (second) = first.

lOThe CSP model of the 4-slot is based partly on a model produced by Rod White of
Matra BAe Dynamics.

11 first and second are used in place of 0 and 1 to indicate a particular pair or slot in
order to make process definitions easier to follow.

12They are each given the name of the control variable that they are used to communicate
with as this makes clearer the connection between the events of the CSP representation
of the 4-slot and the events used in the description of the 4-slot in figure 7.1.

7.3. Modelling the 4-s10t in CSP

• dataint = {O .. 5}

• datatype slots = first I second

• datatype ops = rd I wr

• datatype user = reader I writer

• datatype dataslot = ops.slots.slots.dataint

• channel data : dataslot

• channel reading, latest : ops.slots

• channel slot : user. slots. ops .slots

Figure 7.3: Data type and channel definitions

The process to represent the variable reading is as follows:

• BitReading = Reading(first)

• Reading (x) = reading.rd.x -+ Reading(x)
o
reading.wr?y -+ Reading(y)

The process to represent the variable latest is as follows:

• BitLatest = Last(first)

• Last(x) = latest.rd.x -+ Last(x) 0 latest.wr?y -+ Last(y)

Figure 7.4: Representing the bit variables latest and reading

161

7.3. Modelling the 4-s1ot in CSP

• SLOT{x, Y)
let S{y)=

slot. writer.x. rd.y---+S{y)
o
slot. writer. x. wr ?val---+ S (val)
o
slot. reader.x. rd.y---+S{y)
o
slot. reader.x. wr?val---+S{val)

within S{Y)

• Slots =lllxE{first,second}SLOT{x,first)

Figure 7.5: Representing slot

162

Figure 7.4 details the processes used to represent the control variables
latest and reading respectively.13 The representation of the array slot can be
seen in figure 7.5. It is given by interleaving the two processes SLOT{first,first)
and SLOT{second,first), each of which represents an element of the array (a
similar technique is used to represent the array data). Its definition relies on
the fact that we may define generic processes which are parameterized by a
data value or values indicating a particular position in an array. The chan
nel on which this generic process communicates with the environment is also
parameterized with these same values (see section 2.12). Therefore, we may
communicate with the process of our choice - i.e. access the desired position
in the array - by making sure that we communicate the "identifier/s" for our
desired process when we communicate over the relevant channel. For exam
ple, the writer is connected to the first position in the array (for the purposes
of reading) by "channel" slot. writer.first. rd. It is connected to the second po
sition in the array (for the purposes of reading) by slot. writer. second. rd and
so on. In other words, the parameter x in the definition of SLOT denotes
the position in the array which is represented by SLOT.

The representation of the array data also consists of a number of pro
cesses, each representing a particular position in the array. The definition
of the relevant processes is given in figure 7.6. The process DataSlot is pa
rameterized by three values. The first two of these, labelled by x and y,
denote the slot in the array which this particular process will represent: we
create a DataSlot process for every pair and slot combination. For example,
DataSlot{first,second,O) will be the second slot in the first pair; similarly,

13See section 2.12 for an explanation of the syntax used to represent multi-directional
communication.

7.3. Modelling the 4-s1ot in CSP

• DataSlot{x,y, V)=
let D{v)=

data. wr.x. y'?val-+D{val)
D

data. rd.x. y. v-+ D (v)
within D{V)

• Data =llIxEADataSlot{/st{x),sec{x),O), where

163

A {(first,first), (first, second), (second,first), (second, second)},
/st((x, y)) = x and sec((x, y)) = y.

Figure 7.6: Representing the data array

DataSlot{second,second,O) is the second slot in the second pair. Each slot in
the array - and so each DataSlot process - then contains a single integer
value, denoted by the variable V (or v in the local definition D).

The processes described so far - namely, BitReading, BitLatest, Slots
and Data - represent the global variables of the 4-slot mechanism. The fi
nal requirement is to provide a communication interface with these processes
which reflects the nature of the read and write procedures given in figure 7.l.
The processes used for this are given in figure 7.7: their purpose is to im
pose an ordering on the events offered by the global variables. All of these
processes are then composed in parallel, synchronizing on common actions,
to give the process FSlot, the CSP representation of the 4-slot:

((BitReading III BitLatest III Slots III Data) IIA Writer) liB Reader

where

• A = areading.rd U aslot.writer U adata.wr U alatest.wr.

• B = alatest.rd U areading.wr U aslot.reader U adata.rd.

In practice, we use the following equivalent construct to give FSlot, in
order to avoid the state explosion which would arise from the interleaving of
four different processes:

((((BitReading IIA Writer) liB Reader) lie BitLatest) liD Slots) liE Data

where A = areading.rd, B = areading.wr, C = alatest, D = aslot and
E = adata.

7.3. Modelling the 4-s1ot in CSP

Ordering writer-side behaviour:

Writer = reading. rd?p---t
slot. writer. not(p). rd?i---t
data. wr. not(p). not(i) ?val---t
slot. writer. not(p). wr. not(i)---t
latest. wr. not(p)---t Writer

Ordering reader-side behaviour:

Reader = latest. rd?p---t
reading. wr.p---t
slot. reader. p. rd?i---t
data. rd. p. i ?val---t Reader

Figure 7.7: Ordering behaviour of global variables

7.3.2 A simple environment

164

We also present a simple environment with which FSlot might be composed.
The purposes of this are twofold. Firstly, it allows us to carry out a basic
compositional verification. Secondly, consideration of an environment such as
the one we propose is very useful (at least in this case) in determining that the
traces extraction mapping we have developed is acceptable: see section 7.4
for a discussion of this issue. Figure 7.8 describes this environment: it may
take a value from dataint on the channel in and write it into FSlot; it may
also read a value from FSlot, before outputting the result on channel out.
(Note that the channels in and out used here are assumed to be different
to those used in the definition of the processes from the running example in
figure 1.1.)

7.3.3 The register and a corresponding environment

The CSP version of the register is presented in figure 7.9. The variable data
from figure 7.2 is represented as a parameter to the process. Since individ
ual CSP events occur instantaneously and cannot occur concurrently, we are
guaranteed to have atomic transfers of data. Figure 7.10 defines the specifi
cation environment for which the 4-slot environment is an implementation:
it is essentially a pair of single-slot buffers to be placed on the read and write
channels of the register. Note that the events on channels in and out are re
garded as finally visible; all other events - i.e. all those in both the register

7.3. Modelling the 4-slot in CSP

• channel in, out: dataint.

• WriteEnviron = in?val ~
reading. rd ?p~
slot. writer. not{p}. rd?i~
data.wr. not{p}. not{i}. val~
slot. writer. not{p}. wr. not{i}~
latest. wr. not{p}~ WriteEnviron

• ReadEnviron latest.rd?p~
reading. wr. p~
slot. reader.p. rd?i~
data.rd.p. i?val~
out. val ~ReadEnviron

• FourSlotEnviron = WriteEnviron III ReadEnviron

Figure 7.8: An environment for FSlot

• channel read, write : dataint

• Register = Reg (0)

• Reg(x) = read.x ~ Reg(x) 0 write?y ~ Reg(y)

Figure 7.9: A CSP version of the register

165

7.3. Modelling the 4-s1ot in CSP 166

• RegWriteEnviron = in?val--t write.val --t RegWriteEnviron.

• RegReadEnviron = read?val --t out. val --t RegReadEnviron.

• RegisterEnviron = Reg WriteEnviron III RegReadEnviron.

Figure 7.10: A corresponding environment for the register

and FSlot - are finally invisible.

7.3.4 Issues related to modelling the 4-slot in CSP

We now consider issues relating to some of the choices we have made in
modelling the 4-slot mechanism in CSP.

The 4-s1ot, its environment and inter-process communication

Although the 4-slot algorithm as presented in figure 7.1 implies that reader
and writer processes would communicate with the mechanism using (pos
sibly remote) procedure calls, we have taken a different approach with our
CSP model. Essentially, we have assumed that all events of the 4-slot are
visible to the environment - i.e. both events effecting data transfer and
those concerned with manipulating control variables - and that the envi
ronment engages in both types of event whenever it wishes to transfer data.
It is possible to model the 4-slot and the register in CSP using a procedural
interface which gives them both the same set of visible events. 14 However,
relaxation of atomicity in the 4-slot means that its procedure invocations
and returns may interleave in ways not possible for the register. This means
that standard CSP refinement could not be used for verification here and so
we need to use refinement-after-hiding. As can be seen in section 7.5, we
always extract on the occurrence of events which either write to or read from
a control variable, meaning that these events must be visible in our CSP
representation of the 4-slot. As a result, it seems we need to see more than
would be visible with a procedural interface if verification is to succeed. And
since the CSP version of the 4-slot no longer has a procedural interface, there
is no reason to retain such an interface in the CSP version of the register.

This of course raises the question of the validity of the results generated
here with respect to any real system which might use the 4-slot to transfer
data. Although we have not explored this issue formally, we make the fol
lowing points with respect to any environment with which the 4-slot might

14 A procedure is modelled externally as an invocation event and a corresponding return
event, each of which may communicate data as necessary.

7.3. Modelling the 4-s1ot in CSP 167

be composed. A procedural interface would be represented in CSP using an
event to denote the procedure call and a corresponding event to denote the
procedure return. Having made a procedure call, one would assume that the
environment would always be ready to receive the return until it actually
occurred (this is similar to the property of receptiveness which is described
in [67]). Moreover, due to the assumption of a single reader and a single
writer, the call event of a particular procedure would not be allowed if a
return event for that procedure was pending. With our model, it is as if we
have substituted for the call and return events all of the events in the relevant
procedure: we would do this in general by assuming that the environment
would always be ready to accept the next event from a procedure once it
had begun to execute; moreover, only one event from a particular procedure
would be enabled at anyone time. (This is the approach followed in defining
the environment FourSlotEnviron.)

The extra events added by eschewing a procedural interface would not
actually interact at all with any other events in the environment: they would
neither enable such events nor cause them to be disabled. Since all such
interface events would be hidden anyway in the final network, the change in
modelling approach should not have any impact in the traces model and it
would certainly fail to introduce any new divergences. In the stable failures
model, whichever modelling approach we used, no state between the start
and termination of a particular procedure would contribute a stable failure
due to offering at least one event which would be hidden in the final network.
As a result, whichever modelling approach we used the (CSP) behaviour of
any network built using the 4-slot should not change to any significant degree.
(See also comments on this issue in section 7.9 at the end of this chapter.)

Instantaneous events but no simultaneous events

In [17], Clark raises the possibility that certain ACMs may execute two events
a, b simultaneously with a different result to that which arises by executing
either a then b or b then a. This is of significance because we have no means
of modelling in CSP the actual concurrent execution of two different events.
However, Clark showed that such a problem does not arise with respect to
the 4-slot.

Metastability

In section 7.2, we mentioned the problem of metastability in relation to the
question of whether or not control variables are modelled as being capable
of atomic data transfers. Our CSP model of the 4-slot assumes that such
data transfers will be atomic. This is for two main reasons: the first is that
we accept Simpson's view that the problem of metastability is negligible in

7.4. Restricting the (traces) extraction mapping 168

practice (or can be made so). Secondly, we are concerned here with exploring
how our notion of refinement-after-hiding may be applied in practice and
modelling the possibility of metastability would complicate our model to a
large degree.

A concrete data type

For the purposes of verification, specifically the need to use FDR2, it was
necessary to choose a concrete data type to be written to and read from
both the register and the 4-slot. We have chosen (a subset of) the integers
- i.e. {O .. 5} - because they are a basic type. Since we are carrying out
model-checking, it is also necessary to choose a finite type and the limits of
the hardware on which FDR2 was run dictated the size of the type used.
This issue is discussed at greater length in section 7.8, after the presentation
of the processes used in the verification.

7.4 Restricting the (traces) extraction map-
• pIng

Before proceeding to the verification proper and the derivation of a suitable
extraction pattern, it is necessary to consider an important methodological
point regarding the use of refinement-after-hiding in practice. Namely, the
verification of a particular implementation component may be regarded as
ultimately successful only if we are able to verify the correctness of the envi
ronment with which the component is to be composed. And the extraction
pattern/s used to verify a particular component may have a significant im
pact on the possibility of successful verification of the environment. This
issue is considered in section 7.7.1 with regard to the refusal bounds which
are used in the verification of the 4-slot. However, there are properties of
sufficient importance that we need to guarantee they hold of our extraction
pattern (specifically, of the mapping over traces).

In verifying that FSlot refines-after-hiding the (CSP) register in the traces
model, every trace of FSlot has to be mapped to a trace of the register. Since
FSlot does not engage in any finally visible events, the only restrictions on
the mapping used are that it must be strict, monotonic and return a trace
over the alphabet of the register when applied to any trace from FSlot. As
a result, it would be possible to define a mapping which simply returned
the empty trace () for any trace to which it was applied. We could then
very easily show that the extracted traces of FSlot were contained in those
of the register. However, such a mapping would cause problems when it
came to verifying any meaningful environment with which FSlot might be

7.4. Restricting the (traces) extraction mapping 169

composed. By definition, the mapping used to interpret the traces of FSlot
will also be used in the interpretation of the traces of the environment and
that environment will contain finally visible events in the general case. The
presence of these events, along with the fact that finally visible events must be
left unaltered by any extraction mapping - see conditions Ep4-FvI and TR
G LOBAL2 in chapter 4 - will impose further restrictions on the mapping
used in the verification of FSlot, which restrictions should be anticipated
when that mapping is being developed.

It is possible to define an environment which simply carries out a direct
translation to and from the behaviours of FSlot: this is the environment pre
sented in figure 7.8. 15 (The corresponding specification environment is given
in figure 7.10.) In order for any extraction mapping to allow the successful
verification of this environment, the way in which the mapping interprets the
traces of FSlot must be consistent with the way in which the environment
translates to and from those behaviours: this is illustrated by the following
discussion.

In the 4-s10t environment, every (low-level) write16 to FSlot will be pre
ceded by an event in.x; moreover, the low-level write will also transmit the
value x. Similarly, every (low-level) read from FSlot which transmits the
value x will be followed by the event out.x. In the specification environment,
every event write.x will be preceded by the event in.x; similarly, every event
read.x will be followed by the event out.x. Since the events on channels in
and out are finally visible, they must be unaltered by the application of any
extraction mapping. This means that, if verification of the environment is
to succeed, each low-level write must extract to write.x. Likewise, each low
level read must extract to read.x. In other words, each low-level read or write
must be extracted to exactly one high-level data transmission; moreover, that
high-level data transmission must communicate the same data value as was
transmitted by the low-level read or write.

These conditions are therefore required to hold of any mapping we de
velop here, since we should always expect to be able to verify successfully an
environment of the simplicity of that in figure 7.8; moreover, if they do hold it
is unlikely that verification of a more complex environment would fail simply
because the extraction mapping developed to verify FSlot was unsuitable.
That they do hold can be checked by attempting to verify the implementa
tion environment from figure 7.8 against the specification environment from

ISIt plays a role similar to that of the extractors and disturbers in [39].
16We shall use low-level write to mean the execution of the events in FSlot which im

plement a call to the write procedure of the 4-slot; similarly, low-level read will be used to
mean the execution of the events in FSlot which implement a call to the read procedure
of the 4-slot. A high-level write will then simply be an event occurring on channel write;
a high-level read will be an event occurring on channel read.

7.5. The traces model 170

figure 7.10, using the mapping under consideration. It may seem that this
can also be checked simply by inspecting the mapping itself. However, as
can be seen in the next section, high-level read events are always extracted
to before the relevant data value has been transmitted at the lower-level. In
such a case, it is no longer straightforward to see that the event extracted
will transmit the correct data. 17

7.5 The traces model

We now move on to consider the extraction pattern needed for verification
of refinement-after-hiding in the traces model. A single extraction pattern,
denoted ep an is used to relate the behaviours of FSlot to those of the reg
ister, where ar denotes the fact that we interpret behaviours of an ACM as
behaviours of a Register. 1s AB a result, EP(FSlot) = {ePar}. Aan Bar, ear
and Domar for ep ar are defined as follows:

• Aar = alatest u areading U aslot U adata.

• Bar = aread U awrite.

• ear = 0.

• Domar = T FSlot.

First note that all events in Aar are assumed to be finally invisible -
i.e. Aar n Fvis = 0; we also assume that Comm(Aan FSlot) = Left. Since
EP(FSlot) = {ePar}, we shall use Domar in lieu of DOmEP(FSlot) by TR
GLOBALl. Note also that, by TR-GLOBAL2, extrEP(FSlot) is equivalent to
extr ar in the case that the former is being used to denote the mapping over
individual traces. That Domar = T FSlot means Dom-T -check is met trivially
by FSlot. 19 It also means that FSlot does not need to be preprocessed as
described in section 6.3 when we consider automatic verification (recall that

17 An early version of the extraction mapping derived here was used in a successful
verification of FSlot but verification of the environment failed for this reason.

18 A single extraction pattern (and so a single traces mapping) is used to interpret both
read and write events because the point at which write events are extracted depends partly
on the behaviour of the reader and the point at which read events are extracted depends
partly on the behaviour of the writer.

19Since ear = 0 and Comm(Aar, FSlot) = Left, then Dom-T-check requires that t E
Domar for every t E T FSlot: Le. there are no events on which FSlot is allowed to go
outside the domain. This then means that Dom-T -check does not place any restrictions at
all on FourSlotEnuiron. (See related discussion in section 4.2 with respect to verification of
the running example and see also section 7.6.3, where the verification of FourSlotEnuiron
is considered.)

7.5. Tbe traces model 171

this preprocessing would simply remove all traces of FSlot which are not
contained in Domar).

7.5.1 The extraction mapping

According to the conditions discussed in section 7.4, our choice in defining
extr ar is restricted to finding the particular event in each low-level read and
write on the occurrence of which we \\1.11 extract to the relevant high-level
event (which extracted event must transmit the same data value as the corre
sponding low-level event). In addition, that we are mapping traces of FSlot
to those of the register means any high-level read event to which we extract
must transmit the same data value as the last high-level write to which we
extracted.

Mimicking the behaviour of the register after application of the mapping
is complicated by two main factors (detail on how the relevant situations
may arise can be found in section 7.5.2):

• A low-level read may actually read data written into FSlot by a low
level write that has not yet completed (that is, it has not yet updated
both control variables to fully indicate where it wrote the data) .

• The slot and pair from which data is to be read on a particular low
level read may be fully determined before the identity of the relevant
slot and pair has been discovered from the control variables.

The first point has the consequence that we cannot al ways extract to a
high-level write event at exactly the point at which the low-level write has
completed (i.e. we cannot always extract on the occurrence of the event
which updates the variable latest). If we were to do this, the reader side may
have already read and extracted the value written and, at the specification
level, we will get a trace which apparently manages to read a value before it
has been written. However, we must also be careful not to extract the current
write yet if the reader could still read the value written by the previous write.

As soon as it is fully determined which slot and pair the reader will read
from, the value to be read is also fully determined. This is because the writer
will not be able to access the relevant slot of the data array until this read
has finished, since the 4-slot maintains the property of data coherence. As
a result, by the second point above, we may know exactly which value the
reader is to read before it has completed interrogating the necessary control
variables. And we must extract to a high-level read as soon as the value to
be read is determined: if we did not do this, the reader could wait until an
arbitrary number of further writes had been completed and extracted and
only then complete and extract this read. This would give the apppearance

7.5. The traces model 172

The Writer:

begin
1

pair := not reading;
2

index := not slot[pair];
3

data[pair, index] := item;
4

slot [pair] := index;
5

latest := pair;
end;

The Reader:

begin
1

pair := latest;
2

reading := pair;
3

index := slot[pair];
4

read := data[pair, index];

end

Figure 7.11: Simpson's 4-slot mechanism annotated

of reading an old value and so of having more memory than the single slot
of the register.

Before proceeding, it is also necessary to observe that the event on the
occurrence of which we actually extract to a high-level write is not always the
same and depends on the way in which low-level reads and writes have been
interleaved; a similar comment applies with regard to extraction to high-level
read events.

7.5. The traces model 173

7.5.2 Defining extrar

Figure 7.11 presents an annotated version of the 4-slot mechanism, using
numbers to indicate positions within the read and write procedures.20 These
annotations are used both in the presentation of the extraction mapping and
in its explanation. Before presenting the mapping, we consider in greater
detail the points at which a particular low-level read or write should be
extracted.

Considering the writer side in more detail

We cannot extract a write by positions 2 and 3 in the writer, since we do not
yet know the value to be written. If the writer is at position 4, it is impossible
for the reader to read what has just been written since data coherence is
preserved. Finally, we must have extracted once we return to position 1.
This means that, if we have not already extracted on the current call to
write, we must do so on the occurrence of latest.wr.not(p).

We therefore consider position 5 in the write procedure and the condi
tions under which we need to have extracted a high-level write event by the
time that we reach it: in other words, when do we extract a write event on
the occurrence of slot.writer.not(p).wr.not(i). In general, we need to have
extracted by this point if the reader already knows, or can discover without
any further writer action, the pair into which the writer has just written. If
this is the case, the reader can proceed to find out which slot in the pair was
written to and so read and extract the value just written. This can happen
in the following circumstances:

• If we have already extracted in the reader and the global variable latest
stores the same value as the variable pair in the writer. (The value of
pair in the writer tells us the pair which the writer has just written to.)

• If we are at position 1 in the reader and the global variable latest stores
the same value as the variable pair in the writer.

• If we are at position 2 or 3 in the reader but have not extracted yet,
and the value of pair in the reader is the same as the value of pair in
the writer. (In the corresponding conditional branches in the extrac
tion mapping definition given in figure 7.12, we do not actually state
explicitly the requirement that the reader has not yet extracted. This
is simply because, if the value of pair in the reader is the same as

2°It is easier to annotate the original definition of the mechanism than the CSP version
of it; in any case, the connection between this annotated wrsion and the CSP version
should be clear enough.

7.5. The traces model 174

the value of pair in the writer, then the reader cannot have extracted
yet. This can be seen from an inspection of the conditions below which
let the reader be at either position 2 or 3 and have extracted by that
point.21)

Note that the reader must always have extracted by the time that it
reaches position 4.

Considering the reader side in more detail

Recall that we will extract to a high-level read event as soon as we are certain
of the pair and slot combination from which we will read on the current call
to read.

By position 2 in the reader, we know the pair we must read from. In
order for it to be fully determined by this point the slot from which we will
read, it has to be the case that the writer is unable to write again to this
pair before we have completed the current read. (If the writer could write
to this pair again, it would first write to the other slot of the pair, to which
element the reader could then be directed.) If the writer is to be unable to
write to this pair, it is necessary that the value of pair in the reader is the
same as the value of reading. We therefore have to have extracted a read by
position 2 in the reader - that is, extracted on the occurrence of latest.rd.p
- in the following circumstances:

• If the writer is at position 1 or position 5, and pair in the reader has
the same value as reading .

• If the writer is at positions 2, 3 or 4, the value of pair in the writer is
not the same as the value of pair in the reader and pair in the reader
has the same value as reading.

In order to check these conditions in practice, we would use the value
stored in latest in place of that stored in pair in the reader: the conditions

21 First note that the decision on whether or not we will extract on the occurrence of
slot.writer.not(p).wr.not(i) is taken when the writer is at position 4. By the detail on
extracting read events, we consider each of two cases in which the reader may have already
extracted and be at either position 2 or position 3. In the first case, the writer is at either
position 1 or position 5 and the value of pair in the reader is the same as the value of
reading when the extraction occurs. As a result, by the time that the writer reaches
position 4 on this or any subsequent call to write (while the reader is still at position 2
or position 3), it will have set the value of pair in the writer to the "negation" of reading
and so to the "negation" of pair in the reader. A similar argument applies in the second
case, when the writer is at position 2, 3 or 4 when the extraction of the read event occurs,
except that here we start out with the fact that pair in the reader does not have the same
value as pair in the writer.

7.5. The traces model 175

must be checked at position 1, when pair has not yet been updated with the
value of latest.

By position 3, we know the pair we will read from and have also indicated
this to the writer. We have to have extracted by position 3 if the writer is at
position 1 or position 5 or if the value of pair in the reader is not the same
as the value of pair in the writer. These conditions are essentially the same
as those given for position 2, when we bear in mind the fact that we have
just assigned the value of pair in the reader to reading.

Finally, we must always have extracted by position 4 since, at this point,
we know both the slot and pair of the data item which we shall read.

It can be seen from the above discussion that the position of the writer
plays a role in whether or not we extract a read event. And, in fact, the
writer moving to position 5 may necessitate the extraction of a read event.
This means that the event slot.writer.not(p).wr.not(i) will, in some cases, be
extracted to both a read and a write event. This can be seen in the definition
of the extraction mapping in figure 7.12.

The mapping

We now proceed to define extr ar. Before giving the definition of this mapping,
it is necessary to introduce some auxiliary notation.

• For any trace t E T FSlot:

- we take exR(t) = yes if and only if we have already extracted a
read event during the current call to read and take exR(t) = no
otherwise.

- we take ex W (t) = yes if and only if we have already extracted a
write event during the current call to write and have ex W (t) = no
otherwise.

• late gives the current value stored by the control variable latest.

• rp gives the current value of the variable pair in the reader and wrp
gives the value of the variable pair in the writer.

• rPos gives the current position of the reader and wPos gives the current
position of the writer.

• rdng gives the value currently stored in the variable reading.

• slotVal[i] gives the value currently stored at position i in the array slot.

• w Val gives the last value written into the mechanism.

7.6. Automatic verification in the traces model using FDR2 176

• rVal[i]b] gives the data value stored by the mechanism in pair i, slot
J.

We then have that extr ar(0) [), 0 and, for to (a) E T FSlot,

extr ar(t 0 (a)) [), extr ar(t) 0 U,

where u is as defined in figure 7.12.
A brief comment is required on the clauses used for the extraction of

write events, since at first sight some of them may not appear to be mutually
exclusive. That they are mutually exclusive follows from the fact that, if the
reader is at position 1, then it cannot yet have extracted, and, as observed
above, the reader cannot yet have extracted if the value of pair in the reader
is the same as the value of pair in the writer.

7.6 Automatic verification in the traces mo
del using FDR2

We now move on to consider how we may verify automatically - using FDR2
and the approach of chapter 6 - that extrEP(FSlot)(T FSlot) ~ T Register. The
first step is to represent the traces mapping extr ar as a CSP process and to
define the renamings which are also needed for the verification. This detail
is given in appendix D. Before looking at that chapter, the reader is advised
to first read the following comments on deriving extraction mappings.

7.6.1 Deriving extraction mappings

We comment on the methodology used to develop the extraction mapping
extr ar. Due to the complexity of the mapping required, itself a consequence
of the complexity of the behaviours of FSlot, it is virtually impossible to look
at any candidate mapping and make a decision on its suitability solely by
inspection. As a result, verification in FDR2 played an integral role in deter
mining the mapping to be used: essentially, when a mapping was developed
which allowed us to successfully verify both FSlot and its environment then
that was the mapping to be used. In other words, the (CSP version of the)
mapping was partly the outcome of a process of trial and error: verification
was attempted using a particular mapping, verification failed, debugging in
formation was inspected to find the cause of the failure, the mapping was
modified, verification was attempted again. \Yhen verification succeeded, we
had our mapping.

Although we were in possession of some of the intuition given above to
explain extr ar before embarking on the verification, a large part of that insight

7.6. Automatic verification in the traces model using FDR2

(write.wVal) if (a = slot.writer.x.wr.y) A

(rPos = 1 A late = wrp)

(write. w Val) if (a = slot. writer.x. wr.y) A

(exR(t) = yes A late = wrp)

(write.wVal) if (a = slot.writer.x.wr.y) A

(rPos = 2 V rPos = 3) A
(rp = wrp A rp =I- rdng)

(write. w Val) if (a = latest. wr.x) A

(exW(t) = no)

(write.wVal, read.wVal) if (a = slot.writer.x.wr.y) A

(rPos = 2 V rPos = 3) A
(rp = wrp A rp = rdng)

u /), (read. (r Val [x][slot Val [x]])) if (a = latest.rd.x) A

(wPos = 1 V wPos = 5) A

(late = rdng)

(read. (r Val [x][slot Val [x]])) if (a = latest.rd.x) A

(wPos = 2 V wPos = 3 V
wPos = 4) A

(wrp ! = late A late = rdng)

(read. (r Val [x][slot Val [x]])) if (a = reading.wr.x) A

(exR (t) = no) A

(read.(r Val [x] [y]))

o

(wPos = 1 V wPos = 5 V
wrp ! = rp)

if (a = slot.reader.x.rd.y) A

(exR(t) = no)

otherwise

Figure 7.12: Defining extr ar

177

7.6. Automatic verification in the traces model using FDR2 178

was provided by working with FDR2. The definition of extr ar given in figure
7.12 was then derived from the process used in the verification and this
has a most important consequence. It may not be immediately clear to
the reader that the process TEar from appendix D accurately encodes the
mapping extr ar 22, which may in turn have cast doubt on the validity of
the verification presented here. However, such a thing does not matter: by
definition, TEar - after restriction to the appropriate domain - encodes
the mapping used in the (successful) verification and the definition of extr ar

in figure 7.12 may best be viewed as an attempt to present that mapping in
a more easily understandable form.23 On a related point, the intuition given
to explain extr ar is not intended to be complete in the sense that it fully
defines the mapping; as indicated above, it is partly an attempt to explain
after the fact the mapping which verification indicated was suitable.

7.6.2 The CSP version of extrar and applying it to
TFSlot

The reader should now read appendix D. The process TEar is used, along
with the renamings prePar and extractar, to encode the mapping extr ar and so,
by TR-GLOBAL2 and TR-DEF1, to encode the application of extrEP(FSlot) to
T FSlat. ExtFS is used to denote FSlat after the application of the extraction
mapping and we have

(Recall that Aar = adata U areading U aslat U alatest and also that
it is not necessary to preprocess FSlat prior to renaming with prePar since
Damar = TFSlat.)

Extraction to non-singleton traces

The means of automatic verification presented in chapter 6 assumes that we
can extract to at most one high-level event on the occurrence of any individual
low-level event. Here, however, we do extract to more than a single event in
a particular case.24 We first discuss in more detail the problem which leads

22Note that the mapping represented by TEar has a domain larger than Domar ; it is
assumed that it represents extrar once it has been restricted to the domain Dom ar , which
restriction will be effected by composition in parallel with FSlot[preparl during verification.

23The author is convinced, however, that it does accurately reflect the mapping encoded
by TEar!

24We say that an extraction mapping, extr, extracts to non-singleton traces if there is
at least one trace to (a) such that extr(t 0 (a) = extr(t) 0 u and lui ~ 2. If there is not at
least one such trace then we say that the mapping extracts only to singleton traces.

7.6. Automatic verification in the traces model using FDR2 179

to the need for this restriction, before showing that it does not arise in the
verification under consideration here.25

During verification in the general case of an implementation process Q,
we define a number of different processes TEj such that j E inv. Consider
the case, for i E inv, that to (a) E Domi and extri(t 0 (a)) = extri(t) 0 u,
where u is a non-singleton trace. In TEi , we would therefore haye a trace
v 0 (b i) o ... 0 (bk), where domain(v) = t, domain(v 0 (b i) 0 ... 0 (bk)) = to (a)
and extract((b i) 0 ... 0 (bk)) = U (bh for 1 < h ::; k would represent an eWIlt
pair with a null left-hand component and bi would represent an eyent pair
with a as the left-hand component). Using TEi and the other TEj such that
j E inv, we build TEinv ' Since the sets of events in which TEi and TEj

may engage are disjoint for i =1= j, we cannot guarantee that (b i) 0 ... 0 (bk)

will always execute atomically in TEinv and it is extremely unlikely that
it will: the events from the TEj for i =1= j will interleave with it in an
arbitrary fashion. (In fact, (b i) 0 ... 0 (bk) may not even execute atomically
in TEi, depending on how TEi is defined syntactically.) This may haw
the result that there exists WET TEinv such that domain(w) E Dominv
but extract(w \ Ainv) =1= extrEP(Q) (domain(w)): a will occur somewhere in
domain(w) where its occurrence should be extracted to u, while bi , ... , bk

may not occur consecutively in wand so the events of u may be distributed
across a number of other events in extract(w \ Ainv). Even if (b i) 0 ... 0 (bk)

executes atomically in TEinv' it may not do so in Q[prep] Ilprep(A lnv) TEinv :
if Q contains finally visible events, these may interleave arbitrarily with
(b i) 0 ... 0 (bk) and a similar problem will arise. This is why only extraction
to singleton traces is allowed in the general case when we verify refinement
after-hiding using the approach from chapter 6. However, if we can guarantee
that all such sequences (b i) 0 ... 0 (bk) will execute atomically in TEinv and
also in Q[prep] Ilprep(Ainv) TEinv then it is acceptable to allow extraction to
non-singleton traces.

The extraction to a non-singleton trace which is used in the verification
here is effected by the use of extract WriteSlotRead?x?y?val followed by ex
tra. val in the definition of WrExt in figure DA in the appendix. And we
can always guarantee in this restricted case that, for arbitrary values c, d,
e, (extract WriteSlotRead.c.d.e, extra.e) will execute atomically whenever it
occurs. This is for the following reasons. 26 In the composition in parallel
of RdExt and WrExt, it is immediate that no other event but extra.e will
be enabled after the execution of extract WriteSlotRead.c.d.e: see the way in
which the two events appear in RdExt (see figure D.5 in the appendix) and

25We refer now to the detail in section 6.4.
26Recall that TEar is built by composing WrExt with RdExt, the result with EDATA

and the result of that composition with SlotCopy, synchronizing on shared events in each
composition.

7.6. Automatic verification in the traces model using FDR2 180

note also that these processes have to synchronize on aextractWriteSlotRead.
After all further parallel compositions necessary to give TEar and then
(FSlot[PreParl IlprePar(A ar) TEar), it still holds that only extra.e will be en
abled once we have executed extract WriteSlotRead. c.d.e. This is because, in
each of these further compositions, synchronization occurs on all events in
which the new process to be added can engage: for example, FSlot[preParl
cannot engage in any events outside of prePar(Aar). AB a result, we have that
(extract WriteSlotRead.c.d.e, extra.e) always executes atomically whenever it
occurs and so it is acceptable to allow extraction to a non-singleton trace in
this case.27

The final verification

In view of the points made in section 6.4.4, we observe that TEar is determin
istic28 and also that it is acceptable that TEar defines a mapping which has a
domain strictly larger than TFSlot29: the domain of the mapping will be re
stricted as necessary by composition with FSlot[PreParl. By the above and the
detail in section 6.4, we therefore have that TExtFS = extr EP (FSlot) (TFSlot).
As a result, we are able to show that extrEP(FSlot)(TFSlot) ~ TRegister by
verifying in FDR2 that ExtFS ~T Register. Due to the successful outcome
of this verification and the fact that Dom-T-check is met by FSlot, we have
that FSlot refines-after-hiding the register in the traces model.

27Even if this trace were not to execute atomically as described above, it would simply
mean that extr EP(FSlot) (r FSlot) was a strict subset of r ExtFS. Provided that verification
is successful - as it is here - we would still get the result that we desire on containment
of extrEP(FSlot) (rFSlot) in rRegister. In other words, once the requirement on extracting
to singleton traces is relaxed, successful verification using this approach is only a sufficient
indicator that the extracted traces of a particular implementation are contained in those
of the corresponding specification rather than a necessary condition of it. A similar point
also applies with respect to the verification of the environment which is described in section
7.6.3.

28FDR2 has been used to verify the determinism of RdExt, WrExt, EDATA and Slot
Copy; moreover, parallel composition which synchronizes on common events cannot intro
duce non-determinism.

29That TEar does define a mapping which has a domain larger than r FSlot has been
verified in FDR2, using the renaming domainar defined in figure D.9 in the appendix. In
actual fact, we showed that the following holds:

rFSlot ~ r(((FSlot[preParlllprep.,.(A or) TEar) \ aextra)[domainar]).

In other words, r FSlot is contained in the domain of the mapping defined by TEar once
that domain has been restricted as necessary by composition with FSlot[preParl.

7.6. Automatic verification in the traces model using FDR2 181

7.6.3 Verifying the environment

As indicated in section 7.4, it is necessary to use extr ar in the verification
of the 4-slot environment in order to be sure that it (extr ar) is acceptable.
In actual fact, we will show that FourSlotEnviron refines-after-hiding in the
traces model RegisterEnviron.

Since Comm{Aan FSlot) = Left, Comm(Aan FourSlotEnviron) = Right.
Since FourSlotEnviron may engage in finally visible events - these are the
events on channels in and out - it is necessary to assume the existence of
an extraction pattern ep', where A' = ain U aout. We shall use EP as a
shorthand for EP{FourSlotEnviron) = {ePar, ep'}.

Verifying Dom-T-check Since ear = 0 and ain U aout ~ Fvis, we have
by definition 4.7 in chapter 4 that Proj EP = Aar . As a result, Dom-T-check
is equivalent to the following:

If tf Aar E DomEP r Aar for every t E T FourSlotEnviron, then t E DomEP.

That this holds is immediate by TR-GLOBAL1, the fact that DomEP r Aar =
Domar and the fact that Dom' = A'·.

Extracting traces In order to extract the traces of FourSlotEnviron, it
is first necessary to preprocess it as described in section 6.3. This is done
by composing FourSlotEnviron in parallel with FSlot, synchronizing on A ar .
(Recall that Domar = TFSlot; moreover, FSlot has been shown to be deter
ministic using FDR2.) The resulting process is denoted ModEnv. Since ep'
is used to "interpret" finally visible events, it is not necessary to construct
a process TE to represent the extraction mapping which it contains. We
therefore construct the following process:

According to the discussion in section 7.6.2, we have to show that, for arbi
trary c, d, e, (extractWriteSlotRead.c.d.e, extra.e) executes atomically when
ever it occurs in ModEnv[preParl IlprePar(Aar) TEar. We already know that
it executes so in TEar: this means that extra.e is the only event enabled
in TEar after we have executed extract WriteSlotRead.c.d.e. And since we
synchronize on prep ar (Aar), no events from prep ar (Aar) will be enabled in
ModEnv[preParlllprepar(Aar) TEar immediately after the execution of
extract WriteSlotRead .c.d.e. Moreover, no finally visible events will be en
abled then either: when extra.e is enabled, the environment described by
ModEnv must be in the middle of a call to read and in the middle of a call
to write, while finally visible events are only enabled (in the environment)

7.6. Automatic verification in the traces model using FDR2 182

when there are no outstanding calls to either read or write. It follows that
(extract WriteSlotRead.c.d.e, extra.e) does always execute atomically in this
case. However, as discussed in section 7.6.2, even if we could not guaran
tee this it would not matter provided that the necessary verification was
successful, as it is here.

On the basis of the detail in section 7.6.2 and that given in section
6.4, we conclude that TExtEnv = extrEP{TModEnv) and so TExtEnv =
extrEP{TFourSlotEnviron) by TR-DEFl.

Refinement-after-hiding Using FDR2, we were able to successfully verify
that ExtEnv ;;;;JT RegisterEnviron. This means that

extr EP (T Four SlotEnviron) ~ T Register En viron

and so FourSlotEnviron refines-after-hiding RegisterEnviron in the traces
model.

Compositional verification

We observe that a(FSlot ~Aar FourSlotEnviron) ~ Fvis. Thus, it follows by
theorem 4.8 from section 4.2 that:

(FSlot ~Aar FourSlotEnviron) ;;;;JT (Register ~Bar RegisterEnviron).

Despite the fact that they have very different (trace) behaviours, this
result illustrates that FSlot is a valid (trace) implementation of a register
when placed in a simple environment. This is a non-trivial result in the
sense that the composition of FSlot with the environment does not simply
deadlock or refuse to do anything: recall that calls to read and write are
non-blocking (in FSlot). (This latter issue is treated more formally in the
next section.)

7.6.4 A comment on compositionality

So far in this chapter, we have shown how FSlot and FourSlotEnviron may be
verified using refinement-after-hiding and have then inferred that FSlot ~Aar
FourSlotEnviron refines Register ~Bar RegisterEnviron in the traces model
according to standard CSP refinement. That we show this composition
ally - i.e. by treating separately the verification of FSlot and that of
FourSlotEnviron - is not something that would have been possible with
standard CSP refinement. Indeed, it is the additional degree of composition
ality which refinement-after-hiding allows in comparison to standard CSP
refinement which is the main benefit provided by the former over the latter.

7.7. The stable failures and failures divergences models 183

In this case, however, it does not seem that this additional compositionality
gives much of a benefit and, indeed, it is simple enough to verify directly using
FDR2 that FSlot®Aar FourSlotEnviron refines Register®Bar RegisterEnviron
according to standard CSP refinement. However, there are three points to
be made with respect to this.

Firstly, we verify the composition FSlot ®Aar FourSlotEnviron simply in
order to show how a compositional verification using refinement-after-hiding
might proceed. In practice, FSlot could be composed with a much bigger
process, where direct verification using FDR2 and standard CSP refinement
might be impossible due to the problem of state explosion. ~oreover, it need
not be the case that the composition of FSlot with the component process
into which it is to be embedded will result in a process which engages only
in finally visible events: it may be that the interface between this process
and the rest of the implementation network under consideration also needs to
be interpreted using refinement-after-hiding. Finally, the use of refinement
after-hiding allows FSlot to be verified in isolation: the direct use of standard
CSP refinement would mean the duplication of effort, as FSlot would effec
tively be re-verified during the verification of each implementation network
of which it was a component process.

7.7 The stable failures and failures divergen
ces models

We now move on to the verification of refinement-after-hiding in the sta
ble failures and failures divergences models. In order to proceed, it is first
necessary to define the extraction pattern components domar and ref ar (we
assume that the extraction pattern used is still denoted ePar and that Aar ,
Bar, ear and extrar remain as before). The first ofthese is defined as follows:

domar = {t E T FSlot I (::Ix, y E {first, second})
to (reading.rd.x) E TFSlot A to (latest.rd.y) E TFSlot}.

In other words, behaviours are "complete" only if there is no call to either
read or write currently outstanding. It is easy to see that Domar is still given
by TFSlot even now that we have to define it as the prefix-closure of domar.

Defining refusal bounds Two factors inform the choice of refusal bounds
to be used here, one a condition to be met by any set of refusal bounds, the
other based on more practical concerns. Since FSlot is deterministic, we have

7.7. The stable failures and failures divergences models 184

that

4>FSlot = {(t,R) It E TFSlot /\ R ~ {a E Aar I to(a) ¢ TFSlot}U(~-Aar)}.

By this, Ep5 and since Domar = T FSlot, then, where (t, R) E 4>FSlot,
XU (R n Aar) E ref ar(t) for every X E ref ar(t). This effectively gives us a
lower bound on the size of the refusal bounds to be used. It is then sensible to
make our refusal bounds as small as possible while still allowing FSlot to be
successfully verified. This is simply because the smaller the bounds contained
in ref ar' the less restrictive those which appear in ref ar (see definition 4.9).
This means that the conditions imposed on any environment if it is to be
verified successfully will also be less restrictive (see section 7.7.1 below). As
a result, for t E Domar = T FSlot, we take

ref ar(t) 6 {R n Aar I (t, R) E 4>FSlot},

meaning that FSlot will never breach any bound from ref ar· 30

Verifying Dom-SF-check Since EP(FSlot) = {epar}, aFSlot = Aar and
Domar = DOmEP(FSlot) = TFSlot, Dom-SF-check reduces to the following:

• Let (t, R) E 4>FSlot, where R ~ Aar . If extr';/ (R, t, FSlot) = Bar then
t E domar.

By definition 4.10, extrr;:/ (R, t, FSlot) = 0 for every (t, R) E 4>FSlot where
R ~ Aar (recall that Comm(Aar, FSlot) = Left). As a result, Dom-SF-check
is met trivially.

Extracting failures We then have that the following result holds.

Proposition 7.1. extrEP(FSlot)(4>FSlot) ~ 4>Register.

Proof. Let (t, R) E 4>domEP(Fslot)FSlot be such that R ~ aFSlot = A ar ·

Then extr~~(FSlot)(R, t, FSlot) = extr';/(R, t, FSlot) = 0 by SF-GLOBAL2,
definition 4.10 and since EP(FSlot) = {epar}. Moreover, since domar =
dOmEP(FSlot) by SF-GLOBAL1 and domar ~ T FSlot = {t I (t, R) E 4>FSlot} ,
we have that:

domar = {t I (t, R) E 4>domEP(FSlot)FSlot}.

30By Ep5, it must be the case that each set in ref ar(t) is a proper subset of Aar; that
this is the case here follows from the fact that FSlot is deadlock-free (verified in FDR2 and
follows automatically from the definition of FSlot anyway) and always refuses all events
from r: - A ar .

7.7. The stable failures and failures divergences models 185

Hence, by SF-DEF2,

extrEP(FSlot)(c/>FSlot) = ((extrEP(FSlot) (t), Y) It E dom ar /\ Y ~ (E - Bar)}.

We observe that TRegister = {t I (t,0) E c/>Register} by proposition 2.3(2)
and since 8Register = 0. Since dom ar ~ TFSlot and extrEP(FSlot)(TFSlot) ~
T Register (see section 7.6.2), then, by TR-DEFl:

{(extrEP(FSlot) (t), 0) It E domar } ~ c/>Register.

That extrEP(FSlot)(c/>FSlot) ~ c/>Register follows by SF4 and since Bar -
aread U awrite. 0

Refinement-arter-hiding We observe that

extrEP(FSlot)([FSlot]SF) ~ [Register]SF

since extr EP (FSlot) (TFSlot) ~ TRegister and by SF-DEFI and proposition 7.l.
Moreover, FSlot meets conditions Dom-T-check and Dom-SF-check. Hence,
by SF-DEF3, FSlot refines-after-hiding the register in the stable failures mo
del. That it does so in the failures divergences model follows by FD-DEFl,
FD-DEF4 and the following five points:

• extr EP(FSlot) (c/>FSlot) ~ c/>Register and FSlot meets Dom-T-check and
Dom-SF -check.

• By DR2, c/>Register ~ c/>l.Register.

• By FD-DEF2 and since 8FSlot = 0 31
, then extr EP (FSlot) (8FSlot) = 0.

• extrEP(FSlot)(c/>l.FSlot) = extrEP(FSlot)(c/>FSlot) by FD-DEF3 and since
extrEP(FSlot)(8FSlot) = 0.

• extrar meets Ep6. (This has been verified using FDR2.32
)

Automatic verification using FDR2 is not needed in general here because
of the nature of FSlot and of the refusal bounds used. In addition, the
fact that FSlot gives the only definition of Domar which we have would
have complicated the definitions of the processes DSF and RE needed for
verification here.

31 All component processes used to build FSlot are guarded and so divergence-free by
OF; moreover, parallel composition cannot introduce divergence. That 8FSlot = 0 has
also been verified using FOR2.

32 Note that we verify it by checking for the divergence-freeness of
(FSlot[preparJ Ilprepor(A or) TEar) \ Aar rather than the divergence-freeness of TEar \ Aar .

7.B. Data independence 186

7.7.1 Refusal bounds and environments

The refusal bounds defined here will place constraints on the form of any
environment which may be successfully verified and with which FSlot may be
composed. If we consider Q to be such an arbitrary environment and P to be
the corresponding specification environment (with which the register would
be composed), then Q must meet Dom-SF-check and its extracted failures
must be contained in those of P (we are considering only those conditions
which involve the use of refusal bounds). We show that the refusal bounds
presented here place only the lightest of restrictions on the behaviours of Q.

We first observe that Comm(Aan Q) = Right, since Comm(Aar, FSlot) =
Left. For t E Domar , we have that

ref ar(t) = {RnAar I (t, R) E ¢FSlot} = Sub ({{a E Aar I to (a) ~ TFSlot}}).

By definition 4.9, ref ar(t) = {X ~ Aar I (\I Y E ref ar(t)) XuY -I A ar }. This
means that for X E ref ar(t), for every Y E ref ar(t) there exists a E Aar - Y
such that a E Aar - X. AB a result, for t E Domar ,

refar(t) = Sub({Aar - {a} I to (a) E TFSlot}).

This means that the bounds given by ref ar will be breached after trace w
by any environment with which FSlot might be composed only if that en
vironment fails to offer after w at least one event which is valid according
to TFSlot = Domar . As a result of this, Q will meet Dom-SF-check with
respect to ep ar provided that, whenever it is in the middle of either a call
to read or a call to write (and so behaviour over Aar is incomplete), it is
always ready to communicate at least one event in which FSlot may engage
at that point. And, according to the discussion in section 7.3.4, we would
expect Q to be always ready to progress in some way a procedure call which
it had already begun. Moreover, for t E domEP(Q) , SF-DEF2 will require
P to refuse after extrEP(Q)(t) all events on channels read and write - i.e.
to refuse all communication with the register - only if Q refuses after t all
communication (valid with respect to Domar) with FSlot.

It can be seen by this discussion, therefore, that verification of a particular
environment is unlikely to fail simply because the choice of ref ar described
here is inappropriate.

7.8 Data independence

In this chapter, we have shown that FSlot refines-after-hiding Register in all
three CSP semantic models. From this, we would like to infer that the 4-slot is
a valid implementation of the register in general. However, such an inference

7.9. Discussion 187

is subject to the caveat that FSlot and the (CSP) register communicate data
from a restricted set - i.e. dataint - while the 4-slot (and the register) may
transmit data from much larger sets in practice.33

The problem of data-independence with regard to refinement in CSP may
be stated as follows: if processes Q and P are each parameterised by a data
type T, when can we say that Q refines P whatever concrete data type is
substituted for T? This problem has been considered in [46J and is also
discussed in [63J: provided that values from T are used only in restricted
ways in Q and P, a concrete data type containing only a small number of
values - for example, one or two values - may be substituted for T in both
Q and P. If Q refines P when this concrete data type is used in place of T,
then we may conclude that Q refines P whatever data type is substituted
for T. However, we are unable to apply the results from [46J here, nor could
they be used in respect of any CSP process used to encode the extraction of
a set of traces: renaming is used as part of that encoding and the renaming
operator is not part of the language allowed by [46J.

Nonetheless, it may be seen by inspection that extr an FSlot, Register and
the processes and renamings used to encode extr ar neither refer explicitly to
values from dataint 34 nor do they ever take action on the basis of the values
held by variables or constants of that type. In view of this and the fact
that T ExtFS ~ T Register when dataint is a 6-valued set, it is likely that
T ExtFS ~ T Register whatever the range of integer values represented by
dataint. By this and similar reasoning with regard to the stable failures
and failures divergences models, we may draw the tentative conclusion that
FSlot refines-after-hiding Register in all three semantic models whatever the
range of integer values represented by dataint. We therefore conclude that,
according to our scheme, the 4-slot is a valid implementation of the register,
while also acknowledging the need for further work to treat in a proper and
formal manner the issue of data independence.

7.9 Discussion

The work in this chapter had two main purposes. The first was to verify the
correctness of the 4-slot mechanism in a novel manner and to derive thereby a
result which had not been shown before. The second was to explore how our
notion of refinement-after-hiding and our approach to its verification using

33It is generally the issue of the size of the data set which is important, rather than the
actual values which it contains. See, for example, [46).

340 is a constant when it is used as the initial value stored in each slot in the data array
or in the copy of the data array used in TEar. It could be dispensed with in any case by
stipulating that the 4-slot should first complete a call to write before it is allowed to begin
a call to read.

7.9. Discussion 188

FDR2 might fare when used in practice on a real-world example. We consider
each of these areas in turn.

7.9.1 What the verification means

In this chapter we have shown that (our CSP representation of) the 4-slot is
a valid implementation of a register. Due to the nature of refinement-after
hiding, this means that we may build an implementation of a network which
communicates data internally using a register by modifying in a suitable fash
ion the necessary communication interface and then substituting the 4-slot
for the register. This is a significant result for a number of reasons. Firstly,
that the 4-slot has more than a single memory slot may be made apparent
to a user: a read may begin, interrogate the necessary control variables and
then wait for an arbitrary number of writes before completing, thereby ap
pearing to read an old value. It is not immediately clear that such behaviour
should be permissible in any valid implementation of a register, which has
only a single memory slot. Nonetheless, the success of the verification de
scribed here indicates that, once the 4-slot and register have been placed in
suitable contexts and all communication hidden, it is effectively impossible
for an observer to distinguish between them.

That the 4-slot has been shown to implement a register is also important
when it comes to reasoning about systems which might be built using it (the
4-slot). If we may reason initially about a system built using a register,
this is likely to be much simpler than considering directly the corresponding
system built using the 4-slot. And any results proven about this simpler
specification system will be valid for the corresponding system built using
the 4-slot. Moreover, knowing that the 4-slot implements a register gives a
much better intuition behind the behaviour which it will induce when used
in a particular system than is gained by knowing that it meets the conditions
of data coherence, data freshness and data sequencing.

7.9.2 Lessons learned and further work

We now consider issues which have been raised during the course of this
verification.

The 4-slot was chosen as a case study primarily for the types of reification
it exhibits and because it is a real-world example. It was not chosen because
it was felt in advance that it would be especially amenable to verification (in
FDR2) using refinement-after-hiding. As a result, its study has highlighted
a number of areas where further work is needed with respect to our means of
verification, both in terms of extending the power of the approach and also
in terms of developing a methodology for its use.

7.9. Discussion 189

Describing and deriving extraction mappings

The extraction mapping which is used to interpret traces of FSlot as traces
of the register is relatively complex, both in its incarnation as an abstract
description and in its representation as a CSP process. Although the point
has been made above that any process TEj used in a particular verification
should be taken as the authoritative description of the extraction mapping
extri, it would still be useful to have a more mechanical way of proceeding
from an extraction mapping description to a CSP process: after all, we have
to arrive somehow at an initial version of that CSP process. In order to
facilitate a generic translation from mapping to CSP process, it would be
useful to have a more structured notation within which extraction mappings
could be expressed. In general, an extraction mapping is defined composi
tionally over an event a and its history t: t is then effectively mapped into a
particular information domain, its representation in that domain being used
to determine the event to which a must be extracted. Although different
information domains would be used for different verifications, a standard
translation from information domain and mapping notation to CSP process
would be very useful. (Such issues are also of relevance in terms of describing
the mapping ref and representing it as necessary as a CSP process.)

Deriving a mapping for successful verification

The extraction mapping used here was developed as the verification pr~
ceeded and was not known in advance. In such circumstances, verification
may fail either because the mapping used is unsuitable or because the pr~
cess being verified cannot be related to the specification under consideration.
An interesting area to explore, therefore, is how it might be possible to tell
that a particular verification will never succeed or, conversely, that a suitable
mapping does, in fact, exist. (This is related to the issue of completeness:
see brief discussion in chapter 8.) In the first instance, such work would be
concerned with the notion of refinement-after-hiding itself, rather than with
the actual means of verification.

In addition, the process of developing the mapping used here was not
straightforward and this raises a number of important issues. In particular,
it casts doubt on the ease with which refinement-after-hiding might be used in
practice and suggests the need for further work to explore how the process of
developing mappings might be made easier. For example, one could explore
the development and use of semi-automated tools for this purpose. However,
we should perhaps reserve judgement on the ease of use of refinement-after
hiding until it has been applied to a more extensive range of case studies.

7.9. Discussion 190

Considering the environment

In section 7.4, it could be seen that the environment with which the 4-slot is
to be composed plays a significant role in determining the form of the traces
mapping to be used for verification. This role of the environment needs to
be explored further, especially with respect to determining refusal bounds,
and its consideration needs to be built firmly into any methodology for use
of refinement-after-hiding in practice.

Working with procedural interfaces

Although the 4-slot is defined initially using a procedural interface, we have
assumed in the verification presented in this chapter that all of its events are
visible to the environment - i.e. both events effecting data transfer and those
concerned with manipulating control variables - and that the environment
engages in both types of event whenever it wishes to transfer data. This is
because we always extract on the occurrence of events which either write to
or read from a control variable, meaning that these events must be visible
in our CSP representation of the 4-slot. This also means that such events
should be visible in (our representation of) the environment. (This issue was
discussed in section 7.3.4)

This is an instance of a general problem faced by refinement-after-hiding
if it is to be used in the verification of processes which communicate using
procedural interfaces. In particular, any process Q which calls a procedure
in another process will engage in an event to represent the procedure call and
one to represent the procedure return, but will not engage in any events from
the body of the procedure. If, during the verification of Q, we need to extract
on the occurrence of an event which is part of the body ofthe procedure then
this will not be possible without modification of Q. Further work is needed
both to show how this modification may be carried out automatically and
also to show formally that such modification does not affect the validity of
any verification which may be carried out.

Complex statement of domain of mapping

In the development of our notion of refinement-after-hiding, including the
development of its predecessors, it was implicitly assumed that the method
would be applied when the extraction mapping to be used was known in
advance, meaning that the domain of the mapping would also be known in
advance. Moreover, it was assumed that the latter would be expressed in a
relatively straightforward, syntactically simple form. These assumptions did
not hold in the verification in this chapter, however, and FSlot itself was the

7.9. Discussion 191

only syntactic representation available of the domain of the mapping which
we used.

Due to the syntactic complexity of FSlot, it was difficult to modify directly
the syntactic definition of Dom ar given by it. AB a result, the process TEar is
constructed independently of FSlot and so defines a mapping with a domain
strictly larger than 7 FSlot. And had we defined processes DSF ar and REar
to deal with verification in the stable failures model, it would not have been
possible to build them directly around FSlot, even though such a manner of
construction is implicit in the definitions given in chapter 6.

Further work is needed in the first instance to explore the sort of im
plementation processes which might give rise to this problem of complex
definitions of mapping domains. Specifically, we intend to consider fully the
issue of constructing DSF i and REi in such cases: this is complicated by
the fact that certain failures are obscured in these processes, depending on
whether or not their trace component is in domi' In addition, the formal
framework for verification using FDR2 may need to be extended to deal with
this issue.

Deriving refusal bounds and verifying Dom-SF -check

Again due to the fact that the extraction pattern used here did not exist prior
to this verification, its ref ar component was defined directly in terms of the
failures of FSlot. A similar approach is likely to be necessary whenever we are
not provided with refusal bounds in advance of a particular verification and
it should guarantee that the implementation component under consideration
meets condition Dom-SF-check. However, Dom-SF-check will also need to
be verified of any environment with which that component may be composed
and this could cause problems. If the refusal bounds to be used come directly
from an implementation component, then it will be impossible in the general
case to derive a statement of them without first calculating the semantics
of that component. This means that it would be difficult to define directly
any necessary process DSFi as described in section 6.5. Further work is
therefore needed to consider the automatic verification of Dom-SF -check in
such a situation.

In addition, it is not clear in general how refusal bounds when behaviour is
complete might be derived from the failures of the implementation component
under consideration. This is due to the fact that, if verification is to be
successful, the failures of the specification will also playa role in determining
the nature of those bounds.

7.9. Discussion 192

Extracting to non-singleton traces

An obvious area for further work is to explore how we might represent ex
traction mappings as CSP processes in the general case that extraction to
non-singleton traces is allowed. This is especially important if we are to be
able to use FDR2 when verifying equivalence: this necessitates interpreting
abstract behaviours in a more concrete form and so is generally going to
require extraction to non-singleton traces. It is for this reason that we have
not attempted to verify the "equivalence" of the 4-slot and the register.

"Straightforward" case studies

A case study or studies will be explored in future where the problems and
issues identified above might not be expected to arise, for example where
an implementation process communicates data using certain fault tolerant
mechanisms or a particular communication protocol. In such cases, the ex
traction mapping to be used should be determined in advance (by the nature
of the fault tolerant mechanism or communication protocol) and the domain
of that mapping should (hopefully) be stated explicitly. This will give a bet
ter idea of how the method of automatic verification presented in chapter
6 might perform when it is not being pushed to its limits. In addition, it
should give us a better opportunity to explore the way in which automatic
verification might work in the stable failures and failures divergences models,
which thing is missing from the work in this chapter.

Chapter 8

Conclusion

In the process algebraic framework, the meaning of processes is based firmly
on the notion of an observer and what he/she may observe of the behaviour
of a particular process. As a result, we abstract from internal actions since
they cannot be observed: two processes are regarded as equivalent (within
a suitable semantic framework) if they have the same external behaviours,
regardless of the manner in which they perform computations internally. It
is arguable, however, that this notion of observability is too stringent and
should be relaxed, on the basis that processes are rarely used in isola tion. In
other words, if we assume that an observer only observes complete systems or
networks - rather than individual component processes - the set of visible
events is immediately much reduced and the way is open for defining a more
relaxed notion of equivalence or refinement. This suggests the development
of a notion of correctness-in-context, where visible events are partitioned into
those that an observer will be able to see in the final network built and those
which will be invisible to him/her.

Using these notions of correctness-in-context and the partitioning of visi
ble events, along with the device of an interpretive mapping, chapter 3 gives
an abstract formal statement of what it means for a particular implementa
tion relation to constitute a notion of refinement-after-hiding: this is cap
tured in the conditions RAHl-3. From these and a number of other basic
conditions, we are able to derive a set of conditions which are sufficient to
define refinement-after-hiding in practice. These are put to use in chapter
4 as we modify and extend an existing such notion. Not only is the work
from chapter 3 of fundamental importance in carrying out this modification,
it also gives a clear and definite framework within which we are able to un
derstand the form of our concrete notion of refinement-after-hiding and why
exactly it works. The implementation relation defined in chapter 4 gives
a generalisation of standard CSP refinement in all three semantic models
and provides the ability to deal with a variety of types of reification in the

193

194

move from specification to implementation: more specifically, it can deal with
data reification, external behaviour decomposition and external relaxation of
atomicity, as evidenced by the successful verification in chapter 7.

Chapter 6 defines a means of automatic verification for our concrete no
tion of refinement-after-hiding, using the existing industrial-strength tool
FDR2. This is significant for a number of reasons: it allowed us to pro
ceed more quickly to verification in practice of a real-world example; FDR2's
state-space compression techniques are vital to our ability to perform verifi
cation, as even the representation of the 4--slot from chapter 7 initially has a
large number of states; its (FDR2's) debugging facilities proved crucial in the
development of the extraction mapping used in the same chapter. Finally,
chapter 7 shows that Simpson's 4--slot asynchronous communication mecha
nism is a valid implementation of a register, using the notion of refinement
after-hiding from chapter 4 and the means of verification from chapter 6.
This is an important result both in this specific case and in terms of what
it shows may be possible in general: in the move from register to (CSP rep
resentation of the) 4-slot, data reification, external behaviour decomposition
and external relaxation of atomicity have all occurred, yet verification may
still be effected successfully.

As a final comment, we note that the work presented in chapters 3, 4
and 6 may be regarded as a whole which is greater than the sum of its parts.
Using our means of automatic verification, we were able to proceed quickly to
verification of a real-world example. The consideration of this example then
fed back into the development of the implementation relation in chapter 4.
For example, the requirement that any particular extraction pattern should
deal only with input or only with output events proved to be too restrictive in
practice, while the theory from chapter 3 indicated that such an approach was
not necessary in order for refinement-after-hiding to work. It is also envisaged
that these three components will playa similar, mutually supportive role in
future work. In particular, we will consider alternative means of mapping
refusals, such as that described in section 4.8 and suggested by the theory
in chapter 3. Encoding any such alternative approaches as CSP processes in
FDR2 (where that is possible) will allow for their rapid use in the verification
of real-world examples, the success or failure of which verifications will reflect
on their usefulness in practice. And if practice tells us that a particular means
of mapping refusals should be modified, then the theory gives a framework
within which those modifications may be assessed and carried out.

8.1. Further work 195

8.1 Further work

At various points throughout this thesis, we have indicated areas in which
further work is needed or in which such work might yield interesting and
useful results. We identify here five main areas on which we shall concentrate.

8.1.1 Refinement-after-hiding and "completeness"

Assume that Fimp/(Ql, ... , Qn) is an implementation network and the corre
sponding specification network is given by F speAPI, ... , Pn). Future work will
address the question of whether it is always possible to come up with suitable
extraction patterns such that Qi refines-after-hiding Pi for 1 ~ i ~ n in the
event that Fimp/ (Ql, ... ,Qn) refines Fspec (PI, ... ,Pn) according to standard
CSP refinement. In the event that refinement-after-hiding is not complete
in this sense, we will aim to establish restrictions on implementation and
specification networks such that the property of completeness is enjoyed in
the restricted domain.

8.1.2 Barbed congruence and refinement-after-hiding

Chapter 5 (page 119) describes in some detail areas which might be ex
plored concerning the relation between barbed congruence and refinement
after-hiding. In particular, the ability to verify correctness when at least
relaxation of atomicity has occurred without the need to construct an inter
pretive mapping would be extremely desirable.

8.1.3 Mapping refusals

The approach to mapping refusals used in this thesis is based on the notion
of refusal bounds and the treatment of communication as asymmetric in
character. A possible alternative approach to mapping refusals is proposed
in section 4.8. It is currently not clear what advantages one might possess
over the other nor how one might decide the appropriateness of a particular
approach in a particular set of circumstances. Further work, both in terms
of theory and of practical examples, will look at the types of process where
one approach might allow verification to succeed while the other might cause
it to fail: this will help us to identify situations where it would be advisable
to choose one approach over the other.

Moreover, if an alternative means of mapping refusals could be developed,
its use might avoid some of the problems which may arise when the necessary
extraction patterns are not known in advance of a particular verification (see
discussion in section 1.9).

8.1. Furtber work 196

8.1.4 Improving the means of automatic verification

Section 7.9 contains a number of ways in which the means of automatic
verification given in this thesis could be extended and improved. As a first
step, a notation to represent extraction mappings will be explored, along
with ways of mechanically translating from such a notation to a CSP process
which represents the relevant mapping.

8.1.5 Further case studies

Finally, it is necessary to consider the verification of further example pro
cesses and systems, both in order to fully evaluate the usefulness of our
notion of refinement-after-hiding and also to develop a proper methodology
regarding its use.

Appendix A

Proofs from chapter 3

A.I Proofs from section 3.2

Proof of proposition 3.3

Proof. 1. a(P \ A)

2. a(P Ily Q)

[[,8(P \ A)ll (by definition 3.10)

[[,8(P) - All (by figure 2.5)

[[,8(P)]]- A (by def. 3.7 and since A E AUSet)

(aP) - A (by definition 3.10)

[[,8(P lIy Q)]]

[[,8(P) U ,8(Q)ll

[[,8(P)ll U [[,8(Q)ll

aPUaQ

(by definition 3.10)

(by figure 2.5)

(by definition 3.7)

(by definition 3.10)

Proof of proposition 3.4

o

Proof. Since An B =1= 0, it follows that B =1= 0. Hence, B = UiEI ~ where f
is a non-empty indexing set into MinSet and so A n Ai =1= 0 for some i E f.
By definition 3.5, A = Ai and so A ~ B. 0

Proof of proposition 3.5

Proof. The proof is immediate in the event that A = 0 and so we assume that
A =1= 0. We use RHS to denote U{events(t) It E BTrace /\ events(t) ~ A}
in this proof. It is immediate that RHS ~ A. We therefore show A ~ RHS,
by assuming there exists a E A - RHS. By definitions 3.6, 3.5 and 3.4(1),
there exists t E BTrace such that a E events (t); moreover, events(t) Cl A.

197

A.i. Proofs from section 3.2 198

Since A = UiE1 ~ where I is a non-empty indexing set into MinSet, there
exists i E I such that a E ~ but events(t) C1 Ai since events(t) C1 A. Hence,
we have a contradiction by definition 3.5(1). 0

Proposition A.1. A(0) = 0.

Proof. We consider each of two cases in turn.
Case 1: () E BTrace and so A(()) is defined. By definition 3.8, it suffices

to show that A(0) = O. Let STOP be an implementation process (recall
that we may assume STOP is an implementation process by definition 3.9

and since (3(STOP) = 0 ~ ~impl). Since (3(STOP) = 0, then aSTOP = 0

and so aSTOP ~ Fvis. Thus, by RAHl, A([STOP]x) = [STOPh for
X E {T, SF, FD}. Hence, A(rSTOP) = rSTOP and so, by definition 3.3,
A(O) = O·

Case 2: 0 ~ BTrace. In this case, the proof is immediate by definition
3.8. 0

Proof of proposition 3.6

Proof. In the event that I = 0, the proof is immediate by proposition A.l
and so we consider the case that I =1= 0. By definition 3.8, A(UiEI Ai) is given
by:

U{events(A(t)) It E BTrace 1\ events(t) ~ UiEIAi}

= U{ events(A(t)) It E BTrace 1\ (::Ii E I) events(t) ~ Ad (by def. 3.5(1))

UiEI(U{ events(A(t)) I t E BTrace 1\ events(t) ~ Ai})

= UiEI A(Ai)

Proof of proposition 3.7

(by definition 3.8)
o

Proof. Let A = UiEI Ai and A' = U jEJ Aj, where I, J are indexing sets into
MinSet and I n J = 0 since A n A' = 0 (note that 0 ~ MinSet). We
consider each of two cases in turn.

Case 1: Either A = 0 =1= A', A =1= 0 = A' or A = 0 = A'. The proof in
this case follows by proposition A.!.

Case 2: A =1= 0 =1= A'. By proposition 3.6, A(A) = UiEI A(Ai) and A(A') =
UjEJ A(Aj). Since In J = 0, Ai =1= Aj for all i E I, j E J. Thus, by
definitions 3.5(2) and 3.8, A(Aj) n A(Aj) = 0 for all i E I,j E J and so the
proof in this case follows. 0

A.i. Proofs from section 3.2 199

Proof of proposition 3.8

Proof. Let I, J be indexing sets into MinSet such that A = UiEI Ai and
B = UjEJAj.

1. It is immediate by definition 3.5 that A EEl B = UkEIEtlJ Ak and so
A EEl B E AIlSet by definition 3.6.

2. We observe that:

A(A EEl B) A(UiEI Ai EEl UjEJ Aj)

A(UkEIEtlJ Ak)

UkEIEtlJ A(Ak)

UiEI A(Ai) EEl UjEJ A(Aj)

A(A) EEl A(B)

Proof of proposition 3.9

(by proposition 3.6)

(by definitions 3.5 and 3.8)

(by proposition 3.6)

Proof. 1. The proof is immediate from definitions 3.5 and 3.6.
2. We observe that:

UAEMinSet A(A)

A (UAEMinSet A)

A(~impl)

(by proposition 3.6)

(by definition 3.5)

U{ events (A(t)) I t E BTrace A events(t) ~ ~impl} (by def. 3.8)

U{ events (A(t)) It E BTrace} (by definition 3.4(1))

~spec (by definition 3.4(2))

o

3. Let A E AllSet. By definition 3.5, ~impl = UA'EMinSet A' and so
A ~ ~impi by definition 3.6. By the proof of part 2 of the proposition, ~spec =
A(~impl) and so A(A) ~ ~spec by definition 3.8 and since A ~ ~impl. 0

Proof of proposition 3.10

Proof 1. We assume that X ~ A. By definition 3.6, [[X]] = UiEI~' where
I is an indexing set into MinSet. In the event that [[X]] = 0, the proof
is immediate and so we consider the case that [[X]] =J. 0. Let i E I. By
definition 3.7, X n Ai =1= 0 and so A n Ai =1= 0. Thus, Ai ~ A by proposition
3.4.

2. We show that [[R)) U [[8]] ~ [[R U 8]]; the proof that [[R U 8]] ~
[[R)) U [[8]] is similar. By definition 3.6, [[R)) = UiEI Ai, where I is an

A.2. Proofs from section 3.3 200

indexing set into MinBet. We show that [[R]] ~ [[RUS::: that ::S:] ~ [[RUSl]
may be shown in a similar manner. In the event that [[R]] = 0, the proof
is immediate and so we consider the case that [[R:: =I 0. Let i E I. By
definition 3.7, Ai n R =I 0 and so Ai n [[R US]] i= 0. Hence, by proposition
3.4, Ai ~ [[R US]]. 0

Proof of proposition 3.11

Proof. By definition of Imp in definition 2.3, there exists (P lIy Q) E
Imp(Fimp/(Ql, ... , Qn)) such that, by R2, Y = aP n aQ. By definition
3.10, aP, aQ E AUBet and so Y E AUBet by proposition 3.8(1). 0

Proposition A.2. Let A E AUBet.

1. L.imp/ - A E AUBet.

2. A(L.imp/ - A) = L.spec - A{A).

Proof. 1. The proof follows by proposition 3.9(1) and proposition 3.8(1).
2. We have:

A(L.imp/ - A) A{L.imp/) - A(A) (by prop.s 3.9(1) and 3.8(2))

A(UA/EMinSet A') - A(A) (by definition 3.5)

UA/EMinSet A{A') - A(A) (by proposition 3.6)

L.spec - A(A) (by prop. 3.9(2))

Proof of proposition 3.12

o

Proof. Let Q t:. FBT(BTrace) be a (component) implementation process.
By proposition 2.12(1), rQ = Pref{BTrace) and so, by PREF-CLOS and
definition 3.3, A([Q]T) is defined. f3(Q) = UtEB1hlce events{t) by proposition
2.12(2) and so f3(Q) = L.imp/ by definition 3.4(1). By definition 3.10 and
proposition 3.9(1), aQ = L.imp/. Thus, by HIDE-INVIS, there exists A E

AUBet such that L.imp/ - A = L.imp/ n Fvis = Fvis. Hence, Fvis E AllBet by
proposition A.2(1). 0

A.2 Proofs from section 3.3

Proof of theorem 3.13

Proof. Let Q t:. FBT(t) be a (component) implementation process. By
proposition 2.12, rQ = Pref(t) and f3(Q) = events(t). Hence, aQ =

A.2. Proofs from section 3.3 201

[[events(t)]]. We show that aQ ~ Fvis by considering each of two cases
in turn.

Case 1: t = (). The proof is immediate in this case, since aQ = 0.

Case 2: t =I O· In this case, aQ = [[events(t)]] = UiEI Ai where I is a
non-empty indexing set into MinSet. Moreover, events(t) n Ai =I 0 and so
Ai n Fvis =I 0 for every i E I. It follows by propositions 3.12 and 3.4 that
Ai ~ Fvis for every i E I and so aQ ~ Fvis.

Hence, by TIl, A(7Q) is defined and so, by definition 3.3, A(t) is defined.
Also by TIl, A(7Q) = 7Q and so max«A(7Q)) = max«7Q). Hence, by
definition 3.3 and TR-MoNO, A(t) = t. - - 0

Proof of theorem 3.15

Proof. We assume that A(t) is defined. Let Q t:. FST(t) be a (component)
implementation process. By proposition 2.12(1), 7Q = Pref(t). By PREF

CLOS and definition 3.3, A(7Q) is defined. By TI2, A(7(Q \ A)) is defined
and so A(t \ A) is defined by definition 3.3. Also by TI2, A(7(Q \ A)) =
A(7Q) \ B. Hence, by definition 3.3, TR-MoNO and the monotonicity of the
hiding operator over traces (proposition 2.6):

A(t \ A) = max~(A(7(Q \ A))) = max~(A(7Q) \ B) = A(t) \ B.

o

Proof of theorem 3.16

Proof. Let B be such that A(\A) = \B.
(~) We first show that B ~ A(A) by assuming there exists a E B -

A(A). By definition 3.11(1), B ~ Espec and so, by definition 3.4(2), there
exists s E BTrace such that a E events(A(s)). By definition 3.B, A(A) =

U{ events (A(t)) I t E BTrace A events(t) ~ An and so events(s) Cl A.
Hence, by definitions 3.5(1) and 3.6, events(s) n A = 0. Since s E B Trace ,
then A(S) is defined. It follows by RAH2-T that A(S \ A) = A(S) \ B and so,
since events(s) n A = 0, A(S) = A(S) \ B. Hence, events(A(s)) n B = 0.

This, however, gives a contradiction, since a E events(A(s)) n B.
(2) We now show that A(A) ~ B. In the event that there does not exist

t E BTrace such that events(t) ~ A, the proof is immediate by definition 3.B.
We therefore assume that there exists t E BTrace such that events(t) ~ A.
By definition 3.B, it suffices to show that events(A(t)) ~ B. Since t E BTrace,
then A(t) is defined. Hence, by RAH2-T, A(0) = A(t \ A) = A(t) \ B. By
theorem 3.14, A(t) \ B = 0 and so events(A(t)) ~ B. 0

A.2. Proofs from section 3.3 202

Proof of theorem 3.17

Proof. We assume the following:

• Ty = {v E BTrace I events(v) ~ Y} u {o}.

• Q = FST(Ty) Ily STOP is a (component) implementation process.

• Pw = FST(w) 11.0 Q is a (component) implementation process for w E
BTrace.

Before proceeding with the proof proper we prove (A.l) and (A.2), which
relate to Q and Pw respectively.

TQ = {()}, >'(TQ) is defined and aQ = Y (A.l)

By proposition 2.12(1), TFST(Ty) = Pref(Ty). Since events(t) ~ Y
for every t E TFST(Ty) and TSTOP = {O}, TQ = {O}. Thus, by def
inition 3.3 and theorem 3.14, >'(TQ) is defined. By proposition 2.12(2),
(3(FST(Ty)) = UtETy events(t). Hence, by proposition 3.5, (3(FST(Ty)) =
Y. Since (3(STOP) = 0, (3(Q) = Y and, since Y E AllSet, aQ = [[Y]] = Y.
Hence, we have shown (A.l).

TPw = Pref(w), >'(TPw) is defined and aPw = [[events(w)]] U Y (A.2)

By proposition 2.12(1), TFST(w) = Pref(w) and, by (A.l), TPw =
Pref(w). Since w E BTrace, >'(TPw) is defined by definition 3.3 and PREF
CLOS. By proposition 2.12(2), (3(FST(w)) = events(w). By the proof of
(A.l), (3(Q) = Y and so (3(Pw) = events(w) U Y. Hence, since Y E A llSet ,
aPw = [[events (w)]] U Y. Thus, we have shown (A.2).

We now proceed with the proof proper, where Z is such that >'(lly) =llz.
(~) We show that Z ~ >'(Y) by assuming there exists a E Z - >'(Y). By

definition 3.11(2), we know that Z ~ Espec and so, by definition 3.4(2), there
exists s E BTrace such that a E events (>.(s)). By definition 3.8, >'(Y) =
U{ events (>.(t)) I t E BTrace /\ events(t) ~ Y)} and so events(s) ~ Y.
Hence, by definitions 3.5(1) and 3.6 we have that events(s) n Y = 0. Let
Ps be a (component) implementation process. By (A.2), TPs = Pref(s) and
).(TPs) is defined. By (A.l), TQ = {()} and >'(TQ) is defined. By (A.l)
and (A.2), aPs n aQ = Y. Hence, >'(T(Ps lIy Q)) = >'(TPs) liz >'(TQ)
by TI3. Since events(s) n Y = 0 and by theorem 3.14 and definition 3.3,
>.(Pref(s)) = >.(Pref(s)) liz {O}· Hence, by definition 3.3, there exists v::; s
such that >.(s) E >.(v) liz O. It follows by TRP (i.e. >.(sHZ = OrZ) that
events(>.(s))nZ = 0 and so we have a contradiction since a E events(>.(s))n
Z.

A.3. Proofs from section 3.4 203

G~) We now show >'(Y) ~ Z. In the event that there does not exist
t E BTrace such that events(t) ~ Y, the proof is immediate by definition
3.8. Thus, we assume there exists t E BTrace such that events(t) ~ Y. By
definition 3.8, it suffices to show that events(>.(t)) ~ Z. Since events(t) ~ Y
and Y E AllSet, [[events(t)]] ~ Y by definition 3.7. Let Pt be a (component)
implementation process. By (A.2), 7Pt = Pref(t), >'(7Pt) is defined and
aPt = [[events(t)]] U Y = Y. Hence, >.(7(Pt Ily Pt)) = >'(7Pt) liz >'(7Pt)

by TI3. Thus, since events(t) ~ Y, >.(Pref(t)) = >.(Pref(t)) liz >.(Pref(t)).
Then, by definition 3.3 and TR-MoNO,

{>'(t)} = max~(>'(Pref(t))) = max~(>'(Pref(t)) liz >.(Pref(t))).

It holds trivially that >.(t)fZ = >'(t)fZ and so >.(t) liz >.(t) i= 0. Hence, by
proposition 2.7, {>'(t)} = >.(t) liz >.(t) and so events(>.(t)) ~ Z. 0

A.3 Proofs from section 3.4

Proposition A.3. Let A E AllSet, B = >'(A) and let t be a trace such that
>.(t) is defined. Then >'(tr A) is defined and >'(tr A) = >.(t) r B.

Proof. Let A = ~imp/-A and B = ~spec-B. By proposition A.2, A E AIlSet
and B = >'(A). By RAH2-T, >.(t \ A) is defined and >.(t \ A) = >.(t) \ B.
By proposition 3.9(3), A ~ ~imp/ and B ~ ~spec. Hence, ~imp/ = Au A and
Espec = BUB. Since events(t) ~ E imp/ by definition 3.4(1), then t\A = trA;
hence, >'(tr A) is defined. Since events(>.(t)) ~ ~spec by definition 3.4(2),
>.(t) \ B = >.(t) r B. Hence, >'(tr A) = >.(t) r B. 0

Proof of theorem 3.19

Proof. 1. (===» We assume that >.(t) and >.((to(a))fA) are defined. Let A =
E imp/ - A and so A E AllSet by proposition A.2(1). By proposition 3.9(3),
A ~ ~imp/ and so ~imp/ = Au A. We define the (component) implementation
processes P and Q as follows: P = FST(trA) and Q = FST((t o (a))fA). By
proposition 2.12, 7P = Pref(trA) and f3(P) = events(trA). Hence, aP ~ A
since A E AllSet. Moreover, >.(7P) is defined by proposition A.3, PREF
CLOS and definition 3.3. Similarly, 7Q = Pref((t 0 (a))f A), aQ ~ A and
>.(7Q) is defined. As a result, aP n aQ = 0. Hence, by TI3, >.(7(P 11.0 Q))
is defined. By definition 3.4(1) and since >.(t) and >.((t 0 (a))f A) are defined,

events(t 0 (a)) = events(t) U events ((t 0 (a))f A) ~ ~imp/

and so, since ~imp/ = A u A,

to (a) E (Pref(tr A) 11.0 Pref((t 0 (a))f A)) = 7(P 11.0 Q).

A.3. Proofs from section 3.4 204

Thus, ,X(t 0 (a)) is defined by definition 3.3.
(~) We assume that ,X(t 0 (a)) is defined. Hence, ,X(t) is defined by

PREF-CLOS and ,X((t 0 (a))fA) is defined by proposition A.3.
2. Let B = 'x(A). We assume that ,X(t 0 (a)) is defined. By PREF-CLOS,

,X(t) is defined and, by TR-MoNO,

,X(to (a)) = ,X(t) ox

for some trace x. Also by TR-MoNO,

,X(t 0 (a)f A) = 'x(tr A) 0 r

for some trace r. By proposition A.3, ,X(t 0 (a)fA) = ,X(t 0 (a))fB. Thus,

'x(trA)or = (,X(t)ox)fB = 'x(t)fBoxrB.

Hence, by proposition A.3, r = xrB. By RAH2-T,

,X(t) \ B = ,X(t \ A) = ,X(t 0 (a) \ A) = ,X(t 0 (a)) \ B = (,X(t) 0 x) \ B.

Thus, events(x) ~ B and so xrB = x = r. o

Results used in the proof of theorem 3.20

In all of the proofs in the remainder of this section, we assume that conditions
SI-7 and Tsl-4 from figure 3.4 all hold. (Recall also that some necessary
supporting results which have already appeared are restated and reproved
here using only SI-7 and Tsl-4.)

Proposition A.4. Let A E MinSet and B E AllSet be such that AnB =1= 0.

Then A ~ B.

Proof. Since AnB =1= 0, it follows that B =1= 0. Hence, B = UiEI~ where I
is a non-empty indexing set into MinSet and so A n Ai =1= 0 for some i E I.
By SI(c) (definition 3.5), A = Ai and so A ~ B. 0

Proposition A.5. Let A, BE AllSet and EEl E {-, U, n}. Then:

1. A EEl B E AllSet.

2. 'x(A EEl B) = 'x(A) EEl 'x(B).

Proof. Let I, J be indexing sets into MinSet such that A = UiEI ~ and
B = UjEJAj.

1. It is immediate by SI(c) (definition 3.5) that AEElB = UkElelJAk and
so A EEl BE AliSet by SI(c) (definition 3.6).

A.3. Proofs from section 3.4

2. A(A EB B) A(UiEI ~ EB U jEJ Aj)

A (UkElEElJ Ak)

205

UkElEElJ A(Ak) (by 85)

UiEi A(~) EB UjEJ A(Aj) (by 81(c) (def. 3.5) and 84)

- A(A) EB A(B) (by 85)
o

Proposition A.6. Let A, A' E AIlSet be such that A n A' = 0. Then
A(A) n A(A') = 0.

Proof· Let A = UiEI Ai and A' = U jEJ Aj , where I, J are indexing sets into
MinSet and I n J = 0 since A n A' = 0 (note that 0 ¢ MinSet). We
consider each of two cases in turn.

Case 1: Either A = 0 i= A', A' = 0 i= A or A = A' = 0. Wlog, we
assume that A = 0 and so 1=0. The proof follows in this case by 85.

Case 2: A i= 0 i= A' and so I i= 0 i= J. By 85, A(A) = UiEI A(~) and
A(A') = U jEJ A(Aj). 8ince In J = 0, Ai i= Aj for all i E I, j E J. By 81(c)
(definition 3.5(2» and 84, A(~) n A(Aj) = 0 for all i E I,j E J and so the
proof in this case follows. 0

Proposition A.7. Let to (a) be a trace such that A(to (a) is defined. Then
there exists A E MinSet such that a E A.

Proof. 8ince A(t 0 (a) is defined, then events(t 0 (a) ~ ~impl by 81(b)
(definition 3.4(1». Hence, by 81(c) (definition 3.5), there exists A E MinSet
such that a E A. 0

Proposition A.B. Let to (a) be a trace such that A(t 0 (a) is defined and
A(to (a) = A(t) or.

1. If a E A E AllSet, then events(r) ~ A(A).

2. If a ¢ A E AllSet, then events(r) n A(A) = 0.

Proof. By proposition A.7, there exists A' E MinSet such that a E A' and so
events(r) ~ A(A') by Ts4.

1. We assume a E A E AllSet. By proposition A.4, A' ~ A and so
A(A') ~ A(A) by 81(c) (definition 3.5) and 85.

2. We assume a ¢ A E AllSet. By proposition A.4, A' n A = 0. Hence,
by proposition A.6, A(A') n A(A) = 0. 0

Proposition A.9. A(O) is defined and A(O) = O·

A.3. Proofs from section 3.4 206

Proof. By S3 and Sl(c) (definition 3.6), there exists A E MinSet such that
A ~ Fvis. Since events (0) = 0, we have that events (0) ~ A. The proof
follows by Ts2. 0

Proposition A.IO. Let t be a trace such that events(t) ~ Fvis. Then A(t)
is defined and A(t) = t.

Proof. We proceed by induction on the length of t. In the base case, when
t = 0, the proof is immediate by proposition A.9. Let t = u 0 (a). By S3
and Sl(c) (definition 3.6), there exists A E MinSet such that a E A and
A ~ Fvis. Hence, A(tr A) is defined by Ts2. By the inductive hypothesis,
A(U) is defined and so A(t) is defined by Ts3. By Ts4, A(t) = A(U) or, where
A(tr A) = A(Ur A) 0 r, and so r = (a) by Ts2. By the inductive hypothesis,
A(U) = u and so A(t) = u 0 (a) = t. 0

Proposition A.I!. Let t be a trace such that A(t) is defined and let A E

AllSet, where B = A(A). Then A(t \ A) is defined and A(t \ A) = A(t) \ B.

Proof. We proceed by induction on the length of t. In the base case, when
t = (), the proof is immediate by proposition A.9. Let t = u 0 (a). Hence,
by proposition A.7, there exists A' E MinSet such that a E A'. We consider
each of two cases in turn.

Case 1: a E A. In this case, A(t \ A) = A(U \ A) and so A(t \ A) is
defined by the inductive hypothesis. By Ts4, A(t) = A(U) 0 r such that, by
proposition A.8, events(r) ~ B. Hence, by the inductive hypothesis,

A(t \ A) = A(U \ A) = A(U) \ B = (A(U) 0 r) \ B = A(t) \ B.

Case 2: a ¢ A. Since A' ~ A, A' n A = 0 by proposition A.4. Hence,
(t \ AHA' = trA' and so A((t \ AHA') is defined by Ts3. Since A(U \ A)
is defined by the inductive hypothesis, then A(t \ A) is defined also by Ts3.
By Ts4, A(t) = A(U) 0 r such that A(tr A') = A(Ur A') 0 r. Also by Ts4,
A(t\A) = A(u\A)ox, such that A((t\AHA') = A((u\AHA')ox. Thus, since
A' n A = 0, A(t \ A) = A{U \ A) 0 r. By proposition A.8, events(r) n B = 0.

Hence, by the inductive hypothesis,

A(t \ A) = A(U \ A) 0 r = (A(U) \ B) 0 r = (A(U) 0 r) \ B = A(t) \ B.

o

Proposition A.12. Let s, U be traces such that A(S) and A(U) are defined.
Let Y E AllSet be such that [[events (s)]] n [[events (u)]] ~ Y, where A(Y) = z.
If t E s lIy u, then A(t) is defined and A(t) E A(S) liz A(U).

A.3. Proofs from section 3.4 207

Proof. Let t E (8 Ily u). Note by TRP that try = 8ry = ury. \\'e proceed
by induction on the length of t. In the base case, when t = 8 = U = (), the
proof is immediate by proposition A.9. Let t = P 0 (a). We consider each of
two cases in turn.

Case 1: a E Y. In this case, 8 = V 0 (a) and u = w 0 (a) for some
v, w. Hence, by proposition A.7, there exists A E MinSet such that a E A.
Since AnY =I 0, A ~ Y by proposition AA. Thus, trA = srA = urA.
Hence, since >'(8) is defined, >,(trA) is defined by Ts3. By the inductive
hypothesis, >,(p) is defined and so >,(t) is defined by Ts3. By Ts4 and since
trA = 8rA = urA, >,(t) = >,(p) 0 r, >,(s) = >,(v) 0 r and >'(u) = >,(w) 0 r
such that, by proposition A.8, events(r) ~ Z. By the inductive hypothesis,
>,(p) E >,(v) liz >,(w) and so >,(p) 0 r E (>,(v) 0 r liz >'(w) 0 r).

Case 2: a ~ Y. Wlog, we assume that 8 = V 0 (a). Hence, by proposition
A.7, there exists A E MinSet such that a E A. Since A cz. Y, then AnY = 0

by proposition AA. Since An events(8) =j:. 0, A ~ [[events(8)]] by propo
sition AA. Since [[events(8)]] n [[events(u)]] ~ Y, then A cz. [[events(u)]].
Hence, by proposition AA, A n [[events (u)]] = 0 and so t r A = s r A. Since
>'(s) is defined, >,(trA) is defined by Ts3. Thus, by Ts3 and the inductive
hypothesis, >,(t) is defined. By Ts4 and since trA = srA, >,(t) = >'(P) 0 r
and >'(8) = >,(v) 0 r such that, by proposition A.8, events(r) n Z = 0. By
the inductive hypothesis, >,(P) E >,(v) liz >,(u). It therefore follows that
>,(p) 0 r E (>,(v) 0 r liz >,(u)). 0

Proposition A.13. Let Q be an implementation process. If o:Q ~ Fvis,
then >'(TQ) is defined and >'(TQ) = TQ.

Proof. We assume that o:Q ~ Fvis and so, by PAl, events(t) ~ Fvis for
every t E TQ. The proof follows by Ts1 and proposition A.lO. 0

Proposition A.14. Let Q be an implementation process. If >'(TQ) is defined,
A E AllSet and >'(\A) = \B, then:

1. >'(T(Q \ A)) is defined.

2. >'(T(Q \ A)) = >'(TQ) \ B.

Proof. We assume that >'(TQ) is defined, A E AllSet and >'(\A) = \B. By
S6, B = >'(A). Let t E TQ. Then >,(t) is defined by Tsl. Also by Tsl, it
suffices to show that >,(t \ A) is defined and >,(t \ A) = >,(t) \ B, which follows
by proposition A.H. 0

Proposition A.IS. Let P, Q be implementation processes. If >'(TP), >'(TQ)
are defined and Y = o:P n o:Q, where >'(lly) =llz, then:

1. >'(T(P Ily Q)) is defined.

AA. Proofs from section 3.5 208

2. A(r(P Ily Q)) ~ A(rP) liz A(rQ).

Proof We assume that A(rP), A(rQ) are defined and Y = o:P n o:Q, where
A(lIy) =llz. That Y E AllSet follows by S2 and proposition A.5(1). By S7,
Z = A(Y). Let t E r(P Ily Q) be such that t E (s lIy u) for s E rP and
u E rQ. By Tsl, A(S) and A(U) are defined. Also by Tsl, it suffices to
show that A(t) is defined and A(t) E A(S) liz A(U). By PAl, events(s) ~ o:P
and so [[events(s))) ~ o:P since o:P E AllSet. Similarly, [[events(u)]] ~ o:Q.
Hence, [[events(s)]] n [[events(u))) ~ o:P n o:Q = Y. The proof follows by
proposition A.12. D

Proof of theorem 3.20

Proof The proof is similar to that of theorem 3.1, using propositions A.13,
A.14 and A.15 in place of conditions RAHl-3. D

A.4 Proofs from section 3.5

Proposition A.16. Let Q be an implementation process. A([Q]T) is defined
if and only if A([Q]Sp) is defined.

Proof (~) We assume that A([Q]T) is defined. Let (t,R) E ¢Q. By
definition 3.12 (parts 1 and 3a), it suffices to show that A(R n o:Q, t) is
defined. By SF2, t E rQ and so A(t) is defined by definition 3.3. Since
o:Q E AllSet, R n o:Q ~ ~impl by proposition 3.9(3). Hence, by definition
3.12(3), A(R n o:Q, t) is defined.

(<==) We assume that A([Q]Sp) is defined. The proof follows immediately
by definition 3.12(1). 0

Proof of theorem 3.21

Proof. We consider TIl, TI2 and TI3 in turn.
1. Let Q be an implementation process such that o:Q ~ Fvis. By TIl, we

have to show that A(rQ) is defined and A(rQ) = rQ. By SFI1, A((rQ, ¢Q))
is defined and A((rQ, ¢Q)) = (rQ, ¢Q). Hence, by definition 3.12(1), A(rQ)
is defined. Moreover, by definition 3.12(2), (A(rQ), A(¢Q)) = (rQ, ¢Q).

2. Let Q be an implementation process such that A(rQ) is defined. More
over, let A E AllSet and A(\A) = \B. By TI2, we have to show that
A(r(Q \ A)) is defined and A(r(Q \ A)) = A(rQ) \ B. By proposition A.16,
A([Q]Sp) is defined. Hence, by SFI2, A([Q \ A]sp) is defined and so, by
definition 3.12(1), A(r(Q \ A)) is defined. Also by SFI2, A([Q \ A]sp) =
A([Q]Sp) \ B. Thus, by definition 3.12(2),

(A(r(Q \ A)), A(¢(Q \ A))) = (A(rQ) \ B, A(¢Q) \ B).

A.4. Proofs from section 3.5 209

3. Let P, Q be implementation processes such that -X{rP) and -X{rQ) are
defined. Moreover, let Y = aP n aQ and -X{lly) =lIz. By TI3, we have to
show that -X{r(P Ily Q)) is defined and -X(r(P lIy Q)) = -X{rP) liz -X(rQ).
By proposition A.16, -X([P]sp) and -X([Q]sp) are defined. Hence, by SFI3,
-X([P Ily Q]sp) is defined and so, by definition 3.12(1), -X(r(P Ily Q)) is
defined. Also by SFI3, -X([P Ily Q]sp) = -X([P]sp) liz -X([Q]sp). Thus, by
definition 3.12(2),

(-X(r(P Ily Q)), -X (¢>(P Ily Q))) = (-X(rP) liz -X(rQ) , -X(¢>P) liz -X(¢>Q)).

D

Proof of theorem 3.22

Proof. By definition 3.12(3b), both -X(¢>P) and -X(¢>Q) are subset-closed. Also
by definition 3.12(3b),

(t, R) E -X(¢>P) ==> (t, R U (E - -X(aP))) E -X (¢>P).

Hence, -X(aP) E R(-X(¢>P)) by definition 2.5 and, similarly, -X(aQ) E R(-X(¢>Q)).
Since Y = apnaQ and aP, aQ E AllSet, then Z = -X(aP)n-X(aQ) by propo
sition 3.8(2). The proof follows by proposition 2.19. D

Proof of proposition 3.23

Proof. Let Q be an implementation process such that aQ ~ Fvis. By SFIl,
-X((rQ, ¢>Q)) is defined and -X((rQ, ¢>Q)) = (rQ, ¢>Q). Hence, by definition
3.12(1), -X(¢>Q) is defined. Moreover, by definition 3.12(2), (-X(rQ), -X(¢>Q)) =
(rQ, ¢>Q). D

Proof of proposition 3.24

Proof. Let Q be an implementation process such that -X([Q]sp) is defined.
Moreover, let A E AllSet and -X(A) = B. By theorem 3.16, -X(\A) = \B.
By SFI2, -X([Q \ A]sp) is defined and so, by definition 3.12(1), -X(¢>(Q \ A))
is defined. Also by SFI2, -X([Q \ A]sp) = -X([Q]sp) \ B. Thus, by definition
3.12(2),

(-X(r(Q \ A)), -X (¢>(Q \ A))) = (-X(rQ) \ B, -X(¢>Q) \ B).

D

AA. Proofs from section 3.5 210

Proof of proposition 3.25

Proof Let P, Q be implementation processes such that -X ([P]SF) and -X([Q]sp)
are defined. Moreover, let Y = aP n aQ and -X(Y) = Z. Since aP, aQ E

AllSet, then Y E AllSet by proposition 3.8(1). By theorem 3.17, -X(lly) =lIz.
By SFI3, -X([P lIy Q]SF) is defined and so, by definition 3.12(1), -X(4)(P lIy
Q)) is defined. Also by SFI3,

Thus, by definition 3.12(2),

(-X(,(P lIy Q)), -X (4)(P lIy Q))) = (-X(,P) liz -X(,Q), -X (4)P) liz -X(4)Q)).

o

Proof of theorem 3.26

Proof Before proceeding with the proof proper, we show the following result.

-X(Fvis) = Fvis. (A.3)

By proposition 3.12, Fvis E AllSet and so, by definition 3.8,

-X(Fvis) = U{events(-X(t)) It E BTrace /\ events(t) ~ Fvis}.

Hence, by RAH1-T and proposition 3.5, -X(Fvis) = Fvis.
We now proceed with the proof proper. Let TFvis = {(a) I a E Fvis} (re

call that Fvis =j:. 0 and so TFvis =j:. 0). Let Q = SFT((t, RU(E-Fvis)), TFvis }
be a (component) implementation process. By proposition 2.13(3),

f3(Q) = events(t) U (E - (R U (E - Fvis))) U U{ events(u) I u E Tpvis }.

We then observe that:

• events(t) ~ Fvis.

• E - (R U (E - Fvis)) ~ Fvis.

• U{ events(u) I u E TFvis } = Fvis.

Hence, f3(Q) = Fvis and so aQ = Fvis by proposition 3.12. Thus,
by proposition 3.23, -X(4)Q) is defined and -X(4)Q) = 4>Q. By proposition
2.13(2), 4>Q = {(t, X) I X ~ R U (E - Fvis n. Thus, by definition 3.12(3a)
and since R ~ Fvis = aQ, -X(R, t) is defined. By definition 3.12(3b) and
REF-MONO, max(-X(4>Q)) = (-X(t), -X(R, t) U (E - -X(aQ))). We also observe

A.4. Proofs from section 3.5 211

that max(¢Q) = (t, R U (~ - Fvis)). Hence, since >.(¢Q) = ¢Q and since
>.(aQ) = >'(Fvis) = Fvis by (A.3),

R U (~- Fvis) = >'(R, t) U (~- Fvis).

It is immediate that R n (~ - Fvis) = 0. By REF-BoUND, we observe
that >'(R, t) ~ >'(Fvis) = Fvis and so >'(R, t) n (~ - Fvis) = 0. Hence,
R = >'(R, t). 0

Proof of theorem 3.27

Proof. Let

• M = MFP((s, 8 U (~- aP)), P) and

• N = MFP((u, U U (~ - aQ)), Q)

be (component) implementation processes. By proposition 2.15,

• f3(M) = f3(P) and so aM = aP .

• 7M=7P.

• ¢M = {(s,X) I X ~ 8u (~- aP)} = {(s,X) I X ~ 8u (~- aM)}.

Since >'([P]SF) is defined, then >.(7P) and >.(¢P) are defined by definition
3.12(1). Hence, >.(7 M) is defined and so >.([M]SF) is defined by proposition
A.16 (>'(¢M) is also defined by definition 3.12(1)). Similarly,

• aN=aQ.

• ¢N = {(u,X) I X ~ UU (~- aQ)} = {(u,X) I X ~ UU (~- aN)}.

• >.([N]SF) is defined (and so >'(¢N) is defined).

We observe that Y = aP n aQ = aM n aN and so Y E AllSet by
proposition 3.8(1). Hence, >'(¢(M lIy N)) is defined by proposition 3.25(1).
Since {t} = (s lIy u), 8 ~ aP = aM and U ~ aQ = aN, (t,8UU) E
¢(M lIy N) by theorem 2.20. Moreover, a(M lIy N) = aM U aN by
proposition 3.3(2). Thus, 8 U U ~ a(M lIy N). Hence, since >'(¢(M Ily N))
is defined and by definition 3.12(3a), >'(8 U U, t) is defined.

We now show that >'(8 U U, t) = >'(8, s) U >'(U, u). For (w, X) E ¢M,
X n aM ~ 8. Similarly, for (w,X) E ¢N, X n aN ~ U. Moreover,
8 ~ aM, U ~ aN and Y = aM n aN. Hence, by theorem 2.20 and since
{t} = (s lIy u),

¢(M lIy N) = {(t,X) I X ~ 8uUu (~- (aMUaN))).

g;z1",;;~

AA. Proofs from section 3.5 212

Recall that a(M lIy N) = aM U aN and S U U ~ aM U aN. Thus, by
definition 3.l2(3b) and REF-MoNO,

max(>.(¢(M Ily N))) = {(>.(t), >'(S U U, t) U (~ - >.(aM U aN)))} (A.4)

We then observe that, by definition 3.l2(3a,3b), REF-MoNO and since S ~
aM and U ~ aN:

• >'(¢M) = ((>.(s), X) I X ~ >'(S, s) U (~ - >'(aM))) .

• >'(¢N) = ((>.(u), X) I X ~ >'(U, u) U (~ - >.(aN))).

Since >'(¢M) is defined, >'(S, s) is defined by definition 3.l2(3a). Similarly,
>'(U, u) is defined. By SF2 and PAl, events(s) ~ aM and events(u) ~ aN.
Hence, by REF-BoUND, >'(S, s) ~ >.(aM) and >'(U, u) ~ >.(aN). Let
Z = >'(Y). Thus, by theorem 3.22,

>'(¢M) liz >'(¢N) = {(w, X) I w E >.(s) liz >.(u) /\
X ~ >'(S, s) U >'(U, u) U (~ - (>.(aM) U >.(aN)))).

It is then immediate that the following holds:

max(>.(¢M) liz >'(¢N)) = {(w, >'(S, s) U >'(U, u) U ~ - (>.(aM) U >.(aN))) I
W E >.(s) liz >.(u)}

(A.5)

By proposition 3.25(2), >'(¢(M lIy N)) = >'(¢M) liz >'(¢N). Moreover, by
proposition 3.8(2), >.(aM U aN) = >.(aM) U >.(aN). Hence, by (A.4) and
(A.5),

>'(S, s) U >'(U, u) U (~ - >.(aM U aN)) = >'(S U U, t) U (~ - >.(aM U aN)).

By SF2 and PAl, events(t) ~ a(M lIy N). Since a(M lIy N) = aM U
aN, events(t) U S U U ~ aM U aN. Hence, since >'(S U U, t) is defined,
>'(S U U, t) ~ >.(aM U aN) by REF-BoUND. Since >'(S, s) ~ >.(aM) and
>'(U, u) ~ >.(aN),

>'(S, s) U >'(U, u) ~ >.(aM) U >.(aN) = >.(aM U aN).

Hence, >'(S, s) U >'(U, u) = >'(S U U, t). o

Lemma A.l 7. Let P be an implementation process such that >. ([P] SF) is
defined. Let (t, R U (~ - aP)) E ¢P be a refusal-maximal failure such that
R ~ aP. Let A E AliSet and >'(A) = B. If A ~ R then:

1. B ~ >.(R, t).

A.4. Proofs from section 3.5 213

2. A(R - A, t \ A) is defined and A(R - A, t \ A) = A(R, t) - B.

Proof. We assume that A ~ R. Let Q = MFP«(t, R U (~- aP)), P} be a
(component) implementation process. By proposition 2.15,

• f3(Q) = f3(P) and so aQ = aP.

• TQ =TP.

• ¢Q = {(t,X) I X ~ RU (~- apn = {(t,X) I X ~ Ru (~- aQn.

Since A([P]SF) is defined, then A(TP) and A(¢P) are defined by definition
3.12(1). Hence, A(TQ) is defined and so A([Q]SF) is defined by proposition
A.16. By definition 3.12(1), this also means that A(¢Q) is defined. We now
proceed with the proof proper.

1. By proposition 3.24(1), A(¢(Q\A)) is defined. Since A ~ R, ¢(Q\A) #
o and so, by definition 3.12(3b), A(¢(Q \ A)) i- 0. Hence, by proposition
3.24(2), A(¢Q) \ B i- 0. By definition 3.12(3a,3b), REF-MoNO and since
R~aQ,

A(¢Q) = ((A(t), X) I X ~ A(R, t) U (~ - A(aQ)n.

Thus, B ~ A(R, t) U (~- A(aQ)). Let I, J be indexing sets into MinSet such
that A = UiEI Ai and aQ = UjEJ Aj . Since A ~ R ~ aQ and by definition
3.5, I ~ J. Hence, by proposition 3.6, B ~ A(aQ) and so B ~ A(R, t).

2. Since A ~ R ~ aQ and a(Q \ A) = aQ - A by proposition 3.3(1),

¢(Q\A) = {(t\A,X) IX~RU(~-aQn

= {(t \ A, X) I X ~ (R - A) U (~ - a(Q \ A)n.

Since R ~ aQ and a(Q \ A) = aQ - A, then R - A ~ a(Q \ A). By
proposition 3.24(1), A(¢(Q \ A)) is defined. Hence, by definition 3.12(3a),
A(R - A, t \ A) is defined. Also, by definition 3.12(3b) and REF-MoNO,

A(¢(Q \ A)) = {(A(t \ A), X) I X ~ A(R - A, t \ A) U (~- A(a(Q \ A))n·

By proposition 3.8(2), A(a(Q\A)) = A(aQ-A) = A(aQ) -B. Moreover,
by the proof of part 1 of the lemma, B ~ A(aQ). Hence,

~ - A(a(Q \ A)) = (~ - A(aQ)) U (B n A(aQ)) = (~ - A(aQ)) U B.

Thus, we have that

A(¢(Q \ A)) = {(A(t \ A), X) I X ~ A(R - A, t \ A) U B U (~- A(aQ))}.

A.4. Proofs from section 3.5 214

and so it is immediate that

max(>..(4J(Q \ A))) = (>..(t \ A), >"(R - A, t \ A) U B U (E - >..(o:Q))). (A.6)

Since >..(4JQ) = ((>..(t) , X) I X ~ >"(R, t) U (E - >..(o:Q))} and B ~ >"(R, t)
by (the proof of) part 1 of the lemma,

>..(4JQ) \ B = ((>..(t) \ B, X) I X ~ >"(R, t) U (E - >..(o:Q))}

and so
max(>..(4JQ) \ B) = (>..(t) \ B, >"(R, t) U (E - >..(o:Q))). (A.7)

By proposition 3.24(2), >..(4J(Q \ A)) = >..(4JQ) \ B and so, by (A.6) and
(A.7),

>"(R - A, t \ A) U B U (E - >..(o:Q)) = >"(R, t) U (E - >..(o:Q)).

Since >..(4JQ) is defined and R ~ o:Q, then >"(R, t) is defined by definition
3.12(3a); moreover, events(t) ~ o:Q by SF2 and PAL Hence, by REF
BOUND, >"(R, t) ~ >..(o:Q). Recall that we have already shown that B ~
>..(o:Q). Since events(t \ A) U (R - A) ~ o:(Q \ A) and >"(R - A, t \ A) is
defined, then >"(R-A, t\A) ~ >..(o:(Q\A)) = >..(o:Q)-B also by REF-BoUND.
Hence,

>"(R - A, t \ A) = >"(R, t) - B.

o

Proposition A.IB. We assume the following, where A E AllSet.

• TA = {u E BTrace I events(t) ~ A} U {O}·

• (t,RU(E-A)) is a failure such that events(t)UR ~ A, >..(t) is defined
and >..(t 0 (a)) is defined for every a E A - R.

• Q = SFT((t, R U (E - A)), TA) is a (component) implementation pro
cess.

Then:

1. >"([Q]SF) is defined.

2. (t, R U (E - o:Q)) E 4JQ is refusal-maximal.

3. o:Q = A and so R ~ o:Q.

Proof. By proposition 2.13(3),

13(Q) = events(t) U (E - (R U (E - A))) U U{ events(u) I u ETA}.

We then observe the following:

AA. Proofs from section 3.5 215

• events(t) ~ A.

• ~ - (R U (~ - A)) ~ A.

• U{events(u) I u ETA} = A by proposition 3.5.

Hence, [3(Q) = A and so aQ = A, which means that R ~ aQ. By proposition
2.13(1,2),

• cf>Q = {(t,X) I X ~ Ru (~- An = {(t,X) I X ~ Ru (~- aQn·

• 7Q = Pref(TA) U Pref(t) U {to (a) I a E ~ - (RU (~- A)n.

Hence, it is immediate that (t, R U (~ - aQ)) E cf>Q is refusal-maximal.
By PREF-CLOS and theorem 3.14, A(U) is defined for every u E Pref(TA) U

Pref(t). We know that A(t 0 (a}) is defined for every a E A - R. Hence, by
definition 3.3 and since ~ - (R U (~ - A)) = A - R, A(7Q) is defined. Thus,
by proposition A.16, A([Q]Sp) is defined. 0

Proof of theorem 3.28

Proof. The proof of part 1 of the theorem is immediate by lemma A.17(1)
and we therefore consider part 2. We assume the following:

• TA = {u E BTrace I events(u) ~ A} U {OJ.

• Q = MFTP((t, R U A U (~ - (aP U A))), TA, P} is a (component)
implementation process.

By proposition 2.16,

• 7Q = 7P U Pref(TA).

• cf>Q = cf>P U {(t, X) I X ~ R U A U (~- (aP U A)n·

• [3(Q) = [3(P) U U{ events(u) I u ETA}.

By proposition 3.5, [3(Q) = [3(P) U A and so aQ = aP U A. Hence,

cf>Q = cf>P U {(t, X) I X ~ R U A U (~ - aQ)}.

Since A([P]Sp) is defined, A(7P) is defined by definition 3.12(1). By theorem
3.14 and PREF-CLOS, A(U) is defined for every u E Pref(TA) and so, by
definition 3.3, A(7Q) is defined. Hence, A([Q]Sp) is defined by proposition
A.16.

A.4. Proofs from section 3.5 216

Since (t, R U (~ - aP)) E ¢>P is refusal-maximal, it is also the case that
(t, (R U A) U (~ - aQ)) E ¢>Q is refusal-maximal. Moreover, since R ~ aP,
then R U A ~ aQ. Hence, by lemma A.17(2), >,((R U A) - A, t \ A) =
>,(R - A, t \ A) is defined and

>,(R - A, t \ A) = >,((R U A) - A), t \ A) = >,(R U A, t) - B. (A.8)

We also assume that K = SFT((tf A, A U (~- A)), TA) is a (component)
implementation process. Since (t,0) E ¢>P, then t E rP by SF2. Thus,
>,(t) is defined by definition 3.3 and so, by proposition A.3, >,(tf A) is defined.
Thus, by proposition A.18,

• >,([K]SF) is defined.

• (t f A, A U (~ - aK)) E ¢>K is refusal-maximal.

• aK = A.

Let Y = aP n aK. By SF2 and PAl, events(t) ~ aP and events(tf A) ~
aK and so events(tfA) ~ Y. Moreover, since aK = A, we observe that
Y ~ A and so events(t \ A) n Y = o. Hence, {t} = t Ily tfA. Recall that
>'([P]SF) is defined, (t, RU (~- aP)) E ¢>P is refusal-maximal and R ~ aP.
As a result, by RAH3-SF:

>,(R U A, t) = >'(R, t) U >'(A, t fA).

Thus, by (A.8),

>,(R - A, t \ A) = (>'(R, t) - B) U (>'(A, tf A) - B).

Since >,(tfA) is defined, >'(A,tfA) is defined by proposition 3.9(3) and defi
nition 3.12(3). Hence, by REF-BOUND, >'(A, tf A) ~ B and so

>,(R - A, t \ A) = >'(R, t) - B.

o

Proof of theorem 3.30

Proof. We assume that >'(A, t) is defined and so >,(t) is defined by definition
3.12(3). By REF-BOUND, >'(A, t) ~ >'(A). Hence, it suffices to show that
>'(A) ~ >'(A, t). We assume the following:

• TA = {u E BTrace I events(u) ~ A} U {()}.

• Q = SFT((t, A U (~- A)), TA) is a (component) implementation pro
cess.

AA. Proofs from section 3.5 217

Thus, by proposition A.18,

• .\([Q]sp) is defined.

• (t, A U (~- aQ)) E ¢Q is refusal-maximal.

• aQ = A and so A ~ aQ.

Hence, by RAH2-SF(I), '\(A) ~ '\(A, t). o

Proof of theorem 3.31

Proof. We first observe that, by definition 3.12(3) and since .\(R, t) is defined,
.\(t) is defined. We assume the following:

• TA = {u E BTrace I events(u) ~ A} U {()}.

• P = SFT((t, R U (~ - A)), TA) is a (component) implementation pro
cess.

• Q = SFT((t, SU(~-A)), TA) is a (component) implementation process.

Thus, by proposition A.18,

• '\([P]sp) is defined.

• (t, R U (~ - aP)) E ¢P is refusal-maximal.

• aP = A and so R ~ aP.

Similarly,

• .\([Q]sp) is defined.

• (t, S U (~ - aQ)) E ¢Q is refusal-maximal.

• aQ = A and so S ~ aQ.

We observe that aP n aQ = A and it} = t IIA t. The proof then follows
by RAH3-SF. 0

Lemma A.19. Let t be a trace and R ~ ~ such that .\(R, t) is defined and
-X(to (a)) is defined for every a E [[events(t) UR]]- R. Let A E AllSet, where
'\(A) = B. Then:

1 . .\(R n A, tr A) is defined.

2. '\(RnA,trA)='\(R,t)nB.

A.4. Proofs from section 3.5 218

Proof. We first observe that, by definition 3.12(3) and since)..(R, t) is defined,
)..(t) is defined. We assume the following:

• T = {u E BTrace I events(u) ~ [[events(t) U R]]} U {O}.

• Q = SFT((t, R U (~ - [[events(t) U R]])), T) is a (component) imple
mentation process.

Thus, by proposition A.18,

•)..([Q]SF) is defined.

• (t, R U (~ - aQ)) E ¢>Q is refusal-maximal.

• aQ = [[events(t) U R]] and so R ~ aQ.

Let A = ~impl - A and B = ~spec - B. By proposition A.2, A E AllSet
and B =)"(A). Thus, by RAH2-SF(2),)..(R - A, t \ A) is defined and

)..(R- A,t\A) =)..(R,t) - B.

By proposition 3.9(3), A ~ ~impl and B ~ ~spec. Hence, ~impl = Au A and
~spec = BUB. By definition 3.12(3), R ~ ~impl and so R-A = RnA. Since
events(t) ~ ~impl by definition 3.4(1), then t\A = trA. Thus,)"(RnA,trA)
is defined. By proposition 3.9(1,3), ~impl E AllSet and)..(E impl) ~ Espec.

Thus, by REF-BOUND,)..(R, t) ~ Espec and so)..(R, t) - B =)"(R, t) n B.
Hence,)..(R n A, tr A) =)..(R, t) n B. 0

Proof of theorem 3.32

Proof. 1. The proof is immediate by lemma A.19(1).
2. We observe that, by definition 3.12(3) and since >'(R, t) is defined,

R ~ ~impl and)..(t) is defined. Thus, events(t) ~ E impl by definition 3.4(1).
By proposition 3.9(1,3), E impl E AllSet and)..(Eimpl) ~ Espec. Thus, by
REF-BOUND,)..(R, t) ~ ~spec. Moreover, by proposition 3.9(2), Espec =

UAEMinSet)"(A). We therefore observe that:

)..(R, t) =)..(R, t) n UAEMinSet)"(A)

UAEMinSet)..(R, t) n)"(A)

= UAEMinSet)..(R n A, tr A) (by lemma A.19(2)).

D

A.4. Proofs from section 3.5 219

Results used in the proof of theorem 3.33

In all of the proofs in the remainder of this section, we assume that the
conditions from figures 3.4 and 3.6 all hold.

Proposition A.20. A(0, ()) is defined and A(0, ()) = 0.

Proof. By S3, Fvis E AllSet and Fvis =I=- 0. Hence, by Sl(c) (definition
3.6), there exists A E MinSet such that A ~ Fvis. It is immediate that
events (()) U 0 ~ A and so the proof follows by SFS2. 0

Lemma A.21. Let t be a trace and R ~ :E. If events(t) U R ~ Fvis, then
A(R, t) is defined and A(R, t) = R.

Proof. We assume that events(t) U R ~ Fvis. By S3, Fvis E AllSet and
so Fvis ~ :Eimpl by Sl(c) (definitions 3.5 and 3.6). Thus, R ~ :Eimp/' By
proposition A.1O, A(t) is defined and so A(R, t) is defined by SFsl (definition
3.12(3)). Since Fvis E AllSet, we observe that [[events(t) U R]] ~ Fvis and
so, by proposition A.IO, A(to (a)) is defined for every a E [[events(t)UR]]- R.
Hence, by SFS7, A(R, t) = UAEMinSet A(R n A, trA). Let A E MinSet. By
proposition AA, either An Fvis = 0 or A ~ Fvis. We therefore show that
A(R n A, tr A) = RnA by considering the following two cases in turn.

Case 1: An Fvis = 0. In this case, by proposition A.20,

A(RnA,trA) = A(0,0) = 0 = RnA.

Case 2: A ~ Fvis. In this case, A(RnA,trA) = RnA by SFs2.
Hence,

A(R, t) UAEMinSet RnA

R n UAEMinSet A

Rn :Eimp/

R.

(by Sl(c) (definition 3.5))

o

Proposition A.22. Let P be an implementation process such that A([P]SF)
is defined. Let (t, R U (:E - aP)) E 4>P be a ref'U.Sal-maximal failure such that
R ~ aP. Then:

1. A(t) is defined.

2. A(R, t) is defined.

3. A(t 0 (a)) is defined for every a E [[events(t) U R]] - R.

A.4. Proofs from section 3.5 220

Proof. By SF2, t E TP. By SFsI (definition 3.12(1», ,x(TP) is defined and
so, by TsI, ,x(t) is defined. Since R ~ aP and aP E AliSet, then R ~ Eimpl
by Sl(c) (definitions 3.5 and 3.6). Thus, by SFsI (definition 3.12(3», ,x(R, t)
is defined. to (a) E TP for every a E E - (R U (E - aP)) = aP - R by
proposition 2.5. Hence, since ,x(TP) is defined and by Ts1, ,x(t 0 (a)) is
defined for every a E aP - R. By PAl, events(t) ~ aP and so, since
R ~ aP, [[events(t) U R]] ~ aP. Hence, ,x(t 0 (a)) is defined for every
a E [[events(t) U R]] - R. 0

Lemma A.23. Let P be an implementation process such that ,x([P]SF) is
defined. Let (t, R U (E - aP» E ¢Jp be a refusal-maximal failure such that
R ~ aP. Let A E AllSet and ,x(A) = B. Then:

1. If A ~ R then B ~ ,x(R,t).

2. ,x(R - A, t \ A) = ,x(R, t) - B.

Proof. By proposition A.22(2,3), ,x(R, t) is defined and ,x(t 0 (a)) is defined
for every a E [[events(t) U R]]- R. By Sl(c) (definition 3.6), A = UiEIAi'

where I is an indexing set into MinSet. In the event that A = 0 and so
I = 0, B = 0 by S5 and so the proof is immediate for both parts of the
lemma. We therefore consider the case that A =1= 0.

1. We assume that A ~ R. By SFs7, ,x(R n A', tr A') is defined for every
A' E MinSet and ,x(R, t) = UA1EMinSet ,x(R n A', trA'). Let i E I. Since
A ~ R and by SFs4,

,x(R n Ai, tr Ai) = ,x(Ai' tr Ai) = ,x(Ai).

Hence, and by S5, B = UiEI ,x (Ai) ~ ,x(R, t).
2. By proposition A.22(1), ,x(t) is defined and so ,x(t\A) is also defined by

proposition A.11. Since ,x(R, t) is defined then R ~ E impl by SFs1 (definition
3.12(3)) and so (R - A) ~ E impl . Thus, ,x(R - A, t \ A) is defined by SFs1
(definition 3.12(3)).

Let J be an indexing set into MinSet such that A' E MinSet only if there
exists j E J such that A' = A j . Then, by SFs7 and S5,

jEJ iEI

By SFs7, ,x(RnAj, tr Aj) is defined and so, by SFs3, ,x(RnAj, tr Aj) ~ ,x(Aj)
for any j E J. Hence, for i E I, ,x(R n~, tr~) - ,x(Ai) = 0. Moreover, for
j ¢ I and i E I, Aj n Ai = 0 by Sl(c) (definition 3.5). Thus, by proposition
A.6, ,x(Aj) n ,x(Ai) = 0 and so ,x(R n Aj , trAj) n ,x(Ai) = 0 for j ¢ I and
i E I. Hence,

,x(R,t)-B= U ,x(RnAj,trAj). (A.9)
jEJ-I

AA. Proofs from section 3.5 221

It is immediate that [[events(t\A)U(R-A)]] ~ [[events(t)UR]]; moreover,
[[events(t \ A) U (R - A))) n A = 0. Hence,

[[events(t \ A) U (R - A)]] - (R - A) ~ [[events(t) U R)) - R

and so A(t 0 (a)) is defined for every a E [[events(t \ A) U (R - A))) - (R - A).
Since [[events(t\A)U (R-A)]] nA = 0 and by proposition A.11, A(t\Ao (a))
is defined for every a E [[events(t\A)U(R-A))) - (R-A). We have already
shown that A(R - A, t \ A) is defined. Hence, by SFs7,

A(R-A,t\A) = UA((R-A)nAj,(t\AHAj).
jEJ

Let j E J. We consider each of two cases in turn.
Case 1: j rf. I. In this case, and by Sl (c) (definition 3.5), Aj n A = 0.

Thus,
A((R - A) n Aj, (t \ A) rAj) = A(R n Aj , tr Aj).

Case 2: j E I. In this case, Aj ~ A and so, by proposition A.20,

A((R - A) n Aj, (t \ A) rAj) = A(0, ()) = 0.

Hence, A(R-A,t\A) = UjEJ_IA(RnAj,trAj) and so the proof follows by
(A.9). []

Lemma A.24. Let P and Q be implementation processes such that A([P]SF)
and A([Q]SF) are defined. Let (s,8 U (~ - aP)) E 4>P be a refusal-maximal
failure such that 8 ~ aP. Let (u, U U (~ - aQ)) E 4>Q be a ref'USal-maximal
failure such that U ~ aQ. Moreover, let t E s Ily u, where Y = aP n aQ.
Then A(8 U U, t) = A(8, s) U A(U, u).

Proof. We first show the following:

A(t) is defined. (A. 10)

By proposition A.22(1), A(S) and A(U) are defined. By SF2 and PAl,
events(s) ~ aP and so [[events(s))) ~ aP. Similarly, [[events(u))) ~ aQ and
so

[[events(s))) n [[events(u)]] ~ aP n aQ = Y.

Since aP, aQ E A1l8et by S2, then Y E AllSet by proposition A.5(1). It
follows by proposition A.12 that A(t) is defined and so we have shown (A.lO).

We now show the following:

A(t 0 (a)) is defined for every a E [[events(t) U 8 U U)) - (8 U U) (A.11)

A.4. Proofs from section 3.5 222

Let a E [[events(t)USUU]]-(SUU). Since [[events(t)USUU]] E AliSet,
then, by Sl(c) (definition 3.6), there exists A E MinSet such that a E A.
Since t E s Ily u, then events(t) = events(s) U events(u). Thus,

[[events(s) U S]] U [[events(u) U U]] = [[events(t) U S U U]]

and so we consider each of two cases in turn.
Case 1: a E [[events(s) US]]. We consider each of two sub-cases in turn

in order to show that to (aHA = so (aHA.
Case 1a: a E Y. By TRP, try = sry. Since AnY =10, then A ~ Y by

proposition A.4. Thus, trA = srA and so to (aHA = so (aHA.
Case 1b: a ~ Y. In this case, A ~ Y and so AnY = 0 by proposition

A.4. Since a E [[events(s) US]], then A ~ [[events(s) US]] by proposition
A.4. By SF2 and PAl, events(s) ~ OtP and we already know that S ~ OtP.
Hence, A ~ [[events(s) U S]] ~ OtP. Also by SF2 and PAl, events(u) ~ OtQ.
Recall that OtP n OtQ = Y. Thus, since AnY = 0, An OtQ = 0 and so
An events(u) = 0. This means that tr A = sr A and so to (a)f A = so (a)f A.

Since a E [[events(s) US]] and a ~ (SUU), then a E [[events(s)US]]-S
and so ,X(s 0 (a)) is defined by proposition A.22(3). Hence, 'x(s 0 (a) r A) is
defined by Ts3. Thus, ,X(t 0 (a)f A) is defined and, since ,X(t) is defined by
(A.lO), ,X(t 0 (a)) is defined by Ts3.

Case 2: a E [[events(u) U U]]. The proof in this case is similar to that of
Case 1.

Hence, we have shown (A.ll) and so now proceed with the proof proper.
By (A.10), ,X(t) is defined. By proposition A.22(2), 'x(S, s) and 'x(U, u) are
defined; thus, by SFsl (definition 3.12(3)), S, U ~ Eimpl ' Hence, S U U ~
Eimpl and so 'x(S U U, t) is defined by SFsl (definition 3.12(3)).

Let J be an indexing set into MinSet such that A' E MinSet only if
there exists j E J such that A' = Aj. By proposition A.22(2,3), 'x(S, s) and
'x(U,u) are defined, 'x(s 0 (a)) is defined for every a E [[events(s) U S]]- S
and ,X(uo (a)) is defined for every a E [[events(u) U U]] - U. Thus, by SFs7,

• 'x(S,s) = UjEJ,X(SnAj,srAj) and ,X(SnAj,srAj) is defined for every
j E J .

• 'x(U, u) = UjEJ 'x(UnAj, ur Aj) and 'x(UnAj, ur Aj) is defined for every
j E J.

Moreover, since 'x(S U U, t) is defined and by (A.ll) and SFs7,

'x(S U U, t) = U 'x((S U U) n Aj, trAj).
jEJ

Thus, for j E J, it suffices to show that

'x((S U U) n Aj , trAj) = 'x(S n Aj, SrAj) U 'x(U n Aj, ur Aj).

AA. Proofs from section 3.5 223

In order to do this, and by proposition AA, we consider the following two
cases in turn.

Case 1: Aj ~ Y. In this case, by TRP, trAj = srAj = UrAj. We consider
each of two sub-cases in turn.

Case 1a: S n Aj =I 0 and un Aj =I 0. By SFs6 and due to the fact
that trAj = SrAj = UrAj, it suffices to show that 'x(trAj 0 (a)) is defined for
every a E (Aj - (S n Aj)) U (Aj - (U n Aj)). Wlog, let a E Aj - (S n Aj).
Since S n Aj =I 0 and by proposition AA, Aj ~ [[events(s) US]]. Hence,
Aj - (SnAj) ~ [[events(s)US]]-S and so 'x(so(a)) is defined. Since a E Aj
and tr Aj = sr Aj , 'x(s 0 (a)f Aj) = 'x(tr Aj 0 (a)) is defined by Ts3.

Case 1 b: Either S n Aj = 0 or U n Aj = 0. Wlog, we assume that
S n Aj = 0. Hence, and since trAj = UrAj,

Moreover, by SFs5 and since tr Aj = sr Aj = ur Aj ,

and so the proof follows in this case.
Case 2: AjnY = 0. Since apnaQ = Y, either AjnaP = 0 or AjnaQ =

0. Wlog, we assume that AjnaP = 0 and so Ajn(events (s)US) = 0. Thus,
by proposition A.20, 'x(SnAj, sr Aj) = 'x(0, 0) = 0. Since events(s) nAj =
0, then tr Aj = ur Aj . As a result, 'x((S U U) n Aj , tr Aj) = 'x(U n Aj , ur Aj)
and so the proof follows in this case. 0

Proposition A.25. Let Q be an implementation process. If ,X (TQ) is defined
then 'x([Q]SF) is defined.

Proof. We assume that 'x(TQ) is defined. Let (t, R) E ¢>Q. By SFs1 (def
inition 3.12 (parts 1 and 3a)), it suffices to show that ,X(R n aQ, t) is de
fined. By SF2, t E TQ and so ,X(t) is defined by Tsl. Since aQ E A llSet ,
RnaQ ~ ~impl by S1(c) (definitions 3.5 and 3.6). Hence, by SFs1 (definition
3.12(3)), ,X(R n aQ, t) is defined. 0

Proposition A.26. Let Q be an implementation process. If aQ ~ Fvis,
then 'x([Q]SF) is defined and 'x([Q]SF) = [Q]SF·

Proof. We assume that aQ ~ Fvis. Before proceeding with the proof proper,
we first show the following result.

'x(aQ) = aQ. (A.12)

By S2, aQ E AllSet and so, by S1(c) (definition 3.6), aQ = UiEI Ai
where I is an indexing set into MinSet. By S5, ,X(aQ) = UiEI 'x(Ai). In the

AA. Proofs from section 3.5 224

event that aQ = 0 and so I = 0 the proof is immediate and so we assume
that aQ # 0. Let i E I and so Ai ~ aQ ~ Fvis. By 81(c) (definition
3.5), Ai ~ 1;impl and so, by proposition A.9 and definition 3.12(3), A(Ai' ())
is defined. Moreover, by 8FS2 and 8FS4, Ai = A(Ai' ()) = A(A;). Hence,
A(aQ) = UiEI A; = aQ.

We now proceed with the proof proper. By proposition A.13, A(rQ) is
defined and so, by proposition A.25, A([Q]Sp) is defined. Thus, by 8FS1 (def
inition 3.12(1)), A(¢Q) is defined. Also by proposition A.13, A(rQ) = rQ
and so, by 8FS1 (definition 3.12(2)), we have to show that A(¢Q) = ¢Q. By
8FS1 (definition 3.12(3b)),

A(¢Q) = ((A(t), X) I (3(t, R) E ¢Q) R ~ aQ A
X ~ A(R, t) U (1; - A(aQ))}.

Let (t, R) E ¢Q be such that R ~ aQ ~ Fvis. By 8F2 and PAl,
events(t) ~ aQ ~ Fvis. Thus, by proposition A.1O, A(t) = t. Moreover, by
lemma A.21, A(R, t) = R. Hence, since A(aQ) = aQ by (A.12),

A(¢Q) = ((t,X) I (3(t,R) E ¢Q) R ~ aQ A X ~ R U (1; - aQ)}.

Thus, A(¢Q) = ¢Q by PA2 and 8F3. o

Proposition A.27. Let P, Q be implementation processes and A, Y E

AllSet.

1. a(P \ A) = (aP) - A.

2. a(P Ily Q) = aP U aQ.

Proof. 1. a(P \ A) - [[,B(P \ A)]]

- [[,B(P) - All
- [[,B(P)]]- A

- (aP) - A

2. a(P Ily Q) - [[,B(P Ily Q)]]

- [[,B(P) U ,B(Q)]]

- [[,B(P)]] U [[,B(Q)]]

= aPUaQ

(by 82)

(by figure 2.5)

(since A E AllSet)

(by 82)

(by 82)

(by figure 2.5)

(by 82)
o

Proposition A.2B. Let Q be an implementation process. If A([Q]Sp) is
defined, A E AliSet and A(\A) = \B, then:

A.4. Proofs from section 3.5 225

1. >.([Q \ A]sp) is defined.

2. >.([Q \ A]sp) £;;; >.([Q]sp) \ B.

Proof. We assume that >.([Q]sp) is defined, A E AllSet and >'(\A) = \B.
By S6, B = >'(A). By SFs1 (definition 3.12(1)), >'(TQ) is defined and so, by
proposition A.14(1), >'(T(Q\A)) is defined. Hence, >.([Q\A]sp) is defined by
proposition A.25. By proposition A.14(2), >'(T(Q \ A)) = >'(TQ) \ B and so,
by SFs1 (definition 3.12(2)), it suffices to show that >.(¢(Q\A)) £;;; >.(¢Q)\B.

Let (t, X) E ¢(Q \ A) be refusal-maximal. By SF3, (t, X n a(Q \ A))) E

¢(Q\A). Since >.([Q\A]sp) is defined, then >.(¢(Q\A)) is defined by SFs1
(definition 3.12(1)) and so, by SFs1 (definition 3.12(3a)), >'(X n a(Q \ A), t)
is defined. By SFs1 (definition 3.12(1)), >.(¢Q) is defined and so, by SFs1
(definition 3.12(3b)), >.(¢Q) and >.(¢Q) \ B are subset-closed sets of failures.
Hence, by SFs1 (definition 3.12(3b)) and SFs5, it suffices to show that

(>.(t), >'(X n a(Q \ A), t) U (E - >.(a(Q \ A)))) E >.(¢Q) \ B.

By proposition A.27(1), a(Q \ A) = aQ - A and so a(Q \ A) £;;; aQ.
Hence, (E - aQ) £;;; (E - a(Q \ A)) and so, by PA2, (E - aQ) £;;; X. Thus,
let R be such that R £;;; aQ and X = R U (E - aQ). Then,

X n a(Q \ A) = (X n aQ) n a(Q \ A) = R n a(Q \ A) = R - A.

By proposition A.5(2), >.(a(Q \ A)) = >.(aQ - A) = >.(aQ) - B. Hence, and
since B - >.(aQ) £;;; (E - >.(aQ)),

E - >.(a(Q \ A)) = (E - >.(aQ)) U (B n >.(aQ)) = (E - >.(aQ)) U B.

As a result, we have to show that

(>.(t), >'(R - A, t) U B U (E - >.(aQ))) E >.(¢Q) \ B. (**)

Since (t, R U (E - aQ)) E ¢(Q \ A) is refusal-maximal,

• A£;;; R U (E - aQ) .

• (w, RU (E - aQ)) E ¢Q is refusal-maximal, where t = w \A. Moreover,
by SF3, (w, R) E ¢Q.

Since >.([Q]sp) is defined, >'(TQ) and >.(¢Q) are defined by SFs1 (defini
tion 3.12(1)). By SF2, W E TQ and so, by Ts1, >.(w) is defined. Moreover,
since >.(¢Q) is defined and R £;;; aQ, and by SFs1 (definition 3.12(3b)),

(>.(w), >'(R, w) U (E - >.(aQ))) E >.(¢Q).

AA. Proofs from section 3.5 226

Since A ~ R U (~- aQ), then An aQ ~ R. By proposition A.5, An aQ E

AllSet and A(A n aQ) = B n A(aQ). Thus, by lemma A.23(1), B n A(aQ) ~
A(R,w). Thus, since B-A(aQ) ~ (~-A(aQ)), B ~ A(R,w)U(~-A(aQ)).
From this and proposition A.ll,

(A(t), A(R, w) U (~ - A(aQ))) E A(¢Q) \ B

and so

(A(t), (A(R, w) - B) U B U (~ - A(aQ))) E A(¢Q) \ B.

Thus, by lemma A.23(2),

(A(t), A(R - A, t) U B U (~- A(aQ))) E A(¢Q) \ B.

and the proof follows by (**). o

Lemma A.29. Let t be a trace and R ~ ~ such that A(R, t) is defined and
events(t) U R ~ A E AIlSet. If, for every a E [[events(t) U R]] - R, A(to (a))
is defined then A(R, t) ~ A(A).

Proof. By S1(c) (definition 3.6), A = UiEI Ai, where I is an indexing set into
MinSet. In the event that A = 0, A(R, t) = A(0, ()) = 0 by proposition
A.20 and so we consider the case that A "# 0. We assume that A(t 0 (a))
is defined for every a E [[events(t) U R]] - R. Let J be an indexing set into
MinSet such that A' E MinSet only if there exists j E J such that A' = Aj .
By SFs7, A(RnAj,tfAj) is defined for every j E J and

A(R, t) = U A(Rn Aj , tfAj).
JEJ

Let j E J. It suffices to show that A(R n Aj , tf Aj) ~ A(A) and we consider
each of two cases in turn.

Case 1: j ¢ I. By S1(c) (definition 3.5), Aj n A = 0. As a result,
A(Rn Aj , tfAj) = A(0, 0) = 0 by proposition A.20.

Case 2: j E I. By SFs3 and 85,

o

Proposition A.30. Let P, Q be implementation processes. If A([P]Sp),
A([Q]Sp) are defined and Y = aP n aQ, where A(lly) =liz, then:

1. A([P Ily Q]sp) is defined.

AA. Proofs from section 3.5 227

2. ,\([P lIy Q]SF) S; ,\([P]SF) liz ,\([Q]SF)'

Proof. We assume that ,\([P]SF)' ,\([Q]SF) are defined and Y = nP n nQ,
where '\(lly) =llz. That Y E AliSet follows by S2 and proposition A.5(1).
Thus, by S7, Z = '\(Y). By SFsl (definition 3.12(1)), ,\(rP) and '\(rQ)
are defined and so, by proposition A.15(1), ,\(r(P lIy Q)) is defined. Hence,
,\([P Ily Q]SF) is defined by proposition A.25.

By proposition A.15(2), ,\(r(P lIy Q)) S; ,\(rP) liz '\(rQ). Thus, by
SFsl (definition 3.12(2)), we show '\(¢>(P Ily Q)) S; '\(¢>P) liz ,\(¢>Q). Let
(t, X) E ¢>(P Ily Q) be refusal-maximal. By proposition A.27(2), we have
n(P Ily Q) = nP U nQ and so (~ - (nP U nQ)) S; X by PA2. Thus, let
R be such that R S; nP U nQ and X = R U (~ - (nP U nQ)). By SF3,
(t, R) E ¢>(P Ily Q). Since ,\([P lIy Q]SF) is defined, then '\(¢>(P Ily Q)) is
defined by SFs1 (definition 3.12(1)) and so, by SFs1 (definition 3.12(3a)),
'\(R, t) is defined. By SFs1 (definition 3.12(1)), '\(¢>P) and ,\(¢>Q) are defined.
Thus, by SFs1 (definition 3.12(3b)), '\(¢>P) and ,\(¢>Q) are subset-closed
sets of failures and so '\(¢>P) liz ,\(¢>Q) is subset-closed by proposition 2.18.
Hence, by SFs1 (definition 3.12(3b)) and SFs5, it suffices to show that

('\(t), '\(R, t) U (~- '\(nP U nQ))) E '\(¢>P) liz ,\(¢>Q). (**)

By theorem 2.20, there exist (s, S) E ¢>P and (u, U) E ¢>Q such that:

• S S; nP.

• US; aQ.

• Ru (~- (aPUaQ)) = Su UU (~- (aPUaQ)) and so R = SUU,
since R, (S U U) S; aP U aQ.

• t E s Ily u.

We assume that Sand U are as large as possible such that the above
conditions hold. By PA2, (s, SU(~-aP)) E ¢>P and (u, Uu(~-aQ)) E ¢>Q.
Moreover, (s, S U (~- aP)) E ¢>P and (u, U U (~ - aQ)) E ¢>Q are refusal
maximal, since otherwise (t, R U (~ - (aP U aQ))) E ¢>(P Ily Q) would not
be refusal-maximal. Since ,\([P]SF) and ,\([Q]SF) are defined, '\(¢>P) and
'\(¢>Q) are defined by SFsl (definition 3.12(1)). Thus, by SFsl (definition
3.12(3b)),

• ('\(s), '\(S, s) U (~ - ,\(aP)) E '\(¢>P).

• ('\(u), '\(U, u) U (~- '\(aQ)) E ,\(¢>Q).

A.4. Proofs from section 3.5 228

By proposition A.22(2,3), '\(S, s) is defined and '\(s 0 (a)) is defined for
every a E [[events(s) US]] - S. We know that S S; o:P and, by SF2 and
PAl, events(s) S; o:P. Thus, by lemma A.29, '\(S, s) S; ,\(o:P). Similarly,
'\(U, u) S; '\(o:Q). By proposition A.22(1), '\(s) and '\(u) are defined. Since
events(s) S; o:P and, by SF2 and PAl, events(u) S; o:Q, we observe that
[[events(s)]] n [[events(u)]] S; o:P n o:Q = Y. Thus, by proposition A.12,
'\(t) E '\(s) liz '\(u). Hence, by theorem 3.22,

('\(t), '\(S, s) u '\(U, u) U (~ - (,\(o:P) U '\(o:Q)))) E '\(¢>P) liz ,\(¢>Q).

We observe that, by proposition A.5(2), '\(o:P U o:Q) = ,\(o:P) U '\(o:Q).
The proof then follows by (**), the fact that R = S U U and lemma A.24. D

Proof of theorem 3.33

Proof. The proof is similar to that of theorem 3.1, using proposition A.26 in
place of RAH1, proposition A.28 in place of RAH2 and proposition A.30 in
place of RAH3. D

Proposition A.31. The following hold:

1. ~impl E AllSet.

2. ~spec = UAEMinSet '\(A).

3. For every A E AllSet, A S; ~impl and '\(A) S; ~spec.

Proof. 1. The proof is immediate by Sl(c) (definitions 3.5 and 3.6).
2.

UAEMinSet '\(A)

UAEMinSet U{ events ('\(t)) It E BTrace 1\ events(t) S; A} (by S4)

U{ events ('\(t)) It E BTrace 1\ ((3A E MinSet) events(t) S; A)}

U{events('\(t)) It E BTrace 1\ events(t) S; UAEMinSet A}
(by (Sl)(c) (definition 3.5(1)))

U{ events ('\(t)) It E BTrace 1\ events(t) S; ~impl}
(by (Sl)(c) (definition 3.5))

U{events('\(t)) It E BTrace} (by Sl(b) (definition 3.4(1)))

~spec (by Sl(b) (definition 3.4(2)))

3. Let A E AllSet. By Sl(c) (definition 3.5), ~impl = UA'EMinSet A' and
so A S; ~impl by Sl(c) (definition 3.6). Moreover, '\(A) S; '\(~impl) by S5.
By part 2 of the proposition and S5,

~spec = U '\(A') = ,\(U A') = '\(~impl)
A'EMinSet A'EMinSet

A.4. Proofs from section 3.5 229

and so -X(A) ~ ~Bpec. o

Proof of theorem 3.34

Proof. By proposition A.25, -X([P]sp) and -X([Q]sp) are defined. Moreover,
by SFsl (definition 3.12(1)), -X(¢P) and -X(¢Q) are defined. Let (t, R) E

¢P = ¢Q be refusal-maximal and let Rp = R n o:P and Rq = R n o:Q. By
SF3, (t, Rp) E ¢P and (t, Rq) E ¢Q. By PA2, ~-o:p ~ R and ~-o:Q ~ R.
Thus,

R = Rp U (~- o:P) = Rq U (~- o:Q).

Note also that, by SFsl (definition 3.12(3a)), -X (Rp , t) and -X(Rq, t) are de
fined. Thus, according to SFsl (definition 3.12(3b)) and SFs5, it suffices to
show that

-X(Rp, t) U (~ - -X(o:P)) = -X(Rq, t) U (~ - -X(o:Q)).

By SI(b) (definition 3.4), ~Bpec ~~. Moreover, by proposition A.31(3),
-X (o:P) , -X(o:Q) ~ ~spec. Thus, ~ - -X(o:Q) = (~- ~spec) U (~Bpec - -X(o:Q)) and
~ - -X(o:P) = (~ - ~Bpec) U (~spec - -X(o:P)). Thus, it it suffices to show that

-X(Rp, t) U (~Bpec - -X(o:P)) = -X(RQ , t) U (~Bpec - -X(o:Q)).

In fact, we show that -X (Rp, t) U (~Bpec - -X(o:P)) ~ -X(Rq, t) u (~spec - -X(o:Q))
and the proof in the other direction is similar.

Let I, K be indexing sets into MinSet such that o:P = UiEI Ai and o:Q =
UkEK Ak · Let J be an indexing set into MinSet such that A E MinSet only
if there exists j E J such that A = Aj . By proposition A.22(3), -X(t 0 (a)) is
defined for every a E [[events(t) U Rqll- Rq. Thus, by SFs7,

-X(RQ , t) = U -X(RQ n Aj, tr Aj) (A.13)
jEJ

and -X(RQ n Aj , tr Aj) is defined for every j E J.
We first show that -X(Rp, t) ~ -X(Rq, t) U (~spec - -X(o:Q)). By proposition

A.22(3), -X(t 0 (a)) is defined for every a E [[events(t) U Rpll- Rp. Thus, by
SFs7,

jEJ

and -X(Rp n Aj , tr Aj) is defined for every j E J. It therefore suffices to show
that

-X(Rp n Aj, tr Aj) ~ -X(Rq, t) U (~spec - -X(o:Q))

for j E J. Let j E J. We consider each of three cases in turn.

A.5. Proofs from section 3.6 230

Case 1: j E InK. In this case, Aj ~ o:P and Aj ~ o:Q. Thus.
Rp n Aj = RQ n Aj and so)..(Rp n Aj, trAj) ~)..(~, t) by (A.13).

Case 2: j ~ K. In this case, by Sl(c) (definition 3.5), Ajno:Q = 0. Thus,
)"(Aj) n)..(o:Q) = 0 by proposition A.6. By proposition A.31(3),)"(Aj) ~
~BPec and so)"(Aj) ~ (~8pec -)..(o:Q)). Since)..(Rp n A j , tr Aj) is defined and
by SFs1 (definition 3.12(3)),)..(trAj) is defined. By Sl(c) (definition 3.5),
Aj ~ ~impi and so)"(Aj, tr Aj) is defined also by SFs1 (definition 3.12(3)).
Thus, by SFs4 and SFs5,

)..(Rp n Aj , tr Aj) ~)"(Aj, trAj) =)"(Aj)

and so)..(Rp n Aj, trAj) ~ (~8Pec -)..(o:Q)).
Case 3: j ~ I. In this case, by Sl (c) (definition 3.5), Aj n o:? = 0. By

SF2 and PAl, events(t) ~ o:P. Thus,)..(Rp n Aj , trAj) =)"(0, ()) = 0 by
proposition A.20.

We now show that (~8Pec -)..(o:P)) ~)"(RQ' t) U (~spec -)..(o:Q)). By
proposition A.31(2), ~spec = UAEMinSet)"(A) and so, by Sl(c) (definition 3.5)
and S5, ~spec =)..(~impl)' Thus, by proposition A.5(2) and S5,

~spec -)..(o:P) =)..(~impi - o:?) =)..(U Ai) = U)"(Ai)'
jEJ-I jEJ-I

It therefore suffices to show that)"(Aj) ~)"(RQ' t) U (~spec -)..(o:Q)) for
j E J - I. Let j E J - I. We consider each of two cases in turn.

Case 1: j ~ K. In this case, by Sl(c) (definition 3.5), Aj n o:Q = 0 and
so)"(Aj) n)..(o:Q) = 0 by proposition A.6. Thus, since)"(Aj) ~ ~spec by
proposition A.31(3),)"(Aj) ~ (~spec -)..(o:Q)).

Case 2: j E K. In this case, Aj ~ o:Q. Moreover, since j ~ I, Aj n
o:P = 0. Since ~ - o:P ~ R, then Aj ~ R and so Aj ~ RQ. Thus,
).. (RQ n Aj , t rAj) =).. (Aj, t rAj) and the proof in this case follows by S Fs4
and (A.13). 0

A.5 Proofs from section 3.6

Proof of theorem 3.35

Proof. By SEQ, there exists a deterministic implementation process Q such
that TQ = Pref({ ... , ti""})' Since Q is deterministic, then oQ = 0. Thus,
by definitions 3.3 and 3.13(3),)..(oQ) is defined. By PREF-CLOS and defi
nition 3.3,)..(TQ) is defined and so)..([Q]SF) is defined by proposition A.16.
Hence, by definition 3.12(1),)..(¢Q) is defined and so)..(¢.LQ) is defined by
definition 3.13(4). Thus,)..([Q]PD) is defined by definition 3.13(1).

A.5. Proofs from section 3.6 231

We now show the following:

{A(W) I W E Pref({ ... ,ti,· .. })} = {t I (t,0) E A(4)-LQ)}. (A.14)

Since A(4)Q) is defined and by definition 3.12(3b),

{t I (t,0) E A(4)Q)} = {A(W) I (w,0) E 4>Q}.

Since Q is deterministic and by definition 2.4(2), rQ = {w I (w,0) E 4>Q}.
Thus, by definition 3.3, A(rQ) = {t I (t,0) E A(4)Q)}. Moreover, also by
definition 3.3, we have that A(rQ) = {A(W) I W E Pref({ ... , t i , . .. })}. The
proof of (A.14) follows by definition 3.13(4) and the fact that A(6Q) = 0 by
definition 3.13(3) and since 6Q = min6Q = 0.

By FDI, A([Q\A]PD) is defined and so A(6(Q\A)) is defined by definition
3.13(1). We recall that 6Q = 0 and so A(6Q) = 0 by definition 3.13(3).
Moreover, 6(Q \ A) =I- 0 and so A(6(Q \ A)) =I- 0 also by definition 3.13(3).
Let .1" be a set of failures and V a set of divergences such that A ([Q]PD) \ B =
(.1", V), where A(\A) = \B. Thus, by definition 3.13(2) and FDI,

(A(4>-L(Q \ A)), A(6(Q \ A))) = (A (4)-LQ) , A(6Q)) \ B = (.1", V).

Hence, A(6(Q \ A)) = V and so V =I- 0. Since A(6Q) = 0, then, by
(A.14), TR-MoNO and the detail in chapter 2.4.3, ... , A(ti), . .. must be
an w-sequence. 0

Results used in the proof of theorem 3.36

In all of the proofs in the remainder of this section, we assume that the
conditions from figures 3.4, 3.6 and 3.8 all hold.

Lemma A.32. Let t, u be traces. If A(t) is defined, then A(U) is defined for
all u ~ t.

Proof. The proof proceeds by induction on the length of t using proposition
A.7 and Ts3. 0

Proposition A.33. Let v, u be traces. If u ~ v and A(U) and A(V) are
defined, then A(U) ~ A(V).

Proof. The proof proceeds by induction on n = lvi-lui. In the base case, the
proof is immediate. Let v = uowo (a). Since A(V) is defined, by lemma A.32
we have that A(U 0 w) is defined. Thus, by the inductive hypothesis, A(U) ~
A(U 0 w). Moreover, by proposition A.7, there exists A E MinSet such that
a E A. Thus, by Ts4, A(U 0 w 0 (a)) = A(U 0 w) 0 r (for some trace r) and so
the proof follows. 0

A.5. Proofs from section 3.6 232

Proposition A.34. Let Q be an implementation process. A(rQ) is defined
if and only if A([Q]PD) is defined.

Proof. (===*) We assume that A(rQ) is defined. By proposition A.25, A([Q]Sp)
is defined and so A(¢Q) is defined by SFs1 (definition 3.12(1)). Moreover,
A(rQ n c5Q) is defined by Tsl. Thus, by FDS1 (definition 3.13(3)), A(c5Q) is
defined. Hence, by FDS1 (definition 3.13(1,4)), A(¢l.Q) and then A([Q]PD)
are defined.

(<===) We assume that A([Q]PD) is defined. By FDS1 (definition 3.13),
A(¢l.Q) is defined and so A(¢Q) is defined; moreover, A(c5Q) is defined. By
DR3, we have that rQ = {t I (t,0) E ¢Q} U (rQn c5Q). By SFs1 (definition
3.12(3)), A(W) is defined for every w E {t I (t,0) E ¢Q} and, by FDS1
(definition 3.13(3)), A(rQ n c5Q) is defined. Thus, by Ts1, A(rQ) is defined.

o

Lemma A.35. Let Q be an implementation process. If aQ ~ Fvis, then
A([Q]PD) is defined and A([Q]PD) = [Q]PD'

Proof. By proposition A.13, A(rQ) is defined and so A([Q]PD) is defined
by proposition A.34. By FDS1 (definition 3.13(1,2)), A(¢l.Q) and A(c5Q)
are defined and it suffices to show that A(¢l.Q) = ¢l.Q and A(c5Q) = c5Q.
Since minc5Q ~ rQ by MD, events(t) ~ aQ ~ Fvis for every t E minc5Q by
PAL Thus, by FDS1 (definition 3.13(3)), proposition A.I0 and the extension
closure of sets of divergent traces by FD4, A(c5Q) = c5Q. By proposition A.26
and SFs1 (definition 3.12(2)), A(¢Q) = ¢Q. Hence, by FDS1 (definition
3.13(4)) and since A(c5Q) = c5Q, A(¢l.Q) = ¢Q U {(t, R) I t E c5Q A R ~ E}.
Thus, by DR2, A(¢l.Q) = ¢l.Q. 0

Lemma A.36. Let ... , ti,' .. be an w-sequence such that A(ti) is defined for
each ti' Then ... , A(ti), ... is also an w-sequence.

Proof. Let w E EW be the least upper bound of the sequence ... , ti, Since
A(ti) is defined for each ti and by S1(b) (definition 3.4(1)), events(ti) ~ Eimp/

for each ti' Thus, events(w) ~ Eimp/' Hence, by S1(c) (definition 3.5), there
exists A E MinSet such that w rAE EW. It follows that ... , ti r A, . .. is
an w-sequence and so ... , A(ti r A), ... is also an w-sequence by FDS2. By
induction on the length of traces using proposition A.9 and Ts4, A(ti) E

IIIA1EMinSetA(ti r A') for each ti' Thus, the length of the A(ti) increases un
boundedly. It follows by proposition A.33 that ... ,A(ti), . .. is an w-sequence.

o

Lemma A.37. Let Q be an implementation process and P a process. Let
A E AllSet, where A(\A) = \B. If A([Q]PD) is defined and A([Q]FD) ~
[P]PD' then:

A.5. Proofs from section 3.6 233

1. ,\([Q \ AhD) is defined.

2. ,\([Q \ AhD) ~ [P \ BhD.

Proof. We assume that ,\([Q]PD) is defined and P is a process such that
,\([QhD) ~ [PhD· By proposition A.34, '\(TQ) is defined and so, by propo
sition A.14, '\(T(Q \ A)) is defined. Hence, ,\([Q \ AhD) is defined also
by proposition A.34. By FDS1 (definition 3.13(2)), '\(4)l.Q) ~ 4>l.P and
'\(8Q) ~ 8P. Also by FDS1 (definition 3.13), '\(4)l.Q) is defined and so
'\(4)Q) is defined; moreover, '\(8Q) is defined.

By FDS1 (definition 3.13(2)), we show that '\(8(Q \ A)) ~ 8(P \ B) and
,\(cpl.(Q \ A)) ~ CPl.(P \ B). We first show that '\(8(Q \ A)) ~ 8(P \ B). Let
t E min8(Q \ A). By FDS1 (definition 3.13(3)) and FD4, it suffices to show
that '\(t) E 8(P \ B). We note that B = '\(A) by S6 and then consider each
of two cases in turn according to the semantics of the hiding operator in the
failures divergences model.

Case 1: There exists s E 8Q such that s E min8Q, where t = s \ A. (IT
s ¢ min8Q then we have u < 8 such that u E min8Q and either u \ A = s \ A
and we take t = u \ A or u \ A < s \ A and so t ¢ min8(Q \ A).) By FDS1
(definition 3.13(3)) and since '\(8Q) ~ 8P, '\(8) E 8P. Hence, '\(s) \ B E

8(P \ B). Since '\(8Q) is defined, then '\(s) is defined by FDS1 (definition
3.13(3)), MD and Tsl. Thus, by proposition A.H, '\(8 \ A) = '\(8) \ B and
so '\(t) E 8(P \ B).

Case 2: There exists w E I;W such that t = w \ A and, for every u < w,

u E Tl.Q = {z I (z,0) E 4>l.Q}.

In the event that there exists u < w such that u E 8Q, then there exists
u' ::; u such that u' E min8Q, where t = u' \ A, and the proof proceeds as
for Case 1 (we know that t = u' \ A since, otherwise, t ¢ min8(Q \ A)).
We therefore assume that, for every u < w, u ¢ 8Q and so, by DR2, that
(u, o) E 4>Q. Recall that ,\(cpl.Q) ~ CPl.P. Thus, by FDS1 (definition 3.13(4))
and SFs1 (definition 3.12(3b)), ('\(u), o) E CPl.P and so '\(u) E Tl.P for every
u < w. Moreover, since ,\(cpQ) is defined and by SFs1 (definition 3.12(3)),
'\(u) is defined for every u < w. By lemma A.36, there exists x E I;W such
that x is the least upper bound of the sequence of '\(u) where u < w. By the
prefix-closure of Tl.P (FD1), we have that v E Tl.P for every v < x. Since
w E I;W and w \ A is finite, we have that w = r 0 8, where r E I;*, s E AW

and r \ A = w \ A. By proposition A.H, we know that for any trace k such
that r ::; k < w,

'\(t) = '\(w \ A) = '\(k \ A) = '\(k) \ B.

Hence, x \ B = '\(t) and so '\(t) E 8(P \ B).

A.5. Proofs from section 3.6 234

We now show that)..(¢.L(Q \ A) ~ ¢.L(P \ B). By FDS1 (definition
3.13(1)),)..(¢.L(Q \ A)) is defined and so, by FDS1 (definition 3.13(4)),

)..(¢.L(Q \ A)) =)..(¢(Q \ A)) U {(t, R) It E)"(6(Q \ A)) /\ R ~ E}.

Thus, since)"(6(Q \ A)) ~ 6(P \ B) and by FD5, it is sufficient to show
that)..(¢(Q\A)) ~)..(¢.LP) \B. Since)..(¢.LQ) is defined and)..(¢.LQ) ~ ¢.LP ,
we know that)..(¢Q) ~ ¢.LP by FDS1 (definition 3.13(4)). By definition,

{(t \ B, R) I (t, RUB) E ¢.LP} ~ ¢.L(P \ B).

Since)..(¢(Q)) \B is given by {(t\B, R) I (t, RUB) E)..(¢Q)}, it follows that
)..(¢Q) \ B ~ ¢.L(P \ B). Since)..(TQ) is defined, then)..([Q]sp) is defined by
proposition A.25. Hence, by proposition A.28 and SFs1 (definition 3.12(2)),
)..(¢(Q \ A)) ~ ¢.L(P \ B). 0

Lemma A.3B. Let Qll Q2 be implementation processes and Y = aQl naQ21
where)..(lly) =lIz. Let P11 P2 be processes. If)..([Qi]pn) is defined and
)..([Qihn) ~ [~hn for i = 1,2 then:

1.)..([Ql Ily Q2hn) is defined.

2.)..([Ql Ily Q2hD) ~ [P1 liz P2]pn'

Proof. We assume that)..([Qihn) is defined and)..([Qihn) ~ [~hD for
i = 1,2. By proposition A.34,)..(TQi) is defined for i = 1,2 and so, by
proposition A.15,)..(T(Ql lIy Q2)) is defined. Hence,)..([Ql Ily Q2]PD) is
defined also by proposition A.34. By FDS1 (definition 3.13(2)),)..(¢.LQi) ~
¢.L~ and)"(6Qi) ~ 6~ for i = 1,2. Also by FDS1 (definition 3.13) and for
i = 1,2,)..(¢.LQi) is defined and so)..(¢Qi) is defined; moreover,)"(6Qi) is
defined.

By FDS1 (definition 3.13(2)), it suffices to show that:

•)"(6(Ql Ily Q2)) ~ 6(P1 liz P2).

•)..(¢.L(Ql Ily Q2)) ~ ¢.L(g liz P2).

We first show that)"(6(Ql lIy Q2)) ~ 6(g liz P2). Let t E min6(Ql Ily
Q2)' By FDS1 (definition 3.13(3)) and FD4, it is sufficient to show that
)..(t) E 6(P1 liz P2). Since t E min6(Ql Ily Q2) and so t E 6(Ql IIY Q2),
there exist s E T.LQ1, U E T.LQ2 such that t E (8 Ily u) and 8 E 6Ql or
U E 6Q2. If 8 E 6Ql then 8 E min6Ql, since otherwise there exists w < t
such that W E 6(Ql Ily Q2) and so t ¢ min6(Ql Ily Q2)' Similarly, if U E 6Q2
then U E min6Q2' For i = 1,2, we observe that min6Qi ~ TQi by MD and

A.5. Proofs from section 3.6 235

7J.Qi = 7Qi U 8Qi by DRl. Thus, 8 E 7Q1, U E 7Q2 and either 8 E min8Q1
or u E min8Q2'

Wlog, we assume that 8 E min8Q1' By Fnsl (definition 3.13(3» and
since A(8Q1) ~ 8P1, A(8) E 8g and so A(8) E 7J.P1 by DRl. We show that
A(U) E 7J.P2 by considering each of two cases in turn.

Case 1: u ¢ 8Q2 and so (u,0) E ¢Q2 by DR3. Recall that A(¢J.Q2) ~
¢J.P2. Thus, by Fnsl (definition 3.13(4» and SFsl (definition 3.12(3b»,
(A(u),0) E ¢J.P2 and so A(U) E 7J.P2.

Case 2: u E 8Q2. We have seen above that, in this case, u E min8Q2'
Thus, A(U) E 8P2 by Fnsl (definition 3.13(3» and since A(8Q2) ~ 8P2. The
proof of this case then follows by DRl.

Thus, A(8) liz A(U) ~ 8(P1 liz P2). Since 8 E 7Qb U E 7Q2 and A(7Qi)
is defined for i = 1,2, A(8) and A(U) are defined by Tsl. Also since 8 E 7Q1
and U E 7Q2, events(8) ~ aQ1 and events(u) ~ aQ2 by PAL Hence,
[[events(8)]] ~ aQ1, [[events(u))) ~ aQ2 and so

[[events(8)]] n [[events(u)]] ~ aQ1 n aQ2 = Y.

Since aP, aQ E AllSet by S2, then Y E AllSet by proposition A.5(1). Hence,
Z = A(Y) by S7. Thus, since t E 8 lIy u, A(t) E A(8) liz A(U) by proposi
tion A.12 and so A(t) E 8(P1 liz P2).

We now show that A(¢J.(Q1 Ily Q2» ~ ¢J.(P1 liz P2). By Fns1 (def
inition 3.13(1», A(¢J.(Q1 Ily Q2» is defined and so, by Fnsl (definition
3.13(4»,

A(¢J.(Ql Ily Q2» = A(¢(Ql Ily Q2»U{(t, R) It E A(8(Ql Ily Q2» A R ~ E}.

Thus, since A(8(Ql Ily Q2» ~ 8(P1 liz P2) and by Fn5, it is sufficient
to show that A(¢(Ql lIy Q2» ~ ¢J.(P1 liz P2). Since A(¢J.Qi) is defined
and A(¢J.Qi) ~ ¢J.Pi, we know that A(¢Qi) ~ ¢J.P; for i = 1,2 by Fnsl
(definition 3.13(4». By definition, ¢J.(P1 liz P2) contains the following:

{(w, SUU) I (3(8, S) E ¢J.P1 , (u, U) E ¢J.P2) w E (8 liz u) A S-Z = U -Z}.

Also by definition, A(¢Ql) liz A(¢Q2) is given by:

{(w, SUU) I (3(8, S) E A(¢Qt}, (u, U) E A(¢Q2» w E (8 liz u) A S-Z = U -Z}.

Thus,
A(¢Qt} liz A(¢Q2) ~ ¢J.(P1 liz P2).

Since A(7Qt}, A(7Q2) are defined, then A([QdsF)' A([Q2]SF) are defined by
proposition A.25. Thus, by proposition A.30 and SFsl (definition 3.12(2»,

A(¢(Ql Ily Q2» ~ A(¢Q1) liz A(¢Q2)

and so A(¢(Ql Ily Q2» ~ ¢J.(P1 liz P2). o

A.5. Proofs from section 3.6 236

Proof of theorem 3.36

Proof. The proof is similar to that of theorem 3.1, using lemmas A.35, A.37
and A.38 in place of conditions RAHl-3. 0

Appendix B

Proofs from chapter 4

B.1 Proofs from section 4.1

Proof of proposition 4.3

Proof. We observe the following:

Y = U{Ai I ePi E EP(P)} n U{Aj I ePj E EP(Q)} (by def. 4.5)

- U{Ai I ePi E EP(P) n EP(Q)} (by Ep-UNI1)

Proof of proposition 4.5

Proof. EP(P Q9y Q) is given by the following:

o

{ePi E EP I Ai n f3(P Q9y Q) =I 0} (by def. 4.4)

- {ePi E EP I Ai n ((f3(P) u f3(Q)) - Y) =I 0} (by figure 2.5)

= {ePi E EP - (EP(P) n EP(Q)) : Ai n (f3(P) U f3(Q)) =l0}
(by prop. 4.3 and Ep-UNI1)

= {ePi E EP I Ai n (f3(P) U f3(Q)) =l0} - (EP(P) n EP(Q))

= (EP(P) U EP(Q)) - (EP(P) n EP(Q)) (by def. 4.4)

o

Proof of proposition 4.6

Proof. a(P Q9y Q) is given by the following:

237

B.2. Example processes used in proofs 238

U{ ~ I ePi E EP(P ®y Q)} (by def. 4.5)

U{Ai I ePi E (EP(P) U EP(Q)) - (EP(P) n EP(Q))}
(by prop. 4.5)

U{Ai I ePi E (EP(P) U EP(Q))} -
U{Aj I ePj E (EP(P) n EP(Q))} (by Ep-UNIl)

(aP U aQ) - (aP n aQ) (by def. 4.5 and prop. 4.3)

o

B.2 Example processes used in proofs

~--:mml~:~:.I:t ~_mm:_mlm:;~:I_~m_~
: .. _ .. : : ... _ : J

Figure B.l: Processes in proofs from chapter 4

The processes from figure B.l are used in the statement and proof of most
of the results which follow in this chapter. Processes M and N are imple
mentation processes; K and L are the corresponding specification processes.
We also denote:

• I = M IIAlnt N.

• H = K IIBlnt L.

• 0 = M ®Alnt N.

• J = K ®B1nt L.

The following are assumed to hold:

• Comm(Ai, M) =1= Comm(Ai, N) for ePi E EP(M) n EP(N).

• A1nt = aM naN.

• B1nt = extrset(Alnt).

As a result, the composition used to define 0 meets the restrictions REPl
and REP2. In the proofs in the remainder of this chapter, M, N, K, L, H,
I, J, 0 are as described here.

B.3. Proofs from section 4.2

B.3 Proofs from section 4.2

Results used in the proof of theorem 4.8

Proposition B.l. The following hold:

1. A Int = U{~ I ePi E EP(M) n EP(N)}.

2. B Int = U{Bi I ePi E EP(M) n EP(N)}.

Proof. 1. The proof is immediate by proposition 4.3.

239

2. The proof is immediate by part 1 of the proposition and definition
4.2. 0

Proposition B.2. Let ePi E EP. If Ai n A Int =10, then Ai ~ AInt .

Proof. We assume that Ai n AInt =1= 0. Hence, by proposition B.l(l), there
exists ePj E EP(M) n EP(N) such that ~ n Aj =I 0. Thus, by Ep-UNIl,
ePi = ePj and so Ai ~ A Int by proposition B.l(l). 0

Proposition B.3. Let Q be an implementation process. Then the following
hold:

1. DOmEP(Q) is non-empty and prefix-closed.

2. extr EP(Q) over traces is monotonic and strict.

Proof. 1. The proof is immediate by Ep3-T and TR-GLOBAL1.
2. That both properties hold follows from TR-GLOBAL2. 0

Proposition B.4. Let Q be an implementation process such that aQ ~ Fvis.
Moreover, let t E TQ. Then:

1. t E DOmEP(Q)'

2. extrEP(Q)(t) = t.
3. extrEP(Q)(TQ) = TQ.

Proof. We first show the following.

DOmEP(Q) = (aQ)* (B.l)

By definition 4.5, aQ = U{Ai I ePi E EP(Q)}. Hence, since aQ ~ Fvis,
Ai ~ Fvis for every ePi E EP(Q). Thus, by Ep3-FvI, Domi = Ai for
ePi E EP(Q) and so DOmEP(Q) = (aQ)* by TR-GLOBALl.

Hence, we have shown (B.l) and now proceed with the proof proper.
1. By PAl and (B.l), t E (aQ)* = DOmEP(Q)'

B.3. Proofs from section 4.2 240

2. By definition 4.5 and since aQ ~ Fvis, Ai ~ Fvis for every ePi E

EP(Q). By part 1 of the proposition, t E DOmEP(Q). The proof then follows
by a straightforward induction on the length of t using proposition B.3(1),
TR-GLOBAL2 and Ep4-FvI.

3. By PAl and (8.1), TQ ~ (aQ)* = DOmEP(Q). Thus, TDomEP(Q)Q =
TQ by definition 4.8. Hence, by TR-DEF1 and part 2 of the proposition,
extrEP(Q)(TQ) = TQ. 0

Proof of theorem 4.7

Proof. (~) We assume that Q ~~P(Q) P. Hence, by TR-DEF2 and propo
sition B.4(3), TQ ~ TP.

(<=) We assume that Q ~T P. Thus, extrEP(Q)(TQ) ~ TP by proposi
tion B.4(3). By proposition B.4(l), t E DOmEP(Q) for all t E TQ and so Q
meets Dom-T-check. Thus, by TR-DEF2, Q ~~P(Q) P. 0

Proposition B.5. Let to (a) E DOmEP(I) be such that, for some trace r,
extrEP(I)(t 0 (a)) = extrEP(I)(t) 0 r.

1. If a E A1nt then events(r) ~ B 1nt .

2. If a f/. A 1nt then events(r) n B 1nt = 0.

Proof. By TR-GLOBAL1, there exists ePi E EP(I) such that a E Ai. Thus,
by TR-GLOBAL2 and Ep4, events(r) ~ Bi.

1. We assume a E A1nt and so ~ n A1nt =I 0. Thus, by proposition
B.1(1), there exists ePj E EP(M) n EP(N) such that Ai n Aj =I 0. Hence,
by Ep-UNIl, epi = ePj and so events(r) ~ Bi ~ Blnt by proposition B.1(2).

2. We assume A f/. Alnt and so Ai Cl A1nt . Hence, by proposition 8.1(1),
there does not exist ePj E EP(M) n EP(N) such that Ai = Aj and so ePi f/.
EP(M) n EP(N). Thus, by Ep-UNl1 and proposition 8.1(2), Bi n B1nt = 0
and so events(r) n Blnt = 0. 0

Proposition B.6. Let s E TM, U E TN and t E (s IIAlnt u).

1. If a E A1nt , then there exists ePi E EP(M) n EP(N) such that a E ~

and trAi = srAi = urAi.

2. If a f/. A1nt and a E events(s), then there exists ePi E EP(M) - EP(N)
such that a E Ai and tr~ = srAi; moreover, ~ n A1nt = 0.

Proof. 1. We assume a E A1nt . By proposition 8.1(1), there exists epi E
EP(M) n EP(N) such that a E Ai and Ai ~ A1nt . By TRP, trA1nt =
srA1nt = urA1nt and so trAi = srAi = urAi .

B.3. Proofs from section 4.2 241

2. We assume a ¢ A1nt and a E events (s). By PAl and definition
4.5, there exists ePi E EP(M) such that a E ~ and so Ai ~ A1nt . Thus,
ePi ¢ EP(N) by proposition B.1(1). Hence, by PAl, definition 4.5 and Ep
UNl1, Ai n events(u) = 0. Thus, trAi = srAi . Moreover, since Ai ~ A1nt ,

Ai n A1nt = 0 by proposition B.2. 0

Proposition B.7. Let s E TDomEP(M)M, U E TDomEP(N)N and t E (s IIAlm u).
Then t E DOmEP(I) and extrEP(I)(t) E (extrEP(M)(S) !!Blnt extrEP(N) (u)).

Proof. Note by definition 4.4 that EP(I) = EP(M) U EP(N). We proceed
by induction on the length of t. In the base case, when t = s = U = 0,
the proof is immediate by proposition B.3(1,2). Let t = po (a). We consider
each of two cases in turn.

Case 1: a E A1nt . In this case, s = v 0 (a), u = w 0 (a) for some v, w.
By proposition 8.3(1), v E TDomEP(M)M and W E TDomEP(N)N. Moreover,
by proposition 8.6(1), there exists ePi E EP(M) n EP(N) such that a E

Ai and t r Ai = s r Ai = u r Ai· We first show that t E Dom EP(I). By the
inductive hypothesis, P E DOmEP(I) and so, by TR-GLOBAL1 and Ep-UNl1,
tr Aj = pr Aj E Domj for ePj E EP(I) - {epi}. Thus, by TR-GLOBAL1, it
suffices to show that tr Ai E Domi. This follows since s E DOmEP(M) and
trAi = srAi. We now proceed with the remainder of the proof in this case.
By TR-GLOBAL2 and since trAi = srAi = ur~,

• extrEP(I)(t) = extrEP(I)(p) 0 r

• extrEP(M)(S) = extrEP(M) (v) 0 r

• extrEP(N)(U) = extrEP(N)(W) 0 r

such that, by proposition B.5(1), events(r) ~ B 1nt . By the inductive hypoth
esis, extrEP(I)(p) E (extrEP(M)(V) !!Blnt extrEP(N)(W)) and so

extrEP(I)(p) 0 r E (extrEP(M) (v) 0 r !!Blnt extrEP(N)(W) 0 r).

Case 2: a ¢ A1nt . In this case, wlog, we assume s = v 0 (a). Thus,
by proposition B.6(2), there exists ePi E EP(M) - EP(N) such that a E

Ai and trAi = srAi. Hence, by TR-GLOBAL1 and since s E DOmEP(M) ,
trAi E Domi. Thus, t E DOmEP(I) by TR-GLOBAL1 and Ep-UNll and
since p E DOmEP(I) by the inductive hypothesis. By TR-GLOBAL2 and since
trAi = sr Ai,

• extrEP(I)(t) = extrEP(I)(p) 0 r

• extrEP(M)(S) = extrEP(M) (v) 0 r

B.3. Proofs from section 4.2 242

such that, by proposition B.5(2), events(r) n B1nt = 0. By the inductive
hypothesis, extrEP(I)(p) E (extrEP(M)(V) IIBInl extrEP(N)(U)) and so

extrEP(I)(p) 0 r E (extrEP(M) (v) 0 r IIBInl extrEP(N) (u)).

o
Proposition B.8. Let t E DOmEP(I). Then t \ A1nt E DOmEP(O) and
extrEP(O)(t \ A1nt) = extrEP(I)(t) \ B1nt ·

Proof. We proceed by induction on the length of t. In the base case, when
t = 0, the proof is immediate by proposition B.3(1,2). Let t = U 0 (a).
Hence, by proposition B.3(1), U E DOmEP(I) and, by TR-GLOBAL1, there
exists ePi E EP(I) such that a E Ai. We consider each of two cases in turn.

Case 1: a E A 1nt . In this case, t \ A 1nt = U \ A1nt E DOmEP(O) by
the inductive hypothesis. By TR-GLOBAL2, extrEP(I)(t) = extrEP(I)(u) 0 r
such that, by proposition B.5(1), events(r) ~ B1nt . Hence, by the inductive
hypothesis,

extrEP(O)(t \ A1nt) = extrEP(O)(U \ A 1nt) = extrEP(I)(u) \ B1nt

and so

extrEP(O)(t \ A 1nt) = extrEP(I)(u) 0 r \ B 1nt = extrEP(I)(t) \ B 1nt ·

Case 2: a rt. A 1nt . Since a rt. A1nt , Ai C£. A1nt and so Ai n A 1nt = 0 by
proposition B.2. We first show that t \ A1nt E DOmEP(O). By TR-GLOBAL1,
it suffices to show that (t \ A1nt) rAj E Domj for every ePj E EP(O). Let
ePj E EP(O). We consider each of two sub-cases in turn.

Case 2a: j = i. Since t E DOmEP(I) , (t \ AlntHAi = trAi E Domi by
TR-GLOBALI and since Ai n A 1nt = 0.

Case 2b: j =1= i. By the inductive hypothesis, U \ A1nt E DOmEP(O). Thus,
by TR-GLOBAL1 and Ep-UNI1, (t \ AlntHAj = (u \ AlntHAj E Domj.

Hence, we have shown that t \ A 1nt E DOmEP(O). Thus, by TR-GLOBAL1
and Ep-UNI1 and since a E events(t \ A1nt), ePi E EP(O). We now show
that extrEP(O)(t \ A 1nt) = extrEP(I)(t) \ B1nt . By TR-GLOBAL2,

• extrEP(I)(t) = extrEP(I)(u) 0 r, such that extri(tr~) = extri(urAi) 0 r .

• extrEP(O) (t\A1nt) = extrEP(O) (u\A1nt)ox, such that extri((t\AlntHAi) =
extri((u \ AlntH Ai) 0 x.

Thus, since AinAlnt = 0, extrEP(o)(t\A1nt) = extrEP(O)(U \ A1nt) or. More
over, by proposition B.5(2), events(r) n Blnt = 0. Hence, by the inductive
hypothesis,

extrEP(O)(t \ A 1nt) = extrEP(O)(U \ A1nt) 0 r = extrEP(I)(u) \ Blnt 0 T

B.3. Proofs from section 4.2 243

and so

o

Proposition B.9. Assume that both M and N meet condition Dom- T-check.
Let t E TO be such that t E (s IIAlnt u) \ A1nt , where s E TM and u E TN. If
t E DOmEP(O), then s E DOmEP(M) and u E DOmEP(N).

Proof· We assume t E DOmEP(O). Let y be such that y E (s IIAlnl u) and
y \ A1nt = t. We proceed by induction on the length of y. In the base case,
when y = s = u = 0, the proof is immediate by proposition 8.3(1). Let
y = x 0 (a). By proposition 8.3(1), x \ A1nt E DOmEP(O). We consider each
of two cases in turn.

Case 1: a E A1nt . In this case, s = v 0 (a) and u = W 0 (a) for some
v, w. Hence, by proposition 8.6(1), there exists ePi E EP(M) n EP(N) such
that a E ~ and s r Ai = u r ~. By definition 4.7 and since Comm (~, M) =I
Comm(Ai, N), either a rt Proj EP(M) or a rt Proj EP(N) (this disjunction need
not be exclusive by definition 4.7(1)). Wlog, we assume that art Proj EP(M).
Thus, v r Proj EP(M) = sr Proj EP(M). Moreover, by the inductive hypothesis,
v E DOmEP(M) and so

sr Proj EP(M) = vr Proj EP(M) E DOmEP(M) r Proj EP(M)·

Hence, since M meets Dom-T-check, s E DOmEP(M). Thus, by TR-GLOBAL1,
urAi = srAi E Domi. AB a result, u E DOmEP(N) by TR-GLOBAL1 and Ep
UNI1 and since w E DOmEP(N) by the inductive hypothesis.

Case 2: a rt A1nt . In this case, wlog, we assume s = vo(a) and tail(u) =I- a.
Thus, by the inductive hypothesis, u E DOmEP(N). By proposition B.6(2),
there exists ePi E EP(M) - EP(N) such that a E ~, yr Ai = sr Ai and
Ai n A1nt = 0. Thus, trAi = sr~ and, by proposition 4.5, ePi E EP(O).
Hence, since t E DOmEP(O) and by TR-GLOBALl, sr Ai E Domi. By the
inductive hypothesis, v E DOmEP(M) and so, by TR-GLOBALI and Ep-UNIl,
s E DOmEP(M). 0

Lemma B.lO. Let Q be an implementation process and t E TQ. Then
tr Proj EP(Q) E DOmEP(Q) r Proj EP(Q) if and only if tr Proji E Domi r Proji for
every ePi E EP(Q).

Proof. (===}) We assume trProjEP(Q) E DOmEP(Q)rprojEP(Q)· Let ePi E

EP(Q). By definition 4.7(3), tr Proji E Domi r Proji·
({=) We assume trProji E DomirProji for every ePi E EP(Q). We first

observe the following.

B.3. Proofs from section 4.2 244

• DOmEP(Q) = Illl::5i::5mDomi by TR-GLOBALI.

• Proj EP(Q) = Ul::5i::5m Proji by definition 4.7(3) .

• Let ePi E EP(Q). Then the following hold.

- events(t) ~ ~ for every t E Domi by Ep3-T.

- Proji ~ Ai by definition 4.7 and Ep2.

- ~ n Aj = 0 for ePj E EP(Q) such that i =F j by Ep-UNIl.

Hence,
DOmEP(Q)rProjEP(Q) = Illl::5i::5m(DomirProji)

and t r Proj EP(Q) E Illl::5i::5mt r Proj i' Thus, since t r Proj i E Domi r Proj i for
every ePi E EP(Q), trProjEP(Q) E DOmEP(Q)rprojEP(Q)' 0

Proposition B.11. Assume that both M and N meet condition Dom-T
check. Then 0 meets Dom-T-check.

Proof. Let t E TO be such that t E (s IIAInt u) \ Alnt , where s E TM, u E TN
and s, u are the shortest such traces. By Dom-T -check, it suffices to show
that

tr Proj EP(O) E (DomEP(O) r Proj EP(O)) ~ t E DOmEP(O)'

We assume that tr Proj EP(O) E (DomEP(O) r Proj EP(O)) and proceed by induc
tion on the length of t. In the base case, when t = (), the proof is immediate
by proposition B.3(1). Let t = x 0 (a). Since a E aO by PAl, by definition
4.5 there exists ePi E EP(O) such that a E Ai' Wlog, and by proposition
4.5, we assume ePi E EP(M) and ePi ¢ EP(N). Thus, by definition 4.5,
Ep-UNIl and PAl, a ¢ events (u). Hence, since sand u are as short as
possible, s = v 0 (a) for some trace v and so x E (v IIAInt u) \ Alnt . Before
proceeding, we show the following.

(B.2)

Let y be such that y E (s IIAIn! u) and t = y\A1nt . Since epi ¢ EP(N) and
by definition 4.5, Ep-UNIl and PAl, ~nevents(u) = 0. Thus, yrAi = srAi.
Since ePi E EP(M) - EP(N), and by proposition B.l(l) and Ep-UNI1,
Ai n Alnt = 0. Thus, trAi = (y \ A1ntHAi = yrAi = sr~. Hence, we have
shown (B.2).

Since tr Proj EP(O) E DOmEP(O) r Proj EP(O) and by proposition B.3(1),
x r Proj EP(O) E Dom EP(O) r Proj EP(O)' Hence, by the inductive hypothesis,
x E DOmEP(O)' Thus, by TR-GLOBALl and Ep-UNI1, it suffices to show
that trAi E Domi. Moreover, by proposition B.9, v E DOmEP(M)' We now
consider each of two cases in turn.

B.3. Proofs from section 4.2 2-15

Case 1: a E ProjEP(O)· Since trprojEP(O) E DOmEP(O)rprojEP(O)' then
srProji = trProji E DomirProjj by lemma B.10, (B.2) and since Projj ~ A. j •

Since v E DOmEP(M), then v r Proj EP(M) E DOmEP(M) r Proj EP(M) and so, by
lemma B.lO, Ep-UNl1 and since Projj ~ Aj ,

srProj j = vrProjj E DomjrProjj

for every ePj E EP(M) - {epJ. Thus, srProjEP(M) E DOmEP(M)rprojEP(M)
by lemma B.10. Hence, since M meets Dom-T-check, s E DOmEP(M) and so,
by TR-GLOBAL1 and (B.2), tr~ E Domj.

Case 2: a ¢ Proj EP(O). By definition 4.7(3) and since a E A j , a ¢ Proj j

and so a ¢ ProjEP(M) by Ep-UNIl. Hence, and since v E DOmEP(M),

s r Proj EP(M) = V r Proj EP(M) E Dom EP(M) r Proj EP(M)·

Since M meets Dom-T-check, S E DOmEP(M) and so, by TR-GLOBAL1 and
(B.2), tr Ai E Domi· 0

Proposition B.12. If M ~~P(M) K and N ~~P(N) L, extrEP(O)(TO) ~ T J.

Proof. We assume M ~~P(M) K and N ~~P(N) L. Let t E TDomEP(O)O be
such that s E TM, U E TN and t E (s IIA lnt u) \ A1nt . By TR-DEF1, it suffices
to show that extrEP(O)(t) E TJ. By TR-DEF2, M and N meet Dom-T-check
and so, by proposition B.9, S E TDomEP(M)M and U E TDomEP(N)N. Thus, by
TR-DEF1 and TR-DEF2, extrEP(M)(S) E TK and extrEP(N)(U) E TL. Hence,

(extrEP(M)(S) IIBlnt extrEP(N) (u)) \ Blnt ~ TJ.

Thus, by propositions B.7 and B.B,

extrEP(O)(t) E (extrEP(M)(S) IIBlnt extrEP(N)(U)) \ B1nt ~ TJ.

o
Lemma B.13. If M ~~P(M) K and N ~~P(N) L then 0 ~~P(O) J.

Proof. We assume that M ~~P(M) K and N ~~P(N) L. By TR-DEF2 and
proposition B.11, 0 meets Dom-T-check. Hence, by TR-DEF2, it suffices to
show that extrEP(O)(TO) ~ TJ and so the proof follows by proposition B.12.

o

Proof of theorem 4.8

Proof. We assume that aFimp/(Ql, Q2, ... , Qn) ~ Fvis and Qj ~~P(Qi) ~ for
1 ::; i::; n. Let Q = Fimp/(Ql, Q2, ... , Qn) and P = Fapec(P1 , P2, ... , Pn). By
induction on n using lemma B.13, Q ~~P(Q) P. Hence, by theorem 4.7 and
since aQ ~ Fvis, Q ~T P. 0

Bo4. Proofs from section 404 246

B.4 Proofs from section 4.4

Results used in the proof of theorem 4.10

Proposition B.14. Let Q be an implementation process. Then DOmEP(Q)
is the prefix-closure oj dOmEP(Q).

Proof. By Ep3-SF, Domi = Prej(domi) for ePi E EP(Q). Thus, by SF
GLOBALI andTR-GLOBALl, dOmEP(Q) ~ DomEP(Q) and, for t E DOmEP(Q),
there exists U E dOmEP(Q) such that t ~ u. Finally, DOmEP(Q) is prefix-closed
by proposition B.3(1). 0

Proposition B.15. Let Q be an implementation process such that aQ ~
Fvis. Then extrEP(Q)(4>Q) = 4>Q.

Proof. By definition 4.5, Ai ~ Fvis for every ePi E EP(Q). Thus, by defini
tions 4.2 and 4.5 and Epl-FvI,

extrset(aQ) = aQ. (B.3)

We now show the following.

Let (t, R) E 4>domEP(Q)Q such that R ~ QQ. Then extr~~(Q)(R, t, Q) = R.
(8.4)

By definition 4.11(2) and proposition 8.14, t E dOmEP(Q) ~ DOmEP(Q)
and so:

UlSiSm extrr;e' (R n Ai, tf Ai, Q) (SF-GLOBAL2)

UlSism R n Ai (by Ep5-FvI)

R n UlSiSm Ai

RnaQ

R.

(by definition 4.5)

Hence, we have shown (B.4). Recallthat Ai ~ Fvis for every ePi E EP(Q)
by definition 4.5. Thus, by Ep3A-FvI, TR-GLOBALI and SF-GLOBAL1,
DOmEP(Q) = dOmEP(Q). Moreover, for every (t, R) E 4>Q, t E TQ by SF2
and so t E DOmEP(Q) = dOmEP(Q) by proposition B.4(l). Thus, by definition
4.11(2),

4>domEP(Q)Q = 4>Q. (B.5)

Let (t, R) E 4>domEP(Q)Q. Then t E TQ by SF2 and so extrEP(Q)(t) = t by
proposition B.4(2). Hence, and by (B.3), (B.4), (B.5) and SF-DEF2,

extrEP(Q)(4>Q) = {(t,X) I (t,R) E 4>Q 1\ R ~ aQ 1\ X ~ RU (E - aQ)}.

Thus, extrEP(Q)(4>Q) = 4>Q by PA2 and SF3. o

Bo4. Proofs from section 404 247

Proof of theorem 4.9

Proof. (===» We assume that Q ;J~;(Q) P. Hence, by SF-DEF3 and SF
DEF1, extrEP(Q)(rQ) ~ rP and extrEP(Q)(¢>Q) ~ ¢>P. Thus, by proposi
tions B.4(3) and B.15, rQ ~ rP and ¢>Q ~ ¢>P.

(¢=) We assume that Q ;JSF P. Thus, by propositions B.4(3) and B.15,
extrEP(Q)(rQ) ~ rP and extrEP(Q)(¢>Q) ~ ¢>P. By proposition B.4(l), t E

DOmEP(Q) for all t E rQ and so Q meets Dom-T-check. Q meets Dom-SF
check since, by definition 4.5, ~ ~ Fvis for every epi E EP(Q). Thus, by
SF-DEF1 and SF-DEF3, Q ;J~;(Q) P. 0

Lemma B.16. Let (s,8) E ¢>DomEP(M)M and (u, U) E ¢>DomEP(N)N be such
that 8 ~ aM, U ~ aN and (s IIAlnt u) =1= 0. If A rnt ~ 8 U U, then
Brnt ~ extr';~(M)(8, s, M) U extr';~(N)(U, u, N).

Proof. We assume that Arnt ~ 8uU. By SF-GLOBAL2, extr';~(M)(8, s, M)U

extr';~(N) (U, u, N) is given by

U extr;e' (8 n~, srAi, M) U U extrj' (U n A j , ur Aj , N).
ep;EEP(M) epjEEP(N)

Thus, and by proposition B.1(2), it suffices to show that

Bi = extr;e'(8nAi,sr~,M) U extr;e'(UnAi,urAi,N)

for every ePi E EP(M)nEP(N). Let ePi E EP(M)nEP(N). By proposition
B.1(1), Ai ~ A rnt and so, since Arnt ~ 8 U U,

By Ep1, we consider each of two cases in turn.
Case 1: Ai ~ Fvis. In this case, by Ep5-FvI,

extr;e' (8 n Ai, s r Ai, M) = 8 n Ai and extr;e' (U n Ai, u r~, N) = U n ~.

Moreover, by Ep1-FvI, (8 n Ai) U (U n Ai) = Ai = Bi.
Case 2: Ai n Fvis = 0. Since (s IIAlnt u) =1= 0, then sr A rnt = ur Arnt

by TRP and so s r Ai = u r Ai since Ai ~ A1nt . Wlog, we assume that
Comm(Ai, M) = Left and Comm(Ai, N) = Right. Since (8nAi)U(Un~) =
Ai and sr Ai = ur Ai, and by definition 4.9, either

8 n Ai ¢ refi(sr Ai) or un Ai ¢ refi(ur Ai).

Hence, either extr;e'(8nAi,srAi,M) = Bi or extr;e'(UnAi,urAi,N) = Bi
by definition 4.10. 0

B.4. Proofs from section 4.4 248

Proposition B .17. Let (t, R) E ¢O. Then there exist (s, S) E ¢M and
(1.£, U) E ¢N such that:

• t E (s IIAlnt 1.£) \ A1nt .

• S ~ aM and U ~ aN.

• R U A 1nt = (S U U) U Z, where Z ~ (~- (aM U aN)).

Proof. By definition of the hiding operator in the stable failures model, there
exists (w, R U A1nt) E ¢J where w \ A1nt = t. Recall also that J = M IIAlnt N
and A1nt = aM n aN. Hence, the proof follows by theorem 2.20. 0

Proposition B.1S. Assume that M and N meet Dom-T-check and Dom
SF-check. Then 0 meets Dom-SF-check.

Proof. Let (t, R) E ¢DomEP(O)O be such that R ~ aO and let ePi E EP(O) be
such that AinFvis = 0. Moreover, assume that extr;e' (RnAi, tr~, 0) = Bi.
By definition of Dom-SF-check, it suffices to show that tr Ai E domi. By
proposition B.17, there exist (s, S) E ¢M and (1.£, U) E ¢N such that:

• t E (s IIAlnt 1.£) \ A1nt ·

• S ~ aM and U ~ aN.

• R U A 1nt = (S U U) U Z, where Z ~ (~- (aM U aN)).

By SF2, t E TO, S E TM and 1.£ E TN. Thus, by proposition B.9 and
definition 4.11(1), (s, S) E ¢DOmEP(M)M and (1.£, U) E ¢DomEP(N)N. Wlog, and
by proposition 4.5, we assume that ePi E EP(M) - EP(N). We then observe
the following:

• Ai n Alnt = 0 by proposition B.1(1) and Ep-UNIl.

• By definition 4.5, Ai ~ aM and, also by Ep-UNl1, ~ n aN = 0.

• Ai n events(1.£) = 0 by SF2, PAl and since ~ n aN = 0.

Since Ainevents(1.£) = 0 and AinA1nt = 0, tr~ = srAi. Since~nAlnt =
0, Ai ~ aM and ~ n aN = 0,

R n Ai = (R U A1nt) n Ai = (S U U U Z) n Ai = S n ~.

By definition 4.6, Comm(Ai,O) = Comm(~, M). Thus, by definition 4.10,

extr;e' (S n Ai, sr Ai, M) = extr;e' (R n Ai, tr Ai, 0) = Bi·

Hence, t r Ai = s r Ai E domi since M meets Dom-SF -check. o

B.4. Proofs from section 4.4 249

Lemma B.19. Assume that M and N meet Dom-T-check and Dom-SF
check. Let (t, R) E ¢domEP(O)O be such that R ~ aO. Let (s, S) E ¢M and
(u, U) E ¢N be such that:

• t E (s IIAlnt u) \ A1nt .

• S ~ aM and U ~ aN.

• R U A1nt = (S U U) U Z, where Z ~ (E - (aM U aN)).

Then (s, S) E ¢domEP(M)M and (u, U) E ¢dOmEP(N)N.

Proof. We show that (s, S) E ¢domEP(M)M; that (u, U) E ¢domBP(N)N may
be proved in a similar way. By definition 4.11(2), it suffices to show that
s E domEP(M)' Let ePi E EP(M). Then, by SF-GLOBAL1, it suffices to
show that sf Ai E domi. By SF2, t E TO, S E TM and u E TN. By propo
sition B.14, t E domEP(o) ~ DOmEP(O)' Thus, since M and N both meet
Dom-T-check and by proposition B.9, s E DOmEP(M) and u E DOmEP(N)'
We now consider each of three cases in turn.

Case 1: Ai ~ Fvis. In this case, sf Ai E domi by Ep3-FvI and Ep3A-FvI.
Case 2: Ai n Fvis = 0 and ePi E EP(N). By proposition B.1(1), Ai ~

A1nt and so, by TRP, sf Ai = ufAi. Recall that A1nt = aM n aN. Thus,
since R U A1nt = (S U U) U Z, then Ai ~ A1nt ~ S U U and so

Wlog, we assume that Comm(Ai, M) = Left and so Comm(Ai, N) = Right.
By definition 4.9, either S n Ai ¢ refi(sf Ai) or Un Ai ¢ refi(uf Ai) and so,
by definition 4.10, either

extr~f (S n Ai, sf Ai, M) = Bi or extr~f (U n Ai, uf~, N) = Bi·

Hence, since M and N both meet Dom-SF-check, sf~ = uf~ E domi'
Case 3: Ai n Fvis = 0 and ePi ¢ EP(N). In this case, by proposition

4.5, ePi E EP(O). By definition 4.5 and Ep-UNI1, Ai n aN = 0. Thus,
Ai n events(u) = 0 by SF2 and PAL By proposition B.1(1) and Ep-UNI1,
Ai n A1nt = 0. Hence, sf Ai = tf~ and so, since t E domEP(o), sf Ai =
tf Ai E domi by SF-GLOBALL 0

Lemma B.20. Assume that extr EP(M) (¢M) ~ ¢K and extr EP(N) (¢N) ~
¢L. Let (s, S) E ¢domEP(M)M and (u, U) E ¢domEP(N)N be such that S ~ aM
and U ~ aN. Then (w, Y) E ¢H such that

• wE (extrEP(M)(S) IIBlnt extrEP(N)(U)).

• Y = extr';~(M)(S, s, M) U extr';~(N)(U, u, N) U (E - extrset(aMU aN)).

BA. Proofs from section 404 250

Proof. We shall use the following abbreviations in order to ease the presen
tation:

• 8 I:. extr;~(M)(S, s, M).

• U I:. extr;~(N)(U, u, N).

• Z I:. E - extrset(aM U aN).

By SF-DEF2,

• (extrEP(M) (s), 8 U (E - extrset(aM))) E lj)K.

• (extrEP(N) (u),U U (E - extrset(aN))) E lj)L.

We then observe that, by definitions 4.2 and 4.5,

Z = E - (extr set (aM) U extrset (aN)).

Let 8' = 8 U Z U (U - B1nt) and U' = U U Z U (8 - B 1nt). By definition
4.11(2) and proposition B.14, U E DOmEP(N)' Hence, by SF-GLOBAL2, def
inition 4.10, Ep1-FvI and Ep5-FvI, U ~ U{Bi I ePi E EP(N)}. Thus,
by definitions 4.2 and 4.5, U ~ extrset(aN). By proposition B.l(2), Ep
UNIl and definitions 4.2 and 4.5, Blnt = extrset(aM) n extrset(aN). Thus,
(U - B 1nt) n extrset(aM) = 0. Hence, Z U (U - B 1nt) ~ E - extrset(aM)
and so (extrEP(M)(S),S') E lj)K by SF3. Similarly, (extrEP(N)(U),U') E lj)L.
Moreover,

8' U U' = 8 U Z U (U - B 1nt) U U U Z U (8 - B 1nt) = 8 U U U Z.

Hence, by the definition of parallel composition in chapter 2.4.2, the only
thing we need to show is that S' - B1nt = U' - B1nt . In other words, that

(8 U Z U (U - B 1nt)) - B 1nt = (U U Z U (8 - B 1nt)) - B 1nt

which is equivalent to

which clearly holds. o

Lemma B.21. Assume that M and N both meet Dom-SF-check and Dom- T
check. Assume that extrEP(M)(lj)M) ~ lj)K and extrEP(N)(lj)N) ~ lj)L. Then
extrEP(O)(lj)O) ~ lj)J.

B.4. Proofs from section 4.4 251

Proof. Let (t, R) E ¢>domgp(o)O be such that R ~ aO. By SF-DEF2 and SF3,
it suffices to show that

(**)

By proposition B.17, there exist (s,8) E ¢>M and (u, U) E ¢>N such that:

• t E (s IIA1nt u) \ A lnt .

• 8 ~ aM and U ~ aN.

• RUAlnt = (8UU) UZ, where Z ~ (E - (aMUaN)).

Moreover, by lemma B.19, (s,8) E ¢>domgp(M)M and (u, U) E ¢>dOfflEP(N)N,
and so, by proposition B.14, (s,8) E ¢>DOfflgP(M)M and (u, U) E ¢>DomBP(N)N.
We first show that

extr';~(O) (R, t, 0) ~ extr';~(M) (8, s, M) U extr';~(N) (U, u, N). (B.6)

Let ePi E EP(O). Wlog and by proposition 4.5, we assume that epi E
EP(M) - EP(N). Thus, by SF-GLOBAL2 and since t E dOmEP(O) C

DOmEP(O) by proposition B.14, it suffices to show that

extr;e'(Rn~,tr~,O) = extr;e'(8n~,srAi,M).
We first show that R n Ai = 8 n Ai and t r ~ = s r ~ before considering

each of two cases in turn. We observe the following:

• Ai n Alnt = 0 by proposition B.1(1) and Ep-UNIl.

• By definition 4.5, Ai ~ aM and, also by Ep-UNI1, ~ n aN = 0.

• Ai n events(u) = 0 by SF2, PAl and since Ai n aN = 0.

Since Ai n events(u) = 0 and Ai n Arnt = 0, trAi = sr~. Moreover,
since Ai n Arnt = 0, Ai ~ aM and Ai n aN = 0, then

R n Ai = (R U Arnt) n Ai = (8 U U U Z) n Ai = 8 n ~.

Case 1: Ai ~ Fvis. In this case, by Ep5-FvI,

extr;e' (R n Ai, tr Ai, 0) = R n Ai = 8 n Ai = extr;e' (8 n Ai, sr Ai, M).

Case 2: AinFvis = 0. By definition 4.6, Comm(Ai,O) = Comm(~, M).
Thus, by definition 4.10,

extr;e' (R n Ai, tr Ai, 0) = extr;e' (8 n Ai, sr Ai, M).

Hence, we have shown (B.6).
We now proceed with the remainder of the proof. By lemma B.20 and

since (s,8) E ¢>domEP(M)M and (u, U) E ¢>domEP(N)N, then (w, Y) E ¢>H such
that:

B.4. Proofs from section 4.4 252

• wE (extrEP(M)(S) IIBlnt extrEP(N) (u)).

• Y = extrr;~(M)(8, s, M) U extrr;~(N)(U, u, N) U (L - extrset(aM U aN)).

Since A1nt = aM n aN and R U A1nt = (8 U U) U Z, where Z ~ (L -
(aM U aN)), then A1nt ~ 8 U U. Thus, by lemma B.16,

Blnt ~ extrr;~(M)(S,s,M) U extrr;~(N)(U,u,N)

and so (w\B1nt , Y) E ¢>J for wE (extrEP(M)(S) IIBlnt extrEP(N) (u)). Thus, by
SF2, propositions B.7 and B.8, and since S E DOmEP(M) and u E DOmEP(N),

and so
(extr EP(O) (t), Y) E ¢>J.

Hence, by (8.6), (**) and SF3, it remains to show that (L-extrset(aO)) ~ Y.
We know that Blnt ~ Y and so we show that (L - extrset(aO)) - B1nt ~ Y.
This follows by the fact that, due to definitions 4.2 and 4.5 and propositions
4.5 and B.l(2),

o

L B 22]r'M EP(M) K d N EP(N) L h 0 EP(O) J emma . . J ;;!SF an ;;!SF , t en ;;!SF .

Proof. We assume that M ;;!:;(M) K and N ;;!:;(N) L. Hence, by SF-DEF3,
both M and N meet Dom-T -check and Dom-SF -check. Thus, by proposi
tions B.11 and 8.18, 0 meets conditions Dom-T-check and Dom-SF-check.
By SF-DEF3 and SF-DEFl, extrEP(M)(7M) ~ 7K and extrEP(N)(7N) ~ 7L
and so, by TR-DEF2, M ;;!~P(M) K and N ;;!~P(N) L. Thus, by proposi
tion 8.12, extrEP(O)(70) ~ 7J. Also by SF-DEF3 and SF-DEFl, we observe
that extrEP(M)(¢>M) ~ ¢>K and extrEP(N)(¢>N) ~ ¢>L. Thus, by lemma
B.21, extrEP(O)(¢>O) ~ ¢>J and this concludes the proof by SF-DEF3 and
SF-DEFl. 0

Proof of theorem 4.10

Proof. We assume that aFimp/(Ql, Q2, ... , Qn) ~ Fuis and Qi ;;!:;(Qi) P; for
1 ~ i ~ n. Let Q = Fimp/(Ql, Q2, ... , Qn) and P = FspeAP1, P2, ... , Pn). By
induction on n using lemma 8.22, Q ;;!:;(Q) P. Hence, by theorem 4.9 and
since aQ ~ Fvis, Q ;;!SF P. 0

B.5. Proofs from section 4.5 253

B.5 Proofs from section 4.5

Results used in the proof of theorem 4.12

Lemma B.23. Let Q be an implementation process such that nQ ~ Fvis.
Then:

1. extrEP(Q)(c5Q) = c5Q.

2. extrEP(Q)(¢>1.Q) = ¢>1.Q.

Proof. 1. Let t E minc5Q. By MD, t E TQ and so, by proposition B.4(l,2),
t E DOmEP(Q) and extrEP(Q)(t) = t. Thus, by FD-DEF2, FD4 and definition
2.2,

extrEP(Q)(c5Q) = {t 0 u It E minc5Q !\ U E E*} = c5Q.

2. By proposition B.l5, extrEP(Q) (¢>Q) = ¢>Q and, by partl of the lemma,
extrEP(Q)(c5Q) = c5Q. Thus, by FD-DEF3 and DR2,

extrEP(Q)(¢>1.Q) = ¢>Q U {(t, R) It E c5Q !\ R ~ E} = ¢>1.Q.

o

Proof of theorem 4.11

Proof. (===}) We assume that Q ~~~(Q) P. Hence, by FD-DEF4 and FD
DEFl, extrEP(Q)(¢>1.Q) ~ ¢>1.P and extrEP(Q)(c5Q) ~ c5P. Thus, ¢>1.Q ~ ¢>1.P
and c5Q ~ c5P by lemma B.23.

('¢=)WeassumethatQ ~FD P. Thus, bylemmaB.23, extrEP(Q)(¢>1.Q) ~
¢>1.P and extrEP(Q)(c5Q) ~ c5P. By proposition B.4(l), t E DOmEP(Q) for all
t E TQ and so Q meets Dom-T -check. Q meets Dom-SF -check since, by
definition 4.5, Ai ~ Fvis for every ePi E EP(Q). Thus, by FD-DEFI and
FD-DEF4, Q ~~~(Q) P. 0

Lemma B.24. Let Q be an implementation process and ... , tj, . .. an w
sequence in DOmEP(Q). Then ... , extrEP(Q) (tj), ... is also an w-sequence.

Proof. Let w E EW be the least upper bound ofthe sequence ... , tj, Thus,
by TR-GLOBALl, there exists ePi E EP(Q) such that wr~ E EW. Hence,
and also by TR-GLOBALl, ... , tjrAi' ... is an w-sequence in Domi and so
... , extri(tj r Ai), . .. is an w-sequence by Ep6. By induction on the length
of traces using TR-GLOBAL2, extrEP(Q)(tj) E 1111~k~mextrk(tjrAk) for each
tj. Thus, the length of the extrEP(Q)(tj) increases unboundedly and so, by
proposition B.3(2), ... , extrEP(Q) (tj), ... is an w-sequence. 0

B.5. Proofs from section 4.5 254

Proposition B.25. Let Q be an implementation process and P a process
such that Q ;!~~(Q) P. 1ft E TDomEP(Q)Q, then extrEP(Q)(t) E Tl..P.

Proof. By Fn-DEF4 and Fn-DEF1, we observe that extrEP(Q)(tSQ) ~ tSP and
extrEP(Q)(¢>l..Q) ~ ¢>l..P. Moreover, by Fn-DEF3, extrEP(Q)(¢>Q) ~ ¢>l..P. Let
t E TDomEP(Q)Q and so t E TQ. We now prove two auxiliary results.

If t E dOmEP(Q) then extrEP(Q)(t) E Tl..P, (B.7)

We assume that t E dOmEP(Q) and consider each of two cases in turn.
Case 1: t E tSQ. In this case, there exists v E mintSQ such that v ~ t and

so, by proposition B.3(1), such that v E TDomEP(Q)Q. Thus, extrEP(Q)(V) E tSP
by Fn-DEF2 and since extrEP(Q)(tSQ) ~ tSP. Hence, by proposition B.3(2)
and Fn4, extrEP(Q)(t) E tSP and so extrEP(Q)(t) E Tl..P by DRl.

Case 2: t rt tSQ and so (t,0) E ¢>Q by DR3. Since extrEP(Q)(¢>Q) ~ ¢>l..P
and by SF-DEF2, (extrEP(Q) (t), 0) E ¢>l..P. Thus, extrEP(Q)(t) E Tl..P by
definition.

Hence, we have shown (B.7). We now show the following.

Either extrEP(Q)(t) E Tl..P or there exists a such that to (a) E TDomBP(Q)Q.
(B.B)

We consider each of two cases in turn.
Case 1: t E tSQ. In this case, there exists v E mintSQ such that v ~ t and

so, by proposition B.3(1), such that v E TDomEP(Q)Q. Thus, extrEP(Q)(V) E tSP
by Fn-DEF2 and since extrEP(Q)(tSQ) ~ tSP. Hence, by proposition B.3(2)
and Fn4, extrEP(Q)(t) E tSP and so extrEP(Q)(t) E Tl..P by DRl.

Case 2: t rt tSQ and so (t,0) E ¢>Q by DR3. In the event that t E

dOmEP(Q) then the proof is immediate by (B.7) and so we assume that t rt
dOmEP(Q)' Hence, by SF-GLOBAL1, let ePi E EP(Q) be such that tr ~ rt
domi' By Ep 1 we observe that Ai n Fvis = 0 since otherwise t r Ai E domi by
Ep3-FvI and Ep3A-FvI. Let (t, R) E ¢>Q be refusal-maximal; by SF3 and
since t E DOmEP(Q)' (t, R n aQ) E ¢>DomEP(Q)Q. By definition 4.5, Ai ~ aQ.
Thus, since tr Ai rt domi and since, by Fn-DEF4, Q meets Dom-SF-check,

The proof of (B.B) concludes by considering each of two sub-cases in turn.
Case 2a: Comm(Ai, Q) = Left. In this case, R n Ai E refi(tr~) by

definition 4.10. Let X E refi(trAi) be maximal in the subset-ordering and
such that R n Ai ~ X (if there is more than one such set we choose one
arbitrarily.) Thus, by Ep5, there exists a E Ai such that a rt X and so, also
by Ep5, tr Ai 0 (a) E Domi. Hence, to (a) E DOmEP(Q) by TR-GLOBAL1,
Ep-UNI1 and since t E DOmEP(Q)' Moreover, a rt RnAi and so, since (t,R)
is refusal-maximal, to (a) E TQ by SF4.

B.5. Proofs from section 4.5 255

Case 2b: Comm(Ai, Q) = Right. In this case, by definition 4.10, RnAi E

refi(tr ~). Thus, by definition 4.9, there does not exist X E refi(tr Ai) such
that (R n~) U X =~. Let W E refi(tr~) be maximal in the subset
ordering. Thus, there exists a E ~ such that a ¢ W and a ¢ R n~. Hence,
by Ep5, trAi 0 (a) E Domi and so to (a) E DOmEP(Q) by TR-GLOBAL1,
Ep-UNll and since t E DOmEP(Q). Moreover, since a ¢ Rn ~ and (t,R) is
refusal-maximal, to (a) E TQ by SF4.

Hence, we have proved (B.8). By (B.7), (B.8) and proposition B.14, there
exists a trace x such that extrEP(Q)(t 0 x) E TJ..P. The proof then follows by
the monotonicity of extrEP(Q) over traces due to proposition B.3(2) and the
prefix-closure of TJ..P by FDl. 0

Lemma B.26. Assume that extrEP(M)(¢M) ~ ¢J..K and extrEP(N)(¢N) ~
¢J..L. Let (8, S) E ¢dOmEP(M)M and ('11., U) E ¢domEP(N)N be such that S ~ aM
and U ~ aN. Then (w, Y) E ¢J..H such that

• w E (extrEP(M)(8) IIBInt extrEP(N) ('11.)).

• Y = extr~~(M)(S, 8, M) U extr~~(N)(U, '11., N) U (E - extrset(aMUaN)).

Proof. The proof is the same as that of lemma B.20 except that:

• ¢J..K and ¢J..L are substituted for ¢K and ¢L.

• FD2 is used in place of SF3.

• The relevant definition of parallel composition is taken from chapter
2.4.3 rather than chapter 2.4.2.

o

Lemma B.27. Assume that M and N both meet Dom-SF-check and Dom
T-check. Assume that extrEP(M)(¢M) ~ ¢J..K and extrEP(N)(¢N) ~ ¢J..L.
Then extrEP(O)(¢O) ~ ¢J..J.

Proof. The proof is the same as that of lemma B.21 except that:

• ¢J..H and ¢J..J are substituted for ¢H and ¢J respectively.

• FD2 is used in place of SF3.

• Lemma B.26 is used in place of lemma B.20.

o

Lemma B.28. Let 8 E TJ..K and u E TJ..L. Then (8 IIBInt u) ~ TJ..H.

B.5. Proofs from section 4.5 256

Proof. By definition of 7.1, (8,0) E ¢.1K and (u,0) E ¢.1L. Thus,

{(W,0) I W E (8 IIBlnt u)} E ¢.1H

and so (s IIBlnt u) ~ 7.1H. o

Lemma B.29. If M ~~~(M) K and N ~~~(N) L, then 0 ~~~(O) J.

Proof. We assume that M ~~~(M) K and N ~~~(N) L. Hence, by Fn
DEF4, both M and N meet Dom-T-check and Dom-SF-check. Thus, by
propositions 8.11 and B.18, 0 meets conditions Dom-T-check and Dom
SF-check. By Fn-DEF4 and Fn-DEFl, we therefore have to show that
extrEP(o)(80) ~ 8J and extrEP(O)(¢.10) ~ ¢.1J.

We first show that extrEP(o)(80) ~ 8J. Let t E DOmEP(O) and t E

min80. By Fn-DEF2 and Fn4, it suffices to show that extrEP(O)(t) E 8J.
According to the semantics of the hiding operator in the failures divergences
model, we consider each of two cases in turn. Before we proceed, recall that
o = 1\ Alnt and note that, by Fn-DEF4 and Fn-DEF1, extrEP(M)(8M) ~
8K and extrEP(N)(8N) ~ 8L.

Case 1: There exists w E 81 such that t = w \ Alnt 0 y, for some trace y.
In fact, t = W \ A 1nt since t E min80. Moreover, there exists v E min81 such
that v ::; wand v \ A 1nt = W \ A 1nt since otherwise t ¢ min80. We therefore
take t = v \ A1nt . Since v E min81 ~ 81, there exist s E 7.1M, u E 7.1N such
that v E (s IIAlnt u) and s E 8M or u E 8N. If 8 E 8M, then s E min8M since
otherwise there exists x < v such that x E 81 and so v ¢ min8I. Similarly,
if u E 8N then u E min8N. By Mn, min8M ~ 7M and min8N ~ 7N;
moreover, 7.1M = 7M U 8M and 7.1N = 7N U 8N by DRl. Thus s E 7M,
u E 7 N and either s E min8M or u E min8N. Also by Mn, t E min80 ~ TO
and so, by proposition B.9 and since t E DOmEP(O) , s E DOmEP(M) and
u E DOmEP(N)' Wlog, we assume that s E min8M. Thus, by Fn-DEF2
and since extrEP(M)(8M) ~ 8K, extrEP(M)(8) E 8K and so extrEP(M)(S) E
T.1K by DRl. Since u E 7N and u E DOmEP(N) , extrEP(N)(U) E 7.1L by
proposition B.25. Hence, (extrEP(M)(S) IIBlnt extrEP(N)(U)) ~ 8H and so, by
propositions B.7 and B.8,

Case 2: There exists W E ~w such that t = W \ A 1nt 0 x for some trace x
and, for every y < w,

Y E 7.11 = 71 U 81

by DRl. Since t E min80, x = 0 and so t = w \ A 1nt . In the event
that there exists y' < w such that y' E 81, then t = y' \ Alnt and the
proof proceeds as for Case 1. (We know t = y' \ A 1nt in such a case since

B.5. Proofs from section 4.5 257

otherwise t ¢ min80.) We therefore assume that Y rt. M and so yETI

for every y < w. Thus, for every y < w, y E (Py IIAlnt qy) such that
py E TM and qy E TN. Let ty = Y \ Alnt for y < w. Then ty ~ t and
so ty E TO for y < w; moreover, ty E DOmEP(O) by proposition B.14. Thus,
for y < w, Py E DOmEP(M) and qy E DOmEP(N) by proposition B.9 and so,
by proposition B.25, extrEP(M)(py) E T1..K and extrEP(N)(qy) E T1..L. Hence,
by proposition B.7 and lemma B.28, y E DOmEP(I) and extrEP(I)(Y) E T1..H

for every y < w. Hence, by lemma B.24, there exists k E ~w such that k is
the least upper bound of the sequence of extrEP(I)(Y) for y < w. Moreover,
by FD1, l E T1..H for every l < k. Since w E ~W and w \ A lnt is finite, then
w = r 0 s where r E ~*, s E (Alnt)W and so r \ A lnt = w \ A lnt = t. Thus, by
proposition B.8, for any trace h such that r ~ h < w,

extrEP(O)(t) = extrEP(o)(w\Alnt) = extrEP(o)(h\Alnt) = extrEP(I)(h)\Blnt .

Hence, k \ Blnt = extrEP(O)(t) and so extrEP(O)(t) E 8J.

We now show that extrEP(O)(¢1..0) ~ ¢l.J. By FD-DEF3,

extrEP(O)(¢1..0) = extrEP(O) (¢O) U {(t, R) It E extrEP(o)(80) A R ~ E}.

Thus, since extrEP(o)(80) ~ 8J and by FD5, it is sufficient to show that
extrEP(O)(¢O) ~ ¢1..J. By FD-DEF1, FD-DEF3 and FD-DEF4, we observe
that extrEP(M)(¢M) ~ ¢1..K and extrEP(N)(¢N) ~ ¢1..L. Hence, by lemma
B.27, extrEP(O)(¢O) ~ ¢1..J. 0

Proof of theorem 4.12

Proof. We assume that aFimpl(Ql, Q2, ... , Qn) ~ Fvis and Qi ~~~(Qi) ~ for
1 ~ i ~ n. Let Q = Fimpl(Ql, Q2, ... , Qn) and P = Fspec(P1, P2, .. ·, Pn). By
induction on n using lemma B.29, Q ~~~(Q) P. Hence, by theorem 4.11 and
since aQ ~ Fvis, Q ~FD P. 0

Appendix C

Proofs from chapter 6

C.l Proofs from sections 6.2 and 6.3

Proposition C.l. The following holds:

rQproj = {t E rQ I trProjEP(Q) E DOmEP(Q)rProjEP(Q)}·

Proof. Let i E inv. By definition 6.4 and since 0 E Domi by Ep3-T,
r Di = Domi· Also by Ep3-T, Domi ~ (Ai)" and so:

By definition 4.7(1), Projj = 0 and so DomjrProjj = {O} for j rf- inv.
Thus, r DC = 1111:Si:smDomi r Proji. We then observe the following .

• DOmEP(Q) = 1111:Si:SmDomi by TR-GLOBALl.

• Proj EP(Q) = U1:Si:sm Proji by definition 4.7(3) .

• Let ePi E EP(Q). Then the following hold.

- events(t) ~ Ai for every t E Domi by Ep3-T.

- Proj i ~ Ai by definition 4.7 and Ep2.

- Ai n Aj = 0 for ePj E EP(Q) such that i =f. j by Ep-UNIl.

Hence, rDC = DOmEP(Q)rProjEP(Q). We then observe that f3(Di) ~ ~
for i E inv by Ep3-T and definition 6.4, and so f3(DCi) ~ Proji since
Proji ~ Ai. Thus, and by definition 4.7, f3(DC) ~ Proj EP(Q) and so we take
aDC = Proj EP(Q). By Ep2 and definitions 4.5 and 4.7, Proj EP(Q) ~ aQ and
so Proj EP(Q) = aQ n aDC. Hence, the proof follows by theorem 2.17. 0

258

C.1. Proofs from sections 6.2 and 6.3 259

Proof of theorem 6.1

Proof· (===» We assume that Qpro; \ Fvis ::JT (1IIiEinvDi). Let t E TQ be
such that tr Proj EP(Q) E DOmEP(Q) r Proj EP(Q). By Dom-T-check, it suffices
to show that t E DOmEP(Q). By proposition C.1, t E TQproj and so

t \ Fvis E T(lIliEinvDi) = IIliEinvDomi.

Let i E inv. By definition 6.1, ~ n Fvis = 0. Thus, and by Ep3-T and
Ep-UNl1,

trAi = (t \ FvisH ~ E Domi.

Moreover, tr Aj E Domj for j ¢ inv by Ep3-FVI and so t E DOmEP(Q) by
TR-G LOBALI.

C<===) We assume that Q meets Dom-T -check. Let w E T(Q Proj \ Fvis)
be such that w = t \ Fvis where t E TQproj. By proposition C.1 and since
Q meets Dom-T-check, t E DOmEP(Q). Let j E inv. By definition 6.1,
Aj n Fvis = 0. Hence, and by TR-GLOBAL1,

so
Since t E DOmEP(Q), then events(t) ~ Ul~i~m Ai by TR-GLOBAL1 and

events(w) ~ (U ~) - Fvis.
l~i~m

Thus, by definition 6.1 and Ep1, events(w) ~ UiEinv Ai and so, by Ep-UNIl,
w E T(lIliEinvDi). 0

Proof of theorem 6.2

Proof. By theorem 6.1, it suffices to show that QProj \ Fvis ;;;;)T (1IIiEinvDi) if
and only if QProi \ (aQ - Ai) ;;;;)T Di for every i E inv.

(===» We assume that Qproi \ Fvis ;;;;)T (1IIiEinvDi). Let i E inv and
t E T(Qproi \ (aQ - Ai)), where w E TQproj is such that t = w \ (aQ - Ai).
By proposition C.1 and PAl, events(w) ~ aQ and so t = wr~. We also
observe that w \ Fvis E T(lIljEinvDj) and, by definition 6.1, ~ n Fvis = 0.
Thus, and by Ep3-T and Ep-UNl1, t = wrAi = (w \ FvisH~ E TDi·

(<===) We assume that QProj \ (aQ - Ai) ~T Di for every i E inv. Let
t E T(QProi \ Fvis) be such that w E TQproj and t = w \ Fvis. Let j E inv.
By proposition C.1 and PAl, events(w) ~ aQ. Thus, w \ (aQ - Aj) = wrAj
and so wrAj E TDj . By definition 6.1, Aj n Fvis = 0. Hence,

C.l. Proofs from sections 6.2 and 6.3 260

Since events(w) ~ aQ, and by definition 4.5, events(w) ~ Ul~i~m Ai.
Thus,

events(t) ~ (U Ai) - Fvis

and so, by definition 6.1 and Ep1, events(t) ~ UiEinu Ai. Hence, by Ep
UNl1, t E T(!!!iEinuDi). 0

Lemma C.2. Let s E TQ, u E T(!!!iEinuDi) and t E (s II A inv u). Then t = s,
t E DomEP(Q) and trAinu = u.

Proof. We first observe that, for i E inv, {3(Di) ~ A; by Ep3-T and def
inition 6.4, and so {3(!!!iEinuDi) ~ Ainu by definition 6.2(1). Thus, we as
sume a(!!!iEinuDi) = Ainu and so events(u) ~ Ainu by PAl. Hence, t = s
and, by TRP, trAinu = u E T(!!!iEinuDi). Thus, by Ep-UNl1 and Ep3-T,
trAi E TDi = Domi for i E inv. Moreover, trAj E Domj for j ¢ inv by
Ep3-FvI. Thus, t E DomEP(Q) by TR-GLOBALl. 0

Lemma C.3. Let t E DomEP(Q). Then trAinu E T(!!!iEinuDi).

Proof. By TR-GLOBAL1, trA; E Domi = TDi for i E inv. Thus, trAinu E

T(!!!iEinuDi) by definition 6.2(1) and Ep-UNIl. 0

Proof of proposition 6.4

Proof. We first observe that, for i E inv, {3(Di) ~ Ai by Ep3-T and definition
6.4, and so {3(!!!iEinuDi) ~ Ainu by definition 6.2(1). Thus, we assume aDi =
Ai for i E inv and a(!!!iEinuDi) = Ainu. Hence, by definitions 4.5 and 6.2(1),
a(!!!iEinuDi) = Ainu ~ aQ and so Ainu = aQ n a(!!!iEinuDi). We now proceed
with the proof proper.

1. We observe that

Thus, by lemmas C.2 and C.3,

TO = {t E TQ ! t E DomEP(Q)} = TDomEP(Q)Q·

2. Let i E inv. We observe that

Let ti E Dom; for i E inv. By Ep-UNI1, since Nexti(ti) ~ Ai for i E inv
and by definition 6.2(1), then:

iEinu iEinu

C.l. Proofs from sections 6.2 and 6.3 261

Hence, by definitions 6.2(1), 6.3(1) and 6.5,

<f>(llliEinvDi) = {(t, R) I t E Dominv = T(llliEinvDi) /\ (C.1)
R ~ (Ainv - Nextinv(t)) U (E - Ainv)}.

Recall that Ainv = a(llliEinvDi) ~ aQ and Ainv = aQna(llliEinvDi).
Thus, by theorem 2.20,

<f>Q = {(t,SUUUZ) I Z~ (E-aQ) /\

((3(s, S) E <f>Q, (u, U) E <f>(1I liEinvDi)) t E (s IIA;nv u) /\
S ~ aQ /\ U £; Ainv)}.

and so, by PA2 and SF3,

<f>Q = {(t, S U U) I (3(s, S) E <f>Q, (u, U) E <f>(llliEinvDi))

t E (s IIAinv u) /\ U ~ Ainv}.

The proof follows by this, (C.1), lemmas C.2 and C.3 and SF2.
3. We observe that Di is guarded for i E inv and so, by DF, 8Di =

0. Hence, 8(llliEinvDi) = 0 and so T_dllliEinvDi) = T(llliEinvDi) by DRl.
Moreover, 8Q £; Tl.Q also by DRl. As a result,

and so, by definition 2.2,

min8Q = {t I (3s E min8Q,u E T(llliEinvDi)) t E (s IIA;nv u)}.

Hence, by lemmas C.2 and C.3, and since min8Q ~ TQ by MD,

min8Q = {t I t E min8Q /\ t E DOmEP(Q)}.

Proof of theorem 6.5

D

Proof. We first show the following. Let (t, R) E <f>DomEP(Q)Q and, by propo

sition 6.4(2), let (t, S) E <f>Q be such that S = R U U, where U ~ (Ainv -
Nextinv (t r Ainv)).

Let ePi E EP(Q). Then extrre' (R n Ai, tr Ai, Q) = extrre' (S n Ai, tr Ai, Q).
(C.2)

We consider each of two cases in turn.

C.2. Proofs from section 6.4 262

Case 1: ~ ~ Fvis and so i rJ. inv. By definition 6.2(1) and Ep-U~Il,
R n Ai = S n Ai and so the proof follows by Ep5-FvI.

Case 2: ~ n Fvis = 0 and so i E inv. By Ep3-T and definition 6.4,
Nextj(tr Aj) ~ Aj for j E inv. Thus, by definitions 6.2(1) and 6.5 and
Ep-UNll,

Hence, by Ep5 and definition 6.4, S n ~ E ref i (t r Ai) if and only if R n Ai E

refi(trAi). Moreover, by Ep5 and definitions 4.9 and 6.4, SnAi E refi(tr~)
if and only if R n Ai E refi(tr ~). Thus, the proof follows by definition 4.10
and the fact that Comm(Ai, Q) = Comm(Ai, Q).

Hence, we have shown (C.2) and now proceed with the proof proper.

1. The proof follows by TR-DEFI and proposition 6.4(1).

2. The proof follows by definition of Dom-SF-check, (C.2) and proposi
tions 6.3(2,3) and 6.4(2).

3. We first observe that, by proposition B.14, if (t, R) E <PdomEP(Q)Q

then (t, R) E <PDomEP(Q)Q. The proof then follows by SF-DEF2, SF
GLOBAL2, (C.2) and propositions 6.3(2,3) and 6.4(2).

4. The proof follows by FD-DEF2 and proposition 6.4(3).

5. The proof follows by FD-DEF3 and parts 3 and 4 of the theorem.

o

C.2 Proofs from section 6.4

Note: Recall that m gives the cardinality of EP(Q)
EP(Q) = {epi 11 ~ i ~ m}.

EP(Q) and so

Proposition CA. The following results hold, where i E inv:

1. If w E TTEi , then domain(w) E Domi·

2. 1ft E Domi, there exists wE TTEi such that domain(w) = t.

3. If w E TTEi, then extract(w \ Ai) = extri(domain(w)).

C.2. Proofs from section 6.4 263

Proof. We first observe that 0 E Domi by Ep3-T and extri(0) = 0 by
Ep4. Moreover, recall that TEi A TEi(O).

(1,2) The proof in both of these cases is by induction on the length of
traces using definitions 6.4 and 6.7(1).

(3) The proof is once more by induction on the length of traces, this time
using DIS and definitions 6.4, 6.6 and 6.7 (note that extri(domain(w» is
defined by part (1) of the proposition). 0

Proposition C.5. The following hold:

1. f3(TEi) ~ prep(Ai) fori E inv.

2. f3 (T Einv) ~ prep(Ainv) .

3. f3(Q[prep]) ~ prep(o:Q).

Proof. By proposition 6.6, f3(TEi) = {1I"i(a,t) I to (a) E Domi} for i E inv.
Thus, f3(TEi) ~ prep(Ai) by Ep3-T and definition 6.8 and so f3(TEinv) ~
prep(Ainv) by definition 6.2(1). Since f3(Q) ~ o:Q, f3(Q[prep]) ~ prep(o:Q).

o

Lemma C.6. Let w E TTEinv ' Then w E prep(domain(w».

Proof. We proceed by induction on the length of w. In the base case,
when w = 0, the proof is immediate. Let w = U 0 (a). By the induc
tive hypothesis, it suffices to show that a E prep(domain(a». We assume
o:TEinv = f3(TEinv) = UiEinv f3(TEi). Thus, by proposition 6.6 and PAl,
a = 1I"i(b, x) for some i E inv and x 0 (b) E Domi. Moreover, note that
b E Ai by Ep3-T. Hence, by definition 6.7(1), domain(a) = b and so
a E prep(domain(a» by definition 6.8. 0

Proposition C.T. Let U 0 (a) E TQ. If bE prep(a) then domain(b) = a.

Proof. By proposition 6.3(2), definition 4.5 and PAl, a E Ai for i such that
1 :5 i :5 m. We consider each of two cases in turn.

Case 1: i E inv. By proposition 6.4(1) and TR-GLOBAL1, ur A; 0 (a) E

Domi' Thus, by Ep-UNI1 and definition 6.8, b = 1I"i(a, x) for some trace x
such that x 0 (a) E Domi. Hence, by definition 6.7(1), domain(b) = a.

Case 2: i fj. inv. By Ep-UNII and definition 6.8, prep(a) = {a} (Le.
prep(a) is not defined explicitly). Thus, it suffices to show that domain(a) = a
and we consider two sub-cases in turn.

Case 2a: domain(a) is defined explicitly. We show that this case can
never hold by proving a contradiction. In this case, by definition 6.7(1),
a = 11" j (C, x) for some trace x and j E inv such that x 0 (c) E Domj. Then, by
DIS and definition 6.6, c = a. Also, by Ep3-T, C E Aj and so Ai n Aj =1= 0.

C.2. Proofs from section 6.4 264

However, i #- j since i ¢ inv and j E inv and so we have a contradiction by
Ep-UNIl.

Case 2a: domain(a) is not defined explicitly. Then domain(a) = a. 0

Proposition C.B. Let t E TQ and W E prep(t). Then domain(w) = t.

Proof. We proceed by induction on the length of t. In the base case, when
t = W = (), the proof is immediate. Let t = 11. 0 (a) and w = v 0 (b). By the
inductive hypothesis, it suffices to show that domain(b) = a, which follows
by proposition C.7. 0

Proposition C.9. (Q[prep]lIprep(A;nv) TEinv)[domain] =T Q.

Proof. We assume a TEi = f3(TEi) for i E inv and, by proposition C.5(2),
that aTEinv = prep(Ainv).

(~) Let t E T(Q[prep]llprep(A;nv) TEinv)[domain]. Then there exists

W E T(Q[prep]llprep(A;nv) TEinv)

such that domain(w) = t. Thus, there exists 8 E T(Q[prep]) , 11. E TTEinv
such that W E (8 Ilprep(A;nv) 11.). By PAl, events(11.) ~ prep(Ainv) and so
w = 8 E T(Q[prep]). Hence, by proposition C.8, t = domain(w) E TQ.

(2) Let t E TQ. Thus, 11. E T(Q[prep]) for every 11. E prep(t). Moreover, by
proposition C.8, domain(11.) = t for all such 11.. Thus, it suffices to show that
there exists 11. E prep(t) such that 11.rprep(Ainv) E TTEinv. By proposition
6.4(1) and TR-GLOBALl, tr Ai E Domi for i E inv. Hence, by proposition
C.4(2) and for i E inv, there exists Wi E TTEi such that domain(wi) = tr~.
Thus, by Ep-UNII and definition 6.2(1), trAinv E IlliEinvdomain(wi). Hence,

trAinv E IlliEinvdomain(wi) = domain(llliEinvWi)

and so there exists W E TTEinv such that domain(w) = tr Ainv . Thus, by
lemma C.6, W E prep(trAinv). Let a E events(t) be such that a ¢ Ainv ·
Then prep(a) = a by definitions 6.2(1) and 6.8; moreover, a E Aj for some
j ¢ inv by proposition 6.3(2), definition 4.5 and PAL Hence, prep(a) =
a ¢ prep(Ainv) by DIS and definitions 6.6 and 6.8. Thus, since events(w) ~
prep(Ainv) by PAl, there exists w' E prep(t) such that w'rprep(Ainv) = w E

TTEinv. 0

Proposition C.IO. Let 1 ~ i,j ~ m be such that i #- j. Then prep(Ai) n
prep(Aj) = 0.

Proof. The proof follows by DIS, Ep-UNII and definitions 6.6 and 6.8. 0

Proposition C.II. Let 11. 0 (a) E T(Q[prep]llprep(A;nv) TEinv) and i E inv.
Then domain(a) E Ai if and only if a E prep(Ai).

C.2. Proofs from section 6.4 265

Proof. By proposition C.5(2), we assume aTEinv = prep(Ainv). \\'e observe
there exists 8 E T(Q[prep]), v E TTEinv such that u 0 (a) E (8 IIprep(Ainv) v).
By PAl, event8(v) ~ prep(Ainv) and so

u 0 (a) = 8 E T(Q[prep]).

Thus, there exists w 0 (b) E TQ such that u 0 (a) E prep(w 0 (b}) and, by
proposition C.7, domain(a) = b. Moreover, by proposition 6.3(2), definition
4.5 and PAl, there exists ePj E EP(Q) such that b E Aj and so, since
a E prep(b) , a E prep(Aj). We finally consider each of two cases in turn.

Case 1: domain(a) = b E ~. Since a E prep(b), then a E prep(Ai).
Case 2: domain(a) = b ¢ Ai. In this case, i i=- j. Thus, since a E

prep(Aj), a ¢ prep(Ai) by proposition C.lO. 0

Lemma C.12. Letw E T(Q[prep]llprep(Ainv) TEinv). Then domain(w)fAi =
domain(wrprep(Ai)) for i E inv.

Proof. We proceed by induction on the length of w. In the base case, when
w = (), the proof is immediate. Let w = v 0 (a). By proposition C.Il, we
observe that

domain((a})fAi = domain((a}fprep(Ai)).

and so the proof follows by the inductive hypothesis. o

Proposition C.13. Let w E T(Q[prep]llprep(Ainv) TEinv) and domain(w) =
t. Then extract(w \ Ainv) = extrEP(Q)(t).

Proof. The proof proceeds by induction on the length of w. In the base case,
when w = t = (), the proof is immediate by TR-GLOBAL2. Let w = uo (a).
By proposition C.g, domain(w) = domain(u) 0 (domain(a)} E rQ. Hence, by
proposition 6.4(1), domain(w) E DOmEP(Q). Thus, by TR-GLOBAL2, where
domain(a) E Ai for ePi E EP(Q),

extrEP(Q)(domain(w)) = extrEP(Q) (domain(u)) 0 r

such that extr i (domain(w)f Ai) = extr i (domain(u)f Ai) 0 r. We also observe
that

extract(w \ Ainv) = extract(u \ Ainv) 0 extract((a) \ Ainv)

and so, by the inductive hypothesis, we show that extract((a) \ Ainv) = r.
We consider each of two cases in turn.

Case 1: i ¢ inv. In this case, domain(a) ¢ Ainv by definition 6.2(1) and
Ep-UNIl. Thus, domain(a) = a ¢ Ainv since, by Ep3-T and definitions
6.2(1) and 6.7(1), domain(b) E Ainv for all b such that domain(b) is defined
explicitly. Hence, a E Ai and so extract(a) = a by DIS and definition 6.7(2).

C.2. Proofs from section 6.4 266

Thus, extract((a) ,Ainll) = (a) and so it suffices to show that T = (a). Since
i ¢ inv, then a E ~ ~ Fvi8. Thus, since domain(a) = a, we observe that

extri(domain(uH~ 0 (a») = extri(domain(uHAi) 0 T

and so, by Ep4-FvI, r = (a).
Case 2: i E inv. By proposition C.5(1,2), we assume that aTEj

prep(Aj) for j E inv and aTEinll = prep(Ainll). By definition, there exists
8 E r(Q[prep]), v E rTEinll such that w E (8 IIprep(A) v) and so, by TRP,
wrprep(Ainll) = vrprep(Ainll). Thus, by PAl, wrprep(Ainll) = v E rTEinll .
By proposition C.lO, prep(Aj) nprep(Ak) = 0 for j, k E inv such that j # k.
Hence, by PAl,

Moreover, since w = u 0 (a), urprep(Ai) E rTEi' We know that

Thus, by lemma C.12,

extri(domain(wrprep(~))) = extri(domain(urprep(~))) 0 T

and so, by proposition C.4(3),

extract((wrprep(Ai)) , Ai) = extract((urprep(Ai))'~) 0 T.

Thus, r = extract(((aHprep(~)) 'Ai). By proposition C.lI and since
domain(a) E Ai, then a E prep(Ai) and so r = extract((a) ,~). Hence, we
have to show that

extract((a) ,Ainll) = extract((a) 'Ai).

Thus, it suffices to show that a E Ai if and only if a E Ainll . If a E Ai,
then a E Ainll by definition 6.2(1). We therefore assume that a E Ainll and so
a E Aj for some j E inv. Since wrprep(Ai) E rTEi and a E prep(Ai), then
a E f3(TEi) by PAL Hence, by proposition 6.6, there exists x 0 (b) E Domj
such that a = 7fi(b, x). Moreover, b E ~ by Ep3-T. Thus, by DIS, definition
6.6 and since a E Aj for some j E inv, a = b E Ai' 0

Proof of theorem 6.7

Proof. The proof follows by proposition 6.4(1), TR-DEFl, proposition C.g
and proposition C.13. 0

C.3. Proofs from section 6.5 267

C.3 Proofs from section 6.5

Lemma C.14. nRerelfl(t) (UaE(A;-R) {X ~ Ai I a ¢ X}) = refi(t) fori E inv
and t E Domi.

Proof. We first observe that ref~ (t) is non-empty by definition 6.10 and
Ep5.

(~) Let S E nRerelfl(t)(UaE(A;-R){X ~ ~ I a ¢ X}). Thus, for every
R E ref~ (t), there exists a E (~ - R) such that a ¢ S. Hence, for every
R E ref~ (t), SUR i=~. By definition 6.10, for every X E refi(t) there
exists R E ref~ (t) such that X ~ R and so S E refi(t) by definition 4.9
(note that S ~ ~).

(;2) Let S E refi(t). Then, by definition 4.9, S ~ ~ and, for every
R E refi(t), R uS i= Ai. Thus, for every R E ref~ (t), R uS i= Ai. Hence,
for every R E ref ~ (t), there exists a E ~ - R such that a ¢ S and so the
proof follows. 0

Proof of lemma 6.9

Proof. We consider each of two cases in turn.
Case 1: Comm(Ai, Q) = Right.
Case 1 a: t E domi. In this case,

¢DSFf(t) = {((a) 08, X) I a E Nexti(t) /\ (8, X) E ¢>DSF~(t 0 (a))}.
Case 1b: t E Domi - domi. In this case,

¢DSF~(t) ={((a) 08, X) I a E Nexti(t) /\ (8, X) E ¢>DSF~(t 0 (a))} U
URErelfl(t){(O, Y U Z) I Y ~ R /\ Z ~ (E - ~)}.

By definition 6.10 and Ep5, refi(t) is the subset-closure of ref~ (t) and so,
by definition 6.9,

¢DSF~(t) ={((a) 08, X) I a E Nexti(t) /\ (8, X) E ¢>DSF~(t 0 (a))} U
{(o, Y U Z) lYE RefSeti(t) /\ Z ~ (E - Ai)}.

Case 2: Comm(Ai, Q) = Left·
Case 2a: t E domi. In this case,

¢>DSFf(t) = (((a) 0 8, X) I a E Nexti(t) /\ (8, X) E ¢>DSFf(t 0 (a))}.
Case 2b: t E Domi - domi. In this case,

¢DSFf(t) ={((a) 08, X) I a E Nexti(t) /\ (8, X) E ¢DSFf(t 0 (a))} U
nRErelfl(t) (UaE(A;-R){(O,X) I a ¢ X}).

Thus, by lemma C.14 and definition 6.9,

¢DSFf(t) ={((a) 08, X) I a E Nexti(t) /\ (8, X) E ¢>DSFf(t 0 (a))} U

{(0, Y U Z) lYE RefSeti(t) /\ Z ~ (E - Ai)}.

C.4. Proofs from section 6.6 268

We ob;erve tzat () E Domi b~ Ep3-T and recall that DSF j f). DSF~(())
or DSFi = DSFi (()) as appropnate. The proof then follows from the above
by induction on the length of traces using definition 6.4. 0

Proof of lemma 6.10

Proof By proposition 6.3(2) and definition 4.5, Ai ~ nQ. Thus, ~(Proci) =
nQ and so we assume nProci = nQ. We then observe that

¢ProCj = {(t, R) It E (nQV 1\ R ~ (1: - AJ}

and so, by SF2 and PAl,

Again by SF2 and PAl, events(t) ~ nQ and so t \ (nQ - Ad = tfAj for
(t, X) E ¢Q and so the proof follows. 0

Proof of theorem 6.11

Proof Let i E inv. By definition 6.4 and Ep3-T, (3(DSF j) ~ A, and so WE'

assume nDSFi = Ai. By proposition 6.3(2) and definition 4.5, A, ~ nQ and
soj3(Proci) = nQ. Since (3(Q) ~ nQ, then (3(Qi) = Ai an~ so we assume
nQi = Ai. Thus, by lemmas 6.9 and 6.10 and since Ai ~ nQ, ¢FinalImplej
is given by:

((trAi,R) I (:3(t,X) E ¢Q,Y E RejSeti(trAi)) trA i E Domi - domj 1\

X ~ nQ 1\ R ~ (X n Ai) U Y U (1: - Ai)}.

We then observe that, for (t,X) E ¢Q, trAi E Domi by proposition
6.4(2) and TR-GLOBALl. Thus, the proof follows by the definition of Dom
SF-check and definitions 4.9, 4.10 and 6.9. 0

C.4 Proofs from section 6.6

Note: Recall that the set of primed events contains only "fresh" events:
i.e. it does not contain any events already used in defining Q, P or EP(Ql,
or which are used in any other capacity as part of the verification of Q.
Recall also that the events in dinv are assumed to be ''fresh'' in the same
sense. A similar condition also holds by DIS from section 6.4. These facts
will generally be appealed to implicitly where they are needed in the proofs
in this section.

C.4. Proofs from section 6.6 269

Proof of lemma 6.12

Proof. By definition 6.4 and Ep3-T, f3(REi) ~ AiUprime(Ai) for i E inv and
so we assume aREi = ~Uprime(Ai). Thus, by Ep-UNIl, aREjnaREk = 0
for j =1= k, wherej,k E inv. Moreover, f3(llliEinvREi) ~ AinvUprime(Ainv) by
definition 6.2(1) and so we assume a(llliEinvREi) = Ainv U prime(Ainv). We
also assume a Trim = Ainv U prime (Ainv) since f3 (Trim) = Ainv U prime (Ainv).

(1) Let i E inv. Wlog, we consider the case that Comm(Ai, Q) = Right.
In this case, for t E Domi, we observe that

TREf(t)={O}U{(a)os!aENexti(t) " sETREf(to(a)n UX,

where X ~ {(prime(a)) I a E Ai}. We observe that () E Domi by Ep3-T
and recall that REi 6 REf (()). Then, by induction on the length of traces
using the above and definition 6.4, we observe that

TREj = Domi U Y, where Y ~ {t 0 (prime(a)) It E Domi /\ a E ~}.

We then observe that Domi ~ (Ai)* ~ (Ainv)* by Ep3-T and definition
6.2(1). Thus, by definitions 6.2(1) and 6.3(1), T(llljEinvREj) = Dominv U T,
where

T ~ {t E (Ainv U prime (Ainv))* I trAinv E Dominv}.

We also observe that

TTrim = (Ainv)* U {t 0 (prime(a)) It E (Ainv)* " a E Ainv}

and so the proof of this part follows by definition 6.2(1) (recall also that
Dominv ~ (Ainv)* by definition 6.3(1)).

(2) Let i E inv. We begin by considering each of two cases in turn.
Case 1: Comm(Ai, Q) = Right.
Case 1a: t E Domi - domi. In this case,

¢>REf(t) = {((a) 0 s, X) I a E Nexti(t) " (s, X) E ¢>RE['-(t 0 (a) n·
Case 1b: t E domj. In this case,

¢>REf(t) = (((a) 0 s,X) ! a E Nextj(t) " (s,X) E ¢>REf(to (a)n U

URErefr(t){(O,prime(S) U U) ! S ~ R " U ~ (~- prime(~)n·

By definition 6.10 and Ep5, re!j(t) is the subset-closure of re!tt (t) and so,
by definition 6.9,

¢>REf(t) = (((a) 0 s, X) I a E Nexti(t) " (s, X) E ¢>REf(t 0 (a) n U

{(0, prime(S) U U) I S E Re!Setj(t) " U ~ (~ - prime(Aj)n·

C.4. Proofs from section 6.6

Case 2: Comm(Ai, Q) = Left.
Case 2a: t E Domi - domi. In this case,

¢>REf(t) = {((a) 08, X) I a E Nexti(t) A (8, X) E ¢>REf(t 0 (a))}.
Case 2b: t E domi. In this case,

¢>REf(t) = (((a) 0 8, X) I a E Nexti(t) A (8, X) E ¢>REf(t 0 (a))} U

nREreff!(t)(UbEPrime(Ai-R){(O,X) I b ¢ X}.

270

Thus, by a proof similar to that of lemma C.14 and also by definition 6.9,

¢>REf(t) = (((a) 0 8, X) I a E Nextj(t) A (8, X) E ¢>REf(t 0 (a))} U
{(0, prime (X) U Y) I X E RefSetj(t) A Y ~ (I: - prime(Ai))}.

We observe that () E Domi by Ep3-T and recall that REi ~ REf(()) or
REi [),. REf (()) as appropriate. Then, by induction on the length of traces
using definition 6.4 and the above two cases, ¢>REj is given by:

{(t,prime(X) U Y) It E domj A X E RefSetj(t) A Y ~ (I: - prime(~))}.

Hence, by definitions 6.2(1) and 6.3(2),

¢>(llljEinuREj) = ((t,prime(X) U Y) It E dominu A X ~ Ainu A
Y ~ (I: - prime(Ainu)) A ((V'i E inv) X n Ai E RefSeti(tr Ai))}.

We then observe that

¢>Trim = {(t, R) I t E (Ainu)· A R ~ I: - (Ainu U prime(Ainu))}.

and so the proof of this part follows by theorem 2.20 and SF3 (recall that
dominu ~ (Ainu)· by definition 6.3(2)). 0

Lemma C.IS. The following hold:

1. Tlnterim = TQU {to (prime(a)) I to (a) E TQ A ((:3i E inv) a E ~)}.

2. ¢>Interim = {(t, R) I (:3 (t, X) E ¢>Q) X n prime (A jnu) = 0 A

R ~ XU prime(X n Ainu)}.

Proof. Since f3(Q) ~ aQ, then f3(Q[PQ]) ~ pQ(aQ). By proposition 6.3(2),
definition 4.5 and definition 6.2(1), Ainu ~ aQ. Hence, by definition 6.11, we
assume

a(Q[pQ]) = pQ(aQ) = aQ U prime(Ainu).

Moreover, we assume aTrimTwo = f3(TrimTwo) = aQ U prime(Ainu).
(1) We observe that:

C.4. Proofs from section 6.6

• TTrimTwo = (aQ)* U {t 0 (prime(a)) It E (aQ)* /\
((3i E inv) a E Ai)}.

• TQ ~ T(Q[PQ]) by definition 6.11(2).

Hence, the proof follows by PAl and definition 6.11.

(2) We first observe that

¢(Q[pQ]) = {(t, R) I (3s) t E pQ(s) /\ (s, (pQ)-l(R)) E ¢Q}.

271

Let (t, R) E ¢Q. Then, by PA2 and SF3, (t, R U S) E ¢Q where
S ~ prime(Ainv). Hence, by definition 6.11,

¢(Q[pQ]) = {(t, R) I (3 (s, X) E ljJQ) t E pQ(s) /\
X n prime (Ainv) = 0 /\

R ~ XU prime (X n Ainv)}.

We also observe that:

ljJTrimTwo = {(t, R) It E (aQ)* /\ R ~ ~ - (aQ U prime(Ainv))}.

Thus, the proof follows by definition 6.11(2), SF2, PAl, theorem 2.20 and
SF3. 0

Proof of lemma 6.13

Proof. Since f3(Q) ~ aQ, then f3(Q[PQ]) ~ pQ(aQ). We also observe that,
by proposition 6.3(2) and definition 4.5, aQ = Apvis U Ainv . Thus, by
definition 6.11, f3(Q[PQ]) ~ aQ U prime(Ainv). Moreover, f3(TrimTwo) =
aQ U prime (Ainv). Hence, we assume

alnterim = aQ U prime(Ainv) = Apvis U Ainv U prime(Ainv)'

Moreover,

• f3(lIliEinvREi) ~ Ainv U prime(Ainv).

• f3 (Trim) = Ainv U prime (Ainv).

Hence, we assume
aREinv = Ainv U prime(Ainv).

(1) By proposition 6.4(1), TR-GLOBAL1, Ep-UNll, definition 6.2(1) and
definition 6.3(1), trAinv E Dominv for every t E TQ. Moreover, for such t,

C.4. Proofs from section 6.6 272

tr(Ainv u prime (Ainv)) = trAinv . Note also that, for s E TREinv , events(s) ~
Ainv U prime(Ainv) by PAL Thus, by lemmas 6.12(1) and C.15(1),

T(Interim IIA;n"Uprime(A;nv) REinv) = TQ U T,

where T ~ {t 0 (prime(a)) I t E TQ A ((3i E inv) a E Ai)}. Hence, the
proof follows by definition 6.13(1).

(2) We observe that, if (t, R) E 4>Q, then tr(Ainv U prime (Ainv)) = trAinv
by SF2 and PAl. Moreover, if trAinv E dominv, then t E dOmEP(Q) by SF
GLOBAL1, definitions 6.2(1) and 6.3(1), and the fact that domi = Ai for
i ¢ inv by Ep3-FvI and Ep3A-FvI. And if t E dOmEP(Q) then tr Ainv =
tr(Ainv Uprime(Ainv)) E dominv. Also, if (w,X) E 4>REinv then, by SF2 and
PAl, events(w) ~ Ainv U prime(Ainv). Thus, by lemmas 6.12(2) and C.15(2)
and theorem 2.20, 4>(Interim IIA;nvUprime(A;nv) REinv) is given by:

((t,R) I (3(t,X) E 4>domEP(Q)Q,Z ~ Ainv)
X n prime (Ainv) = 0 A (('Vi E inv) Z n Ai E RejSeti(tr Ai)) A

R ~ ((X U prime(X n Ainv)) n alnterim) U

Ainv U prime(Z) U (E - (A Fvis U Ainv U prime(Ainv)))}.

Thus, 4>(Interim IIA;nvUprime(A;nv) REinv) is given by:

{(t, R) I (3(t, X) E 4>domEP(Q) Q, Z ~ Ainv)
Xnprime(Ainv) = 0 A (('Vi E inv) zn~ E RejSeti(trAi)) A

R ~ (X n (A Fvis U Ainv)) U prime (X n Ainv) U prime(Z) U

(E - (AFvis U prime (Ainv)))}

and so it is given by:

{(t, R) I (3(t, X) E 4>domEP(Q)Q, Z ~ Ainv)
X ~ aQ A (('Vi E inv) zn~ E RejSeti(tr~)) A

R ~ (X n AFvis) U prime(X n Ainv) U prime(Z) U

(E - (AFvis U prime(Ainv)))}·

Thus, by definition 6.13(1),

C.4. Proofs from section 6.6 273

cPPreImple = {(t, R) I (3 (t, X) E cPdomEP(Q)Q) X ~ o:Q A

R ~ (X n A pvis) U

{di E dinv I (3Y E RefSeti(tr~))
(X n Ai) U Y = Ai} U

(E - (A pvis U dinv))}.

Let (t, R) E cPdomEP(Q)Q be such that R ~ o:Q. Then, by definition 6.14

and definitions 4.9, 4.10 and 6.9, extrFDR~~(Q) (R, t, Q) is given by:

o

Lemma C.16. The following hold:

1. (PreImple[prep]lIprep(A;nv) TEinv)[domain] =r PreImple.

2. Let W E T(PreImple[prep]lIprep(A;nv) TEinv) be such that either:

• W = 0 or;

• W =1= 0 and tail(w) ¢ dinv ·

Then extract(w \ Ainv) = extrEP(Q)(domain(w)).

3. Let w E T(PreImple[prep]lIprep(A;nv) TEinv) be such that w = u 0 (~),
where di E dinv . Then extract(w \ Ainv) = extrEP(Q) (domain(u)) 0 (di).

Proof. By proposition C.5(2), we assume that o:TEinv = prep(Ainv).

(1) The proof is similar to that of proposition C.9, using lemma 6.13(1).

(2) By PAl, events(t) ~ prep(Ainv) for t E TTEinv. Thus, and by lemma
6.13(1) and TRP, W E T(Q[prep] IIprep(A;nv) TEinv). Hence, the proof
follows by proposition C.13.

(3) By lemma 6.13(1), PAl and TRP, u E T(Q[prep] IIprep(A;nv) TEinv).
Hence, extract(u \ Ainv) = extrEP(Q)(domain(u)) by proposition C.13
and so extract(w \ Ainv) = extrEP(Q) (domain(u)) 0 (d i).

o

Proposition C.IT. If (t, R) E cPPreImple and S ~ Ainv U Binv U prep(Ainv),
then (t, R US) E cPPreImple.

Proof. We observe the following:

C.4. Proofs from section 6.6 27 -l

• A inlJ n A pviB = 0 by Ep-UNIl and definitions 6.2(1) and 6.15.

• By Ep1-FvI and definition 6.15, A pIJiB = U·a· A· = U·. B- and so
ljl:mlJ I l~mlJ I

B inlJ n A pIJiB = 0 by Ep-UNI1 and definition 6.2(2).

• prep(AinlJ) n A pvis = 0 by Ep-UNI1, DIS and definitions 6.2(1), 6.6,
6.8 and 6.15.

• By definition, (A inlJ U B inlJ U prep(AinlJ)) n dinlJ = 0.

Hence, (A inlJ U B inlJ U prep(AinlJ)) n (A plJis U dinlJ) = 0 and so the proof
follows by lemma 6.13(2). 0

Proposition C.18. The following holds:

¢(Prelmple[prep]) = {(t, R) I (3s) t E prep(s) 1\ (s, R) E ¢Prelmple}.

Proof. We first observe that

¢(Prelmple[prep]) = {(t, R) I (3s) t E prep(s) 1\ (s, prep-l (R)) E ¢Prelmple}.

Thus, the prooffollows by proposition C.17 and definitions 6.2(1) and 6.8. 0

Lemma C.19. ¢(Prelmple[prep]) Ilprep(Ainv) TEinlJ) is given by:

{(t, R) I (t, R) E ¢(Prelmple[prep]) 1\

t E T(Prelmple[prep]) Ilprep(A inv) TEinlJ)}.

Proof. By proposition C.5(2), we assume that O'.TEinlJ = prep(AinlJ). We also
assume that O'.(Prelmple[prep]) = ,B(Prelmple[prep]) U prep(AinlJ).

(~) Let (t, R) E ¢(Prelmple[prep]) Ilprep(Ainv) TEinlJ). Then, by theorem
2.20, there exists (s, S) E ¢(Prelmple[prep]), (u, U) E ¢TEinlJ such that:

• t E (s Ilprep(Ainv) u).

• S ~ O'.(Prelmple[prep]) and U ~ O'.TEinlJ .

• R = S U U U Z, where, since O'.TEinlJ ~ O'.(Prelmple[prep]), Z ~ (I: -
0'. (Prelmple [prep])).

By SF2, t E T(Prelmple[prep)) Ilprep(Ainv) TEinlJ). Moreover, by SF2 and
PAl, events(u) ~ prep(AinlJ)' Hence, t = s and so (t, S) E ¢(Prelmple[prepJ).
Thus, by PA2 and SF3, (t, S U Z) E ¢(Prelmple[prep)). Moreover, by
propositions C.17 and C.18, and since U ~ prep(AinlJ), (t, S U U U Z) E

¢(PreImple[prep]).

C.4. Proofs from section 6.6 275

(2) Let (t, R) E ¢(Prelmple[prep)) be such that

t E T(Prelmple[prep)) IIprep(Ainv) TEinlJ).

Thus, by TRP and PAl, trprep(AinlJ) E TTEinlJ . We then observe that,
for i E inv, TEi is guarded and so 6TEi = 0 by DF. Hence, 6TEinIJ =
o and so TTEinlJ = {t I (t,0) E ¢TEinlJ } by proposition 2.3(2). Thus,
(trprep(A inlJ),0) E ¢TEinlJ . We also observe R = (Rna(PreImple[prep]))uZ,
where Z ~ ~ - a(Prelmple[prep)). Moreover, (t, R n a(Prelmple[prep))) E

¢(Prelmple[prep]) by SF3. Hence, by theorem 2.20 and since aTEinv ~
a (Prelmple[prep]) ,

(t, R) E ¢(PreImple[prep)) Ilprep(A inv) TEinlJ).

o

Lemma C.20. ¢(Prelmple[prep]) Ilprep(Ainv) TEinlJ) i8 given by:

{(t, R) I (domain(t), R) E ¢Prelmple A

t E T(Prelmple[prep]) Ilprep(A inv) TEinlJ)}.

Proof. By proposition C.5(2), we assume that aTEinlJ = prep(AinlJ).
(~) Let (t, R) E ¢(Prelmple[prep)) Ilprep(A inv) TEinlJ). Then, by lemma

C.19, (t, R) E ¢(Prelmple[prep]) and t E T(Prelmple[prep)) Ilprep(Ainv) TEinlJ).
Thus, by proposition C.18, there exists 8 such that t E prep(8) and (8, R) E

¢Prelmple. Hence, by lemma 6.13(2) and SF2, s E TO and so, by proposition
C.8, domain(t) = s.

(2) Let (t, R) be such that t E T(Prelmple[prep)) Ilprep(Ainv) TEinlJ) and
(domain(t), R) E ¢Prelmple. Thus, by PAl, t E T(Prelmple[prep]) and so
there exists 8 E TPrelmple such that t E prep(8). Moreover, by lemma
6.13(2) and SF2, domain(t) E TO. Hence, ift =f. 0, then by definition 6.7(1)
tail(t) ¢ dinlJ and so, by definition 6.8, tail(s) ¢ dinlJ . Moreover, if t = 0
then s = O. As a result, by lemma 6.13(1), s E TO. Thus, by proposition
C.8, domain(t) = 8 and so the proof follows by proposition C.18 and lemma
C.19. 0

Proof of lemma 6.14

Proof. By proposition C.5(2), we assume that aTEinlJ = prep(AinlJ).
(1) The proof of this part follows by proposition 6.4(1), TR-DEF1 and

lemmas C.16 and 6.13(1). (Note also that, by definition 6.7(1), domain(di) =
di for di E dinlJ and domain(a) ¢ dinlJ for a ¢ dinlJ .)

CA. Proofs from section 6.6

(2) By lemma C.20, ¢(Prelmple[prep]) IlprepCAinv) TEinu) is given by:

{ (t, R) I (domain(t), R) E ¢Prelmple A

t E T(Prelmple[prep]) IlprepCA;nv) TEinu)}.

276

Thus, by proposition C.17, ¢(Prelmple[prep]) IIprepCA;nv) TEinu) \ Ainu is
given by:

{(t \ Ainu, R) I (domain(t) , R) E ¢Prelmple A

t E T(Prelmple[prep]) IlprepCA;nv) TEinu)}.

Hence, by proposition C.17, Ep3-T, Ep4 and definitions 6.2, 6.7(2) and
6.8,

¢FinalImple = {(extract(t \ Ainu), R) I (domain(t) , R) E ¢Prelmple A

t E T(Prelmple[prep]) IIprepCA;nv) TEinu)}.

Let (domain(t) , R) E ¢Prelmple. Thus, by lemma 6.13(2) and definition
6.7(1), if t =1= () then tail(t) ¢ dinu . Hence, by lemma C.16(2),

¢FinalImple = {(extrEPCQ)(domain(t)),R) I
(domain(t), R) E ¢Prelmple A

t E T(Prelmple[prep]) IIprepCA;nv) TEinu)}.

Thus, ¢FinalImple = ((extrEPCQ) (w), R) I (w, R) E ¢Prelmple} by SF2
and lemma C.16(1) and so the proof follows by lemma 6.13(2). 0

Proposition C.21. extrset(aQ) = AFvis U Binu .

Proof. By proposition 6.3(2) and definitions 4.2 and 4.5, extrset(aQ) -
Ul<i<m B i · Thus, the proof follows by EpI-FvI and definitions 6.2(2) and
6.15.- 0

Proof of lemma 6.15

Proof. Since f3(P) ~ aP, then f3(P[rY]) ~ pP(aP). Moreover, by proposi
tion C.21, Binu ~ aP. Hence, by definition 6.11, we assume

We also assume aProc = f3(Proc) = aP U prime (Binu) U dinu ·
(1) We first observe that

CA. Proofs from section 6.6

TProC = (aP)* U

{t 0 (a) It E (aP)* /\ a E (aP - B inv)} U

{t 0 prime((a)) It E (aP)* /\ a E Binv } U

{t 0 (d i) It E (aP)* /\ di E dinv }.

We also observe that T(P[PPJ) = {t I (:3s E TP) t E pP(s)} and so,
by definition 6.11(3), TP ~ T(P[PPJ). Hence, by PAl and definition 6.11,
T(P[PPlllo:puPrime(B;nv) Pro c) is given by:

TP U {t 0 (prime(a)) Ito (a) E TP /\ a E Binv }
U {to (di) It E TP /\ di E dinv }.

Thus, the proof of this part follows by definitions 6.2(2) and 6.13(2).
(2) We first observe that

</JProc = {(t, R) It E (aP)* /\ R ~ E - ((aP - Binv) U prime(Binv))}.

By definition,

Let (t, R) E </JP. Then, by PA2 and SF3, (t, R U S) E </JP where
S ~ prime(Binv). Hence, by definition 6.11,

</J(P[PPJ) = {(t, R) I (:3 (s, X) E </JP) t E pP(s) /\
X n prime(Binv) = 0 /\

R ~ XU prime (X n Binv)}.

Thus, by theorem 2.20, SF2, PAl and SF3, </J(P[PPlllo:puprime(Binv) Proc)
is given by:

{(t, R) I (:3(t, X) E </JP) X n prime(Binv) = 0 /\

R ~ ((X U prime (X n B inv)) n (aP U prime(Binv))) U

((E - ((aP - B inv) U prime(Binv))) n (aP U prime(Binv) U dinv))
U (E - (aP U prime (Binv) U dinv))}

and so, since Binv ~ aP by proposition C.21, it is given by:

{(t, R) I (:3(t, X) E </JP) X n prime (Binv) = 0 /\

R ~ (X naP) U prime (X n B inv) U B inv U dinv U

(E - (aP U prime(Binv) U dinv))}.

C.4. Proofs from section 6.6

Hence, ¢(P[PP] lIaPUprime(Binv) Proc) is given by:

{(t, R) I (:J(t, X) E ¢P)

R ~ (X n (aP - B inv)) U prime(X n B inv) U

(~ - ((aP - B inv) U prime (Binv)))}

and so the proof of this part follows by definition 6.13(2).

Proof of theorem 6.16

Proof. We recall that aP = f3(P) U extrset(aQ).

278

o

(===» We assume that extrEP(Q)([Q]sp ~ [P]sp. Thus, by SF-DEF1,
extrEP(Q)(TQ) ~ TP and extrEP(Q)(¢Q) ~ ¢P. Hence, by TR-DEF1 and
lemmas 6.14(1) and 6.15(1), TFinallmple ~ TNewSpec. We now show, there
fore, that ¢Finallmple ~ ¢NewSpec.

Let (t, X U Y) E ¢Finallmple, where, by lemma 6.14(2), there exists
(w, R) E ¢domEP(Q)Q such that:

• extrEP(Q)(W) = t and R ~ aQ.

• X ~ extrFDR~~(Q)(R, w, Q).

• Y ~ (~ - (A pvis U dinv)).

Since extrEP(Q)(¢Q) ~ ¢P then, by SF-DEF2, (t, Z) E ¢P such that:

Z = extr~~(Q)(R, w, Q) U (~- extrset(aQ)).

Thus, by lemma 6.15(2), (t, S) E ¢NewSpec, where:

S = (Z n (aP - Binv)) U DB(Z) U (~ - ((aP - Binv) U dinv)).

By proposition C.21 and definition 6.2(2), Bi ~ extrset(aQ) for i E inv.
Moreover, for i E inv and by definition 4.10, Ep5-FvI, Ep1-FvI, SF
GLOBAL2 and Ep-UNIl, Bi ~ extr';~(Q) (R, w, Q) if and only if extr':' (R n
Ai, w r Ai, Q) = Bi. Thus, by definitions 6.14 and 6.16,

DB(extr';~(Q)(R, w, Q)U(~-extrset(aQ))) = U extrFDR':' (Rn~, wr Ai, Q).
iEinv

By SF-GLOBAL2, Ep-UNI1, Ep1-FvI, Ep5-FvI and definitions 4.10 and
6.2(2),

C.4. Proofs from section 6.6

Moreover, extr';~(Q)(R,w,Q) ~ extrBet(o:Q) ~ o:P. Thus,

extr';~(Q)(R,w,Q)n(o:P-Binv)= U extrre/(RnAi,wrAi,Q)
illinv

and so, by Ep5-FvI and definition 6.14(1),

279

extr';~(Q) (R, w, Q) n (aP - Binv) = U extrFDRrel (R n Ai, w r Ai, Q).
illinv

In addition, (aP - Binv) n (~ - extrBet(aQ)) = aP - extrset(aQ), since
Binv ~ extrBet(aQ) by proposition C.2l. Thus, and by definition 6.14,

S = extrFDR';~(Q)(R, w, Q) U (aP - extrset(aQ)) U (~- ((aP -Binv)Udinv)).

Moreover, since extrset(aQ) = A pviB U Binv by proposition C.21, since Apvis n
Binv = 0 and since extrset (o:Q) ~ aP,

(aP - extrset(aQ)) U (~ - ((aP - Binv) U dinv)) = ~ - (A pvis U dinv).

Hence, S = extrFDR';~(QJ(R, w, Q) U (~- (A pvis U dinv)) and so the proof in
this direction follows by SF3.

(-¢=) We assume that FinalImple ~sp NewSpec. Thus, by lemmas
6.14(1) and 6.15(1), extrEP(Q)('TQ) ~ 'TP. Hence, by SF-DEF1, it suffices
to show that extrEP(Q)(¢Q) ~ ¢P.

Let (t, R) E ¢dOmEP(Q)Q, where R ~ aQ. By SF-DEF2 and SF3, we
rei .-

show that (extrEP(Q) (t), Xu Y) E ¢P, where X = extrEP(Q)(R, t, Q) and

Y = ~ - extrset(aQ). By lemma 6.14(2) and since ¢FinalImple ~ ¢NewSpec,
then (extrEP(Q) (t), V U W) E ¢NewSpec, where:

rei .-
• V = extrFDREP(Q)(R, t, Q) .

• W = ~ - (Apvis U dinv).

Thus, by lemma 6.15(2), there exists U such that (extrEP(Q) (t), U) E ¢P
and:

We observe that ~ ~ aP for i E inv since all such di are ''fresh'' events.
Hence, UiEinv extrFDRrel (Rn Ai, tr Ai, Q) ~ DB(U) by definitions 6.12, 6.14
and 6.16 and so, again by definitions 6.14 and 6.16,

U I .-
extrre (R n~, tr Ai, Q) ~ U.

iEinv

C.4. Proofs from section 6.6 280

By proposition C.21, since extrset(olJ) ~ aP and since A pl1is n B inl1 = 0,

then A pvis ~ (aP - B inl1). Hence, by definitions 6.14(1) and 6.15,

U ertrFDRr;-1 (R n Ai, tr Ai, Q) ~ (aP - B inl1)
i¢inl1

and so, by definitions 6.14 and 6.16, and (**),

U ertrFDRr;-1 (R n Ai, tr~, Q) ~ (U n (aP - B inl1)).
i¢inl1

Thus, by definition 6.14(1) and Ep5-FvI,

reI ~ Hence, by SF-GLOBAL2, ertrEP(Q)(R, t, Q) ~ U.
By definition 6.16, we observe that DB(U) ~ dinl1 . Thus, by (**) and

since (~ - (A pl1is U dinl1)) n dinl1 = 0,

If we subtract Binl1 from both sides, we have, by proposition C.21 and since
ertrset (aQ) ~ aP:

If we then add dinl1 to both sides, we have that:

(~ - ertrset(aQ)) ~ (U n (aP - B inl1)) U (~ - aP).

Hence, (~- ertrset(aQ)) ~ U U (~ - aP). By PA2,

(extrEP(Q) (t), U U (~- aP)) E ¢>P

and so, by SF3,

o

C.5. Proofs from section 6.7 281

C.5 Proofs from section 6.7

Proof of theorem 6.17

Proof. We first observe that TEi is guarded and so 6T.& = 0 by DF.
(~) We assume that ePi meets Ep6 and proceed by assuming that

6(TEi \~) =1= 0. Thus, since 6TEi = 0, there exists w E ~w such that w\~
is finite and, for every v < w, v E TJ.. TEi. Hence, v E TTEi for every v < w by
DR!. Thus, the sequence of domain(v) for v < w is an w-sequence in Domi
by proposition C.4(1). But, by proposition C.4(3) and the fact that w\Ai is
finite, the sequence of extr i (domain(v)) for v < w is not an w-sequence and
so we have a contradiction.

({:=) We assume that 6(TEi \ Ai) = 0. Let ... , tj, ... be an w-sequence
in Domi. Let v, w E Dom; and, by proposition C.4(2), let x, y E TTEi
be such that domain(x) = v and domain(y) = w. If v ~ w then x ~ y
by the definition of TEi and definitions 6.4 and 6.7(1). Thus, there exists
an w-sequence ... , Uj, ... in TTEi, where domain(uj) = tj for each Uj. We
proceed by assuming that ... , extri(domain(uj)) , ... is not an w-sequence.
Hence, by proposition C.4(3), ... , extract(uj \ Ai), ... is not an w-sequence
and so ... , Uj \ Ai, . .. is not an w-sequence. Thus, since ... , Uj, ... is an
w-sequence in TTEi = TJ..TEi by DR1, then 6(TEi \~) =1= 0 and so we have
a contradiction. 0

Proof of theorem 6.18

Proof. We first observe that c/>J..P = c/>P by DR2 and since 6P = 0; moreover,
TP = TJ..P by DRl.

(~) We assume that extrEP(Q)([Q]FD) ~ [P]FD. Thus, by Fo-DEF1,
extrEP(Q)(c/>J..Q) ~ c/>J..P = c/>P and extrEP(Q)(6Q) ~ 6P = 0. Hence, by Fo
DEF3, extrEP(Q)(c/>Q) ~ c/>P. Moreover, by Fo-DEF2 and proposition 6.4(3),
min6Q = 0. Thus, 6Q = 0 by definition 2.2. Since Q meets conditions
Dom-T-check and Dom-SF-check, then Q ~~~(Q) P by Fo-DEF4. Hence,
by propositions 6.4(1) and B.25, extrEP(Q)(t) E TJ..P = TP for every t E TQ
and so extrEP(Q)(TQ) ~ TP by TR-DEFl. Thus, extrEP(Q)([Q]SF) ~ [P]SF
by SF-DEF1 and the proof in this direction follows by theolem 6.16.

({:=) We assume that FinalImple ~SF NewSpec and 6Q = 0. Thus, by
definition 2.2 and Fo-DEF2, extrEP(Q)(6Q) = 0 ~ 6P. Hence, by Fo-DEF3,
extrEP(Q)(c/>J..Q) = extrEP(Q) (c/>Q). Since FinalImple ~SF NewSpec then, by
theorem 6.16 and SF-DEF1,

extrEP(Q)(c/>J..Q) = extrEP(Q)(c/>Q) ~ c/>P = c/>J..p.

Thus, the proof in this direction follows by Fo-DEFl. o

Appendix D

Processes used in verification
from chapter 7

The following channels are needed here. 1

• channel extractWriteSlot : slots.slots.dataint

• channel extract WriteSlotRead : slots. slots. dataint

• channel extract W riteLatest : slots. slots. dataint

• channel extractReadLatest : slots .slots. dataint

• channel extractReadReading : slots. slots. dataint

• channel extractReadSlot : slots. slots. dataint

• channel extra : dataint

Those channels containing Write as a substring of their identifier are used
in the extraction of write events. extract WriteSlot is used when we extract
to a single write event on the occurrence of slot.writer.x.wr.y. \Ve then
observe that extract WriteSlotRead is used when we extract to both a read
and a write event on the occurrence of slot. writer.x. Wi .y. extract WriteLatest
is used when we extract on the occurrence of latest.Wi.x. Those channels
containing Read as a substring of their identifier are used in the extraction

1 Disregarding extra for the moment, these channels are used to represent "pairs of
events" which will be used in the extraction of the events of FSlot. However, the respective
types of these channels do not give sufficient information to allow us, as described in chapter
6.4, to reclaim the name of the channel of the right-hand event of the pair: i.e the channel
on which the (specification) event being extracted to will occur. This is acceptable since
the new channel names themselves give us all the information we need: see the definition
of extractar below.

282

283

of read events. The implementation events which they are used to e.xtract
are immediate from their respective identifiers. The channel extra is used
when we must extract to a write event and a read event together.

Four processes are composed in parallel- with each individual composi
tion synchronizing on common events - to define the process TEar used in
the extraction of the traces of FSlot. These are WrExt, RdExt, EDATA and
SlotCopy (they are composed in that order). EDATA is given in figure D.1
and is a copy of Data from figure 7.6. SlotCopy is given in figure D.2 and is a
copy of the process Slots from figure 7.5. These two processes are needed for
the following reason. According to the definition of extr ar from figure 7.12,
we never extract on the occurrence of an actual data transfer event: when
we do extract, we therefore need some means of discovering the data value
which was transferred (in the case of write events) or will be transferred (in
the case of read events). This is the purpose of the process EDATA. In order
to use EDATA to find the relevant data value, it is necessary to know the
pair and slot - i.e. the position in the 2-dimensional data array - at which
it is to be found. On the reader side, although we always know the value of
the necessary pair by the time that we must extract, we do not always know
the value of the slot within that pair: SlotCopy is used to help us find it.
More detail on how exactly these two processes are used may be found in
section D.1 below, after all necessary processes have been presented.

The processes which are directly responsible for extracting events are
WrExt and RdExt. They are each presented over two figures because of
the length of their respective descriptions and also because this split helps
partition the clauses of each process in a useful way. WrExt, given in figures
D.3 and D.4, is used to extract write events. RdExt, given in figures D.5 and
D.6, is used to extract read events.

WrExt has a number of parameters, corresponding to the variables used
in the definition of extr ar in figure 7.12. They are explained as follows:

• wrp - The value of pair in the writer.

• wrs - The value of index in the writer (Le. the value of the slot into
which we shall write or into which we have just written).

• late - The value stored by the variable latest.

• wrExtract - A variable to indicate whether or not we have extracted
yet on the current call to write.

• rp - The value of pair in the reader.

• reading Val - The value stored by the variable reading.

• ExtractData(x,y, V)=
let ED(v)=

data.wr.x.y?val~ED(val)
D

extractWriteSlot.x.y.v~ED(v)
D

extract WriteSlotRead.x.y. v~ ED (v)
D

extract WriteLatest. x. y. v ~ ED (v)
D

extractReadLatest. x. y. v ~ ED (v)
D

extractReadSlot.x.y.v~ED(v)
D

extractReadReading.x.y.v~ED(v)

within ED(V).

• EDATA =1 1 IxEAExtractData(jst(x),sec(x),O), where
A = {(jirst, jirst) , (jirst, second), (second,jirst), (second, second)}.

• SC(x, Y)

Figure D.l: A copy of the data array

let SY(y)=
slot. writer.x. wr?new~SY(new)
D

extractWriteSlot.x?new?val~SY(new)
D

extractWriteSlotRead.x?new?val~SY(new)
D

extractWriteLatest.x.y?val~SY(y)
D

extractReadLatest.x.y?val~SY(y)
D

extractReadReading.x.y?val~SY(y)
within SY(Y).

• SlotCopy =1 1 IXE{first,serond}SC(x,jirst).

Figure D.2: A copy of Slots

284

• WrExt = WE(jirst,jirst,jirst,no,jirst,jirst, no, 1).

• WE (wrp, wrs, late, wr Extract, rp, reading Val, rdExtract,posn) =

latest. rd?val -t
WE (wrp, wrs, late, wr Extract, val, reading Val, rdExtract, 2)
o
extractReadLatest?x?y?val -t
WE(wrp, wrs,late, wrExtract,x, reading Val,yes,2)
o
reading. wr?val -t WE(wrp, wrs,late, wrExtract, rp, val,rdExtract, 3)
o
extractReadReading ?x?y ?val -t
WE(wrp, wrs,late, wrExtract, rp,x, yes, 3)
o
slot. reader ?x!rd ?y -t
WE(wrp, wrs,late, wrExtract,rp, reading Val, rdExtract,4)
o
extractReadSlot ?x?y ?val -t
WE(wrp, wrs,late, wrExtract,rp, reading Val,yes,4)
o
data. rd?x?y?val -t WE(wrp, wrs,late, wrExtract, rp,reading Val, no, 1)
o
reading. rd?p -t
WE (not (p), wrs, late, wr Extract, rp, reading Val, rdExtract,posn)
o
slot. writer?x!rd?s -t
WE (wrp, not (s), late, wr Extract, rp, reading Val, rdExtract,posn)
o
data.wr?x?y?val -t
WE(wrp, wrs,late, wrExtract, rp, reading Val, rdExtract,posn)
o

Figure D.3: Process used to extract write events - part 1

285

(if (rdExtract == yes and wrp == late) then
(extract WriteSlot?x?y?val-t
WE(wrp, wrs,late,yes, rp, reading Val, rdExtract,posn))

else

o

(if (posn == 1 and wrp == late) then
(extract WriteSlot?x?y?val-t
WE(wrp, wrs,late,yes, rp, reading Val, rdExtract,posn))

else
(if ((posn == 2 or posn == 3) and rp == wrp) then

(if (rp == reading Val) then
(extract WriteSlotRead?x?y?val -textra. val-t
WE(wrp, wrs,late,yes, rp, reading Val,yes,posn))

else
(extract WriteSlot?x?y?val-t
WE(wrp, wrs, late, yes, rp, reading Val, rdExtract,posn)))

else
(slot. writer ?x!wr ?y-t
WE (wrp, wrs, late, wr Extract, rp, reading Val, rdExtract,posn)))))

(if wrExtract == no then
(extract WriteLatest?x?y?val-t
WE(wrp, wrs,x, wrExtract, rp, reading Val, rdExtract,posn))

else
(latest. wr?x-t WE(wrp, wrs,x, no, rp, reading Val, rdExtract,posn)))

Figure D.4: Process used to extract write events - part 2

286

287

• rdExtract - A variable indicating whether or not we have extracted
yet on the current call to read.

• posn - The current position of the reader.

The part of WrExt which is given in figure D.3 is simply used to update
these parameters (data. wr?x?y?val is included for ease of defining synchr<r
nization with RdExt). The part of WrExt given in figure DA actually deals
with the extraction proper and is related directly to the detail given in fig
ure 7.12.2 In general, we offer the "extracted" version of an implementation
event a - i.e. an "event pair" where a is the left-hand component and the
right-hand component is non-null- if the necessary conditions are met; oth
erwise, we offer a itself. If the original event a is offered, it indicates that its
occurrence at this point does not cause extraction to a high-level write event
(recall that a will be hidden in the construction of the final implementation
process to be supplied as input to FDR2). Note also that extract WriteS
lotRead?x?y?val followed by extra. val (from figure DA) is used when we
must extract to both a read event and a write event on the occurrence of
slot.writer.not(p).wr.not(i). The event occurring on extractWriteSlotRead
is renamed to the write event and that occurring on extra is renamed to
the read event; this uses the renaming extractor defined below. (When an
event occurs on channel extra, it effectively represents an "event pair" with
a null left-hand - i.e. implementation - component but with a non-null
right-hand component.)

Process RdExt is similar in concept to WrExt; its parameters are ex
plained as follows:

• rp - The value of pair in the reader.

• rdng - The value of the variable reading.

• wrp - The value of pair in the writer.

• late - The value of the variable latest.

• posn - The position of the writer.

• extract - This indicates whether or not we have extracted yet on the
current call to read.

2Note that, in figure 7.12, wVal is used to give directly the value of the last data
item written into the mechanism. Using that approach here would have required an extra
parameter for WrExt and so we instead use the process EDATA - needed anyway for the
extraction of read events - to provide the necessary information.

• RdExt = RE (jirst,jirst,jirst,jirst, 1, no) .

• RE(rp,rdng,wrp,late,posn,extract) =

reading. rd?p-+ RE(rp, rdng, not(p), late, 2, extract)
o
slot. writer ?x!rd? s-+ RE (rp, rdng, wrp, late, 3, extract)
o
data. wr?x?y?val-+RE(rp,rdng,wrp,late,4, extract)
o
extract WriteSlot?x?y?val-+ RE(rp, rdng, wrp,late, 5, extract)
o
extract WriteSlotRead?x?y ?val-+ extra. val-+
RE(rp,rdng,wrp,late,5,yes)
o
slot. writer ?x!wr ?y-+ RE(rp, rdng, wrp, late, 5, extract)
o
extractWriteLatest?x?y?val-+ RE(rp,rdng,wrp,x,l,extract)
o
latest. wr ?val-+ RE (rp, rdng, wrp, val, 1, extract)
o
data.rd?x?y?val-+ RE(rp,rdng,wrp,late,posn,no)
o

Figure D.5: Process used to extract read events - part 1

288

{if ({posn == 1 or posn == 5) and (late == rdng)) then
(extractReadLatest?x?y?val---+ RE{x, rdng, wrp,late,posn, yes))

else

o

{if ({posn == 2 or posn == 3 or posn == 4)
and (wrp != late) and (late == rdng)) then
(extractReadLatest?x?y?val---+ RE{x, rdng, wrp,late,posn,yes))

else
(latest. rd?p---+ RE{p, rdng, wrp,late,posn, extract))))

289

{if ({extract == no) and (posn == 1 or posn == 5 or rp != wrp)) then
{ extractReadReading?x?y ?val---+ RE (rp ,x, wrp, late, posn, yes))

else
(reading. wr?val---+ RE{rp, val, wrp,late,posn, extract)))

o

{if extract == no then
(extractReadSlot?x?y?val---+ RE{rp, rdng, wrp,late,posn, yes))

else
(slot. reader?x!rd?y---+ RE{rp, rdng, wrp,late,posn, extract)))

Figure D.6: Process used to extract read events - part 2

We define prePar 6 Ul:$i:510prepr, where:

• prepfr 6 {(slot.writer.x.wr.y, slot.writer.x.wr.y) I
slot.writer.x.wr.y E aslot.writer}.

• prepf{ 6 {(slot.writer.x.wr.y, extractWriteSlot.x.y.z) I
slot.writer.x.wr.y E aslot.writer 1\ z E dataint}.

• prepr 6 {(slot.writer.x.wr.y, extractWriteSlotRead.x.y.z) I
slot.writer.x.wr.y E aslot.writer 1\ z E dataint}.

• prepr 6 {(latest.x.y, latest.x.y) Ilatest.x.y E alatest}.

• prepgr 6 {(latest.wr.x, extractWriteLatest.x.y.z) I
latest.wr.x E alatest.wr 1\ y E {first, second} 1\

z E dataint}.

• prepgr 6 {(latest.rd.x, extractReadLatest.x.y.z) I
latest.rd.x E alatest.rd 1\ y E {first, second} 1\

z E dataint}.

• prepr 6 {(reading. wr.x, reading. wr.x) I
reading. wr.x E areading. wr}.

• prepr 6 {(reading.wr.x, extractReadReading.x.y.z) I
reading.wr.x E areading.wr 1\ y E {first, second}
1\ z E dataint}.

• prepgr 6 {(slot.reader.x.rd.y, slot.reader.x.rd.y) I
slot.reader.x.rd.y E aslot}.

• prepfo 6 {(slot.reader.x.rd.y, extractReadSlot.x.y.z) I
slot.reader.x.rd.y E aslot 1\ z E dataint}.

Figure D.7: Defining prePar

290

291

We define extractar f). Ul::;i::;7 extracf(, where:

• extracf(f). {(extract WriteSlot.x.y.z, write.z) I
extract WriteSlot.x.y.z E a extract WriteSlot}.

• extractf{ f). {(extract WriteSlotRead.x.y.z, write.z) I
extract WriteSlotRead.x. y.z E a extract WriteSlotRead}.

• extract3r f). {(extract WriteLatest.x.y.z, write.z) I
extract WriteLatest.x.y.z E a extract WriteLatest}.

• extract4r f). {(extractReadLatest.x.y.z, read.z) I
extractReadLatest.x.y.z E aextractReadLatest}.

• extractgr f). {(extractReadReading.x.y.z, read.z) I
extractReadReading. x. y. z E a extractReadReading } .

• extract6r f). {(extractReadSlot.x.y.z, read.z) I
extractReadSlot.x.y.z E aextractReadSlot}.

• extract!r f). {(extra.z, read.z) I extra.z E aextra}.

Figure D.8: Defining extractar

D.l. Explaining TEar further

We define domainar 6 Ul~i~6 domainr, where:

• domainr
r

6 {(extractWriteSlot.x.y.z, slot. writer.x. wr.y) I
extractWriteSlot.x.y.z E aextractWriteSlot}.

292

• domain:r 6 {(extractWriteSlotRead.x.y.z, slot.writer.x.wr.y) I
extract W riteSlotRead.x. y. z E a extract W riteSlotRead}.

• domain:r 6 {(extract W riteLatest. x. y.z, latest. wr .x) I
extract W riteLatest. x. y.z E a extract WriteLatest} .

• domainr 6 {(extractReadLatest.x.y.z, latest.rd.x) I
extractReadLatest.x.y.z E aextractReadLatest}.

• domain~r 6 {(extractReadReading.x.y.z, reading.wr.x) I
extractReadReading.x. y.z E a extractReadReading } .

• domain~/ 6 {(extractReadSlot.x.y.z, slot.reader.x.rd.y) I
extractReadSlot.x.y.z E aextractReadSlot}.

Figure D.9: Defining domainar

The renaming prepar used here is given in figure D.7; the renaming
extractar is defined in figure D.B.3 Each of the channels used for the ex
traction of events (apart from extra) has three data fields, denoted x, y and
z. Fields x and yare used to indicate the pair and slot combination in the
data array at which the data value to be extracted is stored: these fields are
used in the synchronization with EDATA. z denotes the data value itself and
so extractar simply renames to read.z or write.z as appropriate. Finally, the
renaming domainar is defined in figure D.9: it may be used to reclaim the
domain of the mapping which is represented by TEar.

D.I Explaining TEar further

Further comment is necessary on the role played by EDATA and SlotCopy
and the way they interact with the various channels used for extraction: i.e.
those whose identifier begins with the string "extract". We use the extraction
to a read event on the occurrence of latest.rd.p as an example. According to
the renaming prepar' this event (in the implementation) will be renamed to

3Those events on the occurrence of which we never extract to a high-level read or write
event, such as those on channel data, need only be renamed to themselves by prePar and
so are omitted from its definition.

D.l. Explaining TEar further 293

the set of extractReadLatest.p.y.z where y E {first, second} and Z E dataint.
If a synchronization occurs between such an event extractReadLatest.p.y.z
in the modified implementation and the same event in the process TEar, we
know that we are to extract on the occurrence of latest.rd..p. More than that,
however, we know that y gives us the value of slot[p], because synchroniza
tion with TEar means that we have effectively synchronized with SlotCopy
as well. This means that the reader, on this call to read, will read the data
value stored at position (p, y) in the data array. In fact, z gives us the data
value currently stored in that location because we have effectively synchro
nized with EDATA as well. Extraction on the occurrence of other events
works in a similar way. As a result, once we have renamed the implementa
tion process and composed it with TEar, the events of the resulting process
contain sufficient information that we may carry out extraction using only
hiding and renaming.

Appendix E

Lists of conditions, notations
and processes

E.l General notation

In the following, t, u, t l , t2 , .•. are traces; A is a set of actions; 7,7' are nOIl
empty sets of traces; G ~ ~ x ~ is a relation; and X is a set of sets. Note
that traces are assumed to be finite unless otherwise stated.

• t = (aI, ... ,an) is the trace whose i-th element is action ai, and length,
Itl, is n. Moreover, events(t) ~ {al, ... ,an} and, provided that n 2: 1,
tail(t) t:. an. If n = 0 then t is the empty trace, denoted ().

• IAI denotes the cardinality of A.

• to U is the trace obtained by appending u to t.

• A* is the set of all traces - i.e. sequences - of actions from A,
including the empty trace, ().

• AW is the set of all infinite traces of actions from A.

• T* is the set of all traces t = tl 0·· ·otn (n 2: 0) such that t l,···, tn E 7
(note that t = () when n = 0).

• ~ denotes the prefix relation on traces, and t < u if t ~ u and t =1= u.

• Pref(T) t:. {u I (::It E T) u ~ t} is the prefix-closure of 7. (In the
event that 7 is the singleton set {t}, we may use Pref (t) in lieu of
Pref(T)·)

• 7 is prefix-closed if 7 = Pref(T)·

294

E.l. General notation 295

• t fA is a trace obtained by deleting from t all the actions that do not
occur in A.

• t \ A is a trace obtained by deleting from t all the actions that do occur
in A.

• The definitions of f and \ may be lifted to sets of traces in the obvious
way: TfA (:,. {tfA I t E T} and T\A (:,. {t\A I t E T}.

• t l , t2, ... is an w-sequence of traces iftl ::; t2 ::; ... and liIIlj-+oo Itil = 00.

• A mapping 1 : T ~ T' is monotonic if t, u E T and t ::; u implies
I(t) ::; I(u), and strict if 0 E T and 1(0) = O.

• The definition of G may be lifted to sets of events, traces and sets of
traces:

- G(A) (:,. U{G(a) I a E A}.

- (al,"" an) G (bl , ... , bm) {:::} n = m 1\ 'Vi ::; n, ai G bi.

- G(T) (:,. {u I (3t E T) t G u}.

In the event that T is the singleton set {t}, we may use G(t) in lieu of
G (T). Moreover, if G (t) = {u} for some trace u then we shall denote
this G(t) = u. Similarly, if G(a) = {b} for some action a then we write
G(a) = b.

• G-I
(:,. {(b, a) I a G b} is the inverse of G.

• Sub(X) (:,. {W ~ X I X E X} is the subset-closure of X.

• X is subset-closed if X = Sub (X).

• 2s (:,. {X I X ~ S} gives the power set of S. For purposes of presenta
tion, we will sometimes use JP'(S) in lieu of 2s .

• We introduce containment and equality between pairs of sets in the
obvious way. Let B, B', C, C' be sets.

- (B, C) ~ (B', C') if and only if B ~ B' and C ~ ct.
- (B, C) = (B', C') if and only if B = B' and C = C'.

• For an arbitrary set of objects 0 and a partial orderingl j over the
elements of 0,

max-«O) (:,. {e E 0 I (~d E 0) e j d 1\ e =I- d}.

1 A partial ordering is reflexive, transitive and antisymmetric.

E.2. List of labelled conditions and definitions 296

In the event that max~ (0) = {e} for some element e, we shall write
max~(O) = e.

• max (F) = {(t, R) E F I (t, R) is maximal} for a set of failures F .

• For X ~ ~imp/, [[X]] denotes the smallest set A E AllSet such that
XcA.

E.2 List of labelled conditions and definitions

DE

DF

DIS

DOM-SF-CHECK

DOM-T-CHECK

DR1-3

Ep1

Ep1-FvI

Ep2

Ep3A-FvI

Ep3-FvI

Ep3-SF

Ep3-T

Ep4

Ep4-FvI

Ep5

Ep5-FVI

Ep6

Ep-UNI1-2

FD1-5

FD-DEF1-4

Fm

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

page 35

page 28

page 131

page 98

page 90

page 29

page 81

page 81

page 81

page 93

page 81

page 93

page 81

page 81

page 81

page 93

page 96

page 101

page 83

page 24

page 102

page 74

E.2. List of labelled conditions and definitions

FDS1-2

HIDE-INVIS

MD

PA1-2

PREF-CLOS

R1-2

RAH1-3

RAH1-SF

RAH1-T

RAH2-SF

RAH2-T

RAH3-SF

REC

REF-BoUND

REF-MoNO

REP1-2

S1-7

SEQ

SF1-4

SF-DEF1-3

SF-GLOBAL1-2

SFI1-3

SFs1-7

T1

TI1-3

TR-DEF1-2

TR-GLOBAL1-2

TR-MoNO

~ .. .

..

..

..

..

..

..

..

..

page 75

page 60

page 30

page 30

page 51

page 58

page 50

page 69

page 61

page 70

page 62

page 69

page 26

page 67

page 67

page 87

page 64

page 74

page 22

page 99

page 97

page 68

page 71

page 21

page 62

page 92

page 85

page 51

297

E.3. List of processes 298

TRP page 21

Tsl-4 '" page 6~

E.3 List of processes

BitLatest

BitReading

Di

Data

DataSlot

DC

EDATA

ExtEnv

ExtFS

ExtractData

Fin a lImp le

FinalImplei

FourSlotEnviron

FP

FSlot

FST

ImplNet

Interim

LejtImpl

LejtSpec

..

..

..

..

..

..

..

..

..

..

..

page 161

page 161

page 125

page 163

page 163

page 125

page 125

page 136

page 284

page 181

page 178

page 284

page 146

page 138

page 165

page 36

page 163

page 37

page 45

page 145

page 45

page 44

E.3. List of processes

MFP

MFTP

ModEnv

NewSpec

Prelmple

Proc

ProCj

QProj

Q

RdExt

REi

REinv

ReadEnviron

Reader

Register

Register Environ

RegReadEnviron

Reg WriteEnviron

RightImpl

RightSpec

SC

SFT

SLOT

SlotCopy

Slots

SpecNet

...

..

..

..

..

..

..

..

..

299

page 38

page 39

page 181

page 147

page 145

page 146

page 137

page 125

page 127

page 137

page 288

page 143

page 144

page 165

page 164

page 165

page 166

page 166

page 166

page 45

page 44

page 284

page 37

page 162

page 284

page 162

page 44

E.4. Notation from chapter 3

TP

TraceExtract

Trim

Trim Two

WrExt

WriteEnviron

Writer

...

...

...

...

...

...

...

...

...

...

E.4 Notation from chapter 3

[[X]]

I;impl

I; spec

AllSet

BTrace

Fvis

MinSet

E.5 Notation from concrete notion of
refinement-after-hiding

::::JEP(Q)
-FD

::::JEP(Q)
-SF

::::JEP(Q)
-T

e

300

page 283

page 130

page 132

page 36

page 132

page 1-1-1

page 145

page 285

page 165

page 164

page 55

page 47

page 52

page 52

page 52

page 52

page 52

page 53

page 102

page 99

page 92

page 81

E.6. Notation from chapter 6

TDomgp(Q)Q

¢domgp(Q)Q

¢Domgp(Q)Q

A

B

Comm(A,Q)

dom

Dom

domEP(Q)

DomEP(Q)

EP

EP(Q)

extr

extrref

ref
extrEP(Q)

extr set

Fimp/

Fspec

ImplSet

Proj EP(Q)

ref

ref

...

...

...

...

...

...

...

...

...

...

...

...

...

E.6 Notation from chapter 6

DB

page 91

page 98

page 98

page 81

page 81

page 86

page 93

page 81

page 97

page 85

page 83

page 85

page 81

page 93

page 97

page 83

page 84

page 84

page 83

page 89

page 93

page 94

page 145

page 123

page 123

page 142

page 146

301

E.7. Semantic notations

domain

extract

extrFDR';~(Q)

inv

prep

prime

rejtt

RejSeti
uP

uQ

..

..

..

..

..

..

..

..

..

..

..

..

..

...

E.7 Semantic notations

min6P

~FD

302

page 123

page 123

page 131

page 131

page 142

page 123

page 123

page 123

page 130

page 141

page 141

page 132

page 141

page 136

page 135

page 142

page 142

page 15

page 20

page 23

page 22

page 23

page 23

page 30

page 26

page 26

page 26

page 26

E.B. Operators

~SF

~T

E.8 Operators

STOP the immediately deadlocking process

DIV the immediately diverging process

a -+ P the prefix operator

PDQ deterministic choice

P n Q non-deterministic choice

P \ A hiding

P Ily Q parallel composition

P ®y Q network composition

P[G] renaming

page 26

page 26

303

Bibliography

[1] M. Abadi and L. Lamport: The Existence of Refinement ~lappings. The
oretical Computer Science 82 (1991) 253-284.

[2] P. Bernstein, V. Hadzilacos and N. Goodman: Concurrency Control and
Recovery in Database Systems. Addison-Wesley (1987).

[3] E. A. Boiten and J. Derrick: 10 - refinement in Z. Proc. of :lrd BCS-FACS
Northern Formal Methods Workshop, A. Evans, D. Duke and T. Clark
(Eds.). Electronic Workshops in Computing, Springer Verlag (1998) .

[4] E. A. Boiten and J. Derrick: Liberating data refinement. Proc. of Math
ematics of Program Construction, 5th International Conference, R. C.
Backhouse and J. N. Oliveira (Eds.). LNCS 1837 (2000) 144-166.

[5] E. A. Boiten and J. Derrick: Unifying concurrent and relational refine
ment. Proc. of REFINE 02: The BCS FACS Refinement Workshop,
J. Derrick, E. Boiten, J. Woodcock and JDT von Wright (Eds.). volume
70(3) of Electronic Notes in Theoretical Computer Science (2002) 38-75.

[6] E. Brinksma: A Theory for the Derivation of Tests. In: Proto
col Specification, Verification and Testing, VIII, S. Aggarwal and
K. Sabnani(Eds.). North-Holland (1988) 63-74.

[7] E. Brinksma, B. Jonsson and F.Orava: Refining Interfaces of Commu
nicating Systems. Proc. of TAPSOFT '91: Proceedings of the Interna
tional Joint Conference on Theory and Practice of Software Develop
ment, Volume 2: Advances in Distributed Computing (ADC) and Collo
quium on Combining Paradigms for Software Developmemnt (CCPSD) ,
S. Abramsky and T. S. E. Maibaum (Eds.). LNCS 494 (1991) 297-312.

[8] S. D. Brookes, C. A. R. Hoare and A. W. Roscoe: A Theory of Communi
cating Sequential Process. Journal of ACM 31 (1984) 560-599.

[9] S. D. Brookes and A. W. Roscoe: An Improved Failures Model for Com
municating Sequential Processes. Proc. of Seminar on Concurrency,

304

BIBLIOGRAPHY 305

S. D. Brookes, A. W. Roscoe and G. Winskel (Eds.). Springer-Verlag,
Lecture Notes in Computer Science 197 (1985) 281-305.

[10] J. Burton, M. Koutny and G. Pappalardo: Modelling and Verification of
Communicating Processes in the Event of Interface Difference. Technical
Report 696, Dept. of Computing Science, University of Newcastle upon
Tyne (2000).

[11] J. Burton, M. Koutny and G. Pappalardo: Verifying Implementation Re
lations in the Event ofInterface Difference. Proc. of FME 2001: Formal
Methods for Increasing Software Productivity, J. N. Oliveira and P. Zave
(Eds.). LNCS 2021 (2001) 364-383.

[12] J. Burton, M. Koutny and G. Pappalardo: Implementing Communicat
ing Processes in the Event of Interface Difference. Proc. of ACSD 2001:
Second International Conference on Application of Concurrency to Sys
tem Design, A. Valmari and A. Yakovlev (Eds.). IEEE Computer Society
(2001) 87-96.

[13] J. Burton, M. Koutny and G. Pappalardo: Compositional Verification of
a Network of CSP Processes. Technical Report 757, Dept. of Computing
Science, University of Newcastle upon Tyne (2002).

[14] J. Burton: Compositional Verification of a Network of CSP Processes:
Using FDR2 to Verify Refinement in the Event of Interface Difference.
Technical Report 758, Dept. of Computing Science, University of New
castle upon Tyne (2002).

[15] J. Burton, M. Koutny, G. Pappalardo and M. Pietkiewicz-Koutny: Com
positional Development in the Event of Interface Difference. In: Con
currency in Dependable Computing, P. Ezhilchelvan and A. Romanovsky
(Eds.). Kluwer Academic Publishers (2002) 1-20.

[16] J. Burton, M. Koutny and G. Pappalardo: Relating Communicating Pro
cesses with Different Interfaces. Fundamenta Informaticae 59(1) (2004)

[17]

[18]

1-37.

I. Clark: A Unified Approach to the Study of Asynchronous Commu
nication Mechanisms in Real Time Systems. King's College, London
University (PhD Thesis) (2000).

P. Collette and C. B. Jones: Enhancing the Tractability of
Rely /Guarantee Specifications in the Development of Interfering
Operations. Technical Report CUMCS-95-10-3, Department of Com
puting Science, Manchester University (1995).

BIBLIOGRAPHY 306

[19] J. Derrick and E. A. Boiten: Non-atomic refinement in Z. Proc. of FM'99
World Congress on Formal Methods in the Development of Computing
Systems, J. M. Wing, J. C. P. Woodcock and J. Davies (Eds.). LNCS 1708
(1999) 1477-1496.

[20] J. Derrick and E. A. Boiten: Refinement of objects and operations in
Object-Z. Proc. of Formal Methods for Open Object-based Distributed
Systems IV, S. F. Smith and C. L. Talcott (Eds.). K1uwer Academic Pub
lishers (2000) 257-277.

[21] J. Dinge1: Systematic parallel programming (PhD thesis). Technical Re
port CMU-CS-99-172, School of Computer Science, Carnegie Mellon
University (2000).

[22] W. de Roever and K. Engelhardt: Data Refinement: Model-Oriented
Proof Methods and their Comparison. CUP (1998).

[23] W. de Roever et al: Concurrency Verification: Introduction to Com
positional and Noncompositional Methods. Cambridge University Press
(2001).

[24] R. Gerth, R. Kuiper and J. Segers: Interface Refinement in Reactive Sys
tems (Extended Abstract). Proc. of CONCUR '92, W. R. Cleaveland
(Ed.). LNCS 630 (1992) 77-93.

[25] R. Gorrieri and A. Rensink: Action Refinement. In: Handbook of Process
Algebra, J. A. Bergstra, A. Ponse and S. A. Smolka (Eds.). Elsevier (2001)
1047-1147.

[26] N. Henderson and S. Paynter: The Formal Classification and Verification
of Simpson's 4-S10t Asynchronous Communication Mechanism. Proc.
of FME 2002: Formal Methods - Getting IT Right, L-H. Eriksson and
P. Lindsay (Eds.). LNCS 2391 (2002) 350-369.

[27] N. Henderson: Proving the Correctness of Simpson's 4-s10t ACM Using
an Assertional Rely-Guarantee Proof Method. Technical Report 800,
School of Computing Science, University of Newcastle upon Tyne (2003).

[28] M. C. B. Hennessy: Algebraic Theory of Processes. MIT Press (1988).

[29] M. Herlihy and J. Wing: Linearizability: a Correctness Condition for
Concurrent Objects. A CM Transactions on Programming Languages and
Systems 12(3) (1990) 463-492.

[30] C. A. R. Hoare: Proof of Correctness of Data Representations. Acta In
formatica 1 (1972) 271-281.

BIBLIOGRAPHY 307

[31] C. A. R. Hoare: Communicating Sequential Processes. Prentice Hall
(1985).

[32] W. Janssen, M. Poel and J. Zwiers: Action Systems and Action Refine
ment in the Development of Parallel Systems - An Algebraic Approach.
Proc. of CONCUR '91, J. C. M. Baeten and J. F. Groote (Eds.). LNCS
527 (1991) 298-316.

[33] C. B. Jones: Systematic Software Development Using VDM. Prentice
Hall (1990).

[34] C. B. Jones: An Object-Based Design Method for Concurrent Programs.
Technical Report UMCS-92-12-1, Department of Computer Science,
University of Manchester (1992).

[35] C. B. Jones: Constraining Interference in an Object-Based Design
Method. Proc. of TAPSOFT '93: Theory and Practice of Software De
velopment, M-C. Gaudel and J-P. Jouannaud (Eds.). LNCS 668 (1993)
136-150.

[36] C. B. Jones: Process-Algebraic Foundations for an Object-Based Design
Notation. Technical Report UMCS-93-10-1, Department of Computer
Science, University of Manchester (1993).

[37] C. B. Jones: Reasoning about Interference in an Object-Based De
sign Method. Proc. of FME '93: Industrial Strength Formal Methods,
J. Woodcock and P. Larsen (Eds.). LNCS 670 (1993) 1-18.

[38] B. Jonsson: Compositional Specification and Verification of Distributed
Systems. ACM TOPLAS 16 (1994) 259-303.

[39] M. Koutny, L. Mancini and G. Pappalardo: Two Implementation Rela
tions and the Correctness of Communicating Replicated Processes. For
mal Aspects of Computing 9 (1997) 119-148.

[40] M. Koutny and G. Pappalardo: Behaviour Abstraction for Communicat
ing Sequential Processes. Fundamenta Informaticae 48 (2001) 21-54.

[41] L. Lamport: Proving the Correctness of Multiprocess Programs. IEEE
Transactions on Software Engineerin9 SE-3 2 (1977) 125-143.

[42] L. Lamport: How to Make a Multiprocessor Computer that Correctly
Executes Multiprocess Programs. IEEE Transactions on Computers
28(9) (1979) 690-691.

BIBLIOGRAPHY 308

[43] L. Lamport: On interprocess communication: Part I - Basic formalism.
Distributed Computing 1 (1986) 77-85.

[44] L. Lamport: On interprocess communication: Part II - Algorithms. Dis
tributed Computing 1 (1986) 86-10l.

[45] K. G. Larsen: A context dependent equivalence between processes. The
oretical Computer Science 49(2) (1987) 185-215.

[46] R. Lazic: A Semantic Study of Data Independence with Applications to
Model Checking. Oxford University Computing Laboratory (PhD The
sis) (1999).

[47] N. A. Lynch and M. R. Tuttle: Hierarchical Correctness Proofs for Dis
tributed Algorithms. Proc. of 6th ACM Symposium on Principles of
Distributed Computing, ACM (1987) 137-15l.

[48] N. Lynch, M. Merritt, W. Weihl and A. Fekete: Atomic Transactions.
Morgan Kaufmann (1994).

[49] L. V. Mancini and G. Pappalardo: Towards a Theory of Replicated Pro
cessing. Proc. of Symposium on Formal Techniques in Real- Time and
Fault- Tolerant Systems, M. Joseph (Ed.). LNCS 331 (1988) 175-192.

[50] R. Milner: Communication and Concurrency. Prentice Hall (1989).

[51] R. Milner and D. Sangiorgi: Barbed Bisimulation. Proc. of 19th Interna
tional Colloquium on Automata, Languages and Programming (ICALP
'92), W. Kuich(Ed.). LNCS 623 (1992) 685-695.

[52] J. Parrow and P. Sjoedin: Multiway Synchronization Verified with Cou
pled Simulation. Proc. of CONCUR '92, W. R. Cleaveland(Ed.). LNCS
630 (1992) 518-533.

[53] J. Parrow and P. Sjoedin: The Complete Axiomatization of Cs
Congruence. Proc. of 11th Annual Symposium on Theoretical As
pects of Computer Science, STACS '94, R. Enjalbert, E. Mayr and
K. Wagner(Eds.). LNCS 775 (1994) 557-568.

[54] S. E. Paynter, N. Henderson and J. M. Armstrong: Ramifications of
Metastability in Bit Variables Explored Via Simpson's 4-S1ot Mecha.
nism. Technical Report 789, School of Computing Science, University of
Newcastle upon Tyne (2003).

[55] W. Reisig: Petri Nets: an Introduction. EATCS Monographs on Theo
retical Computer Science (1985).

BIBLIOGRAPHY 309

[56] A. Rensink: Action Contraction. Proc. of CONCUR 2000 - Concur
rency Theory, C. Palamidessi(Ed.). LNCS 1877 (2000) 290-304.

[57] A. Rensink and R. Gorrieri: Action refinement as an implementation re
lation. Proc. of TAPSOFT '97: Theory and Practice of Software Devel
opment, M. Bidoit and M. Dauchet(Eds.). LNCS 1214 (1997) 772-786.

[58] A. Rensink and R. Gorrieri: Vertical Bisimulation. Technical Report
Hildesheimer Informatik-Bericht 9/98, University of Hildesheim (1998).

[59] A. Rensink and R. Gorrieri: Vertical Implementation. Information and
Computation 170 (2001) 95-133.

[60] A. Rensink and H. Wehrheim: Dependency-based Action Refinement.
Proc. of Mathematical Foundations of Computer Science 1997, I. Privara
and P. Ruzicka (Eds.). LNCS 1295 (1997) 468-477.

[61] A. W. Roscoe: Model-Checking CSP. In: A Classical Mind, Essays in
Honour of C.A.R. Hoare. Prentice-Hall (1994) 353-378.

[62] A. W. Roscoe, P. H. B. Gardiner, M. H. Goldsmith, J. R. Hulance, D. M.
Jackson and J. B. Scattergood: Hierarchical Compression for ~odel
checking CSP, or How to Check 1020 Dining Philosophers for Deadlock.
Proc. of Workshop on Tools and Algorithms for The Construction and
Analysis of Systems, TACAS, U. H. Engberg, K. G. Larsen and A. Skou
(Eds.). BRICS Notes Series NS-95-2 (1995) 187-200.

[63] A. W. Roscoe: The Theory and Practice of Concurrency. Prentice-Hall
(1998).

[64] FDR2 User Manual: Available at:
http:// www .formal. demon. co. uk / fdr2manual

[65] J. Rushby: Model Checking Simpson's Four-Slot Fully Asynchronous
Communication Mechanism. Technical Report, Computer Science Lab
oratory, SRI International (2002).

[66]

[67]

[68]

D. Sangiorgi: Typed 7r-calculus at work: a correctness proof of Jones's
parallelisation transformation on concurrent objects. Theory and Prac
tice of Object-Oriented Systems 5(1) (1999) 25-33.

D. Sangiorgi and D. Walker: The 7r-calculus: a Theory of Mobile Pro
cesses. Cambridge University Press (2001).

H. R. Simpson: Four-slot Fully Asynchronous Communication ~echa
nism. lEE Proceedings 137, Pt E(l) (January 1990) 17-30.

BIBLIOGRAPHY 310

[69] H. R. Simpson: Correctness Analysis for Class of Asynchronous Com
munication Mechanisms. lEE Proceedings 139, Pt E(l) (January 1992)
35-49.

[70] J. M. Spivey: The Z Notation: A Reference Manual. Prentice-Hall
(1992).

[71] H. Wehrheim: Parametric Action Refinement. Proc. of Programming
Concepts, Methods and Calculi - PROCOMET 'g4, E. -R. Olderog(Ed.).
IFIP Transactions A-56, North Holland (1994) 247-266.

Index

alphabet
channel, 15
process, 30, 55, 85, 124

atomic, 153

channels, 15, 43
choice

deterministic, 16
non-deterministic, 16

communication capability, 86
component implementation process,

48
component specification process, 48
context, 32

practice, 84
theory, 47

correctness-in-context, 6, 8

data type, 15, 43
deadlock, 14
deadlock-free, 22
denotational semantics, 13
determinism, 35
DIY, 16,44
divergence, 17
divergences, 13

environment, 32
extraction pattern, 80

failures divergences model, 101
stable failures model, 92
traces model, 81

failures, 14
failures divergences model, 23
FDR2, 10, 13, 42

311

finally invisible, 9
finally visible, 9
finite non-determinism, 17
formal verification, 1

guarded, 27

hiding, 16

implementation network, 48
implementation process, 48

practice, 84
theory, 55

interleaving, 16

labelled transition system, 17
liveness, 13

machine-readable esp, 42
maximal (failures), 34
minimally-divergent traces, 30

network composition, 17

parallel composition, 16
pre-congruence, 6
prefix operator, 16
process algebra, 2, 13

recursion
semantics, 26
syntax, 16

refinement, 26
refinement-after-hiding, 9
refines-after-hiding,47
refusal-maximal, 34
reification, 2

INDEX

behaviour decomposition, 3
data reification, 2
relaxation of atomicity, 3

rely-guarantee, 6
renaming, 16

safety, 13
specification network, 48
stable failures model, 22
STOP, 16
subset-closed (failures), 22

traces, 13
traces model, 20

312

	401505_0001
	401505_0002
	401505_0003
	401505_0004
	401505_0005
	401505_0006
	401505_0007
	401505_0008
	401505_0009
	401505_0010
	401505_0011
	401505_0012
	401505_0013
	401505_0014
	401505_0015
	401505_0016
	401505_0017
	401505_0018
	401505_0019
	401505_0020
	401505_0021
	401505_0022
	401505_0023
	401505_0024
	401505_0025
	401505_0026
	401505_0027
	401505_0028
	401505_0029
	401505_0030
	401505_0031
	401505_0032
	401505_0033
	401505_0034
	401505_0035
	401505_0036
	401505_0037
	401505_0038
	401505_0039
	401505_0040
	401505_0041
	401505_0042
	401505_0043
	401505_0044
	401505_0045
	401505_0046
	401505_0047
	401505_0048
	401505_0049
	401505_0050
	401505_0051
	401505_0052
	401505_0053
	401505_0054
	401505_0055
	401505_0056
	401505_0057
	401505_0058
	401505_0059
	401505_0060
	401505_0061
	401505_0062
	401505_0063
	401505_0064
	401505_0065
	401505_0066
	401505_0067
	401505_0068
	401505_0069
	401505_0070
	401505_0071
	401505_0072
	401505_0073
	401505_0074
	401505_0075
	401505_0076
	401505_0077
	401505_0078
	401505_0079
	401505_0080
	401505_0081
	401505_0082
	401505_0083
	401505_0084
	401505_0085
	401505_0086
	401505_0087
	401505_0088
	401505_0089
	401505_0090
	401505_0091
	401505_0092
	401505_0093
	401505_0094
	401505_0095
	401505_0096
	401505_0097
	401505_0098
	401505_0099
	401505_0100
	401505_0101
	401505_0102
	401505_0103
	401505_0104
	401505_0105
	401505_0106
	401505_0107
	401505_0108
	401505_0109
	401505_0110
	401505_0111
	401505_0112
	401505_0113
	401505_0114
	401505_0115
	401505_0116
	401505_0117
	401505_0118
	401505_0119
	401505_0120
	401505_0121
	401505_0122
	401505_0123
	401505_0124
	401505_0125
	401505_0126
	401505_0127
	401505_0128
	401505_0129
	401505_0130
	401505_0131
	401505_0132
	401505_0133
	401505_0134
	401505_0135
	401505_0136
	401505_0137
	401505_0138
	401505_0139
	401505_0140
	401505_0141
	401505_0142
	401505_0143
	401505_0144
	401505_0145
	401505_0146
	401505_0147
	401505_0148
	401505_0149
	401505_0150
	401505_0151
	401505_0152
	401505_0153
	401505_0154
	401505_0155
	401505_0156
	401505_0157
	401505_0158
	401505_0159
	401505_0160
	401505_0161
	401505_0162
	401505_0163
	401505_0164
	401505_0165
	401505_0166
	401505_0167
	401505_0168
	401505_0169
	401505_0170
	401505_0171
	401505_0172
	401505_0173
	401505_0174
	401505_0175
	401505_0176
	401505_0177
	401505_0178
	401505_0179
	401505_0180
	401505_0181
	401505_0182
	401505_0183
	401505_0184
	401505_0185
	401505_0186
	401505_0187
	401505_0188
	401505_0189
	401505_0190
	401505_0191
	401505_0192
	401505_0193
	401505_0194
	401505_0195
	401505_0196
	401505_0197
	401505_0198
	401505_0199
	401505_0200
	401505_0201
	401505_0202
	401505_0203
	401505_0204
	401505_0205
	401505_0206
	401505_0207
	401505_0208
	401505_0209
	401505_0210
	401505_0211
	401505_0212
	401505_0213
	401505_0214
	401505_0215
	401505_0216
	401505_0217
	401505_0218
	401505_0219
	401505_0220
	401505_0221
	401505_0222
	401505_0223
	401505_0224
	401505_0225
	401505_0226
	401505_0227
	401505_0228
	401505_0229
	401505_0230
	401505_0231
	401505_0232
	401505_0233
	401505_0234
	401505_0235
	401505_0236
	401505_0237
	401505_0238
	401505_0239
	401505_0240
	401505_0241
	401505_0242
	401505_0243
	401505_0244
	401505_0245
	401505_0246
	401505_0247
	401505_0248
	401505_0249
	401505_0250
	401505_0251
	401505_0252
	401505_0253
	401505_0254
	401505_0255
	401505_0256
	401505_0257
	401505_0258
	401505_0259
	401505_0260
	401505_0261
	401505_0262
	401505_0263
	401505_0264
	401505_0265
	401505_0266
	401505_0267
	401505_0268
	401505_0269
	401505_0270
	401505_0271
	401505_0272
	401505_0273
	401505_0274
	401505_0275
	401505_0276
	401505_0277
	401505_0278
	401505_0279
	401505_0280
	401505_0281
	401505_0282
	401505_0283
	401505_0284
	401505_0285
	401505_0286
	401505_0287
	401505_0288
	401505_0289
	401505_0290
	401505_0291
	401505_0292
	401505_0293
	401505_0294
	401505_0295
	401505_0296
	401505_0297
	401505_0298
	401505_0299
	401505_0300
	401505_0301
	401505_0302
	401505_0303
	401505_0304
	401505_0305
	401505_0306
	401505_0307
	401505_0308
	401505_0309
	401505_0310
	401505_0311
	401505_0312
	401505_0313
	401505_0314
	401505_0315
	401505_0316
	401505_0317
	401505_0318
	401505_0319
	401505_0320
	401505_0321
	401505_0322
	401505_0323
	401505_0324

