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ABSTRACT

This research has investigated the behaviour of joints and cracks under single and

multiple cycles of load. This provides an increased understanding of concrete slab on

grade performance, enabling more effective design and monitoring procedures.

Examination of the geometry of cracks and joints within concrete slabs on grade has
demonstrated that the commonly assumed parallel formation is erroneous. Measurements
using embedded strain gauges, coring and surface profile levelling have uncovered that a
high percentage of joints will contain larger crack widths at the surface than at the base,
caused by differential shrinkage. The opening itself is relatively linear; however, the top

50mm of the slab is prone to a higher gradient of movement due to the increased drying

effect towards the surface.

A series of deflection tests using a Falling Weight Deflectometer and Prima dynamic
plate enabled slab response under load to be evaluated. Four sites were examined in total

and correlations found between: load transfer, load step, edge cantilever and crack
geometry. This produced valuable information regarding the influence of load transfer
and crack width on the overall slab behaviour. Foundation voiding and crack face free slip

was also shown to influence deflection magnitude.

A small-scale test facility was developed for the assessment of deterioration in various
‘V* shaped and parallel crack widths under high cycle loading. The data demonstrated
that joint/crack failure contains four distinct phases of deterioration, each of which is
controlled by a different mechanism. *V’ shaped cracks produced a much greater load
transfer than that of a parallel crack with the incorporation of A142 mesh and steel fibres
reducing differential displacement. Load magnitude and aggregate size were also shown
to have significant effects. The value of reinforcement was found to assist with
serviceability requirements, keeping displacement within acceptable levels and preventing

the onset of serious degradation

A finite element model was developed to enable the load transfer mechanism results from
the laboratory test to be used in the assessment of full slab response. Simulations of field-
testing produced a series of lower bounds in respect to deflections and the associated

response calculations. Theoretical behaviour of a typical slab was assessed with subbase



support, joint stiffness, slab thickness and the incorporation of a subbase, found to be

highly influential in reducing slab deflections.

The three main sections of work comprising site data collection, laboratory testing and
Finite Element modelling have been used together to provide a much greater
understanding of the influence of cracks and joints. This has included the deterioration of
cracks over time and an examination of how this and other site-based factors affect

overall slab behaviour.

Keywords: Concrete slabs on grade, Joint behaviour, Load transfer, Deflection testing,

Steel fibres, Concrete degradation, Finite Element modelling.
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1. INTRODUCTION

1.1  Background

There is a growing demand for in-situ concrete industrial floor slabs and hardstandings
throughout the United Kingdom and the world. The increase of internal floor space
required for warchousing and manufacturing processes, along with the need for additional
external storage areas such as ports, harbours and retail outlets have led to the majority of
this growth. The continued use of rigid pavement construction in many countries ensures
the quantity of concrete required for this type of infrastructure has also remained high.
This demand has been coupled with client requirements for extended life expectancies
and tighter tolerances in level and flatness. This necessitates that the design of the

structure be extremely thorough to ensure all specifications are met.

Whilst new machinery such as laser screeding plant has helped in providing quicker and
more accurate concrete placement, the greater size of the pour creates an increased risk of
thermal and hygral movement. All concrete slabs must consequently accommodate
significant shrinkage throughout their lifespan, because if restricted, additional stresses
and cracking will occur. Some form of control to prevent premature degradation is
therefore required within the structure. This is commonly achieved with the use of joints
or controlled cracks to enable the concrete to move at designated locations, leaving the
remainder of the slab relatively free of restraint induced stress. Unfortunately, these areas

often become the main cause of failure if incorrectly designed or constructed (Hulett
2001).

The load transfer mechanism across any crack or joint is essential to the structural

capacity of the slab. If this deteriorates for any reason then there is a much greater risk of

failure or serviceability problems, such as faulting (change in level across the crack),

excessive deformation or further cracking.

Many methods are employed for load transfer. Some utilise the intrinsic properties of the
concrete mix such as aggregate interlock, but others such as dowel bar insertion can be
used to enhance the mechanism. Steel fabric will reduce movement of the joint or crack
faces due to the external climate, and will also have some load transfer potential of its

own. Similarly, with steel fibres becoming increasingly popular, it is important that their



impact is incorporated within design. The behaviour assessment of each joint type with
respect to load magnitude, crack orientation and long-term fatigue is therefore essential to

enable designers to accurately predict slab response.

1.2  Aims and Objectives

The project aims were developed in collaboration with a steering group committee who
provided technical and practical knowledge throughout the duration of the research
period. These discussions along with a comprehensive review of literature identified the
need to ‘develop a more fundamental understanding of the load transfer mechanisms

across cracks and joints in concrete floor slabs, hardstandings and rigid pavements’.

In order to achieve this overall aim the following objectives were identified:

e Determine joint and crack profiles, as a result of the interaction of concrete properties

and the slab environment (climate).
e Devise and validate experimental procedures to simulate the load transfer behaviour
of a slab joint/crack.

e Determine the effect of a selected range of joint/crack openings on the load transfer

behaviour of plain, mesh and fibre reinforced specimens.
e Investigate the influence of subgrade support on the load transter behaviour of plain,

mesh and fibre reinforced specimens.

e Develop a structural finite element model to simulate the interaction of joint/crack

opening, reinforcement type and subgrade, on load transfer behaviour.

1.3  Outline of Research Methodology

To achieve full understanding of site conditions and for development of the laboratory
test methods it was essential that data was collected on typical crack and joint profiles.
Unlike previous surveys, this required measurements throughout the depth of the slab and
therefore invasive methods were employed. The first of these required the analysis of
previous records of crack opening obtained during the research of Bishop (2001). This
work utilised embedded strain gauges to calculate slab movements during the early ages
of concrete life. Extrapolation from several gauges and demec pips placed above one

another at joint positions facilitated the production of overall crack profiles.



Coring was also used to obtain information on crack width variations. This enabled the
opening and inclination to be directly measured along the full slab depth using a number
of different methods and devices. Surface crack widths alone were obtained at dynamic

load test locations to enable its comparison with deflection response.

In addition to direct width measurement, plots of the slab surface profile and slab edge
curling enabled the interpretation of crack geometry. Several methods were trialled to
obtain accurate measurement at a conveniently fast rate, necessitated by the limited time
availability of site access. Initially a precise level was utilised, which although providing
high accuracy, was found to be relatively slow and cumbersome. A builders level held at
the slab edge and a graduated wedge enabled sufficient approximations of the level of

curl. The use of a small profilometer enabled an increased amount of detail to be

obtained, with greater accuracy due to the incorporation of a graduated measurement

scale.

To enable the effect of crack opening and load transfer on slab response to be determined,
deflection testing was undertaken on a number of joints at four different in service sites
using a Falling Weight Deflectometer or (Prima) portable dynamic plate test. These
devices impart a transient vertical load and monitor deflections on either side of the crack.
The measured deflections were then used to derive load transfer, load step and edge
cantilever, whilst providing estimates of voiding, thereby providing a greater

understanding of the slab behaviour in respect to applied load.

A small-scale laboratory testing facility was developed to enable fatigue of cracks to be
investigated under controlled conditions. This incorporated a double cracked specimen
loaded across both shear planes with a force of between 2 and 6kN to represent contact
loads found on site. A selection of typical slab reinforcements was tested, including steel
fibres at quantities between 20 and 40kg/m’ and A 142 steel fabric. Crack geometries used
were similar to those found from the measurements at in-service site slabs. This consisted
of ‘V’ shaped cracking with surface widths between 0.66 and 4.62mm and several parallel

cracks, all of which were below 2mm in width. Each test comprised a minimum of
250,000 cycles with measurements of deflection taken every 600 cycles. The

displacements at the relevant load and cycle number were then used to produce a
comparison between specimens and produce calculation of joint stiffness. The

deterioration of the crack face was also monitored enabling the contributory effects to be

determined.



Finite element modelling enabled the effects of load transfer on slab response to be
established, with the results obtained from laboratory testing correlated to those found
from field testing. The Finite Element model utilised a single joint stiffness only and
therefore the deterioration effect could not be incorporated directly; however, the
selection of a residual value enabled a characteristic in-service slab response to be
obtained. A standard model was developed to be representative of a typical internal slab
construction and was compared to the analytical representations proposed by Westergaard
(1926 and 1947), and JIoannides et al. (1985) to validate the results. A numerical model of
the laboratory test beam was also constructed to establish whether the standard spring
equation could be used in developing joint stiffness. From these results it was possible to
construct a series of models, each representing as closely as possible the conditions found
in the field. Comparisons could then be made to the deflection measured responses found
on site to assess the accuracy of the numerical representation. This was undertaken for the
full range of load transfer values and, using a trial and error approach, enabled the value
of foundation support to be determined. After obtaining the correct foundation stiffness
comparisons were made between the laboratory fatigue tests and the field data. For two of
the sites tested a full range of crack widths were identified along with their associated
deflection responses. The finite element model was then used to incorporate the spring
stiffness load transfer model obtained from the laboratory, with representative data taken
for both reinforcement type and crack width. Once this procedure confirmed reasonable
approximation between site and laboratory information, several parameters controlling

slab response were altered to enable their influence to be further understood.

Interaction between each section of work was required to enable methodologies to be
developed and provide a greater understanding of slab behaviour. Figure 1.1 represents
this process, whereby each of the three main sections of work (site data collection,

laboratory data collection and finite element analysis) link directly into one another, and

into overall analysis.

1.4 Thesis Structure

Each chapter of the thesis is interlinked, and requires cross-referencing of data to enhance

its full comprehension. The flow diagram produced in Figure 1.2 is provided to aid the

reader’s understanding of how this was accomplished.



Chapter 1 provides an introduction to the thesis comprising an overview of the research
topic and the importance of the findings to industry. This also encompasses the aims and

objectives with a brief description of how each was achieved.

Chapter 2 presents a thorough review of the literature covering concrete slabs on grade
and their common failure mechanisms. This includes many of the actions placed onto the
structure and how these are controlled through adequate design. Analytical modelling is

also introduced with a discussion of some of the difficulties known to exist.

Chapter 3 provides a more detailed account of current knowledge into load transfer
across cracks and joints, describing many of the mechanisms alongside their long-term
effectiveness. Analysis equations are established for both single and multiple cycle

behaviour, with the effect of geometrical and material properties considered. Site testing

methods and the analysis procedures are discussed.

Chapter 4 contains the methodology used for the determination of site obtained
information, incorporating equipment specifications and the implementation techniques

used to obtain information relevant for analysing joint and crack behaviour.

Chapter 5 provides detailed information on the design of a small scale testing facility for
examining load transfer deterioration. Information on the test specimens is described,

along with the procedures used for translating the data, enabling further analysis and

comparison.

Chapter 6 presents the findings from both the site and laboratory testing, highlighting the
influence of crack geometries and reinforcement type on load transfer. Evaluation of slab
condition is made through analysis of deflection testing which then enables correlation

between the various responses. Laboratory simulation results are used to produce a series

of degradation curves, providing comparison of joint stiffness and load restraint for a

variety of material and load conditions.

Chapter 7 illustrates the development and validation of the finite element model against

other well respected analyses. Numerical results are compared to field data for the full
range of spring stiffness to enable the accuracy of the model to be determined. Values
obtained from laboratory testing are incorporated within the model providing predictions
of slab response, which are then compared to site measurements. Finally, the effects of

changing structural criterion are investigated to evaluate their effect on behaviour.



Chapter 8 draws from the results of chapters 6 and 7 presenting conclusions on the

research undertaken, and offers recommendations for further work.



Joint Spring
Stiffness
Calculations

Finite
Element
Analysis

| Overall Slab/Joint _ Labga"fa‘w
Comparison and
Verification of A Response Collection
Theoretical and

Actual Behaviour

T

Deterioration modes
/ Reintorcement and
load efftects

Site Data
Collection

Crack Width
Geometries / Load
Magnitude / Cycle

Numbers

Figure 1.1 — Data transfer between site data collection, laboratory data collection and

Finite Element modelling

|
Chapter 1
/ ) Introduction N\
B 4 , - =
Chapter 2 Chapter 3 — |
Tl Concrete Slabs/ e ﬂ.,\-—- ——— Load Transfer across | Literature Review
pavements on Grade Cracks/Joints
*._ — /"’f e — ,.__l —_—
Chapter 4 S _— rChaptgr S - isthedlony
Slab Condition Joint Deterioration ——
e ST A
Chapter 6 Chapter 6 o
Analysis & Discussion ———D' Analysis & Discussion Results and Analysis
(Site) (Laboratory) o
L Chapter 7
Numerical Modelling | Synthesis
Y
Chapter 8
Conclusions & = Contkisions
Recommendation for - onclusio
Further Work

Figure 1.2 — Interaction between thesis Chapters



2. CONCRETE SLABS/PAVEMENTS ON GRADE

2.1 Preface

This chapter presents a review of literature covering concrete internal slabs, external

hardstandings and rigid pavements. The main focus of the work has concentrated on

industrial warehouse floors. However, useful information can be determined from the

other types of ground-bearing structure as there are many similarities in construction and

loading. This is explained in detail in section 2.2.4.

The literature review has been arranged so that section 2.2 leads the reader through the

basic construction types and methods, discussing the conditions found in each structure

whilst demonstrating how they are inter-related.

Actions are introduced in section 2.3, with the initial climatic responses on shrinkage

examined, followed by typical imposed forces. This is important since the early age
environmental conditions control the crack position and geometry, with the application of

load magnitude and repetition influencin g degradation and deflection response.

Typical failure mechanisms are discussed in section 2.4 with details provided on the
factors which initiate each method. This enables key factors controlling the degree and
rate of deterioration to be established, most of which relate to the load transfer

effectiveness across cracks and joints.

To indicate how management of these failure mechanisms is undertaken, section 2.5
reviews both the structural and detail design of floor slabs and pavements. This

incorporates the serviceability prediction methods and the standard elastic and plastic

equations used for determining ultimate strength.

The response of a rigid slab or pavement is influenced heavily by the support conditions
provided by the foundation material. In addition to section 2.2, section 2.6 has been
dedicated to describing current methods of construction and the reasoning behind the

incorporation of each layer.



Finally, in section 2.7 the methods and techniques employed in structural modelling of
concrete slabs using finite element packages have been considered in light of their
limitations. This enables any future model to be developed to the highest accuracy, whilst

retaining computational efficiency.

2.2 Concrete Slabs/Pavements on Grade

Concrete 1s a universal construction material due to its versatility and cheap constituents.
In internal floor slabs and hard-standings it 1s used almost exclusively as it utilises many
of the positive characteristics of concrete. However, there 1s an ongoing debate regarding

the advantages of rigid over flexible pavement construction and as such its use in this

situation is limited within the United Kingdom.

In this section each structure is described with respect to its constituent layers,

construction method and applied loading. Section 2.2.4 combines this information

enabling the reader to cross-reference the key data from each structure.

2.2.1 Internal Floor Slabs

The internal floor slab of a warehouse is often the most important factor in the success or
failure of such a construction project. If the floor does not fulfil the required specification
and allow the client to utilise the building to its full potential then its capital value 1s at

risk.

The current market for industrial flooring is approximately 6 million square metres of
floor per year (Cudworth 2003). The majority of this is used in warehouses and factories,
both of which require the floor to satisfy certain criteria if they are to fulfil their potential.

The floor itself may be subject to a variety of conditions due to differing load

configurations and climate changes, all of which must be correctly managed to prevent

failure.

In many factory and warehousing areas there is a requirement to store a vast quantity of
goods within a comparatively small floor area. The most common and efficient way to
accommodate this is with a racking system. This enables materials to be stacked above

each other, whilst still allowing vehicular access and manoeuvrability. The load from this
racking is transferred to the slab via small base plates, resulting in high contact stresses

and an increased risk of punching shear failure. High uniformly distributed loads (UDL’s)



are also commonly found where a number of heavy items are stacked on a pallet or flat
bed.

Materials handling equipment (MHE) cause the main dynamic loads on an industrial slab.
This can be anything from a pallet truck to a forklift, or 10m high very narrow aisle
(VNA) stacker. Many of these MHE's incorporate hard, rigid wheels which create high-
localised stresses within the slab. These can create severe problems when the vehicle
passes a discontinuity as the impact of the load intensifies the stress on an already

weakened edge section. Channelling of vehicles increases this effect as the high number

of load repetitions produces a greater risk of concrete fatigue and subgrade damage.

Table 2.1 shows typical load types for industrial floor slabs, alongside their appropnate

load classification and magnitude.

Table 2.1 - Typical Industrial Warehouse Loading Values (Knapton 1999b)

Pallet Racking 42 - 114 kN
Mezzanine Floor 42 - 114 kN

Typical Load

In any large concrete pour some degree of shrinkage or thermal cracking is inevitable.
The location of the cracking can be defined by designing in joints which provide planes of
weakness. These joints allow movement to be confined to appropriate positions leaving

the remainder of the slab intact (see section 2.5.4). In the case of internal floor slabs the

concrete can either be plain and jointed, or reinforced, in which case it can either be
jointed or jointless. The main difference between the types is the number of designed
joints required. Plain concrete jointed slabs necessitate a joint at approximately 6m
intervals, whereas reinforcement such as traditional steel bars or mesh enables spacings to
be increased to 8-10m (Knapton 1999b). In certain situations where either heavy
reinforcement or steel fibres are used, the slab can be constructed using the jointless
method. With this technique the slab will tend to crack randomly but within close

proximity, ensuring good load transfer.
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As described above, joints allow shrinkage cracking to be confined to defined locations.
These often become structural weak points due to the continuous movement from
moisture and thermal changes and impact from moving vehicles and pallet trucks
(Simpson 2001a). As the joint degrades over time, any flaws in design will be accentuated
and costly remedial action will almost certainly be required. The types of damage most
likely to occur are spalling of the joint arisses, and faulting due to a difference in level

across the joint. Details of the various types of failure are described in section 2.3.

The make up of a typical internal floor slab is shown in Figure 2.1. The concrete slab is
approximately 150-300mm in thickness, and may be reinforced with either steel fabric or
fibres. This is placed on a subbase which is usually of a similar depth, but limited to
225mm to ensure that it can be placed and compacted in one layer. A slip membrane is
sited between the two to reduce any frictional stresses that may increase restraint to

movement. This 1s all placed on the subgrade which may or may not have been treated to

Increase its strength.

There are a number of ways to construct internal floor slabs; from the more traditional
techniques used by contractors for many years, to the more modern practices with
technically advanced machinery. The more traditional methods include long strip and
wide strip construction which, as the names suggest, are methods of placing the concrete

in confined areas. The relatively slow nature of this form of construction, along with the

increased number of vulnerable joints created, has led to other methods becoming
Increasingly popular (Bambrook 2000). Large bay construction is a more modem

approach where high slump concrete is placed by pump or truck directly onto the floor
area. Here, it is compacted and levelled off using timber or vibrating screed rails
depending on the required tolerance. In this situation the slab may have joint formers

inserted into the concrete, or have joints sawn onto the surface of the slab, to provide a

control system for any thermal or drying shrinkage movement.

The most modern construction approach of laser screeding is becoming more common

due its potential to create large floor areas at high speed. Laser screeds are items of plant
which place, compact and level the concrete in one pass. The elevation is monitored with
lasers and can produce floors that adhere to much tighter tolerances than can be expected
with a manual process. The greater placing accuracy with an increased construction speed
means that a more economical floor is produced. This type of construction may require
joints to be formed with inserts or by sawing to allow for movement of the concrete.

However, it 1s possible to produce floors containing no joints, especially when steel fibres
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are used as reinforcement within the concrete. These floors are more prone to cracking,
although the reinforcement prevents the cracks from opening to a level where load
transfer will be reduced significantly (The Concrete Society 2003). The different methods

of construction available are shown in Figure 2.2.

The concrete used in the construction of a floor slab must be specified correctly to ensure
a suitably strong and resistant slab is produced. In circumstances where a highly resistant
slab 1s required due to the presence of chemicals or abrasive materials, the concrete may
Incorporate an increased concrete or mortar strength in the top section, or a resistant paint
on its surface. A dry shake topping can also be introduced to the wearing course layer

which can increase abrasion resistance, change the slab colouring and alter the surface

texture of the concrete.

2.2.2 External Hardstandings

Industrial external hardstandings are used in a variety of situations and have to provide
support for a range of loading. Many are sited around ports and harbours where large
container ships deposit cargo directly onto the concrete hardstanding. The majority of the
cargo will be in the form of large containers, which can be stacked several high. Each
container has small casting feet on the corers through which the majority of the load will
be passed. These high bearing pressures increase the risk of punching shear and damage

to the slab surface.

The container handling equipment and the smaller forklift and pallet trucks form other
loading types on the hardstanding. The handling equipment straddles the containers and
enables them to be transported to various positions around the site. To aid in the logistics
of movement, lanes are often painted onto the hardstanding to create roadways for the
traffic. This can create channels of dynamic loading increasing fatigue damage and
therefore the risk of failure. Other forms of loading such as forklifts and pallet trucks will
not cause the same amount of stress as the larger containers and their transporters:
however, they may cause more localised damage due to their rigid wheels and speed of

movement. This will become especially prevalent in areas such as joints and cracks.

Other applications of external hardstandings include storage depots, distribution centres

and retail outlets. Many carry delivery vehicles, pallet trucks and forklifts, as well as the

temporary storage of items prior to transportation. All of these load conditions must be
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accounted for, and designed against, if the hardstanding is to have a long life span.

Typical values for these loads are given below in Table 2.2.

Table 2.2 - Typical Hardstanding Loading Values (Knapton 1999a)

The structural components of the hardstanding are very similar to that of an internal
industrial floor slab. The basic construction consists of the concrete slab (usually

reinforced), a slip membrane and a subbase material, which are supported by the

subgrade. The slab is between 150 and 300mm in thickness with the subbase being
between 150 and 225mm depending on the type of subgrade material beneath. The main

difference between an internal and external slab is the wearing surface of the concrete.

This will be relatively smooth in an internal condition where movement of vehicles is
slow, but will be grooved or textured in an external situation where the increased speed

and the weather conditions may require additional slip resistance.

As with internal floor slabs there is a necessity to control the movement occurring due to
thermal and drying shrinkage of the concrete. This is often achieved by placing joints at
specified locations throughout the slab enabling sections to move relative to each other. In
plain concrete the joint spacing is in the region of 6m but where reinforcement such as
traditional steel bars, mesh or fibres are used the spacing can be increased up to a value of
12m (Knapton 1999a). In certain situations where heavily reinforced sections are used it
1s possible to produce jointless floors where natural cracking is allowed to develop. The

reinforcement holds these cracks together and prevents much of the load transfer loss that

would normally occur.

Construction of an external hardstanding can be accomplished by a variety of methods of
standard practice in internal floor slabs. Long strip, large bay, or more commonly
nowadays the use of laser screeds, can all provide the necessary quality and finish
required to produce a suitably long lasting slab. Figure 2.2 shows pictorially the different

construction processes available.
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2.2.3 Concrete Pavements

For decades there has been a debate about the advantages and disadvantages of rigid and
flexible road pavements. In the UK only a small number of concrete roads have been
constructed in recent times as flexible pavements remain the preferred option (Croney and
Croney 1997). This is the reverse to the USA where the majority of pavements are of
rigid construction. The advantages of rigid pavements have been discussed in a number of
texts such as Croney and Croney (1997), and include: 5-11% better fuel economy,
increased life expectancy, reduced maintenance costs from a decrease in rutting, and

better light reflection. Some disadvantages do exist and these include higher initial

construction cost, increased traffic noise and reduced ride quality.

The load applied to a concrete pavement is different to that found in either an internal slab
or external hardstanding. The number of load cycles is much higher due to the amount of
vehicular traffic using the highway. Generally only the commercial and heavy goods
vehicles are used in the calculation of loading for a pavement, as these cause most
damage. These are defined as having a standard axle load of 80kIN (Croney and Croney

1997). The design loading is expressed in millions of standard axles and calculated from

the projected number of commercial vehicles (equated to standard axle passes using

equivalence factors) expected to use the pavement in a designated period.

There are two main techniques for constructing pavements, fixed form and slip forming.
Fixed form construction requires a concrete train to be mounted on rails to provide the
position and levels for concrete placement. The train itself usually includes plant that
spreads, compacts, finishes and textures in a single or double pass. Some of the more
developed machines also allow for dowel bar insertion and joint construction. Slipform
paving works in a similar manner but in this situation the train is electronically guided

with wires. As with the fixed form paver, the concrete is placed, compacted and finished,

although this 1s more commonly done in a single pass only. Figure 2.3 shows an example

of the slip-forming method.

Movement control is managed with either the introduction of joints, or with the use of

continuous reinforcement to hold cracks together. The two methods are described in

sections 2.2.3.1 and 2.2.3.2.
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2.2.3.1 Jointed

Jointed concrete pavements can be either plain, or reinforced with steel bars, mesh or
fibres. In all cases the structure relies on the incorporation of joints to enable movement
and stress relief to take place and prevent random cracking (Deen et al. 1980). In plain
concrete pavements the joints are normally placed every Sm, but this can be increased to

35m if heavily reinforced. As in all slabs and pavements the stresses relieved by the joints

are generally those caused by temperature and moisture movements.

The joints may contain load transfer devices such as those described in section 3.4. These

help to transfer the loading between adjacent slabs reducing the stress in the concrete and

supporting the vulnerable edge sections of the slab.

2.2.3.2 Continuously Reinforced

Continuously Reinforced Concrete Pavements (CRCP) are long sections of un-jointed
concrete slab. They are reinforced in both the longitudinal and transverse direction with
either traditional steel bars or prefabricated steel mats. The structural integrity of the
CRCP is provided by the reinforcement which, although not preventing the concrete from

cracking, will hold the sections together.

Design manuals such as American Association of State Highway and Transportation
Officials (1986) and Portland Cement Association (1951) agree that the main function of
reinforcement 1s to provide a pavement that cracks at regular and reasonably close
spacing, combined with crack widths that provide good load transfer. The amount of
reinforcement required is selected from one of the variety of tables produced by the

design authorities, which have been shown to provide suitable restraint.

Some states in America have decided that the use of the transverse reinforcement is
unnecessary, and is only of use as a construction aid for the placement and maintainment
of position for the longitudinal steel (Gregory 1984). However, this has no<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>