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Summary 

The accuracy of human face detection and localization in images and video is a crucial 
factor influencing the performance of biometric face authentication and recognition sys- 
tems. Recently this subject attracted a lot of attention by researchers and companies 
and its applications emerged in various areas including surveillance, security, and com- 
puter games. This thesis describes a novel person-independent method for finding and 
localizing faces in authentication scenarios. Such scenarios involve situations where a 
person stands or sits in front of a camera in order to gain access. 
The objective was to develop an algorithm which uses only still grey-level images, copes 
well in the presence of cluttered background and accurately localizes faces including eye 
centres. Many of the methods that have been reported in the literature only partially 
fulfil these requirements, in particular, a few methods focus on precise eye localization. 
To address these issues, we propose a novel bottom-up face detection and localization 
algorithm which exploits statistical feature detectors as the means of image capture 
effects removal. Our method uses both, a constellation (shape) model and shape-free 
texture model to select the best face location hypothesis among multiple hypotheses 
generated by the feature detectors. The constellation model utilizes a distribution of 
the transformation from a proposed model space into the image space. The texture (ap- 
pearance) model is based on a cascaded Support Vector Machine classification. Both, 
an extensive analysis and a performance evaluation on several realistic face databases 
will be discussed in this thesis. We show that by utilizing the proposed verification of 
hypotheses, a significant performance boost is achieved compared to the performance 
of feature detectors alone. 

Key words: face localization, face detection, face verification, face authentication, 
face recognition 
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Chapter 1 

Introduction 

In the following chapters a novel face detection and localization algorithm will be 

presented. The focus of the method Is face authentication, where a digital camera Is 

used to verify a claimed identity. In order to put our task In context, we begin with 

an introduction to the field of computer face recognition, identifying its motivations, 
issues, and challenges. 

1.1 Motivation 

1.1.1 Biometrics 

The field of biometrics has recently become a hot topic and significantly progreased 
towards real-life applications. The topic covers automated methods of recognizing a 

person based on his or her physical or behavioural characteristics. Among the most 

commonly used features belong face, fingerprints, hand geometry, handwriting, Iris, 

retina, and voice. Biometric technologies are quickly becoming the foundation of secure 
Identification and person's Identity verification solutions. 

1.1.2 Face Recognition and Verification 

The goal of face recognition is to create a computer-based system which identifies people 
by using visual facial data. Face verification is a task which deals with situations when 

1 



2 Chapter 1. Introduction 

an identity claim is made and the system should decide upon its correctness. Face 

recognition is a more general task, where the system, given an image or video sequence, 

attempts to establish the identity of the person by searching through a database of 

stored face templates and corresponding IDs. 

Since faces appear in arbitrary positions and orientations in the image (depending on 

the scene and capture setup), they have to be first found and precisely localized. Before 

face verification/recognition algorithms can be applied, face(s) found in the image need 

to be registered. The registration involves geometric normalization (warping) of the 

face frone the image into a predefined coordinate system which enables meaningful 

measurements to be made on the faces for their comparison. Often, the eye positions 

are used to register faces. 

The focus of this thesis is face detection and localization. A face detection/localization 

algorithm takes in image, or a video sequence a5 the input and returns the position of 

the found face(s) and facial features. A diagram showing a face verification system is 

depicted in Figure I. I. 

FACE 
CAPTURE 

FACE 
LOCALIZATION 

FACE 
EGISTRATION 

FACE 
VERIFICATION FACE 

IDENTITY CLAIM: AUTHENTICATED 
"JOHN SMITH" 

FACE 
REJECTED 

Figtirv 1 
.1: 

I)iagrauu cif .iface verification system 

It rau be shown that the majority of the existing face recognition/verification algorithms 



1.1. Motivation 3 

are very sensitive to registration errors. Since the localization process provides the 

input for face registration, its success, therefore, heavily affects the performance of the 

consequent phases of the system. 

Sometimes the term "face detection" is used in the sense of localization by researchers. 

In this thesis we will refer to a rough estimate of face location in the image as "face 

detection" and to a precise localization including the position of facial features as 

"face localization". Such choice of terminology is consistent with most of the existing 

publications on this topic. 

1.1.3 Face Localization 

As mentioned above the accuracy of face detection and localization significantly Influ- 

ences the overall performance of a face recognition system. The reason is that a face 

has to be successfully registered before the verification procedure can be performed. 
Therefore this topic attracts great attention from researchers in academia and Indus- 

try. In spite of the considerable past research effort, face detection and localization 

still remain challenging problems because faces are non-rigid and have a high degree 

of variability in size, shape, colour, and texture. The challenge also stems from the 

fact that face detection is an object-class recognition problem, where an object to be 

recognized is not just a previously seen entity, but rather an Instance from a whole 

class of objects sharing certain common properties. 

The method advocated in this thesis works on still greyscale images and exploits feature 

detectors, which intentionally generate multiple (possibly false) facial feature candidates 
in order not to miss the true ones. Triplets formed out of these detected candidates 

are then tested for constellation (shape) constraints and only the sound hypotheses 

are then passed to a face appearance verifier. The appearance verifier is the final test 

designed to reliably select the true face location based on photometric data. 
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1.2 Contributions 

In this thesis a novel and successful face localization algorithm is presented. Its per- 

formance is assessed on difficult realistic benchmark data and extensive analysis per- 

formed. The algorithm could possibly be exploited in real-world applications and can 

compete with industrial solutions. Our goal is to give the reader exhaustive insight 

into this modern and attractive field as well as to discuss the proposed approach to 

face localization in detail. Our solution is versatile and facilitates integration of various 

feature detectors, and appearance and shape models. 

The following three main contributions can be identified: 

Novel detection and localization paradigm A versatile algorithm robust to fea- 

ture detector failure exploiting detected features as the means of geometric nor- 

malization was developed. This method treats feature detection false alarms as 

a naturally occurring phenomenon and the final decision on the presence of the 

face is based on a shape-free appearance verification. 

Gabor-based feature detector A functional design invariant to imaging effects for 

the detection of ten facial features based on Gabor filters will be presented. Al- 

though Gabor filters have previously been used in face detection and recogni- 

tion our method integrates in a novel way the Gabor filter responses with a 

cluster-based classifier using a complex-valued statistical model. The currently 

used feature detector implementation comes from a close cooperation with Joni 

Kämäräinen from Lappeenranta University of Technology, Finland [KKK+02, 

HKKKO3, Khm03). 

Fast constellation and appearance based verifier A method designed to quickly 

select the best face location hypotheses, given a set of detected feature positions, 

using both, feature constellations and the photometric appearance information 

has been developed. 

Extensive performance evaluation Unlike many other studies on face detection 

and localization, we evaluated the method using large face databases and strin- 

gent localization error measurement. We compared the results with the results 
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coming from other detection and localization methods designed for authentication 

scenarios [JKFO1, KK02]. Our results are presented in chapter 7 where we show 

that our localization system is superior to the baseline methods. All our experi- 

ments are conducted on publicly available datasets, therefore an opportunity for 

performance comparisons is established. 

1.3 Thesis overview 

The state-of-the-art will be presented in chapter 2. In chapter 3, the proposed method- 

ology for face detection and localization will be discussed and using the methodology 

the corresponding algorithm designed. In chapter 4, a detailed description of the advo- 

cated feature detectors will be given. Also challenges and problems of feature detection 

in general are discussed in the same chapter. Chapter 5 will introduce a new concept, 

a feature constellation model, and chapter 6 will give the reader an insight into image 

based appearance modelling. Exhaustive experiments and evaluation of the method 

will be presented in chapter 7 and the thesis will conclude in chapter 8. 



Chapter 1. Introduction 



Chapter 2 

State of the art 

In order to detect a face, a model of a face instance in the image has to be created. 

According to Hjelmas [HL01], the construction of a generic model of the face class has 

been tackled in the literature basically in two ways. We adopt his categorization which 

divides the methods into the image-based approaches and feature-based approaches and 

add one more category which we call warping methods. Some methods may overlap 

these categories, but this division roughly holds for most of the existing methods. 

Although hundreds of methods have been proposed, claiming success on various data, 

no unified benchmark criteria exist. In many practical situations (e. g. face recogni- 

tion) accuracy is definitely an issue, on which the performance of the whole system 

depends. The research experience bring us to the hypothesis that inaccurate detection 

is one of the main factors that limits the performance of the current face recognition 

systems and large-scale exploitation is therefore not feasible yet. Most existing meth- 

ods just concentrate on an approximate face detection and its segmentation from the 

background. Often only an upright bounding box is presented as the output. Many 

face recognition/verification systems unfortunately require the face to be registered 

much more accurately. It is also true that in many cases only the largest face in the 

scene is required to be localized accurately and the other faces in the scene are not 

important. Such situations involve mostly face authentication systems with possible 

applications at cash points, home-working or online banking. On the other hand in 

the case of surveillance systems, it is desirable to localize all the faces in the scene 
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g Chapter 2. State of the art 

accurately regardless of their size or orientation. 

In this study we focus on detecting faces in face authentication scenarios. It can be 

argued that for such purposes, a face has to have a certain size and facial details have to 

be recognizable. Sufficient resolution is therefore crucial for achieving not only precise 

localization, but mainly for subsequent face verification or recognition. 

2.1 Detection versus localization 

As mentioned above, the output of face localization algorithm can vary significantly 

from method to method. Fast, however imprecise localization of a face by an upright 

bounding box can be regarded as a successful result in the case of camera tracking but 

definitely not in face verification or recognition. There exist no common performance 

evaluation which would suit every situation. For authentication scenarios, accuracy 

is paramount and therefore the performance evaluation criterion should reflect that. 

As presented in chapter 7 we adopt a very stringent localization/detection criterion, 

which was proposed by other authors working in face authentication and is suitable for 

the target scenario. An important fact is that it takes into account position of facial 

features, in particular eye centres. 

2.2 Image-based methods 

In this group, faces are typically treated as vectors in some high dimensional space and 

the face class is modelled as manifolds in such a space. The vector space either uses pixel 
intensities directly, or usually some form of preprocessing is applied in order to reduce 

the dimension of image vectors. The separation of the face samples from a non-face 

class is carried out using various pattern recognition techniques (classifiers). Typically, 

huge training sets are required to learn the decision surface reliably and methods like 

bootstrapping exploited. These methods are holistic with regard to the face model, i. e. 
they do not decompose faces into features (parts), rather this representation models 
the entire face. The constellation of facial features is therefore implicitly encoded by 
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this model. The scene capture effects (scale, orientation, perspective) are removed in 

the upper-level of the system by using a so called "scanning window". Please note 

that by the word "orientation" we mean the rotation of the head in the image plane, 

not in the perpendicular direction. We will use the words "rotation" and "orientation" 

interchangeably. The concept of the scanning window is the root idea of these methods. 

To remove these imaging effects, exhaustive scanning with the window has to be carried 

out in multiple scales and rotations. This has huge implications for the model of the face 

class itself. Since it is not possible to scan all possible scales and rotations, discretization 

of scale and rotation has to be introduced. It is exactly this operation which makes the 

modelling of face appearance difficult and prone to false detections and misalignments. 
From the human point of view, the human face is a rather distinctive photometric 

object. When employing discretization in scale and rotation, the face model often has 

to cope with quite a big alignment error introduced by this operation. Put simply, 

this happens when a face in the probe image does not fit in the chosen size of the 

scanning window. This means that the face/non-face classifier has to learn all possible 
fluctuations of misaligned faces that do not fit exactly the chosen scale and rotation 

samples in order not to miss any face instance. As a result, not only the precision of 

localization decreases (since the classifier cannot distinguish between slightly misaligned 
faces) but the cluster of faces becomes much less compact and thus more difficult to 

learn. 

One of the most successful methods in this group is represented by the work of Rowley 

et al. [RBK98] where an attempt is made to remove the scene capture effects by 

applying what they call "a router network'. In this approach the face orientation angle 
is learned from the training data and thus exhaustive search through discrete rotations 
is avoided. Nevertheless, the discretization of the imaging parameters remains and with 
it the discretization inaccuracy since the router network output angles and scales are 

still discrete. 

Other methods like the one of Osuna et. al [OFG97] involve a Support Vector Machine 

face/non-face classifier. A multi-view face detector coping with large changes of head 

pose has been proposed by Li et al. [LGLOO]. Support Vector Regression is applied first 

to estimate the head pose and subsequently pose-specific Support Vector classification 
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used to reliably verify the presence of a face. Another multi-view face detector tackling 

large pose changes has been reported by Ng et al. [NG02], where the complex distri- 

bution of poses was modelled by a collection of view-based component SVMs and pose 

estimation was automatically performed by a single integrated process, which reduced 

computational costs. 

A neural network using a low-dimensional feature space is used in the detector of Sung 

and Poggio [SP98]. Another example of a classifier used to discriminate between face 

and non-face patterns is the Sparse Network of Winnows architecture (SNoW) by Yang 

et al. [YRAOO]. The method of Viola and Jones [VJ01] using Haar-like features and 

a hierarchical tree classifier has recently attracted a lot of interest due to its real-time 

processing capability. Nevertheless, the face in their approach is still delimited by an 

upright bounding box and a separate feature detector would have to be engaged to get 

a more accurate localization. 

The algorithm of Fröba and Küblbeck [FKOO] uses oriented template correlation to 

localize faces in grey-level images. A statistical model using edge directions within 

the area of human face, normalized in size and orientation, is learned from data. In 

the test phase the model is shifted over the image and for each position a similarity 

between the model and the underlying image patch is computed. The similarity mea- 

sure involves normalized correlation between edges in the model and the image. The 

authors reported good localization capabilities in complex background scenes. Another 

method exploiting edge information was proposed by Jesorsky et al. [JKFO1]. This 

method deserves a special mention as it will be considered as a baseline method in our 

comparisons due to its focus on face localization for face authentication. The method 

uses Hausdorff distance on edge images in a scale and orientation independent manner. 

Let A= {a,. .., a7. } and B= {b1,. .., b�} denote two finite point sets. Then the 

Hausdorff distance is defined as 

H(A, B) = max(h((A, Ii), h((t3, A)), where (2.1) 

h(A, 3) = max min ila -b II 
aEA bEB 

(2.2) 

h(A, 13) is called the directed Hausdorff distance from set A to set Li with the underlying 



2.3. Feature-based methods 11 

norm 11 " 11 on the points �1 and B. The authors used a slightly modified version of the 

distance, which is tailored for image processing applications: 

h, n°d('A' B) = 
.AEi 

ll a-b II 
aEA 

bEB 
(2.3) 

Their face model was optimized using genetic algorithms on a large set of face images 

(10,000). The detection and localization involve three processing steps, where firstly 

coarse detection is performed, then an eye-region model is used in a refinement stage 

and finally the pupils are searched for with the help of the Multi-Layer-Perceptron 

classification. 

2.3 Feature-based methods 

In this framework, most commonly local feature detectors are used. A face is rep- 

resented by a shape (constellation) model together with models of feature local ap- 

pearance. This usually implies that a priori knowledge is needed in order to create 

the model of a face (selection of features), although an attempt to select salient local 

features automatically was reported in the literature [WWPOO, WEWPOO]. 

One of the earlier pieces of work in this group involves the algorithm by Burl et 

al. [BLP95]. Their frontal face localization system exploits five feature detectors based 

on the Gaussian derivative filters (two eyes, the nose/lip junction and two nostrils). 

The effects of translation, rotation and scale are eliminated by mapping to a set of 

shape variables. A statistical shape model on these shape variables is then used to 

rank the feature constellations. The work of Weber et. al [WWPOO] extends this ap- 

proach to different viewing angles, where faces are again represented as constellations 

of rigid features (parts). Position variability is represented by a joint probability den- 

sity function on the shape parameters of the constellation. This method automatically 

identifies distinctive features in the training set using an interest operator followed by 

a vector quantization. Another example of a feature-based method is the method of 

Vogelhuber and Schmid [VS00] where the shape model uses a distribution of angles 

between the lines connecting located features. 
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The method reported by Reinders et al. [RKG96) uses a neural network for accurate 

localization of facial features, mainly eyes. To overcome the problem of large variations 

between eyes of different people microfeatures are used. These are small parts of the 

feature sought, e. g. corners of eyes or parts of lids, which exhibit smaller variations 

than whole features. Microfeatures detected by a neural network are postprocessed by 

a probabilistic method which exploits the geometrical information of the microfeatures. 

The system needs an initial estimate of eye region and therefore could be used as a 

final step after face detection/localization. 

Schneidermann and Kanade [SKOO] model the face as a set of localized regions expressed 

as a statistic of wavelet coefficients and their position on the face. However a scanning 

window in discretized scale dimension has to be deployed. Sometimes configuration 

models are defined heuristically (capturing facts like the eyes are above the nose etc. ) 

but usually a distribution of positions in a relative coordinate frame is used. The 

method of Yow and Cipolla [YC96] uses perceptual grouping of spatial-filter-based 
features found in the image. 

An interesting method was proposed by Cristinacce and Cootes [0003], where Ad- 

aboost is used in feature detectors and a probabilistic shape model is used to sort out 

the false combinations. 

The main drawback of the above-mentioned approaches seems to be that they do not 

exploit all the available photometric information and use only small patches of the face, 

which leads to an increased false-alarm rate. Also feature detectors are often an ad hoc 

solution, without a proper analysis or design. The design of a feature detector is not 

an easy task, since facial features still exhibit quite a lot of appearance variation. Also 

the removal of scene capture effects (like scale and rotation) seems not to be an integral 

part and focus of the algorithms, but rather an intuitive construction. 

2.4 Warping methods 

The following methods stand out from the previous two categories, so that we felt to 

introduce them as a new category. This very important group of methods are the 
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approaches where the facial variability is decomposed into a shape model and the 

model of local appearance or the texture model in a shape-normalized space. Active 

Shape Models (ASMs) and Active Appearance Models (AAMs) proposed by Cootes 

et al. [CCTG95, CET98, ETC98, CWTOO, CT011 should be regarded as the main 

representative. 

In the training phase of AAMs, shape and face appearance variations can be learned 

independently, using the means of PCA, kernel PCA or other statistical models. How- 

ever, usually these two characteristics are combined to produce a single parameter 

vector capturing both shape and appearance variations. In the test phase, the aim is 

to put the model in correspondence with the probe image, i. e. to find an optimal set of 

shape and appearance parameters for the given input image. This is done through an 

optimisation of a score function. The score function is based on the difference between 

the synthesised appearance and the appearance of the region in the image determined 

by the shape parameters. It is important to mention that the iterative search which 

results in the model being "warped" onto the image is directed exploiting a learned 

relationship between the model parameters and the residual error induced between a 

training image and a synthesised model example. These methods seem to be ideal as a 

final localization step, however reliable face detection using another method has to be 

employed first, since the iterative nature of the methods requires a good initial position 

and size estimate to converge. They have been applied to the problem of tracking and 

numerous analyses of face patterns. 

The work of Gong et al. [GPR97, GOM98], Romdhani et al. [RGP99, RPG00], Li et 

al. [YLGL01] and Sherrah et al. [SGO01] focuses on modelling face variability connected 
to large pose changes of the human head (e. g. rotation in depth). Some of these 

methods [GPR97, RGP99] extend linear AAMs, where due to the nonlinear nature of 

shape variations between frontal and profile or near-to-profile views, PCA is replaced 
by a non-linear kernel PCA model. 

A Pose Invariant Active Apperance model able to capture both the shape and the 

texture of faces across large pose variations from profile to profile views was proposed 
by Romdhani et al. [RPGOO]. The work explores the problem of face reconstruction 
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and recovery from 2D view projections. A 2D Generic-view Shape Template alignment 

technique using simple affine transformations for alignment of shape and texture is 

compared to a Generic 3D shape model based alignment exploiting local feature-based 

transformations. 

The method of Li et al. [YLGLO1] uses a dynamic multi-view model including even a 

sparse 3D Point Distribution Model. Their acquisition process [GMP00] avoided the 

use of 3D range data and allowed the sparse 3D model to be learnt from 2D images 

of different views. The view-based representation is used in the person-specific face 

tracker of McKenna and Gong [MG98], where focus is again on large pose changes. 

Appearance-based matching using a Gabor filter was developed for face tracking and 

pose estimation. This system exhibited real-time performance using a specialized hard- 

ware. Another view-based tracker has been reported by de la Torre et al. [d1TGM98], 

where colour-based segmentation and morphological operators are used to determine 

initial position of the face and face changes between frames are then modelled by the 

affine transformation. 

Another group of methods dividing the facial variability into shape and local appearance 

is called Dynamic Link Architectures [LVB+93, WFKvdM97, KP97]. The preferred 

shape is defined by an energy function of a graph structure and local appearance of 

the image content associated with the nodes is modelled by Gabor jets, which are the 

responses of a Gabor filter bank on the image. 

2.5 Summary 

In this chapter a survey of existing methods was presented together with the analysis 

of their advantages and drawbacks. This analysis will be used in the next chapter 

where the methodology of our approach that aims at advancing the state-of-the-art in 

face detection and localization is developed. Let us summarize the drawbacks of the 

aforementioned approaches. 

Scanning window Deploying a scanning window causes non-compactness of the face 

class, reduces the accuracy of localization and makes the detection process slow. 
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Due to the non-compactness of the face class, training the face/non-face classifier 

requires a huge set of representative examples. Moreover, the search for a face is 

not usually directed, but rather exhaustive, so there is a higher chance of false 

alarms due to the enormous number of hypotheses to be tested. The reduced 

speed capability and poor localization accuracy call for employing separate feature 

detectors (e. g. eye-centre detectors) as a postprocessing step. 

Feature constellation methods Most local-feature approaches tackle the problems 

caused by the sliding window concept, but it can be argued that the configuration 

of features found in the image is not sufficient to distinguish between faces and 

non-faces. Thus the number of false alarms is often high. We believe that it is 

barely possible to construct a fully discriminative feature detector and therefore 

false alarms will always be a big problem with these methods. Imaging effects 

introduced by the scene capture (scaling, head orientation, etc ... 
) are removed 

using intuitive solutions rather than a systematic approach. 

Warping methods These methods can be regarded as very successful from the local- 

ization accuracy point of view when starting from a good initial position. How- 

ever modelling of the face-class appearance and shape is often only client-specific. 

These limitations mean that the use of an outside face detector becomes necessary 

in order to get a close-enough starting position and robustness against cluttered 

background in uncontrolled scenes. These methods are suitable to be used as a 

last step following a "sliding-window" based face detector. 
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Chapter 3 

Methodology 

In this chapter our methodology to face localization will be presented. We will recall the 

drawbacks of the state-of-the-art and present the criteria which the designed algorithm 

should satisfy so that an improvement could be achieved. Taking the predefined criteria, 

the structure of a suitable localization algorithm will be deduced. 

3.1 Critique of the state of the art 

Existing object representation schemes provide models for global appearance (we re- 

ferred to them as image-based methods) or for local features and their relationships. 

In the context of generic face detection and localization, the human face should be 

regarded as an object class, i. e. set of similar objects. 

Image-based approaches (section 2.2) use the scanning window technique in order to 

locate faces regardless of scale and rotation. This concept causes a significant local- 

ization inaccuracy due to scale and rotation discretization as explained in chapter 2 

(scale and orientation are continuous variables and only limited number of quantized 
discrete samples can be exploited). There is an important conclusion arising from this 

observation. The face/nonface model should not incorporate scale and orientation dis- 

cretization invariance in order to achieve good localization accuracy (it should be able 

to discriminate between slightly misaligned faces). The scale and orientation variability 

17 
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should therefore be fully removed from face/non-face templates before they are used 

in the learning stage, in other words this model should be fully scale-and-orientation 

free. If this condition is met, the scanning window technique cannot be used to localize 

faces, since if the true scale and orientation is missed, face would most likely be missed 

too. 

An important observation is that the scanning window models based on powerful pat- 

tern recognition techniques are reported to be superior to the existing feature-based 

approaches in the case of still grey-level images [HL01]. It was argued that these 

models are better at coping with cluttered-background. Feature-based systems on the 

other hand seem to be suitable only for scenarios, where motion, colour or controlled 

conditions are available. 

Feature-based approaches mainly suffer from the fact, that the constellation of features 

alone does not guarantee the discrimination from background (section 2.3). There 

are however several advantages of using features in localization. Firstly, is the ease 

of illumination distortion modelling. This is due to the fact that local features are 

spatially smaller than the whole object and therefore simple lighting invariance models 

can be successfully used in the modelling of unknown lighting variations. For scanning 

window methods, illumination actually presents a hard problem to solve. Although 

this topic is currently being heavily researched, we will not focus on it. 

Secondly, although the modelling of local features like eye and mouth corners is still 

regarded as a hard problem [HL01], the overall modelling complexity of local features is 

smaller than in the case of image-based methods. Again due to the size, the modelling 

of a smaller object is usually less complicated than the modelling of a large object. 
This observation is indirectly related to the problem of training set size in the statis- 

tical learning and the curse of dimensionality. Having a less complex object to model 

means that the chance of success using all the available means is higher than in the 

case of a large and potentially highly variable object. Scanning window methods use 

modern pattern recognition algorithms to capture both facial shape and appearance im- 

plicitly. Although feature-based approaches actually decompose object structure into 

local appearance and configuration (shape), it is still possible to exploit all the existing 
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powerful pattern recognition tools, that were successfully applied in scanning window 

methods. 

The third reason which makes local feature models interesting is their robustness to 

feature detector failure. If, for whatever reason, a local feature detector fails, it usually 

does not mean that the object will not be recognized. Proper local feature models use 

a redundant representation facilitating more than one local feature. Thus, an isolated 

feature detector failure does not necessarily result in the failure of the whole detector. 

In our view a promising method of localization could be a combination of the aforemen- 

tioned main streams. To give a simple example of such a system, imagine an approach 

using a colour feature-based technique as a preprocessor to the multiresolution window 

scanning technique in order to reduce its time complexity. 

The discussion above can help us to draw the set of criteria a localization algorithm 

has to meet in order to be superior to the existing methods. 

1. To maintain accuracy, scale and orientation discretization error invariance should 

not be incorporated in the face/nonface model. In other words, it means that the 

face model should regard even slightly misaligned faces as nonfaces. 

2. Local features should be used due to their favourable properties regarding object- 

class variability and illumination correction (they are easier to model than the 

whole face). 

3. Since the constellation of local features is not discriminatory enough for a reliable 

separation of faces from a cluttered background, powerful pattern recognition ap- 

proaches, commonly used in the scanning-window methods, should be considered 
for the final decision on the presence of a face in the image. 

4. If used, the local feature model should be robust to feature detector failure. 

Let us discuss these four requirements and draw conclusions from them. 

Firstly, the scanning window technique cannot be used, since it would require scale and 

rotation discretization error invariance being incorporated into the model. 
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From the first item on the list of requirements, i. e. that the face/nonface model should 

be fully scale and orientation free, a certain kind of registration of the tested templates 

that removes scale and orientation from faces has to be considered. A natural way is to 

introduce a scale-and-rotation invariant space, where the images (or their parts) will be 

registered. The face/nonface model can then be trained using registered templates and 

this should maintain the localization accuracy, since a slightly misaligned face would 

be likely to be classified as a non-face. 

If the model is made fully scale and orientation (rotation) free, one cannot use a scan- 

ning window search through a set of rotations and scales during the detection (since 

faces not fitting the chosen scale and rotation would likely be missed). Here the local 

features can play an important role. Due to their nature, they could be used to facil- 

itate the estimation of real scale and rotation of faces in the scene, as e. g. in many 

approaches dealing with stereo vision. The first item of the list of requirements effec- 

tively means, that a registration of faces into a special coordinate system is required 

(for removing scale and orientation from model faces). The use of the constellation of 

features on the face could give us an opportunity to estimate the scale and rotation 

and subsequently perform the registration of the data. 

However, if local features are to be used we have to expect a large number of false posi- 

tives, because the approach cannot avoid them in a cluttered background, as mentioned 

earlier. Also since some features are likely to be undetected, the proposed model has 

to be redundant in order to cope in a robust way. 

Once facial hypotheses based on the constellation of features found in the image are 

generated and scale and orientation removed (i. e. registration performed), techniques 

from image-based approaches can be used to verify the presence of face in the given 

position (i. e. face appearance tested). 

Combining the above arguments results in the following structure of the localization 

process (Figure 3.1). 

Let us go into more detail now: 
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Figure 3.1: Diagram of the proposed algorithm 

3.2 Feature detectors 

The problem of detection of object parts has been attracting quite a lot of attention and 

many algorithms have been designed for this purpose. For simple image primitives like 

corners, edges and circles, well established algorithms exist. As discussed in chapter 4, 

at the beginning of our research we carried out experiments using these simple image 

primitives, in particular the Harris corner detector, combined by a simple statistical 

model of local appearance, but it finally proved to be incompatible with our further 

requirements. 

In contrast to the Harris corner detector, a Gabor filter bank representation (described 

in detail in chapter 4) exhibited good ability to perform scene capture invariant mod- 

elling and at the same time extract the discriminatory part of the visual information in 

a computationally affordable way. As we discuss later we designed Gabor-filter based 

statistical feature detectors for accurate facial generic-feature detection. In our latest 

setup we aim to detect ten facial features. We came across a great deal of difficulty in 

modelling these features over a variety of existing human faces. Even simple features 

like "eye corners" or "eye centres" are visually highly variable as seen in Figure 3.2. 

3.3 Face space 

In order to allow geometric registration of the patterns and provide at least scale 

and rotation invariance ability, a special coordinate system will be introduced. As we 
describe later, in such a space even affine distortion (including scale and orientation 

as two major scene capture effects) is removed from the face patterns. We call this 

concept "face space". Although the details regarding its construction and motivation 

will be explained later in chapters 4 and 5, let us stress here that the main purpose 
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of this space is to enable the following two operations. First, by using this space we 

want to perform a geometric registration and normalization of possible face patterns by 

exploiting detected features in the image. Second, using this normalized data we want 

to perform a shape-free appearance verification as suggested in the proposed schema 

shown in Figure 3.1. 

3.4 Hypothesis generation 

As mentioned before, we believe that it is impossible to detect facial features in the 

image without false positive detections. Simple objects can appear similar to other 

visual stimuli in the scene so it is natural that the local feature detection should result 

in many features found in the image. Every statistical model captures just a part of the 

object visual information content, and therefore a complete discrimination from other 

objects is hardly achieved in practice. 

In chapter 5 we will show, that by taking triplets of detected image features as face 

hypotheses, the removal of the scene capture effects can be performed (by facilitating 

the "face space" for this purpose). Such geometrical normalization then enables a 

shape-free test of appearance. 

Let us mention here, that the separation of the shape and appearance variability is 

the crucial point of the algorithm. The final decision whether a face is present or not 
is not made using only the constellation of detected local features (like many other 

feature-based algorithms do) but by comparing all the underlying photometric infor- 

mation against geometrically normalized face appearance model (as explained in the 

next section). 

3.5 Appearance verification 

It was already mentioned earlier and our experimental evidence will confirm, that 

just configuration of local features does not carry enough discriminatory information 

to distinguish the face from the background. Many existing techniques just using a 
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configuration model built over the detected features rely on the fact that their feature 

detectors will have low false alarm rate. This situation however does not reflect real life 

scenes with cluttered background, where lots of Use alarms would be encountered. In 

our algorithm we use a final appearance test exploiting powerful classification technique 

to avoid these false alarms. A whole chapter of this thesis is devoted to this topic. 

3.6 Summary 

In this chapter the motivations and the philosophy of the advocated approach to face 

detection and localization are presented and discussed. 

We postulate in this thesis that in order to accurately localize a face, shape (expressed 

through feature constellation) and appearance properties have to be satisfied. We de- 

compose the facial visual variability into a shape model (feature constellation) and 

shape-free appearance model. Unlike warping methods no iterative score function op- 

timisation is required and facial hypotheses can be decided in two steps. Firstly, if a 

configuration of a group of detected features in the image (in particular three features 

form the group as we show later) does not satisfy learned constellation model, it is 

discarded. Then only the promising face hypotheses are passed on for the appearance 

test. Before that, the detected features are used to remove the scene capture effects 

and shape variability, i. e. the geometric registration of the underlying image patch is 

performed. The appearance model therefore uses geometrically aligned data and this 

fact represents an important difference as compared with the majority of image-based 

approaches where scale and orientation variability partially remains in the tested data 

and the classifier (model) must compensate for it. 

As mentioned earlier, most of the existing classifiers are extremely sensitive to pixel 

misalignments (introduced by scaling, translation and rotation at image capture). Thus 

a significant degree of insensitivity (invariance) to slight shifts and changes of scale 

and rotation must be exhibited by the face model in order not to miss a hypothesis 

when the scanning window does not exactly fit the face. Such invariance, however, 

results into localization inaccuracy since the model is not able to distinguish between 

slightly misaligned versions of the target object. If the shape information is used, the 
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appearance model can be trained without this undesired discretization error invariance, 
because the invariance to scene capture effects and shape variations is incorporated in 

the shape (constellation) model itself. 

We shall demonstrate that such an approach results in a higher localization accuracy 

and is consistent with the predefined criteria. 

In the following chapters, the particular parts of the proposed solution will be explored 
in detail. 



26 Chapter 3. Methodology 



Chapter 4 

Feature detectors 

4.1 Face features 

Since the feature detector is the initial step according to the proposed schema in Fig- 

ure 3.1, the accuracy and reliability of the whole detection/localization system will 

critically depend on the accuracy and reliability of the detected feature candidates. 

There are two fundamental issues with feature detectors that need to be addressed. 

9 Which criteria feature detectors should satisfy 

" Which in particular and how many features should be detected 

In this thesis we regard the facial features to be informative sub-parts of faces repre- 

sented by a reference point. They may appear in arbitrary poses and orientations as 
faces themselves and therefore the design of feature detector has to reflect this. As any 
detector in general, feature detectors have to be designed in an illumination and pose 

invariant manner. They also have to be able to detect the whole class of features over 

the entire population not only the features of a specific person. 

Regarding the pose, the scene capture can of course introduce general perspective 
distortion to the face (and thus to the face features). When we attempt to model these 

scene capture variations, we have to realize that every additional parameter in the scene 

27 
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capture model will increase the computation complexity of the detector. Therefore our 

aim should be to keep the number of parameters small. If we look at the problem closer, 

we find out that faces are quite flat objects apart from the nose. It is also true that in 

the authentication scenarios pose variations are small, faces are in fact always frontal 

(person standing/sitting in front of camera) and if not too close to the camera, the nose 

does not present a big problem. For such situations the simpler affine model would 

approximate the scene capture effects well. Although we deal with the affine model in 

detail in chapter 5, it should be mentioned here that with feature detectors it is desirable 

to go even further with simplification, since facial features are much smaller than the 

whole face. For this reason it is justifiable to approximate feature pose variations by 

a similarity transformation model (i. e. even less complex model than general affine 

or perspective ). The resulting inaccuracies (errors introduced by this approximation) 

would have to be handled by the statistical appearance part of the feature model. The 

similarity model involves just translation, rotation and isotropic scaling, therefore our 

detector has to be made invariant to at least these operations. With such an approach 

to scene effects invariance we believe the computational feasibility will be maintained 

and at the same time any error introduced by this simplification will hopefully be 

manageable, since local features are small and thus less complex objects. 

We also cannot expect that false positives will not occur. Features, as small parts 

of the face, can therefore be visually similar to other objects in the scene. Complete 

discriminativeness is hardly achievable in practice, therefore the proposed schema 3.1 

reflects that. 

Regarding the issue of which features to detect, first we have to identify what will be 

the features exactly used for. As suggested in chapter 3, features should be not only 

used to navigate the search for the face but also for scene capture effects (mainly scale 

and orientation) estimation and removal. For such a purpose, features could be used in 

a similar manner as they are used for example in stereo vision. In stereo vision, point 

correspondences are used to estimate the scene geometry taking two or more different 

views. Motivated by the use of correspondences in stereo vision, face features can help 

us to establish the size as well as orientation of faces by computing correspondences 
between the model face of a known size and orientation and a hypothesised face in the 
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test image. However, it has to be noted, that since face localization and detection deals 

with the whole face class (object-class modelling) the correspondence model should 

reflect that. For this purpose the concept of face space becomes useful, as mentioned 

in chapter 3. The introduction of face space will allow us to create a model, which 

can be used to estimate size and orientation of the face in the image (later it will be 

shown that in fact the whole affine geometry can be estimated). The details of this 

coordinate space will be described later in Chapter 5. Here in connection with the 

feature detectors, we just need to know that this space is defined uniquely for each face 

and removes scene capture distortion by the means of affine normalization. In other 

words, faces are geometrically normalized by mapping into the face space, where they 

have the same size and orientation. A very important fact is that in this coordinate 

system the facial features (like eye corners, eye brows, etc. ) appear approximately in 

the same positions. 

Having such a coordinate system, we can use the correspondences between features 

detected in the image and features residing in the face space (since most of them 

appear in the same position in the face space, a single point is a good representation 

of all of them) and we can register the underlying image patch (possibly face) into the 

face space. This process effectively means removing scene capture effects and possibly 

facial shape variations. A geometrically normalized photometric data can be then used 

in further steps as suggested in chapter 3. 

The versatile design of the whole algorithm actually does not require the feature detec- 

tor to be 100% successful. As mentioned earlier, false alarms are to be expected and 

sometimes undetection will also occur, e. g. due to occlusion. Our primal requirement 

then should be that the true feature will be included among the detector output in as 

many cases as possible (i. e. true negative error be kept low), and that the false alarms 

will be not excessive. To control the tradeoff of the two detection errors (false negatives 

and false positives), a threshold can be used. We should not even require that the real 
feature's rank has to be high in the feature detector output list. It is reasonable to 

require that for each feature detector, a fixed number of best feature detections will be 

taken as output and among them hopefully as many true features will be present as 

possible. 
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4.2 Harris-and-PCA-based feature detectors 

Having a particular feature detector design we have to evaluate how accurate and 

successful it is using the face space coordinates and determine whether it is desirable 

to detect the particular feature or not. The reader is reminded here, that the feature 

detector itself of course works in the original image space coordinates and has to cope 

with scene capture effects, illumination and with population appearance variations. 

In our early experiments [BMHK, MBHK02, HKMB02] our first feature detector was 
based on the Harris corner detector and subsequent PCA-based classification of the 

colour neighbourhood of Harris points (PCA as a method will be discussed in detail in 

Chapter 6). As we later show in Section 7.2 on the XM2VTS database the results were 

promising. However, we found later, that in the presence of cluttered background this 

detector performed poorly. 

To choose which particular facial features to detect, an experiment was performed 

where the Harris corner detector was run in several scales on a set of face images, 

detected points were then projected into the face space and the places with highest 

occurrence of hits were labelled as feature candidates. Figure 4.2 depicts this result. 
The points which received the most hits were the eye inner and outer corners, the eye 

centres, nostrils and mouth corners - see Figure 4.3. They were selected as features to 

detect. These results were in accordance with our intuitive feeling, i. e. that smooth 

areas are not suitable for detection. The aforementioned features represent the areas of 
the face where a change of intensity is clearly visible and also the intensity forms some 

characteristic shape. It is worth mentioning that although we use the term "points" 

we actually mean areas (or parts) of face. A point is spatially infinitely small and thus 

virtually undetectable in the signal. As mentioned above, we represent each feature by 

a reference point (does not need to be a centroid in general) and some neighbourhood 

around it. 

Examples of the Harris corner detector response on the face are depicted in Figure 4.1 

In Figure 4.4, a typical feature detection result on images from the XM2VTS database 

is presented. 
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Figure 4.1: Typical Harris corner detector response on the face 
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Figure 4.2: Harris corner detector success on various parts of the face, the brighter 
colour corresponds to higher occurrence of hits (experiment carried out by P. 
Bflek [BMHK]) 
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Figure 4.3: Features chosen for detection 
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Figure 4.4: Example of feature detection using Harris-and-PCA-based feature detector 
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4.3 Gabor-filter-based feature detectors 

Our early experiments revealed that the originally designed feature detector did not 

perform well on realistic data. Therefore a different method had to be exploited for 

feature detection. The solution which will be described here was developed in close 

cooperation with Joni Kämäräinen from Lappeenranta University in Finland [KKK+02, 

HKKKO3]. In his thesis [Käm03], the author deals in detail with all aspects concerning 

the use of Gabor filters for object recognition. 

While the design of the feature detectors had to be modified, we decided to use the same 

features as in the original case, leaving some space for comparisons and possible future 

improvements. We should also note that for these ten features the groundtruth was 

collected on a big dataset (XM2VTS, BioID and BANCA databases - see Chapter 7), 

which made the training process easier. 

4.3.1 Gabor filters 

Time-frequency (in vision space-frequency) analysis plays a major role in signal process- 

ing. It is a well established fact, that the Fourier transform of a spatially or temporarily 

extended signal has a little value in analyzing the frequency spectrum in the signal. 
High frequency peaks cannot be easily identified from the transformed signal. Many 

task and especially signal detection called for the notion of frequency analysis that is 

local in time (or space). Windowed Fourier transforms, Gabor filters and wavelets are 

the main representatives of the local analysis approaches. 

Due to their representation power Gabor filters have been previously used in a feature- 

based face detection and recognition [LVB+93] successfully. An origin centred normal- 
ized 2-D Gabor filter is defined as follows: 
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where f is the frequency of the sinusoid plane wave, 8 is the anti-clockwise rotation of 

the Gaussian envelope and the sinusoid, ry is the spatial width of the filter along the 

major axis, and 77 spatial width along the minor axis (perpendicular to the sinusoid). 

In practice, applications usually utilize responses from several filters. These filters 

spread over several frequencies and orientations creating a feature space in which trans- 

lation, rotation and scaling invariance can be realized [KKKO4, KämO3]. 

Let us demonstrate these invariance properties of the Gabor filter. We will demonstrate 

translation and scale invariance on 1-D version of the filter, since generalization to 2-D 

is straightforward. 

A normalized version of the 1-D origin centred filter is defined as 

lfl 
e-(ry)2t2e22wrt 

yý 
(4.2) 

where f is the base frequency and 'y is the parameter controlling the sharpness of the 

filter (its time duration and bandwidth). The response of the filter to 1-D signal Sl is 

generated via the convolution: 

+00 
rsý (t, f) _ ý(t; f) * sl (t) =f Vi (t - tT; f )Si (tr)dtr (4.3) 

For the 1-D Gabor response in Eq. 4.3 and a translated version of the signal Slt, 

slt(t) = S, (t 
- t1) (4.4) 

it can be proved that 
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which shows translation invariance, allowing a translation-invariant signal detection. 

It should be noted that the scale invariance holds due to the fact that the frequency 

and the width of the Gaussian envelope are inversely proportional through parameter 

ry. This actually guarantees that the filters tuned to different frequencies are scaled 

versions of each other. Please note that sometimes in Gabor-related studies filters are 

not defined as normalized and therefore scale-invariance cannot be guaranteed. 

For a scaled signal 
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it holds for the filter response that 
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The interpretation of this result is clear: a response to a signal is the same as the 

response of a similarly scaled filter for a scaled version of the signal. 

Now since rotation invariance is a 2-D phenomenon we have to switch to two dimensions. 

A rotated version S2,. (x, y) of a 2-D signal S2(x, y), an image, rotated anti-clockwise 

around a spatial location (xo, yo) by an angle 0 can be written as 

S2r(X, Y) - 
S2(i, 9) 

(x-xo)coso+(y-yo) sinO+xo (4.8) 

-(x-xo)sin 0+ (y- yo)cosO+yo 

The filter response using Eq. 4.8 for the rotated signal is 

+00 
rs2r (x01 yo; f, O) =Jf &(x0 - xr, YQ - yr; f> O)S2r(xr, yr)dxrdyr (4.9) 

00 

which can be expressed as 

+00 

J J- 
e ([(xo - x, ) cos B+ (yo - yT) sin B], [-(xo - x, ) sin 9+ (yo - yT) cos B]) 

00 

S2 ([(x, - xo) cos 0+ (yr - yo) sin 0+ xo], [-(x, - xo) sin 0+ (yr - yo) cos 0+ yo] ) 

dx, dyr 
(4.10) 

and by changing the integration axes to (xc, y' T) which are correspondingly rotated 

clockwise around the point (xo, yo) by the angle 0, the following formula is obtained 

fj +00 Ifi(Irt FITS 
. 
fr B)'Sz(XT, Y, )dxrdy,, 

0 

xT = (xo - x, )cos(9 - 0) + (yo - y'T)sin(B - ¢) (4.11) 

�"T=-(xo-x',. )sin(B-0)+(yo-y'T)cos(9-0) 
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and from that it can be derived that the previous form equals to 

oo 
V)(xo - Wir, yo - v4; 

. 
f, 0- 4)S2(x ., 

y)dx' dyr 
4.12 JJ +00 

= rs2 (xo, yo, f, 0- 0) 

Finally, taking all three invariance properties of 2-D normalized filter together, it can be 

proven that for a 2-D signal S2 (x, y) which is signal S2 (x, y) translated from a location 

(xo, yo) to a location (xl, yj), scaled by a factor a and rotated anti-clockwise by an 

angle 0 around the location (xi, y') it holds that 

rs; (xi, Ali; f, e) = rss (xo, yo; 
ä, 

0- 0) (4.13) 

which is directly exploitable for the purpose of translation, scale and rotation invariant 

feature detection [K&m03]. 

Gabor filters are usually the first step in processing and refining data to extract infor- 

mative features. For the purpose of feature detection, discrete versions of Gabor filters 

are used. As mentioned above the most common applications involve a combination of 

responses from several filters (so called filter bank). However, as the number of filters 

increases, the computational costs will also increase, therefore this trade-off has to be 

considered in design. The statistical features (filter responses) obtained by applying 

the Gabor filter bank to the 2-D signal (in our case image) are defined by a finite 

sampling grid of parameters of the filter, i. e. spatial coordinates (x, y) ti, frequencies fj, 

and orientations 0k. 2-D signal is therefore represented by these features as a grid in 

four-dimensional space [Käm03]. 

If objects are to be distinguished using the responses at a single spatial location, a 

translation invariant search can be performed by inspecting the responses at each lo- 

cation. This approach has been used in many studies. To decrease the computational 

cost, non-uniform sampling schemes have been proposed. 

The statistical features (not to be confused with facial features) that consist of Gabor 

filter responses at each position are calculated by the use of the convolution 
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rt (x, y; f, 0) = '+&(x, y; f, 0) * ý(x, y) 

= 
fj ,. O(x - x, y-y,; f, 0)6(x,, y4)dx1dyT 

(4.14) 

where V )(x, y; f, 0) is a 2D Gabor filter and ý(x, y) an input image. A response matrix 
00 

in a single spatial location (xO, yo) can be constructed by calculating filter responses 

for a finite set of different frequencies f and orientations 0 as 

G= 

r(xo, yo; fo, Go) 

r(xo, yo; fi, Bo) 

r(xo, yo; fm-i, Bo) 

r(xo, yo; . 
fo, ei) ... 

r(xo, yo; fi, Oi) ... 

r(xo, yo; fm-i, Oi) ... 

r(xo, yo; fo, en-1) 

r(xo, yo; fi, 0n-1) 

r(xo, yo; fm-1, en-1) 

(4.15) 

In order to achieve illumination invariance, the feature matrix G in Eq. (4.15) is nor- 

malized as 

G' =G If I9ij 12 
i; 

(4.16) 

This operation effectively normalizes the energy of the filter response (feature matrix) 

to a constant. It exploits a simple linear-illumination model which is justifiable in the 

case of small objects where big cast shadows do not occur. We believe that the issue 

of illumination is one of the main advantages supporting the use of feature detectors. 

Unfortunately, this normalization also presents pitfalls since it also emphasizes areas 

of low response (amplifying noise), such as backgrounds, and typically induces an in- 

creasing number of false alarms. In some situations it might be desirable to remove the 

effect of low responses as suggested in [LVB+93]. 

4.3.2 Rotation and scale invariance 

In order to search for facial features in different orientations and scales, simple matrix 

shift operations can be used [KKKO4]. A column-wise rotation of the feature matrix 

can be defined as 
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G(k) = 
(G(1 

: m, k: n) G(l : m, l: k- 1)) (4.17) 

where G(c) denotes k-columns shifted matrix G, G(i : j, u: v) represents the sub- 

matrix of G containing rows i ... j and columns u ... v. Similarly a row-wise shift for 

scale manipulation can be defined as 

G(k+1: m, 1: n) Gýýý 
G(m + 1: m+k, 1 : n) 

(4.18) 

The column-wise circular shift in Eq. (4.17) corresponds to searching over all rotation 

angles. It should be noted that the shift is circular and if the responses are calculated 

only for half the space, e. g. [0, ir], it has to be taken into account and the responses 

converted accordingly (by a complex conjugate). The row-wise shift in Eq. (4.18) 

corresponds to searching over all larger scales. This shift is not circular but the highest 

frequencies vanish as the filter is scaled up and new lower frequencies are mapped to 

the Gabor-feature matrix G as replacements. 

By extracting Gabor filter responses using the feature matrix in Eq. (4.15), normalizing 

features by Eq. (4.16), searching features in different poses using the matrix shifts in 

Eqs. (4.17) and (4.18), translation, illumination, rotation and scale invariance can be 

achieved. Please remember that all response values are complex numbers. In our 

experiments we also tested real-valued responses (i. e. magnitude of the complex filter 

responses), however it proved to be insufficient for good performance. Complex valued 

responses carry the phase information which is crucial for the discriminative abilities 

of the detector [KKK+02]. 

The complex-valued Gabor feature matrix in Eq. (4.15) can be used to distinguish 

between different facial features. However such scheme would be useful only for the 

detection of features of one particular person. In face detection/localization we are 

dealing with object-class recognition and as mentioned above even simple face features 

are visually quite variable. Therefore a statistical model based on the feature matrix, G, 
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has to be created. The Gabor-filter filter theory provides us with a rigorous approach 

dealing with invariance, but it does not model the statistical appearance variation of the 

object (feature) itself. Next sections will introduce two statistical models successfully 

used in our scheme. Examples of 2-D Gabor filters of different fo and 0 are depicted 

in Figure 4.5 
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Figure 4.5: 2-D Gabor filters (real parts): rows depict different 0, columns different fo 

4.3.3 Sub-cluster classifier 

If we compute features (feature matrices G) for the ten facial features over a large 

number of faces of same scale and orientation we can learn their statistical distribution. 

Moreover as shown above, this representation gives us rigorous means how to achieve 

geometric invariance. The facial feature responses G form specific clouds in the feature 

space (if we perceive G as a vector). It is desirable that these clouds are separable 

from each other by some means of classification. We have opted for a cluster-based 
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method called sub-cluster classifier [KKK+02, HKKKO3]. The name reflects the fact, 

that a cluster of a specific face feature responses (e. g. eye centre) can consist of several 

subclusters, signifying, that there are several groups of facial feature appearance among 

population. Also, for example, closed or open eyes are visually different, therefore it is 

very likely that there will be different clusters representing them. However we still want 

to detect an eye-centre regardless of which person it is or if the eye is closed or not, 

therefore the eye-feature cluster could possibly include several different subclusters. 

Let us stress again that elements of the feature matrix G are complex numbers. A 

complex Gaussian distribution was previously studied in the literature and used in 

several applications [Goo63]. We performed an experiment comparing the distributions 

of feature vectors created by concatenating real and imaginary parts with that of the 

complex vectors. These two representations performed comparably and we chose the 

complex variant, because it actually has a lower dimensionality. 

The pseudo-code of the subcluster-classifier is presented in Algorithms 1 and 2. 

The C-means step (also referred to as K-means algorithm) in the training ensures that a 

good unsupervised (i. e. feature labels are not used) partitioning supported by the data 

is obtained. The partitioning produced by this algorithm is called Voronoi tessellation. 

The C-means algorithm converges fast, but it is sensitive to the initialization. If the 

generated partitioning produces clusters with a dominant majority of a single class 
then further steps follow, i. e. if each class is covered by at least one cluster, samples 

are reclassified to the closest cluster of correct-label and true estimated means and 

covariances returned. If no good partitioning is produced, the C-means is run again. 
As the results will show (see section 7.6) this algorithm performs very well for the 
intended purpose, however it should be regarded more as an engineering solution, than 

a theoretical contribution. To have a better theoretical rationale, we decided to replace 
the sub-cluster classifier (SCC) by the Bayesian classifier assuming Gaussian mixture 

model (GMM) probability densities, which will be described in the next section. 
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TRAINING PHASE 

Data : Scale and orientation normalized faces with manually annotated features to 
detect, Nc = number of clusters, k= number of filter scales, l= number of 
filter orientations, CL = how many % of a single class has a cluster to contain 

Result: Trained classifier = 
set of triplets {Tt = (FeatureLabel;, S;, Ei), i< Nc} 

for All the face images do 
Compute the illumination normalized feature matrix G(fo, ... fk-1; Bo, ..., 91_1) for 
all ten facial features as the Gabor filter-bank responses at the manually allocated 
feature locations and create a vector g by concatenating the columns of the matrix 
G; 
Assign a feature label LE {1,2,3,4,5,6,7,8,9,10} to each response g according 
the feature type; 

end 

chile NOT(STOP) do 
Run C-means algorithm on the responses g with Nc clusters initialized by a random 
choice among g; 
Assign each response g to a closest cluster mean; 
Compute how many percent of each cluster are features from a single class, then 
for each cluster choose the highest value and assign the feature label to the cluster 
accordingly (i. e. choose the class that most represents the given cluster); 
Throw away clusters that contain less than CL% of samples from a single class; 
if Each class is represented at least by one cluster then 

STOP=true; 

end 
else 

STOP=false; 
decrease value CL; 

I end 
end 
Assign each sample of label q to the nearest cluster (using its mean) which has cluster 
label also q (cluster label is determined by the majority class label in the cluster); 
Compute cluster sample means 8i and sample covariance matrices Ei and create a triplet 
for each cluster Ti = (FeatureLabeli, öi, Ei), i= {1, 

..., N}, where FeatureLabel; cor- 
responds to the class label which had the highest occurrence in the cluster (see above) 
and N is the actual number of clusters; 

1: 
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DETECTION PHASE 

Data : Test image I containing faces, N�M. x = how many best detections per class 
to output, SI = number of scale invariance steps, RI = number influencing 
the rotation invariance (RI =0 means that no rotation invariance test will 
be performed), SCC classifier = {T; = (FeatureLabeli, 5j, Ei), i= {1, ..., N,, }}, 
d,,, i,, = minimum distance between detected features of the same class in pixels 

Result: List of detected features ordered according rank in each class 
for All pixel positions (xo, yo) in I do 

Compute illumination normalized feature 
G(fo, """fk+Sl-1; Go, """, et-1) for each location (xo, yo) 
parameters of the Gabor filter bank used in training); 
for scale=1: SC do 

response matrix 
(k, l being the original 

for rotation=-RI: RI do 
Compute G' as G(fecale-1, """' fk+acale-2; Orotation, 

"""i 
Orotation+! 

-1) 
(i. e. the 

rotated and scaled version of G utilising row and column shifts); 
Create g' as the concatenation of columns of G'; 
for cluster i=1: Na do 
I compute DIST(i, scale, rotation) = (g' - 5; )E-1 (g' - öti)T; 

end 
end 

end 
For the position (xo, yo) assign the class label according the decision rule L= 

clusterlabel(argmin(DIST(i, scale, rotation))) and the score = min(DIST); 
Record detected feature as quadruplet (xo, yo, L, score) 

end 
Perform non-minima suppression on the detected points of class with minimum distance 
dmt, a[pixels] ; 
Return the best N,,,, ax detected features for each class based on the value of score; 

Algorithm 2: Detection phase using SCC 
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4.3.4 Gaussian mixture model 

The Bayesian classification with GMM probability densities and the estimation of GMM 

parameters have been well covered in the pattern recognition literature. For the given 

features an unsupervised estimation of GMM is preferred and several different meth- 

ods have been proposed, e. g., a greedy EM [VL02]. However, a method proposed by 

Figueiredo and Jain [FJ02] provided the best convergence properties and classification 

results in the experiments conducted. This method is capable of selecting the number of 

components automatically and does not require careful initialization. The Expectation- 

Maximization (EM) algorithm [DLR] is used to minimize a novel score function. The 

score function is derived using the Minimum Message Length (MML) criterion and is 

defined as follows: 

n G(B, y) 
2 

log (n12 )+ k2z 
log 

12 
m: am>o (4.19) 

+ 
kn-, (N + 1) 

- logp(YIO) 

where 0 is the complete set of parameters needed to specify the mixture (in our case 

means, covariance matrices and mixing probabilities), y are the data samples, kn,, 

denote the number of non-zero probability components, atz are the mixing probabilities, 

N the number of parameters specifying each component, n the number of data samples, 

and log p(Y O) the log-likelihood. The algorithm starts with a large number of k,,,, and 

uses the EM algorithm to minimize £(0, y). As a part of M-step, components that are 

too weak (i. e. unsupported by data) are annihilated. The optimal solution corresponds 

to the minimum of G(0, y). 

Similar to the SCC case the posterior probabilities computed by the Bayesian classifier 

can directly be used as confidence values to sort spatial coordinates into the best ranking 

order for each facial feature. The algorithm for detection is identical with Algorithm 2, 

only the DIST is replaced by the posterior probability given by the GMM model and 

minimization is replaced by maximization. 

In our latest setup we output 200 best candidates per feature. Detailed performance 

evaluation and comparison of the two classifiers used will be presented in chapter 7. 
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Typical results of feature detection using GMM-classifier and feature matrix G with 4 

scales and 5 orientations are depicted in Figure 4.6. 

Figure 4.6: Typical result of feature detection, + denotes outer left eye corner, x denotes 
left eye centre 

Figure 4.6: (continued) + denotes inner left eye corner, x denotes inner right eye 
corner 

4.4 Summary 

In this chapter the problem of feature detection was discussed. We introduced a novel 

Gabor-filter-based feature detector that attempts to model facial features in a transla- 

tion, scale and orientation invariant way. Utilizing cluster-like properties of the data, 

two cluster-based classifiers were developed and tuned for the purpose of classification 
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Figure 4.6: (continued) + denotes right eye centre, x denotes outer right eye corner 

Figure 4.6: (continued) + denotes left nostril, x denotes right nostril 

Iw 

-r 

Figure 4.6: (continued) + denotes left mouth corner, x denotes right mouth corner 
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in the Gabor-response space. We also found, that the phase information is very impor- 

tant and therefore complex-valued models were used (in contrast to magnitude models). 

By outputting N best feature candidates, the success rate can be maintained even in 

the presence of the background, however false alarms have to expected as an inherent 

part of the output. The next chapters will introduce methods developed to exploit the 

detected features for finding the true face location. 
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Chapter 5 

Transformation model 

In this chapter, our approach to constellation (transformation) modelling will be de- 

scribed. A transformation (constellation) model is used early in the hypotheses gen- 

erator (see Figure 3.1) to produce admissible-constellation triplets of detected features 

efficiently and to register the corresponding image patch for further stages of the algo- 

rithm. 

5.1 Definition of the face space 

As mentioned in section 3.3 and 4, face space was introduced in order to reduce the 

variability inflicted by scene capture and facial shape. In our design this space is linear 

and in the two dimensional image space it is represented by three landmark points posi- 

tioned on the face. The particular choice of these three points was carried out by using 

optimised search among various linear combinations of groundtruth landmark points 

on the face. The XM2VTS database (see section 7.2) was used for the experiment. As 

a criterion, a photometric variance computed with the help of Principal Component 

Analysis (PCA) over the set of facial images was used. The triplet of points correspond- 
ing to the minimum photometric variance was then taken as a coordinate system. The 

idea for this comes from a scientific hypothesis, that if faces are photometrically cor- 

related, it is likely, that they are properly aligned. In particular the following points 

were chosen and subsequently used in our experiments: 

51 
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-ý, 

Figure 5.1: Face space definition 

1. Mean value of eye centres and eye corners taken as an origin O. 

2. Mean value of nostrils and mouth corners taken as P1. 

3. Mean value of the coordinates of the right eye corners and right eye centre taken 

as P2. 

It. is worth mentioning that since other combinations of points were close to the optimum 

of the criterion function, a different choice of points could lead to similar final results. 

Also the availability and type of manually registered data (landmark points manually 

defined on the face) played a certain role in the selection. However, it is obvious that 

this particular choice manages to normalize the height and width of the face and this 

is in accordance with our intuitive feeling about the problem. 

Once given three coordinates (O, P1, P2) on a face, that face can be registered (warped) 

into this space. The new coordinate axes are then 0 --' P2 and 0, P1 
. 

Affine warp- 

ing of the input image is needed to transform the image (carrying the face) into the 

face space. In this space most of the shape variability and main scene capture effects 

Chi 11)[(-r 5. 
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(like scale, orientation, translation) are removed. In such space, faces become photo- 

metrically tightly correlated and modelling of face/background appearance is therefore 

more effective. But what is the use of detected features in the image with regard to 

this space? As mentioned in the previous chapter, if we know that certain features 

appear repeatedly in the same place on a face they will have a small position variation 

of their face-space coordinates. Below we show that by using three of such spatially 

stable features gives us an opportunity to estimate the transformation that the whole 
face has to undergo in order to appear in the face space. By transforming an instance 

of a face in the image into the face space the scene capture effects like scale, orienta- 
tion, etc. can be removed and appearance of a geometrically aligned face checked. The 

transformation could be established by using correspondences between features (points) 

detected in the image and face space feature coordinates (which can be represented by 

a single point for all faces, due to their small position variance). Very importantly, the 

transformation can also be used as a clue to support the decision whether there is a face 

or not, since non-facial points (false alarms) will result in hypothesised transformations 

that have not been encountered in the training set and this can easily be identified. 

5.2 Affine transformation 

The transformation defining the mapping from image space to face space which was 
just described above can be categorized as affine. Affine transformation from two- 
dimensional image space into two-dimensional face space is represented by six param- 

eters: 

T: R2 H ga 

Xis a b c XFS 

Yls =d e f * YFS 
1 0 0 1 1 

(5.1) 

The equation expresses the relationship between face space coordinates and image 
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space coordinates. (xFS, YFS) denotes face space coordinates and (xIS, YlS) image 

space coordinates. Please note that homogeneous coordinates are used in order to 

treat translation as a linear transformation. In the case of face registration described 

above the face-space coordinates are (0,0) ý-º 0, (0,1) º-+ P1 and (1,0) '--+ P2. 

The registration aims to remove the geometric facial variability as well as conditions 

encountered during capture (distance from the camera, angle, etc. ). We can also look 

at it in such a way that a face from the face-space can undergo a certain affine trans- 

formation in order to appear in the image. Let us explain this in a greater detail. We 

have a 2D coordinate system in which we map all the training set faces using three 

predefined landmark points on the face. In general many landmark points could be 

used to register the face [ETC98] and even 3D model be used. The actual mapping 

from image coordinates to face space coordinates is affine in our case. Then when we 

wish to localize an unknown face in the image using our approach, we need to register 

the face from the image space back into face space for the geometrically normalized 

appearance test. The registration is carried out using the detected features, which have 

to uniquely define the transformation. Every transformation has a certain number of 

degrees of freedom. In the case of the full affine transformation, the number is six. 

It means that at least three different points need to be detected on the facial image 

in order to achieve a successful registration through correspondences. Generally, there 

is a trade-off between the transformation complexity and speed, the more complex 

transformation the more landmark points are needed for registration. 

As mentioned earlier, the choice of affine transformation sufficiently approximates the 

nature of the authentication scenarios scenes, since the human face is quite flat apart 

from the nose. It means that when 3D effects are not involved, i. e. the face is frontal 

or near frontal and is not extremely close to the camera, imaging effects can be to a 

great extent captured by affine transformations. This choice at the same time makes 

the detection process computationally feasible, since only three points are needed for 

the detection/localization of the face. Moreover, the inaccuracies caused by this ap- 

proximation can be dealt with in the appearance model. Thus it can be argued that 

the choice of the transformation is made without any loss of generality. The schema 

could be extended to more general situations (which we do not explore in this thesis), 
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e. g. using perspective transformation or a three-dimensional model. Another possibil- 
ity would be view-based modelling consisting of a set of two-dimensional affine models. 

Since real-life authentication scenes involve clients sitting or standing in front of a 

camera the choice of the affine transformation is appropriate. 

Affine transformation preserves collinearity and ratios of distances. It can be decom- 

posed into simpler representations, where primitive operations can be identified. There 

exist infinitely many decompositions, but only some of them provide an intuitive feel 

for the given mapping. We used the following decomposition: 

abc10 is r00 cos sin t. t001 

def=01 ty 0r0- sin o cos O ty 0i00 

001001 0010 0 1 0010 

R 
n0010 

10100 

01001 

(5.2) 

where R is reflection (either 0 or 1), n shear, t squeeze, 0 rotation, r scale and t.,, ty 

translation. 

5.3 Transformation modelling 

When the transformation from the image space into the face space (denoted as T'1) can 
be uniquely determined, it is possible to obtain a statistical distribution of this trans- 
formation (or its inverse as shown below) over a large number of facial images. What 

does this distribution represent? It tells us a lot about the geometrical facial variance 

and also what the capture conditions are. Some of the parameters of the transforma- 

tion will obviously depend mainly on the camera capture setup (like scale, orientation 

and translation), others like shear and squeeze are to a great extent influenced by the 

generic facial variability itself. We can learn what the typical transformation is and use 
this during the detection. This is one of the main points of this approach. 
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5.3.1 Correspondences between detected and model features 

As described in chapter 4, in our algorithm we aim to detect ten facial features. In the 

face space these features have indeed a small positional variance as demonstrated in 

figure 5.3, therefore mean positions can be taken as the feature face space coordinates, 

without introducing a big error. This enables us to perform a quick correspondence- 

based registration of the underlying photometric information into the face space. For 

this operation, the transformation from image space into face space has to be computed. 

Since affine transformation (see section 5.2) is defined by six parameters, three detected 

features provide a solution. However not all triplets of features are suitable for the 

estimation of the transformation. Triplets which would lead to a degenerate solution or 

to a transformation that is highly sensitive to localization errors have to be excluded. 

The condition number (ratio of the biggest and the smallest singular value) of the 

matrix made up by putting the homogeneous face space coordinates of features as 

columns was used to determine the well-posedness of triplets. In short, the condition 

number determines how precisely a system of linear equations can be solved using 

a given matrix. The total number of all possible combinations of three features is 

(3) = 120.58 out of these were taken as satisfactory with regard to the condition 10 
number (their condition number was below a preselected threshold). The well-posed 

triplets are depicted in figure 5.2. 

Given a triplet of detected features, the transformation from face-space into image- 

space can be estimated as follows: 

TTRIPLET(jl, 12,13) FS i- IS 

-1 
f17Sx f21sx f31sx f1FSx f2FSx f3FSx 

TTRIPLET(J1, f2, f3) °f list' f21sy f31sy * f1FSy f2FSy f3FSy (5.3) 

111111 

Note that we denote T as the estimate of transformation T since T is computed us- 

ing detected features, not the points (O, P1, P2) determined as the combination of the 
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Figure 5.2: Well-posed triplets selected according to their condition number 
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groundtruth (manually annotated points on the face). As T-1 is determined by the 

inverse of the matrix representing T, it is not particularly important if we choose to 

model T or T'1, since these two transformations can be quickly computed from each 

other. The use of mean values of the groundtruth feature coordinates mapped into 

the face-space computed over the training set was used as face space coordinates. As 

discussed above, due to a small fluctuation of the positions, this introduces a certain 

alignment error which the appearance model has to deal with. 

@e(9 (B 8(B 

0% 

00 

Fire 5.3: Position deviation of the ten detected features when registered in the face 
space. hie sample means of the positions were taken as face-space coordinates of the 
features 

5.3.2 Statistical model 

In figures 5.4 the histogram of four transformation parameters of T obtained on the 

I3ANCA database is displayed. The distribution was estimated using groundtruth 

poxltfons of ten detected features and consequent computation (and decomposition) of 

the triumformation between face-space and image-space coordinates. It is clear, that 

sheer Micl tw1uecze are well represented by Gaussian distributions. Since scale and 

rotation (repret+enting the size and rotation of face in the image space) depend mainly 

on Imaging conditions, it would not be wise to use probabilistic models to represent 
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them. Otherwise imaging conditions encountered in the training set would have to 

be in exact accordance with imaging conditions in the test set and this would be too 

restrictive. In order to reflect the fact, a binary decision function with output (0,1) 

depending whether the value lies in a predefined interval, is used in the model. Such 

explicit modelling of transformation parameters may be useful in applications and is 

certainly useful in the authentication scenario. It is easy to make the system ignore 

small or extremely tilted faces by manually setting the admissible interval of values. 
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Figure 5.4: Histograms of transformation parameters over BANCA database world- 
model images - From left to right, top to bottom: scale, q5, shear and squeeze 

The probability of a given transformation i; can then be expressed as: 

p(T) z- p(n) " p(t) " BOOL(r E [rl, r2]) " BOOL(q E [01,02]) (5.4) 

where p(n), p(t) are modelled by a normal distribution and BOOL denotes a Boolean 

function the output of which is {0,1} depending on the truth value of its argument. 
When r falls in the interval [ri, r2] the value of B is 1, otherwise 0 and the same holds 

__ 
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for 0. Parameters n, t, 0 and r are the decomposition parameters from Eq. 5.2 and 

intervals [rl, r2] and [Olt 02] are the bounding intervals of r and 0. 

The diagram of the whole detection process can be found in Figure 5.5. 

5.4 Confidence regions 

In case that all well-posed triplets would be checked (i. e. at least T computed), the 

complexity of the search algorithm would be 0(n3), where n is the total number of 

features detected in the image. To speed the process up, the set of face-space-to-image- 

space transformations from the training set is used to restrict the number of triplets 

tested. After picking a first feature of a triplet, a region where the other two features 

of the triplet should lie is established as an envelope of all positions encountered in the 

training set. Such regions are called feature position confidence regions. Since the prob- 

abilistic transformation model and these regions were derived from the same training 

data, triplets formed by features taken from these regions will have high transformation 

probability. All other triplets are false alarms, since such configurations did not appear 

in the training data. In order to promote fast processing, these regions are approxi- 

mated by upright bounding boxes. The number of additional tests introduced by this 

approximation is negligible, which was proven experimentally. 

An important fact is that the confidence regions have to be treated in the scale inde- 

pendent manner, otherwise the training set scales would have to exactly correspond to 

the test set scales. Scale-invariance can be achieved by normalizing the transformation 

T by an inverse isotropic-scale matrix as shown in Eq. 5.5. 

r'1 00 

Tnorm =I'0 r-1 0 

001 

(5.5) 

Then during detection, interval of admissible scales (minimum and maximum scales) 

is applied to these scale-free regions and true regions corresponding to likely feature 
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FACE `, PACE 

. P- ý- ýý, 

FACE APPEARANCE 
DETECTED MODEL 

Figure 5.5: Use of the transformation and appearance model. First feature detectors 

are run on the image. Then the triplets of the detected features are checked for their 
configuration using the transformation model. The transformation from the image 

space into the face space (T-1) is computed by using correspondences between the de- 
tected and the face space feature coordinates (the three detected features are mapped 
onto the face space coordinates). The detected features are depicted as circles and the 
face-space coordinates as crosses. Triplets yielding high probability of the transforma- 
tion T-1 are used to register the underlying patch into the face space using T-1. The 

registered patch is then subjected to the appearance test, which decides whether the 
patch is a face or not. 
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Figure 5.6: Confidence regions used: when the outer left eye corner is detected, the 
other two features forming a triplet will have to lie in the depicted regions in order to 
satisfy the transformation model. 

positions generated. The same could also hold for rotation 0, however if the training set 

is representative enough from the rotation point of view, one can leave this parameter 

incorporated in the shape of confidence region itself. 

In figure 5.6 the demonstrative use of confidence regions is shown. 

In our early experiments with the XM2VTS database, the use of confidence regions 

reduced the search by 55 per cent [HKMB02]. However when a cluttered background 

is present, the reduction is even more drastic (speed-up factor up to 1000 times), since 

the majority of the non-facial detected points lie outside the predicted regions. 

5.5 Geometric registration 

Once the transformation from face-space coordinates to image coordinates is estab- 

lisped, the photometric content can be registered into the face space, where the appear- 

ance will be verified (see schema 3.1). This process involves only promising hypotheses 

triplets frone the point of view of the aforementioned transformation model. 

In fact the whole image (not only the part underlying the detected features) can be 

warped into the face space, however it is desirable to deal only with the face region. For 

this purpose we chose to cut out a box around the face. The face-space coordinates of 

its corners were found experimentally, so that the majority of registered faces would fit 
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in this box and the background would stay out. Also some form of the masking could 

be used here, however it turned out that this is was not necessary, since the model 

coped well even with bits of the background. The registration itself is implemented 

as resampling of the image using the computed affine transformation T. Figure 5.7 

depicts the bounding box in the face space and the resulting registered image patch 

which was used for further processing. 

5.6 Summary 

We have developed a feature constellation model for sorting detected local face features. 

Instead of dealing with constellations of features indirectly in the image coordinate 

space as other methods do (angles, ratios and other ad hoc methods) we looked at the 

problem rigorously and produced a face-space-to-image-space transformation model. 

The resulting model also helps to remove scene capture effects from patterns. A sig- 

nificant speed up of the hypotheses selection process was achieved by using confidence 

regions. 
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Figure 5.7: Face hypotheses 1 12 based on detected features (circled) together with 
the corresponding patches taken for further processing (images taken from the BioID 
database) 
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Figure 5.7 (continued) : hypotheses 13 -24 
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Figure 5.7 (continued) : hypotheses 25-36 
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Chapter 6 

Appearance model 

In this chapter our approach towards face appearance modelling will be presented. We 

use the appearance model as the final step in face hypothesis verification as depicted 

in the schema in Figure 3.1. 

6.1 Face appearance modelling 

The appearance of a human face varies over race, time, sex and due to expression, 

lighting and head pose changes. In order to construct a reliable system, a model is 

required which can represent all such variations and which can distinguish the face 

from the background. 

In the previous parts of our algorithm, shape and scene capture effects were to a 

great extent removed by mapping the data into the face space and a finite set of face 

hypotheses based on good transformation score was left for further processing. The 

appearance test is the final verification step where it is decided if the face is present or 

not based on the gray-scale values. Its input is a geometrically registered image patch 

containing the underlying photometric information (see Section 5.5) and its output is 

a score which expresses the consistency of the image patch with the face class. From 

the technical point of view, any existing state-of-the-art face/nonface classifier could be 

used here. For example, Adaboost [VJ01], Support Vector Machine, kernel PCA, kernel 

67 
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Fisher's discriminant, neural networks etc. This fact demonstrates a great versatility 

of our method, since we do not have to rely on one particular setup or model. In 

order to choose a suitable model we tested two mainstream models and finally chose 
Support Vector Machine after taking into account the computational requirements and 
the performance exhibited on realistic datasets. The following sections will discuss 

these findings in greater detail. 

6.2 PCA-based appearance model 

Principal Component Analysis (PCA) is one of the first methods used in face recognition 

and detection [TP91, MP95, MP96]. The probabilistic face model using PCA functions 

by projecting face images onto a feature space that spans the significant variations 

among typical face patterns. The basis vectors of this space are known as "eigenfaces", 

because they are the eigenvectors (or principal components) of the covariance matrix 

of the distribution. The projection operation characterizes an individual face by a 

weighted sum of the eigenface features. Therefore, in order to recognize a particular 
face, it is necessary only to compare these weights to those of known individuals. 

In order to recognize the whole face class, probabilistic models using metrics connected 

to the aforementioned projection subspace were constructed. Two types of models in 

particular were used for modelling object class appearance: 

1. A multivariate unimodal Gaussian (for unimodal distributions of detected 

objects) 

2. A multivariate mixture of Gaussians (for multimodal distributions of de- 

tected objects) 

These probability densities expressed as likelihoods using projection parameters can be 

used as a face appearance model. 

Correlation was the first method that was used in computer vision for object detection. 

This is an optimal method for the detection of a deterministic signal corrupted by 
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additive white noise. Backgrounds which could possibly be expressed as white noise 

are unrepresentative and a face class cannot be expressed as a specific deterministic 

signal, therefore this simplistic model does not work in practice. Moghaddam's and 

Pentland's probabilistic approach [MP95, MP96] tries to model objects from real world 

by probability distributions - i. e. every possible pattern is assigned its probability that it 

belongs to the object class. The image of a face is considered to be a multi-dimensional 

vector, the components of which are grey level values. The dimension of the vector is 

usually very high (for instance for an image of 100 x 100 pixels, the dimension is 10000). 

In order to model the probability density reliably in such a high-dimensional vector 

space, the number of the training patterns would have to be much higher than the 

dimensionality. Reducing this "pixel oriented" high dimensionality by working in some 

subspace (linear or nonlinear) is a natural way to solve this problem. PCA methods use 

linear subspace of the high dimensional feature space. Projection space is constructed 

through the Karhunen-Loeve transform [DH73, TK99, Bis97] often referred to as PCA. 

Specifically, given a set of training images {xt}N 1 from an object class (in our case 

human faces), the requirement is to estimate the class membership or likelihood function 

for new unseen data x, i. e. P(xlfl), where fl denotes the object class. 

Computing PCA 

Given a training set of m-by-n images, the training set of vectors {xt}, where xE 

IZN=mn is created by concatenating the rows or columns (it depends on definition) 

of the image (or image window). The basis functions for Karhunen-Loeve transform 

(KLT) axe obtained by solving the eigenvalue problem: 

A=TE ý (6.1) 

where E is the sample covariance matrix, 4D denotes a matrix of eigenvectors of E 

arranged in columns, and A is the corresponding diagonal matrix of eigenvalues. 

It should be mentioned here that although the order of the eigenvectors in matrix c is 

not important, the correspondence between an eigenvector and eigenvalue in diagonal 
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matrix A must be preserved, i. e. n-th eigenvector (column) corresponds to the n-th 

eigenvalue in matrix A. Since the covariance matrix is real, symmetrical and positive 

definite, it implies, that eigenvalues are positive. The eigenvectors are constrained to 

form an orthogonal basis of the vector space. From the statistical point of view this 

means that the coordinates (new features) in this eigenvector basis are not correlated. 

In PCA, the eigenvectors corresponding only to the largest eigenvalues are extracted 

from the matrix 1. They form a subspace of the whole feature space. The projection 

into this space forms the feature vector y= I)T, rx, where :R= x-x and 9 is the ensemble 

mean vector and 4)M is a sub-matrix of 4P containing the principal eigenvectors. 

PCA can be understood as a linear transformation y= T(x) : RN -º RM. The re- 

suiting principal components of a vector (i. e. coordinates in the new basis) preserve 

the major linear correlations in the data and discards the minor ones. By selecting 

the first M principal components (i. e. first M eigenvectors corresponding to the first 

M largest eigenvalues) an orthogonal decomposition of the vector space RN into two 

mutually exclusive and complementary subspaces is accomplished: the principal sub- 

space (or feature subspace) generated by the following set of basis vectors F= {4)t? 
i } 

containing the principal components and its orthogonal complement represented by 

F° fnsM+1}. 

The G2 norm of the vector x can be decomposed into these two subspaces. The compo- 

nent in the orthogonal subspace F is denoted as the distance-from-feature-space (DFFS) 

which is the simple Euclidean distance. The component of x lying in the feature space 

F is named distance-in-feature-space (DIFS) and is generally not an Euclidean distance, 

rather Mahalanobis distance. This decomposition is depicted in Figure 6.1. 

For illustration the set of 20 eigenfaces is shown in Figure 6.2. 

Now this decomposition is used for an estimation of the high-dimensional Gaussian 

densities. Let us demonstrate it for the case of unimodal Gaussian density. After 

sample mean it and covariance E have been estimated, the resulting density P(x1S2) is 

defined as follows: 

exp[-I(x - x)TE-i(x - x)j 
P(xlfl) = (2ir)N/2IEI1/2 

(6.2) 
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Figure 6.1: Decomposition into principal subspace F and its orthogonal complemiient. F 

for a Gaussian density 

Figure 6.2: Set of eigenfaces computed with images taken frone the BANC'A dauthase 
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The sufficient statistics for expressing this probability density is the Mahalanobis dis- 

tance. 

d(x) = XTE-1X (6.3) 

where x=x-z This quantity can be expressed in a more efficient way as follows: 

d(x) = XTE-1X 

= 7CT[, DA-1, DT]X 

yTA-ly (6.4) 

where y= 4pT x are the new variables obtained by changing the coordinates into the 

new orthogonal basis. Moreover it holds: 

N 

d(x) rLýY? 

i=1 
Ai 

(6.5) 

When using only an bi-dimensional subspace of principal components (i. e. projection 

into an Ai-dimensional feature space), estimation only of a part of this quantity can be 

used (since the N- Af coordinates are unknown). Pentland and Moghaddam used an 

estimator, which consists of combination of DFFS and DIFS and is defined as follows: 

3Z 
E2 (X) 

d(x) = 
iZ 

{ +-F (6.6) 

N A! 1N 

where c2(x) =EU, 2= I IXII2 -Eä2 and P* =N-M 
i=1 =M+1 i=M+1 i 

The first term in the estimator defined in the equation 6.6 is the DIFS and the second 

term is the DFFS weighted by p', where p' is computed in such a way that it maximises 
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the relative entropy (or Kullback-Leibler distance) between the original probability 

distribution P(xISZ) and the estimated probability density: 

M 
ex -2E expr-E2p 

1 
P`X I Q1 

M 

{(2p)N_M)/2j 

(2r)M/2 
f ßi/2 

L 
i=1 

= PF(41)PF(XIII) (6.7) 

Using likelihood for classification 

The density estimation P(xjf) is hereafter used to compute a face appearance score S 

for a given input image window based on vector x. Vector x is obtained by concate- 

nating the columns or rows of the extracted window as mentioned above. 

S(WINDOWISZ) = P(xlfl) (6.8) 

where x is the column-wise concatenated input image window. 

Once all the scores for the hypotheses were obtained the hypotheses can be ordered in 

ascending order according to S(WINDOWISZ) and top best can be taken as output 

or possibly a thresholding can be used to remove all non-face hypotheses. The results 

of two experiments carried out on the XM2VTS database using this approach will be 

presented in section 7.2. 

6.3 Support Vector Machine based appearance model 

The foundations of Support Vector Machines (SVM) have been created by Vapnik [Vap95, 

CV95]. SVMs became popular due to many attractive features and promising per- 
formance in real-life tasks. The crucial concept behind them is the Structural Risk 

Minimization principle, in contrast to the Empirical Risk Minimization approach often 
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used within statistical learning methods. The Structural Risk Minimization principle 

aims at minimizing an upper bound on the generalisation error, as opposed to the Em- 

pirical Risk Minimization which minimizes the error only on the training data. Use 

of this principle gives SVMs greater potential to generalise, which is the main goal in 

statistical learning. 

Support Vector machines belong to a larger group of machine learning algorithms so 
called kernel methods. The use of kernels as generalized dot products allows to con- 

struct nonlinear decision surfaces in an efficient way and thus solve nonlinear problems. 
Currently, a lot of research effort is devoted to kernel versions of PCA, Fisher discrim- 

inant and others and huge number of various results have been reported recently. 

SVMs were used successfully in face detection in the context of the sliding window 

approach [0FG97, HPP, LGLOO]. In our localization algorithm we use SVM as the 

means of distinguishing well localized faces from background or misaligned face hy- 

potheses using geometrically registered photometric data (by using face space) coming 
from the previous parts of our algorithm. 

As mentioned above, kernel methods are currently a very popular research topic. Al- 

though we will briefly introduce SVMs below, we would like to refer an interested reader 
to the extensive number of existing sources on this topic [httb]. 

6.3.1 Introduction to SVMs 

In any pattern classification problem we want to estimate a function f: tN H ±1 using 
input-output training data (xl, yl), (x29 y2), (x3, y3), ... E (RN x f1) such that f will 

correctly classify unseen samples (xj, y; ), i. e. f (xi) - y;. Please note we constrain 

the discussion to a two-class classification problem where the labels are +1, -1. For 

multi-class problems slight modifications would be needed. 

Consider first the case where we have a linearly separable training set Z= (x1, ys) 1, 
that is, there exists a linear discriminant function of the form: 

xý_-+wTx+b, wER2d, bE i 
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for which the corresponding decision function t= sgn(wTx + b) has the property 

6,, (t) = 0, where 6,, (t) is empirical risk or training error defined as follows: 

n 
en(t) =n 1{t(X{)#v: } 

t=i 

The condition above just states that all the training samples were classified correctly. 

Of course, there can be infinitely many linear discriminant functions that separate the 

training set without errors and, consequently our task is to choose the best one. Here, 

one of the crucial principles in SVM comes to use. It is the margin. Let d+, d_ be 

the shortest distance from the separating hyperplane to the closest positive (negative) 

sample. The "margin" of a separating hyperplane is defined to be d+ + d_. For 

the linearly separable case SVM looks for the separating hyperplane with the largest 

margin. This can be done by solving a Lagrangian problem. The hyperplane that 

maximizes the geometric margin is called the optimal separating hyperplane. 

Non-separable cases require additional modifications, in particular slack variables in 

the classification cost function. We will not go into details and refer the reader to the 

literature [Vap95, Erä0l]. 

So far we talked about SVM that solves the classification problem by using only a 
linear discriminant function. It was the introduction of kernels that allowed SVMs to 

become non-linear. The idea was first reported in the sixties by Aizerman [Aßß64]. 

If we suppose we first map the data to some other higher-dimensional Euclidean space 
7{, using a mapping which we can call -1): 

, (b : Rd ý. +, { 

then using the virtues of the SVM training algorithm we can train the SVM in this new 
space by just using dot products in f, i. e. functions of the form I(xi) " c(xj). The 
kernel function K performs the dot product implicitly, i. e. K(x;, x3) = (D(x; ) " (D(xf). 
If we use some kernel function K in the training , we do not need to know explicitly 
what is. It produces SVM which "lives" in an high dimensional space but still takes 

almost the same amount of time to train as in the linear case. Linear separation by 
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an optimal hyperplane is still performed but in a different space. The big issue here is 

of course the choice of kernels which lead to different nonlinear decision surfaces. The 

choice of kernel for a given problem is still an open research issue. The most commonly 

used kernels are: 

" Linear kernel: K(xl, x2) _< xl, x2 > 

" Polynomial kernel: K(xi, x2) _ (< x1 , x2 > +1)p 

" Radial basis function kernel: K(xl, x2) = exp 
(_1_c22) 

" Sigmoid-function kernel: K(xi, x2) = tanh (v < xl, x2 > +a) 

Taining SVhi presents a quadratic programming problem and efficient implementations 

were tackled by researchers [P1a98]. However, it should be noted that huge training set 

sizes still remain an implementation problem. 

6.3.2 Learning face appearance with SVM 

In order to use SVM to learn face appearance, face and non-face examples have to be 

collected. They have to be representative in order to achieve good generalization on 

previously unseen data. In our current setup we used the world model subset of the 

BANCA database (see section 7.3) as the training data. Due to their intended use 

in realistic authentication tests these data carry enough variability in face appearance 

including imaging effects. However there are two important questions which need to be 

addressed. The first is, which feature vectors actually to learn, second, how complex 

an SM-classifier to use. Both of them are strongly related to speed. Let us discuss 

these matters in more detail. 

Regarding the first issue, lots of approaches exist in the literature. Usually dimen- 

sionality reduction is performed on raw pixel data first and then a classifier is trained 

using these low dimensional projections. This approach applies to the use of neural 

networks [SPD8, RBK981 and classical approaches like the one of Turk's or Moghad- 

dam's [TP91, NIPD5]. However, our experiments with SVMs showed that prior dimen- 

sion reduction is not necessary and one can work directly with the image intensities. 
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SVMs handle the problem of dimension well and with regard to performance they are 

comparable to other approaches used in face detection [HPP]. 

Regarding the complexity of SVMs, due to the speed requirement, we decided to use 

a two-stage classification. A fast linear-kernel SVM is used in the first stage on low 

resolution face-space patches. This stage produces a list of hypotheses with accurately 

localized faces being mostly at the top of the list. However the linear SVM in low 

resolution cannot distinguish between slightly misaligned faces and also its robustness 

to the background is not perfect. What is important is that it allows us to preselect N 

best localization hypotheses in a fast manner. 

For verification purposes N output localization hypotheses (where N is a small number) 

does not present any problem, since most of the verification tests are not time costly. 

In other words it means that N verification tests would have to be performed and 

some selection rule used - e. g. max/min on the verification score. A description of a 

successful localization setup using maximum of the normalized correlation in the Fisher 

space as the selection rule can be found in [HKKKO3, SKKM03]. 

Although multiple hypotheses on the output do not degrade the quality of the subse- 

quent verification, we also tried to tackle the problem of just one localization hypothesis 

on the output. This also allows us to perform a direct comparison with other methods 

since they usually produce only one detection/localization per image. 

There is another very important parameter which strongly influences the performance 

and that is the resolution of the photometric data. Our chosen resolution in the first 

stage was 20 x 20 pixels and it copies the choice of several other authors. If the resolution 

is too high, facial details start playing a significant role and a huge amount of training 

data is needed to capture this variability. One should not forget that face model tries 

to distinguish true facial patches from false ones (background, parts of faces, etc. ) and 

this presents a very hard problem. Every path that decreases the complexity of the 

learned data should be followed. The choice of representative negative examples is also 

a hard issue. A bootstrapping technique proposed by Sung and Poggio [SP98] offers a 

nice way to solve this task. It works as follows: 

1. Start with a small and possibly incomplete set of non-face examples in the training 
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database 

2. Train the classifier with the current database of examples 

3. Run the detector on a sequence of random images. Collect all the non-face pat- 

terns that the current system wrongly classifies as faces. Add these non-face 

patterns to the training database as new negative examples 

4. Return to step 2 

In the following sections we will go into more detail about the chosen model. 

6.3.3 First Appearance Test Stage - linear coarse resolution SVM 

Training data 

Data which are used as an input by the appearance model are generated by the hy- 

potheses generator. The chosen approach gives us the means to geometrically normalize 

the photometric data and therefore the scale and rotation error tolerance can be very 

low. We hoped that this should make the model more discriminative than the sliding 

window methods as explained earlier. Examples of the normalized patches coming from 

the hypotheses generator to this stage are shown in Figure 5.7. 

These patches should be classified into face and non-face classes based on score. Since 

many triplets (up to 58 as seen in Figure 5.2) can lead to a successful localization, 

we need a score expressing the accuracy of the 'given patch being a face. SVMs offer 

a very suitable score and it is the discriminant function value. Without going into 

detail, it basically represents a distance of the sample from the hyperplane in the high 

dimensional kernel space. 

As positive examples, 20 x 20 pixel face patches registered in the face space using 

manual groundtruth features were used - examples of which can be seen in Figure 6.3. 

The set of negative examples was obtained by applying the bootstrapping technique 

Introduced above. It involved running the detector with a small initial set of negatives 

and collecting those background samples that were misclassified into the face class. 
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J 

Figure 6.3: 20 x 20 image patches used by the first stage of appearance test (last iw 
depicts examples of negative samples) 

This guaranteed that only those samples that have a high information value will he 

considered. We experimentally tested several sets of background patches and chose the 

one yielding the best performance. 

6.3.4 Second Appearance Test Stage - non-linear fine resolution SVM 

As mentioned before, the first stage gives an ordered list of hypotheses, based on 

low resolution sampling. In our experiments it was observed that this step alone is 

79 

unable to distinguish between slightly misaligned faces. This is caused by the fact 



80 Chapter 6. Appearance model 

that downsampling to low resolution makes even slightly misaligned faces look almost 

identical. In order to increase the accuracy we employ a fine resolution classifier. 

Although we verified experimentally that linear SVM manages to distinguish faces from 

background, in the case of higher resolution the dimensionality of the problem increases 

significantly and therefore linear SVM did not cope well. Faces in higher resolution 

require more training data and therefore a more complex classifier has to be used due 

to the increased amount of emerging visual details. More complex classification requires 

also more computation time, however we should note that here we do not aim to classify 

all face/non-face hypotheses, but only a small fixed number of the fittest ones passing 

the first appearance test. We tested nonlinear-kernel SVMs, which performed well for 

the purpose. 

Training set 

Since we aim here to distinguish slightly misaligned faces from good localizations, the 

training set has to reflect that. With the use of the groundtruth, we used the localization 

error measure dye, which will be defined in Section 7.1. Using this measure in the 

training, the best N hypotheses produced by the linear SVM can be sorted into positives 

and negatives. In our experiments we used value deye = 0.05 as the threshold. Also, 

since our main focus is to accurately localize the eye centres, in this stage we redefined 

the face patch borders so that the patch contains mainly the eye region. Experimentally 

we found a suitable bounding box around eyes and the geometric normalization was 

also based only on eye centres (i. e. two point normalization). An example of the data 

used for training the classifier is shown in Figure 6.4. 

It should be noted that since this stage aims to identify the precise location, quite a 
lot of faces which could be regarded as successful localizations from the human point 

of view are labelled as negative examples in order to make the system more sensitive 

to misalignments. 

Tho results on several databases comparing PCA and SVM-models will be discussed in 

detail In chapter 7. 
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Figure 6.4: Training samples for the refinement stage, rows 1-2: negatives, rows 3-4: 

positives 

6.3.5 Illumination correction 

We tested several illumination correction techniques and we decided to use the zero 

mean and unit variance normalization. It is a very simple correction which does not 

actually remove any shadows from the face patches, it is more a scaling technique 

than the illumination correction. It removes a linear distortion from the signal, i. e. 

normalizes bias and contrast. All the variations caused by shadows have to be there- 

fore incorporated in the training set in order to achieve a good generalization. The 

field of illumination correction is currently very popular, so in future, possibly a more 

sophisticated approach can be exploited by our method. 

6.4 Summary 

In this section we proposed an appearance model based on two stage Support-Vector- 

Machine classification. As our results will later show, in order to achieve high 1o- 

calization accuracy, a fine resolution model together with non-linear SVM has to be 

employed. After dealing with the practical issue of appearance modelling, we can draw 

a conclusion that since the majority of sliding window localization/detection methods 
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use small resolution for classification (similar to our linear model), the localization ac- 

curacy of such methods cannot therefore be satisfactory. Next chapter will present the 

results of the majority of our experiments in a concise manner. 



Chapter 7 

Experiments and Evaluation 

7.1 Evaluation data for authentication scenarios 

In contrast to face recognition and verification, there exists no common performance 

evaluation for face detection and localization. Many authors measure the performance 

of their system in terms of receiver operating curves (ROC), but the term "successful 

detection/localization" is either not explicitly defined at all, or at best in an ad hoc 

way [YKA02]. The only exception is the work in [JKF011, where a stringent localization 

criterion has been proposed and which we decided to adopt here. It takes into account 

the position of facial features, in particular eye centres. The measure is defined as 

follows: 

max(di, d,. ) 
deye _ IIC1- CrI l 

(7.1) 

where Cl, C, are the groundtruth eye centre coordinates and di, d, distances between 

the detected eye centres and the groundtruth ones. 

It was established experimentally that in order to succeed in the subsequent verification 

step [SKKM03], the localization accuracy has to be below deye = 0.05. It is due to the 
fact that the majority of face verification algorithms are very sensitive to misregistra- 
tions. It is also true that at this value of deye, the localization error starts to be visually 
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noticeable as could be seen in Figure 7.1. Therefore in the following evaluations we 
treat localization with deyc above 0.05 as unsuccessful. 

To evaluate and compare the advocated method with others, we focused on the XM2VTS, 

BANCA and BioID face databases. These databases were specifically designed to cap- 
ture realistic face authentication conditions and are currently regarded as the most 
important benchmarking data sets. They contain faces which are sufficiently big for a 
subsequent verification or recognition experiments. For XM2VTS and BANCA, even 

rigorous verification protocols exist which gives an opportunity to evaluate the overall 

performance of the whole face verification system. 

Although many more face databases exist (like CMU, FERST, etc. ), evaluation on 
them is beyond our focus, due to the different purpose of the databases (small faces, 

very bad capture conditions, multiple faces in the scene, no controlled access, poor 

resolution unsuitable for verification and recognition etc. ). 

In the following sections, the localization results achieved on the aforementioned datasets 

as well as a comparison of various modifications of our method discussed in the previous 

chapters will be presented. Also a performance evaluation of the feature detectors used 

will be presented in Section 7.6. 

7.2 XM2VTS database 

The database is primarily intended for research and development of personal identity 

verification systems where It is reasonable to assume that the client will be cooperative. 
In order to capture natural variability of clients caused by changes in physical condition, 
hair style, dress, and mood, subjects were recorded in four separate sessions uniformly 
distributed over a period of 5 months. The subjects were selected to include adults of 
both sexes and different ages. As people wearing glasses may be interested in gaining 

access to services with glasses on or off, both instances would have to be present to 
develop robust algorithms. A good quality digital camcorder was used to record the 
database. A protocol has been defined on the database that may be used to evaluate the 

performance of vision- and speech-based person authentication systems. The protocol is 
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Figure 7.1: Localization with deye = 0.05, please note that the localization error is not 
big but as shown in the close-up it is clearly visible that at least one of the eye centres 
is missed - the white cross denotes our localization, the red cross the groundtruth eye 
centres (Images taken from the BANCA database) 
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Figure 7.1 (cunt "lli I) 
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defined for the task of person verification, where an individual asserts his or her identity. 

The database is divided into three sets: training set, evaluation set and test set. The 

training set is used to build client models. The evaluation set is selected to produce 

client and impostor access scores which are used to find a threshold that determines if 

a person is accepted or rejected. The test set is selected to simulate real authentication 

tests. The protocol is based on 295 subjects, 4 recording sessions, and two shots per 

recording sessions. The database was randomly divided into 200 clients, 25 evaluation 

impostors, and 70 test impostors. Two different' evaluation configurations were defined. 

They differ in the distribution of client training and client evaluation data. It should be 

noted that this database is easier, compared to the following two databases. However it 

can be regarded as a baseline benchmarking set, since it was one of the first large face 

databases produced and many authors have used it for assessment of their algorithms. 

A complete description-of the database and the protocol can be found at [MMK+99]. 

Sample images from this database can be seen in Figure 7.2. 

7.2.1 PCA versus SVM appearance model 

In our initial experiments we used the PCA-based appearance model which was do- 

scribed in chapter 6. 

Figure 7.3 shows the performance of the PCA versus SVM-based appearance model 

using our early Harris-and-PCA-based feature detector [MBHKO2, HKMB021. As seen 

in the graphs, PCA and SVM performed comparably, however it should be noted that 

it is most likely due to the fact that the majority of detected features were located on 

the face and only few background false positive features were involved. It was observed 

that this feature detector performed well on scenes with a uniform background, however 

its performance dropped on scenes with a cluttered background. Therefore it proved 
inadequate for real-life situations. 

Figure 7.4 depicts a comparison of the PCA versus the SVM-based appearance model, 
this time using our latest Gabor-filter-based feature detector, which works well in a 

cluttered background. As seen in the graphs, SVM dramatically outperforms in this 

case the PCA-based model. It should also be noted that the computation time in the 
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Figure 7. '!: Sample taken from the XN-12VTS database 
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Figure 7.3: Comparison of the PCA and SVM-based appearance model on the Xb12VTS 
database using Harris-and-PCA-based feature detector, 30 faces on the output (cumu- 
lative histograms of deye) 

case of PCA model is proportional to the number of eigenfaces used (in our experiments 

20) and therefore there was a significant slow-down compared to the linear-kernel SVhi 

which effectively involves only a single dot product. We can draw a conclusion from 

these findings, that unimodal PCA-based Gaussian cannot simply describe the facial 

cluster discriminatively enough in the presence of a background. In all our subsequent 

experiments we therefore focused only on the Gabor-based feature detector and SVM- 

based appearance models. 

7.2.2 Localization results on the database 

Figure 7.5 shows the latest localization results achieved on the XM2VTS database us- 
ing Sub-cluster classifier (SCC - section 4.3.3) and GMM-based classifier (section 4.3.4) 

in the feature detector. A comparison with the localization method of Jesorsky et 

al. [JKF01] is presented. As mentioned above, we treat localizations with deye above 
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ae 

Figure 7.4: Comparison of the PCA and SVM-based appearance model on the XM2VTS 
database using a Gabor-filters-based feature detector, 30 faces on the output (cumula- 

tive histograms of deye) 
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0.05 as unsuccessful. It should be also noted again that it is an experimentally proven 

fact that having multiple localization hypotheses on the output does not adversely influ- 

ence the total performance of the subsequent verification system [HKKKO3, SKKhi03]. 

The verification test is cheap computationally and if there is a well localized face among 

multiple output hypotheses, the system succeeds. 

As seen in the graphs, in the XM2VTS case our method gives a similar performance as 

the baseline method at deye = 0.05 taking the best hypothesis output and outperforms 

it by 11.6% using top 30 localizations output with GMM (deye taken as the minimum 

over all 30 faces). The fine resolution appearance stage improved the results by 32.2% 

in the GMM case and by 34.6% in the SCC case. The replacement of SCC by 0MM 

increased the overall performance by 1.9% in the case of 30 output faces. 

7.2.3 Comparison with a sliding window method 

We compared the performance of our system with an SVM-based sliding window ap- 

proach designed by Kostin et al. [KK02]. Their system contains a sliding window-based 

eye detector acting as a second stage after a bounding box face localization (typical 

output for the majority of sliding window methods). This eye detector was also gener- 

ating several eye position hypotheses. The selection of the best eye-pair is based on a 

similar technique to ours - the eye pair yielding the best appearance score is produced. 

The results are presented in Figure 7.6. 

7.3 BANCA database 

The BANCA database was produced within the BANCA project [ban, htta] for which 

this algorithm was also developed. The BANCA database is a new large, realistic 

and challenging multi-modal database intended for training and testing multi-modal 

verification systems. The BANCA database was captured in four European languages 

(English, French, Italian and Spanish) and in two modalities (face and voice). For 

recording, both high and low quality microphones and cameras were used (2 cameras 

and 2 microphones). The subjects were recorded in three different scenarios, controlled, 
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Figure 7.5: Results on the XM2VTS database (cumulative histograms of deye): GMM 
top, SCC bottom, the graph of Jesorky et al. taken from [JKF01] 
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Figure 7.6: Comparison with a sliding window method on the XM2VTS database 
(cumulative histograms of deye) 

degraded and adverse over 12 different sessions spanning three months. In total 208 

people were captured, half men and half women. Each subject recorded 12 sessions, 

each of these sessions containing 2 recordings: 1 true client access and I informed (the 

actual subject knew the text that the claimed identity subject was supposed to utter) 

impostor attack. The web cam was used in the degraded scenario, while the expensive 

camera was used in the controlled and adverse scenarios. The two microphones were 

used simultaneously in each of the three scenarios with each output, being recorded onto 

a separate track of the DV tape. During each recording, the subject was prompted tu 

say a random 12 digit number, his/her name, their address and date of birth. F. tu"h 

recording took an average of twenty seconds. For different. sessions the impostor attack 

information changed to another person in their group. 

Associated with the database is the BANCA protocol [BBBB+031. The protocol defines 

which sets of data to use for training, evaluation and testing verification algorithms. 

The BANCA database offers the research community the opportunity to test their 
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Figure 7.7: Sample images taken from the BANCA database - English part 

multi-modal verification algorithms on a large, realistic and challenging database. It 

is hoped that this database and protocol will become a standard, like the XM2VTS 

database, which enables institutions to easily compare the performance of their own 

algorithms to others. Each language contains 6240 colour images in total making 

the results statistically significant. Sample images from this database can be seen in 

Figure 7.7. 

7.3.1 Localization results on the database 

Figiirvs 7.8,7.9,7.10 and 7.11 depict, the latest localization results on the English, 

l"'rench, S jnwisli and Italian parts of the database. The influence of multiple output 

hypotheses on the a 'iiracy is demonstrated on the English part only (Figure 7.8). 

An earlier experiment involved testing the whole verification system [SKKM031, where 

the selection of the b(Nt localization out of multiple output hypotheses coming from the 
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Figure 7.8: Localization results on the English part of the BANCA database (culnula- 

tive histograms of de. ye), GMM used in the feature detector, please note the influence 

of the number of output localizations on the performance 

linear-SVM appearance model was performed by using client specific templates [HKKK03]. 

The outcome of the experiment performed on the English part is depicted in Figure 7.12. 

As seen in the graph, localization fails quite a lot in the case of impostor access, since 

a template of a different person is used for matching, however it should be noted that 

in fact this contributes to impostors being correctly rejected. Figure 7.8 presents our 

latest results on the English part using GMM in the feature detector and the two stage 

generic appearance model. Figure 7.13 depicts the comparison of the results with the 

sliding window method of Kostin et al. 

7.3.2 Face verification results on the database 

As mentioned earlier, the BANCA database is intended to be used in person a»then- 

tication experiments. The advocated detection /localization algorithm was used as the 



96' 

100 

90 

80 

70 

60 

Ole 50 

40 

30 

20 

10 

n 

... .........:.................. .J 

30 faces on the output 
1 face on the output 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 
d 

eye 

Chapter 7. Experiirient. s and Evaluation 

Figure 7.9: Loc"alizat ion rc ult. s on the M-enc1º part, of the BANCA database (cumulative 

histograms of dry,. ). (ýti1ý1 used in the feature detector 
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Figure 7.10: Localization results on the Spanish part of the BANCA database (cumu- 
lative histograms of deye), G MM used in the feature detector 
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Figure 7.11: Localization results on the Italian part of the BANCA database (cumula- 

tive histograms of d,. y,. ), GMM used in the feature detector 
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Figure 7.12: Results where best localization was chosen using client specific templates 
on the English part of the BANCA database [HKKKO31, SCC used in the feature 
detector (cumulative histograms of de y(. ) 
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Figure 7.13: Comparison with a sliding window method on the BANCA database - 
English part (cumulative histograms of dye) 

first part of a verification system proposed by Sadeghi et al. [SKKMO3]. The verifica- 

tion algorithm used eye centres for registration. Tables 7.1,7.2,7.3 and 7.4 present the 

verification results with Global thresholding on the BANCA database - English part, 

using 7 different protocols. For a detailed description of the BANCA database proto- 

cols we refer the reader to [BBBB+03]. For comparison, the verification performance 

using the localization method of Kostin et al. [KK02] as the baseline method is also pre- 

sented. As seen from the tables by comparing Total Error (TER) values, the proposed 

method using 30 faces on the output significantly outperforms the system using the 

baseline method for localization (Table 7.1 against 7.3). In the case of one localization 

hypothesis on the output, our algorithm still outperforms the baseline method in six 

out of seven protocols with the exception being the protocol Ma (Table 7.1 against 7.2). 

lt is also true, that apart from one protocol (Ua), there is a significant performance 

boost when using 30 hypotheses compared to the one hypothesis on the output (Table 

7.3 against 7.2). Verification results using the groundtruth eye coordinates are shown 

in Table 7.4. 
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Evaluation Test , 
FAR FRR TER FAR FRR TER 

Mc 19.71 19.62 39.33 19.81 19.62 39.42 
Md 28.17 27.44 55.61 28.08 26.79 54.87 
Ma 15.38 15.13 30.51 15.67 15 30.67 
Ud 30 29.87 59.87 29.23 29.74 58.97. 
Ua 24.23 25.64 49.87 23.85 27.05 50.9 
P 24.68 25.43 50.11 25.19 26.45 51.65 
G 18.53 19.49 38.01 18.88 19.53 38.41 

Table 7.1: Face verification results on the BANCA database using Normalized Corre- 
lation Scoring and the Global Thresholding method together with the localization by 
Kostin et al. [KK02] 

Evaluation Test 
FAR FRR TER FAR FRR TER 

Mc 18.46 18.08 36.54 18.27 18.21 36.47 
Md 20.67 21.67 42.34 21.54 21.03 42.56 
Ma 18.17 17.44 35.61 17.6 16.92 34.52 
Ud 27.5 25.77 53.27 27.5 26.41 53.91 
Ua 23.75 23.97 47.72 24.33 25 49.33 
P 23.81 23.16 46.98 23.24 23.12 46.36 
G 16.67 17.95 34.62 16.7 18.12 34.82 

Table 7.2: Face verification results on the BANCA database using Normalized Corre- 
lation Scoring and the Global Thresholding method together with the proposed local- 
ization with 1 face hypothesis on the output, 

Evaluation Test 
FAR FRR TER FAR FRR TER 

Mc 10.29 10.51 20.8 10.77 9.359 20.13 
Md 11.92 12.18 24.1 12.6 12.56 25.16 

9.712 10.51 20-22' 9.135 10.9 20.03 
20.87 21.28 42.15 22.12 24.36 46.47 

M 

22.88 22.82 45.71 24.23 25.51 49.74 
19.2 18.72 37.92 20.06 20.43' 40.49 

G 8.942 9.359 18.3 9.135 9.701 18.84 

"ýr 

Table 7.3: Face verification results on the BANCA database using Normalized Corre. 
lation Scoring and the Global Thresholding method together with the proposed local. 
ization with 30 face hypotheses on the output 
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Evaluation Test 
FAR FRR TER FAR FRR TER 

K1c 4.135 4.359 8.494 5.192 6.923 12.12 
Md 5.962 6.667 12.63 6.346 6.154 12.5 
bia 6.635 6.667 13.3 6.635 6.667 13.3 
Ud 13.27 15.38 28.65 13.27 15.38 28.65 
Ua 18.27 18.72 36.99 18.94 20.9 39.84 
P 12.69 15.77 28.46 12.24 15.94 28.18 
G 5.128 4.231 9.359 5.096 3.974 9.071 

Table 7.4: Face verification results on the BANCA database using Normalized Corre- 
lation Scoring and the Global Thresholding method together with the groundtruth eye 
coordinates 

7.4 BioID database 

This dataset consists of 1521 gray level images with a resolution of 384x286 pixel. 
Each one shows the frontal view of a face of one out of 23 different test persons. For 

evaluation purposes the set also contains manually located eye coordinates. We regard 
this set as very challenging, because not only the background is complex and changing, 
but scale variance is high and the illumination changes considerably. Sample images 

from this database can be seen in Figure 7.14. 

7.4.1 Localization results on the database 

On this database our method outperforms the baseline method in both cases (see 

Figure 7.15). In the case of the best localization on the output the improvement is 

12% and in case of 30 hypotheses on the output, it is 20% for GMM. The refinement 
step In the appearance test improved the results by 30.3% when GMM was used and 
by 22.6% In the SCC case. The replacement of SCC by GMM increased the overall 
performance by 3.7% in the case of 30 output faces. Since the BiolD database contains 

very difficult data which reflect realistic conditions, these results are more significant 
than with XAI2VTS. It proves that our system copes well in adverse conditions. 

Figure 7.16 presents a performance comparison with the sliding window method of 
Kostin et al. 
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Figure 7.14: Sample images taken from the BioID datah»Lse 
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Figure 7.16: Comparison with a sliding window method on the BioID database (cumn- 
lative histograms of deye) 

7.5 Other face databases 

As mentioned above there are many face databases, however only few are simulating real 

authentication scenarios. Also the groundtruth information often does not, include facial 

features. The advocated algorithm is optimised for use in authentication scenarios, 

where a single frontal face of a sufficient size and resolution is present.. Sonne databases, 

like e. g. CMU database obviously aim at different situations - see Figure 7.17 and are 

more suitable for the evaluation of face detection in surveillance or tracking. Due to 

the insufficient face resolution in these databases the advocated method is houn(l to 

fail on such images, since our method starts working from certain face size duce to its 

dependence on feature detectors (approx. from 40-pixel inter-eye distance). 
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Figure 7.17: Sample images from the CMU database 

7.6 Feature detector performance evaluation 

We measured the accuracy performance of the Gabor-based feature detectors used in 

our experiments in order to asses their contribution to the overall performance. For 

training we used faces normalized to an inter-eye distance of 40 pixels (i. e. scale and 

orientation was removed). The choice of this value is a result of several experiments. 

The feature detector starts working approximately from this size of face. We define a 

successful feature localization as the situation when among all the detected features in 

the image exist at least one with dh" < 0.05, where dF is defined is a similar manner as 

11 f', yp, ) - (xc, y(, ) 11 
IIC' - Crll 

(7.2) 

(xF", yp") are the coordinates of the detected feature F, (XG, YG) the groundtruth coor- 

dinates of the feat lire I" and C1, C, the groundtruth coordinates of the left and right 

eye c nt. r(4. 

The following table depicts several performance measurements on all three databases 

introduced Parlier. 

Several interesting conclusions can be drawn from the reported tables. If we decided to 

(kt(-c"t only eye-centres (as many other methods do) we would always detect significantly 

fewer faces than with our method exploiting triplets of features - the difference is visible 
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Table 7.5: Performance of each feature detector (as a percentage), feature matrix with 
4 orientations and 3 scales 

10 47.2 45.8 46.4 48.7 58.5 61.8 

Table 7.6: Performance of each feature detector, feature matrix with 5 orientations and 
4 scales 

11 1 XM2VTS 
SCC 

XM2VTS 
GMM 

BioID 
SCC 

BioID 
GMM 

Banca 
SCC 

Banca 
Grill 

At least one well- 75.4 72.2 56.5 56.7 59.8 65.7 
posed triplet de- 
tected 
Both eye centres 29.9 1 42.0 33.3 31.9 24.6 32.9 
detected 1 .I 

Table 7.7: Triplets and eye pair detection rates, feature matrix with 4 orientations and 
3 scales 

Feature 
label 

XM2VTS XM2VTS 
SCC GMM 

BiolD 
SCC 

BiolD 
GMM 

Banca 
SCC ' 

Banca 
GMM 

1 50.4 47.6 32.0 49.0 24.6 38.8 . 
2 35.1 63.0 44.4 71.0 40.0 56.6 
3 57.4 55.7 39.2 39.9 34.3 33.5 
4 23.4 45.8 20.6 29.3 27.3 24.4 
5 73.4 58.9 57.7 39.4 56.5 50.2 
6 

N 

51.3 57.2 46.3 45.4-, 10.2 30.5 
7 60.6 35.7 19.9 9.7 22.8 15.3 
8 67.4 49.3 48.9 17.8 55.1 56.7 
9 22.1 43.6 21.0 38.3 34.6 46.9 
10 44.3 33.8 39.3 45.3 50.4 50.6 

Feature 
label 

XM2VTS XM2VTS 
SCC GMM 

BiolD 
SCC 

BioID 
GMM 

Banca 
SCC 

Banca 
GMM 

1 51.4 56.1 50.2 55.6 36.9 41.4 
2 76.3 84.2 66.1 67.6', 46.9 60.3 
3 71.3 70.9 43.7 51.2 38.1 44.5 
4 49.8 50.9 37.1 39.1 36.6 44.0 
5 76.1 84.9 68.9 61.1 63.7 67.4 
6 60.0 64.2 50.5 54.8 28.2 34.3 
7 72.2 70.4 48.4 29.5 41.3 54.8 
8 76.8 75.5 49.4 34.5 61.2 63.6 
9 34.3 54.2 40.7 40.0 45.9. 49.6 
10 47.2 45.8 46.4 48.7 58.5 61.8 
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XM2VTS 
SCC 

XM2VTS 
GMM 

BioID 
SCC 

BioID 
GMM 

Banca 
SCC 

Banca 
GMM 

At least one well- 86.7 88.3 76.1 73.4 75.2 81.4 

posed triplet de- 
tected 
Both eye centres 62.3 74.5 51.5 48.6 32.1 44.0 
detected 

Table 7.8: Triplets and eye pair detection rates, feature matrix with 5 orientations and 
4 scales 

by comparing values from Tables 7.7 and 7.8. For XM2VTS database we would get 

at best 74.5% faces detected if all eye centre pairs we checked (assuming that the 

appearance test would be errorless). If we assume that every localized triplet would 

lead to a successful localization, then by using our method, the total performance on 
XM2VTS would be 88.3%, i. e. the improvement achieved would be 13.8%. On realistic 

databases our method gains even bigger performance boost (the most on the BANCA 

database). Please note that we actually reached the top theoretical performance in the 

case of XN12VTS database with 30 faces on the output (see Figure 7.5). But it is also 

fair to say that possibly some of the not perfectly localized triplets could have still led 

to a well localized eye pair due to approximation errors caused by the assumption of 

the rigidness of the face and the affine transformation model. For example if someone 

smiles or opens their mouth too much, then, from the appearance model point of view, 

the mouth corner could possibly lead to a poor appearance score even if correctly 
detected. In this case, some mouth corner false alarm beneath the real mouth corner 

could perform better, since all features are currently modelled as rigid objects on the 
face. This is actually a desired behaviour, because the total performance is what is 

Important. A few more tests using wrong features but producing correct localizations 

are definitely acceptable. 

Regarding the comparison of SCC and GMM classifiers for the case of feature triplet 

detection, when using 12 complex features in matrix G (see Eq 4.15) SCC and GMM 

are quite comparable on XM2VTS and BioID, but on the BANCA database GMM 

outperforms SCC (see Table 7.7). When 20 complex features are used (Table 7.8), 

GMM outperforms SCC on the XM2VTS database and also on the BANCA database 
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and performs a bit worse on the BiolD database (see Table 7.8). However the total face 

localization rate was always slightly better in the GMM case, and that is an important 

issue for us. These minor inconsistencies could possibly be attributed to a certain 

manual registration error (manually registered data always carry a 'certain error) and 

also the approximation error effects mentioned above could have contributed to the 

differences. Nevertheless the comparison figures show that SCC is a well designed and 

theoretically sound algorithm compared to the GMM-based model. ` 

The reported results also show that if more features are used (represented by the 
- 

feature matrix G) a higher feature detection rate is'achieved (compare Tables 7.5 

versus 7.6 and 7.7 versus 7.8). This result is expected. ý- However one cannot forget 

that more features means more computational requirements, 'so this has to considered 

in the design. We have tested several different feature matrix configurations however 

only two of the aforementioned configurations were shown (12 complex features (12 = 
3scales x 4orientations) versus 20 complex features (20 = 5orientations x 4scales)). 

With regard to scale invariance, 3 scale-invariance shifts of the feature matrix (see 

section 4.3.2) proved to be sufficient to cover the scale variations in the data. We 

have also observed that without performing rotation-invariance shifts of the feature 

matrix, the output of the feature detector was stable for changes of head orientation 

up to approximately 10 degrees. Since the test data did not contain heads with a large 

amount of tilt, the rotation invariance steps did not have to be used. " 

If we judge the performance of the feature detectors alone (Tables 7.5,7.6), it can be 

seen, that one cannot rely completely on the success of one particular feature detector. 

Features themselves can be often occluded or shadowed in such a way 'that it is hard for 

even a person to see them. However even in such situations humans are clearly able to 

establish where the eye or nose is by using the information surrounding these features. 

It can be argued, that the advocated approach behaves in a similar manner. It does 

not always localize eye centres directly by a successful feature detection, very often 
eye centres are missed (see the results reported above), however even in this situation 
by using the surrounding photometric information on the face the algorithm can still 
successfully estimate the most likely positions of eyes. 
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7.7 Summary 

We have assessed the localization performance of the proposed method on several bench- 

marking datasets. Our results show, that regarding accuracy, the advocated approach 

outperforms the baseline method by Jesorsky et al. [JKF01] and also it is superior to 

a typical representative of a sliding window method. In the case of the appearance 

modelling, we concluded that the PCA probabilistic model was not able to perform 

well in the presence of a cluttered background. The SVM-based model showed to be 

superior to the PCA in such a case. However a coarse resolution, linear SVM-model 

cannot be relied upon if only one localization hypothesis on the output is needed. For 

such a purpose, a 3rd degree polynomial SVM trained in finer resolution dramatically 

improved the results. Possibly other appearance models and classifiers can be exploited 
in the appearance test, leaving room for improvement. 

We also showed that feature detectors alone could not lead to a satisfactory perfor- 

mance. Nevertheless when exploiting the proposed constellation and appearance mod- 

els the performance boost achieved is dramatic. 



Chapter 8 

Conclusions 

8.1 Summary 

In this thesis we have progressed the state of the art in face localization. We have 

presented a bottom-up algorithm using a single grey-scale image that can successfully 

localize a face. Although it is designed to be used in authentication scenarios, an 

extension to more general situations would in principle be possible. 

The chosen face representation is feature-based and exploits a simpler shape model 

than that used in the case of Active Appearance or Shape approaches (affine model). 

The proposed hypotheses generation and verification method avoids the iterative search 

as in the case of AAMs and ASMs, since the presence of a face can be decided in two 

simple steps. The choice of a simple three-point alignment model (affine) introduces 

a certain registration error, however it is addressed in the later stage by the Support- 

Vector-Machine-based appearance model. We believe that for the purpose of the face 

detection/localization in authentication scenarios, this representation is sufficient. Al- 

though our method produces accurate locations of eye centres, AAMs or ASMs could 

still be exploited as a final-processing step if higher accuracy registration was needed. 

In chapter 7 we demonstrated on several realistic face databases that the advocated 

method performs well in the cluttered background and outperforms baseline methods 

regarding localization accuracy. We showed in section 7.6 that by combing detected fea- 
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112 Chapter 8. Conclusions 

tures in the advocated way, a significant performance improvement could be achieved, 

as compared to the performance of feature detectors alone. It also became apparent 

that simple models like probabilistic PCA are unable to capture the huge appearance 

variability of faces over population and capture conditions, whereas SVMs kept their 

reputation as a powerful pattern recognition tool. 

To summarize, the following concepts contributed to the performance of our method: 

" Properly designed scale and rotation invariant feature detector, modelling the 

appearance variability by the statistical means. 

" Fast hypotheses-generation algorithm that treats feature false alarms as a natu- 

rally occurring phenomenon and facilitates the removal of scene capture effects 
(mainly scale and orientation) by exploiting the transformation from the prede- 
fined model face space to the image space. 

" Powerful appearance model in geometrically normalized space exploiting cascaded 
Support-Vector-Machine classification. The use of the shape-free representation 

helped to increase the localization accuracy, since without scale and rotational 
discretization the model could be made more discriminative and sensitive towards 

pixel misalignments. 

8.2 Future work 

Although our algorithm succeeded in meeting the pre-defined requirements, some mod- 
ifications could possibly still be fruitful. It was shown earlier that the algorithm was 

versatile regarding its structure. Although the currently used feature detectors showed 

a very good performance for the required purpose, other detectors could be employed 

and this would not mean any modification of the existing method. The choice of fea- 

tures to detect could also be assisted by some form of unsupervised selection, based 

on optimization, and an optimal set based on several criteria could be derived. An- 

other important observation is that any of the existing "scanning window" pattern 

recognition methods could be used as an appearance model after the necessary mod- 
ifications. Also some recent illumination correction methods tailored for faces could 
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bring a performance boost, since in our study we used only the classical zero mean, 

unit variance approach. Our current research implementation does not primarily focus 

on speed (approx. 13 secs/image on Pentium 4,2.8GHz), however we believe that 

real-time performance is possible. 
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