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ABSTRACT 

The present research aimed to assess the effects of a novel type of orthosis, the Dynamic Ankle 

Foot Orthosis (DAFO), on the balance and gait characteristics of hemiparetic subjects. The DAFO 

is a low splint with a custom-moulded insole, which is believed to support foot alignment, ankle 

supination-pronation and provide minimal restriction of the ankle joint flexion-extension. It was 

hypothesised that DAFOs improve motor behaviour after stroke involving the acquisition of 

standing balance (hypothesis I) and gait (hypothesis II) compared with using shoes. It was 

proposed that users' subjective opinions of DAFOs would support the findings of the device's 

ability to modify human performance such that they are beneficial when used as a part of 

rehabilitation management for stroke patients (hypothesis III). 

Twenty-two stroke subjects were randomly allocated to experimental (with DAFO and shoes-only) 

and control (using shoes-only) groups. Subjects followed twelve weeks of experimental trials 

comprising three data collections. The testing procedure was developed from preliminary work, 

which involved a pilot study and reliability tests. Standing balance was measured using force- 

platform apparatus. The parameters investigated were: the velocity and sway index of the CoP, 

and F(mean), F(sd) and F(slope) of shear forces. Kinematic gait performance was assessed 

using a 3-D four-camera motion measurement system. The parameters studied were: the gait 

velocity, stride length, step length, cadence, and single stance phase, together with the 

minimum/maximum values of the angular displacement and velocity of the foot, shank, and thigh 

segments in the saggittal plane during two strides. An open questionnaire was used to evaluate 

subjects' opinions regarding the use of DAFOs. 

Overall, the quantitative studies did not identify consistent and statistically significant differences 

between the two experimental situations for these groups of patients. In the studies of balance, 

none of the parameter comparisons analysed within- and between- groups achieved statistical 

significance. In the studies of gait, statistically significant differences were identified for some (but 

not all) parameters. It is unknown whether any single or combination of balance and gait variables 

can be used to describe human gait entirely. On this basis, hypotheses I and II were rejected. 

However, these are tentative conclusions. Thus, difficulties in maintaining the stroke subject 

cohort number for these studies meant that the analyses probably lacked sufficient statistical 
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power to detect small but potentially important differences in DAFO mediated actions. 

Furthermore, in several cases, clear differences in the magnitude of balance and gait parameters 

between DAFO and shoe users were apparent, and these differences were often consistent with 

nearer normal levels associated with use of the device (suggesting potentially beneficial 

influences). Thus, positive effects of the DAFO on lateral velocity of sway and variability of the 

spectral frequency were evident for some subjects. The gait velocity, stride length and single 

stance phase were also nearer normal values using DAFOs than without them. In addition, the 

maximum foot velocity value was improved in the middle of swing phase on the affected side, 

which may indicate improvement to the ankle dorsiflexion function using these devices. 

In contrast to the inconclusive balance and gait findings, the outcome of the questionnaire 

assessments was clear. The majority of subjects provided very positive feedback with regard to 

DAFO use. Most subjects expressed confidence in the splint, which they perceived as helpful for 

their walking ability in day life. Some difficulties were noticed with donning and doffing the DAFO, 

but the perceived benefits outweighed this consideration. These qualitative studies therefore 

provide the most convincing evidence to support the idea that DAFOs improve stroke patients' 

balance and gait, and that this type of orthosis may form a useful adjunct to rehabilitation 

strategies. However, as the proposals set out for this research were related, acceptance of 

hypothesis III requires that at least one of the preceding hypotheses be accepted. On this basis, 

hypothesis III was also rejected. 

In conclusion, although this work failed overall to demonstrate a significant effect of DAFOs on 

the rehabilitation of stroke patients, the anecdotal evidence obtained adds to knowledge in this 

field. The research identified some parameters of balance and gait, which might be influenced by 

the device in a beneficial manner. These parameters may be more useful to use in future 

investigations. The reasons for the discrepant outcomes of the quantitative and qualitative studies 

are unclear. However, it is suggested that there may be uncontrolled variables within either the 

patient group or in the DAFOs (or both) which mean that some DAFOs work better than others. It 

is proposed that further studies of the DAFO are warranted. 
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1 INTRODUCTION 

1.1 Cerebrovascular accident and stroke 

Cerebrovascular accident (CVA) is a generic term applied to several clinical syndromes 

caused by abnormal function of one or more blood vessels supplying the brain. 

Disorders of the vasculature are common and include cardiac disease, infection, 

neoplasm, vascular malformation and immunological disorders. Clinically, CVA 

commonly manifests as a stroke, which is defined by the World Health Organization 

(WHO) as 'an acute disturbance of focal or global cerebral function with symptoms 

lasting more than 24 hours or leading to death presumably of vascular origin' 

(Thorvaldsen et al. 1995). A neurological insult that produces symptoms of less than 24 

hours is termed a transient ischemic attack (TIA) whereas a symptomatic deficit in 

excess of 24 hours, but which alleviates within seven days, is called a reversible 

ischemic neurological deficit (RIND). 

1.1.1 Classification 

Strokes are broadly categorized into two groups: occlusive (due to closure of a blood 

vessel) and haemorrhagic (due to bleeding from a blood vessel). The most common 

form of stroke is due to a thrombus occluding the anterior and middle cerebral arteries. 

These vessels supply the lateral regions of the frontal and parietal cortices, which form 

the primary sensorimotor regions of the brain, and subcortical structures including the 

internal capsule, thalamus and basal ganglia. Acute interruption of the blood supply to 

the brain leads to tissue ischaemia and, within seconds, neural damage. Although the 

precise nature of this damage is not fully understood, it is believed to involve cellular 

death due to glutamate-mediated calcium overload (excitotoxicity), redox imbalance 

(oxidative damage) and energy depletion (mitochondrial dysfunction), which contribute 

to the neuropathology of stroke by acting in a sequential and reinforcing manner 
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(Bowling and Beal, 1995; Bittigau and Ikonomidou, 1997; Yamada, 1998; Dirnagl et al., 

1999). 

1.1.2 Incidence 

The first comprehensive epidemiological study in the UK, the Oxford Community Stroke 

Project, aimed to identify all first-ever strokes and TIAs in a population of 105000 

subjects. Over a four year period (1981-85) it was found that there was an annual 

incidence of 2.0/1000 and that stroke incidence increased exponentially with increasing 

age (Bamford et al., 1988). More recently, a more extensive study known as the 

Multinational Monitoring of Trends and Determinants in Cardiovascular Disease 

(MONICA) conducted by the WHO, monitored stroke incidence and mortality rates for 

20 large populations in 11 countries over a 10 year period (Thorvaldsen et al., 1995). 

This and other surveys have indicated that there are geographic, age and gender 

differences within and between different countries, which may be due to environmental 

or social factors, and that the overall incidence of stroke is decreasing (Wolf et al., 

1992; Thorvaldsen et al., 1995). Despite this trend, stroke is still a major cause of death 

and disability in most industrialized countries. For example, recent health surveys 

indicate that each year over 100,000 people in England and Wales have a first stroke. 

Of these individuals, two thirds either die within a year or make a complete recovery. 

The remainder survive with mild to severe disability (Department of Health, 2001). 

Stroke primarily affects the elderly. Thus, the incidence of stroke up to the age of 30 

years is low compared to older adults. Nonetheless, approximately 25 % of strokes 

occur before the age of 65 and about 55 % below the age of 75 (Leeds Evaluation Unit, 

1992; Stroke Unit Trialists' Collaboration, 2001). After coronary heart disease and 

cancer, stroke is the third most common cause of death in the developed world, and is 

the leading single cause of severe disability in people living in their own homes (Brust, 

1991; Thorvaldsen et al., 1995; Rosamond et al., 1999). 
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1.1.3 Aetiology 

The precise aetiology of stroke is unknown, but is likely to be multifactorial. There may 

be a genetic predisposition for stroke, as is thought to be the case in other neurological 

disorders such as Alzheimer's disease, Huntington's disease and amylolateral sclerosis. 

In addition, factors have been identified that correlate with an increased incidence of 

both occlusive and haemorrhagic stroke. These include cardiovascular related disorders 

such as hypertension, atherosclerosis, TIAs (mini-strokes), angina, and atrial fibrillation 

(Saladin, 1996). Diabetes is also well established as a significant risk factor for stroke, 

this being either a direct causal relationship, or an indirect effect in conjunction with 

hypertension (McMillan, 1997). Other factors implicated in the pathogenesis of stroke 

are smoking, alcohol abuse, physical inactivity, obesity, hyper-cholesterolemia, oral 

contraceptives and elevated haemoglobin concentrations (Saladin, 1996). It is believed 

that the recent decline in stroke incidence is attributable to increased awareness and 

control of these factors (Stegmayr et al., 2000). 

1.1.4 Symptoms 

Stroke encompasses a wide range of severity. The main reasons for first-time sufferers 

dying within one month post-stroke are the brain lesion itself, intracerebral 

haemorrhage, or large cerebral infarcts and associated oedema. Mortality after the first 

month is more likely to be an indirect result of the initial insult involving, for example, 

bronchopneumonia, pulmonary embolism or concurrent cardiac disease. Among 

surviving stroke victims neurological deficits include sensorimotor hemiparesis of the 

contralateral upper and/or lower limbs. Cognitive deficits may also be apparent post- 

stroke, including memory, attention, language and visual problems. Lack of control of 

basic body functions such as incontinence may also arise after a stroke (Herman et al., 

1982; Herman et aL, 1983; Bonita et al., 1984). All of these deficits can seriously affect 

quality of life. However, hemiparesis is particularly problematic, as this occurs in 80-90 

% of stroke patients (Carr and Shepherd, 1998b). 
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1.1.5 Recovery 

People who survive the initial stages of stroke generally show some improvement over 

time in their ability to move and perform functional tasks. Recovery after stroke can be 

broadly categorised as either spontaneous or non-spontaneous (Warlow et al., 2001). 

Spontaneous recovery is due to cellular reparative processes that occur immediately 

following the lesion. Non-spontaneous recovery involves neural reorganisation 

mechanisms that are use- and experience-dependent. Both in vitro and in vivo studies 

on animal and human brain have shown that remodelling processes can occur 

continuously following sensory and motor experience throughout life (Bach-y-Rita, 1990; 

Lee and van Donkelaar, 1995). Such plasticity within the CNS is believed to enable 

adaption according to functional demands (Carr and Shepherd, 1998b). 

Despite intensive research on the mechanisms for the generation of new cells and 

neural circuitry, very little is known concerning the regeneration of the complex functions 

of the nervous system, such as motor program, speech and cognitive processes (Lee 

and van Donkelaar, 1995). In contrast, over the past decade, there have been 

considerable advances in understanding the pathophysiological mechanisms which lead 

to neural destruction in stroke. Perhaps the most striking observation has been that 

neurons do not die in a matter of minutes to an hour. Even though neurons may cease 

to function, the brain or spinal cord damage resulting from a stroke can take hours, days 

or even weeks to reach its maximum extent. The CNS tissue damage progresses over 

time from the regions that are most metabolically compromised by lack of adequate 

blood flow to less affected areas (Johansson, 2000). 

In recent years anti-hypertensive compounds have been shown to reduce the risk of 

stroke for high-risk subjects. These drugs include non-steroidal anti-inflammatory drugs 

(NSAIDS) such as aspirin, diuretics, beta-blockers, calcium channel blockers, 

angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor antagonists. 

However, there are no established procedures or pharmacological interventions that 
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increase the number of independent survivors after a stroke (Sandercock and Willems, 

1992; Lipton, 1993; Lindley et al., 1995). Certain drugs can potentially improve the 

clinical outcome of stroke by counteracting or limiting the severity of neural damage 

induced at the neurochemical level. Pharmacological studies have been carried out 

mainly using experimental animal models of stroke, although several clinical trials with 

human subjects have been and are being undertaken. To date, most of these 

investigations have provided disappointing results, with treatments having little or even 

poor therapeutic efficacy. One exception are thrombolytic drugs which, when 

administered within a few hours of symptom onset, can enhance arterial oxygen and 

glucose availability to damaged brain tissue, and one compound (tissue plasminogen 

activator) has been approved for clinical use in acute ischaemic stroke in the US (Chiu 

et al., 1998). Recently, however, it has been shown that even these compounds can 

exert deleterious effects on neurons (Traynelis and Lipton, 2001) and are hazardous for 

some patients, causing increased intracranial haemorrhage (Kaste et al., 2001). 

Immediate medical care following stroke is invariably limited to establishing the reason 

for the incident, and attempting to reduce early mortality and later disability by 

maintenance of vital functions and minimizing systemic complications (Henon et al., 

1995; Pushpangadan et al., 1999). This is often achieved by recognition and treatment 

of coincidental disorders such as cardiac failure and angina. Most stroke patients 

receive a computerised tomography (CT) scan that can localize and estimate the size of 

the lesion and identify intracerebral haemorrhage. Apart from relieving hydrocephalus 

the only operative procedure for intracerebral haemorrhage is removal of the 

haematoma. Subarachnoid haemorrhage is treatable by clipping the ruptured aneurysm 

or, if technically feasible, removal of the malformation. Initial stage stroke patients are 

closely monitored in order to ensure that the airways are clear and to identify further 

complications such as pneumonia, the development of which can be exacerbated by 

immobility, hypoventilation and intubations. Regular and frequent turning and 
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percussion/vibration techniques are often used to minimize the risk of secretion pooling, 

atelectasis and bronchopneumonia. In addition, a range of motion exercises and 

positioning prevent muscle shortening and stiffness. When a patient regains 

consciousness, most medical institutions recommend active exercise and task-related 

training (Carr and Shepherd, 1998a; Carr and Shepherd, 1998b; Kwakkel et aL, 1999; 

Forster and Young, 2002). 

1.1.6 Prognosis 

The great majority of patients who survive the first month after a stroke will improve 

and, as indicated earlier, many regain normal levels of function. Approximately 45 % 

become functionally independent (Legh-Smith et al., 1986; Warlow et al., 2001). In the 

early weeks post-stroke, good prognostic indications include mild deficit, young age, 

urinary continence, rapid improvement, good perceptual abilities and no cognitive 

disorders. However, it is difficult to predict outcome with sufficient accuracy as some 

patients improve unexpectedly, whereas others do not despite having a good predicted 

prognosis (Bonita and Beaglehole, 1988). The likelihood of independence at six months 

decreases with increasing age (Lincoln et al., 1990). Studies using clinical measures of 

recovery (e. g. the Fugl-Meyer scale and Barthel Index) of stroke survivors indicate that 

most motor recovery occurs before 3 months post-stroke and then plateaus after about 

6 months (Wade, 1992). Other studies, using similar methods, have reported recovery 

up to 5 years post-stroke (Wadell et a/., 1987). 

1.1.7 Rehabilitation 

Rehabilitation strategies, which are implemented throughout the post-stroke period, 

remain the principle focus for improvement of the patient's condition. The ultimate goal 

is to enable functional independence such that patients can return to their homes and 

integrate effectively in community life (Forster and Young, 2002). The primary aims of 

early rehabilitation are to prevent secondary physical, emotional and intellectual 
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deterioration, and to prepare the patient and relatives for inevitable alterations in 

lifestyle. Specialized 'stroke units' with specially trained medical and nursing staff are 

recommended, as there is strong evidence that this type of care can improve the poor 

outcomes of stroke. Acute stroke units provide care during the immediate post-stroke 

period and until the patient is medically stable. When sufficient stability is achieved, 

rehabilitation strategies, which vary between different stroke units, are often initiated 

within 48 hours of stroke onset. This initial rehabilitation typically consists of a 

multidisciplinary approach involving a range of health care professionals (e. g. 

consultants, psychologists, social workers, speech therapists, physio- and occupational 

therapists). These Stroke Units are beneficial irrespective of patient age, sex, or 

variations in stroke unit organization (Johansson, 2000; Stroke Unit Trialists' 

Collaboration, 2001). For detailed accounts of rehabilitation approaches in acute Stroke 

Units see (Kaste et al., 1995; Stroke Unit Trialists' Collaboration, 2001). 

Rehabilitation beyond the post-acute stages may be implemented by Stroke Units that 

specialize in such later care, or on a hospital outpatient basis, and in the patient's own 

home. Recent stroke unit trials confirm the benefits of such units and highlight 

improvements in longer-term outcomes by engaging community services and/or proved 

links to continuing rehabilitation (Lincoln et al., 2000). The approaches used remain 

multi-disciplinary. However, as the subject of the original research described in this 

thesis concerns orthotic intervention, an aspect of rehabilitation involving physiotherapy, 

the following information is limited to this discipline. General accounts of multi- 

disciplinary rehabilitation for stroke patients have been reviewed elsewhere (Forster and 

Young, 2002; Pollack et al., 2002). 

The main physiotherapy method used for stroke rehabilitation in the UK is the Bobath 

concept (Davidson and Waters, 2000), which is theoretical and has not been tested 

empirically (Sparkes, 2000). This concept posits that therapy should be aimed at 

alignment of the body segments via manual facilitation, with an emphasis on achieving 
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functional symmetry (Davies, 2000). Treatment is usually therapist-led, with a focus on 

suppression of patient-generated incorrect movement until the normal movement 

pattern is achieved (Lennon et aL, 2001). This Bobath therapy is often supplemented 

with further rehabilitation, which can include recommendations, counselling, aphasia 

therapy, and mood modification (Pomeroy and Tallis, 2002). Other physiotherapy 

treatment strategies deemed appropriate for the patient's condition may include muscle- 

strengthening exercises, treadmill training and constraint-induced movement, in addition 

to biofeedback and functional electrical stimulation methods (Forster and Young, 2002). 

1.1.8 Recovery of mobility 

As gait deficits occur with most stroke patients, re-education of motor control and 

functional ability are regarded as the main targets for rehabilitation (Jongbloed, 1986; 

Dombovy, 1991; Ashburn et al., 1993; Duncan et al., 2000). Improved walking function 

is therefore fundamental to stroke patient rehabilitation (Bohannon et al., 1991) and its 

achievement depends on several factors, including size and location of the infarct, the 

patient's age and pre-morbid health (Perry, 1969; Hertanu et al., 1984; Wade et al., 

1985). Many patients who recover ambulatory function can only walk slowly (Wade and 

Hewer, 1987), and often those who can walk indoors require assistance (Chin et al., 

1982; Kettle and Chamberland, 1989; Kojima et al., 1990; Perry et al., 1995). In 

addition, poor physical mobility is negatively correlated with social activities outside the 

home after the stroke (Niemi et al., 1988; Drummond, 1990; Corr and Bayer, 1992; 

Kauhanen et aL, 2000). 

Functional recovery is a key determinant of overall quality of life scores in stroke 

rehabilitation (Kauhanen et al., 2000). It is generally accepted that the patient should be 

an active participant in rehabilitation strategies designed to optimise performance of 

functional actions. Training methods take account of movement, muscle characteristics, 

environmental context and the pathological nature of the impairment (Pomeroy and 
Tallis, 2002). General principles of training following stroke include anticipation and 
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prevention of soft tissue contracture. Other procedures endeavour to mobilize stiff joints 

or to train endurance and cardiovascular responses by increasing repetitions and 

distance walking (Forster and Young, 2002). The patient's environment (e. g. their 

home) can also be modified to achieve a particular outcome (von Koch et al., 1998). 

The effectiveness of rehabilitation for everyday actions such as walking, standing up 

and sitting down, reaching and manipulation is based on models of these actions 

formed from normative data. For a detailed reviews of stroke patient rehabilitation 

strategies, see Carr and Shepherd (1998b), Kwakkel et al., (1999), Davidson & Waters 

(2000), Pomeroy and Tallis (2002) and Carr and Shepherd (2003). The traditional view 

of neurological rehabilitation outlined above posits that such intervention reduces 

impairment and minimises disability. Thus, using ICF nomenclature, the purpose of 

rehabilitation is to improve the outcome of the capacity (disability) and performance 

(handicap), and therefore improve quality of life (Hankey, 1999; WHO, 2001). However, 

although knowledge of the association between neurological rehabilitation and theories 

of practice has increased over the last decade, it is still very limited (Lennon, 2001; 

Lennon et al., 2001). There is intense ongoing debate on major issues such as the 

efficacy of stroke rehabilitation and which patients are most likely to benefit from 

intensive rehabilitation (Gresham et al., 1995; Sparkes, 2000). In addition, there is 

disagreement on which types of rehabilitation are most effective at improving functional 

outcome (Pomeroy and Tallis, 2002). A better understanding of these relationships 

together with innovative approaches towards the rehabilitation of stroke patients' 

walking ability are required to meet the projected rise in individuals affected. 

The treatment of acute and rehabilitative stroke patients places a considerable financial 

burden on health care institutions worldwide. In the UK the cost of stroke to the National 

Health Service (NHS) is now estimated to be over £2.3 billion per annum, 

and the total cost of stroke care will rise in real terms by approximately 30 % in less 

than 25 years. Stroke patients occupy around 20 % of all acute hospital beds and 25 % 
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of long-term beds. Thus, there is a great need to expand understanding of which 

elements, or which combination of elements of therapy lead to functional improvements 

in stroke patients (Ashburn, 1995; Lennon, 2001; Forster and Young, 2002). 

The area of orthotic intervention is an aspect of stroke rehabilitation, which, until 

recently, has been largely neglected (Lennon, 2001; Leung and Moseley, 2003). The 

influence of orthoses on stroke patients' gait and functional recovery is the focus of the 

original research described later in this thesis. Certain types of novel orthoses may 

promote beneficial effects on stroke patients' movement disabilities via neuro- 

biomechanical influences. Before this subject matter is considered in detail, it is useful 

to briefly review salient aspects of the neurophysiological and biomechanical basis of 

human movement, together with the pathological consequences of stroke on patients' 

balance and gait. The following section also introduces some relevant terminology. 

1.2 Neurobiomechanics of human motion 

Biomechanics is central to understanding human movement and is defined as the 

interdiscipline that describes analyses and assesses human movement. However, the 

relationships between the biomechanical and neurophysiological mechanisms that 

enable humans to ambulate from one place to another in an upright position are only 

recently being understood. Controlling bipedal locomotion involves a number of complex 

tasks. The CNS must generate the locomotor pattern and appropriate propulsive forces. 

Modulation of changes in the position of the centre of gravity must also occur to 

coordinate multi-limb trajectories, whilst adapting to changing conditions and joint 

positions. Furthermore, co-ordination of sensory information from visual, auditory, 

vestibular and joint receptors must happen in order to account for the viscoelastic 

properties of muscles (Patla, 1996). All of these events must occur within milliseconds 

and in conjunction with the coordination of many other bodily functions and movements. 

In the light of these various subsystems involved in motor control, the nervous system 

can be seen as being organised both hierarchically and in parallel. Thus, the highest 
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levels of control do not only affect the next levels down; they can also act independently 

on the spinal motor neurones. This combination of parallel and hierarchical control 

allows overlap of functions, so that one system is able to take over from another. Such 

flexibility may also allow a certain amount of recovery from injury by the use of 

alternative pathways (Kandell et al., 1991; Johansson, 2000). 

Locomotion can require the synchronization of over 1000 muscles, which move 200 

bones around 100 moveable joints. Human standing balance and walking develops 

rapidly from early childhood, and then more slowly, until the adult pattern is achieved at 

around four years of age (Sutherland, 1997). Throughout adulthood, the gait pattern is 

essentially steady but then gait speed slows during old age (Prince et al., 1997). The 

term 'human movement' encompasses maintenance of an upright posture, including 

balance, walking, running, and many other functional tasks. In the context of this thesis, 

standing balance and the act of walking are fundamental in relation to the assessment 

of the orthotic devices studied. 

1.2.1 Standing balance 

Maintenance of balance in standing is critically importance during daily life. Balance is 

defined as an ability to maintain equilibrium by positioning the centre of gravity (CoG) 

over the base of support (over the feet) when standing. The CoG is coincident with the 

body's centre of mass, the location of which changes as a consequence of alterations in 

position of the body segments (Murray et al., 1975; Era et al., 1996; Enoka, 2002; 

Woollacott and Shumway-Cook, 2002). Postural adjustments (termed equilibrium 

reactions) occur in order to maintain equilibrium (Jones and Barker, 1996). Postural 

control and its adaptation to the environment are based on muscle tone and postural 

reflexes, which emanate from the somatosensory system. The CNS activates extensor 

muscles that counteract the force of gravity, creating postural tone, which then stabilises 

the body's CoG with respect to the ground. Postural tone occurs mainly at the level of 

the limbs, back and neck extensor muscles, and the masseter muscle of the jaw. The 
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main force vector of these muscles counteracts the effect of gravity when an individual 

is standing (Massion and Woollacott, 1996). 

As already indicated, sensory information from the visual, vestibular and somatosensory 

systems, is central to the neural control of body orientation, with respect to vertical 

stabilisation against external perturbations. The vestibular system provides information 

on the position of the head in relation to the gravitational field and through sensing 

linear and angular acceleration on its motion (Woollacott, 1993). The proprioceptive 

system, which consists of muscles, joint and cutaneous receptors, provides information 

on the state of the effector apparatus, such as length and force output of muscle, the 

position of the body in space and information about environment such as surface. 

Proprioception provides, therefore, information about movements of the body in relation 

to the base of support and about the movement and orientation of body segments in 

relation to each other (Allum et al., 1998). The visual system is also categorised as a 

proprioceptive system, as it provides information about the environment and the 

orientation and movement of the body (Lee and Lishman, 1976; Allum et al., 1998). 

Balance disorders occur when any of the systems described above are disturbed. 

Assessment of human balance and posture commonly applies an inverted pendulum 

model that is acted upon by external forces such as gravity and perturbation (Massion 

and Woollacott, 1996). Balance control is therefore required continuously, because if 

gravitational forces act unopposed, the body cannot remain upright (and therefore falls 

to the ground) (Williams et al., 1997). In a standing position, the CoG of the body never 

aligns perfectly with the Centre of Pressure (CoP) beneath the feet and needs to be 

constantly repositioned to maintain equilibrium. In quiet standing, an ankle strategy 

applies in the antero-posterior direction, whereas a separate hip load/unload strategy by 

the hip abduction/adductors is the principal mechanism of position adjustment in the 

medio-lateral direction when standing with feet side by side (Winter, 1995). 
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Standing balance can be measured using a variety of postural tests that describe 

balance function and recovery of stability (Browne and O'Hare, 2001). Functional 

balance tests, such as the 'get up and go' test, or Berg balance scale, are used in both 

research and clinical settings (Mathias et al., 1986; berg, 1989; Browne and O'Hare, 

2001). A popular approach to the measurement of spontaneous postural sway in the 

laboratory is the use of force platform apparatus (Era et al., 1996; Kinney LaPier et al., 

1997). A force platform can measure static or dynamic standing balance by measuring 

changes in the position of the body's CoG over time. Thus, this and several other 

balance test methods, can identify and quantify the contribution of different aspect or 

components of postural control (Niam et al., 1999; Karlsson and Frykberg, 2000; 

Browne and O'Hare, 2001; Kejonen and Kauranen, 2002). 

1.2.1.1 Balance adaptation and ageing 

Although the effect of aging on balance has been studied extensively, its influence is 

complex and still unclear. Balance control systems that decline with age include lower 

level (e. g. stretch reflex) and automatic long latency (e. g. postural synergies) motor 

control mechanisms (Williams et. al. 1997). Higher level sensory integrative processes 

(processing visual, vestibular, and somatosensory information related to body position 

and stability) also deteriorate with advancing age (Manchester et al., 1989; Quoniam et 

al., 1995; Winter, 1995; Williams et al., 1997). 

Force platform investigations have shown that postural sway clearly increases 

(movement of the CoP and variability of sway) with advancing age (Teasdale et al., 

1991). Blaszczyk et al. (1993) commented that the postural stability of older peoples is 

altered as they are unable to estimate optimal standing position as precisely as the 

young. At the sensory integrative level, it has been shown that the elderly have great 

difficulty maintaining effective balance control when there is reduced and/or conflicting 

sensory (eg. diminished ankle proprioception or erroneous visual cues) information 
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(Manchester et a/., 1989; Winter, 1995). Thus, for example, visual information aids 

'fixing' of the body's orientation in space; when visual information is systematically 

reduced (in a darkened environment), postural sway can increase up to three-fold 

(Toupet et al., 1992). The proprioceptive system provides information also about the 

orientation and movement of the body in balance control, and has been demonstrated 

to deteriorate in the elderly (Lord et al., 1991; Era et al., 1996). The balance control 

systems of the elderly seem to depend on visual input more than on the other sensory 

information. Thus, older adults appear to remain within their limits of stability when 

either visual or somatosensory inputs are reduced, but begin to lose balance when both 

of these sensory inputs are reduced. Vestibular inputs have been shown to be the 

predominant source of sensory information available for balance control (Woollacott, 

1993; Blaszczyk et al., 2000). 

It is also known that the manner in which the body sways over the feet in standing 

differs between younger and older subjects. Younger individuals tend to sway at the 

ankle, when the support surface is perturbed (ankle strategy), whereas older adults 

sway about the hip (hip strategy). It is believed that due to neurophysiological 

limitations, older adults have more difficulty in generating sufficient ankle torque 

(Manchester et al., 1989; Blaszczyk et al., 2000; Kejonen and Kauranen, 2002). 

Furthermore, McClenaghan et al. (1995) and Williams et al. (1997) have suggested that 

aging affects the control of lateral stability (hip strategy) more when subjects have a 

history of balance problems (falls), compared to those who do not, or to young adults. 

Following muscle assessment studies of the control of standing balance with elderly 

people, Inglin and Woollacott (1988) and Lin and Woollacott (2002) also noted that the 

onset latencies of postural muscles (tibialis anterior and gastrocnemi) are substantially 

longer in older adults than in young adults. The authors suggested that, during ageing, 

the ankle dorsiflexor muscles are affected to a greater degree than the ankle 

platarflexors, and that larger increases in onset latency for voluntary movements occur 
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as aging proceeds. Using similar experimental approaches, Frank and Earl (1990) and 

Angulo-Kinzler et al. (1998) found that older subjects exhibited a greater variability in the 

organisation of their postural adjustments, with many subjects displaying differences in 

the ordering of muscle activation, tonic co-contraction of agonist and antagonist 

muscles, and/or activation of postural muscles following the activation of the voluntary 

muscle group. These ranges of postural adjustments were accompanied by longer 

reaction times and smaller centre of pressure displacements under the feet when 

subjects was asked to push or pull an object. 

Elderly people exposed to perturbations of balance on a force platform exhibit deficits in 

temporal sequencing and in the relative strength of distal (ankle) and proximal (hip) 

synergistic muscle activation (Woollacott et al., 1986). In addition, Quoniam et al. (1995) 

reported that older individuals tend to underestimate the state of disequilibrium of the 

body, which is translated into underestimation of the amplitude and/or velocity of the 

muscular responses produced (Quoniam et al., 1995). 

Although postural sway has been found to increase with age there is considerable 

variability among subjects, and its relation to functional ability is not clearly established 

(Winter, 1995). Several factors may affect balance in the elderly including the subjects' 

specific pathology. In addition, those with a relatively inactive lifestyle in general 

undergo greater degeneration of neural and/or musculoskeletal systems (Horak et al., 

1989). Reduced sensation, leg muscle weakness and increased reaction times appear 

to be important factors associated with postural instability in the elderly (Lord and 

Castell, 1994; Sherrington and Lord, 1997). 

1.5.3 Balance impairment following stroke 

Stroke invariably leads to postural imbalances in affected individuals (Winter, 1995). 

Several aspect of balance control in standing are compromised following stroke. Indeed, 

some patients have difficulties remaining upright (Partridge et a/., 1993), or can only 
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stand for short periods of time (Bohannon et al., 1993). For those who can stand, the 

posture is typically much less steady than that of healthy subjects, and is asymmetrical, 

with less weight being carried on the affected leg (Dettmann et al., 1987; Kirker et al., 

2000). Common balance-related deviations identifiable following stroke are greater 

sway trajectories and velocities during quiet standing (Lehmann et al., 1987; Lee et al., 

1988). In static standing tests of CoP measured with a force platform, stroke patients' 

weight is distributed asymmetrically, with a shift of the CoP towards the unaffected side 

(Shumway-Cook et al., 1988; Sackley, 1991); an increase in CoP variability is also 

evident (Shumway-Cook et al., 1988; Winstein et aL, 1989). In addition, stroke patients 

present with higher CoP variability than healthy elderly subjects (Winter, 1991b) with up 

to three-fold increases in velocity of sway (Briggs et al., 1989; Nadeau et al., 1999b; 

Walker et al., 2000). 

Differences between stroke patients and healthy subjects are also apparent during 

tasks that require active changes in the position of the CoP, when subjects are asked to 

lean the body (as far as possible) in specific directions, without altering their foot 

position. Thus, stroke patients are unable to move their CoP as far as healthy controls, 

in either the antero-posterior or lateral directions (Dettmann et al., 1987; Goldie et al., 

1996). Lee and colleagues (1988) found that the maximum sustainable reach in a-p and 

lateral directions was lower for hemiparetic stroke patients than for elderly, healthy 

subjects. 

Stroke patients also experienced more difficulty in relating stability when their balance 

was moved (pushed) towards the affected side compared to control subjects (Wing et 

al., 1993). In order to offset postural instability, healthy people can consciously alter 

muscle contraction. However, muscle onset latencies may be slowed or delayed 

following stroke, which affects such individual's ability to respond quickly to a sudden 

potential loss of balance and patients rely on the unaffected leg (Carr and Shepherd, 

1998a; Kirker et al., 2000). 

16 



Because of decreased equilibrium, stroke patients are more prone to falling than are 

healthy individuals. Indeed, falling has been reported as a major cause of morbidity, 

hospitalization and mortality in stroke patients (Jorgensen et al., 2002). Furthermore, 

stroke patients who experience a fall present later with poorer balance and physical 

function than stroke patients without falls (Teasell et al., 2002). The loss of balance, 

misjudgement of distances during movements, and foot dragging during walking, 

turning, and sit-to-stand were reported as causal factors in relation to falls (Hyndman et 

al., 2002). 

In recent years, several studies have addressed the effects of new (and current) 

rehabilitation techniques aimed at improving balance recovery after stroke (Carr and 

Shepherd, 2003). Specific therapy methods designed to retrain patients' standing 

balance after stroke have been evaluated, including the measurement of the effects of 

'compelled shoe lift', where mechanical lift under the unaffected foot was used to 

increase subjects weightbearing on the affected leg (Chaudhuri and Aruin, 2000). 

Another approach involves visual feedback balance training with computer assisted 

force plate equipment (Walker et al., 2000); both of these therapy methods have 

provided encouraging findings. The use of AFOs is a therapy method that may have 

beneficial actions on human standing balance following stroke (Lennon et al., 2001); 

(Leung and Moseley, 2003). However, the effects of these devices on balance in 

relation to stroke are not well-established (section 1.8). 

1.2.2 Gait 

Normal human walking is defined as "locomotion involving the use of the two legs, 

alternately, to provide both support and propulsion" (Whittle, 1998). Locomotion is the 

process of moving from one place to another. Gait is the means of achieving locomotive 

actions in relation to the nature of the task. Walking differs from running in that it 

involves continuous contact of at least one foot with the ground (Winter, 1991 a; Winter, 

1991b). 
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The major requirements for successful gait are: the production of a basic locomotor 

rhythm, support and propulsion of the body in the intended direction, dynamic balance 

control of the moving body, and the ability to adapt the movement to changing 

environmental demands and goals (Inglin and Woollacott, 1988). In this thesis, the 

terms gait/walking and ambulation/locomotion are used interchangeably. Gait is a cyclic 

process. A normal 'gait cycle' is shown diagrammatically in Figure 1.1. The gait cycle 

starts when, for example, the right heel touches the ground and ends when the heel of 

the same extremity makes re-contact with the ground. The gait cycle includes two 

phases, stance and swing. The stance phase, which constitutes 58 - 61 % of the normal 

gait cycle, is the interval in which the foot of the reference extremity is in contact with 

the ground (Whittle, 1998). The swing phase (42 - 39 % of the cycle) is that portion in 

which the reference extremity does not contact the ground. Stance percentages 

increase at slower walking velocities (Bohannon, 1997). During walking, the centre of 

gravity transfers outside the base support of the feet thereby creating a continuous state 

of imbalance. Placing the swinging foot ahead of and lateral to the centre of gravity 

prevents falling (Whittle, 1998). 

With healthy subjects, heel-strike (also called initial contact) occurs when the heel 

makes initial contact with ground. The foot-flat (loading response) phase starts 

immediately after heel-strike, when the foot fully contacts the ground. Mid stance begins 

when the centre of gravity passes directly over the weight-bearing lower extremity. Heel- 

off and toe-off (terminal stance or push-off) occur when the heel and toe leave the 

ground. The period between heel-off and toe-off is also known as pre swing. The swing 

phase starts as the toe of one extremity leaves the ground, and ends prior to the heel- 

strike of the same leg. Acceleration begins (initial swing) when the toe leaves the 

ground and ends when the respective leg is directly under the body (mid swing); 

deceleration occurs after the knee extends preparing itself for heel-strike (terminal 

swing) (Dannenbaum, 1982; Whittle, 1998). 
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1.2.2.1 Gait adaptation and ageing 

Gait velocity is maintained through adult life until the seventh decade; thereafter, gait 

velocity usually declines by 12-16 % per decade and maximal velocity declines by about 

20 % per decade. Older people have a reduced stride length, spending more time with 

both feet on the ground (double support), and less time with one foot on the ground 

(single support). Stance time (the proportion of gait cycle with the foot on the ground) 

increases in men from 59 % in 20 year olds, to 63 % in 70 year olds, which increases 

double support time from 18 % to 26 %. Kinematic changes have also been described 

associated with a shorter step length, including reduced pelvic rotation, hip 

flexion/extension and ankle plantar flexion (Judge et al., 1996). 

Several early physiological studies lead to proposals for the existence of a gait 

adaptation process in the elderly population, which was explained by a general 

decrease in muscle strength due to loss of motor neurons, muscle fibres and aerobic 

capacity (Lee and Lishman, 1976; Carr and Shepherd, 1998a). Studies by Bohannon 

(1997) have confirmed that gait speed is reduced typically in elderly people with lower 

extremity muscle strength. Elderly people adapt their gait in a variety of ways in order to 

meet the specific weakness. For example, the elderly tend to 'drop' their pelvis into an 

anterior-tilt during stance phase to compensate for weak hip extensors. Such posture 

also leads to hip flexion contracture (Baer and Smith, 2001). 

Muscle contraction promotes aerobic respiration, which can be monitored 

experimentally by measuring the amount of oxygen used by the muscle during a given 

task (Sulch et al., 2002). Standard tables for energy consumption during walking for a 

wide range of ages and gait velocities indicate that during walking at normal velocity, 

the elderly consume significantly more oxygen for a given distance than the young, even 

though the elderly group walk significantly slower that the young. Stride length averages 

1.5 m in younger subjects. Older adults display a shorter stride by increasing their 
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cadence (step/min) to a greater extent than younger adults. Thus, the decreased stride 

length most likely reflects instability or muscle weakness during single limb support of 

the opposite leg. People over 80 years of age have a 20% increase in both step width 

and double support time compared to people between 20 and 25 years old (Prince et 

al., 1997; Baer and Smith, 2001). 

1.2.2.2 Gait impairment following stroke 

Gait problems in patients with stroke are complex and include both neurophysiological 

and biomechanical factors. The most significant impairments in gait performance 

immediately following a stroke are diminished strength and inability to generate 

voluntary muscle contractions of normal magnitude in any muscle group (Bonita and 

Beaglehole, 1991). Inappropriate timing or grading of muscle activity is also likely to 

occur (Wooley, 2001; Leung and Moseley, 2003). Later, there may be further 

impairments, including spasticity and changes in the mechanical properties of muscle 

leading to abnormal extensibility of muscle groups that serve the hemiplegic side 

(Bonita and Beaglehole, 1991; Dietz, 1992). It is well established that most stroke 

survivors have continuing problems with gait (Chin et al., 1982; Wade et al., 1987; 

Jorgensen et al., 1995) and without appropriate rehabilitation, optimal functional 

recovery is rarely achieved (Bach-y-Rita, 1990; Kwakkel et al., 1999; Baer and Smith, 

2001). Further details of the primary effects of stroke on gait (muscle weakness, joint 

immobility, spasticity, sensory deficits, and motor dysfunction) are described below. 

i) Muscle strength 

Gait performance has been largely correlated with the strength of the more involved 

lower limb muscles in stroke. Muscle activity following stroke has been studied using a 

variety of methods. For example, electromyography (EMG) was established as a useful 

technique following the identification of decreased muscle activity on the paretic side 

(Hirschberg and Nathanson, 1952; Wooley, 2001). The Manual Muscle Test 
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(Demeurisse et al., 1980) is a system based on a graded scale from 0-5, which 

identifies gait deviation post-stroke when muscle strength grades of less than 4 are 

achieved (Demeurisse et al., 1980). Further muscle test methods include the 

dynamometer, which has been used effectively in muscle activity evaluation in gait 

analysis following stroke (Nadeau et aL, 1999b). 

Post-stroke, quadriceps and hamstring muscle activity has been shown to be prolonged 

at the end of the stance phase, and inadequate strength of the dorsiflexor muscle group 

results in the foot dropping passively into plantar flexion (Knutsson and Richards, 1979). 

If the weakness is mild, a heel strike still occurs, but there is inadequate strength to 

control the loading response. Consequently, the foot 'slaps' to the floor. Greater 

weakness deprives the patient of a heel strike and initial contact is made with a flat foot 

(Knutsson and Richards, 1979). These authors also described two other types of 

aberrant muscle activity specific to stroke walkers. One involves hyperactive stretch 

reflexes, which leads to premature activation of the calf muscles in early and mid stance 

phase which precludes the accomplishment of effective push-off by the plantarflexors. 

In this group, the ability to generate sufficient muscle force for stability is diminished. 

The other type of disorder involves excessive and stereotyped co-activation of several 

muscles groups, which disrupts the normal sequence of motor events. Thus, numerous 

muscle groups of stroke patients were found to co-activate abnormally during late swing 

or stance phase (Knutsson and Richards, 1979). Current knowledge based on a study 

of subjects (15 stroke patients, 12 healthy) walking on a treadmill, using footswitches 

and EMG analysis techniques, questioned whether abnormal function of the tibialis 

anterior muscle is the only factor leading to a dropped-foot, and it was hypothesized that 

inappropriate calf muscles activity may also contribute to the problem during heel-strike 

(Burridge et al., 2001). 

The gastrocnemius activity of stroke patients has been reported to peak during the 

initial contact of the foot with the ground, and then to change rapidly to low and uniform 
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levels during the mid- and late-stance phases of the gait cycle, whilst premature 

activation of the soleus results in the quadriceps working harder to restrain the rate of 

knee flexion (Hirschberg and Nathanson, 1952; Wooley, 2001). The strength of the 

quadriceps, hip extensors, and soleus are therefore the major determinants of an 

individual's weight acceptance capability. Hyperextension of the knee adds to its weight 

bearing stability and presents the most common substitution for quadriceps insufficiency 

(Shiavi et al., 1987b; Knutsson and Richards, 1979). Consistent dysphasic activity is 

evident in the rectus femoris during stance and swing phases (Pinzur et al., 1987). 

The level of activity needed to rest on the heel lever during the loading response is 

greater (grade 4 with Manual Muscle Test) than used to support the foot in swing (grade 

muscle 3). Inadequate dorsiflexion (< grade 3 with Manual Muscle Test) is critical during 

mid-swing, as this requires increased hip and knee flexion to avoid the toe dragging on 

the ground (Dannenbaum, 1982; Olney et al., 1994; Lamontagne et al., 2002). 

Consequently, all of the events that characterise mid-swing become disrupted 

(Demeurisse et al., 1980; Winter, 1991b). Circumduction and 'hip hiking' are alternate 

means of accommodating a passive drop foot when hip flexor muscles cannot meet the 

increased demand (Burdett et al., 1988). Nadeau at al. (1999b) identified different types 

of muscle activity when stroke subjects used the ankle plantarfiexor muscles (calf 

muscles) at maximal activity to minimise plantarflexion motion during late stance phase, 

and as noted, as simultaneous compensation for this, stronger hip flexors contraction in 

the early swing phase. 

Characteristics of the stance phase of hemiplegic gait include an equinovarus foot 

position that results in forefoot or flatfoot strikes during loading. Hyperextension of the 

knee in mid-stance is typical, with a forward lean of the trunk (Lamontagne et al., 2002). 

Difficulty when placing the hemiparetic leg in a trailing position during terminal stance 

allows the body weight to advance over the forefoot with a subsequent heel-rise. Often, 

the pelvis is retracted on the stance leg on the unaffected side, whereas the affected 
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side drops due to abductor weakness. Forefoot toe-off (push-off) is low or missing due 

to the muscle weakness, or reflective hyperactivity of the calf muscles in the pre-swing 

phase (Lamontagne et al., 2002). Common problems experienced during the swing 

phase include toe-drag, which impedes progression due to inadequate dorsiflexion, 

tibialis anterior paresis (Winter, 1991b; Richards et a/., 1993), and inappropriate foot 

placement, which is the result of incomplete knee extension and ankle dorsiflexion at 

the end of swing (Montgomery, 1987). These changes are reflected in a loss of 

functional mobility (Potter et al., 1995). Muscle weakness on the side most affected by 

stroke has been shown to increase overall activity on the unaffected side, which may 

exert a compensatory influence (Shiavi et al., 1987b; Nadeau et al., 1999b; Kirker et al., 

2000; Lamontagne et al., 2002). The rate of recovery of muscle activity impairment after 

stroke is greatest in the first few weeks and then slows after 2 to 3 months, although 

improvements have been identified up to two years after the initial insult (Turton et al., 

1996; Kirker et al., 2000). 

ii) Joint immobility 

Stroke often results in loss of joint mobility and the development of joint contractures. 

The quadriceps' force required to stabilise a flexed knee is proportional to the load on 

the femoral head and the angle of knee flexion (Olney et al., 1994). For each degree of 

flexion, the force required increases, on average, by 6% of the load on the femoral 

head. In a 5-degree position, the quadriceps force is 30 % of body weight, whilst in a 

30-degree position; the force increases to 210 % of body weight. Patients with adequate 

hip extensor and ankle plantar flexion muscle function can decrease the quadriceps 

force by locking the hip joint and leaning forward. By this means, the body weight is 

anterior to the knee and the stress on the knee joint and requirement for quadriceps 

force is reduced. However, the muscle work used to stabilise the hip and ankle is 

greater. Thus, stroke patients often cannot make such substitution (De Quervain et al., 

1996). 
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Stroke-mediated plantarflexion contracture interferes with normal tibial advancement 

during stance phase. Thus, a foot flat posture persists with the tibia locked in a 

backward angle due to ankle immobility (Evans et al., 1997). To advance over the limb, 

affected individuals rely on the level of accommodation available at their knee and hip. 

Knee hyperextension can move the body forward when the tibia advances insufficiently, 

the extent of which is determined by the natural range of the patient (Burdett et al., 

1988). Patients who do not have an adequate range turn to hip flexion to move their 

body weight forward. However, this increases the demands on the hip and back 

extensor muscles (Dannenbaum, 1982). 

Spasticity 

Spasticity is typified by hypertonicity, hyperreflexia and clonus, and is caused by 

pyramidal and extrapyramidal insult. In spasticity due to cerebral insult, tone is primarily 

in the antigravity muscles (extensor muscles) (Lamontagne et a/., 1997). In spinal 

spasticity, flexor muscle spasticity is often apparent. Both of these types of spasticity 

have been implicated in the occurrence of abnormal gait pattern characteristics in stroke 

patients (Knutsson and Richards, 1979; Shiavi et al., 1987a). 

Premature activation of stroke patients' ankle plantar flexor muscles (calf muscles) 

during stance phase is often accompanied by knee hyperextension and the patient may 

walk with a stiff leg. When dorsiflexion is present, it usually manifests as overactive 

anterior tibialis muscles producing doriflexion with excessive inversion (Knutsson and 

Richards, 1979; Shiavi et al., 1987b). In some patients, the clonic activation bursts in 

early and midstance phases interfere with the plantar flexor lengthening contraction and 

dorsiflexion movement at the ankle, resulting in knee hyperextension (Knutsson and 

Richards, 1979). Lamontagne et al. (2001) demonstrated an abnormal muscle response 

(spasticity) in the gastrocnemius muscles during stance phase, on the affected side, but 

not on the unaffected side. These researchers also identified reduced dorsiflexion 

during the pre-swing phase, which apparently was unrelated to the hyperreflexia and 

25 



accounted for by muscle weakness. However, it is likely that hyperactive muscles in the 

lengthening period of the plantarflexors in early stance phase perturbs the lower limbs' 

joints movements and compromises the efficiency of ankle push-off in late stance phase 

(Lamontagne et al., 2001). 

An individual with stroke has difficulty transferring body weight over the affected limb 

secondary to excessive plantarflexion. Quadriceps spasticity interferes with knee flexion 

movement during the pre-swing, which halts forward transference of the body weight. 

Patients usually shorten the step on the unaffected side and decrease single limb 

support phase on the affected side (Department of Health, 2001; Mauritz, 2002). 

iv) Sensory loss 

Loss of tactile and proprioceptive function following a stroke results in wide, irregular 

and uneven steps. Dysfunctional vestibular operation leads to unsteadiness during 

walking and for example an inability to descend stairs without support. When moving, 

inanimate objects often appear uneven, indicating that the vestibular system is unable 

to support proper ocular fixation during body motion (Patla, 1996). 

Pain and temperature sensation of stroke patients may also be impaired. However, the 

most frequent problems are evident in the discrimination and interpretation of 

information regarding movement, including perception of muscle force, texture and 

stereognosis (Knutsson and Richards, 1979). The effects of poor feedback from regions 

such as the foot can lead to, for example, collapse of the leg when stepping off a kerb 

and experience of such a problem can easily result in the loss of an affected subjects' 

confidence (Carr and Shepherd, 1998b). 

v) Motor dysfunction 

Biomechanical studies of gait kinematics, kinetics and muscle activation have been 

used to evaluate motor dysfunction in individuals after stroke. However, compared with 
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the large body of data-based studies of gait in healthy subjects, there are at present 

only a limited number of reports on walking performance of stroke patients. Earlier 

studies have concentrated mainly on temporal variables, and only recently has work 

focused on joint angle excursion, kinetics and mechanical power for clinical purposes. 

The ability to conduct these latter experiments coincides with the availability and ease 

of-use of modern computer technology (Wooley, 2001). 

One consistently reported difference between able-bodies subjects and individuals 

following stroke is in gait velocity (Lehmann et al., 1987; Jones and Barker, 1996; 

Kwakkel and Wagenaar, 2002). Subjects with hemiplegia and significantly reduced gait 

velocity typically exhibit decreased stride length, shorter stance phase and longer swing 

phase on the affected leg. In order to compensate for these changes, the stance/swing 

ratio for the unaffected leg shifts to an increased stance and decreased swing phase 

(von Schroeder et al., 1995; Evans et aL, 1997; Carr and Shepherd, 1998b). 

Biomechanical gait analyses of spatial (distance) and temporal (timing) factors have 

shown that stroke patients walk at less than half the speed of healthy adults, averaging 

0.62 m/s (37 m/min), compared with 1.36 m/s (82 m/min) for healthy adults (Turnbull et 

al., 1995; Witte and Carlsson, 1997). However, walking speed is critically dependent on 

the degree of recovery following stroke (Wade and Hewer, 1987; Potter et aL, 1995; De 

Quervain at al., 1996) and walking independence and distance (Bohannon et al., 1989; 

Friedman, 1990; Wagenaar and Beek, 1992). The distance over which gait ability has 

been studied varies considerably, with reports of analyses undertaken between 2-30 

metres (Friedman, 1990; Roth et al., 1997; Witte and Carlsson, 1997). Standardised 10- 

meter tests are the most favoured approach, for practical and safety reasons, although 

this distance is probably not representative for the entire community. 

Although most clinical studies of walking in patients following stroke have examined 

temporal measures, some have monitored joint angle excursions, kinetics and 

mechanical power. In general, these studies have shown that joint angular 
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displacements are decreased (Lehmann et al., 1987; Burdett et al., 1988) with evidence 

of reduced ankle dorsiflexion at initial foot contact (Dettmann et al., 1987; Patla et al., 

1990), and decreased knee flexion in swing and lack of knee flexion in stance phases 

(Lamontagne at al., 2002). In terms of decreased amplitude of hip extension in stance 

associated with decreased velocity, De Quervain et al. (1996) reported that the pattern 

of motion of the lower extremity on the affected side had a stronger association with the 

clinical severity of muscle weakness than with the degree of spasticity. The authors also 

noted a delay in the initiation of flexion of the hip during the pre-swing phase, whilst 

flexion of the hip and knee and dorsiflexion of the ankle progressed only slightly during 

the swing phase (Lamontagne et al., 2002). During the stance phase, there was 

decreased muscle effort and a coupling between flexion of the knee and dorsiflexion of 

the ankle. The duration of pre-swing was most prolonged for the patients who had the 

slowest gait velocities. The ankle, knee and hip power were reported to be abnormal 

during the increased stance phase with reduced swing phase ankle plantarfexion on the 

affected side of stroke patients (Olney et al., 1994; Wooley, 2001). 

Generally, for most disabled people who have had a stroke, joint angular displacements 

are decreased. Thus, there are reports of decreased ankle dorsiflexion at initial foot 

contact (Lehmann et a/., 1987), lack of knee flexion during stance phase (Dettmann et 

aL, 1987) and reduced ankle and knee flexion in swing phase (Patla et al., 1990; Olney 

et aL, 1991; Olney et al., 1994; Lamontagne et al., 2002). It was also reported that 

stroke patients possessed significantly less hip extension at mid-stance and push-off 

phases than healthy subjects (Lehmann et al., 1987; Olney and Richards, 1996). De 

Quervain et al. (1996) described a delay in initiation of flexion of the hip during pre- 

swing phase, and flexion of the hip and knee, and dorsiflexion of the ankle, which 

progressed only slightly during swing phase causing toe-drag. These authors also noted 

that the duration of pre-swing was extended in the subjects who had the slowest gait 

velocities. 
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Abnormal co-activation of leg muscles appears to be a characteristic of stroke patients' 

gait that is thought to alter the biomechanical characteristics of the limbs and their 

capacity for absorbing and storing energy (Blaszczyk et al., 2000). Excessive 

coactivation of antagonist muscles, which results in lower moments, may also decrease 

plantarfiexior force production during gait (Winter, 1991b). Lamontagne et al. (2002) 

found that the swing phase reduced plantarflexion moment was associated with 

increased plantarflexion passive stiffness. The muscle power patterns at the three lower 

limb joints of stroke subjects (affected side) have a similar to normal shape with 

reduced amplitude (Evans et al., 1997), and the energy expenditure of walking was 

reported to be higher for stroke subjects than for able-bodied subjects (Hansen et al., 

1988). 

Increased gait velocity is indicative of improved performance. Many studies support the 

view that gait velocity reflects both functional and physiological changes in individuals 

following stroke (Olney and Richards, 1996; 2001; Baer and Smith, 2001). With an 

increase in velocity, Olney et al., (1997) reported a tendency towards greater hip 

extension at the end of stance and increased work by the hip flexors at the initiation of 

swing, which are both critical components of an effective gait pattern. In a subsequent 

study, a strong relationship was found between the gait velocity and the maximum hip 

flexion moment (Olney et al., 1994). Bohannon (Bohannon et aL, 1989; Bohannon et al., 

1991) also reported a positive relationship between the velocity of walking and the 

strength of the affected lower limb in stroke patients. 

1.3 Disability: definition and classification 

The principal system used to categorize disability is the International Classification of 

Impairment, Disabilities and Handicap (ICIDH) devised by the WHO (WHO, 1980). This 

system incorporates the concepts of disease, impairment, disability and handicap as a 

framework for the study of disability. In this context, disease represents changes that 

occur at the organ level (e. g. infection, inflammation, bone fractures), and changes in 
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body structure and function. Impairment includes loss or abnormality of anatomical, 

physiological, mental or emotional capacity. By definition, disease leads to impairment 

because it causes physical damage that leads to pathology, which interferes with the 

anatomy or the normal physiology. Impairment however, may exist in the absence of 

pathology, for example, when it is due to a congenital deformation. Disability occurs at 

the personal level and is a restriction in or lack of ability to perform common activities in 

the manner, or within predefined limits, deemed 'normal'. According to the ICIDH 

system, the inability to transfer between surfaces, ambulate, or climb stairs qualifies as 

a disability. Furthermore, any limitations in movements that result from impairments are 

categorized as a disability. The impact of a handicap registers on the social rather than 

the personal scale. Thus, a social limitation is placed on a person who is physically 

unable to navigate the environment without assistive devices (Lin and Woollacott, 

2002). 

Recently, a more comprehensive and revised version of the ICIDH has been published 

(WHO, 2001). This is known as the International Classification of Functioning, Disability 

and Health, or ICF. Key features of this document, which incorporates developments 

from the intervening two decades of disability-related research, are the assignment of 

functional and structural domains to body systems in relation to the impact of different 

health states on activity and participation within society. The ICF also replaces earlier 

definitions of disability and handicap with the concepts of 'capacity' and 'performance', 

and applies these constructs to a single list of activity and participation domains (task or 

action). Capacity refers to an individual's ability to execute a task or action in a uniform 

environment, assuming motivation to perform the task, e. g. ability to walk 100 metres on 

a level, well-illuminated, and non-slippery surface. Performance describes how an 

individual performs an action within their current environment: The difference between 

current capacity and performance reflects the impact of the actual environment (and 
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possibly motivation) relative to the uniform environment. It is possible to measure an 

individual's performance and capacity, both with and without personal aids. 

1.4 Orthotic intervention 

It is well known that mobilization can improve physical recovery, reduce the likelihood of 

a further stroke and increase the level of capacity in our daily life. Therefore, restoration 

of mobility is crucial for independent living and balance and gait training are an essential 

part of neurological rehabilitation. The use of ankle-foot orthoses as supportive devices 

for standing balance and gait deficit has been a component of rehabilitation since 1950. 

However, early orthoses were most often designed for specific diseases without taking 

into consideration the individual requirements of the patient (Montgomery and Inaba, 

1969; Perry, 1969; de Vries, 1991; Aisen, 1992). Although designs of orthoses have 

since been introduced which do take into account specific patient requirements, the use 

of orthoses in neurological rehabilitation is often restricted or ignored, and non-assistive 

device therapies are, in general, the preferred approach (Bobath, 1990; Carr and 

Shepherd, 1998b; Davidson and Waters, 2000; Lennon et al., 2001; Lennon, 2001). 

Although the molecular and cellular bases of the recovery processes described earlier 

are, at present, poorly understood, nowadays there is better knowledge of the 

relationships between neural and biomechanical mechanisms underlying the acquisition 

of motor skills (Dietz, 1992; Bowker, 1993; Leonard, 1995). There is also renewed 

interest in theories proposed to explain how brain reorganisation might be promoted or 

modified post-stroke via orthotic intervention. Progress in these areas, together with 

novel developments in materials science, have important implications for the clinical 

application of orthoses in stroke rehabilitation (Chu, 2001). Novel designs of orthoses 

are believed to encourage the therapeutic process of ambulation by neurophysiological 

and biomechanical actions (Hylton, 1990; Mueller et al., 1991). These devices are the 

main focus of the original research described in this thesis. 
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1.4.1 Ankle-foot orthoses 

Ankle-foot orthoses (AFOs) or below-knee casts have been recommended to lessen 

gait deviations and assist functional ability in patients with neurological deficits (Reding 

and McDowell, 1987; Condie and Condie, 1995). Early descriptions of these devices 

emphasised their role in the management of gait abnormalities primarily for patients with 

foot drop and ankle instability (Perry, 1969; Lehmann et al., 1970) and designs were 

based entirely on biomechanical principles, with emphasis on force systems that act 

upon body systems for corrective, assistive, substitution and protective functions (Aisen, 

1992). Ankle-foot orthoses primarily control motion around the ankle via a three-point 

force system achieved through contact of the calf section and the footbase of the 

orthosis with the limb (Lehmann, 1979; Lehmann et al., 1987; Aisen, 1992; Bowker, 

1993; Condie and Meadows, 1993). This three-point pressure system (which lies in the 

saggital plane) is designed to limit plantarflexion, which prevents foot slap at initial 

contact due to inadequate muscle control of ankle flexion and ensures clearance during 

swing. Depending on their planned function, ankle-foot orthoses may also incorporate 

one or more of the following three point force systems. Firstly, a three point that lies in 

the frontal plane and attempts to stabilise the subtalar joint, which in theory prevents 

calcaneal varus. Secondly a three-point pressure system which lies in the transverse 

plane and which blocks forefoot adduction and stabilises the midtarsal joint with 

assistance from the shoe. And finally a three-point pressure system which lies in the 

frontal and saggital planes and is designed to prevent the talus from translating 

anteriorly within the ankle ligament lock through circumferential containment. This 

pressure system directs one force posteriorly towards the calf, a second force towards 

the plantar surface of the foot and a third opposing force anteriorly towards the talus 

(Condie and Meadows, 1993). 

Traditionally, AFOs have been constructed from metal and leather and attached to the 

patient's shoe (conventional AFOs). This type of orthosis may have double or single 
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uprights, with a calf band and possibly a springmechanism ankle joint. Such bracing 

apparently provides resistance that alleviates ankle varus (Aisen, 1992; Condie and 

Meadows, 1993) during initial contact and lessens spasticity and contracture, in addition 

to providing better knee stability when walking (Perry, 1969; Lehmann et al., 1987). 

Lehmann et al. (1987) carried out a biomechanical assessment of the gait pattern of 

seven stroke subjects using two different types of conventional AFO (with 5° dorsiflexion 

and 5° plantarflexion stops). The results were compared with data recorded with the 

subjects wearing their own shoes. It was found that the AFO with a 5° dorsiflexion stop 

increased gait velocity and the knee flexion moment compared to the AFO with 5° 

plantarflexion stop and shoe. The authors also noted that this AFO provided increased 

heel strike duration, but the push-off phase was longer with the plantarflexion AFO. Both 

AFOs shortened the mid-stance phase compared to shoes. The authors suggested that 

the main goals of AFOs were to provide adequate medio-lateral stability during the heel- 

strike and stance phase and sufficient toe clearance during swing phase and to 

increase knee stability, in order to approximate a normal gait pattern whilst reducing 

energy expenditure (Lehmann et al., 1987; Lehmann, 1993). 

The Valens calliper is a conventional AFO constructed from a single rigid upright, with a 

dorsiflexion-assisted spring mechanism on the lateral and medial malleollae level, with a 

plantarflexion stop. Using this type of orthosis, Hesse et al. (1996) noted positive effects 

on several gait parameters when assessing 19 stroke subjects with an 'infotronic force' 

shoe system (which measures vertical force trajectory under the foot) and stopwatch. 

An increased gait velocity, stride length, and cadence were evident with the callipers 

compared to shoes alone and barefoot. The authors also reported an increase in the 

gait line, which was apparent for both the affected and unaffected foot. No changes 

were identified in stance and swing symmetries or double stance duration. However, 

more recent work reported by this research group (Hesse et a/., 1999) using the same 

splints failed to identify any changes in gait velocity, stride length or cadence. Instead, 
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this later work revealed that subjects' relative single-stance time and terminal double 

support duration was increased with use of the orthosis. In addition, swing symmetry 

was improved and the gait line of the affected leg was increased; greater dorsiflexion 

during stance phase and less plantar-flexion during swing phase were also noted 

(Hesse et al., 1999). 

With the development of high temperature plastics, orthotists have recently fabricated 

more lightweight and cosmetic ankle-foot orthoses. The first thermoplastic models (the 

most commonly used material is polypropylene) introduced in the late 1960s were of 

rigid design and were fitted inside the shoe (Sarno and Lehneis, 1971). Polypropylene 

AFOs are also available in a wide variety of designs, offering many choices of 

mechanical features to suit an individual's requirements. This is achieved by varying 

material thickness, alterations in the ankle trim-line and adjustment of the angle at the 

ankle region of the device (Lehmann, 1993; Condie and Meadows, 1993). Using a 

cross-over experimental design, Mojica et al. (1988) assessed eight stroke patients 

walking with and without a plastic AFO. This study identified beneficial effects with an 

increased maximum gait velocity, stride length, and cadence when using AFOs. In 

addition, the use of the orthoses reduced the lateral sway of the centre of foot pressure, 

and decreased body sway of standing balance. In a single case study, Butler et al. 

(1997) compared the effects of a plastic AFO with barefoot walking on a hemiplegic 

subject with traumatic head injury. Positive effects of the AFO were described, with 

reduced knee pain, a 67% reduction in the maximum extending moment of the affected 

knee at 1 year, a 42% reduction of early heel lift on the left at 1 year, together with an 

increase in single standing balance on the affected leg. 

The effects of polypropylene AFOs have also been compared with other therapy 

methods. For example, Beckerman et al. (1996) measured the efficacy of an AFO with 

a 5° dorsiflexion stop and tibialis nerve blocking on the gait of stroke subjects. In this 

study, sixty subjects were allocated to four experimental and placebo groups. The 
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outcome measures were gait velocity measured using an infra-red beam watch, and 

overall walking ability measured by a self-assessment scale known as the 'Sickness 

Impact Profile (SIP). The main outcome of this study was that there were no beneficial 

effects of the AFO on stroke subjects' walking ability (Beckerman et al., 1996). 

A very different type of AFO, called an air cast AFO (or air stirrup brace), has also used 

in the rehabilitation of the stroke patient, and has been recommended as a temporary 

measure during the early stages of stroke rehabilitation (Burdett et al., 1988). This 

prefabricated device consists of inflatable air cells positioned on both sides of the 

malleolus and extending midway up the lower leg, and is used mainly for patients who 

require only minimal support for ankle medio-lateral instability (Hayes, 1983; Burdett et 

al., 1988). Burdett et al. (1988) reported findings of studies that compared the effects of 

this type of orthosis with those of a polypropylene AFO and a conventional AFO on 

several spatio-temporal and joint kinematics variables of 19 stroke subjects. Use of the 

air stirrup brace was more effective in reducing the foot inversion at the heel strike and 

afforded less angular changes in joint motions than either the polypropylene AFO or 

conventional AFO. The conventional AFO provided less plantarflexion at heel strike, 

whereas both braces reduced plantarflexion during the swing phase. No changes in joint 

motion of the ankle, knee and hip were evident under the three bracing conditions. In 

addition, the study discerned no effects of the devices on gait velocity, stride length, 

stride time, or the base of support (Burdett et al., 1988). 

The development of polypropylene AFOs continued actively and later devices have 

been manufactured to many designs, which may be broadly classified as either rigid or 

flexible (articulated AFO), depending on whether they are designed to permit or restrict 

flexion of the ankle (Toller et a/., 1989; Aisen, 1992). The articulated AFO (sometimes 

referred to as a hinged AFO) is constructed using polypropylene and incorporates an 

ankle joint (metal) situated close to the malleolus. This design aims to block ankle 

plantarflexion, whilst permitting free ankle dorsiflexion during the gait cycle. 
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In a study of the articulated AFO in stroke subjects carried out by Tyson et al. (1998) 

four subjects were tested using the splint and without it. The results indicated an 

increased gait velocity and lengthened strides and steps when using the orhtosis. In 

addition, some improvement was seen in gait symmetry. These positive findings 

supported the subjects' positive opinion of orthses, although half of them felt that this 

splint did not look good. In a more recent and comprehensive study, Tyson and 

Thornton (2001) assessed the effects of an articulated AFO on 25 stroke subjects using 

a with/without experimental design. The study involved objective gait evaluation of 

spatio-temporal variables monitored when subjects walked on a paper walkway, with 

ink-soaked stickers located at the apex of their heels. Subjects' opinions on the effects 

of orthosis were ascertained via face-to-face questionnaire. It was concluded that the 

articulated AFOs improved gait velocity, stride length and cadence and that, overall, 

there was an improvement in functional ability. Subjects' own opinions indicated that the 

orthoses was comfortable and easy to put on; they also expressed reservations about 

the appearance of the device, but overall felt that the benefits outweighed this factor. 

So-called 'anterior' AFOs, which have been used and tested primarily in far eastern 

countries, are constructed with polypropylene material that supports the ankle more 

firmly on the anterior side of the lower leg and foot. Wong et al. (1992) assessed the 

anterior AFO with 5°-10° dorsiflexion stops in comparison to a conventional 

polypropylene AFO model (with support provided at the ankle, over the back of the 

lower leg, and under the foot). For the six chronic stroke patients studied, no differences 

in gait or balance parameters were evident between the two devices. 

In another study, Chen et al. (1999) described the effects of an anterior AFO on 24 

long-term stroke patients' static and dynamic standing balance. Using a crossover 

study, with and without AFOs, standing balance was assessed via a force platform. The 

study revealed positive effects of the AFO on lateral weight shifting and weight bearing 

on the affected leg, when subjects' weight was shifted to that side. It was apparent that 
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postural sway and symmetry and anterior-posterior weight shifting abilities were 

unaffected by the orthosis. 

Very recently, Teasell et aL (2001) have assessed the functional details of AFO users 

and non-users (type of AFO was not specified), retrospectively following their discharge 

from hospital. This work indicated that 93 patients from 423 (22%), who were 

discharged with an AFO over a 20 year period, were associated with a significantly 

lower admission and discharge scores of disability (FIM instrument). In addition, motor 

recovery (the Chedoke-McMaster, Stroke Impairment Inventory), and balance function 

(Berg Balance Scale) tests provided lower scores for the AFOs users compared to 

those without the orthoses. 

As indicated earlier, alignment variations at one segment of the body during gait can 

alter the movement patterns throughout the entire lower limb and trunk of stroke 

subjects (section 1.6.5). One of the goals of orthotic prescription should be to address 

this relationship between body segments. This objective represents a departure from a 

more traditional approach to orthotic prescription that focuses on a specific single-joint 

problem, and places less emphasis on the ramifications of this treatment for whole-body 

upright function while moving (Hylton, 1990; Mueller et al., 1991). 

It is clear from the descriptions above that several aspects of balance and gait have 

been tested in relation to AFO use and stroke patients, and some of this work has 

provided encouraging findings. However, most of this research has been limited to 

prospective single-case studies, or small group studies (cross-over designs/ within- 

subjects designs). Thus, the precise mechanism of action and suitability of these 

devices for stroke patient rehabilitation is essentially uncharacterised. 

1.4.2 Dynamic Ankle-Foot Orthoses 

The development of orthotic design continues and, recently, a new concept has been 

developed based on a modified AFO. These novel devices are known as Dynamic 
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Ankle-Foot Orthoses (DAFO). The DAFO is a low, supra-malleolar splint, trimmed 

above the malleoli (Figure 1.2), which supports foot alignment and ankle supination- 

pronation whilst providing minimal restriction to ankle joint flexion-extension. The 

original research reported in this thesis concerns studies that aimed to determine if 

DAFOs can improve patients' balance and gait, and whether the use of these devices 

contributes to ambulatory and functional improvement during the early recovery period 

following stroke. 

Although DAFOs are supportive, their design incorporates sufficient flexibility to facilitate 

tri-planar movement about the ankle and subtalar joint, making them suitable as an 

adjunct to the development of movement control (Hylton, 1990). DAFOs are constructed 

in a similar way to rigid AFOs, using thermoplastic materials, but the polypropylene used 

in their construction is very thin, allowing greater flexibility than traditional AFOs. The 

splint also optimises subtalar joint alignment through its supramalleolar design. It is 

trimmed anteriorly and posteriorly to allow maximal ankle motion in dorsiflexion and 

plantarflexion. Its design also differs from that of a rigid AFO in that a DAFO 

incorporates a functional, custom-molded insole, which precisely follows the 

patient'sdynamic arches (medial, lateral and anterior) under the foot (Figure 1.3). 

Theoretically, this insole design exerts neurophysiological actions via biomechanical 

constraints on the wearer's locomotor capacity. The toes are supported in the horizontal 

position to facilitate metatarsal alignment, and a 'cup' supports the heel and provides 

support to the subtalar joint. The metatarsal head area is deepened to support the 

forefoot in a neutral position. When a metatarsal head is positioned 3-5 mm lower than 

its proximal region, the forefoot is abducted and the subtalar joint is pronated, to 

enhance an improved dynamic balance response in single limb support. Similarly, the 

neutral position helps to provide optimal foot function and reproduce normal 

biomechanical function during ambulation (McPoil and Hunt, 1995). 
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Figure 1.2 Dynamic Ankle-Foot orthoses design 
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1.4.2.1 Biomechanical and neurophysiological principles of DAFOs 

To reiterate, in order to enable upright standing and walking, the body requires 

continuous sensory information from the vestibular apparatus and the visual and 

proprioceptive systems (including exteroreceptors in the sole of the foot). This 

information is relayed to the CNS, where processing occurs to determine the spatial 

position of the body (sections 1.4.1 and 1.4.2). Efferent adjustments are constantly 

made to modify muscle activity to maintain the body's dynamic equilibrium (Bach-y-Rita, 

1981; Cohen, 1999). In stroke patients, both the pathways involved in the interpretation 

of sensory information and motor controls are often disturbed (Shumway-Cook and 

Woollacott, 1995). Rehabilitation with DAFOs may improve both impaired mechanisms. 

Thus, a fundamental principle of DAFOs is that their design uses biomechanical 

principles to modify the forces and movements at the position of, and therefore the 

ankle-foot complex, and thus to modify the effects of external forces on more proximal 

joints (Bowker, 1993), and neurophysiological facilitation and inhibition through somato- 

sensory tracts. 

It is postulated that DAFOs support the forefoot and subtalar joints in their neutral 

alignments and give total under-foot contact to permit more consistent foot positioning, 

thus assisting improved dynamic control throughout the joints of the lower limb and 

trunk (Harris and Riffle, 1986; Rosamond et al., 1999). Furthermore, during active 

movement, the orthosis may permit neurophysiological facilitation/inhibition by the use 

of proprioceptive feedback, through the neutral joint position (Hylton, 1990), and tactile 

information via cutaneous contact (Feuerbach et al., 1994). Both of these factors may 

stimulate normal muscle activity and gait pattern. DAFOs endeavour to achieve these 

effects by individual orthotic design, material selection and precise biomechanical 

adjustment. 

41 



1.4.2.2 The use of DAFOs with adult neurological patients 

Clinical studies of DAFOs were carried out predominantly in the USA during the early 

1980s for children with cerebral palsy (Cusick and Sussman, 1982; Duncan and Mott, 

1983). Positive clinical observations from these studies have prompted experimental 

evaluation of the orthoses (Harris and Riffle, 1986; Hinderer et al., 1988; Overby et al., 

1991; Curtis, 1995; Kuoppamaki-Herzig and Kalbe, 1995; Crenshaw et al., 2000; 

Romkes and Brunner, 2002). 

Over past the ten years, the effect of DAFOs on the gait of stroke patients has been 

examined using single-case studies. Diamond and Ottenbacher (1990) assessed a 

thirty-two-year-old stroke patient who had suffered a right side hemiparesis ten months 

prior to the study. Stride characteristics of gait were assessed under three conditions; 

barefoot, using a polypropylene AFO, and using a DAFO. These conditions were 

randomised during twelve measurement sessions over a period of one month. It was 

observed that the subject showed significant improvements in walking velocity, step 

length and stance time of the hemiparetic limb when using the DAFO, compared to 

walking with an AFO, or barefoot. 

Mueller et al. (1991) tested a 55-year-old right side hemiplegic male wearing normal 

shoes or a DAFO, or walking barefoot. An AB-BA single-case design was used and 

foot-loading data were collected using a pressure-sensitive mat. The subject wore the 

orthosis for fourteen days between the tests. The results indicated that use of a DAFO 

gave greater foot stability during stance. Also total foot contact areas times were 

increased, which it was speculated, reflected better sensory input through the foot. Jain 

et al. (1995) evaluated the effects of a DAFO on the gait, trunk movement, and upper 

extremity function of an adult patient with dystonia. The data from gait analyses were 

assessed visually from video pictures and the subject's satisfaction monitored via 

interview. This study indicated that the orthosis decreased pain and also improved the 

42 



initial contact of the foot and decreased lateral trunk flexion. Improved left upper 

extremity function was also evidenced by the ability to carry an object in the left hand 

during gait. 

Wolley et a/. (1996) studied balance and gait in five subjects, with a mean age of 48 

years, six to twelve months after a stroke or traumatic brain injury. In this study, subjects 

were randomly fitted with an AFO or DAFO that was worn for four months, after which 

they received the alternative orthosis for four months. The standing balance was tested 

using a force platform, and joint kinematics, kinetics and spatio-temporal data were 

recorded with two cameras in the frontal and sagittal planes. The left and right side of 

the subjects' gait were recorded separately. The authors reported no statistically 

significant differences in walking ability between barefoot, or when using the AFO or 

DAFO. However, it was suggested that DAFOs might have a greater impact with more 

severely disabled subjects, for whom it may be easier to identify improvement effects. 

More recently, Deli et al. (1997) followed three subjects in singe-case studies in which 

subjects used DAFOs or AFOs, or walked barefoot, in randomly assigned order. The 

gait stride characteristics were recorded using foot-switches and time-distance 

parameters were analysed. The results showed that gait velocity, stride length, cadence 

and single-limb support were increased using DAFOs compared to the other conditions. 

The authors concluded that the results indicated more symmetrical gait using DAFOs 

with these three stroke patients. 

It is clear that from the information above that the role of DAFOs in the therapy of adult 

neurologically impaired patients is also only in the early stages of objective evaluation. 

Thus, whilst some studies have demonstrated positive application of DAFOs via single- 

case studies, their applicability, or otherwise, to stroke patient rehabilitation more 

generally has not been properly investigated. During recent years, DAFOs have been 

introduced in several European countries, but their use in stroke patient rehabilitation 

has been limited. This is probably because the decision to use orthoses is often made 
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without full knowledge of their benefits and limitations (Aisen, 1992), or because 

neurological rehabilitation is often based on therapy without supportive devices (Sackley 

and Lincoln, 1996; Lennon et al., 2001). Given the debilitating effects of stroke on 

patients' mobility, further research in the field of orthotic intervention is needed urgently. 

1.5 Rationale, hypotheses and aims of the study 

1.5.1 Rationale 

The introduction to this thesis described the impact of CVA on society and how mobility 

problems are a major influence on the quality of life following stroke. Although advances 

in drug treatments designed to minimize the clinical outcome of stroke are being made, 

at present there are no established pharmacological therapies. Effective neurological 

rehabilitation is therefore central to improving stroke patients' quality of life and 

functional independence. There is thus an urgent need for innovative approaches to the 

rehabilitation of stroke patients to meet the projected rise in the number of chronically 

disabled. 

Whilst traditionally stroke rehabilitation, particularly in the UK, has focused on therapy 

without supportive devices, conventional AFOs are now sometimes used in an attempt 

to correct patients' mobility problems. These orthoses are presumed to limit ankle 

dorsiflexion, thereby supporting the ankle throughout the gait cycle. Recently, more 

sophisticated DAFOs, which exploit developments in fabrication techniques using more 

flexible materials, have also been introduced into some centres. There are preliminary 

indications that DAFOs might improve some spatio-temporal parameters of stroke 

patients' gait through their flexible and light construction. In addition, it has been 

suggested that the custom-moulded insole feature of DAFOs could provide beneficial 

proprioceptive feedback, as well as supportive control of the foot and ankle. However, 

most of the evidence for these ideas is circumstantial, being based upon limited single- 

case studies on less-severely disabled subjects with minimal gait deviation. 
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There have been no detailed clinical studies of how DAFOs influence lower limb 

movements during gait and standing. Thus, the efficacy and mode of action of these 

devices is poorly understood. Recent advances in knowledge of sensory/motor control 

support the theory that biomechanical and neurophysiological factors might be involved 

when using DAFOs to assist gait. As stroke is one of the most common and debilitating 

neurological conditions, which places a major burden on health resources world-wide, 

there is a great need to gain a better understanding of orthotic intervention involving 

DAFOs in stroke rehabilitation. 

1.5.2 Working hypotheses 

The points outlined above (section 1.5.1) can be formulated into three related 

hypotheses, the testing of which forms the basis for the original experimental studies 

described in this thesis. 

1. DAFOs improve motor behaviour after stroke involving the acquisition of 

standing balance compared with using shoes; 

2. DAFOs also improve motor behaviour after stroke involving the acquisition of 

gait performance compared with using shoes; 

3. The users' subjective opinions of DAFOs support the findings of DAFOs ability to 

modify human performance such that DAFOs are beneficial when used as a part 

of rehabilitation management for stroke patients. 

1.5.3 Aims of the research 

The purpose of the research was to examine changes in the balance and gait of stroke 

patients associated with the use of this dynamic type of lower limb orthosis. 

Specifically, the work aimed to: 
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1. Examine, over a three months testing period, whether the use of a DAFO 

changes standing balance (assessed via the centre of pressure position and 

horizontal force magnitude) after stroke compared to using casual shoes; 

2. Investigate whether using a DAFO alters the spatio-temporal parameters 

(velocity, stride length, step length, cadence, stance phase, single stance 

phase) of gait compared to casual shoes; 

3. Assess whether using a DAFO alters the kinematic parameters (linear/angular 

displacement of the ankle, knee and hip joints, and segmental angular displace- 

ment/velocities of the foot, shank, thigh and pelvis) of gait after stroke compared 

to casual shoes; 

4. Determine whether stroke subjects' opinions of DAFO use via subjective 

questionaire assessment supports the notion of beneficial effects of the device. 
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2 METHODS 

As DAFOs are a relatively new orthotic approach, there are no established procedures 

for studying their application to stroke patients. In addition, the biomechanical and 

neurophysiological relationships between motor performance and different rehabilitation 

methods are, at present, poorly understood. The original research undertaken here 

used experimental designs adapted from limited published studies using earlier types of 

orthotic intervention (section 1.7) and better documented methods for the general study 

of balance and gait parameters in stroke patients and healthy elderly adults (section 

1.6). The work involved a randomised and controlled clinical trial designed to examine 

the effects of DAFOs on specific balance and gait characteristics of stroke subjects. In 

order to generate a comparative database, separate studies were made of healthy 

subjects' gait performance. The main methods used were biomechanical, and utilised a 

force platform and three-dimensional (3-D) movement analysis. In addition, stroke 

subjects' functional abilities during daily living were assessed via established clinical 

methods and by the subjects' own opinion of the DAFO using open-question interview. 

The research was broadly separated into four phases, consisting of subject recruitment, 

pilot studies, method reliability assessments and the main testing trials. The subject 

recruitment phase utilised clinical information that enabled selection of appropriate 

stroke patients based on specific criteria in relation to disability levels. The pilot phase 

involved protocol and method testing with a limited number of stroke patients and 

healthy subjects. This work was done to allow development of the experimental 

methods and design, and to ensure that the subject selection and testing procedures 

were practical for clinical purposes. Thus, as most of the original research reported in 

this thesis involved studying severely disabled stroke subjects, at sub-acute stages of 

their rehabilitation, it was essential to firstly obtain a working knowledge of how such 

individuals could cope with potentially rigorous testing protocols in the gait laboratory. 

In addition to providing general information on research practicalities, it was predicted 
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that the pilot studies would 1) clarify the procedures and objectivity of the subject 

inclusion and exclusion criteria, 2) indicate the timescales required for fabrication of 

orthoses, 3) enable the author to develop proficiency in performing the experimental 

procedures, and 4) provide preliminary data on how DAFOs affect stroke patients' 

balance and gait. Consequently, these studies were undertaken during the early part of 

the subject recruitment phase. Assessments of method reliability were carried out on a 

regular basis throughout the duration of the research. The main phase consisted of 

balance, gait studies and subjective feedbakc on all of the recruited subjects, using 

methods that were appropriately modified from the findings of the pilot studies, and 

functional assessments. 

It should be noted that whilst the pilot work did highlight aspects of the research design 

that required modification, overall, the protocols planned for the work were found to be 

entirely appropriate, requiring only minor changes. In some cases, changes were made 

simply because of the availability of newer and more modern instrumentation. For this 

reason, and for clarity, this chapter describes the definitive methods used for subject 

recruitment, and for the functional, balance and gait assessments; details of the pilot 

study, including methods, protocol changes implemented, and findings, are given in 

Appendix I. 

All experimental procedures and measurements were conducted in a newly built gait 

laboratory facility within the School of Health Care Professions at the University of 

Salford. This laboratory is equipped with state-of-the-art instruments designed 

specifically for quantitative measurement of human motor performance. The overall 

design of the research is summarised in Figure 2.1. 

2.1 Subject recruitment 

Stroke patients admitted for rehabilitation to the Stroke Unit of the Salford Royal 

Hospitals NHS Trust (Ladywell and Hope Hospitals) were recruited for study. This 
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establishment is the main rehabilitation unit for acute CVA patients in the North-West of 

England. For this research, patients admitted over a two and a half year period were 

considered. Patient recruitment involved detailed clinical assessment and criteria 

evaluation before informed consent was sought from potential subjects. 

2.1.1 Clinical assessment 

In order to identify possible test subjects, the first stage of the recruitment process 

involved attending weekly ward rounds in the Stroke Unit, and consultation with senior 

medical staff. Multi-professional rehabilitation meetings specific for each newly admitted 

patient were also attended to obtain further information on potential subjects' medical 

conditions and mobility problems. The rehabilitation progress for each patient was then 

followed via weekly communication with the senior nurses and therapists in the Stroke 

Unit. After discharge from the Stroke Unit, arrangements were made for potential 

subjects to visit the Gait Laboratory for further assessment of their mobility and 

recovery. Where appropriate, a further meeting was arranged between the patients, 

their carers and the author, to determine willingness to be involved in the research. 

The next stage of subject recruitment consisted of clinical assessment to provide a 

preliminary and standardized description of patients' mobility. The results were used to 

clarify inclusion criteria regarding the level of gait impairment and disability (described 

later) and to ensure that the patients were able to participate in testing trials that are 

physically demanding. Patients' gait impairment, including joint mobility and muscle 

strength, was assessed by the author at the hospital or, if the patients were already 

discharged from the hospital, in the Gait Laboratory at this University. Patients were 

asked to walk ten metres along a corridor, unassisted, or with their own walking aid. 

Gait difficulties were evaluated visually and the observations were recorded on a 

standardised form designed by the author. Standing and walking ability (e. g. 

dependence on walking aid, effort required, and safety) and passive joint motions of the 

lower limbs were assessed. After these initial assessments, muscle strength of the 
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patients' main muscle groups (ankle flexors/extensors, knee flexors/extensors, and hip 

flexors/extensors) were assessed manually according to the Medical Research Council 

Scale (Demeurisse et al., 1980) with minor modifications (Appendix III). The values 

obtained from this test were used as an indication of muscle activity when prescribing 

the DAFO. In total, 195 stroke patients were evaluated. 

2.1.2 Inclusion criteria 

For any type of clinical trial, the criteria used for selection are important because their 

rigidity dictates the level of experimental interference by identified extraneous factors, 

and the applicability of the data to the general population (Wade, 1992; Motulski, 1995; 

Dirnagl et aL, 1999), Clearly, the recruitment and study of neurological patients involves 

some unique problems. For the present research, the design of subject selection 

procedures incorporated important physical, neurological, practical and safety 

considerations. The criteria adopted were that each subject: 

1) had no previous CVA; 

2) was medically stable; 

3) had no other medical problems after CVA that affected ambulation; 

4) had no earlier diagnosed long-term mobility problems; 

5) had no cognitive impairment such as memory loss, or difficulties in 

understanding normal speech; 

6) could demonstrate at least ten-metre walking capacity without a break; 

7) exhibited an assessable gait deviation that affected mobility and caused some 

disability. 

A convention for studies of this type is that the experimental group is more uniform and 

measurements are more reliable if stroke subjects who have not suffered an earlier 

CVA are used. This is because subjects who have had an earlier stroke may have 

already learnt compensatory movement patterns, and shortening of soft tissues or joint 
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structures may have occurred, which could obfuscate data interpretation. It is well 

established that most 'natural recovery' following stroke occurs within three months of 

the initial insult (Smith et al., 1985; Wade et al., 1985; Kwakkel et al., 1999) and 

consequently there is likely to be considerable variation in gait parameters at this time. It 

was therefore decided that the best strategy for testing the research hypotheses would 

involve testing a group of stroke patients with a similar type of gait impairment and after 

their initial recovery phase, when there are minimal changes due to compensatory 

learning of gait movements. It was clearly important to use subjects that were medically 

stable, and had no other ambulation or long-term mobility problems that could cause 

mechanical changes to joints or soft tissues and thus affect joint mobility (e. g. arthritis). 

The criterion for no cognitive impairment was applied for safety reasons and because 

the studies required that the subjects were able to understand written instructions and 

voice commands and be generally aware of the procedures. The criterion requiring 

patients to demonstrate at least ten-metre walking capacity without a break was 

adopted to ensure a minimal mobility level. Recognisable gait deviations included limited 

forefoot eversion, diminished ankle dorsiflexion or knee hyperextension, which are 

conditions that warrant the use of a splint. 

It was predicted that on discharge from the Stoke Unit, around 80% of subjects would 

return to their own homes (Salford Royal Hospital NHS Trust, Executive Board Paper, 

1995). Thus, the potential influence of DAFOs on balance and gait could be assessed 

after the devices had used by the subjects in their home environment and under familiar 

living circumstances. It was anticipated that a considerable number of subjects would 

have to be evaluated before a reasonable study group size was achieved, which meant 

that recruitment would be time-consuming. Thus, much of the time during the first 

twelve months of this four-year research project was devoted to subject recruitment. 

The outcome of excluding subjects on the basis of the criteria specified is shown in 

Figure 2.2. A register of admission was used to document the patients who met the 
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criteria for inclusion. All subjects who met the criteria and were willing to participate in 

the studies were included. Of the 195 subjects considered, twenty-five passed the 

criteria and agreed to take part. All subjects were required to give written informed 

consent prior to participation in the studies. Ethical approval was obtained from the 

Salford Research Ethics Committee (code 95146) and all experiments were conducted 

in accordance with the provisions of the Declaration of Helsinki. Subjects' prescribed 

medical and rehabilitation care was continued during the experimental period. 

2.1.3 Healthy subjects 

To generate data for normal balance and gait, a group of healthy subjects was also 

recruited. The data collected from these subjects were used for the reliability tests, and 

in the main trial as a reference database, to enable comparison of normal balance and 

gait patterns with stroke subjects' performance. Healthy elderly volunteers were usually 

members of patients' families or their friends. Healthy younger volunteers were staff 

from this University. Each volunteer was interviewed and his or her medical history was 

determined. Only subjects who were physically healthy were entered into the studies. 

Subjects were excluded if there was evidence of illness or injury that could cause pain, 

joint stiffness, muscle contraction or weakness. Eight healthy subjects were admitted to 

the study. Salford Health Authority provided ethical approval and informed consent was 

obtained from each subject before testing. Four of the eight healthy subjects were of 

similar age (69 - 70 years). The data obtained by testing these able-bodies subjects 

were used to provide reference data for balance and gait in the main study involving 

stroke patients. The other four subjects were younger (23 - 38 years) and data obtained 

were used for reliability tests of balance and gait methods. Subject details are given in 

Table 2.1. 
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Table 2.1 Subject details (healthy) 

Subject Age Gender Weight Height 
code (years) (M/F) (kg) (cm) 

Older subjects 

C01 69 M 88.5 170 

C02 69 M 73.5 175 

C03 70 F 64.0 152 

C04 69 F 67.0 158 

Mean Range 2 M, 2F 73.3 163.8 
69.3 69-70 64.0-88.5 152-175 

Younger subjects 

C05 23 M 66.5 173 

C06 38 F 66.5 176 

C07 26 F 60.0 168 

C08 34 M 90.5 189 

Mean 30.3 2 M, 2F 70.9 176.5 
Range 23-38 66.5-905 168-189 
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2.2 Experimental design and testing procedures 

2.2.1 Experimental design 

A randomised experimental design was used to assess the effects of DAFOs on each of 

the balance and gait characteristics. Stroke subjects (n = 22) were randomly allocated 

to one of two groups, consisting of a control group (Table 2.2) in which the subjects 

wore their own casual shoes without a splint, and an experimental group (Table 2.3) in 

which the subjects wore DAFOs on the side affected by the stroke. A randomised 

design was used in order to keep the experimental and control group characteristics 

(described below) as equal as possible. This was achieved using the appropriate 

algorithm procedures within StatMateTM (GraphPad Software Inc. ), assigning 11 

subjects to each group. Using this method, the control group comprised five female and 

six male subjects with a mean age of 67 years; three had right side and seven left side 

hemiparesis. The time since diagnosis of stroke was 4-15 months prior to recruitment. 

The experimental group comprised four female and seven male stroke subjects who 

also had a mean age of 67 years; six had right side hemiparesis and five left side 

hemiparesis. The time since stroke was diagnosed was 4-18 months. The demographic 

characteristics for both groups are summarised in Table 2.4. 

The subjects in both groups were tested on three occasions (three separate testing 

sessions) over a twelve-week period. The first tests were carried out four to six weeks 

after achievement of the inclusion criteria, when the experimental group had become 

familiarised with their DAFOs. The second tests were conducted four weeks later and 

the final tests after a further eight weeks. For the remainder of this thesis these tests 

are referred to as week 1 (test I), week 4 (test II) and week 12 (test III). During each 

testing session, control subjects were tested twice with shoes alone; experimental 

subjects were tested with and without their splint (in randomised order). The testing 
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Table 2.2 Subject details (control group) 

Code Age Gender Diagnosis/TS 
(months) 

Side of 
paresis 

Walking aid 
inside/ outside 

C01 76 M Infarct/ 4 Left No / WCH 

C02 74 F Infarct! 8 Left No / WCH 

C03 54 M Infarct/ 6 Right No / WCH 

C04 68 M Infarct/ 15 Left No / stick 

C05 75 F Infarct! 4 Left Stick / WCH 

C06 66 F Infarct/ 5 Left Stick / WCH 

C07 52 M Infarct/ 7 Left No / no 

C08 65 F Infarct/ 11 Left No I stick 

C09 67 M Infarct/ 12 Left No / no 

C010 64 M Infarct/ 7 Left Stick / stick 

C011 76 F Infarct/ 3 Left WFM / WFM 

Table 2.3 Subject details (experimental group) 

D01 64 M Infarct/ 4 Left Stick / WCH 

D02 69 M Infarct/ 5 Left Stick/ WCH 

D03 75 M Infarct/ 5 Left Stick / WCH 

D04 87 F Infarct/ 4 Left WFM / same 

D05 65 M Infarct/ 18 Left No / stick 

D06 54 M Infarct/ 14 Right No / no 

D07 70 M Infarct/ 4 Right Stick/ WCH 

D08 67 F Infarct! 10 Right Stick/ WCH 

D09 66 F Infarct/ 7 Right Stick/ WCH 

D10 72 M Hae/ 1 1 Right Stick/ WCH 

D11 49 F Infarct! 6 Right WFM / Scooter 

TS = Time since stroke; Hae = Haemorrhage; WCH = wheelchair; WFM = walking frame 
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regimes are shown schematically in Figure 2.3. Separate recordings of healthy age- 

matched subjects were interspersed with these measurements. 

Table 2.4 Comparison of demographic details of the two stroke subject groups 

Demographic characteristics of subjects 

Group Sex Mean age in Side of Time since stroke 
years and paresis Mean and range 
(Range) 

Experimental 4 females 67.1 5 left 8 months 
n= 11 7 males (49-87) 6 right 4-18 months 

Control 5 females 67.0 10 left 7.5 months 
n= 11 6 males (52-76) 1 right 4-15 months 

2.2.2 Provision of orthoses 

Each subject in the experimental group used a DAFO that was custom-designed and 

fitted for their particular needs. Fabrication was carried out three to five weeks after the 

subject satisfied the study entry criteria. For each subject, an appointment was arranged 

with an experienced orthotist and, following instructions by the author about patients' 

mobility problems (from the clinical assessments), a DAFO was constructed to suit the 

specific gait deficit. To enable appropriate casting, the subject's gait was evaluated 

subjectively at the hospital or in the subject's home. The orthotist manually appraised 

each subject's foot contour (bone shape, muscles and tendons) for building a casting 

model of the insole. The orthotist then constructed a plaster model of the subject's foot 

and ankle, which was sent to a commercial orthotic laboratory (Bullens Ltd., U. K) for 

fabrication of the orthosis. Details of the fabrication procedures used are given in 

Appendix II. 
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2.2.3 Testing procedures 

Arrangements were made to transport subjects from their home to the Gait Laboratory via 

private-hire taxi. Each testing session consisted of three separate parts: balance testing, 

gait analysis tests and functional assessments. For the balance and gait measurements, 

the experimental group was tested with and without their DAFO during each test; the 

order of testing was randomised to minimise the potential for interference of fatigue and 

repeated task learning on subjects' performance. The control group followed the same 

procedure wearing shoes. The testing procedures that were undertaken are summarised 

in Table 2.5. 

Balance tests were performed a total of eight times (four times with DAFOs and four 

times with shoes) providing that the patient did not become fatigued, giving a total of 

(twenty-four separate measurements over the three testing sessions). During each test, 

subjects were tested twice with their eyes-open and twice with eyes-closed using the 

DAFO. This procedure was then repeated with shoes alone. During the eyes-open tests, 

subjects were encouraged to keep their gaze forward, on a target placed at eye level on 

a wall three metres in front of the platform. For the eyes-closed tests, subjects were 

asked to look at the same target before firmly closing their eyes. Control subjects 

followed the same procedures. The healthy subject (using shoes) tests were identical 

except that all tests were conducted sequentially during one session. 

Before the gait test commenced, the subject was instructed to walk at their most 

comfortable speed and to keep the walkway guide to their right side. The subject was 

asked to walk with their head up, looking forwards and as naturally as possible. The first 

trial was used as a 'practice', to familiarise subjects with the procedure, and was not 

included in the data analyses. Subjects then completed a minimum of four and a 

maximum of six repeated gait tests, depending on their physical condition. It was 

endeavoured to record two or three separate tests with and without the DAFO. Between 

each test, the patient sat down for a ten to fifteen minute break. A nurse was present to 
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deal with any emergencies and to assist the subject if necessary. All gait data from foot- 

pressure sensors and camcorders were recorded simultaneously (described later). 

Table 2.5 Testing procedures: the first test represented the stating point, which was 
followed by two further tests over twelve weeks. Each testing session consisted of 
balance, gait and functional assessment tests. For details, see text. 

TEST I TEST II TEST III 

week 1 week 4 week 12 

Control group - 
tested twice with 
shoes alone 

Experimental 

1) Balance tests 

2) Gait tests Measurements 
repeated 

Measurements 
repeated 

3) Functional 
tests 

1) Balance tests 

group - tested once 2) Gait tests 

with DAFOs and 3) Functional 

once with shoes 
tests 

alone 

Measurements 
repeated 

2.3 Functional assessments and subjective feedback 

Measurements 
repeated 

Subjects' gait impairment, disability and functional ability during every day life were 

evaluated using functional assessment scales suitable for stroke patients. These 

assessments were undertaken because of difficulties in interpreting clinical notes due to 

ambiguities arising from contributions from different therapists and clinics. The first 

scale employed was the Rivermead Motor Assessment (RMA) scale (Appendix III). This 

is a routine questionnaire (by interview) system used to evaluate changes in patients' 

impairment and disability using scorable measurements of motor function (Lincoln and 

Leadbitter, 1979). It is based on the assumption that stroke patients follow a consistent 

pattern of recovery (Adams, 1995). The scale consists of two parts: a Gross Functional 

assessment and a Leg and Trunk assessment. Items in each assessment are chosen to 
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reflect the abilities of stroke patients at all stages of recovery. The scoring system (1 or 

0) is dichotomous, so that a patient passes or fails each item of each section. The 

summed total of items passed in each section is recorded and an increase in the score 

of the RMA is indicative of motor recovery. 

The second functional assessment used was the Nottingham Extended Activities of 

daily Living (ADL) index (Appendix III). This questionnaire (by interview) system focuses 

on the ability to carry out more difficult functional tasks, such as using public transport, 

housework, social life and hobbies (Nouri and Lincoln, 1987). Scoring (0-63) occurs in 

four areas: mobility, kitchen tasks, domestic tasks, and leisure activities. The scale is 

hierarchical, with higher values indicating better functional abilities. Assessment using 

the Nottingham ADL scale have shown a generally high test and re-test reliability 

(Lamontagne et al., 2001). 

Both the Rivermead Motor Assessment and Nottingham ADL scales are designed for 

use in both clinical and research settings and are deemed valid for such applications. 

The Nottingham ADL scale in particular is well established as being valid for 

determining whether any changes seen in disability and impairment translate into 

changes at the level of handicap and quality of life (Nouri and Lincoln, 1987). Both 

systems have been shown to have acceptable validity and good reliability when used 

clinically with stroke patients (Lincoln and Leadbitter, 1979; Collen et al., 1990; Adams, 

1995; Lamontagne et al., 2001). 

Functional assessments were carried out in the laboratory after the experimental trials. 

In each case, the author interviewed the subject and documented their responses to the 

items of the scale. After completion of the assessments, experimental subjects were 

asked for their opinions regarding the use of DAFOs via an open questionnaire 

(Appendix III). Subjects' opinions were scored on a non-specific rating scale from 

overall comfort or difficulty when using the orthosis. In this system, a response of 4= no 

problems, comfortable, 3= mostly comfortable, 2= sometimes difficult, 1= always 
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difficult, 0= always very difficult, uncomfortable. This subjective feedback was also 

used by the orthotist when determining whether any modifications of an orthosis were 

required. 

2.4 Balance measurements 

The measurement of standing balance was carried out first at every testing session. On 

arrival at the gait laboratory, the experimental procedures were described to the subject, 

who was then offered a short rest (up to 15 minutes) before testing commenced. The 

subject changed into a light shirt and shorts. Subjects' static standing position was 

recorded using a piezoelectric-based force platform (Kistler Instruments Ltd. ) connected 

to a PC running BIOWARE TM software. The force platform is a six-component load 

transducer capable of measuring the three-force and three-moment components 

required to completely describe the loading characteristics of a body in contact with a 

surface. The platform is a rectangular aluminium plate (40 x 60 cm) supported at each 

corner by a stack of three piezoelectric crystals arranged with their axes mutually 

orthogonal to give the three components of force at each corner, Fx, Fy, and Fz (Figure 

2.4). These twelve channels from the four three-component force transducers are 

connected such that a total of eight outputs are given (described below). 

The subject was instructed to step on to the force platform and to remain stationary 

looking forward with their head upright, eyes-open, and with their arms at their sides. 

The subject's feet were placed parallel and approximately 8 cm apart. This posture 

represents a natural standing position and keeps the feet inside the force platform 

perimeter (Figure 2.5 a). The position of the shoes was outlined with a marker pen so 

that the placement of the feet could be replicated for each trial. The subject was then 

asked to maintain this position without hand support for 30 seconds, with their eyes- 

open, during which time the forceplate output were recorded. After data collection, the 

subject was instructed to step off the force platform and asked to sit down to rest if 
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f Fx 

b) 

Input 
Detector/ 
transducer 

c) 

Amplified 
Signal 

Electrical 

signal 

Figure 2.5 a) Balance measurement using the 

force platform. The vertical direction is Fy, the 

lateral direction is Fx and the direction of 

progression is Fz (for details, see text). 

Signal 
conditioning 

Analogue-digital 
converter 

Output 
Recording 

Displayed 

voltage device 
signal 

PC 
Store data 

Figure 2.5 b) Schematic representation of the force platform system and c) set-up 
used to produce a signal in a form appropriate for digital computer processing via an 
analog-to-digital converter. 
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required. These tests were performed 8 times in total: 2 times with eyes-open and eyes- 

closed wearing the DAFO and with shoes only. 

2.4.1 Balance test data analyses 

For each test, the loads transferred between the force plate and the body in contact with 

it are expressed by a resultant force and a resultant moment, which were recorded. All 

signals from the transducers were amplified and acquired using analogue-to-digital 

conversion at 50 Hz sampling frequency, and stored (Figure 2.5 b and 2.5 c). Data 

analysis was carried out using dedicated software (Biomechanics Software Analysis 

SystemTm, Version 2.0, Kistler Instruments). The eight channels represent the four 

individual vertical forces measured, two shear forces in the x-direction, and two shear 

forces in the y-direction. In order to determine the six ground reactions forces and 

moments, the data were further reduced as follows: 

Fx = Fxl + Fx2 + Fx3 + Fx4 

Fz = Fzl + Fz2 + Fz3 + Fz4 

Fy = Fy1 + Fy2 + Fy3 + Fy4 

Mx = (Fyl + Fy4 - Fy2 - Fy3)a 

Mz = (Fyl + Fy2 - Fy3 -Fy4)b 

My = b(Fz4 + Fz3 - Fzl - Fz2) + a(Fx2 + Fx3 - Fxl - Fx4) 

The co-ordinates of the CoP from each force data were analysed using the equations: 

Az = (- Mx+Ay*Fz) / Fy 

and 

Ax = (Mz+Ay*Fx) / Fy 
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where Ay is the distance from the force plate origin to the top surface (floor covering) 

and Az and Ax are the Z- and X -coordinates of the CoP measured from the centre of 

the force plate. The displacement of the CoP in the a-p and lateral directions was 

positive if the subject swayed in the anterior direction and to the left. 

The total distance that the origin of the ground reaction force vector travelled during the 

recording period (30 s) was used to calculate the velocity of sway, which is defined as a 

control for static standing (Era et al., 1996; Nougier et al., 1997; Pushpangadan et al., 

1999). 

In addition, body sway (sway index) was quantified by calculating the SD of the CoP 

displacement as a function of time (Era et al., 1996), which indicates the range of 

motion of the point of application of the ground reaction force, and is typically used as a 

measure of stability of a subject standing on a force plate (Winter, 1991b; Saunders et 

a/., 2002). 

Monitoring of these CoP variables has been advocated as the most practical static 

standing balance techniques for assessment of balance using a force plate with healthy 

and neurologically disabled subjects (Browne and O'Hare, 2001). The literature contains 

accounts of studies in which these variables have been used to correlate human 

balance, gait and muscle strength (Ringsberg et a/., 1999). Here, additional 

measurements made in the eyes-closed condition were included to provide further 

information on possible sensory effects of balance control (Lee and Lishman, 1976; 

Woollacott, 1993; Nougier et al., 1997). CoP variables for antero-posterior and lateral 

sway were calculated separately, because they are due to different control mechanisms 

(Manchester et al., 1989). The a-p component of CoP displacement in static standing is 

controlled by ankle plantarflexions and dorsiflexors, and the lateral component is 

controlled predominantly by the hip abductors and, to a lesser extent, by the ankle 

invertors and evertors (Winter, 1995). 
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The measured horizontal forces, Fx and Fz, applied to the surface of the force platform 

(Figure 2.4) were calculated. These horizontal (shear) forces were used because they 

describe the accelerations of the centre of mass. These accelerations represent the 

vibrations of the centre of the body or the spectral characteristic of the postural control 

(McClenaghan et al., 1995). It has been suggested that this property provides a more 

sensitive means of identifying impaired balance in complex neurophysiological systems 

compared to the measurement of the resultant ground reaction forces under both feet 

(McClenaghan et a/., 1995; Nadeau et al., 1999b; Kejonen and Kauranen, 2002). Fast 

Fourier Transformation was used to estimate the frequency composition of the forces 

(F) and to calculate the power spectra (resolution 50 Hz, bandwidth 0.05 - 10), and was 

used as each subject's spectral signature. This was done to characterise the postural 

control of each subject. F(mean) of the frequency analysis were designated as a central 

tendency. F(sd) is a distribution of spectral energy around F(mean), and F(slope) 

represents the slope of a regression line calculated on a double log axis plot of the 

power spectrum. The formulae used to extract dependent measures are published 

elsewhere (McClenaghan et al., 1995) and included in Appendix IV. In the present 

studies, the F(mean), F(sd) and F(slope) are reported, because each may provide 

different sensitivities when describing difficulties in balance control (McClenaghan et aL, 

1995; Williams et aL, 1997). 

2.4.2 Validity and reliability of the force platform 

Force platform apparatus is generally straightforward to use, providing that it has been 

correctly installed, and connected to appropriate auxiliary equipment (Bartlett, 1997b). 

However, as with all instruments used for gait analysis, it is essential to monitor for 

proper operation. Furthermore, valid and reliable force platform measurements depend 

on adequate system sensitivity, low threshold of force detection, high linearity, low 

hysteresis, low cross talk and the elimination of cable interference, electrical inductance 

and temperature and humidity variations. For a detailed description of factors that 
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influence force plate reliability and validity see Bartlett (1997a). For the present 

investigations, extensive preliminary studies were carried out using healthy subjects, to 

ensure that data compatible with earlier published reports could be obtained. This was 

essential in order to be fully confident that the testing protocol was reliable for clinical 

purposes. Calibrations were carried out on a regular basis during the course of the 

research. For example, calibration of the amplifier output as a function of force input 

was carried out according to the manufacturer's specifications. 

The reliability measurements of standing balance followed similar testing protocols and 

data processing methods to those described earlier for the main balance tests. Thus, 

reliability was analysed within- and between-sessions. Here, practical difficulties were 

encountered when arranging for the elderly subjects to attend the gait laboratory. For 

this reason, the reliability work also included measurements of younger healthy 

subjects. The logistics for these procedures meant that healthy elderly subjects were 

used for within-session testing, whereas younger healthy subjects were involved with 

the between-session measurements. This arrangement was unavoidable. However, 

despite the less-than-ideal testing design, it was predicted that adequate information on 

reliability assessments for standing balance would be gained, which could then be 

compared with earlier published data. 

Eight separate trials were performed for the testing of within-session reliability. Data for 

individual balance characteristics were firstly recorded from 4 repeated trials. After the 

subjects rested briefly, the measurements were repeated 4 further times. For the 

between-session reliability tests, the balance measurements were repeated at two- 

weekly intervals during the first 6 weeks and then at weeks 12 and 14. Data 

manipulation and parameter calculations were done as described earlier (section 2.4.1); 

the coefficient of variation (C. V. = SD/mean*100) of the repeated measurements was 

used to define reliability (Hicks, 1995). 
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2.5 Gait measurements 

For every testing session, gait measurement assessments were carried out after the 

balance tests. Gait tests consisted of simultaneous recordings of subjects' gait 

characteristics and lower limb joint motions on a 10 m walkway using two different 

techniques: step-analyser and video-based movement analyser systems. 

2.5.1 Step-analyser 

The step-analyser system involves a foot-switch system, which monitors pressure data 

from four plantar locations, and provides details of the foot-fall parameters of the 

subject's foot during walking. The step-analyser (Figure 2.6) consists of four main 

components: a force sensitive resistor assembly (FSR), a data-logger, a receiver box 

with a small remote signal sensor, and two infrared beam transmitters. The FSRs used 

were flat plastic disks (2.5 cm x 0.4 mm), which contain pressure sensitive switches. 

These sensors have the advantages of being flexible and durable, with high overload 

tolerance and are of simple electronic construction (Bartlett, 1997b). A 440 N 

compression load cell and preamplifier were used for dynamic calibration of the FSRs. 

This calibration regime provides time-varying loads with durations modelling those of 

stance phase foot contact (Walsh, 1995). Acceptable validity and reliability levels for the 

step analyser used for the present work has been established with normal and 

neurological impaired subjects in earlier studies, and shown to be suitable for clinical 

gait assessment (Dr. T. Howe, personal communication). 

One FSR was taped under the subject's heel and one under the third metatarsal at the 

interface between the foot and the shoe for control subjects, and between the shoe and 

DAFO for experimental subjects. Data from both feet were measured simultaneously. 

The four FSRs were connected via thin cables to the data-logger, which collected the 

output from the sensors at a rate of 200-500 samples per second, for a maximum of 32 

seconds. The data-logger was attached to the receiver box, which stored the data 
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, now 

Figure 2.6 The step analyser consists of four main components: a force sensitive 
resistor assembly (FSR), a data-logger, a receiver box with a small remote signal 
sensor, and two infrared beam transmitters. The data were transferred to the PC 
for further analysis. 
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during the gait test. The step-analyser module was then located inside a small belt- 

pocket, which was attached around the subject's waist. The receiver box was connected 

to a small (1 cm diameter) remote signal sensor that is sensitive to infrared light (Figure 

2.7). The remote signal sensor of the receiver was taped firmly to the front of the 

subject's right ear. 

A 10 m walkway was demarcated on the gait laboratory floor. A black strip of thin plastic 

material was taped near to the right side of the walkway to act as a guide. Further 

guides were located at 2.5 m and 7.5 m intervals across the walkway to define a central 

5m active region where gait measurements were recorded (described below). The 2.5 

m section at the start provided an acceleration area allowing the subject to attain a 

steady gait speed and rhythm, and the last 2.5 m formed a decelleration zone, enabling 

continuous walking to the end of the recording region before slowing to a standstill 

(Figure 2.7). 

A chair was placed at each end of the walkway. At the start of the test, the seated 

subject was instructed to 'stand up' and, after a short delay, received the command to 

'go'. The subject then walked the complete length of the walkway, at self-selected pace, 

whist aiming to keep the floor-guide to their right side. The subject was permitted to use 

their usual walking aid. The on/off controls for the data collection switch were operated 

manually. Infrared transmitter boxes were placed parallel to the acceleration- and 

decelleration-zone guides. When the subject walked past the infrared beam, the 

receiver box was activated by the remote signal sensor, and superimposed a marker 

spike on the foot pressure data. Walking past the second transmitter caused another 

spike. These data spikes enabled the data collected within the 10 m active region of the 

walkway to be identified easily and specified accurately. Subjects completed 4-6 trials, 

depending on the number of successful recordings and/or the subject's physical 

condition. 
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Figure 2.7 Subject's gait test in the gait laboratory. Twelve skin markers were 
attached with double-sided tape to the subject. The Step-Analyser module was 
then located inside a small belt-pocket around subject's waist. The subject was 
instructed to walk at their most comfortable speed and to keep the walkway guide 
to their right side (for details, see text). 
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2.5.1.1 Data analysis 

The step-analyser recorded the timings of the point of contact during the stance phase 

and at the point of loss of contact during the swing phase. The data output from the 

receiver box was downloaded as ASCII files to a computer. The stored data generated 

from each sensor was analysed using MOTANTM software (Dr. G. Barton, personal 

communication). 

During data processing, it was found that data collected by the step-analyser were 

variable and could not be adequately accounted for using conventional analytical 

methods. Systems analysis revealed software-processing faults and, for this reason, all 

spatio-temporal variables were calculated from the data collected using the 3-D 

movement analysis. 

2.5.2 Three-dimensional movement analysis system 

Three-dimensional movement analysis was used to evaluate the motions of the 

subjects' lower limbs and pelvis during a 10 m walking test. The subjects' gait was 

recorded using four video cameras (Panasonic 3000 with S-VHS videotapes) operating 

at a frame rate of 50 Hz (50 fields per second). The recording area was limited to the 

central region of the 10 m walkway. Two cameras were situated at the front of the 

walkway angled at 80-degrees to each other; the other two cameras were positioned 

similarly at the rear of the recording area, approximately 5m from the mid-point of the 

recorded view (Figure 2.8). This camera arrangement has three benefits: firstly, it helps 

to minimise problems due to the 'hidden body part' phenomena where, for example, an 

arm hides a hip marker from camcorder 1, although camcorders 2 and 4 can still follow 

the marker; secondly, it permits simultaneous recording of the left and right legs during 

each gait test, which facilitates more accurate and comparative data interpretation; and 

thirdly, it reduces the number of tests required and is therefore physically less 

demanding for elderly, disabled subjects. The position and number of the cameras 
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relative to the calibration frame was also used to define the global co-ordinate system 

and the accuracy of subsequent measurements (Salo, 1999). The four camcorders 

were synchronised using a flashing LED-lamp set at a frequency of 50 Hz. The LED- 

lamp was situated where the clearest view of it was obtained by each camcorders and 

by the infrared beam transmitter (for foot-pressure measurement). The lamp flashed 

when the subject walked past and cut the infrared beam. The light flash was 'seen' by 

all four cameras, in the same video picture frame, thereby synchronising all four 

camcorders. 

Twelve skin markers (reflective ball type, 1.5 cm diameter) were attached with double- 

sided tape to the subject. These skin markers facilitated identification of the centre of 

rotation of each joint of the lower limbs and the pelvis, and acted as local co-ordinate 

systems, defining the pelvis, thigh, shank and foot of both limbs in terms of position 

vectors. Skin markers were placed at the head of the fifth metatarsal, calcaneus, lateral 

malleolus, lateral femur epicondyle, the greater trochanter of the hip and the lateral line 

of the pelvic girdle (Figure 2.7). This provided a fourteen-segment performance model 

after digitisation of the computerised video picture (Figure 2.9). In order to obtain 

information on the trajectory and orientation of the segments in space (explained later), 

and to enable within- and between-test data comparisons, an additional 'control point' 

marker was located at floor level (at the base of the flashing light assembly). 

2.5.2.1 Data processing of video recordings 

Data processing and analysis began with visual assessment of videotape playback, in 

order to identify the LED light and the initial contact of the foot, which denoted 

synchronication of the starting point. Two full gait cycles (one on the left leg and one on 

the right leg) were then stored using an image capture board, which transferred the 

videotape images to a computer hard disk prior to examining body coordinates 

(digitising). 
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Digitising was initially carried out using the computer running Ariel Performance 

Analysis System (APASTM') software in the gait laboratory. However, this proved to be 

impractical, due to the large amounts of data involved and the slow CPU clock speed of 

the computer in the actively used gait laboratory. In order to enable digitising with a 

remote computer with higher specification, data files were transferred from the hard disk 

of the laboratory computer using portable data storage devices. Video graphic files were 

compressed using WINZIPTM and then copied via parallel port connections to external 

Iomega ZIPT"'/JAZTM disks, or external Iomega DITTOTM tape format, and subsequently 

transported to the remote computer hard disk. The Iomega JAZTM system provides 

sustained data transfer (read/write) rates up to 5.4 MB per second, onto 1 GB capacity 

disks, and proved to be the most efficient method. By this means, video data 

compression and transfer routines for each subject were achieved in approximately 50 

minutes. A modification of this procedure was used for storing and archiving data. 

The author digitised four view sequences from each trial using APASTM. Digitising 

commenced at the beginning of the left leg gait cycle (initial contact) and continued to 

the end of the second initial contact of the right leg. The resolution of the video digitising 

screen was set to 800 x 600 pixels. Occasionally, some body parts were temporarily 

obscured from one or two camera views (usually the ankle and knee of the contralateral 

lower leg, and part of the pelvis of the leading leg). In these instances, the locations of 

the joint centres were estimated as accurately as possible. Each marker point was 

highlighted on screen (when digitising) with a cursor ('mouse' operated) and stored on 

the hard drive of the computer. The data made available for further analysis were 

acquired from two full gait cycles (from the initial contact to the next initial contact) for 

the left and right legs. 
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2.5.2.2 Transformation of co-ordinate system 

APASTM captured the motion of the 12 markers attached to subjects' lower limbs and 

the additional 'control point' located on the laboratory floor at 50 Hz sampling frequency. 

The nine-marker calibration frame of a MACREFLEXTM motion analysis system (190cm 

x 100cm x 100cm, length, height and width, respectively), which included the same 

additional 'control point', was also used to calibrate the analysed volume. The location 

of the frame was determined at the middle of the recorded walkway. This defined the 

position of the global co-ordinate system within the field-of-view of each camera. The 

global co-ordinate system described the absolute position of the segments in space 

(Wu, 1995a). In order to avoid variation in results due to the calibration procedures, the 

calibration information was transformed for every digitised file (in each camera view). 

Each data set with respective views (two-dimensional, 2-D, camera images) and 

calibration information were then transformed to give the 3-D co-ordinates of each 

marker, using the Direct Linear Transformation (DLT) and zero factor quintic splines 

algorithms (Woltring, 1984). These DLT parameters define, for example, the position 

from the camera lens to each marker and allow the reconstruction of the 3-D marker co- 

ordinates from the 2-D camera images. Once the DLT parameters were established for 

each camera view, the unknown movement space co-ordinates (x, y, z) of the markers 

were then reconstructed using the DLT parameters and the calibration image co- 

ordinates (x, y) for each camera. After the markers were identified in 3-D space, the data 

calculation was carried out using the generalised cross-validated quintic splines 

(Woltring, 1984; Koff, 1995). 

The marker configuration was fitted to a mathematical model within APASTM software, 

which enabled calculation of the 3-D co-ordinates of the markers, where the x-axis is 

pointed in the horizontal line of progression, the y-axis is pointed in the vertical and 

upward direction and the z-axis is in a sideways direction from the left to right (Figure 
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2.10) (Wu and Cavanagh, 1995). The same set of ground reference axes are used 

throughout the thesis, with the x-axis aligned with length of the laboratory. Thus, the x- 

axis lay in the direction of travel for the studies of subjects' walking, and measurements 

were obtained in the anterior-posterior direction. This is in contrast to the balance 

studies, where the z-axis was used as the direction for the anterior-posterior reference. 

Kinematic analysis of human movement (for example, to calculate the joint angles) 

requires knowledge of the orientations of the segments relative to each other (Wu, 

1995b). Thus, a local reference system must be defined relative to each segment. As 

such a local system is fixed to the segment, it is moving relative to the Earth (Wu, 

1995a). Here, eight local reference systems were defined for each segment: the foot, 

shank, thigh and pelvis, on the affected and unaffected leg. The position and orientation 

of each of these co-ordinate systems were defined by at least three landmarks (Winter, 

1990). The linear displacement and velocity of each marker point, and angular 

displacement and velocity of the joints and segments were analysed using APAST"" 

software routines (described later). 

'Linear displacement' describes the translational component of the motion of a body 

segment moving in space, and can be represented either in the global or body-fixed 

reference frame, to define the absolute or the relative translation, respectively. 'Linear 

velocity' is the rate of change of the translational displacement (Winter, 1990; Wu, 

1995a). 'Angular displacement' describes the rotational component of the motion of a 

body segment moving in space. When angular displacement is represented in the 

global reference frame, it is termed the segmental angular displacement, because it 

describes the absolute angular motion of the segment with respect to the global 

reference system (the angle of the segment with the vertical). However, when angular 

displacement is represented in the body-fixed reference frame of the adjacent body 

segment (e. g. the distal segment), it is often referred to as the joint angular 
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Figure 2.10 Absolute spatial coordinate system used in all data analyses. The 
directions of the x-, y-, and z-axes indicated were chosen so that (in 3-D studies) x and y 
lay in the saggital plane. 
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displacement. because it describes the relative angular motion of the segment with 

respect to another. 'Angular velocity' is the rate of change of rotational displacement 

(the first derivative of angular displacement) (Wu. 1995a). 

In studies of human gait kinematics, there is no consensus as to which reference frame 

best defines the kinematic variables. In general, the components of the segmental and 

joint angular displacement vectors are not identical as described above. However, 

segmental angular displacement can be determined from the joint angular displacement 

and vice versa, providing that the relationship between the global and body-fixed 

reference frames is known (Wu, 1995a). At the start of the present studies, it was 

unknown which of the calculation methods would provide the most accurate and reliable 

data; consequently both the above approaches for representing kinematic variables 

were used in the reliability test. 

25.3 Accuracy of gait performance 

A separate study was performed to clarify which method for digitising the markers was 

most accurate for converting of the position of the lower limb joints from the video 

picture to the 3-D co-ordinates. One method involved manual tracking of each frame. 

Although this approach was time consuming it was less sensitive to errors from 

reflected light. An alternative, semi-automatic method was also possible using APASTM 

software. providing that the tracked markers could be clearly seen in the video image. 

However, this method was found to be very sensitive to lighting errors. A light can be 

reflected from the floor. or from around the gait laboratory, causing bright areas in the 

image. In this case, the APASTM software tools could erroneously track this reflected 

light as a marker point. 

During the early stages of the project, the video recorded gait trial of a single subject 

was randomly selected from a group that had been already tested. The subject was a 

64-year old male. with left side hemiparesis, who had had a stroke four months before 
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recruitment to the studies. One gait cycle recorded from this subject was re-digitised 

sixteen times on separate occasions. Digitisation was performed manually a total of 

eight times following anatomical joint centres at the fifth metatarsal, the calcaneus, 

ankle joint centre (subtalar joint). knee and hip joints centres, and the pelvic line. 

Digitisation was also performed eight times following reflective markers with the semi- 

automatic method. The markers attached to the patient's body were used to build a 

segmental model constructed with the two feet, two shanks, two thigh segments and the 

pelvic square (section number). The pelvic square was constructed by connecting the 

two hip and pelvic markers. The segmental model used was illustrated in Figure 2.9. 

2.5.3.1 Data analysis of accuracy measurements 

Effect on co-ordinates 

The raw 3-D co-ordinates (x, y and z) were calculated as described earlier (section 

2.5.2. ). Unear displacement data for the sixteen repeated digitised values in one gait 

cycle were calculated separately for twelve body landmarks and for each co-ordinate of 

the segmental model. One gait cycle resulted in 105 fields of digitising (a field is a single 

image on the computer screen) in x. y and z-directions. Smoothed data were filtered 

with a 4' order recursive Butterworth filter (6 Hz cut-off frequency). Re-digitised data 

values were then evaluated using statistical methods within SPSS1' software (Version 

8.0. SPSS Incorporated). One-way ANOVA was used to indicate which method for 

digitising the markers was more accurate (Gresham et at, 1995); further data analysis 

of the 3-D markers involved calculation of the root mean square error (RMSE) of the 

eight repeated digitisations. This procedure provided a measure of stability by indicating 

the level of variability over the total number of separate digitisations from the proximal to 

distal joints. 
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n= number of repeated digitizations 

x= number of video images from the heeistride to the next heeistride with same leg 

High RMSE values indicate poor repeatability and the potential for difficulty reproducing 

the same motion. Conversely, lower RMSE values suggest a good level of stability 

(section 2.6). 

Effect on variable calculations 

In order to establish the accuracy of the variables, the co-ordinates (x, y and z) were 

also used to calculate linear and angular displacements and velocities from lower limb 

joints (using the body-fixed reference frame) and segments (using the global reference 

frame). This was carried out for 3-D movement of 3 joints (ankle, knee and hip) and 4 

segments (foot, shank. thigh and pelvic) from both legs. The variables calculated are 

illustrated in Figure 2.11. These are standard and established parameters used to 

describe human gait performance (Winter. 1990; Winter, 1991a); values were 

calculated by APASTM and exported to Microsoft WORDTM (Version 7) and EXCELTM 

(Version 7) for Windows 95TM. Further data manipulation and analysis were carried out 

using MATLAB" (Version 5). The average and SD of all data sets were calculated 

separately. Further data analysis of the 3-D markers involved calculation of the root 

mean square error (RMSE) of the eight repeated digitisations, which, as indicated 

earlier, gives a measure of stability in relation to variability over the total number of 

separate digitisations from the proximal to distal joints. 
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PELVIS 

THIGH 

Figure 2.11 Kinematic variables used to assess the gait cycle. In (a) the angular 
displacement and velocity of ankle, knee and hip joints represented within the body-fixed 

reference frame is illustrated; (b) depicts the angular displacement and velocity of the 
foot, shank. thigh and pelvic segments with respect to the global frame of reference. 
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2.5.4 Reliability and repeatability of gait measurements 

As there have been no detailed reports published on the reliability of the methods used 

here for analysing stroke patients' gait, it was important to determine how subjects' gait 

could vary both between different trials during the one-day testing session, and between 

two tests carried out on different days. Early in the main study phase, one subject was 

randomly selected from those who had already completed the tests, and used for a 

testing trial to evaluate the reliability and repeatability of gait measurement within and 

between testing days. The subject was a seventy-year-old male who had been 

diagnosed as having a right side hemiparesis seven months before the study. He used 

a walking stick in his left hand and wore a DAFO on his right foot. The subject was 

tested when walking on the 10-metre walkway as described earlier. However, in this 

case, the test was repeated four times in succession, with a 30-minute rest after each 

test; the same procedures were repeated one week later. Thus, data was obtained for a 

total of eight tests (Table 2.6). 

Table 2.6 Testing design used to assess reliability of gait performance. Data collected 
from session I were used to assess repeatability within tests during a single day. Data 
from sessions I and II were used to assess repeatability carried out on different days. 

Session I Session II 

Day 1 Day 2 

Gait test 1II Gait test 5 

Gait test 211 Gait test 6 

Gait test 311 Gait test 7 

Gait test 411 Gait test 8 
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2.5.4.1 Data analysis of reliability measurements 

Raw linear displacement values were calculated separately for all 12-body landmarks in 

55 fields of digitising and in the x, y and z-directions. In addition, smoothed data were 

filtered with a 4r' order recursive Butterworth filter (6 Hz cut-off frequency). Linear 

displacement was calculated for smoothed 3-D co-ordinates from each body landmark 

to specify the position of the landmark, and the linear velocity of the markers was used 

to define the rate of changes in displacement for each repeated test on Day I and Day 

II. In addition, angular displacement and velocity were calculated from ankle, knee and 

hip joints both on the affected and unaffected sides. The final parameter estimates 

obtained were the foot, shank. thigh and pelvic segmental angular displacements and 

velocities from both legs. All kinematic parameters were normalised to a percentage of 

the duration of one gait cycle (100 % gait cycle). All variables were reported using 

APASTM software, and exported to MATLABTU as described earlier. 

25.5 Additional data analysis during main phase 

In order to enable simultaneous comparison of the subjects' affected and unaffected 

limb motions, data from two full gait cycles for both left and right legs were assessed. 

Four videotapes per trial (12 tapes per subject) were digitised during the main phase 

studies. It is notable that as only one operator (the author) was involved with this work, 

the digitising proved to be time-consuming. Thus, for each subject approximately 150 

hours of digitising were required. A DLT algorithm was then used to reconstruct 3-D co- 

ordinates of the model from digitisation of the four views. The 3-D co-ordinates (x, y and 

z) were calculated for each landmark in the model (section 2.5.3.1) and the Cartesian 

co-ordinate system was used to describe the position and orientation of the lower 

extremity rigid body segments (Winter, 1991b). As the preliminary studies provided 

acceptable reliability results in the saggital plane, 2-dimensional analysis on this plane 

was used In the main phase of the analysis. All variables calculations were carried out 
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using APASTM software with further data analyses with EXCELTM, MATLABTM' and 

PRISMTM. 

As described earlier (section 1.5). the magnitude of joint motion is specified as an 

independent item of information during the stance and swing phases. Defining motion 

occurring in each gait phase provides an interpretation of joint function that can 

delineate inappropriate aspects of gait magnitude and timing as minimum and maximum 

values (Morris, 1973; Winter, 1974; Apkarian et at, 1989; Bartlett, 1997a). Here, the 

minimum value of thigh velocity was identified at the mid stance phase, to specify 

stability of the more proximal joints (De Quervain et at, 1996). At the end of stance 

(push-off) phase, the minimum value of the thigh displacement and minimum value of 

the foot velocity were established to define flexibility and control of lower limb joints 

when the directions of joint movement changes (De Quervain et at, 1996; Enoka, 

2002). The minimum foot velocity is achieved during late stance and early swing 

phases, which is probably due to difficulties encountered by severely disabled walkers 

when releasing the foot from the floor. The minimum values from the segmental 

displacement and velocity of the foot and shank motions, including maximum thigh 

velocity, were measured at the early swing phase (toe-off), which is associated with the 

large ankle plantarflexion and knee extension (Lehmann et at. 1987; De Quervain et al., 

1996; Olney and Richards, 1996). The maximum values of the foot and shank velocity 

were determined in the middle of the swing phase, which is related to large ankle and 

knee flexion (Wooley, 2001; Lamontagne et al., 2002). The stance and the end of the 

stance phases, and the early and middle of the swing phases were deemed as reliable 

criteria for assessment of the stroke subjects, as these components of the gait cycle are 

believed to represent important reference points during the dynamic control of joint 

motions during walking (De Quervain et al., 1996; Olney and Richards, 1996; 

Lamontagne et al., 2001; Wooley, 2001) and therefore had potential to separate the 

putative effects of splints from shoes. 
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In addition, spatio-temporal stride parameters and gait velocity were derived from 

kinematic data calculated from the entire duration of the recording period. Data from 

joint motions were changed to Microsoft DOSTM/WindowsTM format. Data manipulation 

and further analyses were carried out using MATLABTM. All gait data were estimated 

manually from the linear displacement data on the computer screen (heel and toe 

markers) from heel strike (initial contact) to push-off, and from push-off to the end of the 

swing phase (next heel strike) to delineate one stride, and then normalised as a 

percentage of the duration of one gait cycle (from heel-strike to the next heel-strike as a 

100 % gait cycle, Figure 1.1). For all tests, these procedures were carried out on data 

collected from both legs. The duration of a single gait cycle was determined from the 

time interval between two consecutive heel strikes of the same foot (for the left side) 

and two consecutive instants of toe-off (for the right side). The stride length was 

calculated from the trajectory of the heel marker during one gait cycle. The affected 

leg's step length was defined as the distance between the heel marker at heel strike 

and toe-off positions. The duration of the stance phase was derived from the time 

between heel strike and toe-off on the same side; the duration of the single stance 

phase was assessed from the time between the heel strike and that on the opposite leg. 

All temporal stride parameters were also calculated as a percentage of the duration of 

one gait cycle and all spatial stride parameters as a percentage of stride length. There 

was some variation in absolute velocity time. Consequently, all segmental kinematic 

parameters were normalised to 100% of the gait cycle. 

All of the analysed spatio-temporal and kinematic results were saved and archived for 

the two groups (control and experimental), and for the three consecutive tests (tests I- 

III). The gait variable measurements determined from each stride of the affected and 

unaffected legs were retained separately for analysis. The results from the reliability 

tests presented earlier (section 2.5.4) indicated that measures of these variables yielded 

acceptable reliability and repeatability in the saggital plane. In addition, earlier reports of 
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gait assessment and clinical rehabilitation studies have shown that the effects of 

different experimental conditions on these variables can be determined (Burdett et at, 

1988; De Quervain et at, 1996; Evans et at. 1997). 

2.6 Statistics 

26.1 Randomisation 

Randomisation of subjects' testing order was performed using STATMATETM' (Version 

1.01, Graphpad Incorporated). Each subject was designated a number from 1 to 20 and 

this was entered (in ascending numerical order) onto the STATMATE'' data sheet. The 

software was then used to assign the numbers to (in this case) one of two groups, 

based on pseudo-random number algorithm procedures. 

26.2 Distribution 

The distribution of subjects' age. weight and height was tested using Dallal and 

Wilkinson approximation to Lilliefors' method within PRISMTM (Version 3.02, GraphPad 

Incorporated). The mean values for each factor (age, height and weight) were 

compared between groups using two-tailed unpaired t-tests. 

2.6.3 Preliminary studies 

2.6.3.1 Balance 

Deviation of data from a Gaussian distribution was assessed using the Kolmogorov- 

Smimov test; the p value for normality was determined using the Dallal and Wilkinson 

approximation to Lilliefors' method. In general, it was found that data followed a normal 

distribution. For this reason. arithmetic mean and SD values are reported unless stated 

otherwise. Comparisons were made of balance test data collected both within- and 

between-testing sessions. In both situations the C. V. of the repeated measurements 

was used. 
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2.6.3.2 Gait - accuracy (effects on co-ordinate and variable calculations) 

Determination of the accuracy of variable measurements was carried out for raw and 

filtered 3-D movement data for the six body markers' (foot, heel, ankle, knee, hip and 

pelvic) displacement and velocity for both legs. One gait cycle resulted in 105 fields of 

digitising (a field Is a single Image on the computer monitor screen) in x, y and z- 

directions. The mean and SD of all data sets were calculated separately. One-way 

analysis of variance (ANOVA) was used to indicate which method of digitising the 

markers was more accurate (p < 0.05). Further data analysis of the 3-D markers 

involved calculation of the root mean square error (RMSE) for effects on co-ordinate 

and variable calculations, for the 8 repeated digitisations. These procedures provide a 

measure of stability by indicating the level of variability over the total number of separate 

digitisations from the proximal to distal markers (Gresham et at, 1995; Allard et at, 

1996). 

2.6.3.3 Gait - performance reliability 

The reliability of subjects' gait was assessed in order to determine inherent differences 

occurring between different trials during the one-day testing session, and between two 

tests carried out on different days. Reliability assessments were made for 3-D 

movement of 3 joints (ankle, knee and hip) and 4 segments (foot, shank, thigh and 

pelvic) for both legs; data were obtained for a total of 8 tests. The C. V. for each of the 

body landmarks and angular/segmental displacements and velocities data series were 

calculated independently for each of the data sets. All variables were calculated as a 

percentage of the duration of one gait cycle. 
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Z6.4 Main phase - Balance data 

Differences between groups were accessed using two-tailed unpaired t-tests or 

ordinary/repeated measures ANOVA or multiple analysis of variance (MANOVA) with 

appropriate post-tests. These analyses were done using PRISMTM or SPSSTM'. 

2.6.5 Main phase - Gait data 

All spatio-temporal and kinematic variables were normalised to a percentage of the 

duration of one gait cycle (100%). Differences between groups were assessed using 

ordinary measures ANOVA with Bonferroni's multiple comparison post-test. Within the 

experimental group. experimental condition comparisons (shoes and DAFO) were 

carried out (after Ryan-Joiner normality tests) using paired t-tests or Wilkoxon signed 

rank tests, as appropriate. Bivariate correlations of gait and balance data were 

performed with 2-tailed Pearson's analysis. An improvement is indicated when the 

values came closer to normal reference values. 

The functional gains of the subjects over time were analysed using standard repeated- 

measures procedures. Data for functional assessment scales (Nottingham Extended 

ADL and Rivermead Motor Assessment) were obtained using ordinal level of measures 

and are reported as the mean and range. Statistical comparisons between the control 

and experimental groups for each ADL scale were carried out using the Mann-Whitney 

U-test. The subjects' own opinions of splint usage were reported with a non-validated 

scale numbered from 0-4 (Appendix III) and descriptive information. For all statistical 

comparisons. the p value for significance was taken as 0.05. All data analyses were 

carried out using APASTM software, and with EXCELTM'. MATLABTM'. PRISMTM' and 

MINITABTM as described earlier. 
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3 RESULTS AND DISCUSSION 

3.1 Preliminary studies 

This section summarises the results of preliminary investigations that used both healthy 

subjects and stroke patients. The preliminary work consisted of a pilot study, which 

examined the assessment methods for subject recruitment (Appendix I), as well as the 

design, manufacture and provision of orthoses (Appendix II). Preliminary studies were 

also done to assess the accuracy and reliability of the methods used to measure 

subjects' balance and gait, and to ensure that data compatible with earlier published 

reports could be obtained. These measurements were carried out on a routine basis 

throughout the research project; some of the results are presented here. It is 

emphasised that when testing older subjects and the severely disabled, great care has 

to be taken when choosing subjects for study in relation to the type of clinical 

intervention, the measurement techniques used and the duration of the testing 

sessions. Thus, preliminary studies were essential in order to be fully confident that all 

of the procedures used during the research were reliable for clinical purposes. The 

section concludes with a discussion of the main findings of the preliminary work, with 

emphasis on appropriate modifications implemented during the main studies. 

3.1.1 Results 

3.1.1.1 Balance test reliability 

The reliability of balance measurements collected using the force platform apparatus 

was monitored by regular assessment of stroke and healthy subjects' ability to maintain 

an upright standing position. The co-ordinates of the CoP (Az = a-p. Ax = lat) and shear 

forces (Fz = a-p. Fx = lat), recorded with subjects' eyes-open and eyes-closed, were 

used to assess control of static standing (section 2.5). Comparisons were made of 

balance test data collected both within- and between-testing sessions. 
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For testing of within-session reliability, eight separate trials were performed. Data for 

individual balance characteristics were firstly recorded from 4 repeated trials. After the 

subjects rested briefly, the measurements were repeated 4 further times. The C. V. s of 

the repeated measurements of the balance variable estimates were calculated to 

determine reliability of the measures. Representative data are shown in Table 3.1. 

Table 3.1 Within-session reliability. C. V. (%) of CoP (sway index) and shear forces 
(mean, SD and slope) measurements calculated in a-p and lateral directions with 
subjects' eyes-open and eyes-closed. Data were determined from a total of 8 
measurements recorded during two sessions on the same day with 4 subjects. 

Parameter Direction Eyes-open Eyes-closed 
C. V. (%) C. V. (%) 

COP a-p 7.73 5.84 

lateral 4.83 5.84 

F(mean) a-p 3.59 4.50 

lateral 4.46 4.47 

F(SD) a-p 1.94 2.03 

lateral 3.17 2.68 

F(slope) a-p 1.83 2.65 

lateral 5.32 2.13 

The finding that all of the C. V. values determined were < 10 % and most <5% 

indicated good reliability for parameter estimates obtained during recording sessions 

conducted on the same day. 

For determination of between-session reliability, the balance measurements (CoP and 

shear force) were repeated at two-weekly intervals during the first 6 weeks, and then at 

weeks 12 and 14. Data manipulation and parameter calculations were performed as 

described earlier (section 2.5). 
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Table 3.2 Between-session reliability. Mean values of CoP co-ordinates Az and Ax (cm) 
and shear forces Fx and Fz (Hz) measurements on six occasions and C. V. (%) values 
of between-tests reliability assessments (comprising 6 measurements over a 14 weeks 
period). 

Testing time Fx Fz Az Ax 

Baseline 0.64 0.64 5.86 3.72 

2 weeks 0.51 0.64 4.62 1.91 

4 weeks 0.69 0.73 2.89 4.03 

6 weeks 0.69 0.64 3.11 4.49 

12 weeks 0.75 0.67 4.28 4.04 

14 weeks 0.67 0.47 2.60 2.34 

C. V. (%) 1.15 1.24 17.88 14.91 

In the between-session reliability assessments, the C. V. s of the parameter estimates 

were also low, at < 10 % for Fx and Fz. and < 20 % for Az and Ax. and indicated 

acceptable reliability. Thus, the values of > 10 % were considered reasonable for 

recordings obtained between measurements taken over a three months period. 

Representative data are shown in Table 3.2. These data are compatible with earlier 

reports of reliability assessments for balance characteristics in healthy subjects using 

similar methods (Geurts et a1.. 1993; Bumfield et aL, 2000). The clear difference in 

variation between the estimates for Fx/ Fz and Az! Ax was predictable, and is explained 

by force measures being more sensitive than CoP measures in discriminating the 

changes in steadiness, which resulted from alterations to the base of support 

(representing the vibration of the body during standing) in the stance position. These 

data therefore confirm and extend earlier findings (Liu and Lawson, 1995; McClenaghan 
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et al., 1995; Burnfield et al., 2000). As these measurements were carried out on a 

routine basis throughout the entire duration of the main testing trials, the low variability 

indicated by the work validated the applicability of the methods for research purposes. 

3.1.1.2 Accuracy of gait performance 

Effects of repeated digitising on co-ordinates 1 

A separate study was performed to determine the most suitable method for digitising 

the markers in relation to accuracy when assigning 3-D co-ordinates to the position of 

the lower limb joints in the video images. Two methods were assessed based on 

manual and semi-automatic approaches. The manual method involved assessing the 

tracking of each frame individually. The semi-automatic method used computer software 

that tracked markers in sequence, providing that they were visible within the video 

image and could be 'recognized' by the software. The raw and filtered 3-D co-ordinates 

(where x is horizontal forward, y is the vertical direction and z is the lateral direction) 

were calculated using procedures as described earlier (section 2.6.2. ). Re-digitised data 

values were evaluated using the one-way ANOVA and appropriate post-tests were used 

to indicate which method for digitising the markers was more accurate; for presentation 

here, RMSE (%) of variation values are given, where higher values represent low 

(poorer) repeatability (section 2.6.3). 

The results from repeated digitisation using the two methods (manual and semi- 

automatic) for each marker are presented in Table 3.3. The manual digitising method 

revealed higher % values compared to the semi-automatic method on 4 occasions for 

the left leg and 12 occasions for the right leg. The semi-automatic indicated higher % 

values for 14 assessments of the left leg and 6 of the right leg. These studies revealed 

that the values obtained using the manual method, were overall, clearly lower (and 

therefore more reliable) than those obtained via the semi-automatic method. The 
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Table 3.3 Effect of repeated digitisation on markers' linear displacement 

Digitising method 

Markers Axis Manual (%) Auto (%) 

Left side 

Foot x 

y 

z 

Heel x 

y 

z 

Ankle x 

y 

z 

Knee x 
y 

z 

Hip X 

Y 

z 

Pelvis X 

Y 
z 

7.83 

2.38 

5.53 

12.40 

3.50 

7.78 

9.04 

4.05 

6.19 

4.94 

4.30 

4.14 

5.49 

3.35 

4.58 

6.67 

4.54 

5.19 

7.72 

3.94 

6.89 

10.54 

6.95 

11.69 

10.19 

9.48 

8.64 

7.68 

4.36 

5.48 

7.75 

4.35 

3.99 

11.81 

4.50 

5.35 

Manual (%) Auto (%) 

Right side 

11.41 9.23 

2.58 3.64 
6.97 7.45 

10.96 9.02 

4.00 6.18 

7.80 6.89 

9.61 8.99 

4.33 4.37 

8.30 7.12 

8.88 8.37 

6.21 4.77 

6.47 5.57 

9.00 8.39 

4.41 4.23 

7.64 5.67 

6.65 8.64 

4.12 3.93 

4.65 6.41 

Digitisation of markers was undertaken using two different methods (manual and semi- 
automatic) in x, y and z directions. Separate determinations were made for the left and 
right side. Values are RMSE in %. For details, see text. 
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manual tracking method was therefore used routinely for all subsequent analysis of gait 

data and during the main phase of the research. 

Effects of repeated digitising on variable calculations 

In order to provide a measure of stability indicating the level of variability over the total 

number of separate digitisations from proximal to distal joints, the co-ordinates and 

selected variables were smoothed. Smoothed data were filtered with a 4th order 

recursive Butterworth filter (6 Hz cut-off frequency). The linear displacement and 

velocity from each digitised body mark were determined by APAST"' software using 

established kinematic models. Further data analysis from 3-D markers involved 

calculation of the root mean square error (RMSE) of the eight repeated digitisations. 

This procedure provides a measure of stability by indicating the level of variability over 

the total number of separate digitisations from the proximal to distal joints. High RMSE 

values indicate poor repeatability and the potential for difficulty reproducing the same 

motion. Conversely, lower RMSE values suggest a good level of stability (section 2.6.3). 

The mean deviations and (ranges) of RMSE determined for all joints were relatively low, 

at 2.98 % (9.57) and 2.41% (8.75), for linear displacement of the left and right leg, and 

1.75 % (7.06) and 1.66 % (4.97) for velocity of the left and right leg, respectively. The 

lowest RMSE values in all directions for both legs were for the pelvic linear 

displacement motion, at 3.53 % (0.72). The highest values, 6.35 % (3.60), were 

obtained for the motions of the heel. The lowest RMSE for linear velocity values were 

evident with the ankle motions, at 3.93 % (1.79), and the highest occurred for the foot 

motions, 4.98 % (2.41). These data therefore did not reveal a clear pattern to suggest 

that certain points are more visible throughout two gait cycles. The maximum deviations 

were gained for the foot (y-direction of the left leg), heel (x-direction of the left leg) and 

ankle (x-direction of the right leg) points. It is notable that these points are obstructed for 

the longest time from different camera views by other body parts. Consequently, it is 

easy for the operator to lose track of these points and increase error. Table 3.4 
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summarises RMSE values (percentage) for the smoothed 3-D coordinates in the linear 

displacement and velocity assessments undertaken for both legs. 

3.1.1.3 Reliability and repeatability of gait measurements 

Gait performance reliability was also tested to assess how subjects' gait could vary 

between different tests during the one-day testing session, and between multiple trials 

carried out on different days. A subject with right side hemiparesis was selected at 

random from those who had already completed the main tests. The subject's kinematic 

gait parameters were tested when walking on a 10-metre walkway. The tests were 

repeated 4 times in succession with 30 minutes rest after each test; identical 

procedures were repeated 1 week later 

In order to provide a thorough assessment of reliability and repeatability of kinematic 

variables, data for complete gait cycles (affected and unaffected leg) collected from 

each test were analysed. For each test, data values were calculated separately for 12 

body landmarks in 51 analysed fields and in x-, y- and z-directions. The linear 

displacement and velocity of each landmark were investigated. The segmental 

displacement and velocity were analysed from foot, shank, thigh and pelvic segments. 

The angular displacement and velocity were calculated from the ankle, knee and hip 

joints. All variables were calculated with APAS softwareTM. The C. V. s for each angular 

and segmental displacement and velocity data series were calculated independently for 

each of the re-digitised data sets. This information was used to indicate the 

reproducibility of the patient's gait performance and to indicate the most reliable method 

to assess joint motions from video-based movement analysis data collected from stroke 

subjects. 
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Table 3.4 Effect of repeated digitising on 3-D co-oordinate calculations 

Three-dimensional motion 

'Markers Axis Linear displacement Linear velocity 

Left side Right side Left side Right side 

Foot x 6.69 8.69 8.88 6.25 

y 1.50 1.49 2.65 2.44 

z 4.62 5.40 4.39 5.28 

Heel x 11.23 9.10 6.39 5.44 

y 2.42 2.11 2.18 3.18 

z 6.71 6.52 4.27 5.82 

Ankle x 7.70 10.22 4.97 6.60 

y 2.99 2.92 1.82 2.33 

z 4.97 7.01 3.31 4.54 

Knee x 1.98 5.85 2.77 7.00 

y 3.62 4.82 2.14 4.08 

z 2.27 5.07 4.89 3.24 

Hip x 2.91 6.53 3.34 7.30 

y 1.66 3.34 2.33 3.23 

z 2.24 6.37 5.00 6.63 

Pelvis x 4.29 4.28 3.81 6.15 

y 2.43 3.47 3.13 3.47 

z 3.05 3.65 4.60 3.38 

Data are the RMSE (%) of mean linear displacement and velocity of the joint 

movements from the full gait cycle calculated for eight repeated digitisations for the left 

and right leg. For details, see text. 
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Linear displacement of landmarks 

Linear displacement describes the translational component of the motion of a body 

landmark moving in space (Bartlett, 1997a). Examples of linear displacement data 

collected during test I and test II for the right ankle, knee and hip markers located on 

each leg are shown in Figures 3.1,3.2 and 3.3, with average values from the four 

repeated trials in each test summarised ±1 SD in x (antero-posterior), y (vertical) and z 

(lateral) directions. 

As expected, the variability of the right ankle landmark linear displacement was lowest 

during stance phase when ground support limits joint motion, and highest during swing 

phase when ankle joint motion changes from extension to flexion. The single lowest 

variability of the right ankle landmark values recorded in the x-, y-, and z-directions were 

43.4 mm, 0.63 mm and 2.45 mm, respectively. Thus, variability in the y direction was 

considerably lower than in the x- and z-directions. The variability between trials in the y- 

direction showed that approximately 80 % of the values had < 10 mm variation in a full 

gait cycle, which indicated good levels of reliability, and is consistent with limited earlier 

reports of kinematic measurement variability seen with healthy and disabled subjects 

(Wall and Crosbie, 1995; Salo, 1999; Romkes and Brunner, 2002). 

The maximum deviation between the four trials revealed the existence of further 

variability differences between each landmark axis. The maximum deviation of the right 

ankle marker was 188.1 mm in the x-direction at late swing phase, just before the new 

heel strike. The maximum deviations in the y- and z-directions (18.25 mm and 33.25 

mm) were clearly lower than those recorded in the x-direction. In contrast to the 

variability seen in the x-direction in late swing phase, the major variability evident in both 

y- and z-directions occurred during mid-swing phase (Figure 3.1). 
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Figure 3.1 Linear displacement of ngnt ankle marker: three-dimensional components. 
Representative data for deviation of linear displacement (right ankle marker) collected during 
tests I and test II. Data are the mean ±1 SD from 4 repeated gait cycles. The dashed line on 
each graph separates stance phase (left of line) from swing phase (right of line). X-axis present 
digitised video images in full gait cycle (25 images/s). For details, see text. 
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Figure 3.2 Linear displacement of right knee marker: three-dimensional components. 
Representative data for deviation of linear displacement (right knee marker) collected during tests 

I and test II. Data are the mean ±I SD from 4 repeated gait cycles. The dashed line on each 

graph separates stance phase (left of line) from swing phase (right of line). X-axis present 
digitised video images in full gait cycle (25 images/s). For details, see text. 
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Figure 3.3 Linear displacement of right hip marker: three-dimensional components. 
Representative data for deviation of linear displacement (right hip marker) collected during tests I 

and test II. Data are the mean ±1 SD from 4 repeated gait cycles. The dashed line on each 
graph separates stance phase (left of line) from swing phase (right of line). X-axis present 
digitised video images in full gait cycle (25 images/s). For details, see text. 
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Linear displacement estimates for the right knee landmark revealed that the maximum 

deviation (188.6 mm) also occurred in the x-direction during the second heel strike. The 

maximum deviations in the y- and z-directions (10.54 mm and 28.71 mm) were clearly 

low. The single lowest variability of the right knee landmark recorded in the x-, y-, and z- 

directions were 57.8 mm, 0.69 mm and 3.98 mm, respectively (Figure 3.2). Thus, 

variability in the y- and z-directions was considerably lower than in the x-direction. The 

variability between trials in the y-direction showed that approximately 95 % of the values 

had < 10 mm variation in a full gait cycle, which indicated particularly good levels of 

reliability (Romkes and Brunner, 2002). 

Linear displacement determinations for variability of the right hip landmark indicated that 

the maximum deviation was 173.6 mm in the x-direction during the second heel strike. 

The maximum deviations in the y- and z-directions (14.76 mm and 34.24 mm) were 

considerably lower. The single lowest variability of the right hip landmark values 

recorded in the x-, y-, and z-directions were 72.19 mm, 2.01 mm and 4.17 mm, 

respectively (Figure 3.3). Thus, as was seen with the right ankle and knee markers, 

variability of the right hip landmark in the y direction was considerably lower than in the 

x- and z-directions. The variability between trials in the y-direction showed that 

approximately 80 % of the values had < 10 mm variation in full gait cycle, again 

suggesting good levels of reliability (Romkes and Brunner, 2002). 

Data for the deviation of linear displacement calculations are summarised in Table 3.5. 

The C. V. values calculated for each of the landmarks during test I and test II revealed 

good overall reliability, especially for the y-component (vertical). In this direction, the 

clear majority of the landmarks (12) yielded C. V. values of < 6% and 3 less than 10 %. 

In contrast, there was much a larger variation in measurements collected in the x- 

direction. 
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Table 3.5 Reliability of repeated gait performance for landmarks calculated. Mean, 
minimum and maximum values are in millimeters and C. V. is in percentages. For details, 
see text. 

Linear displacement values (mm) during one gait cycle 

Right ankle marker Left ankle marker 
X-direction Test I Test 11 X-direction Test 1 Test 11 
Mean 125.87 86.55 Mean 90.51 93.60 
Min 61.37 43.42 Min 46.72 38.76 
Max 188.06 113.98 Max 114.40 122.18 
C. V. 64.67 40.80 C. V. 27.19 35.44 
Y-direction Y-direction 
Mean 8.21 6.15 Mean 13.24 10.51 
Min 5.04 0.63 Min 3.07 1.79 
Max 15.06 18.25 Max 36.63 32.70 
C. V. 5.56 7.36 C. V. 18.77 14.50 
Z-direction Z-direction 
Mean 12.25 12.71 Mean 12.84 11.59 
Min 4.07 2.45 Min 6.44 2.37 
Max 25.81 33.25 Max 17.94 29.71 
C. V. 11.70 14.66 C. V. 6.91 11.85 

Right heel marker Left heel marker 
X-direction Test I Test Il X-direction Test I Test 11 
Mean 127.52 89.05 Mean 84.28 60.23 
Min 54.16 33.92 Min 11.10 17.70 
Max 204.17 123.98 Max 235.73 131.08 
C. V. 74.90 43.43 C. V. 108.47 47.02 
Y-direction Y-direction 
Mean 14.88 9.79 Mean 22.52 15.48 
Min 3.98 1.82 Min 3.49 1.89 
Max 36.58 27.95 Max 69.37 46.72 
C. V. 13.28 12.89 C. V. 30.35 24.27 
Z-direction Z-direction 
Mean 18.47 15.18 Mean 20.84 13.35 
Min 1.64 1.28 Min 3.40 3.34 
Max 49.78 45.99 Max 34.13 33.56 
C. V. 21.42 20.68 C. V. 108.47 47.02 

Right toe marker Left toe marker 
X-direction Test I Test 11 X-direction Test I Test 11 
Mean 130.04 84.72 Mean 132.06 98.40 
Min 51.27 31.45 Min 73.37 37.70 
Max 179.53 129.28 Max 175.09 144.45 
C. V. 61.22 49.00 C. V. 57.68 43.17 
Y-direction Y-direction 
Mean 6.84 6.28 Mean 5.48 6.37 
Min 1.12 1.17 Min 0.84 0.98 
Max 14.58 15.12 Max 13.77 12.90 
C. V. 7.32 5.81 C. V. 6.38 4.81 
Z-direction Z-direction 
Mean 18.31 14.92 Mean 16.89 13.97 
Min 1.82 1.27 Min 5.71 4.50 
Max 48.46 41.49 Max 37.34 46.25 
C. V. 19.45 20.28 C. V. 14.51 16.95 
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Linear displacement values (mm) during one gait cycle 

Right knee marker Left knee marker 
X-direction Test I Test 11 X-direction Test I Test 11 
Mean 123.78 99.06 Mean 129.09 88.30 
Min 57.80 65.14 Min 81.76 40.05 
Max 188.61 121.08 Max 165.37 118.56 
C. V. 58.01 30.73 C. V. 51.30 34.44 
Y-direction Y -direction 
Mean 7.20 4.71 Mean 5.81 4.08 
Min 3.44 0.69 Min 0.51 1.34 
Max 10.54 10.21 Max 10.94 9.33 
C. V. 4.19 4.19 C. V. 4.37 2.81 
Z-direction Z-direction 
Mean 9.48 15.46 Mean 12.21 17.09 
Min 3.98 4.98 Min 0.18 7.19 
Max 16.96 28.71 Max 25.77 24.81 
C. V. 58.01 30.73 C. V. 10.11 8.74 

Right h ip marker Left h ip marker 
X-direction Test I Test 11 X-direction Test I Test 11 
Mean 127.11 91.23 Mean 124.59 89.48 
Min 78.76 72.19 Min 81.71 68.96 
Max 173.60 110.94 Max 160.99 117.22 
C. V. 44.54 20.06 C. V. 47.14 25.86 
Y-direction Y-direction 
Mean 5.95 6.58 Mean 5.27 4.84 
Min 2.01 3.14 Min 1.25 1.48 
Max 14.76 13.14 Max 10.77 8.49 
C. V. 5.26 4.34 C. V. 5.06 3.18 
Z-direction Z-direction 
Mean 8.83 26.32 Mean 35.22 30.47 
Min 4.17 15.36 Min 22.19 16.73 
Max 15.00 34.24 Max 46.31 38.10 
C. V. 5.32 11.56 C. V. 14.87 10.58 

Right pelvic marker Left pelvic marker 
X-direction Test 1 Test 11 X-direction Test 1 Test 11 
Mean 129.29 91.67 Mean 125.94 89.32 
Min 87.66 73.03 Min 77.45 67.65 
Max 171.27 109.97 Max 172.90 110.51 
C. V. , 41.66 18.52 C. V. 47.82 22.58 
Y-direction Y-direction 
Mean 9.98 6.37 Mean 3.99 4.10 
Min 6.10 1.40 Min 2.50 0.78 
Max 18.28 12.18 Max 5.91 6.32 
C. V. 5.21 5.17 C. V. 1.77 2.61 
Z-direction Z-direction 
Mean 34.33 25.04 Mean 32.09 27.59 
Min 23.22 10.29 Min 20.11 7.52 
Max 42.83 36.49 Max 42.04 37.70 
C. V. 9.40 14.87 C. V. 11.75 14.86 
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In these studies, test-to-test reliability indicated reasonably constant repeatability. The 

lowest difference in C. V. values (4.2 % on both days) was obtained for the right knee 

landmark in the y-direction (Figure 3.2). The largest difference in C. V. values was for 

the left heel marker in the x-direction, with 108.5 % on day I and 47.0 % on day II. The 

results for the test-to-test reliability assessments for all markers are summarised in 

Table 3.5. 

Linear velocity of landmarks 

Linear velocity describes the rate of change of the translational motion (Bartlett, 1997a). 

As the results for the linear displacement assessments indicated that the strongest 

reliability was in the y-direction (vertical), only the findings of the landmark linear velocity 

in the y-direction are considered here. The lowest variability in linear velocity (10.7 %) 

was seen for the left pelvic marker. The largest variability was for the left heel marker, at 

62.9 % on day I. The lowest differences in C. V. values were obtained for the left ankle 

landmark (38.63 on day I and 38.50 on day II) in the y-component. The largest 

difference in C. V. values was for the right hip marker with 17.76 on day I and 28.84 on 

day II. The results of these studies are presented in the Table 3.6. 

Angular displacement of segments 

Angular displacement describes the rotational component of the motion of the body 

segment moving in space. The angular displacement is represented in the global 

reference frame, which accounts for its description as the segmental angular 

displacement defining the absolute angular motion of the segment with respect to the 

horizon (section 2.5.2.3). 

In order to further investigate gait performance reliability, segmental angular 

displacement was calculated for the foot, shank, thigh and pelvic segments for both 

legs. The findings of the saggital plane measurements are presented here. 
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Linear velocity of markers - saggital plane 

Right leg Left leg 

Day I (C. V. ) Day 11 (C. V. ) Day 1(C. V. ) Day 11 (C. V. ) 

Ankle 33.39 41.66 38.63 38.50 

Toe 40.07 38.07 47.63 39.92 

Heel 40.52 44.90 62.92 60.86 

Knee 15.97 12.55 27.29 25.72 

Hip 17.76 28.84 26.94 30.67 

Pelvis 19.40 26.50 10.72 15.44 

Table 3.6 Within-test reliability: linear velocity. C. V. values were calculated from each 
marker's linear velocity in the y-direction on both testing days as described in Methods. 
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The lowest variability (2 %) in the segmental angular displacement was for the right 

pelvis. The values calculated for the right shank and thigh, and the left shank, thigh and 

pelvic segments were all <5%, again indicating low variability. The largest variability 

(11.4 %) was obtained during day I for the left heel marker. The results of these 

calculations are summarized in Table 3.7. 

Table 3.7 Within-test reliability: angular displacement during the gait cycle. C. V. (%) 

values were calculated from each segment's angular displacement in the saggital plane 
during test I and test II as described in Methods (section 2.5.4). 

Angular displacement of segments - saggital plane 

Right leg Left leg 

Segment Day I (C. V. ) Day 11 (C. V. ) Day I (C. V. ) Day 11 (C. V. ) 

Foot 11.37 6.18 12.16 9.70 

Shank 4.09 2.27 5.66 4.95 

Thigh 2.64 2.26 4.81 2.60 

Pelvis 1.99 2.19 2.18 2.31 

Angular velocity of segments 

Angular velocity describes the rate of change of the rotational motions. In the present 

studies, segmental angular velocity was calculated for the foot, shank, thigh and pelvic 

segments on both affected (right) and unaffected (left) sides. The lowest variability 

values in the segmental angular velocity were 6.11 % and 7.34% for the right pelvis on 

days I and II, respectively. The right shank and thigh and left shank, thigh, and pelvic 

segments provided variability of below 30%. The largest variability value (66.6%) was 

obtained during day I for the left shank marker. The results of these investigations are 

shown in the Table 3.8. 
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Table 3.8 Within-test reliability: segmental angular velocity during the gait cycle. C. V. 
(%) values were calculated from each segment's angular velocity in the saggital plane 
during test I and test II as described in Methods. 

Angular velocity of segments - saggital plane 

Right leg 

Segment Day I (C. V. ) Day 11 (C. V. ) 

Foot 49.17 59.25 

Shank 24.10 24.41 

Thigh 17.23 19.21 

Pelvis 6.11 7.34 

Joint angular displacement 

Left leg 

Day ! (C. V. ) 

44.83 

66.60 

37.66 

29.21 

Day 11 (C. V. ) 

41.63 

41.13 

26.78 

48.30 

During angular displacement of a joint, the vector is represented in the body-fixed 

reference frame of the adjacent body segment (e. g. the distal segment), because it 

describes the relative angular motion of the segment with respect to another (Methods 

section 2.5.2.3). In order to further examine the reliability of gait variable measurements, 

the angular displacement was calculated for the ankle, knee, and hip joints on both legs. 

The lowest variabilities in angular displacement were values of 2.24 % and 2.34 % 

obtained for the right hip on days I and II, respectively. The right knee and left hip 

yielded values of 5% on both days; a similar value was obtained for the right ankle on 

day II. The largest variability (9.2 %) was recorded on day I for the left knee. The results 

of these calculations are shown in Table 3.9. 
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Table 3.9 Within-test reliability: angular displacement of joints during the gait cycle. C. V. 
(%) values were calculated from each joint's angular displacement in the saggital plane 
during test I and test II as described in Methods. 

Joints' angular displacement - saggital plane 

Right leg 

Joint Day I (C. V. ) Day I! (C. V. ) 

Ankle 7.23 4.88 

Knee 2.71 3.06 

Hip 2.24 2.34 

Joint angular velocity 

Left leg 

Day I (C. V. ) Day II (C. V. ) 

9.20 5.97 

4.74 2.61 

6.19 6.30 

As indicated earlier, joint angular velocity describes the rate of change of the rotational 

motions using the body-fixed reference frame of the adjacent body segment (section 

2.5.2.3). The results described below were obtained from joint angular velocity 

calculations of subjects' ankle, knee, and hip for both legs. The lowest variability value 

determined for joint angular velocity was 19.43 % for the right hip on day I, which 

increased to 40.79 on day II. The largest variability occurred with the right ankle joint, at 

95.22 % and 99.35 % on day I and II, respectively. The results of these calculations are 

presented in the Table 3.10. 
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Table 3.10 Within-test reliability: angular velocity of joints during the gait cycle. C. V. 
(%) values were calculated from each joint's angular velocity in the saggital plane plane 
during test I and test II as described in Methods. 

Joints' angular velocity - saggital plane 

Right leg 

Joint Day I (C. V. ) Day 11 (C. V. ) 

Ankle 95.22 99.35 

Knee 27.51 37.88 

Hip 19.43 40.79 

Left leg 

Day I (C. V. ) 

90.28 

91.21 

41.41 

Day 11 (C. V. ) 

79.41 

82.52 

67.03 

3.1.2 Discussion 

3.1.2.1 Balance test reliability 

The reliability of balance measurement data collected using force platform apparatus 

was monitored regularly to ensure applicability in a clinical setting. Details of the CoP 

co-ordinates and shear forces in a-p and lateral directions recorded for healthy subjects' 

were obtained to assess the control of static standing. For each of the variables 

measured, comparisons were made between the results obtained on the same day, and 

between several tests undertaken over the 14 weeks testing period. Whilst both of 

these comparisons were relevant for the main study, as a main aim of the research was 

to assess the effects of DAFOs over three months, from a clinical perspective, the latter 

were most appropriate. 

The results of the first of these assessments (section 3.1.1.1) showed that the within- 

test reliability C. V. values of the balance parameters remained steady and mainly under 

5%, indicating good reliability for variables obtained during recording sessions carried 
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out on the same day. The shear force parameters determinations (Fmean, Fsd and 

Fslope) provided slightly lower average C. V. values than for CoP, again signifying good 

within-test reliability. Goldie et. al. (1996) tested the balance reliability with healthy 

subjects and compared the CoP and forces. These authors found that reliability 

between tests, which was repeated on the same day, was better for forces than CoP 

measures. 

Collectively, the between-test reliability C. V. value determinations for the shear force 

variables and CoP were always < 10 % and 20 %, respectively. As these comparisons 

reflect reliability data collected over the entire testing period (14 weeks) such levels are 

reasonable, and are comparable to findings obtained using similar methods and healthy 

subjects reported elsewhere (Burnfield et al., 2000; Gefen, 2001). 

The C. V. of the CoP values determined for lateral sway (reflecting the hip movements) 

tended to be lower than for a-p (reflecting the ankle motions) in all tests. Lateral sway is 

a reliable measure because adjustments for postural sway in the lateral direction are 

smaller at the hip, which is located relatively close to the body's centre of gravity (Maki 

et al., 1992). The reliability of the shear force measures was shown to be good both 

within- and between-tests (in all cases <5 %) indicating that, overall, the subjects used 

a relatively consistent pattern of postural control during static standing. Similar results 

have been reported from earlier investigations, where measures derived from postural 

forces or displacement of CoP were compared (Burnfield et al., 2000). The present 

finding that C. V. values of shear force measurements were generally higher in the 

lateral direction than in the a-p direction is interesting. It has been speculated that age- 

related changes may affect lateral stability of shear forces, which stabilizes responses 

occurring at the hip, and this lateral instability may be an intrinsic factor contributing to 

balance problems (falls) in the older population (McClenaghan et al., 1995). Here, the 

healthy subjects were of a similar age to the stroke subjects in the main study and can 

therefore be described as elderly people. The results obtained are consistent with the 
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reliability of postural control in the lateral direction being reduced as a consequence of 

aging, but nevertheless achieving good levels of experimental reliability. The sd and 

slope variables of shear forces provided the lowest C. V. values, indicating the strongest 

reliability for these within-test variables. The results indicate that shear forces are 

somewhat more sensitive to re-test reliability assessment in detecting changes of 

postural steadiness than CoP measures, although both measures provided acceptable 

levels, both within- and between-tests. 

The literature contains few accounts of reliability studies applicable to the work reported 

here. Goldie et al. (2000) reviewed the validity of balance measurements for healthy 

subjects and highlighted a lack of consensus concerning basic validity, and the 

availability of limited evidence supporting the validity of any given measurement. 

However, more recently, Ghent et al. (1992), Dickstein et al. (1993) and Liu and Lawson 

(1995) reported findings of studies on healthy subjects using balance measurements 

similar to those undertaken here, which indicated good reliability for non-disabled 

subjects. Dickstein et al. (1993) also presented moderate balance reliability data for a 

subject with hemiplegia. In a larger study, Levine et al. (1996) examined the reliability of 

force platform apparatus using 20 stroke subjects; the main finding of this work showed 

that, in static balance tests, measurements in the medio-lateral direction provide better 

reliability than in the antero-posterior direction. 

It is noted here that whilst the reliability studies carried out within the present work were 

important, force platforms are subject to many inherent characteristics and influences, 

which can perturb the reliability of the data obtained. For example, the accuracy of the 

force platform data output can be affected by electronic noise, system hysteresis and 

drift, non-linearity and different offset voltages of the transducers. However, for the 

present work, it was taken that as the force platform had been installed and maintained 

in accordance with the manufacturer's requirements, it was functioning within the 

quoted specification. A check was however made on system drift and it was confirmed 
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to be negligible for the 30 s testing periods employed in this work (Dr. J. Richards, 

personal communication). The existence of inconsistencies in procedures used for 

establishing the reliability of force platform apparatus both within- and between-gait 

laboratories has been commented upon elsewhere (Browne and O'Hare, 2000). These 

authors have proposed comprehensive quality control procedures for force platforms in 

detail. This issue is addressed in the Future Studies section of this thesis. 

Accuracy of gait performance 

The studies performed to clarify which method for digitising the markers (manual 

tracking or semi-automatic) was most accurate for assigning 3-D co-ordinates to the 

positions of the lower limb joints in the video picture images, and to measure stability 

levels of calculated variables (section 2.5.3) were undertaken to investigate digitising 

accuracy and the propagation of variation from the digitised co-ordinate level throughout 

the whole analysis sequence. In addition, these studies enabled assessment of variation 

in gait performance at the 3-D co-ordinate level and isolation of inaccuracies due to the 

operator. 

Effects of repeated digitising on co-ordinates 

Analysis of linear displacement data in a single gait cycle of a stroke subject were done 

from 16 repeated digitisation. Calculations were processed separately for 12 body 

landmarks and for each co-ordinate of the segmental model (in x, y and z-directions) via 

the manual method (section 3.1.1.2), which provided clearly lower values for the left 

side (for 14 landmarks) compared to the semi-automatic method. A similar (albeit less 

noticeable) situation was apparent for the right side. Interestingly, the semi-automatic 

method yielded lower RMSE percentage for the right knee joint compared to the manual 

method in all 3-D co-ordinates. This may have been due to the fact that the subject 

wore shorts and this joint was visible within the body landmark throughout the gait cycle. 

In addition, whilst every effort was made to position the cameras accurately, the 
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possibility that slight differences in camera angle on the right side resulted in improved 

automatic marker calculation and accuracy cannot be excluded. (Bartlett, 1997a; Salo et 

aL, 1996). 

The manually digitised landmarks provided better accuracy for the ankle and knee joints 

on the left side for all of the 3-D co-ordinates selected. Furthermore, using this method, 

the foot, heel, hip and pelvis on the left side, and the foot on the right side, yielded lower 

RMSE percentages in some (2) directions, a situation not seen when using the semi- 

automatic technique. This could have been due to the bright light near the marker 

leading to reproducibility errors with the semi-automatic technique, which was 

eliminated ('visually') by the operator using the manual method. 

Effects of repeated digitising on variables 

The RMSE values for the 8 manually repeated digitisations were' used to provide a 

measure of the stability provided by the 3-D co-ordinates. For these assessments 

(section 3.1.1.2), high root mean square error (RMSE) values were consistent with poor 

repeatability and the potential for difficulties when reproducing the same motion; 

conversely, lower RMSE values are considered indicative of good levels of stability 

(Allard et al., 1996). RMSE values in x, y and z directions showed that the y-axis 

exhibited the greatest stability for repeated measurements for each body landmark. 

Manual digitising provided RMSE values of < 5% for each body landmark in the y- 

direction; the average values for all joints/markers were 2.7 and 1.7 % for displacement 

and velocity, respectively. The largest variation was evident when the landmark was 

obstructed from a camera view by another part of the body. Thus, for this subject group, 

occasionally the view of the video picture was obscured partially because, for personal 

reasons, some elderly patients opted to wear light, but loose fitting (baggy) shorts or 

shirts. In addition, where subjects possessed a severe gait disability, there were 

occasions where an affected arm masked trunk and hip movement. It proved possible to 
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eliminate some of the inaccuracy and variation during data collection via smoothing 

(Lundberg, 1996; Maynard et al., 2003; Salo et al., 2003). 

Overall, the foot and heel landmarks and ankle joint results were steadier (lower RMSE 

values) than those obtained for the knee, hip and pelvis. Nonetheless, the variability of 

the knee, hip and pelvic values was at acceptable levels of accuracy for 3-D co- 

ordinates, with over 60 % of all variable estimates providing RMSE values of <5%. 

Such accuracy levels during digitising probably reflect the efficient set-up procedure 

used in relation to the number and location of the cameras in the gait laboratory 

(Borghese and Ferrigno, 1990; Klein and DeHaven, 1995). The y-direction provided the 

lowest variability for all landmarks in both raw- and smoothed-data calculations, which is 

also explained by effective camera positioning and the clear on-screen views of these 

joint centres. During manual digitisation, a potential problem is the introduction of error 

by the operator when selecting the centres of joints or reflective markers. Olney et. al. 

(1994) estimated that the magnitude of such error to be 1 RMSE from different values 

for a repeated digitised data point. 

There are no earlier reports of movement analysis and reliability studies comparable to 

those undertaken for the present research using stroke patients. Earlier work has 

focused on examining the variability and reliability of different opto-electric systems in 

relation to normal human performance and the behaviour of mechanical objects, or in a 

sports science setting. However, some useful comparisons can be made with such 

studies. Vander Linder et al. (1995) examined a healthy subject when walking using 

'stand-up' tests with a direct processing method, which involved microchip controlled 

monitoring of a wooden bar. Results were given as the mean difference of repeated 

measurements within-trial and yielded values of between 1.39 and 3.04 mm. Salo and 

Grimshaw (1987) monitored reliability measurements of hurdle runners on an athletic 

track using a video-based system similar to that used here. Differences between 
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independent digitising indicated that although the reliability of the majority of parameters 

remained under 1 cm, in some cases, there was substantial error. 

The present studies showed that whereas manual digitising is a relatively slow method 

for processing gait data compared to the semi-automated method, it enables the 

collection of more stable and reliable results, which facilitates the generation of more 

useful information in relation to the applied biomechanics of gait performance with 

stroke walkers. 

Reliability of gait measurements 

The reliability of gait performance for a stroke subject was also examined using multiple 

gait tests on the same day (four separate gait tests), and between multiple trials carried 

out on different days (one week between testing days, section 2.6.4). The following 

discusses the most important findings in relation to specific landmark, segment and joint 

parameters of the gait cycle. 

Linear displacement and velocity of landmarks 

The clearest findings of the study of test-to-test reliability achieved on the same day 

were the low variability for different landmarks during stance phase and the greater 

variability during swing phase. This was predictable, as during stance phase the joints' 

motions are limited by contact with the ground, whereas there is a greater potential for 

joint movement during swing phase (Romkes and Brunner, 2002). The ankle, knee and 

hip joints provided the lowest linear displacement estimates in the y-direction, with 80 to 

95 % of the values yielding < 10 mm variation in a full gait cycle. These findings are in 

good agreement with earlier reports of movement analysis studies with video-based 

kinematic gait tests (Kadaba et al., 1990; Growney et al., 1997; Romkes and Brunner, 

2002). It was also found that variability of landmarks in the y direction (vertical) was 

considerably lower than in the x- and z-directions, indicating that the data for the joint 

motions in the vertical direction had better reliability with this technique. This finding is 
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compatible with gait performance reliability studies reported by Murray (1967) and 

Winter (1974) who showed that, in healthy subjects, the maximum magnitude of 

motions (ankle, knee and hip) in the vertical direction was consistent in within- and 

between-subject assessments. In agreement with the present studies, several earlier 

reports have described how estimates of the other components of movements (x- 

direction and z-direction) at the lower limb joints are less consistent than obtained in the 

y-direction. Apkarian et. al. (1989) described inter-subject variations in both gait pattern 

and maximum magnitude for healthy subjects. These authors postulated that the error 

was caused, at least in part, by inter-individual repeatable artefacts, such as skin 

movement and/or limited system resolution (Salo et aL, 1997; Bartlett, 1997a). In 

addition, difficulties in obtaining high repeatability may be caused by inappropriate 

marker placement assessment. This is a contentious issue and is subject to debate. 

Poorer reproducibility of kinematic variables may be due to problems in accurate 

placement of markers on the surface anatomical landmarks (Maynard et al., 2003). 

In the present work, it was found that the maximum difference between the C. V. values 

in the x-direction of two separate testing days was 108.5 in test I and 47.0 in test II, 

reflecting more than 23 cm variation for the right (affected leg) heel landmark. It is 

possible that the high variability of heel landmark movements in the x-axis between 

tests is associated with the variation of the stroke subjects' gait pattern, when the shank 

muscles (tibialis anterior muscle) are weak. The between-day reliability was good, 

overall, particularly in the y-direction, where the majority of the landmarks (12) yielded 

C. V. values of under 6 %; 3 provided values of under 3 %. These values compare 

favourably with biological systems in general, where, by convention, C. V. values of 10- 

15 % are considered acceptable as clinical measures (Olney et al., 1979; Winter, 1984; 

Stokes, 1986; Evans et al., 1997). This arbitrary C. V. range is adopted for most 

published studies involving patients, irrespective of study sample size. 
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The data obtained for linear velocity for all body landmarks obtained on day I and day II 

indicated markedly higher C. V. values than for linear displacement (Table 3.6). Again, 

the heel marker provided the lowest overall reliability values; the highest between-day 

variability was obtained for the pelvic marker, perhaps reflecting steadier movements of 

the hips than for heel function during the gait cycle. These observations are also in 

accord with earlier published findings (Growney et aL, 1997; Romkes and Brunner, 

2002). Collectively, this work shows that the strongest reliability is provided in the y- 

direction, both within one-day tests and between the two-day tests, which, in the context 

of the present research aims, provided an acceptable level of gait performance variation 

for the study of disabled walkers. As the primary movement of normal gait occurs mainly 

in the saggital plane, subsequent discussion in this thesis is limited to flexion-extension 

motion of the lower limb joints in this plane. 

Angular displacements and velocities of segments and joints 

In order to provide further details on the reliability of subjects' gait performance affected 

by stroke measurements obtained within- and between-test, further calculations were 

made of the variability of both segments' (global reference frame) and joints' (body fixed 

reference frame) angular displacement and velocity. The majority of the angular 

displacement of lower limb segments (shank, thigh and pelvic) data indicated good 

within-test variability levels (C. V. <5 %) for day I and day II sessions (4 tests on each 

day), with only the foot segment (on both sides) yielding values of > 10 %. The test-to- 

test repeatability measures indicated repeatable gait performance with values of <2% 

from shank to pelvis on both legs. The findings of the angular velocity of segments 

calculations provided similar results as for the displacement assessments, with better 

reliability evident with the higher segments of the lower limbs both within- and between- 

day tests. A clear finding from these studies was that the velocity values were higher 

and less reliable than those for the displacements. This is partly explained by the 
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method of the velocity (mm/s) calculation (the first order derivative of the displacement 

data), which tends to multiply the error (Wu, 1995b). 

Joint angular displacement and velocity determinations produced similar findings to the 

segmental measurements. The hip, and knee joints displacements provided C. V. values 

of <7%, whereas the ankle joints yielded the lowest values within one-day tests. 

However, the joint velocity values changed dramatically and showed clearly increased 

values, particularly between-day tests. For example the right (affected) hip was 20 % in 

day I and 41 % in day 11. The right ankle variability was poorest with 99.4 % and 95.2 

in the day I and II tests respectively. 

Collectively, these comparisons of alternative methods used to calculate gait 

movements show that segmental values yield slightly better reliability estimates for both 

displacement and velocity measures both within- and between-testing days. 

Comparable findings, in earlier studies where similar methods were used, have been 

reported, e. g. Morris (1973), Gilbert et al. (1999) and Maynard et al. (2003). In addition, 

the present work demonstrated that the motions for both measurement systems exhibit 

increased variability for the ankle joint and foot segment. Radin et al. (1991) and Wu 

(1995a) reported similar findings from studies of healthy subjects, where larger angular 

velocity of the more distal joints led to differential gait velocities, which was speculated 

to introduce error in joint movement data. 

The biomechanical literature contains many reports of studies on test variability and 

reliability of dynamic movements. Samuelson et al. (1988), Scholz and Millford (1998), 

Hanke (1991) and Haggard and Wing (1996) reported mostly high reliability values. 

Although all these studies were carried out using automatic systems and did not involve 

human movements, it is generally agreed that they have some, albeit limited use for 

clinical research. Motion analysis studies of walking and running tests that investigate 

variability or repeatability, which are closely related to reliability, have been carried out 

by Kadaba et al. (1990), Growney et al. (1997) and Winter (2002). In a recent study, 
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Maynard and colleagues (2003) evaluated intra-rater reliability with 10 healthy subjects 

(measured in same day) and inter-rater reliability with 19 healthy subjects (measured by 

three examiners) from repeated gait measurements. One gait cycle was analysed and 

ankle, knee and hip joint kinematic evaluated in the saggital plane. Overall, the study 

indicated good reliability, although the authors speculated that gait kinematic 

parameters are more difficult to reproduce than kinetic parameters. The best test-retest 

reliability was found to be the knee angle; the poorest reliability was for the hip angle. It 

was also suggested that data collected from a single gait cycle might be easier to 

interpret clinically if supported by information gained via other methods of analysis 

(Maynard et al., 2003). 

The present studies provide novel evidence for tests involving a stroke patient, where 

reasonable levels of gait kinematic error within- and between-days tests can be 

achieved via video-based movement analysis, and that such kinematic (segment) 

parameters in the saggital plane can be studied effectively by these methods. It is 

emphasised here that whilst, overall, the data presented are consistent with acceptable 

levels of reliability for clinical purposes, they were obtained via assessment of a single 

subject. As the disability levels of stroke patients are inherently heterogeneous, it 

cannot be assumed that the findings described here are applicable to a larger 

population. Such heterogeneity, which may be present both within- and between- 

subjects, also applies to the pathological events (in this case balance disturbance) 

which manifests as a disability. Nonetheless, whilst accepting this unavoidable 

limitation, these findings provided an indication of method reliability applicable to this 

study and afforded a reference point for further investigations. The following sections 

present the results of the work on the stroke subject groups (control and experimental) 

balance and gait (foot, shank and thigh segment rotation in the saggital plane) during 

the main phase studies. 
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3.2 Main phase - Balance 

This section presents the results of balance tests performed during the main study 

phase of the research. These investigations used protocols that were modified in 

accordance with the findings of the preliminary work presented earlier and in Appendix I. 

During the balance tests, to gain comprehensive information, the effects of the orthosis 

were evaluated via measurement of several standing balance variables. Data 

comparisons were made between the control group (shoes users) and the experimental 

group (DAFO users). The experimental group subjects were also assessed under two 

different conditions: using either the DAFO or shoes-only. The rationale for studying the 

subjects with and without the device was that this approach could identify the direct 

effects of the DAFO separate from unrelated influences such as learning and recovery 

effects. The p value for all statistical comparisons was 0.05. 

The results reported here are divided into three subsections. In the first section, 

comparisons of the demographic characteristics of the subjects studied are presented. 

The second section describes the velocity of sway of standing balance in relation to 

subjects' age, sex and gender. In the third section, the effects of DAFOs on subjects' 

CoP sway index and F(mean), F(sd) and F(slope) of horizontal forces in a-p and lateral 

directions are given. 

3.2.1 Results 

3.2.1.1 Subject characteristics 

Stroke subjects 

195 subjects were considered for inclusion in the study. Of these, 22 subjects were 

recruited successfully and 18 completed the main phase of the balance studies (8 

control, 10 experimental). The reasons for failure to complete the trial were further 

health problems (2), moving residence (1) and other personal reasons (1). The 
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demographic characteristics and distribution details for the subjects who completed the 

trial are shown in Table 3.11. 

Table 3.11 Demographic details of subjects who completed the balance tests 

Group Sex Age in Side of TS in Weight Height Walking 
years paresis months in kg in cm aids 

CNTRL 
4F 66.3 7 left 7.5 71.5 163.2 No aids (6) 
4M (52-76) 1 right (4-15) (50.9- (153- Stick (2) 

92.4) 173) 

EXP 
3F 68.9 5 left 8.2 74.3 166.6 No aids (2) 
7M (54-87) 5 right (4-15) (61.2- (153- Stick (7) 

92.4) 174) Frame (1) 

Mean and (range), TS = time since stroke 

Within the control and experimental groups, values for subjects' age, weight and height 

were found to follow a normal distribution (p > 0.01, Dallal and Wilkinson approximation 

to Lilliefors' method). It was determined that the mean values for each factor were not 

significantly different between groups (p < 0.05, unpaired t-test). However, the 

differences in the walking aids used by the subjects (Table 3.11) might suggest some 

variation in mobility levels between the groups. 

Healthy subjects 

Healthy elderly subjects (n = 4) were recruited in order to construct a comparative 

database for each variable. The repeated measurements for this were obtained during a 

single testing day undertaken for each subject. The demographic characteristics of the 

healthy subjects tested are shown in Table 3.12. 
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Table 3.12 Demographic details of the healthy elderly subjects 

Subject Sex Age in Weight in Height in 
years kg cm 

HE1 M 69 88.4 167 
H E2 M 72 73.5 175 
HE3 F 72 67.0 158 
H E4 F 73 64.0 152 

Mean 71.5 73.2 163 
Range 69 - 73 64 - 88 152 -175 

Subjects' age, height and weight were comparable with the stroke patients of the control 

and experimental groups, as presented earlier, p<0.05, unpaired t-test. 

3.2.1.2 Functional ability in everyday life 

Stroke subjects' functional abilities were assessed for each of the three tests during the 

twelve weeks study period using ADL assessment scales by interview. For all subjects, 

the Nottingham Extended ADL and Rivermead assessment scales were used. These 

scales were employed to evaluate subjects' changes in post-stroke impairment and 

disability, and their ability to carry out more difficult, daily functional tasks, such as using 

public transport, housework, social activities and hobbies (section 2.3. ). 

In the control group, the mean score from the three tests for the Nottingham Extended 

ADL scale was 39 (18-61), mean and (range). Using this scale, the experimental group 

scored 31 (11-43). These values suggest a difference in scores between the control and 

experimental groups, but this did not achieve statistical significance (p = 0.315, Mann- 

Whitney U-test). The Rivermead Motor Assessment scale consists of two parts: the 

Functional scale and the Leg and Trunk scale. In the control group a functional score of 

10 (7-11) was recorded for the three tests; in the experimental group the score was 8 
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(3-11). These score values were not significantly different (p = 1.457, Mann-Whitney U- 

test). Application of the leg and trunk scale provided scores of 5 (2-6) and 3 (1-5) for 

the control and experimental groups, respectively. The difference between these values 

was of borderline significance (p = 0.055). Examination of within-group data indicated 

minimal differences in scores from the baseline tests to the third tests for both the 

Nottingham ADL and Rivermead assessment scales. The results of these 

measurements are summarised in Table 3.13 (control group) and Table 3.14 

(experimental group). 

3.2.1.3 Velocity of sway 

The velocity of sway is the sum of the amount of displacement of the CoP divided by the 

sampling time, and is used to describe the subjects' ability to overcome instability in the 

upright posture. A consensus is that lower values of velocity of sway reflect more 

adequate balance control (Winter, 1995; Nougier et al., 1997). 

Antero-posterior direction: eyes-open condition 

In the baseline test, the control group' a-p velocity of sway with eyes-open was 20.49 

mm/s (5.75), mean and (SD). The values recorded for the second and third tests 

remained at similar levels, 20.81 mm/s (6.95) and 19.30 mm/s (3.52), respectively. In 

the experimental group, for two different trials (using shoes alone and then DAFOs), the 

baseline velocities of sway were similar to the control group, at 20.16 mm/s (6.12) and 

21.10 mm/s (7.3), respectively. In the second tests, the values recorded were 20.75 

mm/s (8.39) with shoes and 20.25 mm/s (5.92) with DAFOs. For the third tests, the 

values were lower with shoes (mean 18.92 mm/s, SD 4.76), but not with DAFOs (mean 

21.51 mm/s, SD 10.11). The comparative data from the healthy elderly subjects with 

eyes-open was 19.47 mm/s (3.50). 
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Antero-posterior direction: eyes-closed condition 

Under this condition, the a-p velocities of sway values recorded were, overall, higher 

than in the eyes-open condition. Thus, in the control group, with eyes-closed, the mean 

a-p velocity of sway for the baseline test was 23.59 mm/s (12.28); similar data were 

recorded for the second (22.75 mm/s SD 8.75) and third (23.15 SD 8.76) tests. A similar 

level was recorded for the healthy elderly subjects, although the SD values indicated 

noticeable less variation for these subjects (mean 23.00 mm/s and SD 3.78). 

In the experimental group, a-p velocity was consistently higher compared to the control 

group in all three tests. Thus, for the baseline test the values recorded were 26.13 mm/s 

(11.1) with shoes and 25.26 mm/s (8.55) using DAFOs. In the second test, the velocities 

were 25.02 mm/s (10.38) with shoes and 25.61 mm/s (8.81) with DAFOs, and in the 

third test, 24.60 mm/s (9.05) and 24.81 mm/s (10.07), with shoes and DAFOs, 

respectively. When these CoP velocity values were examined within the experimental 

group, the results indicated no differences between shoes and DAFOs over the three 

tests (Figure 3.4). Statistical comparisons of velocity data were performed as before; no 

significant differences were evident over the testing period. The results (f and p values) 

for these analyses are summarised in Table 3.15 a. 

When the data for the experimental group were separated according to side of paresis, 

it was found that for the 5 subjects with left side paresis, the a-p velocity of sway with 

eyes-open was 18.66 mm/s (5.14) with shoes and 19.46 mm/s (4.77) with DAFOs. For 

the 5 subjects with right side paresis, a-p velocity increased to 21.22 mm/s (7.16) with 

shoes and to 22.45 mm/s (9.69) with DAFOs. In the eyes-closed condition, the mean a- 

p velocity of sway of the subjects with left side paresis was calculated at 22.29 mm/s 

(6.74) using shoes and 22.07 mm/s (4.87) using DAFOs; for the right side paresis 

subjects the values were 28.20 mm/s (11.79) with shoes and 28.37 mm/s (10.90) with 

DAFOs. 
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Table 3.15 a Statistical tests (ANOVA) of the velocity of sway in the a-p direction 

Condition Source comparison f p 

Within subjects Eyes-open 1) Time*group 3.37 0.08 
factor 

2) Device*group 1.82 0.19 

Eyes-closed 1) Time*group 0.02 0.88 

2) Device*group 1.30 0.27 

Between subjects Eyes-open Control - Experimental 0.77 0.39 
factor 

Eyes-closed Control - Experimental 0.05 0.81 

For these investigations, the a-p velocity of sway values for the stroke subjects in the 

eyes-open condition were marginally higher than for the healthy elderly subjects. In the 

eyes-closed condition, the velocity of sway for the stroke subjects was noticeably higher 

than for the healthy subjects. 

A clear difference in a-p velocity of sway was observed between left and right side 

hemiparesis subjects in the experimental group (paired t-test, p<0.05). Right-sided 

hemiparesis subjects exhibited consistently higher velocity of sway, but not statistically 

significance different than those affected on the left side. The higher values suggest 

that, for these subjects, the right sided hemiparetics possessed poorer a-p balance 

control than those with a left side deficit. No statistically significant changes in a-p 

velocity were apparent using DAFOs compared with using shoes alone, which suggests 

that DAFO use does not influence this balance variable. 

Lateral direction: eyes-open condition 

In the control stroke group, the lateral velocity value in the eyes-open condition for the 

baseline test was 25.07 mm/s (7.11), mean and (SD). Similar values were recorded for 
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the second (mean 24.41 mm/s, SD 6.68) and third (mean 25.41 mm/s, SD 7.43) tests. 

In the experimental stroke group, using shoes alone and then using DAFOs, the lateral 

velocity values for the baseline test were 22.09 mm/s (4.86) and 23.26 mm/s (6.77), 

respectively. Corresponding values for the second (mean 22.26 mm/s, SD 4.90; mean 

22.99 mm/s, SD 5.94) and third (mean 21.51 mm/s, SD 7.43; mean 21.40 mm/s, SD 

4.13) tests were very similar. The comparative database from the healthy subjects 

provided very similar lateral velocity of sway values as for the control group (mean 

25.58 mm/s, SD 6.44). 

Lateral direction: eyes-closed condition 

In the control group, the baseline value recorded for lateral sway was 26.76 mm/s 

(8.17); slightly lower values were obtained for the second (mean 25.81 mm/s, SD 7.81) 

and third (mean 25.49 mm/s, SD 5.05) tests. In the experimental group, lateral velocity 

for the baseline test was 22.93 mm/s (4.91) mm/s using shoes and 24.17 mm/s (8.17) 

using DAFOs. Minimal differences were evident in the second test (22.81 mm/s (SD 

4.86) with shoes and 23.26 mm/s (SD 6.77) with DAFO) and third tests (22.72 mm/s 

(SD 4.05) with shoes and 23.75 mm/s (SD 4.92) with DAFO). The lateral velocity of 

sway in the healthy elderly subjects with eyes-closed was 29.49 mm/s (10.49), mean 

and (SD). 

Overall, the experimental group data clearly revealed lower lateral velocity of sway 

values than for the control group throughout all three tests under the eyes-open (and 

eyes-closed) conditions. The mean and SD for the lateral velocity values recorded for 

control and experimental groups in the each of the tests and under the two experimental 

conditions are summarized in Figure 3.5. Statistical comparisons for the lateral sway 

data were carried out (ANOVA) and these indicated no statistically significant 

differences within- and between-groups over the testing period. The f and p values for 

these analyses are summarised in Table 3.15 b. 
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Further statistical analyses were performed using the experimental group data 

separated according to side of paresis. The 5 subjects with left side paresis had a mean 

lateral velocity of sway in the eyes-open condition of 21.32 mm/s (3.84) using shoes and 

22.60 mm/s (4.25) using DAFOs. The velocity of sway for the other 5 subjects who had 

right side paresis was very similar, at 22.57 mm/s (4.34) with shoes and 22.63 mm/s 

(5.74) with DAFOs. In the eyes-closed condition, with left side paresis subjects, the 

mean lateral velocity of sway was 22.0 mm/s (4.02) using shoes and 23.05 mm/s (4.30) 

with DAFOs. For right side paresis subjects the values were 24.32 mm/s (6.32) with 

shoes and 24.39 mm/s (6.23) with DAFOs. Thus, the lateral velocity of sway was similar 

between left and right side hemiparesis subjects in the experimental group when using 

shoes or DAFOs. 

Table 3.15 b Statistical tests (ANOVA) on the velocity of sway in the lateral direction 

Condition Source comparison fp 

Within subjects Eyes-open 1) Time*group 0.49 0.49 
factor 

2) Device*group 0.33 0.57 

Eyes-closed 1) Time*group 0.001 0.97 

2) Device*group 2.20 0.15 

Between subjects Eyes-open Control - Experimental 1.21 0.28 
factor 

Eyes-closed Control - Experimental 1.22 0.28 
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In these studies, the data for lateral velocity of sway in the eyes-open condition for 

control and experimental stroke subjects were similar to those recorded for the healthy 

elderly subjects described earlier. In contrast, in the eyes-closed condition, the values 

recorded for the stroke subjects were slightly lower than for the healthy subjects. 

These data provide no statistically significant evidence that DAFOs influence the 

velocity of sway either in the a-p or lateral directions compared to when using casual 

shoes. However, it is notable that the lateral velocity of sway values are lower between 

the control and the experimental group. These lower values could suggest a more 

stable standing position when the splint is used. This, and other circumstantial evidence 

gained from the balance measurements is discussed later. 

3.2.1.4 Sway index 

The variability (SD) of the position of the CoP as a function of time indicates the 

variability of the location of the ground reaction force relative to the feet, and was used 

as a measure of the stability of subjects while standing. The SD of sway was calculated 

from the mean of the total CoP measurement from the recording time (30 s) whilst each 

subject stood still on a force plate and was used as an index of the amount of sway 

during quiet standing (Winter, 1995; Niam et al., 1999; Wooley, 2001). Lower sway 

index values are considered to reflect a more steady standing position, implying better 

balance in both young and elderly adults with normal health (Pushpangadan et al., 

1999). 

Sway index in a-p direction: eyes-open condition 

In the control group, the sway index for the baseline test was 5.26 (1.35), mean and SD. 

For the second and third tests, the sway indices were similar to the baseline test, at 

4.94 (1.66) and 5.24 (1.83), respectively. In the experimental group, under two different 

conditions (using shoes alone and then using DAFOs) the baseline body sway was 
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slightly higher compared to the control group, at 6.01 (1.98) with shoes and 5.73 (1.69) 

with DAFOs. For the second tests, body sway stayed higher than for the control group: 

5.38 (1.73) with shoes and 5.38 (0.91) with DAFOs. During the third tests, the values 

were comparable to the control group; 4.94 (1.37) with shoes and 5.32 (1.56) with 

DAFOs. The healthy elderly subjects' sway index with eyes-open was 4.54 (0.51). 

Sway index in a-p direction: eyes-closed condition 

In the control group, the body sway index in the eyes-closed condition for the baseline 

test was 5.67 (2.24). The second and third tests' sway indices increased to 5.81 (1.68) 

and 6.09 (2.31), respectively. In the experimental group, baseline a-p sway indices were 

higher in comparison to the control group, at 7.43 (1.58) using shoes and 6.89 (1.77) 

using DAFOs. Higher values were also recorded during the second test compared to 

the control group's second measurement, 6.22 (1.53) with shoes and 7.39 (1.79) with 

DAFOs. In contrast, for the third test, body sway values were similar to the control 

group, 6.10 (1.47) with shoes and 6.35 (1.60) with DAFO. The mean and SD for the a-p 

body sway of the CoP data recorded for control and experimental groups in the each of 

the tests and under the two experimental conditions are summarized in Figure 3.6. The 

healthy subjects' sway index was clearly lower at 4.41 (0.67). 

Statistical comparisons (ANOVA) within- and between-groups were carried out as 

described previously. No statistically significant differences were found; the results (f 

and p values) for these analyses are summarised in Table 3.16 a. It was noted that in 

the a-p direction with eyes open, an increase with near borderline statistical significance 

(p > 0.08) was identified for the within subject comparison, using 'time by group' as the 

within subjects factor in the experimental group. However, this may simply be due to 

lower variability about the mean values seen within the experimental group over the 

three tests. 
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t# 

In these investigations, the stroke subjects presented higher CoP sway indices values in 

the a-p direction than those presented earlier for the healthy elderly subjects and as 

reported elsewhere (Briggs et al., 1989; Winter, 1991b; Era et al., 1996; Niam et aL, 

1999). 

For the 5 subjects with a left side deficit, the mean a-p sway index with eyes-open was 

5.85 (1.94) with shoes and 5.40 (1.43) using DAFOs. Similar values were recorded for 

the 5 subjects with a right side deficit (5.04 SD 0.62 with shoes and 5.55 SD 1.34 with 

DAFOs). In the eyes-closed condition, the mean a-p sway for the subjects with left side 

paresis was 6.53 (1.27) using shoes and 6.38 (1.56) using DAFOs; for the right sided 

paretic subjects, the mean values were slightly higher, at 6.64 (1.45) with shoes and 

7.38 (1.42) with DAFOs. 

Table 3.16 a Statistical tests (ANOVA) on the sway index for the CoP in the a-p 

direction 

Condition Source comparison fp 

Within subjects Eyes-open 1) Time*group 3.37 0.08 
factor 

2) Device*group 0.16 0.19 

Eyes-closed 1) Time group 2.71 0.11 

2) Device*group 0.09 0.75 

Between subjects Eyes-open Control - Experimental 0.77 0.39 
factor 

Eyes-closed Control - Experimental 1.54 0.24 

A clear difference in a-p sway index was observed between left and right side 

hemiparesis subjects only in the eyes-closed condition. Right side hemiparesis subjects 

exhibit higher body sway index indicating poorer balance than on their left side. This 
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difference did not achieve statistical significance. No effects in a-p sway index were 

evident using DAFOs compared using shoes alone for both left or right side paresis 

subjects. 

Sway index in lateral direction: eyes-open condition 

When measured in the lateral direction, the control group sway index in the eyes-open 

condition for the baseline test was 4.27 (2.31), mean and (SD). In For the second and 

third tests, the sway values recorded were clearly lower compared to the baseline test, 

at 3.74 (2.23) and 2.89 (1.18), respectively. In the experimental group, the lateral sway 

indices for the baseline test were 4.90 (3.09) with shoes and 4.36 (2.31) with DAFOs. In 

the second test and third tests the values recorded were 3.68 (2.17), 4.16 (2.59) and 

3.85 (1.86), 3.39 (1.77) with shoes and DAFOs, respectively. Thus, when wearing 

DAFOs, the body sway indices for the control and experimental groups decreased from 

the baseline test to the third test (Figure 3.7 A). However, slightly higher sway indices 

were seen in the experimental group compared to the control group, particularly in the 

baseline and third tests. Under the same condition, it was determined that the healthy 

subjects sway index was 2.51 (0.57). 

Sway index in lateral direction: eyes-closed condition 

The control group lateral sway index in the eyes-closed condition was 3.88 (1.61), mean 

and (SD). Slightly higher mean values were recorded during the second (mean 3.99, SD 

1.76) and third (mean 4.17, SD 2.02) tests. In the experimental group, the mean lateral 

sway indices for the baseline test were substantially higher than for the control group, at 

6.26 (3.11) using shoes and 5.26 (2.91) using DAFOs. The second test values recorded 

were 4.35 (2.14) with shoes and 4.51 (2.31) with DAFOs. In the third test the values 

were 4.82 (2.61) with shoes and 4.49 (2.46) with DAFOs. The control group presented 

clearly lower lateral sway indices compared to the experimental group (see Figure 3.7 
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B). The measurements made on healthy subjects in the eyes-closed condition provided 

values of 3.04 (0.87), mean and (SD). 

Statistical comparisons were performed as described earlier; no statistically significant 

differences between groups were found, although near borderline difference (p = 0.07) 

was found for the within subject comparison using 'time by group' as a factor in the 

eyes-closed condition. The results for these analyses are summarised in Table 3.16 b. 

Overall, these results indicate that the sway indices of stroke patients (control and 

experimental) are higher (in both planes) compared to healthy elderly subjects. The 

results for stroke subjects' sway indices presented here are higher than reported earlier 

for healthy elderly subjects (Pollack et a/., 2002) but are similar to those previously 

reported for stroke subjects (Goldie et al., 1996; Walker et al., 2000). The present work 

provides no statistical evidence for an influence of the DAFO on CoP sway index 

compared to when using shoes alone. 
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Table 3.16 b Statistical tests (ANOVA) on the sway index for the CoP in the lateral 

direction 

Condition Source comparison f p 

Within subjects Eyes-open 1) Time*group 0.03 0.85 
factor 

2) Device*group 1.04 0.32 

Eyes-closed 1) Time*group 3.75 0.07 

2) Device*group 0.90 0.35 

Between subjects Eyes-open Control - Experimental 0.11 0.74 
factor 

Eyes-closed Control - Experimental 1.18 0.29 
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For the left side paretic subjects, the mean lateral sway indices with eyes-open were 

4.44 (2.57) with shoes and 4.10 (2.37) using DAFOs. For the subjects with right side 

paresis, lateral sway was slightly lower, at 3.84 (1.83) with shoes and 3.84 (1.93) with 

DAFOs. In the eyes-closed condition, subjects with left side paresis presented mean 

lateral sway values of 4.82 (2.63) using shoes and 4.20 (2.35) with DAFOs. For the 

subjects with right side paresis the mean values were higher, at 5.47 (2.06) with shoes 

and 5.31 (2.42) with DAFOs. Thus, differences in lateral sway indices were evident 

between left and right side hemiparesis subjects in both eyes-open (left side indicates 

unsteady balance) and eyes-closed (right side indicates unsteady balance) conditions. 

In these tests, DAFOs induced no discernable effects on subjects' lateral sway 

compared to using shoes alone. 

3.2.1.5 Spectral frequency of horizontal forces 

The horizontal forces applied to the surface of the platform, Fx and Fz, were measured 

to further assess subjects' balance. These horizontal (shear) forces were used because 

they describe the acceleration of the centre of mass. Such acceleration represents the 

vibrations of the centre of mass of the body (spectral characteristic of the postural 

control) and may provide a more sensitive measure than CoP excursion data for 

identifying difficulties with balance (section 2.4.1). Fz and Fx are calculated using the 

spectral frequency of the central tendency of the power spectra (Liu and Lawson, 1995; 

McClenaghan et al., 1995). 

Mean spectral frequency 

F(mean) of the spectral frequency was calculated (equation in Appendix IV) and used to 

define the centroid of the spectrum (McClenaghan et aL, 1995). Earlier studies have 

demonstrated that lower mean values for spectral frequency are associated with poorer 

control of balance in elderly and young healthy adults and several disabilities 
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(McClenaghan et al., 1995; Nadeau et al., 1999b). Higher values are believed to reflect 

steadier postural balance (McClenaghan et al., 1995). 

F(mean) in the a-p plane: eyes-open condition 

In the control group, the spectral frequency during the baseline test was 1.73 Hz (0.32). 

For the second and third tests the values recorded were lower than for the baseline test, 

at 1.63 Hz (0.53) and 1.42 Hz (0.43), respectively. In the experimental group, the 

baseline mean spectral frequency values were lower than for the control group, at 1.70 

Hz (0.43) using shoes and 1.59 Hz (0.52) using DAFOs. In the second test, body sway 

remained lower than that of the control group (1.53 Hz SD 0.25 with shoes and 1.59 Hz 

SD 0.28 with DAFOs). During the third test, the values were higher than for the control 

group measurements (1.54 Hz SD 0.22 with shoes and 1.59 Hz SD 0.37 with DAFOs). 

The comparative values for the healthy elderly subjects in same condition was 1.54 Hz 

(0.29), mean and SD. 

F(mean) in the a-p plane: eyes-closed condition 

The mean spectral frequency for the control group, the baseline test was 1.58 Hz 

(0.38). The frequency during the second test increased to 1.65 Hz (0.40) and then 

decreased to 1.51 Hz (0.56) during the third test. In the experimental group, the mean 

spectral frequencies were higher than for the control group, particularly during the 

baseline measurements (1.70 Hz, SD 0.36 using shoes and 1.69 Hz, SD 0.20 using 

DAFOs) and third tests (1.60, SD 0.21 using shoes and 1.76, SD 0.36 using DAFOs). 

The values for the second test were closer to control levels (1.67, SD 0.37 using shoes 

and 1.72, SD 0.24 using DAFOs). For the healthy subjects in the eyes-closed condition 

the F(mean) was 1.69 Hz (0.39), mean and (SD). 

The mean and SD for the mean spectral frequencies recorded for the control and 

experimental groups in each of the tests, with eyes-open and eyes-closed, are 

summarized in Figure 3.8. No statistically significant differences were observed. The f 
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and p values for these analyses are summarised in Table 3.17 A. For both stroke 

groups, the recordings of mean spectral frequencies were comparable to those of 

healthy elderly subjects. 

For the 5 subjects with a left side deficit, the mean spectral frequencies in the a-p plane 

with eyes-open were 1.55 Hz (0.19) with shoes and 1.57 Hz (0.25) with DAFOs. Slightly 

higher values were recorded for the 5 subjects with a right side deficit (1.63 Hz, SD 0.28 

with shoes and 1.61 Hz, SD 0.33 with DAFOs). In the eyes-closed condition, the mean 

spectral frequency for the subjects with a left side paresis was 1.61 Hz (0.19) using 

shoes and 1.66 Hz (0.24) using DAFOs; for the right sided paresis subjects, the 

corresponding values were higher, at 1.71 Hz, SD 0.32 with shoes and 1.79 Hz, SD 

0.18 with DAFOs. 

Table 3.17 a Statistical tests (ANOVA) on mean spectral frequency [F(mean)] in the 

a-p direction 

Condition Source comparison fp 

Within subjects Eyes-open 1) Time*group 1.09 0.31 
factor 

2) Device*group 0.40 0.53 

Eyes-closed 1) Time*group 0.05 0.82 

2) Device*group 0.97 0.33 

Between subjects Eyes-open Control - Experimental 0.02 0.87 
factor 

Eyes-closed Control - Experimental 0.04 0.82 

F(mean) in the lateral plane: eyes-open condition 

In the control group, the spectral frequency for the baseline test was 1.91 Hz (0.47). 

During the second and third tests, the lateral spectral frequency values increased to 
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2.33 Hz (0.72) and 2.20 Hz (0.51), respectively. In the experimental group the mean 

spectral frequency in the lateral plane for the baseline test was 1.92 Hz (0.53) using 

shoes and 2.02 Hz (0.53) using DAFOs. In the second and third tests, the 

corresponding values were: 1.92 Hz (0.35), 2.17 Hz (0.53) and 1.89 Hz (0.30), 1.92 Hz 

(0.41). Thus, the mean spectral frequency remained close to baseline levels (Figure 3.9 

A). However, the control group presented slightly higher mean lateral frequencies in the 

eyes-open condition than the experimental group, particularly in the second and third 

tests. Higher values are believed to reflect steadier postural balance (McClenaghan et 

al., 1995; Nadeau et a/., 1999b). In the lateral direction, with eyes-open, the mean 

spectral frequency for the healthy elderly subjects was recorded at 1.89 Hz (0.36), 

mean and (SD). 

F(mean) in the lateral plane: eyes-closed condition 

For the control group, the F(mean) spectral frequency in the eyes-closed condition for 

the baseline test was 2.23 Hz (0.35), and similar values were obtained for the second 

(mean 2.19 Hz, SD 0.69) and third (mean 2.38 Hz, SD 0.44) tests. In the experimental 

group, the lateral mean spectral frequencies for the baseline test were 2.12 Hz (0.45) 

using shoes and 1.81 Hz (0.39) using DAFOs. During the second tests, the values 

recorded were also lower (1.81 Hz, SD 0.42 with shoes and 1.88 Hz, SD 0.35 with 

DAFOs) compared to the control group. Similarly, the mean spectral frequency values 

obtained for the third test (2.03 Hz, SD 0.35 with shoes and 2.03 Hz, SD 0.37 with 

DAFOs) remained lower compared to the control group. The control group presented 

higher F(mean) values than the experimental group throughout all three tests over the 

12 weeks testing period (Figure 3.9 B). Statistical comparisons within- and between- 

groups were carried out; no statistically significant differences were identified (Table 

3.17 b). Comparative data for healthy subjects F(mean) in the eyes-closed condition 

was 1.97 Hz (0.37), mean and (SD). 
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Earlier studies have shown that lower F(mean) spectral frequency in the lateral plane 

can identify balance unsteadiness for elderly healthy individuals (Williams et aL, 1997) 

and when balance is affected by disability (Portfors-Yeomans and Riach, 1995). Here, in 

the eyes-closed condition, mean spectral frequency values were indistinguishable from 

those recorded in the eyes-open condition. The existence of this situation for elderly 

individuals was described by Williams et al. (1997). In the current studies, the 

experimental group recordings of F(mean) in the lateral plane were found to be at 

similar levels to the healthy elderly subjects data already presented (section). Overall, 

the control group yielded higher F(mean) values than the experimental group in both the 

eyes open and closed experiments. 

Table 3.17 b Statistical tests (ANOVA) for mean spectral frequency [F(mean)] in the 
lateral direction 

Condition Source comparison f p 

Within subjects Eyes-open 1) Time*group 0.33 0.57 
factor 

2) Device*group 1.11 0.30 

Eyes-closed 1) Time*group 0.04 0.83 

2) Device*group 0.18 0.67 

Between subjects Eyes-open Control - Experimental 0.86 0.36 
factor 

Eyes-closed Control - Experimental 3.42 0.83 

For the left side paretic subjects the mean spectral frequencies in the lateral direction 

with eyes-open were 2.18 Hz (0.12) with shoes and 2.32 Hz (0.19) with DAFOs. For the 

subjects with right side paresis, lower values were recorded, at 1.64 Hz (0.21) with 

shoes and 1.72 Hz (0.34) with DAFOs. In the eyes-closed condition, subjects with left 

side paresis presented spectral frequency values of 2.17 Hz (0.17) using shoes and 
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2.03 Hz (0.23) with DAFOs. For the subjects with right side paresis the values recorded 

were lower, at 1.80 Hz (0.32) with shoes and 1.78 Hz (0.15) with DAFOs. Thus, 

differences in lateral spectral frequencies were evident between left and right side 

hemiparesis subjects; in both the eyes-open and eyes-closed conditions, the right side 

hemiaptetic subjects indicated lower values than those with a left side deficit. DAFOs 

induced no discernable effects on experimental subjects' mean spectral frequencies 

compared to using shoes alone. 

3.2.1.6 Distribution of spectral energy (variability) 

To measure the distribution of energy of the power spectra, the variability (sd) of the 

power spectra was used to quantify the frequency distribution. Higher sd indicates less 

control of balance in healthy subjects (Nadeau et al., 1999b). 

Variability in the a-p plane: eyes-open condition 

In the control group, the spectral frequency in the a-p direction with eyes-open for the 

baseline test was 0.71 Hz (0.19), mean and SD. Similar data were recorded for the 

second (mean 0.69 Hz, SD 0.15) and third (mean 0.71 Hz, SD 0.13) tests. In the 

experimental group, the values obtained for baseline measurements of spectral 

frequency variability were lower compared to the control group, at 0.7 Hz (0.12) and 

0.63 Hz (0.13), respectively. The values for the second test (0.63 Hz, SD 0.15 with 

shoes and 0.66 Hz, SD 0.16 with DAFOS) and third test (0.66 Hz, SD 0.16 with shoes 

and with 0.64 Hz, SD 0.14 with DAFOs) remained slightly lower than for the control 

group. The variability of the spectral frequencies with eyes-open for both control and 

experimental groups were lower than for the healthy elderly subjects (0.77 Hz, SD 0.15, 

n= 4). As higher F(sd) spectral frequency may also be indicative of balance 

unsteadiness (Williams et al., 1997), it is unclear why the healthy subject data provided 

somewhat higher variability of the spectral frequency values that of the stroke subjects. 

A possible explanation for this unexpected observation is that the former did not (or 
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were unable to) concentrate fully during the testing procedures. Alternatively, the limited 

number of subjects used in the present studies may account for this discrepant finding. 

Variability in the a-p plane: eyes-closed condition 

Measurements of spectral frequency variability in the control group with eyes-closed for 

the baseline test was 0.66 Hz (0.1), mean and (SD). The values recorded for the 

second test were unchanged (0.66 Hz, SD 0.29), but increased slightly during the third 

test (0.7 Hz, SD 0.15). In the experimental group, with shoes and then with DAFOs, the 

values for spectral frequency variability were: baseline test, 0.62 Hz, (0.1) and 0.62 Hz 

(0.11); second test, 0.6 Hz (0.17) and 0.6 Hz (0.13); third test, 0.59 Hz (0.11) and 0.65 

Hz (0.14). Thus, in the eyes-open condition, the values for experimental subjects' 

frequency variability were consistently lower than the control group throughout the three 

tests, both with shoes and with DAFOs. The mean and SD for the variability of the 

spectral frequency measurements recorded for the control and experimental groups in 

the each of the tests and under the two experimental conditions are summarized in 

Figure 3.10. No statistically significant differences were found; f and p values are 

summarised in Table 3.18 a. The healthy subjects yielded a value of 0.77 Hz (0.16), 

mean and (SD). 

For the 5 subjects with a left side deficit, the variability of the spectral frequency in the 

a-p plane with eyes-open was 0.68 Hz (0.07) with shoes and 0.66 Hz (0.11) with 

DAFOs. Slightly lower values were recorded for the 5 subjects with a right side deficit 

(0.65 Hz, SD 0.09 with shoes and 0.63 Hz, SD 0.16 with DAFOs). In the eyes-closed 

condition, the values of the spectral frequency variabilities for the subjects with left side 

paresis stayed slightly higher than the right sided paretic subjects (see Table 3.20). 
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Table 3.18 a Statistical tests (ANOVA) for variability of the spectral frequency [F(sd) in 

a-p direction 

Condition Source comparison f p 

Within subjects Eyes-open 1) Time*group 1.38 0.25 
factor 

2) Device*group 0.42 0.52 

Eyes-closed 1) Time*group 0.08 0.78 

2) Device*group 0.22 0.64 

Between subjects Eyes-open Control - Experimental 1.24 0.28 
factor 

Eyes-closed Control - Experimental 1.15 0.29 

Variability in lateral plane: eyes-open condition 

In the control group, the variability of the spectral frequency in the lateral plane with 

eyes open during the baseline measurements was 1.32 Hz (0.45). In the second test, 

F(sd) remained constant at 1.32 Hz (0.55). In the third test, the variability clearly 

decreased, to 1.12 Hz (0.29). In the experimental group, the variability of the spectral 

frequency for the baseline test was 1.03 Hz (0.4) with shoes alone and 1.13 Hz (0.41) 

with DAFOs. Corresponding values of 1.01 Hz, (0.31), 1.22 Hz, (0.54) and 1.08 Hz, 

(0.28), 1.05 Hz, (0.34), were recorded for the second and third tests, respectively 

(Figure 3.11 A). Over these three tests, in the lateral plane and in the eyes-open 

condition, the control group presented greater Fsd values than the experimental group, 

with shoes or DAFOs, which is suggestive of a higher level of balance unsteadiness for 

the former group. However, the variation in these measurements between the stroke 

subjects means that this difference is not statistically demonstrable. The healthy elderly 

subjects' data (1.18 Hz, SD 0.07) were clearly lower than for the control subjects, but at 

a similar level to the experimental subjects. Thus, it is possible that the experimental 

group's lateral balance was steadier than that of the control group. 
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Variability in lateral plane: eyes-closed condition 

In the eyes-closed condition, the variability of the spectral frequency for the control 

group was indistinguishable from that recorded in the eyes-open condition. Thus, in the 

control group, the variability for the baseline test was 1.32 Hz (0.39) and similar levels 

were recorded during the second (1.2 Hz, SD 0.57) and third (1.38 Hz, SD 0.44) tests. 

In the experimental group, the mean variability value for the baseline test was 1.04 Hz 

(0.33) using shoes and 0.91 Hz (0.31) using DAFOs. During the second tests, mean 

variability was lower, at 0.91 Hz (0.35) with shoes and 0.87 Hz (0.21) with DAFOs. In 

the third tests, the values recorded were slightly increased, to 1.09 Hz (0.37) with shoes 

and 1.03 Hz (0.33) with DAFOs (Figure 3.11 B). Thus, the control group clearly 

presented higher variability of spectral frequency than the experimental group 

throughout all three tests in the eyes-closed condition. In the eyes-closed condition, 

F(sd) values for the comparative healthy group was 1.24 Hz (0.21). 

Collectively, these data provide some evidence to suggest that a-p sway is lower than 

lateral sway for stroke patients. A similar pattern is seen in younger and elderly adult 

subjects with normal health (Nadeau et al., 1999b). Statistical comparisons within and 

between groups revealed no significant differences (Table 3.18 b). However, alterations 

in variability of the spectral frequency with borderline significance were evident between 

the control and experimental groups, particularly in the eyes-closed condition. In the 

lateral plane, there was no statistically significant difference in the variability of the 

spectral frequency between the control and experimental groups using casual shoes or 

DAFOs. Although, throughout the testing session, in both the eyes-open and eyes- 

closed conditions, the experimental group exhibited lower sd values compared to the 

control group (Figure 3.12). As the statistical tests used in this thesis are essentially 

descriptive (due to the limited number of subjects studied), it is possible to speculate 

here that, in relation to F(sd) variable a DAFO may affect the balance of stroke patients, 

and this effect occurs independently of visual sensory feedback. 
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Table 3.18 b Statistical tests (ANOVA) for variability of the spectral frequency (Fsd) in 

the lateral direction 

Condition Source comparison fp 

Within subjects Eyes-open 1) Time*group 0.02 0.88 
factor 

2) Device*group 0.88 0.36 

Eyes-closed 1) Time*group 1.03 0.32 

2) Device*group 2.64 0.12 

Between subjects Eyes-open Control - Experimental 1.06 0.31 
factor 

Eyes-closed Control - Experimental 3.35 0.08 

The variability of the spectral frequencies in the lateral plane with eyes-open and closed 

was slightly higher than that recorded for healthy elderly subjects, a profile that was 

particularly evident for the control group. 

For the left side paretic subjects, the mean value of the SD of the spectral frequency 

from the three tests with eyes-open was 1.23 Hz (0.26) with shoes and 1.33 Hz (0.33) 

using DAFOs. For the subjects with right side paresis the mean value of the SD was 

slightly lower, at 0.86 Hz (0.13) with shoes and 0.93 Hz (0.27) with DAFOs. In the eyes- 

closed condition, subjects with left side paresis presented values of 1.15 Hz (0.31) using 

shoes and 1.03 Hz (0.28) with DAFOs. For the subjects with right side paresis the SD 

values were again lower, at 0.88 Hz (0.27) with shoes and 0.84 Hz (0.18) with DAFOs. 

Thus, differences in the SD of the spectral frequency were evident between left and 

right side hemiparesis subjects in both eyes-open and eyes-closed (left side indicating 

poorer balance) conditions. 
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3.2.1.7 Slope of spectral frequency distribution 

The slope of the spectral frequency distribution [F(slope)] is calculated from a double 

log axis plot of the power spectrum (following the equation presented in Appendix IV). 

Progressively negative F(slope) values represent increasing loss of high frequencies 

within the spectra, which is associated with poorer balance in healthy elderly subjects 

who, according to their medical history, are categorised as at high-risk for stroke 

(Nadeau eta!., 1999b). 

F(slope) in the a-p plane: eyes-open condition 

In the control group, F(slope) of the spectral frequencies for the baseline test, in the a-p 

direction with subjects' eyes-open was -1.45 (0.19). In the second and third tests the 

F(slope) values recorded were substantially increased, at -1.67 (0.22) and -1.80 (0.34), 

respectively. In the experimental group, the baseline F(slope) values were found to be 

more negative than the control group, at -1.60 (0.30) with shoes and -1.69 (0.21) with 

DAFOs. The corresponding values determined for the second and third tests were -1.67 

(0.21), -1.62 (0.15) and -1.78 (0.36), -1.69 (0.22). Thus, F(slope) within the 

experimental group yielded a more negative slope when wearing DAFOs than when 

using shoes alone (particularly in the baseline test, but not in the second and third 

tests). In the healthy elderly subjects, the corresponding F(slope) values recorded in the 

a-p direction with subjects' eyes-open was -1.57 (0.15), mean and SD. 

F(slope) in the a-p plane: eyes-closed condition 

In the eyes-closed condition, the F(slope) values of the control group in the a-p plane, 

F(slope) for the baseline test was -1.74 (0.27), mean and (SD). In comparison, the 

F(slope) recorded for the second test was slightly increased, at -1.82 (0.38), whereas in 

the third test the value was clearly lower, at -1.59 (0.25). In the experimental group, the 

F(slope) baseline tests were similar level to that recorded for the control group (-1.63, 
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SD 0.2 using shoes and -1.73, SD 0.29 using DAFOs). During the second tests the 

F(slope) values were -1.72 (0.25) and -1.68 (0.19), respectively. During the third tests, a 

similar change in the magnitude of F(slope) level was observed, but in the opposite 

direction to that seen in the second tests (-1.71, SD 0.17 using shoes and -1.70, SD 

0.38 using DAFO). It is noted that the variation overlap of these measurements means 

that these observations are tentative. In the eyes-closed condition, the F(slope) value of 

the healthy subjects was less negative at -1.57 (0.21). 

Within the experimental group, F(slope) was greater when subjects wore shoes 

compared to when using DAFOs , an effect that was seen in the second and third tests. 

The results for these studies are summarized in Figure 3.12. Statistical comparisons 

within and between groups were carried out as described earlier; no significant 

differences were found (Table 3.19 a). The magnitudes of these F(slope) values (control 

and experimental group data) are lower than the measurements made on healthy 

elderly subjects, which is in accord with earlier studies (McClenaghan et al., 1995). 

For the 5 subjects with left side hemiparesis, the F(slope) with eyes-open in the a-p 

plane was -1.64 (0.12) using shoes and -1.67 (0.15) using DAFOs. Marginally steeper 

values were recorded for the 5 subjects with a right side deficit (-1.72, SD 0.15 with 

shoes and -1.66, SD 0.15 with DAFOs). In the eyes-closed condition, the F(slope) for 

the subjects with left side paresis was -1.63, SD 0.08 using shoes and -1.63, SD 0.17 

using DAFOs; for the subjects with right side paresis the F(slope) was slightly greater, 

at -1.75, SD 0.11 with shoes and -1.75 SD, 0.24 with DAFOs. 
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Table 3.19 a Statistical tests (ANOVA) for the slope of the spectral frequency 

distribution [F(slope)] in the a-p direction 

Condition Source comparison fp 

Within subjects Eyes-open 1) Time*group 0.05 0.82 
factor 

2) Device*group 0.03 0.85 

Eyes-closed 1) Time*group 0.56 0.46 

2) Device*group 1.19 0.29 

Between subjects Eyes-open Control - Experimental 0.41 0.53 
factor 

Eyes-closed Control - Experimental 0.29 0.59 

F(slope) in the lateral plane: eyes-open condition 

In the control group, the F(slope) with eyes-open condition for the baseline test was 

-1.84 (0.20). The values for the second and third tests were clearly less steep compared 

to baseline, at -1.44, (0.19) and -1.46, (0.26), respectively. 

In the experimental group the F(slope) for the baseline test was -1.68 (0.40) using 

shoes and -1.60 (0.28) using DAFOs. The corresponding values recorded for the 

second and third tests were -1.62, (0.28), -1.48, (0.26) and -1.66, (0.25), -1.73, (0.34), 

and therefore somewhat different (more negative) that the F(slope) values for the 

control group (Figure 3.13 A). Comparative values recorded with the healthy subjects 

was -1.64 (0.43), mean and (SD). 

F(slope) in the lateral plane: eyes-closed condition 

The values recorded for the stroke subjects were very similar to those measured under 

the eyes-open condition. Thus, in the control group, the values for the baseline 

assessments were -1.56, SD 0.28 (test 1), -1.69, SD 0.3 (test 2) and -1.38, SD 0.21 
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(test 3). In the experimental group, the F(slope) for the baseline test was -1.55 (0.28) 

using shoes and -1.76 (0.26) using DAFOs. During the second test, the values were - 

1.76 (0.37) with shoes and -1.67 (0.32) with DAFOs. In the third test, a small decrease 

in F(slope) was evident (-1.56, SD 0.23 with shoes and -1.58, SD 0.22 with DAFOs) 

compared to the earlier tests (Figure 3.13 B). Thus, the control group presented less 

negative F(slope)s values than the experimental group throughout all three tests in the 

eyes-closed condition. In the eyes-closed condition, the F(slope) for the healthy 

subjects was -1.55 (0.17). 

The routine statistical comparisons revealed no significant difference throughout the 

testing period (Table 3.19 b). The F(slope) values for the stroke subjects were slightly 

more negative to those measured with healthy elderly subjects. It is noted that the 

magnitude of these control values are somewhat more negative than was reported 

earlier (Nadeau et al., 1999b). 

Table 3.19 b Statistical tests (ANOVA) for the slope of the spectral frequency 
distribution [F(slope)] in the lateral direction 

Condition Source comparison f p 

Within subjects Eyes-open 1) Time*group 0.02 0.88 
factor 

2) Device*group 0.88 0.36 

Eyes-closed 1) Time*group 0.03 0.84 

2) Device*group 0.03 0.84 

Between subjects Eyes-open Control - Experimental 1.06 0.31 
factor 

Eyes-closed Control - Experimental 1.89. 0.18 
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For the 5 subjects with a left side deficit, the mean F(slope) for the three sets of 

measurements made in the lateral plane with eyes-open was -1.51 (0.05) with shoes 

and -1.63 (0.14) using DAFOs. When using shoes, clearly greater negative values were 

evident for the subjects with a right side deficit (-1.80, SD 0.22) compared to when 

DAFOs were worn (-1.58, SD 0.23). In the eyes-closed condition, the F(slope) for the 

subjects with left side paresis was -1.59 (0.16) using shoes and -1.66 (0.12) using 

DAFOs; similar values were recorded for the subjects with paresis on the right side, - 

1.66 (0.16) with shoes and -1.68 (0.19) with DAFOs (Table 3.20). 

3.2.2 Discussion 

The first studies during the main phase of this research aimed to determine the effects 

of DAFOs on stroke subjects' control of standing balance, and therefore their potential 

to improve daily active lifestyle. The velocity and sway index of the CoP, and F(mean), 

F(sd) and F(slope) of shear forces for 18 subjects' standing balance were recorded with 

the force platform, in a-p and lateral planes, and in eyes-open and eyes-closed 

conditions. These balance parameters were selected for study because it is not yet 

known which is most useful in relation to clinical research on stroke patients. No single 

variable can be used to describe human balance completely. However, it was expected 

that a thorough assessment of multiple parameters would give more detailed 

information of potential effects of the DAFO on human balance and, possibly, identify 

which variable(s) were the most sensitive tool for this research application. Data 

comparisons were made between- and within- groups collected during three tests over a 

three-month study period. The rationale for the within experimental group comparisions 

was that this approach could potentially distinguish any direct effects of the DAFO from 

unrelated influences, such as learning or/and recovery effects. 
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Table 3.20 Summary of balance results: 
LEFT and RIGHT hemiparesis - experimental subjects 

Velocity of sway in a-p direction (mmls) - mean (SD) * 

Eyes open Left Right Unpaired t-test 
(p<0.05) 

Shoes 18.66 (5.14) 21.22 (7.16) ns 

DAFO 19.46 (4.77) 22.45 (9.69) ns 

Eyes closed 

Shoes 22.29 (6.74) 28.20 (11.79) ns 

DAFO 22.07 (4.87) 28.37 (10.90) ns 

Velocity of sway in lat direction (mm/s) - mean (SD) * 

Eyes open 21.32 (3.84) 22.57 (4.34) ns 

Shoes 22.60 (4.25) 22.63 (5.74) ns 

DAFO 

Eyes closed 22.0 (4.02) 24.32 (6.32) ns 

Shoes 23.05 (4.30) 24.39 (6.23) ns 

DAFO 

Sway index in a-p direction - mean (SD) 

Eyes open Left Right ns 

Shoes 5.85 (1.94) 5.04 (0.62) ns 

DAFO 5.40 (1.43) 5.55 (1.34) 

Eyes closed ns 

Shoes 6.53 (1.27) 6.64 (1.45) ns 

DAFO 6.38 (1.56) 7.38 (1.42) 

Sway index in lat direction - mean (SD) * 
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Eyes open Left Right 

Shoes 4.44 (2.57) 3.84 (1.83) ns 

DAFO 4.10 (2.37) 3.84 (1.93) ns 

Eyes closed 

Shoes 4.82 (2.63) 5.47 (2.06) ns 

DAFO 4.20 (2.35) 5.31 (2.42) ns 

Mean spectral frequency in a-p direction - mean (SD) ** 

Eyes open Left Right 

Shoes 1.55 (0.19) 1.63 (0.28) ns 

DAFO 1.57 (0.25) 1.61 (0.33) ns 

Eyes closed 

Shoes 1.61 (0.19) 1.71 (0.32) ns 

DAFO 1.66 (0.24) 1.79 (0.18) ns 

Mean spectral frequency in lat direction - mean (SD) ** 

Eyes open Left Right 

Shoes 2.18 (0.12) 1.64 (0.21) ns 

DAFO 2.32 (0.19) 1.72 (0.34) ns 

Eyes closed 

Shoes 2.17 (0.17) 1.80 (0.32) ns 

DAFO 1 2.03 (0.23) 1 1.78 (0.15) ns 

Spectral frequency variability in a-p direction - mean (SD) * 

Eyes open I Left I Right 

Shoes 1 0.68 (0.07) 10.65 (0.09) 1 ns 

DAFO 1 0.66 (0.11) 10.63 (0.16) 1 ns 
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Eyes closed 

Shoes 0.65 (0.09) 0.58 (0.1) ns 

DAFO 0.63 (0.07) 0.60 (0.15) ns 

Spectral frequency variability in lat direction - mean (SD) * 

Eyes open Left Right 

Shoes 1.23 (0.26) 0.86 (0.13) ns 

DAFO 1.33 (0.33) 0.93 (0.27) ns 

Eyes closed 

Shoes 1.15 (0.31) 0.88 (0.27) ns 

DAFO 1.03 (0.28) 0.84 (0.18) ns 

F(slope) in a-p direction - mean (SD) *** 

Eyes open Left Right 

Shoes -1.64 (0.12) -1.72 (0.15) ns 

DAFO -1.67 (0.15) -1.66 (0.15) ns 

Eyes closed 

Shoes -1.63 (0.08) -1.75 (0.11) ns 

DAFO -1.63 (0.17) -1.75 (0.24) ns 

F(slope) in lat direction - mean (SD) *** 

Eyes open Left Right 

Shoes -1.51 (0.05) -1.80 (0.22) ns 

DAFO -1.63 (0.14) -1.58 (0.23) ns 
Eyes closed 

Shoes -1.59 (0.16) -1.66 (0.16) ns 

DAFO -1.66 (0.12) -1.68 (0.19) ns 

= lower value maicates better balance control 

** = higher value indicates better balance control 

**' = less negative value indicates better balance control 
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Collectively, the present studies consistently found no statistically significant differences 

between the balance parameters studied, when subjects used a DAFO or when wearing 

shoes. This situation was apparent when the statistical comparisons were performed on 

a between- and within-group basis. It was hypothesised that DAFOs improve motor 

behaviour after stroke involving the acquisition of standing balance (Hypothesis I). It 

may be argued, therefore, that this hypothesis should be rejected, i. e. the distributions 

of values in the DAFO and shoe users groups are probably the same, and it may be 

concluded that there is no evidence for effects of the DAFO on these subjects' balance. 

However, this simplistic conclusion may be unjustified. The statistical power of the 

present work may have been insufficient to detect small and potentially important 

changes in the subjects' balance characteristics. Furthermore, with the numbers 

available, it cannot be assumed that these subjects formed a true representation of the 

entire stroke population. It is emphasised that stroke encompasses high heterogeneity 

in terms of pathology and disability. Consequently, careful consideration was given to 

the best way to proceed with the data analysis. As the data most often approximated a 

normal distribution, it was decided that parametric analyses of grouped data were most 

appropriate. Whilst accepting the limits of the analyses, this approach did provide 

anecdotal evidence suggesting that DAFOs might influence some aspects of stroke 

patients' balance, and these findings merit consideration. 

The findings of the studies may be summarised as follows. Between group (control and 

experimental) comparisons demonstrated that when the experimental subjects used 

DAFOs, consistently lower values in lateral velocity of CoP were obtained in both visual 

conditions (section 3.2.1.3). In addition, within group comparisons (using shoes or 

DAFOs) indicated that the CoP sway indices parameters were, potentially, sensitive to 

DAFO intervention. This was evident in Test I and Test III, and only in the eyes- closed 

condition (section 3.2.1.4). Further balance analyses demonstrated that the F(mean) 

parameters of shear forces were better using DAFOs in the experimental group 
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compared to the control group who used shoes alone. However, these positive effects 

were only indicated in the a-p direction when the subjects' eyes were closed (section 

3.2.1.5). Nonetheless, the variability of shear forces, F(sd), demonstrated steadier 

balance control in both directions, and under both visual conditions, for the experimental 

group than for the control group (section 3.2.1.6). Contradictory findings were obtained 

to suggest that the control group provided nearer normal CoP sway index parameter 

values compared to the experimental group with DAFOs (section 3.2.1.3). The following 

discussion considers the results of these studies without further qualification; statistical 

and other forms of limitations that may be relevant to the explanations and proposals 

offered here are addressed in the General Discussion. 

The first balance variables assessed were CoP parameters. The velocity of CoP sway is 

defined as a control for static standing (Era et al., 1996; Nougier et al., 1997; 

Pushpangadan et aL, 1999). In the present studies, the CoP velocity indicated overall 

higher (statistically significant) values (reduction of postural control) in the stroke 

subjects groups compared to the healthy subject group (section 3.2.1.3). Earlier work 

on stroke patients' standing balance performed using similar tests supports this finding 

(Shumway-Cook et al., 1988; Sackley, 1991; Portfors-Yeomans and Riach, 1995; 

Goldie et al., 1996). The increase in sway is believed to reflect deterioration of stroke 

patients' balance control mechanisms (including eyesight, sensation and muscle 

reflexes) when standing, due to inefficient neuro-transmission, which is exacerbated by 

the weakened muscles (Kirker et al., 2000). 

The static standing balance tests (section 2.4) conducted with the subjects' feet in a 

parallel (feet apart) position revealed a larger lateral velocity of sway than was evident in 

the a-p plane for both control and experimental groups. Lateral stability is predominantly 

controlled by the hip-strategy, which involves the hip abductor and adductor muscles 

(Maki et al., 1992). This finding is supported by earlier published studies (Williams et al., 

1997; Blaszczyk et al., 2000; Walker et al., 2000), which demonstrated increased lateral 
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sway with stroke and in those studies where healthy elderly subjects were compared to 

young subjects. For healthy subjects, increased lateral sway is explained by the 

difficulties in generating sufficient ankle-torque, and therefore the control of lateral 

stability in standing maybe more prominent (Woollacott et al., 1986; Winter, 1995; 

Williams et aL, 1997). Studies of stroke subjects have also demonstrated that if patients 

cannot recruit the hemiparetic muscles quickly enough to maintain their balance, they 

must rely on the muscles of the unaffected leg, and lateral stability deteriorates (Kirker 

et aL, 2000). Clearly, the present findings are in accord with these explanations. 

The lateral velocity of sway consistently provided lower values (indicative of better 

balance) for the DAFOs users (the experimental group) than the shoes users (the 

control group). This might be explained by improved stability on the affected leg, and 

therefore decreased lateral sway during static standing. This possible DAFO-mediated 

action on lateral velocity of sway was evident under both visual conditions. A positive 

effect on reduced lateral velocity of sway due to a DAFO could be due to the 

mechanical support afforded by the splint around the ankle, which enabled the subject 

to place the foot on the floor more confidently. Thus, although the construction of the 

splint is low, its rigidity still provides considerable support for the ankle over the 

malleoulus, whilst maintaining effective flexion-extension movements of the ankle 

(section 1.4.2). This may be evident as effects on the lateral velocity of sway. 

Physiologically, it is possible that mechanical support provided by the DAFO, which 

leads to a decrease in lateral sway, improves the recruitment of the hip muscles activity 

on the affected leg, particularly via expanding ankle plantarflexion activation. Thus, it 

was theorised that lateral sway of balance is controlled via hip abductor-adductors 

muscle activity, which is closely related to ankle plantarflexion activity (Diener et al., 

1993; Gilles et a/., 1999; Kirker et al., 2000). However, it is notable that in the present 

investigations, within-test analysis (DAFO vs shoes only) indicated no clear data 
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differences. It is unknown whether unrelated factors (e. g. physiological or technical) or 

an influence of possible learning or recovery effects explain this discrepancy. 

The sway index describes the variability of the position of the CoP as a function of time, 

and indicates the variability of the location of the point of application of the resultant 

ground reaction force relative to the feet, and is commonly used as a measure of 

stability (Winter, 1991b; Saunders et al., 2002). In the present studies, the healthy 

subjects' CoP sway index was found to be substantially lower (statistically significant) 

than for the stroke (control and experimental) subjects, which is in accord with earlier 

work (Shumway-Cook et aL, 1988; Goldie et al., 1996; Kirker et al., 2000). There are 

several earlier reports of studies on the elderly where increased amplitude of CoP (Wing 

et aL, 1993; Bhakta and Bamford, 2002) and higher frequency content of the CoP signal 

have been associated with unsteady balance (Kirker et al., 2000; Pollack et al., 2002). 

Comparisons of the control and experimental groups CoP sway indices values indicated 

no statistically significant differences. It is notable that in these experiments, the 

variability (SD) was large. Despite this, the control group's mean values were always 

lower than in the experimental group. Lower sway index suggests steadier balance 

control for the control subjects than for the experimental subjects in both a-p and lateral 

directions (section 3.2.1.4). Thus, the visual condition did not alter the sway index data. 

Although at present speculative, it seems possible that this potentially lower sway index 

and the CoP velocity parameter in the a-p plane data presented earlier (for the control 

group) are in accord. Both parameters represent a displacement measure, which is a 

function of the vertical ground reaction vector that requires good muscle control of the 

lower limbs when controlling movements of centre of gravity. The results of the manual 

muscle test, done at the beginning of the study, highlight some differences between the 

groups. Thus, the control group provided somewhat higher values and therefore these 

subjects could be perhaps physically stronger than in the experimental group (Appendix 

III). In addition, ADL assessments indicated differences between groups in relation to 
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independence for housework and other physical activities within the home environment. 

Although these differences did not achieve statistical significance, the data were 

consistent with numerical poorer values for the experimental group. Furthermore, the 

use of the walking aids (by 2 subjects from 8 in the control and 8 subjects from 10 in the 

experimental group) may point to some balance problems during the daily life in the 

experimental group. 

The CoP sway index data were also compared within the experimental group, when 

subjects used DAFO or shoes, in an attempt to delineate any effects in individual tests. 

This analysis revealed some interesting observations. The sway-index yielded lower 

values for lateral sway using DAFOs than for using shoes; particularly in test I and III. 

In this plane, the sway-index data using DAFOs was found to be almost 20 % lower 

than with shoes during the baseline test, in this experimental group. The magnitude of 

this difference decreased slightly by test III, but was still substantially lower compared 

with using shoes. 

Recently, the theory that increases in the amplitude of the CoP under 'safe' laboratory 

conditions is representative of balance loss has been questioned (Nadeau et al., 

1999b). Such doubts have been reinforced by the findings of clinical studies, which have 

reported decreases in CoP amplitude (Shumway-Cook et al., 1988; Stroke Unit Trialists' 

Collaboration, 2001). Balance studies of the elderly 'at risk of falling' have focused on 

this issue; it has been speculated that the traditional measures of CoP may be 

inappropriate or inadequate for describing more complex aspects of the stability of 

postural control systems (McClenaghan et al., 1995; Nadeau et al., 1999b; Kejonen and 

Kauranen, 2002). Williams at al. (1999b) reported that calculation of the shear 

(horizontal) forces using spectral analysis methods is a useful tool for identifying 

biomarkers associated with potential loss of functional balance capacity. 

The horizontal (shear) forces were used because they describe the accelerations of the 

centre of mass. These accelerations represent the vibrations of the centre of the body 
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or the spectral characteristic of the postural control. It has been suggested that this 

property provides a more sensitive means of identifying impaired balance in complex 

neurophysiological systems compared to the measurement of the resultant ground 

reaction forces under both feet (McClenaghan et ah, 1995; Nadeau et aL, 1999b; 

Kejonen and Kauranen, 2002). In the present study, comparing shear forces (Fmean, 

Fsd and Fslope) of static standing between and within the experimental groups using 

DAFOs and shoes demonstrated that there is no evidence that DAFOs are more 

effective than shoes in promoting standing balance measured by these parameters. 

However, it was interesting to note that the measurements of spectral frequency 

demonstrated that, in the a-p direction, the mean spectral frequency (Fmean) was 

marginally higher, suggesting better balance control for the experimental than the 

control group. This was evident in the eyes-closed condition but not in the eyes open 

condition (section 3.2.1.5). The present finding of altered F(mean) with subjects' eyes- 

closed could support the possibilities that DAFOs may enhance the processing efficacy 

of other sensory (proprioceptive) information, which contributes to foot and ankle 

stability during balance control in the absence of visual cues. Comparable results were 

reported by Williams et al. (1999b), who utilised these parameters as a clinical tool to 

identify balance problems in elderly individuals. A higher F(mean) value was shown to 

be correlated with better balance function in healthy young and elderly subjects 

(McClenaghan et al., 1995; Nadeau et al., 1999b). These authors also reported that 

healthy elderly subjects displaying low F(mean) values have greater risk factor indices 

in relation to falls. In addition, Maki et al. (1992) described overall low mean frequency 

characteristics of subjects who had experienced falls; elderly individuals with poor 

balance were characterised by greater concentration of power at low frequencies. It was 

assumed that for control subjects, small postural control drifts were either difficult to 

identify, or corrected for by the postural control system and that, alternatively, both 

systems might respond to larger postural drift with low frequency corrections. In the 

context of the present studies, it is possible that the experimental stroke subjects with 
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DAFOs effects approached the limits of stability before postural drift perception and/or 

when acted upon, particularly on the a-p direction and when the eyes were closed. 

Interestingly, the variability (Fsd) of spectral frequency values recorded were 

consistently lower, and therefore could indicate steadier balance for the experimental 

group than for the control group. The effect was seen in both a-p and lateral directions 

of sway and under both visual conditions. Earlier studies of healthy elderly subjects 

demonstrated that shear forces particular in the lateral plane were shown to be a more 

sensitive variable than a-p sway (Williams et al., 1997). It is believed that F(sd) is more 

sensitive for distinguishing balance changes because of its propensity to reflect 

adaptation to environmental conditions, which therefore provides low variability values 

(Williams et aL, 1997) as observed here. Whether DAFOs are involved in this action is 

debatable. However, it is emphasised that this variable in itself cannot be assumed to 

fully describe an individual's balance ability. As already indicated, human balance is 

complex, incorporating multiple physiological and biomechanical systems and 

constraints. This variable is simply one aspect of balance control that can be isolated 

and measured. 

Furthermore, the negative slope (Fslope) of lesser magnitude is also suggestive of 

attenuated loss of high frequency variability (steadier balance) (McClenaghan et al., 

1995). However, in the present studies, the data did not suggest any clear differences 

between DAFO or shoe use. The within-group comparisons with F(mean) and F(sd) of 

shear force data (section 3.2.1.5) also failed to provide consistent differences between 

shoes or DAFOs. 

Currently, the literature still contains no detailed descriptions of the effects of DAFOs on 

stroke patients' balance. Most of the earlier reports consisted of single-case designs, 

used devices other than a DAFO, or/and examined patients over a different time scale 

than used here. Earlier work has focused mostly on the potential for DAFOs to influence 
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stroke patients' gait (section 1.4.2.2). Consequently, only indirect comparisons of the 

present findings to earlier work are possible. 

Here, no statistically significant effects of DAFOs on stroke patients' balance 

parameters compared to shoes were identified. These findings are consistent with those 

of Woolley and colleagues (1996), who studied five stroke and head injured subjects' 

balance and found no statistically significant differences between DAFOs, AFOs and 

barefoot. A similar lack of orthosis effect was reported by Wong et a!. (1992), who 

tested an anterior AFO and conventional AFO on six stroke subjects' balance. 

Contradictory findings were reported by Chen et a!. (1999), who examined the effects of 

an anterior AFO on 24 stroke subjects' static and dynamic standing balance, and 

concluded that the device had no effect on a-p balance (postural sway and symmetry, 

and weight shifting). However, a significant and positive effect of the AFO on lateral 

weight shifting and bearing through the affected leg was noted. Thus, these findings are 

also in accord with the present investigations, in that here some parameters suggested 

a greater effect of the DAFO than shoes on lateral sway, and no consistent differences 

in a-p sway over the 3 month testing trial period. Determination of whether DAFOs can 

influence stroke patients' balance and whether lateral sway could be a more sensitive 

measure of stroke patients' balance in relation to use the of this device will clearly 

require further study 

3.3 Main phase - Gait 

This section presents the results of gait tests performed during the main study phase of 

the research. These investigations used protocols that were modified in accordance with 

the findings of the preliminary work presented earlier and in Appendix I. In the gait tests, 

the effects of the orthoses were evaluated using several gait variables. As for the 

balance studies, data comparisons were made here between the control group (shoes 

users) and the experimental group (DAFO users). The experimental group subjects 

were also assessed under two different conditions: using either the DAFO or shoes- 
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only; as before, the rationale for this was identification of direct effects of the DAFO 

separate from unrelated influences, such as natural recovery. 

The results are divided into four sub-sections. Firstly, the demographic characteristics of 

the different subject groups are presented, together with group comparisons. This is 

followed by the findings from studies of subjects' performance as indicated by the 

spatio-temporal variables (velocity, stride length, step length, cadence, and single 

stance phase) from the affected and unaffected legs during two full gait cycles. Thirdly, 

the findings of studies on the effects of DAFOs on kinematic gait parameters, analysed 

in terms of the subjects' sides that were affected and unaffected by stroke, are 

presented. The parameters studied were minimum angular displacement and 

minimum/maximum velocity of the foot, shank, and thigh segments during two strides 

(i. e. the gait cycle). This is followed by the results of comparisons of the relationship 

between gait and balance. The findings of the studies on subjects' gait are then 

discussed in relation to the efficacy of DAFOs for stroke patients' ambulation. Finally, 

the results of the experimental subjects' opinions concerning the use of DAFO are 

presented and discussed. For all statistical comparisons, the p value for significance is 

0.05. 

3.3.1 Results 

3.3.1.1 Subject characteristics 

Thirteen of the 22 subjects recruited completed the main phase of the gait studies (3 

control and 10 experimental). The reasons for not completing the trial were further 

personal reasons (4). Further, the data sets collected for five subjects were archived 

incorrectly due to unforeseen technical (software) problems and were discarded. The 

demographic characteristics and distribution details for the subjects who completed the 

trial are shown in Table 3.21. The values for subjects' age, weight and height followed a 

normal distribution (p > 0.01, Dallal and Wilkinson approximation to Lilliefors' method) 
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and the mean values for each of these factors were not significantly different between 

groups (p > 0.05, unpaired t-test). In the control group, all of the subjects walked without 

a 'walking aid' (one used a wheelchair for longer distances outside). In the experimental 

group, two of the subjects walked without a walking aid, seven subjects used a walking 

stick and one needed a walking frame inside. When experimental subjects walked 

outside, seven subjects used a wheelchair, one subject needed a walking frame and 

two subjects required no aids. 

All of the experimental subjects used a DAFO for the entire duration of the studies. The 

design of the testing sessions required that subjects in the experimental group used 

casual shoes followed by DAFOs. During the second and third tests, one of the 

experimental subjects (E9) had difficulties in walking safely without a DAFO. 

Consequently, for this subject, only gait data collected when using the splint was 

recorded. 

Table 3.21 Demographic details of subjects who completed the gait tests 

Group Sex Age in Side of TS in Weight Height Walking 
years paresis months in kg in cm aids 

CNTRL 3M 58.0 2 left 9.3 89.7 171.5 No aids (2) 
(52-68) 1 right (6-15) (86.6- (170- Stick (1) 

92.4) 173) 

EXP 3F 68.9 5 left 8.2 74.3 166.6 No aids (2) 
7M (54-87) 5 right (4-15) (61.2- (153- Stick (7) 

92.4) 174) Frame (1) 

Mean and (range), TS = time since stroke 
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Healthy subjects 

Healthy elderly subjects were recruited in order to construct a comparative database. 

Each of these subjects was tested during a single trial. The demographic characteristics 

of the healthy subjects that were tested are shown in Table 3.12. 

3.3.1.2 Functional ability in everyday life 

Due to the differences between the sample sizes of the subject groups used for these 

investigations and the balance assessments (section 3.2.1.2), the data for subjects' 

functional abilities were re-evaluated. Mann-Whitney U-tests indicated that there were 

differences in score values with borderline statistical significance between the control 

and experimental groups using the Nottingham Extended ADL (p = 0.077), and the 

functional RMA (p = 0.049) scales. The leg and trunk RMA values of the control group 

were significantly higher than for the experimental group (p = 0.014). The results of 

these analyses are summarised in Table 3.22. 

Table 3.22 Subjects' functional assessment scores 

Scale CNTL group 
(n=3) 

EXP group 
(n = 10) 

Nottingham ADL score 49(33-61) 31 (11-43) 

Rivermead Motor - 
Functional test score 11 (10-11) 8(3-11) 

Rivermead Motor - 
Leg and Trunk score 5(5-6) 3 (1 - 5)* 

Data are mean and (range) of the 3 tests carried out over a 12 weeks period as 
described in Methods. * Significantly different from control group, p<0.05. 
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3.3.1.3 Spatio-temporal factors of gait 

Velocity 

Gait velocity is believed to represent one of the most important variables to assess in 

studies of stroke subjects, as it reflects both functional and physiological changes in 

affected individuals (Olney and Richards, 1996; Baer and Smith, 2001). Increased gait 

velocity is indicative of improved performance (Wooley, 2001). Subjects' gait velocity 

(m/s) was determined by measuring the rate of travel indicated by the time required to 

cover a predefined distance (section 2.6.5). In the healthy subject group (n = 4), the 

mean and (SD) values for gait velocity recorded simultaneously for both legs were 1.11 

(0.15) m/s for the right leg and 1.14 (0.05) m/s for the left leg. These values are 

consistent with those reported by Judge et a/. (1996) and Witte and Carlsson (1997) for 

elderly walkers. The present data also suggest a small difference between left and right 

leg gait velocities for healthy subjects. It is notable, however, that the magnitude of this 

difference was less that 0.5 SD. Nonetheless, this difference is consistent with earlier 

reports, where gait velocity data for both legs were (Murray et al., 1975; Öberg et aL, 

1993). 

The gait velocities calculated for the control group subjects (n = 3) were 0.80 (0.15) m/s 

and 0.84 (0.17) m/s, for the affected and unaffected sides, respectively. In contrast, the 

values recorded for the experimental group subjects (n = 10) on the affected side were 

0.35 (0.18) m/s using shoes only, and 0.37 (0.22) m/s with DAFOs. On the unaffected 

side, the velocity recorded using shoes was 0.37 (0.19) m/s. When a DAFO was used 

on the unaffected leg the value was 0.36 (0.2) m/s. Ordinary ANOVA detected a 

significant (p < 0.01) difference between gait velocities calculated for the healthy, 

control and experimental subjects. Bonferroni's multiple comparison post-test indicated 

that the relative order of gait velocity was healthy subjects > control subjects > 

experimental subjects. 
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Brain damage due to stroke primarily results in contralateral affects on gait. Thus, a 

stroke affecting the left side of the brain leads to right sided paresis and vice versa. 

Nonetheless, when assessing gait performance of stroke subjects, it is clearly useful to 

assess both sides separately, because there may be inherent differences between 

variables (Titianova and Tarkka, 1995). Furthermore, although usually less apparent, a 

lesion of one side of the brain does not preclude motor deficits on the same side of the 

body. In the present studies, the unaffected side variability was found to be slightly 

higher in the control group compared to the experimental group. However, although the 

SD on the affected side using shoes was high, and variability using DAFOs was low, a 

clear pattern was not evident. The mean gait velocities of the stroke subjects (control 

and experimental groups) were significantly slower (p < 0.01) than for the healthy 

subjects (the mean difference was 0.40 m/s for the control subjects, 0.87 m/s for the 

experimental subjects using shoes, and 0.85 m/s for the experimental using a DAFO). 

The corresponding values of the control (n = 3) and experimental groups (n = 10) were 

also significantly different (p < 0.01), with a slower mean gait velocity evident for the 

experimental group (the mean difference was 0.47 m/s for the experimental group using 

shoes, and 0.44 m/s for the experimental group using a DAFO, see Figure 3.14). 

In order to assess the potential for an influence of lateralization, the data obtained from 

these studies were separated according to side of paresis. For the experimental 

subjects, the mean gait velocity values of the right side hemiparesis subjects were not 

significantly different compared to those with a left side deficit (p > 0.05). Similar results 

were obtained with or without a splint. 

Further examination of these data revealed that the experimental subjects could be 

characterised as either relatively 'slow' or 'fast' walkers. Thus, it can be seen that 

despite some overlap, in general, subjects 1-5 were slower walkers than subjects 6- 

10 (Figure 3.15). Sub-division of data leads to an inherent reduction of power for 
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statistical analyses, but may still permit identification of potentially important differences 

(Anthony, 1999). 

Velocity: all subjects 
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Figure 3.15 Gait velocity (m/s) of the experimental group. Data are shown for individual 
subjects (1 - 10). Key: S= shoes and D= DAFO for the corresponding tests (1 - 3). The 
bolded line represents the velocity separating subjects into slow (< 0.3 m/s) or fast (>_ 0.3 
m/s) walkers. 

It has been suggested that gait velocity may be influenced by spatio-temporal variables 

(Winter, 1991 b; Craik and Dutterer, 1995; Prince et al., 1997) and values are likely to be 

less comparable between subjects if variability between measurements is large 

(Turnbull et al., 1995). Furthermore, the potential for selectivity of DAFO effects due to 

walking speed has not been described. Consequently, the data for stroke subjects' gait 

in the experimental groups were re-evaluated. A system was used in which slow walkers 

were deemed to represent those subjects whose gait velocity was < 0.3 m/s; fast walker 

status was assigned to subjects whose gait velocity was >_ 0.3 m/s (Figure 3.15). 
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The control group exhibited gait velocities in the range 0.6 - 1.1 m/s and therefore could 

clearly be best described as fast walkers. In the experimental group, on the affected 

side, the fast walkers' gait velocity was 0.50 (0.13) m/s using shoes and 0.55 (0.16) m/s 

using DAFOs. On the unaffected side, the values recorded were 0.52 (0.11) m/s and 

0.53 (0.18) m/s, using shoes and using DAFOs, respectively. In the experimental group, 

the mean gait velocity of the slow walkers on the affected side was 0.18 (0.05) m/s 

using shoes and 0.19 (0.07) m/s using DAFOs. On the unaffected side, the 

corresponding velocity values were 0.18 (0.06) m/s and 0.19 (0.07) m/s using shoes 

and DAFOs, respectively. When the fast (n = 5) and slow (n = 5) walkers' gait velocities 

in the experimental group were compared to those of the control group (n = 3), the 

velocity profile (Figure 3.16) indicated that the speed of the fast walkers in the 

experimental group was 0.18 m/s nearer to the control group than observed earlier. 

Despite this, it was noted that the differences between groups' velocity values using 

shoes and DAFOs were still statistically significant (p < 0.05) However, as the control 

group only contained three subjects, in this case, further statistical comparisons with the 

experimental group were not considered useful. This approach is used throughout the 

remainder of this thesis unless stated otherwise. 

In order to examine the potential effects of DAFOs in more detail, within-group 

(experimental) data analyses were undertaken. The differences between the DAFO and 

shoe-alone conditions over three tests within the experimental group are shown in 

Figure 3.17. Data are given for the three tests and as the individual difference of DAFO 

(D) minus shoe (S) velocity values for each subject, denoted as D1-S1, D2-S2 and D3- 

S3. Here, values < 0.0 represent results where velocity was increased in the shoes- 

alone condition, and values > 0.0 values indicate an increased in gait velocity with the 

DAFO. 
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Velocity (ni/s) on the affected side 

D3-S3 """ Aº "u 

D2-S2 ""f "A" 

D1-S1 ff0 "A A"00 

0.0 0.1 0.2 

Figure 3.17 Differences in gait velocity (m/s) between the DAFO (D) or shoe (S) condition for the 
experimental group. Each symbol represents an individual subject; triangles indicate fast walkers 
and circles indicate slow walkers. 1-3 denotes test number. The values shown on the x-axis 
represent velocity in meters per seconds (m/s). For further details, see text. 

The results of statistical comparisons made between data obtained for the experimental 

group DAFO and shoes-alone conditions on the side affected and unaffected by stroke 

are presented below. The determinations were calculated as follows: 

(D f- Sh and (Dsl - Ssl) 

where D= DAFO, S= shoes, f= fast walkers and s1= slow walkers. 

There was no evidence of non-normality of distribution (Ryan-Joiner test); 

representative examples are shown in Figure 3.18 a-c. Comparison of the differences 

for each pair of measurements in the experimental group (n = 9) using paired t-tests for 

the affected side revealed a statistically significant difference between shoes and 

DAFOs for test I (p = 0.008) and test III (p = 0.028) but not test 11 (p = 0.184). The 
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Figure 3.18 Normality calculations for the experimental (n = 9) subjects' velocity values over 
the three tests (Ryan-Joiner test). X-axis presents individual differences in gait velocity (m/s) 
between DAFO and shoe condition. 
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velocity increased by 0.074 m/s using a DAFO compared using shoes in test I and by 

0.034 m/s in test III (Table 3.23). However, the CI for these data indicated considerable 

variability, which may be due to the limited number of subjects, or the highly consistent 

velocity values recorded in test III. There was no statistically significant difference 

evident between the values recorded for the DAFO and shoes condition on the subjects' 

side unaffected by stroke. 

Table 3.23 Summary of statistical tests (paired t-tests) on velocity determinations for the 

experimental group using shoes and DAFO (affected side). 

Variable Mean 95.0% CI p 

Test I 0.074 (0.025, 0.124) 0.008** 

Test II 0.047 (-0.028, 0.123) 0.184 

Test III 0.034 (0.005, 0.063) 0.028* 

*=p<0.05, ** =p<0.01. 

Further analyses based on the fast (n = 5) and slow (n = 4) walker classification 

revealed a significant increases of 0.052 m/s in gait velocity using DAFOs compared to 

using shoes for test III (p < 0.01, paired f-test) for fast walkers, and 0.098 m/s using the 

DAFO for test I (p < 0.05) for slow walkers, on the side affected by stroke (Table 3.24). 

Differences between DAFO and shoe velocity values on the unaffected side were not 

statistically different. 
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Table 3.24 Summary of statistical tests (paired t-test) on velocity determinations for the 

experimental group according to fast and slow walkers' status on the affected side. 

Group/ test Mean 95.0% CI P 

Fast/ test I 0.055 (-0.030, 0.141) 0.147 

Fast/ test II 0.101 (-0.026, 0.228) 0.093 

Fast/ test III 0.052 (0.011, 0.084) 0.011* 

Slow/ test 1 0.098 (0.007, 0.188) 0.041* 

Slow/ test 11 -0.019 (-0.064,0.026) 0.266 

Slow/ test 111 0.012 (-0.055,0.078) 0.620 

*=p<0.05. 

Stride length 

A stride length defines the distance from a contact event of one foot to the subsequent 

contact event of that same foot (e. g. heel strike to heel strike). Stride length causes the 

major displacement of the body along the path of progression during a gait cycle; a 

complete gait cycle consists of one stride (Craik and Dutterer, 1995). Decreased stride 

length related to a poor gait pattern has been observed with stroke walkers compared to 

healthy subjects (Wooley, 2001). In the present studies, the values recorded for stride 

length for the healthy subjects were: right leg 125.7 cm (18.6) and left leg 128.7 cm 

(10.7), mean and (SD). The stride length values determined for the control and 

experimental groups are given in Table 3.25, with data separated according to 

experimental condition, side affected by stroke and fast/slow walker status. 

Statistical analyses of the summed mean stride lengths for the three tests performed on 

the stroke subjects (control and experimental groups) identified significantly shorter 

stride lengths than for the healthy subjects (p < 0.01); the mean difference was 15.7 cm 

for the control subjects, 67.5 cm for the experimental subjects using shoes, and 62.0 cm 

for the experimental using a DAFO. The corresponding values for the control (n = 3) 

and experimental (n = 10) groups were also significantly different (p < 0.05), with shorter 
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stride lengths evident for the experimental group, in the DAFO and shoes-alone 

condition; the mean difference was 55.8 cm for the experimental group using shoes, 

and 53.0 cm for the experimental group using a DAFO. 

Table 3.25 Stride length for both groups. The stride length (cm) data are average and 

(SD) of independent measurements recorded in the 3 testing sessions as described in 

Methods. J 

Stride length (cm) 

Affected side Unaffected side 

Test I Test 11 Test 111 Test I Test 11 Test 111 

Control group 106.3 123.6 104.7 107.5 104.7 103.6 
(n = 3) (3.7) (10.1) (34.6) (9.8) (11.1) (12.1) 

Exp group (Fast) 

Shoes 73.9 74.2 83.5 75.1 80.7 84.1 
(n = 5) (17.8) (7.0) (9.4) (11.3) (12.8) (17.2) 

DAFO 79.4 84.7 85.7 77.2 78.9 84.2 
(n = 5) (15.7) (20.8) (13.9) (14.2) (14.1) (14.1) 

Exp group (Slow) 

Shoes 36.9 38.5 37.9 42.1 36.3 34.2 
(n = 4) (13) (13) (10.5) (18.3) (12.7) (11.3) 

DAFO 45.6 33.6 40.4 46.4 36.6 38.0 
(n = 5) (24.2) (6.9) (8.0) (21.8) (12.7) (7.0) 

Further within-group (experimental) data analysis was undertaken. The individual 

difference of DAFO (D) minus shoes (S) stride length values for each experimental 

subjects, denoted as D1-S1 in Test I, D2-S2 in Test II, D3-S3 in Test III are shown in 

(Figure 3.19). In this figure, each data point represents stride length values for an 

individual subject. Values < 0.0 indicate results where stride length was longer with 

shoes, and values > 0.0 represent longer stride length with a DAFO. 

189 



Stride length (cm) on the affected side 

D3-S3 ff"f""2 
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Figure 3.19 Differences in stride length (cm) between the DAFO (D) or shoe (S) condition for 
the experimental group. Each symbol represents an individual subject; triangles indicate fast 
walkers and circles indicate slow walkers. 1-3 denotes test number. The figures shown on the x- 
axis represent stride length in centimetres (cm). For further details, see text. 

Comparisons (paired f-tests) of the differences for each pair of measurements for 

experimental subjects (n = 9) revealed a significantly longer stride length in the DAFO 

condition compared to shoes in test I (p = 0.018). The difference of the stride length 

using DAFOs compared using shoes in test I was 9.72 cm; 95 % CI indicated 

substantial variability 2.13,17.30. More consistent values were obtained for test II and 

test III and longer stride lengths were evident using shoes, although these differences 

did not achieve statistical significance (test II, p=0.465; test III, p=0.238). No 

statistically significant differences in values between experimental conditions were 

detected on the side unaffected by stroke. Differences in stride length apparent 

following separation of data according to fast/slow walker status also failed to achieve 

statistical significance (Table 3.26). 
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Table 3.26 Summary of statistical tests (paired t-tests) on stride length determinations for the 

experimental group according to fast (n = 5) and slow (n = 4) walkers' status on the affected side. 

Group/ test Mean 95.0% CI P 

Fast/ test I 5.47 (-2.93,13.87) 0.145 

Fast/ test II 10.47 (-10.14,31.09) 0.231 

Fast/ test III 2.20 (-7.70,12.09) 0.571 

Slow/ test 1 15.03 (-3.17,33.23) 0.078 

Slow/ test II -4.61 (-15.19,5.96) 0.259 

Slow/ test 111 4.01 (-6.78,14.81) 0.322 

Step length 

The step length (cm) is the linear distance between two consecutive contralateral 

contacts of the legs. When defining step length, reference is made to the advancing 

limb. For example, the distance from initial contact (heel strike) of the left foot to initial 

contact of the right foot is a right step length (Craik and Dutterer, 1995). Reduced step 

length was shown to be a feature of inadequate gait ability for stroke patients compared 

to healthy subjects (Diamond and Ottenbacher, 1990). In the present studies, in the 

healthy subject group (n = 4), the mean and (SD) values recorded for step length were 

63.5 cm (18.7) for the right leg and 62.2 cm (16.9) for the left leg. These data are 

consistent with earlier studies of healthy young and aged subjects (Öberg et al., 1993; 

Stolze et al., 1998). 

The step length measurements recorded for the control and experimental groups are 

given in Table 3.27; data are separated according to experimental condition, affected 

side and fast/slow walker status. The mean step lengths, from the three tests performed 

using stroke subjects (control, n=3 and experimental groups, n= 10) on the affected 

side, were significantly shorter (p < 0.05) than for the healthy subjects; the mean 

difference was 7.3 cm for the control subjects, 37.8 cm for the experimental subjects 
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using shoes, and 37.6 cm for the experimental using a DAFO. The relative order of 

mean step length was healthy subjects > control subjects > experimental subjects 

(Bonferroni's multiple comparison post-test). The corresponding values of the control (n 

= 3) and experimental groups (n = 10) were also significantly different (p < 0.05), with a 

shorter mean step length evident for the experimental group; the mean difference was 

30.5 cm for the experimental group using shoes and using a DAFO. 

Table 3.27 Step length (cm) from both groups. The step length data are average and 

(SD) of independent measurements recorded in the 3 testing sessions as described in 

Methods. 

Step length (cm) 

Affected side Unaffected side 

Test I Test 11 Test 111 Test I Test 11 Test 111 

Control group 57.6 59.6 49.5 51.9 59.5 64.8 
(n=3) (7) (22.9) (11.1) (11.5) (9.4) (16.7) 

Exp group (Fast) 

Shoes 25.8 31.8 30.7 51.6 47.4 50.8 
(n=5) (18.4) (19.3) (21.5) (10.7) (17.5) (17.8) 

DAFO 28.3 28.9 31.2 48.6 53.2 54.8 
(n=5) (21.6) (23.8) (17.8) (8.7) (11.4) (10.8) 

Exp group (Slow) 

Shoes 17.1 21.4 17.8 33.1 40.2 22.3 
(n=4) (11.2) (14.9) (14.5) (18.3) (20.3) (17.7) 
DAFO 18.7 20.0 24.8 32.1 22.6 21.9 
(n=5) (6.9) (10.8) (7.0) (29.7) (17.2) (15.1) 

Within-group (experimental) data analyses for the DAFO and shoe conditions were 

examined and are presented in Figure 3.20. As earlier, data are given for the three tests 

and as the individual difference of DAFO (D) minus shoe (S) step length values for each 
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subject, denoted as D1-SI, D2-S2 and D3-S3. Here, values < 0.0 represent results 

where step length increased using shoes, and values > 0.0 indicate an increase in step 

length using DAFOs. 

Step length (cm) on the affected side 

D3-S3 Af" Aº "A" 

D2-S2 A AA """AA 

D1-S1 "A"""A"A" 

-10 0 10 

Figure 3.20 Differences in step length between the DAFO (D) or shoe (S) condition for the 

experimental group. Each symbol represents an individual subject; triangles indicate fast walkers 
and circles indicate slow walkers. 1-3 denotes test number. The step length shown on the x-axis 
represents step length in centimetres (cm). For further details, see text. 

Comparison of each pair of measurements in the experimental group (n = 9) with paired 

t-tests indicated no statistically significant differences over the three separate tests (p = 

0.474 in test I, p=0.508 in test II, p=0.389 in test III). There were also no statistically 

significant differences detected between the DAFO and shoe condition on the side 

unaffected by stroke, or when data were categorized according to subjects' walking 

speed (Table 3.28). The large variability of these data is apparent in the Cl values, 

which may be a function of the limited number of subjects involved in the study. 
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Table 3.28 Summary of statistical tests (paired t-tests) on step length determinations for the 

experimental group according to fast and slow walkers' status on the affected side. 

Group/ test Mean 95.0% CI P 

Fast/ test I 2.46 (-4.41,9.33) 0.376 

Fast/ test II -2.88 (-14.05,8.29) 0.514 

Fast/ test III 0.52 (-11.88,12.92) 0.913 

Slow/ test I 2.00 (-19.09,23.09) 0.783 

Slow/ test II -0.10 (-12.62,12.42) 0.976 

Slow/ test III 7.67 (-16.16,31.49) 0.300 

Cadence 

Cadence is the rhythm of the walking pattern and is defined as the number of steps 

taken per unit of time (step/min) (Bohannon, 1997). A reduced cadence was reported 

for stroke patients with limited gait ability, and positive changes in this variable occurred 

following DAFO use by hemiparesis subjects (Dieli et aL, 1997). In the present studies, 

in the healthy subject group, the mean and (SD) values for cadence recorded 

separately for each leg were 116.6 step/min (4.8) for the right leg and 1.14.6 step/min 

(5.2) for the left leg. The mean and SD of the cadence calculated for the control and 

experimental subjects are given in Table 3.29. 

It was determined (one factor ANOVA) that the mean cadences from the three tests 

performed using stroke subjects (control, n=3 and experimental groups, n= 10) were 

significantly less than (p < 0.05) those obtained from the healthy subjects; the mean 

difference was 27.6 steps/min for the control subjects, 49.2 steps/min for the 

experimental subjects using shoes, and 48.4 steps/min for the experimental using a 

DAFO. The corresponding values of the control and experimental groups were also 

significantly different (p < 0.05) with reduced cadence evident for the experimental 
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group; the mean difference was 21.6 steps/min for the experimental group using shoes, 

and 20.8 steps/min for the experimental group using a DAFO. 

Table 3.29 Cadence from both groups. Cadence (steps/min) data are mean and (SD) 

of independent measurements recorded in the 3 testing sessions as described in 

Methods 

Cadence (steps/min) 

Affected side Unaffected side 

Test I Test Il Test 111 Test ! Test 11 Test 111 
Control group 86.4 88.2 89.5 90.4 94.5 93.3 

(n=3) (18) (10.7) (13.5) (21) (11) (9) 

Exp group (Fast) 

Shoes 74.2 76.4 72 78.4 78.4 73.9 
(n=5) (7.6) (13) (13.6) (5) (8.3) (5.8) 
DAFO 76.9 81 77.5 75.9 82.2 78.6 
(n=5) (7.5) (9) (9.6) (7.3) (8) (9.2) 

Exp group (Slow) 

Shoes 53.6 57.6 62.9 57.2 55 63.9 
(n=4) (9.4) (12.7) (16) (14.4) (12) (17) 
DAFO 59.7 55.9 56.7 59 55.4 56.1 
(n=5) (11) (13) (13.8) (14.2) (14.1) (13.4) 

Within-group (experimental) data analyses for the DAFO and shoe conditions were 

examined and are presented in Figure 3.21. As earlier, data are given for the three tests 

and as the individual difference of DAFO (D) minus shoe (S) cadence values for each 

subject, denoted as D1-S1, D2-S2 and D3-S3. Here, values < 0.0 represent results 

where cadence increased using shoes, and values > 0.0 where cadence increased 

using DAFOs. 
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Cadence (steps/min) on the affected side 

D3-S3 "Sf"fSffA 
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Figure 3.21 Differences in cadence between the DAFO (D) or shoe (S) condition for the 

experimental group. Each symbol represents an individual subject; triangles indicate fast walkers 
and circles indicate slow walkers. 1-3 denotes test number. The cadence values shown on the x- 

axis represent cadence in steps per minutes (steps/min). For further details, see text. 

Comparison of each pair of measurements within the experimental group (n = 9) with 

paired t-tests indicated no statistically significant differences over the three separate 

tests (p = 0.157 in test I, p=0.168 in test II, p=0.512 in test III). There were also no 

statistically significant differences detected between the DAFO and shoe condition on 

the side unaffected by stroke, or when data were categorized according to subjects' 

walking speed (Table 3.30). 

Table 3.30 Summary of statistical tests (paired t tests) on cadence determinations for the 

experimental group according to fast and slow walkers' status on the affected side. 

Group/ test Mean 95.0% CI P 

Fast/ test I 2.50 (-12.73,17.73) 0.672 

Fast/ test II 4.68 (-2.67,12.03) 0.152 

Fast/ test III 5.46 (-1.97,12.89) 0.111 
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Slow/ test I 8.57 (-1.31,18.46) 0.070 

Slow/ test il 0.18 (-5.60,5.95) 0.929 

Slow/ test III -3.10 (-12.84,6.64) 0.386 

Single stance (support) phase 

During a typical gait cycle, the two periods of stance- and swing-phase overlap with 

each another. Double and single support phases (as opposed to stance and swing of 

one limb) characterise the co-ordination between the legs during the gait cycle. The 

instance when one leg is the only point of contact with the walking surface is termed 

single-support. One gait cycle has two single-support times (i. e. one per leg). 

Consequently, leg support and contralateral swing time are equal (Murray, 1967). The 

single limb support is possibly the best indicator of the limb's support capability, and has 

shown to been to be shortened (clearly) in stroke subjects (De Quervain et at, 1996; 

Dieli et at, 1997). 

In the healthy subject group, the mean and (SD) values for the duration of single stance 

phase (expressed as a percentage of the duration of the gait cycle) recorded 

simultaneously for each leg, were 40.6 % (6.4) (right leg) and 39.2 % (2.4) (left leg). 

The values for the control and experimental groups are presented in Table 3.31, with 

data separated according to experimental condition, side affected by stroke and 

fast/slow walker status. Statistical analyses of the summed mean single stance phase 

for the three tests performed on the stroke subjects (control and experimental groups) 

identified significantly shorter (p < 0.05) single stance phase than for the healthy 

subjects; the mean difference was 7.1 % for the control subjects, 17.5 % for the 

experimental subjects using shoes, and 17.7 % for the experimental using a DAFO. 

Bonferroni's post-test indicated that the relative order of single stance phase duration 

was healthy subjects > control subjects > experimental subjects. 
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The corresponding values for the control (n = 3) and experimental (n = 10) groups were 

also significantly different (p < 0.05), with shorter single stance phase evident for the 

experimental group, in the DAFO and shoes-alone condition; the mean difference was 

10.4 % for the experimental group using shoes, and 10.6 % for the experimental group 

using a DAFO. 

Table 3.31 Single stance phase of control and experimental groups in the three tests; 

mean and (SD). Single stance phase from the full gait cycle are presented as %. 

Single stance phase duration (% of duration of gait cycle) 

Affected side Unaffected side 

Test 1 Test 11 Test 111 Test I Test 11 Test 111 
Control group 33.8 32.0 32.7 32.2 31.2 30.2 

(n = 3) (6.8) (9.5) (7.3) (10.5) (10.9) (13.2) 

Exp group (Fast) 

Shoes 25.4 28.7 27.2 37.2 35.9 36.8 
(n = 5) (3.5) (2.8) (4.5) (7.8) (6.0) (8.6) 

DAFO 25.7 26.6 28.4 33.8 35.7 36.8 
(n = 5) (2.7) (3.4) (5.5) (6.6) (3.1) (7.4) 

Exp group (Slow) 

Shoes 14.2 14.6 18.9 24.9 29.2 30.1 
(n = 4) (9.2) (5.7) (6.1) (14.1) (10.5) (9.8) 

DAFO 17.1 17.4 19.0 28.0 28.2 32.1 
(n = 5) (2.7) (10) (5.6) (11.8) (15.2) (8.5) 

Within-group (experimental) data analyses were undertaken as indicated earlier (Figure 

3.22). In this figure, each data point represents single stance phase values for an 

individual subject. Values < 0.0 represent results where single stance phase was longer 

with shoes, and values > 0.0 represent longer single stance phase with DAFOs. Normal, 
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healthy subjects' single stance phase averages approximately 40 % of the full gait 

cycle. 

Single stance phase (%) on the affected side 

D3-S3 f4"t"f" 

D2-S2 ""I"": " 

D1-S1 =j"tt 

-10 0 10 

Figure 3.22 Differences in single stance phase duration (%) between the DAFO (D) or shoe (S) 
condition for the experimental group. Each symbol represents an individual subject; triangles 
indicate fast walkers and circles indicate slow walkers. 1-3 denotes test number. The single stance 
phase values shown on the x-axis represent single stance phase in percents (%) For further 
details, see text. 

Comparisons (paired t-tests) of the differences for each pair of measurements for 

experimental subjects (n = 9) revealed a significantly longer single stance duration in 

the DAFO condition compared to shoes in test I (p = 0.01) but not in test II (p = 0.773) 

or test III (p = 0.186). The single stance duration increased 3.22 % using DAFOs 

compared using shoes in test I, but 95 % CI values varied 1.745,4.700. In contrast, 

there were no statistically significant differences detected in single stance duration 

between experimental conditions on the unaffected side (test I, p=0.06; test II, p= 

0.234; test III, p=0.064). 
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Further analyses based on the fast (n = 5) and slow (n = 4) walker classification 

revealed a statistically significant difference in single stance duration for both the fast (p 

= 0.004) and slow walkers (p = 0.035) in test I, but not in tests II and III (Table 3.32). 

The single stance phase increased 4.40 % for fast walkers, and 1.75 % for slow walkers 

using DAFOs compared to using shoes on the side affected by stroke. Once again, the 

Cl for these data indicated considerable variability. There was no evidence for 

statistically significant differences in single stance duration on the side unaffected by 

stroke. 

Table 3.32 Summary of statistical tests (paired t-tests) on single stance duration for the 

experimental group according to fast (n=5) and slow (n=4) walkers' status on the affected side. 

Group/ test Mean 95.0% Cl 

Fast/ test I 4.40 (2.322,6.478) 

Fast/ test II 1.40 (-0.483,3.283) 

Fast/ test III 2.00 (-6.74,10.74) 

Slow/ test 1 1.75 

Slow/ test II -0.25 

Slow/ test 111 5.00 

(0.227,3.273) 

(-17.31,16.81) 

(-6.77,16.77) 

*p<0.05, *`p<0.01. 

P 

0.004" 

0.108 

0.560 

0.035* 

0.966 

0.269 

3.3.1.4 Segments kinematics of gait cycle 

A major aim of the research was to evaluate the effects of DAFOs on lower limb (joint) 

kinematics during stroke patients' gait. For these investigations, the subjects' gait was 

measured by analysing the angular displacement of the foot, shank and thigh 

segments, during two strides, in the sagittal plane, and for the affected and unaffected 

leg. These studies utilized the 3-D movement analysis methods described earlier, 

except that the saggital plane was only used in this main phase of the analysis, after the 
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reliability tests (section 3.1.1.3). To enable direct comparisons between subjects' 

segmental motions during stance and swing phases, all segmental kinematic 

parameters were normalised to 100 % of the gait cycle length. 

During data analyses of subjects' stance and swing phases, the peak (minimum and 

maximum) values of the various segmental parameters were considered, because these 

limits of the joints' motions have been shown to be informative for describing the human 

gait pattern and its changeability (Winter, 1990; Wu, 1995b; Enoka, 2002). The 

minimum value of thigh velocity was determined during mid stance phase, to specify the 

level of stability of the more proximal joints (Wu, 1995a; De Quervain et al., 1996). The 

minimum value of thigh displacement was obtained at the end of stance (push-off) 

phase, to define the control and flexibility of the lower limb joints, when the direction of 

hip joint movement changes in this critical component of pre-swing phase (De Quervain 

et al., 1996; Enoka, 2002). The minimum values of foot and shank displacement and 

velocities, and the maximum value of thigh velocity were determined during early swing 

(toe-off) phase, because of the associated with large ankle plantarflexion and knee 

extension (Lehmann et aL, 1987; De Quervain et al., 1996; Olney and Richards, 1996). 

The maximum values of foot and shank velocity were determined during the middle of 

swing phase. These maximum angular velocity values are relevant to large ankle and 

knee flexion motions, when joints movements are changing direction, and are critical to 

take a step forward successfully (Roberts et al., 1997; Wooley, 2001; Lamontagne et 

al., 2002). In subsequent analyses, the fast/slow walker categorization described earlier 

was also used here in an effort to maintain consistency between experimental group 

subjects. 

Minimum foot displacement 

Foot angular displacement (degrees) measurements during a gait cycle provide an 

indication of the changes of the angular position of the foot segment in space (global 

reference frame). Although the angle obtained was not the actual joint angle, it 
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effectively reflects angle changes of the ankle joint (flexion-extension) movements (van 

Vliet, 1988; Winter, 1990). The foot segment data were derived from coordinate data of 

the forefoot and ankle. The results of the foot displacement investigations for a full gait 

cycle from the affected side of the stroke subjects are shown in Figure 3.23 a-c. For 

comparative purposes, the average healthy subjects' (n = 4) foot displacement data are 

also included (red traces). 

For the healthy subjects, the averaged values for foot angular displacement recorded 

simultaneously for each leg indicated a small difference between left and right sides, 

which is consistent with earlier reports where angular displacement data for both legs 

were summated (Murray, 1967). Studies of these healthy subjects (Figure 3.23, red 

traces) showed that the foot angular displacement in the saggital plane increased during 

the heel strike (to 171°), and then began to decrease, due to the load on the foot. In the 

mid-stance phase, foot angulations remained steady (about 157°), and then decreased 

prior to the push-off phase. 

The minimum foot angular displacement was achieved during early swing phase (84°) 

when the ankle joint achieves maximum extension, and before foot motion begins to 

increase, as the ankle joint rotates to flexion during the mid and end components of the 

stance phase. The period between the end of stance phase and early swing phase is 

critical, as during this push- off phase, weight is transferred over to the other leg, and 

toe release from the floor occurs (minimum foot angular displacement). This requires 

fine dynamic balance control of lower limb joints, (Lehmann et al., 1987; De Quervain et 

al., 1996; Olney and Richards, 1996; Whittle, 1998). Here, it should be noted that lower 

minimum (numerical) values correspond to better (nearer normal) foot angulations. 

Foot angular displacement data are shown graphically in Figure 3.23, which suggests 

that the averaged data obtained for the control (n = 3, ) and experimental (fast walkers, n 

=5 and slow walkers, n= 5) groups followed a similar pattern to that of the healthy 
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Figure 3.23 a Foot angular displacement of control subjects (n = 3): affected side 

Values are shown for trial I (A-C) and trial II (D-F) and are the mean ± SD of three 
separate tests as described in Methods. For comparative purposes, data collected using 
healthy subjects are given (red trace), where a typical swing phase would commence at 
60% completion of the gait cycle (not marked). In each of the figures, the solid black line 
separates stance (left of line) and swing (right of line) phases. 
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Figure 3.23 b Foot angular displacement of fast walkers (n = 5): affected side 

Values are shown using DAFO (A-C) and using shoes (D-F) and are the mean ± SD of three 

separate tests as described in Methods. For comparative purposes, data collected using 
healthy subjects are given (red trace), where a typical swing phase would commence at 60% 

completion of the gait cycle (not marked). In each of the figures, the solid black line separates 
stance (left of line) and swing (right of line) phases. 
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Figure 3.23 c Foot angular displacement of slow walkers: affected side 

Values are shown using DAFO (A-C, n= 5) and using shoes (D-F, n= 4) and are the mean ± 
SD of three separate tests as described in Methods. For comparative purposes, data collected 
using healthy subjects are given (red trace), where a typical swing phase would commence at 
60% completion of the gait cycle (not marked). In each of the figures, the solid black line 

separates stance (left of line) and swing (right of line) phases. 
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subject data. Clear decreases in motions were evident, however, during early stance 

phase, end of stance phase, and swing phase. In addition, for both groups' data, there 

was a noticeably increased SD during swing phase compared to the healthy subjects. 

Comparison of minimum foot displacement values collected from the affected side of 

the control group with those for the experimental group (fast and slow walkers) indicated 

a statistically significant difference (p < 0.05, ANOVA) with better (nearer normal) 

minimum foot values for the control group. When the experimental group data were 

divided based on gait velocity, the mean minimum foot rotation value for the fast 

walkers also suggested a difference from the control group. This difference was 5% 

using shoes, but only 1.1 % using DAFOs. For the slow walkers, the minimum values 

were clearly less than those obtained for the control group (approximately 20 % 

difference with shoes and DAFOs). However, once again, as the control group 

contained only three subjects, further statistical comparisons were not undertaken. 

To scrutinise the potential effects of DAFOs in more detail, within-group (experimental, 

n= 10) data analyses were undertaken as described earlier. Thus, data were 

considered for the three tests and as the individual difference of DAFO (D) minus shoe 

(S) foot minimum values for each subject, denoted as D1-S1, D2-S2 and D3-S3. Here, 

values > 0.0 represent results that are more consistent with better (nearer normal) 

minimum foot displacement in the shoes-alone condition, and values < 0.0 suggest 

more normal foot positioning with the DAFO. There was no evidence of non-normality of 

distribution (Ryan-Joiner test, not shown). Comparisons of differences were made for 

each paired measurements in the experimental group (n = 9, data for one subject was 

unavailable due to a total lack of confidence when walking without the DAFO). Paired t- 

tests indicated no statistically significant difference between the values recorded for the 

DAFO and shoes conditions on the subjects' side affected by stroke (Table 3.33). The 

Cl for these data indicated considerable variability between subjects, which perhaps 
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may also be due to the limited number of subjects in these studies, the variation in gait 

velocity apparent and/or reliability limitations of the movement analysis procedures. 

Table 3.33 Summary of statistical tests (paired t-tests) on differences of minimum foot 

displacement determinations for the experimental (Exp) group (n = 9). Comparisons are of 

minimum values recorded when subjects used shoes and a DAFO (affected side). 

Group/ test Mean 95 % Cl P 

Exp/ Test 1 -3.54 (-10.36,3.28) 0.265 

Exp/ Test II 0.66 (-8.05,9.37) 0.866 

Exp/ Test I11 -2.00 (-8.51,4.51) 0.498 

Subsequent analyses based on the fast (n = 5) and slow (n = 5) walker classification 

revealed no significant difference (p > 0.05) in minimum foot displacement values using 

DAFOs compared to using shoes over the three tests during the 12 weeks testing trial 

(Table 3.34). It is interesting to note that the mean values shown are progressively more 

negative over the three tests (over the three months testing period) for the fast walkers. 

However, the Cl for these data reveal large variability and overlap between subjects, 

which suggests that this is unlikely to indicate of any real improvement in values for 

DAFO users as opposed to shoe users. 

Table 3.34 Summary of statistical tests (paired t-tests) on minimum foot displacement 

determinations within the experimental group according to fast (n = 5) and slow (n = 4) walker 
status on the affected side. 

Group/ test Mean 95 % Cl P 

Fast/ Test I -6.13 (-18.23,5.97) 0.232 

Fast/ Test II -3.52 (-14.58,7.54) 0.427 

Fast/ Test III -5.09 (-14.87,4.69) 0.222 

Slow/ Test I -0.30 (-12.42,11.81) 0.942 

Slow/ Test II 5.89 (-14.92,26.69) 0.434 

Slow Test III 1.86 (-11.70,15.42) 0.692 
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Differences between values for DAFO and shoes minimum foot displacement on the 

side unaffected by stroke were not statistically different (p < 0.05, data not shown). For 

all groups, the unaffected side values were substantially better compared to those 

obtained for the affected side. In the control group, the minimum foot displacement 

values were 11.6 % lower on the unaffected than the affected side. In the experimental 

fast walkers, the unaffected side values were 15.4 % better using shoes and 11 % using 

DAFOs , and 9.3 % using shoes and 11.8 % using DAFOs with the slow walkers. 

Minimum shank displacement 

Determination of subjects' shank motion (the angular displacement of the shank 

segment in space, which reflects the angle changes of the knee joint (flexion-extension 

movements) was derived from coordinate data of the ankle and knee markers. The 

results of the full shank displacement investigations of a complete gait cycle are 

illustrated in Figure 3.24 a-c. The healthy subjects' shank displacement motion in the 

saggital plane increased during the heel strike phase (105°), and then began to 

decrease coincident with foot loading in stance phase. This decrease continued 

throughout the mid-stance and push-off phases, achieving minimum shank angular 

displacement during the early swing phase (3511, knee at maximum extension). 

Subsequently, the shank motion began to increase and regain maximum levels, as the 

knee joint rotated from flexion to extension during the mid- and late-swing phases 

(Figure 3.24, red traces). 

The profile of the shank angular data for the control (Figures 3.24 a) and experimental 

(Figure 3.24 b-3.24 c) groups indicated a similar pattern to that of the healthy subjects, 

although clear increases in variation of shank motion were apparent during the swing 

phase. In addition, all patients groups (control, n=3 and experimental fast, n=5 and 

slow, n=5 walkers) demonstrated clear data variation (± SD) on the affected side 

compared to the unaffected side. 
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Figure 3.24 a Shank angular displacement of control subjects (n = 3): affected side 

Values are shown for trial I (A-C) and trial II (D-F) and are the mean ± SD of three separate 
tests as described in Methods. For comparative purposes, data collected using healthy 
subjects are given (red trace), where a typical swing phase would commence at 60% 

completion of the gait cycle (not marked). In each of the figures, the solid black line 

separates stance (left of line) and swing (right of line) phases. 
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Figure 3.24 b Shank angular displacement of fast walkers (n = 5): affected side 

Values are shown using DAFO (A-C) and using shoes (D-F) and are the mean ± SD of three 

separate tests as described in Methods. For comparative purposes, data collected using 
healthy subjects are given (red trace), where a typical swing phase would commence at 60% 

completion of the gait cycle (not marked). In each of the figures, the solid black line separates 
stance (left of line) and swing (right of line) phases. 
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Figure 3.24 c Shank angular displacement of slow walkers: affected side 

Values are shown using DAFO (A-C, n= 5) and using shoes (D-F, n= 4) and are the mean ± 
SD of three separate tests as described in Methods. For comparative purposes, data collected 
using healthy subjects are given (red trace), where a typical swing phase would commence at 
60% completion of the gait cycle (not marked). In each of the figures, the solid black line 

separates stance (left of line) and swing (right of line) phases. 
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The results of the minimum shank angular displacement investigations for the 

experimental group are shown in Table 3.35. Here, numerically lower values are most 

consistent with better (near normal) shank angulations values. Values > 0.0 represent 

results where minimum shank displacement was better in the shoes-alone condition, 

and values < 0.0 indicate better shank displacement with the DAFO. There was no 

suggestion of non-normality of distribution (Ryan-Joiner test, not shown). Comparison of 

the differences for each pair of measurements in the experimental group (n = 9) using 

paired t-tests revealed no statistically significant difference between the values recorded 

for the DAFO and shoes condition on the subjects' side unaffected by stroke (Table 

3.35). For this variable, the mean differences consistently produced more negative 

values for DAFO use, but again, high CI meant that this seems unlikely to reflect any 

beneficial actions associated with use of the device. 

Table 3.35 Summary of statistical tests (paired t-tests) on minimum shank displacement for the 

experimental group (exp, n= 9). Comparisons were made of the minimum values recorded using 

shoes and DAFO (affected side). 

Group/ test Mean 95 % Cl P 

Exp/Test I -2.16 (-5.64,1.31) 0.189 

Exp/Test II -0.89 (-5.46,3.69) 0.667 

Exp/Test 111 -1.64 (-6.85,3.58) 0.490 

Further analyses based on the fast (n = 5) and slow (n = 5) walker classification 

revealed no significant difference (p > 0.05) in minimum shank displacement values 

using DAFOs compared to using shoes over three tests during the 12 weeks testing trial 

(Table 3.36). It was noted that the mean values consistently yielded negative numbers 

over the three tests for the fast walkers, which is suggestive of better minimum shank 

displacement with DAFOs than with shoes. However, the Cl of the group data revealed 

large variability between subjects and that some subjects displayed better minimum 

shank displacement with shoes than with DAFOs. Thus, potentially beneficial effects of 

212 



DAFOs on stroke patients' minimum shank displacement were only evident for six of the 

nine subjects over the testing period. Such effects are not apparent when data are 

considered on a group basis. 

Table 3.36 Summary of statistical tests (paired t-tests) on minimum shank displacement for the 

experimental gro up data separated according to fast (n = 5) and slow (n = 4) walkers status 
(affected side). 

Group! Test Mean 95 % Cl P 

Fast/Test I -1.062 (-3.362,1.238) 0.269 

Fast/Test II -0.70 (-6.30,4.90) 0.747 

Fast/Test III -1.25 (-5.00,2.50) 0.407 

Slow/Test I -3.54 (-14.26,7.18) 0.371 

Slow/Test 11 -1.12 (-14.16,11.91) 0.802 

Slow/Test 111 -2.12 (-18.82,14.58), 0.714 

Differences between the minimum shank displacement values for the DAFO and shoe 

conditions on the side unaffected by stroke were not statistically different (p < 0.05, not 

shown). 

For each group, the values recorded for the unaffected side were most consistent with 

nearer normal (more negative, p<0.05) minimum shank displacement levels compared 

to the affected side, indicating asymmetrical gait. In the control group, the unaffected 

side shank data was 16.5 % lower than the affected side. In contrast, the unaffected 

side values for the experimental group were 38.7 % lower using shoes, and 31.3 % 

using DAFOs (fast walkers), and 42 % using shoes or DAFOs (slow walkers). 

Minimum thigh displacement 

Determination of subjects' thigh angular displacement was ascertained from coordinate 

data of the knee and hip markers and the measurements to estimate the angle of the 

thigh segment in space (the global reference frame) during the gait cycle. Although the 
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angle obtained was not the actual joint angle, it reflects angle changes at the hip joint 

(Wu, 1995a). The results of these investigations are presented in Figure 3.24. The 

mean thigh angular displacement of the healthy subjects (n = 4) demonstrated motion 

from 118° at heel strike to 77° during the push-off phase, when the hip joint is extended. 

Subsequently, the direction of thigh rotation increased, when the hip was flexed during 

swing phase. The minimum thigh angular displacement was achieved in the push-off 

(late stance) phase, when the hip joint was fully extended (Figure 3.25, red trace). 

The thigh angular displacement data collected for the control group (Figure 3.25 a) and 

experimental group fast walkers (Figure 3.25 b) revealed a similar pattern to that 

obtained for the comparative healthy subject group. In contrast, the experimental group 

slow walkers (Figure 3.25 c) displayed a noticeably different pattern to that of the 

healthy subjects, with thigh motion remaining at low levels (< 200 between minimum and 

maximum angles) throughout the gait cycle. 

The results of the minimum thigh angular displacement investigations for the 

experimental subjects were analysed using within-group data comparisons. Numerically 

lower values correspond to better thigh angulations; values > 0.0 are consistent with 

results where minimum thigh displacement was nearer normal with shoes, and values < 

0.0 indicate nearer normal thigh displacement with the DAFO. Comparison of the 

differences for each pair of measurements in the experimental group (n = 9) using 

paired t-tests yielded no statistically significant differences between the values recorded 

for the DAFO and shoe conditions on the subjects' side unaffected by stroke (Table 

3.37). 

214 



A 0 

125 

120 

115 
v 

110 

105 

ego 100 
CL 

95 

90 75 
rn 

gF 

8C 

TEST I using shoes 

----------- ---------- 

--------- ----------- 
----- ---------- ---------- ----- ------ 

---------------- --- ------- -- --- --------- 

----------- 

--- ----------- 

----------- 

------------ - ---------; -------- '. }, - ---------- 

ti 

0 

B 
125 

120 

m 115 
-o 

110 

E 105 

100 
CL 
0 95 

90 
rn 

85 

80 
74 

100 20 40 60 80 
Gait cycle (%) 

TEST II using shoes 

----------- ---------- ---------- 
--------------------- ---------- 

------ ---------- ---------- ---------- 

---------------------------- 

---------- ---------- -------- ------ 

----------- ------ ------- ------ --------- 

------------------------- --- -------------- 

---------- ---------- ---------- 

---------- ------ -- ----- ---------- 

125 

120 

m 115 

110 

E 105 
0 

100 
ä 

95 

75 90 
cm 

85 

8C 

7S 

TEST I repeated 

------------------------------- 

---------- ---------- 

---------- -------------- 
, 

------ 

----------- -- --------------- ---- ------- 
, 

----------- ------ --------- 
-------------------- 

-------- 
-------- 

- 
----------- 

---------; 
IJ0 20 40 60 80 

Gait cycle (%) 
E 

TEST II repeated 

rn 
0 

C 
m 
E 
m 
U 
m 
ä 
H 
v 

rn C 
Q 

100 

LJ 

20 

15 -------- ---------- ----- --- - -- 

10 

05 -------------- 

00 ------- ---------- ----- -- ----- 

95 

90 ----------ý '---- -------- 

85 

80 ------------------- ----- -- ------------- f 

0 20 40 60 
Gait cycle (%) 

TEST III using shoes 
IL 

12 

11 

11 

E 10 
w m 10 
ä 
' 

rn df 

80 100 0 

F 

-------------------- ---------- ---------- ---------- 

----------- ---------- 

- ---------------- ---- -- - 
i -------- --------- ---- - 
J ---------- ---------- 

----------------- ----- 5 

o ------------ 
ýý 

-k -- ---------- 

125 

120 

115 

110 

E 105 

a loo 
ä 

95 

90 773 

rn 85 

8C 

79 

20 40 60 80 
Gait cycle (%) 

TEST III repeated 

100 

-------------------- ---------- 

i ---------- ---------------- "ry 
------------ - --------- 

----------------- 
---- 

----------- -------- 

---------- ----------- 

------------ ------- 

---------- --------------- --- ----------------- 

0 20 40 60 80 100 J0 20 40 60 80 100 
Gait cycle (%) Gait cycle (%) 

Figure 3.25 a Thigh angular displacement of control subjects (n = 3): affected side 

Values are shown for trial I (A-C) and trial 11 (D-F) and are the mean ± SD of three 
separate tests as described in Methods. For comparative purposes, data collected using 
healthy subjects are given (red trace), where a typical swing phase would commence at 
60% completion of the gait cycle (not marked). In each of the figures, the solid black line 

separates stance (left of line) and swing (right of line) phases. 
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Figure 3.25 b Thigh angular displacement of fast walkers (n = 5): affected side 

Values are shown using DAFO (A-C) and using shoes (D-F) and are the mean ± SD of three 
separate tests as described in Methods. For comparative purposes, data collected using 
healthy subjects are given (red trace), where a typical swing phase would commence at 60% 
completion of the gait cycle (not marked). In each of the figures, the solid black line separates 
stance (left of line) and swing (right of line) phases. 
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Figure 3.25 c Thigh angular displacement of slow walkers: affected side 

Values are shown using DAFO (A-C, n= 5) and using shoes (D-F, n= 4) and are the mean ± 
SD of three separate tests as described in Methods. For comparative purposes, data collected 
using healthy subjects are given (red trace), where a typical swing phase would commence at 
60% completion of the gait cycle (not marked). In each of the figures, the solid black line 

separates stance (left of line) and swing (right of line) phases. 
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Table 3.37 Summary of statistical tests (paired t-tests) on minimum thigh displacement 

determinations for the experimental group (exp, n= 9) comparing the minimum values using 

shoes and DAFO (affected side). 

Group/ test Mean 95 % Cl P 

Exp/ Test I 1.26 (-1.72,4.24) 0.359 

Exp/ Test II -0.20 (-4.58,4.18) 0.920 

Exp/ Test III 0.04 (-1.38,1.46) 0.950 

Analyses according to fast (n = 5) and slow (n = 4) walkers status revealed no 

statistically significant differences in minimum thigh displacement values for DAFO 

compared to shoe users over the three tests and 12 weeks testing trial (Table 3.38). 

The 95 % Cl for these data indicated large variability between subjects. 

Table 3.38 Summary of statistical tests (paired t-tests) on minimum thigh displacement 

determinations for the experimental group according to fast (n = 5) and slow (n = 4) walkers 

status (affected side). 

Group/ test Mean 95.0% CI P 

Fast/ Test I 2.34 (-1.09,5.77) 0.131 

Fast/ Test II 1.598 (-0.556,3.752) 0.108 

Fast/ Test III 0.784 (-1.297,2.865) 0.355 

Slow/ Test I -0.10 (-8.13,7.93) 0.971 

Slow/ Test II -2.44 (-15.80,10.92) 0.602 

Slow/ Test III -0.890 (-3.773,1.993) 0.398 

For both groups, the values for the unaffected side were lower than for the affected 

side. Thus, in the control group, the unaffected side average minimum thigh 

displacement value over the three tests were 3.2 % better (minimum values nearer 

normal) than the affected group. In the experimental group fast walkers, the unaffected 

side values were 6.8 % (shoes) and 6.5 % (DAFO) better compared to the side affected 

by stroke. The corresponding values for the slow walkers were 4.2 % (shoes) and 5.1 

(DAFOs). 
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Segmental angular velocity 

Further assessments of the effects of DAFOs on lower limb function during the gait 

cycle involved studies of segmental angular velocity. Subjects' gait was assessed by 

analysing angular velocities of the foot, shank and thigh segments, during two strides, in 

the sagittal plane, and for the affected and (simultaneously) unaffected leg (section 

2.6.5). 

The foot angular velocity (degrees/sec) estimates the rate of change of foot angular 

displacement with respect to time. The comparative data for the foot angular velocity of 

healthy subjects (Figure 3.26, red traces) illustrate representative velocity curves for a 

full gait cycle. These data show how the velocity initially decreases to zero from the heel 

strike to the foot flat position, and then remains fairly constant in mid stance phase, 

when there is no angular displacement (Enoka, 2002). When the push off phase begins 

(heel rise), the velocity becomes negative, exhibiting a large negative velocity spike at 

the end of the push off and early swing phase, as the foot is lifted from the floor (ankle 

fully extended). During swing phase the velocity curve passes zero again, when the 

direction of the movement changes from plantarflexion (extension) to dorsiflexion 

(Enoka, 2002). Finally, the foot velocity data display a large positive spike during swing 

phase, achieving their maximum value in mid swing phase (ankle maximally flexed) 

when the velocity starts to decrease, slowing down for the next heel strike. In these 

graphs (Figures 3.26) positive velocity indicates that the ankle joint is flexing 

(dorsiflexion), and negative velocities that it is extending (plantarflexion). 

Of primary interest are the minimum (the end of stance phase and early swing phase) 

and maximum (the middle of swing phase) values, which provide indices of velocity 

changes, whilst at the same time indicating the direction of the movement changes in 

the gait cycle. In this study, the healthy subject data (n = 4) revealed a mean minimum 

value of - 405 °/sec and a mean maximum of 496 °/sec. It can be seen from Figure 3.26 

b-c that the foot velocity data of the control and experimental groups followed a similar 
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pattern to that of the healthy subjects, although the slow walkers displayed minimal 

negative-spiking before early swing phase (due to limited ankle plantar-flexion). 

Minimum foot velocity 

With the stroke subjects, the minimum foot angular velocity values that are more 

negative correspond to better (more normal) foot velocity. In the control group (n = 3), 

on the affected side, the mean minimum foot velocity was 32.1 % more negative than 

that of the experimental fast walkers (n = 5) using shoes, and 11.3 % using DAFOs 

(Figure 3.26 a- b). The experimental group slow walkers' (n = 5) minimum values were 

markedly less negative than those of the control group, with a difference of 169 % 

evident with shoes and 254 % with DAFOs (Figure 3.26 a and c). 

Within-experimental-group data analyses were undertaken as described earlier. Thus, 

data obtained for the three tests were considered in relation to the individual differences 

of DAFO (D) minus shoe (S) minimum foot angular velocity values for each subject, 

denoted as D1-S1, D2-S2 and D3-S3. Here, values > 0.0 define results where minimum 

foot velocity was better (nearer normal) when shoes were used, and values < 0.0 

indicate better foot displacement when a DAFO was used. Here, the data were found to 

be normally distributed in test I and test III, but not in test II (Ryan-Joiner test, not 

shown). Statistical analyses of the differences were done for each pair of 

measurements within the experimental group (n = 9; data for one subject was 

unavailable because she was not confident to walk without the DAFO). Both parametric 

(paired t-tests) and non-parametric (Wilcoxon signed rank test) comparisons failed to 

identify statistically significant differences between the values recorded for the DAFO 

and shoes condition on the subjects' side affected by stroke (Table 3.39). The Cl for 

these data indicated substantial variability between subjects. This may be due to the 

limited number of subjects, or/and, the calculation used to determine the angular 

velocity (Winter, 1990), which may have exaggerated the error of the measurements 

(see accuracy tests in section 2.5.3). 
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Figure 3.26 a Foot angular velocity of control subjects (n = 3): affected side 

Values are shown for trial I (A-C) and trial II (D-F) and are the mean ± SD of three 

separate tests as described in Methods. For comparative purposes, data collected using 
healthy subjects are given (red trace), where a typical swing phase would commence at 
60% completion of the gait cycle (not marked). In each of the figures, the solid black line 

separates stance (left of line) and swing (right of line) phases. 
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Figure 3.26 b Foot angular velocity of fast walkers (n = 5): affected side 

Values are shown using DAFO I (A-C) and using shoes (D-F) and are the mean ± SD of 
three separate tests as described in Methods. For comparative purposes, data collected 
using healthy subjects are given (red trace), where a typical swing phase would commence 
at 60% completion of the gait cycle (not marked). In each of the figures, the solid black line 

separates stance (left of line) and swing (right of line) phases. 
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Figure 3.26 c Foot angular velocity of slow walkers: affected side 

Values are shown using DAFO (A-C, n= 5) and using shoes (D-F, n= 4) and are the mean 
± SD of three separate tests as described in Methods. For comparative purposes, data 

collected using healthy subjects are given (red trace), where a typical swing phase would 
commence at 60% completion of the gait cycle (not marked). In each of the figures, the 

solid black line separates stance (left of line) and swing (right of line) phases. 
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Table 3.39 Summary of statistical tests (paired t-tests) on minimum foot velocity determinations 

for the experimental group (exp, n= 9) using shoes and a DAFO (affected side). 

Group/ test Mean 95 % Cl P 

Exp/ Test I -13.2 (-65.9,39.6) 0.581 

Exp/ Test II 29.4 (-48.5,107.2) 0.409 

Exp/ Test III -21.4 (-72.1,29.4) 0.359 

Consideration of the experimental group data according to fast (n = 5) and slow (n = 4) 

walker designation led to no clear conclusions regarding the influence of the DAFO. 

Thus, the mean minimum foot velocity values for the fast walkers were always negative, 

which might suggest a DAFO-mediated influence on minimum foot velocity over the 

three month testing period. However, there were no statistically significant differences 

evident between values for DAFOs and shoe users with fast walkers. In addition, for the 

slow walkers, deeper (more negative) minimum foot velocity values were identified, and 

the mean value determined by calculation of the individual differences was 97.2 (Cl 

31.2,63.3, p<0.05) using shoes compared to DAFOs in test Il, but not in test I or test 

III (Table 3.40). This mean difference in test II, which was > 0.0 suggested results 

where minimum foot velocity was better (nearer normal) when shoes were used. 

Table 3.40 Summary of statistical tests (paired t-tests on minimum foot velocity determinations 

for the experimental group according to fast (n = 5) and slow (n = 4) walker status (affected side). 

Group/ test Mean 95 % CI p 

Fast/ Test I -7.7 (-126.0,110.5) 0.865 

Fast/ Test II -24.9 (-154.7,104.9) 0.622 

Fast/ Test 111 -51.1 (-147.3,45.1) 0.214 

Slow/ Test 1 -19.92 (-50.39,10.56) 0.129 

Slow/ Test II 97.2 (31.2,63.3) 0.018* 

Slow/ Test III 15.74 (-12.29,43.76) 0.172 

'p<0.05 
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For both groups, the values obtained for the side unaffected by stroke were more 

favourable than to those for the affected side. Thus, in the control group the unaffected 

side values were 40 % more negative than those obtained for the affected side. In the 

experimental group, the unaffected side values were 122.9 % lower with shoes and 56.8 

% lower with DAFOs (fast walkers), and 88 % using shoes and 272 % using DAFO 

(slow walkers). 

Maximum foot velocity 

In the control group (n = 3), on the affected side, the average maximum foot velocity 

over the three tests was 36.2 % higher compared to the fast walkers (n = 5) using shoes 

and 12.4 % using DAFOs. The experimental group slow walkers' maximum values were 

noticeably slower than those of the control group, with differences of 194.4 % and 99.1 

% using shoes (n = 4) and DAFOs (n = 5), respectively. In the experimental group, the 

fast walkers maximum values recorded wearing shoes were 116 % higher compared to 

those determined for the slow walkers and 76.3 % higher for the DAFO condition. On 

the unaffected side, the differences between mean values for the control subjects and 

experimental fast walkers were small, whereas comparisons with the slow walkers 

revealed clear differences of 53 % with shoes and 43 % with DAFOs. 

Within-group data analyses of the experimental group (n = 10) were also undertaken as 

described earlier; comparisons were made of the differences for each paired 

measurements. There was no evidence of non-normality of distribution (Ryan-Joiner 

test, not shown). Paired t tests revealed a statistically significant difference between the 

values recorded for the DAFO and shoes conditions on the subjects' side affected by 

stroke in test I (p = 0.036), but not in test II and test III (Table 3.41). The difference 

identified in test I, which was > 0.0, suggests results where maximum foot velocity was 

better (nearer normal) when DAFOs were used. In the later tests, the CI indicate 

substantial variability between subjects which, perhaps, may also be indicative of 
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learning effects associated with use of the DAFO, or/and limitations imposed by the 

number of subjects used for these experiments. 

Table 3.41 Summary of statistical tests (paired f-tests) on maximum foot velocity determinations 

within the experimental group (exp, n= 9) comparing the maximum values using shoes and 
DAFOs (affected side). 

Group/ test Mean 95 % CI P 

Exp/ Test I 62.6 (5.2,120.0) 0.036* 

Exp/ Test II -9.0 (-74.0,55.9) 0.756 

Exp/ Test III 39.4 (-27.4,106.2) 0.211 

P<0.05 

Further analyses based on the fast (n = 5) and slow (n = 4) walker classification 

revealed no significant differences (p > 0.05) between maximum foot velocity values 

using shoes compared to DAFOs (Table 3.42). Consistently positive mean values for 

the fast walkers and predominantly positive for the slow walkers suggested that, in 

these tests, maximum foot velocities were higher using DAFOs compared the shoes 

alone (p > 0.05). 

Table 3.42 Summary of statistical tests (paired t-tests) on maximum foot velocity determinations 

within the experimental group according to fast (n = 5) and slow (n = 4) walkers status (affected 

side). 

Group/ test Mean 95 % Cl P 

Fast/ Test I 77.3 (-1.6,156.3) 0.053 

Fast/ Test II 24.0 (-93.9,141.9) 0.602 

Fast/ Test III 49.8 (-87.0,186.6) 0.369 

Slow/ Test I 44.2 (-104.0,192.3) 0.413 

Slow/ Test II -50.3 (-136.0,35.4) 0.158 

Slow/ Test 111 26.4 (-68.2,120.9) 0.440 
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In both groups, the values obtained for the unaffected side were nearer normal than for 

the affected side. In the control group, the values determined for the unaffected side 

were 62.8 % higher than those of the affected side. In the experimental group, the 

unaffected side values were 69.8 % higher using shoes and 53.7 % using DAFO (fast 

walkers), and 173.9 % using shoes and 97.6 % using DAFOs (slow walkers). 

Shank velocity 

Data for the angular velocity of the shank provide information on the rate of change of 

shank angular displacement with respect to time throughout a full gait cycle (section 

2.6.5). Despite the angle obtained not being the actual joint angle, it reflects angular 

changes at the knee joint flexion-extension (Winter, 1990; Roberts et al., 1997; Wooley, 

2001). The graphed data for the comparative database of healthy subjects (n = 4) 

illustrate the sequence of events involving this variable in a typical gait cycle (Figure 

3.27, red traces). Initially, the shank rotational velocity in the saggital plane decreased 

from the heel strike to the foot flat position, when the knee is partially flexed. During the 

mid stance phase, the velocity of the shank increased to zero level, and then reverted to 

negative values during the push-off phase (heel rise). Deep negative velocity spikes 

were achieved towards the end of the push-off in early swing phase, when the foot was 

raised off the ground. Shank velocity displayed strongly positive spiking during the 

swing phase, and achieved maximum levels in the mid swing phase, where it began to 

decrease in preparation for the next stance phase. Consequently, for the healthy 

subjects, the critical points were the minimum (-198 °/sec) and maximum (395 °/sec) 

angular velocity values. 

Minimum shank velocity 

Shank angular velocity of the control (n = 3, Figure 3.27 a) and experimental, (fast 

walkers, n=5 and slow walkers, n=5, Figure 3.27 b- c) groups followed a similar 

pattern to that of the comparative healthy subject data, although the experimental slow 
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walkers displayed negligible negative spiking throughout the heel strike and push-off 

phases. In the control group, on the affected side, the average minimum shank velocity 

was 70.4 % more negative compared to that of the fast walkers using shoes, and 56.5 

% more negative using DAFO. In the experimental group slow walkers, the minimum 

values were much less negative than for the control group; 270 % less negative with 

shoes and 250 % less negative with DAFOs. 

Within-experimental-group data analyses were undertaken as described earlier. Data 

obtained were considered in relation to the individual difference of DAFO (D) minus 

shoe (S) minimum shank angular velocity values for each subject. Here, values > 0.0 

define results where minimum shank velocity was better (nearer normal) when shoes 

were used, and values < 0.0 indicate better shank velocity when a DAFO was used. In 

this case, paired t-tests failed to identify statistically significant differences between the 

values recorded for the DAFO and shoes condition on the subjects' side unaffected by 

stroke (Table 3.43). The mean difference values were predominantly negative 

(suggesting potentially nearer normal values with the DAFO than with shoe use) but the 

CI for the grouped data indicated large variation between subjects. 

Table 3.43 Summary of statistical tests (paired f-tests) on minimum shank velocity determinations 

for the experimental group (exp, n= 9) using shoes and a DAFO (affected side). 

Group/ test Mean 95.0% Cl P 

Exp/ Test I -3.70 (-17.14,9.74) 0.544 

Exp/ Test 11 -4.31 (-22.80,14.19) 0.606 

Exp/ Test III -21.4 (-59.2,16.4) 0.228 

The subsequent analyses based on the fast (n = 5) and slow (n = 5) walker 

classification revealed no significant differences (p > 0.05) in minimum shank velocity 

values using DAFOs compared to using shoes over the three tests during the 12 weeks 

testing trial (Table 3.44). 
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Figure 3.27 a Shank angular velocity of control subjects (n = 3): affected side 

Values are shown for trial I (A-C) and trial II (D-F) and are the mean ± SD of three 

separate tests as described in Methods. For comparative purposes, data collected using 
healthy subjects are given (red trace), where a typical swing phase would commence at 
60% completion of the gait cycle (not marked). In each of the figures, the solid black line 

separates stance (left of line) and swing (right of line) phases. 
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Figure 3.27 c Shank angular velocity of slow walkers: affected side 

Values are shown using DAFO (A-C, n= 5) and using shoes (D-F, n= 4) and are the mean 
± SD of three separate tests as described in Methods. For comparative purposes, data 
collected using healthy subjects are given (red trace), where a typical swing phase would 
commence at 60% completion of the gait cycle (not marked). In each of the figures, the 
black line separates stance (left of line) and swing (right of line) phases. 
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Table 3.44 Summary of statistical tests (paired t-tests) on minimum shank velocity determinations 

for the experimental group according to fast (n = 5) and slow (n = 4) walker status (affected side). 

Group/ test Mean 95 % Cl P 

Fast/ Test I -7.08 (-31.01,16.85) 0.457 

Fast/ Test II -11.8 (-49.6,26.1) 0.437 

Fast/ Test III -2.86 (-19.38,13.66) 0.656 

Slow/ Test I 0.53 (-25.97,27.03) 0.953 

Slow/ Test 11 5.01 (-10.85,20.87) 0.389 

Slow/ Test I11 -6.59 (-19.79,6.61) 0.210 

For both groups, the values obtained for the side unaffected by stroke were more 

encouraging than those for the affected side. Thus, for both groups, the unaffected leg 

values were nearer normal than for the affected leg. In the control group, the unaffected 

side was 20.6 % greater (more negative) than the affected. In the experimental fast 

walker group, the unaffected side values were 123 % greater using shoes and 61.8 % 

wearing DAFOs; the corresponding values for the slow walkers were 150 % (shoes) and 

91 % (DAFOs). 

Maximum shank velocity 

Comparisons (ANOVA) of maximum shank velocity values collected from the affected 

side of the control group (n = 3) with those for the experimental group (fast, n=5 and 

slow, n=4 walkers) revealed a statistically significant difference (p < 0.05) with higher 

(nearer normal) maximum shank values for the control group. Thus, for the control 

group, on the affected side, maximum shank velocity values were, on average, 51.5 % 

higher compared to those recorded for the fast walkers using shoes, and 64.4 % higher 

using DAFOs. For the experimental group slow walkers, the maximum values were 
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clearly lower than the control group, with differences of 266 % with shoes and 157 

with DAFOs. 

Further within-group analyses of the experimental subjects (n = 10) as described earlier 

were undertaken. Here, values < 0.0 suggest results where maximum shank velocity 

was better (nearer normal) when shoes were used, and values > 0.0 imply better shank 

velocity when a DAFO was used. The data were distributed normally (Ryan-Joiner test, 

not shown) and statistical analyses of the differences were done for each pair of 

measurements within the experimental group using shoes and DAFO. Paired t-tests 

failed to identify statistically significant differences between the values recorded for the 

DAFO and shoes condition on the subjects' side unaffected by stroke (Table 3.45). The 

Cl for these data indicated substantial variability between subjects over the three tests. 

Table 3.45 Summary of statistical tests (paired t-tests) on maximum shank velocity 
determinations for the ex perimental group (exp, n= 9) using shoes and a DAFO (affected side). 

Group/ test Mean 95 % Cl P 

Exp/ Test I 0.3 (-28.3,28.8) 0.983 

Exp/ Test II -6.27 (-26.50,13.96) 0.495 

Exp/ Test III 0.3 (-28.3,28.8) 0.983 

Analyses based on the fast (n = 5) and slow (n = 4) walker classification revealed no 

significant difference (p > 0.05) in maximum foot displacement values using DAFOs 

compared to using shoes over the three tests during the 12 weeks testing trial (Table 

3.46). 
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Table 3.46 Summary of statistical tests (paired t-tests) on maximum shank velocity 
determination s for the experimental group according to fast (n = 5) and slow (n = 4) walkers' 

status (affected side). 

Group/ test Mean 95 % Cl P 

Fast/ Test 1 -12.8 (-54.8,29.2) 0.446 

Fast/ Test II 5.6 (-30.3,41.4) 0.688 

Fast/ Test III -12.8 (-54.8,29.2) 0.446 

Slow/ Test I 16.6 (-45.3,78.5) 0.456 

Slow/ Test II -21.10 (-44.12,1.92) 0.062 

Slow/ Test III 16.6 (-45.3,78.5) 0.456 

On the unaffected side, only minor differences were seen between the control subjects 

and the experimental group fast walkers, whereas much larger differences were evident 

from comparisons with the experimental group slow walkers (57.9 % with shoes and 

50.4 % with DAFOs). It was also found that, in each group, the unaffected side values 

were nearer normal than those of the affected side. In the control group, the mean 

maximum shank velocity was 51 % higher on the unaffected side compared to the 

affected. In the experimental group, for the fast walkers, the corresponding values were 

113.5 % higher using shoes and 110.7 % wearing DAFOs. The corresponding values 

calculated for the slow walkers were 229 % (shoes) and 143 % (DAFOs). 

Thigh velocity 

Data for the angular velocity of the thigh enabled determination of the change in angular 

position of the thigh segment with respect to time within the global coordinates system 

(section 2.6.5). The angle obtained was not the actual joint angle, but is known to mirror 

angle changes of the hip joint (flexion-extension) movements (Winter, 1990; Roberts et 

al., 1997; Wooley, 2001). 
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The graphical profile of the thigh segment velocity data for the comparative healthy 

subjects (n = 4) shows the sequence of events in relation to this variable during a typical 

gait cycle (Figure 3.28, red traces). Initially, the velocity in the saggital plane decreases 

from the heel strike to the foot flat position, when weight bears through the standing leg, 

with decreased velocity of the hip during joint extension controlling standing balance. 

After the mid stance phase, the velocity of the thigh increases, when the hip joint 

extension strongly increases using muscle power to help the push-off phase (heel rise). 

The high positive velocity spike occurring just before mid-swing phase represents the 

maximum hip flexion achieved, following which it decrease in preparation for the next 

heel strike. As was seen for other variables, it was found that the stroke (control and 

experimental fast walkers) thigh velocity data followed a similar pattern to that of the 

healthy subjects (Figure 3.28 a and b). Once again, the slow walkers' thigh velocity 

revealed a clearly different pattern, (Figure 3.28 c) with negligible spiking throughout 

stance phase. 

The minimum value of thigh velocity occurred during mid stance phase, which is 

associated with the level of stability of the more proximal joints. The maximum thigh 

velocity was measured during early swing phase, which is associated with large ankle 

plantarflexion and knee extension (Lehmann et al., 1987; De Quervain et al., 1996; 

Olney and Richards, 1996). Consequently, for the healthy subjects, these peak velocity 

values of thigh motions (-118 °/sec minimum and 173 °/sec maximum) are critical points 

for identifying changes in the gait cycle (Figure 3.27, red traces). 

Minimum thigh velocity 

In the control group (n = 3), on the affected side, the mean minimum velocity 

determined was 19.2 % more negative compared to that of the experimental fast 

walkers (n = 5) using shoes, and 21.6 % more negative using DAFOs. In the 

experimental group, slow walkers (n = 4), the minimum values were clearly less 
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Figure 3.28 a Thigh angular velocity of control subjects (n = 3): affected side 

Values are shown for trial I (A-C) and trial II (D-F) and are the mean ± SD of three 
separate tests as described in Methods. For comparative purposes, data collected using 
healthy subjects are given (red trace), where a typical swing phase would commence at 
60% completion of the gait cycle (not marked). In each of the figures, the solid black line 
separates stance (left of line) and swing (right of line) phases. 
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Figure 3.28 b Thigh angular velocity of fast walkers (n = 5): affected side 

Values are shown using DAFO (A-C) and using shoes (D-F) and are the mean ± SD of 
three separate tests as described in Methods. For comparative purposes, data collected 

using healthy subjects are given (red trace), where a typical swing phase would 

commence at 60% completion of the gait cycle (not marked). In each of the figures, the 
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Values are shown using DAFO (A-C, n= 5) and using shoes (D-F, n= 4) and are the mean 
± SD of three separate tests as described in Methods. For comparative purposes, data 

collected using healthy subjects are given (red trace), where a typical swing phase would 

commence at 60% completion of the gait cycle (not marked). In each of the figures, the 

solid black line separates stance (left of line) and swing (right of line) phases. 
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negative than for the control group, the differences being 107.3 % with shoes and 120 

with DAFOs. The differences observed between the control and experimental groups 

on the unaffected side were similar to those of the affected side (data not shown). 

Within-experimental-group data analyses were undertaken in relation to the individual 

differences of DAFO (D) minus shoe (S) minimum thigh angular velocity values for each 

subject, denoted as D1-S1, D2-S2 and D3-S3. Here, values > 0.0 imply results where 

minimum thigh velocity was potentially better (nearer normal) when shoes were used, 

and values < 0.0 indicate better thigh velocity when a DAFO was used. The data were 

found to be normally distributed (Ryan-Joiner test, not shown). Paired t-tests failed to 

identify statistically significant differences between the values recorded for the DAFO 

and shoes condition on the subjects' side unaffected by stroke (Table 3.47). 

Table 3.47 Summary of statistical tests (paired t-tests) on minimum thigh velocity determinations 

for the experimental group (exp, n= 9) using shoes and a DAFO (affected side). 

Group/ test Mean 95.0% Cl P 

Exp/ Test I 1.02 (-10.59,12.62) 0.845 

Exp/ Test II 0.24 (-15.52,16.00) 0.973 

Exp/ Test III -2.14 (-11.57,7.29) 0.615 

Analyses based on fast (n = 5) and slow (n = 5) walker classification revealed no 

significant differences (p > 0.05) in minimum thigh velocity values using DAFOs 

compared to using shoes over the three tests during the 12 weeks testing trial (Table 

3.48). 

In each group, the values recorded for the unaffected side were nearer normal than 

those for the affected side. Thus, in the control group, the unaffected side was 12.9 % 

greater (more negative) than the unaffected side. In the experimental group, the 
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unaffected side values were 8% greater using shoes and 4.6 % using DAFOs, and 37.4 

using shoes and 40.3 % using DAFOs, for the fast and slow walkers, respectively. 

Table 3.48 Summary of statistical tests (paired t-tests) on minimum thigh velocity determinations 

for the experimental group according to fast (n = 5) and slow (n = 4) walkers status (affected 

side). 

Group/ test Mean 95.0% Cl P 

Fast/ Test I -0.03 (-15.73,15.67) 0.996 

Fast/ Test II -5.63 (-32.83,21.58) 0.597 

Fast/ Test III 3.17 (-10.84,17.18) 0.564 

Slow/ Test 1 2.33 (-29.13,33.78) 0.829 

Slow/ Test II 7.57 (-22.30,37.45) 0.479 

Slow/ Test III -8.78 (-26.63,9.06) 0.215 

Maximum thigh velocity 

For the control group (n = 3), on the affected side, the average maximum thigh velocity 

recorded was 3.7 % higher compared to that of the fast walkers (n = 5) using shoes, 

and 21.6 % higher using DAFOs. In contrast, the experimental group slow (n = 4) 

walkers' maximum values were clearly lower than for the control group, with 155 % and 

133.7 % differences apparent with shoes and DAFOs, respectively. 

On the side unaffected by stroke, the differences between the control subjects and the 

experimental group fast walkers maximum values were similar to the affected side, 

whereas comparisons with the slow walkers revealed clear differences of 57.5 % with 

shoes and 60.9 % with DAFOs. 

Within-experimental-group data analyses were performed as previously described 

(values < 0.0 define results where maximum thigh velocity was better when shoes were 

used, and values > 0.0 indicate better thigh velocity when a DAFO was used). The data 
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were found to be normally distributed (Ryan-Joiner test, not shown). The paired t-tests 

failed to identify statistically significant differences between the values recorded for the 

DAFO and shoes condition on the subjects' side unaffected by stroke (Table 3.49). 

Table 3.49 Summary of statistical tests (paired t-tests) on maximum thigh velocity determinations 

for the experimental group (exp, n= 9) using shoes and a DAFO (affected side). 

Group/ test Mean 95.0% Cl P 

Exp/ Test 1 -1.38 (-14.65,11.88) 0.816 

Exp/ Test 11 2.02 (-16.26,20.31) 0.805 

Exp/ Test III -6.98 (-21.19,7.23) 0.290 

Fast (n = 5) and slow (n = 5) walker analyses revealed no significant difference (p > 

0.05) in maximum thigh velocity values using DAFOs compared to using shoes over the 

three tests during the 12 weeks testing trial (Table 3.50). Consistently negative mean 

maximum thigh velocity values were apparent for the slow walkers over the three tests, 

suggesting that the mean difference indicated positive effect with shoes compared to 

DAFO use. Although, this mean value demonstrated better results with shoes use, Cl 

values indicated a large variability between subjects. 

Table 3.50 Summary of statistical tests (paired t-tests) on maximum thigh velocity determinations 

for the experimental group according to fast (n = 5) and slow (n = 4) walkers status (affected 

side). 

Group/ test Mean 95.0% Cl p 

Fast/ Test I -2.07 (-15.84,11.69) 0.697 

Fast/ Test II 7.5 (-27.7,42.7) 0.586 

Fast/ Test III -10.76 (-29.82,8.30) 0.192 

Slow/ Test I -0.5 (-40.4,39.4) 0.969 

Slow/ Test II -4.83 (-33.52,23.86) 0.629 

Slow/ Test 111 -2.3 (-39.3,34.8) 0.859 
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For both groups, the values determined on the side unaffected by stroke were closer to 

the healthy subjects' data than were the values obtained on the affected side. In the 

control group, the unaffected side mean values were 49.7 % higher than the unaffected. 

In the experimental group, the unaffected side values were 67 % higher using shoes 

and 75 % using DAFOs (fast walkers) and 171.7 % using shoes and 143 % wearing 

DAFOs (slow walkers). 

3.3.1.5 Correlation between balance and gait 

The relationship between the balance variables (CoP sway index, and antero-posterior 

and lateral Shear Forces) and gait velocity was also assessed. Figure 3.29 illustrates 

representative data, which were analysed using bivariate correlation (2-tailed Pearson's 

analysis). These comparisons indicated that the gait velocity in the experimental group 

using shoes or DAFOs did not correlate significantly with the balance variables. Similar 

findings have been published previously on studies of AFOs (Mojica et al., 1988; 

Winstein et at, 1989; Wade et at, 1997). Wade and colleagues (1997) compared 

spatio-temporal walking parameters with the postural sway, and found no statistically 

significant connection between standing balance, walking parameters or functional 

abilities in 13 severe traumatic brain injury patients tested between 2 and 6 weeks apart. 

Wade suggested that improvements in standing balance are controlled by different 

mechanisms than those controlling improvements in walking performance (Wade et at, 

1997). In the present studies, the small sample size may have strongly influenced the 

findings. However, when subject's data were assessed individually, the slowest walkers 

provided the poorest balance values for all variables. 
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3.3.2 Discussion 

The second studies within the main phase of this research aimed to examine the effects 

of DAFOs on stroke subjects' gait and their potential to improve the daily physical 

activities of these subjects. Gait characteristics of 13 stroke patients were recorded 

simultaneously for the affected and unaffected leg using a three-dimensional, four- 

camera, movement analysis system. The gait velocity, stride length, step length, 

cadence, and single stance phase were studied along with the minimum/maximum 

values of the angular displacement and velocity of the foot, shank, and thigh segments 

in the saggittal plane during two strides. Again, multiple gait parameters were 

investigated because it is unknown, in this case, which variable, or combination of 

variables, most accurately describes alterations in stroke subjects' gait. The decision to 

study these particular parameters was also based on the findings of the accuracy and 

reliability pilot studies, in which it was determined that segmental measures in the 

saggital plane were the most reliable. Gait comparisons were made between the control 

(shoes users) and the experimental (DAFO users) groups. Further comparisons were 

made within the experimental group subjects, under two different experimental 

conditions: using either the DAFO or shoes-only. As for the balance studies presented 

earlier, the rationale for this approach was the potential for identifying any direct effects 

of the DAFO from unrelated influences, such as learning or/and recovery effects. 

It was hypothesised that DAFOs improve motor behaviour after stroke involving the 

acquisition of gait performance compared to when using shoes alone (Hypothesis II). 

Overall, these studies did not identify consistent differences between the gait parameter 

measures when subjects used a DAFO or shoes alone. Thus, statistical comparisons 

performed on a between- and within-group basis usually failed to achieve significance. 

The caveats associated with the statistical power of this research were discussed 

earlier. Here, further loss of subjects meant that one of the test groups (control) 

consisted of only three subjects. Consequently, for these studies, the basis of the 
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randomised controlled philosophy had essentially been lost. It may be argued, therefore, 

that Hypothesis II should be rejected i. e. the distributions of the data obtained from the 

DAFO and shoe users are not measurably different, and it may be concluded that there 

is no evidence that DAFOs affect these subjects' gait performance. However, as was 

suggested in relation to the balance investigations, the existence of some differences 

between data obtained under the different experimental conditions may make such a 

blanket conclusion unjustified. For the purpose of the present studies, a possibility was 

to dispense with any statistical analyses and simply to treat the data for the two groups 

(with/without the DAFO) descriptively. However, it was felt that an approach involving no 

statistical appraisal of the data could be open to criticism, and as such analyses could 

not detract from the value of the information, it was decided to proceed as planned, but 

with full appreciation of the limitations of the outcomes. This approach identified several 

variables of stroke patients' gait that were appreciably different between using DAFO 

and shoes. In some instances, the magnitude of these differences was sufficiently large 

to attain statistical significance. On these grounds, the author maintains that the 

sometimes obvious differences between gait data obtained for DAFO use and shoes 

use, may be of scientific or/and clinical importance, irrespective of the statistical 

outcomes, and that such findings warrant further consideration. 

The findings of these studies may be summarised as follows. Within-experimental group 

comparisons demonstrated that, when a DAFO was used, subjects had increased gait 

velocity, improved stride length and single-stance phase, during walking in relation to 

their side affected by stroke (section 3.3.1.3). In addition, it was found that several of 

the saggital plane kinematic parameters were potentially sensitive to DAFO intervention. 

Thus, similar analyses showed that the minimum foot velocities (end of stance to early 

swing phase) of subjects classed as fast walkers were predominantly closer to normal 

levels when a DAFO was used compared to shoes (section 3.3.1.4). Minimum foot and 

shank displacements values (early swing phase) obtained following DAFO use, for the 
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entire stroke group, were also predominantly consistent with nearer normal levels 

compared to shoes. Higher maximum foot velocity values (middle of swing phase) were 

identified using DAFOs compared to shoes. All of these within-group comparisons 

achieved statistical significance in Test I, except minimum foot velocity, minimum foot 

displacement and minimum shank displacement. Notably, gait velocity was also 

increased (p < 0.05) in Test III when subjects used the orthosis compared to shoes 

alone. Contradictory findings, which suggested that shoes provided nearer normal 

values, were evident for minimum foot velocity (end of stance phase) for slow walkers 

during Test II (p < 0.05) compared to DAFOs. In addition, the maximum thigh velocity 

(early swing phase) of the slow walkers most often indicated nearer normal levels 

associated with shoe use. 

In order to develop a rational overview of the possible implications of these spatio- 

temporal and kinematic findings in relation to stroke patients' gait, it is logical to 

consider them individually and collectively and, in some cases, with respect to the order 

in which they were obtained (and therefore reflect) during the gait cycle. 

Spatio-temporal parameters of gait 

The finding of an increased gait velocity within the experimental group when wearing the 

device suggests positive effects due to DAFO use. Patients' self-selective gait velocity 

is a well-established indicator of overall gait performance and increases with recovery of 

motor function (Potter et aL, 1995; De Quervain et al., 1996; Kwakkel and Wagenaar, 

2002; Lamontagne et al., 2002). The relationship between poor levels of this parameter 

(slow gait velocity, < 0.25 m/s) and the use of various walking aids, fall frequency, and 

other measures of mobility, has also been documented (Potter et al., 1995; Richards et 

al., 1995; De Quervain et al., 1996). 

In the current study, the large variation in gait velocity suggested separation of the 

experimental group into two sub-groups, 'slow' and 'fast' walkers. Such division of 
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subjects into sub-groups is commonly used in studies of this type (De Quervain et al., 

1996). However, it is emphasised that here the use of the term 'fast' is only relative to 

the gait velocity of the 'slow' walkers; the 'fast' walkers mean gait velocity was 0.53 m/s, 

which is consistent with severely disabled individuals (De Quervain et al., 1996). 

Extremely slow gait velocity values for the slow walker group (mean 0.19 m/s) are in 

accord with the findings of low ADL scale scores reflecting even more severe disability 

(Potter et al., 1995; De Quervain et al., 1996; Wooley, 2001). 

Here, the potentially beneficial effect of the orthosis during the early stages of the 

intervention, as indicated by consistently increased gait velocity in Test I, was an 

interesting finding. This influence was also present (albeit less noticeably) in Test III, 

which corresponds to the later stages of the research period. It is notable that Test I 

cannot be described as a genuine 'baseline' test. In order for subjects to become 

accustomed to their DAFO, the patient-specific (customised) device was supplied to 

each experimental subject, who became accustomed to wearing it for approximately 6-8 

hours per day took, some weeks before the measurements commenced. Whilst the 

effect of the DAFO on gait velocity was still evident (p < 0.05) after 12 weeks, the 

velocity differences existing between the DAFO and shoes conditions were less 

noticeable. The reason for this was unclear, although division of the data according to 

walking speed provided a possible explanation. Thus, the fact that the potentially useful 

effects of the DAFO on gait velocity in Test I were seen primarily for the slow walkers, 

who were more severely disabled, suggests that the effect was already maximal, due to 

energy and functional limitations, and that their gait velocity could not increase over 

further weeks. Alternatively, it is possible that this situation reflects, at least in part, a 

'learning' effect, and that this influence was more pronounced in Test I than in Test 111. It 

is possible that such learning effects could mask DAFO related-actions. In addition, 

spontaneous neurological recovery of stroke patients enables some functional recovery, 

which could also obscure treatment effects (Kwakkel et al., 1999). 
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Improved gait velocity is believed to be associated with coordination of walking, and 

several clinical trials have provided evidence indicating that gait velocity may be used as 

an independent variable in the evaluation and treatment of gait disorders (Wade, 1992; 

Hesse et al., 1995; Kwakkel and Wagenaar, 2002). Based on these assumptions, and 

the findings of this study, it may be argued that use of a DAFO can improve these 

subjects' gait velocity over the research period (12 weeks). DAFOs may therefore be of 

benefit in the gait rehabilitation of non-acute stroke patients such as these in their home 

environment. 

In earlier studies, which have examined other types of splints on stroke patients' gait, 

determination of gait velocity has been a focus. Overall, these reported works indicate 

that several types of AFOs (including DAFOs) increase the gait velocity of stroke 

subjects (Leung and Moseley, 2003). Prior single-case design studies of DAFO effects 

on stroke subjects' gait have concentrated mainly on their potential to alter the temporal 

parameters of walking. The present work is consistent with those earlier studies in that 

similar, positive effects of DAFO were indicated in relation to gait velocity (Uutela and 

Bowker, 1998). The present research is also notably consistent with earlier reports in 

which DAFOs were compared with shoes (Mueller et al., 1991), and where positive 

DAFO effects were obtained by comparisons with the device and barefoot walking 

(Diamond and Offenbacher, 1990; Mueller et al., 1991; Wolley et aL, 1996). 

It is reasonable to expect that the positive effects of any orthosis would be easier to 

demonstrate in comparison with a barefoot situation as opposed to shoes. Hesse and 

colleagues (1996) compared the gait velocity data of 19 stroke patients' collected 

walking barefoot, using shoes-alone and with a conventional AFO. These authors 

reported that although gait velocity was improved significantly by the AFO, better 

velocities were also apparent for the shoes-alone condition compared to barefoot 

walking. During daily living, disabled and older stroke subjects rarely walk barefoot. In 

general, stroke patients feel less confident when walking without shoes. In the present 
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studies, all of the subjects preferred to walk with their own shoes than barefoot. It is 

perhaps reasonable to assume that the experimental conditions adopted for the present 

studies represent a more natural and practical situation, particularly for older stroke 

subjects, who usually walk using conventional shoes only. It is therefore a possibility 

that the testing procedures used here provide a more reliable indicator of the potential 

for DAFO mediated effects. However, there is scope for further debate on whether a full 

appreciation of the extent of these effects requires additional knowledge of the action of 

the device in comparison to the barefoot situation. Thus, models of AFOs other than 

DAFOs were tested recently and compared to barefoot walking, and positive effects 

were found associated with splint use (GÖk et aL, 2003). 

Earlier gait studies have demonstrated a linear relationship between increased gait 

velocity and an individual's longer stride length (Winstein et al., 1989). The finding of 

potentially positive effects of the DAFO, as evidenced by increases in subjects stride 

length during Test I, which was evident for all experimental subjects, is likely to be a 

function of the improved walking velocity. The observation that single stance phase was 

also clearly longer with DAFO than with shoes use in Test I may be explained by the 

DAFO imparting supportive functions via mechanical support of the ankle, which 

increases the single stance phase duration, thereby improving weight bearing over the 

affected leg. This suggests that the extremely lightweight and low profile orthosis can 

still provide reasonable levels of mechanical support for the foot and ankle such that, for 

some stroke subjects, use of the device may promote increases In single stance 

duration. The present finding is also consistent with the notion that the DAFO might 

enable improved weight bearing, an action which is believed to help stroke subjects' 

walking ability, and thereby decrease the severity of motor dysfunction (Gaviria et al., 

1996). The lack of appreciable effects of the DAFO In Test II and Test III may be 

explained by a learning effect associated with use of the splint, or physical limitations 

imposed by these subjects' disabilities. Thus, single stance phase duration is 
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particularly sensitive to the severity of stroke patients' disability and difficulty in 

increasing this parameter is well documented (von Schroeder et aL, 1995). The results 

of the present studies are consistent with those of Diamond and Ottenbacher (1990) 

and Dieli (1997) who, following single-case experiments, also reported positive effects 

of DAFOs on stride length and single stance phase. The present investigations, which 

were conducted on a larger sample population of stroke subjects using DAFOs, 

therefore support earlier, less comprehensive studies (Uutela and Bowker 2003). 

Furthermore, the results presented here extend knowledge, by providing novel evidence 

for potentially beneficial alterations in single stance phase duration of stroke subjects 

attributable to a DAFO, in relation to severely disabled and older aged subjects during 

the initial (< one year) recovery and non-acute post-stroke period. 

Recently, evidence was obtained to suggest that increased single stance duration is 

also evident using another type of orthosis. Hesse and colleagues (1999) tested 21 

stroke subjects with a conventional AFO (Valens calliper) and found that whilst no 

increases in gait velocity could be associated with the device, the single stance duration 

increased with the AFO compared to walking with shoes alone. Determination of this 

parameter provides further details of the gait pattern, especially with regard to stability 

and control of muscles, when bodyweight is carried by the 'single-stance leg', at the 

point at which the other leg enters swing phase. Single-limb stance is believed to be a 

good indicator of leg support stability and ankle plantar flexor power (De Quervain et al., 

1996; Judge et al., 1996). In addition, Gaviria et al. (1996) suggested that single stance 

support on the affected side is one indicator that may signify the severity of motor 

involvement. In the current study, both control and experimental group stroke walkers 

had an approximately 10 to 15 % shorter single stance phases than the healthy 

subjects, and always displayed a clearly asymmetrical gait pattern, with a longer single 

stance phase on the unaffected side. The spatio-temporal gait findings of these studies 

(section 3.3.1) also provided data that were consistent with the well-established gait 
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deficits that are characteristic of stoke sufferers. Gait performance (as indicated by all of 

the variables monitored) was poorer for the stroke patients than for the group of 

similarly aged healthy subjects. Earlier studies have described how stroke patients 

exhibit gait deviations that differ significantly from those of healthy normal individuals 

using a variety of quantitative methods, including movement analysis (Dannenbaum, 

1982; Wooley, 2001). 

Gait kinematics 

The control and experimental groups exhibited similar segmental characteristics to the 

healthy subjects throughout the full gait cycle. Differences, however, were found in the 

large variability of motion of the curves with clearly reduced peak value displacements 

and velocities in late stance, pre- and mid- swing phases. These indicated impaired 

weight transfer and push-off during late stance, and limited clearance of the floor on the 

affected leg during swing phase. The slow walkers group displayed the clearest 

kinematic gait deviation from the accepted norm (section 3.3.1.3). Earlier studies of gait 

deficiencies in stroke patients support these findings (Olney et al., 1994; Richards et al., 

1995; Hesse et aL, 1996; Lamontagne et al., 2002). 

Late stance phase 

The minimum value of the foot angular velocity is normally achieving during the late 

stance to early swing phases, when ankle joint maximum plantarflexion is achieved 

(Figure 1.1). Foot plantarfexion motion was shown to be clearly reduced in stroke 

subjects compared to healthy subjects, and is believed to be related to the degree of 

calf muscle spasticity (Lamontagne et aL, 2001) and weakness (Lamontagne et al., 

2002) that can lead to overall ankle joint instability (De Quervain et al., 1996). Here, it 

was found that the minimum foot velocity of four of the five (fast walker) subjects tested 

yielded values during late stance phase that were consistent with a positive effect of the 

DAFO compared to shoes alone, throughout the three testing sessions. This 
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observation suggests a more effective push-off phase, possibly due to a DAFO- 

mediated improvement in medio-lateral stability, which supports 'striking' (toe contact 

with the ground) via better support of the weak plantar flexor muscles, which is typical 

for stroke subjects. It is possible that this effect may be a function of the construction of 

the splints (low and flexible) which, as was proposed, allow movement during extension 

and, consequently, better motion when the ankle and knee joints transfer forward forces 

via hip extension in late stance phase. In addition, this action may be associated with 

reflex activation (proprioceptive) via splint support during the stance phase, which 

activates leg extensor muscles under the influence of gravity (Dietz and Duysens, 

2000). 

The observation that this potential influence on stroke subjects' gait was mainly specific 

to the fast walker group is an interesting finding. The mean walking velocity of those 

subjects was 0.53 m/s, which approximates that of stroke walkers' gait speed when 

there is severe gait disability, but with reasonable levels of daily activities (Potter et al., 

1995; Kwakkel and Wagenaar, 2002). Provision of AFOs to such patients is rarely 

considered necessary in the U. K, as it is assumed that benefits are unlikely to be 

forthcoming, and that the device may induce further asymmetrical gait (Lennon at al., 

2001). The potentially useful influence of the DAFO suggested by the present work may 

imply that these subjects could benefit from use of the device. Such influences are also 

likely to be beneficial in relation to stroke subjects' overall walking capability, as 

improved joint mobility may enhance the efficiency of late stance phase function, which 

provides contra-lateral propulsive forces and generates sufficient moment to initiate hip 

flexion. However, clearly the large 95% Cl values and lack of statistical significance of 

differences between DAFO and shoe users when these results were considered on an 

entire group basis means that verification of these ideas will require further study. 

Interestingly, the present studies identified a contradictory finding with respect to the 

minimum foot velocity values of the slow walker group, where an obviously positive 
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effect associated with shoe use compared to the DAFO was apparent. This disparent 

result, which was only apparent in Test II, suggests that the DAFO might not provide 

sufficient ankle-foot support for slow walkers who have severely limited muscles activity 

and/or muscle spasticity (not tested in this study) at the ankle joint. Alternatively, the 

finding may be consistent with earlier studies of the effects of other AFOs on stroke 

subjects' ambulation, which described a lack of effect on joint function, particularly 

during late stance phase. In those studies, it was suggested that this discrepancy could 

be due to excessive, passive support provided by the AFO, combined with the 

particularly weak ankle joint motion of some subjects (Lehmann et al., 1987). Thus, 

some older type of orthoses, which were constructed using less pliable material and had 

higher trim-lines, may result in significantly stronger fixation of the ankle than the device 

used here. The present finding indicates that the DAFO may also provide too much 

passive support for some stroke subjects. The reason why such effects were only 

apparent in test II (after 4 weeks) is unknown; further studies are required to resolve 

these issues. 

Early swing phase 

The minimum displacement values of the foot and shank angulations, including 

maximum thigh velocity, are normally achieving during the early swing phase (Figure 

1.1), and associated with large ankle plantar flexion and knee extension and hip 

extension indicating a change in the direction of movement (Lehmann et al., 1987; De 

Quervain et al., 1996; Olney and Richards, 1996). In the present studies, the measures 

of minimum foot and shank angular displacement differences were mostly consistent 

with positive effects attributable to the device compared to shoes alone. Minimum shank 

displacement differences for six of the nine experimental subjects suggested positive 

effects associated with DAFO use. Foot angular displacement differences for four of the 

five subjects classified as fast walkers indicated potentially beneficial effects of the 

DAFO. However, it is known that stroke patients often experience severe difficulties in 
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ankle motion during early swing phase (De Quervain et al., 1996). The foot drag on the 

affected side during early swing phase is a typical feature of stroke patients' gait, which 

is probably due to muscle weakness and partly hyperactivity of the calf muscles 

(Lamontagne et al., 2002). Ankle and knee dorsiflexion are limited, and progression to 

the middle of the swing phase occurs particularly slowly. A positive correlation between 

ankle plantar flexor and knee extensor muscle strength and gait velocity has been 

reported in studies of the early swing phase of healthy elderly subjects (Prince et al., 

1997; Haghani and Marks, 2000). In addition, the relationship between poor ankle 

plantar flexor strength and shorter step length, resulting in a poorer gait pattern is well 

established (Judge et al., 1996). The observation that some subjects indicated potential 

benefit due to DAFO use in the early swing phase, suggests that the device might also 

improve ankle plantar flexor muscle function by medio-lateral stability of the ankle joint 

and thereby facilitating better gait control. Possibly, the low construction of the DAFO, 

which nonetheless retains flexibility during motion, may support the weaker muscles' 

ability to produce power during the early swing phase. Thus, beneficial support of the 

foot provided by the DAFO may lead to concurrent changes in the more proximal shank 

motions. The reason why some subjects did not provide values consistent with positive 

effects of the DAFO is unclear. The level of subjects' usual gait velocity (relatively fast 

or slow) or daily functional ability does not explain this inconsistency. 

The results obtained for minimum shank and maximum thigh velocities in the early 

swing phase, which indicated no clear improvement of function on the affected side of 

the experimental subjects, are inconsistent with those obtained for the segmental 

displacement work. Interestingly, the mean peak thigh velocity value of the slow walker 

group suggested that shoes might be more beneficial than DAFOs with respect to this 

variable. Nevertheless, when individual differences were considered, only one of the five 

subjects indicated nearer normal maximum thigh velocity during shoe use. This 

observation highlights the potential for obtaining artefactual results following statistical 
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analyses on groups containing small numbers of subjects. Thus, here, one subject 

provided a maximal thigh velocity value that was especially negative in relation to DAFO 

use, whereas the other four subjects provided values consistent with positive effects of 

the DAFO, but within a narrow range. It is also notable that the preliminary studies 

demonstrated (section 3.1.1.3) that hip joint motion measures provided the poorest 

reliability results, which may also be a contributory factor in the inconsistencies in thigh 

measurements results described here. It is notable that none of the results for the 

segmental displacement and velocity measures obtained during early swing phase 

indicated any clear benefits associated with DAFO or shoe use on the subjects' side 

unaffected by stroke. 

No earlier studies have been reported describing the effects of DAFOs on stroke 

subjects gait during early swing phase. Following experiments using other types of 

AFO, Burdett et al. (1988) observed that conventional AFO, polypropylene AFO and air- 

cast AFO had no clear effects on stroke patients' ankle and knee joint motion during 

swing phase, although all these orthoses affected ankle plantarfexion, which was 

reduced during swing phase. It is notable that the potential for effects of these orthoses 

on early swing phase were not considered. 

Mid swing phase 

The peak values for foot and shank velocity were achieving during the middle of swing 

phase, when joints movements are changing direction, with large ankle and knee flexion 

motion. These events are critical when taking a step forward successfully (Roberts et 

aL, 1997; Wooley, 2001; Lamontagne et a!., 2002). The potential for improved gait 

following DAFO use compared to wearing shoes, as implied by the maximum foot 

velocity parameter, was clearly (p < 0.05) apparent in the middle of swing phase. This is 

a novel finding of DAFO effects on stroke subjects' foot kinematics, and indicating that 

DAFOs may modify these subjects abnormal gait pattern towards normality by 

supporting the ineffective ankle dorsiflexors during the swing phase (Uutela and 
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Bowker, 2003). Such actions were apparent for all of the experimental subjects and 

were particularly clear on the side affected by stroke. However, this encouragingly 

positive effect attributable to DAFO use was only apparent in Test I, with no further 

differences pointing to long-term improvement over the 12 weeks study time. 

Lehmann et a/. (1986) reported similar actions on stroke subjects' mid swing phase 

following use of a different AFO design to that used here. These effects were attributed 

to splint-mediated mechanical support of the ankle joint afforded by dense 

polypropylene material. In addition, recently, Gök and colleagues (2003) obtained 

similar positive findings in the swing phase of gait cycle with conventional AFOs and a 

polypropylene AFO, when data were compared with barefoot walking. The present work 

involved a device fabricated from a much more flexible material (stretched 

homopolymere polypropylene), with a lower construction than many earlier AFO 

designs. The work reported here provides unique evidence to suggest that the DAFO 

can also provide reasonable support to the foot and ankle when clearing the floor during 

the swing phase of these stroke subjects on the affected side (Uutela and Bowker, 

2003). 

Earlier studies of stroke patients' gait problems have shown that the flexion of hip, knee 

and ankle motions are limited, which causes difficulties when lifting the foot to clear the 

floor during swing phase, and taking a further step safely (De Quervain et al., 1996). In 

addition, without proper flexion of lower limb joints, the leg clears the floor by 

compensation using more predominantly the proximal muscles, which is a typical 

characteristic of the hemiplegic gait pattern (Evans et aL, 1997). As was identified by 

Nadeau and colleagues (1999b), stroke subjects' have the ability to use compensative 

pelvic elevators for the weak ankle plantar and dorsiflexor muscles, which are already at 

maximal activity levels during swing phase. This pelvic compensation minimises the 

ankle flexion motions during late stance phase and early and mid swing phase. The 

results of the present work suggests that, for these experimental subjects, ankle flexion 
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motion improves with DAFO use, which may aid the subjects when initiating and 

progressing the movements that cause the foot to clear the floor during swing phase. 

The reason for the absence of differences in thigh variable values (minimum 

displacement and maximum velocities) with DAFOs or shoes measured during the 

middle and late stance phases is unclear. This suggests that DAFO intervention does 

not affect the hip joint movements during swing phase. However, it is reported 

elsewhere that hip motions are severely abnormal with stroke walkers (De Quervain et 

al., 1996). It is therefore possible that such extreme deviation and variation in hip 

movement during stroke patients' gait masks treatment effects. Further studies are 

needed with larger subject numbers to assess this possibility. The present findings of 

some improvements of foot motions during mid-swing phase wearing a DAFO indicate 

that these devices may have potential for ameliorating walking deficits with these 

patients' gait rehabilitation. This proposition is subject to several limitations of the work, 

which are addressed later. 

In both groups the spatio-temporal and kinematic parameters for the unaffected side 

indicated clear differences compared to the affected side (where asymmetry was 

evident) with nearer normal parameters on the unaffected leg. In addition, it was found 

that when data was collected simultaneously both legs, the slow walkers pointed to 

more severe asymmetry between affected and unaffected legs than the control group, 

or the fast walkers. 

In this study, the gait of stroke subjects was evaluated in detail using advanced gait 

assessment methods. Generally, these studies did not identify consistent statistically 

significant differences between the gait parameters when subjects used a DAFO or 

shoes alone. With this limited number of subjects, no definitive evidence was obtained 

to support the idea that DAFO use imparts beneficial effects on stroke subjects' gait 

performance. However, this present research suggested that some gait parameters 

might be influenced by a DAFO. DAFOs may alter certain spatio-temporal aspects of 
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walking, including foot kinematic variables, which occur during late stance, pre-swing 

and mid-swing phases. Some anecdotal evidence was obtained pointing to beneficial 

effects associated with DAFO use by stroke subjects, in relation to ankle and knee joint 

motions, with less clear effects on the more proximal joints. The potential for these 

positive effects of the DAFO was most evident in Test I; long-term effects over three 

months could not be established. The clinical implications and limitations of the novel 

findings identified by this research are addressed later. 

3.4 Main phase - Subjective feedback 

3.4.1 Results 

This section presents the results of questionnaire assessments designed to determine 

experimental subjects' subjective opinion concerning the ease of use and any benefits 

gained when using a DAFO (Appendix III). These assessments were carried out after 

modifications indicated by the preliminary work presented earlier (section 3.1). The 

questionnaire was completed after the balance and gait tests and functional 

assessments within each testing session. 

Eight subjects required help when putting on the DAFO throughout the entire testing 

time (3 months) and, of these subjects, 3 also needed assistance when removing the 

splint. However, it was noted that due to the level of their disability, these 3 subjects 

were also dependent on assistance when dressing. For those subjects who needed help 

donning and/or doffing the DAFO, 4 indicated that their partner helped them to fit the 

DAFO, 2 were assisted by a carer, and 1 was aided by her husband and son. Six of 

these subjects also indicated that they required help when dressing. In test I, the 

subjects indicated that their daily DAFO use averaged 8 hours (range 4- 12) per day. 

For tests II and III, the average usage increased to 9.3 h (range 5- 14) and 9.7 h (range 

3- 14), respectively. The results of these assessments are summarised in Figure 3.30. 
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When the questions on how the subjects' found fitting the DAFO in terms of ease and 

overall comfort and benefits when walking were scored, it was found that in test I, 4 of 

the 10 subjects reported no problems (score 4) when donning or doffing, the DAFO, 

although 2 of these subjects had answered earlier that they did need help when fitting 

the orthosis. Six reported difficulties: 2 felt that the device was 'mostly comfortable', 2 

entered 'sometimes difficulties' and 2 subjects provided scores of 1 or 0, indicating that 

the task was 'always difficult' / 'very difficult'. After one month of use, all subjects 

reported some level of difficulties when putting the DAFO on / off and 2 felt that it was 

'always very difficult'. In test III, after three months use of the splint, higher scores were 

recorded. Thus, 3 subjects indicated 'no problems', 4 'mostly comfortable' and only 3 

subjects scored 2 or lower. Three of the subjects felt that they had 'learned' to fit and 

remove the DAFO during the three month period; 1 subject felt that leaning backwards 

slightly helped when taking the DAFO off, although adopting this posture had no 

obvious effect when donning, which remained a difficult task. 

Overall, the subjective opinions provided by the patients summarised above revealed 

that they did experience difficulties when putting the splint on and removing it. In 

contrast, the patient feedback for actual use of the DAFO gave very positive and 

encouraging results (Figure 3.31). Eight subjects indicated that use of the DAFO did not 

involve any problems, and only 2 felt that the splint was sometimes difficult to use (test 

I). In test II, 3 of the subjects thought that the DAFO was 'mostly comfortable' and just 1 

indicated that DAFO use was 'sometimes difficult'. In test III, 7 of the subjects 

experienced no problems and only 3 provided a score of 1 or 2. Four of those subjects 

who gave a score of 3 or less explained the reasons for their decisions. These were: 

- red mark on the little toe due to pressure of shoes; 

- using the DAFO for many hours gave a 'funny' feeling in the 

foot-ankle area - splint supported foot too strongly; 
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- difficulties with the velcro strap because they only had use of 

one hand (2 subjects). 

Similar responses were obtained for the question aimed to determine the subjects' 

perceived ease of walking with the DAFO. Thus, 2 subjects felt some discomfort in test 

I, and 3 subjects in tests II and III. The range of scores recorded was 1-3 (Figure 

3.32). Of those subjects who reported some difficulties, subject number 3 indicated that 

the discomfort was due to 'pressure area around little toe', which caused a red mark 

after a long walk; the splint also felt 'very hot after some hours use'. Subject number 5 

felt that her foot was heavier because she needed to use over-sized shoes with the 

splint. Subject number 8 also felt that the foot was very hot when wearing the DAFO 

and experienced some pressure in the front ankle region. 

The 8 patients who provided positive overall opinions of the DAFOs all indicated that 

they firmly believed that the device helped them when walking. These subjects 

commented that: 

- it was 'easier to lift the foot up' 

- that the 'foot feels more firm, keeps foot flat on the floor' 

- 'feels good and gives confidence' 

- 'assists walking, keeps foot straight, toe relaxed' 

- 'foot feels more sensitive' 

-. 'step easier to take, DAFO follows my foot well' 

- 'walking is quicker and help me to control my body' 

- 'better to walk, easier to keep heel down when taking a step and 

then push with the toes' 

- 'feels good to use'. 
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3.4.2 Discussion 

Over the 3-month study period, the overall findings for subjective feedback were 

extremely positive. It is notable that the patients' own comments improved as the study 

progressed. Thus, the results indicate that during the first month the principal problem 

with using the DAFO concerned donning ('difficulties to put on' score). After a short 

period this became less problematic. As several of the patients' kin assisted (actively) 

throughout the trial, a logical explanation for the improvement is that the subjects 

became more accustomed to and proficient in using the device. 

A notable finding was that 8 of 10 patients expressed a positive opinion of the benefits 

they perceived when using the splint and wished to continue use in every day life after 

conclusion of the experimental trial. The 3 subjects who reported difficulties using the 

splint indicated that the main reasons were technical: Velcro strap changes or their own 

shoes caused pressure. Only one subjects experienced excessive pressure over the 

foot and ankle. Such feedback emphasizes the necessity for regular follow-up 

(questionnaires) after orthosis clinics, in order to provide the therapist and orthotist with 

vital information required when making appropriate changes to the splint prescribed. 

Indeed, this objective was a primary purpose of these investigations. 

Although occasionally comments were ambiguous it was clear that, overall, the subjects' 

were predominantly in support of benefits associated with use of the DAFO. For 

example, one consistently returned comment was that the splint 'feels' good, 'foot more 

sensitive' and 'helps the foot on the floor while take steps'. The most remarkable 

information gained from these studies was that 80 % of the DAFO users felt that the 

splint improved their walking ability. These objective investigations therefore provide 

striking evidence of the potential benefits of DAFOs. As already described, whilst there 

are a few earlier studies that have reported positive stroke patient feedback for 

conventional AFOs, the scientific literature contains no detailed reports where this 

approach was used to identify possible benefits associated with DAFO use. Diamond 
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and Ottenbacher (1990) used a single-case design to study the effects of a DAFO on 

the stride characteristics of an adult with hemiparesis, and commented that the subject 

felt the orthosis increased his ability to ambulate distances. Dieli et al. (1997), who 

focused on the effects of DAFOs on the gait of three hemiplegic adults using a single- 

session experimental design, also described the patients' subjective opinions of 

difficulties when donning and doffing the DAFO, and how the subjects believed that the 

device increased correction of their equinovarus position, and decreased fatigue when 

walking. The authors did not provide details of the method used for data collection 

during this part of their studies. Clearly, the difficulties patients encountered when 

putting the DAFO on and off found in the present investigations are consistent with 

those of Dieli et a/. (1997). However, given the superficial nature of the earlier 

investigations, it is impossible to comment further on their relevance to the present 

work. 

The overall paucity of information for subjective feedback and AFO use was commented 

upon recently in a review of the impact of these devices on adult hemiplegic subjects' 

ambulation (Leung and Moseley, 2003). Although the results of the subjective feedback 

studies reported here did not use a validated questionnaire, they are unique and provide 

novel evidence for the potential for beneficial effects of DAFO on stroke patients' 

ambulatory difficulties. It is notable that the convincing results of the subjective 

feedback studies appear to conflict with the findings of the quantitative balance and gait 

measurements presented earlier, which failed to provide compelling scientific support 

for a beneficial action of the device. The reason for this disparity is unclear. As all of the 

studies used the same patient cohort, the fact that a small sample population may have 

limited the statistical power of the quantitative studies cannot account for the discrepant 

outcome of the subjective investigations. It can be argued, therefore, that the subjective 

results may provide a more reliable indicator of the potential benefits of DAFOs than do 

the quantitative data. However, it is noted that whilst the quantitative studies were, 
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overall, unable to provide firm evidence for an influence (beneficial or otherwise) of the 

orthoses, many of the measures did point to the use of DAFOs conferring improvement 

in subject's performance. Although these indications rarely achieved statistical 

significance, it is noteworthy that most of the encouraging quantitative results were 

gained following analyses, which include a component that involves consideration of the 

data on an individual subject basis (e. g. in section 3.3.1.3). The qualitative studies 

undertaken here inherently consider subjects on this basis. Thus, certain aspects of the 

quantitative and qualitative studies were similar, in terms of the analytical approach 

used and, by simple extension of this relationship, both provided evidence supporting 

potentially beneficial effects of the DAFO. Whilst it is acknowledged that this idea is, at 

best, speculative, the unmistakable significance of the positive subjective feedback 

cannot be ignored and, consequently, it is proposed that further investigations of the 

device are warranted. 
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4 LIMITATIONS 

1. It was extremely disappointing that many of the subjects initially considered for 

recruitment to this research project did not fulfil the experimental criteria. The reasons 

for insisting on these criteria have already been explained. The loss of subjects after the 

trials commenced, for other (sometimes personal) reasons was unavoidable. Time 

constraints imposed on the research were also a relevant factor. Of the 195 patients 

who were recruited and assessed, only 22 subjects were included in the main trial. To 

reiterate, this led to a limited number of subjects in each experimental group following 

randomisation, and consequently a reduction in statistical power. As the general stroke 

population is highly heterogeneous, in terms of pathology, disability levels and stage of 

recovery, the undertaking of this work would clearly have benefited from a larger 

population sample. The difficulties associated with finding and maintaining appropriate 

subjects for clinical trails is recognised as a ubiquitous problem for researchers, 

especially for those working in neurological rehabilitation. Often, this is an important 

factor for implementation of multi-centre trials. Clearly, the recruitment of stroke 

sufferers, who are often elderly people with ongoing poor health, involves some unique 

difficulties. 

It is notable that whilst the heterogeneity of the general stroke population was unlikely to 

be reflected in the sample size used here, the stringent experimental criteria employed 

meant that the subjects studied in the balance investigations were homogeneous with 

respect to age and time since stroke. For those studies, all of the subjects were first 

time stroke sufferers and were classifiable as severely disabled. The decision to accept 

subjects based on the latter criterion was strengthened by ADL assessment. For the 

studies of gait, which formed the second major part of the research, the control group 

contained only three subjects. In this case, the randomized control trial philosophy was 

lost completely (Motulski, 1995; Anthony, 1999). Furthermore, in the gait tests, the fact 

that the control group sample size was much smaller than for the experimental group 
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meant that the mean age of group was 10 years younger than for the experimental 

group, although the time since stroke for both groups was similar. In the control group, 

90 % of subjects had left side paresis, whereas the number of subjects with a left or 

right side in the experimental group paresis was equal. These factors are probably the 

most serious limitations of the present studies. It is emphasised that the statistical 

power of all of the studies reported here may be insufficient to detect potentially small 

and possibly important changes resulting from orthotic intervention. The statistical 

treatment of the data may have lead to type II errors (Anthony, 1999; Sim and Reid, 

1999). 

2. The finding that motions occurring in the frontal and transverse planes were not 

sufficiently reliable or repeatable meant that the kinematic gait analysis was limited to 

two dimensions (saggital plane). Consequently, it can be argued that incomplete 

information concerning the kinematics of human gait was available, as differences were 

found between 3-D and 2-D gait analyses of the lower limbs. It is well established that 

the goal of locomotion is to generate movements, which propel the body forward and 

that the major motion of lower limb movements is performed in the plane of progression. 

However, analysis of the saggital plane provides only partial information as, for 

example, the action of the hip abductors can only be observed in the frontal plane, and 

interpreting knee movement requires that motions in the frontal plane are specified 

during stance (abduction) and swing (adduction) phases. Although ankle motions are 

executed predominantly in the saggital plane, information for this joint can also be 

derived in the transverse (rotation) and frontal planes (internal/external). 

3. Subjects' balance was tested using a single force plate, with subjects positioned in a 

standard manner. The rationale for this approach was that, in theory, it enabled 

comparable challenge of balance control systems between groups, and therefore 

equivalent monitoring of static standing. There are, however, limitations in the amount of 

information gained by this means (Winter et al., 1996). It has been argued that at least 
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two force plates are required in order to adequately assess balance control and any 

effects on asymmetric standing position when the subject's weight bears mostly over 

the unaffected leg (Davidson and Waters, 2000). 

4. Another limitation of this work was that the effects of DAFOs were evaluated solely 

with spatio-temporal and kinematic assessments, without consideration of kinetic gait 

parameters. The parameters studied are generally accepted as adequate for the 

evaluation of several gait pattern characteristics. However, in the absence of force 

measurements during foot contact and assessment of kinetic parameters (particularly 

the mechanical power or work) it cannot be assumed that data concerning the effects of 

DAFOs reflect functional roles of musculature at the anatomic (cellular) level, i. e. as 

muscle fibres shorten or lengthen under tension. In the present setting, the small 

physical size of the force plate apparatus made it difficult for some subjects to use as 

they sometimes experienced foot positioning problems in the correct (central) region of 

the walkway at the correct time, due to short step lengths. 

5. A further possible concern is that the gait data reported here describe subjects' gait 

performance in a controlled laboratory environment, which, at best, only approximates 

mobility in every day life. Furthermore, the walking tests were limited to straight line 

walking in the central region of walkway. By this method, no account is possible of the 

variety and complexity of walking patterns (such as turning and bending), which the 

patient must execute as part of day-today living within their home. 

6. A potential source of error concerns the daily lengths of time for which patients used 

their splint. Patient feedback on the overall time the device was used was collected by 

questionnaire after each test. However, the precise duration of time when the splint was 

used for active movements was unknown; some of the subjects in the experimental group 

may have used the DAFOs only for short (hourly) periods. Finally, it should be noted that 

all of the subjects wore their own (comfortable) shoes on the unaffected side by stroke. It 
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is unknown whether the findings of the present studies were influenced by differences in 

this footwear. 

270 



5 GENERAL DISCUSSION AND CONCLUSIONS AND FUTURE STUDIES 

5.1 General discussion 

Recovery of an individual's walking function in the home environment is regarded as the 

most important goal following stroke. Gait rehabilitation involving orthoses is a means 

by which this improved mobility may be achieved. Orthotic intervention may be 

efficacious in affecting change by reducing impairment, disability and handicap, or by 

slowing the deterioration post stroke. The DAFO is a novel type of ankle-foot orthosis 

that exploits developments in fabrication techniques using more flexible materials and 

light construction. It is theorised that this device may promote gait recovery after stroke 

via biomechanical and neurophysiological mechanisms. However, information on the 

potential benefits of the DAFO is sparse, with earlier research consisting of mostly 

single case studies, and an individual focus on patients' standing balance and gait. This 

thesis describes the results of detailed studies on the effects of DAFOs on stroke 

patients' balance control and gait performance using modern quantitative and qualitative 

methods and, to the best of the author's knowledge, provides the most comprehensive 

assessment of this appliance to date. 

It was proposed that DAFOs alter motor behaviour after stroke involving the acquisition 

of standing balance (Hypothesis I) and gait (Hypothesis II) performance. It was 

predicted that any such alterations would be reflected by positive subjective opinions 

given by stroke patients (Hypothesis III). Proof of these working hypotheses would be 

useful in the implementation of increased DAFO usage in rehabilitation management 

strategies in the UK. Overall, various interpretations of the results of the balance and 

gait investigations provided no consistent and straightforward evidence to support 

Hypotheses I and II. Thus, none of the balance parameters studied appeared to be 

altered appreciably by DAFO use over the duration of the testing trials, compared to 

when subjects wore their own casual shoes. In this case, none of the data comparisons 
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yielded outcomes that achieved statistical significance. In addition, overall, the gait 

parameters did not demonstrate the benefits of DAFOs. Thus, these Hypotheses should 

be rejected and the Null hypothesis accepted; that there is no difference in stroke 

subjects' standing balance and gait when DAFOs are used compared to shoes alone. 

Whilst the quantitative findings of this research project do not strongly support the idea 

that DAFOs improve standing balance and gait performance mechanically or via 

neurophysiological action, stroke patients' opinion of DAFOs clearly showed evidence of 

the opposite view. Very positive feedback of subjects' experiences when using the splint 

during daily activity over a three-month follow-up period was obtained. These subjects 

expressed confidence in the splint, which they perceived as being very beneficial to their 

walking ability in everyday life at home. Particularly, DAFOs seems to improve their 

confidence to carry out daily physical functions both inside and outside the home, which 

perhaps provides the strongest evidence to support the use of orthoses in the 

rehabilitation of stroke patients. Further, subjects' opinion of the orthosis seems to 

improve over the 12 weeks research time. However, as a consequence of an 

unfortunate limitation of the testing methods (the use of a non-validated questionnaire), 

Hypothesis III had to be rejected. Nevertheless, clearly this study demonstrated that 

more work is needed to improve the quality and convenience of DAFO use in everyday 

life. 

This present research endeavours are unique in that they are the first to; 1) measure 

randomised groups of stroke subjects, with and without DAFOs; 2) use comprehensive 

gait analysis methods to obtain detailed information on the balance and gait 

performance of stroke patients; 3) identify a number of gait and balance parameters 

that are potentially sensitive to DAFO use; and 4) collect details of subjects' own 

experience of DAFO use. Thus, the work lead to the identification of several novel 

findings. It was found that, in general, when randomised group results were compared, 

using DAFOs instead of shoes did not lead to statistically significant changes in the gait 
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or balance characteristics of stroke subjects. However, within-group comparisons 

revealed changes in some parameters, which are consistent with improved gait 

performance related to DAFO use. Subjects' opinion of DAFOs when walking provided 

further support that the device may be efficacious, with 80% of users indicating that they 

perceived the splint to be useful during walking and in every day life. 

Whilst the balance studies clearly failed to provide statistically relevant data in support 

of the possible benefits associated with DAFO use during quiet standing compared to 

shoes only, the findings of these studies does provide several new and interesting 

observations for potential effects of the device on some parameters of standing balance 

control. Thus, it was shown that the device could provide some improvement, especially 

in relation to the lateral sway velocity and variability (Fsd) of the spectral frequency (in 

a-p and lat directions) parameters. It is possible that such effects are achieved, at least 

in part, due to the mechanical support provided by the low construction of the orthosis, 

which still affords considerable support for the ankle over the malleollus, and enables 

the subject to place the foot on the floor more confidently. The finding that these effects 

were also discernable when subjects were tested in an eyes-closed condition, make it 

tempting to speculate that a component of a DAFO-mediated influence may Indeed 

involve altered somato-sensory system responses (via joint afferent neurons and 

muscle receptors under the foot and ankle), such that the postural control system may 

facilitate balance capacity, as was proposed earlier (Hylton, 1990). However, because 

of the limitations of the present studies already described, these Ideas, at present, must 

remain conjecture. Clearly, verification of these proposals will require further 

investigation. 

The results obtained for the gait measures were more difficult to interpret in terms of 

statistical relevance. In some cases, specific gait variables did appear to be altered in 

such a way as to suggest that the device was efficacious within the experimental group. 

The finding that gait velocity, stride length, single stance duration, and the maximum 
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foot velocity value in the middle of the swing phase parameters were all improved with 

DAFOs compared to shoes, and the fact that the magnitude of the differences recorded 

when subjects wore the DAFO as opposed to shoes alone did achieve statistical 

significance, may indicate that the DAFO alters these gait parameters towards a more 

normal level compared to shoe use. However, it was argued that it was unlikely that the 

demonstration of potentially useful actions of the device on one or more gait variables 

can be assumed to reflect a genuine and fundamental improvement in stroke patients' 

gait performance, as it is unknown whether any single or combination of gait variables 

can be used to describe human gait entirely. Stroke patients walking difficulties are 

mainly characterised by a slow gait velocity (Manchester et aL, 1989; Witte and 

Carlsson, 1997). Problems occur particularly during late stance and swing phases, 

when gait velocity is particularly slow, which is thought to be most likely due to poor 

muscle strength, and the combination of several neurological factors with these 

patients, as described in the Introduction to this thesis (De Quervain et a!., 1996; 

Wooley, 2001; Kwakkel and Wagenaar, 2002). The current studies made detailed 

assessments of stroke subjects' gait difficulties, and some of the findings clearly support 

earlier theories, suggesting that the beneficial effects of DAFOs result not only from 

their direct action on the alignment of the joints of the ankle-foot complex, but also from 

the consequential effects of this on the alignment of more proximal joints and therefore 

the magnitudes of the external moments acting on them (Bowker, 1993). The possibility 

of DAFOs having positive effects on the motion of the shank was also noted in this 

study, with better values recorded with the DAFOs for the foot and shank motions at the 

end of stance and early swing phase of the gait cycle. 

Earlier studies have suggested that DAFOs might have a greater impact with more 

severely disabled subjects, for whom the observation of improvements may be more 

apparent (Wolley et aL, 1996; Wooley, 2001). The present work, which studied subjects 

who were all classified as severely disabled, supports this idea. Thus, whilst it was 
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found that the group consisting of relatively 'slow' walkers group provided mostly 

negative gait results, the gait tests for the 'fast' walkers yielded encouraging results, 

which, if proven, would indeed suggest that disability levels might influence the extent of 

DAFO mediated effects. Whether such clear-cut distinctions in relation to disability and 

likely benefit associated with DAFO use can be made awaits further investigation. It will 

be of interest to determine whether the potential for such benefits is entirely a function 

of the extent of the initial lesion, or is more complex involving other factors, such as 

motor relearning and the subjects' physical activity levels (Wulf et al., 2003). Wulf and 

colleagues (2003) used brain imaging techniques to establish that the gaining of skills 

by stroke subjects in every day life (such as walking, standing, reaching etc. ) depends 

on the active participation of the learner. An important factor for enhancing the 

effectiveness of training is direction of the patient's attention focus. In the case of the 

present studies, it is a possibility that active use of the DAFO helps to focus the patient's 

attention and awareness of their gait pattern, which may be beneficial (Wulf et al., 

2003). 

Another interesting finding was that most gait improvements, which were likely to be 

attributable to DAFO use, were achieved at the beginning of the research trials, with no 

obvious further benefits in the later tests, with the exception of gait velocity, which was 

also clearly improved after four weeks. It is doubtful that these effects can be attributed 

to natural recovery. Thus, the potential of introducing artefacts due to this factor was 

made less likely by the method of mean difference measurement statistics, which was 

used to compare individual differences of DAFO minus shoe measures within the 

experimental group tests. However, the large variability of the Cl levels for these 

measures means that the apparent existence of these positive effects remains 

inconclusive. Clarification of this proposal would benefit from further studies involving 

active, functional tests (described later). Clearly, resolution of these Issues would be of 

considerable clinical importance in relation to stroke patient rehabilitation. 

275 



It was suggested that acceptance of Hypothesis III would require that evidence was 

gained for at least one of the other two hypotheses. This assumption is debatable, 

because the questionnaires used in the testing of hypothesis III did not involve validated 

scales. Nonetheless, it is proposed that, for the whole research described in this thesis, 

the data collected for these studies are most informative, and provide the clearest 

insight concerning the potential for beneficial effects of the DAFO. The results of these 

findings provide important evidence for potentially beneficial effects of the DAFOs for 

this group of stroke subjects, and are supported by earlier subjective feedback 

investigations that used single case designs. Dieli et. a/. (1997) assessed DAFO use in a 

single-case study and found that users were "pleased" with the low and custom-made 

design, which helped their equinovarus foot position. In a more recent study, Tyson et 

a/. (2001) reported positive feedback from users of the Hinged Ankle-Foot Orthosis. It is 

notable that in this study many subjects felt that the hinged orthosis was too heavy. In 

the present studies, the design of the DAFO meant that its weight was not a significant 

factor. Overall, this work confirms and greatly extends these earlier investigations. The 

possibility that DAFOs might form a useful adjunct for these stroke patients' 

rehabilitation cannot be excluded, and merits further investigation. 

The scientific study of subjects with neurological deficit is a difficult area. The individual 

nature and severity of the initial insult and the widely varying patterns of disability and 

recovery make comparisons between experimental and control groups difficult. Based 

on the results of the studies undertaken for this research, and the failure to demonstrate 

consistent statistically significant differences, the working hypotheses proposed are 

rejected. However, this conclusion is provisional. The fact that the studies used only a 

limited number of experimental subjects, and may have been subject to type II error 

cannot be ignored. As already indicated, a concern was that the present studies used 

groups that contained too few subjects and therefore that the experiments lacked 

statistical power. Indeed, this research reports data (particularly in the gait studies 
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section) which often had high Cl limits, which suggests that the findings most certainly 

cannot be generalised or extrapolated in terms of the entire stroke population. However, 

these findings do indicate clearly positive effects of DAFO use for some of these 

experimental subjects. 

The detailed description of DAFO provision that has been presented (section 2.2.2) and 

Appendix II demonstrates that the use of these orthoses always relies on the work of a 

highly professional team, and that the cost of these splints could therefore be 

questioned. Very recent studies have demonstrated, however, that the use and cost of 

assistive devices with stroke patients during the first year comprises a small fraction of 

the total costs for care and rehabilitation (Gosman-Hedström et al., 2002). Although, 

further evaluation is needed in the field of cost effectiveness, the research here provides 

evidence that DAFO use over a longer period of time may improve patients' daily 

functions and therefore could lower the total costs of their health care. 

Orthoses have been a part of stroke patients' rehabilitation now for a long time but their 

usefulness continues to be questioned, particularly the extent to which they engender 

normal movements. Their use is very often abandoned without strong evidence of 

positive effects (Lennon et al., 2001). The current research clearly indicates that further 

work is needed to assess the effects of DAFO use. In addition, this study identified 

some parameters of balance and gait, which might be more useful to use in further 

studies. The new proposal that there may be uncontrolled variables within either the 

patient group or in the DAFOs (or both) which mean that some DAFOs work better than 

other, suggests that a priority task is to identify what these variables are so they can be 

controlled in future studies. Of course, if these variables are related to the precise 

nature of the neurological impairment, this would be extremely difficult to do (given the 

difficulties in this study generating a suitable experimental group). 

The fact that patients' opinions demonstrated that DAFOs can improve functional skills 

in daily life, raises the important question as whether or not improved quality of 
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movements translates directly into improved functional skills and physical activity. 

Stroke rehabilitation aims to improve patients' active, functional life at home. Therefore, 

more functional and dynamic assessments of daily activities would be helpful in the 

evaluation of DAFOs. Some examples of this approach to rehabilitation research with 

stroke patients, unrelating to DAFOs, have already been published (Nadeau et al., 

1999a; Thomas et al., 2002; Leung and Moseley, 2003). 

The nature of the neurophysiological response to an orthotic device is understood only 

in the broadest terms. That such a beneficial response is possible has been 

demonstrated, but the features that are necessary within the orthoses to elicit any 

particular neurophysiological effect are understood only in the most general way. It is 

therefore perhaps not surprising that functional responses of the stroke patients to 

DAFOs was highly variably, as it is reasonable to suppose that in some individual 

DAFOs the critical design features were present, and in other they were not. Clearly this 

is an area which requires considerably more study. 
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5.2 Conclusions 

1. This research failed overall to demonstrate a significant effect of DAFOs on the 

rehabilitation of stroke patients, but presents clear indications that further study 

is justified. 

2. The main findings verified that DAFO use does not alter standing balance when 

two groups of stroke subjects were compared. 

3. Anecdotal evidence was obtained which suggest that DAFOs may have potential 

to improve certain aspects of standing balance, particularly the lateral velocity of 

sway and variability of spectral frequency parameters. 

4. There were no consistent and statistically significant differences in the subjects' 

gait performance between the groups using DAFOs and shoes-only. 

5. The study established that using a DAFO on the affected leg of a stroke patient 

did not alter the gait pattern on their unaffected side. 

6. Within the experimental subjects, positive (p < 0.05) effects of using DAFOs 

were evident for some gait parameters such as gait velocity, stride length, single 

stance phase duration and maximum foot velocity in the middle of swing phase 

compared to shoes use. 

7. Extremely optimistic and constructive user feedback for the DAFO was obtained, 

providing strong support for the idea that these splints may provide benefit by 

improving physical function for some stroke patients. 
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5.3 Future studies 

The present research illustrates the feasibility of running a clinical trial for non-acute 

state stroke patients using DAFOs and provides a useful framework for future 

investigations of this, and possibly other types of orthosis. Further randomised studies 

of the effects of DAFO use in stroke patients' rehabilitation should firstly address the 

limitations as specified in section 4. Clearly, large sample numbers would be generated 

by multi-centre recruitment (which, for practical reasons, was beyond the scope of the 

present research) involving larger geographical areas and several NHS Trusts. In order 

to provide more comparable subject groups, it would be useful to introduce pre-review 

assessments, before randomisation. A more detailed picture of the actual time a subject 

spends wearing their DAFO actively could be obtained by more regular follow-up 

questionnaires, via home visits, or personal entries made in the subject's own diary. 

The variability of results within stroke subjects also suggests that it is very likely that 

DAFOs are only indicated and beneficial for some subjects. This emphases the need for 

future investigations to be carried out more carefully and systematically, as the 

information gained could identify which types of patients would benefit from having 

DAFOs. Until we understand the intricacies of the Interaction between orthotic design 

variables and impaired neurophysiology, it will be difficult to optimise the prescription for 

different individuals. But it is important to be aware meantime that small changes in the 

design of DAFOs may lead to major differences in functional outcomes and, further, that 

these outcomes may differ significantly between individuals. 

Browne and O'Hare (2000) have addressed the issue of force platform reliability. These 

authors have commented on the lack of comprehensive calibration procedures used in 

gait laboratories, which casts doubt on the results obtained with these systems. 

Following work on prototype force platform apparatus, they propose quality control 

procedures involving testing of specific sources of error, how the tests should be 

performed and recommendations for the frequency with which they can be carried out. 
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The authors advise that the following factors be monitored: linearity, hysteresis, noise, 

repeatability, system drift, temporal stability, spatial accuracy, uniformity and frequency 

responses. Future work may determine a baseline of time intervals for performing these 

calibrations using force platforms of varying ages and complexity (Browne and O'Hare, 

2000). Adoption of such systematic quality control procedures will undoubtedly enable 

more useful comparisons of data collected within and between laboratories studying 

human balance. 

Further knowledge of the influence of DAFOs on subjects' ambulation could be gained 

by extending studies to include data collection of more complex movements, such as 

turning, sit-to-stand or ascending/descending stairs. Three-dimensional gait analysis 

systems such as APAST"' are portable and adaptable and, theoretically, the 

instrumentation could be tailored to almost any testing environment, perhaps in the form 

of a generalised home setting, which better approximates typical day-to-day living. 

Future work should also address the longer-term effects of DAFO use, and the 

differences between different splint designs, to determine which are more effective for 

specific gait difficulties with stroke subjects, whilst retaining cost-effectiveness. 

Studies of the type reported here are restricted in that DAFO effects at the physiological 

level of muscle function are undefined. Complementary work that combines 

electromyographic (EMG) information with 3-D kinematic and kinetic data would 

undoubtedly provide a more complete picture of these interrelated processes in relation 

to stroke patients' gait, and the influence of DAFO intervention. This, supplemented by 

the evaluation of subjective feedback of orthoses by using validated scales, may also 

increases our understanding of the mechanisms underlying gait disturbance and its 

correction. 

The sophisticated gait assessment approaches outlined above will be aided by the 

current availability of rapidly improving PC technology, together with new advances in 

gait analysis software. More efficient computer technology has obvious benefits for 
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clinical studies. It is notable that since the inception of the present studies, PC data 

storage capacity and clock processing speeds have increased greatly, whereas their 

cost has reduced. It is hoped that studies such as these will provide further objective 

knowledge on the usefulness of DAFO intervention, and add to the value of 

rehabilitation not only by refining the rehabilitation technique itself, but also in terms of 

improved psychosocial and cost effectiveness, which ultimately form important 

components of progress leading to a better clinical outcome for individuals affected by 

stroke. 
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APPENDIX 1 

Pilot study 

The pilot study consisted of preliminary measurements of stroke patients' balance and 

gait characteristics, together with functional assessments of neurological disability. The 

principle aim of the work was to assess methods for subject recruitment, and the design, 

manufacture and provision of orthoses. In addition, these investigations aimed to 

provide information on the clinical practicalities and likely effectiveness of the planned 

main phase studies. It was predicted that the work would: 1) clarify the procedures and 

objectivity of the subject inclusion and exclusion criteria, 2) indicate the timescales 

required for fabrication of orthoses, 3) enable the author to develop proficiency in 

performing the experimental procedures and 4) provide preliminary data on how DAFOs 

affect stroke patients balance and gait. The studies were undertaken over a nine months 

period at the onset of this research project. Here, the outcome of the studies with 

emphasis on development of the methods for the main phase is described and 

preliminary data acquired are presented; details of orthotic design, manufacture and 

provision are covered in detail in Appendix II. 

Subjects 

Stroke patients admitted for rehabilitation to the Stroke Unit at the Salford Royal 

Hospitals NHS Trust (Ladywell and Hope Hospitals) from November 1995 to February 

1996 were considered for study. Patient recruitment involved detailed clinical 

assessment and criteria evaluation before informed and written consent was sought 

from potential subjects (section 2.1.1). In some cases, patients were excluded where 

assessment of case notes by the Stroke Unit's consultant medical staff concluded that a 

subject's particularly poor physical condition precluded them from participating in gait 

laboratory tests of extended duration. Three stroke patients met the initial entry criteria 

(section 2.1.2) and agreed to take part in the pilot study by signing the consent form. 
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Arrangements were made for the construction of a DAFO appropriate for each subject's 

gait impairment (Appendix II). The prescription for orthoses was based on observational 

evaluation of subjects' gait by the orthotist and the author while the subjects were 

hospital inpatients. During this stage, one of the subjects withdrew for personal reasons; 

the pilot trials therefore proceeded with two stroke patients. Both subjects had suffered a 

right side cerebral infarction and left side hemiparesis; demographic details are 

summarised in Table A1.1. 

Table A1.1 Demographic details of subjects 

Subject code Sex Age Side of paresis Time since stroke 

P1 F 67 years Left 3 months 

P2 M 56 years Left 3 months 

Subject P1 was able to walk indoors with supervision, however a helper was required 

when walking outside. Her trunk was rotated to the left with a forward lean; her left arm 

was flat down with no activity. During stance phase the trunk flexed over to the left side 

to maintain balance and the left hip was flexed. Stance phase was shorter on the 

affected side. The left heel strike was low and occasionally initial contact was made with 

the foot flat. In stance phase the left ankle was in supination/inversion, whereas the 

forefoot was in pronation with the medial arch lowered. On the unaffected side, the 

forefoot was also in pronation and the medial arch was low during the stance phase. 

During swing phase, the hip and knee flexed more on the left side and, occasionally, the 

toes touched the floor, giving the subject an 'unstable feeling'. The subject was 

prescribed a DAFO designed to support the forefoot pronation position and stabilize the 

subtalar joint inversion. It was clear that the subject's gait was affected by a lack of 
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confidence, which resulted in further instability, both when walking in the gait laboratory 

and during day-to-day living. 

Subject P2 could walk inside with a stick and supervision for about 10 meters; a 

wheelchair was used for longer distances outside. His walking was unstable because of 

inadequate muscle activity due to hypertonic muscle extension on the affected side, 

preventing smooth leg movement. The gait pattern was asymmetrical, and the stance 

phase was greatly extended on the unaffected side. The step with the affected leg was 

long with the trunk leant backwards and rotated. The forefoot made the initial contact 

and the stance phase was very short. Weight was borne primarily on the lateral border 

of the affected foot with the toes flexed. The subject had difficulty to move his weight to 

the left leg. The affected knee was hyperextended throughout the duration of the stance 

phase. During swing phase, the affected leg clearance was inadequate due to limited 

motions of hip flexion, knee flexion, and ankle dorsiflexion. The trunk was rotated to the 

left side and the pelvis was retracted during swing phase. The affected ankle was in 

supination/inversion during swing phase, together with forefoot inversion and flexion of 

the toes. The subject was prescribed a DAFO designed to support the subtalar joint and 

the forefoot in a neutral position. 

As indicated earlier, the orthoses were constructed for the subjects after subjective gait 

evaluation by the orthotist and the author. However, because of the patients' early state 

of recovery and active rehabilitation time, gait problems can vary considerably. 

Subjective evaluation proved to be difficult, as the decision for the specific design of 

orthosis to be used had to be made quickly, i. e. within the six weeks period the subject 

was an in-patient at the stroke unit. Consequently, modification of the evaluation 

strategy was required. The muscle strength test has been shown to be a useful 

evaluation method during stroke patients' recovery (Jorgensen et al., 1995) and was 

used here. It was predicted that the test when used for the lower limbs would highlight 

gait problems and aid prescription of the model of DAFO. Medical Research Council 
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(MRC) grades are commonly used as an ordinal measure of power (Demeurisse et al., 

1980). In this system, the muscle power is graded as follows: 0= no movement; I= 

palpable contraction but no visible movement; 2= movement but only with gravity 

eliminated; 3= movement against gravity; 4= movement against resistance but weaker 

than other side; 5= normal power. The muscles of the lower limbs were tested manually 

with ankle flexion/extension movements, and knee flexion/extension and hip flexion/ 

extension movements, in a sitting or lying position, depending on muscle activity. The 

values obtained from these tests (not shown) were used as an indication of muscle 

activity when prescribing the DAFO. 

Orthosis 

For these studies two subjects were supplied with and wore a DAFO for one month. 

Fabrication required 2-3 weeks and a further 10 days for purchasing new shoes and 

fittings the new orthosis. This time-scale was later found to be impractical, because of 

the duration of stroke patients' treatment in the stroke unit. During the main trial it was 

endeavoured to limit the fabrication and fitting time to three weeks. This was possible by 

reducing the fabrication time to one week and the fitting time to two weeks. The patients 

were encouraged to purchase shoes as soon as convenient after provision of the 

orthosis. Although the patients and their relatives were initially enthusiastic about buying 

shoes for the orthoses, both subjects experienced difficulty in purchasing suitable 

leather shoes and instead opted for 'training shoes'. It was envisaged that in the main 

phase studies some patients' relatives would be unwilling to buy new shoes. It was also 

reasonable to assume that several of the patients in the main study would have no living 

relatives. For these reasons, during the main study phase, arrangements were made for 

the author to accompany and advise patients during purchase of the shoes and, where 

necessary, the cost was met using monies provided from the research budget. During 

the initial accustomisation period both subjects experienced discomfort and pain over 

the dorsum of the foot, which was attributable to friction between the DAFO and the skin 
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surface. The DAFOs were therefore padded inside with plastatzote for the remainder of 

the trial and no further discomfort was reported. During the main study phase, all of the 

DAFOs were modified accordingly. 

Testing procedures 

Because of the limited time schedule and availability of suitable subjects for the pilot 

study, it was apparent that there would be difficulties amassing a sufficient numbers of 

subjects matching the inclusion criteria. For this reason a single case design was 

performed. The subjects' balance, gait characteristics and functional abilities were 

tested over a six weeks long experimental trial consisting of four data collections at two- 

weekly intervals (Table A1.2). During the balance and gait tests, the subjects were 

tested under two experimental conditions during each data collection: using only shoes 

and then using a DAFO fitted inside a casual shoe. Each subject served as his/her own 

control. Each testing session concluded with a functional assessment. During the last 

week of testing, one subject (P1) had an accident (unrelated to the study) breaking her 

upper arm. This subject was therefore tested on three out of the four possible occasions. 

Table A1.2 Testing procedure design: the first test represented a baseline, which was 
followed by three further tests over six weeks. Each test consisted of balance-, gait- and 
functional-assessments. 

Week 0 Week 2 Week 4 Week 6 

Subjects 

tested with 

shoes-alone 

and 

with DAFOs 

(Baseline) 

1) Balance test 

2) 10 m gait test 

3) Functional test 

Measurement Measurement Measurement 
repeated repeated repeated 
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The first test collection defined a baseline coinciding with when the subject started to 

use orthoses. The next three tests indicated the time frame for orthosis familiarisation 

and whether there were any obvious changes with orthosis use. In addition, using the 

single-case design, it was possible to obtain reasonable amounts of preliminary data for 

determination of any beneficial effects due to the orthosis, particularly in relation to 

influences on standing balance and gait parameters (Wilson 1995). 

Methods - Balance 

The body sway during standing was measured using a piezoelectric force platform 

(Kistler Instrument Ltd. ) connected to a PC running Bioware software, as the subjects 

performed two 30-second tests with eyes-open and with eyes-closed. Positional 

changes of the CoP over time were monitored. These methods initially used to study the 

stroke subjects' balance were found to be mostly adequate, and no modifications were 

required for their use in the main studies. However, it was found that some of the 

variables analysed (e. g. SD of the CoP) provided limited information on balance. 

Consequently, the design of the main studies was expanded to include assessment of 

additional variables; a full description of the methods was given in section 2.4. 

Methods - Gait 

Gait evaluation tests were carried out after the balance measurements. Subjects' gait 

was recorded using 'step-analyser' apparatus and two video cameras (Panasonic M2 2, 

VHS 625, speed 25 field/s) viewed in saggittal and frontal planes. After setting up the 

recording equipment (described later) the subject was asked to walk a 10 m distance in 

a straight line, using whatever aid required and at self-selected pace. Four separate 

measurements were made with the subject resting after each measurement (usually by 

sitting on a chair). 

Each subject's gait was recorded simultaneously with the 'step-analyser and video 

based movement analysis systems. The 'step-analyser foot-switch system monitors 
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pressure from four plantar locations, and provides data describing the plantar aspect 

(foot-fall parameters) of the subject's foot during walking. One FSR was taped under the 

subject's heel and one under the third metatarsal, at the interface between the foot and 

the shoe and between the shoe and DAFO. The four FSRs were connected via thin 

cables to the data-logger, which collected the output from the sensors at a rate of 200- 

500 samples per second, for a maximum of 32 seconds. The data-logger was attached 

to the receiver box, which stored the data during the gait test prior to downloading to a 

PC. 

Lower limb movements during gait were analysed in two-dimensions. Gait was recorded 

in the sagittal plane with a video camera (Panasonic MS2, speed 25 frames/sec) in the 

middle of the 10-metre walkway, where 2.5 m before the recording area was designated 

as the point where a natural speed of gait was achieved and 2.5 m after this defined a 

slowdown' area. Successful data collection was repeated four times: twice with shoes 

only and twice with the orthosis. For the study of gait kinematics, skin markers were 

placed at the head of the fifth metatarsal, the heel, the lateral malleolus, the lateral 

epicondyle and the greater trochanter of the hip. This marker set identifies the locations 

of the lower limbs 5-segment performance model. The video data were filtered (Quintic 

spline) and differentiated (Ariel Performance Analysis System). In order to describe 

subjects' movement, gait velocity, the forefoot and the heel markers linear displacement, 

and the ankle and knee joints angular displacements were monitored. Gait velocity was 

selected as a description of subjects' overall gait ability. 

Results - Balance 

The variability (SD) of the CoP as a function of time (30 s), which indicates the location 

where the resultant ground reaction force applies to the feet, was used as a measure of 

stability of subjects while quite standing. The SD of the mean value from the repeated 

trials was used as an index of the amount of sway during quite standing (Era and 
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Heikkinen, 1985). Lower sway index values are considered to reflect steady standing 

position (Tang and Woollacott, 1996). 

Sway index - subject P1 

During the baseline test, the sway index for subject P1 in the a-p direction with eyes- 

open was 5.58 (0.79) with shoes, and 5.84 (0.53) with the DAFO, mean and (SD). For 

the second test, the sway indices recorded were slightly increased compared to 

baseline, at 8.16 (0.68) with shoes and 14.18 (1.35) with the DAFO. In the third test, the 

sway indices returned to near baseline levels, at 4.40 (0.95) and 5.72 (0.11). In the a-p 

direction with eyes-closed, the sway indices were clearly higher than for the eyes-open 

condition. It was also found that the values recorded throughout the three tests were 

slightly lower with shoes than with the DAFO. Thus, for the baseline test, the sway index 

of subject P1 with shoes was 8.62 (1.99) and 10.84 (2.88) with the DAFO. For the 

second and third tests, the sway indices were 9.34 (2.90) and 10.94 (1.25), and 7.65 

(0.95) and 10.68 (3.73), with shoes and the DAFO, respectively. 

In the lateral direction, with eyes-open, the sway indices for subject P1 recorded during 

the baseline test were 8.50 (2.44) with shoes and 7.52 (0.02) with the DAFO. In the 

second and third tests the corresponding values recorded were 11.11 (1.13) and 14.03 

(0.95), and 4.99 (0.93) and 7.68 (0.69). The lateral sway indices with eyes-closed for the 

baseline test were 9.92 (0.09) using shoes and 12.93 (1.95) using DAFOs. The 

measurements for the second test were 10.75 (4.13) with shoes and 10.74 (2.33) with 

DAFOs. In the third test, values of 10.75 (1.50) and 14.19 (0.15) were recorded. These 

data suggested that, for this subject, there were no clear effects on standing balance 

characteristics when using a DAFO compared to using shoes alone over the testing trial 

period. 
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Sway index - subject P2 

In contrast to subject P1, subject P2 took part in the full 6 weeks testing protocol 

comprising 4 balance tests. For the baseline test, the sway indices in the a-p direction 

with eyes-open were 5.71 (0.62) with shoes and 6.78 (0.24) with the DAFO. The 

corresponding values recorded during the three remaining tests were very similar to 

baseline, at 5.35 (0.06) and 6.93 (0.89) [test 2], 6.09 (1.22) and 6.08 (2.19) [test 3] and 

6.76 (1.34) and 6.77 (1.16) [test 4]. In the a-p direction with eyes-closed, the sway 

indices were higher than for the eyes-open condition. Thus, during the baseline test, the 

sway index for subject P2 was 7.77 (0.86) with shoes and 9.73 (0.86) with the DAFO. 

For the second and third tests, the sway indices recorded with shoes and the DAFO 

were, respectively, 10.42 (0.0), 9.06 (1.45), and 6.09 (1.22), 6.08 (2.19). Similar values 

were obtained during the third test, at 6.76 (1.35) and 6.77 (1.16). 

The sway indices for subject P2 recorded in the lateral direction for the eyes-open 

condition during the baseline test were 8.89 (2.08) with shoes and 9.57 (1.17) with the 

DAFO. In the second and third tests, the corresponding values recorded were 6.30 

(0.94), 7.16 (1.99) and 7.03 (0.52), 6.24 (1.77). In the fourth test, the sway indices were 

marginally higher than those obtained from the third test, at 8.92 (1.79) and 8.07 (0.55). 

The lateral sway indices with eyes-closed for the baseline test were 10.27 (0.02) using 

shoes and 11.88 (0.72) using the DAFO. The second test values recorded were 13.44 

(0.41) and 14.02 (0.65). Measurements collected during the third test yielded values of 

10.6 (0.11) and 12.47 (1.92). The fourth test values were considerably lower than for the 

previous test recordings, at 7.26 (0.01) and 11.34 (3.53). 

As was found for subject P1, the data indicate that the standing balance characteristics 

for subject P2 were not clearly affected when using the DAFO compared to shoes. 

However, with this subject, noticeable lower values were recorded for the sway index 

with DAFOs than with shoes alone, in the third and forth tests. This was seen 

particularly for the a-p sway in the eyes-closed condition and for the lateral sway with 
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eyes-open. The lower balance values obtained for some of the tests suggested better 

balance control with DAFO intervention. 

Results - Gait 

The gait velocities recorded for both subjects during the tests ranged from 0.04 to 

0.50 m/sec. Subject P1 had an intermediate gait velocity (mean 0.43 m/sec), which 

approximated 35% of the reported age-specific free-walking speed (Judge et. aL, 

1996). Subject P2 displayed a slower gait velocity (mean 0.08 m/sec), which was 

10% of the normal free-walking speed. There were no differences observed between 

gait velocities within individual tests. However, when data for each condition were 

collated (with the DAFO or with shoes alone), the mean gait velocity appeared slightly 

improved (increased) with shoes compared to the DAFO, for both patients. 

In these studies, the subjects' kinematic gait analysis was described using a linear 

displacement parameter in the saggital plane. The linear displacement of the foot was 

calculated from the heel and toe markers during one gait cycle, to provide information 

about the stroke subjects' gait pattern using the DAFO. Data from both the affected and 

unaffected leg were collected and analysed. 

Although subject P1 had an intermediate gait velocity, her kinematic gait pattern was 

highly compatible with published databases for healthy subjects (Winter, 1974). No clear 

differences in lower limb ankle and knee joint linear and angular displacement (on the 

unaffected and affected sides) were observed when wearing the DAFO compared to 

shoes alone. 

For subject P2, who was a very slow walker, the push-off phase commenced earlier 

on the unaffected side when using the DAFO compared to using shoes; this was 

seen in tests 1,2, and 4. This increased swing phase on the unaffected side could 

suggests better stability on the affected side, and a more symmetrical gait while using 

DAFO when walking problems are severe. 
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Subject P2 possessed an extended stance phase on the affected side (70-90% of his 

gait cycle) whilst the swing phase was 50-70% shorter than expected according to 

healthy subjects' gait data (Murray, 1967; Craik and Dutterer, 1995). This pattern was 

maintained throughout all four testing trials and under both experimental conditions. 

Using shoes alone, the forefoot lift during the swing phase was 60-30% higher 

compared with the DAFO, particularly during the first and second tests. The lower 

displacement values obtained with the DAFO than with shoes was an important 

finding, because this demonstrates that the use of a DAFO could improve stability of 

the ankle and foot. However, the push-off phase improved with the DAFO compared 

with shoes alone, indicating that the DAFO did not fix the ankle too rigidly and 

allowed the heel and forefoot movements to tend towards a normal gait cycle 

(examples are shown in Figures A1.1). 

These data provide evidence that the use of a DAFO may stabilize the ankle and foot, 

and provide a more symmetrical gait in stroke patients, particularly when walking 

problems are severe. Thus, terminal stance phase (heel rise) of stroke subjects was 

improved with the DAFO compared to the shoes-only condition, indicating that the 

DAFO did not fix the ankle too rigidly, thereby enabling the heel and forefoot movements 

to follow the pattern of a normal gait cycle. It was concluded that the findings of this pilot 

work suggested that DAFOs may affect some aspects of stroke patients' gait recovery 

(Uutela et. al., 1996; Uutela et. aL, 1997). 

Other modifications of methods during the main trial 

Further observations were made during these studies with respect to the aims described 

earlier, which indicated the need for modification of the definitive protocol. These are 

described below in relation to 1) subject recruitment, 2) experimental procedures, and 3) 

gait tests. This section also describes methodological differences between the pilot and 

main phases implemented because of the availability of more modern instrumentation. 
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1) Subject recruitment 

The work successfully demonstrated that potential patients for the studies could be 

identified. Patients were included who required active rehabilitation for their mobility 

problems. However, when underwent mobility assessment by the physiotherapist, it was 

noted that several of the subjects who had been diagnosed with TIA might have 

exhibited earlier hemiparesis-type symptoms when walking. Because of the possibility of 

learning compensatory walking patterns after an earlier TIA, these patients were 

excluded from the main trial. Furthermore, because minimal impairment of gait is not 

adequately defined during the subacute stage, the sixth criteria (the ability to walk 5-10 

metre or more with/without an assistive device) was modified to include patients who 

exhibited visibly impaired of gait due to stroke in respect of, for example, gait velocity, 

symmetrical rhythm, or heel strike in the gait cycle. 

2) Experimental procedures 

During the testing trials it was evident that in order to minimise subject fatigue, the 

testing time should be limited to a maximum of two hours. Thus, for example, the 

balance test was repeated twice and not three times as previously planned. This 

modification was incorporated as standard during the main study phase. 

3) Gait tests 

During data collection in the pilot study, the new gait analysis equipment (Ariel 

Performance Analysis System) was unavailable for use in the gait laboratory. It was 

therefore necessary to use an older system. Two VHS-video cameras were located in 

sagittal and frontal planes. Spatio-temporal data of the footfloor contact pattern was 

collected by the Step Analyzer device (section 2.5.1). These two methods were 

synchronised with the video cameras using a timer and a flashing light (in the field of 

view of the camera). The timer and light were operated by the subject's walking 

movements breaking an infrared beam. 
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After testing equipment synchronisation, it was apparent from viewing the recorded 

video picture that there was difficulty determining whether the timer and light were on or 

off. Consequently, preliminary data were collected with one camera placed on the 

sagittal plane, recording 2.5 metres of the total distance walked by the subject. The 

kinematic data were analysed later by Ariel Performance Analysing System obtained 

from the preliminary study using 2-D motion analysis when this instrument was 

operational. In the main trial the new synchronization system was available and used 

(section 2.5). After two testing trials it was found that data from the Step Analyzer were 

inaccurate due to technical faults, and consequently spatio-temporal data were not 

analysed from the 10-metre walkway, although gait velocity was calculated using the 

video-based data. 

Conclusion 

The pilot studies successfully achieved their aims concerning patient recruitment, safety, 

orthotic prescription and testing procedures, thereby facilitating appropriate modification 

during the main phase of the research, in order to provide a valid clinical assessment of 

the application of DAFOs with respect to stroke patients' rehabilitation. In addition, the 

preliminary work provided data suggesting that DAFOs may affect some aspects of 

stroke patients' physical recovery. 
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APPENDIX II 

DAFO fabrication 

Casting 

Casting procedures were performed by the author and the orthotist at the University's 

School of Prosthetics and Orthotics or at the subjects' home. On arrival, the fabrication 

process and the casting materials to be used were described to the subject. In order to 

generate a negative cast of the subject's foot, the subject was seated comfortably on a 

standard office-type chair of rigid design, with their back kept straight and the knees and 

ankles flexed to approximately 90 degrees. The subject removed their sock and shoe 

from the side affected by the stroke and, when necessary, the affected foot was 

supported via a `board' to maintain the foot/ankle in a neutral position (Figure A 2.1). 

ý: ýýr°' ý,,, 
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Figure A 2.1 Foot support during negative casting 

In order to make a precise casting model of the subject's foot, an accurate weight- 

bearing outline of the foot (static) was first defined using carbon paper (Medical Gait 

Technology). Depending on the steadiness of the subject's balance, this procedure was 

done with the subject standing or sitting (Figure A 2.2). The outline of the foot was then 

used as a template to cut a `petite' sponge rubber board to the shape of the foot (Figure 
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A 2.3). Two layers of this board (each of 5 mm thickness) were stuck together adhesive 

tape, and the metatarsal and calcaneous areas were countersunk to a depth of 5 mm. 

Figure A 2.2 Accurate outline of foot 

The board was then used to construct plaster 'build-ups' moulded under the longitudinal, 

peroneal and metatarsal arches and toes. This procedure formed the footboard 

negative, which defined an accurate profile of the arches (Figures A 2.4 and A 2.5). 

The footboard negative was retained in position under the subject's foot by a layer of 

stockinet applied over the foot and ankle. Plaster was then wrapped around the foot, 

ankle and lower leg (Figure A 2.6 and A 2.7). During negative casting, the subject 

remained seated and, if necessary, the foot was kept in a neutral position by an 

angulated casting block (ankle in 0- 20 degree flexion). 
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Figure A 2.4 Constructing a plaster build-ups 
moulded under arches and toes 

Figure A 2.3 Outline of foot is used as a 
template for a 'pelite' sponqe rubber board 

Figure A 2.5 Finalising footboard neg, itive 



After a few minutes, when the plaster dried, it was released gently by cutting the cast in 

half from the front. After releasing the cast was reassembled, and the final cast negative 

(Figure A 2.8) was packaged carefully and sent to the orthotic laboratory. 

,:. 
Jý 

1 

Figure A 2.9 Dried positive cast smoothing 

Fil iI 

Figure A 2.8 Final cast negative - model 

Assembly of the DAFO 

DAFO fabrication was continued in the orthotic laboratory by the technician who firstly 

filled the negative cast with a soft 'Plaster of Paris' mash which, when dried, provided 

the positive cast. The positive cast was left at ambient room temperature for 

approximately 24 hours. The dried positive cast (Figure A 2.9) was rectified where 
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Figure A 2.6 Casting procedure around ankle Figure A 2.7 Casting procedure around foot 



necessary and smoothed with 'Wet and Dry' papers (grades 280 and 400). The final 

stage of the casting procedures began with heating of homopolymer polypropylene 

board in an oven to at least 200 degrees centigrade. This heating stage made the 

material sufficiently soft and flexible to enable it to be stretched over the smoothed 

positive cast (Figure A 2.10 and A 2.11). As the homopolymer cools rapidly (within a few 

minutes) during the stretching stage, two technicians were required to work together in 

order to make the DAFO extremely thin and flexible (2-3 mm). Final trimming of the 

DAFO was carried the by hand and using purpose-built automated tools. 

ti w 

Figure A 2.10 Heated homopolymer polypropylene is Figure A 2.11 Finalised stretching stage 
stretched 

In order to minimize frictional forces the homopolymer DAFO was padded inside with 

plastatzote (3 mm) over the bony prominences around the malleolus. Finally, Velcro 

straps were fixed over the dorsum of the foot and around the ankle (5 cm above the 

malleolei) to secure the orthosis in the correct position around the foot and ankle (Figure 

A 2.12). The subject was advised of a suitable shoe to be worn with the DAFO of casual 

design made from soft leather and usually one size larger than normally worn (Figure A 

2.13). 

Fitting 

In total, 13 DAFOs were built during the research trial. Twelve subjects received a splint, 

2 of which were excluded from the trial due to personal or health reasons. One subject 
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experienced problems with pressure around the ankle (malleoulus) area with their DAFO 

and a second splint was constructed. 

Figure A 2.12 DAFO with fixed Velcro straps 

Figure A 2.13 DAFO fitting 

During the 3 months experimental follow-up, a questionnaire was used to determine 

whether the subjects of the experimental group required the orthotist to adjust or modify 

the DAFO or shoes after each testing session. Ten subjects provided answers to the 

question set; the results are presented in Table A 2.1. 

Table A 2.1 

Orthotist required? Answered no Answered yes 

Test 173 

Test 11 82 

Test III g1 
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In test I one subject's Velcro strap around the ankle area required modification and two 

subjects experienced pressure problems using the splint, one on the little toe and the 

other on the malleoulus. To correct the first problem the orthotist trimmed the DAFO 

around the toe area. The second subject's pressure problems were found to be caused 

by swelling of the subject's foot-ankle area unrelated to the use of the DAFO. The 

swelling was alleviated following treatment provided by the subject's GP and, after one 

month, a new splint was prescribed and built. In Test II, the two subjects who requested 

to see the orthotist required Velcro strap alterations; similar minor adjustments were 

made for the single subject in Test III. 
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DAFO project 1995-98, University of Salford. 1/3 ; ý~; 

DYNAMIC ANKLE-FOOT ORTHOSIS - CASTING, FABRICATION 

AND FITTING: 

SUBJECT DETAILS: 

NAME: DOB: HOS. NO: 

ADDRESS: 

TEL: 

GENDER: F/M 

SIDE OF WEAKNESS: L/R 

DG: 

CT: 

PREVIOUS TIA: NO / YES 

DATE OF ADMISSION: 

DATE OF DISCHARGE: 

BI: 

BI: 

OTHER ILLNESESS: 

SOCIAL DETAILS: MARRIED SINGLE 

IN EMPLOYMENT RETIRED 

RESIDENCE: 

LIVING ALONE WITH FAMILY/ FRIENDS 
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DAFO project... 

NAME: 

2/3 

DATE: 

DATE OF ADMISSION TO STUDY: 

CASTING I THE MODEL OF DAFO: COMMENTS: 

FABRICATION (Materials, EVA, straps, etc. ) 
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DAFO project... 

NAME: DATE: 

3/3 

FITTING: 

DATE: 

CHANGES: 

COMMENTS: 

FITTING: 

DATE: 

CHANGES: 

COMMENTS: 
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INFORMATION FORM 

HOW TO USE DYNAMIC ANKLE-FOOT ORTHOSIS 

Correct fitting of the splint 

9 Put on your sock 

" Fit the DAFO on the foot and tighten the straps 

" Wear the shoes which you have chosen with the physiotherapist 

Use the splint during the first few days in two hours periods and check 2-3 times a 
day the condition of the skin of the foot and ankle: - are there red or dark marks or is 

there any pain ? 

If the DAFO splint feels good, continue to use the orthosis for half a day over the 

next two days. 

If the splint continues to feels good, you can now start to wear the DAFO all day 

while you are up, walking, doing house work or even just relaxing watching TV. 

Every morning, look at the skin of the foot and ankle, before you getting dressed, and in 
the evening before you go to bed. If you feel pain in any area under the DAFO, or find 

marks on the skin, please, contact the project physiotherapist Anne Uutela, tel. 0161- 
736 6541/ extension 817, or your local nurse or physiotherapist. 

During this research trial we will test if this splint affects your walking and standing 
balance and consequently your everyday life after stroke. The next few weeks are very 
important in order to shows us if the DAFO splint has effects. This will only be possible if 

you wear your special splint every day and inform us of any problems. 

Thank you very much for your co-operation! 
Anne Uutela 
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APPENDIX III 

Information sheet, evaluation forms, and muscle test and results page 

1. Patients information sheet 336 

2. Patient's opinion to use of orthoses 338 

3. Nottingham extended ADL scale 342 

4. Rivermead Motor Assesment ; Functional scale 343 

5. Rivermead Motor Assesment ; Leg and Trunk scale 344 

6. Muscle strength form and results 345 

7. Gait evaluation form 348 
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DAFO project 1995-98, University of Salford 

Patients Information Sheet 

We would like to offer you the opportunity to take part in a research study run at 

Ladywell and Hope Hospitals and the School of Prosthetics and Orthotics in the Salford 

University. The purpose of the study is to see whether a new device (called a Dynamic 

Ankle-Foot Orthosis or DAFO for short) helps people who have had a stroke to walk. 

The DAFO is a simple device that fits into the shoe and supports the foot and ankle. We 

hope that this may help balance and walking. As we do not know whether it will in fact 

be helpful, we are giving some patients the DAFO along with their therapy while other 

patients are having only therapy. Both groups of patients will be picked at random; 

however which group you are in, your rehabilitation will continue as normal. As we do 

not know whether the DAFO will be helpful, if you are allocated to the group that does 

not have the DAFO this may not necessarily be a disadvantage. This study should give 

us important information about the effect of these splints and how to use them in 

rehabilitation. 

Your standing balance and walking will be tested three times at the School of 

Prosthetics and Orthotics during the next three months, each session lasting about an 

hour. The procedure will consist of three tests. The first is a5 metre walking-test to 

evaluate leg movements using video and small sensors placed in the shoes. The 

second test involves standing body sway. The final test will assess your activities of 

everyday life using a simple questionnaire. 
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We will provide private transport to the university and for your return home. 

Please do not hesitate to ask if you have any questions regarding the testing procedures 

or any other part of the research. If you are happy with the information and agree to 

participating in the research, we will ask you to sign a consent form. At any point you will 

be free to withdraw yourself from the study, without having to give a reason and without 

affecting any medical care. 

We are very grateful for your consideration. 
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DAFO project 1996-98, University of Salford. "1FOýý 

Patients' opinion of use of the orthoses: 

Name: D. O. B. Date: 

1. Do you use a wheelchair? NO / YES 

How many hours per day 

2. Do you use other walking aids? NO /YES_, Inside/ outside. 

3. Do you need help to put on the orthosis? NO / YES, 

4. Do you need help to take off the orthosis? NO /YES 

5. If you do, who helps you? 

6. Do you need help to get dressed? NO /YES 

7. How many hours do you use the orthosis during daytime? 

7a. always when you are walking? NO / YES 

7b. always when you are standing? NO /YES 

7c. always when you sitting? NO /YES 

7d. in the mornings? NO-/ YES hours. 

7e. in the evenings ? NO /YES hours. 
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8. What is your approximate walking distance? 

8a. Inside? 

8b. Outside on the street? 

meters. 

meters. 

8c. Outside in the countryside? meters. 

For next fife questions we will ask your opinion of the use of orthoses by choosing the 

number which best describes your experience. 

4= No problems, comfortable. 

3= Mostly comfortable. 

2= Sometimes difficult. 

I= Always difficult. 

0= Always very difficult/ uncomfortable. 

9. How do you find putting on and take off the DAFOs ? 

01234 

10. Would you describe more your answer in the question 9? 

11. How does the DAFO feel ? 

01234 
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12. How does it feel to walk with the DAFO ? 

01234 

13. What do you think are the main problems with the DAFO ? 

14. What do you think are the best/ positive things for using the DAFO ? 

15. Has you received a physio or/and occupational therapist since starting to wear the 

DAFO ? NO / YES 

15a. at home (community, private etc. ) 

15b. at the hospital out-patient clinic 

15c. Other 

16. How many times per week? 
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17. Do you think you need to see the orthotist ? NO / YES 

If YES, why ? 
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DAFO project 1995-98, University of Salford. 

Nottingham Extended ADL Index 

Namelcode: Date: Total: 

Answers: Not With Alone Alone 
at all help with easily 

difficulty 

Scores 0-3 (0) (1) (2) (3) 

Questions: 

Mobility - do you: 
1. walk around outside? 
2. climb stairs? 
3. get in and out of the car? 
4. walk over uneven ground? 
5. cross roads? 
6. travel on public transport? 

In the kitchen - do you: 
1. manage to feed yourself? 
2. manage to make yourself 

a hot drink? 
3. take hot drinks from one room 

to another? 
4. do the washing up? 
5. make yourself a hot snack? 

Domestic tasks - do you: 
1. manage your own money 

when you are out? 
2. wash small items of clothing? 
3. do your own shopping? 
4. do a full clothes wash? 

Leisure activities - do you: 
1. read newspapers or books? 
2. use the telephone? 
3. write letters? 
4. go out socially? 
5. manage your own garden? 
6. drive a car? 

O O O O 
II O O O 
O O CO II 
O O O O 
0 0 0 0 
CO CO O O 

O CO I1 O 

II O CI O 

O O [O O 
O O II O 
O O [O O 

CI O O O 

O CO CI O 
GO C] O 0 
0 II 0 

O [I II 0 
C1 O C7 

II C7 CI Cl 
[ý O C7 C7 
O O O CI 
O 1 O 1 
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DAFO project 1995-98, University of Salford. ý1Oý° 

Rivermead Motor Assessment - functional test 
General instructions: 
Score 1 if patient can perform activity, 0 if he cannot. Three tries are allowed, and 
proceed to the next. Give general encouragement, but no feedback or corrects. Repeat 
instructions and demonstrate them to the patient if necessary. 
All exercises to be carried out independently unless otherwise stated. 

Name/code Date 

Gross function section score 

1. Sit unsupported 
Without holding on, on edge of bed, feet unsupported. 

2. Lying to sitting on side of bed 
Using any method. 

3. Sitting to standing 
May use hand to push up. Must stand up in 15 sec and 
stand for 15 sec, with an aid if necessary. 

4. Transfer from wheelchair to chair towards unaffected side 
May use hands. 

5. Transfer from wheelchair to chair towards affected side 
May use hands. 

6. Walk 10 m indoors with an aid. 
Any walking aid. No stand-by help. 

7. Climb stairs independently 
Any methods. May use banister and aid - must be full flight 
of stairs. 

8. Walk 10 m indoors without an aid 
No stand by help. No caliper, splint or walking aid. 

9. Walk 10 m, pick up beanbag from floor, turn and carry back 
bend down any way, may use aid to walk if necessary. 
No stand-by 
help. May use either hand to pick up bean back. 

10. Walk outside 40 m 
May use walking aid, caliper or splint. No stand-by help. 

11. Walk up and down four steps 
Patient may use an aid if he would normally use one, but 
may not hold on to rail. This is included to test ability to negotiate 
curb or stairs without a rail. 

12. Run 10 m 
Must be symmetrical. 

13. Hop on affected leg five times on the spot 
Must hop on ball of foot without stopping to regain balance. 
No help with arms. 

Gross functional total 
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Rivermead Motor Assessment ... 

Leg and trunk Score 

1. Roll to affected side 
Starting position should be lying, not crook lying. 

2. Roll to unaffected side 
Starting position should be lying, not crook lying. 

3. Half-bridging 
Starting position - half-crook lying. Patient must put some 

0 

weight through affected leg to lift hip on affected side. 
Therapist may position leg, but patient must maintain position 
even after movement is completed. 

4. Sitting to standing 
May not use arms - feet must be flat on floor - must put weight 
through both feet. 

5. Half-crook lying; lift affected leg over side of bed and return it to 0 

same position. 
Affected leg in half-crook position. Lift leg off bed on to support; 
for example, box, stool, floor, so that hip is in neutral and knee at 
90 degrees while resting on support. Must keep affected knee flexed 
throughout movement. Do not allow external rotation at hip. This 
tests control of knee and hip. 

6. Standing, step unaffected leg on and off block 
Without retraction of pelvis or hyperextension of knee. This 
Tests knee and hip control while weight bearing through the 
unaffected leg. 

7. Standing, tap ground lightly five times with unaffected foot 0 
Without retraction of pelvis or hyperextension of knee. Weight 
Must stay on affected leg. This again test knee and hip control 
While weight bearing through the affected leg but is more difficult 
Than in 6. 

8. Lying, dorsiflexion affected ankle with leg flexed. 
Therapist may hold affected leg in position, knee at 90 degrees. 
Do not allow any inversion. Must have half range of movement 
of unaffected foot. 

9. Lying, dorsiflex affected ankle with leg extended 
Same conditions as in 8, with leg extended. Do not allow any 
inversion or knee flexion. Foot must reach plantigrade (90). 

10. Stand with affected hip in neutral position, flex affected knee 0 
(45 degrees +) 
Therapist may not position leg. This is extremely difficult for most 
hemiplegic patients, but is included to assess minimal dysfunction. 

Leg and trunk total 
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MUSCLE STRENGTH 

Modified from The Medical Research Council (MRC) scale 

NAME: HOS. NO. DATE: 

0= NO MOVEMENT 
1= PALPABLE CONTRACTION, BUT NO VISIBLE MOVEMENT 
2= MOVEMENT BUT ONLY WITH GRAVITY ELIMINATED 
3= MOVEMENT AGAINST GRAVITY 
4= MOVEMENT AGAINST RESISTANCE, BUT WEAKER THAN OTHER 

SIDE 
5= NORMAL POWER 

RIGHT SIDE 

ANKLE: FLEX 
EXT 

KNEE: FLEX 
EXT 

HIP: FLEX 
EXT 

LEFT SIDE 

FLEX 
OCT 

FLEX 
EXT 

FLEX 
EXT 

COMMENTS: (spasticity, pain, stiffness, etc. ) 
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Results from the muscle test (scale 0- 5) 

Experimental group: 

ANKLE KNEE HIP 

D01 1-2/2-3 3+/3+ 2-3/1-2 

D02 2/2+ 3+/3 3-4 / 2-3 

D03 2-3 /3 3- / 2-3 2/2 

D04 2-3 /4 2- / 2-3 2-3 / 2+ 

D05 0/0 3/2-3 3-4/3-4 

D06 2+ / 3-4 3-4 /4 3-4 / 3-4 

D07 2/2 3/3- 3-4/3- 

D08 1/ 1-2 2-3 /2 2-3 /3 

D09 0/0 1 /1 2/1-2 

D10 1-2/0 1-2/0+ 2/0-1 

D11 0+/0+ 1 /1 4/4 

Average 1.5/1.7 2.2/2.3 2.9/2.5 
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Results from the muscle test (scale 0- 5) 

Control group: 

ANKLE KNEE HIP 

C01 3-4/3- 4/4 4/4 

C02 3+/3+ 3-4 /4 4-5 /3 

C03 2+ / 3-4 3-4 /4 3-4 / 3-4 

C04 3/3 4-5 / 4-5 3-4 / 4-5 

C05 2-3/4 4/4 4/3 

C06 0/1 2/2+ 4/2+ 

C07 1+/2 3+ / 4- 3-4 / 4-5 

C08 3+/3+ 3/2+ 3/ 3-4 

C09 4/2+ 3- / 3- 5/3+ 

C10 1-2/1-2 2/3+ 3/2 

C11 2+/3- 3/2+ 2/+ 

Average 2.3/2.7 3.3/3.4 3.6/3.1 
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GAIT EVALUATION 

NAME: DOB: Hos No: 
ADDRESS: 

TEL: 

PHYSIO/OT: 

DIAGNOSIS: 

STANDING ABILITY: 

WALKING ABILITY: 

348 



DAFO project ... 

STANCE PHASE: ANKLE KNEE HIP TRUNK 

INITIAL 
CONTACT/ 
(IC) 

LOADING 
RESPONCE/ 
(LR) 

MID-STANCE/ 
(MST) 

TERMINAL 
STANCE/ 
(TST) 

PRE-SWING! 
(PS) 

SWING PHASE: ANKLE KNEE HIP TRUNK 

INITIAL SWING 

MID-SWING 

TERMINAL-SWING 
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APPENDIX IV 

A 3.1 Formulae used to extract dependent measures from force and spectral data as 
described by McClenaghan et. a/. (1995) 

fk=k/T, k=O, N/2 

N/2 
fkSk 

finea. 
n - 

kN/2 

Sk 
k=1 

fsd _' 

N/2 
I (fk - finean)2Sk 
k=1 

N/2 
ISk 
k=1 

N/2 N/2 N/2 N+1 (logSk logfk) - logfk logSk 2 k=1 k=1 k=1 
s= 

2 
N+1 YN/2 

N/2 

, 
109'-fk) - Ylogfk 

2 k=1 k=! 

Symbol Description Unit of measure 
N Number of elements in 

force vector (512) 
count 

Fk Force vector (m-I and 
a-p) 

Hz 

fk frequency Hz 

Sk Power spectrum '7/Hz 

fmean Centroid frequency Hz 
fsd Frequency dispersion Hz 

S Slope 
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