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NOTATION 

A cross-sectional area (of wall, soil sample, etc. ) 
A, B Skempton's pore pressure coefficients 
A, B, C coefficients in the Jardine et al. non-linear elastic model 
A matrix linIcing element stresses to nodal forces 
B ratio defined in terms of principal effective stresses al', c; 2', q3' 
B matrix relating element strains to nodal displacements 
C, coefficient of consolidation (vertical drainage) 
D depth of penetration of wall below formation level 
D matrix relating element stresses to strains 
E Young's modulus (drained F or undrained Ej 
E constrained (oedometric) modulus 
Eh Young's modulus in horizontal direction 
Eo Young's modulus at ground surface 
F, Young's modulus in vertical direction 
E,, Young's modulus of wall material 
F nodal force 
F vector of nodal forces 
F.. vector of nodal forces representing unloading due to excavation 
G shear modulus 
Gvh shear modulus in v-h plane 
H retained height (depth of excavation) 

gradient of Hvorslev surface in q: p' space 
layer thickness 

HL height by which pore water pressure head has been lowered (by drainage) 
I second moment of area 
J yield criterion type 
i Jacobian matrix 
K finite element stiffness matrix 
K bulk modulus 
I, e element stiffness matrix 
K,, coefficient of earth pressure : active condition 
Kf bulk modulus of equivalent pore fluid 
K, coefficient of earth pressure post-installation 
Y,,,, coefficient of earth pressure at rest (= crb/cr',, ) 

Kýt coefficient of earth pressure at rest in terms of total stress crWa, ) 
Kp coefficient of earth pressure : passive condition 
Icr stiffness ratio between soil and structure 
Kw bulk modulus of water 
L length (of wall, or structural member) 
L flow matrix in coupled analysis 
LR non-dimensional geometric ratio defining mesh grading 
LR95 value of LR at which parameter is 95% of "true' value 
LR99 value of LR at which parameter is 99% of "true' value 
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M wall bending moment (+/- prefix signifies +ve, or -ve moment) 
K bending moment at toe of wall 
N number of increments in a block 

number of elements in a mesh 
N matrix of interpolation (shape) functions 
N, number of increments for pore water pressure equalization in a coupled analysis 
Ni shape function for stress smoothing 
NN number of nodes in a finite element mesh 
OCR overconsolidation ratio 
P point load or force 

axial force in prop (compressive) or anchor (tensile) 
PO prestress load Cin an anchor) 

out-of-balance force at a node 
Q shear force (in wall) 
Q, T characteristic mesh dimensions used in grading studies (r-refinement) 
R non-dimensional geometric ratio for FE mesh (X/H or Y/W) 
Ri diagonal decay ratio 
R(i) load increment ratio (YR(i) = 1.0) 
F-9 5 value of R at Which parameter is 95% of "true' value 
R99 value of R at which parameter is 99% of "true7value 
S vertical ground surface movement (+/- prefix signifies +ve or -ve Y direction) 
S global smoothing matrix 
Se element smoothing matrix 
T, time for pore water pressure equalization 
TV time factor for consolidation (vertical drainage) 
UV average degree of consolidation (vertical drainage) 
V excavation heave 
W half-width of excavation 
X distance from back of wall to far edge of mesh 
Y distance from fort-nation. level to base of mesh 
Y, reference elevation for parameter varying with depth 
YR yield ratio (growth of Cam-clay yield locus) 

a, b Henkel's pore pressure coefficients 
a, a,, .. displacement approximation function coefficients 
a, b, c polynomial function coefficients 
ai length of an element side 
a vector of nodal displacements 
b depth of web on 'T' section wall panel 
b body force vector 
co, effective cohesion 
cu undrained shear strength 
CUO undrained. shear strength at ground surface 
cw wall adhesion 
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d diameter (of a pile) 
depth of web on'T' section wall 

d vector of displacements at a point within an element 
e voids ratio 
err equilibrium error 
fb vector of equivalent nodal loads for body forces 
f yield function 
fd correction factor for heave calculation 
je RHS vector in smoothing process 
f, ditto 
ft vector of equivalent nodal loads for applied tractions 
9 acceleration due to gravity 
h thickness of prop slab 

total head 
height of element centroid above a particular elevation on a wall 
interval size in finite difference method 
node spacing in finite element method 

k coefficient of permeability 
kh coefficient of permeability in horizontal direction (or ko 
k, mesh grading ratio 
k, coefficient of permeability in vertical direction (or ky) 
kn normal stif1hess (of an interface) 
ký shear stifffiess (of an interface) 
In mesh grading element side length ratio 

rate of increase of Young's modulus (E' or Ej with depth 
Ma multiplying vector containing Is or Os 
rriq m, m. mesh grading element side length ratios in particular regions 
mv coefficient of volume compressibility 
n degree of anisotropy = Eh/F, 
p mean stress invariant (a)dsymmetry) 

applied pressure 
P mmimurn previous mean effbctive stress 
q deviatoric stress invariant (axisymmetry) 
r element aspect ratio 
s mean stress invariant (plane strain) 

gradient of tensile crack fine in q: p' space 
spacing of piles (centre to centre) 

Sh horizontal spacing or props 
S, vector of local consistent stresses 
t wall thickness 

time 
thickness of an interface element 
deviatoric stress invariant (plane strain) 

te time taken for pore water pressure equalization in a coupled analysis 
t vector of applied tractions 
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u pore water pressure 
displacement in x direction 

UO excess pore water pressures 
Uf final pore water pressure 
UO initial pore water pressure 
v displacement in y direction 

w Gaussian integration weighting value 
width of 'T' section panel 
intensity of UDL loading 

X, y Cartesian co-ordinate directions 

z depth below ground surface 
zF depth below formation level 

zw depth to ground water 

A, percentage error in computed stress 
(D matrix term depending on excess p. w. p. gradients in coupled analysis 
r value of output parameter 
r* "true! ' value of output parameter 
A ratio of current stiffiess Eu to that at a reference strain 

cc ratio of K,, to K! 
finite difference grid spacing ratio 
coefficient in the Jardine ef al. non-linear elastic model 

x degree of nonhomogeneity of soil Affiess 
8 wall horizontal displacement 
51P effective angle of soil-wall friction 
5x incremental x displacement 
Sy incremental y displacement 

e normal strain 
CV volume strain 
6 strain vector 

angle of internal fiiction 
arbitrary shape function 
shear strain 
unit weight 
coefficient in the Jardine et al. non-linear elastic model 

Ycone unit weight of concrete 
YW unit weight ofwater 
71 local co-ordinate 
v Poisson's ratio 
0 rotation (at a node) 

angle of rotation of stress axes 
Lode angle (stress invariant) 
factor in two-point finite difference approximation (0: 5 0 --5 1) 
angle of inclination (to the horizontal) of a ground anchor tendon 
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a normal stress 
Cr stress vector 
T shear stress 
Tf shear strength 

local ordinate 
w angle of dilation 

2x2 (reduced) numerical integration rule for 2-D elements 
3x3 (full) numerical integration rule for 2-D elements 

subscripts etc. 
a axial 
ave average 
c centroidal. 
e excess 

equalization 
excavated (side of wall) 

h horizontal 
III mean 
max maximum. 
min minimum 
i initial, post-installation 
0 initial Cm-situ) 

at (ground) swface 
r retained (side of wall) 
r, s rough, smooth (boundary) 
U undrained 
v vertical 

volumetric 
X, Y, z x, y, z direction (Cartesian) 
95,99 95,99 % 

supencripts 
e element 

elastic 
p plastic 
r effective 

prefixes 
A increment (large) 
8 increment (small) 
d increment (infinitesimal) 

suffixes 
(X) varying as a fimction of horizontal distance; a profile 
(z) varying as a function of depth; - a profile 
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ABBREVIATIONS 

AGS Association of Geotechnical Specialists 
APM applied pressure method 
AR global aspect ratio of finite element mesh 
ASCE American Society of Civil Engineers 
BEM boundary element method 
BFC3m best-fit curve smoothing (of 3x3 Gauss point stresses in multiple elements) 
BFL2 best-fit line (of 2x2 Gauss point stresses) 
BFU best-fit line smoothing (of 3 x3 Gauss point stresses) 
BFP3 best-fit plane smoothing (of 3x3 Gauss point stresses) 
BMD bending moment diagram 
BRE, BRS Building Research Establishment, or Station 
CAD/CAM computer-aided design/computer-aided manufacture 
CIRIA Construction Industry Research and Information Association 
CSSM critical state soil mechanics 
CSB constant strain bar or beam 
CSL critical state fine 
CST constant strain triangle 
CuST cubic strain triangle 
d. o. f degree(s) of freedom 
DTp Department of Transport 
ECSMFE European Conference on Soil Mechanics and Foundation Engineering 
EPBM earth pressure bending moment 
EPSF earth pressure shear force 
EPSRC Engineering and Physical Sciences Research Council 
ESP effective stress path 
FDM finite difference method 
FE / FEA FEM finite element / finite element analysis / finite element method 
FIM full installation method (of modelling wall construction) 
FL formation level 
FHWA Federal fEghways Administration (US) 
GWL ground water level 
HELE homogeneous isotropic linear elastic 
BPA horizontal plan analysis 
ICE Institution of Civil Engineers 
IP integration point (Gaussian) 
ITMF flag indicating uniform (=O) or varying (=I) time intervals 
LHS left-hand side (of an equation) 
LSD/LST/LSQ linear strain bar (bearn) / triangle / quadrilateral 
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LSTpýLSQp linear strain triangle / quadrilateral with excess pore water pressure d. o. f 
LSBF least-squares best fit 
MIT Massachusets(? ) Institute of Technology 
N1NR modified Newton-Raphson 
mom multiple-overlay method 
NAFEMS National Agency for Finite Element Methods and Standards 
NINC total number of increments 
NLR nonuniform load ratios 
NOIB total number of increment blocks 
OCR overconsolidation ratio 
OoB out-of-balance (load) 
PCG preconditioned conjugate gradient (solution method) 
RHS right-hand side (of an equation) 
SA3 simple averaging 
SFD shear force diagram 
SI site investigation 
SSI soil-structure interaction 
T[R]RL Transport [and Road] Research Laboratory 
TSP total stress path 
UDL uniformly distributed load 
ULR uniform load ratios 
VSA vertical section analysis 
WIP wished-in-place 
WSBM wall stress bending moment 
WSSF wall stress shear force 

Computer programs 

CRISP CRItical State Program 
FLAC Fast Lagrangian Analysis of Continua 
FREW Flexible REtaining Wall program 
ICFEP Imperial College Finite Element Program 
WALLAP WALL Analysis Program 
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CHAPTER 6 

MODELLING OF CONSTRUCTION AND LONG-TERM EFFECTS 

6.1 Introduction 

Once decisions have been made regarding the finite element mesh, constitutive model(s) and 

associated material parameters, attention then focuses on how to model the physical process of 

constructing the wall and support system, and their subsequent behaviour in the longer term. 
This can be broken down into five distinct phases: 

i) installation of the wall, 
ii) excavation of soil in front of the wall, 
iii) installation of props/anchors (and removing them if they are temporary), 
iv) long-term equalization of pore water pressures (i. e. dissipation of excess pore 

pressures), and 

V) possible future fluctuations of groundwater and/or piezometric levels. 

Phase (i) will occur ahead of any of the others, and will involve construction techniques such 
as diaphragm walling and bored piEng (see Chapter 3). There will be an interlacing between 
(ii) and (iii), especially in cases of multiple proppinglanchoring - there is also the possibility of 
temporary soil berms being left in place against the wall for a specified period. Walls which 
are singly propped at the crest (e. g. Bell Common tunneL Hubbard et al., 1984) will tend to 
have the permanent props installed early on, prior to bulk excavation - often in shallow, 
transverse trenches dug at the appropriate spacings - to keep wall movements to an absolute 
minimum. Walls which are singly propped at formation level in the long-term (e. g. Aldershot 
Road Underpass, Carder et al., 1997) will usually have one or more levels of temporary 

support (props or anchors installed as excavation proceeds), which are removed when final dig 
level is reached and the permanent prop has been constructed. 

Sometimes it is only the construction phase (short term) which is of interest to the analyst. 
This would be the case if the retaining wall was part of the temporary works, supporting a 
deep excavation until a permanent structure was built (perhaps incorporating the temporary 

walls within it). Under these circumstances the long-term equalization of pore water 

pressures, phase (iv), may not be of particular concern. However, it is more common for the 
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long-term case to be of equal importance as the short term, because excavation stability 
generally deteriorates with time. It is unlikely that long-term equalization will be accompanied 
by changes in wall geometry or support, so phase (iv) can be considered in isolation. 

Fluctuating groundwater and/or piezometric; levels, phase (v), are a feature of several urban 
areas in the world, such as Paris., New York, Tokyo, and London. Water pressures in 

underlying confined aquifers, depressed by abstraction for industrial use in the last century, are 

now recharging to former levels following the cessation of pumping activities. This has 

implications for a range of buried structures, including tunnels, piled foundations, deep 

basements, and retaining walls. In the writer's experience, the explicit modelling of rising 

groundwater levels in embedded retaining wall analysis is not common, but where it has been 

taken into account the effects have been significant (e. g. A406 Waltharnstow, Appendix A). 

Numerical experiments have been conducted by the writer to establish the potential errors 
which might be introduced into the results of an analysis, through the way(s) in which 
construction and long-term equalization are modelled. These experiments will be described in 

the following sub-sections. Because the individual topics embraced by this chapter are quite 
distinct and not all have been investigated by other workers, a review of previous work is 

given at the beginning of each section before detailing the analyses conducted and the results 

obtained. Every effort has been made to ensure that work conducted by the writer is clearly 

separated from the earlier contributions of others. 

6.2 Wall Installation 

6.2.1 Previous work 

It is now generally accepted (e. g. Symons and Carder, 1993; Powrie and Kantartzi, 1996) that 

the diaphragm wall process (and, to a lesser extent, contiguous bored pile installation) leads to 

a reduction in lateral earth pressures during wall construction. This can be quantified by a 

post-installation coefficient of lateral earth pressure (KO which may be significantly lower than 

the "at rest" value, K.. This is obviously of great importance to the designer, as it will lead to 

a reduction in wall thickness and propping requirements. In fact, the use of (undisturbed) KO 
has become accepted as being partly responsible for the overestimation of wall movements, 
bending moments, and prop loads often observed in FE analyses. 
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As identified in Chapter 2, when modelling the installation of an embedded wall with finite 

elements, there are three different strategies that might be adopted: 
a) begin the analysis with the wall already installed (so-called "wished-in-place') - the 

wall elements are part of the primary mesh and are present in the analysis from the in- 

situ stage, 

b) begin with original undisturbed ground and then swap the relevant soil and concrete 
elements in the same increment block - the wall elements are part of the parent mesh 
(as "overlaye') but are removed C'ghosted out") prior to the in-situ stage, or 

C) begin with the original undisturbed ground and then simulate the excavation of soil 
under bentonite slurry support (from top-down), the placing of wet concrete via tremie 
(from bottom-up), and the subsequent hardening of the concrete - multiple overlay 
elements are defined in the parent mesh, ghosted out at the in-situ stage, and swapped 
in as requested. 

Kutmen (1986) appears to have been one of the first to investigate the effects of wall 
installation on lateral stress distributions. Analysing a diaphragm wall in plane strain, Kutmen 

performed coupled-consolidation analyses with the following stages: 
i) excavate under bentonite support (soil elements out, bentonite pressure applied to sides 

and base) 

allow delay (up to seven days) before concreting 
iii) tremie in wet concrete from the bottom, displacing bentonite upwards (applied pressure 

distribution on sides and base of trench adjusted) 
iv) allow concrete to set (0 -+ 12 hrs) 

V) install hard concrete (fix sides and base of trench/hole against ftirther movemeýt) 
vi) allow consolidation/swelling of surrounding ground for up to I year 

The sides of the trench were considered permeable during the wet concrete stage (only). An 

axisymmetric analysis was also carried out to represent a single bored pile - identical stages, 
except no bentonite support. The analyses showed that lateral stresses do not totally recover 
after concreting (only 3 0-5 0% for a bored pile), and that delays in concreting accentuated the 
effects of installation. No firm suggestions were made on a post-installation K (i. e. KO, and 
neither was subsequent bulk excavation in front of the wall investigated. Some key results 
were later presented by Gunn and Clayton (1992), as supervisors of Kutmen's research. 
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Higgins et al. (1989) used ICFEP to compare different installation strategies in a re-analysis of 

the secant bored pile walls forming the Bell Common tunnel. Their installation method treated 

the fine of piles as an equivalent plane strain slot and involved (post-installation in italics): 

a) excavate slot without bentonite slurry support (remove soil elements) 
b) fill with wet concrete (apply pressures on sides and base of trench/hole simultaneously 

with reaching M-depth excavation) 

C) install hard concrete (swop in elements) 
d) bulk excavation inftont of wall (remove elements) 

e) switchftom undrained to drained long-term condfdons (impose pore pressure changes) 

Even though their analyses were uncoupled (and thus inferior to Kutmen's), they showed that 

the inclusion of installation effects produced much better agreement with field observations. 
As the walls comprised secant bored piles, they also compared plane strain and axisymmetry 
representations as a separate exercise, and were able to show a genuine "bracketing" of field 

measurements. They concluded that further improvement of prediction would require full 3D 

analysis, whilst accepting that this was impractical in design situations. 

Gunn et al. (1993) extended the work of Kutmen (1986), again using the more rigorous 

coupled-consolidation approach afforded by CRISP. They too examined the Bell Common 

tunnel walls and used the following strategy (post-installation in italics): 

a) excavate soil under bentonite support (soil elements out, bentonite slurry pressure applied 
to sides and base) 

b) tremie in wet concrete from the bottom, displacing bentonite upwards (applied pressure 
distribution on sides and base of trench adjusted) 

c) allow concrete to set, with water migration into clay permitted 
d) allow 28 days during which surrounding ground can consolidatelswell. 

e) bulk excavation infront of wall, with or without top prop (remove soillinstallprop) 

This was very similar to Kutmen, but with the addition of a bulk excavation stage. Considering 

only the post-excavation bending moments, they found that installation effects were not so 
important for a cantilever wall, but made a big difference if a top prop was in place prior to 

excavation. The effect became greater as the in-situ ground water level was lowered. They 

pointed out that, as precise site procedures are rarely known in advance, it may be better to 

conduct bracketing analyses, as a ".. best shot is unlikely to hit the target.. " 
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De Moor (1994) pointed out that the WIP and FIM assumptions in plane strain would over- 
and underestimate the post-installation lateral stress respectively. As an alternative, she 

presented CRISP analyses involving a plan (horizontal) section through a series of wall panels, 
instead of the vertical cross section normally used. De Moor's analyses were coupled, plane 

strain (implying that cr, could reduce), and went directly from bentonite slurry pressure to 
hardened concrete. Investigation focused on the stress conditions behind a particular wall 
panel at a fixed depth of 15m as both it (and subsequent adjacent panels) were constructed. 
Panel width and K. were varied in a sensitivity study. The results showed a consistent and 

credible pattern of stress change with time, and the agreement with available field data (e. g. 
Symons and Carder, 1993) was reasonable. An excavation ratio was proposed in terms of 
current and initial lateral stress and bentonite pressure, enabling non-dimensional charts to be 

plotted, from which more realistic values for Ki could be estimated. De Moor's work 
attracted some criticism (Simpson and Ng, 1995; St John et al., 1995), but the basic idea of 
using complementary 2D analyses showed promise. 

Ng et al. (1995) took the concept a step further by performing both a horizontal plan analysis 
(EPA) in plane stress and a vertical section analysis (VSA) in plane strain. First, the IHPA of a 
single wall panel showed a drop in lateral stress at the centre of the panel, but a big increase 
just beyond the ends. Construction of two further (adjacent) panels produced an oscillating 

profile of ah and a permanent inward horizontal displacement 8h (; %; 3mm) at the soil/wall 
interface after concrete setting. It also suggested that horizontal arching (by itself) was merely 

a temporary load transfer mechanism, with the average lateral stress (: Yh eventually returning to 

near its original value. Downward load transfer was postulated as being the key mechanism, 

with crh on the wall reducing but crh just below the toe increasing. In the VSA, the permanent 
deformation 8h was imposed as a prescr ibed boundary displacement - the intermediate 
bentonite and wet concrete stages being omitted. Reasonable agreement with field data from 
the Lion Yard excavation (Ng, 1992) was shown, but full 3D work was advocated as the only 

- way to make finther progress. 

The first fiAl 3D FE analysis of wall installation effects was carried out by Gourvenec (1998), 

and reported by Gourvenec and Powrie (1999)., A sequence very similar to that used by Gunn 

et al. (1993) was employed, except in fiifl 3D. Imposed wet concrete pressures were bilinear, 

following the recommendations of Lings et al. (1994). A waH comprising nine bays was 

constructed, with panels constructed on a "hit and miss" (i. e. staggered) basis. Panel length 
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could be varied, and K. was inversely proportional to depth. Results presented were profiles 

of coefficient of lateral pressure, wall movements, and zones of significant stress reduction. 
They showed that the reduction in horizontal stress (-Aah) near the centre of a panel and the 
increase (+Aah) just below the toe were partly reversed by adjacent panel construction. Panels 

further away had diminishing impact on -Aah , but +Acrh was almost fully reversed - in stark 
contrast to plane strain analysis. For full 3D effects to occur in the field, they recommended 
that L/H: 5 3. They also suggest that a 2D plane strain analysis in which a displacement profile 
was imposed on a wall already in-place would give acceptable accuracy in a design situation. 

Ng and Yan (1998) although using the finite difference method (FLAC 3D), analysed the 

construction sequence of a single diaphragm wall panel in stiff clay. They found significant 

stress reduction behind the centre of the panel, attributed to downward load transfer (; 4-, 1/3) 

and horizontal arching (-- 2/3). These results tended to confirm what was seen in the 

uncoupled IHPA/VSA work of Ng et al. - (1995) but, as they were only for a single panel, their 

usefulness was limited. Extension to three adjacent panels (Ng and Yan, 1999), again with 
FLAC, resulted in smaller -Acrh behind the panel and much smaller +Aah below the toe, 

corroborating the main findings of Gourvenec and Powrie (1999). 

The current state of the art is represented by the full 3D installation method of Gourvenec and 
Powrie, but this will be beyond the ability and resources of practitioners for many years to 

come. The needs of industry are perhaps better served by establishing the usefulness of 
simpler methods. In this connection, the approaches attempted by De Moor and Ng et al. are 
commended by the writer - they embody the philosophy set out in this thesis; namely to use 
existing tools/ technology in a way which challenges assumptions and provides new insight 
into old problems. In view of this, it was decided not to conduct rigorous and sophisticated 
3D/coupled FIM for this thesis. Instead, simple comparisons will be made of the strategies 
(a)-(c) above, in the context of plane strain analysis, to reveal how they affect the key outputs 
of interest to the designer. 

6.2.2 Wished-in-place method 

The "wished in place" (WIP) wall has, in fact, been used in all of the analyses reported so far 
in this thesis, and these provide a base set of results with which to compare the other two 
methods. 
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The only restriction which is placed on the WIP method in CRISP is that the wall material 

must have the same unit weight as the surrounding soil. If this is not done, an equilibrium 

error will be flagged up at the in-situ stage due to there being a heavier inclusion in the mesh. 
This error may be quite small and may not have any major consequences for the rest of the 

analysis, but it is good practice to avoid gratuitous errors of this sort. If there is a genuine 

error in the input data which would cause lack of equilibrium at the in-situ stage, the user does 

not want this masked by another unwanted (and unnecessary) error. 

There are no obvious aspects of the WIP method which can usefully be investigated, as there 
is only one way in which it can be carried out. It is usually implicit that the full in-situ earth 

pressure will be acting upon the wall prior to excavation (i. e. Ki = K(, ), and there is no 

softening of adjacent soil due to the ingress of water from wet concrete, etc. It probably 

represents a "worst case" in that it will always be conservative and lead to higher ah acting on 
the wall just prior to excavation. The exception would be if a reduced K. (= Ki) was used a 

means of reflecting installation effects. As the in-situ stress profile in CRISP can only 
conveniently be defined on one single vertical profile (which applies across the full width of 
the mesh), Ki would apply from wall to boundary. This is contrary to field data, which shows 
localized reductions in ah. The full consequences of adopting a global reduction are unknown 

at present and could only be evaluated by comparison with full 3D methods. Time has not 

permitted this for the present thesis, but the other two installation strategies will now be 

considered. 

6.2.3 Element swopping method 

To investigate the influence of element swopping, one of the mesh geometry files, and several 

associated analysis data files used in the boundary location investigations were adapted for 

element swopping. Mesh xIOyIO was used, with free cantilever conditions, Fig. 4.5. 

I All along the base of the mesh, a'v +u (= ck) as input by the user in the in-situ records must equate 
to Zy-h +q based on layer thicknesses, unit weights and applied surcharges. The computed overburden on 
the base immediately below the wall will be somewhat higher than at points some distance either side. This 
lateral variation in a-, is difficult to accommodate in the in-situ stress definitions provided by CRISP, and a 
constant a, along the base must be in error somewhere - unless the unit weight of the wall material is the 
same as that of the soil in which it is embedded. 
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The geometry data file required an additional column of "overlay" elements to be defined over 
the existing wall, Fig. 6.1. Subsequently in the analysis data file, the wan elements were 
marked for removal from the parent mesh in order to form the primary mesh. The new soil 
elements were, of course, present in the primary mesh. 

Four different sets of (undrained) soil parameters were chosen for the preliminary analyses; 
sets 1,3 (elastic) and 12,13 (elastic-perfectly plastic) to give a reasonable range of soil 
behaviour (see Tables 4.3-4.8). The incoming concrete elements were given the same 
properties as in the WIP analyses; i. e. very stiff linear elastic, and with the same unit weight as 
the soil. This latter aspect was not, of course, necessary - the incoming concrete could have 
been given the more typical unit weight of 24 Mir? - but the purpose of the present analysis 
was to investigate the differences between element swapping and wishing-in-place. 

The results were, at first, a little surprising in that there were no significant differences 

whatsoever between the two strategies. This was true regardless of the nonhomogeneity of 
the E. profile, or the amount of yielding which could be expected to take place. Comparisons 

were made on full profiles of horizontal wall displacement, bending moment, excavation 
heave, and ground surface movement - and nowhere could a difference in excess of ±0.5% be 
found. Further consideration of the finite element equations coded within CRISP, however, 
helped to identify why this should be so. 

When an element is removed, the resultant nodal forces F.. which must be applied to the 

mesh comprise terms representing internal stresses, body forces, and surface tractions: 

F.. C BTa dV - NT b dV - NT t dA (6. I)bis 
vvs 

where all terms were defined in Section 3.3.2. The stiffhess matrices of the outgoing elements 
V-UVA 0 It A-4 

are cancelled from the global stiffness matrix at the beginning of the increment block in which 
the removal is specified. Incoming elements, however, are not allowed to bring any internal 

stresses or boundary tractions with them - physically this is equivalent to saying that the 
concrete wall elements cannot be prestressed in any way, nor can they have surcharge loads 

applied to them at the time of installation. All that an incoming element is allowed to "bring" 

with it is stfffness and self weight. Body forces are calculated from the middle RHS term of 
Eqn 6.1 and added to the mesh, the stiffness matrix of an incoming element is added to the 
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global matrix at the beginning of the increment block in which the element addition is 

specified. 

If the excavated soil elements were replaced by overlay soil elements with the same material 
properties, then the sides of the trench would move in. The body forces cancel out, as do the 

equivalent stifffiesses, but the internal stresses of the excavated elements are not balanced by 

the added elements, as the latter have no internal stresses when installed. Hence, inward 

movement of the trench would occur, proportional to the in-situ K,, in the excavated elements. 
However, if the incoming elements were very much stiffer than those which have been 

excavated (which is certainly the case when concrete replaces soil), then these "lost" internal 

stresses go unnoticed. The new elements are able to hold the trench sides in place by virtue of 
their stiffness, and the trench bottom by virtue of their self weight. 

The only real justification, therefore, for adopting the soil/wall element swop approach is if the 
concrete was required to have a different unit weight to the soil. When the analyses described 

earlier were repeated with a unit weight of 24 kNIn? for the concrete, some differences (albeit 

very small) were observed between the two strategies. It is debatable whether or not extra 
effort in defining overlay elements and incorporating an increment block for the element 
swopping is actually worthwhile. What is clear is that if element swopping is used, just one 
increment is perfectly adequate if yý.,. = y., il, but may not be otherwise (depending on the 

effect which the increased vertical loading will have at that point in the mesh). 

This argument is valid provided the wall installation is the first significant event in the analysis. 
In the writer's experience there are several cases where this is not so, and it would be 

misleading to have the stiffening effect of the wall present at too early a stage. Fig. 6.2 
illustrates an example (from the RPR Junction Slip Road 5- Appendix A) where significant 
bulk excavation took place prior to the construction of one of the walls. Another case would 
be where some previous construction event is being modelled prior to the present wall 
installation, such as the construction of basement walls on the site of an existing structure, 

which must first be demolished above and below ground. 

6.2.4 Complete sequence 

There would seem to be at least two ways of modelling the complete wall installation process 
with a high degree of realism. First, there is the approach used by Gunn et al. (1993), where 
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the slurry and wet concrete were modelled by applying an equivalent pressure distribution to 
the sides and base of the trench (after excavating the soil elements, and prior to placing 
full-strength concrete wall elements). The pressure distribution down the sides of the trench is 
hydrostatic, and this can be modelled in CRISP in a straight-forward fashion. The slurry 
pressures are applied in the same increment block as that in which the soil elements are 
removed, so as to prevent any undue movement of the wall into the trench. The pressures 
from the wet concrete will be higher than those from the slurry, but in CRISP all loads are 
incremental, so the additional pressures to be applied in the increment block where wet 
concrete is placed is the difference between the bentonite and concrete pressure distributions. 

This method will be termed the "applied pressure method" (APNO. 

Gunn et al, used a coupled formulation, with typical time steps being assigned to each of the 

operations (e. g. wall concreting 4 hours, concrete setting 12 hours, etc. ). In addition it was 
also possible to specify whether or not water could flow into or out of the wall area - e. g. the 
bentonite was considered to form an impermeable boundary at the sides of the trench, whereas 
fresh concrete would allow the passage of water in either direction. A simpler variant would 
be to carry out all of the operations under undrained conditions, which would eliminate the 

need to specify time steps and permeabilities, and avoid the lateral pore water pressure 
oscillations which have sometimes been observed (Kutmen, 1986). 

A second approach might be to have four sets of overlay elements superimposed on the wall 

position - original soil, bentonite slurry, fresh concrete, and hardened concrete - and to swop 
these in/out as appropriate. This would seem a logical approach and it does avoid the need to 

calculate and then specify applied pressures - at the expense only of some additional geometry 

preparation. However, it raises questions about the material properties which would be 

specified for the "fluid" materials (slurry and fresh concrete). In addition to possessing self 

weight (density), fluids are unable to carry shear stresses (which implies that G, and hence E, 

0) but may well be virtually incompressible, with a very high bulk modulus K (which implies 

that v ; t, 1/2). Care would need to be taken to avoid numerical problems (e. g. W-conditioning, 

see Chapter 7) if such low stiffiesses were used. This method will be termed the "multiple 

overlay method" (MONO. 

2 incompressible in the sense ofno volume change due to applied mean stress - of course, in a trench 
the bmtonite and wet concrete are unconfined at the top, with inward squeezing of the trench resulting in an 
upward movement of the Iluid surflice. 
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Both approaches have been tried, and have been compared with the WIP wall as a standard 
case. Again, mesh xlOyIO was used in a free cantilever configuration. The applied pressure 
method (APM) required one set of overlay elements in the wall position, and the geometry 
data file used in the simple element swopping method sufficed without further modification. 
The multiple overlay method (MONI) required a fiwther two sets of overlay elements (and 

associated material zones) which was straightforward to do, and resulted in a parent mesh of 
just under 700 elements. 

6.2.4.1 Multiple overlay element method 

The analysis steps in CRISP were as follows (Fig. 6.3): 

Block Activity 

I remove original soil elements - install bentonite "fluid" elements 
remove bentonite elements - install fresh concrete "fluid" elements 

remove fresh concrete elements - install full-strength concrete wall elements 
excavate soil in front of wall to the required formation level 

Just two sets of undrained isotropic elastic soil parameters were chosen (sets 1,3) for initial 

comparison of the methods. The bentonite and fresh concrete materials were assumed 
homogeneous linear elastic, with the following parameters: 

Material EGvy 
(kPa) (kPa) (kNlrný) 

Bentonite 

Fresh concrete 

0.497 12 

0.497 24 

Hard concrete 20xl 06 8.3x 106 0.200 24 

(Note: the values of I kPafor E and G were nominal non-zero values, the intention 
being to model a heavy, virtually incompressiblefluid. ) 

Elastic Analyses 

Selected profiles of wall displacement, wall bending moment, excavation heave, and ground 
surface movement are shown in Fig. 6.4(a)-(d). There is one curve for the WIP method, but 

up to four for the multiple overlay method - most of which are self explanatory. The curve 
labelled "difr' is the numerical difference between the full-strength concrete and excavation 
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profiles; i. e. the additional wall movement or excavation heave etc., that occurs between those 
two increments. This curve should be compared with that for WIP for wall displacements and 
excavation heaves; changes will occur in the ground due to maldng the trench (under slurry 
support) and it is not appropriate to establish a datum for structural wall behaviour until the 

wall is actually in place. Excavation heave, similarly, only becomes relevant once formation 
level has been reached. ýBending moments cannot be generated from the analysis until the 

wall is in place, so this problem does not arise. ) 

The preceding argument does not hold for ground surface movements; it will be important to 
be aware of them as soon as they commence. Sensitive structures nearby will be affected by 

ground movements from the outset, regardless of whether or not the wall is in place. 

In general, there were huge differences between the multiple overlay and WIP methods; 
presumably this is due to the reduction in lateral stress afforded by the former, prior to actual 
wall installation. If the comparisons were based on the absolute profiles at the end of 
excavation (rather than incremental profiles) the discrepancies would apparently have been 

even greater. It was wall displacements and bending moments which showed the main 
differences - tending always to be of smaller magnitude - whereas excavation heaves and 
surface movements were not affected greatly. This accords with expectation; reductions in 
lateral -stress will have the greatest influence on the lateral behaviour of the wall, and the least 

on vertical ground movements. The differences were most apparent in the bending moment 
diagrams, which showed virtually no moment at all above formation level (which is hardly 

credible in realityý but is theoretically possible in a wholly elastic analysis). 

On reflection, there were good reasons why the multiple element overlay method would not 
work very well. A description of the way in which CRISP handles element removals/additions 
has been given earlier. The concept of heavy fluid elements is physically appealing, but 
incoming elements can only contribute self weight (i. e. body force) effects through: 

f NT b d(vol) (6.2) 

so, the intended lateral fluid pressure (to support the trench sides) is simply not produced. 

6-12 



Gunn (1995) has also criticized the "fluid element" approach, principally because the mid-side 
nodes on the top and bottom of the slurry / wet concrete elements will be capable of large 

deformations associated with some (unknown) mode of shearing. He believes that the 
technique might work better with 4-noded elements, as these relatively unrestrained side nodes 
would then not be present. If the unwanted modes of shear deformation could be restrained, 
then the "fluid elements" should be able to generate hydrostatic pressures on the sides of the 

trench from self weight effects. 

In order for the multiple overlay approach to work with 8-noded elements, Gunn suggests that 

the fluid should be given a finite shear stffffiess which is low compared with the soil, say 
G. ii/G r-- 100, and that internally the fluid "materiar' should have K/G sze 100. For parameter 

set 1, this could be achieved by setting E=3 00 kPa and v=0.497 (which would give K= 
16,666 kPa), and G= 166 kPa (in comparison with the soil G= 50 / 2(1+. 497) = 16,700 kPa). 

The analyses were re-run with these values and much closer correspondence with the WIP was 
observed. This could be expected because, by making the overlay elements for bentonite and 
fresh concrete stiffer, the method is tending toward straight element swopping as described in 
Section 6.2.2. 

Elastic-perfectly plastic analyses 

The opportunity was also taken to incorporate plastic yielding of the soil, by re-running the 

multiple overlay analyses with parameter sets 12 and 13 (see Table 4.7); the "fluid" elements 

were given the properties suggested by Gunn (1995) namely, K/G sts 100. The elastic-perfectly 

plastic analyses produced profiles significantly different to those obtained with the WIP 

method, again predominantly in the form of reductions in wall displacements and bending 

moments. Reductions in excavation heave and ground surface movement (-S) were also 

observed, though to a lesser degree. 

Doubts about the multiple overlay element method are inevitable. The motivation in testing it 

was to find a simple means of modelling installation effects, but this approach may not really 
be suitable. It is not clear if there are any advantages over the WIP method if the results 
obtained are the same as for WIP - which is the case if the suggestions of Gunn are followed. 
Final judgement will be reserved until later in this section, after the applied pressure method 
has been investigated. 
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6.2.4.2 Applied pressure method 

The analysis steps in CRISP were (Fig. 6.5): 

Block Activity 
remove original soil elements - apply pressure distribution due to bentonite fluid to 
sides and base of trench = yb.,,. z 

2 increase pressures due to introduction of fresh concrete by amount = (y.. - yb.,, ). z 
3 install full strength concrete wall elements - cancel pressures by applying a 

distribution = -y..,. z 
4 excavate soil in front of wall to the required fonnation level 

Steps 1-3 were each done in one "W' - e. g. there was no attempt to build up from the 
bottom to model the gradual introduction of tremied concrete. 

Four sets of undrained soil parameters were chosen; two isotropic linear elastic (sets 1,3) and 
two isotropic linear elastic-perfectly plastic (sets 12,13). The hydrostatic pressures for the 
bentonite and fresh concrete materials were based on the same unit weights used in the MOM 

analyses; i. e. 12 and 24 Mmý respectively. Selected profiles of wall displacement, wall 
bending moment, excavation heave, and ground surface movement are shown in Figs 6.6 
(elastic) and 6.7 (elastic-perfectly plastic). On eachfigure, there is one curve for the WIP 

method and up to four for the APM, plotting the same analysis steps as for the MOM method. 

Elastic analyses 

The APM gave results which were much closer to the WIP than the MOM had been, showing 
rather smaller (though stiff significant) differences than when using multiple overlays. Wall 
displacements were consistently smaller, with the biggest reduction at the crest and zero 
reduction at the toe. Bending moment profiles were scaled down on both +M and -M sides by 

about 20% at the most - not just the lateral shift of the profile seen in some of the multiple 

overlay results. Excavation heaves showed no change, and surface ground movements were 
virtually unaffected. 

Elastic-perfectly plastic analyses 

Compared with the WIP, computed wall deflections were significantly smaller at all points 
along the wall. Bending moment profiles were scaled down on both +M and -M sides by 
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about 20% for E. = E. +mz, but there was no change for E, ' = mz. Excavation heaves showed 
little reduction for E,, = E. +mz, but a major (; ý-50%) drop for E,, = mz. (It should be recalled 
that E. = mz =I 000cu is on the passive limit at the in-situ stage, so slightly unusual results 
might be expected, especially on the passive side). Surface movement profiles were shifted 
upward for both E,, profiles, but not by a great amount. 

6.2.5 Summary 

The full installation method employed by Gunn et al. (1993) in 2D is too complex for routine 
design; the 3D method of Gourvenec and Powrie (1999) even more so. Simpler alternatives 

are (a) the adoption of Ki (< K. ) above the wall toe prior to wall installation, or (b) imposition 

of a prescribed horizontal displacement 5h at the soil-wall interface after the wall has been 

wished in place. However, it seems that a full 3D analysis may be required initially in order to 
determine appropriate values for Ki or 5h; the tentative guidance provided by De Moor (1994) 

and by Gourvenee and Powrie is not general enough and much further work is required. 

The APM may offer a suitable compromise, given that element swopping offers no advantage 

over WIP in the modelling of installation effects. However it is open to the same criticism as 
the plane strain work of Gunn et al. - namely the implication that an infinitely long slot is open 
during wall excavation, leading to over-relaxation of horizontal stress. As Higgins et al. 
(1989) showed for Bell Common, axisymmetric and plane strain analyses bounded the true 
behaviour of secant bored piling, and may well do so for diaphragm walls where alternative 

panels are excavated on a "hit and mise' pattern. The use of axi-symmetry may improve the 
APNt but further investigation is needed. 

The WIP method does not permit any lateral stress reduction and will give the highest post- 
excavation wall deflections, bending moments and prop forces. Ultimately, the designer may 
be content with the knowledge that the WIP will produce these upper limits - given all the 
other uncertainties, this conservatism may be welcome. 
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6.3 Bulk Excavation 

6.3.1 Previous work 

Reference has been made earlier (Section 3.10.2) to some of the issues and problems 
associated with finite element modelling of the excavation process. All methods which have 
been proposed recognize that, from the overall FE mesh, there is a region of soil to be 

excavated (E) and a region which will remain in place (R), Fig. 6.8(a). If the elements 

comprising the zone to be excavated were removed from the mesh, it should be possible to 
find a distribution of stresses (surface tractions) on the excavated boundary which would 

produce the same effect on R as ifE were stiff present, Fig. 6.8(b). Excavation is then 

simulated by cancelling these tractions to produce a stress-free boundary. 
- 
Where 

the methods diverge is in how they compute the tractions, and whether or not the elements to 
be excavated are ever actually present in the mesh. The benchmark which any method must 
satisfy is that, for a time-independent linear elastic material, the solution must be independent 

of the excavation sequence followed to reach the final profile. Although an intuitive result, 
Ishihara (1970) appears to have been the first to provide a formal proof of this, using the 

virtual work theorem. 

Where the in-situ stress conditions are relatively simple and the excavation profile 

straightforward, the initial mesh could be defined with the post-excavation profile already 
formed, and boundary tractions applied from the outset. In effect, this is replacing the soil to 
be excavated with a dense fluid possessing no shear strength or stiffness (cf ste G r-- 0). 

Depending on how crh is reduced on the side of the excavation, the heavy fluid is either being 

drawn down (location at which ah =0 f"ing) or made weightless (y scaled down). The 

former is more correct but both approaches ignore the shear strength and stiffiiess of the soil 
yet to be excavated, suggesting that greater movements into the excavation could take place. 
The main advantage of this method is that it can be done with virtually any FE code. 

The more general (and preferred) method for modelling excavation is that of changing 
geometry, where equivalent nodal forces for the elements to be excavated are calculated 
within the program and removed from the mesh in the appropriate sequence. It is a numerical 
analogue to the physical removal of soil. The first published example of this was Christian and 
Wong (1973), who used a method of interpolating stresses in elements either side of the 

excavation boundary in order to obtain the required tractions. However, their results were 
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clearly dependent on step size, even for a linear elastic excavation analysis - furthermore (and 

paradoxically) the error increased with number of increments, whereas intuitively it would be 

expected to reduce. They suggested that the problem arose from using interpolating 

polynomials of too low an order and, although aware of Ishihara's work, stated that 

uniqueness in a linear elastic case should not be expected to apply in finite element analysis. 
Chandresakaran and King (1975) demonstrated otherwise, and presented an alternative 
formulation for excavation which gave results which were truly independent of number of 
increments. Insufficient details were given in their paper, but it would appear that they 

correctly identified the need to take account of the body force term (fNTb) as well as the 

internal stress term OBTa) in calculating the equivalent nodal forces for excavation. 

The lessons appear not to have been learned, however. Some 10 years later, Desai and 
Sargand (1984) published results from a hybrid FE method for excavation which again showed 
dependency on step size for a ID elastic excavation. Furthermore, in reply to discussion on 
their paper by Chow (1985), they rejected the latter's explanation that the error arose from 

omitting the fNTb term and, in any event, did not accept that there was an error. Interestingly, 

CRISP had a correct implementation at least as early as 1982, but the method does not appear 
to have been published. 

Fortunately, at about this time, two separate but equally correct and My explained methods 

of excavation analysis appeared almost simultaneously, due to Ghaboussi and Pecknold (1984) 

and Brown and Booker (1985). Both dispensed with stress extrapolation and started with the 

virtual work equations, including terms due to internal stress, body force and extemal 
tractions. Numerical examples were presented to demonstrate that a stage-independent 

method had been achieved. Early errors were now clearly identified as the inconsistent 

determination of equivalent nodal forces from element boundary tractions, which would only 

work if element stresses satisfied local equilibrium (as in the exact solution). The last 

significant innovation in this area came from Boýa et al. (1989) who presented a method of 
simulating excavation in elasto-plastic soils which produced a unique solution independent of 
the number of excavation stages. The non-linear FE equations were derived from a variational 
formulation which accounted for time-varying problem domains and boundaries. 

At the present time, it is reasonable to assume that the early mistakes are now understood and 
should no longer be present in finite element analysis of retaining walls (Ho and Smith, 199 1). 
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However, when presented with an unfamiliar code, the user should test it to check that it is 
insensitive to number of increments in linear elastic analyses. Other validation tests can and 
should be devised for non-homogeneous, anisotropic, and non-linear materials/situations. If 

using results (published or otherwise) from older codes, it should be borne in mind that errors 
in excavation may well exist. 

6.3.2 Description of analyses 

Before describing the investigations which were carried out, it will be helpful to consider how 

CRISP handles sequential layer removal. One or more elements can be marked for removal 

within an increment block, which can be divided into several increments. The contribution 

which those elemenlmake to the global stiffness matrix is lost at the very beginning of the 
increment block, so the resistance which would otherwise have been there to help prevent wall 
movement is removed immediately. However the unloading (from forces representing internal 

stresses, surface tractions and body forces) is spread evenly over all the increments in the 
block (or according to some specified weighting through the load ratio facility in CRISP). 

For an excavation of total depth H in elasto-plastic soil, all of the elements comprising the 

various rows could be marked for removal in just one increment block. If the block was split 
into a large number of increments, it is conceivable that the unloading could be in small 

enough steps to ensure a satisfactory response of the remaining soil, even with a tangent 

stiffness solution scheme. However, this would probably not be true for the other effect of 

excavation and element removal - i. e. loss of stiffness. Excavation in layers produces an ever- 

changing geometry (and hence stiffness of soil remaining in the excavation) to accompany the 

gradual load reduction, and this can never really be equivalent to complete removal of the soil 
in one operation. 

To test out this hypothesis, a short series of numerical studies was carried out. An unpropped 

cantilever wall (mesh xi Oy 10) excavated under undrained conditions was considered, with soil 
parameter sets 11,12 and 13 (Table 4.7). When this combination of wall configuration and 
soil properties was used for other studies reported earlier in the thesis (e. g. for boundary 
location analyses), some decision had to be taken at that stage on total number of increments 

and blocks. In fact, each of the 8 layers of soil (Irn thick) comprising the excavation was 
removed in a single increment block, making 8 blocks in total for the excavation stage. A total 
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of 40 increments was used, being 5 increments per block with uniform loading ratios (i. e. one 
fifth of the unloading caused by removing Im of soil was applied in each individual increment). 

The number of 40 increments was decided on the basis of some preliminary analyses in which 
1,2,5 and 10 increments per block (i. e. 8,16,40 and 80 increments in total) were used. 
Whole profiles of wall displacement, bending moment, etc., were compared in much the same 
way as for the boundary location analyses. Very little additional improvement in the results 

was obtained beyond 40 increments, and the equilibrium errors at the end of each increment 

were well below acceptable limits (<< 1%). 

In the analyses reported in Chapter 4 which were investigating the effect of mesh grading or 
degree of nonhomogeneity (for example), no errors should have been introduced through 
having insufficient numbers of increments. However, what is being investigated in more detail 
here is the sensitivity to 

a) number of increment blocks NOBB (with a fixed total number of increments), and 
b) total number of increments NINC (with a fixed number of increment blocks) 

6.3.2.1 Number of increment Mocks 

To test the effect of total number of increment blocks, the earlier figure of 40 increments (i. e. 
NINC = 40) was retained, but the number of blocks (NOEB) was varied as follows (Fig. 6.9): 

Scheme NINC N0113 NINC/NOIIB 

1 40 1 40 

40 2 20 
40 4 10 

40 

The results of these analyses (not presented here) were contrary to expectation; the number of 
increment blocks used made no discernible difference to the profiles of horizontal wall 
displacement, wall bending moment, or ground surface movement. It was only the excavation 
heave which showed any effect, and this was in the form of a more angular profile next to the 

wall when NOEB-: 5 2, as compared with the smooth curve seen when NOIB >2. Maximum 
heave values were more or less the same. 

6-19 



From the argument advanced earlier, greater sensitivity to total number of increment blocks 

would have been expected. It is possible that, with a sufficiently large number of increments, 
it would make little difference if the layers were taken out singly or en masse. To test this, 

variations on the scheme were set up, as follows: 

Variation I III M IV 

Scheme NOEB NINC / NOIB 

a 1 64 32 16 8 
b 2 32 16 8 4 

c 4 16 84 2 
d 8 8 42 1 

Total NINC 64 32 16 8 

For example, in scheme Ib the excavation would be carried out in a total of 64 increments over 
2 blocks, with 32 increments per block. It was decided to start with the coarsest analyses first, 
i. e. IVa to IVd, in which the excavation was carried out in a total of 8 increments. 

Some of the computed profiles are shown in Fig. 6.1 O(a)-(d), from which it can be seen that, 

even with as few as 8 increments in total, there was not much influence from the number of 
increment blocks. The biggest effect was seen on the profiles of excavation heave, which were 
generally flatter across the excavation and steeper adjacent to the wall when NOIB : 52. Wall 
displacements were affected when the soil stiffness and strength were constant with depth, but 

not otherwise. Bending moment profiles showed very little change, and ground surface 

movements were similarly unaffected. 

To confirm these observations, analyses ]Ella to IlId were run, using 16 increments for the 

excavation. The plots are not reproduced here because the profiles for 1,2,4 and 8 increment 
blocks were virtually identical (regardless of soil parameters), except for excavation heave, 

which showed the same trends as for analyses IVa to IVd. In the fight of these observations it 

was deemed unnecessary to carry out the series I or H runs. 

Why are the effects of number of increment blocks so small in general? Considering the heave 

profiles (which were most affected by NINC), it is clear that the average value of heave is 

about the same, which would indicate that magnitude of vertical unloading is of prime 
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importance. The alterations to the heave profile near the wall when only one or two blocks 

were used was almost certainly caused by the loss of stiffness of the overlying soil. 

This loss of stiffiless ought to have affected the deflections and curvature of the wall, but it is 

possible that the wall was too stiff (relative to the soil) for the stifffiess of unexcavated soil in 
front of the wall to make much difference. In other words, the lateral stresses in the soil to be 

excavated had a bigger effect than its stiffness. It is conceivable that this would not be the 

case for a more flexible wall, such as steel sheet piling, but for diaphragm and contiguous pile 

walls the wall stiffiiess does appear to make load removal the most important aspect of 

excavation. If this is the case, then greater sensitivity to total number of increments should be 

apparent, and this will be considered next. 

6.3.2.2 Total number of increments 

To test the effect of total number of increments, the number of increment blocks (NO103) was 
fixed at 8, but the number of increments (NINQ was varied as fbHows: 

Scheme NOD3 NINC NINC/NOIB 

p881 
16 2 

8 32 4 

8 64 8 

Profiles of wall displacement are shown in Fig. 6.11 (a), from which a moderate effect from 

total numbers of increments is shown, over the range considered. For parameter set 12 (Eu 

Eo+mz), the curves for different NINC had a constant offset, whereas for set 13 (E. = mz) the 

offset was greatest at the crest and was zero at the toe. The upper half of the bending moment 

profiles showed very little sensitivity to total number of increments, and it was only for set 13 

that any significant sensitivity was shown below formation level, Fig. 6.11 (b). 

Excavation heave profiles generally coincided at either end (excavation centreline and wall 
face) but deviated in between according to total number of increments, Fig. 6.11 (c). Set 12 

gave the largest differences between heave profiles. Something unusual was noted in these 

profiles when compared with those obtained when the number of increment blocks was varied 
(fixed total number of increments). In that earlier series of analyses, reducing the number of 
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blocks (which would generally be regarded as making things worse) caused the profile to 
flatten off over a greater width and exhibit a steeper gradient near the wall; in the present 
series of analyses, a similar effect was achieved when the total number of increments was 
increased (which would generally be regarded as making things better). No explanation can be 

offered for this. 

Ground surface movements behind the wall, Fig. 6.11 (d), showed a small dependence on 

number -of increments. Generally, more increments caused the ground to settle a little more; 

especially near the wall. 

6.3.3 Summary 

In practice, most designers/analysts would probably excavate a mass of soil this size in about 
20 increments. The evidence from this short series of analyses is that as few as 15 increments 

would give reasonable answers for most of the results likely to be of interest to the designer - 
even with elastic-perfectly plastic behaviour and the potential for significant yielding. 
Certainly, using more than 15 would not appear to offer significant improvement in the results. 

Individual increment blocks tend to involve the removal of reasonably large thicknesses of soil 

- perhaps 2-3m on average - or on the vertical distances between temporary/permanent props 

and/or anchors (if this is smaller). However, it would appear that the choice of number of 
increment blocks is not critical. The simplified wall and support geometry used in these 

studies, which had a clear excavation run from original ground surface to formation level, is 

probably the only situation in which removing the soil in one increment block could be 

contemplated. Even so, the above results suggest that a relatively small number of increments 

would yield acceptable results. 

These analyses were all undrained, and were carried out in terms of total stress. When an 

excavation is part of a more extensive coupled analysis (which will proceed to examine long- 

term effects), the excavation will still be effectively undrained, although carried out in terms of 
effective stresses. The conclusions drawn here concerning numbers of increments and of 
increment blocks for total stress analysis are thought to be just as valid for effective stress 
analysis. Comparisons of the total and effective stress approaches to undrained excavation are 
presented later in the thesis (see Section 7.4). 
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6.4 Temporary Propping 

6.4.1 Previous work 

There appear to be no specific studies reported in the literature on the various issues facing the 
analyst, namely: 
a) the way in which the prop will be modelled (point fixity, bar element, solid element); 

especially the wall connection detail, 
b) the manner in which the prop is installed (together with how the soil is excavated), and 
C) the manner in which the prop is removed. 

The various forms of prop and connection detail (Item a) were summarized in Section 3.4.3 
(Fig. 3.8). Decisions on what transferable actions should be included will be dictated by the 
expected construction details. The limits (e. g. fidl or zero moment transfer) can be modelled 
readily, and the designer/analyst may use these results to predict likely behaviour in between 

these limiting cases. 

It was deduced in Section 3.10.3 that there were few (if any) uncertainties regarding the 

options available for interleaving the prop installation and excavation (Item b). Schemes A 

and B depicted in Fig. 3.24 are identical, and studies in the previous section have established 
that CRISP handles the former correctly. 

Considering the matter of prop removal (Item c), nothing relevant has been found in the 
literature, and so a series of numerical studies has been carried out and will now be described. 

6.4.2 Description of analyses 

A small suite of numerical experiments was described in Section 6.3, in which the number of 
increments and increment blocks was investigated in the context of bulk excavation - which 
represents vertical unloading plus the loss of some lateral support in the vicinity of the wall. 
Prop removal is principally a lateral unloading event (although there would be significant 
vertical unloading in the case of an inclined ground anchorage being de-stressed). In view of 
this, although some similarities may be expected between the two (concerning the effects of 
numbers of increments/blocks), there could be key differences. Therefore a separate series of 
numerical studies into prop removal has been conducted. 
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Mesh xI Oy 10 was used with the provision for both top and formation level props - referred to 
as the alternately-propped wall in Section 4.2.2 (Fig. 4.3). As a brief recap, the construction 
sequence for the alternately propped wall is as follows: 

Block Activity 

I Install wall (wished-in-place) together with temporary top level prop 
2 Excavate to formation level 
3 Install permanent formation level prop 
4 Remove top level prop 

In earlier numerical experiments which used this type of wall, the top level prop was taken out 
(block 4) in about 10 increments. This was selected on the basis of examining the incremental 

equilibrium errors, and ensuring they remained well below 1%. However, in an elastic- 
perfectly plastic analysis, quite large equilibrium errors (say 5-10%) do not necessarily mean 
that the analysis is invalid - they are simply a measure of the amount of yielding which has 
taken place in a given increment, and an indication of how much out-of-balance force needs to 
be redistributed (as correcting loads) in the next increment. Provided such redistribution has, 
in fact, been requested by the user (via the CRISP input data file) the analysis should be quite 
admissible. More stringent controls would need to be exercised in the presence of critical 
state based models, as no stress corrections are applied for them (see Section 3.6.3). 

A more detailed study of the influence of increments in prop removal will now be described. 
The study is not exhaustive, but should be sufficient to establish useful guidelines. The mesh 
and Propping arrangements have already been described. Excavation under conditions of 
undrained loading in terms of total stress Ci. e. non-coupled) has been considered, together with 
SOR parameter sets II and 13 (Table 4.7). The prop was removed in just one increment block, 
but different numbers of increments were used, as follows: 

Scheme NINC I Scheme NINC 

d 10 
2 

1 

e 20 
c 5 f 50 
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6.4.3 Results of analyses 

Selected profiles of key results are shown in Fig 6.12(a)-(d). Wall displacements did not show 
much sensitivity to numbers of increments, and there was no significant change beyond NINC 

= 10. Similar observations can be made regarding bending moment profiles, which were also 
fairly constant for NINC ý: 10. 

Excavation heaves showed virtually no dependence at all on numbers of increments, with no 
changes beyond NINC = 2, Fig. 6.12(c). Ground surface movements showed a fair degree of 
sensitivity to the number of increments employed for prop removal, Fig. 6.12(d). Within a 
distance of 2H from the wall in particular, the profiles were very erratic for NINC :92 
evidencing some numerical problems or at least a suspect (i. e. inadmissible) analysis. By the 

stage NINC = 10 the profiles had settled down to a reasonable pattern and did not change 
with the additional of further increments. Beyond 2H from the wall, there was no change to 
surface movement profile. 

6.4.4 Summary 

Prop modelling in CRISP is fairly straightforward and should cause few problems, but it must 
be done in an appropriate manner, or errors will be introduced into the analysis. However, 
there are few contentious issues here, and nothing which (in the writer's opinion) requires 
numerical investigation. Similar comments apply to prop installation on the whole. The 

removal of props, however, is certainly an aspect of retaining wall analysis which, at first sight, 
may need care and attention. A wall rigidly propped from the start of bulk excavation has a 
lot of lateral stress locked in - which will be substantially reduced by removing the prop 
(depending on wall rigidity and embedment). 

The apparent insensitivity of wall deflection and bending moment to numbers of increments for 

prop removal may partly be explained by the fact that stress paths behind the wall are largely 

within the elastic region (having unloaded from relatively high K, values in the in-situ stage), 
Fig. 6.13. The response of the wall may therefore be governed more by elastic son behaviour 

- the small differences in prop unloading effects that can be seen between parameters set II 
(Eu/cu = 500) and set 13 (E. /cu = 1000) would tend to support this. However, if this was the 

case, surface movements near the wall might also be expected to be relatively unaffected. 
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Excavation heave could be expected to show little sensitivity to temporary prop removal, 

when there is a virtually rigid prop in place at formation level. The wall can pivot about this 
lower prop when the top prop is removed, but it cannot translate into the excavation. 
Consequently the passive soil mass undergoes little additional change of load. 

6.5 Partial Drainage 

6.5.1 Previous work 

If it is considered that construction may be partially undrained, and/or there is a requirement to 
investigate long-term conditions as part of one continuous analysis, then it will be necessary to 

set up a coupled-consolidation analysis (see Sections 3.5 and 3.11). This is another topic 

where questions confront the analyst, but for which answers do not appear to exist in the 
literature. Issues include: 

a) which elements should have excess pore water pressure degrees of freedom? 
b) where should drainage boundaries be located? 

C) what type of drainage boundary condition should be specified? 
d) should drainage conditions be imposed before, after, or concurrently with applied 

loadings and element changes? 
e) how big/small should the time steps be? 

Items (a) to (q) have been addressed in Sections 3.8.2 and 3.11.1. Item (d) is unlikely to be 
important - initial drainage boundary conditions are specified at the beginning, and moving 
boundaries (i. e. the excavated surface) will only need attention if the rate of change to the 

geometry is slow. Even then, as the drainage allowed would take place mostly within the soil 
mass just about to be excavated, there maybe little justification for doing it. Finaldrainage 
boundary conditions are fixed once the ultimate geometry is reached. 

Item (e) is an uncertainty, and it arises in two separate phases of the analysis - during bulk 

excavation and during post-construction equalization/equilibration. In each place the nature 

and implications of the question are somewhat different. During bulk excavation the size of At 

will govern where behaviour falls in the spectrum between undrained and drained. During 

equalization, the size of At will determine the speed with which the long-term steady state is 
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attained. The former is investigated here, whereas long-term equalization is reserved for 
Section 6.6. 

6.5.2 Description of analyses 

To investigate the size of At required to achieve (a) undrained, and (b) drained conditions in a 
coupled analysis, mesh xI Oy 10 (cantilever configuration) was used together with parameter 
sets 2d &3d (elastic), and 12d & 13 d (elastic-perfectly plastic). Mass permeabilities for the 

soil were k. =1x 10"9 m/s and k,, = 4k), . Bulk excavation took place over 8 increment blocks 
(i. e. excavation layer thicknesses of Im), with the same time interval At taken for each layer of 
excavation. The At used varied from I second to 100 years, stepping up approximately in 

Orders Of magnitude as Mows: 

At At At 

I ; ec 1 day 5 yrs 
10 sec I wk 10 yrs 
1.5 min (0.001 day) 1 mth 20 yrs 
15 min (0.0 1 day) I yrs 50 yrs 
2.5 hrs (0.1 day) 2 yrs 100 yrs 

6.5.3 Results of analyses 

The results extracted for consideration were 
the wall deflection profile at the end of excavation (5: z) 
the pore pressure distribution adjacent to the wall below formation level (FL), at the end of 
excavation (u: z) 

equilibrium error at the end of each increment (err. ) (see Section 3.12 for definition) 

Wall deflection was selected as a practical design output; pore water pressure because the 
generation and dissipation of excess values is at the heart of a coupled analysis. Equilibrium 

error was extracted in case this was able to identify the onset of any numerical problems. 
Results will be presented and discussed in the contexts of lower and upper limits on At. 
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Lower limit on At 
With the lower At used, differences in the 8: z profiles were only apparent between I -> 0.1 
days; for At below 0.1 days the profiles were indistinguishable and could be safely assumed to 
be at the undrained limit, Fig. 6.14(a). This held for both E' profiles, and was unaffected by 

whether or not plastic yield was permitted. 

The pore water pressure profiles (u: z') in the elastic analyses looked reasonable for I day 
--5 At 

:51 month but became erratic/oscillatory for At < 0.1 day. The computed pore water pressure 
always remained positive but dropped by 50 kPa at most. For the elasto-plastic analysis, no 
Oscillations in the u: z' profile were observed at low At, although a kink occurred 2m below FL 
for all At :51 day (straightening out for At 2: 1 week). For all At --5 0.1 day, profiles were 
inseparable. Much negative pore pressure was in evidence in this case (as low as -140 kPa), 
Fig. 6.14(b), suggesting that both Ap and Aq were negative. 

Equilibrium error (erro though steadily accumulating throughout the analysis, remained below 
0.05% for all 10-4: 9 At-: 5 I day. However, the growth of err. during the analysis became 
noticeably erratic for At < 10-4 days - suggesting the onset of numerical instability. 

UPPer limit on At 
The big differences between the 5: z profiles which appeared once At >I week had, in the 
elastic case, vanished once At ýý 10 years, Fig. 6.15(a). In the elasto-plastic case, there were 
still significant differences between At of 50 and 100 years. 

Pore pressure profiles in the elastic analyses were identical for At ý, -- 20 years; in fact, little 
difference could be seen for At ýt 10 years. There was no question that the FE response was 
drained as the profiles followed u= 10z = IO(z+8) - implying a flooded excavation (because 
formation level had not been set as a drainage boundary). in the elasto-plastic case, all u: z' 
were positive for At ý: 50 years, but even u: z' at At =100 years was less than the hydrostatic (u 
=I Oz] expected for the fully drained case, Fig. 6.15(b). This is probably due to the continued 
yielding of soil in front of the wall, which does not have a stable propping configuration. 

Equilibrium error grew with each passing increment, reaching an ultimate value at the end of 
bulk excavation which increased as At increased. The maximum observed value of err,, was 
2.5%, at increment 40 and At = 100 years. 
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6.5.4 Discussion 

It is interesting to consider whether or not theoretical bounds for At can be established, to 

verify (or otherwise) the results just described. The routine way to estimate equilibration 
times is via Terzaghi's one-dimensional consolidation theory. This will need generalization to 

at least 2D to be applicable to the case at hand - drainage can be in both directions (x and y), 
and there may be anisotropy of stiffness and permeability. The normal definition of coefficient 

of consolidation involves m, but can be slightly generalized thus: 

Cv k/y,, m, k E'/ y,, (6.3) 

Degree of consolidation (excess pore water pressure dissipation) is related to time factor, the 
latter being defined by Terzaghi (1943) as: 

TV C, t/d2 (6.4) 

A suitable drainage path length (d in Eqn. 6.4) must now be established for an embedded 
retaining wall geometry. One option would be to consider the stress "bulbs" arising from an 
applied strip load of width B, where the 20% vertical stress bulb penetrates to 3B. For the 

retaining wall herein, B is the full width of the excavation (= 2W = 16m), and FL is the surface 
to which a uniform (un)loading has been applied. The drainage path might extend from this 
depth to the nearest available drainage boundary - the ground surface - hence, d=3x 16 +8 

=5 6m. The average E' at this depth is = 40 +4x 56/2 = 152 MPa, and with k=Ix 10'9 m/s 
and yw = 9.81 Mrný, C, is computed as 1.34 m2/day (= 488 rný/yr). Terzaghi's theory for 

most ID cases suggests that if T, -'> 1.50, then U, ý: 95%. Manipulation of Eqn (6.4) leads to 

the requirement of t=9.6 years for at least 95% excess pore water pressure dissipation 
(equilibration) to have occurred - i. e. effectively drained conditions. At the lower end, 
Terzaghi's theory suggests that T,,: g 0.001 is required for U,: 5 5%, which leads to t -= 2.2 

days for: 55% dissipation to have occurred -a reasonable definition of undrained behaviour. 

The above calculations are y= approximate, but the CRISP analyses suggested that 0.1 <I At 

<I day per excavation layer was required for an undrained response; this converts to 0.8 <t< 

8 days for the whole excavation, which brackets the 2.2 days estimated above. At the drained 

end, agreement is also reasonable (at least with the elastic analyses) - CRISP indicates that At 

= 20 years is required for virtually complete drainage but that At = 1-2 years might suffice for 
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the 95% condition; this equates to t= 8-16 years for the whole excavation, comparing 
favourably with the 9.6 years estimated from Terzaghi theory. 

The apparent influence of yielding on the time required to obtain a drained response was 

unexpected. Possibly it is because yielding leads to a reduction in operational E', which in turn 

causes C, to drop (Eqn 6.3) and hence the time to achieve a given T, is longer (Eqn 6-4). 

6.5.5 Summary 

Undrained conditions (As, sze 0) can be achieved with time steps* of the order of 0.1 days (2.5 

hrs) per Im layer of excavation, for k= 10-9 m/s (typical of clays). With this size of At there is 

no risk at all of numerical instability, which does not evidence itself until time steps are less 

than 0.001 day (1.5 min) at which point err,, becomes noticeable. However, u: z' profiles 
appear somewhat erratic forAt < 0.1 days, so a compromise would be to use At = 0.1 days. 
Anything slower (i. e. more) than I day per layer and partial drainage will start to occur. 

With bigger At, larger changes in effective stress (Acr') are permitted in a given increment and, 
depending on the non-linearity of the stress-strain response, this could lead to inaccurate 

results in a tangent stifffiess solution scheme. The use of a bigger At should probably be 

accompanied by more increments - which may necessitate more increment blocks, as a 
mWdmurn of 50 increments are permitted in any one block in CRISP. 

6.6 Long-Term Equalization 

6.6.1 Previous work 

After bulk excavation is complete and all permanent supports are in place, the designer may 
need to investigate behaviour in the years that follow: short term (1 -2 years), medium term (2- 

20 years) and long term (>20 years). Again this will require a coupled analysis, and the 
following decisions must be made: 
a) how long should be allowed for equilibration (4) ? 
b) how many increments should be allowed for equilibration (NJ ? 

C) in what way should the individual time steps (AQ be weighted ? 
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Item (a) has been discussed in Section 3.11.3, and it was concluded that this is quite likely to 
be fixed by external factors (e. g. design life of retaining structure). Results in the previous 
section suggest that full drainage may take longer than expected if yielding occurs. 

The question of the number of increments (Item b) is difficult - other than a qualitative notion 
that more increments will give greater accuracy, the most appropriate number is uncertain. 
Sections 6.3 and 6.4 presented investigations on number of increments for bulk excavation and 
prop removal, respectively, and something similar is needed here. 

The only published recommendation on time step weighting (Item c) is to use a logarithmic 

scale (Britto and Gunn, 1987). The writer has used this in the past but has also devised two 

other strategies. The first is an arithmetic progression of the form Ati = X. Ati-1, in which the 
first time step is specified, and the factorX adjusted until ZAti = Ati (I +++ 13 . ..... 

kN ) 

= te The second is to use a power law of the form Ati = A(i), with the exponent m fixed at 
the desired (integer) value, and then a numerator found such that E A(i)n-- t, (Uniform At is. a 

special case, in which A=t, /N. and m7-1. ) 

6.6.2 Initial studies 

The investigations centered initially on the weightings of the At used during the equilibration 
phase. Mesh xlOylo with unpropped and top-propped wall configurations were used together 
with soil sets 12d and 13d (Table 4.8); excavation was carried out quickly enough to be 
undrained in 8 stages of five increments each. 

run set prop Series 1 Series 2 Series 3 

N. = 15 At, =I day N,, = 50 

TF152 12d none variant Atl x variant N. variant m 

TF153 13d none A I hour 2.5909 F 20 m 2 
TF162 12d top B I day 2.0026 G 30 N 3 
TF163 13d top C I week 1.7274 H 40 0 4 
TF182 12d twin 1 50 P 5 
TF183 13d twin I K 100 

Cin all cases ZAt = to = 100 years) 
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Immediately after excavation, formation level was set as a drainage boundary. The number of 
equilibration increments K) was fixed at 15, and the time for equilibration (4) was fixed at 
100 years. The size of the first time step (AQ was set variously at I hour, I day and I week, 
and the %-method was used to generate the remaining At, such that ZAt = t,, = 100 years. Wall 
deflection profiles (5: z) and equilibrium error plots (err.: inc) were extracted for inspection; 

only one or two are shown herewith.. 

The choice of At, (and hence. %) had a significant effect on wall deflection - larger Ati resulting 
in greater final displacement of the wall at t., Fig. 6.16(a). However, it was unclear if larger 

S: z implied greater accuracy; earlier studies (e. g. on mesh size) demonstrated that larger 5 

generally indicated a more accurate analysis, as finite element models are usually too stiff. In 
this context, however, the use of more increments and longer elapsed time might be expected 
to lead to more accurate results, and it was less clear why changing At, and 2, should give this 
also. A possible explanation is that small At, implies largeAt in the latter stages of equalization 
(when excess pore pressure gradients are low), producing small effective stress changes in an 
increment. LargeAtj leads to large At in the early stages when excess pore pressure gradients 
are high, leading to large effective stress changes (and hence larger 5) during an increment. 

The plot of err.: inc showed a local peak at start of equilibration (i. e. at Ati), falling quickly to 
a trough (; ý-. 0%) before climbing through the remainder of the equilibration phase to values 
between 3-6%. Ati =I hr (the shortest) usually gave the highest err, suggest g that there are in 

numerical issues which may need investigating at small At (see Section 7.4). 

In the next phase of investigation, At, and t,, were kept fixed (at I day and 100 years 
respectively) and N, was increased from 15 to 20,30,40,50 and 100 increments. In all cases, 

wall deflection was bigger for N. = 100; as much as 190% increase was observed in going 
from 20 to 100 increments for run T17152; only 30% for T17163. As N. was increased, the 
difference between successive S: z profiles became less, and suggested that N. = 100 would be 

adequate in most cases Fig. 6.16(b). 

The third phase was to fix N. at 50 and t, at 100 years (At, was no longer fixed), and then to 
vary the weightings according to a power law At = A(i)' - (Ifigher m basically gives smaller At 

at the start, and bigger At towards the end of the equilibration phase. ) 
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The results confirmed that At weighting could have a very significant effect; m=2 gave the 
largest 8: z at the end of equilibration (and also gave the lowest err,, ), with reductions in 5 as 
great as 30% as m varied from 2->5 in the unpropped case, Fig 6.16(c). With the inclusion of 
top-propping the differences were much smaller (:! 95%). This would suggest that, with prop 
configurations that suppress soil yield (and more of the response being elastic), the weighting 
of At is less important and any reasonable scheme will suffice. The pattern of behaviour was 
unaffected by the profile of E'. 

The data were then re-plotted to show the evolution of wall deflection with time (B.: t) - 
analogous to a dissipation curve - and neither the unpropped or top-propped walls showed 
that they had reached a long-term equilibration state by 100 years. In the unpropped case this 
was not unexpected (marginally stable, etc. ); certainly it was the worst in terms of the Snm: t 
curve not leveling out. However, dissipation for the top-propped wall was clearly not 
complete either. There was a suggestion that higher "ny' in the power law gave faster 
convergence to the steady state, but not unequivocally. 

The fourth phase comprised increasing time t. beyond 100 years to determine when the steady 
state would be reached. Equalization times of 200,400 and 800 years were all used, achieved 
by adding more increments so that ZAt (power law) eventually reached the specified t. whilst 
preserving At size in the early stages of the analysis. Results indicated that wall deflections in 
the unpropped case were continuing to increase even after 800 years of dissipation, but the 
excessive levels of movement (5. = 2m) tended to invalidate this particular analysis. The 
insertion of a top-level prop reduced the overall magnitude of movement very significantly 
(8-: 5150mm) and the 5.: t curve suggested that the dissipation of excess pore water 
pressure was occurring more rapidly, Fig. 6.16(d). 11igher values of "rW'in the power law 

produced slightly faster dissipation, but converged on 5,,. values that were smaller (and 

possibly less accurate). 

In view of the fact that movements were still quite large with the top-propped wall, it was 
decided to introduce double propping, and re-run this fourth phase of analyses. A top-level 
prop was present from the start, and a formation-level prop was inserted at the end of bulk 

excavation. The results for this propping configuration indicated that equilibration had 
definitely been reached by 800 years - in fact, the 5.: t curve had leveled off by 250 years; 
overall movements were credible, with 5.: 535mm. 
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Overall, these magnitudes of equilibration time were unexpectedly large. For comparison, a 

representative selection of analyses were re-run as wholly elastic (simply by setting c' = 10' 

kPa). The 5.: t curves indicated that a steady state could be reached within 20 years - 
perhaps faster than expected, but more realistic than the hundreds of years implied by the 

elastic-perfectly plastic analyses. Final wall deflection profiles were identical, regardless of the 
At weighting scheme employed. Of course, the end-result in a linear elastic system is path 
independent, so identical computed results would be expected at comparable elapsed times. 

6.6.3 Description of analyses 

Guided by these initial runs, a further suite of analyses was devised to investigate N., T. and m 
in further detail. Due to the unpropped wall being marginally stable when fully drained, it was 

not used any further. Furthermore as results for E' = 40+4z and E' = 4z were very similar, 
only the former stiffness profile (= set 12d) was used. Analysis identifiers were as follows: 

run N. 4 run N. 4 run N. t. 

(Yrs) (yrs) (Yrs) 

TFnnnXIm 25 100 TFnnnYlm 50 100 TFnnnZIm 100 100 

TFnnnX2m ", 200 TFnnnY2m 44 200 TFnnnZ2m 44 200 

TFnnnX4m fC 400 TFnnnY4m ce 400 TfnnnZ4m 94 400 

where nnn = 162 (top-propped) or 182 (doubly-propped), m=2,3,4 or 5 (exponent in power law) 

ff ns Only wall deflection was extracted as an indicator of how these three di erent questio 
affected the analysis, as equilibrium error had revealed nothing of note in the initial studies. 

6.6.3.1 Equalization time 

Top-propped 

Allowing 100 increments for equilibration (which might be considered adequate in situations 

with modest non-linearity), this propping configuration showed significant differences between 

S: z profiles for t, = 100,200 and 400 years (50% increase in S... over this time range), Fig. 

6.17(a), which was not unexpected following the earlier work reported in Section 6.6.2. From 

the 5,,. :t curves it was quite clear thatý even after 400 years, significantly less than 95% 

equilibration had occurred, although the 8. :t curves for t, = 100 and 400 years agreed very 
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well in the range 0: 5 t:: ý 100 years. This particular propping configuration, together with 

steady-state seepage to formation level produced wall deformations which were capable of 

continuing for a very long time in an elastic-perfectly plastic (Mohr Coulomb) analysis. 

Double-propped 

Moving to a more stable configuration (top + FL props), the analyses were repeated with N, = 
100. The additional FL prop reduced t95 very significantly and brought the 8: z closer together 
(10% increase in 8.. between 100 -). 200 years; <2% between 200 -> 400 years). In this 

case 4= 200 years would be adequate, with t95 somewhere between 100 - 200 years, Fig. 

6.17(b). Even this double propping configuration was somewhat unrealistic as the excavated 
surface was able to swell freely, instead of reacting against a ffill-width slab or similar - with 

such restraint, t95 could be 100 years or less. The trend noted above for sensitivity to changes 
in Ne at high t, was still apparent, but the differences/divergences were much smaller. 

These analyses cannot be said to have shown what value of t,, would be adequate for a given 
case; indeed, it is probably not possible to establish general rules for retaining wall analysis. 
However, they have shown that it is not only the coefficient of permeability and the location of 
drainage boundary conditions which governs the rate of equilibration - clearly propping plays a 
significant role, because of the amount of yielding it allows (or prevents). Also it should be 

remembered that mass permeability in the field may be a lot higher (by orders of magnitude) 
due to Partings and fissures (especially those opening up following stress relief), so that the 

actual t9s in practice will be a lot faster than theoretical estimations. 

6.6.3.2 Number of equalization increments 

Top-propped 

With 4 fixed at 400 years (thought to be adequate for complete equalization), there were 

obvious differences in the 8: z profiles between N, = 25,5 0 and 100 increments - the 
discrepancy in 5,,, was about 25% between 25 and I oo increments, and key differences 

showed up in the :t curves too. However, it was known that this case had not reached t95 
(or even approached it). This sensitivity to N. was less pronounced as 4 dropped to 200 and 

then 100 years. Insufficient N. (e. g. N. = 25) lead to a marked mismatch of 5.. " :t curves for 

to = 100 and 400, Fig. 6.18(a), whereas with N. = 100, the curves overlaid each other quite 

closely in the range 0 --g t :g 100 years. Differences in the 5: z occurred in the opposite sense. 
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The 5. :t curves appeared to be leveling off faster at larger 4 with smaller Ne - Presumably 
because the coarser At (which results from small Nj leads to an overestimation of true system 

stiffness and the analysis is converging on a smaller (false) 895. 

Doublý-propped 

With a more stable doubly-propped configuration, the results for t, = 400 years suggested very 
little dependence of B: z on N. Fig. 6.18(b), and this was a case which was definitely known to 

have reached t95. If 4 was set lower than 400 years, the discrepancies in 6: z became even less. 

Insufficient N. 
, 
led to a mismatch of S.. :t curves, although not so pronounced as with the 

top-propped wall. One way of checking the sufficiency of number increments might, 
therefore, be to overlay the 5. :t curves for different t, and compare them- 

6.6.3.3 Weighting of time steps 

It was decided to examine only the power law variation in weightings, using m=2,3,4 or 5 

(in combination with N. = 25,50 or 100 and t. = 100,200 or 400 years). 

Top-propped 

Starting at 4= 400 years and N. = 100 (expected to be the most accurate) there was a small 
difference in the profiles of S: z as m=2 -+ 5, with the higher powers of m resulting in lower 

iff, wi deflections (no worse than 10% reduction in any case). D erences were more noticeable th 

the B.. A curves. Keeping N, at 100 and reducing t. basically brought the curves closer 
together until, at t. = 100 years, they were virtually indistinguishable from each other, Fig. 

6.19(a). Fixing t. at 400 years and reducing N. to 25 served to accentuate the differences in 

the S: z profiles and the deviations between the 8.. :t curves, but only by a small amount. 

Doubly-propped 

Starting at t, = 400 years and N. = 100 there was no perceptible difference in the 5: z profiles 

as m changed from 2 -+ S. Fixing t, at 400 years and reducing N, to 25 served to accentuate 

slightly the differences in the 5: z profiles and the deviations between the 5. x :t curves, Fig. 

6.19(b). 

6-36 



6.6.4 Summary 

Two key findings emerged from these analyses. Firstly, if insufficient time is allowed for 

equalization to occur, it would be possible to believe (incorrectly) that a small number of 
increments is adequate. However, the insufficiency of time would be revealed through an 
insensitivity to the weighting of the time steps At. 

Secondly, if the number of increments is insufficient and only the S: z profiles were compared, 
it could be judged that the use of small t, was acceptable. It is only in overlaying the 5. :t 
curves that the error would become apparent - and this seems to be the only satisfactory test, 
because insufficiency of N. is not revealed by varying the weightings onAt- 

6.7 Groundwater Fluctuations 

6.7.1 Previous work 

As mentioned in Section 3.11.2, groundwater fluctuations are normally modelled by the 
appropriate manipulation of drainage boundaries. Incorporating this phenomenon into a finite 

element analysis is not as common as the other matters investigated in this chapter, but the 
writer suggests that it will become more important and will be taken into account increasingly. 

The literature contains little (if anything) on the application of finite elements to this sort of 
retaining wall problem, let alone any guidance on the modelling issues. Particular points which 

need to be addressed are: 
a) boundary conditions for imposing rising/falling levels, 
b) time steps, and 
C) shortcomings of the drainage boundary manipulation approach compared with more 

rigorous techniques. 

The manipulation of drainage boundary conditions (Item a) has been addressed in Section 
3.11.2. The rules concerning time step (Item b) are unlikely to be any different to those 
detailed in Section 3.11.3. There is, however, one issue that is not well understood and it 

Combines aspects of Items (a) and (b) above in two different approaches to recharge: 
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instantaneous recharge - specify the full expected increase of pore water pressure on the 
base of the mesh (boundary C- Fig. 3.20a) and possibly on the remote vertical side(s) 
(boundary B- Fig. 3.20a) in one increment block, and use the time steps in that block to 
allow equilibration to some new steady state, or 
gradual recharge - divide the full expected increase of pore water pressure into a number 
of smaller increments (oý say, 1-5 years duration) and specify these on boundary C (and 

possibly B) in individual increment blocks, using one last block for final equilibration. 

It is not clear if there would be major differences between the instantaneous or gradual 
recharge approaches, in terms of what took place in and around the wall itself. Given that the 
changes are occurring on boundaries which are usually remote from the wall, it may not matter 
greatly which approach is followed. It would be relatively easy to compare the two in a design 

situation, but it is doubtful whether guidance of sufficient generality could be generated 
without running a large number of analyses. Therefore this will not be investigated. 

6.7.2 Moving phreatic surfaces 

The modelling of moving phreatic surfaces via finite element methods has been studied for 

many years in the context of transient seepage problems (well pumping, drawdown in earth 
darns, etc). One can either use a fixed mesh where permeability is made artificially low above 
the phreatic surface to restrict flow, or a variable mesh which attempts to keep the phreatic 
surface (the upper flow line) coincident with a line of nodes. Such analyses were aimed at 
seepage studies and did not consider the deformation or stress changes in the soil mass. 
More rigorous methods take account of storage and the (hysteretic) variation of permeability 
with degree of saturation, and couple the flow with volumetric strains in the soil. CRISP 

considers only fully saturated materials, where the volume of water entering (or leaving) 

corresponds to an increase (or reduction) in the volume of voids. Thus it cannot cope with 
unsaturated soils, the study of which has intensified greatly over the past decade. 

However, work jointly supervised by the writer under an EPSRC research grant has led to the 
development of a computer code which can handle moving phreatic surfaces in the presence of 
unsaturated/saturated flow. This code has the capacity for more rigorous modelling of 
retaining wall problems where moving phreatic surfaces are involved (Mavroulidou, 1999). it 
is still a research level code and its features are some way off incorporation in a commercial 
program such as CRISP, but it could be a useful direction for further work to pursue. 
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6.7.3 Numerical studies 

In the absence of any obvious fundamental studies which could be carried out on groundwater 
fluctuations, some results of analyses conducted with CRISP on two different practical 
problems will be presented herein. The first is taken from Case I in Appendix A, the A406 
Walthamstow, which comprised a contiguous bored pile wall in London clay, singly propped 
at formation level, forming the sides of an underpass. The current pore water pressure profile 
was hydrostatic from Im below ground level to I Om below ground level, below which the 

gradient of O'ulaz was only 4 (rather than 10) kPa/m, thus showing significant under-drainage. 
In the analysis, following bulk excavation and permanent prop installation, the ground was 
allowed to come into equalization over 120 years with the current (under-drained) pore water 

pressure profile, with a drainage layer at formation level - referred to as Stage LT1 (long term 
1). Then, remote boundary pore water pressures were manipulated to model aquifer recharge 
such that the ultimate pore water pressure profile was hydrostatic from Om (ground level). A 
further 120 years equalization was modelled - Stage LT2. 

Fig 6.20 shows plots of (a) wall deflection, (b) wall bending moment, (d)prop axial force, and 
(c) prop bending moment for three stages - post-construction, LT I and LT2. Very significant 
changes can be seen to have been brought about by the rising groundwater level. Overall, the 

Wall rotated back into the retained soil (about the formation level prop) as the resultant thrust 
from the pore water pressure increased and its line of action moved down. Stage LTI showed 
higher 8. at the crest (40mm) than LT2 (24mm) -a point noted by the consultant (for whom 
the writer conducted the analysis), as the contractor had commissioned FE analysis from 

another university (to support their preferred choice of bored piles versus diaphragm panels) 

and ornitted this intermediate stage, claiming that 8.: 5 25mm throughout. Clearly it can be 

important to consider all stages in a construction sequence, and not just the final. 

The second example is a typical deep basement structure identified as being at particular risk 
by Simpson el al. (1989) in a major study on the implications Of rising groundwater in 

London. An FE model of this particular case was set up (see Fig. 6.21) and used to examine 
the changes in bending moment and shear force in the walls, columns and floor slabs of the 
deep basement - as a result of rising groundwater levels in the surrounding soils. Two broadly 

different types of under-drained pore water pressure profiles were used for the present-day 

condition, namely: 
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a) hydrostatic but with groundwater levels at varying depths z,, below the ground surface 
(u=I O[Z-Z, ] ) 

b) non-hydrostatic but originating from ground level (u=mz, where 0 :5m-: 5 10) 

In both cases, the pore water pressure profile after aquifer recharge was full hydrostatic from 

ground level (u =I oz). 

Typical London clay stiffiiesses and permeabilities were used; the basement was "wished-in- 

plac6" as it was only the groundwater level fluctuations that were of interest. Further details 

are provided by Woods et al. (1996). Selected bending moment diagrams for the outer wall 

and upper floor slab are shown in Fig. 6.22. Some of the changes in internal structural forces 

were very large, especially at connections, as summarized in the table below. The analyses 

suggest that Simpson el al. (1989) were justified in their concern about this particular case. 
Although the connections were modelled as rigid, the changes experienced in practice could 

still be expected to be very significant and potentially damaging. 

Member Quantity Maximum change 

outer wall W bending moment 600% 

internal column CI bending moment 150% 
....... . ..... . ......... 

shear force . 100% 

upper slab SI bending moment 140% 

shear force 70% 

1ýýjr slab S2 bending moment' 30% 

shear force 30% 

6.7.4 Summary 

Rising groundwater levels are not uncommon (they are occurring in many major cities), and 

may increasingly be a feature in design studies. Indications (from the two different practical 

problems reported here) are that the effects of rising groundwater can be highly significant and 
should be included if there is any likelihood of it occurring. CRISP provides a straightforward 

way of modelling this phenomenon, and there are no really contentious issues. 
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The only area Of legitimate concern is how the method used herein (boundary pore water 
pressure manipulation) might differ from a more rigorous analysis with genuine movement of 
phreatic surfaces. Comparisons could be conducted, but would require more sophisticated 
soilware for the latter. Calibration with field data would also be helpful in establishing the 
accuracy of each approach. 

6.8 Discussion and Summary 

One of the great strengths of finite element analysis applied to retaining walls is that it is able 
to model changes in geometry, time-dependent drainage (transient seepage), and global 
fluctuations in groundwater levels. This permits investigation of the entire construction phase 
and subsequent design life of the earth-retaining structure. 

Changing geometry 

It has become clear over the past decade that, not only do lateral earth pressures relax as a 
result of wall installation (before bulk excavation takes place), but that it is possible to model 
this faithfully with the finite element method. However, the designer/analyst must appreciate 
that such modelling, if it is to be successful, requires three-dimensional coupled analysis. This 
is not trivial. Alternative approaches exist, ranging from manipulation of the in-situ earth 
pressure coefficient Ko (reduced to a post-installation value, Ki), through modified plane strain 
analysis (the MOM and APM presented herein), to coupled plane strain / plane stress 
strategies. Provided the strengths and weaknesses of each approach are understood, they are 
all a valid part of the "toolbo)e'. 

Geometric alterations are intuitive when modelled via element removal/addition. CRISP and 
most modem codes may now be considered to calculate correctly the equivalent nodal forces 
due to excavation, but tests and benchmarking are still good practice. The use of equivalent 
heavy fluid pressure on final excavated geometries provides a sensible cross-check. The 
independence of the final result on the number of increments and sequence of excavation in an 
elastic analysis has been proven by Ishihara (1970) and can be used as an acid test - 
unfortunately no parallel exists for elastic-perfectly plastic or CSSM models. If props/anchors 
are being installed, the overall system stiffiness is changing and Ishihara's proof no longer 

applies (even if all materials are elastic). With intricate excavation and propping sequences, 
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sensible benchmarking will be difficult, but some kind of sensitivity checking on results is in 
order. In Section 6.3 it was shown that the influence of number of increments and increment 
blocks was minimal in the cases examined, but these were fairly simple analyses. 

Finite element analysis is particularly good at tackling the questions relating to temporary 
props - how many, what level(s), when installed, when removed, etc. The direct analogue of 
adding/removing elements is physically appealing. The removal of a prop (or temporary berm) 
corresponds to the release of significant horizontal stress, and should be handled with the same 
degree of refmement (e. g. number of increments used for removal) as bulk excavation. If the 
SOU is overconsolidated, the lateral stresses on the retained side win be closer to the passive 
limit (than to the active) prior to bulk excavation, and horizontal unloading will be largely in 
the elastic region (and thus not particularly sensitive to number of increments). 

Time-dependenj &-ainage 

Where delays in construction are expected, or where construction may takes a considerable 
time, it may be important to analyse this phase with a coupled analysis. Partial drainage may 
take place in the field and this is more onerous than the fiffly undrained conditions which might 
otherwise be assumed. A coupled analysis will require (a) selection of consolidation elements, 
(b) definition of initial drainage boundary conditions (and any subsequent changes to them), 
and (c) specification of time steps. Execution time win be extended because the system of 
equations is bigger (additional excess head d. o. f s at many of the nodes). The designer/analyst 
must decide if this refinement is warranted, but often the only way to verify this is to run both 
types Of analysis and compare the results. 

In Practice, there is likely to be some reluctance towards running an undrained analysis first, 
then altering the mesh and analysis data in order to run a coupled analysis second. However, 
the writer believes there is a case for doing just that. If a coupled analysis model is set up right 
from the start, and very small time steps At (or very high permeabilities k) are used to recover 
the undrained case, errors could creep in due to ill-conditioning of the overall equations. 
The coupled formulation gives the facility of investigating the fiffl spectrum of behaviour. This 
would be particularly useful if re-analysing a retaining wall system contemporaneously with 
cOnstruction, as part of the observational method of approach (Peck, 1969). But it would still 
be important to start at one well-defined limit (e. g. undrained, constant volume conditions) in 
Order to provide some benchmark for subsequent, more refined analyses. The user should not 
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be deterred from the more complicated analysis, but should understand its strengths and its 
limitations. This is a similar argument to that advanced for starting with simple constitutive 
models and adding in the extra layers of sophistication later. It may not be a popular message 
but it is an important one. 

Undrained conditions can be obtained with small At without risking numerical instability. 
Moving to larger At (or higher k) will promote partial drainage but care must be taken with 
drainage boundaries as these may activate during excavation - especially on freshly excavated 
surfaces. Larger At will result in larger Aa, and, depending on the non-linearity of the stress- 
strain response, may require many more increments. 

Many users would consider that modelling long-term equalization (equilibration, dissipation) 

simply comprises selecting an arbitrarily large time interval (e. g. 50- 100 years), several tens of 
increments and some suitable weighting of time steps (usually a logarithmic progression) and 
letting the analysis wind forward. The development of 5, KS etc. with time can be followed 
by extracting profiles at the appropriate times. But the analyses herein have shown that the 
time allowed, number of increments, and the weightings adopted, can all have a significant 
effect on the results. The introduction of plastic yielding complicates the issue further, and 
many Practical analyses do now include this feature of constitutive behaviour as standard. To 

understand the nature and magnitude of these effects requires sensitivity studies, and these are 
rarely done in design practice owing to time constraints. 

Groundwater Fluctuations 

With many urban areas now under threat from rising groundwater level, it is inevitable that 

embedded retaining structures may need to withstand pore water pressure changes that are 
independent of post-construction dissipation/equifibration. Limited investigation suggests that 
there can be very significant effects in the internal structural forces. In view of this, any 

Possible groundwater fluctuations should be taken into account and included in the modelling 
sequence. CRISP provides a very convenient facility for modelling such fluctuations, which 
Will be perfectly adequate in many situations. it is unable to model moving phreatic surfaces 

with any rigour, but this is unimportant in the context of earth-retaining structures (compared 

with, say, the analysis of borehole pumping and drawdown). 
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Fig. 6.1 Wall installation by element swopping method 
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Fig. 6.2 Bulk excavation pfior to wall installation (A406/Al/A598 Junction) 
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Fig. 6.3 Steps employed in the multiple overlay method (MOM) of wall installation 
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Sequence. 1 install main wall 
2 excavate central core 
3 install secondary wall 
4 remove berm adjacent to main wall 
5 construct propping slab 
6 remainder of bulk excavation 
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CHAPTER7 

COMPUTATIONAL DIFFICULTIES 

7.1 General Introduction 

Preceding chapters have dealt with the choices which must be made with respect to finite 

element mesh, material properties, construction processes, and long-term equalization. These 

choices are essentially of a modelling and discretization nature (as described in Chapter 1), and 
numerical experiments have addressed some of the errors and approximations that can be 
introduced into a retaining wall analysis. It can be argued that these errors have more to do 

with the analyst/operator than the computer itself, as they arise from human decisions. 

The actual process of setting up and solving the finite element equations now takes place 
within the program itself, and this chapter considers issues which are of a specifically 
numerical and computational nature. These issues would almost certainly be beyond the 

understanding (except in broad terms) of a non-specialist, and yet they may have a profound 
effect on the accuracy (or even admissibility) of an analysis. 

In the experience of the writer and of other users of CRISP, there are a number of specific 
problems of a computational nature which have been known to arise during retaining wall (and 
indeed all SSI) analysis. These are associated with: 

0 contrasting material stiffnesses, 

0 high element aspect ratios and distortions, 

0 effective stress representation of undrained loading conditions 

40 coupled analysis of undrained loading (in particular, problems with small time steps) 

0 oscillations and other anomalies in horizontal stresses 

tangent stiffness incremental scheme for non-linear analysis (esp. with elasto-plastic 
constitutive models) 

Sometimes these problems manifest themselves in anomalous or bizarre output values and if 

they come to the attention of the designer they might lead to the analysis being discarded as 
wrong or worthless. Often these curious results are observed to occur in only a small region 
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of the mesh (perhaps in just a single element), and it is important for the designer to be able to 
judge whether or not the whole analysis is affected orjust some part of it (and if so, which)'. 
This chapter Will present some inNvsfisations which have been carried out in these different 

areas, in an attempt to establish their relative importance and influence on practical retaining 

wall analyses. 

It will be helpful to start with a brief o%vniew of the sort of errors which can occur in finite 

element computations, before fo=%ing on the specific areas listed above. The following 

classification is due to Cook et aL (1989): 

1) Modelling Dror - refers to the difficrence bcm-een a physical system and its 

Mathematical model. For example, seepage through a porous medium may be modelled by the 
Laplace equation, which may not be a wholly accurate representation- The mathematical 
model is then solved by a numerical solution scheme, and it is this scheme which is open to the 
following errors. 

b) Discrefization D-rar - refcrs to the error caused by representing the infinitely many 
d. o. f of a continuous mathematical modej by a finite number of d. oX in its discretized form. 
For OLample, the aforementioned porous medium is diidod into finite elements, thus 
introducing discretization error. (In stress analysis, this is regarded as producing a model 
which is -stiffer- than the real system - or, more generally, a model in which the total potential 
energy is greater than that of the real system. ) 

C) ROund-OffError 
- is caused by use of a faite number of bits or digits to represent real 

numbers in a computer. The last digit retained may be rounded or may be obtained by simple 

truncation (chopping). The round-off limit is the smallest floating point number c such that, in 

the computer, I+ 

d) InheriledError - at any stage of the calculation. this is the sum of Previous 
disCretization and round-off errors. 

PcrhaPs km knportart for the des; to Imm C=ctly %ily t1jese anomalies arise -just how to 
rocoguiz' thcnlý and avoid thcm if necessary. 
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e) "a? 70ulafion Error - refers to round-off error introduced by an algorithm. For 

example, a Simultaneous equation solver performs numerical operations such as An - 
(A2iIAn)*AI2, where, %-- are matrix coefficients. 7bedivision and multipfication are each 
fOHOwed bY rounding of the result to computerword4ength, and the subtraction may lose 

several significant digits if An and (A, 21/All)*A, 2 are almost equal. 

In a finite element context, inherited error is present afler very different element stifffiesses are 
added to form global stiThess matrix cocflicients. and manipulation error is produced by 

solving the equations. interestingly, a finer mesh means that more operations need to be 

Performed - so whilst discretization crror is reduced4 manipulation error actually increases, and 
there is a trade off 

J) Gross Error - usually arises from a mistake or blunder in the basic input data. This is 

essentially a human factor and some gross errors are impossible to trap, even with 
sophisticated data checking routines in computer prograMS2. 

9) Gratuitous F-, 7vr - refers to error introduced when numerical constants (such as Gauss 

Point co-ordinates and weighting factors) are written into the code with fewer accurate digits 
than the machine can accommodate. 

Errors from source (a) will be present in any FE analysis conducted, regardless of the FE 

Package; details may vary, depending on which governing equations are used, but this thesis 
has not sought to address this area at aIL Source (b), on the other hand. has been extensively 
investigated in Chapter 4 and it has been shown that care needs to be taken to minimize errors 
from this source in a retaining wall (or indeed any) analysis. 

Computer hardware governs the alau or the error introduced through (c) and (d); levels Of 
Precision vary from one machine to another, quite apart from that requested in the code (e. g. 
single v double precision in Fortran). 'Ijuch of this is fixed at compilation stage, and is 

generally beyond the control of the user. Errors in category (e) will be influenced by the way 

, edures will introduce more the FE program itself has been written - some statements and proc 

2 AGS (1995) has introduced the clasiScafion of 01 inpossible, (ý) impLwsible and (iii) improbable 
ii and 6 bcf re values for inPLIt data -a program should never permit 01 , and should always question both C01 

Proceeding. 
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rounding/ truncation than others. This too is beyond the control of the user - and to some 
extent that of the programmer unless he/she is prepared to re-write code. All of the cases 
examined in this Chapter are due to errors introduced through (c), (d) or (e) in CRISP. 

There really is no excuse for (g) - the programmer should ensure that the precision embodied 
in the code is greater than that likely to be accommodated by the machine. Based on an 
inspection of the Fortran source code, CRISP appears to be satisfactory in this respect3. 

Finally, (f) is largely in the control of the user, although the program can 90 some way to 
eliminating this, as described by AGS (1994). Irons and Ahmad (1980) make an ...... educated 
guess that as much as 50% of commercial FE runs lead to stillbirths, owing to a data error or 
misjudgernent". CRISP is good at picking up certain kinds of data error (e. g. the provision of 
too few/too many items in a data record) but not others. 

7.2 Stiffness and Aspect Ratio 

In any finite element mesh, there is a limit to the difference in stfffness that can be tolerated 
between adjacent elements, before computational problems arise. This has potential 
implications for all soil-structure interaction problems, where materials with contrasting 
moduhi (perhaps by 34 orders of magnitude) are being included in the same model. 

Several investigators have reported problems with unacceptable equilibrium errors when 
applying CRISP to soil-structure interaction problems. Vaziri (1988) modelled a screw plate 
in sand and was forced to use double-precision arithmetic to handle the large modular ratio 
between steel and sand. Woods and Contreras (1988) analysed a circular steel plate on clay 
and found that stiffness ratios (steel : clay) in excess of 10' lead to high equilibrium errors. 
Similar problems can be expected to occur in the analysis of a steel sheet pile wall, if solid 
(rather than beam) elements are used. 

In &ctý one of the strengdis of CRISP is that it is probably the only commercial geotechnical, FE 
Prograin where the source code has been effectively placed in the public domain, allowing users to verify the 
"nPlementatiOn of constitutive models etc. - as well as enabling them to make their own modifications. 
Elence, true "glass bo)C'testing is possible. 
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7.2.1 111-conditioning 

An ill-conditioned set of equations is one in which the solution is sensitive to small changes in 
either the coefficient matrix or the vector of constants. Mathematically this means that the 
rows of the coefficient matrix are almost linearly dependent. In finite elements generally, ill- 
conditioning may be caused by (Cook el al., 1989): 
a) highly disparate material stiffhess (especially rigid inclusions in a softer medium), 
b) elements of large aspect ratio or severe shape distortion, 
0 elements of markedly different size, and 
d) a large number of elements. 

In the context of a retaining wall analysis, all of these potential causes may be present. The 
steel or concrete wall is a rigid inclusion in the softer supporting soil; long, thin elements are 
sometimes used to model the wall and associated structural members; mesh grading is very 
common, with very large elements near the far boundaries and relatively small elements used 
for the wall and immediately surrounding soil; complex geometries may force the use of many 
hundreds (or several thousands) of elements. 

It is mathematically possible to analyse successfiffly such cases via finite elements; the 
Problems arise from the inability to store and process real numbers with infinite precision in 
digital'computers (Dom and McCracken, 1972). For example, adding the numbers 0.52E- I 
and 0-83114 should yield . 8300052E4. Ina machine which stores and handles numbers to only 
6 significant figuree, however, the trailing "2" would be lost. If this particular operation was 
Part of the global stifffiess matrix assembly, essential numerical information could be lost. The 
resultant system of equations might be ill-conditioned, and the situation would continue to 
worsen with subsequent floating point arithmetic (e. g. through Gaussian elimination). This 

Particular problem is well known and has been investigated by several workers (Fried, 1971, 
1972; Gallagher, 1977; Meyer, 1975; Rosanoff et al., 1968; Tong, 1971). 

Causes of ill-conditioning 

To understand why cases (a) - (d) above can lead to ill-conditioning, it is necessary to examine 
the underlying equations. In the finite element (displacement) method, the applied loads f are 
related to the (unknown) displacements d through the global stiffness matrix K: 

Very crude by modem standards - this has been used simply to illusu-ate the point. 
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Kd = 

K is obtained by assembling the individual stifffiess matrices Ke of each element, where: 

Ke =BTDB d(vol) (7.2) 

In this expression, B is a matrix of constants relating nodal displacements to intemal strains. B 
is derived from the shape functions for the assumed displacement field of the element, and is 

thus influenced by its aspect ratio and distortion. The matrix D relates intemal stresses to 
intemal strains through various material parameters such as E and v, or G and K. Variations 
in material properties therefore have a direct effect on the magnitude of the terms comprising 
D. Finally, the matrix product is integrated over the volume of the element, which brings into 

play the size of the element relative to others in the mesh. 

Taking all these factors together, it can be seen that element geometry, size and material 

modulus all influence the magnitude of the coefficients of W. In a retaining wall analysis. 
nodes along the soil-structure interface will share elements of very different stiffness. The 

modular ratio between a soil element and an adjacent structural element may be very high 
(typically >103 for concrete; >104 for steel). Global stiffness matrix assembly may then lead to 
just the sort of numerical problem described in Section 7.2.1, where fixed computer word- 
length results in the loss of significant digits. 

Measures of ill-conditioning 

a) Condition number 
Classically, rounding and truncation error has been studied by investigating the sensitivity of 

the solution to changes in the stiffness matrix. From Eqn 7.1, if a change in stiffness 8K 

causes a change in displacement 5d, then it is possible to write: 

(K + SK) (d + 5d) = (7.3) 

TaIdng Euclidean norms of all vectors and matrices and assuming I Md /I 1ý << 1, leads to: 
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15di /Idi < C(K')15W Ilk (7.4) 

where C(K) is the condition numher (or spectral condition number) of the stiffness matrix K, 

and is defined formallY as the ratio of the maximum and minimum eigenvalues of K: 

C(K) = 2,.. / 1.. (7.5) 

C(K) provides a numerical measure of the ill-conditioning of K; it has been shown (Rosanoff 

el al, 1968) that the number of accurate digits lost due to ill-conditioning is approximately 
equal to logioC(K-). If this number is compared to the word length of the machine, then some 
idea of the reliability of the solution may be obtained. 

Unfortunately, Eqn (7.5) does not provide a convenient means of assessing the condition 
number prior to conducting a finite element analysis. The evaluation of the minimum and 

maximum eigenvalues of K (e. g. through the "power method"; Kreyszig, 1999) can require 

considerable computational effort (and hence cost). The use of approximate methods is 

desirable, and several have been suggested (Tong, 1971; Fried, 1972; Meyer, 1975). For 

example, Fried suggests that the condition number may be estimated from: 

C(K) =b (h. /hi,, r" N"ý' (7.6) 

where b=a positive constant 
h. = = smallest node spacing in any element of the mesh 
h. = greatest node spacing in any element of the mesh 

N= number of elements 
2m = order of governing differential equation 

n= dimensionality of problem (1,2, or 3D) 

Of particular relevance to geotechnical finite elements is that the condition number may be 

strongly affected by Poisson's ratio v (Fried, 1973). The constant b in Eqn (7.6) is inversely 

proportional to (1-2v), with the consequence that the requirement of virtual incompressibility 

may increase C(K) by several orders of magnitude. This has important implications for 

undrained analysis, where v (in tenns of total stresses) is set close to 0.5. 
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The condition number is not a practical means of assessing the degree of iff-conditioning in 
finite element equations. Simpler and less expensive indications of stifffiess matrix condition 
have been proposed (Irons and Ahmad, 1980). The two most important of these are the 
diagonal decay and residual criteria. 

b) Diagonal decay 

Solution methods such as Gaussian elimination process each row of K in turn. In each 

successive step, the diagonal coefficient KH of row i (known as the pivot) is used to eliminate 
terms corresponding to degree of freedom (d. o. f. ) i further down in the matrix. Due to 

previous elimination operations, the value of a diagonal coefficient just prior to its use as a 
pivot may be very different to its original value. A pivot may have accumulated considerable 

round-off error by the time it is used for further elimination, thus spreading damage 

throughout the matrix. The diagonal decay criterion involves taking the ratio R, between the 
initial and pivotal values of each diagonal coefficient, as it is about to be used. The number of 

accurate digits lost is given approximately by loglo(R, ). There would be cause for concern if 

R. > 104. ,I Higher values (say R, > 10'0) suggest a major blunder in the model, such as 
insufficient kinematic restraints. 

A form of diagonal decay test is relatively easy to implement, and could give warning of 
impending difficulty. CRISP is programmed only to detect when a pivot is zero, and stops 
program execution before it attempts to divide through by this pivot. This is unsatisfactory 
because it does not give the user the opportunity to take corrective action before the analysis 
is aborted, and it does not indicate the actual cause of the error. For example, ill-conditioning 

may arise from gross errors such as failure to prescribe sufficient kinematic restraints (i. e. 
boundary fixities) to the mesh. Such a case would cause difficulties regardless of computer 
precision. If a full diagonal decay check were implemented in CRISP, an additional N terms 

would have to be stored, where N is the number of d. o. f in the problem. These terms would 
be the Kii and there would be book-keeping implications to ensure that it was synchronized 
with the frontal solution method. 

c) Residuals 

After the finite element equations (Eqn 7.1) are solved to yield the displacements d, residuals 
Af may be calculated from: 
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Af = f-Kd (7.7) 

If the original equations were well conditioned and/or unlimited precision was used by the 

computer, then the residuals would be zero. In practice the residuals provide an aposteriori 
check on the reliability of the solution. A sufficiently small Af indicates that resisting loads 
Kd generated by the deforming mesh are almost balancing the applied forces E 

CRISP adopts a slightly different approach to the residuals test. After a solution is obtained, 

an "out-of-balance force" P. is calculated for each unrestrained node in the mesh: 

P, NTr d(area) +NTw d(vol) -BTa d(vol) (7.8) 
svv 

The terms on the right hand side of Eqn (7.8) represent edge tractions, self weight, and 
internal stresses respectively. To provide an index of the numerical error in the solution, the 

worst out-of-balance force found at any node within the mesh is expressed as a percentage of 
the largest applied load at any node within the mesh. The resulting equilibrium error may be 

used as a yardstick for assessing a particular analysis and comparing one analysis with another. 
This choice of scaling or normalizing the out-of-balance forces may appear somewhat arbitrary 

- however, some nodes will have no applied loads (e. g. internal nodes), so it seems sensible to 

use one single value of nodal load (i. e. the largest in the mesh) to perform the normalization. 
It is not easy to identify a limiting value on equilibrium error which would ensure acceptable 
results from CRISP in all cases. The type of constitutive model used, and whether or not 
stress corrections are carried out after each load increment will have a bearing on this. For 

example, a 5% error may be unacceptable in a purely elastic analysis, whereas it would be 

quite permissible in an elastic-perfectly plastic case if the error arose from yielding and would 
subsequently be "iterated out". 

In some boundary value problems, large out-of-balance forces may be confined to a very small 
region of the mesh, in which case the overall integrity of the solution may not be too adversely 
affected (for example, at the edge of a loaded plate at the soil surface). Thus, whilst negligible 
out-of-balance forces throughout a mesh indicates a solution free from ill-conditioning, the 

presence of significant out-of-balance forces may not necessarily indicate a flawed analysis'. 

a Of course, on rigorous theoretical grounds one could argue that any error should result m the 
analYsis being r6ected, but in a practical design context this may be wasteful and unnecessary. 
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Further investigation would be required to ascertain how the results (stress distributions, nodal 
reactions, bending moments, etc. ) were being affected. This test is a necessarý (but not 
sufficient) criterion for a good analysis. 

Summary 

DI-conditioning is both a hardware and a software issue. An FE model may be presented to 
two different programs on a given machine, and because of differences in programming 
language precision, solution algorithms etc. ill-conditioning may cause problems in one 
package and not the other. Similarly, the same FE model analysed with the same program 
may run into trouble on one machine but not another, due to differences in internal (machine) 

precision. 

Ideally, computers would possess unlimited precision, and ill-conditioning would not occur. 
In practice, it is important to know not only when ill-conditioning is present, but also to have 

some idea of how it is affecting the quality of the analysis. Some ill-conditioning may be 

tolerable, provided it does not affect the answers which are of prime interest. In the following 

sections, results will be presented from a series of numerical experiments which have been 

carried out to investigate ill-conditioning and how it may affect the quantities of prime interest 

to a retaining wall analyst. 

7.2.2 Description of analyses 

In an attempt to assess the level (and potential consequences) of iff-conditioning in retaining 
wall analyses performed with CRISP, a short series of numerical experiments has been 

conducted. Simple two-element models in plane strain were used to investigate the influence 

of both disparate material moduli and aspect ratio on the conditioning of the finite element 
stiffiess equations. Such simple models are an essential starting point in attempting to unravel 
the principal features of a complex situation (Robinson, 1976). 

Mesh and element types 

The two-element mesh used is shown in Fig. 7.1. The 8-noded linear strain quadrilateral 
(LSQ) was used for both elements in the model, as this is probably the most commonly used 
element in 2D soil-structure interaction analysis. The element employs full 3 x3 Gaussian 
integration; no attempt has been made to examine reduced 2x2 integration in this context. 
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The dimension B was fixed at I m, and five different aspect ratios (t/B) for the structural 
element were adopted; 1/2,1/4,1/8,1/16, and 1/32. The latter two aspect ratios are extreme 
but are included here as they are relevant to elements representing a sheet pile wall. 

Bound2g conditions 

Each of the five different aspect ratios was initially used in conjunction with four different 

types of displacement boundary condition, Fig. 7.2(a)-(d). Type A represents simple uniaxial 

compression, type B cantilever bending, type C one-dimensional compression, and type D 

fixed-end beam bending. These boundary conditions were selected to represent some of the 
different constraints which may be met in soil-structure interaction analysis. 

A uniform normal stress of 100 kPa was applied along the vertical side of the soil or structure 

element (as appropriate), giving a total force of 100 kN per metre run. The actual magnitude 

of the load was unimportant; CRISP simply needs a reference against which to calculate 

percentage equilibrium errors (see Section 3.3.6). Merely assembling the element stiffness 

matrices in a fixed word-length computer is sufficient to cause numerical damage, but in the 

absence of applied loads and/or body forces the seriousness of the damage cannot be assessed 

using the existing indicators within CRISP. 

Subsequently, two variants of boundary condition type B were selected for more detailed 

study as they most closely represented the conditions likely to be found in a small segment of a 

retaining wall. The first of these was type B 1, which was identical to B except the external 
normal stress was applied to the soil element, Fig. 7.2(e). The second was type B2 - identical 

to type BI except that fudties along the side of the soil element were removed, Fig. 7.2(0. 

This latter condition constrained all of the applied load to be transmitted to "eartlf' through 

the fully-fixed edge of the structural element. 

Modular ratio 

In studying the influence of relative stiffhess in soil-structure interaction problems, it is normal 
to define a stiffness ratio K,. One convenient definition used for raft and plate problems is due 

to Brown (1969): 

Kr = (EAs) (I_VS2) (t/Bý (7.9) 
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where Ep and Es are the Young's modulus for the plate and the soil respectively, and vs is the 

Poisson's ratio of the soil. Eqn 7.9 recognizes the role of both the modular ratio (Ep/E. ) and 
the aspect ratio (t/13). However, in the present study, these two ratios have been distinguished 

so that their influence can be considered separately. The material properties of the two 

elements were selected to give modular ratios in the range 10-2 to 107 ;a Poisson's ratio of 
0.25 was used for both. Hereafter the term EP wiU be retained for its familiarity, even though 

a waU is being considered rather than a plate. Furthermore - aspect ratio is considered to 
increase when t/13 becomes numerically smaller. Thus an aspect ratio of 1/8 is "greater" (i. e. 

worse) than 1/2, because 8>2 even though 1/8 < 1/2. 

Computerprecision 

To investigate the influence of computer type and computational precision, CRISP was run on 

a Prime 9750 and on a Gould PN9005 (using both Single and Double Precision arithmetic on 

each machine), and on Intel 486 and Pentium PCs (Single Precision only). The former 

architectures are typical of smaller mainframes available in the early 1990s whereas the latter 

are more typical of desktop computers of the late 1990s and early 2000s. 

Evaluation of results 

Percentage equilibrium error (in the horizontal direction) was extracted in the first instance, 
because it is a basic indicator available to the user of CRISP no matter what type of analysis is 
being conducted. However, equilibrium error alone does not give a good indication of how 

particular aspects of the finite element results may be affected. In an attempt to gain further 
information from the simple two-element mesh study, three other quantities were extracted for 

examination. These were the distributions of nodal reaction along the fixed boundary, the 

normal stresses in the soil, and the bending moment in the structural member. 

7.2.3 Results of analyses 

7.2-3.1 Equilibrium errors 

The results are shown in Figs 7.3 (a-d), in the form of 109-109 Plots of equilibrium error 

against modular ratio, Ep/E,. The different aspect ratios are shown as different curves on the 

same plot, enabling the relative influence of t/D and Ep/F, to be distinguished. The results will 
be discussed on the basis that 1% is a desirable maximum equilibrium error, and 5% is the 

upper limit of acceptable error. The purpose in adopting this approach is to apply the sort of 
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criteria that practising engineers might consider reasonable. A figure of 1% also ties in with 
the accuracy levels typically being sought by investigators of adaptive mesh refinement 
(Zienidewicz and Taylor, 1989). 

Boundary condition type A 

Unacceptable equilibrium errors began to occur for modular ratios in the range 10' (at t/13 = 
1/32) to 105 (at tAB = 1/2), Fig. 73(a). At any given value of EpfE,, the range of aspect ratios 
considered altered the equilibrium error by about 1.5 orders of magnitude. Equilibrium errors 
for all the different computer architectures employed were very similar. The use of Double 
Precision, however, suppressed equilibrium errors dramatically, with even the most 

unfavourable, combinations of Ep/13, and t/B producing insignificant errors (< . 001%). 

Boundary conchlion Oe B 

Unacceptable equilibrium errors occurred only for aspect ratios exceeding 1/16, Fig. 7.3 (b), 

and the overall pattern was quite different to that for Type A. Intuitively this did not seem 

reasonable, because worse performance would have been expected from the cantilever-type 
conditions (Irons and Ahmad, 1980). The curves for lower aspect ratios were quite flat, 

showing very little influence from modular ratio. By contrast, the influence of t/B was very 

marked, especially at higher modular ratios. At EA, = 103, for example, the range of aspect 

ratios considered altered the equilibrium error by over 4-5 orders of magnitude. The variation 
of overall equilibrium error with modular and aspect ratio for types BI and B2 was very 
similar to that obtained for type B, and so has not been shown. 

Boundary condition "e C 

The spread and distribution of equilibrium errors for Type C were very similar to those for 

Type A boundary conditions (Figs 7.3(c) and (a)). Again, unacceptable errors began to 

manifest themselves for Ep/E. in the range 103 to 105, and increasing t/B from 1/2 to 1/32 

altered the equilibrium error over 1-2 orders of magnitude. The different types of computer 
architecture yielded essentially the same results. 

Boundapy condition type D 

Equilibrium errors were acceptable at all aspect ratios over the entire range of modular ratio 
considered, Fig. 7.3(d). The overall pattern was similar to that for Type B, though never 
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approaching the magnitude of error achieved for some cases with those boundary conditions, 
Fig. 7.3(b). 

7.2.3.2 Nodal reactions 

The results obtained were examined in two different ways; 
a) distributions of nodal reaction along fixed element edge(s), and 

total out-of-balance reaction. 

The distributions were considered simply by plotting the computed reactions along the 
restrained edge; different modular ratios with a fixed aspect ratio were considered, and vice 
versa. Two of these - plotted in the fonn of a comparative bar-chart - are included with this 
chapter; type BI with 03=1/4 (Fig. 7.4a), and type B2 with tAB=1116 (Fig. 7.4b). Theout-of- 
balance reaction AR was calculated by summing up the computed reactions at each node along 
the Uly-fixed edge, and subtracting this from the applied load of I OOkN. The variation of AR 

with modular ratio EpIE, for types BI and B2 is summarized on Fig. 7. S. 

Boundwy condition type BI 

In this type, it was possible for some reaction to be transmitted through the boundary at the 
base of the soil element, due to the specified fixity. In general, the distribution of nodal 
reaction along the soil element boundary (nodes a, b and c in Fig. 7.1) was fairly uniform, 
although the actual value depended fairly heavily on both t/D and Ep/E., Fig. 7.4(a). Crossing 
the boundary between the soil and the structural element (node c) caused a big jump in the 
profile, and the reaction distribution was very oscillatory thereafter. 

Judging by the out-of-balance reactions, aspect ratios of 1/2,1/4, and 1/8 appeared to give 
overall satisfactory performance across the range of modular ratios being considered, Fig. 
7.50). Aspect ratios, -! 1/16 gave noticeable out-of-balance reactions as soon as Ep/E. 

exceeded 102 . For the case of t/B = 1/32, the out-of-balance reaction reached over 2kN (i. e. 
2% of the applied load of I OOkN) when K, = 103. Comparing this with the corresponding plot 
of equilibrium error (Fig. 7.3b), at the same combination of EpIE, and t/B the equilibrium error 
was approximately 4%. 
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Boundwy condition type B2 

In this case it was no possible for any reaction to be transmitted through the soil element a0--t 
boundary, aU transfer took place along the structural element boundary, Fig. 7.4(b). At EpIE, 
10", aH of the 100 kN was taken to reaction by the first node (at the soil-structure interface). 
As Ep/E. was increased from I 0-2to W, the observed oscillation of reaction along the fixed 
element edge became increasingly exaggerated. For example, at t/B = 1/4 and EA. = 10" 
the reactions at nodes c, d, e, were approximately -90,0, -10 kN respectively, whereas at 
Ep/E, = 10' they were approximately -205,295, -190 W. In each case the FE model 
achieved reactions summing to -100 W, but differences between the individual reactions 
became greater as both modular and aspect ratios were increased. 

Visual inspection of the nodal reactions shows that they are non-intuitive. if an engineer had 
extracted these forces from CRISP output, and was working out how to use them (perhaps in 
calculating shear force at a wall section), he/she could easily be confused. This sort of 
occurrence is not uncommon in FE, where consistent nodal loads for uniform boundary 
tractions and body forces are, at first sight, often surprising (see Section 3.3.6). The spatial 
oscillation of the reactions shown in Fig. 7.4 became more extreme as t/B worsened. 

The out-of-balance reactions AR showed a very similar trend to Type B 1, with noticeable 
force imbalance occurring for stiffiiess contrasts as low as EpIE, ý: 102, Fig. 7.5(b). 

Relevance topracticalproblems 

Nodal reactions may be used in computing wall bending moments so it is important to know 
how ill-conditioning may affect this computed quantity. In a retaining wall analysis, a pair of 
elements either side of the soil-wall interface would fall somewhere between the models 
represented by boundary conditions BI and B2 (nearer to B2 as Kr increased). The modular 
ratio (Ep/Eý) would not need to be particularly high in order to give rise to large oscillations in 
the nodal reactions across the stiffer (i. e. wall) elements. Aspect ratio (03) seemed not to 
greatly affect the distribution of reactions at a particular modular ratio until Ep/M. exceeded 
10, when the effect was very pronounced. 
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7.2.3.3 Normal stresses in soil 

It is entirely reasonable that an engineer might wish to extract the soil stresses calculated by 
CRISP, perhaps to compare with the simplified distributions assumed in design. This is a 
potential minefield which is discussed more fully in Chapter 8; here attention is focused on 
how finite element stresses near an embedded wall are influenced by modulus and aspect ratio. 

Only boundary condition type B2 (Fig. 7.2f) was considered to be meaningful in this context. 
Normal stress profiles were examined on three sections, through the sections of Gauss points 
that are adjacent (near), central, and remote (far) from the structural element, Fig. 7.1. In a 
retaining wall context, these would be the lateral earth pressures. Summary plots have also 
been produced for the central section of Gauss points, showing the effect of varying t/B at a 

constant Ep/E, (Fig. 7.6a) and of varying Ep/E, at a constant tA3 (Fig. 7.6b). 

At no stage did the Gauss point distributions coincide with the applied uniform 100 kPa. All 

distributions oscillated either side of the reference by a minimum of ±5 kPa; in some cases as 

much as -=L5O kPa deviation was seen. Unexpectedly (because there ought not have been much 
ill-conditioning), Ep/E, =I gave the worst discrepancies. Furthermore, the stress distribution 

became more oscillatory with increasing proximity to the wall- Hitherto, the writer had always 

considered that a profile through the central section of Gauss points would give the most 

reliable stress distribution on an embedded retaining wall (and perceives this to be a widely 
held view), but it is not borne out by the results obtained here. 

The central profiles for all VB considered at Ep/E, = 1000 (a typical ratio for concrete walls in 

clay), have been brought together in Fig. 7-6(a). The initial stress oscillations at t/B = 1/2 

appeared to attenuate as t/B -* 1/8, but then worsen at t/13 = 16. Not only that, but there was 

a switch in the position of the "point of coincidence" relative to the 100 kPa reference line; for 

tA3: 5 1/4 it was below the reference, but for t/B ý-- 1/8 it was above. The oscillation of the 

profile nearest the wall was again worst; perhaps not surprisingly the profile through points 
furthest from the wall bore the most resemblance to a uniform 100 kPa. Fig. 7.6(b) plots the 

centre proffles for aU EpIE, considered at t/B=1/4, which shows clearly that patterns become 

more uniform at higher modular ratios. 

What is being observed here is the kind of stiffness oscillation that has prompted many 
previous workers to experiment with stress smoothing procedures. Ways of improving the 
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stress distributions in and around a retaining structure are discussed in Chapter 8; here it is the 

causes of the osciHations which are being studied. 

- 7.2.3.4 Bending moments in structure 

Thus far in this thesis, bending moments in the wall have been used as one way of studying the 
influences of various modelling decisions. It should be remembered that bending moment is 

not a primary output quantity from an FE analysis - it is derived from primary (or even 
secondary) output values. In Chapter 8, this is explored finther as there are several different 

ways in which wall bending moments might actually be calculated. 

Bending moments were calculated in two Merent ways - (a) using transverse stress 
distributions in the structural element (generally regarded as being the most reliable - see 
Section 3.4.2), and (b) using normal pressure distributions in the soil (used in routine hand 

calculation methods such as fixed-earth support). In the latter approach, the resultants of 

active and passive thrust (and any known prop/anchor forces) are multiplied by their lever 

arms above a particular elevation in the wall, Fig. 7.7. In order to use this approach it was 
necessary to take a profile of normal stress through the soil element next to the wall. The 
decision is then whether to use the column of Gauss points near the structure, those in the 

centre of the element, or those furthest from the structure. All three were compared with 

each other and with the analytical bending moment, given by 1/2w(B_Y)2 = 50. (1 _y)2. 

With Ep/Es = 1, transverse stress bending moments were greatly in error, with M. being (at 

best) only 20% of the analytical value when t/13 = 1/2, Fig. 7.8(a). The transverse stress 
bending moment was virtually zero everywhere when t/B = 1/16. 

At EpIE, = 1000 the agreement between the transverse stress bending moment and the 

analytical distribution was quite good at t/B = 1/2, but steadily deteriorated as aspect ratio 
increased. At t/B = 1/16 the agreement was very poor, and M. was only 25% of the 

analytical value and showed little variation along the element, Fig. 7.8(b). This may be 

attributed to the poor bending performance of an 8-noded quadrilateral as the aspect ratio 
becomes high. The results for intermediate values of Ep/E. showed a consistent trend. 

0 Another way would be to use 'snioothed' sa-esses, extrapolated from Gauss point values up to the 
nodes on the soil-wall interflice. I"his is explored furOxT in Chapter 8. 
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Bending moment profiles based on soil stresses were much closer to the analytical values, with 
very little evident influence from the t/B ratio. The distributions tied in well with each other, 
with only a small discrepancy between them which increased as the fixed end was approached. 
Best agreement was with the bending moment calculated from soil stresses on the "fae, 

section of Gauss points, but presumably this was because it was closest to the boundary on 
which the 100 kPa was applied. 

Alternative plots were also produced showing the influence of Ep/E. on transverse stress 
bending moment (only) at a constant t/13; representative examples (for t/B= 1/2 and 1/16) are 

shown in Fig. 7.8 (a)&(b). These show reasonably clearly that a combination of high modular 

ratio and low aspect ratio was required to produce the best agreement between transverse 

stress bending moments and the analytical solution, Fig. 7.8(a). Also, reducing Ep/E. and t/B 
both had the effect of flattening the transverse stress bending moment diagram, forcing it 

closer to zero everywhere, Fig. 7.8 (b). 

7.2.4 Discussion and summary 

The simple two-element model analyses would tend to suggest that ill-conditioning may not 
arise much in the case of concrete diaphragm walls in firm to stfff clay, where aspect ratios 
(for sensible meshes) are not likely to exceed 1/4 and EpIE, will typically be in the range 103 to 
104. In the case of steel (e. g. sheet pile) retaining walls and plates, much higher values of t/B 

and Ep/E, are likely to arise and the likelihood of ill-conditioning is correspondingly much 

greater. The different computers used exhibited similar amounts of ill-conditioning, and 
double precision arithmetic provided adequate remedy in all cases investigated. (In addition, 
ID beam elements should be used to represent something as slender as a sheet pile wall. ) 

This has not been an exhaustive study of modular and aspect ratio effects in retaining wall 
analyses, but it has served to indicate some of the problems which may exist. Numerical 

problems which arise from machine precision may simply not be an issue with some computer 
architectures. True 64-bit workstations (e. g. the Fujitsu HALstation 300 series) have been 

available since the late 1990s and the precision (as wen as speed) of these computers is 

continually redefining the standards. 

The two-element model is arguably too onerous a test, and may not be sufficient on which to 

construct a set of general recommendations (e. g. t/B -ý 1/4 to ensure good computation of 
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bending moments). However, it will not be too far from the true situation in a fiffl-scale finite 

element model. There is a suggestion here that bending moments calculated from soil stresses 
may be more reliable than those from wall stresses. This is contrary to the findings of others 
(e. g. Gunn and Ponnampalam, 1990) and will be explored more fully in Chapter 8. 

If high stiffness contrasts exist in the finite element model, then one obvious way to ascertain 
the severity of the effects would be to re-run the analysis with the stiffness of the more rigid 
materials reduced by an order of magnitude. This has some drawbacks however - the 
displacements and stress distributions of interest will be affected by such changes as they 
depend on relative stiffiness. The possible effects of ill-conditioning may thus be hard to 
distinguish from genuine interaction effects. 

The percentage equilibrium errors reported by CRISP may include out-of-balance loads arising 
from plastic yielding (with the elastic-perfectly plastic models, for example). It may be 

considered that the errors are due entirely to stress points going outside the yield surface and, 
provided they are not excessive, that they are being dealt with satisfactorily by the stress 
correction algorithm. Thus, equilibrium errors arising from iff-conditioning may be masked by 
those due to plastic yielding. This can be detected fairly easily by re-running the analysis as 
purely linear elastic, so that the contribution to out-of-balance loads from stiffiness and aspect 
ratio can be isolated. 

How should the retaining wall designer/analyst proceed? Most analysts probably work on the 
assumption that ill-conditioning is absent - until the program announces its presence, perhaps 
by crashing in n-dd-analysis. However, it is prudent to assume that some degree of ill- 

conditioning will be present in any soil-structure interaction analysis. In the same way that 
adjusting mesh density should show if adequate refinement has been achieved, adjusting 
Modulus contrasts should indicate if ill-conditioning is present. Elements with high aspect 
ratio should always be avoided in the vicinity of high modular ratios and stress gradients. 

Routine use of double precision is one solution, but this effectively halves the size of problem 
(in terms of d. o. f. ) that can be stored in computer memory at any one time. Automatic use 
may, therefore, Prove inefficient and wasteful. 
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7.3 Effective Stress Method 

7.3.1 Introduction 

Many geotechnical finite element codes (including CRISP) use the effective stress method for 
both drained and undrained loading. The bulk modulus of the pore fluid K" is set either to 

zero (to give a drained response) or to an arbitrarily large number (to give an undrained 
response). Further details have been given earlier in this thesis (see Section 3.3.2). 

It is generally believed that the actual magnitude of K,, used for undrained analysis is 

unimportant, provided it is greater (at least by a factor of 100) than the drained bulk modulus 
K! of the soil skeleton. If the value of K,, is too low, then the behaviour modelled is similar to 
that of a partially saturated (B < 1) - or perhaps partially drained7 - soil, with some load being 

taken in effective stress even in the short term. However, if Kw is too high, Ponnampalam 
(1990) found that computed horizontal stress distributions following wall installation can be 

very erratic. Kutmen (1986) had similar problems with wall installation analysis, using a fully 

coupled formulation, though this was probably due to small time steps. 

It would seem that K,, should neither be too high nor too low, relative to the drained bulk 

modulus of the soil, but it is not clear that there will always be a satisfactory range between 

these limits, for all combinations of geometry and soil properties. The problem is analogous to 
that of selecting a value of Poisson's ratio v close (but not exactly equal) to 0.5 for undrained 
analysis in terms of total stresses. In the analyses reported in earlier chapters a value of v= 
0.497 was used without any formal justification, but it is typical of what is used in practice 
(which tends to faff in the range 0.495-0.498). 

The lower limit on K,, (i. e. ensuring that partial saturation or drainage is not unintentionally 
implied) is, in a sense, a soil mechanics problem. It has been noted earlier in the thesis that the 

assumption of undrained behaviour during retaining wall construction may be incorrect, as 

' From a soil mechanics perspective, the ability to undergo some volume change upon loading could 
indicate that there was some air in the pore water (B < 1) causing a significant increase in compressibility, or 
that the drainage characteristics were such that some expulsion of the pore water could take place during 
loading, or that the skeletal compressibility was low, and approaching that of the water. In an FE context 
there is no continuity of volume change unless a coupled formulation is being used (i. e. if water leaves one 
element it must drain into adjacent elements). So, strictly speaking, a low Kw (e. g. stý 101C) replicates 
partially saturated behaviour. 
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some drainage may occur even in low permeability soils (due to laminations of coarser 
material, fissures opening up due to stress reliet etc. ). So it may be advantageous to use a 
value of Kv (or v) which implies that some volume change can indeed take place during 

construction. The upper limit on K, in contrast, is a finite element numerical problem; the 
analyst simply wishes to produce relatively incompressible behaviour, and may intuitively 
believe that, the higher the value selected for K, the better. 

7.3.2 Description of analyses 

To investigate some of the problems which can arise and the effect that they might have on 
quantities of interest to the designer, a series of CRISP analyses has been carried out on an 
unpropped cantilever wall. Mesh xlOyIO was used, Fig. 4.1, together with soil parameters in 
terms of effective stress. Both elastic (sets Id and 3d) and elasto-plastic (sets 12d and 13d) 

soil models were used, though in the case of set 12d the strength parameters were c'=53 kPa 

andý'=19.5*. This was to ensure coincidence of the yield envelopes described by the total and 
effective stress approaches to undrained behaviour, as discussed in Section 5.8.2. 

Unlike previous analyses where these parameters were used (see Chapters 4 and 5), K,,, was 
set to a non-zero value so that the response was no longer fiffly drained. The wall was 
installed "wished-in-place" (WIP) to remove any influence from that aspect of the construction 

process, and the numbers of increments used in the excavation sequence were more than 

adequate according to the findings of Section 6.3. The aim was to ensure that the only major 
influence was from the compressibility of the pore water. 

It is suggested by the authors of CRISP (e. g. Britto and Gunn, 1990) that K" should be set to 

approximately 100 x K' to obtain an undrained response. This is a straightforward calculation 
when soil stiffness is constant but most real soils are nonhomogeneous, with E' (and hence 
1C) increasing with depth. In such cases, it is not clear whether it is best for the designer to 
attempt to satisfy K, /K! se 100 at the top, bottom or middle of the wall. It would be much 
more satisfactory if the user was able to specify the ratio Kw/K' as input data, rather than the 
absolute value of Kw. Indeed, this was implemented in the "boole' version of CRISP (Britto 

and Gunn, 1987), but not in any of the major commercial releases (CRISP 8x, 9x or SAGE). 

Another potential problem in specifying a constant value for K,, would be if a non-linear 
stiffness model (defined in terms of effective stress) was employed. If E' can vary with stress 
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and/or strain level, it would be virtually impossible to guarantee an undrained response 
throughout the analysis unless the ratio KX could be defined instead. This strengthens the 
argument to adopt a ratio rather than an absolute value in the input data. 

For the present purpose, estimations of an appropriate value for K" were based on set I d, 

where E'= constant= 40 NTa and V= 0.2. Inconsequence, when E'= 4z the ratio Of K, /K' 

was rather higher than 100 for z< 10m (i. e. roughly over the upper half of the wall), but less 

than 100 for z>I Orn. Because KwX' approaches infinity as E' --> 0, results were scrutinized 
for possible signs of ill-conditioning near the soil surface. For a stiffness profile of E' = 40 + 
4z (set 12d), K. W was less than 100 at all points below the ground surface. At the toe of the 

wall, E' was approximately 2.5 x F. and so the ratio K. W dropped from 100 to about 40. 

Using Eqn 3.11, for E'= 40 NTa and V= 0.2, K'; -- 2x 104 kPa. This value of K' for set 1 

was used subsequently as a reference for normalizing K, even though it only applied at z=0 
for set 2 and at z= 8m for sets 3 and 13. 

Following the advice of Britto and Gunn (1990), K,, was set to 100 K' =2x 106 kPa. Using 

this as a reference value, it was decided to investigate values of K,, several orders of 
magnitude either side of 2x 106 kPa. The separate cases selected are tabulated below: 

case K,, (kPa) K,, X case K,, (kPa) K,, /K' 

KWOI 2x 103 0.1 KW04 2x 106 100 

KW02 2x 104 1 KW05 2x 107 1000 

KW03 2x 105 10 KW06 2x 108 10000 

7.3.3 Results of analyses 

A complete set of full profiles of wall displacement, bending moment, excavation heave and 
ground surface movement for the different K,, values are shown in Appendix B, Figs B8-1 1. 
Additionally, convergence on the maximum value, for each individual quantity (5, ±K 
V and -S) has been plotted as a function of K,,,, Fig. 7.9(a)-(d), as a way of summarizing the 

main results. IF*. was based on the relevant values of 5, ±K V or -S at K,, =2x 107 kPa, 

rather than 2x 108 kPa; clear evidence of ill-conditioning at the higher value of K,, rendered 

7-22 



the results unreliable. In addition, only the numerically larger of +M. and -M. was used in 

creating these convergence plots. 

To provide further insight into what was happening at high K,, /K' ratios, two additional K,, 

values of 2x 109 and 10'0 kPa were included, and profiles of cr"b, u, and Gh on the retained 

side of the wall were examined. Profiles of pore water pressure (only) are shown in Fig. B 12, 
based on Gauss point values in the centre of the column of elements adjacent to the wall (this 

is returned to in Chapter 8). To provide a means of comparison, percentage errors in stress A,, 

relative to the reference case were computed thus: 

A,, = max(ai-cyi*)/max(cri*) x 100% (7.10) 

where ai is the stress (Cy'h .u or ah) at point i on the wall for a given K,,, and cri* is the stress 

at the reference K, of 2x 106 kPa. (K, /K' szý 100) at the same point i. The variation of Aa with 

K, X has been plotted in Fig. 7.1 0(a)-(d), providing some indication of the errors introduced. 

Horizontal wall displacement 

The plotted profiles confirm that the "rule of thumb" value of K,, W = 100 provided a 

satisfactory prediction of wall displacements (Fig. B9). The curve obtained for the equivalent 

total stress analysis (with v=0.497) has not been reproduced, but showed good agreement 

with the effective stress analysis. The curves for K. /K' values between 10 and 1000 were 

clustered close together, but there was some evidence that the profile was beginning to 
diverge away at Kw/KI = 104 in the elastic analyses. This can also be seen in Fig. 7.9(a), which 

Plots (5... / 8*. ) against Kw and indicates problems developing at high K,, values. 

The sensitivity to K, appeared to be more pronounced for the elastic-perfectly plastic 

analyses, but it should be remembered that the unpropped wall was rotationally unstable under 
My drained conditions for parameter set 13d (when E'=4z; ý'=19.5'), so the displacements at 
lower K,,, values (tending towards the drained limit) were, not surprisingly, rather large. 

Wall bending moment 

The bending moment profiles also provided confirmation that K,,, /Kl = 100 seemed to give a 

sufficiently undrained response, Figs B9 and 7-9(b). The errors introduced by having K. too 

7-23 



low were more pronounced below formation level than above, with less sensitivity to K, over 
the upper half of the wall; especially for sets Id and 12d. Profiles were clustered together in 

the range 10 < K, /KI < 1000 and, like wall displacements, there was a clear deterioration of 
the results for K, /K' = 104. 

Excavation heave 

From Figs B 10 and 7.9(c), it would seem that excavation heave was relatively much more 
sensitive to the compressibility of the pore water than wall behaviour. Heave profiles did not 
reach steady values until K,, /K' ý: 100, the sensitivity being more pronounced when the soil 
was permitted to yield. It was only for the homogeneous E' case that there was any evidence 
of possible numerical problems at high K,,,. 

Ground surface movement 
The profiles of surface heavelsettlement showed very clearly the importance of selecting the 

right magnitude for K,,, Figs BII and 7.9(d). As with excavation heaves, KwM' = 100 

appeared to give an adequate undrained response, but only just. K,, /K' = 10 would have lead 

to significant error in the computed surface movements. The profile obtained when E' 

constant and KX' =I Cý indicated the onset of serious ill-conditioning, Fig. BII (a). 

Horizontal effective stress 
Recalling that effective stresses cannot change during undrained loading in an elastic analysis 

provides a means of checkinj the computed profiles of &h. When 102 :: 5 K, /K': g 104, the 

profiles correctly followed the fine (A a',, = 20z. However, for K. /K' > 105) C; 'h began 

to oscillate across this line in the elastic analyses, and these results were therefore discarded as 

unreliable. (NB: the elastic-perfectly plastic analyses crashed due to serious ill-conditioning 

after just 2-3 increments when K,, > 105, and therefore these G'h profiles could not be plotted. ) 

Fig. 7.1 O(a) suggests that a 20% discrepancy could arise at high KX. 

Pore water pressure 
In an undrained analysis, the pore water pressures are expected to change. Behind the wall, 
where lateral stress relief leads to a reduction in mean total stress, the pore water pressures 
will reduce. This trend can be seen in Fig. B 12. However, these plots convey a rather 
alarming picture of how the pore water pressure profile can degenerate if K,, ý is taken much 
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above 100. Such was the degree of oscillation when K.,, W 2! 105 that the profiles for KWW 

105 and 106 been omitted from most plots so as not to obscure the detail. However, the trend 

which is developing has become quite clear by the time K,, X = 105. Fig. 7.1 O(b) underlines 
this, and indicates that discrepancies as high as 2000% may arise when Kw/K'= 106. 

Deterioration in computed stress components as a material becomes nearly incompressible has 

also been studied by Naylor (1974), for a number of simple boundary value problems. 
Increasing errors were shown both in total stress analyses with v approaching 0.5, and in 

effective stress analyses with Kw approaching oo. The nature of the problem lies in the fact 

that, with fiffl numerical integration (3x3 for 8-node quadrilaterals), the number of constraints 
may exceed the number of degrees of freedom in an undrained analysis. Similar conclusions 
were reached by Sloan and Randolph (1982). Reduced integration is one solution to this, but 

users of CRISP do not have this facility in commercially available releases of the program. 
(Naylor's findings are also relevant to the investigations of Chapter 8; specifically, the quality 
of stress distributions computed by the finite element displacement method. ) 

Horizontal total stress 

Profiles of ah also showed oscillation, but this was a direct consequence of the problems with 

pore water pressures noted already. The trends in Fig. 7.10(c) are very similar to those in Fig. 

7.1 O(b), though the discrepancies are not quite as severe. 

Comparison with total stress analyses 

To verify that K,, JK' = 100 was giving an undrained response for the cases being considered 
here, the elastic analyses were re-run using total stresses and the key results compared. 

Horizontal wall displacement and wall bending moment did not appear to be particularly 

sensitive to KJK' for values ýt 10, which recovered essentially the same solution as the total 

stressapproach. Excavation heave and ground surface movement required K,, /K'ý100 in 

order to produce similar results to the total stress analysis, and even then the agreement was 
not as close as that obtained for the wall movements and bending moments. 
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7.3.4 Discussion and summary 

The effective stress method is a very convenient way of switching between drained and 
undrained analyses, simply by adjusting one single parameter. Of course, the total stress 
approach could be used with E,, and v.; u V2but then the pore water pressures are not 
explicitly calculated. The convenience of the effective stress method may tend to disguise its 

main pitfall; i. e. that there is actually an optimum value for Kw. If Kw is set low, partial 
saturation is modelled, whereas if it is too high, numerical instability may result. Some users 
night tend to the view that, if a large number is required for Kw, then 10" (or higher) might be 
ideal, in the belief that it would ensure completely undrained behaviour. (The writer has seen 
this being done, together with the use of vu = 0.4999. ) 

If E' (and hence K') varies with depth (quite common in natural soils) then even the 

experienced user would tend to select a K,, on the high side to ensure that K. /K' >I 00 

everywhere, and this could cause particular problems near the soil surface - often the area of 
greatest interest. Therefore, it is suggested that a= Kw/K' be an input parameter rather than 
K,,,,. It removes some of the possible errors which may occur due to K! varying in the mesh. 

7.4 Coupled Analysis 

7.4.1 Introduction 

Depending on the exact requirements, it is not unusual to commence a commercial retaining 
wall analysis in uncoupled mode. Separate undrained (v. szý 1/2 or K, >> 0) and drained (a 

c; ') analyses can be performed t6 give the short and long term respectively, and the matter may 
rest there if time dependency is unimportant (and/or the data for more sophisticated analysis is 

not available). However, there is now ample evidence that coupled analyses can produce 
Phenomena which are not in evidence if one simply takes the numerical difference between the 

corresponding drained and undrained results (e. g. Woods, 1986). Hence coupled analysis may 
well be called for. 

If coupled analysis is required, elements in the original mesh can be converted to the type with 
excess pore pressure d. o. f Additional information is then specified in the input data file (e. g. 
coefficients of permeability, drainage boundary conditions, time steps) and the FE model is 
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ready. The first task might well be to benchmark the coupled analysis against an equivalent 
uncoupled analysis. It should be possible to recover the undrained, case with small time steps 
At (and/or low k), but how small? The drained case can be recovered with large At (and/or 
high k), but how large? This section will examine if expectations of equivalence are justified. 

7.4.2 Description of analyses 

To investigate the equivalence of coupled and uncoupled analyses at the limits of drainage, 

mesh xlOyIO was used to perform five different types of analysis: 

Code Type Modulus v K,, k At 
(a) uncoupled; drained E' 0.2 0 n/a n/a 
(b) uncoupled; undrained (a') E' 0.2 ; t%100K' n/a n/a 
(c) uncoupled; undrained, (a) E, ý 0.497 0 n/a n/a 
(d) coupled; undrained. E' 0.2 n/a 10-9 -> 0 

(e) coupled; drained E' 0.2 n/a 10, -> 00 

In all but (c), stiffness profiles E' =40+4z and E' =4z Wa were used; in (c) the corresponding 

profiles E,, = 50+5z and E,, =5z NTa were adopted. Both elastic and elastic-perfectly plastic 

analyses were run, for comparison. The expectation aprioil was that analyses (a) and (e) 

would yield the same results, and that (b), (c) and (d) would be virtually identical to each 

other. 

7.4.3 Results of analyses 

The only type of result extracted for each analysis was the wall displacement profile (S: z) at 
the end of excavation, as this was considered sufficient to demonstrate equivalence (or 

otherwise) of the total stress and effective stress approaches. 

Elastic analyses 

Regardless of soil stiffness profile, the 6: z profiles for (a) and (e) were indeed identical and 
reflected the long-term drained response; for example Fig. 7.11 (a), which is for E' = 4z. The 

profiles for (b), (c) and (d) were similarly equivalent to each other - all giving the short-term 
undrained wall displacement profile. 
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Elasto-plastic analyses 

With E' = 40+4z, the 5: z profiles for (b), (c) and (d) were only approximately equivalent, with 
noticeable differences at some wall elevations, Fig. 7.11 (b). The 5: z profiles for (a) and (e) 

were very different from each other, with greater movement and wall curvature shown in (e). 

Considering E' = 4z, the lack of agreement between 5: z profiles for (b), (c) and (d) was even 
more pronounced, but the discrepancy between (a) and (e) profiles was not quite so much. 

7.4.4 Discussion and summary 

The results from the elastic analyses confirmed what had been intuitively expected; namely 
that a coupled analysis with small At gives the same results asundrained/uncoupled analysis, 

and that a coupled analysis with large At gives the same results as . 
drained/uncoupled 

analysis. However, the lack of agreement between coupled and uncoupled analyses in the 

presence of plastic yielding was unexpected (especially for the drained case). Had the coupled 

wall displacements been smaller than the uncoupled, it might have suggested that insufficient 

time had been allowed to elapse (i. e. the individual At and cumulative Y'At were too small). 
But the reverse case was true, indicating that the drained/uncoupled analysis may not be an 

upper bound on calculated behaviour, and that the coupled analysis provides for different 

modes of behaviour and new possibilities. 

A possible explanation is provided by the nonuniform volume changes which can occur 

throughout the domain during a coupled analysis. Excess pore water pressure are generated 

wherever there is the tendency for volume strain Ae, - these excess pressures are normally 

relieved by drainage towards prescribed boundaries. Net water movement permits distortion 

(through continuity) and hence changes in effective stress a'. If drainage was to formation 

level as well as to the original ground level, and/or the wall was assumed to be a partial 
drainage boundary, then different patterns of drainage would emerge, leading to different 

patterns of strain and stress change, and hence Merent permanent displacements. 

Time has not permitted more detailed investigation of the reasons behind the phenomena 
observed herein. But the investigation has served a useful purpose by demonstrating that 

equivalence between coupled and uncoupled analysis cannot be guaranteed by making time 

steps large (or small) enough. This confirms the earlier findings of the writer (Woods, 1986) 

albeit for a very different type of boundary-value problem. 

7-28 



7.5 Horizontal Stresses 

7.5.1 Introduction 

Horizontal stresses are an important output quantity which a designer may wish to extract 
from a retaining wall analysis; perhaps to compare with a profile obtained from classical theory 
(e. g. Rankine). It is often emphasized that the simplified earth pressure distributions assumed 
in such theories bear little resemblance to those pertaining in practice - especially under 
working conditions. However, the use (and interpretation) of stresses from an FE analysis is 
far from clear-cut and it would be misleading if FE advocates were to claim otherwise. Stress 
in an element is a secondary quantity, in that it is derived from the primary solution (i. e. nodal 
displacements) through the relationship: 

Aa = DAs = BDAa (7.11) 

It should be recalled that, in the FE (displacement) method, it is only the equilibrium of nodal 
forces which is required. The stresses inside any element may not necessarily be in 

equilibrium; i. e. they may not satisfy the differential equations of equilibrium, viz.: 

aal az,, y &,, 
+ -+ + F. 0 

V'y 

&YX ady &YZ 

+ + + Fy 0 (7.12) 
N Oy a 

&I, &YZ aaz 
+ -+ 

+ Fz 0 
N &Y O-Z 

Furthermore, stresses in neighbouring elements are not required to balance across mutual 
boundaries. Stress discontinuities often exist across these boundaries (and indeed can be used 
as an aposteriori check on the adequacy of mesh density). Equilibrium is satisfied in an 
average sense, however, through the nodal equilibrium equations: 

(B'CDB)dV ae (NT b) dV + (NT t) dA (7.13) 
vs 
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The topic of horizontal stress can be considered to have two different perspectives - (i) the 
quality and reliability of the computed stresses, and (H) the use and interpretation of such 
stresses in a design context. The investigation and discussion of the former (which is primarily 
of a numerical nature) takes place in the present chapter, whereas the latter is addressed in 
Chapter 8 (which deals with obtaining design output). 

Three specific numerical problems relating to computed horizontal stresses have been 
identified in CRISP analyses of retaining walls: 
a) tensile active stresses 
a) passive pressure concentrations 
C) horizontal stress oscillations 

7.5.2 Tensile active stresses 

For walls which are unpropped above final excavation level, "negative" bending moments 
(tension face on excavated side) sometimes occur in the upper portion of the wall. This 
implies the existence of tensile total stresses across the soil-wall interface on the retained side, 
which develop as the wall attempts to move towards the excavation. According to Powrie and 
Li (1990b), this effect is particularly pronounced when elastic-perfectly plastic soil models are 
used, and becomes worse with higher soil stiffness (0). They state that the effect can be 

minimized by using the Schofield soil model, but were unsure if this was due mainly to the "no 

tension7' cut-off, or pressure dependent stiffness (E' a p') incorporated in this model. A final 

point made by Powrie and Li is that although the transmission of tensile stresses can be 

prevented by the use of interface elements', this does not seem to overcome the problem of 
negative bending moments. This is probably because there is stiff downward shear on the back 

of the wall (present even if interface elements are used, wherer = c'w + a'tan5'). 

7.5-2.1 Description of analyses 
In order to examine in detail the conditions under wWch tensile active stresses can arise and 
the effect that they might have on dependent quantities, a series of undrained CRISP analyses 
has been carried out on an unpropped cantilever wall. (It was considered that an unpropped 
wall would give the most severe situation in terms of the tendency to develop tensile stresses. ) 

0 interface elenwnts dicinselves have to be used with caution as they have been known to cause other 
problenis Powrie and Li (1990). 
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Mesh xIOyIO was used, Fig. 4.1, so that mesh boundary location and element grading effects 
were minimized. The wall was installed "wished in place" and a sufficient number of 
increments were used for excavation (based on the findings of investigations reported in 
Chapter 6). 

Soil parameter sets 12d and 13d (Table 4.8) were used, with c'= 0,5,20,50 and 108 kPa (the 
last giving the elastic condition, and referred to hereinafter as c' = oo). Undrained analyses 
were conducted first, with Kw set to 2x 106 kPa (; ts I OOK') in order to give the optimum 
representation of undrained conditions. These were followed by fully coupled analyses to 
investigate the changes in horizontal stress as end-of-construction excess pore water pressures 
were allowed to dissipate. The changes to the original FE model were to: 

a) convert soil elements to LSQp type 
b) specify coefficients of permeability (k,, =Ix 10"0 nils ; kh = 41, - typical of London clay) 
C) impose initial drainage conditions (constant head) on remote boundaries 
d) specify time steps At for each increment 

e) create a drainage boundary at formation level at the end of excavation 
f) allow dissipation of excess pore water pressures for 100 years 

In step (c) the original ground level was impermeable until drainage to the excavated 
formation level was permitted - this allowed more direct comparison with the previous 
(uncoupled) undrained analyses up until the end of excavation, with excess pore water 
pressures then being released from that point onward. In step (d), At was set at I rn of 
excavation per day (therefore ffill excavation would take 8 days) -a typical speed for an 
underpass project, for example. Larger time steps would have led to significant drainage 

occurring during excavation, thus obscuring the comparison. 

7.5.2.2 Results of analyses 
If crh < 0, then it follows that crh +u<0, which means either that a'h and u are both negative 

-or that just one is negative (but is numerically larger that the other). Therefore, it will be 

necessary to examine all three quantities ah, CF'h and u in attempting to discern the source of 
the tensile active stress phenomenon. 

The results were extracted in the two different fonns of (i) pressure distributions, and (H) 

stress paths - during excavation and subsequent equilibration. Profiles of horizontal effective 
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stress a'h, pore water pressure u, and horizontal total stress ah over the upper portion of the 

wall were plotted and inspected, based on Gauss point values in the centre of the column of 
soil elements immediately behind the wall. Total and effective stress paths (av: ah and CF',: a'h) 
were plotted at these same Gauss points, for the uppermost two elements. Many plots were 
thus Produced; only a representative few are reproduced with this chapter to illustrate key 

points. Furthermore, stress paths from the coupled analyses showed more consistent trends 
than the uncoupled and so only these will be shown and discussed. The main findings were as 
follows. 

Horizontal effective stress distribution 

> 
With c' = oo (elastic) CY'h became negative over approximately the top 0.5m of the wall, 
dropping as low as -20 kPa at the completion of bulk excavation, Fig. 7.12(a). During 

equilibration, CY'h dropped to -70 kPa (significantly more than during excavation) and was 

negative down to 4rrL As c' reduced to zero, CT'h actually began to increase from the in-situ 

value over the top 3m of wall, Whilst still reducing below this depth, changing in such a way 
that the post-excavation profile was at an almost constant value over this depth (and was 

positive everywhere), Fig. 7.12(b). During equilibration, the CY'h profile reduced by between 

25-75 kPa and was negative over the top 1.5m, reaching a minimum of -50 kPa. 

b) E'. =0 
WIth C' = 00, G'h dropped only a small amount (:! r. 10 kPa) from its in-situ value during 

excavation, and remained positive at all depths. During equilibration, however, the top 4m of 
the ah profile became negative, with a minimum value of -25 kPa. As c' dropped to 0, the 

change in a'h during excavation switched from one of reduction to one of increase above the 
in-situ value and thus moved away from the tensile region. There was a significant reduction 
in effective stress during equilibration, but cF'h remained positive at all stages post-excavation. 

Pore waterpressure distribution 

E'. 

With c' = oo (elastic) pore water pressures showed marked oscillation, becoming negative 
down to a depth of 5m, and averaging about -20 kPa at the end of excavation. At the end of 
equilibration, pore water pressures returned almost to the in-situ profile (actually, slightly less 
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than u. (z) on account of steady-state seepage occurring around the wall). As c' reduced to 0, 
the post-excavation oscillation became less pronounced, but u was negative down to 6m, Fig. 
7.13 (a). Average pore pressures at the end of excavation were more negative in the coupled 
analysis than in the uncoupled (-60 compared with -25 kPa), thus putting in doubt the 
equivalence of the two different approaches. In the long term, pore water pressures again 
dropped to slightly less than u,, (z) due to seepage. 

b) E% =0 
Uncoupled pore water pressures in the elastic case again showed marked oscillation about the 

uo(z) line, but remained positive always. However, the coupled analysis showed negative end- 
of-excavation pore water pressures (around -35 kPa), though without oscillation. Reducing 

c', the oscillations remained but the average value shifted towards the negative until, at c' = 0, 
there were some peaks (-15 kPa) within the top 2m, Fig. 7.13(b). Pore pressures in the 
coupled analysis dropped to -60 kPa at the end of excavation. In the long term, a profile just 
less than u,, (z) was recovered once again. 

Horizontal total stress distribution 

E'. >0 
With c' = oo, as a consequence of what happened to G'h and u, ah was negative over the top 
I m, reaching a maximum of -50 kPa. at crest level by the end of excavation, Fig. 7.14(a). In 

the long term, following dissipation of excess pore water pressures, crh varied linearly from -60 
kPa to 0 over the top 2.5m of the wall. This profile was not too different to that achieved at 
the end of excavation, suggesting that total stress varied little during equilibration. As c' 
reduced to 0, post-excavation tensile stress at the top of the wall virtually disappeared, with ah 
being positive at nearly all points. In the long term, cyh was negative over only the top Im of 
the wall, with a minimum value of -50 kPa. 

b) E'O = 
With c' = oo, CYh was positive at all depths in the uncoupled analysis, and simply oscillated ±1 0 

kPa about the in-situ profile a, (z). In the coupled analysis crh dropped to a small negative 

value (ms -10 kPa) between 0-2m and remained there during equalization, Fig. 7.14(b). As c' 

reduced to 0, Cyh always remained >0 in the uncoupled analysis, though continued to oscillate 

and tended to reduce from the in-situ value below 2m depth. In the coupled analysis ch 
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dropped from ah. to approximately zero over the top 2m, increasing back to substantial 

positive values during equalization, but always < crh.. 

Effective stresspaths 

> 

With c' = oo, effective stress paths (ESPs) during excavation were generally at constant mean 
effective stress (s') following a gradient of Acy'v: A(Y'h -- IA, as required by elastic theory. 
During equalization, ESPs were generally inclined at AG',,: Aa'h ̀ -I: - I to - IA depending on 
depth below crest, showing major reductions in a'h. With c' = 50 kPa, all excavation ESPs 

were again almost all constant s', because of the significant elastic region; an example is shown 
in Fig. 7.15(a). As c' reduced, the ESPs progressively became very different - the constant s' 
portion gradually reduced in length and switched over to approximately constant stress 
difference t' (AG',: AG'h $t' 1: 1), as plastic yield occurred at lower deviatoric stresses. During 

equilibration, ESPs retraced themselves first and then continued dropping at a shallower 
gradient (Aa',: Aa'h; -- -L-2), probing well into the negative quadrant of stress space. For 

points deeper below ground, ESPs increased in a', before falling parallel to the excavation 
path. 

At c' = 0, the excavation ESP indicated the onset of yield as it crossed the isotropic line, well 
below the prescribed active failure line (i. e. CY'h = Kav - 2c'Nk. ); for example Fig. 7.15 (b). 
This looked intuitively wrong, from a 2D plane strain viewpoint - which does not take account 
of rxy and a'. in determining yield. Recalling the Mohr-Coulomb yield function as coded in 
CRISP (Eqn 5.10) the analyses were checked by substituting output values of cy', ' , a'y , CF'z 
and -ry into the function. This did indeed evaluate to zero at the point indicated on the ESP, 

and remained at approximately zero as yield continued, thus verif3ing this part of the code. 

b) E'0 =0 
With c'= oo, all excavation ESPs were constants' with Aa,: Aa'h ýýI IA, switching to -1: -2 
during pore pressure equilibration, Fig. 7.15(c). As c'reduced to 50 kPa, then 20,5 and 0, 
ESPs started off as constant s' but then began to turn to Acy'v: Aah ; t, 2: 1 as yield commenced 
at a progressively earlier stage - particularly in Gauss points near the top of the wall; an 
example is in Fig. 7.15(d). Equilibration ESPs for c' -+ 0 first relaxed in a'h and then ran 
down parallel to the excavation ESP, but generally staying in the positive quadrant of cy,: cyh 
space. 
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Total stress paths 

F. 

With c' = oo, total stress paths (TSPs) during excavation at the top six Gauss points nearest the 
ground surface were quite variable in the uncoupled analysis, proceeding in different 
directions. They were more consistent in the coupled analysis. The uppermost Gauss point 
showed the TSP diverging from the ESP during excavation to give large negative pore 
pressure changes, at a gradient Acr,,: Aah f, -; -1: -2; see Fig. 7.15(a). During equilibration, TSPs 

were relatively short, and were of the order Aa,: Aah ý-- 2A (perpendicular to, and shorter 
than, excavation TSPs). Reducing c' to 0, TSPs converged on the ESPs, intersected them, 
and then kept falling at Aa,,: Aah szý -1: -3; Fig. 7.15(b). During equilibration, TSPs rejoined the 
ESPs before dropping at stý -1: -2 to the long term equilibrium point. 

b) E'. =0 
With c' = oo, excavation TSPs showed a predominant reduction in crh , falling at - IA; as seen 
in Fig. 7.15(c). As c' reduced to 0, TSPs during excavation were very similar to the elastic 

case (c' = ao). During dissipation of excess pore pressures, TSPs showed an increase in ah 
(not quite to the initial value) plus some increase in cr,; Fig. 7.15(d). 

7.5.2.3 Discussion and summary 

The development of tensile total stresses behind the wall arises from the combined response of 
the effective stresses and pore water pressures. There is no evidence that the constitutive law 
has been violated, as the stress state is well within the yield locus defined by the shear strength 
parameters (where appropriate). The effect is more pronounced with higher E'. and when 
there is a significant elastic region, confirming the observations of Powiie and Li (I 990b). 

What are the practical consequences? Taking E'. >0 and c' = 00 as an example, a crude 

calculation shows that the bending moment at a depth of 2.5m below the top of the wall would 
be approx. 1/2 x 2.5m x -60kPa x 2/3 x 2.5rn = -125 kN-m/m. Whilst this is not a particularly 
large value, the effect of these tensile horizontal stresses on wall bending moment becomes 

amplified further down the wall, as the lever arm increases. For instance, at dig level, the 

moment effect would be 1/2x 2.5 x -60 x (2.5 x 2/3 + 5.5) = -537 kN-m/m. 
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7.5.3 Passive pressure concentrations 

Soil elements closest to the wall on the excavated side Oust below final dig level) have been 
known to exhibit high horizontal effective stresses, after the removal of elements to simulate 
excavation. It appears to be possible to obtain stress states outside of the specified failure 

envelope near soil surfaces where the soil has undergone swelling. This phenomenon has been 

observed in elasto-plastic retaining wall analyses with CRISP by Clarke and Wroth (1984), 
Ponnampalam (1990), and Powrie and Li (1990b). The writer has observed it in various 
analyses, including most of those reported in Appendix A- It can also be seen in the results 
obtained by Rodrigues (1975) and Creed (1979) for other FE codes - this is particularly 
noteworthy because these codes were wholly elastic and did not incorporate plastic yielding. 

A typical distribution of horizontal stress on the passive (excavated) side following excavation 
is shown in Fig. 7.16. It is evident that the element immediately in front of the wall just below 

the excavated surface has some rather severe restraints imposed on it; it is in contact with a 

more rigid material, there may be high shear stresses on the soil-wall interface, and formation 
level propping (if present) may impose limitations on how much vertical movement (swelling) 

can take place. The virtual incompressibility imposed by an undrained analysis may also be 

part of the problem, as it imposes further restraint on possible displacement patterns. It may 
also be that, if stress states are moving outside the failure envelope, too few increments are 
being used to allow yielded states to come back onto the yield surface (see Section 3.3.8 for a 
description of how CRISP does this). 

A useful starting point in unravelfing the problem is to consider the approximate total stress 

paths followed by this element (or different points within it). The major change of total stress 

experienced by the element is that of vertical unloading, accompanied by some increase in 

horizontal stress. The former component is unequivocal and arises from overburden removal, 

whereas the latter (which is harder to quantify) is caused by the wall tending to move outward 
following excavation. The horizontal component Acrh could be expected to he between the 
limits 0 ---ý 

Ac; h-, --ý A(:;,, as shown in Fig. 7.17(a). Total stress paths are shown in both c;,: crh 

space (better suited to showing field conditions) and t: s space (more useful for distinguishing 

deviatoric and mean stress components). 
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Sketching effective stress paths requires a knowledge of pore pressure response, and a 
convenient way of doing this is to use pore pressure parameters written in invariant forn?, 
leading to Au = b(As + a. At). For a fully saturated soil then b=1; if the soil is also elastic then 

a=0, and the change in pore pressure is equal to the change in mean stress As. For the case 
of Aah = 0, As is negative and the effective stress path converges with the total stress path. If 
Aah = Aa, As is zero and the effective stress path is parallel to the total stress path. 
Consequently, the effective stress path is the same in both cases, Fig. 7.17(b). In the absence 
of any yield criterion, it can be seen that as the effective stress path approaches the crh axis, 
high horizontal stresses (passive pressure concentrations) are predicted as the vertical stress 
tends to zero. 

If the soil is permitted to yield, however, the parameter "a7' is no longer zero but will depend 

on whether the soil skeleton tends to dilate (a < 0) or collapse (a > 0) on shearing. If a Mohr- 
Coulomb criterion is assumed, the yield (failure) envelope can be added to both a,: ah and t: s 

space. As noted in Chapter 5, the classical Mohr-Coulomb model in CRISP assumes 

normality which implies strong dilation with xy At yield the tendency would be for < 
0, but in an undrained situation it is not possible to have 5e, # 0, . -. 5u = K,,,. 5&,, = KV. (5c"V + 
Sep, ). Because ep >> e., the strongly negative S&P, will produce negative 8u, which means that 

a'n (or more generally, p' or s') must increase and the stress state will migrate along the Mohr- 

Coulomb envelope, Fig. 7.17(c). The absolute pore pressure will reduce until the total and 
effective stress paths meet; finther reduction will create a negative absolute pore pressure. 
The key point, however, is that effective stresses can continue to rise - apparently unchecked. 
They will do so in such a way that high horizontal stresses (passive pressure concentrations) 

can, again, be sustained at low vertical stress - though not as much for wholly elastic soil. 

7.5.3.1 Description of analyses 

The above reasoning was tested by examining the stress paths in the element(s) where the 

passive pressure concentrations arise. Specifically, this has been done through a series of 
undrained analyses of an unpropped cantilever wall; the same analyses as were used in the 

previous section on tensile active stresses. The only difference is that the profiles Of CY'hq U9 

9 Attributed to Hmkel byNaylor etal (1984), and differing fim the more fiuniliar parameters A and 
B due to Skempton (1954) which are based on principal stress changes and are more appropriate to triaxial 
test conditions. 
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and ah were extracted from the central column of Gauss points in the elements ad acent to the 

wall on the passive side (0.5m from the wall), below formation level (FL). Effective and total 

stress paths were considered in the element just below FL (element "x7' in Fig. 7.16a), at the 

shallowest Gauss Point. As before, both uncoupled analyses (excavation only) and coupled 
(excavation and equilibration) were performed. Finally, profiles and stress paths on sections a 
little further from the wall (at 1.5m and 2.5m) were also examined, for comparison purposes. 

7.5.3.2 Results of analyses 

It was found that results for E' = 40+4z (set 12d) and E' = 4z (set 13 d) were very similar, and 
so the"following comments on the results are applicable to both stiffness profiles. Significant 
differences between the uncoupled analyses and fidly coupled analyses were observed by the 

end of excavation - largely due to pore water pressure distributions in the uncoupled analysis 
being much more oscillatory (discussion on this is deferred to Section 7.5.4). As in the 

precious section, many plots were created but only a few are reproduced here. 

Horizontal effective stress distribution 

With c'= ao (i. e., elastic) CF"h increased to +300 kPa (ts 2x Cy'ho) just below FL at the end of 

excavation, Fig. 7.18(a). Following the dissipation of excess pore water pressures, cr 0h 

increased further to +480 kPa (, -4 3.5 X Cr'ho). At c' = 0, the maximum value Of CF'h- Post- 

excavation was +3 80 kPa, Fig. 7.18(b), though the profile didn't faff away quite so much with 
depth. The peak reduced a little to +340 kPa after pore pressure equilibration, but stood out 

very sharply as an anomaly because Cy'h ; ý- -100 kPa at the Gauss point immediately beneath. 

At I. Sm and 2.5m from the wall, post-excavation profiles showed no peakjust below FL; in 

fact G'h values increased with depth regardless of the value of c'. In the long term, the values 

Of 'U'h either increased a little (cl = ao) or dropped a lot (c' = 0) over the first 2m below FL. 

Pore water pressure distribution 

With c' = oo, pore water pressures in the uncoupled analysis showed marked oscillation post- 
excavation, with a large positive value of approx. +200 kPa (, w 2.5 x uo) just below FL, but 

with -100 kPa at the next two Gauss points fiu-ther down, Fig. 7.19(a). The coupled analysis 
had the same maximum value of +200 kPa post excavation, but very little oscillation with 
depth. As c' reduced to 0, the post-excavation oscillations remained in the uncoupled analysis, 
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but the large positive pore pressure disappeared and the first 3m of the profile was in the 
negative region, averaging around -300 kPa just below FL. In the coupled analysis, pore 
pressures were negative over the first 2m of the profile, with a minimum value of - 13 0 kPa, 
Fig. 7.19(b). Regardless of c', the final pore pressure profile at the end of equilibration was 
almost hydrostatic (du/dz just less than yw) in accordance with steady seepage conditions. 

Some distance from the wall, pore pressures generally reduced by a greater amount during 

excavation. With c' = oo, the profile was always positive, but with c' =0 it was negative down 

to 4m, being -125 kPa at FL". Post-dissipation, profiles were virtually identical to those 

adjacent to the wall. 

Horizontal total stress distribution 

After excavation with c' = oo, crh increased to +480 kPa (, -d 2x cyh, ) just below FL, with the 
(uncoupled) profile oscillating about crh. (z), Fig. 7.20(a). The coupled analysis showed a 

similar peak value but no real oscillation, Fig. 7.20(b). After excess pore pressure dissipation, 

this peak value remained the same; in fact, the whole profile showed little change during 

equilibration. When c' = 0, the whole profile dropped below ah(, (z) following excavation, 

though the fall was greater in the uncoupled analysis than in the coupled, which showed CTh -- 
aho at the top Gauss point, and crh(z); t; ah,, (z) - 30 kPa. elsewhere. Following equilibration, crh 
peaked at +340 kPa in the Gauss point below dig level, but Cyh values at greater depths were 
well below post-excavation values (up to +200 kPa. lower). 

Further from the wall, post-excavation profiles were very different from those near to the wall 

over the first 2m in the elastic case (c' = oo), though again showed little subsequent change 
during dissipation. When plastic yield was allowed (c' = 0), post-excavation profiles were not 
much different from those near to the wall over the first 2m, whereas long term profiles were 
very different - the large peak in Ch seen adjacent to the wall was not present 2.5m away. 

E, Yfective stresspaths 
With c' = oo in the coupled analysis, the ESP (at Gauss point just below FL) showed increasing 

G'h with little change in Aa%, for the first three-quarters of the excavation, after which much 

10 In practice, cavitation would limit negative pore water pressure to -101.25 kPa, but CRISP 
does not apply any such limit. 
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larger changes occurred at constants' (Acy'v: ACT'hý -1: 1), Fig. 7.21(a). During dissipation of 

excess pore pressure, the ESP moved at r-. 1: 1 (constant t), converging on the corresponding 
TSP, after which they both showed a small increase in horizontal stress. As c' reduced to 0, 
the constant s' portion disappeared and the path switched to AG',: Aa'h %zý 1: 2, as yield occurred 
at an earlier stage of excavation. During equilibration, the ESP travelled straight to the origin, 
where it joined the corresponding TSP. Both paths then subsequently climbed together at a 
slope of 2: 3 (following the passive failure line), maintaining a small pore water pressure. 

Further from the wall, the elastic case (c' = oo) showed the ESP straightening out to become 

constant s' throughout the excavation stage, foffowed by constant a',, during equilibration. 
With c' = 0, the trend essentially comprised both cy'V and c; 'h increasing at 1: 3 during 

excavation, initially backtracking at -1: -3 during the dissipation stage, and finally climbing at 
1: 3 - returning almost to the start point, Fig. 7.21(b). 

Total stress paths 

In the fully elastic case, the excavation TSP near the wall just below FL broadly showed a 
major increase in Gh with Aa,, t; 0, Fig. 7.21 (a). During dissipation of excess pore pressure, 
the TSP moved at -- -1: -1 to converge with the ESP (as noted above when describing the 
ESP). As c' -+ 0, yield became more significant and the TSP showed a reduction in cr, (and 

Aah st; 0 overall) by the end of excavation. Much larger stress changes occurred during 

equilibration - both CYh and a, fell approximately to zero (at -1: -3), before rising (at 1: 2) to 
large positive values approximately the same as those pertaining at the end of excavation. 

Further from the wall, the TSP just below FL for the elastic case was largely one of reducing 
a, (at almost constant cyh) during excavation, switching to a path of increasing cyh (at constant 

a, ) during pore pressure dissipation. With c' = 0, a, and ah both reduced at a ratio of -2: -1 
during excavation, followed by reducing ah (at constant a, ) during equilibration, as the TSP 

converged on - and joined - the ESP, Fig. 7.2 1 (b). 

7.5.3.3 Discussion and summary 

Overall, it is clear that peak ah (and a'h) can develop in both fiffly elastic and elasto-plastic 

cases - though much higher values can be sustained in the former (in the absence of any limit 

on stress). Away from the wall, high ah do not develop when c= 0; there is a continual 
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reduction in the ah(z) profile through the excavation and equilibration stages. But with c' = 00, 
high positive values of a'j, can still be sustained 2-3m from the wall, with the long-term cy'h(z) 
greater than the in-situ profile. 

The pore water pressure response'depends heavily on whether or not yielding occurs - full 

elasticity causes a big increase in pore water pressure during excavation whereas yielding 
causes a massive reduction, indicating strong dilation. However, the post-excavation a'h(z) 
are considerably greater in the latter case, and subsequent equilibration to the same long term 

u(z) profile means that high cyh develops in both cases. 

The high values Of G'h at shallow depth could be due to mechanisms of overconsolidation. 
Consider, for example, one-dimensional excavation to 8m depth over a large area, using the 

same parameters listed in Section 7.5.2.1. At 0.1 rn below FL, a', = 8.1 x(y-y,, ) = 81 kPa, 

a'Vf = 0.1 x(y-y,, ) =I kPa, and hence OCR = a'vo / cy'vf =81. Using Parry's (1982) proposal 

that K. = K., (OCR)ý gives K, = 3.928. But even with this large &, to generate the very high 

U'h values seen in the FE analyses would require substantial a'V. In the early analyses with c' 

oo, &-, dropped from +80 to -60 kPa by the end of excavation, and then climbed to +60 kPa 

during equilibration; on the other hand, with c' = 0, &V rose from +80 to +190 kPa after 
excavation, then fell to 0 before climbing to +215 kPa at the end of equilibration. The analyses 
show that these large a'v actually do occur in the FE model, although this seems unreasonable 
at shallow depths. 

The evolution Of G'x (= Gh), CY'y (= CYA CYZ , ry, u, K., B, and f (yield function) during the 

analysis was studied by plotting each quantity against increment number. These plots showed 

that the out-of-plane stress a,, did not change much during the analysis, and so probably did 

not have much of a role in the observed phenomena. Shear stress -r. did, however, increase 

from 0 to 100 kPa by the end of excavation, indicating significant rotation of principal stresses 

at this Gauss point. K, rose from 2.00 to 7.66 in the elastic case, but dropped from 2.00 to 
1.55 in the elasto-plastic case. B, which is the ratio (CF'2 

- CTO'3)/ (CrII 
- CY'3). started at 1 . 00 and 

dropped to 0.39 (elastic), and from 1.00 to 0.20 (elasto-plastic). 
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7.5.4 Lateral stress oscillations 

In Section 7.3.3 a form of stress oscillation was described in the context of problems arising 

with the effective stress method of analysis. These oscillations were in the horizontal effective 

stresses on a vertical section just behind the wall on the active side. A different form of 

oscillation is that seen when horizontal effective stress is plotted on a horizontal section at a 
fixed elevation on the active side. Such a profile is useful when studying the variation of 
horizontal stress as the wall is approached laterally from a distant point, and was first reported 
by Kutmen (1986). 

Kutmen carried out an important study in which CRISP was used to investigate the installation 

effects of diaphragm and bored pile walls. He was particularly interested in the horizontal 

total and effective stresses acting on the wall/pile before, during and after the installation 

process. The analyses were coupled-consolidation, elastic-perfectly plastic - plane strain for 

the diaphragm wall, and axisymmetry for the bored pile". In the axisymmetric case, Kutmen 

observed that the horizontal effective stresses showed oscillations on a lateral profile - 
particularly in the element immediately adjacent to the wall, Fig. 7.22. (The lateral profiles 
given by Kutmen for the plane strain case are also far from smooth). 

Kutmen likened his findings to those of Naylor (1974), who found similar oscillations using 8- 

node quadrilaterals in the analysis of nearly incompressible elastic materials. A significant 
difference between Kutmen's and Naylor's analyses was that the former was using a coupled- 
consolidation formulation, but with small time steps this is essentially modelling a nearly 
undrained event. It is the difficulty of modelling zero volume change (especially in 

axisymmetry) which would appear to be at the heart of the problem. Undrained axisymmetry 
is notorious for causing poor results in a different context - that of obtaining good estimates of 
collapse loads for circular footings (Sloan and Randolph, 1982). Solutions to such difficulties 

tend to focus on the use of reduced integration techniques, higher order elements (such as the 
1 5-node cubic strain triangle), or finite elements with "mixed" variables such as displacements 

and mean normal stresses. In effect, coupled-consolidation is an example of the latter, where 
unknown displacements are mixed with excess pore water pressure. Kutmen's results show 

11 In an axisymmetry analysis, only a single bored pile is being analyzed radier than a row of piles 
forming a wall. 
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that stress oscillation is not completely suppressed by using a coupled formulation, but in 

comparison with Naylor's results the oscillation is confined to the element adjacent to the wall. 

In view of the amount of previous investigation of this form of stress oscillation, it can be 

considered that the causes and remedies for it are reasonably well established. The vast 
majority of retaining wall analyses will assume plane strain conditions, where (on the basis of 
Kutmen's observations) the problem is not so acute. Reduced integration is not an option in 

the commercially available versions of CRISP, and 15-noded triangles are probably excessive 
for retaining wall analysis. A compromise solution would appear to be to use a coupled 
formulation (which is often the case anyway) together with elements immediately adjacent to 
the wall having a thickness in the range 50-100% of that of the wall. 

It is unfortunate that a case of considerable importance to geotechnical engineers (i. e. the 

undrained response) is known to be troublesome in a numerical context. However, the 

measures which need to be taken to avoid serious problems and inaccuracies are not onerous. 
The particular issue here, namely that of lateral stress oscillations, is likely to have more 
implications for how earth pressure distributions are inferred from a finite element retaining 
analysis of a wall, and this is considered further in the next chapter. 

7.6 Solution Scheme 

7.6.1 Introduction 

As described in Section 3.3.8, CRISP uses an incremental (tangent stiffness) solution scheme. 
For elastic-perfectly plastic models, corrections are applied to elements that have yielded in 

order to bring the stress state back to the yield surface. For the critical state family of models 
no such correction is carried out as the process would be considerably more complex and has 
been found to be unstable (Britto and Gunn, 1987)12. It is therefore relatively easy to produce 

an invalid analysis using CSSM models in CRISP unless the increment size is sufficiently small. 

12 Britto and Gunn point out that others report to have had no difficulty M applying iterative techniques 
to critical state models (e. g. Zienkiewicz et aL, 1975; Potts, 198 1), but that they (along with Naylor, 1975) 
have encountered problems both with convergence and with auempting to recover known analytical solutions. 
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The alternative, which has been adopted by other geotechnical FE codes (for example, ICFEP 

and VISAGE) is to use an iterative solution strategy such as modified Newton-Raphson 
(NM), which can provide good solutions with only a few increments per loading stage. 
However, there is an analogy here with the debate concerning low versus high order elements. 
High order elements offer better accuracy and, in principal, fewer (larger) elements would be 

needed in an analysis to yield a given level of accuracy. However, in some problems the size 
of element will be dictated by the complexity of the geometry and larger numbers of (smaller) 
low order elements will be called for. In other words, a practical consideration may negate the 

need for (or diminish the benefit of) a level of sophistication in a particular part of the model. 

A similar argument may apply to non-linear solution strategies. Consider the example of an 
embedded cantilever wall retaining a deep excavation in soil of highly non-linear stiffhess. 
With an FE package which uses an iterative scheme, the excavation could be modelled as one 
load step, within which many tens (or hundreds) of iterations could take place until some 
predefined convergence tolerance was satisfied. The wall deformations etc. at the end of 
excavation could be expected to be correct, as the iterative scheme would ensure that the 

material non-linearity was catered for properly. The user can predefine the level of accuracy 
which will be acceptable, and the program will return the desired results (if possible). With an 
FE package using an incremental scheme (such as CRISP), the same excavation would be split 
up into a number of smaller increments within which linear behaviour was assumed. Without 

performing tests of the sort described in Chapter 6, the analyst cannot be sure that he/she has 

chosen sufficient increments to achieve the desired accuracy. This is a clear case where an 
iterative scheme would win over an incremental. 

However, the excavation may involve several intermediate stages, with props being 
installed/removed, anchors being placed and prestressed. Most designers would wish to plot 
wall movements, etc., at the intermediate stages as well as final dig level, and this would 
require a number of load stages (or increment blocks) regardless of solution scheme. The 

multi-stage nature of the analysis lends itself quite naturally to the incremental method. 
Certainly, within each stage the iterative method will always offer an extra level of confidence, 
but the advantages are not so persuasive as with the single-stage deep excavation. 

It is possible to conduct a crude study into incremental versus iterative solution with CRISP, 

by maldng use of the load correction facility in conjunction with the elastic-perfectly plastic 
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models. The basis of the load correction was described in Section 3.3.8, but one feature which 
has not been discussed in any depth hitherto is that of "load increment factors". 

In CRISP, the effects of applied loads, changing geometry, etc., in an increment block are 
spread over the increments in that block. If there are N increments, the default is that each 
increment experiences (I/N)th of the total load change in that block. In other words, the load 

change is distributed uniformly between the increments. However it is possible to specify the 
proportion that each increment will experience through a Est of load ratios or increment 

factors, &-, where IRi = 1. For example, in a block which had 5 increments, any of the 
following might be used: 

a) .2 .2 .2 .2 .2 (the default) 
b) 

.1 .3 .4 .1 .1 
C) . 45 . 25 . 15 .1 . 05 

. 01 
. 05 . 14 .3 .5 

One choice which is, perhaps, not so obvious is the fbHowing: 

e) 1.0.0.0.0. 

This would have the effect of forcing MNR-type iterations in the 2nd to 5th increments of the 
block, following the load change which has taken place in the I st increment. To make this 
clearer, consider scheme (a). If there were any out-of-balance (OoB) loads at the end of 
increment 1, they would be applied as correcting loads in increment 2, in addition to the 1/5th 

of the total load which is to be applied. Any OoB loads at the end of increment 2 would 
similarly be applied as correcting loads in increment 3, in addition to the load increment 

already specified, etc. However, in scheme (e), any OoB loads at the end of increment I will 
be applied as correcting loads in increment 2, and would be the pnly load applied in that 
increment. Any further (hopefully much smaller) OoB loads at the end of increment 2 will be 

applied as correcting loads in increment 3, again being the only load applied in that increment. 
If applying all the load in one increment was thought too severe, suitable alternative increment 
factors might be: 

(f) 
.5 .5 0 0 0 

(9) 
. 33 . 33 . 34 0 0 
A .3 .2 A 0 
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7.6.2 Description of analyses 

To investigate the influence of load ratios upon the outcomes of a retaining wall analysis, a 

short series of analyses was conducted. Mesh xlOyIO was used with two different load ratio 

schemes - ULR (uniform load ratios) and NLR (nonuniform load ratios), defined as follows: 

ULR: Ri = IIN for i= I to N (7.14) 

NLR: Ri I for i1 (7.15) 
0 for i2 to N 

where N is the number of increments in the block (= NINC in CRISP terminology) 

The wall was wished in place and the analyses were run only as far as the excavation stage; the 

soil types, propping configurations, and numbers of blocks and increments used are 

summarized below: 

Run SOU 
type 

Prop Drainage No. of 
excav' 
blocks 

No. of 
increments per 
block 

Total no. of 
increments 

SC102 1 12 none undrained 1 1,2,4,8,16,32 1,2,4,8,16,32 
SC103 

-4 
13 none undrained, 4 1,2,4,8 4$8,16,32 

SC103 
_8 

13 none undrained, 8 1,, 2,4,8 8,16,32,64 

SC152 1 12d none drained 1 1$ 2,4,8,16,32 1,2,4,8,16,32 
SC152 

- 
8 12d none drained 8 1,2,4,8,16 8,16$32$64,128 

SC162_ 1 12d top drained 1 1,2,4,8$ 16$ 32 1,2,4,8,16,32 
SC162_8 12d top drained 8 1$ 2,4,8,16,32 8,16,.... 128,256 

NB: soil type 13 with one excavation block was n=erically unstable 

7.6.3 Results of analyses 

The results extracted for these brief studies were wall displacement profile (S: z) at the end of 

excavation, and the variation of horizontal equilibrium error (err. ) throughout the analysis. 

Undrained analyses 

SC102 
-I: 

(See Fig. 7.23) For the ULR case, significant changes in the 5: z profile were 

observed up to NINC=8, after which changes were imperceptible and the profile could be 

considered to have converged on the final result. Equilibrium error er-r,, was 2% if only one 
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increment was used in the excavation block, reducing to 0.5% or less with NINCA - but the 
error was always >0 and never completely disappeared. 

For NLR, convergence of the 5: z profiles was much more rapid and only took 2 increments - 
the profile for NINC=4 was indistinguishable from that for NINC=32. The profile with only 2 
increments was more accurate than that for the ULR analysis with 4 increments - yet took only 
half the computational effort. Equilibrium error err,, was <0.5% for NINC; ->2, and virtually 
zero for NINC2! 8. Of course, having zero stress residuals is not in itself a sufficient condition 
(the analysis may have converged on the wrong answer if the model is otherwise deficient), 
but it is a necessary condition. The err. v increment plots show that the additional increments 

reduce err, 

SC103_4: (See Fig. 7.24) This run needed at least 2 increments per block, otherwise the 

analysis failed (regardless of load ratio scheme). Using ULR, differences in the 5: z profiles 

were still apparent between 4 and 8 increments per block (i. e. 16 and 32 total increments), 

with err,, never dropping below 0.1%. However, with the NLR scheme, only 4 increments per 
block were sufficient for an accurate S: z profile, and for errx to reduce to zero. As with run 
SC 1 02_1, the NLR analysis with only 4 increments was more accurate than the ULR with 8 
increments. 

SC103_8: Differences in the 8: z profiles were only apparent up to 4 increments/block with 
the ULR scheme, at which point err. was very small. With excavation being in relatively fine 
layers (8 xIm thick), the NLR analyses gave results which were indistinguishable from the 
ULK 

Drained analyses 

SC1521 : Starting with the ULR, big changes in the 5: z profiles were evident, even 
between 16 to 32 increments per block, equilibrium error err,, steadily worsened throughout 
the analysis and was barely below 2% by the end. Switching to NLR, the changes in the 5: z 
Profiles (between the different numbers of increments) were just as big, although err,. <2% for 
NINCý-: 4. Another observation was that wall displacements were much bigger than for ULR 

analyses when comparing results for similar numbers of increments - probably because this 
unpropped cantilever wall is unstable under drained conditions (as noted in earlier chapters). 
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SC152-8: With ULR, noticeable changes were evident in the 5: z profiles, even up to 16 

incs/block; equilibrium error err. steadily increased through each of the analyses but was 

always < 1% for NINC; 
->8 per block. Using NLP, changes in the 5: z profiles were even bigger 

than in ULR; err. <1% for NINCýA Wall displacements in NLR were greater than those in 

ULR using twice the number of increments (5NLRýmNc) > 5uLROzNct2)), therefore offering an 
improvement for no extra computational time. 

SC1621 : (See Fig. 7.25) Differences between the 8: z profiles were observed all the way 

up to 32 increments/block for ULR; err,, steadily worsened throughout each analysis, but was 

always <1% for NINC=32. Some change in 5: z profiles between 8 and 16 increments/block 

were observed for NLR, but little between 16 to 32, so once again NLR has produced more 

rapid convergence. For NINC, -?: 4, err. <1%. 

SC162_8: Using ULR, some increase in 5: z profiles between 4 --> 8,8 -+ 16, and 16 -> 
32 increments/block was observed; eff,, was always < 1% for NINC2: 4, but always tended to 
increase throughout each analysis. With an NLR scheme, some improvement could be seen in 

the B: z profiles between 4 and 8 increments/block, but very little thereafter. Equilibrium error 

errx iterated to zero fairly quickly once NINC-a& 

7.6.4 Discussion and summary 

Common practice, as perceived by the writer, is for ELDF=O and a ULR scheme to be used. A 

good test for sufficiency of NINC would appear to be to rerun the analysis with ELDF=l and 
NLR [1,0,0, 

... 0]. In elastic-perfectly plastic (Tresca yield criterion), major changes in 5. 

will be detected if number of increments (and/or number of increments per block) is too small. 
Even bigger changes in the elastic-perfectly plastic (Mohr-Coulomb yield criterion) will be 

observed, when the wall and support configuration are inherently on the limit of stability. 
Even with top-propping, and a good number of increment blocks, switching to IDLDF=1 will 
reveal if NINC is insufficient.. 

The definition of NLR given by Eqn 7.15 is not unique, and it could be that other weightings 
may be optimal. Consequently four additional non-uniform load ratio schemes were examined 
with run SC152_1, spanning between NLR and ULR as follows: 
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NLR 1 0 0 0 0 0 0 0 

1/2 1/2 0 0 0 0 0 0 
1/3 1/3 1/3 0 0 0 0 0 
1/4 1/4 1/4 1/4 0 0 0 0 

IF 115 115 115 115 115 0 0 0 

ULR 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 

A variation on SC 162 1 was devised, in which each of the above schemes was implemented as 
run SC162 IR. The 8: z and err.: inc; plots, Fig. 7.26, confirmed that NLR [1,0,0 ... 0] gave 
the best performance, and there was no evidence of an optimum configuration of weightings 
lying between ULR and NLR. To some extent this was slightly surprising because the original 
NLR was the most extreme, with all load applied in the first increment. However, this was a 
helpful finding and it suggested that it was unnecessary to search any further. 

Two main conclusions can be drawn from these limited analyses (in the context of performing 
bulk excavation in front of a retaining wall). Firstly, using NIR leads to better (faster) 

convergence of the analyses when increasing the number of increments used in a block. 
Secondly, using NLR produces more accurate results than ULR for a given number of 
increments - indeed it can produce better results for substantially fewer increments. A test for 

sufficiency of number of blocks would be to vary the load ratios adopted - if there are 
sufficient, the analysis will not be sensitive. 

7.7 Discussion and Summary 

Errors in finite element analysis have many sources. Some arise, at the programming stage and 

users have to recognize that "bug-free' software is very difficult to achieve. Systematic testing and 
benchmarking are essential with all "off the shelf' software, but even this may not trap any errors in 

the code. Other errors are totally in the hands of the user as they arise from mistakes in the input 

data, inappropriate use of the program, and/or poor modelling choices. Yýt other errors may be 

rnachine dependent and thus beyond the control of programmer and user alike, but the onus is on 
the user to be aware oftheir eidstence, and how significant they might be. There is some overlap; 
for example, poor choice of mesh can produce elements with high aspect ratio, leading to ill- 

conditioning In a commercial setting there is a risk that ill-conditioning will not be spotted, as no 
one is looking for it and its effects may be indistinguishable from genuine soil-structure interaction 

phenomena. Unless users acquire the habit of carrying out checks (re-running as purely elastic, 
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reducing stiffness of structural elements, etc) they may never be aware of the problem. Default 

operation in double precision is one solution, but it might create a false sense of security - and in 

many cases may be unnecessarily wasteful of computer memory. - 

Calculations of undrained loading using the effective stress method should be cross-checked with 
total stress analysis to ensure that an appropriate value for bulk modulus of water K,,, has been 

selected. As the stiffness of soil frequently varies with depth, it would be better to specify the ratio 
K,, W to produce a uniformity of drainage response throughout the soil stratum concerned. 

Coupled analysis provides an elegant means of modelling the fiffl fife-span of an embedded retaining 

wall and the surrounding soil, both during and afler construction. It allows the designer to 
incorporate a realistic time-line in the analysis, and the ability to study the consequences of project 
delays, etc. However, attempts to benchmark against a non-coupled analysis need to be carefully 

considered so as not to draw potentially misleading conclusions. Undrained behaviour appears 

relatively straightforward to match, but faster rates of drainage (with respect to loading rate) are 

more difficult to equivalence. 

Horizontal stresses, whether whole distributions or values at specific locations, can often appear 

unreasonable or counter-intuitive. This is particularly disappointing in a retaining wall context as 

earth pressure distributions play a big role in preliminary design (determining embedment depths, 

anchor loads, etc) and engineers believe that they have a good "feer' for them. However, it must 
be remembered that the finite element method requires equilibrium of forces (only) at the nodes, 

and that the computed stresses do not have to sati* the differential equations of equilibriurn. 
Anomalous stresses can be legitimate output in a theoretical sense, but clearly must be treated with 

caution when interpreting an analysis. 

As soon as any form of non-linearity enters the finite element model, the solution scheme becomes 

important. The user needs to have a good grasp of the solution method in the program he/she is 

using; what size load steps should be used; what (if any) corrections and/or iterations can or will be 

applied - and how the user can control this - etc. Investigating the consequences of different 

choices (on the part of the user) is not difficult, and may provide valuable insight into the overall 

model - provided that genuine behaviour can be distinguished from that which is only apparent. 
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Fig 7.2 Boundary conditions for displacement and loading in two-element mesh 
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Fig 7.3 Effects of ill-conditioning in two-element mesh: percentage equilibrium error 
against modular ratio, for different aspect ratios 
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Bending moment about 0 (ignoring soil-wall shear stresses) is estimated as: 

Pi, L� - Pp Lp 

0 
Cha (z� - z) dz H Chp (zo - Z) dz 
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0 

(NB: n=z, ) /Az, m=n- H/Az) 

Fig 7.7 Approximation of waH bending moment from honzontal sod stresses 
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CHAPTER 8 
OBTAINING REQUIRED DESIGN OUTPUT 

8.1 General Introduction 

The designer of a retaining wall must ensure that the wall and its support system can safely 
cany the loads imposed on it, without excessive deflection and without causing damage to 
adjacent structures. The ability of the wall to meet all of these criteria can be assessed with 
finite element analysis. However, a great deal of information is produced compared with 
design-oriented software such as WALLAP (GeoSolve), FREW (Ove Arup/Oasys) or 
ReWaRD (Geocentrix). Furthermore, FE results are not in an immediately useable form - 
some post-processing must always take place in order to convert the raw output into 

something which is meaningful and capable of being understood by design engineers. This is 

always one of the main "culture shocks" awaiting the novice FE modeller - there is a 
substantial amount of information which has to be examined (sometimes just to ascertain 
whether or not the analysis is valid) before going on to interpret the results. 

The quantities which the retaining wall designer may be interested in can be grouped into three 
principal categories: 
a) displacements - of wall and surrounding ground 
b) stresses/pressures - in soil and pore water 
C) internal structural forces - in wall and support system 

Further subdivision is possible (and indeed is done in this chapter), but these categories reflect 
increasing degrees of manipulation of the primary solution obtained by the finite element 
method. In other words, they reflect greater levels of approximation added to the most basic 

quantity which is output from the finite element (displacement) method. Some of the salient 
points of these output quantities will now be outlined, prior to presenting numerical 
investigations carried out for this thesis. 

Displacements 

Displacements are the primary unknowns obtained directly by the finite element method. No 

post-processing is required; no manipulation or smoothing is necessary. The FE method 
guarantees continuity of displacement across element boundaries through the choice of 
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approximation function. For example, in a 6-noded (linear strain) triangle, displacements u 
and v (in the x- and y-direction respectively) vary quadratically; 

u=a. + a, x+ a2 y+ a3 xý + a4 y2 + a5 xy 

v= a6 + a7 x+ ag y+ ag x2 + aio y2 + an xy 
(8.1) 

(a... a, I are found by substituting the co-ordinates of the six nodal points into these 

expressions in turn). The form of Eqn (8.1) ensures that the displacement field in one element 
will match up with those in adjacent elements along the common boundaries. 

Of course, there are numerous influences which will affect the reliability of both the magnitude 
and pattern of displacements in a retaining wall analysis. These have been explored in earlier 
chapters and include geometric discretization, constitutive modelling, construction simulation, 
etc. Here it is assumed that the calculated displacements are available, and it is their overall 
quality (from a ffifite element viewpoint) which will now be explored. 

Engineers are generally led to believe that the finite element method produces displacements 

which are too small, as the mathematical model is "stiffer" than its physical counterpart (due to 
having finite d. o. f). Ina retaining wall context, this could be interpreted as meaning that the 

maximum predicted displacement of a wall will always be too small. Strictly speaking, it is the 
total potential energy of the finite element model which is greater than that of the real system. 
This may mean that the displacement predicted at a particular point in the mesh is too small, 
but this cannot be generalized'. Studies reported in Chapter 4 showed that the changes in 

magnitude of displacements arising from mesh refinement, for example, were not always 
intuitively "correct". 

Strains logically belong in the same category as displacements, as they are a measure of 
change of dimension. However, strains have gone through one stage of approximation more 
than displacements, as they are obtained by multiplying nodal displacements by differentiated 

shape functions (Section 3.3.2): 

e= Ba (8.2) 

I If reduced integration is used, it cannot even be guaranteed that the minimum potential energy 
is bounded from above. 
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where B contains differentiated shape functions of the form O(N)IN, e is the vector of internal 

strains and a the nodal displacements (Section 3.3.2). One case where strains would be 

expected to be of poor quality is in large displacement problems, where the conventional 
definitions of strain (e. g. e,, = OVN) are no longer sufficiently accurate, due to the increasing 

significance of second-order terms. CRISP offers an approximate solution to this through the 
option to update nodal co-ordinates; future versions may include a more rigorous formulation 

employing Green's strain tensor (Zienkiewicz and Taylor, 1989), but see Section 3.3.8. 

Furthermore, although displacements are continuous across element boundaries, strains need 
not be continuous (although, as the mesh is refined, improved continuity would be expected). 
This is because there is no requirement of continuity in the displacement function derivatives 
(upon which strains rely). 

On the whole, strains do not appear to be sought routinely by those using finite elements in 

practical retaining wall design. Movement criteria are more likely to be expressed in terms of 
a maximum allowable displacement (e. g. horizontal movement at top of wall), rather than a 
limit on strain levels in the surrounding soil. The writer has only been involved with one case 
where an estimate of operational shear strain levels around a deep basement excavation was 
required (Queensberry House - see Appendix A). This was in order to select appropriate 
stiffness parameters for a linear elastic analysis from continuous shear modulus versus axial 
strain data, before progressing to a full non-linear analysis. - 

8.1.2 Stresses and pressures 

Stresses and pore water pressures are secondary (or perhaps even tertiary) quantities as they 

are derived from element strains, which in turn are based on displacements: 

cy = DBa (8.3) 

Stress distributions may be required for comparison with classical design methods, or perhaps 
with in-situ measurements. However, they may be unreliable as a basis for simple hand 

calculations of equilibrium, as unexpected patterns can occur on both sides of the wall (see 
Chapter 7), potentially confusing the inexperienced analyst. It must be remembered that the 
FE method only ensures equilibrium of nodal forces, and that in general there will neither be 
local equilibrium within an element nor equilibrium of stresses across element boundaries. 
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Gallagher (1977) has pointed out the irony that, for a technique which is so often used in 

stress analysis, the (displacement) finite element method produces rather poor predictions of 
stress. Attempts to improve output stresses through smoothing are well documented, and are 
examined in greater detail in Section 8.3. Improvements to stress computation through hybrid 
finite elements have also been established, but are beyond the scope of this thesis. 

8.1.3 Internal structural forces 

Internal forces comprise a3dal loads, bending moments and shear forces, which may be present 
in the wall and anyofits supporting anchors or props (temporary and permanent). These 

quantities are obviously of prime interest to the designer who must ensure that there is an 

adequate reserve of strength against structural failure in all possible modes. 

The manner in which the internal forces are computed is determined by the type of element 

which has been used for the structural component. Anchors and struts without bending 

stiffhess are adequately modelled with 2-noded bar elements', which have axial stiffness only. 
Bar force is then given by standard relationships, involving the product of Young's modulus 

and cross-sectional area, EA_ Force in a bar element is thus a secondary quantity, although 
directly linked to displacement without further approximation. For anchors, it is convenient to 

work in terms of excess force over the initial (pre-stress) value. 

Struts which possess bending (in addition to axial) stiffness may be modelled with 2-noded 
beam elements, where EA is supplemented by the flexural rigidity El, and bending moments 

are calculated at nodes using standard stiffness relationships. It is possible for the wall itself to 
be modelled this way, though this is not common unless it is a steel sheet pile wall. Permanent 

props in the form of concrete slabs are usually modelled by solid 2D elements, and the axial 
load at any section can be readily obtained from integrating the transverse stress distribution 

across the section. The calculation of prop/anchor forces is discussed fluther in Section 8.6. 

The calculation of bending moments in walls modelled with 2D elements may be based on: 
i) transverse stress distributions in the wall elements 
ii) lateral pressures acting externally on the wall elements 

2 Ile 3-noded bar element is unsuitable, because of the requirement either to fix the middle node, 
or attach it to the mid-side of another element. 
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iii) nodal forces acting between wall elements 
iv) nodal forces acting externally on the wall elements 
V) double differentiationý of the wall displacement profile 

Methods (i) and (h) are intuitively reasonable and also quite convenient as they make use of 
stresses calculated at integration points in the relevant elements. However, as noted earlier, 
stress distributions in the soil can be far from reliable; furthermore method (H) multiplies 
(possibly) inaccurate stresses by an increasing lever arm for sections further down the wall. 
Limited comparisons of methods (i) and Cii) have shown significant discrepancies (Swain, 

1989; Gunn and Ponnampalam, 1990; Powrie and LL 1990a). Methods (iii) and (tv), on the 

other hand, make use of nodal forces which can be expected to be rather more reliable. As 

these forces are not normally output to the user, some program modifications will be 

necessary. Method (y) is probably too error-prone to warrant serious consideration - it is 

sometimes used to infer bending moments in field structures when inclinometer profiles are 
available, though it is not nearly as reliable as using strain gauges to infer transverse normal 

stress distributions. 

The calculation of wall shear forces where 2D elements have been employed may be based on 
the same ideas as methods (i) to (iv) above, with obvious modifications (use of shear rather 
than normal stress distributions, no lever arm, etc. ). However, little previous work appears to 
have been done in this area. Investigations of bending moment and shear force computation 
are presented in Sections 8.4 and 8.5 respectively. 

Fundamentally, the finite element method deals with nodal forces and displacements, but 

whilst the latter are commonly used and are of recognizable value, it is quite rare for the 
former to be used directly. Nodal forces may be used to make simple (hand) checks that the 

output satisfies force equilibrium, but this tends to be done automatically by the program and 

summarized for the user in the form of out-of-balance loads. There is the added complication 
that consistent nodal forces for typical distributions of boundary traction are far from intuitive, 

for elements other than constant strain type. Notably, nodal forces (other than reactions) have 

never been listed as an output option in CRISP - only "out of balance' loads which are a 

measure of equilibrium (see Section 7.2.3.1). 

3 Usually by finite difference techniques; but it should be noted that numerical differentiation is 
substantially less accurate than numerical integration. 
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8.1.4 Assessment v interpretation 

There is a distinction between output which designers ultimately require for checking the 
sufficiency of their designs, and output which serves to demonstrate whether or not the 
analysis is admissible in its entirety. The two types of output rarely overlap and consequently, 
if time is short, the latter category is overlooked. A useful analogy exists with the 
Morgenstern and Price (1965) non-circular slope stability analysis - it is the factor of safety 
which is ultimately sought, but the implied position of the thrust line within the failing soil 
mass must be checked for admissibility before the analysis can be considered valid. 

Following a similar approach, the authors of the SAGE CRISP interface have chosen to 
distinguish between output visualization and output interpretation tools (SAGE, 1996). 
SAGE describe visualization as helping the user identify regions of interest for more detailed 

examination. The tools of visualization are contour plots, deformed mesh and displacement 

vector plots, and status plots (stress state codes, principal directions, etc). However, most 
analysts already know what parts of the output they are interested in. Arguably visualization 
has a much more important role to play, and the writer prefers to think of it as the process of 
establishing that the analysis is both legitimate and the one which was intended, boundary 

conditions have been applied correctly, geometry changes (element removals/additions) are in 
the right place and sequence, overall patterns of movement appear reasonable, stress 
distributions are credible, equilibrium errors and/or yield ratios are within acceptable limits, 

etc. The term "assessment" is therefore considered to be more appropriate than visualization. 
An important point is that none of this is directly useful in the design context but it must be 

examined and checked. In the writer's experience, however, this seldom happens in practice. 

Interpretation is the process of extracting data directly relevant to the application - in this case 
wall movements, prop forces, wall bending moments, earth pressures etc. The tools of 
interpretation are principally X-Y graphs of various quantities, one against another. SAGE 
(1996) distinguish two different types of graph, "instance' and "duration! ' graphs. Aninstance 

graph shows some part of the analysis at a particular increment, for example the vertical 
displacement of a line of nodes in some part of the mesh. A duration graph shows the 
variation of a quantity at a single point in the mesh over a specified range of increments; for 

example the decay of excess pore water pressure with time at a particular node. These are the 

plots which usually appear in final reports, for example, but their reliability can only be 

established after having viewed the assessment output (i. e. contour, status, vector and 
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deformed mesh plots - termed "visuafizatiotf'by SAGE). However, in commercial situations, 
time pressures often dictate that instance graphs (only) are extracted and plotted quickly. 

On the whole, the distinction between assessment and interpretation is a helpful one - whether 
or not engineers are consciously aware of it. The key point in the writer's opinion is that both 

are essential but unless the analysis actually crashes, engineers rarely search for proof of its 

veracity. The usual stance is to accept finite element output unless it is obviously flawed. The 

attitude should actually be one of suspicion until the analysis can be shown to be correct (and 

that the inherent limitations of the method have not rendered the results meaningless) through 

proper assessment. 

Having established the three principal output categories which are of interest to the retaining 
wall designer, each will now be subject to more detailed examination and discussion in the 
following sections of this chapter. 

8.2 Displacements 

8.2.1 Graphical representation 

Deformed meshplots 
It is always advisable (though rarely done) to produce the first deformed mesh plot with no 
exaggeration at all. In this way, any excessive movement (arising from a gross error perhaps) 
will show up clearly. This is especially true when there is a plotting option to draw the 
deformed mesh such that the largest movement anywhere is specified, and all other movements 
are scaledpro rata (this avoids having to decide what exaggeration factor to select initially). 

It is also important that deformation of the whole mesh should be shown before zooming in to 

a particular window. Otherwise it is possible to miss a problem which has occurred in a part 
of the mesh not in the main area of interest. An example of this was related by Bond (1996) 
for an analysis of a retaining structure on a slope, where the engineer immediately "zoomed in" 

on the upper part of the wall and saw only modest movements. However, the exaggeration 
which had been calculated automatically by the program in order to fit the plot on the screen 
was found to be <<I, indicating that displacements had been factored down heavily for 

plotting purposes. What the engineer had missed was that an overall failure mechanism had 
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formed in the slope, and the wall was moving monolithically as part of this failure. This was 
obvious to see after "zooming out" to view the deformations of the entire mesh. 

The norm is for the resultant of both horizontal and vertical components of displacement to be 

used to produce deformed mesh plots. However, there are occasions (especially when high 

exaggeration factors are employed) where it would be better to show just the horizontal or 
vertical movements separately. One example of such a situation is when there has been large 
base heave and outward wall movement in an excavation; a conventional deformed mesh plot 
can produce overlapping elements at dig level near the wall, Fig. 8.1. 

Overlay elements can also cause problems, especially if they incorporate new nodes. Fig. 8.2 

shows a not uncommon situation in which soil was excavated to final dig level, and a hinged 

permanent prop slab 4 was installed. The slab had been defined by overlay elements, and when 
it was installed, nodes along the top edge initially had their displacements zeroed - whereas 
(common) nodes along the excavated soil surface had heaved. (The small settlement visible 
along the top edge of the slab was due to the surcharge it applied to the underlying soil). The 

overall effect was one of unreasonable element distortion - especially in the hinge location. 

Displacement vectorplots 

Vector plots are much more effective at depicting the overall flow of movement than are 
deformed meshes. It is advisable always to create a vector plot for the whole mesh without 
exaggeration, before zooming in and/or exaggerating the displacements (for the type of reason 
mentioned above). It would also be useful to be able to plot horizontal and vertical vectors 

separately, for a better picture of the components of movement. However, the norm is to plot 

resultants and many post-processing packages only allow this. 

There is one point unique to displacement vector plots which should be discussed here. When 

a vector is plotted, it is basically an arrow joining the two points (x, y. ) and (x,, +5x, y,, +8y) - 
where 6x and By are the components of movement. The displacement vector plot willjoin the 

original and fmal positions of a node (over the range of increments considered) without 
tracking its overall movement. This is illustrated in Fig. 8.3, with the example of a node 
whose position after each of 5 successive increments is shown. In Fig. 8.3 (a), the original and 

If not hinged in reality then perhaps modelled as such in order to give zero moment transfer. 
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final points are joined up, consequently missing the fact that the node has followed a curved 
displacement path. In Fig. 8.3(b), the points are joined up sequentially and the true pattern of 
movement is revealed. This form of representation may provide helpful insight into developing 

mechanisms, but it would require modification to the post-processing package. 

Displacement contourplots 
Contours of displacement, though not as general as strains, can be very useful. As it is 

normally possible to contour either horizontal (Sx) or vertical (5y) displacement, these plots 
can be used to distinguish zones of net heave/settlement (separated by the 5y =0 contour) or 
net movement to left/right (separated by Sx = 0). Post-processing software does not normally 
permit resultant displacement 4(5x2+5y2) to be contoured, but this is unlikely to be a major 
disadvantage. Resultants are very useful in depicting flow patterns but less meaningful as a 
scalar quantity for contouring. As noted earlier (Section 8.1.1) displacement contours can be 

expected to be smooth and continuous across the domain. 

Contours of displacement provide immediate proof that boundary ffidties are correct, 
evidenced by their coincidence with 5x =0 and/or 5y =0 contours as appropriate. 
Furthermore, inspection of contour spacing near the boundaries gives an immediate feel for 

whether or not the boundaries are too close to the retaining wall; high gradients would suggest 
that the boundaries are too close and may be influencing the analysis. 

Instance graphs 

In most cases, instance graphs are ultimately what the designer needs, and there are four 

principal types which can be extracted from a retaining wall analysis: 

a) wall displacement 
b) excavation heave 

C) ground surface settlement and/or heave 
d) horizontal ground movement 

It is inadvisable that instance graphs be extracted without having first given the whole analysis 
a "health checW': a movement profile might be accepted uncritically when there is a serious 
error in the finite element model. An example of this arose in the analysis of the Queensberry 
House deep basement (Appendix A) where the foundations of a neighbouring bank building 

were immediately adjacent to a party wall on the longitudinal section. The adjacent 
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foundation was modelled as two slabs with a void between them, reflecting the actual 
construction, Fig. 8.4. Bar elements were included every few metres to maintain vertical 
separation between the slabs. This would have been quite satisfactory except that the material 
zone number given to the slab overlay elements was initially incorrect, and instead of having 
the stifffiess of concrete, the original soil (gravel) material properties were still active for these 
very long slender slabs. The result was that, in the FE analysis, the upper slab buckled in a 
concertina fashion and f4iled to prevent the top of the party wall moving backwards away 
from the excavation. This was not picked up until after profiles of wall movement, and 
horizontal and vertical ground movement along adjacent foundation level had been plotted and 
despatched to the client. This may seem an extreme case, but recall Irons and Ahmad (1980; 

cited in Chapter 1) who estimate that "... >50% of commercial runs are probably stillbirths.... 
Analysis assessment is a necessary part of the quality assurance process. 

To generate instance graphs, one can either use a purpose-written plotting program (e. g. the 
SAGE CRISP post-processor) or something which essentially allows raw data to be exported 

to a spreadsheet (such as the CRISP-Lotus Interface provided with CRISP 9x). A spline 

could be used to join the data points, but should not be of an order higher than that used for 

the displacement approximation in the elements. The default for most spreadsheets is tojoint 

points with fine segments, which will give acceptable quality in most cases. (A "smoothing" 

option is often available, but should be used with caution as there is normally no way of 

controlling the curve-fitting order). 

Horizontal and vertical sections passing through nodes are generally straightforward and 
convenient to define in a mesh comprising predominantly rectangular elements. Developed 

sections (e. g. tracing around a buried object such as a tunnel lining) are rather more time- 

consuming to set up. Some post-processors (e. g. FEMVIEW) have the facility to specify a 

any two points in the mesh by pointing and clicking with a mouse, and the nodes near to a line 
joining these points are automatically picked up and used. 

Cumulative v incremental plots 
It is normal to commence analysis assessment by viewing cumulative displacement plots, to 

obtain an impression of the total movement which has occurred since the start of the analysis. 
But this is not always the best approach and can sometimes be misleading - especially in multi- 

stage construction, where a wall and components of its support system can only actually 
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"move" after they have been installed. It is also unrealistic to use cumulative plots where the 
analysis has included modelling of past events - for example, previous construction which is to 
be demolished to make way for something new. Movements associated with present and 
future activities would have to be referenced to displacements at the end of the increments 

used to establish present day conditions. 

Incremental displacement plots shows the differences between two specific increments in an 
analysis, and have several advantages over cumulative plots. For example, they would help 

overcome the problem described previously for apparently distorted overlay elements. They 

also prove useful in illustrating the effectiveness of propping, as displacements zeroed against 
the increment in which the prop was installed should show little (if any) subsequent movement 
between the propping positions. 

Caution must be observed when producing incremental plots with CRISP in regions where the 

geometry has changed. Elements not actually present in the final increment may still be shown 
in the plot because they were present in the first increment. 

8.2.2 Wall movement 

The entire wall displacement profile is usually of interest, with the maximum value (5.. ) of 
particular importance. As the wall material will nearly always be linear elastic, it should show 
a smooth displacement profile without any discontinuities: deviation from this indicates an 
immediate problem. In an analysis undertaken by the writer (Southwark Station Ticket Hall - 
see Appendix A), the excavation of a row of soil elements accidentally included one taken out 

of the wall itself -a fact which would have been missed if only 8. was extracted (although 

the excessive magnitude of B.. due to the wall effectively being hinged at mid-height was 
adequate warning of a major error). 

It might be more informative to produce displacement plots which have been normalized by 

the height of the wall. This gives a more general measure of movement, and facilitates 

comparison with other walls, checldng against recommended limits, or applying methods such 
as that of Bolton et al. (1990). 

Whole displacement profiles can offer particular insight with walls which are singly propped at 
foundation level, as cases have been reported where the sense of movement (i. e. rotation into 
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or away from the excavation) has changed during the course of the analysis. Such behaviour 

must be compared with the global direction of soil movement (displacement vector and 
deformed mesh plots) to establish consistency. 

If wall installation modelling has been used (see Section 6.2.3), wall displacement must be 

zeroed against the nodal positions prevailing when (solid) concrete elements were introduced. 

The complete wall displacement profile will be needed if any attempt is being made to predict 
bending moments from finite difference techniques (see Section 8.1.3). A second-order 
central difference approximation for the moment at node i would be appropriate, giving: 

mi -- - EI (l/AY') (+Öi-l -2 5i + Öi+l) (8.4) 

where 5 is horizontal wall displacement, Ay is the vertical distance between nodes, and the 

subscripts i- 1, ý i+ I denote adjacent nodes (variable Ay requires modification to Eqn 8.4). 

8.2.3 Excavation heave 

As the maximum heave (V. ) virtually always occurs on the excavation centreline, it can be 

extracted quite simply and it is thus not always necessary for the whole profile to be plotted. 
V. is often compared with simple ID calculations - either undrained or drained (using E,, or 
E' as appropriate). One of the many elastic solutions (e. g. Butler, 1975; Carrier and Christian, 
1973) may be used; these were originally derived for downward foundation loads, but are 

applicable (in reverse sense) to excavation unloading. A simple approximate check of V. is 

given by integrating the quotient of stress change and soil stifffiess. with depth: 

H 

V=x -4 fd I Acr, (z) . dz (8.5) 
E*(z) 

where 
fd is a correction factor for two- (or three-) dimensional conditions 
H is the layer thickness (or depth of influence of load, whichever is the lesser) 
E*(z) defines the variation of constrained C'oedometrie') modulus with depth z 
Aa, (z) defines the vertical stress change at depth z 
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Eqn (8.5) is easy to evaluate if either E*(z) and/or Acy, (z) are assumed constant, but is more 

complex if both vary with depth. If E*(z) = E% + mz, and assuming Aa, (z) s-ý a. /(I+Z/W) for 

2D plane strain, evaluating Eqn (8.5) leads to: 

fd Cro W E*O + mH E* 
In 

11- 

In 
11 

-E*o +Wm W+H w 

Such hand-checks should always be carried out, but as this may not be the case it would be 
helpful to include them in the post-processing system (see Section 8.6). 

8.2.4 Ground surface settlement 

The prediction of the settlement trough behind a retained excavation has become established 
as an important application for FE codes. Engineers generally turn to finite elements when, 
inter afta, they need to predict the surface settlement profile with some degree of accuracy. 
Other design-oriented software such as WALLAP and FREW concentrate solely on the wall 
and cannot (and do not purport to be able to) calculate adjacent ground movements. 

Frequently, the focus in excavation-induced settlement has been on the soil constitutive model; 
especially non-linearity of stiffiiess. A well-known case is that of the deep excavation for the 
House of Commons (Palace of Westminster) Car Park where the "Big Ben7 clock tower 
either tilted away from Oinear analysis; Ward and Burland, 1973) or towards (non-linear 

analysis; Simpson et al., 1979) the excavation, depending on the model used, Fig. 8.5. 
However, work reported in Chapter 4 has demonstrated that mesh size, boundary conditions, 
and nonhomogeneity also have an influence on the shape of the settlement trough. 

Whilst the absolute magnitudes of movement are important, designers are often more 
concerned with differential settlement. This is because damage predictions are carried out on 
the basis of comparing predicted curvature of ground surface with acceptable values for the 
type of construction concerned (e. g. Burland and Wroth, 1975; Boscardin and Cording, 
1989). Thus, in addition to a surface settlement profile (S: x) another form of graph is needed, 
(AS/Ax) : x, which is easily obtained with finite difference techniques. The backward, forward 

and central finite difference expressions are readily established: the central is more accurate 
(error of the order of h2, where h is the interval size) but cannot be used at the first and last 
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nodes on the line. Considering three adjacent nodes (L j, k) unevenly spaced at h. and hb on 
the ground surface boundary, Fig. 8.6, leads to: 

AS/Ax st% 1/(2h,, ) [-Si + (1-a)Sj + ccSk] 

where a=h, / hb- 

(8.7) 

It would be of great practical value to the analyst to have an immediate indication of how the 
finite element predictions compared with general expectations. In this respect, the approach 
adopted by ReWaRD (BSC, 1992) may prove helpful. ReWaRD uses a database of measured 
displacements normalized by excavation height, combining case histories published by Clough 

and O'Rourke (1990) and St John el al. (1993). Wall and ground movements are predicted 
empirically with reference to this database, an example of which is shown in Fig. 8.7. If 
CRISP output was normalized in similar fashion, one of these "envelopes" of movement could 
be used as an overlay to check for anomalous behaviour. 

8.2.5 Horizontal ground movement 

Horizontal movements in the ground (away from the wall) are probably not sought as often as 
vertical movements. They tend to be required where existing structures are immediately 

adjacent to the retained excavation, such as on the Queensberry House longitudinal section 
(Appendix A). 

Differential horizontal ground movement will cause lateral compression (or tension) in those 

structures founded upon it. If a building moves towards an excavation more at the proximal 
end than at the distal end, tensile strains are set up at foundation level and the superstructure 
may crack. This tendency will be exacerbated if the vertical settlement trough is one of 
sagging, Fig. 8.8. 

As with surface settlement, it is the differential horizontal movements and their rate of change 
with distance which are of most concern. An equation similar to Eqn (8.7) could be used to 
compute approximate gradients. Envelopes of horizontal movement have also been published 
by Clough and O'Rourke (1990), and their form is very similar to those for vertical settlement 
(Fig. 8.6). 
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8.2.6 Summary 

Although displacement is the primary output of the finite element (displacement) method, the 

way in which it is viewed can be as important as the accuracy of its calculation. There is a 
little in the way of manipulation or smoothing that can be done, but there are various ways in 

which displacement results can be represented graphically. Each of these can contribute to 

understanding the overall behaviour of the earth-retaining structure system, and should be 

used. By isolating presumed features of interest too quickly, other important points can be 

missed. Comparing profiles of horizontal and vertical movement with minima/maxima based 

on case studies can also help to identify anomalous behaviour. 

8.3 Soil Stress Distributions 

Once displacements have been extracted and plotted, the designer usually proceeds to inspect 

the stresses in the soil immediately surrounding the wall and excavation. There are two 
different types of analytical solution which may be helpful in this context. The first are 

contours of stress change in the ground due to applied loading/unloading at the surface (so- 

called "pressure bulbs"), which give an indication of how adjacent structures may be affected, 

and whether or not compressible layers will experience significant strains. The second are 
lateral earth pressure diagrams, which are used to estimate overall wall stability, required 

penetration depth, etc. Geotechnical engineers are familiar with both and use them extensively 
in the design of foundations and earth-retaining structures, respectively. It would be natural 
for such solutions to be used to verify finite element analysis. It is, therefore, important to 
have an appreciation of how reliable the computed stresses might be. 

Earlier chapters have documented some of the problems which have been encountered with 
CRISP when examining stresses from retaining wall analyses. The focus was on the apparent 

anomalies caused by factors such as high stiffness contrasts. In this section, issues of quality 

and methods of smoothing will be discussed. A considerable amount of work has been done in 

this area (e. g. by the Swansea group in the 1970s) but many of the lessons appear to have been 

forgotten in geotechnical FEA. This earlier work is reviewed, following which different 

techniques for stress smoothing implemented (by the writer) for CRISP are presented. Finally, 

the results of numerical experiments with these different techniques are given. 
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8.3.1 Previous work 

Quality ofcomputed stresses 
In the finite element (displacement) method, stresses are calculated at integration points from 

a=DBa (Eqn 8.3). These will be referred to hereinafter as "conventional" stresses. Melosh 
(1963) was one of the first to point out that, at best, these stresses represent only averages of 
the true stresses in a finite element. The common practice established by the mid-60s was to 

evaluate more reliable stresses at a node by computing a weighted average over the elements 

meeting at that node. However, there are obvious difficulties with this approach when a node 
fies at the boundary of two materials of different stiffnesses - such as at the interface between a 

wall and the soil it retains. The stresses either side of the interface may be very different, and 

an averaging process would tend to "smear" this and give a misleading impression. 

The key point concerning conventional stresses is that, even in relatively simple cases, their 

accuracy may be rather low. Oden and Brauchli (1971) cited an example of a ID bar, 6 units 
long, in axial compression under a prescribed longitudinal displacement of u(x) = I-x2/3 6. The 

Young's modulus E varied linearly according to E(x) = E. (I+x), and the exact internal stress 
distribution a(x) was given byE(x). e(x) = E(x). du/dx = -Ex(l+x)/Ig. Thebarwas 

represented by 6 elements of equal length with linear shape functions N of the form 1-4 and 4, 

with strain e= c-NVWi + ONJWj and stress cF = E(x). s. Exact and computed (conventional) 

stress distributions are shown in Fig. 8.9, where the discrepancies are evident - especially the 
discontinuities at the nodes, where the piecewise linear distributions in adjacent elements do 

not match up. However, there is agreement between exact and computed stresses at one point 
within each element - at the centroid, in this example. 

Consistent stresses 
In an attempt to provide a more powerfW and elegant approach, Oden and Brauchli (1971) 

proposed that the theory of conjugate approximations could be used to obtain "consistent" 

stress fields in a finite element analysis. Consistent stresses were claimed to have the advantage 
of being continuous across element boundaries because their distribution was dictated by the 
displacement approximation functions (e. g. Eqn 8.1), which were themselves continuous. 
Furthermore, consistent stresses involved less mean error than those computed by the 

conventional approach (i. e. cr =DB a). Continuity was achieved by using linear combinations 

of all of the local element approximation (shape) functions, to give conjugate functions which 

8-16 



were defined everywhere. The ID bar under axial compression cited earlier was processed in 
this manner; the resulting distribution of stress is shown in Fig. 8.9 also. 

Oden and Brauchli's procedure involved the formulation and solution of an ancillary set of 
linear equations of comparable order to the global stifffiess matrix. It was thus a 
computationally expensive process, even if consistent stresses were generated only at the 
nodes (as opposed to a complete distribution). For problems where stresses are of interest 

everywhere in the mesh (e. g. stress analysis of an engine component) then this would be a 
reasonable approach - but it would become very inefficient for retaining wall problems, where 
the area of interest is normally confined to one or two parts of the mesh'. 

Appreciating the drawbacks, Oden and Reddy (1973) went on to simplify the method, by 
focusing on areas of high stress gradient in the mesh (arguing that where gradients were low, 
conventional estimates of stress were adequate for practical purposes). A central concept to 
this new method was that of a domain of stress influence; for a point at x* having stresses 
cy(x*), the domain of influence encompasses all adjacent points for which la(x)l ; -> ccla(x*)I, 
where a is a constant (0 < ct: 5 1); the idea is illustrated in Fig. 8.10, using a=0.3. 

In the simplified method, local consistent stress components in an element were first obtained 
from a local integration, and then summed up over all elements to give the global consistent 
nodal averages. (These averages indicated which nodal points have high stress gradients. ) 
Next, (x was selected and the domain of influence for each node with a high stress gradient 
was established. Finally, the approximate consistent nodal stresses were obtained by solving a 
set of equations of much reduced size, relative to the method of Oden and Brauchli. Further 

simplifications resulted if conventional nodal stress averages were used to identify high stress 
concentrations, as this yielded an even smaller system of equations to solve. Numerical 

examples given by Oden and Reddy suggested that these approximate consistent nodal stresses 
could be quite accurate. 

I Ilis is an obvious shortcoming of the FE method in any situation where some of the far field 
has to be modelled, even when it is not of direct interest -a shortcoming addressed by using infinite 
elements. 
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Stress smoothing 

Hinton and Campbell (1974) also proposed methods of local and global stress smoothing, but 
based on least squares techniques rather than conjugate approximations. They observed that, 
in numerically integrated isoparametric elements (such as used in CRISP), the Gaussian 
integration points were the best place to sample the stresses, whereas the nodes (at which 
stress output would be more useful) were the worst. The principal reason cited for this was 
that approximation functions tend to behave poorly near the limits of the interpolation region. 
Hinton and Campbell also made the helpful observation that the displacement finite element 
method can be thought of as a weighted least squares error procedure, where the errors are 
the difference between the exact and finite element stresses6. 

The global method of Ifinton and Campbell constructed a set of simultaneous equations over 
the'whole finite element mesh, with the smoothed stresses as the unknowns. The equations 
were built up in a way analogous to the original finite element set, with a piecewise 
construction based on shape functions. The shape functions used for stress smoothing, Ri, 

were often of dfferent order to the Ni those used in defining the element7 . First, an "element 

smoothing matri)e' S" was built up of terms of the form ff&jRj IJI dýdij (where IJI dýdTj = dxdy 

in local terms). Then, a right-hand side vector fe was assembled for the element using terms of 
the form fff,; icr IJI dtdij, where cy are the unsmoothed (conventional) stresses. Both S* and f 

were evaluated numerically. Finally, a global system of equations was assembled and solved 
to yield smoothed stresses ii for the whole domain: 

S&=f (8.7) 

Unfortunately, this method suffered from the same time and cost penalty as that proposed by 

Oden and Brauchli (197 1), in that effectively a re-analysis of the finite element model was 
being performed. This led Ifinton and Campbell to consider two local methods - function 

smoothing and discrete smoothing. In the former, a smoothing function was found which 
provided a least squares fit to the whole unsmoothed stress function, whereas in the latter the 

0 This helps to explain the stress oscillations often observed in fmite element computations, as 
discussed in the previous chapter. 

7 In the coupled consolidation formulation, excess pore water pressures are pennitted to vary in 
an order which is one less than that for displacements. 
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smoothing function needed only to provide an exact least squares fit at the Gauss points. 
Essentially, both lead to the same equation for smoothed stress (a single element version of 
Eqn (8.7)), because in function smoothing Se and fe were both evaluated by reduced numerical 
integration at the same Gauss points at which discrete sampling was made. For the case of a 
quadrilateral element with linear Ri and a 2x2 integration scheme, nodal stresses (cri, cr2 ... ) 

were obtained from Gauss point stresses fai, aii ): 

CYI abcb cFi 
CY2 babc Gii 

CF3 cbab cyiii (8.8) 
CF4 bcba criv 

-i LJL -i 

where a= 1+4(3)/2, b= -1/2, and c= 1-4(3)/2. The local methods did not produce unique 
values at the nodal points, and so the last stage was to compute nodal averages. Hinton et al. 
(1975) claimed that these averaged smoothed stresses were of consistently good accuracy in 

situations where averaged conventional stresses were of poor quality. 

If 2x2 reduced integration was used, 11inton and Campbell showed that local smoothing would 
produce a value at the centre of the element which was equal to the mean of the unsmoothed 
Gauss point values. This conclusion was of practical value to designers using finite elements, 
as it suggested that simple averaging was just as good as costly smoothing procedures - 
provided reduced integration was used. 

Another approach to stress smoothing was proposed by Cantin et al. (1978), who showed 
how the conventional finite element solution (displacements as wen as stresses) could be 
improved iteratively, as follows. First, the global equations Ka=f were solved and the 

conventional stresses obtained from cr,, =DBa. Then, average stresses cr,, were calculated at 
each node based on contributions from all of the elements adjoining that node (effectively 
defining the domain of stress influence in the terminology of Oden and Reddy, 1973). Next, a 
set of interpolation functions was devised giving a stress field cy, on each element which was 
continuous at the element boundaries. A new right-hand side was evaluated from this field: 

fcr =fBa, d(vol) (8.9) 

and then a re-solution of modified FE equations was performed thus: 
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K Aa =f- fc, 

Displacements and stresses were then updated: 

a= a+Aa 

ao = DBa 

(8.11) 

and the whole process repeated (starting with new average stresses CFO until satisfactory 

convergence was achieved; Cantin el al. claimed that 2-6 iterations would be sufficient. The 

accuracy of stresses in the numerical examples given by these authors was remarkably good, 
but the iterated displacements were actually larger than the exact values. This obviously went 

against the normal trend (i. e. displacements underestimated) and it was possible that the 

pursuit of smoother stresses had actually impaired the quality of results elsewhere. 

A Iternativefonnulations 

Pursuing the above idea further eventually leads to another class of possibilities - i. e. that of 
re-examining the theoretical basis of the finite element equations themselves. Two such 
possibilities are alternative variational principles and hybrid element formulations. An example 
of the former would be to use a stress function (e. g. the Airy stress function) as the solution 
parameter in a complementary energy (rather than potential energy) formulation. However, 
Gallagher (1977) did not consider that this approach had much promise in geotechnical 
applications and history appears to have vindicated this viewpoint. Mixed variational 
principles are functionals containing both stress and displacement variables, which eventually 
become unknowns at the nodes. A popular mixed functional is that due to Reissner (1950), 

but as this does not demand inter-element equilibrium it would not appear to offer any 

particular advantages over the traditional displacement method. 

This leaves the so-called hybrid finite elements, pioneered by Pian (1973). In a hybrid 
formulation, one field is described in terms of generalized parameters and the others in terms 

of nodal physical parameters. For example, in the hybrid stress method, an equilibrium stress 
field is written in terms of undetermined parameters, and a compatible displacement field for 

the element boundary is described independently in terms of nodal values. Conventional 

element stiffness matrices are produced, but few (if any) applications of hybrid finite elements 
in geornechanics have been reported. 
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Arodalforces 

A different approach to the problem has been to consider how element stresses cr might be 

computed directly from nodal forces f through a matrix of coefficients A: 

a- Af (8.12) 

This appears sound, because the reliability of nodal forces is fairly high (certainly higher than 

that of element stresses). A simple example would be in the case of ID bar elements in axial 

tension, where a= F/a - i. e. the matrix A in Eqn (8.12) would depend only on terms involving 

cross-sectional area. 

Creed (1979) devised an approximate method of infening Pressure distributions from nodal 
loads, specifically in the context of lateral pressures on retaining walls. The nodal loads ft 

equivalent to applied tractions t on the perimeter (or side s) of an element were given by: 

ft = 
fs 

NTt ds 

For the 6-node triangle in Fig. 8.11, the explicit form of Eqn (8.13) was written as: 

ftxi 42 -1 txl 
ftx4 IA 0 2 16 2 tx4 

ftx2 
-124 

LJ 

tX2 

LJ 

(8.13) 

(8.14) 

(For the case of a uniform traction of unit value, this can be seen to give the estabfished values 
of IJ6,21J3, and IJ6 for the equivalent nodal loads. ) Applying Eqn (8.14) at each node along 
the rear face of a wall led to a set of linear simultaneous equations linking (unknown) SO" 
Pressures to (known) nodal forces: 

a 
11: j-p2i. 

3 + 2P2i-2 + 4p2i-l) + L-. (4p2j. 1 + 2p2i - p2i+i) f2i-I 

30 30 

LL OP2. w + 16p2i - 
2p2j. 1) f2i i-I, n 

30 

"A'herc I., - "+I - 0, 'p' signifies pressure and T force. in matrix form: 

(8.15a) 
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SP = (8.15b) 

where S comprises purely geometric teffrm Eqn (8.15) was solved to yield the required 

Pressures - normal stresses from the horizontal forces and shear stresses from the vertical 
forces. In generaL the pressure distribution thus computed was quadratic along each element 
boundary, and continuous from element to element, but without slope continuity. Creed 

suggested a procedure for smoothing out these discontinuities, but it was somewhat involved. 

The main drawback with this method, however, is that it requires (unassembled) nodal forces 

to be output from the program., and this is not routinely done - either in CRISP or any other 

Program Specifically, it is the forces from the soil elements alone which are required for Eqn 
(8.15); the forces at any one node on the soil-wall interface from all contributing elements 
would simply sum to zero in vertical and horizontal directions (the equilibrium condition). 
However, as the finite element method deals primarily with force equilibrium, Creed's 

approach has the attraction of dealing with quantities which could be expected to be reliable. 

Olherpossibilities 

According to Naylor (1974). there are four different headings under which techniques to 
improve finite element stresses can be grouped, namely: 
a) mesh refinement 
b) reduction of Poisson's ratio 
C) stress smoothing 
d) location of stress output 

Option (a) is always viable in a retaining wall analysis, and was the subject of investigation in 

Chapter 4. The investigations in that chapter did not consider stresses directly, although they 

were taken into account indirectly through wall bending moments. However, coupled with 

some of the findings in Chapter 7, there is every reason to suppose that the computed stress 
distributions around a retaining waU (and under a propping slab, if present) could be improved 

by mesh refinement. The question for the designer/analyst is: what is the most efficient form 

Of mesh refinement in order to obtain. for example. improved lateral earth pressures? 

Option (b) is included in Nayloes list as he was specifically investigating problems with nearly 
incompressible materials - where stress distributions are notoriously poor. it is akin to the 
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pore fluid compressibility issue explored in Section 7.3. Option (c) has been covered in the 

earlier summaries of the work of Oden and Brauchli (1971), Oden and Reddy (1973), Hinton 

and Campbell (1974), Hinton et al. (1975), and Cantin et al. (1978). Option (d) has been 

touched on in the references to Hinton and his co-workers. However it opens up a larger 

range of possibilities including stress sampling, nodal averaging, reduced integration etc. 

8.3.2 , Stress smoothing in CRISP 

At present, the commercial user of CRISP has access only to raw Gauss Point stresses - in 

isoparametric elements which are fully integrated. Distributions plotted from the "raw" 3x3 
Gauss point stresses, without any smoothing or processing, are often unsatisfactory (e. g. see 
Section 7.5). Users can refine meshes, but reduced integration is not an option (unless they 

are prepared to modify the code itself). 

Stress smoothing across the whole domain is unnecessary for a retaining wall - stresses are 

generally required only in the immediate vicinity of the wall and/or ground-bearing prop slabs. 
To apply a global smoothing procedure would be inefficient and would yield values in areas 
that would be of no real interest. The problem is localized and so requires a local smoothing 

method, such as that due to Oden and Reddy (1973) or Hinton and Campbell (1974). The 

former would need to be programmed into the FE code, and is rather complex. 

Outputting conventional stresses at reduced (2x2) points would not be onerous - although 
(again) some programming would be required in the CRISP code. A convenient alternative 

would be to perform the necessary smoothing in the post-processing - i. e. to take the existing 

3 x3 stresses and then manipulate these in some way to obtain the desired values. A method to 

do this has been devised and implemented in CRISP by the writer, based on the findings of 

Barlow (1976) concerning the existence of optimal stress points. Starting with an 8-noded 

quadrilateral, interpolation functions are constructed for each of the 3 x3 Gauss points, to 

allow a stress quantity to be interpolated anywhere within the area encompassed. Suitable 

shape functions are those of the 9-noded Lagrangian quadrilateral element (QU9). Typical 

vertex, mid-side and centre node shape functions are: 

N1 = 

N5 = _(1.42), q(1-71)/2 

Ng = (j.. t2)(j_, q2) 

(8.16) 
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With reference to Fig. 8.12, the 3x3 points in the parent element (4: 5t: 9 1, -1 1) are 
located at local abscissae 0, ±4(315). For a 2x2 scheme (reduced integration) the Gauss points 

are located at ±1143. If the 3 x3 points are taken as the nodes of a QU9, and a transformation 

of axes is carried out such that these points he at 0, ±1, then the 2x2 points would lie at ± 

(1143)14(315) = ±4(5)13, Fig. 8.12. Hence, stress values at the 2x2 points can be obtained 

simply via a=E Ni cyi, using ±4(5)/3 for t and Tj as appropriate. The Cartesian co-ordinates 

of the 2x2 points are found from: 

Xi ý y-c :k (X2 - x, ) 

Yi 'ý" Yc I (Y4-YI)4(5)16 
f (8.17) 

With the "ravP (3 x3) and "interpolated" (2x2) stresses thus available, it is possible to produce 

a profile of stress on the wall at the soil-wall interface. Five different aposteriori smoothing 

methods have been implemented by the writer for numerical comparison: 

a) simple averaging (3 x3) denoted SA3 

b) best-fit line (3 x3) 49 BFL3 

C) best-fit plane (3 x3) cc BFP3 

d) best-fit line (2x2) 44 BFL2 

e) best-fit curve (3 x3 / multiple) cc BFC3rn 

Simple averaging (3 x3) or SA3 works with the Gauss points which line up on each of the three 

horizontal sections in a single (rectangular) soil element adjacent to the wall, Fig. 8.13(a). 

Using normal Gauss point numbering, these 3 sections (from the top) are labelled 4-7-3,8-9-6 

and 1-5-2. On the top section, for example, the (mean) stress is given by (a4 + a7 + cr3) /3 or 

Icyi /3 
-. I 

The best-fit fine Q x3) or BFL3 works with the same horizontal rows of Gauss points, but fits 

a line of the form cr =a+b. x to the stress values, which is then extrapolated to the back of the 

wall, Fig. 8.13 (b). Standard least squares techniques are employed to establish the coefficients 

a and b (see Appendix C for derivation): 

N Ex a so 
Ex Ex 2b sax 
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The best-fit plane Q x3) or BFP3 seeks to fit a single plane of the form cr =a+b. x + c. y + 
d. x. y to all 3 x3 Gauss points in the element, Fig. 8.13(c). This plane is extrapolated to the 
back of the wall to produce the required soil stress distribution. Least squares techniques are 
used to detennine a, b, c and d (see Appendix Q: 

EX Sy Exy Ea 

1: ,2 
Ex x y xy SX2Y Scr. x 
y Exy y y , y2 XY2 c saj 

Exy E2Y 

L 
EXY2 y X2Y2 

J 
d 

Li 
YC. X. Y 

L 

The best-fit line (Lx2Z) or BFL2 is identical to BFL3, but fits a straight line cr = m+n. x to the 

stress values at the upper pair of interpolated 2x2 points (III and M and another line through 
the lower pair (I and H), Fig. 8.12(b). Both straight lines are then extrapolated to the back of 
the wall to give the stress at the soil-wall interface. 

Finally, the best-fit curve Q x3 / multipl[g) or BFC3m also uses a least squares best-fit, but 

extended to multiple columns of (rectangular) elements adjacent to the wall. This approach 
was suggested by the shape of typical horizontal stress contours from CRISP, which become 

more oscillatory as they approach the back of the wall, Fig. 8.14. However, the oscillation 

was clearly either side of a mean value which could be fitted by a curve (cr = p+q. x+r. x2) or 
line (cr s+t. x). The coefficients p, q, r are obtained by solving (see Appendix Q: 

N Fx Z)e p la 

y ,X 
ZX, 2 12: x 

3q lax 
(8.20) 

ZX2 ZX3 1: 
, X4 r 

Using M columns of soil elements, it is possible to pick out rows of elements (M wide) behind 

the wall at different elevations. Within any one of these rows, the internal 3x3 Gauss points 
line up in 3 separate horizontal "tracks7' in the top, middle and bottom of the row - giving 3 

tracks of 3 xM Gauss points. If the best-fit curve (or line) is extrapolated to the back of the 
ýI 

wall, a further set of stresses (3 per element) are obtained at the soil-wall interface. In the 

present investigation, M=5 was used for both curves (a = p+q. x+r. x2) and fines (cr = s+t. x). 
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The first four smoothing methods work with the column of soil elements immediately adjacent 
to the wall and are thus "locar' methods. The fifth involves elements near the wall, not only 
those adjacent to it, and so may be termed "superlocar. Hereafter in the text and figures, 
simple averaging (3 x3) will be abbreviated to SA3, best-fit line (3 x3) to BFL3, best-fit plane 
(3 x3) to BFP3, best-fit line (2x2) to BFL2, and best-fit curve (3 x3 / multiple) to BFC3m. 

8.3.3 Description of analyses : horizontal stress 

All smoothing methods described in Section 8.3.2 have been applied to a range of embedded 
retaining wall analyses, using mesh xlOyIO (Fig. 4.1) in both cantilever and top-propped 
configurations, together with six different soil parameter sets (see Tables 4.3-4.8): 

Case Propping 
condition 

Soil 
params 

Case Propping 
condition 

Soil 
pararns 

RWI, cantilever I RW61 top-propped ld 
RW3 cantilever 3 RW63 

I 

top-propped 3d 
RWII top-propped I RWI02 cantilever 12 
RW13 top-propped 3 RWI03 cantilever 13 
RW51 cantilever Id RWI12 top-propped 12 
RW53 cantilever 3d RWI13 top-propped 13 

In addition, a variation on soil parameter sets I and 3 was run in which v=0.4999 -a value 
which (from Chapter7) would be expected to cause large oscillations in total normal stress. 
This was in order to create an onerous test for the different smoothing methods. The cases 
where this has been done are denoted by a suffixed * (e. g. RW3 *). 

8.3.4 Results of analyses : retained side 

For each of the analyses, plots of raw 3x3 stresses and interpolated 2x2 stresses were first 

extracted for initial inspection. In the former case, profiles from three vertical "tracks" of 
Gauss points in the column of soil adjacent to the wall (near, centre, far - see Fig. 7.1 and 
Section 7.2.3.3 for definitions) were plotted. In the latterjust two vertical tracks (adjacent 

and remote) were plotted, although in most cases these produced stresses almost identical to 
each other over the wall length. For the local smoothing methods, only the stress profile at the 

soil -wall interface was available. 
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A considerable number of plots were generated from these analyses, of which only a few have 
been selected for inclusion in this Chapter; specifically Figs 8.15-8.21. The superlocal. method 
is considered separately later. 

Only total horizontal stress crh (total lateral earth pressure) is depicted on the plots. The 

reason for this comes from the observation in Chapter 7 that effective horizontal stress a'h 
distributions tend to be fairly regular and well-behaved whereas pore pressure and anything 
related to it (e. g. crh = cr'h + u) sometimes exhibits a ragged and oscillatory profile. If the 

smoothing methods can cope with ah distributions satisfactorily, then they will be considered 
adequate for smoothing C; 'h and u. 

Undrained elastic 

Commencing with case RW I, the ah distribution was reasonable, although clearly erratic near 
the top of the wall, and significant differences (up to 150 kPa) existed between the near, centre 
and far Gauss points, Fig. 8.15(a). In contrast, crh for the two columns of interpolated 2x2 

points were in better agreement with each other and produced a smoother distribution over the 
length of the wall. (The strongly negative ah values over the top 2m were able to occur 
because it was an elastic analysis with no strength limits. ) 

Improvement from using interpolated 2x2 stresses compared with the raw 3 x3 values is also 
demonstrated in Fig. 8.15(a), which shows the BFL2 profile compared with the raw 3x3 on 
three vertical tracks of Gauss points. The four local methods are compared in Fig. 8.15(b) and 
all performed reasonably well. There were some differences over the top 2m, but no one 

method was clearly better (or worse). 

To investigate the robustness of the local techniques in coping with highly erratic profiles, the 

ah oscillations in case RWI were increased by setting V=0.4999. The interpolated 2x2 

stresses were again generally very good and compared well with the v=0.495 case. The 

mean stress SA3 and best-fit line BLF3 suffered similar irregularities as the raW ah data, whilst 
the best-fit plane BFP3 and best-fit line BFL2 did a much betterjob, of smoothing the stresses 
and removing these irregularities. 

For case RW3 (with E,, =O), the 3 x3 Gauss point values were not so erratic as case RWI near 
the surface, but differences still remained between the centre and edge points. Interpolated 
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2x2 profiles appeared reasonable, whilst the four local smoothing methods produced broadly 

similar results to each other. The crh from BFL2 again provided a form of average through the 

raw Gauss point values, although some oscillation remained. Increasing v to 0.4999 produced 
the expected deterioration in raw crh, but the interpolated 2x2 values remained steady, Fig. 
S. 15(c). BFP3 and BFL2 performed better than the other smoothing methods (see Fig. 8.15d) 
but started to show significant differences between each other - with the latter (BFL2) 

generally appearing more correct. 

Changing from cantilever to top-propping (cases RW II and RW13) produced broadly similar 
observations as above. The raw 3x3 c; h profiles were poor, whilst the interpolated 2x2 were 
much better. All local methods produced acceptable results, but BFP3 and BFL2 appeared 
best, Figs 8.15(e) & (f). 

Drained elastic 

In all cases examined, switching to fully drained conditions smoothed out the raw 3 x3 values 
very significantly. Consequently, all local methods worked well and produced virtually 
indistinguishable profiles. Even the massive ah discontinuity seen at the wall toe was no 
longer evident when v=0.2. (Yet another case where the undrained condition [e, = 0] was 
shown to provide the more onerous condition for the FEM to model). 

Undrained elast6-plasfic 

The introduction of limiting shear strength led to various changes in the horizontal stress 
profiles - in some cases the range between the centre and outer Gauss point values was 

reduced, but in others it was increased. The overall severity of stress oscillations was also 

seen to improve or worsen (with respect to the elastic case); there was no consistency. But the 

real issue was whether or not the smoothing methods appeared to work. 

Indications were that the interpolated 2x2 method performed well and delivered consistent and 
well-behaved stress distributions. Fig. 8.16(a)&(b) shows results for the cantilever wall, soil 
parameter set 12, and Fig. 8.16(c)&(d) for the top-propped wall, parameter set 13. All 

smoothing methods offered an improvement over the raw 3 x3 stressesý with BFL2 seemingly 
the best. 
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A number of drained/elastic-perfectly plastic analyses were also run, but have not been plotted 
here. These confirmed that the raw 3 x3 crh profiles were reasonably smooth, and hence 

amenable to any of the local smoothing procedures described above. 

Superlocal method 

Assessment of the superlocal method has been presented last because of its different nature to 

the others, as it was using data from more than just the one column of elements adjacent to the 

wall. In plotting results, just two rows of elements were considered; row A at the top of the 

wall and row B just above FL. For each row of elements, the three horizontal "tracke' of 15 

points yielded plots of lateral variation of crh with distance from wall (along each track). Plots 

of raw 3 x3 Gauss point stresses, together with both best-fit curve BFC3 m (p+q. x+r. x2) and 
line BFL3m (s+t. x) were inspected before extrapolating the curve or line to the wall to give 
the final cyl, :z profile (which was then compared to the local methods). 

Fig. 8.17 shows the plots for case RWI, row A; (a) is the variation of raw ah with distance 

from wall, (b) the best-fit line, (c) the best-fit curve, and (d) the full cFh :z profile based on 

extrapolating all best-fit lines. The plots for row B were broadly similar though with less 

oscillation in ah :x as the wall was approached, and this meant that the best-fit line and curve 

were almost the same. The fiffl cFh :z profile based on extrapolated best-fit curves was broadly 

similar to that shown in Fig. 8.17(d) for best-fit lines, but just a little more oscillatory. 

The superlocal method offered reasonable results, but there was little to suggest that it offered 

significant improvement over the other methods. Despite the fact that it clearly smoothed out 

the oscillations along a row of Gauss points as the wall was approached, there were stiff 

oscillations from one row to the next (down the wall). Considering that 400% more stress 
data were manipulated compared with the local methods, the results were rather disappointing 

and this approach would appear to have little to commend it. For subsequent analyses, this 

method was discontinued. 

8.3.5 Results of analyses : excavated side 

All four local stress processing methods described in Section 8.3.2 above have also been used 

on the excavated Cpassive') side of the wall, where in-situ stress cFh. is no longer zero at the 

ground surface, and ah > crho is expected to develop. The same soil parameters, drainage, and 
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propping cases used for the retained side have been examined. The profiles of raw 3 x3 and 
interpolated 2x2 stresses extracted for inspection were plotted from FL downwards. 

Undrained elastic 

As noted in Chapter 7, ah on the excavated sidejust below final dig level often shows an 
anomalous peak, and this is evident in Fig. 8.18(a) for case RWL There was a stress 
difference in excess of 500 kPa between Gauss points at the same elevation, and a similar 

variation in crh over the first 2m of depth on any column of Gauss points. The rather severe 

nature of the stress oscillation in this area provided a demanding test for the different stress 
smoothing methods. Interpolated 2x2 stresses were the most reasonable results, Fig. 18(b), 

though all schemes were subject to large oscillations at shallow depths, Fig. 8.18(c). If the 

n-dd-points of each element on the smoothed curve were connected, a reasonable (Yh profile 

resulted, Fig. 8.18(d). The corresponding curves for case RW3 were identical. 

Top-propping (cases RWI I and RW13) reduced the overall magnitude of crh a little, but the 

pattern was much the same as seen for the corresponding cantilever cases (RWI and RW3). 

Drained elastic 

Switching to fiffly drained analysis produced less oscwatory raw 3x3 c7h profiles (as observed 

previously for stress distributions on the retained side). Consequently aU methods (except the 
SA3) produced smooth stress profiles. Changes in stiffhess profile and propping arrangement 
had a noticeable effect on magnitudes of crh, but overafl patterns were largely unchanged. 

Undrained elasto-plastic 

In the undrained elasto-plastic case, yield caused the oscillations in the raw 3 x3 stresses to 

extend deeper below ground than the corresponding elastic case, and it was also observed that 

ah dropped below crh,, in some places - especially on the centre "track" of Gauss points. 

The crh profiles on individual tracks of Gauss points were not particularly erratic in themselves, 

but with EO =0 (cases RWI 03 and 113) a large gap (> 400kPa) opened up between the centre 
track and the other two. The different smoothing methods performed satisfactorily, with Fig. 

8.19(a) and (b) showing, respectively, the raw 3 x3 and locally smoothed ah profiles for case 
RWI 13. 
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8.3.6 Description of analyses : soil-wall shear stress 

The designer may, from time to time, be interested in soil-wall shear stress (due to adhesion 
and/or friction). Of course, the actual magnitude of shear stress at the soil-wall interface in an 
analysis could be controlled by the use of suitable interface elements. However, these have 

not been used in this thesis despite the availability of the Goodman-type element in CRISP. 
Use of such interface elements in practice has frequently been marked by high equilibrium 
errors (e. g. Powrie and Li, 199 1; Moulds, 1998) and although it is recognized that high shear 
stress reduces displacement and bending in a wall, the element needs more development before 
it is suitable for routine use. The engineer/analyst might, in fact, benefit from seeing what the 
implied shear stress distribution is from an analysis which does not employ slip elements. The 

main focus in this section is how to obtain reliable profiles of soil-wall shear stress from 

CRISP. The local methods described in Section 8.3.2 used to smooth ah have been used here 
for, r. y. 

8.3.7 Results of analyses : soil-wall shear stress 

For case RWI, Fig. 8.20(a) shows the raw 3x3 shear stresses over the full wall depth (and 

beyond), whilst Fig. 8.20(b) gives the interpolated 2x2. It is immediately clear that there is a 

greater difference between the adjacent and remote profiles of interpolated 2x2, ry than was 

ever observed for ah. Equally clear from Fig. 8.20(c) is that all methods of improving the 

quality of the TXY distribution agreed with each other very closely - except the SM method. 
The smoothed stresses lay outside of the raw 3 x3 stresses, Fig. 8.20(d), rather than plotting 
through the middle - indicating that there was a continual increase inry across the element, 

rather than the "dished" variation seen previously for crh. With case RW3, the same comments 

are broadly applicable, though the shape of the profile was different (see Fig. 8.21 a). Top- 

propping produced profiles different from those for the unpropped wall, but the performance 

of smoothing methods was unchanged, for example Fig. 8.2 1 (b) which is for case RW 13. 

The imposition of limiting shear strength (plastic yield) caused the raw 3 x3 Gauss points to be 

in rather better agreement with each other, compared with the elastic case. For example, with 

reference to Fig. 8.21(c) which is for case RW103, and which shows how the limiting shear 

stress (q, = 5z kPa) is followed by the near 3 x3 and adjacent 2 x2 Gauss point profiles very 

closely. All other cases (RW51-102 and RWI 12-113) were exan-dned, but the overall patterns 

which emerged, and the conclusions drawn from them, were'similar to RW 103. 
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8.3.8 Summary 

The stress distributions output directly from CRISP (the "rav,? ' Gauss point stresses) are not 
particularly useful in a design context. Some form of smoothing is necessary, as has been 

recognized by investigators for several decades. Many different methods have been proposed 
and can be found in the literature. 

For the retaining wall, it is only the stresses (a andr) acting on the wall (and perhaps on the 

underside of a formation level prop slab) which are of interest. There is no requirement to 

produce stress distributions throughout the mesh, as there might be in the finite element 
analysis of a jet engine component, for example. Therefore, local methods which do not 
involve the manipulation of large amounts of raw stress data would seem most appropriate. 
A number of such methods have been devised and implemented in CRISP as part of the 

present work. In keeping with the spirit of this thesis, none of them is particularly complex 
and would be readily understood and applied by most practitioners. 

Based on the results presented in this section, the use of interpolation to obtain stresses at the 
2x2 points from the raw 3 x3 data (Fig. 8.12), and thence to extrapolate to the desired profile, 
provides a convenient and robust smoothing technique. Such interpolation requires no 
modification of the CRISP code and can be carried out in a spreadsheet post-processor (as 
done here. ). It delivers one of the advantages of 2x2 integration (specifically more reliable 
stresses), without any of the drawbacks (e. g. uncertainty over whether the total potential 
energy is under/over-predicted). Even in cases where stress oscillations are high (typically as 
v -> V2) the interpolated 2x2 works well. 

8.4 Wall Bending Moments 

8.4.1 Elements in bending 

The performance of the 8-noded quadrilateral (LSQ) element in bending is generally very 

satisfactory, provided element aspect ratios are in the range V2 --5 r: 5 2, and internal angles are 

all 90'-1: 5". Zienldewicz and Taylor (1989) show the effects of deviating from these angular 
limits on the computed deflection of a tip-loaded cantilever modelled with LSQs, and the 
deterioration of the finite element solution is very rapid. Livesely (1983) shows results which 

suggest that a relatively small number of elements can give high accuracy in bending 
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applications. Some of the work presented in Chapter 7 examined the performance of the LSQ 
in various (extreme) circumstances of geometry and stiffness ratio. 

The analytical solution for the strain field in a vertical wall under pure bending is ey = M. x/F-I, 
so at a given section where KE and I are constant, ey varies linearly with distance x from the 

neutral axis. The LSQ assumes a displacement approximation with terms in 1, x, y, xý, xy, y2, 

x'y, xy2. Differentiation w. r. t. y gives terms in 1, x, 2y, X2 , 2xy. Therefore ey is actually 

capable of a quadratic variation in the x direction, which is one order higher than that required 
by the analytical solution. The element is, therefore, well able to handle the condition of pure 
bending, as well as bending with axial tension/compression. 

The LSQs in CRISP are fully integrated with a3 x3 Gauss rule. LSQs with reduced integration 

are currently unavailable in CRISP, although their implementation is relatively straightforward. 
Reduced integration introduces other potential problems, such as "zero strain energy" modes, 
and although these can usually be spotted by characteristic "hour-glassine', it places the onus 
on the user to examine all of the deformed mesh before focusing on the results of interest. 
Another drawback is that the bounding quality of the analysis is lost - with 3 x3 integration the 
IFE model is always too stiff, whereas with 2x2 integration corresponding bounds cannot be 

established. A compromise might be to use 2x2 elements for the structural wall only - 
continuing with 3x3s in the surrounding soil. In keeping with the aims of this thesis, it was 
decided to work within the limitations of CRISP 9x and therefore to restrict the investigations 

to fully4ntegrated elements. 

The performance of a LSQ element in bending is also known to deteriorate rapidly if it is used 
to represent a curved structural member, such as a tunnel lining. However, there are few 

conceivable circumstances in retaining wall analysis where such curved elements would be 

required - embedded walls are always straight (or are at least intended to be) by virtue of the 

construction processes used. Therefore, although the topic is of interest, curved LSQ 

elements will not be considered in this thesis. 

A more relevant case is where two or more of the elements representing the wall are 
trapezoidal in shape: this is sometimes necessitated by the mesh detail near to a hinged wall- 

slab connection (e. g. A406 Walthamstow and A331 Aldershot Road Underpass; Appendix A). 
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It is generally possible to avoid trapezoidal elements in the wall by appropriate mesh 
refinement in the adjacent soil, so again this is not a priority for further investigation. 

8.4.2 Calculation methods 

The conventional method for calculating bending moments in wall elements is to integrate the 
product of transverse stress and distance from the neutral axis across the section, Fig. 8.22(a). 
The derivation for a 3x3 integration scheme was given in Section 3.4.2, leading to (Eqn 3.20): 

M, 
,: ý t2 A (5/9) 4(315) (aye - ay,, ) (8.2 I)bis 

This method (referred to hereinafter as the wall stress bending moment or WSBM method) 
appears to give satisfactory results. However, as it is not possible to know the absolute 
accuracy in a full retaining wall analysisý confidence must be established using idealized cases 
with known solutions. Comparisons with bending moments computed by an alternative 
method can be helpful, but there can be pitfalls (see Section 8.4.6). 

If a reduced 2x2 integration scheme is used, then: 

t2 14 { (1). (-1/43) c; ý. + (1). (1143) Oyb } 

p: j t2 /4 (1143) (ayb - ay. ) (8.22) 

CRISP does not currently possess such elements, but the interpolated 2x2 stresses can be 

obtained from the 3x3 points using Lagrangian interpolation as described in Section 8.3.2. 

A second (and fundamentally different) approach to the above is to calculate moments from 

horizontal soil stresses acting on the wall, and will be referred to as the earth pressure bending 

moment or EPBM method, Fig. 8.22(b). The procedure follows similar lines to typical hand 

calculations using idealized earth pressure diagrams, and a version applicable to a single 

element was used in Section 7.3.2.4 (see Fig. 7.7). The more general case leads to: 

Yr Yr 
M (ax)r (y - yj dy - (a, )c (y - y. ) dy 

YO YO 

Nr Ne 
E (Crx)n Cvi - YO) AY -E (Cyx)ei (Yi - YO) AY (8.23) 
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where y,, is the elevation of the section at which M is required, yr and y. are the heights of 
retained and excavated soil surfaces above the section, N is the number of elements, and 
subscripts Y and 'e' denote retained and excavated respectively. As the analyst may well 
have performed similar hand calculations at an early stage of the wall design, this would 
appear to be a sensible method with which to check bending moments based on wall stresses. 
It would seem obvious to use horizontal stresses from the column of Gauss points adjacent to 
the wall, but this could give very poor quality, as the raw 3 x3 stresses have been shown to be 

erratic (see Section 8.3). The use of smoothed total horizontal stresses would be preferable. 

Horizontal stresses from the least-squares best-fit plane (BFP3 - see 8.3.2 for details) 

extrapolated to the wall on both the retained and excavated sides would be suitable. The 

discrete (Y. values can bejoined up to form a series of trapezoidal areas, Fig. 8.23(a). The 

elevation of the centroid of each area yj can be fixed using standard relationships, and the 

moment of each area about a section further down the wall is then calculated and summed. 
Eqn. (8.23) could easily be applied to net pressures, as the elevations of the discrete points on 

each side of the wall usually coincide. Gunn and Ponnampalam (1990) employed a Lagrangian 

polynomial to fit stresses in a row of 3 Gauss points in an element, and then extrapolated this 
to the wall. This is similar in principle to the local best fit a+b. x method described in Section 

8.3.2, but suffers from the drawback that a Lagrangian polynomial will be forced to pass 
through the Gauss point values, which can result in a highly curved trajectory. Least-squares 
best-fitting to an order n-I (where n is the number of data points) is more appropriate, but 

results in the previous section suggest that even this is not entirely satisfactory. 

If the wall is of significant thickness, it may be important to take account of the moment of the 

soil-wall shear stresses about the wall centreline. Retained soil tends to slump as the wall 

moves forward, causing a downward shear on the back of the wall; excavated soil tends to 
heave, causing upward shear on the front. On both sides, shear stress acts to reduce the 

moment due to retained soil pressure by an amount: 

, &m= 
f 

(Ty), t/2 dy + (T,, y). 
V2 dy 

YO YO 
(8.24) 

For thin (sheet) walls, this is a second-order effect but for diaphragm walls it can be quite 

significant - especially if slip elements have not been used to limit the soil-wall shear. 
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A different formulation for calculating bending moments from earth pressures makes use of 
Gaussian integration rules. Considering the retained side only (Fig. 8.23b): 

h+IJ2 h+U2 
M cr. y dy - Txy t/2 dy 

h-L/2 h-L/2 

+1 +1 
sk% ax Wh) LL d7l - cxy iL dn 

-1 22 -1 22 

L2/4 axý, (-a+h)(5/9) + crxb (O+h)(8/9) +a xc (a+h)(5/9) 

t L/4 1 (519) rv. + (8/9) -cxyb + (5/9), Cv, } (8.25) 

where a= A315). The excavated side is treated similarly, for elements below formation level. 

Due to its formulation, this method can only be used conveniently at the base of each element, 
rather than through each section of Gauss points. Bending moments calculated from Eqns 

(8.23) and (8.25) have been compared by the writer, and are indistinguishable. Consequently, 

only results obtained with Eqn (8.23) are shown hereafter. 

Nodal forces in the wall offer an alternative third approach. With reference to Fig. 8.22(c), 
T forces Fy., Fyb and Fy,, can be obtained from FB ay, and thence: 

M= Y- Fyi xi = Fy.. (-t/2) + Fyb-O + Fy,,. t/2 = (t/2) (-Fy,, + Fy,, ) (8.26) 

Moments can be calculated at the top, bottom and middle of an element -a total of 3+2(N-1) 

sections in a column of N elements. This method would be expected to agree with the 

integration of wall stresses I ay. x. dx, and a short series of analyses reported by Gunn and 
Ponnampalam (1990) suggest that this is indeed the case. However, in order to implement 

Eqn 8.26, unassembled nodal forces are required, and most programs do not make these 

available. FE codes are usually more concerned with demonstrating equilibrium (force 

balance) at each node by outputting I: Fi and 7, Fyi, as is the case with CRISP. 

A fourth and fnal method is based on equivalent nodal loads from the earth pressure in 

adjacent soil elements. In Fig. 8.22(d), the lateral forces exerted by a soil element are given by 

IBT. a.., and vertical forces by f BT., ry, whence for the retained side: 
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NLR NLR 

M F, Fd yj - 
F, Fyi t/2 (8.27) 

where NLR is the number of soil elements on the retained side. Forces on the excavated side 
are dealt with similarly (NLx). As with Eqn (8.26), moments can be calculated at the top, 
bottom and middle of an element, but unassembled nodal forces are required. This method 
would be expected to agree with the integration of soil stresses f a.. y. dy, although it does not 
appear to have been investigated by other workers. Owing to time constraints, it was not 
possible to implement this method, and so no studies have been carried out. 

8.4.3 Benchmarking - wall stress bending moments 

A column of 16 LSQ elements, each lm high (such as used to represent the wall in the 

analyses reported in Chapters 4-6) has been isolated for a number of numerical tests. The 

column was fully fixed along the bottom edge (a much more onerous condition than applies to 
a full embedded wall), and subject to three separate load cases as follows (see Fig. 8.24): 

Al single UDL of 10 Mm/m all along the right-hand side (RHS) 
BI double LJDLs of 10 kN/m/m all along the REIS and 40 kN/m/m along the lower half of 

the left-hand side (LHS) 
Cl double linearly varying loads - 6.67z (=Y.. yz) on the RHS and 60z (=Kpyz) on the 

lower half of the LHS 

Case Cl approximates the typical design earth pressures used in the free-earth support 
method. With the addition of a single mid-way prop half-way up the LHS, another 3 analysis 

cases (A2, B2, C2) were created. 

The bending moments diagrams (BMDs) for these simplified cases are shown in Fig. 8.25(a-f), 
from which two key items are apparent. Firstly, the 3 x3 and (interpolated) 2x2 integration 

schemes gave results which were indistinguishable, and secondly both schemes agreed 
extremely closely with the exact bending moment distributions. 

Potential problems with wall stress bending moments (WSBM) do exist, however. For 

example, if case Al (16m cantilever with single UDL) was rerun using LSQs only 0.25m thick 
(and not Im as above), then the BMD was very inaccurate, Fig. 8.26. This was a numerical 
problem and was a function of the end fixity conditions and the overall slenderness ratio of the 
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cantilever, as LSQs of 0.25m thickness produced correct results when used to form cantilevers 
8m, 4m and Im long (meshes with 8,4 and I LSQ elements respectively). Problems of this 
nature were discussed in Chapter 7; and provided appropriate aspect ratios and stiffhess 
contrasts are maintained, there should not normally be a problem with the WSBM method. 

8.4.4 Assessment - wall stress bending moments 

To assess the WSBM method, the same retaining wall analyses used in Section 8.3.3. (cases 
RWI to RWI 13) have been rerun, and wall stresses extracted to permit the bending moments 
to be calculated. Selected plots are included in Fig. 8.27(a-f). 

Inspection of the BMDs reveals three main features. Firstly, although the moment was zero 
(or close to it) at the top of the wall, it was significantly non-zero at the toe in many cases: the 
bottom element often showed a "Enle'in the diagram (e. g. Fig. 8.27a & e). Secondlywhere 

the soil was drained the BMD tended to be smoother than the corresponding undrained 
analyses (compare Fig. 8.27c & a). Thirdly, the BMDs in elastic-perfectly plastic soff tended 
to be smoother than the corresponding elastic analysis (compare Fig. 8.27e & a) 

The first observation suggests that the soil can sometimes offer a clamping effect at the toe of 
the wall. This is not unreasonable; a truly zero moment can only be expected at the end of a 
structural member if it is pinned at that point. Although soil is considerably less stff than 

concrete (approximately by a factor of 103), it is able to offer some resistance to wall rotation. 
Interestingly, the drained cases (Figs 8.27c & d) showed virtually zero moment at the toe. As 

this cannot be explained simply by the difference between undrained and drained soil stifffiess 
(E'/F, -- 0.8), it would appear that the constant volume (undrained) condition was responsible. 

Supporting the constant volume hypothesis is the second observation; namely that the BMDs 

were more erratic in the undrained than the drained (elastic) cases, especially below formation 

level when the soil medium was on both sides of the wall (Figs 8.27a & b). In plane strain e, 
Cy and y. are variables but as s. + ey =0 only two strains are actually independent and this 

could, in turn, impose a form of Idnematic restraint on the wall through common nodes on the 

soil-wall interface. 
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If BMI)s are to be smoothed and non-zero toe moments are to be removed, an observation 
from Chapter 4 may be relevant. During mesh refinement studies (in particular r-refinement), 
it was noted that non-zero bending moment at the wall toe disappeared if the soil element 
immediately below the wall was modified so that it became much shorter than the wall 
element. At the same time, BMDs for undrained loading cases also became smoother if the 
column of soil elements adjacent to the wall was made thinner. In other words, local mesh 
geometry in the soil affects the quality of the BMD in the wall. Instead of changing the 

grading of the whole mesh (which was the case in Chapter 4) some localized refinement might 
be adequate. A suitable scheme would simply involve splitting into two the layer of soil 
elements adjacent to the wall. 

8.4.5 Improvement - wall stress bending moments 

A short series of analyses has been conducted to investigate the non-zero bending moment at 
the toe, and ways in which it might be removed. Firstly, the column of 16 LSQ elements used 
in Section 8.4.3 was modified to include six extra elements around the toe, Fig. 8.28. With the 

addition of a top prop on the LHS and a single UDL of 10 kN/ni/m along the RHS, case A3 

was created. The extra soil elements were given a stiffhess E. which was varied to give wall: 
soil stiffness ratios Ew/E. of 1000,100,10 and 1. At EVE, = 1000, a simply supported column 

with a lateral UDL was effectively created. At E, /E, =Ia propped cantilever was produced. 

If the soil elements were present below the toe q* the BMD remained smooth, but fixed-end 

moments at the toe M) were generated as follows: 

1000 100 10 
Mt (kN-m) 0 50 210 300 (v = 0.15) 

0 75 240 300 (v = 0.497) 

The use of different Poisson's ratios served to highlight the influence of drainage which, from 

these results, can be seen to be modest. 

If the soil elements were present below the toe and on either side of the wall for the lowest 

two elements, the BMD was smooth above these two elements, but the "kirk' referred to in 
Section 8.4.4 was observed (see Fig. 8.29), even when Ew/13, = 1000 and little influence from 
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the soil would be expected. The effect was most pronounced if the soil was undrained (which 

gave Mt = -50 kN-m); if drained, a smaller kink in the BMD was evident (with Mt =0 kN-m). 

The second investigation was carried out with a full embedded wall - case RWI (defined in 
Section 8.3.3). In this instance, two different local mesh refinement schemes were adopted, 
both reducing the size of the soil element immediately below the wall toe, Fig. 8.30. The first 

scheme, which involved dividing the soil element into four 6-noded triangles, actually made 
the kink worse, Fig. 8.3 1 (a). The second scheme, however, involved dividing the soil element 
below the wall toe into two LSQs and this virtually removed the Idnk. A small non-zero 
moment persisted, but the lower half of the BMD was noticeably smoother, Fig. 8.3 1 (b). 

The principal conclusion from these brief studies is that the soil around the toe of an embedded 
wall can indeed provide rotational restraint - but only if the soil is undrained, given the typical 

modular ratio (F.,, /E. ) likely to be prevalent. Thus, non-zero bending moment can be expected 
and does not necessarily indicate a fault in the analysis. However, irregularity in the BMD (in 

the form of kinks) is more likely to be a function of mesh density, and this can be overcome 

with minor local refinement of the mesh, although some refinement schemes will perform 
better than others. 

8.4.6 Assessment - earth pressure bending moments 

The column of 16 LSQ elements used in Sections 8.4.3 and 8.4.5 were initially considered for 
benchmark studies. However, the earth pressure bending moment (EPBM) method requires 
external (soil) stresses and these would be the same as the stresses applied directly to the 

column of LSQs. Based on this, EPBMs would equal the exact values at all points. Several 

columns of soil elements could be included either side of the wall, with the UDLs applied on 
the far boundaries, but one might as well proceed directly to full embedded wall analyses. 

Consequently, the analyses presented in Section 8.4.4 were reused, namely cases RW I to 
RWI 13. This time, total horizontal soil stresses (cyo and soil-wall shear stresses (, ry) in the 

adjacent soil elements on both the retained and active sides were extracted from the output, 
rather than transverse bending stresses in the wall. Selected plots (out of the large number 
generated) are included in Fig. 8.32(a-f). The plots show the earth pressure bending moments 
(EPBN4) compared with those based on wall stresses (WSBNI). For the purposes of the 
discussion below, pressures on the retained side will be referred to as "active' and on the 
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excavated side as "passive" - though it is recognized that these terms relate to limiting 

conditions which are not achieved in these analyses (which relate to working conditions). 

In all cases except RW1 12, the agreement between the WSBM and EPBM methods over the 
upper half of the wall was generally very good. However, agreement below formation level 

was at best very poor (and usually much worse). In virtually all cases the curves for the two 
different methods began to diverge significantly when formation level was reached, with the 
worst discrepancy at the toe. Such large non-zero moments are clearly incorrect and are in a 
different category to the problems of non-zero moment at the tow described in Section 8.4.5. 
Case RW1 12 (Fig. 8.320 showed significant divergence developing from the top of the wall. 
A further point to note is that in the undrained analyses (RWI-RWI3 and RWI02-RWI 13) 
the EPBM tended to a large negative value at the toe (e. g. Fig. 8.32a), whereas in the drained 

analyses (RW5 I -RW63) it tended to a large positive value (e. g. Fig. 8.3 2d). Again, case 
RWI 12 was an exception to this, though for reasons which are unclear. Some comments on 
individual cases will now be made. 

Case RWI showed a very large negative (EPBNO moment at the toe, but this was not caused 
by soil restraining the wall - rather the modest active pressures were being opposed by very 
large passive pressures. There was some tensile active stress at the top, causing a significant 
negative moment (i. e. the side of the wall facing the excavation being in tension) which was 
only partly counteracted by the (positive) active pressures further down. There were no 
tensile stresses at the top in case RW3 (Fig. 8.32a), but large passive pressures again 
dominated the EPBM diagram over the lower half of the wall. 

In RW II (Fig. 8.32b) and RW13, the EPBM was virtually always negative, with a small 

negative region just below formation level, with passive pressures again being mainly 

responsible for the substantial movement towards high negative moments at the toe. Top- 

propping prevented tensile active stresses developing, as the wall could not move forward 
freely. The EPBM diagrams for RW II and RW13 were quite similar to each other. 

Switching to drained analyses (Figs 8.32c-d), the passive stresses were lower than in the 

undrained (in particular, the large peak just below formation level was not so pronounced) and 
this generally resulted in EPBMs remaining positive below formation level. Divergence 

between the WSBM and EPBM methods below formation level was not quite so severe as in 

the undrained case, but it was still far too great to be acceptable. 
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Introducing yield (Figs 8.32e-f) generally served to worsen both the discrepancy between the 
WSBM and EPBM methods at the wall toe and the divergence over the upper half of the wall, 
though it was the former which was more noticeable. Comparisons with the corresponding 
elastic analyses (RW1-RW13) showed similar patterns except in case RWI 12, which exhibited 
the worst agreement between the WSBM and EPBM methods in all of the cases examined 
(and for no obvious reason). 

8.4.7 Summary 

These analyses suggest that bending moments calculated from earth pressures are of limited 

reliability. Above formation level where ah is only present on one side of the wall, the 

agreement between WSBM and EPBM can be very good indeed, but below formation level 

where ah is on both sides, the EPBM method breaks down completely. As the maximum BM 

often occurs below formation level, a potentiaUy useful cross-check on its magnitude is thus 
lost. Gunn and Ponnampalarn (1990) reached a similar conclusion, although they were not 
able to obtain agreement over the upper portion of the wall (probably due to the method 

which they used to extrapolate stresses to the wall). The role of tensile horizontal stresses at 
the wall top, large peaks in horizontal stress below formation level, etc. - all have an effect on 
computed EPBM. Toward the wall toe, (possible) errors in stress are being amplffled by an 
increasing lever arm, thus compounding the error in bending moment. 

The EPBM is an obvious and intuitive check to carry out, but one which fails (at least in part) 
because of certain aspects of the finite element method. Even by taking steps (i. e. stress 
smoothing) to minimize one of the known sources of error, the result is still unsatisfactory. it 

underlines the need for totally independent corroboration, instead of relying on different 

output from the FE analysis in various cross-checking schemes. Consistency may well be 
demonstrated, but this would not be sufficient endorsement of the analysis itself 

For the time being, calculation of bending moments using transverse stress distributions in the 
Wall elements would seem perfectly adequate, and its continued use is recommended. Using 

raw 3x3 or interpolated 2x2 stresses gives the same result, so the extra effort involved in the 
interpolation for the latter is not warranted. 
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8.5 Wall Shear Forces 

8.5.1 Elements in Shear 

The performance of the LSQ element in shear appears to have received significantly less 

attention than in bending, despite the fact that both modes are generally present. An engineer 
might assume that the behaviour is satisfactory, provided similar geometric restrictions are 
observed as for bending (see Section 8.4.1). The main problem (highlighted by Zienkiewicz 

and Taylor, 1989) is that the shear stresses show a parabolic variation in each LSQ element - 
providing an extremely poor representation of the actual stresses. However, shear stresses 
sampled at the reduced (2x2) points have been shown to be excellent. In embedded wall 
design, bending moments are sought more often than shear forces, but the latter are a valid 
design output and it is appropriate to enquire into their accuracy and reliability. 

The shear strain field in an embedded waU of thickness w is given by y'Y = (Q/2GI)(WI/4-X2 ) 
(Livesely, 1983). At a given section where the shear force Q and the values G and I are 

constant, yxy reduces quadratically with distance x from the neutral axis, being zero at the 

extreme fibres (where x=w/2). As noted in Section 8.4.1, differentiating the assumed 
displacement approximation for the LSQ element with respect to y gives terms in 1, x, 2y, x2 

and 2xy, whereas differentiation with respect to x gives terms in 1,2x, y, 2xy and y2. Given 

that yy = Wpy + &vlc'x, there is the potential for quadratic variations of y. (and hence -rXY 
G. yxy) in botý the x and y directions. This is the order required by the analytical solution for 

the shear stress distribution across a transverse section, but the freedom to vary quadratically 
in the longitudinal direction(when only a linear variation is required) may lead to unwanted 

effects. 

In this section, the performance of the LSQ in obtaining shear force diagrams (SFDs) in 

retaining walls is examined. As in the previous section, only straight-sided elements with all 
internal angles equal to 90' have been considered. 

8.5.2 Calculation methods 

Unlike bending moments, there appears not to be an established or conventional method for 

calculating shear force in wall elements. However, the logical approach would be to integrate 
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the shear stress distribution across the section, Fig. 8.33(a). The derivation for a full 3x3 
integration scheme was given in Section 3.4.2, leading to (Eqn 3.21): 

t/18 (5 -ry, +8 -ry, & +5 ry, .c) 
(8.28)his 

This method usually gives unsatisfactory results, with wildly oscillating shear forces. A typical 

example is shown in Fig. 8.34 which is the SFD for a top-propped wall with E. = 5z (case 
RW13). (The reasons for these poor shear forces are examined in detail in the next section. ) 
The shear forces seem to fluctuate either side of a curve describing a reasonable SFD, and 
whilst it is not possible to know the absolute accuracy of computed shear forces in a full 

retaining wall analysis, the method can be verified against idealized cases for which the 

solutions are known. Comparisons with other calculation methods can also be helpful, 

provided potential pitfalls are recognized. 

If a reduced (2x2) integration scheme is used, the weightings are unity, thus: 

s: e t/2 
{(I) 

Ty= +(I) 'ryxb 
1 

; 4- t/2 ( Tym + Tyxb ) (8.29) 

In the absence of reduced integration elements, interpolated 2x2 stresses could be obtained 
from the 3 x3 Gauss points, as explained in Section 8.3.2. Shear forces at any given section at 
elevation yo can also be calculated from external soil stresses (Fig. 8.33b): 

(Cyx)r dY 
f 

(ax), dy 
Yr 

YO YO 

Nr N, 
E (a, ). Ay F, (Crx), Ay (8.30) 

where N is the number of elements and subscripts Y and 'e' denote retained and excavated. 
As was the case with bending moments, this would be a logical method for checking shear 
forces based on wall stresses. Smoothed total horizontal stresses using the best-fit plane 
(BFP3) can be extrapolated to the wall on both sides; soil-wall shear stresses are not required. 

Making direct use of Gaussian integration rules, for a single element on the retained side 
whose centroid is at a height h above the section concerned (Fig. 8.23): 
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h+U2 +1 
cy. dy a. L drl 

h-IJ2 -1 2 

L/2 1 (5/9) cy, + (8/9) q,, b + (5/9) cr., (8.31) 

Summation is carried out for all elements above the section; on the excavated side, summation 
is done for elements below formation level. As was the case for bending moments (see 
Section 8.4.2), Eqns (8.30) and (8.3 1) yield identical values, so only shear forces calculated 
with Eqn (8.30) will be shown in the numerical studies. 

Using equivalent nodal forces between the wall elements (Fig. 8.33c): 

F�i F,. + Fe + F, (8.32) 

This value of Q would be expected to agree with the integration of wall shear stresses 

, rý.. dx, but the writer has found no such comparisons in the literature. 

FinaHy, using equivalent nodal forces due to the lateral earth pressures from adjacent soil 
elements (Fig. 8.33d): 

F,,., l + Fs2 + F. (8.33) 

A priori it is difficult to say whether or not Q from Eqn 8.33 would agree with the integration 

of soil stresses above the section f ay. dx, and there has been insufficient time to investigate 

further. It is not clear that there would be any major advantage with this method over the 

others. 

8.5.3 Investigation - wall stress shear forces 

The column of 16, Im high x Im wide LSQ elements described in Section 8.4.3 (Fig. 8.24) has 
been used in a further series of numerical tests. In the first instance, only case Al has been 

extracted, to allow more detailed examination of the shear stress distribution. Fig. 8.35 shows 
the SFD for case Al calculated with Eqn (8.28), from which it is clear that the shear force 

variation along any one element is following a parabolic trend. This arises from the parabolic 
variation permitted by the element formulation, as explained in Section 8.5.1 above. It is clear 

845 



that some form of smoothing could usefully be applied - either to the shear stresses before they 
are presented to Eqn (8.28), or to the calculated shear forces themselves. Two methods in the 
former category have been selected for fiuther investigation: 

a) fitting a least-squares best-fit plane to the raw 3 x3 shear stresses (BFP3), and 
b) obtaining the interpolated 2x2 shear stresses by fitting 9-node Lagrangian shape 

functions to the 3 x3 Gauss points. 

These methods were selected because they were shown to work well in preceding sections for 

smoothing both lateral soil stresses and transverse bending stresses in the wall. 

8.5.4 Benchmarking - wall stress shear forces 

Load cases Al to CI (simple cantilever) and A2 to C2 (singly propped cantilever) have been 

re-run, and the SFI)s are shown in Figs 8.36(a-f). It is clear that the BFP3 and interpolated 
2x2 schemes gave results which were indistinguishable, apart from in the element adjacent to 
the fixed end. In addition (and more importantly) both schemes agreed extremely well with 
the exact shear forces - in marked contrast to distributions based on the raw 3 x3 stresses. In 

view of the fact that the BFP3 method worked well in all elements, this method was selected 
for further examination in the context of full retaining wall analyses. 

8.5.5 Assessment - wall stress shear forces 

The wall analyses described in Section 8.3.3 (RWI to RWI 13) have been re-used, the wall 
shear stresses extracted and smoothed using the BFP3 method, and the shear forces 

calculated. Results of some selected cases are shown in Fig. 9.37(a-f). Shear force diagrams 

based on raw 3 x3 stresses and on BFP3 are both shown for comparison. 

Four main features are evident from the plots in Fig. 8.37. Firstly, the shear force was 
generally zero (or close to zero) at the top of the wall, except where the wall was top- 

propped. Secondly, the shear force at the toe was usually small (if not zero), except in the 

elastic-perfectly plastic cases with E. = mz. Thirdly, the introduction of drainage and plastic 
yielding had little overall effect on the smoothness of the relevant SFDs, which were generally 
free of erratic behaviour in the corresponding undrained elastic analysis. Fourthly, the 

maximum shear force (and main discontinuity in the SFD) always occurred at formation level. 
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The first observation suggests that the change in calculated shear force at a prop location 

would be a useful cross-check on prop loads obtained by other methods (e. g. J a.. dx). 
The second observation suggests that the soil can sometimes offer horizontal restraint at the 
toe of the wall, which is reasonable because the toe is not completely free (compare with the 
argument advanced in Section 8.4.4). However, drainage does not appear to have much 
influence on this, as the toe shear forces Qt in cases RW51-RW63 are similar to those in RWI- 
RW13. Indeed, the constant volume condition in the soil would not be expected to offer any 
additional resistance to shear distortion (recall that G. = G'). 

Consistent with this is the third observation; namely that the overall smoothness of the SFDs is 

not greatly affected whether the analysis is drained or undrained. In view of the absence of 
obvious anomalies in the diagrams presented here, it was considered unnecessary to 
investigate the influence of mesh refinement. However, it is reasonable to expect that mesh 
refinement of the type described in Section 8.4.5 (which leads to an improvement in BMD 

quality) could be carried out without impairing the SFD. 

The fourth observation above simply shows how the lateral earth pressures on the retained 
C'active") side are suddenly counteracted by pressures on the excavated ("passive") side when 
formation level (FL) is encountered. The fact that an abnormally high passive lateral stress is 

observed just below FL in many analyses, explains why the discontinuity in the SFD is so 
pronounced. If this peak were not present, a more gradual change in SF gradient would be 

expected (e. g. see Fig. 8.36 which shows SFDs for the idealized K. and Kp profiles). 

8.5.6 Assessment - earth pressure shear forces 

As with earth pressure bending moments, benchmarking of the form described in Section 8.5.4 
is not feasible, so the embedded wall analyses RWI to RWI 13 have been used once more. 
Total horizontal soil stresses (aO in the adjacent soil elements on both the retained and active 

sides were extracted from the output, for use in Eqn (8.30). 

Results for selected cases are plotted in Fig. 8.38(a-f), showing the earth pressure shear forces 

(EPSF) compared with those based on wall stresses (WSSF). As before, pressures on the 

retained and excavated sides will be termed "active" and "passive" for convenience. 
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In the majority of cases, the agreement between the WSSF and EPSF methods over the upper 
half of the wall was generally very good, if not excellent. The exceptions to this were some of 
the elastic-perfectly plastic cases where the agreement was, at best, reasonable. As with' 
EPBM diagrams, it is below formation level that discrepancies between the two methods 
became very much worse - except for the drained analyses where the agreement was excellent 
at all points on the wall. Some comments on individual cases will now be made. 

In case RW I there was a fairly small and constant offset of 10 Min between the EPSF and 
WSSF diagrams down to formation level, below which they diverged to about 200 kN/m over 
the lower portion of the wall. A very similar pattern was observed for RW3 (Fig. 8.3 8a). 
With top-propping (RW II and RW 13, Figs 8.3 8b), agreement over the upper half was very 

good indeed, but a discrepancy of about 150 Min developed between formation level and the 

toe. Slightly closer examination revealed that the main "shift" in the EPSF diagrams occurred 
in the first element below formation level, indicating that the peak in passive horizontal stress 

was primarily responsible. That the discrepancy did not worsen towards the toe is because 

(unlike in the EPBM diagram) there was no lever arm to amplify the effect of the peak. 

Under drained conditions, (RW5 I -RW63) agreement between the EPSF and WS SF methods 

was excellent at all points along the wall (Figs 8.3 8c & d). This was principally because the 

large passive total horizontal stress no longer existed, and the SFD did not undergo a shift just 

below formation level. 

Introducing plastic yield had variable effects. In RWI02 the discrepancy in the results form 

EPSF and WSSF was small (; t; 20 kN/m) over the top half of the wall, gradually increasing to 

100 Min between formation level and the toe. A variable difference of 20-75 kN/m was in 

evidence over the upper half in RWI 12 (Fig. 8.380, but there was almost complete agreement 

over the lower half (recall that RW 112 showed anomalous behaviour for EPBMs too). 

Finally, RWI 13 gave excellent agreement from wall top to formation level, but a worsening 
discrepancy between the two methods down to the toe where it reached 350 Min. 

8.5.7 Summary 

As with bending moments, the main conclusion to be drawn from the analyses presented here 

is that the reliability of shear forces calculated from earth pressures is limited, although the 
discrepancies are not quite as large as with bending moments. Above formation level, the 
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EPBM method could be used reliably to cross-check shear forces based on wall stresses, but it 
is only in drained cases where this could be claimed for the fully embedded portion of the wall. 

Discontinuities in the SFD should occur at (and only at) the location of props; the magnitude 
of the prop level discontinuity provides a useful cross-check on calculated axial forces in those 
props 

There are problems in carrying out what might be considered an obvious cross-check (i. e. 
between WS and EP shear forces. The large peak in horizontal stress below formation level is 

thought to give rise to most of the discrepancy between the two methods; further 
improvements to the EPSF method are unlikely unless some way of removing this peak can be 
found. In view of the fact that the wall stress method appears to give reliable and accurate 

results, there is therefore little incentive to attempt to improve the earth pressure method. 

8.6 Prop and Anchor Loads 

8.6.1 Tension/compression 

Elements forming a structural member in pure tension or compression do not, in generA pose 

any particular problems for output interpretation. The main factor which the user needs to be 

clear about is whether or not axial force is expected to remain constant along the length of the 

member. 

Examples of where the force would be expected to remain constant are the free (debonded) 

length of a ground anchorage, and in free-spanning props (e. g. cut-and-cover tunnel struts). 
Whether modelled by ID or 2D elements, the axial force should not vary along the member 

and this must be evidenced in the output. 

Examples of where the axial force would be expected to vary in reality are along the fixed 

(bonded) length of a ground anchorage, and across a formation level prop slab. A fixed 

anchor is usually modelled by a number of bar elements in series, and it would be expected 
that the load in the bars would reduce from the proximal to the distal end (owing to load 

transfer), although the exact variation will depend on how the tendon-grout-ground interfaces 

are modelled (Barkhordari, 1998). 
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Prop slabs at formation level are cast against the underlying ground (or a drainage blanket), 

allowing for load transfer via shear stresses between the prop and the soil. Where the 

underlying soil has been modelled as elastic-perfectly plastic, there is a limit on the maximum 
shear stress which could develop on the underside of the slab (cu or a'ntaný'). Such a limit 
does not exist in an elastic analysis, and so more care would have to be taken in the 
interpretation. As the shear stress from the soil will always act in the opposite direction to that 
in which the prop slab is changing length, it will always be acting to reduce the axial load - 
whether compressive or tensile. 

One-dimensional elements 

The axial force is calculated by CRISP as the product of the axial rigidity EA and the axial 
strain, and is output directly. If the prop is inclined to the global co-ordinate system (x, y), the 

appropriate transformations will have been carried out automatically by the program. Care 

must be taken in the interpretation of loads output for 1D elements if any pre-stress has been 

applied prior to installation. If this is the case, CRISP outputs the change of load AP since the 
insertion of the prop in the mesh, and is thus relative to the prestress P, The total load at any 

point in the analysis is then P. + AP. 

Two-dimensional elements 

The derivation of axial force based on transverse stresses with a full 3 x3 integration scheme 
was given in Section 3.4.3.1, leading to (Eqn 3.25): 

P --i h/18(5a. +8cr,, b+5a,. ) (8.34)bis 

where h is the section depth of the prop. With a 2x2 integration scheme: 

P st; h/2 ( a,, + crib ) (8.35) 

For props which are inclined to the horizontal (e. g. A406 Walthamstow and A331 Aldershot 

Road Underpass, Appendix A), the local element axes (t, 71) are no longer aligned with the 

system axes (x, y). The a,, i inEqns (8.35) and (8.36) must be substituted bycr4j, the normal 

stress in the local a)" direction 4. As CRISP outputs Cartesian stresses, the crpj at the Gauss 

points must be obtained from standard formulae based on manipulation of Mohr's circle of 

stress. If the angle of inclination of the prop to the horizontal is 0, then: 
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cr4 = 1/2(a, 
ý 
+ cry) - VS(a. - ay)cos20 - -r, . ysin2O (8.36) 

If 0 is small (say <10') then the correction is quite minor and can probably be neglected. The 
dimension h is the (true) depth of the element, measured normal to the local t axis, and not the 

vertical distance across (= h. secO). 

8.6.2 Bending and shear 

One-dimensional bar elements (2- or 3-noded) are only capable of transmitting axial force, 

whereas beam elements can additionally carry bending and shear. Two-dimensional elements 
are able to transmit shear and bending in addition to axial force; the actions actually carried 
depend on geometry and end conditions. This is illustrated in Fig. 8.39 which shows 3 types 

of end connection between prop and wall (pin-pin, fixed-pin, and fixed-fixed), and the bending 

moment and shear force diagrams resulting from a unit vertical displacement of the RHS. 

In the pinned-pinned case (Fig. 8.39a) it should be noted that, if the end triangles were not 

symmetrical about the axis of the prop, bending moment would be induced by axial load alone, 
due to the eccentricity. (This also occurs in a cranked prop slab, Fig. 3.9, even if bothends 

are pinned. ) 

One-dimensional elements 

The bending moment is calculated using standard stiffiess relationships involving the flexural 

rigidity El and rotation 0. There is no choice for the user, nor any likelihood of problems 
occurring. If the prop is free-spanning, 3-noded beam elements must not be used or problems 

will arise with the mid-side node being unrestrained. 

Two-&mensjonal elements 

The options for computing bending moments and shear forces in a slab are identical to those in 

a wall (with the obvious difference that the former is generally horizontal while the latter is 

vertical). What can make a more significant difference is that prop slabs may be inclined to the 
horizontal and thus not aligned with the global x axis. Transverse normal stresses must 
therefore be obtained from the Cartesian stresses (a. ayr,, y) via Eqn (8.36) before attempting 
to use them to calculate bending moments in the prop. Once this has been taken into account, 
the observations made and the conclusions drawn in Sections 8.4 and 8.5 would be relevant. 
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8.6.3 Summary 

No numerical investigations have been carried out into prop and anchor loads for this thesis. 
The methods of obtaining the a. -, dal forces output from CRISP are straightforward and no 
specific problems have been reported in the literature. The only factors to take into account 
when interpreting output are (a) whether or not shear stress transfer can occur, and (b) if any 
prestressing has been performed. For bending moments and shear forces in 2D elements, 
methods based on internal (transverse) stresses are probably the best, and these have been 
investigated earlier in this chapter. For ID elements, there are few (if any) contentious issues. 

8.7 Discussion and Summary 

This Chapter has examined that part of the finite element analysis which impacts ultimately on 
the design process - viz. the output. Earlier chapters have covered the modelling issues that 
are relevant during the set-up and execution of the finite element analysis - such as 
discretization, constitutive modelling, construction representation, and numerical problems. 
These earlier chapters have demonstrated that the calculated quantities can be influenced by a 
large number of factors - even before results are extracted, processed, and finally displayed. 
This chapter has attempted to show that there are further issues to be aware of when viewing 
program output, or using it for further calculations. A finite element analysis can take days to 
set up and run, and so there will be considerable pressure to expedite the production of plots 
and graphs for the design team - but this can result in a false economy of time. 

Three principal categories of output have been examined: 
a) displacements (primary output) 
b) stresses/pressures (secondary output) 
C) internal structural forces (tertia7y output) 

Correct interpretation and visualization are of key concern to practitioners, but the literature 

provides little if any advice on the matter. The numerical results presented in this chapter 
should go some way to addressing this deficiency, in a manner which is understandable by, and 
useful to, designers. The major points will now be summarized. 
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Displacements 

Recommendations have been put forward based largely on the writer's experience, having 

performed many retaining wall analyses in a commercial context. The recommendations are 
not onerous to implement, and significant benefit would arise from following them, yet 
anecdotal evidence suggests that they are not being followed in current practice. An 
inadmissible analysis can be unwittingly passed if the displacements (deformed mesh, vectors, 
contours) are not scrutinized appropriately and thoroughly. There is a temptation to extract 
the wall displacement, ground surface settlement profile, etc as soon as the analysis is 

complete, but this should be regarded as negligent practice. 

Stresses1pressures 

Numerical analyses have been deployed to assess various alternatives for obtaining soil stress 
distributions (normal and shear) on the wall. Methods of varying levels of rigour were 
implemented and tested The methods which used a least-squares best-fit plane through the 
traw' 3x3 Gauss point stresses, or which interpolated the 2x2 (reduced integration) point 
stresses, gave a satisfactory degree of smoothing for the present purpose. These local 

element-by-element methods are not ideal, as they still leave some degree of "raggednese' in 
the profiles of horizontal total stress or soil-wall shear stress. Compromise approaches (e. g. 
the superlocal method in Section 8.3.4) would seem attractive, but the limited results 
presented herein have not been convincing. There may be more potential to explore than has 
been possible in the present work and thýis may deserve further investigation. 

Internal structuralforces 

Numerical experiments have been used to benchmark the methods normally employed to 

obtain wall bending moment and shear force - and also to assess the merits of various 
alternatives. Methods using transverse stress distributions in the wall have been confir-med as 
the most reliable. For bending moments, "raw" 3 x3 Gauss point normal stresses are 
satisfactory, whereas for shear forces the 3 x3 shear stresses are not suitable and a smoothing 
stage is required. The independent check sought from external soil pressures is logical and 
intuitive, and is thus arguably the kind of check that ought to be carried out - but unfortunately 
it breaks down and affords only limited corroboration in practice. 
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Customizedpre-lpost-processing 

The basic CRISP "engine" released initially in 1982 was enhanced with a variety of in-house 

pre4post-processing software or linked to commercial packages where users had already 
acquired them. Cambridge University produced the CRISP 90 engine plus interface in 1990, 

eventually superseded by SAGE CRISP in 1995. At present, a variety of practices and 
products exist, but there is a specific gap which no investigator has attempted to fill: the 
provision of pre/post-processing software aimed at particular types of analysis and design 

applications. For example, embankment modelling has different requirements to (say) tunnel 

analysis, which are different again to retaining walls - yet only a general interface is available. 
Errors due to ignorance or lack of experience could be minimized by "situation-specific" 
front/back ends (not necessarily using an expert knowledge-based system, though this may 
happen in time). Other commercial FE software appears to be evolving in this direction - for 

example, LUSAS release 14 (FEA, 1998) comes with various modules which recognize the 

particular demands of (for example) bridge analysis. 

A retaining wall post-processing module might include: 

empirical profiles for ground movement (vertical and horizontal) behind the wall, 
which can be superimposed on calculated results: the later being converted to non- 
dimensional form to allow proper comparison, 

interpolation to obtain stresses at reduced integration (2x2) points from the raw (3 x3) 
Gauss point data in specified elements, for use in (iii) and (vi) below, 

one or more of the local stress smoothing methods presented in Section 8.3 - best-fit 

plane 3x3 (BFP3) and best-fit fine 2x2 (BFL2) are recommended - in order to produce 

profiles on any given horizontal or vertical section in the mesh, 

iv) simplified earth pressure diagrams for both retained (active) and excavated (passive) 

sides of the wall, which can be superimposed on calculated distributions (suitably 

smoothed) for comparison, 

V) wall bending moment calculations using the wall stress method (WSBN1) - with an 
option on the earth pressure method (EPBNI) provided it carries an appropriate 

warning about probable inaccuracy, 
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vi) wall shear force calculations using the wall stress method (WSSF) - with an option on 
the earth pressure method (EPSF) carrying the same proviso as (iv) above, 

vii) bending moment and shear force calculations as in (iv) and (v), but for props modelled 
with 2D continuum elements - corrected as appropriate for inclination to horizontal 

ViH) bending moment, shear force and axial force calculations for props modelled with ID 
beam/bar elements 

I ý'I axial tensions (relative to prestress load) for anchors modelled with 1D bar elements 

Progress towards such a system is represented by various utilities (programs and spreadsheets) 
developed by the writer during the course of the present work - elements of (v), (vii) and (viii) 
have been present since CRISP 9x. However, significant further work remains to be done 

before something of sufficient robustness and commercial, standard is available. 
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Fig 8.28 Single column of 16 LSQ elements with modifications at base (case A3) 
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CHAPTER 9 

CONCLUSIONS AND RECOMMENDATIONS 

This thesis has sought to address the problems facing practitioners using finite element analysis 
in the design of embedded retaining walls. It has not focused on the development of new tools 

or techniques, but rather on the better (and/or more informed) application of those already in 

existence. Other investigators have put considerable effort into such topics as adaptive 
meshing, advanced constitutive modelling, 3D wall installation effects, and new non-linear 
solution methods. The writer's perception at the outset of the research was that there was 
considerable scope for investigating and clarifying a large number of basic modelling issues 

that could have a very significant effect on computed results. 

Summary discussions have been presented at the end of all preceding chapters, highlighting the 

chief findings of each area of investigation in turn. This chapter draws together the main 
conclusions from the research which has been carried out, and makes recommendations for 
further work. Although the CRISP finite element program has been used exclusively for this 

research, many of the findings are relevant to other commercial packages of comparable 
complexity. 

9.1 Previous Work and Established Practice 

The major contributors and the different areas of progress in the application of finite elements 
to earth-retaining structures have been identified. "Ist most contribution has come from 

university-based investigators, significant involvement of practising engineers has helped to 

establish the credibility and acceptance of IFE as a legitimate aid to retaining wall design. Data 
from centrifuge models and full-scale structures have led to an improved understanding of 

many aspects of embedded retaining wall behaviour, and have provided vital benchmarking for 

numerical models. 

The first contribution made by this thesis is an analysis of the significant literature dealing with 
FE analysis of retaining walls. Key items from each published reference (wall type, support 

system, ground conditions, modelling assumptions, etc. ) are summarized in tabular form, along 
with a "rating" of how useful and relevant the reference would be to a practising engineer (see 
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Table 2.3). About 40% of the tabulated references are considered very or highly relevant to 

practitioners, whereas some 30% are of limited usefulness (owing, for example, to insufficient 
detail of the modelling). Whilst somewhat subjective, this form of "filtering" and guidance on 
publications is invaluable for the novice analyst, but appears not to have been done previously. 

Five areas of uncertainty in the use of finite elements in embedded retaining wall design have 
been identified as follows (Section 1.4): 

a) geometric modelling and discretization 
b) constitutive modelling and parameter selection 
C) modelling of construction and long term effects 
d) computational difficulties 

e) obtaining design output 

These are not mutually exclusive; for example, poor choices of mesh geometry can lead to 

numerical ill-conditioning and not just an inaccurate solution. However, the distinctions are 
considered helpful, and the sequence (a)-(e) corresponds to the order in which they are 
encountered in setting up, running, and interpreting an FE analysis. Numerical experiments 
conducted by the writer have provided insight into these issues and have helped to establish 
guidelines and rules that can be followed by practising engineers. Consequences of modelling 
decisions have been illustrated through their effect on output quantities generally sought by the 
designer, including wall displacement and bending moment, excavation heave, ground surface 
movement, horizontal soil stresses, and pore water pressures. Conclusions from these 

numerical experiments will now be summarized. 

9.2 Geometric Modelling and Discretization 

The element provision in CRISP is considered adequate for most embedded retaining wall 

problems, perhaps with the exception of a robust interface element and the option to employ 
reduced integration. Ultimately it is the actual mesh design (element grading, boundary 
location, etc. ) which still causes the practitioner most difficulty - and this has received little 

attention in the literature. Consequently, investigations have been conducted into boundary 
location, mesh aspect ratio, boundary condition, and overall number and grading of elements. 
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Mesh boundary location must be selected with care, particularly if the profile of ground 
surface movement behind the wall is of primary concern (Section 4.2). If only wall 
displacements and bending moments are required, boundary location is less important. For the 
geometries considered in this work, reasonable accuracy was achieved with the remote vertical 
boundary at a distance of at least 8H from the back of the wall, and the bottom boundary a 
minimum of 8W from formation level (where H is the retained height of the excavation and W 
its half-width). Boundary location is particularly important for undrained conditions and/or 
where plastic yield occurs during the analysis. An increasing degree of elastic nonhomogeneity 
generally makes the results less sensitive to boundary location, whereas an increase in elastic 
anisotropy has the opposite effect. A mesh with boundaries that are shown to be sufficiently 
remote for an undrained elasto-plastic analysis should, in most cases, be more than adequate 
for other types of analysis. The corollary is that general purpose mesh adequacy cannot be 

established through drained analysis. 

Closely linked with boundary location is the overall aspect ratio of the mesh (Section 4.3). If 

only one remote boundary is moved away from the retained excavation whilst the other is 
fixed, the mesh aspect ratio will change. Computed results will converge to different values 
than if both boundaries had been moved so as to preserve the original aspect ratio. If the 

unmoving boundary is too close to the excavation, convergence to a false maximum/ minimum 
value can occur. For example, if the bottom boundary is too close, the remote vertical 
boundary does not need to be moved very far before results reach steady values - but these 
will not be the same as those obtained when both remote boundaries were moved out 
together. 

Boundajy conditions are not normally specified at the meshing stage, but rather as part of the 
in-situ conditions (and perhaps also in later increments if element changes occur). However, 

there is clearly an interaction with boundary location; if boundaries are sufficiently remote, 
their roughness should not matter (Section 4.4). Therefore, switching boundary conditions 
from rough to smooth (and vice versa) can be used as a simple test of whether or not the far 

boundaries are sufficiently remote. 

As regards the overall number of elements, a relatively modest sized mesh (ý-- 700 nodes) can 
produce results for an embedded retaining wall of reasonably simple geometry to within ±5% 

of their expected value (Section 4.5). If this is to be reduced to within11%, the number of 
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nodes must at least be doubled using some form of h-refinement (in which elements are 
subdivided). However, unless this is conducted in an orderly and consistent manner, the 

analysis may converge on an incorrect result. The location of the nodes within the mesh is 

also important and, for a given number of degrees of freedom (d. o. Q, there will be an 
optimum mesh grading which is situation dependent. A balance must be struck between the 

need to have a high density of nodes where stress gradients are high, whilst maintaining a 
reasonable transition to larger element sizes towards the remote boundaries (avoiding abrupt 
changes in size). Grading alteration through r-refinement (in which nodal positions are 
adjusted) provides another way of examining the adequacy of a mesh. If too few nodes are 
used, the analysis is particularly sensitive to their location; if the total number of d. o. f is 

adequate, far less sensitivity to location is evident. 

9.3 Constitutive Modelling and Parameter Selection 

There is an abundance of constitutive models in CRISP, with more than adequate choice for 

the retaining wall analyst (Section 3.6). It is the understanding of how and when to use these 
different models, and how to select parameters for them, which is often lacking. The 

practitioner needs to know how much compleýdty is required to ensure a realistic result. More 

fundamentally, the practitioner needs to understand how different facets of constitutive 
behaviour (anisotropy, non-linearity, etc. ) affect the outcomes of a retaining wall analysis. It is 

this need which the present work has addressed. 

Modeling the nonhomogenft of elastic stiffness with depth is very important - especially over 

the full depth of the wall itself (Section 5.2). Computed wall displacements and wall bending 

moments (distribution and/or magnitude) are particularly sensitive to nonhomogeneity under 

certain propping configurations. Predicted profiles of excavation heave and ground surface 

movement also depend very much on the degree of nonhomogeneity, which has implications 

for the assessment of damage to adjacent structures. 

Msotropy of elastic stiffness is not particularly important for embedded retaining wall 

analysis unless it is of a high degree (typically, Eh/E, > 2). The form of anisotropy considered 
here is transverse anisotropy with a vertical plane of symmetry, requiring only five independent 

parameters (Section 5.3). Increasing the degree of anisotropy generally scales down the wall 
displacement profile (preserving its shape) and causes reductions in bending moment in some 
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propping cases. Excavation heave is largely unaffected by anisotropy, and significant 
reductions in ground surface movement occur only at high ratios of Eh/E, under undrained 
conditions. Although not investigated in this thesis, anisotropy of permeability is probably 
more important owing to its effect on drainage rates during and after construction. 
Anisotropy of strength may be important if yielding is significant (e. g. in soft clays). 

All output quantities of interest to the designer are affected by non-linearit of the elastic 
response - sometimes very dramatically (Section 5.4). However, the specific definition of non- 
linearity adopted is important; the use of a "reference strain" where all stiffness: strain curves 
pass through a common point is recommended. The impact of non-linearity depends not only 
on the absolute reduction in elastic stiffness with strain, but also the gradient with which this 
reduction takes place. The changes in computed wall displacement, bending moment and 
ground movement all depend on the rate of decay of stiffness with strain. Previous 
investigators have emphasized only the effect of non-linearity on the shape of the surface 
settlement trough. This thesis has shown that other quantities of interest to the designer are 
also influenced, such as wall displacement and bending moment, and that the nature of the 
influence is more subtle than is generally realized. 

The introduction of plastic 3delding leads to much larger wall displacements if the propping 
arrangement allows the development of zones of plastic yield (Section 5.5). Yielding allows 
stress redistribution to take place, which leads to a reduction in wall curvature and thus 
smoother bending moment profiles relative to the fiffly elastic case. Excavation heave profiles 
become more uniform across the excavation, as greater distortion of the soil takes place 
immediately in front of the wall. Settlement behind the wall is accentuated by yielding when 
the elastic nonhomogeneity is high, and the degree of propping becomes especially important. 
All of these effects are amplified by switching from undrained to drained conditions. 

The incorporation of non-associated flo can, in extreme cases, double the predicted wall 
displacements and bending moments and cause large increases in predicted ground movements 
either side of the wall (Section 5.6). This is based on a comparison of analyses where dilation 

was totally suppressed (y=O) with those where full dilation was permitted However, 
it is unlikely that the potential for this much yield to occur during bulk excavation would be 

present in most real cases, so the implications for practical analyses may not be as dramatic. 
The ability to compare total (Tresca) and effective stress (Mohr-Coulomb) approaches to 
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undrained analysis depends on the differences introduced by the flow rules and the implied 

Plastic volumetric strains. 

Closely linked with constitutive model are drainage conditions and in-situ stresses. The facility 
in CRISP for drained, undrained and coupled-consolidation analyses covers every eventuality 
for saturated soils. The real uncertainty surrounds the choice of bulk modulus of water in an 
undrained analysis, and of time step in a coupled analysis; this is addressed later in Sections 
9.4 and 9.5. Similarly, the way in which in-situ stresses can be defined is flexible enough for 

most practical cases, except in the presence of a sloping ground surface, which must be 

created at an early stage in the analysis. 

The usefulness of complex models to the designer is questionable. An important part of the 
design process is being able to develop a "feer' for the relative importance of the different 

parameters. For example, most engineers have some understanding of undrained strength as it 

can be related to clay consistency and liquid limit, and the use of a single strength value in a 
yield criterion (e. g. Tresca) is very attractive. Those models which need only a few 

parameters with recognizable physical significance have a clear advantage over those which 
require specialized tests and/or curve fitting procedures. Advanced models, in the hands of 
their inventors, have been used to obtain good agreement between prediction and 
observations. Research and development of this nature should take place to improve our 
predictive capability, but the needs of practising geotechnical engineers must not be ignored. 
The work presented in this thesis should assist the retaining wall designer in deciding which 
aspects of soil behaviour may be important in the prediction of a particular quantity. 

9.4 Modelling of Construction and Long Term Effects 

Diaphragm wall installation can be modelled faithfiMy with fully-coupled three-dimensional 

analysis, but this complexity is not warranted in routine design. Alternative methods of 
varying rigour may be used, involving applied pressure distributions and multiple overlay 
element swapping - mostly plane strain in two-dimensions, but plane stress can also provide 
helpful insight (Section 6.2). The wished-in-place (WIP) method does not permit any 
relaxation of horizontal soil stresses prior to bulk excavation, leading to an upper bound on 
predicted wall displacements and bending moments. Conversely, the applied pressure method 
(plane strain) allows too much ground relaxation and provides a lower bound. The designer 
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may find it helpful to carry out both types of analysis to gain an appreciation of the 
significance of wall installation effects. Occasionally, coupled 3D analysis will be justified, if 

only to calibrate simpler methods such as the reduction of V, to a post-installation value K-), 
or the prescription of a horizontal displacement at the soil-wall interface to mimic ground 
relaxation into the slurry trench. 

Bulk ti _gxcavaI: on f __ or embedded retaining walls should be canied out in layers whose th ckness 
AH is no greater than one fifth (preferably one tenth) of the final retained height I-L with each 
layer removed over at least 10-15 increments (Section 6.3). Layer thickness will, in many 
cases, be constrained by prop spacing; if the analysis is investigating the consequences of 
increasing this spacing, it is important that AH does not become too large. The independence 

of the final result on the number of increments used for excavation (Ishihara, 1970) only 
applies when the soil-structure response is elastic, and there are no changes to system stiffness 
(arising through, say, the introduction of props or anchors). 

Virlually any kind of propping action and load transfer can be represented with ID or 2D 

elements and appropriate connection details. The removal of a temporary prop or anchor 
causes a large horizontal total stress release on the earth-retaining structure, and the number of 
increments over which this happens must be selected with the same consideration as bulk 

excavation (Section 6.4). In overconsolidated clays, stress paths on the retained side will 
initially traverse the elastic region during wall installation and bulk excavation, moving 
towards (and possibly reaching) yield during prop removal. 

To replicate undrained excavation in a coupled analy. ýLis, the time steps At need be no smaller 
than of the order of 0.1 days (2.5 hrs) per Im layer of excavation in overconsolidated clay 

with a typical coefficient of permeability k sw 10-9 M/s (Section 6.5). Numerical instability 

(evidenced by equilibrium errors) will not occur unless time steps are reduced to 0.001 day 

0 
.5 min) per Im layer of excavation in the same clay, although pore water pressure profiles 

become erratic for At < 0.1 days. Partial drainage will begin to occur for At ý: I day per layer 

with this value of permeability, implying significant changes in effective stress. If this is the 

case, and the constitutive model permits a non-linear response, sufficient increments must be 

employed to ensure accurate representation. 
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The time required to reach long-term equilibration following construction (i. e. the time to 
equalization of pore water pressures tc ) will not be known apriori (Section 6.6). If 
insufficient time is allowed for equalization to occur, it would be possible to believe 
(incorrectly) that a small number of increments gave adequate accuracy. However, this 
insufficiency will be revealed through an insensitivity to the weightings of the time step, thus 
providing the basis for a simple test. If an insufficient number of increments is allowed for 

equalization, and only the wall displacement profiles are examined, then too short an 
equalization time will appear to have been adequate. Overlaying curves of maximum wall 
displacement against elapsed time will reveal the insufficiency of increments, which could 
serve as an alternative form of test. 

If rising groundwater levels are a consideration, they should be included in the analysis as their 
effects on wall behaviour can be highly significant (Section 6.7). For embedded walls in clay, 
fluctuation of water levels might arise from the recharge of an underlying aquifer. The fully 

coupled saturated flow formulation is adequate in this situation, obviating the need for a 
nonsaturated approach. (It should be noted that rising groundwater is a different issue to that 
of the establishment of long-term steady seepage around a retaining wall or the investigation 

of different drainage schemes; etc. ) 

9.5 Computational Difficulties 

A number of modelling difficulties arise because analysts do not always appreciate the 
limitations of the software and/or hardware used (Section 7.1). Some of these difficulties are 
obvious (e. g. high equilibrium errors) whereas others may remain hidden because their effects 
are only present in calculated quantities which the user has elected not to output. 

Large stiffness contrasts between adjacent elements, possibly combined with high element 
aspect ratios, are a well-known source of numerical iff-conditioning. Embedded retaining 
walls present exactly this sort of problem, and ill-conditioning can affect results dramatically 
(Section 7.2). In practice, only slender walls constructed from steel (i. e. sheet pile) are likely 

to be at serious risk. If the analysis calls for slender members in regions of high stiffness 
contrast and stress gradients, element aspect ratios must not be allowed to exceed 1: 4. 
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Effective stress analysis of undrained conditions by the technique of setting a high value for 
the bulk modulus of water, K, is very convenient (Section 7.3). There is an optimum value 
of K,, which avoids both partial saturation (K.,,, too low) and numerical instability (K.,,, too 
high). This optimum is approximately 10OK!, where K! is the effective stress bulk modulus of 
the soil. However, as the drained elastic stiffliess often varies within a stratum, it is difficult to 
maintain the optimum ratio everywhere in the mesh with a single value of K'. Also, analysts 
may decide not to calculate K' explicitly but rather opt for selecting an arbitrarily high value 
for Kw. The ability to specify Kw/K' rather than K' would help alleviate this difficulty. 

Equivalence of coupled and uncoupled anaLys-es at the undrained and drained limits can only be 

obtained in the elastic case (Section 7.4). In the presence of soil yielding, the coupled analysis 
permits patterns of volume change in the mesh which lead to results which cannot be matched 
by the uncoupled analysis. It would, therefore, be misleading to use an uncoupled analysis to 
benchmark a coupled analysis in the presence of plastic behaviour. 

The development of tensile total stresses behind the wall arises from the combined response of 
the effective stresses and pore water pressures (Section 7.5.2). The constitutive law is not 
violated, as the stress state is well within the yield surface (when one is present). The effect is 

more pronounced with higher values of drained Young's modulus at the ground surface (P. ) 

and when there is an elastic region of significant size. Forward wall displacement and bending 

moments are reduced; the latter very significantly around formation level. 

Horizontal total stress anomalies can develop just below formation level, adjacent to the wall, 
in both fully elastic and elasto-plastic cases (especially the former, Section 7.5.3). The pore 
water pressure response in this area depends heavily on how much yielding occurs - but this is 

also true of the horizontal effective stress, and so the long term horizontal total stress is the 

same for both. Overconsolidation mechanisms are partly responsible, aided by the high 

vertical effective stresses in this region that can develop during equalization. Significant 

rotation of principal stresses also occurs just below formation level and this is a contributory 
factor. 

Until very recently, only two options e3dsted within CRISP for the solution scheme adopted in 

an elastic-perfectly plastic analysis (Section 7.6). Specifically, uniform load ratios (ULR - 
where IIN of the load change occurs in each of N increments) or non-uniform load ratios 
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(NLR - where individual weightings are in the range 0-1 but must all sum to 1). In the context 
of bulk excavation in front of a retaining wall, the most effective form of NLR is where all the 
load is applied in the first increment of the block and the remaining increments are used for 
load iteration. This leads to better (faster) convergence of the analyses when increasing the 
number of increments used in a block. In addition, NLR produces more accurate results than 
ULR for a given number of increments - indeed NLR can produce better results for 

substantially fewer increments. A test for sufficiency of number of increment blocks would be 
to vary the load ratios adopted - if there are sufficient, the analysis will not be sensitive to the 
load ratio. (Users of Version 4 or later of SAGE CRISP have access to Newton-Raphson 
iteration, obviating the need for load ratio manipulation. ) 

9.6 Obtaining Design Output 

Although displacement is the primary output of the finite element (displacement) method, the 

way in which it is viewed can be as important as the accuracy of its calculation (Section 8.2). 
Neither manipulation nor smoothing is necessaryý but there are various ways in which 
displacement results can be presented graphically. Each of these can contribute to 

understanding the overall behaviour of the earth-retaining structure system and surrounding 

soil, and should be used. By isolating presumed features of interest too quickly, important 

points can be missed. Comparing profiles of horizontal and vertical movement with 
mininia/maxima based on case studies is helpful in identifying anomalous behaviour. An 
inadmissible analysis can be approved unwittingly if all displacement information (deformed 

mesh, vectors, contours) is not scrutinized appropriately and thoroughly. There is a 
temptation to extract the wall deflection, ground surface settlement profile, etc as soon as the 

analysis is complete, but this is not responsible practice. 

Engineers expect to be able to extract profiles of earth and water pressur acting on the wall, 
to compare with simplified design assumptions. However, the stress distributions output 
directly from CRISP (the "raw" Gauss point stresses) are not particularly useful in a design 

context (Section 8.3). Some form of smoothing is necessary. Methods which use a least- 

squares best-fit plane through the raw 3x3 Gauss point stresses, or which interpolate the 2x2 

(reduced integration) point stresses from the 3 x3, give a satisfactory degree of smoothing. 
Such local element-by-element methods are not ideal, as they still leave some degree of 
99 raggedness" in the profiles of horizontal total stress or soil-wall shear stress. Approaches 
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using data outside of the immediate area would seem attractive, but the limited results 
presented in this thesis are not convincing. it would be useful to explore this more thoroughly 
in future research. 

Wall-heen-fing, 
-moments calculated from external earth pressures are of limited reliability 

(Section 8.4). Toward the wall toe, (possible) errors in stress are being amplifled by an 
increasing lever arm, thus compounding the error in bending moment. Calculating bending 

Moments in this way is obvious and intuitive, but fails (at least in part) because of certain 
aspects of the finite element method. Instead, bending moments should be calculated from 
transverse stress distributions in the wall elements. The use of raw 3 x3 or interpolated 2x2 

stresses gives the same result, so the extra effort involved in interpolation is not warranted. 
This thesis has not considered wall bending moment computation when the wall is modelled 
with two or more columns of continuum elements. 8-noded quadrilaterals in a single column 
appear adequate, but if more than one column were used, a method based on transverse stress 
distributions would seem sensible. 

The reliability of wall shear forces calculated from earth pressures is also limited, although the 
discrepancies are not quite as large as with bending moments (Section 8.5). As with bending 

moments, shear forces should be calculated from shear stress distributions in the wall elements 

themselves, but only after these stresses have gone through a preliminary stage of least- 

squares smoothing. Discontinuities in the shear force diagram should occur at (and only at) 

the location of props - the magnitude of the discontinuity providing a useful cross-check on 

calculated axial forces in those props. Zero shear force and maximum bending moment 

should, of course, be coincident in the wall (or any structural member) providing another 

cross-check on calculations. 

The methods of obtaining the axial force in props and anchors are straightforward (Section 

8.6). The only factors to take into account when checIdng output veracity are whether or not 

shear stress transfer can occur (e. g. prop slab in contact with ground), and if any prestressing 

has been performed. To calculate bending moments and shear forces in 2-D elements, 

methods based on internal (transverse) stresses are preferred, as with the structural wall. 

9-11 



9.7 Recommendations for Further Work 

Geometric modelling and discretization 

Although reasonably comprehensive, the mesh boundary location studies presented in Chapter 
4 should be extended to include the new generation of constitutive models which have been 
implemented recently in CRISP. The existing analyses could also be repeated for coupled 
analyses, as it is uncertain if this formulation is more or less demanding in terms of 
displacement boundary location. Furthermore, all meshes in Chapter 4 had level ground 
surfaces and horizontal bases; however, wall construction on sloping ground and or in strata 
with inclined bedrock is not uncommon, so the work on boundary locations could be usefiffly 
extended to these conditions. For the studies already completed herein, as well as for those 

additionally recommended, the key output values should be extended to include horizontal 

ground movement and possibly wall shear force. The former is particularly useful in assessing 
excavation-induced damage to structures. 

Three-dimensional analysis is unlikely to feature in commercial embedded wall design for a 
number of years, and only then for prestigious projects where the additional time and cost can 
bejustified. However, on the assumption that it will become cheaper and more convenient 

over the next decade to perform 3D analysis, now is the time to establish guidelines for mesh 
design (boundary location and condition, refinement and grading). Recently published meshes 
for 3D work seem rather coarse and of inadequate extent, and it would be unfortunate if this 

was adversely affecting the quality of the results and the conclusions based upon them. 

The use of infinite elements could alleviate much of the uncertainty over boundary location, 

and it is recommended that a suitable form of infinite element is implemented in CRISP for 

numerical trials. There ought to be several satisfactory elements in existence for non-coupled 

work, although it may be necessary to create a special infinite element which can be used in a 

coupled analysis. Some embedded retaining wall cases will be more concerned with the 
interactions with other adjacent structures (e. g. tunnels or foundations) in which case 
boundary location will not be as important as the discretization between these structures. 

A final recommendation under this heading is to investigate the potential benefits of adaptive 

meshing for embedded retaining wall analysis. There has been some work in this area for 

geomechanics applications, including the early work of Simpson specifically for retaining walls 
(Section 2.1.2). Adjacent buried structures might present a particular challenge to an adaptive 
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meshing algorithm, and there is always the danger that the FE code might become more like a 
"black bo3e' to the user if the mesh is automatically refined. However, it is potentially a very 
useful tool and so it would be timely to revisit this topic. 

Constitutive modelling andparameter selection 
The studies reported in Chapter 5 for the basic constitutive models in CRISP should be 

augmented to "fill irf' some of the gaps. For example, only three degrees of nonhomogeneity 
and of anisotropy were used, and whilst these covered the likely range that would be 

encountered in practice, the use of fiu-ther intermediate values is recommended. Similar 

comments apply to the degrees of non-finear elasticity investigated with the Jardine model, 

with which there is considerable scope for further parametric study. 

The studies of plastic yielding in the present work were quite limited, in so far as just two 
different yield criteria were used, together with a small number of shear strength parameters. 
Notwithstanding the fact that plastic yielding should not be a major issue for embedded walls 
in stiff overconsolidated clay, it is recommended that more comprehensive numerical studies 

are conducted. As well as Merent shear strength envelopes, it will be important to consider a 

greater range of in-situ stress conditions as this has a major influence on how soon yielding 

might occur in the wall construction process. 

The effects of non-associated flow suggested by the results in Chapter 5 are significant and 

should be verified (or otherwise). It is recommended that the investigations of non-associated 
flow are repeated with the non-associated Mohr-Coulomb model now available in SAGE 

CRISP, taking advantage of the facility to specify angles of dilation y' between 0 and ý'. 

New constitutive models have been incorporated in CRISP since this research work 

commenced, and others are certain to be implemented in future. Those considered applicable 
to embedded retaining wall design should be subject to the same sort of studies as described in 

Chapter 5, in order to guide practitioners on parameter selection. Ideally, designers would 

carry out these parametric studies themselves to develop a better understanding, but 

commercial time pressure will probably preclude it. 
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Modelling of construction and long tenn effects 
3D wall installation is an obvious area for further research, extending the preliminary studies 
of Powrie and co-workers. As many design analyses will be 2D, the emphasis also needs to be 

on how 3D effects can be introduced into simpler 2D models. One example of this is in 

providing suitable values for Ki, the post-installation coefficient of earth pressure 

Temporary berms have not been considered at all in this thesis, but the effect of their removal 
is not dissimilar to that of removing a temporary prop, and it is recommended that the type of 

5 studies conducted herein are repeated. Similar recommendationLapply to a possible study of 
the effects of de-stressing temporary ground anchorages on embedded walls, as this has also 
been ignored in the present study. 

The coupled analyses of bulk excavation in the present work should be repeated with drainage 
boundaries that evolve with excavation. This could provide usefid insight into wall behaviour 
during construction delays. The analyses of partial drainage and long-term equalization used 
only limited constitutive behaviour, and there is considerable scope for extending these studies 
to include non-linear elasticity, etc. Finally, rising groundwater levels need to be investigated 
in a more generic way, as the results in Chapter 6 were from a specific commercial job and an 
idealised basement wall. 

Computational dijriculties 

The iff-conditioning studies should be extended to full embedded retaining wall configurations 
to examine if the restrictions on modular and aspect ratio suggested in Chapter 7 can be 

relaxed. The implementation of KJK' as an input parameter to CRISP would simplify greatly 
the selection of a suitable pore fluid compressibility to ensure undrained behaviour, and would 
help avoid numerical problems with computed pore water pressures. The comparisons of 
coupled and uncoupled approaches could be taken much further; for example, the constitutive 
models used herein were rather limited and many other parameters in the problem were 
determined in an arbitrary way. 

Tensile stresses (and excessive shear resistance) on the back of a retaining wall could be 

avoided with a suitably robust interface element; the Goodman-type element currently 
available in CRISP has not proven itself reliable in practical applications. Anomalies in 
horizontal stress will probably always be present and the only recommendation as such is for 
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users to be better educated in order to understand the origin of such features in an FE analysis, 
and their possible effect on the results as a whole. The recent implementation of Newton- 
Raphson iteration in (SAGE) CRISP creates the need for further parametric studies and 
benchmarking of the solution scheme. 

Obtaining design output 
The methods used for stress smoothing with CRISP output in Chapter 8, though seemingly 
effective, were fairly crude. There would be scope for re-examining this area of design output 
in the fight of more recent developments in finite element analysis. The computation of 
bending moments and shear forces from nodal forces in the wall elements should be 

considered, although some modification of the program will be called for, and it is not 
apparent that methods using transverse stress distributions can be greatly improved on. 

The creation of a purpose-built post-processor for retaining wall problems would be a very 
significant step forward for designers. In this respect, recent plans announced by the CRISP 
Consortium to produce what it terms "mesh setup wizards" are a welcome development. 
Although aimed more at the pre-processor end, setup wizards are a logical first-step in the 

provision of a package that practising engineers should find particularly helpful as they apply 
finite element analysis to the design of embedded retaining walls. 
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APPENDIX A 
DETAILS OF CASE HISTORIES 

Throughout this thesis, reference has been made to specific retaining wall analyses when 
discussing particular modelling issues. This Appendix gives M details of these analyses - all 
of which were performed by the writer for a variety of clients' (contractors, consultants, local 

authorities, research organizations) between 1989-1996. With one exception, the analyses 
have one important feature in common; namely, that they were performed as part of the design 

process for a real retaining structure - with the associated timetcost constraints. There was no 
time for the continuous refinement of modelling details which is possible in the research 
environment - each analysis had to be more or less "right first time". A rapid turn-around was 
required, with results being faxed to the client concerned as soon as they were available. Thus 
the writer is well-placed to understand the pressures and difficulties experienced in a 
commercial design context. Prior to the first case in 1989, the writer had-not carried out a full 

retaining wall analysis, although had had 5 years experience with CRISP in the analysis of 
other geotechnical problems. 

In all cases, the client was responsible for specifying overall geometry, material parameters, 
and desired output. The writer was responsible for discretization, selection of constitutive 
model, construction modelling, identifying (and fixing) numerical problems, and post- 
processing. On occasion, the writer had the opportunity to indicate what in-situ and 
laboratory tests should be carried out to obtain parameters for the finite element analysis - but 

this was the exception rather than the rule. 

Sensitivity studies were often carried out - sometimes to 
' explore variations in soil parameters 

(in which there may have been little confidence), or perhaps to study alterations to the 

excavation/propping sequence. A number of these sensitivity studies were part of the analysis 

specification initially given to the writer - in other instances, they arose from considering the 

results of a preliminary analysis, and evolved in a more open-ended manner. 

Most of the time, the writer acted essentially as a fonn of FE subcontractor with clearly 
defined tasks, deadlines and liabilities. Ultimately the client was responsible for deciding how 

I "client7 in this context is the party which commissioned the analyses - not the client for the overall 
engineering projea 

A(i) 



to act upon the results, although was always able to seek clarification from the writer. In one 
Or two instances, a staff member of the client worked alongside the writer in order to be 
trained and educated in the finite element analysis process - with the intention of doing 

subsequent analyses hini/berself 

Details of each case have been given in a standard format: 
a) - project summary 
b) analysis overview 

c) analysis details 

d) specific comments 

e) finite element mesh 

In several cases, one or more significantly different cross-sections were analysed, and as these 
were beyond mere sensitivity studies, they have been noted separately within each case. 

The cases are reported in chronological order, and all except the last were completed before 
the bulk of numerical investigations detailed in this thesis were finished. Consequently, none 
of the recommendations which have emerged from the investigations herein were available 
when these commercial analyses were conducted. Indeed, the absence of such guidelines was 
a contributory factor to this research work being conducted in the first place. 

Case Title 

I A406 Waltharnstow 
2 Neasden Lane Underpass 
3 A6M Stockport 
4A Southwark Station Ticket Hall 

4B Southwark Station Concourse 

5 Greenside Place 
6A RPR (kegents Park Road) Junction Tunnels 

6B RPR Junction Approaches 
6C RPR Junction Slip Road 3 

6D RPR Junction Slip Road 5 

7 A322 Aldershot Road Underpass 

8A Queensberry House: Transverse 
8B Queensberry House: Longitudinal 
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I CASE 1- A406 Walthamstow 

Project Details /Analysis Overview 

Full title A406 Chingford Rd to Hale End Rd 

Location Walthamstow, NE London 

Client Bullen & Partners, Croydon 

Description depressed elevation road corridor, 2.8 kin long, 28.8m wide 
Wall type contiguous bored piles (1800 dia. @ 2000 c/c) 
Wa- 

ii; e7sions (m) retained height _H. 0 width/diam. 1.8 
Support (temporary) single high-level row of tubular steel props 
Support (permanent) 

_ _ - 
single articulated concrete slab at formation level 

Ground condiiiý ý ; made ground and drift deposits overlying London clay to depth 
---------- - ------ Pore pressures hydrostatic to I Orn depth; underdrained below I Om 

Unusual aspects .......... . .... hinged prop slab / long term recharge of pore pressures expected 
Design variations possibility of narrower road corridor (21.4m wide) 
Other comments construction completed in 1991 

Publications/articles "Cut and dried", New Civil Engineer, 29 Sep 199 1, pp22-23 

Type of analysis coupled consolidation (construction + long term + recharged p. w. p. ) 

Purpose of analysis to check contractors alternative design 

Soil model non-homogeneous isotropic linear elastic-perfectly plastic 
Structural materials 

- - - - 
linear elastic (concrete walls/slabs and steel tubular props) 

Receni h ist; r y no previous construction/excavation to model 
Wall installation element swopping 
Excavation sequence 

-- ----- 
sequential with installation/removal of propping 

---- Long term behaviour equilibration to present p. w. p. profile with foundation level drainage, 
followed by equilibration to future (recharged) distribution 

Output required wall deflections, wall bending moments, lateral earth pressures, 
permanent prop slab axial loads and bending moments, swelling 
pressures on underside of slab, shear stresses on back of wall 

Field measurements I none taken or made available 
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I CASE 1- A406 Walthamstow (contd) I 

CIZISP Analysis details 
_ Mesh details T NN 193 1 NEL 1 189 j X/H 15.24 1 Y/W 1 2.72 

Element types soil LSQ/u I wall 1 LSQ I supports LSQ 

Soil parameters Eo j, 50 i Wa ME 5 NTa/m yo 50 In 
(London clay) V 0.200: co Inc 0 kPa/m 

0 23 'Y 20 

I kN/m YW 10 kx 1 
. 015 m/yr Y . 00Y.. 1 

rn/ýT 
Concrete parameters E 28 1 GPa V 0.150 'Y 1 241 Min' 
Prop parameters E 210.1 GPa A . 01047 eft 

In-situ stresses pt y (m) (Y, x GIZ I Ko upFC 
(kPa) Ii 50.1 0.3.5 0. I10.0. 

47.140.1 40.140.3.5 20. 2 
40. 45.174.60.174.2.9 

4 110.209.1 40.209. .9 90. 
--- ------ --- - ...... ------ ------- 5 35.304.190.304.1.6 110. 

6 0.1200.750.1200.1.6 250. 

Boundary fixities --- Fcent. line 
I smooth I 

base smooth I remote smooth 

Block Incs Time Activity 
(Yrs) 

0. set up initial p. w. p. boundary conditions 
2 

. 25 instaU waU (swop, elements) 
3 4 

.2 excavate to +48m and instaU temporary props 
4 

.2 excavate to--+44.4m 
5 6 

.3 excavate to +39.4m 
6 2 

.1- excavate to +39m (FL) and install permanent prop slab 
7 5 ! . 25 remove temporary props 
8 2 

:1 .1 apply 25 kPa surcharge on prop slab (ý carriageway load) 
9 71 120.1 

_ 7 
fix under-slab drain and allow equilibration to present p. w. p. profile 

] IF6 1 allow equilibration to recharged (hydrostatic) p. w. p. profile 

A-2 



CASE 1- A406 Walthamstow (contd) 

Comments 

Contractor (Cementation) used ICFEP (via GCG) in their design work - Category III 
checldng was performed by Maunsell & Partners, who also used CRISP 

The FE mesh used by the writer was based on that used by GCG, although the writer 
had no access to the ICFEP predictions 

The hinge detail was varied in thickness to study the effects of moment transfer at the 
connection -a "bow tie' arrangement worked well in eliminating moment transfer: 

The writer's analyses showed that the wall crest movements were greater if equilibration 
was allowed to the existing p. w. p. profile first; i. e. before recharging groundwater 
levels. The contractor had not shown this intermediate stage. Recharging ground 
water actually pushed the wall crest back towards the retained soil (the resultant line of 
thrust of the extra water pressure acted below the permanent formation level prop) 

Stress path tests had been carried out on London clay samples to obtain appropriate 
stiffness parameters for the soil around the retaining wall 

Self-boring pressuremeter data had been used to infer the profile of Ko with depth 
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CASE 2- Neasden Lane Underpass 

Project Details /Analysis Overview 

Full title Neasden Lane Underpass 

Location Neasden, NW London 

Crowthome 

Description underpass beneath A406 North Circular Road, 29.65m wide 
Wall type diaphragm panels 
Wall dimensions (m) -Ti- 1300.6 retained height 16 J'overall length width/diam. 
Support (temporary) ----------- -. four levels of prestressed ground anchorages at 20' to horizontal 

Support (permanent) same as temporary 

Ground conditions London clay overlying Woolwich and Reading Beds at depth 

Pore pressures hydrostatic; GWL Im below ground surface 

Unusual aspects one of the earliest anchored diaphragm walls to be built 

Instrumentation inclinometers, piezometers, spade cells, and load cells (in wall) 
Other comments construction completed in 1972; TRL instrumentation installed 1988 

Publications/articles Sills et al. (1977), Carswell et al. (199 1) 

Type of analysis coupled consolidation (construction + long term up to 15 years) 
Purpose of analysis to compare predicted and observed performance 
Soil ;; ýj-ef -non-homogeneous isoir-o-p--ic line-a-*r--e'l-as-t-i-c--*p-e-r'fi-e-c*t-l-y--pl-a-s-tic- 

Structural materials linear elastic (concrete wall and steel anchor tendons) 

Recent history no previous construction to model 
Wall installation element swopping 
Excavation sequence sequential with installation/stressing of anchors 

Long term behaviour equilibration to present p. w. p. profile with formation level drainage 

Output required wall deflections, wall bending moments, lateral earth pressures, pore 
water pressure profiles, anchor tendon loads, horizontal ground 
movements 

Field measurements 
I wall and ground movements, pore water pressures, anchor loads 
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CASE 2- Neasden Lane Underpass (contd) 

CRISP Analysis details 

Mesh details 1 169 1 NEL 1 154 1 X/H 15.24 1 Y/W 1 2.72 

Element types LSQ/u wall LSQ supports CSB 

Soil parameters Eo 1' 32 NTa ME 8.4 NIPa/m yo 40.2 m 
(London clay) V10.2001 co 10 kPa mc 0 kPa/m 

0 24 i 19.4 OT/I 

........... Yw 9.81 kx . 015 1 m/yr ky 
. 003 m/yr 

Concrete parameters Ei 30 1 GPa V 0.1501 7 22 

Tendon parameters E 200 GPa A 243e-6 'nNm 01 20 0 1 

In-situ stresses X cr YaZ ,y (m) CY, pt I Ko u p, c 
(kPa) I, 42.65 *' 0.1 0.0.1 2.0 1 0. 

218.0 * 644.6 ' 322.3 ZýTT 
.01 346.5 - ......... 

Boundary fixities -- Fent. line I smooth base smooth remote smooth 

Block Incs Time Activity 
(Yrs) 

1 0. set up initial p. w. p. boundary conditions 
25 

.2 install wall (swop-in elements) 
34j, 

.1 excavate to +40.2m 
41 

. 08 4 apply tensioning force for I st level of anchors 
5 02 install I st level of anchors 
64 

.1 excavate to +38.2m 
74 

. 08 apply tensioning force for 2nd level of anchors 
81 

. 02 install 2nd level of anchors 
9 4 

.1 excavate to +36.2m 
. ..... .......... 10 1 

. 08 apply tensioning force for 3rd level of anchors 
I1 

. 02 install 3rd level of anchors 
12 41. I excavate to +34.2m 
13 4 . 08 apply tensioning force for 4th level of anchors 
14 1 02 install 4th level of anchors . 
15 17 15. set FL drainage and allow equilibration to original p. w. p. profile 

A-5 



ý CASE 2- Neasden Lane Underpass (contd) 

Comments 

The Neasden Lane Underpass is a wefl-known case, reported by Sills et al. in the 9th 
ICSNIFE (Tokyo, 1977) and by Burland et al. the 9th ECSNUE (Brighton, 1979) 

The underpass was also featured in Creed's 1980 PhD thesis on the numerical modelling 
of diaphragm walls, in which he developed his own FE code - however as his analyses 
were uncoupled (undrained) and assumed anisotropic linear behaviour for the soil, 
limited comparison with the writer's results was possible 

The TRL instrumentation was not installed at the time of construction, but some 16 
years after the wall was completed - so no data exists on ground, wall or anchor 
behaviour during or immediately after construction 

The TRL requested sensitivity studies on E' and Ko in order to see which would give 
the best match between some aspects of the measured behaviour could be matched by 
parametric variation, but not an at the same time - so it was not possible to establish an 
unambiguous set of parameters 

Mid-way through the analyses it was discovered that there was a bug in the Mohr- 
Coulomb model, which effectively suppressed dilation at yield - this was corrected and 
made a noticeable difference to those analyses where significant yielding took place (i. e. 
those with high Ko values) 

A complete set of field data is given by Carswell et al. (199 1) in TRRL Research Report 
313 
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I CASE 3- A6(M) Stockport I 

Project Details /Analysis Overview 

Full title A6(M) Stockport N/S Bypass - Bredbury Walls 

Location Stockport, Manchester 

Client LG Mouchel & Partners, Manchester 

Description 

Wall type 

WaH dimensio 

Support (temporary) 

depressed elevation road corridor, 40m wide 

diaphragm panels 

retained heijWFI 11.2 1 overall length [16.9 width/di 0.9 
-------- ----- three levels of prestressed anchors at 30" to horizontal 

Support (permanent) as per temporary 
Ground condi Fions 

stiff clay overlying medium dense to dense sand 
Pore pressures 

Unusual aspects 

hydrostatic; GWL at 9.5m below original ground level 

carriageway line on sidelong ground at 1: 12 slope 
Design variations --- --------- original wall sections at Kingsway - cantilever T-section diaphragms 

used at Forty Acre Drive (7m ret. ht), Osborne Street (8m ret. ht), 
and Red Hill Drive (6m ret. ht) 

Other comments 
_ _ _ _ - 

construction completed in 
T ub IiWt ioýWijr tic Je; ý_' * none known 

Type of analysis coupled consolidation (construction + long term) 

Purpose of analysis to calibrate simpler wall design software (WALLAP) and provide 
estimates of ground movement behind the wall 

Soil model homogeneous isotropic linear elastic-perfectly plastic 
Structural materials 
Recent history 

Wall instaflation 

linear elastic (concrete walls/slabs and steel anchor tendons) 

no previous construction/excavation to model 

element swopping 
Excavation sequence 

- 
sequential with installation/stressing of anchors 

Long term Welaviour ------------- equilibration to present p. w. p. profile, with FL drainage 

Output required wall deflections, wall bending moments, anchor tendon loads, and 
ground movements behind wall 

Field measurements none taken or made available 

A-7 



[ CASE 3- A6(M) Stockport (contd) I 

CRISP Analysis details 

Mesh details NN 307 1 NEL 283 X/H 1 7.19 1 Y/W 3.05 
t 

Element types I -soil 
11 

LSQ/u wall LSQ supports I CSB 

Soil parameters Eo 30 NVa mp, 0: NTa/m YO 84.0 m 
(stiff clay) v 00 CO 0 kPa MC 0 kPa/m 

Fý4 5 

YW 9.81 1 OT/ýi kx 019 m/ýT ky 
.0 19 m/yr 

(dense sand) Eo 50 1 AVa ME 0 AVa/m YO 78.5 m 
0.250' v! CO 10 kPa. mc kPa/m 

32 0 'Y -21- ------------ - 

Yw 9.81 kNle kx 1 315 J mýrr ky 315 mlyr 
Concrete parameters Ei 30 GPa v 0.150 22.6 kNle 
Tendon parameters E 200 i GPa A 140e-6 

I11e 

.01 '010 
In-situ stresses pt jY (m) i cr'x ary a? z Ko U p"C 
(kPa) 11 94.1 0. i 0.1 0.0.7 0. 

21 82. , 29.4 1 Z. 6 29.4 0.7 0. 
3 :1 81.44.1 1 63.0 1 44.1 0.7 0. 
4 80.84.0 1 84.0 84.0 1.0 0 

1 79. ý 87.2 1 105.87.2 0.83 0. 
6 78.1 75.6 j! 126.0 75.6 0.6 0. 

77.1 73.5 1 147.0 
8 74. :1 90.8 190.0--* 96*F- 8 10. 

70.1: 104.8 234.0 104.8 0.448 50. 
10 66.116.2 1 278.0 11 .20.418 90. 

0.5 150 I1 60.172. C 1 .0 
10.447TI-_Tý_1 650. 12 447. (0 89-4.0 

Boundary fixities cent. line I smooth base smooth remote smooth 
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CASE 3- A6(M) Stockport (contd) 

Block Incs Time Activity 
(Yrs) 

1 
. 003 set up initial p. w. p. boundary conditions 

1 . 02 excavate to top of wall (+82.0m) M) 
1''5 install wall (swop elements) 

10 . 01 excavate to +8 I. Om 
.4 5 IT . 015 apply tensioning force for I st level of anchors 

6 1 . 005 install Ist level of anchors 
20 02 excavate to +78.5m 

8 20 . 015 apply tensioning force for 2nd level of anchors 
5 install 2nd level of anchors 

10 
- '- 

20 
- - . 02 

- 
excavate to +76. Om 

] 20 i 7 015 apply tensioning force for 3rd level of anchors 

. 005 install 3rd level of anchors 
13 20 . 03 excavate to +73.5m 
14 20 

. 03 excavate to +71.0m 
15 19 50 allow equilibration to original p. w. p. profile 

Comments 

The soil parameters were rather vague (triaxial. data were unreliable; one borehole log 
with SPT 'N' values was made available), but it was still possible to do a meaningful 
analysis - appropriate "limits of range" values were used, inferred from subgrade 
modulus values adopted by Mouchel. in the WALLAP analyses 

The presence of side-long ground was ignored in the analyses - to have incorporated it 
would have necessitated starting with a level surface (where in-situ stress could be 
conveniently defined), and then excavating to the required profile 

Wall movements were generally 50% of those predicted by WALLAP, and were thought 
to be more realistic 

The high EI of the T-section diaphragms used on some sections gave an equivalent plane 
strain thickness of f--, 2m - T-sections are highly three-dimensional and an equivalent 
plane strain thickness would only be appropriate on a long stretch of wall 
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I CASE 4A - Southwark Station Ticket Hall I 

Project Details /Analysis Overview 

Full title Jubilee Line Extn Contract 104 - Southwark Station Ticket Hall 
Uý; tion Southwark, SE London 

Client LG Mouchel. & Partners, West Byfleet 
Description underground station ticket hall, built within a secant pile "box" 

'- 7ý -Wa fl 
secant bored piles (male piles 750 dia. @ 900 c/c) 

Wall dimensions (in) ITO overall iWFh -1 - retained! TigiT 5.0 width /d iam. 075- 
_ Support (temýora@ single row of props Im below crest 

Support (permanent) 2 levels of slabs: roof and formation level 

Ground conditions made ground, alluvium and gtavel overlying London clay 
Pore pressures hydrostatic; GWL 4m b. g. l. 

Unusual aspects female secant piles ignored in calculating wall El 

Design variations 4m and 6m retained heights 

Other comments construction completed in 1998 

Publications/articles "Jubillee Jackpot", New Civil Engineer, 8 Oct 1992, pp22-23 
Type of analysis coupled consolidation (construction + long term) 
Purpose of analysis 

- - 
to check contractors alternative design 

goil ýiodel 'non-homogeneous isotropic linear elastic-perfectly plastic 
Structural materials linear elastic (concrete walls and slabs; steel props) 
Recent history no previous construction/excavation to model 
Wall installation element swopping 
Excavation sequence sequential with installation/removal of propping 
Long term behaviour equilibration to present p. w. p. profile, assuming under-sl rainage 
Output required wall deflections, wall bending moments, settlements outside site 
Field measurements none taken or made available 
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[CASE 4A - Southwark Station Ticket Hall (contd) I 

CRISP Analysis details 

Mesh details NN 323 NEL 1 307 X/H 19.48 1 Y/W 1 3.50 

Element types oil LSQ/u wall LSQ supports LSQ /T -Ts 
Soil parameters Eo 5 'NTa MF 101 NTa/m yo 101 m 

......... . (Afluvium/peat) V-0.25 1' co nic 0 In 
25 101 16 kN/m 

9.81 1 NTa kx 1 ky 3.0 m/yr 7W m/Yr 
(London clay) Eo 40 i NTa mp, 8 NTa/m yo 95 m 

----- ----- V 0.20 1.5 kPa mc 0 kPa/m co 
I 

2210 20 kN/m 

'YW 1 9.81 XTa kX 1 
. 019 m/yr ky 

. 05, m/yr 
Concrete parameters E 30, GPa V 0.151 Y 22.61 kN/ Im 

1 M2/ Prop parameters E 200 GPa A . 0054 m 

In-situ stresses pt y (m) cF'X 1 (Y'y 1 0, zI Kc) uPFc 
(kPa) I ', 104 1 0.0.0.5 ' 0. 

2 11 101 28.5 1 57.0 28.5 0.5 0. 
..... .............. 3 11 100 36.5 1 73.0 36.5 0.5 0. 

4 97 45.5 1 91.0 45.5 0.5 30.0 
95 54.5 109.0 -0.5 50 -. -0 -5-1 

61 94.9 1 165.0 11 165.0 1.5 51.0 
628.5 1 419.0 628.5 64.0 1.5 1 360.0 

Boundary fixities -7cent. line smooth I base smooth remote smooth 

Bloc rime Activity 
ýYrs) 

. 003 set up initial p. w. p. boundary conditions 
2 10 

. 115 install wall - swop elements 
3 10 

. 02 apply 10 kPa surcharge and excavate to +103. Om 
4 10 02 install temp prop and excavate to +102. Om 
5 10 1 . 02 excavate to +101. Om 
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I CASE 4A - Southwark Station Ticket Hall (contd) I 

Block 1 Incs Time Activity 
I 

I (yrs) 
6 10 

. 02 excavate to +100. Om 
7 10 . 02 excavate to +99. Om 

.... . ......... 8 10 1 
. 02 excavate to +97.8m 

91 
. 02 remove prop / install base and roof slabs 

TT 10 
. 02 apply 50 kPa surcharge on crest 

5 
. 05 set drainage boundary on underside of base slab 

' - 12 1 14 5 0 march forward in time for 50 years 

Comments 

Initial analyses were conducted in Autumn 1991, with additional work requested in 
Spring 1992 - variations in design necessitated further analyses in Spring 1994. 

The writer was also involved in checking the design of a large piled raft foundation at 
Southwark Station, though with a semi-analytical elastic method rather than finite 
element analysis. 

A second section was analysed on the station concourse, linking the ticket hall with the 
escalators and platforms. 
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I CASE 4B - Southwark Station Concourse I 

Project Details /Analysis Overview (only where different to case 4A) 

Full title Jubilee Line Extn 104 - Southwark Station Upper East Concourse 

Description underground station passenger concourse 
Wall type 

` - 
diaphragm panels 

Wall dimensiýn slFm ) -Y ---------- ----- retained height 11.0 overall len 24.0 
! 
-------- Support (temporary) 

Support (permanent) 

--- ---------- two levels of props Im and 6m below crest 

three levels of slab; rooý intermediate and formation level 

Unusual aspects 
Design variations 

none 

none 
Long term behaviour equilibration to present p. w. p. profile, assuming under-slab drainage 

Output required wall deflections, wall bending moments, settlements outside site 

P Analysis details (only where different to case 4A) 

details NN 340 1 NEL 339 X/H 4.25 Y/W 4.52 

Ines Time Activity 
(-vrs) 

1 . 003 set up initial p. w. p. boundary conditions 
10 

. 115 install wall - swop elements 
1 10 . 02 apply 10 kPa surcharge, excavate to +102.2m, install top-level prop 

10 . 02 excavate to +99.7m 
10 . 02 excavate to +97.2m, and install low-level prop 
10 

. 02 excavate to +95.2m 
10 . 02 excavate to +9T. -OrT- 

10 . 02 excavate to +92.7m 
1 . 02 excavate to +92.2, remove temp props, install permanent slabs 

10 . 02 apply 50 kPa surcharge 
5 . 05 apply drainage condition to base of slab 
14 50 march forward in time to t=50 years 
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I CASE 5- Greenside Place 

Project Details /Analysis Overview 

Full title Greenside Place basement walls 
Location Greenside Place, Edinburgh 

Client Tarmac Construction Engineering Services, Wolverhampton 

Description multi-level basement for proposed office/shopping development 

Wall type contiguous bored piles (1200 dia. @ 1350 c1c) 

Wall dimensions (m) retained height 1,15. overall length 

--------- 
21.5 width/diam. "J*72 

Support (temporary) 

_ - 

- five levels of prestressed ground anchors at 15* to horizontal 

Suppo rt Cp Tr; ýa iWý_n _t) 

- - - - - 
from basement floors (built bottom-up), though most anchors left in 

Tro 
uý d diti-ons-- co n , -, mad-e groun_*d_`ov-er c-la, -y--ey sand and sandy clay, overlying bedrock 

Pore pressures hydrostatic; GWL at ground surface 

Unusual aspects truly 3-dimensional in plan / side-long ground / shallow rock head at 
variable depth across site / some anchors removable 

Design variations anchor inclination increased / anchor length increased / bored piles 
extended to bedrock / assumed Ko varied 

Other comments construction completed in 199? / Keller SBN1A anchors used 

Publications/articles none known 

Type of analysis undrained, total stress - construction (temporary works stage) only 

Purpose of analysis to prove adequacy of temporary works design 

Soil model non-homogeneous isotropic linear elastic-perfectly plastic 

Structural materials linear elastic (concrete wallstslabs and steel anchor tendons) 

Recent history no previous construction/excavation to model 

Excavation sequence sequential with installation/stressing of anchors 

Long term behaviour not examined 
Output required wall deflections, wall bending moments, anchor tendon loads 

Field measurements none taken or made available 
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CASE 5- Greenside Place (contd) 

CRISP Analysis details 

Mesh details NN 378 1 NEL 358 X/H 1 3.65 1 Y/W 1 1.00 

Element types LSQ 1 wall LSQ supports I CSB -soil 

Soil parameters Eo 40 NTa ME 0 AVa/m yo 54.5 m 
(Made ground) V10.4971 co, kPa Inc 0 kPa/m 

01 0Y 18 

m/yr ky Kw. NTa Cx_ 

(Clayey sand) Eo i 70 1 AVa ME 0 NTa/m yo 3 8.8 m 

CO 140 V 0.497 kPa 0 kPa/m 
........... ............. -- ---------- -3 0' 18 Om I 

- -- ------- ky Kw, -I NTa kx ni/yr - n/yr rw 
Concrete parameters E 28.8 1 GPa V 0.150 24 kN/m3 
Tendon parameters E 200 1 GPa A 38le-6 m2lm 0 15 0 

In-situ stresses ! a, y 
I a1z I Ko pt y (m) cr'x u p? C 

(kPa) . - 1 54.5 1 0. 1 0. J 2 0. 

._ . __ ___ 2 24.0 1 244.0 1 244.0 244.0 1.0 
[ 

305.0 - 

Boundary rixities-7 cent. line I smooth i 
-base 

J rough remote smooth 

Block Incs Time Activity 
(yrs) 

1 10 install bored-pile wall (swop elements) 
2 10 excavate to +53.5m 
38 
41 

apply tehsioning force for I st level of anchors 
install I st level of anchors 

5 10 excavate to +50.5m 
68 apply tensioning force for 2nd level of anchors 
7 install 2nd level of anchors 
8 10 excavate to +47. Om 
98 apply tensioning force for 3rd level of anchors 
10 install 3rd level of anchors 
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I CASE 5- Greenside Place (contd) I 

Block Incs Time Activity 
(yr-S) 

10 - excavate to +43.5m 
8 - apply tensioning force for 4th level 

13 install 4th level of anchors 
14 10 - excavate to +40.5m 
15 8 - apply tensioning force for 5th level of anchors 
16 install 5th level of anchors' 
17 10 excavate to +43.5m (final dig level) 

Comments 

Initial analyses conducted in Spring 1993, with additional work requested ift Autumn 
1994 when the Consultant requested ground anchors to be inclined more steeply (25* 
instead of 150) 

The results of the analyses were used in an interactive refinement of the temporary 
works design 

Two other sections through the bored-pile "box! ' were examined, largely because the 
depth to rock varied enormously across the site - on Section HIL for example, the 
excavated height was 13.2m but the bored piles were only required to be 9m long ('Aith 
3 levels of anchors) as the lower 5m of the excavation was in rock 

The rather low Y/W ratio for the mesh tabulated above is due to the relatively shallow 
depth of the rock head -a deeper mesh was simply not required 

This is one case where there was an opportunity to specify further laboratory tests for 
analysis parameters 
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CASE 6A - RPR Junction Tunnels 

Project Details /Analysis Overview 

Full title Al/A406/A598 Regents Park Rd Jct. Improvements - Tunnel Walls 

Location 

n-t 

Regents Park, NW London 

Ken-n-edy-&-'Bionk-in Transportati'on, "*Godalming' 

Description cut and cover tunnels for complex road junction scheme 

contiguous piles (900 dia. @ 900 c/c) 
Wall dimensions (m) 

Support (temporary) 

----- - ---------- 115 width/di . 90 retained height 8.5 J ov all lengt 

roof prop slab (concrete) 

Support (permanent) 
_U; Zn -- W; 

n; d iiTi 0ns 

roof and formation level (road) prop slabs 
-------------- -- made ground overlying weathered and unweathered London clay 

Pore pressures hydrostatic; GWL at ground surface 
Unusual Tsý_ecis T ----- none in particular 
Design variations - ----------- depth of clay softening post-excavation / degree of moment transfer 

between wall and slabs / drawdown of GWL behind walls 

Other comments design never built - project shelved by DTp 

Publications/articles none known 

Type of analysis (a) uncoupled undrained (constr. ) and drained (long term) analyses, 
and (b) coupled consolidation (construction + long term) 

Purpose of analysis to calibrate routine wall design software (FREW), and to predict 
movements of the adjacent ground 

Soil model non-homogeneous isotropic linear elastic-perfectly plastic 
Structural materials linear elastic (concrete walls/slabs) 

Recent history 
- - - - ' 

no previous construction/excavation to model 

a1 1 i in st Wfl ý ýi on 
Excavation sequence 

element swoppmg 

sequential with installation/removal of Props 

Long term behaviour softening of clay beneath excavation (using stop-restart), then 
equilibration to present p. w. p. profile, assuming under-slab drainage 

Output required wall deflections, wall bending moments, excavation heave, vertical 
swelling pressures on road slab, settlement profile behind wall 

Field measurements none taken - project never built 
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CASE 6A - RPR Junction TunneIs (contd) 

CRISP Analysis details 

Mesh details NN 420 NEL 1 407 Xffl 8.12 1 YAV 1 4.15 

Element types soil LSQ/u Wall LSQ supports LSQ 

Soil parameters Eo 28 NlPa ME 6.3 NTI a/m yo 19.0 rn 
(London clay - VI co ---- -- ----- 0.201 

j 

0 0 kPa mc kPa/rn 
weathered) my OFTM 22 0 Y 

9.81 AVa kx 1 e-3 rn/ýrr ky 
. 25e-3 YW rn/ýr 

(London clay - Eo 1 91, Wa ME 1.75 NVa/m Yo 9.0 rn 
unweathered) V CO 0a nic 0 j 0.20: 1 kPa/rn 

-- --- ----- 22.10 'Y 20 /; W 

............ . I 'YW 9.81 NTa TX_ ky 
. 25e-3 i V, f ni/yr 

Concrete parameters E 15.5 1, GPa V 
I 0.1501 24 1 kN/m3 

In-situ stresses r pt 1Y (m) is crx I C; Y arz I 1CO Iu 
;pFC 

(kPa) 11 20 11 30 1 0. 

2 j, 19 50 50 50 1 10 
3 18.99 75 1 50 75 1.5 10 
4 -15 576 1,380 1 570 1 1.5 1 350 

Boundary rucities: cent. line smooth base smooth remote smooth 

Block Incs Time Activity 
(-vrs) 

I 1 
. 01 set up initial p. w. p. boundary conditions 

2 
.1 install wall (swop elements) 

3 10 
. 02 excavate to +17.5m AOD 

4 10 
. 04 install roof slab 

5 10 
. 01 excavate to +16.0m. AOD 

6 10 
. 01 excavate to +14.0m. AOD 

_7 
10 . 01 excavate to +1 1.5m. AOD 

8 10 1 install formation level (road) slab 
f 9 15 120 set up under-road drainage, an orward 120 years d step 
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CASE 6B - RPR Junction Approaches 

Project Details / Analysis Overview (only where different to case 6A) 

Full title Al/A406/A598 Regents Pk Rd Jct. Improvements - Approach Walls 

Description 

Wall type 

approach walls for complex road junction scheme 

contiguous bored piles (1500nim dia. @ 1500mm c/c) 
Wall dimensions (m) retained height 8.5 overall 15.0 width/di 1.5 

Support (temporary) single row of high level props 
Support (permanent) formation level (road) prop slab 
Unusual Tsýe-cW 

- - 
none in particular 

li e sign ý; H7ý_tio_ns - clay softening post-excavation / drawdown of GWL behind walls 

Type of analysis (a) uncoupled undrained (constr. ) and drained (long term) analyses, 
and (b) coupled consolidation (construction + long term) 

CRISP Analysis details 

Mesh details 423 1 NEL 1 405 X/H 1 7.71 1 Y/W 1 2.02 

Element types soil LSQ/u I wall LSQ supports LSB 

Prop parameters E 15.5 1 GPa A1 . 0261 m2/m 

Block Incs Time Activity 
(Yrs) 

11 
. 01 set up initial p. w. p. boundary conditions 

29 
.1 install wall (swop elements) 

3 10 . 02 excavate to +17.5m AOD 
45 

. 04 install temporary prop 
5 10 . 01 excavate to +16. Om AOD 
6 10 91 . 01 excavate to +14.0m AOD 
7 10 

. . 01 excavate to +1 1.5m AOD 
............... . 85 

. 07 install permanent formation level (road) slab 
9 10 

- 
remove temporary prop 

* 10 15 120 [ ; r-road drainage, and step forward 120 years set un 
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CASE 6C - RPR Junction Slip Road 3 

Project Details/ Analysis Overview (only where different to case 6A) 

Full title Al/A406/A598 Regents Pk Rd Jct. Improvements - Slip Road 3 

Description retaining walls for split-level slip road, in a complex road junction 

Wall type North contiguous bored piles (1350 dia. @ 1200 c/c) 
South 

- 
contiguous bored piles (900 dia. @ 1050 c/c) 

WWffýhWý 7wns N --------- 'retained height :18.5 overall length 13.6 width/diam. 1.35 
(M) S 7.1 10.5 0.90 

Support (temporary) single high-level prop from North wall to South wall 

Support (permanent) formation level (road) prop slab 
Unusual aspects asymmetric in cross section, requiring both North and South walls to 

be modelled / "cranked" permanent prop slab 

Design variations degree of moment transfer between walls and slab / drawdown of 
GWL behind walls 

Type of analysis coupled consolidation (construction + long term) pnly 

Recent history need to create existing raised ground level on north side 
--- Excavation sequence - --- - -- sequential with installation/removal Of props 

I, ong term behaviour equilibration to present p. w. p. profile, assuming under-slab drainage 
and drawdown behind walls (due to seepage between piles) 

CMSP Analysis details 

Mesh details 7NN 846 1 NEL 1 804 X/H 4.59 1 Y/W 1 8.75 
iI 

Element types -soii LSQT/u wall LSQ supports I LSB 

Soil parameters aU as before except: ME 3.15 20 1 

Prop parameters J E 2101 GPa A . 216e4 I m2/m 
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[CASE 6C - RPR Junction Slip Road 3 (contd) I 

Block Incs Time Activity 
(yrs) 

1 
- . 001 set up initial p. w. p. boundary conditions 

2 ý7 9 1 20 build up raised ground surface & apply surcharges (N &S sides) 
3 

i ---------- 
10 i 

.0 excavate to - 1. Om 
41 10 

. 02 excavate to -2. Om 

. 04 install top level prop 
6 9 

. 
6s excavate to -3.4m 

7 
. 

10 
. 025 excavate to -4.7m I. . ......... 10 1 
. 025 excavate to -5. 

im 

10 
. 025 

_ 
excavate to -6.8m 

' 10 10 E 5 excavate to -7.8m 
11 10 

. 15 excavate to -8.5m and install road slab 
10 

. 02 remove temporary prop 
13 5 1 2 set under-road and behind-wall drainage and step forward 2 Yrs 
1ý 5 apply equivalent surcharge rn housing development 
15 10 ..... .II-8 ___ [ 

step forward in time to 120 _ye`ar`s_--_ 

Comments 

The asymmetry of the walls, prop slab and ground profile (about the carriageway 
centreline) necessitated the modelling of a full section and hence rather more elements/ 
nodes than usual 

The results of the analyses produced some unexpected trends in terms of the relative 
movements of the North and South walls - retrospective attempts to explain the 
mechanisms involved were not wholly satisfactory 

In-situ geophysical testing to determine G,,. was carried out by the University of Surrey 
(under a separate contract) for comparison with laboratory stiffnesses (this comment 
applies to cases 6A-6D) 
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CASE 6D - RPR Junction Slip Road 5 

Project Details / Analysis Overview (only where different to case 6Q 

Full title Al/A406/A598 Regents Pk Rd Jct. Improvements - Slip Road 5 

Description retaining walls for a slip road, in a complex road junction 

Wall type - North contiguous bored piles (1800 dia. @ 1500 c/c) 
- South contiguous bored piles (750 dia. @ 800 c/c) 

VallTimensions N retained height 8.5 overall length 15.0 width/diam. 1.8 
(M) S 10.0 0.75 0.0 

Support (temporary) pr4W from wall crest to row of lateral piles 
Support (permanent) formation level (road) slab, propped against lateral piles 

Unusual aspects asymmetric in cross section with wall (north) and lateral piles (south) 
/ side-long ground / temporary berms used during construction 

Design variations depth of clay softening post-excavation / degree of moment transfer 
between wall and slabs / possible drainage between piles 

Type of analysis coupled consolidation (pre-history, construction + long term) 

Recent history creation of existing side-long ground surface profile 
_ _ __* _ _ _ _ * _ _ Excavation sequence k i o d ng props, then a t e r a complex - berms ioii; Te_Ký -accomm 

removed to allow installation of road slab 

Long term behaviour equilibration to present p. w. p. profile, assuming under-slab drainage 
and drawdown behind walls (due to seepage between piles) 

CRISP Analysis details 

Mesh details ---T NN 545 11 NEL 540 X/H 4.76 Y/W 1 4.18 

Elemýnt types soil LSQT/u wall LSQ suppo; & TCSB 

Prop parameters E 2101 GPa - [A 
. 885e4 
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ýCASE 6D - RPR Junction Slip Road 5 (contd) I 

Block Ines Time Activity 
(Yrs) 

T 
. 01 set up initial p. w. p. boundary conditions 

'- 2 4 01 create present day (sloping) ground surface' 
------- ----- 3 10 120 step forward 120 years 

4 5 
.1 install north wall (swop elements) 

5 5 I install south wall (swop elements) 
6 1 5 excavate berm (1) 
7 10 

.1 excavate berm (11) 
8 8 

- --; --- 4 1 
- 

excavate berm (HI) 
. - 9 1 5 

.2 - 
- excavate berm (IV) 

10 
--- -4 - .0 4 install temporary prop 

- I1 4 1 71 remove LHS berm (1) 
12 10 1 

*I remove LHS berm 
13 

. 15 install formation level (road) slab 
14 

- .. . 02 remove temporary prop 
15 1 G i .1 remove RHS berm 
16 15 120 set under-road drainage, and step forward 120 years 

Comments 

As with Shp Road 3, the asymmetry of the walls and ground profile necessitated the 
modelling of a full section 

The row of piles forming the South "waff' were not acting as a wall at this stage of the 
analysis/design but rather as lateral reaction piles for both the temporary and permanent 
props - later on, it was intended that excavation would take place to the south of the 
South "walr'two form a separate (lower) level of carriageway 
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CASE 7- A331 Aldershot Rd Underpass 

Project Details /Analysis Overview 

Full title A331 Black Water Valley Route - Aldershot Road Underpass 

Location Junction with A323, Aldershot, Surrey 

Client 
--- ------------ 

Surrey County Council, Ewell 

Description trunk road underpass at grade-separated interchange, 28.4m wide 
Wall type 

- 
T-section diaphragm walls 

- Wall d imensions (m) retained height 10.0 overall lengt J Twidth/diam. 2* 0 

Support (temporary) --- - ------ - double row of tubular steel props 
Support (permanent) single articulated concrete slab at formation level 

Ground conditions made ground, alluvium and gravels overlying London clay to depth 

Pore pressures hydrostatic; high local water table; d artesian conditions 

Unusual aspects hinged prop slab 
Design variations anchors for temporary support / wall and ground stiffness / Ko in 

London clay / rigidity of carriageway slab 
6ther 

comments completed and open to traffic in Sept 1996 

Pubfications/articles "Holding water", NCE Roads Supplement June 1995, pp25-28. 
Carder et al. (1997), TRL Report 23 9 

Type of analysis coupled consolidation (construction + long term) 

Purpose of analysis to calibrate routine wall design software (FREW and WALLAP), 
and investigate long-term soil-wall-slab interaction 

Soil model 
Structural materials 

non-homogeneous isotropic linear elastic-perfectly plastic 

linear elastic (concrete walls/slabs and steel tubular props) 

Recent history no previous construction/excavation to model 

Wall installation 
Tx-cava Fion s-e--quence 

element swopping 

sequential with installation of props 

I-Ong term behaviour equilibration to existing p. W. P. profile, with under-road drainage 

Output required wall deflections, wall bending moments, prop loads, slab axial thrusts 
and bending moments, swelling pressuris on slab, settlements and 
horizontal ground movements behind wall, p. w. p. profiles 

Field measurements extensive - both during and after construction 
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[ CASE 7- A331 Aldershot Rd Underpass (contd) I 

[CRI5 Analysis details 

Mesh details [N-N 480 NEL 456 X/H 6.02 1 Y/W 

Element types LSQT/u wall LSQ supports CSB 

Soil parameters Eo 12.5 XTa ME NTa/m 
.5 m 

(alluvium) -.. . ___j V 0.2 0 co . 0 

28 10 -Y 

YW 9.81 1 XTa kx 131.5 m/yr m4T ky 31.5 tn/ýT 

(London clay) Eo 30 NTa trip, 6 NTa/m yo 67.0 m 
t CO 5 'Oa 

V 15- a me 0 kPa/m 
-- ---------- 22 0 'Y 21 

. YW . 81 NTa kx . 03 15 m/yr 81 ky . 0032 1/ýT 
Concrete parameters E 271 GPa V 0.15 'Y 23 kN/M3 
Prop parameters E 210 1 GPa A elm 

In-situ stresses pt Y (m) G'x G'Y G'Z u PC 
(kPa) Ij 72.6 1 0.1 0*0. 0.6 0. 

2: 1 26.4 44.0 26.4 67.1 0.6 55 
--- 3 44.8 67.2 67.2 -- -------- 56 0.4 

4 11 24.0 583.2 388.8 583.2 
II 

1.5 48E 

Boundary fixities-1 centline smooth base smooth remote smooth 

Block Incs Time Activity 
(Vrs) 

- set up initial p. w. p. boundary conditions 
25- apply HA surcharge at existing ground level 
3 - instaU waU (swop elements) 

5i- excavate to +68.6m 
51 11 - instaU temporary high level prop 

r 6 25 !1- ; 760.8m (formation level) excavate to 
,75 11 - 

- 
backfill behind capping beam to +72.6m 

i I51, 
- change surcharge from HA to HB 

A-25 



CASE 7- A331 Aldershot Rd Underpass (contd) 

Block Incs Time Activity 

92- install under-carriageway drainage blanket 
10 5- install permanent carriageway prop slab 

15 remove temporary props 
12 20 1 allow equilibration to present p. w. p. profile, %rith under-slab drain 

Comments 

Involvement was from an early stage, as the client appointed the University of Surrey to 
be the Technical Approval consultant for the Approval in Principal (AIP) document for 
the ARU in December 1991 

Following adoption of the final AIP, advice was given on FE analyses used in the design 
process, and the data given above for this case is based on these analyses 

Much more detailed and refined analyses were carried out during and subsequent to 
construction by University of Surrey, in which the fidl wall installation process was 
modelled and Simpson's "bricle' model was used for the London clay - however, such 
retrospective refinement is always possible in a research contract, and this is rather 
different to the design environment which this thesis is focusing on. 

As with the A6M Stockport Bypass, 2D idealisation of a T-section diaphragm wall 
produced a high equivalent plane-strain wall thickness because of the high EI 

Soil parameters for the finite element analysis at the design stage were reasonably 
comprehensive and were obtained by Surrey CC Materials Laboratory - subsequently, 
the University of Surrey obtained block samples for stress path testing as part of the 
research contract 

Full details of wall performance up to 1996 can be found in Carder et al. (1997). 
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CASE 8A - Queensberry House Transverse 

Project Details /Analysis Overview 

Full title Queensberry House: transverse section 
IIA)CatiOn Saville Row, London WI 

Client Laing Technology Group, Mill 

Description' multi-level deep basement demolition and deepening/widening 

Wall type contiguous bored piles (750 dia. @ 900 c/c) 
Wall dimensions (in) retained height 19.5 overall length 125.8 1 width/diirýCl 0.75 

Support (temporary) 
- - 

six levels of tubular steel props 

port (permanent) S; P 
' 

eight levels of concrete floor slabs/ramps (underground car park) 
Ground ýonditions--- 

- 
made ground and gravel, overlying London clay to depth 

Pore pressur e; hydrostatic from 61n to 19m b. g. l.; underdrained beneath this 

Unusual aspects truly 3-dimensional in plan / extremely complex construction 
sequence / need to model construction of original building 

Design variations temporary propping arrangements and unsupported heights 
nonlinearity of soil stiffness parameters 

Other comments construction completed in 1998 

Publications/articles Woods and Miller (1997) 

Type of analysis fiffly coupled (original construction, 30-year equilibration, sequential 
demolition and construction + long term) 

Purpose of analysis to predict movements of (and hence damage to) adjacent structures 
Soil model non-homogeneous isotropic nonlinear elastic-Perfectly plastic 
Structural materials 

_ _ 
linear elastic (concrete walls/slabs, steel columns & tubular props) 

li; ý en thisotory construction of previous Queensberry house in 1966 

Wall installation element swopping 
Excavation sequence extremely complex; sequential with demolition and the installation of 

temporary props and permanent floor slabs 

Long term behaviour equilibration to existing P. w. p. profile, with under-slab drainage 

Output required wall deflections, bending moments and shear forces; horizontal and 
vertical ground movements; slab axial thrusts 

Field measurements horizontal and vertical movements in and around site 
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[CASE SA - Queensberry House Transverse (contd) I 

CRISP Analy sis details 

Mesh details NN 983 NEL 1 1242 X/H 3.69 1 Y/W 1 1.65 

Element types soil I LSQ/T/u wall LSQ supports CSBALSQ 

Soil parameters Eo 1 74.5 11 NTa MF 2 NTa/m yo 16.14 1m 
(London clay) V10.201 C; Oý kPa nic 01 kPa/m 

20: 111 20 1 Mtn' 7 

, 
YW 9.81 NTa kx 6e4 1, m/wk ky 6e4 m/wk 

Concrete parameters V E 20, GPa 0.15 24 kN1d 
Prop parameters E 207 GPa A 593e-5 d1m 

In-situ stresses pt 11 y (m) G'x a'Y I CF'z Ko u P'C 
(kPa) I! 23.6 i 0.1 0.1 0. '1 1 0. 

2 17.5 1 61.0 1 122.0 1 61.0 .50. 
1 67.8 1 135.5 67.8 11 `3 16.15 0.5 13.5 

4 16.14 271.2 1 135.6 271.2 2 13.6 
51 11.15 

:1 
371.0 185.5 1 371.0 

------------- 
2 63.5 

6 11.14 1 278.4 185.6 278.4 1.5 63.6 
7 -15 :1 468.0 312.0 468.0 1 1.5 190.0 
8; -17.5 1 1233.0 Y: 5 

1 1233.0 1t0. 1.5 
I-1 1608.0 1 1072.0 1 1608.0 1 

191 30.0 1.5 1 0. 

Boundary fixities -- Tcent. line rough smooth base remote rough 

Block Incs Time Activity (week nos) 
(wks) 

. 005 set up initial p. w. p. boundary conditions 
2 19 26. instaH odsting basement 
3 9 20. apply loads from e)dsting superstructure 
4 11 1560. allow 30 years post construction equihblium 
5 10 21. cancel odsting superstructure loads (1-21) 
6 1 3. instaU prop A (+ support) (22-24) 
7 51. breakout for sheet piles (25) 
8 3. instaH sheet piles and contiguous piles (26-28) 

1 
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[CASE ý8A 
- Queensbe House Transverse (contd) 

Block., Incs I Time Activity (week nos) 

_(wks) 9 15 j 1. excavate central well to +8.34 : remove prop A install B (29) 
10 5 11 excavate central well to +5.64 install prop C (30) 

* " I1 5 1 in all prop DiýTýTIZ excavate central well toTTý. (31) 
12 2. install plunge columns/piles and cast base Oevel 13) slab (32-33) 
13 2 1 5. construction elsewhere (34-38) 
14 1 4 1 2. build up internal shear walls to + 17.5 (39-40) 
15 13 4. internal shear walls up to +23.1 : break out upper foundation (41-44) 
16 3 3. 

- 
floor slabs casmithin shear walls: props EFG replace B, CD (4547) 

17 13 
j, 4 construction elsewhere (48-51) 

18 1 1 prop H installed (52) 
19 4 16. apply new superstructure loads (53-68) 
20 1 I prop K installed / upper wall broken out 6 
21 2. construction elsewhere (70-71) 

Y2 3. level I slab installed (72-74) 
23 3 

- 1 3. excavate outer section to +14.24: rernove prop K install L (75-77) 
24 

_ ____2 
4. construction elsewhere (78-81) 

25 2. level 3 slab installed (82-83) 
26 3 2. exe. outer section to +11.54 remove props H&L install M (84-85) 
27 

- - 
2 2. construction elsewhere (86-87) 

i 8 1 2. level 5 slab installed (88-89) 
29 3 4. exc. outer section to +8.84 remove props E&M install N (90-93) 
30 2 1 2. construction elsewhere (94-95) 

2. level 7 slab installed (96-97) 
32 3 2. exc. outer section to +6.14 remove props F&N install 0 (98-99) 
33 J I. construction elsewhere (100) 
34 1 1. level 9 slab installed (101-102) 
35 3 2. exc. outer section to +2.94 remove props G&0 install P (103-104) 
36 3 2. excavate outer section to +1.74 (105-106) 
37 11 1 place no fines concrete 

-------- 
(107) 

38 2. ----- base Oevel 13) slab install ed (108-109) 
39 1 construction elsewhere (110) 
40 2. level II slab installed / remove prop P (111-112) 
41 11 1560. allow for a further 30 years after construction 
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CASE 8B - Queensberry House Longitudinal 

Project Details / Analysis Overview* (only where different to case 8A) 

Full title Queensberry House : longitudinal section 
Design variations fixity between existing basement and party wall 

CRISP Analysis details (only where different to case 8A) 

Mesh details NN 1150 NEL 1434 'X/H 3.39 Y/W 1 1.21 

Block Incs Time Activity (week nos) 
(wks) 

1-5 40 is 1627 as per case 8A 
6 1 1. install prop 1 (22) 
7 1 1. demolish upper ramp install prop 2 (23) 
81 3 2. cut slot for contig. piles / install props 3&4 remove prop 1 (24-25) 

--------- - -- - 9 2 3. ...... cut slot for sheet piles (26-28) 
10 2 

. .5 piles and coýýjýous piles .......... . (29a) 

. ----- II .... ... 1 .. 
.5 replace props 3&4 with 5&6/ install prop 7 (29b) 

12 11 1 excavate central well to +7.00 / install prop 8 (30) 
13 1 4 1. excavate central well to +4.3 0/ install prop 9 (31) 

14 3 2. excavate central well to +2.49 / place blinding slab (13L) (32-33) 
15 1 5. construction elsewhere (34-38) 
16 11 I. -- FEST5-ase (39) 

17 2 3. erect shear walls (cl), (24)(29) to +17.5 (4042) 
18 21 1. -------- ......... demolish upper shelf . (43) 
19 2 4. internal shear walls up to +23.1 (4144) 
20 3 .5 excavate outer section to +12.8 / remove prop 2 (45a) 
21 1i .5 

install prop 11 / construct internal floor levels 11 &9 (45ý) 
-- --------------- ! 

22 31 
.5 exc. outer section to +9.8 / remove prop 7& top of sheet pile (46a) 

1 .5 
install prop 12 / construct internal floor levels 7&5 (46b) 

3 **5 excavate outer section to +7.0 (47a) 

25 1 .5 
install prop 13 / construct internal floor levels 3&I (47b) 

26 j, 3 .5 excavate outer section to +4.4 (48a) 

27 1 11 .5 
install prop 14 / construct internal roof (level 0) (48b) 

2T 3 j, o"uter section to +2.49 (FL) / place blinding (49) 
29 - -ýasCremaining base (level 13) slab (50) 
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CASE 8B - Queensberry House Longitudinal (contd) 

]Block I Incs Time Activity (week nos) 

1 2. .... . ........... . ...... ................. ..... . .... . ... . ..... . .............. . .... . ....... . ............ erect shear wall (33) to +17.5 ................... .............. (51-52) 
1 1.5 ............... ... 11 slab (53-54a) 

32 
.5 

............. ......... . install level 9 slab shear wall (33) to +23.1 (54b) 
33 1. install level 7 slab (55) 
34 1 1. 

. ............. 
install level 5 slab (56) 

35 3 1.5 remove prop 10 (57-58a) 
3ý 

.5 install level 3 slab (58b) 
- 37 

.4 
2.1. 

--!. 
install level 1 J; ý7 commence superstructure loading 

- 
(59) 

38 3 2. further superstruý eS (60-61) 
39 4 1 3. install roof slab / further loadsTremove props 5&6 ýE-64) 

40 4 25. further superstructure loads (65-89) 
2 1. remove prop II& support (90) 

42 1 7. construction elsewhere (91-97) 
43 

..... 
2 

..... .. 
1. remove prop 12 & (98) 

44 1 1 4. construction elsewhere (99-102) 
45 2 1. remove prop 13 & support (103) 
46 4. construction elsewhere (104-107) 
47 2 remove prop 14 & support (108) 

11 1560. allow for a further 30 years after construction 

Comments 

Probably the most complex basement analysis ever undertaken with CRISP (based on 
discussions with the authors and other users of CRISP) 

Many different zones of concrete (contiguous piles, internal shear walls, plunge piles, 
floor slabs, etc. ) and steel (sheet piles, tubular props, plunge columns, etc. ) were required 
- the values quoted in the table above are only representative, as different values had to be 
used to take account of spacings in the third dimension, etc. 

The non-linear elastic stiffness model used was based on the Jardine et al. Imperial 
College logarithmic-periodic function - implemented in CRISP by the writer for this job 

Comparative analyses were conducted with PLAMS by the consultant (Buro Happold) in 
order to check LTG's work, although these analyses were not as sophisticated 
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Stiffiiess v strain data were obtained from both laboratory triaxial tests and also in-situ 
pressuremeter tests, with the latter giving a much more consistent pattern 

This is the only commercial analysis with which the writer was involved where horizontal 
ground movements towards the wall were required (as part of the damage prediction 
exercise) 

Computed wall movements were used to set trigger levels as part of the Observational 
Method adopted for the construction 

Comparisons of computed and observed wall movements were very favourable, with 
computed always a little greater than observed 
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APPENDIX B 

Supplementary Plots for Numerical Studies 
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APPENDIX C 
Derivation of Equations for Stress Smoothing 

CI Best-fit plane y= a+bx+cy+dxy 

Such a plane is required as an approximation to the stress values in an element integrated with 
a3 x3 Gauss point rule. Assume that the approximated stress a* is given by: 

a+ bx + cy + dxy 

Let the error between the true stress cr and a* equal e: 

ea- CF* a- a-bx- cy-dxy (C2) 

Thus the sum of the errors squared (E) taken over all N data points (xi, yi) is: 

N 

E e2 = Z(cr -a- bxi - cy,, - dxi Y, )2 

I 

To determine the values of the coefficients a, b, c and d which will minimise E (the least- 
squares solution), partially differentiate Eqn (0) w. r. t. to each coefficient, and equate to zero: 

42ýý 2Z(cr-a-bxi-cyi-dxiy). -I 0 

OE/Ob 2E (a -a- bxi - CYi ' AfrV * -"1- '*-7 
OE/& 2E(cr-a-bxj-cyj-dxjYý--Yi 

WN 2E(a-a-bxj-cyj-dxjyO--xiyi 0 

Rearranging (C4) leads to: 

I(a + bxi + cyi + dxi Y) E cyi 

Z(axi + bx? + cxiyi + dxi 2 Y) Zaixi 

X(ayj + bxiyi + cyi 2+ dxi yi 2)Y, cyi Yi 

X 
2yi + CXY, 

2 X, 2 Y, 
2) 1; I(axLyj +b .1+d, cyi xi 

C-1 

(C4) 

-7 



In matrix form (dropping the subscripts T for claritY): 

N Ex Sy Exy a la 
E2 y , xy 

2y Ex x b Sax 

, y2 y xy XY2 c 

Exy SX2Y Exy, EX2Y1 d scr. x. y 

where N (= E 1) =9 for a3 x3 data set) 

(C5) 

C2 Best-fit line y= a+bx 

The derivation is exactly the same as for the best-fit plane, except that coefficients c and d are 
no longer required. By eliminating the 3rd and 4th row and column from Eqn. (C5): 

N Ex a Ycr 
Ex 

Y , x2 

C3 Best-fit curve y= a+bx+cx2 

The error between a and a* is now: 

e cy - a* = cr-a-bx-cx 2 

and the sum of the errors squared E: 

N 
E Fe2 = E(cr -a- bxi - CX, 

2)2 

I 

Differentiating w. r. t. to each coefficient: 

M& = 2E (a -a- bxi - cxi 
2 ). -1 =0 

c 'Vc'b = 2E (a -a- bxi - cxi 
2 ). -x =0 

M& = 2Y. (cr -a- bxi - cx? ). -x2 =0 

1 

(C6) 

(C7) 

(C8) 

(C9) 

C-2 



Reaffanging (C9) leads to: 

I(a + bxi + cxi 
2)Y, (Yi 

E(axi + bxi 2+ 
cxi 

3) c7i xi 

23 E(axi + bxi + cxý) a, X, 2 

In matrix form (dropping the subscripts T for clarity): 

N Yx al a Icy 

Y, x EX2 Ex 3b Fa. x 
ZX2 Ex 3 ZX4 c 

(CIO) 

C-3 


