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Abstract

Texture analysis plays an important role in image analysis and pattern recognition. Also
feature extraction is one of the most important tasks for efficient and accurate image
retrieval purpose. This work concerns the analysis of textures and feature extraction.
It deals with textures which are regularly shaped and sampled, irregularly sampled,
and irregularly shaped. The Trace transform is used to extract thousands of features
which can be investigated to identify those which are most relevant to the task.
Also texture is widely used in content based image retrieval and there have been a
number of studies over the years to establish which features are perceptually significant.
However it is still difficult to retrieve reliably images that the human user would agree
that are similar. In this work perceptual grouping and finding the most related features
to human texture ranking are discussed. The results of using the Trace transform are
compared with 10 other methods mainly based on Co-occurrence matrices and the Sum
and difference histograms.
Most image processing techniques assume that the image is represented by a rectangular
grid of sampling points. This, however, need not be the case. The regularity of sampling
is particularly important for texture analysis, where the relative spatial arrangement
of the pixels is of paramount importance. In this work we investigate the way of using
the Trace transform to recognise textures from irregularly sampled data. The Hough
transform is used as an interface that allows us to identify tracing lines in the image
and normalise convolution allows us to deal with the irregularly placed samples along
the tracing lines in order to compute the trace functionals.
In all cases we investigate and develop the use of the Trace transform and its functionals.
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Chapter 1

Introduction

Most of what we get as data from the world comes from our eyes. This data easily

are being classified regardless of their sizes, directions and locations and other changes

like their irregular shapes. Also, the brain can recognise images, even when only a few

pixels of them are shown. There are many works trying to do this kind of operation

and recognition automatically [87, 68, 55, 19, 32]. The results show that it is possible

to improve this kind of machine recognition. Here we try to find and develop a method

by which we can recognise regular and irregular sampling textures as well as irregularly

shaped textures [21]. It is interesting because we may. find a due of how the human

brain works in finding similarity [78] between textures.

1.1 Motivation

The wealth of objects around us requires a wealth of descriptors. It is very unlikely that

a few characteristics measured from the images of these objects will suffice to allow us

to discriminate all objects we see. And yet our brain recognises thousands of objects,

working mostly at the sub-conscious level. That is the reason knowledge engineering is

very difficult: it is very hard to identify the characteristics, which allow us to identify

easily so many different faces, objects, materials, textures etc. Restricting ourselves,

therefore, in computer vision to features that we can consciously identify as characteris-

ing our cognition, excludes the vast number of features that our sub-conscious uses and

1



2 Chapter 1. Introduction

which we cannot usually identify. We may, however, replace the mechanism of our sub-

conscious with a Mathematical tool that allows us to construct thousands of features

that do not have physical or other meaning: we may use the Trace transform, which

is an alternative image representation and from which we can construct the so called

triple features [36]. The Trace transform is a generalisation of the Radon transform

[79] that allows one to construct image features that do not necessarily have meaning

in terms of human perception, but they measure different image characteristics. The

ability of producing thousands of features from an image allows one to be selective as

to which are appropriate for a particular task. This task may be any kind of pattern

recognition like face recognition [87], finger print recognition [32], character recognition

(OCR) [38, 19] etc.

On the other hand, most image processing techniques assume that the image is rep-

resented by a rectangular grid of sampling points. This, however, need not be the

case. For example, the human eye has its receptors distributed in an irregular pat-

tern. The regularity of sampling is particularly important for texture analysis, where

the relative spatial arrangement of the pixels is of paramount importance. For this

purpose we use the Trace transform [36]. The Trace transform operates along straight

lines criss-crossing the image. There is some physiological evidence to indicate that

the human eye performs a similar scanning, known as the "tremor" of the eye [15],

being performed with 40-120 cycles per second and amplitude of about 1 degree. Over

such short periods of time, the receptors in the human eye scan along straight lines.

Although it is debatable, it has been demonstrated that if the tremor is suppressed, the

person cannot see [89]. The eye, therefore, looks like a special device that may perform

a Trace transform of the viewed scene, in the fovea area.

Finally, it is not possible to give linguistic names to all features we use to identify the

different patterns around us. A lot of such features might be computed in the subcon-

scious level without the viewer even being aware of what it is that makes a pattern

distinct from all other patterns. We believe, therefore, that if one wishes to develop a

system that imitates the human ranking of textures, all one needs to do is to compute

thousands of features from the textures and then perform feature selection that allows

one to choose those features that produce results that correlate with the human rank-



1.2. Approaches us~d here 3

mg. The Trace transform is a relatively new tool in image processing that allows one

to compute thousands of features from an image, which with the appropriate choice of

the functionals used, can be made to be rotation, translation and scale invariant [66].

We then shall modify the scheme to select those features, which allow the classifier to

imitate the ranking of human subjects and identify the features, which achieve that,

without any prejudice on the nature of those features. This is a form of reverse engi-

neering the human vision system in a way that is not restricted by what the subject

can consciously identify as a feature he/she uses to classify a texture.

For all of these reasons, we investigate and develop in this thesis, the Trace trans-

form to. be used with regularly sampled data, irregularly sampled data and irregularly

shaped data and compare the results with the benchmarks of this field, which are the

Co-occurrence matrix method [23] and the Sum and difference histograms.

1.2 Approaches used here

For regularly sampled data we are simply trying to construct many features, each of

which captures some aspect of the image. We then use a simple form of training that

allows us to give relative importance to each feature with respect to the task we have.

In the specific example presented, the task in question is texture discrimination.

One of the most well established methods for texture discrimination is based on the use

of Co-occurrence matrices, and in particular on the use of features extracted from them

[26]. The Co-occurrence matrix captures the second order statistics of a stationary tex-

ture and computes some quantities from them that have perceptual meaning: contrast,

homogeneity, etc. As Co-occurrence matrices are considered by many a benchmark

for texture analysis [2, 14, 53], we are going to use them here to discriminate textures

from the Brodatz album [29] and compare their performance with the results produced

by the Trace transform method. Like [56, 46, 7], we used all textures in the Brodatz

album.

After that, we present a texture classification scheme based on features constructed

from the Trace transform so that it ranks the textures according to human visual per-

ception. The system is trained using perceptual classes created by 11 subjects. The
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selected features are then used to classify a totally different set of textures.

Then for irregularly sampled data, to be able to apply the Trace transform, we need

an intermediate step, which will lead from the irregularly distributed sample points to

straight lines. Such a mechanism is provided by the Hough transform [74]. To demon-

strate our ideas, we first create an irregular pattern of sampling points using three

methods of distribution for random points:

• Gaussian distribution [54]

• Log-polar model [73]

• Retinal distribution [15]

This way we can represent our images by a collection of sample points. which are

densely distributed towards the centre, and sparsely distributed in the periphery. Then

we use the Hough transform to identify sets of pixels that constitute straight lines.

Each identified line can be used as a tracing line in the Trace transform. So we can

classify these sets of data after extracting features by the Trace transform. Finally we

use irregularly shaped masks, to make irregularly shaped textured regions from the

Brodatz album [5], to be analysed by the Trace transform. In this case we again adapt

the method to be suitable for this purpose.

1.3 Structure of the thesis

In chapter 2 we describe some methods used for texture recognition and perceptual

grouping. Chapter 3 explains the Trace transform in detail and shows how this method

can be used to produce features invariant to scaling. shifting and rotation. In chapter 4,

first we use the Brodatz album to investigate which of the 12 methods we implemented.

mainly based on the Co-occurrence matrix, can classify the textures better. Then we try

to use these methods for perceptual grouping of textures. Chapter 5 is concerned with

the recognition of irregularly sampled data. First we generate sampling masks by using

three kinds of distributions: the Gaussian distribution, Log-polar and Retinal model.

After that we use the Hough transform as an interface that allows us to identify tracing
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lines in the image. Normalised convolution [41] allows us to deal with the irregularly

placed samples along the tracing lines in order to compute the trace functionals, Finally

we obtain the results and compare them with the results of using the Trace transform

in conjunction with regularly sampled data. Irregularly shaped textured regions are

created in chapter 6 and classified by the Trace transform after adapting it to remove

its shape recognition capability. Finally in chapter 7 we present our conclusions and

future work.

1.4 Thesis achievements

• We demonstrated that features could be selected from among those produced by

the Trace transform appropriate for ranking textures like human do, much better

than by the other methods discussed here.

• We demonstrated that it is possible to recognise textures from irregularly sampled

data.

• W() demonstrated that textures can be recognised from irregularly shaped sam-

ples.

• We demonstrated the usefulness of the Trace transform in discriminating textures

by extracting thousands of features.
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Chapter 2

Literature survey on texture

classification

2.1 Introduction

Texture means the repetition of regular patterns of pixels or as in [76] is something

consisting of mutually related elements. Some example textures are shown in Figure

2.1. People usually describe texture as fine, coarse, grained, smooth, etc., i.e. they use

qualitative terminology. This implies that some more precise features must be defined

to make machine recognition possible. Such features can be found in the tone and

structure of a texture [25]. Tone is based mostly on pixel intensity properties in the

primitive, while structure is the spatial relationship between primitives. Each pixel can

be characterised by its location and tonal properties. A texture primitive is a set of

pixels with some tonal and/or regional property, and can be described by its average

intensity, maximum intensity, size, shape, etc. The spatial relationship of primitives

can be random, or they may be pairwise dependent, or some number of primitives can

be mutually dependent. Image texture is then described by the number and types of

primitives and by their relationship. Figure 2.2 shows a texture and its primitive pat-

tern. Leu [47] suggested a method to calculate the periodicity of a texture which can

be useful for finding the primitive pattern.

Automatic image analysis results in two fundamentally different approaches to texture

7
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(a) (b) (c)

Figure 2.1: Three samples of different textures. It is clear in some of them that some

primitive pattern is repeated regularly.

(a)
(b)

Figure 2.2: This figure shows a texture and its primitive pattern (Texel) in magnifica-

tion.

analysis: Generating parameters to characterise the spatial distribution of grey levels

in a texture, the so called statistical approach. Using Co-occurrence matrix is one

solution of this approach, which will be discussed more in section 2.2.1.2. The second

approach is the structural approach. It analyses a visual scene in terms of the structure

of the texture [90J. In this approach we have two concepts: some primitive pattern of

one or more pixels exists, and this primitive pattern is repeated at partially predictable

intervals [51J.

There are the following main issues in texture analysis:

1- Having a textured region, find its class.
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2- Having a textured region, find a model for it.

3- Having an image which contains several textured areas, find the different regions.

Here we work on issue one, and in two ways: first, we review methods for texture

discrimination, and then we review the efforts that have been done for perceptual

grouping. Our method, which is using the Trace transform to classify textures, is

neither a statistical nor a structural approach. It is a new method, which generates

features which characterise a particular texture.

2.2 Review on texture discrimination

As we said there are two fundamentally different approaches to texture analysis: Sta-

tistical and syntactic. Next we review the most important methods in each category.

2.2.1 Statistical Approaches to Texture Analysis

In statistical texture description, each texture is described by a feature vector of prop-

erties which is a point in a feature space. The aim is to find a decision rule to assign a

texture to some specific class.

2.2.1.1 Spatial Frequencies Method

A large group of texture recognition methods is based on measuring spatial frequen-

cies. One of them is the autocorrelation function of a texture. Consider two copies

of an image printed on transparencies. If we put one of them on the top of the other

and slowly shift it and measure the average light transmitted through the overlapping

region, a graph of these measurements as a function of the shifting vector (x, y) and

normalised with respect to the (0,0) translation, depicts the two-dimensional autocor-

relation function of the image.

In this method each pixel is a primitive texture element and the primitive property is its

grey-level. Texture spatial organisation is described by the correlation coefficient that

evaluates linear spatial relationships between primitives. Small primitives act exactly in
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the opposite way of large primitives which make the autocorrelation function decrease

slowly with increasing distance. Equation 2.1 shows how the autocorrelation coefficient

can be calculated.

",M-p ",N-q f(' ')f(' . )C ( ) _ MN ui=l uj=l . 1-, J 'l+ p, J + q
ff p, q - (M - p)(N - q) l:!~1l:j:1 j2(i, j) (2.1)

where f(i,j) is the image grey value, (p,q) is the relative shift between two pixels, the

first of which is at position (i, j) and M, N are the image dimensions.

2.2.1.2 Co-occurrence Matrix

Given an image I(x,y) we define the Co-occurrence matrix ScI.B(i.j), each clement of

which is the number of times grey level i and grey level j are found in relative distance

d and relative orientation e. So, a pair of pixels (:r1' yd and (:1:2, Y2) contribute to

element SrI.B(i, j) if:

(2.2)

and

:1:2 = :1:1 + d cos e, Y2 = Y1 + d sin e (2.3)

where f (:1:, y) is the grey level at position (:1:, y) of image I, cl is the distance between

two pixels of the image and e is the angle between the line joining the two pixels with

the horizontal line [51]. It is possible that we may not wish to characterise a texture

using directional information. In that case we construct the rotationally invariant co-

occurrence matrix by considering pairs of points at a particular distance from each

other, irrespective of orientation e. Let us explain this, with an example. Table 2.1

shows a grey level image and tables 2.2 and 2.3 flag the pixels that are at distance

d = 2 and d = 3 from the pixel marked with X. When we compute the rotationally

invariant co-occurrence matrix, we scan the image from left to right and from top to

bottom, to identify all pairs of points that are at distance d from each other. However,

we must count each pair only once. So, when we scan the image we use the masks of
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1 1 5 5 7 4

1 2 5 5 7 2

2 1 3 4 7 1

1 1 5 5 7 1

5 3 5 5 3 1

Table 2.1: This is an example grey level image.

0 1 1 1 0

1 0 0 0 1

1 0 X 0 1

1 0 0 0 1

0 1 1 1 0

Table 2.2: The pixels marked with 1 are at distance 2 from the pixel marked with X.

Only elements ill bold are included in the mask, for avoiding repetition.

tables 2.2 and 2.3, but pair the central pixel only with the pixels marked with bold 1.

Now we describe the algorithm of building the co-occurrence matrix.

First we create a square matrix of size G by G where G is the number of distinct grey

levels in the image, with zero elements. For this example G = 8. Then we begin from

the first pixel of image located at (1, 1) and use the corresponding mask to see which

pixels must be paired with it. Table 2.4 marks the pixels which will be paired with

pixel (1,1) for the mask with d = 3.

0 0 1 1 1 0 0

0 1 0 0 0 1 0

1 0 0 0 0 0 1

1 0 0 X 0 0 1

1 0 0 0 0 0 1

0 1 0 0 0 1 0

0 0 1 1 1 0 0

Table 2.3: The pixels marked with 1 arc at distance 3 from the pixel marked with X.
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1 0 0 5 0 0

0 0 0 5 0 0

0 0 3 0 0 0

1 1 0 0 0 0

0 0 0 0 0 0

Table 2.4: Using the distance mask with d = 3 on our image for the first pixel

I Grey level I 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

0 0 0 0 0 0 0 0 0

1 0 4 0 3 2 12 0 5

2 0 1 0 3 1 6 0 2

3 0 2 0 2 0 1 0 0

4 0 3 0 1 1 1 0 1

5 0 11 4 2 1 10 0 3

6 0 0 0 0 0 0 0 0

7 0 4 1 3 0 4 0 1

Table 2.5: The co-occurrence matrix of our image (Table 2.1) for cl = 3.

Then we increase the value of the co-occurrence matrix at the corresponding position

indicated by the pair of the grey levels. For example the first pair is (1,5), 80 we add 1

to the value of element (1,5) of the co-occurrence matrix, and so on for element (1,5).

(1,3), (1,1) and again (1,1).

Then we repeat all steps again for the next pixel and continue this process until all

pixels of the image are processed.

Finally we have the square matrix shown in table 2.5.

From each co-occurrence matrix we compute the following 5 features:

• Energy:

G-l G-l

I: I: P(i, j)2
i=O i=»

(2.4)
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• Entropy:

0-10-1

- L LPCi,j)logP(i,j)
i=O j=O

(2.5)

• Contrast:
0-10-1

L LCi - j)2P(i,j)
i=O j=O

(2.6)

• Correlation:

(2.7)

where

G-l 0-1

Il,? =L iL PU,j)
i=O j=O

0-1 0-1

/I,y =L j L P(i,j)
j=O i=O

(2.8)

0-1 0-1

o ; =LU - Il.1')2L PU, j)
0-1 0-1

ay =L (j - Ily)2 L P(i, j) (2.9)
i=O j=O j=O i=O

• Homogeneity:

G-I0-1 P(' ')
'/"J

~ ~ 1+ Ii-jl
(2.10)

where P( i, j) is the fraction of pairs of pixels that are at the particular distance d from

each other and one of them has grey value i while the other has grey value j.

These features can he used to characterise the texture. Co-occurrence matrices give very

good results in discrimination between textures. But, the method is computationally

expensive. A fast algorithm for it is given in [4, 10, 11].

2.2.1.3 The Sum and Difference Histograms Method

The sum and difference of two random variables with the same variances can be the

principal axes of their associated joint probability density function, So, the Sum and

Difference histogram can be a good alternative of the co-occurrence matrix method
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for texture recognition. It runs faster and needs less memory than the co-occurrence

method. In [84J it is shown that the sum and difference define the principal axes of the

second-order PF (probability function) of a stationary process and can be estimated

directly from the image, so it is suggested to use them instead of the co-occurrence

matrix method.

Here we find the number of pairs with the sum of their grey levels equal to i and the

difference of their grey levels equal to i, exactly as we have done in the calculation of

the co-occurrence matrix where we had to find the number of pairs with grey level i

and j.

The normalised sum and differences histograms are:

P (i) = hs(i).
B N ' (i = 2, ... , 2G - 2) (2.11)

D ( .) hd(j)
.rd J =rr:

where h8(i) is the sum histogram, hd(j) is the difference histogram, Ps(i) is the nor-

(j = -G + 1, ... ,G - 1) (2.12)

malised sum histogram, Pd(j) is the normalised difference histogram of our image and

The normalised histograms play the role of probability density functions. So, if we

assume uncorrelatedness of the sum and difference probability density functions, we

can estimate the second order probability density function, (i.e. normalised entries of

the co-occurrence matrix) by the multiplication of:

, . '. (i+j i-j)P.s(z)Pd(y) = P -2-' -2- (2.13)

where P(~, Si) corresponds to P(i,j) in formulae 2.4 to 2.10. This simplification

makes the calculation faster and easier as instead of working with matrices we work

with ID histograms. In [6, 21, 30J are examples of using sum and difference histograms

in comparison with other methods.

2.2.1.4 Edge Frequency

The comparison of edge frequencies in texture can be used as a method for texture

recognition. The distance-dependent texture description function g( d) can be computed
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for any sub-image f defined in a neighbourhood for variable distance d:

g(d) = IfU,j) - f(i + d,j)1 + If(i,j) - f(i - d,j)1

+lfU,j) - f(i,j + d)1 + If(i1.7) - f(i,j - d)1 (2.14)

So we must compute a gradient g(d) for all pixels of the texture and then evaluate

texture features as average values of this gradient. Several texture properties can be

derived from first-order and second-order statistics of edge distributions like:

Coarseness: The finer the texture, the higher is the number of edges present in the

texture edge image.

Contrast: Large edge magnitude is a sign for high contrast textures.

Randomness may be measured as entropy of the edge magnitude histogram, and so on.

Several other properties may be derived from first-order and second-order statistics of

edge distributions [83].

2.2.1.5 Wavelet based Methods

III the wavelet transform the time information of the signal is not completely lost and

the signal is represented in a two-dimensional time-frequency space. This transform is

a relatively new technique for studying signals, and has an edge over the conventional

transform viz. Fourier transforms etc. The bases for this transform are finite length

waves called wavelets, hence the name. The following is the general form of the basic

two-dimensional wavelet [75]:

1 (x - b,1' Y - by)
V)a,b.",by(:Z:,y) = -I IV) --,--

a a a
(2.15)

where 1/;(:1:, y) is a suitable function called the mother wavelet. We first select a suitable

mother wavelet, usually by experimentation, and then the input signal is finitely win-

dowed and cross-correlated with stretched and scaled versions of this mother wavelet.

Wisely selecting the wavelet shape so as to suit the signal being studied is very impor-

tant. By decomposition of the signals in terms of wavelets, we can extract features that
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can be used to discriminate among different textures. For example in [75J the wavelet

decomposition is used to obtain 10 different sets of coefficients i.e. three (vertical, hor-

izontal and diagonal) coefficients at each of the three levels of wavelet decomposition

and the low pass coefficient at the third level of decomposition. Then they used mean

and variance of each of these vectors as features to classify the textures with some

classifier. Some other examples of using wavelets in texture classification can be found

in [43, 70, 69J.

Some other methods are: Law's texture features [45J, fractal based features [57, 22J,

primitive length texture features [18], Markov Random field parameters [39, 9J, multi

channel filtering features [71], support vector machines [49], boolean model [20J, local

Fourier transform [92J and adaptive Gabor filtering [8, 52, 80J.

2.2.2 Syntactic approaches to texture Analysis

The idea that textures consist of primitive patterns located in almost regular relation-

ships is the basis of syntactic texture description models. Primitive description and

rules of primitive placement must be determined to describe a texture. One of the

most efficient ways to describe the structure of primitive relationships is using a gram-

mar which shows how to build a texture from primitives by applying transformation

rules to a limited set of symbols, which represent the texture primitives. In the real

world it is difficult to find strict rules and we must use variable rules incorporated into

the description grammars. We discuss here as an example a chain grammar. Other

grammars suitable for texture description like tree, matrix and graph grammars can be

found in [85J.

2.2.2.1 Shape Chain Grammar

This grammar is the simplest one that can be used for texture description. First we

begin with a starting symbol, then the application of transform rules and generating

processes continues until no further transform rule can be applied.

Figure 6.1 shows how by using such a grammar we can recognise a texture (Figure 2.4).

Vn is a set of non-terminal symbols, and lit is a set of terminal symbols, R is a set of
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{o } R: G 0
V =
t G 00>-

V= {G } G "> CGn

G G CQs =

Figure 2.3: Grammar generating hexagonal textures. Picture taken from [76].

rules and S is the start symbol. The rules of the grammar are shown in figure 6.1. As

we can see according to this grammar, the pattern shown in figure 2.4a is acceptable

and the pattern shown in figure 2.4b is not, because by the set of rules R in figure 6.1

we can build pattern 2.4(a) hut we can not build pattern 2.4(b).

Figure 2.4: Hexagonal textures: (a) accepted (b) rejected, because by the set ofrules R

ill figure 6.1 we can build pattern (a) but we can not build pattern (b). Picture taken

from [76].
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2.3 Perceptual grouping

Texture is an important visual feature for computer vision tasks. Texture similarity in

many applications such as image retrieval and computer image understanding, should

be measured in a manner that is invariant to texture scale and orientation, as well as

consistent with human perception. Although there exist scale and orientation invariant

texture features and similarity measures [12, 24, 81], they are not necessarily perceptu-

ally consistent[61]. They are statistical methods (e.g., convolution filters that measure

variance, inertia, entropy and energy) and perceptual techniques (e.g., identifying an

underlying direction, orientation and regularity[72].

Different researchers used different perceptual features as well as different methods to

implement them. Abbadeni et al [1] presented a new method to estimate coarseness,

contrast and direction, by using the auto covariance function. Healy and Enns [27],

used height, density and regularity based on the results from computer graphics, com-

puter vision and cognitive psychology which have identified these characteristics as

playing important role in the formation of perceptual texture patterns. They showed

the effectiveness of their technique by applying it to a real-word visualisation environ-

ment: tracking typhoon activities in southeast Asia, and analysing ocean conditions

in the northern Pacific. Iqbal and Aggarwal [31] used perceptual grouping for image

structure extraction for both retrieval and classification. They extracted the following

features hierarchically in an unconstrained environment, i.e., with no constraints on the

viewing angle and depth, using the approach detailed in [31]: line segments, larger lin-

ear lines, co-terminations, "L" junctions, "U" junctions, parallel lines, parallel groups

and polygons. They used perceptual grouping rules of similarity, continuity, paral-

lelism and closure to extract these features. Long and Leow [50] presented a hybrid

method, using a convolutional neural network and an SVM to perform the invariant

and perceptual mapping. Hoogs et al [28] used a method of analysing macro textures

by using perceptual observables. The typical geometric Gestalt [59] grouping criteria

such as proximity and parallelism are extended with descriptive measures of topology

and photometry enabled by region neighbourhood analysis. Orrite et al [58] proposed

a novel approach for perceptual grouping that takes into account the sequential order
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in the application of the different mechanisms for the grouping of primitives, so that, it

changes in accordance to the relative importance of the perceptual mechanisms in each

particular case. The use of perceptual organisation allowed Yow and Cipolla [91] to

propose a face detection framework that groups image features into meaningful entities.

Johansson et al [33] presented a new method to detect rotational symmetries, which

describes complex curvature such as corners, circles, star and spiral patterns. Picard

and Kabir [67] tried to find similar patterns in large image database and Payne and

Stonham [63], and [62] showed that in general image content-based retrieval methods

do not match human perception well.

Like as some others, we believe that it is not possible to give linguistic names to all

features we use to identify the different patterns around us. A lot of such features are

computed in the subconscious level without the viewer even being aware of what it is

that makes a pattern distinct from all other patterns. We believe, therefore, that if one

wishes to develop a system that imitates the human ranking of textures, all one needs

to do is to compute thousands of features from the textures and then perform feature

selection that allows one to chose those features that produce results that correlate with

the human ranking. The Trace transform is a relatively new tool in image precessing

that allows one to compute thousands of features from an image, which with the appro-

priate choice of the functionals used, can be made to be rotation, translation and scale

invariant [66]. On the other hand, Co-occurrence matrices also allow the calculation

of thousands of features, if one uses as features the elements of the matrix themselves

[44]. In the sections that follow we shall use both perceptual-type features extracted

from the co-occurrence matrix and features constructed from the Trace transform and

the elements of the co-occurrence matrix to perform texture classification. We then

shall modify the scheme to select those features which allow the classifier to imitate

the ranking of human subjects and identify the features which achieve that, without

any prejudice on the nature of those features. This is a form of reverse engineering the

human vision system in a way that is not restricted by what the subject can consciously

identify as a feature he/she uses to classify a texture.
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Chapter 3

Trace Transform

3.1 Introduction

Searching for an image between a limited number of images is possible for one person,

but when the number of images increases, the task gradually become impossible. If we

use a computer to assist us, the task is very different from that of searching a word

in a huge number of pages of data. The latter can be done easily by computer. For

the former task however, the computer has difficulties; it can not find two copies of

the same image with small differences, unless we can tell it somehow to ignore that

difference and look for some similarities. Figure 3.1 shows two images with a small

difference. Our brain can put both of them in the same class, but how can we make the

computer to do the same? There are several ways to extract some features from images

which are similar because they belong to the same class. We shall explain one of them

based on the so called Trace transform, and we shall show that it can be used so that

rotation, translation and also scaling of an image does not affect the features which are

extracted. Logically, if we consider one image and all its rotations and extract a feature

from them, there is no reason to expect different. results for differently rotated versions

of the image. Figure 3.2 shows one image and its rotated version by 20 degrees. If we

define a process on these two images which considers all rotations, it is clear that the

result should be the same for both images. Figure Al can fit figure A2 after 20 degrees

of rotation and figure A2 can be fitted on Al after 340 degrees of rotation. This means

21
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A1 A2

Figure 3.1: Our brain can easily realize that these two textures belong to the same

class, but how can a computer do it?

that the features computed on the two images must be the same. We shall sec that

when computing the Trace transform, we consider all rotations of an image. that is

why by using a special functional applied to this transformation, we can remove the

variation due to rotation and identify the original image and its rotated version as being

the same image. On the other hand, by normalising the images, or by normalising the

features and finding the ratio of two different features of the same image, we can remove

the effect of scale. Finally by using functionals invariant to shifting, we can make the

features be invariant to translation. The mathematical proof of this statement will be

shown in a subsequent section.

3.2 Overview of the production of features from the Trace

transform

3.2.1 Trace Matrix

Consider an image like A1 of figure 3.2. It has 232 rows and 330 columns, so the center

of this image is at 0(116,165). If we use this point as our polar coordinate centre

(figure 3.3), we can plot 360 lines crossing the center with one degree rotation from

each other. On the other hand, we can shift each line from its position (distance to
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A1 A2

A3 A4

Figure 3.2: By using the Trace transform with special functionals to compute features

that describe these images, we can remove dependence on rotation (A2), scaling (A3),

translation (A4) and we can easily put all of these four images in the same class.

center= 0) to a maximum position )1162 + 1652 = 202. We can define a functional

T computed from the image along each line and write the result in a new matrix at

position (P =distance to center.o =its angle with respect to the horizontal line). This

matrix is named Trace matrix, and as we mentioned, it has two dimensions, P and ¢.

Figure 3.4(b) shows the trace matrix of image 3.4(a) after using the integral function

along each line. It is clear that P is maximum for ¢ = 45,135,225,3150, because the

original image is square. Also P is minimum when ¢ = 0,90,180,2700•

Generally we have maximum value of P when:

¢ = len ± arctan ~, where:

a=length of the image

b=width of the image and

k; = 1,2
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and the minimum value of P is for:

¢ = ki, where:

k = 0,1,2,3

At this step we obtain the trace matrix, the size of which depends on the number of

50 100 150 200
Angle (oM

250 300 350

(a) (b)

Figure 3.4: (a) An original texture from the Brodatz album [29] and (b) its trace

transform computed with the first functional of table 1.

points we use to sample the angle of rotation and the distance between the tracing lines

used. For example, if the step in ¢ is ¢l, we have ::1° columns in our trace matrix, and

if the distance of two successive lines is d1, the number of rows of the trace matrix is:
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Emsu.l. . In the next step we convert this matrix to a row vector by using the so called(.1

diametrical functional.

3.2.2 Diameter Vector

Column n of the trace matrix is obtained by tracing the image with parallel lines at

an angle 1)n (Figure 3.5). So to ensure invariance to rotation, we should not treat

the columns of the Trace transform together, but we must first process each column,

separately. We process each column by using another functional, called diametric func-

On'" The angle of line with horizontal line

Figure 3.5: Column n of the trace matrix is obtained by looking the image at an angle

¢n.

tional. The size of the vector created this way is equal to the number of columns of the

Trace transform, which is the number of angles we used to create the Trace transform.

3.2.3 Construction of a Triple Feature

This is the last step. Here we find a number, the so called triple feature, which is

the result of using the so called circus functional on the vector produced after the

application of the diametric functional. Figure 3.6 shows one such vector. We plot it

in order to see how these numbers differ along the different directions of the image. As
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we can see this vector is periodic with period Jr. Because after rotating a line by Jr,

we will have the same line again. It is very important that the functional we apply in

this step is invariant to shift. Otherwise we will not have features invariant to rotation.

This is an image and its rotated version just differ by a shift of this vector.

DimT1(llerVeclm

j"4

!
~ IIJ

~
>'12

1
I

1
j

I j

".o~~200~~\l
"

Figure 3.6: This figure shows the vector produced from the Trace transform after the

application of the diametric functional. As we can see this vector is periodic with period

n, because after rotating a line by Jr we get the same line again.

3.2.4 Normalisation

In most cases, we need more than one feature to feed them to a classifier in order to

classify the objects correctly. So we define several functionals to be used as the Trace,

Diametrical and Circus functionals. For example Table 3.1, lists 31 functionals which

may be used for step one, Table 3.3 lists 10 functionals which may be used for step two

and table 3.4 shows 18 functionals which may be used for step three. Each combination

of these functionals can be used to produce a feature. The maximum number of features

which can be obtained from these functionals is: 31 x 10 x 18 = 5580 features. When we

want to combine these features together, features which take large values will dominate.

That is why we must normalise them and ensure that each feature takes values in a

certain range, for example [0 1]:

f t featurei-Mini
ea ureinorm = Maxi-Mini

Where:

M in, is the minimum value of the ith feature,
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Max, is the maximum value of the ith feature,

[eature, is the ith feature,

and f eatureinorm is the normalised version of the ith feature,

Rotation does not affect the result, since we consider lines along many orientations but

change in scale does. How can we remove the dependence on scale? We can do that by

normalising the features produced. We discuss this in the next section.

3.3 The Theory of Triple Feature Extraction

III this section we follow Kadyrov and Petrou [36, 34]. We suppose that our image is

subject to linear distortions: rotation, scaling and translation. We can consider that

the image remains the same but we change our coordinate system. Let us name the

original coordinate system Cl and the distored one C2. () is the angle of rotation,

1/-1 is the value of scaling and the translation vector is: [so cos 1/; So sin 1/;]. So if we

have image Fr(:I:, y) in coordinate system Cl, F2(Xd)) is constructed from Fr(x, y) by

rotation by (), scaling by 1/-1 and translation by [so cos 1/;So sin 1/;]. Because we assume

linear transformations, we can show [36] that a straight line with parameters (Paid, ¢old)

will be straight line in the new sytem, with parameters (p, ¢), such that:

¢old = ¢ - () (3.1 )

Paid = I/[p - So cos (1/;0- ¢)] (3.2)

told = I/[t - So sin(1/;o - ¢)] (3.3)

We collectively refer to all scanning lines in all directions by A. We know that in the

first step the Trace transform is a function g on A with trace functional T. It can be

written as:

g(F; Cl; ¢,p) = T(F(CI : 4),p, t)),

where F(Cl;¢,p,t) means the value of the trace functional along the line (¢,p) in Cl'

After using this function, we eliminate t, and the new image representation on A with

two coordinates ¢ and ]J is obtained.
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Number Functional

1

2 ,,\,N .
~i=O'I;l"i

3 j_"N (;r'-11I)2L...",,-o 1

N

4

5

6

i

8

9

10

11

12
13

14

15

16

Ii

18

19

20
21
22
23

,,\,N-1 I'" ',12~i=O ·1:,+1 - .1"

,,\,N -5,,\,5 1
~i=5 ~k=O 1;l"i-k - ;l'i+k

"\' N - 25 "\' 25 1
~i=25 ~k=O I;/:i-k - ;ri+k

Table 3.1: The trace functionals T used in the experiments. N is the total number of

points along the line and Xi is the ith sample along the tracing line. Continued ...
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Number

24

25
26
2i
28

29

30
31

Functional

Table 3.2: The trace functionals T used in the experiments. N is the total number of

points along the line and :Ci is the ith sample along the tracing line.

Number Functional

,\,N-4
1

4 6 ILi=O ;ri - ;1';+1 + ;1';+2 - 4;ri+3 + Xi+4

1 ~;fa'l·N ~"11 "';=0'<'1

2

3

4

5 ,\,N .
Li=O ix,

6

t
8 ,\,iY -1 I ILi=O ;Ci+l - .r;

9

10

Table 3.3: The diametric functionals P used in the experiments.
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Number Functional

1 2:N-11
I');=0 ;ri+l - T:-'''1

2 2:~~1 I;ri+l - :I:il

3 J2:N .)i=O :I:i

4 2:N .',i=O·1.,

5 Max~o:Z:i

6 Max~O;ri- Min~o:Z:i

7 i so that x, = M in~o;l:i

8 i so that :1:; = 111a.T~o;Z:i

9 i so that Xi = Jvlin~o;ri without first harmonic

10 i so that Xi = 111a.:Z:~a:ri without first harmonic

11 Amplitude of the first harmonic

12 Phase of the first harmonic

13 Amplitude of the second harmonic

14 Phase of the second harmonic

15 Amplitude of the third harmonic

16 Phase of the third harmonic

17 Amplitude of the fourth harmonic

18 Phase of the fourth harmonic

Table 3.4: The circus functionals <]) used in the experiments
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We define a triple feature with the help of two more functionals designated by letters

P and cl> and called diametrical and circus functionals, respectively. P is a functional

of the Trace transform function when it is considered as a function of the length of the

normal to the line only. 1> is a functional operating on the orientation variable after

the previous two operations have been performed. Thus, the triple feature IT is defined

as:

IT(F, Cd = cl>(P(T(F(C1; </l,p, t)))) (3.4)

We use 3.1, 3.2 and 3.3 to obtain:

IT(F. C2) = 1>(P(T(F(C1; </l - 0, lI[P - So cos(7jJo- </l)], lI[t - So sin(7jJo- </l)])))) (3.5)

We select T so that it is invariant to displacement, i.e T(~(t + b)) = T(~(t)) and also

obeys the property T(~(at)) = exT(a)T(~(t)) for a 2:: 0, So we have:

Again we can define P so that, it is invariant to displacement and has the property

that P(c~(p)) = 'Yp(c)P(~(p)). Then we have:

IT(F, C2) = 1>bp(exT(lI))(P(T(F(C1; </l - 0, lI[P - So cos(7jJo- </l)], t)))) (3.7)

and because of its scaling property and invariance to displacement we have:

(3.8)

Finally if cl> is invariant to displacement and also has the property cl> (c~ (</l)) = 'Y</>(c) cl> (~( </l)),

we can write:

(3.9)

It can be shown that for a functional E [36J ex=:(a) = a/'i=. and 'Y=:(c) = a>'=., so finally

we have:

(3.10)
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Here we have two ways to remove dependence on scaling and in both of them first we

must normalise the features: We may write:

(3.11)

where:

w = -.A<t>(/'i,T.AP + /'i,p)

If we take the wth root of both sides:

(3.12)

Or:

(3.13)

1- If we normalise the features as above and then find the ratio of two different features

of the same image, we shall produce a feature that does not depend on 1/, and is constant

for all images which belong to the same class, provided they differ from each other by

rotation, translation and scaling:

lIno1'1ni (F, C2)

lInol'mj (F, C2)

ITn01'1ni (F, Cd
lInol'mj (F, Cd (3.14)

So in this way we produce features that can be used to classify images which belong

to the same class. First we must find the ratio of two features of one image and then

compare it with the corresponding ratio of other images. If they have the same value,

we can put the two images in one class.

2- If we find the ratios of the values of the corresponding features computed from two

images, they must all be the same, equal to the scaling coefficient between the two

images. In other words, if we want to verify whether, for example images 1 and 2 are

of same class or not, we must find the ratios of all features of them, and check whether

they are the same.

IT/ta1'mi (F, C2)
lInoI'm; (F, Cl )

lInol'mj (F, C2)

lInol'mj (F, Cd (3.15)

3.4 Applications of the Trace Transform

The Trace transform can be used in many applications.



3.4. Applications of the Trace Ttensioixa 33

3.4.1 Two Dimensional Object Recognition

When we have a database of objects, and want to find a rotated and/or translated

and/or scaled one, we can use the Trace transform. For example in [36] Kadyrov and

Petrou used the Trace transform to find a fish between 94 images of several fish. In

such a case, the features extracted are important and can be unique for each object.

By simple combination of a collection of these features, it is possible to classify any

object including affine version of it [37, 65].

~.,c:::-'

~.n
.,--~ 4~~'C

'"".~ ~4,.ln

Figure 3.7: Querying the database with the images in the first column produces the

answers in all other columns arranged in order of similarity. The values of the similarity

measure are given next to each object retrieved. Figure taken from [36].

3.4.2 Change Detection

By using all functionals of tables 1,2 and 3, we can produce 5580 features for any image.

We can check each one separately to see which of them best correlates with a particular
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phenomenon we wish to monitor. Kadyrov and Petrou in [36J used this approach to

detect the level of change in car park use.

3.4.3 Any Image Recognition

As we have seen, the Trace transform can be used to build a large number of features

which characterise an image. So it is quite logical to use this method in all cases, to

produce many features and then use a feature selection algorithm to identify the fea-

tures which are most appropriate to identify an image. So we can use this method for

face recognition [77J, finger print recognition, character recognition (OCR)[38J, etc [17J.

And also we can use this method in conjunction with sparse and irregularly sampled

data.



Chapter 4

Texture Classification with

thousands of features

4.1 Introduction

The wealth of objects around us requires a wealth of descriptors. It is very unlikely

that it few characteristics measured from the images of these objects will suffice to

allow us to discriminate all objects we see. And yet our brain recognises thousands

of objects, working mostly at the sub-conscious level. That is the reason knowledge

engineering is very difficult: it is very hard to identify the characteristics which allow us

to identify easily so many different faces, objects, materials, textures etc. Restricting

ourselves, therefore, in computer vision to features that we can consciously identify

as characterising our cognition, excludes the vast number of features that our sub-

conscious uses and which we cannot usually identify. We may, however, replace the

mechanism of our sub-conscious with a Mathematical tool that allows us to construct

thousands of features that do not have physical or other meaning: we may use the

Trace transform which is an alternative image representation and from which we can

construct the so called triple features [36]. In [36] it was shown how one can construct

such features invariant to rotation, translation and scaling, while in [35] it was shown

how to construct object signatures invariant to affine transforms. In this chapter we

are not trying to construct invariant features. Instead we are simply trying to construct

35
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many features, each of which captures some aspect of the image. We then train the

system to allow us to give relative importance to each feature with respect to the task we

have. In the specific example presented, the task in question is texture discrimination.

One of the most well established methods for texture discrimination is based on the

use of Co-occurrence matrices, and in particular on the use of features extracted from

them [26]. The Co-occurrence matrix captures the second order statistics of a station-

ary texture and computes some quantities from them that have perceptual meaning:

contrast, homogeneity, etc. As Co-occurrence matrices are considered by many a bench

mark for texture analysis, we are going to use them here to discriminate textures frorn

the Brodatz album [29] and compare their performance with the results produced by

the Trace transform method.

This chapter is organised as follows: In section 2 we present our methodology for texture

classification based on the trace transform. In sections 3 we present results from some

texture discrimination experiments. In section 4 we see how the Trace transform ca.n

be used for perceptual grouping. Finally in section 5 we present our conclusions.

4.2 Texture features from the trace transform

Using the triple feature construction method described in chapter 3, we call produce

many features that characterise an image. To demonstrate our ideas we consider a

database consisting of 112 images of texture from the Brodatz album, obtained from

[29] and shown in figures 4.1 to 4.5.

These images are 640 x 640 in size. From each image four sub-images were created

by dividing it into four quadrants. These sub-images are 320 x 320 pixels and they

constitute a database of 448 textures of 112 classes. Let us call the set of 112 different

textures made up from the top left quadrants, set T L, that made up from the top right

quadrants, set T R, that made up from the bottom left quadrants, set EL and that

made up from the bottom right quadrants set ER. We use two sets namely sets TR

and TL for training and the other sets for testing.

Let us consider a feature hdm computed by combining the kth trace functional, with
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(a) TI (b) T2 (c) T3 (cl) T4

(e) T5 (f) T6 (g) T7 (h) T8

(i) T9 (j) TIO (k) TU (I) TI2

(q) TI7 (r) TIS (s) TI9 (t) T20

(111) TI3 (n) TI4 (0) T15 (p) TI6

(u) T2I (v) T22 (w) T23 (x) T24

Figure 4.1: 112 textures of the Brodatz Album [29]. Continued ...
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(a) T25 (b) T26 (c) T27 (cl) T28

(e) T29 (f) T30 (g) T31 (h) T32

(i) T33 (j) T34 (k ) T35 (I) T36

(m) T37 (n) T38

(q) T41 (1') T42

(0) T39 (p) T40

(5) T43 (t) T44

i •• !.~1- ~
t
~

(u) T45 (v) T46 (w) T47 (x) T48

Figure 4.2: 112 textures of the Brodatz Album [29]. Continued ...
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(a) T49 (b) T50 (c) T51 (cl) T52

(i) T57 (j) T58 (k) T59 (I) T60

(e) T53 (f) T54 (g) T55 (h) T56

(m) T61 (11) T62 (0) T63 (p) T64

(q) T65 (r) T66 (5) T67 (t) T68

(u) T69 (v) T70 (w) T71 (x) T72

Figure 4.3: 112 textures of the Brodatz Album [29]. Continued ...
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(a) T73 (b) T74 (c) T75 (cl) T76

(e) T77 (f) T78 (g) T79 (h) T8D

(i) T81 (j) T82 (k) T83 (I) T84

(m) T85 (n) T86 (0) T87 (p) T88

(q) T89 (r) T9D (s) T91 (t) T92

(u) T93 (v) T94 (w) T95 (x) T96

Figure 4.4: 112 textures of the Brodatz Album [29]. Continued ...
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(a) T9? (b) T9S (c) T99 (d) TlOO

(e) TIOI (f) TI02 (g) TI03 (h) TI04

(i) TI05 (j) TI06 (1\) TIO? (1) TIOS

(m) TI09 (n ) TllO (0) Tlll (p) T1l2

Figure 4.5: 112 textures of the Brodatz Album [29].
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the lth diametrical functional and the mY' circus functional. Let us say that its value

for texture class c, and instantiation of this class s is denoted by ff..tm' Since we have

two instantiations of each class in our training set, one from set TLand oue from set

TB, s = 1 or s = 2. We compute the average value of this feature over all s = 1

substantiations of the training texture samples we have. (Note that it does not really

matter which instantiation we call s = 1 and which we call s = 2.):

N
1 1 " cl7nklm = NL fklm

c=l
(4.1)

where here N is the total number of texture classes.

We also compute the standard deviation of this feature over all classes:

1 Ns.« 7nl)2NL· kim - kim
c=l

(4.2)

A feature is useful in characterising textures, if its value is stable when the instantiation

of a texture changes. So we define an average stability measure for each feature and

scale it by the variance of the values of the feature over the whole database:

1
qklm = -1-'

(Jklm

N
1 "(fcl j'c2)2NL klm - klrn

c=l
(4.3)

The smaller qklm is, the better feature fklm is, We may set a threshold Q which will

allow us to give weights to the features:

{

Q - qklm

Wklm = 0
if qklm < Q,

(4.4)
otherwise

Finally, the "distance" dist between a test sample test and any reference sample ref

can be obtained by using:
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. ) _ " 1 I test re] Idietit.eei, ref = ~ Wklm-l - hlm - fklm
klm aklm

(4.5)

Note that as the value of Q increases, more features are included in the computation

of dist.

4.3 Experiments on texture recognition

To demonstrate our ideas we consider a database consisting of 112 images of texture

from the Brodatz album, obtained from [29] and shown in figures 4.1 to 4.5. These

images are 640 x 640 in size. From each image four sub-images were created by dividing

it into four quadrants. These sub-images are 320 x 320 pixels and they constitute a

database of 448 textures of 112 classes. Let us call the set of 112 different textures made

up from the top left quadrants, set T L, that made up from the top right quadrants, set

TR, that made up from the bottom left quadrants, set BL and that made up from the

bottom right quadrants set BR. We use two sets, namely sets TRand TL, for training

and the other sets for testing.

The tracing lines used were such that each batch of parallel lines consisted of lines 2

inter-pixel distances apart. Each line was sampled by parameter t., so that the sampling

points were also 2 inter-pixel distances apart. For each value of p, 20 different orien-

tations were used, ie the orientations of the lines with the same p differed by 18°. We

only considered the part of each image that was inside the maximum inscribed circle

in each 320 x 320 pixels square.

The significance of each feature was extracted from the training samples, and subse-

quently each one of the test samples was associated with the reference texture from

which the distance value computed by equation (4.5) was least.

Table 4.1 presents the results of this approach for identifying the correct class of a

texture as the most similar one, the second most similar one, the third most similar

one, the fourth most similar one, and beyond, presenting the numbers under the cor-

responding columns. All these numbers are out of 112, as we present the results of
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testing separately for each set of data. In all cases the reference set was the TL set of

images. Each row of results corresponds to a different choice of threshold Q. Note that

after a certain value of Q ( which is about 0.3) all features are used in the calculation

and the performance of the system stabilises.

The features computed from the Trace transform may also be used in a different way:

First we train the system, by for example, 30 textures and find all necessary parame-

ters for the distance formula, and then use all remaining textures for testing. So, this

method is almost an unsupervised texture classification method, as the system is called

to classify textures it has not encountered before. We call this method "Blind Trace

Transform" method (BTT) to distinguish it from the previous one which we call "Trace

Transform" method (TT). The results of BTT are shown in table 4.2.

Further, we apply the classification method described in section 4.2 using as features

those extracted by the following methods:

• Using the following 5 features obtained from the co-occurrence matrix, which have

some perceptual meaning. We call this method "Features from the Co-occurrence

Matrix" and denote it by FCM. These features are: Energy, Entropy, Contrast,

Correlation and Homogeneity which are defined as [26]. The results are in tables

4.3 and 4.4.

• Using all elements of the co-occurrence matrix as features in the distance formula.

We used here the co-occurrence matrix computed with 4-bit resolution (i.e. co-

occurrence matrix of size 16 x 16) to have to deal with fewer elements. We name

this method CM16. The results are in tables 4.5 to 4.7.

• We augment the set of features of the previous method by also including the 5

perceptual features extracted from it, to produce CM16+F. The results are in

tables 4.8 to 4.10.

• Using all the elements of the co-occurrence matrix computed with 8-bit resolution

(i.e. co-occurrence matrix of size 256 x 256). We call this method CM256. The

results are in table 4.11.

• We augment the previous method by adding the 5 extracted features from the
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co-occurrence matrix. This method is CM256+F. The results are in table 4.12.

• Using the 5 perceptual features extracted from the sum and difference histograms.

This method is called "Features from the Sum and Difference Histograms" or

FSDH [84]. The results are in table 4.13.

• Using all the elements of the sum and difference histograms computed with 4-bit

resolution as features in the distance formula. We call this method SDH16. The

results are in tables 4.14 to 4.16.

• We augment the previous method by adding to the elements of the histograms the

5 perceptual features extracted from them, and so we have method SDH16+F.

The results are in tables 4.17 to 4.19.

• Using as features all the elements of the sum and difference histograms computed

with 8-bit resolution. We call this method SDH256. The results are in table 4.20.

• We augment the previous method by adding the 5 extracted features from the

histograms. This method is SDH256+F. The results are in table 4.21.

Table 4.30 shows the best results of each one of the methods obtained as the value of

threshold Q and the value of distance for which the co-occurrence matrix was com-

puted, changed. We observe that methods which rely only on the use of perceptually

meaningful features (ie contrast, homogeneity etc) perform worse than the methods

which rely on the use of many features, even if these features have no perceptual mean-

ing. The best method of all is the one based on using all elements of the co-occurrence

matrix with 8 bit grey scale resolution. We note that BTT performs remarkably well

given that it is in practice an unsupervised method.
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Q Test Set BL II Test Set BR

1 I 2 I 3 I 4 I R II 1 I 2 I 3 I 4 I R

0.1 1 1 1 1 108 1 1 1 1 108

0.2 38 14 6 6 48 39 11 4 5 53

0.3 84 10 2 0 16 70 12 6 5 19

0.4 89 10 2 1 10 80 9 5 3 15

0.5 90 11 1 1 9 81 11 3 3 14

0.6 89 11 3 0 9 80 11 3 5 13

0.7 89 12 2 0 9 80 10 4 4 14

0.8 89 13 1 0 9 79 10 5 4 14

0.9 89 14 0 0 9 79 11 4 3 15

1.0 92 10 1 0 9 81 8 6 4 13

1.1 93 8 1 0 10 80 11 6 2 13

1.2 95 6 1 0 10 78 16 4 2 12

1.3 95 6 0 1 10 82 11 3 4 12

1.4 93 7 1 1 10 82 11 2 2 15

1.5 90 10 1 1 10 80 13 2 2 15

1.7 88 10 2 2 10 78 14 3 2 15

2.3 85 11 4 2 10 75 12 4 5 16

2.6 84 12 3 2 11 74 11 6 4 17

3.0 83 12 4 2 11 74 8 9 2 19

Table 4.1: Texture classification results using the trace transform method (TT). Under

the headings 1, 2, 3 and 4 we show how many times the correct texture appeared in

the first, second, third and fourth position of the returned answer, respectively. Under

heading R we show how many times it appeared in one of the remaining positions. The

results are shown for different values of threshold Q. All numbers are out of 112.
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Q II Test Set EL II Test Set ER

0.5 65 6 3 2 6 52 9 3 4 14

1.0 66 7 2 0 7 51 9 3 5 14

1.5 62 10 3 0 7 49 9 4 4 16

2.0 59 13 2 2 6 47 9 5 4 17

Table 4.2: Texture classification results using the blind trace transform method (BTT).

Under the headings 1, 2, 3 and 4 we show how many times the correct texture appeared

in the first, second, third and fourth position of the returned answer, respectively.

Under heading R we show how many times it appeared in one of the remaining positions.

The results are shown for different values of threshold Q. Here the total number of

testing set textures is 82 and the training set consists of completely different textures

from the testing set.
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Q Test Set BL Test Set BR

0.1 1 1 1 1 108 1 1 1 1 108

0.2 1 1 1 1 108 1 1 1 1 108

0.3 46 21 12 3 30 33 18 8 6 47

0.4 61 17 7 5 22 38 19 8 5 42

0.5 60 19 8 2 23 40 17 6 6 43

0.6 65 14 7 2 24 39 17 6 10 40

0.7 65 14 9 3 21 39 17 7 10 39

0.8 66 13 8 3 22 41 14 10 9 38

0.9 65 18 6 2 21 40 17 8 9 38

1.0 64 19 7 1 21 41 16 7 10 38

1.1 64 19 7 1 21 41 16 6 10 39

1.2 63 20 6 2 21 41 16 7 9 39

1.3 64 19 6 3 20 41 16 7 8 40

1.4 64 19 7 2 20 41 15 8 8 40

1.5 64 19 6 3 20 41 15 9 7 40

1.6 63 20 6 2 21 42 14 9 6 41

1.7 63 20 6 2 21 42 14 8 7 41

1.8 63 20 6 2 21 42 14 8 7 41

1.9 63 20 6 2 21 42 14 8 7 41

2.0 63 20 6 1 22 41 15 9 6 41

Table 4.3: Texture classification results using features extracted from the co-occurrence

matrix (FCM) constructed for d = 2. Under the headings 1, 2, 3 and 4 we show how

many times the correct texture appeared in the first, second, third and fourth position

of the returned answer, respectively. Under heading R we show how many times it

appeared in one of the remaining positions. The results are shown for different values

of threshold Q. All numbers are out of 112.
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Q 1/ Test Set EL II Test Set BR

R II 1 I 2 I 3 I 4 I R

0.1 1 1 1 1 108 1 1 1 1 108

0.2 1 1 1 1 108 1 1 1 1 108

0.3 43 21 13 6 29 33 17 8 9 45

0.4 58 15 10 4 25 39 15 7 9 42

0.5 59 18 10 4 21 39 19 7 3 44

0.6 59 20 9 4 20 39 21 6 4 42

0.7 60 18 10 5 19 42 18 4 7 41

0.8 60 18 10 4 20 42 17 9 6 38

0.9 60 17 10 5 20 42 18 8 6 38

1.0 60 17 9 5 21 42 17 8 7 38

1.1 60 18 8 5 21 42 17 8 8 37

1.2 61 17 8 5 21 42 17 8 7 38

1.3 62 16 8 6 20 42 17 8 7 38

1.4 62 16 8 6 20 42 17 8 7 38

1.5 63 15 8 6 20 42 16 8 8 38

1.6 64 14 8 6 20 43 15 8 8 38

1.7 64 14 8 6 20 43 15 8 8 38

1.8 64 14 8 6 20 44 14 8 8 38

1.9 64 14 8 6 20 44 14 8 8 38

2.0 65 13 8 7 19 44 14 8 8 38

Table 4.4: Texture classification results using features extracted from the CO-occurrence

matrix (FCM) constructed for d = 5. Under the headings 1, 2, 3 and 4 we show how

many times the correct texture appeared in the first, second, third and fourth position

of the returned answer, respectively. Under heading R we show how many times it

appeared in one of the remaining positions. The results are shown for different values

of threshold Q. All numbers are out of 112.
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I Distance I Q II Test Set EL II Test Set ER

I I
1 0.5 100 6 3 0 3 83 11 5 2 11

1 1 100 7 2 0 3 82 13 2 4 11

1 1.5 98 8 4 0 2 84 11 0 3 14

1 2 99 7 4 0 2 84 9 2 2 15

1 2.5 99 8 3 0 2 84 8 3 2 15

2 0.5 100 9 0 0 3 79 9 11 3 10

2 1 101 5 3 0 3 82 11 4 1 14

2 1.5 101 5 3 0 3 79 13 3 4 13

2 2 100 6 3 0 3 79 12 3 3 15

2 2.5 99 7 3 0 3 77 13 4 3 15

3 0.5 100 7 2 0 3 75 13 6 3 15

3 1 101 6 1 1 3 77 13 5 2 15

3 1.5 99 6 2 2 3 73 15 6 2 16

3 2 98 7 2 1 4 71 14 8 2 17

3 2.5 98 7 2 1 4 70 14 9 2 17

4 0.5 101 6 1 1 3 72 17 5 2 16

4 1 99 8 1 1 3 74 16 5 2 15

4 1.5 97 8 3 1 3 69 18 6 3 16

4 2 97 7 4 0 4 69 16 9 2 16

4 2.5 96 7 5 0 4 67 18 7 3 17

Table 4.5: This table shows the results of using all elements of the co-occurrence matrix

as features in texture classification with 16 grey levels (CMI6), for distances 1 - 4. All

numbers are out of 112.
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I Distance I Q II Test Set EL II Test Set ER

I I
5 0.5 94 11 3 0 4 69 16 7 4 16

5 1 97 10 2 0 3 71 16 7 3 15

5 1.5 95 10 2 2 3 67 16 10 2 17

5 2 95 9 3 1 4 64 19 8 2 19

5 2.5 95 9 3 1 4 63 19 8 3 19

6 0.5 93 10 4 1 4 64 21 7 5 15

6 1 93 12 3 1 3 66 18 7 5 16

6 1.5 94 10 3 2 3 64 16 8 4 20

6 2 93 11 3 2 3 63 16 8 3 22

6 2.5 91 12 4 2 3 63 16 8 3 22

7 0.5 93 8 5 2 4 65 18 7 5 17

7 1 92 11 4 2 3 63 20 8 3 18

7 1.5 92 13 3 1 3 61 15 9 6 21

7 2 91 12 5 1 3 63 13 7 7 22

7 2.5 91 12 4 2 3 62 14 7 5 24

8 0.5 95 6 5 2 4 64 17 9 6 16

8 1 94 10 3 2 3 61 19 8 6 18

8 1.5 92 12 4 1 3 60 14 11 6 21

8 2 90 12 5 2 3 62 10 12 3 25

8 2.5 90 11 5 2 4 59 14 11 4 24

Table 4.6: This table shows the results of using all elements of the co-occurrence matrix

as features in texture classification with 16 grey levels (CM16), for distances 5 - 8. All

numbers are out of 112.
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I Distance I Q Test Set BL II Test Set BR

I I 1 I 2 I 3 I 4 I R II 1 I 2 I 3 I 4 I R

9 0.5 89 12 6 2 3 63 17 9 4 19

9 1 91 12 4 2 3 61 16 10 3 22

9 1.5 88 15 3 3 3 56 18 8 8 22

9 2 89 12 5 3 3 59 15 6 7 25

9 2.5 88 12 3 5 4 58 15 8 5 26

10 0.5 89 12 5 0 6 65 14 7 5 21

10 1 93 10 3 3 3 61 16 7 7 21

10 1.5 90 13 3 3 3 57 15 10 7 23

10 2 89 11 5 4 3 57 15 8 5 27

10 2.5 89 11 5 3 4 57 15 7 7 26

Table 4.7: This table shows the results of using all elements of the co-occurrence matrix

as features in texture classification with 16 grey levels (CMI6) for distances 9 - 10.

The first column indicates the distance for which the co-occurrence matrix has been

computed. Under the headings 1, 2, 3 and 4 we show how many times the correct

texture appeared in the first, second, third and fourth position of the returned answer,

respectively. Under heading R we show how many times it appeared in one of the

remaining positions. All numbers are out of 112.
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I Distance I Q II Test Set BL II Test Set BR

I I
1 0.5 101 6 2 0 3 84 11 4 2 11

1 1 100 7 2 0 3 84 11 3 2 12

1 1.5 99 8 3 0 2 85 9 1 3 14

1 2 99 8 3 0 2 85 8 1 3 15

1 2.5 99 8 3 0 2 85 8 1 3 15

2 0.5 101 8 0 0 3 81 9 10 2 10

2 1 101 5 3 0 3 83 9 5 2 13

2 1.5 100 6 3 0 3 82 10 3 4 13

2 2 101 5 3 0 3 78 13 3 3 15

2 2.5 99 7 3 0 3 76 14 4 3 15

3 0.5 100 7 2 0 3 77 11 6 3 15

3 1 101 6 1 1 3 80 10 5 2 15

3 1.5 99 8 1 1 3 77 12 5 2 16

3 2 98 7 3 1 3 74 12 7 3 16

3 2.5 98 7 2 2 3 72 13 8 3 16

4 0.5 100 8 0 1 3 72 18 4 3 15

4 1 99 8 1 1 3 74 16 5 2 15

4 1.5 97 8 4 0 3 69 18 6 3 16

4 2 97 7 4 0 4 69 18 7 2 16

4 2.5 97 6 5 0 4 67 18 7 2 18

Table 4.8: This table shows the results of using all elements of the co-occurrence matrix

with 16 grey levels for distances 1 - 4 in addition to the five features extracted from

it, as features for texture classification (CM16+F). 5appeared in one of the remaining

positions. All numbers are out of 112.
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I Distance I Q

I I

Test Set BL II Test Set BR

1 I 2 I 3 I 4 I R II 1 I 2 I 3 I 4 I R

5 0.5 95 12 1 0 4 72 14 10 0 16

5 1 97 10 2 0 3 73 13 7 4 15

5 1.5 96 9 2 2 3 68 16 7 5 16

5 2 96 9 2 2 3 65 18 7 3 19

5 2.5 95 10 2 1 4 65 17 7 4 19

6 0.5 93 11 3 1 4 67 20 7 3 15

6 1 95 10 3 1 3 70 15 6 5 16

6 1.5 95 11 2 1 3 65 15 7 5 20

6 2 94 10 3 2 3 63 16 8 4 21

6 2.5 93 11 3 2 3 63 16 6 6 21

7 0.5 95 7 4 2 4 65 21 4 6 16

7 1 92 10 5 2 3 64 21 6 3 18

7 1.5 92 12 3 2 3 61 17 6 8 20

7 2 91 13 4 1 3 62 14 8 6 22

7 2.5 92 11 5 1 3 62 15 4 8 23

8 0.5 95 7 4 2 4 65 21 4 6 16

8 1 94 10 3 2 3 62 19 8 5 18

8 1.5 93 11 4 1 3 61 13 11 6 21

8 2 90 14 4 1 3 60 12 13 3 24

8 2.5 90 12 6 1 3 60 12 12 3 25

Table 4.9: This table shows the results of using all elements of the co-occurrence matrix

with 16 grey levels for distances 5 - 8 in addition to the five features extracted from it,

as features for texture classification (CM16+F). All numbers are out of' 112.



4.3. Experiments on texture recognition 55

I Distance I Q II Test Set BL II Test Set BR

I I
9 0.5 91 11 5 1 4 64 17 8 5 18

9 1 92 10 5 2 3 63 15 10 3 21

9 1.5 90 13 3 3 3 57 16 10 6 23

9 2 89 12 4 4 3 58 16 7 6 25

9 2.5 88 12 4 5 3 58 15 9 5 25

10 0.5 91 11 4 1 5 66 15 6 5 20

10 1 94 9 3 3 3 63 14 10 4 21

10 1.5 92 10 4 3 3 59 16 9 5 23

10 2 90 11 4 4 3 57 15 9 5 26

10 2.5 90 10 4 5 3 56 17 7 6 26

Table 4.10: This table shows the results of using all elements of the co-occurrence

matrix with 16 grey levels for distances 9 - 10 in addition to the five features extracted

from it, as features for texture classification (CM16+F). The first column indicates the

distance for which the co-occurrence matrix has been computed. Under the headings

I, 2, 3 and 4 we show how many times the correct texture appeared in the first, second,

third and fourth position of the returned answer, respectively. Under heading R. we

show how many times it appeared in one of the remaining positions. All numbers are

out of 112.
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I Distance Q II Test Set BL II Test Set BR I

1 0.5 109 2 0 0 1 104 4 2 1 1

1 1 109 2 0 0 1 105 5 1 0 2

1 1.5 109 2 0 0 1 104 4 1 0 3

1 2 109 2 0 0 1 104 4 1 0 3

Table 4.11: This table shows the results of using all elements of co-occurrence matrix

with 256 grey levels and d = 1 as our features (CM256). All numbers are out of 112.

I Distance I Q II Test Set BL II Test Set BR I

I I
1 0.5 109 2 0 0 1 104 4 2 1 1

1 1 109 2 0 0 1 105 4 2 0 2

1 1.5 109 2 0 0 1 104 4 1 0 3

1 2 109 2 0 0 1 104 4 1 0 3

Table 4.12: This table shows the results of using all elements of co-occurrence matrix

with 256 grey levels and d = 1 in addition to the five features extracted from it as our

features (CM256+F). Under the headings 1, 2, 3 and 4 we show how many times the

correct texture appeared in the first, second, third and fourth position of the returned

answer, respectively. Under heading R we show how many times it appeared in one of

the remaining positions. All numbers are out of 112.
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I Distance I Q II Test Set BL II Test Set BR

I I I 2 I 3 I 4 I R II 1

2 0.5 63 17 10 4 18 42 15 12 4 39

2 1 67 15 8 5 17 45 13 10 9 35

2 1.5 68 14 8 6 16 44 13 11 9 35

2 2 69 14 6 7 16 44 14 9 11 34

2 2.5 70 13 6 8 15 44 14 9 12 33

5 1 59 18 7 8 20 44 15 6 5 42

5 1.5 60 18 6 7 21 43 15 8 5 41

5 2 60 19 5 6 22 43 15 8 6 40

5 2.5 61 18 5 6 22 43 15 8 7 39

Table 4.13: Texture classification results using features extracted from the sum and

difference histograms constructed for distance = 2 and distance = 5 (FSDH). Under

the headings 1, 2, 3 and 4 we show how many times the correct texture appeared in

the first, second, third and fourth position of the returned answer, respectively. Under

heading R we show how many times it appeared in one of the remaining positions. The

results are shown for different values of threshold Q. All numbers are out of 112.
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I Distance I Test Set BL II Test Set BR

I I
1 0.5 98 8 3 0 3 78 16 6 3 9

1 1 98 7 3 1 3 75 16 7 5 9

1 1.5 97 9 3 0 3 78 13 6 5 10

1 2 97 9 2 0 4 78 12 6 5 11

1 2.5 97 9 2 0 4 78 12 6 5 11

2 0.5 95 12 2 1 2 73 15 10 3 11

2 1 92 14 4 0 2 76 15 5 6 10

2 1.5 95 11 4 0 2 77 11 6 5 13

2 2 95 11 4 0 2 77 11 6 5 13

2 2.5 96 10 4 0 2 77 11 6 6 12

3 0.5 102 4 2 2 2 74 13 7 5 13

3 1 97 11 2 0 2 71 16 7 6 12

3 1.5 96 10 4 0 2 72 14 6 6 14

3 2 97 9 3 1 2 72 14 6 6 14

3 2.5 97 9 3 1 2 72 14 6 6 14

4 0.5 100 6 2 1 3 75 9 7 8 13

4 1 103 4 2 1 2 72 15 6 8 11

4 1.5 103 2 4 1 2 72 15 4 8 13

4 2 101 4 4 1 2 70 17 4 8 13

4 2.5 101 4 5 0 2 71 16 4 8 13

Table 4.14: This table shows the results of using all elements of the sum and difference

histograms with 16 grey levels for distance 1 - 4 as features in texture classification

(SDHI6). All numbers are out of 112.
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I Distance I Q II Test Set BL II Test Set BR I

I I
5 0.5 101 3 4 1 3 75 12 6 3 16

5 1 98 7 4 1 2 70 14 8 9 11

5 1.5 98 6 5 1 2 67 18 6 7 14

5 2 97 7 5 1 2 66 17 8 7 14

5 2.5 97 7 5 1 2 67 16 8 7 14

6 0.5 95 8 5 1 3 69 13 12 3 15

6 1 94 7 6 3 2 64 15 12 8 13

6 1.5 94 7 5 4 2 65 13 13 7 14

6 2 94 7 5 4 2 65 14 11 7 15

6 2.5 92 9 5 4 2 65 14 11 7 15

7 0.5 96 7 3 2 4 66 13 13 5 15

7 1 93 8 5 2 4 62 17 11 8 14

7 1.5 92 9 5 2 4 62 16 13 6 15

7 2 93 8 4 3 4 62 17 12 6 15

7 2.5 93 7 4 4 4 62 17 12 7 14

8 0.5 96 5 3 4 4 63 18 9 6 16

8 1 94 5 5 4 4 63 17 15 2 15

8 1.5 93 6 5 4 4 59 20 13 4 16

8 2 93 6 5 4 4 59 19 14 4 16

8 2.5 93 6 5 5 3 59 19 14 4 16

Table 4.15: This table shows the results of using all elements of the SUl11 and difference

histograms with 16 grey levels for distance 5 - 8 as features in texture classification

(SDH16). All numbers are out of 112.
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I Distance I Q II Test Set BL II Test Set BR

I I
9 0.5 97 7 2 2 4 61 20 8 5 18

9 1 92 9 4 3 4 58 18 14 5 17

9 1.5 94 7 3 4 4 56 20 11 6 19

9 2 93 8 3 4 4 56 20 11 5 20

9 2.5 92 9 3 4 4 56 20 11 5 20

10 0.5 95 6 2 4 5 63 16 7 9 17

10 1 93 7 4 4 4 59 19 11 3 20

10 1.5 92 8 4 4 4 58 19 11 4 20

10 2 92 9 3 4 4 58 19 11 2 22

10 2.5 92 9 3 4 4 58 18 12 1 23

Table 4.16: This table shows the results of using all elements of the sum and difference

histograms with 16 grey levels for distance 9 - 10 as features in texture classification

(SDH16). The first column indicates the distance for which the co-occurrence matrix

has been computed. Under the headings 1, 2, 3 and 4 we show how many times the

correct texture appeared in the first, second, third and fourth position of the returned

answer, respectively. Under heading R we show how many times it appeared in one of

the remaining positions. All numbers are out of 112.
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I Distance I Q II Test Set BL II Test Set BR

I I
1 0.5 97 9 3 0 3 79 14 6 2 11

1 1 97 8 3 1 3 76 14 11 1 10

1 1.5 96 10 3 0 3 79 12 7 4 10

1 2 97 9 2 1 3 79 12 6 4 11

1 2.5 97 9 2 1 3 79 11 7 4 11

2 0.5 95 12 2 1 2 75 15 7 4 11

2 1 93 15 2 0 2 74 17 5 8 8

2 1.5 95 11 4 0 2 76 13 6 7 10

2 2 95 11 4 0 2 75 13 7 6 11

2 2.5 95 11 4 0 2 75 13 7 5 12

3 0.5 99 7 2 2 2 74 13 7 3 15

3 1 97 11 2 0 2 71 16 7 5 13

3 1.5 97 10 2 1 2 70 18 5 5 14

3 2 96 10 3 1 2 72 16 5 4 15

3 2.5 96 10 3 1 2 72 16 5 3 16

4 0.5 100 5 2 2 3 76 8 6 8 14

4 1 102 5 3 0 2 71 16 5 8 12

4 1.5 102 4 4 0 2 72 15 6 5 14

4 2 102 4 4 0 2 72 16 4 5 15

4 2.5 102 4 4 0 2 71 17 4 5 15

Table 4.17: This table shows the results of using all elements of the sum and difference

histograms with 16 grey levels for distance 1-4 in addition to the five features extracted

from them as features in texture classification (SDH16+ F). All numbers are out of 112.
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I Distance I

I I
Q II Test Set BL II Test Set BR

5 0.5 101 3 4 1 3 73 12 4 6 17
5 1 99 7 4 0 2 70 14 6 9 13
5 1.5 98 6 6 0 2 67 17 8 6 14
5 2 97 7 5 1 2 67 17 8 5 15
5 2.5 95 9 5 1 2 67 17 8 4 16
6 0.5 96 7 4 2 3 71 12 9 7 13
6 1 94 9 4 3 2 64 14 13 7 14
6 1.5 92 10 5 3 2 64 16 10 7 15
6 2 92 10 5 3 2 64 16 11 6 15
6 2.5 92 9 6 3 2 64 16 11 5 16
7 0.5 96 4 8 1 3 67 12 13 5 15
7 1 94 7 6 1 4 62 16 14 5 15
7 1.5 93 7 7 1 4 61 17 14 5 15
7 2 92 8 5 3 4 61 17 14 4 16
7 2.5 92 8 5 3 4 61 19 12 4 16
8 0.5 96 5 3 5 3 63 16 13 6 14
8 1 94 5 7 3 3 60 20 12 4 16
8 1.5 94 5 5 5 3 60 19 13 3 17
8 2 93 6 5 5 3 60 19 12 4 17
8 2.5 93 6 5 5 3 60 20 11 4 17

Table 4.18: This table shows the results of using all elements of the sum and difference

histograms with 16 grey levels for distance 5 - 8 in addition to the five features extracted

from them as features in texture classification (SDH16+F). All numbers are out of 112.
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I Distance Q II Test Set EL II Test Set ER

9 0.5 95 7 4 3 3 63 17 9 8 15

9 1 94 8 2 4 4 57 19 13 7 16

9 1.5 92 10 2 4 4 58 19 13 4 18

9 2 92 8 4 4 4 59 18 12 3 20

9 2.5 93 7 4 4 4 59 18 12 3 20

10 0.5 93 8 3 4 4 62 18 8 5 19

10 1 93 7 4 4 4 59 19 9 5 20

10 1.5 93 7 4 4 4 59 20 9 1 23

10 2 92 8 3 5 4 60 19 9 1 23

10 2.5 91 8 4 5 4 60 18 10 1 23

Table 4.19: This table shows the results of using all elements of the sum and difference

histograms with 16 grey levels for distance 9 - 10 in addition to the five features

extracted from them as features in texture classification (SDH16+ F). The first column

indicates the distance for which the co-occurrence matrix has been computed. Under

the headings 1, 2, 3 and 4 we show how many times the correct texture appeared in

the first, second, third and fourth position of the returned answer, respectively. Under

heading R we show how many times it appeared in one of the remaining positions. All

numbers are out of 112.
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Distance Q II Test Set BL II Test Set BR

1 0.5 98 8 3 0 3 77 17 6 3 9

1 1 98 7 3 1 3 75 16 7 5 9

1 1.5 97 9 3 0 3 77 14 6 5 10

1 2 97 9 2 0 4 77 13 7 5 10

Table 4.20: This table shows the results of using all elements of the sum and difference

histograms with 256 grey levels and d = 1 (SDH256) as our features. All numbers are

out of 112.

Distance Q Test Set BL II Test Set BR

1 0.5 97 9 3 0 3 79 16 4 2 11

1 1 97 8 4 0 3 75 16 8 5 8

1 1.5 97 9 3 0 3 76 15 5 6 10

1 2 97 9 2 1 3 76 16 4 7 9

Table 4.21: This table shows the results of using all elements of the SUll1 and difference

histograms with 256 grey levels and d = 1 in addition to the five extracted features

from them (SDH256+F) as our features. Under the headings 1, 2, 3 and 4 we show how

many times the correct texture appeared in the first, second, third and fourth position

of the returned answer, respectively. Under heading R we show how many times it

appeared in one of the remaining positions. All numbers are out of 112.

4.4 Perceptual grouping

To indicate how "gracefully" each method moves away from the correct textures when

classifying textures, we show an example of 3 textures chosen at random from the
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Texture T3I Texture T4I Texture T5I

1 2 3 4 II 2 3 4 II 2 3 4

TT T3I T88 T27 T30 T4I TI09 T86 T57 T5I T72 T95 T35

BTT T3I T88 T46 T54 TI09 T4I T86 T57 T5I T72 T35 T05

FCM T3I T90 T62 T99 T4I T42 T68 T3 T74 T42 T5I T72

CMI6 T3I TOO T30 T88 T4I T20 T67 T42 T5I T74 T62 T60

CMI6+F T3I T90 T88 T99 T4I T20 TI07 T42 T5I T74 T26 T60

CM256 T3I T59 T90 T30 T4I T33 TI02 TI0I T5I T75 T25 T45

CM256+F T3I T59 TOO T30 T4I T33 TI02 TI0I T5I T75 T25 T45

FSDH T3I TOO T62 T58 T4I TI09 T3 TI0 T74 T5I T60 T42

SDHI6 T3I T90 T30 T58 T4I T42 TI09 T6 T42 T5I T74 T62

SDHI6+F T3I T30 T90 T80 T4I T6 T65 T42 T5I T62 T74 T23

SDH256 T3I T90 T58 T30 T4I T42 T20 T6 T74 T5I T42 T60

SDH256+F T3I T30 T90 T99 T4I T6 T20 TI09 T5I T72 T74 T62

Table 4.22: At the top row we have three examples of the texture database. Underneath

each texture we show the code number of textures picked up by each method in the

1Sf, 2nd, 3rd and 4th position of similarity respectively.

database and we present the four most similar textures each method produced, in

decreasing order of similarity, in table 4.22. we present in appendix A in figures A.I to

A.12 some sample results. We chose 3 textures from the database (Shown at the top

row of each figure) and we show underneath the four most similar textures each method

produced, in decreasing order of similarity from top to bottom. Table 4.22 summarises

these results.

We note that none of the methods appears to pick up very similar to each other textures

in the first four positions. This somehow indicates that none of the methods imitates

how the human vision system groups textures. To confirm this, we asked 11 subjects

to pick up the 4 most similar textures for each one of our test textures. Their choices

are shown in table 4.23. The consensus choice (i.e. the one which was picked by most

subjects in each position) is shown in figure 4.6. We can see from these results that

humans tend to pick up patterns not only on the basis of grey values, but also on the

basis of semantics. For example, the four most similar textures picked up for texture

T4I, tend to be all lace patterns, independent of the tones of grey they are made up
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Person Texture T3I Texture T4I Texture T5I

1 2 3 4 2 3 4 1 2 3 4

Alex T3I T30 T23 T99 T4I TI08 T43 T42 T5I T72 T76 TI05

Ali T3I T30 T99 T98 T4I T40 T42 T39 T5I T50 T72 T76

Bagher T3I T23 T30 T54 T4I T40 T42 T39 T5I T50 T76 T46

Leila T3I T30 T23 T99 T4I T39 T40 T42 T5I T76 T50 T72

Maria T3I T30 T99 T62 T4I T42 T40 T39 T5I T72 TI05 T50

Marvi T3I T30 T23 T98 T4I T42 T39 T40 T5I T50 TI05 T76

Matt T3I T23 T30 T27 T4I T39 T42 T40 T5I T50 T72 T76

Mohammad T3I T23 T30 T99 T4I T42 T40 T45 T5I T72 T50 T76

Naghi T3I T23 T30 T6I T4I T42 T40 T39 T5I T50 T72 T76

Saied T3I T30 T62 T99 T4I T39 T40 T42 T5I TU T68 T72

Zeinab T3I T23 T30 T27 T4I T40 T39 T42 T5I T50 T76 T79

Table 4.23: At the top row we have three examples of the texture database. Underneath

each texture we show the code number of textures picked up by 11 persons in the 1st,

2nd, 3rd and 4th position of similarity respectively.

from. The same goes for the other two textures. So, the question we ask next is: Is it

possible to choose functionals for the trace transform which will pick up preferentially

the same textures as the humans do?

To be able to achieve this, we must train the classifier to give more weight to the

features which produce a trend in texture choice which agrees with human ranking of

textures.

We arbitrarily divided the 112 textures into two sets, the first 56 in one set and the

other 56 in another set. The question we are trying to answer is the following: Can we

choose feature weights by using the first 56 textures such that the textures are ranked

according to the perceptual group to which they belong, and then use the same features

and the same weights for the remaining 56 textures never seen by the system before,

to check whether they will be ranked in a perceptually consistent way?

First we asked 5 individuals to group the 56 training textures in perceptual groups.

The perceptual groups identified by consensus are given in table 4.24. We asked the

same individuals to group also the 56 test textures. The consensus perceptual grouping

of these textures is shown in table 4.25.
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Classes Texture Number Classes Texture Number

1 T1 T26 T26 T6 T14 T12 T21 T16 T53 T49

2 T2 T28 T5 T7 T13 T23 T27 T30 T31 T54

3 T3 T22 T35 T36 T14 T32 T33

4 T4 T9 T24 T29 T15 T34

5 TID T16 T37

6 T11 T17 T17 T38

7 T12 T13 T18 T39 T40 T41 T42

8 T15 T19 T43 T44 T45

9 T18 T56 T20 T46 T47

10 T19 T55 T21 T48 T8

11 T20 T52 T22 T50 T51

Table 4.24: Here we show the first 56 (training) textures grouped in perceptual classes.

Classes Texture Number Classes Texture Number

1 T57 T92 T80 T84 T81 TlOO T14 T89

2 T58 T62 T60 T61 T59 T15 T90

3 T63 T73 T71 T16 T91

4 T64 T65 T17 T93

5 T66 T67 T18 T94 T95 T96

6 T68 T69 T70 T72 T76 T105 T106 T19 T97

7 T74 T75 T20 T98 T99

8 T77 T78 T79 T21 T101 T102

9 T82 T85 T22 TI03 T104

10 T83 T23 T107 T108

11 T86 T24 T109 TUO

12 T87 T25 TUl T112

13 T88

Table 4.25: Here we show the second 56 (testing) textures grouped in perceptual classes.

Each texture is represented by 4 images (the 4 quadrants of the original image) and

therefore each perceptual group is represented by 4Nc images, where Ne is the number

of textures in perceptual class c.

To use the perceptual grouping in defining the different weights for different features,

we followed these steps:
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• Instead of using one set of weights for our features like we did in section 4.2. we

define here 22 sets of weights, one for each perceptual class.

• We obtain the distance of two textures by using a new metric (given by equa-

tion 4.10 below). With the 22 sets of weights we compute 22 different distances

between any two textures.

• We select the minimum value of these distances between a pair of textures. For

example, for finding the distance value between texture T3 and T6, we compute

22 different distances between them by using all 22 sets of weights defined from

the perceptual classes, and then we get the minimum of these 22 values to indicate

the distance between texture T3 and T6. We repeat this for all texture pairs we

have.

In particular: Let us consider a feature .hlm computed by combining the eh trace

functional, with the [th diametrical functional and the mth circus functional. We follow

the following procedure using the training set of images: Let us say that the value of

this feature for texture t is denoted by 1{l111' We can say that: the average value of this

feature over all textures in the training set is:

1 N
mklm = N 2:= 1Ln

t=1

(4.6)

where here N is the number of images in the training set, which is 56 x 4 = 224. The

standard deviation of this feature is:

N
1 "( t )2(Yklm = NL 11dm- m'klm

t=1

(4.7)

We define:

(4.8)

where Ne is the number of textures in class c. In other words, we compute the average

square distance between any two images which are assumed to belong to the same

perceptual class. Because we must not try to compare one image with itself, the

number of all possible pairwise combinations we may consider is 4Ne(4Nc - 1). The
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smaller the qldm' the more stable !kIm is, and we must give it bigger weight. So we

define:

c _ {Q - qklm
Wklm =

o

if qklm < Q,
(4.9)

otherwise

where Q is a threshold which in most of cases is between 1 and 2.

Then, when we want to group together into perceptual classes an unknown set of

textures, we use the following metric to compute the distance between any two textures.

. ( ) _ 1 '"' clift! ft2 Idisi; tl, t2 = -N ~ Wklm-- kim - kim
f kim O"klm

(4.10)

where in the above formula the value of index c changes from 0 to the maximum number

of perceptual classes which in this case is 22. N] is the number of features with weight

wklm =F O. It is very important to use such a normalisation, because features with zero

weight are not stable and they should be entirely ignored. Such a normalisation was

not necessary for the experiments reported in section 4.2, because we used there only

one set of weights and therefore the number of features with non-zero weight was a

constant. Division by a constant does not affect the ranking of distances.

Then we take the minimum over these distances to indicate the distance between tex-

(4.11)

Then we rank the textures in terms of similarity with respect to any texture in the set.

In other words, for any texture in the set we can choose which texture is the nearest one,

which is the second most nearest one and so on. Tables 4.26 and 4.27 show the results of

using this method on both the training and testing set. In the case when we have only

one texture in the perceptual group, this approach is not meaningful. In the training set

we have 5 textures without any other similar texture. In addition, one texture should

not be compared with its 3 other versions (produced from the other 3 quadrants of the

original image) because we wish here to test perceptual similarity rather than exact

texture identification. This means that we have only (56 - 5) x 4 - 3 = 201 textures to

compare a texture with in the training set, and (56 - 9) x 4 - 3 = 185 textures in the

test set. The classification results of the training set serve as the benchmark. We do
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Method TrainingSet
N=l N=2 N=3 N=4 N=5 N=6 N=7 N=8

TT 109 125 135 146 152 157 160 162
FCM 68 90 96 100 107 109 112 114
CM16 63 73 85 91 96 101 104 108

CM16+F 66 77 90 94 104 109 113 119
CM256 68 83 89 94 106 110 113 119

CM256+F 68 83 89 94 106 111 114 121
FSDH 45 62 73 80 85 95 101 104
SDH16 88 105 117 122 127 132 138 140

SDHI6+F 87 103 113 123 128 133 140 142
SDH256 80 94 110 114 121 125 130 135

SDH256+F 78 90 102 110 119 125 131 136

Table 4.26: The results of the various methods, when we use the perceptual classes

in table 4.24 to train the system and then classify the first 56 textures, which appear

in the same table. In column N = 1 to N = 8 we show the total number of correct

classification until the Nth choice. In all cases TT has the best performance and CM256

has the worst one. All numbers are out of 201.

not expect to be able to do better than that with the test set. Further, if these results

are bad, we must conclude that it is not possible to train the classifier to imitate human

perception.

The results on the test set tell us how stable and useful the identified features are, i.e.

how generalisable they are, as opposed to giving us good results by chance. As we can

see the TT has the best performance especially for the test set.

For each feature we have 22 different weights as defined by equation 4.9. We sum

up these weights, and so we come up with the single number per feature. We use

these numbers to rank the features according to their significance in perception. Table

4.28 presents the combinations of functionals which produced the features with the

highest weights for the perceptual classification. The codes of the individual functionals

correspond to the codes used to identify them in tables 3.1-3.4.
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Method TestingSet
N=l N=2 N=3 N=4 N=5 N=6 N=7 N=8

TT 16 90 103 112 120 126 131 133
FCM 49 60 71 82 91 95 99 105
CM16 52 73 89 99 103 107 113 116

CM16+F 57 80 95 99 105 110 113 114
CM256 43 51 56 64 77 80 89 92

CM256+F 44 51 57 65 78 81 89 91
FSDH 44 53 60 71 76 81 84 86
SDH16 44 60 76 83 89 102 105 111

SDH16+F 45 66 76 87 96 98 105 110
SDH256 57 74 82 89 95 105 110 116

SDH256+F 61 82 88 96 101 107 113 117

Table 4.27: The results of the various methods, when we use the perceptual classes

in table 4.24 to train the system and then classify the second 56 textures. In column

N = 1 to N = 8 we show the total number of correct classification until the Nth choice.

In all cases TT has the best performance and CM256 has the worst one. All numbers

are out of 185.

Trace Functionals Diametric Functionals Circus Functionals
6 1 1
6 2 1
6 2 17

6 5 1
14 10 13
23 6 13
24 2 1
25 5 1
31 2 13

Table 4.28: This table shows the best features in TT. These were identified by training

the system using the perceptual classes showed in table 4.24.
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(a) T31

(cl) T31

(g) T30

(j) T23

(m) T99

(b) T41

(e) T41

(h) T42

(1\) T40

(n) T39

(c) T5l

(f) T5l

(i) T50

(I) T72

(0) T76

Figure 4.6: At the top row we show three examples of the texture database. Underneath

each texture we show the textures picked up by the majority of humans subjects in the

1=, 2nd) 31'(l and 4th position of similarity respectively.
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4.5 Discussion and Conclusions

We used 12 methods for feature extraction in our experiments. The co-occurrence ma-

trix, when constructed for 256 grey levels, is very time consuming. The huge size of this

matrix is the reason. We have 112 matrices 256 x 256 and for four sets of images (TL,

TR, BL and BR). This means that we need nearly 240 million bytes of memory and a

huge number of operations. That is why we repeated our experiments with a reduced

number of grey levels, i.e. with 4-bit resolution. Table 4.29 shows the size of memory

needed and also the number of operations which must be done for each method. It

is obvious that CM256+ F and CM256 are the worst methods regarding their need of

memory and CPU operations. Figure 4.7 presents the summary results.

We can see that by increasing the number of features the results improve. This proves

our first idea that using thousands of features, may help us classify textures more ac-

curately. These features do not need to make sense to the human conscious perception,

and therefore their number can be very large. The relevance of these features to the

task we wish to solve can be assessed in a training phase, and then these features can

be combined with their appropriate weights to form a similarity measure between two

images.

It is believed that the incorporation of the thresholding operation in the feature weight-

ing vector effectively constitutes a feature selection process thereby avoiding the po-

tential problem of overfitting poor generalisation in the co-occurrence-based studies.

The Trace transform method does not have to be trained with representations of all

textures we wish to identify. As we saw in the experiments performed with 30 training

textures different from those in the test set, even texture classes that were not repre-

sented in the training set used to decide the relative importance of the features, could

be classified correctly. The results were only slightly worse than the results obtained

with using all 112 textures for training. For example, in the reported experiments,

when all 112 textures were represented in the training set, the best recognition rate

was about 85%. In the experiments with the limited training, the best recognition rate

was about 80.5%.

The use of perceptually meaningful features on their own did not produce good results.
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The supplement of co-occurrence matrix features with perceptually meaningful features

did not change the result, which was already very good when the full co-occurrence ma-

trix was used.

So, our first conclusion is that one does not need perceptually meaningful features (i.e.

features which have linguistic names) in order to classify textures. Simply, one needs

many features.

If then one wishes to classify textures in a perceptually meaningful way, i.e. 111 a way

that imitates the human ranking of textures in terms of similarity, then one may se-

lect from these many features those which rank the textures as the humans do. We

demonstrated that for this task features computed from the Trace transform are the

most appropriate (see figures 4.8 and 4.9). Identifying which features were the most

useful in this task allows us to reverse engineer to some extent the human vision system

and single out some features which may be used in the subconscious level to analyse

textures. These are features which do not have linguistic terms to describe them. It

is interesting to note that from the trace functionals, the functional which contributed

to the construction of the most useful features is a simple differentiator, and from the

diametric functionals, the functional which contributed to the construction of the most

useful feature is taking the minimum. From the circus functionals the most useful

functional is functional 1 which again is based on et simple differentiator.
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Method of Classification Storages Needed Operations Needed

(for Textures) (Mega Bytes) (Mega Operations)

TT 20 71

BTT 14.6 52

FCM 0.018 0.063

CM16 0.89 3.13

CM16+F 0.91 3.2

CM256 240 836

CM256+F 240 836

FSDH 0.Ql8 0.063

SDH16 0.096 0.34

SDH16+F 0.114 0.4

SDH256 1.78 6.43

SDH256+F 1.8 6.5

Table 4.29: This table shows for each of the 12 methods we discussed here, the volume

of storage it needs and the number of operations it performs. The storage value is in

Mega bytes and the operation number is in Mega operations.
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Method Dist Q Test Set BL Test Set BR

2 I 3 I 4R II 1 R

TT 1.3 85 4.9 0 0.8 8.2 73 9.1 2.4 3.3 9.9

BTT 1.0 80 8.6 2.4 0 8.6 62 11 3.7 6.1 17.2

FCM 2 0.8 59 10.7 6.6 2.4 18.2 36 11.5 8.2 7.4 31.4

CM16 1 0.5 89 4.9 2.4 0 2.4 74 9.1 4.1 1.6 9.1

CM16+F 2 0.5 90 6.6 0 0 2.4 72 7.4 8.2 1.6 8.2

CM256 1 1 97 1.6 0 0 0.8 94 3.3 1.6 0 0.8

CM256+F 1 1 97 1.6 0 0 0.8 94 3.3 1.6 0 0.8

FSDH 2 2.5 62 10.7 4.9 6.6 12.4 39 11.5 7.4 9.9 27.5

SDH16 4 1 92 3.3 1.6 0.8 1.6 64 12.4 4.9 6.6 9.1

SDHI6+F 4 2 91 3.3 3.3 0 1.6 64 13.2 3.3 4.1 12.4

SDH256 1 0.5 87 6.6 2.4 0 2.4 69 14 4.9 2.4 7.4

SDH256+F 1 0.5 86 7.4 2.4 0 2.4 70 13.2 3.3 1.6 9.1

Table 4.30: This table shows the best results for the 12 methods we used. The name

of each method and the value of its parameters are written in each row. Dist is the

distance value for the co-occurrence matrix and Q is the value of the threshold used.

All numbers are in percentages of test images classified correctly in the 1=, 2nd, 3rd,

4th or remaining positions.
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Figure 4.7: The best results for the 12 mentioned methods are shown here. All results

are converted to percentages. The top line is for set BL and the bottom line is for set

BR. The name of each method is written either next to the top or the bottom line.
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Figure 4.8: The best results for classification in perceptual classes for the 12 mentioned

methods (Except BTT which is the same as TT in this experiment) are shown here.

The top line is for the percentage of correct classification after 8 choices and the bottom

line is for correct classification as the first choice. As we can see the TT method has
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the best performance with a large gap with the second method.
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Figure 4.9: The best results, for classification in perceptual classes for the 12 mentioned

methods (Except BTT which is the same as TT in this experiment) are shown here.

The top line is for the percentage of correct classification after 8 choices and the bottom

line is for correct classification as the first choice. As we can see the TT method has

the best performance with a large gap with the second method.
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Chapter 5

Texture Recognition from

Sparsely and Irregularly Sampled

Data

5.1 Introduction

Most image processing techniques assume that the image is represented by a rectangular

grid of sampling points. This, however, need not be the case. For example, the human

eye has its receptors distributed in an irregular pattern [48]. Also in remote sensing

[16] and other image processing and compression applications [86]. The regularity

of sampling is particularly important for texture analysis, where the relative spatial

arrangement of the pixels is of paramount importance. In this paper we investigate

a way of recognising textures from irregularly sampled data. For this purpose we

use the Trace transform [36]. The Trace transform operates along straight lines criss-

crossing the image. There is some physiological evidence to indicate that the human eye

performs a similar scanning, known as the "tremor" of the eye [15], being performed

with 40-120 cycles per second and amplitude of about 1 degree. Over such short

periods of time, the receptors in the human eye scan along straight lines. If the tremor

is suppressed, the person cannot see [89]. The eye, therefore, looks like a special device

that may perform a Trace transform of the viewed scene, in the fovea area. The

79
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importance of the tremor of the eye has not been understood yet in image processing

terms, as there is no adequate theory utilising the information obtained by the tremor.

Trace transform appears to offer a possible mathematical model for this mechanism.

To be able to apply the Trace transform to irregularly sampled data, we need an

intermediate step which will lead from the irregularly distributed sample points to

straight lines. Such a mechanism is provided by the Hough transform. To demonstrate

our ideas, we first create an irregular pattern of sampling points using three methods

of distribution for random points:

• Gaussian Distribution

• Log-polar model

• Retinal Distribution

This way we can represent our images by a collection of sample points which are densely

distributed towards the centre, and sparsely distributed in the periphery. Then we use

the Hough transform to identify sets of pixels that constitute straight lines. Each

identified line can be used as a tracing line in the Trace transform. So we can classify

these sets of data after extracting features by the Trace transform. The structure of

this chapter is as follows: Section 2 explains the Hough transform method which will be

used in finding the lines in a set of irregularly sampled points. In section 3 we deal with

the problem of computing functionals along irregularly sampled lines. In section 4 we

explain how we can make irregular sampling patterns and in the following section we

compare the results of using three different sampling masks with the results obtained

by using regularly sampled data in the recognition of textures. Finally in section 6 we

discuss the results and present our conclusions.

5.2 The Hough transform method

The equation of a line is (See figure 5.2):

y = ax + b (5.1)
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Figure 5.1: We can represent a line by the distance from the centre of the coordinate

system to the line, p, and the angle of the normal to the line with the x axis.

where:

a = tan(a)

b = y of the point with x = 0

On the other hand we can fully define a line by parameters p and 0, where:

p = The distance from the centre of the coordinate system to the line.

o = The angle of the normal to the line from the center' of the axes with the x axis.

We can write:

cos(90 - 0) = ~ ~ b = cos(90-B) = ~
And also:

- (90 - 0) - _ cos(B)a - - tan - sin(B)

By using (5.1) we can write:
, __ cos(B) + _f!_
Y - sin(B) x sin(B)

This yielels:

p = ysin(O) + xcos(O) (5.2)

This equation is true for all points in the line, so all possible lines passing through point

(:ri' yd can be represented by:

p = Yi sin( 0) + Xi cos( 0) (5.3)



82 Cbeptex 5. Texture Recognition from Sparsely and Irregularly Sampled Data

Consider a set of points in one line. If we plot for each one of them the curve defined by

to

o 0 0 0 0 0 0 0 0 0 0 0

300

aso

"

Figure 5.2: This image has 10 distinct points in vertical line and 10 distinct points in

horizontal line.

the above formula in axes (p, e), it is obvious that they will all pass through a common

point. This common point indicates the value of p and e for the line passing through

all those points. The example that follows makes this clearer.

Consider an image with 10 distinct points along a vertical line and 10 distinct points

along a horizontal line as shown in figure 5.2. Figure 5.3 shows the Hough space of

this image. As we see we plot for each point (Xi, Yi), one curve in (p, e) space given by

equation (5.3). Because we had 20 points, so we have here 20 curves. These 20 curves

cross each other in two points: The first one has p = 125, e = 0 and the second one

has p = 100, e = 90. In this way we can find all lines which can be formed from the

points in the image. We can apply this method to the random sampling pattern to

identify straight lines made up by the sampling points. We can then use these lines as

our tracing lines and apply the algorithm of texture classification based on the Trace

transform.

5.3 Computing the functionals for irregularly sampled data

points

The tracing lines identified by the Hough transform consist of samples which are irreg-

ularly placed along the line. It is obvious, therefore, that the tracing functionals which
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lOO 150 200 250 300 350

Figure 5.3: These 20 curves cross each other in two points: The first one has p =

125,0 = 0 and the second one has p = 100,0 = 90. These two points define the two

lines in figure 5.2

require, for example, some form of differentiation, can not be computed in a straight-

forward way. These functionals are entries 6-31 from table 3.1. In addition functionals

1-4 which perform some sort of integration have also to be computed by taking into

consideration the irregular spacing of the samples. We discuss in this section first how

to insert missing points in the collection of the irregularly sampled points and then the

methodologies we use in order to compute the functionals we need along the tracing

lines with the missing points.

5.3.1 Identifying the missing points along the tracing lines

By using the Hough transform, we obtain some points which are approximately in one

line. We know the coordinates of all these points in the image. Now we want to build

the line joining all these points including missing points between some of them. First

of all we can find the equation of this line by having p and 0:

p = y cos 0 + x sin 0 :::} (5.4)

sinO p
y=---x+--

cos 0 cos 0 (5.5)

By using this equation, we can add all missing point between the irregularly sampled

points. Suppose xn(in,jn) and Xn+1(in+l,jn+d are two successive points along a line
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identified by the Hough transform. We want to insert the missing points between these

points as if the line had been regularly sampled. To do that we must find dma:r:

dmax = max (IYn+1 - Ynl, IXn+1 - xnl) - 1 (5.6)

Then we add between these two points dmax zeros, to indicate the missing points. For

example suppose the equation of the line is:

Y = 2x + 1 (5.7)

and the sampled points are:

(5.8)

We must insert 17 - 11 - 1 = 5 points between Xl and X2, 19 - 17 - 1 = 1 points

between X2 and X3 and 23 - 19 - 1 = 3 points between X3 and X4. The final line is:

(5.9)

5.3.2 Computing the functionals with missing data

In order to compute the functionals we need we must take into consideration the spacing

of the points that constitute each tracing line. A method that does this is the so called

normalised convolution proposed by Knutsson and Westin [41]. Normalised convolution

can be used to estimate the value of a signal or any of its derivatives at regularly placed

points from its irregularly sampled values. In the subsections that follow we shall

examine if and how normalised convolution can help estimate the functionals we need

from the samples that make up the digital lines identified by the Hough transform.

First, however, we shall give a brief introduction to normalised convolution and its

derivatives.

5.3.2.1 Normalised convolution

Let us consider an example of a line consisting of 7 regular samples, 3 of which are

missing:

(5.10)
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where ° indicates a missing value. Also consider a simple smoothing filter:

[
1 1 1]

g(t) = 3' 3' 3 (5.11)

If we convolve these two functions we can see that the gaps of the missing samples will

be filled with the available information:

(5.12)

We can define a sequence c(t) with dimensions equal to the dimensions of the signal,

such that it indicates which sample is missing and which sample is available. This can

be done by putting zero for the missing points and one for the available ones. For signal

f(t) we can write:

c(t) = [1,1,0,0,1,0,1,1] (5.13)

and:

[
2 2 1 1 1 2 2 2]

c(t) * g(t) = 3' 3' 3' 3' 3' 3' 3' 3 (5.14)

We call c( t) the certainty sequence as it is nothing more than the sequence of locations

where samples are to be found. The Normalised Convolution of f with 9 is defined by:

j(t) == f(t) * g(t)
c(t) * g(t) (5.15)

where f(t) means the reconstruction of f(t). f(t) in the case of this example is:

'() [:1:1 + X2 ·1:1 + X2 . X5 + X6 X6 + X7 X6 + X7]ft = , ,X2,X5,X5, , ,---
2 2 223 (5.16)

It is possible to say that the second convolution is a weight for the first one and that

is why we divide the first by the second convolution point by point. So for performing

normalised convolution we must follow these steps:

• Convolve the signal with the filter, putting ° at the positions of missed samples.

• Define c(t), the certainty sequence of the signal, consisting of Is at the positions

where we have data and Os at the positions of missing data.

• Convolve the certainty sequence with the filter.
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• Divide these two convolutions point by point.

The result is a reconstruction of the signal with values assigned at the positions of the

missing data. In these experiments we use as our smoothing filter the filter suggested

by Knutsson and Westin [41J in their original paper, defined by:

{

r-ex cosi3(___:P:- )
( )

21 max
9 r =

o
(5.17)

otherwise

where:

r denotes the distance from the neighbourhood center, and

a and f3 are positive integers.

We use the reconstruction of the signal by filter (5.17) along each line before we compute

functionals 1 - 5 of table 3.1. For the other functionals which involve differentiation,

we use the corresponding smoothing filter to that used for the differentiation.

5.3.2.2 Estimating the derivative of a signal with missing data

In order to compute the derivative of a signal with missing data, we may differentiate

its normalised convolution:

D(C) x NC - D(NC) x C
NC2 (5.18)

where

(5.19)

NC == c * 92 (5.20)

f is the signal, 92 is a smoothing filter and c is the certainty sequence of the signal. We

may write:

D( C) = DU * 92) = f * D(92) = f * 91 (5.21 )
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where 91 = D(92) and:

D(NC) = D(c * 92) = c * D(92) = c * 91 (5.22)

So we have:

f * 91 X NC - c * 91 X C
NC2 (5.23)

5.3.3 Using normalised convolution to estimate the values of the func-

tionals

In this section we shall examine whether normalised convolution may help us estimate

([42, 3, 88]) the functionals of tables 3.1 to 3.4 when we can use only irregularly placed

samples along the digital lines more accurately. For this purpose, we shall divide the

functionals in two categories, namely those that do not involve convolution of the data

and those that involve some sort of convolution. In all cases we shall compare the

estimated values of the functionals with or without normalised convolution with the

values obtained from the corresponding digital lines made up from all the samples in

the original images represented by rectangular grids. For this study we shall use 50

indicative tracing lines, each of which will contain at least 200 points when irregularly

sub-sampled.

5.3.3.1 The functionals which do not involve convolution

By inspecting tables 3.1 to 3.4 we can see that functionals 1 to 5, and 22 and 23 from

table 3.1, functionals 1 to 7 from table 3.3 and functionals 3 to 18 from table 3.4 are

functionals which can not be expressed as convolutions. For this set of functionals we

first reconstruct. the signal using normalised convolution with the filter defined in (5.17)

and then use the functionals. We shall demonstrate the process from the beginning to

the end using an example, and we shall investigate whether this method improves the

result obtained if the irregular spacing of the data is ignored.

Let us consider a sequence of values from which these functionals have to be computed:

f(t) = [75,148,148,148,179,135,135,135,148,133,148,203] (5.24)
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where:

f(t) is one of our original tracing lines with regularly spaced samples. Consider a

sub-sampled version of it where ° stands for a missing sample:

f'(t) = [75,148,0,0,179,0,135,0,0,133,148,0] (5.25)

where:

t' (t) is the sequence of the irregularly sampled data. c( t), the certainty sequence, is:

c(t) = [1,1,0,0,1,0,1,0,0,1,1,0] (5.26)

The filter defined in (5.17) with ex = 0, fJ = 2 and Tma» = 8 is:

g(t) = [0.05,0.35,0.8,1,0.8,0.35,0.05] (5.27)

We may divide it by the sum of its elements to normalise it. Now we shall compute

the result of applying each functional on both the original and the irregularly sampled

sequence:

T1 = 2:[:1 Xi (Figure B.1)

For this functional we have these results:

T1(f) = 5205

T1(f') = 2454

T1(.f) = 4581 where j is the reconstructed signal by normalised convolution.

We can see that the result of the reconstructed signal is much closer to the original than

the result of the irregularly sampled signal. To verify this, we repeat this calculation

for 50 lines taken from the original set of tracing lines. The result is shown in figure

5.4. The result shows a very clear improvement when normalised convolution is used.

In what follows we perform similar calculation for all other functionals in this set (All

referenced figures are in appendix B.). Figures B.2 to B.4 show the corresponding

results for functionals T2, T3 and T4 respectively.

When the functional uses the Max or Min operator, signal reconstruction does not

help. This is because of the sensitivity of these operators to individual numbers. For

all these functionals, therefore, it is better to deal with the irregularly sampled data

instead of trying to reconstruct them (and thus smooth them).
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Figure 5.4: The values of trace functional Tl from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").

Figure B.5 shows the result for functional T5· Figures B.22 and B.23 show the results

for functionals T22 and T23 respectively. For these functionals we obtain approximately

the same results in all three cases.

Figures B.32 and B.33 show the results for functionals Dl and D2 of table 3.3, respec-

tively. These functionals involve operators sensitive to smoothing effects, so it is better

to use for their calculation the raw data. Figure B.34 shows the results for functional

D3 which indicate that the use of normalised convolution is recommended. The results
-

for functional D4 are shown in figure B.35 and they indicate indifference to whether

we use regularly or irregularly sampled data. Figures B.36 to B.38 and B.44 and B.45

show the results for functionals D5, D6 and D7 from table 3.3 and C3 and C4 from

table 3.4 respectively. In all cases the use of normalised convolution is recommended.

Figures B.46 to B.51 show the results for functionals C5 to CID respectively. In all cases

the Min or M ax operators are involved and one should clearly use the raw data to

estimate the values of the functionals.
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Figures B.52 to B.59 show the results for functionals Cn to C18 respectively. In all

cases the use of normalised convolution improves the estimates of the functionals.

5.3.3.2 The functionals which involve convolution

We can see that functionals 6 to 31 (except 22 and 23) from table 3.1, involve differ-

entiations of some sort. So, they may be computed by applying convolution with a

differentiating filter. We may also identify the corresponding smoothing filter for each

functional. After that we can use instead of ordinary convolution, the normalised con-

volution to reduce the effect of the missing points.

It is very important to notice that when we use instead of the derivative of a convolu-

tion, the derivative of a normalised convolution, we can not compare the result directly

with the one obtained from the derivative of convolution of regularly sampled points.

In mathematical terms, let us say that T; (t) is one of the trace functionals:

(5.28)

where as earlier f(t) is a tracing line and 92; (t) is the smoothing filter which corresponds

to that functional. We can divide and multiply inside the derivative operator by c(t) *
92i (t):

d (f(t)*Y2j (t) x c(t) * (t))
e( t)*Y2. (t) 92

T(t) = •
1 dt (5.29)

We know that all elements of c(t) in regularly sampled points are 1. So if we use wrap

round boundary conditions for the convolutions, we have:

(5.30)

This means that:

d (f(t)*Y2j(t))
T,. (t) = e(t)*Y2i (t) xC.

Z dt f,

where efi is the coefficient of the smoothing filter for the ith functional which is equal

(5.31)

to:

(5.32)



5.3. Computing the f~nctionals for irregularly sampled data points 91

When we use irregularly sampled points, we must remember, therefore, to use the

normalising factor CIi :

d (f'(t)*92j (t»)
f.(t) = C(t)*92; (t) C
t dt x J; (5.33)

where f'(t) is the under-sampled tracing line.

The smoothing filter 92; is the integral of the corresponding differentiating filter 91;

(5.34)

Now we can find for each functional its corresponding smoothing filter and its appro-

priate coefficient to use for correcting the result of that functional when applied to

the irregularly sampled points. Table 5.1 shows for each functional the correspond-

ing smoothing filter. We describe, as an example, one of them and the others can be

obtained in exactly the same way. Let us consider functional Tg of table 3.1:

N-2

Tg =L IXi-2 + Xi-l - Xi+! - Xi+21
i==3

(5.35)

This can be written as taking the absolute value of the convolution of a signal by filter:

91(t) = [1,1,0,-1,-1] (5.36)

To compute 92(t) we must integrate 9dt). We use numeric integration as follows:

92(1) = °+ 9t{ 1) = ° + 1 = 1 (5.37)

92(2) = 92(1) + 91(2) = 1 + 1 = 2 (5.38)

92(3) = 92(2) + 91(3) = 2 + ° = 2 (5.39)

92(4) = 92(3) + 91(4) = 2 + (-1) = 1 (5.40)

92(5) = 92(4) + 9t(5) = 1 + (-1) = ° (5.41)

so:

92(t) = [1,2,2,1] (5.42)
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Figure 5.5: How can we obtain g2 from gl? In this figure we can see that by numerical

integration of gl we can build filter g2.

If we accept that every sample of filter gl (t) is the mean value of the filter in the range

[t -!, t+ H the integral g2(t) represents the integral up to point t+!. So, the values of

g2(t), computed above, correspond to the inter-sample positions of filter gr(t) indicated

by a star (*) in figure 5.5. From this figure we can see that the smoothing filter we

should use for convolution is:

g2 (t) = [0.5,1.5,2,1.5,0.5] (5.43)

All other filters in table 5.1 can be obtained in the same way. In appendix B, figures

B.6 to B.13 show the results of computing functionals T6 to T13 of table 3.1 for 50 reg-

ularly sampled tracing lines, sub-sampled versions of them, while ignoring the irregular

spacing of the data, and sub-sampled versions of them while taking into consideration

the irregular placing of the data and using formula (5.23) with the corrective factor as

shown by equation (5.33).

Functionals T14 to T21 from table 3.1, involve the sum of some convolutions. We

discuss here in detail functional T14 while similar analysis may be performed for the
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other functionals in this category:

N-4 4

T14 = L L Ixi-k - xi+kl
i=5 k=l

(5.44 )

We may exchange the order of the two summations:

4 N-4

T14 =L L IXi-k - XiHI
k=l 'i=5

(5.45)

So:

(5.46)

where:

N-4

Coiu; == L IXi-k - XiHI
i=5

(5.47)

The convolution filter used in Coii« is:

91 = [1,0,0,0,0,0,0,0, -1] (5.4S)

This means that all these functionals, from T14 to T21 involve the sum of convolutions

with filters [1,0, -1] to [I, zeros(2 x k - I), -1], where zeros(2 x k - 1) indicates that

there are (2 x k - 1) zeros there and k is the upper bound of the second summation in

each functional.

Apart from functionals T20 and T2l, the values of the others show improvement after

using normalised convolution. We can see their results in appendix B, figures B.14 to

B.21. The results for T20 and T21 are neither better nor worse when using normalised

convolution, so we may use normalised convolution for these two functionals as well.

The size of the convolution filter used in T20 and T21 is the reason of the lack of

improvement in this case.

Functiorials T24 and T28 involve the calculation of the second derivative of the data,

while the third, fourth and fifth derivatives are computed for pairs (T25, T29), (T26, T30),

(T27, T31) respectively. So for functional T24 and T28, we must use [0.5,0.5] as 92 and

take the second derivative of the result by convolving it with [1,-2,1], The result from

the comparative study over the 50 lines are shown in figure B.24. For T25 and T29, we



94 Chapter 5. Texture Recognition Iroin Sparsely and Irregularly Sampled Data

need to use the same 92, but compute the third derivative afterwards, by convolving

the results with [1,-3,3,-1]. In the same way, we use the same 92 for T26 and T3D, and

then compute the fourth derivative by convolving them with [1.-4,6.-4,1]. Finally, for

T27 and T3l, we use again the same 92, but estimate the fourth derivative by convolving

the result with [1,-5,10,-10,5,-1]. The corresponding results are shown in figures B.24

to B.31. Figures B.39 to B.43 show the results for functionals D8 to DID from table

3.3, and Cl and C2 from table 3.4. All of them show that better estimates may be

obtained when normalised convolution is used.

Table 5.1 shows both 91 and 92 for trace functionals 6 to 31 (except 22 and 23) in ad-

dition to their C Ji and I, the number of times the functional filter has to be integrated

to produce the smoothing filter 92. Using these filters and their coefficients we can

calculate the values of functionals from 6 to 31, for irregularly placed points along the

tracing lines identified by the Hough transform, using normalised convolution. This

method will be used in all of our experiments for irregularly sampled data.

5.4 Creating irregularly sampled images

We create irregular patterns of sampling points using three different methods of distri-

bution for the random points:

• Gaussian Distribution

• Log-polar model

• Retinal Distribution

This way we may represent our images by a collection of sampling points which are

densely distributed towards the centre, and sparsely distributed in the periphery. In

the next three subsections we explain the methods of making these sampling masks.
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Funct Functional Filter gJ(t) g2(t) c., I

T6 [1,-1] [0.5,0.5] 1 1

Ti [1,-1] [0.5,0.5] 1 1

TB [1,1,1,0,-1,-1,-1] [0.5,1.5,2.5,3,2.5,1.5,0.5] 12 1

Tn [1,1,0,-1,-1] [0.5,1.5,2,1.5,0.5] 6 1

TlO [1,1,1,1,0,-1,-1,-1.-1] [0.5,1.5,2.5,3.5,4,3.5,2.5,1.5,0.5] 20 1

Til [1.1,1,1,1,0,-1,-1.-1,-1,-1] [0.5,1.5,2.5,3.5,4.5,5,4.5,3.5,2.5,1.5,0.5] 30 1

Tl2 [1.1,1,1,1,1,0,-1,-1.-1,-1,-1,-1] [0.5,1.5,2.5,3.5,4.5,5.5,6,5.5,4.5,3.5,2.5,1.5,0.5] 42 1

Tl;j [1,1,1,1,1,1,1,0,-1,-1,-1,-1,-1,-1,-1] [0.5,1.5,2.5,3.5,4.5,5.5,6.5,7 ,6.5,5.5,4.5,3.5,2.5, 1.5,0.5] 56 1

Tl1 (first) [1,0,-1] [0.5,1,0.5] 2 1

Tl1 (last) [1.0,0,0,0.0,0,0,-1] [0.5,1,1,1,1,1,1,1 ,0.5] 8 1

Tl",(fil'st) [1,0,-1] [0.5,1,0.5] 2 1

Tlfi(fil'st) [1.0,-1] [0.5,1,0.5] 2 1

TIi(fil'st) [1,0,-1] [0.5,1 ,0.5] 2 1

TIH (.f irst) [1,0,-1] [0.5,1,0.5] 2 1

TJ9(first) [1,0,-1] [0.5,1,0.5] 2 1

T2o(first) [1,0.-1] [0.5,1,0.5] 2 1

T2J(Jirst) [1,0,-1] [0.5,1,0.5] 2 1

T2l (inst) [l,zeros( 49) ,-1] [0.5,ones( 49) ,0.5] 50 1

T24 [1,-2,1] [0.5,0.5] 1 2

T'25 [1,-3,3.-1] [0.5,0.5] 1 3

T26 [1,-4,6,-4.1] [0.5,0.5] 1 4

Tn [1,-5,10,-10,5,-1] [0.5,0.5] 1 5

T28 [1.-2,1] [0.5,8.5] 1 2

T29 [1.-3.3,-1] [0.5,0.5] 1 3

T10 [1,-4,6,-4,1] [0.5,0.5] 1 4

T31 [1,-5,10,-10,5,-1] [0.5,0.5] 1 5

D8 [1,-1] [0.5,0.5] 1 1

D9 [1,-1] [0.5,0.5] 1 1

DIO [1.-4,6,-4,1] [0.5,0.5] 1 4

Cl [1,-1] [0.5,0.5] 1 1

C2 [1,-1] [0.5,0.5] 1 1

Table 5.1: The list of filters which are used in the trace functionals and their corre-

sponding smoothing filters. Zeros(n) means insert n zeros and ones(n) means insert

nones. Cf; means the coefficient of the smoothing filter of the ith functionals. For

functionals 24 to 31 we have the same 92, but with different I.
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Figure 5.6: Gaussian distribution function with mean o and standard deviation

0"=1.

5.4.1 The Gaussian sampling pattern

The first mask we want to use is based on the Gaussian distribution. Figure 5.6 shows a

one dimensional Gaussian distribution with mean value 17), = 0 and standard deviation

0" = 1. We know that:

(5.49)

where g(x) is the Gaussian probability density function, :1: is the independent variable

and 17), is its ayerage. In this distribution we know that the probability of finding a

point between -30" and 30" is about 99%. We use this property to define a Gaussian

distribution which produces numbers which cover all the image. The size of our image

is 320 x 320, so if we use the point at the (160,160) as the image center, we must spread

out the points along the two axes between -160 and +160. So 0" must be:

160
0" = - = 53.3

3
(5.50)

The mean value is still zero. To identify a random Gaussian sampling pattern we follow

these steps:
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• By using a uniform distribution, we draw a number between 0 and 1.

• By using a look up [60] table (table 5.2), we identify the corresponding number

drawn from a Gaussian distribution.

• We multiply the value obtained with the standard deviation of the Gaussian

distribution which we need (equation 5.50).

If the image is square, we draw twice as many random numbers as points we need

and pair them to form the sampling patterns. If the image has different dimensions

along the different axes, we must use a Gaussian with different a to draw the random

positions along the two axes.

Figure 5.7 shows such a distribution which covers a square image with 320 pixels along

each side. Because we restrict ourselves to sampling at integer positions, a new gener-

ated point may have exactly the same coordinates as a point generated before. So, if

we repeat the process N times it does not mean that we shall have N distinct sampling

points. We actually have M ::;N points. To reach a certain number of points for our

mask, say M = 20,000 points, we need to repeat the process more than 20,000 times.

It is dear then that the final mask will not be exactly Gaussian. This is an inevitable

necessity of using integer sampling positions. We could avoid the situation either by

llsing much fewer points for the mask, or by allowing non-integer sampling positions.

In the first case, we would severely under sample the image while in the second case,

we would have to oversample the image in the central regions by using many close-by

sampling points, the values of which would have been extracted from the same near-by

integer positions, thus necessarily repeating the same information. For these reason,

we decided to ignore the problem and accept that all sampling patterns we use will

only be approximately what their name indicates and in practice they will be limited

by the finite regular grid of the original images.
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Figure 5.7: Gaussian distribution for two dimensional sampling.

I I 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.500 0.519 0.559 0.598 0.636 0.673 0.708 0.741 0.772 0.801

1 0.828 0.852 0.874 0.893 0.911 0.926 0.939 0.949 0.959 0.967

2 0.974 0.979 0.983 0.987 0.989 0.992 0.994 0.995 0.996 0.997

Table 5.2: Look up table for drawing random numbers according to a Gaussian prob-

ability density function. The entries of the table are the values of the distribution

function P(X < z). The numbers in the first row give the decimal part of the answer

and the values in the first column give the integer part of the answer. If we draw a

random number 0.988 from a uniform distribution in the range [0,1]' then by looking

at this look up table we can see that z must be between 2.3 and 2.4 say 2.35. A more

accurate value is obtained by interpolation.

Figure 5.8 and 5.9 show two Gaussian sampling patterns, one with 20,000 points and

another with 10,000 points, and figure 5.10 shows both the Gaussian distribution we

used to produce it and the actual distribution of the points of the mask. The density
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Figure 5.8: Gaussian sampling mask with 20,000 points.

in the center of the mask is less than that of the Gaussian and away from the center

it is more than that of the Gaussian. The difference between the theoretical and the

true mask is less pronounced when we use fewer sampling points as shown in figure

5.11 where we plot the mask with 10,000 points. We use these masks to convert all112

textures which are sampled regularly to irregularly sampled data. After that we use

the Hough transform and the trace transform to recognise the textures.

5.4.2 The Log-Polar Sampling Pattern

To compute the radii of rings in log-polar coordinates, we use:

nlnR
r'n = e~ (5.51)

where rn is the radius of the 17Y~ring, R is the maximum radius, and N is the number

of rings. We used this formula to find the radius for each ring from 1 to N. After

finding the radius for each ring, we must distribute Nn points around that ring, To do

that, we choose for each point an angle ¢ with integer value in the range [0,359]. Nn is
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'.~' .

Figure 5.9: Gaussian sampling mask with 10,000 points.

distance
350

Figure 5.10: The theoretical probability density function (Gaussian) we use to draw

the sampling points and the true probability density function we produce due to the

repeated trials we allow (printed as bars). The number of points in the mask is 20,000

points.
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distance
350

Figure 5.11: The theoretical probability density function (Gaussian) we use to draw

the sampling points and the true probability density function we produce due to the

repeated trials we allow (printed as bars). The number of points in the mask is 10,000

points.

the numbers of points on each ring and it can be obtained by dividing the total number

of points we want to have (Nt), by the number of rings (N).

(5.52)

in the range:

The points on each ring must then be spread uniformly to occupy an annulus with radii

[
Tn + 1'11,-1 Tn + Tn+1]

2 ' 2 (5.53)

So, we draw random numbers uniformly distributed in this range. So, if X is the

random number we drew in the range [0,1]' the point of the ring with radius Tn is

shifted to:

(5.54)

It must be mentioned that for the last ring we will have some points shifted outside

the ring. In building the mask we ignore these points in order to avoid the creation of

a rim for our mask. Figure 5.12 and 5.13 show the masks obtained by using R = 160,
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N = 64 containing 19,852 points and with 9,917 points. Figure 5.14 shows both the

log-polar distribution (shown by a line) and what we obtain in practice (the graph with

the bars) due to the repeated trials we allow again. For the mask with 9,917 points the

difference between the two distributions is less pronounced (see figure 5.15).

Figure 5.12: This figure shows the mask obtained by using R = 160, N = 64 containing

19,852 points.

5.4.3 Retina Sampling Pattern

In this section we use the retinal sampling model of [48] for building a sampling pattern.

Let us say that p(r)dT is the probability density function of the distribution of cones

as a function of the polar radius T. By the approximation used in [48], this is equal to

~;,!~,or by dividing numerator and denominator by A, we have: (t'1:I~bl where A, a, b,

at and b' are model parameters. To find values of the parameters, we do the following:

Suppose we know that there are C1'l,1'2 cones between radii "i and 1'2, and that the total

number of cones is N. First we compute the probability of finding a cone between radii

rl and r2. This is the integral of p(r) between these two radii:

;'1'2 11'2 1 In(a'r2 + b') - In(a'1'l + b')
Pl,2 = p(T)d1' = t b,dT = , .

1'1 1'l a r + a
(5.55)
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Figure 5.13: This figure shows the mask obtained by using R = 160, N = 64 containing

9,917 points.

Then we multiply this probability with the total number of cones that exist, ie with

N. This then is equal to Cj'1,1'2:

(5.56)

By using equations (5.55) and (5.56), we can write:

CTl,1'2 = :, (In] a' 1'2 + b') - In] a' 1'1 + b')) (5.57)

So:

N
= In(a'1'2 + b') - In(a'1'1 + b') (5.58)

By taking the exponential function of both sides, we have:

I~e N (5.59)

So:

b' = a' (1'2 - 1'1)

~e N - 1
(5.60)
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Figure 5.14: The log-polar distribution used to produce the mask in figure 5.12 (the

graph with the line) and what we obtain in practice (the graph with the bars). The

number of points in the mask is 19,852.
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Figure 5.15: The log-polar distribution used to produce the mask in figure 5.12 (the

graph with the line) and what we obtain in practice (the graph with the bars). The

number of points in the mask is 9,917.
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If we know the number of cones in two separate areas between two different radii, we

can find two equations to define a' and b' using equation (5.60). The total number of

cones as reported in [13] is nearly 4,500,000. This can be used for T2 = 20mm and

1'1 = O. Also by using the graphs in figures 5.16 and 5.17, we find that for 1'2 = 1 and

1'1 = 0 we have:

So 1
CIa = ' X N

, SO,l + Sl,20
(5.61)

where Cl,O is the number of cones between 0 and 1mm. SO,l is the area under the curve

between 0 and 1mm shown in figure 5.16, and Sl,20 is the area under the curve shown

in figure 5.17 between 1 and 20mm. These areas can be computed using the trapezium

rule as follows:

12
'" Yn. + Y;~-l r

SO,l = L 2 (Xn - Xn-d
n=l

(5.62)

(5.63)

Table 5.3 lists the coordinate positions of the points plotted in figures 5.16 and 5.17.

Using these numbers we find that:

SO,l = 50.95 (5.64)

81,20 = 275.5 (5.65)

So,

50.95
CIa = X 4,500,000 = 702,328, 50.95 + 275.5 (5.66)

So we have 702,328 cones in the area between 0 to 1mm. Now we can find a' and b'. We

used equation (5.60) for two pairs of values, namely (1'1 = 0,1'2 = 1,c7"],7"2 = 702,328)

and (Tl = 0,1'2 = 20, Cj·j,T2 = 4,500,000) to find a' and b', which turn out to be a' = 2.24

and b' = 5.35.
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\
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\120

The distance to tho center of vision (mm)

Figure 5.16: This figure is taken hom [48] and shows the cone density versus distance

from the fovea. It is a zoom in to the central part of the curve shown in figure 5.17.

o 1 2 3 5 6 7 8 9 10 11 12 13 14

x 0
Y 200

Table 5.3: The Xi and Yi for some points in the Retinal model distribution. The values

are taken from figures 5.16 and 5.17.

To compute the distribution function P(z) which corresponds to this probability density

function, we integrate it from 0 to z:

P(z) = In(a'z + b') -In(b')
a'

(5.67)

To choose numbers then according to this distribution, we make a look up table for

P(z) versus z. We choose random numbers in the range [0,1]. These are the values

of P(z). Then we read the corresponding value of z from the table. This is the polar

radius r of the point. Again we choose an integer random number uniformly distributed

between 0° and 359° to be its angle.

This function in our eyes is from 0 to 20mm. Ifwe want to simulate this method for our
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Figure 5.17: This figure is taken from [48] and shows the cone density versus distance

from the fovea.

images which have maximum radius 160, we must multiply that interval by 8. Figure

5.18 and figure 5.19, show a retinal sampling mask with 20,000 points and one with

10,000 points, while figure 5.20 shows both the retinal distribution we used to produce

the mask with the 20,000 points and what we obtained in practice due to the limited

number of discrete points we can have in a digital image. For the mask with 10,000

points the difference between the two distributions is less pronounced (see figure 5.21).

5.5 Experinl.ents

Both-our training and test images are 320 x 320 pixels in size. This means that each

texture contains 320 x 320 = 102,400 points. First we assume that we do not really have

these images sampled with the regular grid, so we re-sample them using the sampling

patterns described in the previous section.

The number of random points we consider is an important parameter. We performed

experiments with 10,000 and 20,000 points in each sampling pattern to see the effect

of this parameter on the results. The other important problem parameters are the

parameters of the Hough space. We used 452 points to sample the values of parameter
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Figure 5.18: This figure shows the retinal sampling mask with 20,000 points.
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Figure 5.19: This figure shows the retinal sampling mask with 10,000 points.
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Figure 5.20: The theoretical retinal distribution we used to produce the mask in figure

5.18 (line) and the distribution of the actual sampling pattern (bars). The number of

points in the mask is 20,000.
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Figure 5.21: The theoretical retinal distribution we used to produce the mask in figure

5.18 (line) and the distribution of the actual sampling pattern (bars). The number of

points in the mask is 10,000.
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p and 360 points to sample e. This way we created the accumulator array of the

Hough space [74]. The value of each cell is incremented by 1 every time it is crossed

by the curve that represents a point in the real space. We construct one such line

for every point (Xi, Yi) of the sampling pattern. Another important parameter which

may affect the results of our experiments is the number of lines we use for tracing

the image. We can use all possible lines, and this means we use all points in the

accumulator array that have value more than 1. However, we do not wish to use too

many lines, because the computation will be too slow and having too sparsely sampled

lines will produce inaccurate results when we compute the trace functional. When we

had regularly sampled data, we used 20 rotations and 32 lines in each rotation for

tracing the texture. So, we used 32 x 20 = 640 lines totally. Here, we expect to use

more lines, to improve robustness to the errors introduced by the irregular positioning

of the sample points along each line. So we used the first 1000 and 2000 lines with the

most number of points, as identified by the Hough transform.

We are going to use the results of the regularly sampled data as a benchmark against

which we shall evaluate the results obtained from the sub-sampled data.

5.5.1 Regularly sampled data

The tracing lines used were such that each batch of parallel lines consisted of lines 2

inter-pixel distances apart. Each line was sampled by parameter i; so that the sam-

pling points were also 2 inter-pixel distances apart. For each value of p, 20 different

orientations were used, ie the orientations of the lines with the same p differed by 18°.

The significance of each feature was extracted from the training samples, and subse-

quently each one of the test samples was associated with the reference texture from

which the distance value computed by the distance equation of chapter 3 was minimal.

Table 5.4 presents the results of this approach for identifying the correct class of a

texture as the most similar one, the second most similar one, the third most similar

one, the fourth most similar one, and beyond, presenting the numbers under the cor-

responding columns. All these numbers are out of 112, as we present the results of

testing separately for each set of data. In all cases the reference set was the T L set of
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Q II Test Set BL II Test Set BR

I 2 I 3 I 4 I R II 1

0.5 90 11 1 1 9 81 11 3 3 14

1.0 92 10 1 0 9 81 8 6 4 13

1.5 95 6 0 1 10 82 11 3 4 12

2.0 88 10 2 2 10 78 14 3 2 15

2.5 84 12 3 2 11 74 11 6 4 17

Table 5.4: Texture classification results using the trace transform method (TT). Under

the headings 1, 2, 3 and 4 we show how many times the correct texture appeared in

the first, second, third and fourth position of the returned answer, respectively. Under

heading R we show how many times it appeared in one of the remaining positions. The

results are shown for different values of threshold Q. All numbers are out of 112.

images. Each row of results corresponds to a different choice of threshold Q. The best

results were obtained for Q = 1.5.

5.5.2 Irregularly sampled data

As we explained in section 5.4, we will use three sampling masks with two different

numbers of points on all 112 textures. The results obtained for the different sampling

patterns and different number of tracing lines identified by the Hough transform are

shown in tables 5.5 to 5.13. In each table we give in bold the best results obtained.

These tables include the results of dealing with the irregularly sampling lines carefully

e.g. by using normalised convolution (Ne), as well as the results obtained by simply

treating the missing points along each tracing lines as zeros (MP) and the results

obtained by ignoring the missing points (1M), i.e. ignoring the fact that the tracing

lines are irregularly sampled. In all cases, training was done using the same irregular

sampling mask. The idea behind this is that each human eye has its own sampling

pattern which is always fixed.
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I Lines I Points II Test Set EL Test Set BR II Q

I I
1000 10000 61 14 10 6 21 50 12 10 9 34 0.5
1000 10000 75 14 6 3 14 58 13 6 4 32 1
1000 10000 71 15 6 5 15 53 15 6 5 32 1.5
1000 10000 62 16 10 6 18 46 19 10 2 37 2
1000 10000 57 14 13 8 20 44 13 13 5 38 2.5
1000 20000 71 13 5 5 18 54 12 5 7 33 0.5
1000 20000 80 13 3 3 13 59 12 3 4 31 1
1000 20000 78 11 6 1 16 56 17 6 4 33 1.5
1000 20000 69 15 7 3 18 53 14 7 4 37 2
1000 20000 67 11 6 9 19 52 14 6 3 40 2.5
2000 10000 72 15 4 4 17 57 9 4 4 36 0.5
2000 10000 84 8 3 2 15 61 8 3 3 35 1
2000 10000 82 9 5 4 12 61 8 5 2 38 1.5
2000 10000 76 10 7 3 16 57 10 7 2 38 2
2000 10000 71 15 5 2 19 53 12 5 6 38 2.5
2000 20000 76 13 6 4 13 60 11 6 3 31 0.5
2000 20000 83 13 1 5 10 64 12 1 2 32 1
2000 20000 79 16 1 2 14 65 10 1 3 31 1.5
2000 20000 73 17 3 2 17 60 13 3 3 32 2

Table 5.5:Texture classification results using the Gaussian sampling pattern. Under

the headings 1, 2, 3 and 4 we show how many times the correct texture appeared in

the first, second, third and fourth position of the returned answer, respectively. Under

heading R we show how many times it appeared in one of the remaining positions.

The results are shown for different values of threshold Q, number of tracing lines and

number of points in the sampling pattern. All numbers are out of 112 and normalised
convolution was used in order to deal with the irregular sampling, where
appropriate.
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I Lines I Points II

I I II 1

Test Set BL II Test Set BR II Q

1000 10000 25 14 8 5 60 18 3 8 4 76 0.5

1000 10000 33 11 5 6 57 17 10 5 5 73 1

1000 10000 33 11 11 5 52 18 13 11 5 71 1.5

1000 10000 33 10 9 10 50 19 8 9 5 71 2

1000 10000 31 13 6 11 51 18 7 6 6 72 2.5

1000 20000 31 17 5 5 54 23 8 5 7 70 0.5

1000 20000 41 13 13 7 38 24 14 13 2 63 1

1000 20000 46 11 10 5 40 25 15 10 5 60 1.5

1000 20000 42 15 9 6 40 27 11 9 5 61 2

1000 20000 43 11 10 8 40 28 7 10 7 64 2.5

2000 10000 31 11 3 6 61 16 10 3 3 79 0.5

2000 10000 37 11 13 4 47 19 13 13 8 69 1

2000 10000 43 10 13 6 40 20 10 13 4 66 1.5

2000 10000 44 15 8 3 42 19 10 8 6 67 2

2000 10000 45 15 6 4 42 20 10 6 4 69 2.5

2000 20000 36 14 8 6 48 25 ·10 8 2 70 0.5

2000 20000 48 13 6 6 39 26 13 6 3 63 1

2000 20000 52 11 6 6 37 29 12 6 4 59 1.5

2000 20000 50 13 9 4 36 27 15 9 3 59 2

I 2 I 3 I 4 I R II 1

Table 5.6: Texture classification results using the Gaussian sampling pattern. Under

the headings 1, 2, 3 and 4 we show how many times the correct texture appeared in

the first, second, third and fourth position of the returned answer, respectively. Under

heading R we show how many times it appeared in one of the remaining positions. The

results are shown for different values ofthreshold Q, number of tracing lines and number

of points in the sampling pattern. All numbers are out of 112 and no normalised

convolution was used, but missing sampling points along each tracing line

were identified and their values were set to O.
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I Lines I Points II Test Set BL Test Set BR II Q

1 I 2 I 3 I 4 I R II
1000 10000 55 15 9 3 30 47 8 9 7 44 0.5

1000 10000 72 8 10 3 19 51 15 10 4 36 1

1000 10000 73 10 6 4 19 52 10 6 8 35 1.5

1000 10000 62 19 2 4 25 49 9 2 7 38 2

1000 10000 57 16 9 4 26 47 9 9 (:i 41 2.5

1000 20000 70 18 3 6 15 49 13 3 7 37 0.5

1000 20000 73 17 6 1 15 59 7 6 3 33 1

1000 20000 76 14 5 3 14 57 11 5 3 35 1.5

1000 20000 75 12 3 3 19 53 13 3 7 35 2

1000 20000 64 18 5 4 21 53 11 5 5 37 2.5

2000 10000 67 11 5 5 24 43 17 5 4 39 0.5

2000 10000 80 9 4 1 18 54 15 4 6 31 1

2000 10000 78 9 4 3 18 53 12 4 7 34 1.5

2000 10000 77 9 2 2 22 51 12 2 5 38 2

2000 10000 70 14 2 1 25 48 13 2 5 41 2.5

2000 20000 74 14 8 1 15 56 10 8 4 33 0.5

2000 20000 82 9 6 2 13 58 13 6 6 29 1

2000 20000 84 8 2 1 17 55 11 2 (:i 32 1.5

2000 20000 76 9 6 1 20 54 15 6 3 36 2

Table 5.7: Texture classification results using the Gaussian sampling pattern. Under

the headings 1, 2, 3 and 4 we show how many times the correct texture appeared in

the first, second, third and fourth position of the returned answer, respectively. Under

heading R we show how many times it appeared in one of the remaining positions.

The results are shown for different values of threshold Q, number of tracing lines and

number of points in the sampling pattern. All numbers are out of 112 and no action

was taken to deal with the irregular sampling. i.e the missing points were treated

as if they were not there.
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I Lines I Points II
I I II 1

Test Set EL II Test Set ER II Q

I 2 I 3 I 4 I R II 1

1000 10000 59 12 7 1 33 44 11 7 8 43 0.5

1000 10000 72 11 5 5 19 57 8 5 7 38 1

1000 10000 70 13 4 5 20 52 10 4 6 37 1.5

1000 10000 66 13 7 3 23 49 12 7 5 40 2

1000 10000 66 11 8 3 24 51 10 8 6 41 2.5

1000 20000 73 9 7 7 16 52 13 7 3 37 0.5

1000 20000 74 14 4 6 14 56 14 4 4 31 1

1000 20000 74 15 2 4 17 58 10 2 7 31 1.5

1000 20000 67 15 7 5 18 53 10 7 4 37 2

1000 20000 67 14 6 7 18 50 10 6 8 36 2.5

2000 10000 59 16 4 0 33 49 15 4 2 39 0.5

2000 10000 70 18 3 1 20 54 13 3 5 34 1

2000 10000 74 12 4 5 17 57 9 4 3 34 1.5

2000 10000 69 12 4 4 23 51 10 4 8 36 2

2000 10000 68 13 1 5 25 48 8 1 9 39 2.5

2000 20000 77 9 7 5 14 57 ·13 7 3 32 0.5

2000 20000 80 14 6 0 12 64 11 6 2 30 1

2000 20000 76 14 5 5 12 65 8 5 2 29 1.5

2000 20000 74 14 2 6 16 65 8 2 3 33 2

Table 5.8: Texture classification results using the Logpolar sampling pattern. Under

the headings 1, 2, 3 and 4 we show how many times the correct texture appeared in

the first, second, third and fourth position of the returned answer, respectively. Under

heading R we show how many times it appeared in one of the remaining positions.

The results are shown for different values of threshold Q, number of tracing lines and

number of points in the sampling pattern. All numbers are out of 112 and normalised

convolution was used in order to deal with the irregular sampling, where

appropriate.
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I Lines I Points II Test Set EL Test Set ER Q

1000 10000 40 5 7 2 58 32 6 7 2 65 0.5

1000 10000 49 8 10 3 42 36 11 10 6 57 1

1000 10000 49 10 6 2 45 39 4 6 5 57 1.5

1000 10000 52 6 7 3 44 36 10 7 4 59 2

1000 10000 51 8 5 4 44 40 6 5 4 58 2.5

1000 20000 48 10 8 9 37 36 10 8 2 56 0.5

1000 20000 56 16 5 4 31 44 7 5 4 52 1

1000 20000 60 12 4 6 30 40 9 4 2 53 1.5

1000 20000 62 10 4 4 32 41 9 4 5 52 2

1000 20000 61 11 4 2 34 40 7 4 5 54 2.5

2000 10000 41 4 3 8 56 32 9 3 2 65 0.5

2000 10000 46 8 9 7 42 33 10 9 2 58 1

2000 10000 49 12 3 5 43 37 8 3 7 55 1.5

2000 10000 50 9 7 3 43 33 9 7 5 59 2

2000 10000 49 11 5 4 43 34 7 5 7 62 2.5

2000 20000 47 9 13 8 35 38 10 13 G 53 0.5

2000 20000 59 15 5 3 30 43 8 5 G 52 1

2000 20000 61 13 2 4 32 44 5 2 11 48 1.5

2000 20000 62 10 2 3 35 42 4 2 5 54 2

Table 5.9: Texture classification results using the Logpolar sampling pattern. Under

the headings 1, 2, 3 and 4 we show how many times the correct texture appeared in

the first, second, third and fourth position of the returned answer, respectively. Under

heading R we show how many times it appeared in one of the remaining positions. The

results are shown for different values of threshold Q, number of tracing lines and number

of points in the sampling pattern. All numbers are out of 112 and no normalised

convolution was used, but missing sampling points along each tracing line

were identified and their values were set to O.



5.5. Experiments 117

I Lines I Points II Test Set BL II Test Set BR II Q

I I II 1 I 2 I 3 I 4 I R II 1

1000 10000 52 9 8 6 37 45 9 8 11 41 0.5

1000 10000 63 9 8 3 29 54 9 8 3 39 1

1000 10000 63 11 6 3 29 52 9 6 5 38 1.5

1000 10000 62 11 6 4 29 50 9 6 1 44 2

1000 10000 59 11 8 5 29 51 7 8 4 43 2.5

1000 20000 58 14 4 9 27 48 13 4 7 39 0.5

1000 20000 68 15 7 2 20 56 13 7 5 34 1

1000 20000 70 14 8 6 14 56 11 8 3 35 1.5

1000 20000 69 15 7 3 18 54 12 7 2 39 2

1000 20000 66 14 10 3 19 52 13 10 1 38 2.5

2000 10000 48 14 11 10 29 46 11 11 4 46 0.5

2000 10000 63 11 7 4 27 48 16 7 4 37 1

2000 10000 63 12 7 4 26 47 14 7 4 42 1.5

2000 10000 57 14 8 5 28 50 9 8 5 45 2

2000 10000 59 9 9 5 30 46 12 9 4 47 2.5

2000 20000 60 13 7 5 27 48 '17 7 5 36 0.5

2000 20000 70 16 7 2 17 57 10 7 4 35 1

2000 20000 74 15 5 3 15 56 11 5 7 36 1.5

2000 20000 67 18 8 3 16 55 12 8 7 34 2

Table 5.10: Texture classification results using the Logpolar sampling pattern. Under

the headings 1, 2, 3 and 4 we show how many times the correct texture appeared in

the first, second, third and fourth position of the returned answer, respectively. Under

heading R we show how many times it appeared in one of the remaining positions.

The results are shown for different values of threshold Q, number of tracing lines and

number of points in the sampling pattern. All numbers are out of 112 and no action

was taken to deal with the irregular sampling. i.e the missing points were treated

as if they were not there.
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I Lines I Points II

I I II 1

Test Set BL II Test Set BR II Q

I 2 I 3 I 4 I R II 1 I 2 I 3 I 4 I R II
1000 10000 51 13 10 3 35 35 14 10 13 43 0.5
1000 10000 72 9 5 6 20 54 5 5 4 39 1
1000 10000 71 12 5 5 19 54 6 5 6 41 1.5
1000 10000 65 17 2 7 21 49 9 2 8 42 2
1000 10000 64 15 5 5 23 46 11 5 7 42 2.5
1000 20000 68 12 8 4 20 51 10 8 6 36 0.5
1000 20000 75 14 2 4 17 60 11 2 3 36 1
1000 20000 74 11 5 5 17 57 8 5 5 33 1.5
1000 20000 69 14 8 4 17 55 9 8 8 35 2
1000 20000 64 15 9 4 20 54 10 9 11 33 2.5
2000 10000 64 13 1 2 32 48 12 1 8 34 0.5
2000 10000 76 10 5 3 18 53 14 5 2 36 1
2000 10000 72 11 5 6 18 55 9 5 9 34 1.5
2000 10000 66 14 3 7 22 50 11 3 6 40 2
2000 10000 62 17 5 6 22 47 14 5 4 43 2.5
2000 20000 70 16 7 3 16 56 13 7 3 35 0.5
2000 20000 75 18 6 1 12 59 16 6 2 29 1
2000 20000 77 12 6 5 12 62 10 6 0 34 1.5
2000 20000 66 21 5 4 16 56 12 5 3 36 2

Table 5.11: Texture classification results using the Retinal sampling pattern. Under

the headings 1, 2, 3 and 4 we show how many times the correct texture appeared in

the first, second, third and fourth position of the returned answer, respectively. Under

heading R we show how many times it appeared in one of the remaining positions.

The results are shown for different values of threshold (2, number of tracing lines and

number of points in the sampling pattern. All numbers are out of 112 and normalised

convolution was used in order to deal with the irregular sampling, where

appropriate.
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I Lines I Points II

I I II 1

Test Set BL II Test Set BR II Q

1000 10000 34 9 7 3 59 21 13 7 3 71 0.5

1000 10000 41 7 6 7 51 28 8 6 7 62 1

1000 10000 45 5 10 5 47 26 12 10 3 64 1.5

1000 10000 42 7 6 6 51 25 12 6 3 65 2

1000 10000 41 6 7 5 53 24 11 7 4 63 2.5

1000 20000 49 8 11 6 38 31 11 11 4 60 0.5

1000 20000 51 18 3 6 34 36 7 3 7 55 1

1000 20000 57 9 5 9 32 38 10 5 5 55 1.5

WOO 20000 54 11 5 5 37 37 12 5 5 56 2

1000 20000 55 10 4 4 39 36 11 4 5 56 2.5

2000 10000 33 10 5 5 59 24 8 5 5 69 0.5

2000 10000 47 7 4 9 45 32 8 4 3 61 1

2000 10000 51 8 3 5 45 26 13 3 2 63 1.5

2000 10000 47 9 4 6 46 26 9 4 6 62 2

2000 10000 46 8 6 6 46 24 10 6 7 64 2.5

2000 20000 46 14 8 7 37 29 14 8 4 57 0.5

2000 20000 58 12 9 4 29 38 9 9 1 59 1

2000 20000 60 11 5 6 30 40 7 5 7 54 1.5

2000 20000 55 12 5 3 37 42 5 5 2 56 2

I 2 I 3 I 4 I R II 1

Table 5.12: Texture classification results using the Retinal sampling pattern. Under

the headings 1, 2, 3 and 4 we show how many times the correct texture appeared in

the first, second, third and fourth position of the returned answer, respectively. Under

heading R we show how many times it appeared in one of the remaining positions. The

results are shown for different values of threshold Q, number of tracing lines and number

of points in the sampling pattern. All numbers are out of 112 and no normalised

convolution was used, but missing sampling points along each tracing line

were identified and their values were set to O.
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I Lines I Points II Test Set BL II Test Set BR Q

I I II 1 I 2 I 3 I 4 I R II 1 I 2 I 3 I 4 I R

1000 10000 51 13 7 4 37 40 12 7 10 44 0.5

1000 10000 58 13 5 3 33 48 15 5 5 41 1

1000 10000 62 11 4 5 30 51 11 4 7 39 1.5

1000 10000 59 8 5 6 34 50 10 5 5 42 2

1000 10000 56 6 6 7 37 47 10 6 4 43 2.5

1000 20000 56 15 7 8 26 48 10 7 5 40 0.5

1000 20000 72 8 11 3 18 55 12 11 5 36 1

1000 20000 72 12 5 4 19 52 12 5 6 38 1.5

1000 20000 69 14 4 3 22 49 8 4 4 45 2

1000 20000 66 16 4 2 24 47 12 4 4 45 2.5

2000 10000 53 17 8 2 32 41 14 8 7 40 0.5

2000 10000 62 12 3 4 31 51 13 3 7 39 1

2000 10000 64 7 9 3 29 52 12 9 5 41 1.5

2000 10000 59 11 5 4 33 48 13 5 3 45 2

2000 10000 56 11 7 4 34 47 12 7 3 46 2.5

2000 20000 59 14 7 8 24 43 17 7 4 38 0.5

2000 20000 70 15 8 2 17 56 10 8 4 37 1

2000 20000 76 11 7 2 16 53 15 7 4 37 1.5

2000 20000 70 16 4 2 20 52 11 4 5 39 2

Table 5.13: Texture classification results using the Retinal sampling pattern. Under

the headings 1, 2, 3 and 4 we show how many times the correct texture appeared in

the first, second, third and fourth position of the returned answer, respectively. Under

heading R we show how many times it appeared in one of the remaining positions.

The results are shown for different values of threshold Q, number of tracing lines and

number of points in the sampling pattern. All numbers are out of 112 and no action

was taken to deal with the irregular sampling. i.e the missing points were treated

as if they were not there.
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Position Regular Gaussian Log-polar Retinal

Ne MP 1M Ne MP 1M Ne MP 1M

1 79 65 36 62 64 46 58 62 44 57

2 86 76 46 72 75 54 69 71 52 69

3 87 77 56 77 78 56 74 77 57 75

4 90 81 60 81 79 63 78 79 62 78

Table 5.14: This table shows the best result from each method in terms of percentages

and returns of the correct answer in the first, the first 2, the first 3 or the first 4

positions. The bold one for each mask is the best result between Ne, MP and 1M. In

all cases the number of points is 20,000 and the number of tracing lines is 2,000.

Table 5.14 summarises the best result from each method in terms of percentages and

returns of the correct answer in the first, the first 2, the first 3 or the first 4 positions, for

both datasets. In figure 5.22 we show the best results for each sampling pattern. The

best result of all cases was produced by the Gaussian sampling pattern when we used

20,000 sampling points and 2,000 tracing lines and is 65% return in the first position.
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Figure 5.22: By using three sampling patterns which are Gaussian, Logpolar and Reti-

nal, we can obtain the above results. In each sampling pattern we used three methods:

Ne, MP and 1M. We can see that the best result in total experiments belongs to the

Gaussian sampling pattern which has been obtained by the Ne method.
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5.6 Conclusions

We demonstrated in this chapter that by using the Trace transform method we may

recognise textures from irregularly sampled images. The Hough transform was used

as an interface that allowed us to identify tracing lines in the image and normalised

convolution allowed us to deal with the irregularly placed samples along the tracing

lines in order to compute the trace functionals.

From table 5.14 we note that the worse thing one might do is to assume that the

missing points along the irregularly sampled tracing lines have 0 value. If we simply

apply the trace transform ignoring the fact that the tracing lines we use are made up

of irregularly placed points, we do only slightly worse than when we take extra care to

deal with irregular sampling. (Compare columns NC and 1M in table 5.14). However

this is likely to yield very poor result if the sampling pattern changes between training

and testing.

Overall the best results were produced by the Gaussian sampling pattern. This is be-

cause this pattern had its points more uniformly spread all over the image than either

the log polar or the retinal pattern. However, none of the sampling patterns was what

it was supposed to be. This is because in our experiments we are limited by the band-

width of the already digitised images. The sampling patterns are supposed to be used

to sample an analogue scene. In addition, human retina has 4,500,000 sampling points,

as opposed to a few thousands we used here. So, given that we used less than 20%

of the pixels in the original regularly sampled images, and we choose them at random

positions, something that goes against the fundamental property of texture being a

spatial property, the produced results are remarkably good in comparison with the re-

sults obtained by using regular grids.

One way to improve the classification accuracy of irregularly sampled data is to use

more than one places in the image where we place the sampling mask. After all, our

eyes often scan an image by foveating at several places in it in order to achieve recog-

nition.

A further improvement in the results may be achieved by using a hierarchical system

where textures are first classified into broad classes and at a second stage they are
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reclassified inside each broad class.
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Chapter 6

Texture recognition from

irregularly shaped samples

The Trace transform describes objects by characterising both their shape and texture.

When all textures we had were represented by similarly shaped samples, shape infor-

mation did not play any role in discriminating them. What will happen, however, if we

have irregularly shaped texture samples? Can we recognise them by normalising the

results of the functionals in tables 3.1 to 3.4 so that shape information is removed? This

is what we want to test in this chapter. So, first we make 112 irregularly shaped texture

samples by using 20 irregularly shaped masks, and then we use the Trace transform to

recognise these textures. Then we apply the method to the classification of some real

pathology images.

6.1 Simulated experiments

6.1.1 Irregularly shaped texture samples

Figure 6.1 shows 20 irregularly shaped masks which we use to convert textures in the

Brodatz album to irregularly shaped texture samples.

For doing that we randomly choose one of the masks and impose it on the original

texture. The masks were created by picking 20 images at random from an image

125
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database and segmenting them. The black part of the chosen mask is used to define

the acceptable part of the texture. Figure 6.2 shows the first 20 textures from the

Brodatz album after they have been masked.

6.1.2 Adapting the trace transform to remove shape information

If we look at the functionals of the Trace transform in tables 3.1 to 3.4, we can see

that some of them are invariant to the length of the tracing line, such as Iuuctionals

which use the max or min operator. However, the values of some others change if the

length of the tracing line changes. When we had fixed shaped texture samples, this

did not matter for the classification result because for all textures we had lines wi th

equal lengths. Here, we must divide the result of those functionals which are dependent

on the length of the tracing line by the length of the line. Tables 6.1 t06.4 show all

functionals and whether it is necessary to divide their value by the length of the line

or not.

6.1.3 Experiments

We used 112 irregularly shaped texture samples and then the Trace transform method

described in chapter 3 to recognise these textures. To be able to use the features

extracted by the Trace transform, we used tables 6.1 to 6.4 to see whether it is necassary

to divide the result by the length of the tracing line or not. The results are shown in

figure 6.3. These results are obviously worse than those obtained when using full images

on rectangular grids. However, the correct answer is within the 8 first choices 86% of

the time. One should realise that this experiment is a very severe test of the method

as some of the masks used are very small as one can see from figure 6.1 and several of

the textures in the database are macro textures, which means that using such a mask

on them destroys the texture entirely.

The fact that the result curves in figure 6.3 converge as the rank of accepted choices

increases, shows that the Trace transform method degrades gracefully i.e. when the

method fails to recognise the correct textures in the first position of choice, it does not

place it too far away from it.
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(a) !VII

(e) !VI5

(i) M9

(b) lVI2 (c) !VI3

(f) M6 (g) M7

(j) !vIlO (k) Mll

(m) !VII3 (11) 1\1114 (0) !VII5

(q) !VII7 (1) !VIIS (5) !VII9

(d) !VI4

(b) MS

(I) !VII2

(p) MI6

(t) !VI20

Figure 6.1: 20 masks used for converting the Brodatz album to irregularly shaped

texture samples.
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Figure 6.2: The first 20 textures from the Brodatz album after having been converted

to irregularly shaped texture samples, by using masks from table 6.1 randomly chosen.
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Number Functional Divide

1

2
3

4

yes
yes
no

yes
5 MaX~OXi no

6 ",N-l I IL-i=O Xi+l - Xi yes
7 ",N-l I I')L-'i=O XHI - Xi - yes
8 ",N-3

1

I
L-i=3 Xi-3 + Xi-2 + Xi-l - X'i+l - Xi+2 - Xi+3 yes

9 yes
10 ",N-'l I IL-i=4 Xi-4 + Xi-3 + ...+ Xi-l - Xi+l - ... - Xi+3 - XiH yes
11 ",!V-51 IL-i=5 Xi-5 + Xi-4 + ...+ Xi-J - Xi+l - ... - X'i+4 - ·'1:i+5 yes
12 ",N-6

1
IL-i=6 Xi-6 + Xi-5 + ...+ Xi-l - Xi+l - ... - Xi+5 - Xi+6 yes

13 ",!V-71 IL-i=7 Xi.-7 + X'i-6 + ...+ Xi-l - Xi,+1 - ... - Xi+6 - XH7 yes
14 yes
15 ""N -5 ",,5 I

L-i=5 L-h:=O X'i-k - XHk I yes
16 yes
17 ",!V-7 ",7 I I

L-i=7 L-h:=O Xi-k - Xi+k yes
18 yes
19 ",!V-15 ",15 I

L-i=15 L-k=O Xi-k - X'i+k I yes
20 !V-20 20

2:i.=20 2:k=O lXi-/,; - Xi+k I yes
21
22
23

yes
no

no

Table 6.1: The trace functionals T used in the experiments. N is the total number of

points along the tracing line and Xi is the ith sample along the line. The entry under

column "Divide" gives the answer to the question "Shall we divide the result of that

functional by the length of the tracing line or not?" Table continued on the next page.
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Number Functional Divide

24 N-2 + xi+212:i=O IXi - 2Xi+l yes

25 2:{:~3 IXi - 3Xi+l + 3Xi+2 - xi+31 yes

26 2:.;'~~4 IXi - 4Xi+l + 6Xi+2 - 4Xi+3 + xi+41 yes

27 2:N-51 + 10xi+2 - 10Xi+3 + 5Xi+4 - xi+51i=O X'i - 5Xi+l yes

28 N-2 + xi+2Ixi+l2:i=O IXi - 2Xi+l yes

29 2:{:~3 IXi - 3Xi+l + 3Xi+2 - xi+3Ixi+l yes

30 2:N-41 + 6Xi+2 - 4Xi+3 + xiHlxi+2;=0 Xi - 4Xi+l yes

31 2:N-5 + 10Xi+2 - 10Xi+3 + 5X'i+4 - Xi+5lxi+2i=O IXi - 5Xi+l yes

Table 6.2: The trace functionals T used in the experiments. N is the total number of

points along the tracing line and Xi is the ith sample along the line. The entry under

column "Divide" gives the answer to the question "Shall we divide the result of that

functional by the length of the tracing line 01' not?"

I Nurnber I Functional I Divide I
1 NIaxN x· no, ;=0', ,.
2 l\l[in;~Oxi no

3 V2:N .) yesi=OXi

4 ~;V-Q ix , no
~N~Q Xi

5 N .
2:;=0 'IXi yes

6 -tJ 2:;~O(Xi - X)2 no

7 c so that: 2:~=0 Xi. = 2:{:c Xi no

8 2:{:~1 IXi+l - xii yes

9 c so that: 2:~=0 IXi+l - xii = 2:N-1 IXi+l - x'il' 110
'I.=C

10 2:N-4 I 4 + 6Xi+2 - 4Xi+3 + xiHI yesi=O X'i - X'i+l

Table 6.3: The diametric functionals P used in the experiments. The entry under

column "Divide" gives the answer to the question "Shall we divide the result of that

functional by the length of the column of the Trace transform or not?"
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Number Functional Divide

1 LN-1 I 12 yesi=O xHl - :ri
N-J2 Li=o· IXHI - xii yes

3 V_LN '> yes. x.,·,.=0 ,.

N4 Li=o Xi yes

5 Max~Oxi no

6 M N M' N no• aX;.=oxi- j tni=oxi.

7 . 1 ~1" N noz so t rat Xi =" tni=oxi

8 i so that Xi = J\1ax.f::oxi no

9 i so that Xi = N[inr~OXi without first harmonic no

10 i so that Xi = M aX~Oxi without first harmonic no

11 Amplitude of the first harmonic no

12 Phase of the first harmonic no

13 Amplitude of the second harmonic no

14 Phase of the second harmonic' no

15 Amplitude of the third harmonic no

16 Phase of the third harmonic no

17 Amplitude of the fourth harmonic no

18 Phase of the fourth harmonic no

Table 6.4: The circus functionals 1> used in the experiments. The entry under column

"Divide" gives the answer to the question "Shall we divide the result of that functional

by the length of the circus function or not?"
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Figure 6.3: This figure shows that by increasing the number of choices, the percentage of

correct classification increases as well. After selecting the first 8 choices the classification

accuracy is 82%, as opposed to 90% for irregularly sampled data and 98% for regularly

shaped and regularly sampled data.

6.2 An application to medical image characterisation

6.2.1 Introduction

Having the ability to recognise textures combined with the ability to isolate textured

regions, will result to a method which allows one to classify objects in complex images.

A kind of such complex images are some medical images. We are using 97 pathology

images showing breast cancer and want to classify them in three classes, according

to the severity of the condition. The management of the cancer patient depends on a

point system used. The pathologist examines various images of the cancerous tissue and

according to their appearance assigns points to the patient. One of the characteristics

the pathologist looks for is the appearance of the cells. The cancerous cells tend to

be diversified in shape and tend to form dense clusters. The phenomenon is called

pleomorphism and from the image processing point of view it manifests itself as a

change in texture. The trouble is that this change in texture does not occupy a whole
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image, but only segments in it. So, before we attempt to characterise the degree of

pleomorphism, we must first isolate the texture regions of the image. This is not a

problem of texture segmentation in the usual sense of the word, since we are not trying

to segment the different textures present in the image. All we are interested in here

is to isolate the regions of fat (which appear uniformly coloured in the image) from

the cell-filled regions. Once the cell-filled regions have been identified, then we may

apply one of the methods we studied to characterise the texture and classify the image

in one of the 3 classes pathologists use: those which for pleomorphism are assigned 1

point (mildest form of cancer), those which are assigned 2 points (average severity of

the condition) and those which are assigned 3 points (most advanced form of cancer).

So, as a first step we need to use an algorithm which separates the textured from the

non-textured regions irrespective of the type of texture of the textured regions. Figure

6.4 shows one of these 97 medical images which belongs to class 1, (1 point). All images

in our database have been assigned points by expert pathologists. So, the scheme we
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Figure 6.4: This figure shows one of the 97 medical images which are used in our

experiments. This image belongs to class l.
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propose to use is:

• Identify in each medical image the largest textured region.

• Extract a training set of patterns for each category of image.

• Classify test textures using nearest neighbour and a vote counting system.

Next we present the simple method we use to identify the most significant textured

region in each image. Then we present our classification experiments, and finally our

conclusions.

6.2.2 Segmenting the images

We start by observing that textured regions are characterised by high density of edge

pixels (edgels). By repeatedly then dilating the edgels, we expect the textured regions

to form sooner or later large connected islands of pixels. So, to segment the images we

perform the following steps:

• Using the Sobel operator we find the edgels of the image. We flag them as black

pixels.

• Using mathematical morphology we dilate the edgels with a structuring element

of size 3 x 3.

• After every dilation we perform connected component analysis of the black pixels

and identify the connected component with the largest number of pixels. If the

number of its pixels is above a certain threshold Tv; we go to the next step.

Otherwise, we keep dilating the black pixels, until a major connected component

made up from dilated edgels emerges.

• When we stop the dilation of the black components, we perform connected com-

ponent analysis of the white components. Any white connected component which

is fully surrounded by black pixels (i.e. does not touch the border of the image)

and it has fewer pixels than a threshold T2, is filled in with black pixels.
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Figure 6.5: (a) Sobel mask for enhancing the vertical edges. (b) Sobel mask for en-

hancing the horizontal edges.

Next we describe each step in detail and show the output of each step.

We use the Sobel masks shown in figure 6.5 to estimate the horizontal and the ver-

tical components of the gradient vector of each pixel. Let us call them Ma: and My

respectively.

The magnitude of the gradient vector is then:

(6.1 )

Then, we threshold the values of M by using a threshold To and mark with 0 all pixels

with values M ~ To and with 255 (white) all pixels with values M ::; To. Threshold To

is chosen by the Otsu method [64]. As we do not perform non-maxima suppression, the

edge strings we produce are thick, but this is not a problem. In fact it is desirable for the

purpose we require the edgels. Figure 6.6 shows the histogram of the M values for the

image of figure 6.4 and it marks with an arrow the position of the threshold identified

by the Otsu method. Figure 6.7 shows the interclass difference versus threshold value,

used by the Otsu method to choose the threshold. Figure 6.8 shows the edge map

produced for the image of figure 6.4.

Figure 6.9 shows the edge map dilated once, and figure 6.10 shows the final edge map

obtained after 5 dilations, using as value of threshold Ti = 33640 which represents 10%

of the image pixels. Figure 6.11 presents the filled in most significant black connected

component using threshold T2 = 7436 which was chosen to represent 10% of the num-

ber of pixels identified in the largest black connected component. Finally, figure 6.12



136 Chapter 6. Texture recognition hom irregularly shaped samples

X 10.1
2.5,------,-----,----,----,---,----,--,--,--,----,

60 ~ lOO I~ I~ IW I~ ~O

Figure 6.6: This figure shows the histogram of the M values for the image of figure 6.4.

The arrow marks the position of the threshold used.
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Figure 6.7: The interclass difference versus threshold value. According to Otsu's

method we choose the threshold that maximises the interclass difference.



6.2. An application to medical image characterisation 137

Figure 6.8: This figure shows the edge map produced for the image of figure 6.4.

presents the identified textured region superimposed on the original image.

Figures 6.13 to 6.16 show other original medical images with the border of their largest

segmented textured regions, and the largest segmented textured regions separately.

Two options are considered: use of 4 or 8 connectivity when performing connected

component analysis. All segments for the 97 medical images were obtained fully auto-

matically, namely using the Otsu method for the edge strength threshold and threshold

Tl and T2 being 10% of the total number of pixels on the image and 10% of the total

number of pixels in the largest connected component respectively. In the next sec-

tion we use the Trace transform on these segments treating them as irregularly shaped

textu~·ed regions.

6.2.3 Experiments

After identifying the largest area of cells in each pathology image, we use the Trace

transform to extract features. Here, we have three classes. We use 10 images from each

class for training. The test set includes 27 images from class 1, 30 images from class

2 and 10 images from class 3. Also these experiments were performed for two cases:
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Figure 6.9: This figure shows the edge map of figure 6.4 dilated once.
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Figure 6.10: This figure shows the final edge map obtained after 5 dilations, using as

value of threshold Tl = 33640 which represents 10% of the image pixels.



6.2. An application to medical image caexectexieetion 139
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Figure 6.11: The largest segment of textured region which has high enough number of

pixels to allow us characterise its texture.
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Figure 6.12: This figure presents the identified textured region superimposed on the

original image.
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(a)

50 100 150 200 250 300 350 400 450 500 550

(b)
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Figure 6.13: The largest segmented textured regions for images 4 and 5 on the left,

and the borders of the segmented regions superimposed on the original images, on the

right. These masks were constructed using 8-connectivity in the connected component

analysis of the algorithm.
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Figure 6.14: The largest segmented textured regions for images 4 and 5 on the left,

and the borders of the segmented regions superimposed on the original images, on the

right. These masks were constructed using 4-connectivity in the connected component

analysis of the algorithm.
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Figure 6.15: The largest segmented textured regions for images 6 and 7 on the left,

and the borders of the segmented regions superimposed on the original images, on the

right. These masks were constructed using 8-connectivity in the connected component

analysis of the algorithm.
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Figure 6.16: The largest segmented textured regions for images 6 and 7 on the left,

and the borders of the segmented regions superimposed on the original images, on the

right. These masks were constructed using 4-connectivity in the connected component

analysis of the algorithm.
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Class 1 Class 2 Class 3

Class 1 11(9) 6(9) 10(9)

Class 2 13(10) 6(10) 11(10)

Class 3 4(3.3) 1(3.3) 5(3.3)

Table 6.5: The confusion matrix for samples isolated using 8 connectivity. The numbers

inside brackets are those expected by pure chance. Along the first row are the classes

produced by the algorithm while on the left column are the true classes.

Class 1 Class 2 Class 3

Class 1 13(9) 6(9) 8(9)

Class 2 5(10) 12(10) 13(10)

Class 3 3(3.3) 3(3.3) 4(3.3)

Table 6.6: The confusion matrix for samples isolated using 4 connectivity. The numbers

inside brackets are those expected by pure chance. Along the first row are the classes

produced by the algorithm while on the left column are the true classes.

when we use 4-connectivity to construct the masks that isolate the largest textured

region and when we use 8-connectivity. Tables 6.5 and 6.6 show the confusion matrix

for each case.

The results were obtained by using the method described in chapter 3 for Q = 2.5.

Inside brackets we give the number of correctly classified samples by purely random

choice. Although, the results are better than those produced by pure chance, we see

that they are not satisfactory. The reason is that the differences between the classes

here are very subtle and we have only 3 classes. Next we shall see whether we may

improve the accuracy of classification by using a more careful feature selection method.

6.2.4 A more sophisticated feature selection method

Trace transform allows us to have thousands of features to characterise a texture. We

shall try now to choose from among all those features the ones which show maximum
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Class 1 Class 2 Class 3

Training 10 10 6

Evaluation 10 10 6

Testing 17 20 8

Table 6.7: The number of medical images in each class and each set are shown in this

table.

specificity and sensitivity. We decide to divide our image in 3 sets: a training set,

evaluation set and a test set. Our protocol is shown in table 6.7. Suppose that fi~j

means the ith feature from the jth image in the sth set. We use the following algorithm

to identify the best features.

• Compute the distance of the ith feature of the lh image in the evaluation set,

from the ith feature of all images in the training set.

• Find the minimum of those distances. Suppose it corresponds to the kth image

of the training set.

• Find the class of that image. (kth image)

• Classify the image in the evaluation set(jth image), to that class with respect to

the ith feature.

• Continue this algorithm for all images in the evaluation set.

• Compute the number of correct classifications in each class, which is the result of

using only the ith feature.

• Continue this algorithm for all features.

• Sort the features regarding to the number of correct classifications in all three

classes counted together.

• Use the n number of the best features to classify the evaluation set. This number

is like threshold and can be obtained by seeing the results of various value of

it (figure 6.17).
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Number of features used

Figure 6.17: We can find the n, number of features with the best performance, by

looking at this figure.

Class 1 Class 2 Class 3

Class 1 10{3.3) 0{3.3) 0{3.3)

Class 2 0{3.3) 10{3.3) 1{3.3)

Class 3 0(2) 0(2) 5(2)

Table 6.8: The confusion matrix for the evaluation set. The numbers inside the brackets

are those expected by pure chance. Along the first row are the classes produced by the

algorithm while on the left column are the true classes .

• Use these n best features to classify the test set.

It is important to say that, because of the special shape and content of these pathology

images, and because of the distribution of one feature along the images in each class

not being normal distribution, Bhattacharya distance [82], Minkowski distance [40] and

Mahalanobis distance are not suitable similarity measures between images. We use here

the absolute value of the difference of two corresponding features. The result for the

evaluation set is shown in table 6.8. The number of features we used is 25 and it

has been obtained from figure 6.17. In this figure we show that we obtained correct

classification for several numbers of the best features.
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To find the confusion matrix for the case of pure chance, we work as follows: the total

number of test images is 46. If we classify them randomly, we shall put one third of

46 in each class. But when we put 15.3 of images in class 1, how many of these images

are really in class 1, and how many are in class 2 and how many are in class 3? We can

find it by using this equation:

(6.2)

where, Nc;,cj means the number of images classified in class i, and really is in class i.

N, is the total number of images in a set (evaluation or other set), Ne; is the number of

images really in class i. So for NI,2 in the evaluation set, we have:

26 10
NI 2 = - x - = 3.3, 3 26 (6.3)

As we can see, we have very good confusion matrix and high accuracy by using 25 of the

first best features obtained by the above mentioned algorithm. What are these features

and what is the result of using them for classifying the test set? Table 6.9 shows the

best features and 6.10 shows the results of using them to classify test set. Although

we have excellent correct classification of the evaluation set, the test set results are not

acceptable. If we look at tables 6.11 to 6.13, which show for each of the test images

how many features placed it in class 1, how many features classified it in class 2 and

how many features classified it in class 3, we can see easily that most of features favour

class 1. This means that images of class 3, or class 2, have a lot of characteristics of

the images of class 1 and that is why we have more images classified in class 1.

6.3 Conclusions

We used 112 irregularly shaped texture samples and then the Trace transform method

to recognise these textures. The results are obviously worse than those obtained when

using full images on rectangular grids, however, the correct answer is within the 8 first

choices 86% of the time. One should realise that this experiment is a very severe test

of the method as some of the masks used are very small as one can see from figure 6.1

and several of the textures in the database are macro textures, which means that using
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Feature 'Trace Func. Diam Func. Circ Func.

1 15 5 17

2 13 7 18

3 12 7 18

4 3 3 4

5 18 9 4

6 18 8 15

7 16 7 18

8 14 9 2

9 14 9 1

10 13 2 4

11 9 7 5

12 9 3 2

13 8 2 4

14 7 2 3

15 5 10 5

16 3 3 3

17 3 2 4

18 31 9 5

19 31 3 4

20 30 3 6

21 29 3 6

22 24 5 2

23 17 8 2

24 17 2 4

25 15 10 13

Table 6.9: The best features among all 5580 features computed, which classify the

images more accurately.
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Class 1 Class 2 Class 3

Class 1 13(5.7) 15(5.7) 6(5.7)

Class 2 4(6.6) 5(6.6) 2(6.6)

Class 3 0(2.6) 0(2.6) 0(2.6)

Table 6.10: The confusion matrix for the test set. The numbers inside the brackets are

those expected by pure chance. Along the first row are the classes produced by the

algorithm while on the left column are the true classes.

Image Votes 1 Votes 2 Votes 3 Final

21 18 4 3 1

22 17 4 4 1

23 16 8 1 1

24 12 13 0 2

25 11 8 6 1

26 13 10 2 1

27 17 5 3 1

28 15 7 3 1

29 10 9 6 1

30 14 7 4 1

31 9 13 3 2

32 7 14 4 2

33 11 10 4 1

34 12 7 6 1

35 16 7 2 1

36 6 14 5 2

37 10 9 6 1

Table 6.11: For each of the test images, we can see how many features placed it in class

1, how many features classified it in class 2 and how many features classified it in class

3. All these images really belong to class 1.



150 Chapter 6. Texture recognition from irregularly shaped samples

i
.il

Image Votes 1 Votes 2 Votes 3 Final

58 12 10 3 1

59 13 11 1 1

60 10 11 4 2

61 13 11 1 1

62 14 8 3 1

63 12 12 1 2

64 20 3 2 1

65 14 7 4 1

66 17 5 3 1

67 13 6 6 1

68 9 10 6 2

69 13 6 6 1

70 16 4 5 1

71 10 11 4 2

72 11 5 9 1

73 10 9 6 1

74 11 13 1 2

75 15 8 2 1

76 13 9 3 1

77 12 10 3 1

Table 6.12: For each of the test images, we can see how many features placed it in class

1, how many features classified it in class 2 and how many features classified it in class

3. All these images really belong to class 2.
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Image Votes 1 Votes 2 Votes 3 Final

90 2 15 8 2

91 16 4 5 1

92 11 11 3 2

93 17 7 1 1

94 10 9 6 1

95 19 5 1 1

96 16 5 4 1

97 16 7 2 1

Table 6.13: For each of the test images, we can see how many features placed it in class

1, how many features classified it in class 2 and how many features classified it in class

3. All these images really belong to class 3.

such a mask on them destroys the texture entirely.

The fact that the resultant curves in figure 6.3 converge as the rank of accepted choices

increases, shows that the Trace transform method degrades gracefully i.e. when the

method fails to recognise the correct textures in the first position of choice, it does not

place it too far away from it.

Then we tried to classify some pathology images by segmenting them and classifying

these segments. The segmentation is good enough as we can see in some examples

in figure 6.13 and 6.15. However, the classification results were very disappointing.

In particular, the selected features showed very bad generalisation ability. One may

argue that the features were chosen to over-fit the data (since they produced no error

in the evaluation set), and that if we had chosen features that allowed some error in

the evaluation set, better results would have been obtained from the test set as well.

However, in medical application one can not allow error at all, otherwise the automatic

system is not acceptable either by the clinicians or the patient. It was necessary to

require 0% classification error. One may conclude from this experiments that the

problem of these particular pathology images is not one of texture classification, but

rather of object recognition. The classes we were trying to identify were defined in terms
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of changed shape of individual cells. It is possible that human experts classify these

images by concentrating on assessing the shapes of individual cells rather than assessing

the overall appearance of the cell-filled regions as a whole. We believe, therefore,

that a totally different approach is needed for the particular medical image processing

problem, an approach that is not based on texture classification. One should apply a

sophisticated technique to extract individual cells. Then each cell may be characterised

by using the Trace transform, treating it as an individual object. This approach has

not been followed.



Chapter 7

Conclusions and future work

7.1 Particular conclusions

• We can see that by increasing the number of features the results improve. This

proves our first idea that using thousands of features may help us classify textures

more accurately. These features do not need to make sense to the human conscious

perception, and therefore their number can be very large. The relevance of these

features to the task we wish to solve can be assessed in a training phase, and

then these features can be combined with their appropriate weights to form a

similarity measure between two images.

• The proposed method tested with all textures in the Brodatz album was shown to

be much more powerful than the commonly used method based on co-occurrence

matrix features, when we use them for perceptual grouping.

• The Trace transform method does not have to be trained with representations of

all textures we wish to identify. As we saw in the experiments performed with

30 training textures different from those in the test set, even texture classes that

were not represented in the training set used to decide the relative importance

of the features, could be classified correctly. The results were only slightly worse

than the results obtained with using all 112 textures for training.

• The use of perceptually meaningful features on their own did not produce good
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results. The supplement of co-occurrence matrix features with perceptually mean-

ingful features did not change the result, which was already very good when the

full co-occurrence matrix was used. So, one does not need perceptually mean-

ingful features (i.e. features which have linguistic names) in order to classify

textures. Simply, one needs many features. If then one wishes to classify textures

in a perceptually meaningful way, i.e. in a way that imitates the human ranking

of textures in terms of similarity, then one may select from these many features

those which rank the textures as the humans do. We demonstrated that for this

task features computed from the Trace transform are the most appropriate (see

figures 4.8 and 4.9).

• Identifying which features were the most useful in the perceptual grouping allows

us to reverse engineer to some extend the human vision system and single out some

features which may be used in the subconscious level to analyse textures. These

are features which do not have linguistic terms to describe them. It is interesting

to note that from the trace functionals, the functional which contributed to the

construction of the most useful features is a simple differentiator, and from the

diametric functionals, the functional which contributed to the construction of the

most useful feature is taking the minimum. From the circus functionals the most

useful functional is functional 1 which again is based on a simple differentiator.

• We demonstrated that by using the Trace transform method we may recognise

textures from irregularly sampled images. The Hough transform was used as an

interface that allowed us to identify tracing lines in the image and normalised con-

volution allowed us to deal with the irregularly placed samples along the tracing

lines in order to compute the trace functionals.

• It is clear that when we increase the number of points in the Gaussian mask,

and the number of lines used to trace the image, our results become better. The

reason is that, by increasing the points in the mask, and the number of tracing

lines, we make this method more and more similar to the method when applied

to regularly sampled data.

• Overall the best results were produced by the Gaussian sampling pattern. This
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is because this pattern had its points more uniformly spread all over the image

than either the log polar or the retinal pattern. However, none of the sampling

patterns was what it was supposed to be. This is because in our experiments

we are limited by the bandwidth of the already digitised images. The sampling

patterns are supposed to be used to sample an analogue scene.

• In addition, the human retina has 4,500,000 sampling points, as opposed to a few

thousands we used here. So, given that we used less than 20% of the pixels in

the original regularly sampled images, and we chose them at random positions,

something that goes against the fundamental property of texture being a spatial

property, the produced results are remarkably good in comparison with the results

obtained by using regular grids.

• Using the trace transform after normalising each functional by dividing the result

by its length, is appropriate for working with for irregularly shaped textured

regions.

7.2 Overall conclusions and future work

• The Trace transform method is useful method in texture classification, especially

for the case that it is acceptable to have a few answers instead of insisting on

only the first answer being the correct one.

• In huge databases, we may find the Trace transform too slow. However, if we

do not need to have features invariant to shifting, like for example in a face

recognition problem with registered faces, we can use only one or a few number

of points to create a trace matrix, i.e. we may use tracing lines all of which pass

through the same point in the image. This way we may save the time.

• One of the advantage of the Trace transform in comparison with other methods

is that, we may define new functionals in the Trace transform to produce new

features. In the other methods, we discussed in this thesis, if we increase the

number of features by increasing the number of grey levels (e.g. CM256), we do
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not involve features that capture different aspects of the image, but only more

features of the same nature as those we already have.

• The logic of the Trace transform, can be extended for 3D textures as well. This is

because by using all possible lines crossing a point, we may have the same results

as if we rotate that texture with any rotation. Invariance to shifting and scaling

can be guaranteed in the same way. Also, we may use one point, or a few points

to save CPU time if we are not interested in invariance to shifting.

• For future work, we may use circles (for square textures) or ellipses (for rectan-

gular textures) instead of tracing lines to compute functionals. In other words,

instead of computing image characteristics along tracing lines, we may compute

them along any other type of curve we choose to use.

• One way to improve the classification accuracy of irregularly sampled data is to

use more than one point in the image where we place the sampling mask. After

all, our eyes often scan an image by foveating at several places in it in order to

achieve recognition. This way we shall have more patches in the image which are

densely sampled.

• A further improvement in the results may be achieved by using a hierarchical sys-

tem where textures are first classified into broad classes and at a second stage they

are reclassified inside each broad class. This, for example might have helped in

the case of the pathology images I tried to classify, with the segmented cells being

extracted at the first level of hierarchy and the texture analysis then performed

at each individual cell.



Appendix A

Perceptual grouping

To indicate how "gracefully" each method moves away from the correct textures when

classifying textures, we show an example of 3 textures chosen at random from the

database and we present the four most similar textures each method produced, in

decreasing order of similarity, in figures A.1 to A.12.
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(a) T31

"
,I,"

(cl) T31

(g) T88

(j) T27

(m) T30

(b) T41

(e) T41

(h) TI09

(1\) T86

(n) T57

(c) T51

(f) T51

(i) T72

(I) T95

(0) T35

Figure A.l: At the top row we show three examples of the texture database. Under-

neath each texture we show the textures picked up by the TT method in the 1si, 2nd,

31'[l and 4th position of similarity respectively.
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(a) T31

(d) T31

(g) T88

(j) T46

(Ill) T54

(b) T41

(e) TI09

(h) T41

(k) T86

(n ) T57

(c) T51

(f) T51

(i) T72

(I) T35

(0) T95

Figure A.2: At the top row we show three examples of the texture database. Under-

neath each texture we show the textures picked up by the BTT method in the 1», r=,
37•d and 4th position of similarity respectively.
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,1'1.
r.:~

Iljj

(g) T90 (h) T42 (i) T42

~

I

I'
, i

(j) T62 (k ) T68 (1) T51

(a) T31

(cl) T31

(m) T99

(b) T41

(e) T41

(n) T3

(c) T51

(f) T74

(0) T72

Figure A.3: At the top row we show three examples of the texture database. Under-

neath each texture we show the textures picked up by the FCM method in the 1st, r=,
31"(l and 4th position of similarity respectively.
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(a) T31

(cl) T31

(b) T41

(e) T41

(c) T51

(f) T51

(g) T90 (h) T20 (i) T74

11·-.~~ita: ll.. ~;.t~. •. ~.- .,
~!'S.~~~~~.~t·~1.~:1.""_ -.5.', : •.;:.\.:

(j) T30 (k) T67 (I) T62

(m) T88 (n) T42 (0) T60

Figure A.4: At the top row we show three examples of the texture database. Under-

. neath each texture we show the textures picked up by the CM16 method in the 1st,

2nd, 31'd and 4th position of similarity respectively.
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(a) T3I

(cl) T3I

I'

;1:li",
(g) T90

(j) T88

(m) T99

(b) T4I

(e) T4I

(h) T20

(k) TI07

(n) T42

(c) T5I

(f) T5I

(i) T74

(1) T26

(0) T60

Figure A.5: At the top row we show three examples of the texture database. Under-

neath each texture we show the textures picked up by the CM16+ F method in the 1<
2nd, 3TCl and 4th position of similarity respectively.
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(a) T31

(cl) T31

(g) T59

(j) T90

(m) T30

(b) T41

(e) T41

(h) T33

(k) TI02

:.:.:.:.:.:.:.:.
~~~~~~~~:~~~!~:~:~:.:.:.:.:.:.:.:~:.:.:.:.:~:.~.;.:.:.~.~.:.~~~~:.:.:.:.:.:.:~:~:~:~:.;.:.i.:.:.:.:.:.;.:.:.'.;.:.:.!.:.:.:.!.:.

(n) TI0l

(c) T51

(E) T51

(i) T75

(I) T25

(0) T45

Figure A.6: At the top row we show three examples of the texture database. Under-

neath each texture we show the textures picked up by the CM256 method in the i«,

2nd, 31'(1 and 4th position of sirnilari ty respectively.
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(11) TI0l

(i) T75

(I) T25

(0) T45

Figure A.7: At the top row we show three examples of the texture database. Under-

neath each texture we show the textures picked up by the CM256+ F method in the

1st, 2nd, 31'(1 and 4th position of similari ty respectively.
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(a) T31 (b) T41 (c) T51

(d) T3I (e) T4I (f) T74

~I

..;-"
._

''''_ tl
(g) T90 (h) TlOg (i) T5I

(j) T62

(m) T58

(k) T3

(n) TI0

(I) T60

(0) T42

Figure A,8: At the top row we show three examples of the texture database, Under-

neath each texture we show the textures picked up by the FSDH method in the i«,

2nd, 37'(l and 4th position of similarity respectively,
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(a) T31

(cl) T31

(g) T90

(j) T30

(m) T58

(b) T41

(e) T41

(h) T42

(k) TI09

(n) T6

(c) T51

(f) T42

(i) T51

(I) T74

(0) T62

Figure A.9: At the top row we show three examples of the texture database. Under-

neath each texture we show the textures picked up by the SDH16 method in the 1st,

2nd) 3TCl and 4th position of similari ty respectively.
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(a) T31

(cl) T31

(g) T30

(j) T90

(m) T89

(b) T41

(e) T41

(h) T6

(k) T65

(n) T42

(c) T51

(f) T51

(i) T62

(I) T74

(0) T23

Figure A.1Q: At the top row we show three examples of the texture database. Under-

neath each texture we show the textures picked up by the SDH16+F method in the

1=, 2nd, 31'(1 and 4th position of similarity respectively.
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(a) T31

(j) T58

(Ill) T30

(b) T4l

(k ) T20

(11) T6

(c) T51

(I) T42

(0) T60

Figure A.ll: At the top row we show three examples of the texture database. Under-

neath each texture we show the textures picked up by the SDH256 method in the 1=,
2nd, 37"d and 4th posi tion of similari ty respectively.
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(a) T31

(cl) T31

(g) T30

(j) T90

(m) T99

(b) T41

(e) T41

(h) T6

(k) T20

(n) TI09

(c) T51

(f) T51

(i) T72

(I) T74

(0) T62

Figure A.12: At the top row we show three examples of the texture database. Under-

neath each texture we show the textures picked up by the SDH256+F method in the

1=, r=. 31"(1 and 4th position of similarity respectively.
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Appendix B

Using normalised convolution in

the Trace transform

Here we compute the result of applying each functional of the Trace transform on the

original, the irregularly sampled sequence and the reconstructed signal by normalised

convolution.

We used all functionals for 50 lines taken from the original set of tracing lines. The

results are shown in figure B.l to figure B.59. We can see that the result of the

reconstructed signal is much closer to the original than the result of the irregularly

sampled signal in all functionals which have not used the max or min operator.
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B.l Trace functionals
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Figure B.1: The values of trace functional T1 from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").

30~~~~'~0--"5:--~20:--~25:--~~C--~35--4~0--4~5-~~'
Tracing lino

Figure B.2: The values of trace functional T2 from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Tracing line

Figure B.3: The values of trace functional T3 from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.4: The values of trace functional T4 from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.5: The values of trace functional n from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").

:~
i
II,

-<
0,8

~ I

"1'~·)· t ,'.'f ~
i,e'·r\ 1\ <'~II~,,:;/ ,/\,', {I

0.6 \ i V \ ' 1 \\/ s. t \i: \ /~,~1\ ,/\ I ,I \ '1'.)\ ,Of~

l \,'.l ~ ~. l \ /\: \/ \ I \ ,;l(\ f'J., \ : "'l' - f j,.-./
0.4 \ T \ .' \ I ¥.. \; t ,/ V \1, \/ '
O,20'--~-1.L0--,.L5--2:':-0----:':-25----:':-30-~35:----:':40:--__J45::--------:50

Tracing lino

Figure B.6: The values of trace functional T6 from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.7: The values of trace functional T7 from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").

'50~~L_~10~~'5~~20--~25--~~--~35---4~0---4~5--~50
Tracing line

Figure B.8: The values of trace functional Ts from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.9: The values of trace functional Tg from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.10: The values of trace functional TID from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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20L_~--~IO--_L'5---2~O--J25~~~---3~5---4~O--J45~~50
Tracing line

Figure B.ll: The values of trace functional Tu from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the su b-sampled version by normalised convolution ("*").
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Figure B.12: The values of trace functional T12 from table 3.1: Using the full regularly

sampled sequence of points ("0") 1 a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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15 20 25 30 35 40 45 50
Tracing line

Figure B.13: The values of trace functional T13 from table 3.1: Using the fullregularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and <:1. reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.14: The values of trace functional T14 from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.15: The values of trace functional T15 from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.16: The values of trace functional T16 from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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40~~~~1O~~'5~~20~-=25---=30---3=5---4=O---475--~W
Tracing line

Figure B,17: The values of trace functional T17 from table 3,1: Using the full regularly

sampled sequence of points ("0") a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("t").

Figure B.18: The values of trace functional T18 from table 3.1: Using the full regularly

sampled sequence of points ("0") a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("t").
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Figure B.19: The values of trace functional T19 from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").

Figure B.20: The values of trace functional T20 from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.21: The values of trace functional 1'21 from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.22: The values of trace functional 1'22 from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.23: The values of trace functional T23 from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").

ID 15 20 25 30
Tracing lino

35 .0 50

Figure B.24: The values of trace functional T24 from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.25: The values of trace functional T25 from table 3.1: Using the full regularly

sampled sequence of points ("0"), a su b-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.26: The values of trace functional T26 from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.27: The values of trace functional T27 from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").

Figure B.28: The values of trace functional T28 from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.29: The values of trace functional T29 from table 3.1: Using the full regularly

sampled sequence of points ("0")) a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.30: The values of trace functional T30 from table 3.1: Using the full regularly

sampled sequence of points ("0")) a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.31: The values of trace functional 1'31 from table 3.1: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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B.2 Diametric functionals
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Figure B.32: The values of diametric functional Dl from table 3.3: Using the full

regularly sampled sequence of points ("0") 1 a sub-sampled version of it ("+") and a

reconstruction of the sub-sampled version by normalised convolution ("*").
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Figure B.33: The values of diametric functional D2 from table 3.3: Using the full

regularly sampled sequence of points ("0") 1 a sub-sampled version of it ("+") and a

reconstruction of the sub-sampled version by normalised convolution ("*").
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Figure B.34: The values of diarnetric functional D3 from table 3.3: Using the full

regularly sampled sequence of points ("0"), a sub-sampled version of it ("+") and a

reconstruction of the sub-sampled version by normalised convolution ("*").
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Figure B.35: The values of diametric functional D4 from table 3.3: Using the full

regularly sampled sequence of points ("0"), a sub-sampled version of it ("+") and a

reconstruction of the sub-sampled version by normalised convolution ("*").
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Figure B.36: The values of diametric functional D5 from table 3.3: Using the full

regularly sampled sequence of points ("0"), a sub-sampled version of it ("+") and a

reconstruction of the sub-sampled version by normalised convolution ("*").
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Figure B.37: The values of diametric functional D6 from table 3.3: Using the full

regularly sampled sequence of points ("0"), a sub-sampled version of it ("+") and a

reconstruction of the sub-sampled version by normalised convolution ("*").
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Figure B.38: The values of diametric functional D7 from table 3.3: Using the full

regularly sampled sequence of points ("0"), a sub-sampled version of it ("+") and a

reconstruction of the sub-sampled version by normalised convolution ("*").
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Figure B.39: The values of diametric functional Ds from table 3.3: Using the full

regularly sampled sequence of points ("0"), a sub-sampled version of it ("+") and a

reconstruction of the sub-sampled version by normalised convolution ("*").
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Figure B.40: The values of diametric functional Dg from table 3.3: Using the full

regularly sampled sequence of points ("0") a sub-sampled version of it ("+") and a

reconstruction of the sub-sampled version by normalised convolution ("*").
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Figure B.4l: The values of diametric functional DID from table 3.3: Using the full

regularly sampled sequence of points ("0") a sub-sampled version of it ("+") and a

reconstruction of the sub-sampled version by normalised convolution ("*").
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B.3 Circus functionals
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Figure B.42: The values of circus functional Cl from table 3.4: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.43: The values of circus functional C2 from table 3.4: Using the full regularly

sampled sequence of points ("0"), a su b-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.44: The values of circus functional C3 from table 3.4: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.45: The values of circus functional C4 from table 3.4: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.46: The values of circus functional C5 from table 3.4: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.47: The values of circus functional C6 from table 3.4: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.4S: The values of circus functional C7 from table 3.4: Using the full regularly

sampled sequence of points ("0")) a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").

250 Ir
1 r
\ Ii !

1 \ II Xi
~,i \ ii, I Jil II /\~ I IT I' I' ,'/' ,I " '

1\ I /\ I'll \I"'~ //1 n I \ ,1\ j>J\ I \,
I, ,! .. II' /'1 ,II" ,\ ' i"II I ,I J /',1 ~\II /1\,,' 1/ \!\ /' ' f .\
I ,I III' II \ ! I,' 1/ I/. \ t \/ tI ,~/ i I Ii', I \'1' 'I" \!

100 I' I :~: I,,! i I'! 1 \ I,!,,"I! ;1 ill I, i: i i

( 1/ it~I' ',I ~ I U
50 I! \i \! "." \1

I i '1
°0L_~S--~'0---'~5--~20~~25--~~~~3~5--~'0~-'~5--~50

Diameter vector

!
II
/1
1\ ,

" I! ii" ill1\, i/
! ill \
j \I\! ~i •

, !
II
! f ~\
Y

200

~ 150

Figure B.49: The values of circus functional Cs from table 3.4: Using the full regularly

sampled sequence of points ("0")) a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B,50: The values of circus functional C9 from table 3.4: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*"),

Figure B.5l: The values of circus functional CID from table 3.4: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*"),
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Figure B.52: The values of circus functional Cll from table 3.4: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.53: The values of circus functional C12 from table 3.4: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.54: The values of circus functional C13 from table 3.4: Using the full regularly

sampled sequence of points ("0"), a su b-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.55: The values of circus functional C14 from table 3.4: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.56: The values of circus functional C15 from table 3.4: Using the full regularly

sampled sequence of points ("0") a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.57: The values of circus functional C16 from table 3.4: Using the full regularly

sampled sequence of points ("0") a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.58: The values of circus functional C17 from table 3.4: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Figure B.59: The values of circus functional C18 from table 3.4: Using the full regularly

sampled sequence of points ("0"), a sub-sampled version of it ("+") and a reconstruction

of the sub-sampled version by normalised convolution ("*").
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Appendix C

Conversion of 8 bit images to 4

bit

In some cases we want to convert 8 bit images to 4 bit, in order to have a smaller

co-occurrence matrix. There is three method to do this:

• Simple division

In this method we simply divide the grey value of each pixel of the image, by 16

and then use the integer part of it. For example, one pixel with grey value 201,

will be converted to 22l = 25. Generally we have:

, _ f" .. (9i,j)
gi,j - zx 16 (C.l)

where g~,j is the 4 bit grey value of the pixel in (i, j) position and gi,j is the 8 bit

grey value of the same pixel. fix means using only the integer part of the result .

• Using histogram normalisation

In this method we use the formula:

g' . = fix ( gi,j - min(g) ) x 15
2,.1 . max (g) - min(g)

(C.2)

For example, if the maximum grey value is 201 and the minimum grey value is

10, so the pixel with grey value 100, will have fix( ~~t:i~)x 15 = 7.
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• Using histogram equalisation

Here we first find the total number of pixels, which in our case is 320 x 320

102400. Then we try to distribute these points in 16 equal groups, starting from

the pixels with low grey value and end up with the pixels with the highest grey

value. This way we have histograms with equal number of points in all bins.

The best result of texture classification for each one of these three methods using CM16,

CM16+F, SDH16 and SDH16+F for texture classification are shown in table C.l.

Method

CM16 101 76 83

CM16+f 101 76 83

SDH16 103 94 85

SDH16+F 102 94 83

Table C.l: The best result for each of the three methods of grey level coarsening for

foul' methods of texture classification. All numbers are out of 112.

As we can see the results of using the first method are better than for the other methods

in all four methods of texture classification. The reason is:

• By using the non linear conversion of grey values (third method), we change the

similarity of textures, because these four methods are very sensitive to changes

in the textures.
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