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ABSTRACT 

Prolonged strenuous exercise affects the circulating numbers and functions of immune 

cells. These effects are thought to be largely mediated by the actions of elevated circulating 

stress hormones and alterations in regulatory cytokines. Although the effects of a single 

acute bout of exercise on immune system function are quite well established, it is still not 

clear how time of day and repeated bouts of prolonged exercise on the same day influence 

immune function. It is of particular interest to understand the effects of nutritional 

supplementation on immunoendocrine responses. Therefore, the aims of the studies 

described in this thesis were to determine the effects of two bouts of prolonged cycling and 

carbohydrate supplementation on immunoendocrine responses. 

The saliva collection study showed that the use of a swab for collecting saliva is not an 

ideal method because it affects the results of saliva composition (Chapter 4). The 

comparison of the effects of exercise at different times of day on immunoendocrine 

responses showed that a single bout of prolonged exercise performed in the afternoon 

induces a larger perturbation in the redistribution of leukocytes into the circulation than an 

identical bout of morning exercise, which maybe due to higher hypothalamic-pituitary

adrenal (HP A) activation and. circadian rhythms. However, in terms of oral mucosal 

immunity, performing prolonged cycling at different times of day does not differently 

affect the salivary responses. The second compared with the first of two bouts of prolonged 

exercise on the same day induces a greater HP A activation, a larger leukocyte trafficking 

into the circulation, a decreased neutrophil degranulation response to lipopolysaccharide 

(LPS) on per cell basis and a lower saliva flow rate, but does not increase plasma 

interleukin-6 (IL-6), or change saliva immunoglobulin A (slgA) secretion rate (Chapter 5). 

Furthermore, carbohydrate (CHO) ingestion during any period of two bouts of prolonged 

exercise shows limited beneficial effect in blunting these higher responses in the second 

exercise bout compared with the first identical exercise bout on the same day (Chapter 6, 7 

and 8). The determination of the effects of CHO ingestion on exercise-induced 

immunoendocrine responses showed that when two bouts of exercise are performed on the 

same day, the greater benefit in terms of circulating immunoendocrine responses is 

obtained by feeding CHO at the earliest opportunity (Chapter 6, 7 and 8). A 3-h interval is 



insufficient for recovery of leukocyte mobilisation and neutrophil function from the impact 

of previous exercise whether subjects consumed placebo or CHO during exercise or 

recovery (Chapter 5, 6, 7 and 8). However, an 18-h interval is sufficient for full recovery of 

all immunoendocrine variables that were measured in this thesis from the impact of two 

bouts of prolonged exercise (Chapter 8). 

Key words: leukocyte redistribution, neutrophil function, stress hormones, interleukin-6, 

circadian rhythms, saliva flow rate, immunoglobulin A, carbohydrate, repeated exercise. 
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Chapter 1 Introduction 

CHAPTER ONE 

Introduction 

The human immune system consists of a complex network of cellular and humoral factors 

and is functionally divided into innate immunity and adaptive immunity. Immune cell 

functions are modified by stress. When homeostasis is disturbed or threatened by internal 

or external challenges, both the sympathetic nervous system (SNS) and the hypothalamic

pituitary-adrenal (HP A) axis become activated, resulting in increased peripheral levels of 

catecholamines and glucocorticoids acting in concert to maintain the steady state of 

internal niilieu (Elenkov et al., 2000). Exercise has been recognised as a reliable tool to 

induce reproducible and quantifiable stress responses via manipulation of type, intensity, 

frequency and duration (Smith and Pyne, 1997). Therefore, in recent years exercise has 

been applied to investigate the relationships among the endocrine, nervous, and immune 

systems (Ostrowski et al., 1998, Suzuki et al., 1999). To date, the effects of exercise on 

infection and immunity are not fully clear, however, it can be stated that exercise 

transiently alters various immune parameters and prolonged strenuous exercise can elicit 

reversible immunodepression (Fricker et al., 1999). This may offer an "open window" to 

microorganisms and place athletes at a higher risk of infection after heavy exertion 

(Pedersen, 1999). 

Many studies have indicated that regular moderate exercise is beneficial in the prevention 

of infectious diseases (Suzuki and Machida, 1995, Mackinnon, 2000, Matthews et al., 

2002). However, epidemiological studies demonstrate that endurance athletes are at 

increased risk of upper respiratory tract infection (URTI) after heavy training and/or 

competition and the vulnerable period can last up to 2 weeks (Nieman et al., 1990, Peters 

et al., 1993, Nieman, 1997). Furthermore, exercise also results in a biphasic mobilisation 

of total leukocytes and leukocyte subsets in the circulation (Hoffrnan-Goets and Pedersen, 

1994, McCarthy and Dale, 1988), which includes initial lymphocytosis, monocytosis and 

neutrophilia, followed by a delayed response of neutrophilia and lymphopenia. Further 

detailed information about responses of stress hormones, leukocyte redistribution, 

immunodepression and URTI to exercise is presented in Chapter 2. 

1 



---------------

Chapter 1 Introduction 

The purpose of exercise immunological studies is not only to define the impact of exercise 

on immune system but also to seek means of preventing i mmunodepression in athletes. 

Nutritional strategies, particularly carbohydrate supplementation, have been demonstrated 

to attenuate responses of the immune and neuroendocrine systems to exercise (Gleeson et 

al., 200 l b). Carbohydrate (CHO) ingestion compared with placebo (PLA) better maintains 

plasma glucose concentration, attenuates HP A activation ( Mitchell et a/., I 990), plasma 

cytokines responses and immunological perturbations to an acute single bout of fixed 

duration exercise (Gleeson and Bishop, 2000b ). However, if exercise is continued to 

exhaustion, ingesting CHO during exercise may enhance performance, but has little effect 

on minimising immunoendocrine responses (Bishop et al., 2001). 

Routine training programmes of elite athletes commonly consist of several bouts of 

intensive exercise in a day. This is especially so for endurance athletes, such as 

marathoners, triathletes, road race cyclists, and cross-country skiers whose daily training 

schedule usually includes repeated bouts of prolonged exercise. It seems likely that the 

higher incidence of infection in elite athletes is due, at least in pari, to the repeated bouts of 

intensive exercise without sufficient recovery. Failure to fully recover between training 

sessions has been suggested to evoke chronic fatigue, underperformance, and further 

depression of immune function (Gleeson et al., 200lb). Recently, several studies have 

focused on investigating how repeated bouts of exercise affect immunoendocrine responses 

and have shown that a second exercise bout on the same day evokes more pronounced 

changes in numbers of circulating leukocyte subsets and production of stress hormones, 

especially in adrenaline and growth hormone, compared with a single bout of identical 

exercise at the same. time of day (Ronsen et al., 200la, 200lb). However, there are only 

few studies to date that have looked at the relationship between daily two bouts of 

endurance exercise and immunoendocrine responses, especially the impact on neutrophil 

function (MaCarthy et al., 1992, Rohde et al., 1998. Ronsen et al., 200la, 200lb, 2002a, 

2002b, Boyum et al., 2002, Mcfarlin et al., 2003). 

Neutrophils, which represent 50-60% of the total blood leukocytes, act as the first line of 

defence against infectious agents. The neutrophil is an effective phagocyte and is 

considered to be an important part of innate immunity, playing a critical role in the host 
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Chapter 1 Introduction 

defence against various bacterial infections (Nieman, 1994). Muns et al. (1994) reported 

that after long-distance running nasal neutrophils were less able to ingest bacteria and the 

effect I asted for 3 days. An impaired neutrophil microbicidal capacity may increase the 

susceptibility to infection in stressed athletes (Fukatsu et al., 1996). 

The humoral arm of the mucosal immune system is principally composed of locally 

synthesized polymeric immunoglobulin A (IgA), which functions as a multi-layered 

mucosal host defence (Lamm, 1998). Hence, salivary IgA (sigA) has been used to be a key 

indicator in determining the effect of different forms of stress on mucosal immunity. 

Previous studies could not provide an agreement of how exercise stress affects sigA and 

URTI (Gleeson, 2000b). The inconsistencies in the literature may be due to several factors, 

which affect saliva composition including the source of saliva, saliva flow rate, saliva 

collection method, nature of stimulus, circadian rhythm, and the degree of hydration of the 

subject. Therefore, we carried out two studies to determine the effect of different saliva 

collection methods on saliva flow rate and slgA responses (Chapter 4). 

In order to further investigate the effects of repeated bouts of exercise and time of day on 

immunoendocrine responses, we designed a experimental protocol to examine the effect of 

both single and repeated bouts of prolonged cycling on leukocy1e redistribution, neutrophil 

degranulation, interleukin-6 (IL-6), plasma stress hormone responses, saliva flow rate and 

slgA responses (Chapter 5). Elite athletes usually perform exercise two or three times in a 

day. To maintain immune function and performance in a subsequent exercise bout, it is 

particularly important for athletes to rapidly recover from any temporary exercise-induced 

irnrnunodepression (Gieeson and Bishop, 2000b) and restore glycogen (Maughan, 2002) 

during recovery intervals. Therefore, we investigated the effect of CHO supplementation 

during the recovery interval between two bouts of prolonged cycling on leukocy1e 

redistribution, neutrophil degranulation, IL-6, plasma stress hormone responses, saliva 

flow rate and slgA responses to a second cycling bout (Chapter 6). For various 

considerations, many athletes wake up in very early morning and train without breakfast. 

Thus, we planned a study to clarify the influences of CHO supplementation during the first 

exercise bout on leukocy1e redistribution, neutrophil degranulation and oxidative burst, IL-

6, plasma stress hormone responses, saliva flow rate and sigA responses to this and a 
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Chapter 1 Introduction 

subsequent exercise bout on the same day (Chapter 7). During a second exercise bout 

muscle glycogen content may be compromised by the previous exercise bout. This may 

induce an energy crisis in the working muscle, affecting SNS and HP A activation. 

Therefore, we also investigated the effect of CHO supplementation during the second 

exercise bout on imrnunoendocrine responses (Chapter 8). This thesis concludes with a 

general discussion summarising the findings and discussing the issues arising in these 

experimental studies (Chapter 9). 
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Chapter 2 Literature Review 

CHAPTER TWO 

Literature Review 

2.1 Circadian Variation in Stress Hormones, IL-6, Circulating Numbers of 

Leukocytes and slgA 

Many components of the immunoendocrine system show rhythmic changes (Petrovsky et 

al., 1998, Porterfield, 2001). To understand and control for circadian variations is very 

important when the aim of a study is to compare the effects of exercise performed at 

different times of day on immunoendocrine responses. 

2.1.1 Stress hormones and IL-6 

Cortisol is the major circulating human glucocorticoid and functions as a powerful natural 

immuno-suppressant. Plasma cortisol exhibits a prominent circadian rhythm, maximal in 

the early morning hours just before awakening and reaching a nadir in the late evening 

until next early morning, which appears to impose diurnal variation on immune function 

(Petrovsky et al., .1998). Plasma adrenocorticotropic hormone (ACTH) also shows a 

pronounced diurnal pattern, which peaks in the early morning and declines to a nadir in the 

evening (Porterfield, 2001). Growth hormone (GH) shows significant diurnal rhythm, with 

a peak secretion in the early morning just before awakening and a lower secretion during 

the rest of day (Porterfield, 2001 ). There is no circadian variation in catecholamines 

(Porterfield, 2001) and IL-6 (Crofford et al., 1997). 

2.1.2 Circulating numbers of leukocytes 

Circulating leukocyte and neutrophil counts demonstrate circadian rhythms increasing 

from early morning and peaking in the I ate evening (Haus, 1 994), whereas I ymphocyte 

counts a re elevated during the night and decline after wakening ( Dhabhar et a/., 1 994). 

This inverse relationship between cortisol and circulating leukocyte counts suggests that 

the endocrine system might play an important role in regulating immune cell turnover 

and/or redistribution between unmune compartments (Dhabhar et al., 1994 ). Previous 
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Chapter 2 Literature Review 

studies have also reported that lymphocyte adrenoreceptor density peaked around noon 

(Pang er! et al., 1986), whereas the glucocorticoid receptor density peaked around midnight 

(Homo-Delarche, 1984). 

2.1.3 Saliva immunoglobulin A 

Saliva lgA shows diurnal variation (Dimitriou et al., 2002). Saliva lgA concentration is 

highest in the early morning, followed by a decline during the morning and then is stable 

from around noon onwards (Gleeson et al., 200la). 
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2.2. Glucose, Immune Response and Glycogen Restoration 

It has been suggested that dietary intake of nutrients potentially affects immune system 

function because most nutrients are involved in the synthesis and regulation of immune 

factors (Gleeson and Bishop, 2000a). Imbalanced nutrition may result in glycogen 

depletion and subsequent elevation of stress hormones and compromise the immune 

system during prolonged exercise, leading to an increased incidence of infection 

(Venkatraman and Pendergast, 2002). 

It is generally accepted that glucose is the primarily energy source of immune cells 

(Pedersen, 1999) since phagocytes uptake glucose at the rate that is 10-fold greater than 

that of glutamine (Scharhag et al., 2002). Extracellular glucose concentration is very 

important to avoid neutrophil apoptosis via maintenance of the intracellular ATP 

concentration and stabilisation of mitochondrial function (Leist et al., 1997, Healy et al., 

2002). Muscle glycogen depletion and hypoglycaemia are potential causes of fatigue 

during prolonged exercise (Coyle et al., 1983, Costill and Hargreaves, 1992). CHO 

supplementation before, during and after prolonged exercise has been proven to better 

maintain euglycaemia and CHO oxidation rate in exercise, which can delay fatigue, 

improve endurance exercise performance and concurrently attenuate HP A activation, 

plasma adrenaline, ACTH, cortisol, GH, and IL-6 levels, leading to a less perturbation of 

the numbers ofcirculating leukocytes and subsets (Mitchell et al., 1990, Nieman et al., 

1997, Bishop et al., 1999b). 

For the best performance elite athletes usually have to train two or three times per day. In 

this situation, it is particularly important for athletes to ensure a rapid restoration of 

glycogen during recovery intervals to maintain the quality of subsequent exercise bouts. 

However, if CHO is not provided during recovery, glucose availability will become the 

limiting factor for glycogen synthesis since gluconeogenesis is inadequate to support the 

maximal rate of glycogen synthesis (Satabin et al., 1989). For example, consumption of 1.5 

g CHO·kg-1 body mass immediately after exercise and at 2-h intervals thereafter. can 

optimally stimulate muscle glycogen synthesis at the rate of 6.0 nimol·kg-1 wet wt·h-1
• 

However, if no CHO is consumed during the hours of post-exercise, the rate of muscle 

glycogen synthesis is lower than 3.2 mmol·kg-1 wet wt·h-1 (Ivy et al., 1988). 
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The glycogen restoration after glycogen-depleting exercise (glycogen concentration < 30 -

40 mmol) has been found to be biphasic (Price et al., 1994). The rapid phase of glycogen 

synthesis (27 ± mmol·L-1·h-1
, determined by 13C-nuclear magnetic resonance spectroscopy) 

is insulin-independent lasting 30 - 60 min, and is about 10-fold faster than subsequent 

slower phase (2.9 ± 0.8 mmol·L- 1·h-\ insulin-dependent phase (Price et al., 1994). The 

type of CHO is less crucial than the amount consumed, but there may be more benefit from 

ingesting high-glycaemic index foods as soon as possible after exercise to ensure a rapid 

elevation of the blood glucose level (Maughan, 2002). 

The most effective and common strategy applied by endurance athletes to support CHO 

availability is to ingest CHO-rich drinks or foods during prolonged exercise. However, 

Jeukendrup and Jentjens (2000) found only one-third of ingested CHO was oxidized during 

submaximal cycling because oft he I imited rate of gastric emptying, intestinal digestion 

and absorption, and subsequent glucose transport into blood stream (Jentjens et al., 2001). 

Therefore, it has been· suggested that the upper limit for glucose absorption in humans is 

about 1-2 g·min-1 during exercise (Jeukendrup and Jentjens, 2000). This limits the maximal 

oxidative rate for exogenous CHO to approximately I g·min-1
• 
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2.3 Stress Hormone Responses and Leukocyte Mobilisation to Exercise 

The nervous and endocrine systems can interact with the immune system to alter the 

function and distribution of immune cells (Dhabhar et al., 1994, Glaser et al., 1999) 

(Figure 2. 1 ). Leukocyte trafficking is crucial to pathogen surveillance. It has been shown 

that acute exercise results in a temporary, significant, and reversible redistribution of 

leukocyte subsets between circulation, marginal pools and the bone marrow (Gleeson and 

Bishop, 1 999); and that this exercise-induced mobilisation is related to elevated plasma 

concentrations of stress hormones (Benschop et al., 1996) (Figure 2.2). 

2.3.1 Catecholamines and leukocyte mobilisation 

During exercise, adrenaline is released from the adrenal medulla and noradrenaline is 

released from sympathetic nerve terminals. Arterial plasma concentrations of adrenaline 

and noradrenaline increase almost linearly with duration of dynamic exercise and 

exponentially with intensity (Kjaer, 1989). The effects of catecholarnines on target cells are 

mediated via adrenoreceptors, which can be generally classified to four categories (a~, a 2, 

~I. and ~2) based on their different sensitivities to certain agonists. Adrenaline is a strong 

stimulator of ~-adrenoreceptors, whereas noradrenaline predominately activates a- and ~ 1 -

adrenoreceptors (Motulsky and Inset, 1982). Since ~-adrenoreceptors have been identified 

on T cells, B cells, NK cells, macrophages and neutrophils (Landmann, 1992), the degree 

to which these cells can be influenced by catecholamine signalling depends on the numbers 

of adrenergic receptors on the individualleukocyte subpopulations (Pedersen, 1999). The 

numerical orders o fa drenergic receptors on 1 ymphocyte s ubpopulations from highest to 

lowest are NK cells, CD8+ lymphocytes, B cells, and CD4+ lymphocytes (Rabin et al., 

1996). Therefore, after injection/infusion of adrenaline the most pronounced changes are 

observed for NK cells (CD16, CD 56, CD 57) and with subsequent smaller changes in CD8+ 

cells, B cells, and CD4+ (Benschop et al., 1996). 

As early as 1904, Loeper and Crouszon described a pronounced leukocytosis after a 

subcutaneous injection of adrenaline in man (Loeper and Crouzon, 1904). This observation 

· was extended by subsequent studies and suggested the notion that the adrenaline response 

to leukocyte mobilisation was biphasic, consisting of an initial lymphocytosis within 10 
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min, peaking at 30 min, and followed by a neutrophilia with relative lymphopenia, peaking 

at 2 to 4 h (Samuels, 1951). However, adrenaline infusion caused a significantly smaller 

elevation in neutrophil concentration than that observed following exercise while the 

plasma concentrations of adrenaline following administration and exercise were similar 

(Tvede et al., 1994). Although adrenaline is an important hormone in recruiting 

lymphocytes and neutrophils into the circulation during intensive exercise within 90 min 

(Emstrom and Sandberg, 1974, Nieman, 1997), after 90 min during exercise, its effect is 

lessened by the rising cortisol concentration, which attenuates lymphocytosis with a 

subsequent decline until exercise is finished (Nieman, 1997). It is likely that the adrenaline 

exerts a direct effect on neutrophil surface adhesive molecules (e.g., P2-integrin 

CD1lb/CD18) (Benschop et al., 1996), and this together with exercise-induced 

haemodynamic shear forces (Foster et al., 1986), work in a synergistic fashion to mobilise 

neutrophils from the marginal pools into the circulation, inducing the initial neutrophilia 

during prolonged exercise (Gannon et al., 2001 ). It has been also demonstrated that the 

neutrophilia after adrenaline infusion was mainly recruited from spleen (Benschop et al., 

1996). Although lung has been suggested to be an important organ of neutrophil storage 

(Hogg, 1987), it did not seem to contribute significantly to the peripheral neutrophilia 

induced by exercise (Peters et al., 1992). 

2.3.2 G1ucocorticoids and leukocyte mobilisation 

Increases of plasma cortisol concentrations are associated with exercise intensity and 

duration of above I h. Cortisol is the principal glucocorticoid in humans playing a major 

role in metabolism and immune function as a potent agent of gluconeogenesis and 

immunosuppression (Pedersen et al., 1997a). Furthermore, glucocorticoids exert a 

prominent role in the regulation of leukocyte redistribution (Cupps and Fauci, 1982, 

Dhabhar et al., 1994). Glucocorticoid administration has been reported to cause 

neutrophilia together with lymphopenia, monocytopenia, eosinopenia, and a suppression of 

both NK and T cell function (Fauci, 1976, Cupps and Fauci, 1982). The significant but 

transient neutrophilia induced by cortisol administration is mainly caused by the influx of 

neutrophils from spleen and bone marrow (Toft et al., 1994). Further, Nakagawa et al. 

( 1998) showed after dexamethasone infusion, the circulating neutrophilia was from bone 
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marrow (10%), marginated pools (61 %) and prolongation of neutrophil intravascular half

life (29%) in rabbits. Cortisol promotes lymphocyte redistribution from the circulation to 

lymphoid, bone marrow, skin and injured tissue (Wira et al., 1990, Toft et al., 1992), 

reaching a maximum at 4 to 6 h with a return to baseline within 24 h (Fauci and Dale, 

1975, Calvano et al., 1992). 

To summarise, the immediate leukocytosis during prolonged exercise is mainly due to 

elevated plasma catecholamines levels, whereas the delayed neutrophilia is from the 

influence of elevated plasma cortisol levels. Since plasma cortisol concentration peaks at 

about 30 min after exercise cessation (Hansen et al., 1991), it is not surprising to observe 

the development of as ignificant neutrophilia with I ymphopenia within the first hour of 

recovery (McCarthy and Dale, 1988). 

2.3.3 Growth hormone and leukocyte mobilisation 

GH is a classical anterior pituitary hormone promoting cell growth and metabolism 

(Kappel et al., 1993). In terms of immunological development and function, GH promotes 

lymphocyte maturation and competence, NK cell activity, cytokine production and 

phagocyte oxidative burst activity (Berczi, 1997, Hattori et al., 2001). Exercise is a 

powerful stimulant for GH secretion, depending on workload, duration, intensity, prior 

meal ingestion, and fitness of subjects (Kanaley et al., 2001). Repeated bouts of exercise 

on the same day appear to augment GH release (Kana1ey et al., 1997), whereas glucose 

ingestion attenuates GH secretion (Smith et al., 1996). Furthermore, GH is probably at 

least partly responsible for exercise-induced neutrophilia because Kappel et al. (1993) have 

demonstrated that an intravenous GH injection in a physiological dose caused a 

neutrophilia. 

2.3.4 Carbohydrate ingestion and exercise-induced leukocyte mobilisation 

Intensive prolonged exerc1se without nutritional supplementation may cause 

hypoglycaemia and subsequently evoke the increased secretion of stress hormones. 

Schwartz et al. ( 1987) reported the thresholds of plasma glucose concentrations for 

inducing adrenaline, GH, cortisol and hypoglycaemic symptoms were 3.8 ± 0.1 mM, 3.7 ± 
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0.1 mM, 3.2 ± 0.2 mM and 2.9 ± 0.1 mM, respectively. The results of previous studies 

have consistently demonstrated that ingestion of a CHO drink compared with placebo 

(PLA) during exercise is beneficial for maintaining plasma glucose concentrations, 

improving endurance exercise performance and attenuating the elevation of plasma stress 

hormones and perturbation of circulating counts of total leukocytes and leukocyte subsets 

(Table 2.1 ). 

Table 2.1 CHO ingestion and exercise-induced leukocyte mobilisation 

Reference Experimental Design Subject Main Findings 

Bishop 90 min high intensity intermittent running. 6 male CHO ingestion attenuated the 

et al., Subjects ingested 5 mL·kg-1 of a 6.4% footballers neutrophilia in the circulation 

2002 CHO or PLA before exercise and every compared with PLA. 

15-min interval during exercise. 

Bishop Subjects cycled at 75% VOz "'" until 9 males CHO ingestion significantly 

et al., fatigue. Subjects ingested 5 mL·kg·' of a increased performance but did not 

2001a 5% CHO or PLA before exercise and 2 affect the circulating leukocytosis, 

mL·kg" 1 every 15-min interval during neutrophilia and lytnphocytosis 

exercise. compared with PLA. 

Henson 2 h rowing at 82.3 % HRmax. Subjects 15 female CHO ingestion attenuated the 

et al., ingested 15 mL·kg·' of a 6% CHO or PLA rowers increase in blood counts of total 

2000 15-min before exercise and 4 mL·kg·' leukocytes, neutrophils and 

every 15-min during exercise. monocytes compared with PLA. 

Nieman 2.5 h run at 77% VOz""'. Subjects 30 CHO ingestion attenuated the 

et al., ingested 750 mL of a 6% CHO or PLA marathoners increase in blood counts of 

1997 before exercise and 250 mL every 15-min 24 males & neutrophils, lytnphocytes and 

during exercise. 6 females monocytes compared with PLA. 
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2.4 Exercise and Neutrophil Function 

Following activation and recognition, neutrophils kill invading pathogens through both 

oxygen-dependent (release of reactive oxygen species, ROS) and oxygen-independent 

(release ofproteases) mechanisms (Fukatsu et al., 1996, Johnson et al., 1998). It has been 

recently suggested that neutrophils serves as a last line of defence to block the "open 

window" during the period of immunodepression after intensive prolonged exercise 

(Pedersen, l 999). However, several studies reported that endurance training temporarily 

reduced the activity of neutrophil phagocytosis (Blannin et al., 1996), degranulation 

(Blannin et al., 1997), and oxidative burst (Gabriel et al., 1994, Pyne et al., 1996). 

GH and prolactin are potent neutrophil-priming agents (Fu et al., 1992) promoting 

superoxide anion production through the tyrosine kinase signalling system in a dose

dependent manner in the concentration range of I 0-500 ng·mL'1 in GH (Ruy et al., 1997). 

Glucocorticoids have been shown to depress neutrophil functions, including chemotaxis, 

adherence to surfaces, phagocytosis, degranulation, oxidative burst, and antibody

dependent cytotoxicity (Liles et al., 1995). However, a recent study reported that 

physiological levels of cortisol did not affect neutrophil degranulation capacity (Walsh et 

al., 2000b ). The impairment may be further augmented during exercise after the entry of 

less mature cells with lower capacities from the bone marrow into the circulation (Pyne, 

1994). Adrenaline also appears to inhibit neutrophil superoxide production and elastase 

release in a dose-related manner (Tintinger et al., 2001). Garcia et al. (1999) reported that 

the inhibitory effect of adrenaline on phorbol 12-myristate 13-acetate (PMA)-induced 

superoxide production was mediated by ~2-adrenergic receptors via adenosine 3', 5 '-cyclic 

monophosphate (cAMP) production. The possible mechanisms by which neutrophil 

function is inhibited by prolonged exercise are presented in later sections. of this review 

and are illustrated in Figure 2.3. 
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2.4.2 Neutrophil oxidative burst 

Neutrophils kill invading microorganisms by releasing a group of highly reactive oxidizing 

agents, including oxidized halogens, oxidizing radicals, and singlet oxygen. The oxidative 

mechanisms in neutrophils remain inactive until exposed to appropriate stimuli (Reichl et 

al., 2000) Stimulation can occur via receptor-dependent or receptor-independent 

mechanisms. Typical receptor-dependent stimuli are activated complement fragment C5a, 

the chemotactic tripeptide N-formyl-Met-Leu-Phe (fMLP), and bioactive lipids such as 

platelet activating factor (P AF) and leukotriene B4 (LTB4). Receptor-independent stimuli 

include long-chain unsaturated fatty acids and direct agonists of protein kinase C (PKC) 

such as PMA. These two mechanisms for activation of the nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase in neutrophils are distinct. Oxidase activation by 

receptor-dependent stimuli usually lasts less than 5 min, while receptor-independent 

stimuli activate the enzyme for a much longer period (Chanock et al., 1994 and Meenan et 

al., 2002). 

Activated neutrophils initiate an oxidative burst leading to the production of superoxide 

anion (02''), which is important as the primary substrate for neutrophil metabolism of 

ROS. However, 02·· is relatively less toxic than other ROS and is quickly converted to 

hydrogen peroxide (H202). The interaction of 02 ·. and H202 can result in the formation of 

hydroxyl radicals ('OH) in the presence of trace metal. On the other hand, neutrophil 

azurophilic granules contain large quantities of MPO, which works in the presence of H20 2 

and chloride ions to produce hypochlorous acid (HOC!). Furthermore, the interactions 

among 0 2··, H202 and HOC! can generate singlet oxygen C02). These oxidants (HOC!, 

·OH and 10 2) have significantly higher oxidizing potential than the precursors 0 2·· and 

H20 2 and contribute to the complexity of the oxygen-dependent antimicrobial systems of 

neutrophils (Parslow et al., 2001) (Figure 2.4). 

PMA-induced luminol-enhanced chemiluminescence (CL) is frequently used for 

determining neutrophil oxidative burst activity, which is used to measure the MPO

dependent formation (mainly HOC! detection) of hyper responsive ROS (Suzuki et al., 

1996). PMA may increase the rate of the oxidative burst by stimulating PKC, which can 

phosphorylate components of the NADPH oxidase (Garcia et al., 1999). Catecholamines 
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have been shown to inhibit CL (Weiss 1996). Adrenaline resulted in a dose-related 

inhibition of the superoxide production in neutrophils (Bamett et al., 1997, Tintinger et al., 

2001 ). The inhibitory effect of adrenaline on neutrophil superoxide generation may be due 

to the lower production of NADPH via the pen to se phosphate pathway. In fact, adrenaline, 

by stimulating the conversion of glucose into lactate and glucose oxidation, may reduce the 

flux of substrates through the pentose phosphate pathway (Garcia et al., 1999). A number 

of studies .have also demonstrated that GH primes or stimulates the oxidative burst of 

human and animal neutrophils and macrophages (Ruy et al., 1997, Smith et al., 1996). 

ROS release is unaltered by IL-6 alone; however, IL-6 can enhance the priming effect of 

tumour necrosis factor (TNF) on oxidant generation (Mull en et al., 1995). 

Suzuki et al. (1999) showed after 90 min cycling at -53% VQ, "'" the PMA-induced CL by 

isolated neutrophils was increased compared with pre-exercise. However, a transient 

suppression of the oxidative burst after exercise has been also reported (Gabriel et al., 

1994, Pyne et al., 1996). After short exhaustive exercise on a treadmill, CL did not 

immediately change at the first hour of recovery but was reduced by 22% and 28% at 3 and 

6 hours post exercise, respectively (Morozov et al., 2003). The slight decrease in 

neutrophil oxidative burst activity may represent a tendency for reduced killing capaCity by 

circulating neutrophi1s on a per cell basis after exercise (Pyne, 1994, Smith and Pyne, 

1997). The reasons for exercise-induced falls in neutrophil oxidative burst activity may be 

associated with the influx of I ess mature band n eutrophils a ndlor n itro blue t etrazolium 

(NBT)-negative neutrophils from the bone marrow and marginated pools, respectively, into 

the circulation. The neutrophils in the bone marrow have a lower NADPH-dependent 

oxidase activity and a lower superoxide response to stimulation with PMA (Berkow and 

Dodson, 1986), whereas the NBT -negative neutrophils produce less 0 2•· in response to in 

vitro stimulation (Suzuki et al., 1996). 

2.4.3 Carbohydrate ingestion and exercise-induced alteration of neutrophil function 

In neutrophils, most of the glucose and glutamine taken in is not oxidized through the 

Krebs cycle (Newsholme et al., 1996). The high rates of glycolysis and glutaminolysis in 

neutrophils provide precursors for the synthesis of common metabolic intermediates, such 

as pyruvate or NADPH (Newsholme et al., 1996, Healy et al., 2002). Therefore, a fall in 
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the plasma glucose concentration may directly influence the oxidative burst activity 

(Scharhag et al., 2002). To date, only few studies have been conducted to investigate the 

effect of CHO ingestion during exercise on neutrophil function and these results have not 

shown any difference between CHO and PLA treatments in neutrophil degranulation 

(Table 2.2) and oxidative burst (Table 2.3) changes during exercise. 
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Table 2.2 Carbohydrate ingestion and exercise-induced alteration m · neutrophil 

degranulation response to lipopolysaccharide in vitro 

Reference Experimental Design Subject Main Findings 

Lancaster -60 rnin cycling consisted of 20 rnin at 8 males Exercise did not affect LPS

stimulated elastase release per 

neutrophil between pre-EX and post

EX and between CHO and PLA 

trials. 

et al., 

2003 

Bishop 

et al., 

2002 

Bishop 

et al., 

200la 

65%Wmax and time trial at 80%Wmax 

(-40 rnin). Subjects consumed 75 g 

glucose in 500 mL water at either 15 rnin 

or 75 min before exercise. 

90 rnin high intensity intermittent 6 male Exercise did not decrease LPS

running. Subjects ingested 5 mL·kg"1 of a footballers stimulated elastase release per 

6.4% CHO or PLA before exercise and 

every 15-min interval during exercise. 

Subjects cycled at 75% VOz max until 

fatigue. Subjects ingested 5 mL·kg"1 of a 

5% CHO or PLA before exercise and 2 

mL·kg"1 every 15-min interval during 

exercise. 

9 males 

neutrophil. There was no significant 

difference between CHO and PLA 

trials. 

Exercise decreased LPS-stimulated 

elastase release per neutrophil in both 

· trials. However, there was no 

significant difference between CHO 

andPLA. 

Table 2.3 Carbohydrate ingestion and exercise-induced alteration in neutrophil oxidative 

burst activity 

Reference Experimental Design Subject Main Findings 

Nieman 2.5 h run at 77% YOz max. 30 There was no difference between pre-EX 

et al., Subjects ingested 750 mL of a marathoners and post-EX in both trials and between CHO 

1997 6% CHO or PLA before 24 males & and PLA in granulocyte oxidative burst 

exercise and 250 mL every 15- 6 females activity (FITC mean fluorescence channel). 

min during exercise. 

Smith 60 rnin cycling at HR 140 bpm. 8 males Exercise increased PMA -stimulated 

et al., Subjects ingested 250 mL of a intracellular H20 2 production. However, 

1996 5% CHO or PLA before there was no difference between CHO ·and 

exercise and every 15-min PLA. 

during exercise. 
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2.5 Interleukin-6 Responses to Exercise 

Cytokines are a group of soluble glycoproteins produced to mediate communication among 

cells, organs and systems involved in immune responses (Tumbull and Rivier, 1999). 

Cytokines have been characterized in several categories according to their basic 

physiological activities, such as pro-inflarrunatory, anti-inflammatory, immunoregulatory, 

chemotactic, haematopoietic, and antiviral (Nieman et al., 2001). IL-l, IL-6, and TNF-a 

are classified to be the major pro-inflammatory cytokines, whereas IL-l ra, IL-4 and IL-10 

are the major anti-inflammatory cytokines (Berczi et al., 1996). Strenuous exercise is 

associated with increased TNF-a, IL-1~, IL-6 and IL-10 (Ostrowski et al., 1999, Bishop et 

al., 2001). 

IL-6 is a 21- to 28-kDa glycoprotein secreted by vanous cells including monocytes, 

macrophages, lymphocytes, epithelial cells, and skeletal muscle cells. Its receptors are also 

present in a variety of cells including monocytes, macrophages, lymphocytes, neutrophils, 

epithelial cells, liver cells and adipocytes (Keller et al., 1996). IL-6 plays an important role 

in the induction of B-cell differentiation, monocyte proliferation, and neutrophil 

recruitment to inflammatory sites (Keller et al., 1996). Therefore, IL-6 was previously 

characterized as pro-inflammatory cytokine and one of the major mediators of the acute 

phase response (Berczi et al., 1996). However, IL-6 was recently suggested to be an anti

inflammatory cytokine because of increasing the plasma IL-lra, IL-10, and cortisol 

concentrations after IL-6 infusion in physiological concentrations (Steensberg et al., 2003). 

It has well known that the stimulation of ~2 adrenoreceptors increases intracellular cAMP 

in various cell types. Increased intracellular cAMP subsequently enhances IL-6. gene 

expression and production. Sondergaard et al. (2000) reported an elevated plasma IL-6 was 

simultaneously elicited with an a cute increase in plasma adrenaline ( Sondergaard et a I., 

2000). However, a recent study showed adrenaline exerted a minor role on the rise in the 

plasma IL-6 level during exercise. 

IL-6 has been shown to induce a biphasic increase in circulating leukocyte and neutrophil 

counts (Suwa et al., 2001). After IL-6 administration, blood leukocyte and neutrophil 

counts increased 1.3-fold and 1.8-fold at 3 h, a temporary decrease at 6 h (1.2-fold and 1.6-
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fold), followed by a second increase (1.3-fold and 1.7-fold) at 9 h compared with baseline, 

respectively. The band neutrophils significantly increased from 4.0 ± I% at baseline to 8.5 

± 1.4% at 9 h (3.8-fold compared to baseline in number) and returned to the baseline by 24 

h (Suwa et al., 2001). The first peak was probably induced by mobilization ofneutrophils 

from the marginated pool into the circulation, whereas, the second peak was probably 

induced by release of neutrophils from the bone marrow (Suwa et al., 2000) since I L-6 

decreases the L-selectin levels on neutrophils (Suwa et al., 2002). IL-6 also affects 

neutrophil functions such as increasing elastase release (Kaplanski et al., 2003) and 

oxygen-free radical production by stimulating Ca2+ signalling in neutrophils (Sitaraman et 

al., 2001). 

It has well known that prolonged strenuous exercise induces a marked elevation in the 

plasma IL-6 concentration (Nieman, 1997, Ostrowski et al., 1999, Pedersen et al., 2001). 

Recent studies have demonstrated that a large amount of IL-6 is produced in and released 

from contracting skeletal muscles into the circulation (Steensberg et al., 2000, Langberg et 

al., 2002) and may act as honnone-like fashion to mediate hepatic glucose production 

and/or muscle glucose uptake for maintenance of glucose homeostasis and stimulate 

lipolysis during exercise (Gleeson, 2000a, Pedersen et al., 2001, Febbraio and Pedersen, 

2002). This notion is supported by recent observations in exercise and IL-6 infusion. studies 

in man. Ostrowski et al. (1999) observed an up to lOO-fold increase in IL-6 concentration 

immediately after a marathon race. Subsequently, Febbraio and Pedersen (2002) reported 

that IL-6 did not appear until the later stage of prolonged exercise and that glucose 

ingestion blunted the plasma IL-6 response. When athletes started exercise in a glycogen

depleted state, plasma IL-6 response was augmented (Gleeson and Bishop, 2000b) and a 

lower pre-exercise muscle glycogen concentration dramatically enhanced activation of the 

IL-6 gene in skeletal muscle during prolonged exercise (Keller et al., 200 I). Therefore, it 

has been suggested that muscle glycogen content could be a determining factor for IL-6 

production by contracting muscle (Steensberg et al., 200 I a). Conversely, IL-6 could also 

be regarded as a carbohydrate sensor during prolonged exercise (Helge et al., 2003). 

Injection of recombinant human IL-6 (rh!L-6) into humans increases hepatic glucose 

production and the fasting blood glucose concentration and the release of free fatty acids 

(FFAs) and triglyceride in a dose-dependent manner (Pedersen et al., 2001). Although 

23 



Chapter 2 Literature Review 

rhiL-6 has been shown to stimulate the principal glucose counterregulatory hormones, such 

as cortisol, GH, catecholamines, and glucagon, which would obviously exert an influence 

on the observed glucose changes (Stouthard et al., 1995, Tsigos et al., 1997), in vitro data 

demonstrated that IL-6 can exert a direct stimulatory effect on hepatic glucose release from 

glycogen pools by inhibiting glycogen synthase (Ritchie, 1990). However, for initiation of 

the acute metabolic responses, circulating IL-6 concentration has to be higher than 25-65 

pg·mL-1 (Tsigos et al., 1997). Resting values of plasma IL-6 are typically 0.2-2.0 pg·mL-1 

and values of up to about 150 pg·mL-1 have been observed after prolonged running. 

During resting conditions, adipose tissue would produce 15-25% of the systemic IL-6 

around noon and 25-35% in the evening (Mohamed-Ali et al., 1997). IL-6 has been found 

to increase lipolysis in abdominal subcutaneous adipose tissue within the normal 

physiological concentration (-30 pg·mL-1
) (Lyngso et al., 2002). A recent study 

demonstrated that infusion of rhiL-6 into human subjects to mimic the level observed 

during strenuous exercise (-140 pg·mL-1
) resulted in significant lipolysis and fat oxidation 

without any alterations in plasma adrenaline, insulin, or glucagon levels from 90 min after 

the start ofthe infusion (van Hall et al., 2003). 

Recently, there are many studies have examined the effect of CHO ingestion on IL-6 

responses to exercise. Generally, CHO compared with PLA ingestion appears to attenuate 

the increase of plasma IL-6 concentrations when exercise duration is above 90 min (Table 

2.4). 
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Table 2.4 Carbohydrate ingestion and exercise-induced IL-6 responses 

Reference Experimental Design Subject Main Findings 

Febbraio 120 min semi-recumbent cycling consisted 7 males Glucose ingestion during 

et al., 2003 of 5 min at 50% V02 "'" and liS min at exercise attenuates leg lL-6 

65% V02 m". Subjects ingested 250 mL of release (P < 0.05) but not 

a 6.4% CHO or PLA at the onset of and at decrease in intra-muscular 

15 min interval throughout, exercise. expression of IL-6 mRNA. 

Keller 180 min cycling at 60% of maximal 8 males At the end of exercise, plasma 

et al., 2003 workload. Subjects ingested 250 mL of a 6 lL-6 levels were 26.3 ± 3.7 

% CHO or PLA every IS min throughout ng·L" 1 in PLA and 15.6 ± 2.4 

exercise. ng·L" 1 in CHO (P < 0.05). 

Lancaster -60 min cycling consisted of 20 min at 8 males in Exercise increased plasma lL-6 

et al., 2003 65%Wmax and time trial at 80%Wmax timing levels in all trials in both 

.(--40 min). In timing experiment subjects experiment timing and amount 

consumed 75 g glucose in 500 mL water at 
10 males in 

experiments. However, there 

either IS minor 75 min before exercise .. ln were no differences between 
amount 

amount experiment consumed low-CHO 
experiment 

treatments in timing 

(25 g glucose in 500 mL water), high-CHO experiment and among 

(200 g glucose in 500 mL water), or PLA treatments in amount 

45 min before exercise. experiment. 

Nieman 180 min run at treadmill at 70% VOz ~. 16 At the end of exercise, plasma 

et al., 2003 Subjects ingested 12 mL·kg" 1 of a 6% CHO marathoners lL-6 levels were- 14.7 ng·L"1 

or PLA 15-30 min before exercise, and 4 in PLA and- 9.5 ng-L"1 in 

mL ·kg ·I every IS min during exercise. CHO (P < 0.05). 

Bishop 90 min high intensity intermittent running. 6male Exercise increased plasma IL-6 

et al., 2002 Subjects ingested 5 mL·kg" 1 of a 6.4% CHO footballers levels in both trials. However, 

or PLA before exercise and every 15-min there was no significant 

during exercise. difference between trials at 

post-EX. 

Starkie 60 min run or cycling at lactate threshold ( 4 7 males CHO ingestion blunted plasma 

eta/., 2001 trials in total). Subjects ingested 8 mL·kg· 1 IL-6 responses. However, there 

of a 6.4% CHO or PLA before exercise, and was no effect of exercise mode. 

2 mL·kg· 1 at 20 and 40 min during exercise. 
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2.6 Saliva Immunoglobulin A Responses to Exercise 

Saliva is normally a colourless liquid with a density ranging from 1.002 to 1.012 g·mL"1
, 

consisting of inorganic and organic constituents and usually m ore than 9 9% water. The 

secretory volume of saliva each day through the salivary glands approaches 750 mL, which 

represents a rate of approximately 0.5 mL·min"1 arising from the submandibular glands 

(65%), parotid glands (23%), minor mucous glands (8%) and sublingual glands (4%) 

(Crawford et al., 1975). 

Immunity against microorganisms at remote sites, such as the nasal cavity, oral cavity, 

respiratory tract, digestive tract and gut, is primarily due to secretory IgA, which has been 

considered as the first line of defence to infection in the lumen of the respiratory tract and 

gut (Quan et al., 1997). Secretory IgA is produced in local plasma cells and seems to 

function as a multi-layered mucosal defence. For example, lgA prevents antigens and 

microbes from adhering to and penetrating the epithelium (immune exclusion), interrupts 

replication of intracellular pathogens during transcytosis through epithelial cells 

(intracellular neutralization), and binds antigens in the lamina propria facilitating their 

excretion through the epithelium back into the lumen (immune excretion) (Larnm, 1998). 

2.6.1 Modulation of saliva IgA secretion 

Saliva IgA is produced in the submucosa of salivary glands and then binds to a receptor 

(polymeric immunoglobulin receptor, plgR) located on the mucosal epithelium. 

Subsequently, the complex is transported across the mucosal epithelium and released into 

the saliva as slgA (Mostov, 1994, Brandtzaeg, 1998). The modification ofslgA secretion is 

regulated via the rate of synthesis (days) (Goodrich and McGee, 1998, Toellner et al., 

1998) or transcytosis (minutes) (Kugler, 1999). Therefore, the acute alteration induced by 

exercise is likely through the modulation of the transepithelial secretory process rather than 

plasma cell (B lymphocyte) activation. 
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Nervous Control 

The salivary glands are innervated by both parasympathetic nerves and sympathetic nerves 

(Chicharro et al., 1998, Busch et al., 2002). Parasympathetic stimulation induces a marked 

elevation in regional blood flow to salivary glands by vasodilation, resulting in a higher 

saliva flow rate with a relatively low protein concentration, whereas the sympathetic 

stimulation causes vasoconstriction, resulting a lower saliva flow rate that is rich in protein 

(Garrett, 1987, Anderson, 1998, Chicharro et al., 1998). 

Glucocorticoids 

Cortisol has been suggested to play an important role in inhibiting slgA mobilisation 

(Hucklebridge et al., 1998). Wira et al. (1990) reported a decline in slgA level at 24 h after 

a single injection of dexamethasone, which preceded a rise in serum IgA concentration 

detected 24 h after the second hormone treatment and suggested that IgA increased in 

serum and decreased in salivary secretions due to a redistribution of polymeric lgA from 

mucosal surfaces to the circulation controlled by glucocorticoids. A subsequent study 

(Alverdy and Aoys, 1991) showed a fall of 77% in IgA concentration, an augmentation in 

bacterial adherence (2.4-fold), and an increased incidence of bacterial translocation to the 

mesenteric lymph nodes (60% vs 0%) observed after 2 days in dexamethasone-treated rats. 

The levels of polymeric IgA and antigen-specific IgA antibody in serum were also reported 

to be elevated after dexamethasone treatment (Wira and Rossoll, 1991 ). However, the slgA 

level and antigen-specific lgA production after oral antigenic challenge was markedly 

inhibited. These data suggested that glucocorticoids might impair mucosal IgA synthesis, 

secretion and function and promote bacterial translocation (Moyer et al., 1981). 

2.6.2 Saliva IgA and exercise-induced URTI 

Mucosal immunity and susceptibility to URTI are likely related to exercise stress because 

various aspects of immune function are temporarily changed following exercise 

(Mackinnon, 1999). Epidemiological studies have indicated that intensive prolonged 

training or competition is associated with an elevated incidence of URTI, placing athletes 

at a higher risk of URTI than control groups during and after competition or training 

(Douglas and Hanson, 1978, Peters and Bateman, 1983, Nieman et al., 1990, Heath et al., 
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1991). Peters and Bateman (1983) reported the runners who completed an ultramarathon 

(35 miles) had more than 2-fold incidence of URTI within 2 weeks after the race compared 

with the matched controls. The running mileage for a year appeared to be an influential 

factor for developing URTI according to Heath et al. (1991), who showed that individuals 

who ran more than 3.8 miles per day, on average, had a 2-fold higher incidence of URTI 

than those who ran less than 1.3 miles per day. Nieman et al. (1990) also reported that the 

risk of an infectious episode was 5-fold higher for marathon runners in the week after a 

race compared with runners who trained but did not compete in the race. Subsequently, 

Nieman (1994) hypothesised the relationship between susceptibility to URTI and exercise 

workload as a J-shaped curve. This model predicts that individuals who exercise 

moderately are at less risk of infection, whereas those who exercise heavily are more at 

risk compared with sedentary counterparts. If the J-shaped curve is effectively mediated by 

sigA, then the alteration in sigA concentration and/or output should be inversely associated 

with the incidence of URTI. Preliminary support has been provided by many previous 

studies (Mackinnon et al., 1993, Gleeson et al., 1999, Reid et al., 2001). Mackinnon et al. 

(1991) described that eleven of twelve URTI episodes were preceded within 2 days by a 

22% decrease in sigA levels. Later a study from the same laboratory supported this idea by 

reporting that hockey and squash players developed symptoms of URTI had reductions in 

sigA of22% and 23% with 2 days of symptom onset, whereas those players who remained 

healthy, slgA either increased slightly or was unchanged (Mackinnon·et al., 1993). 

Measurement of sigA is thought to be an indicator of the functional status of the entire 

mucosal immune system ( Mestecky, I 993). Local production of si gAp rovides adaptive 

immunologic protection to mucosal surfaces (Johansen et al., 200 I). The low slgA levels 

or chronic sigA deficiency appeared to facilitate the adherence and entrance of pathogens 

through the epithelial surface (Ostergaard, 1977, Alverdy and Aoys, 1991), increasing 

frequency ofURTI episodes (Gleeson et al., 1999), recurrent URTI (Isaacs et al., 1984), or 

reduced protection against certain epithelial infections (Asahi et al., 2002). In a meta

analysis of nine studies, Jemmott and McClelland (1989) concluded that low local levels of 

slgA could compromise immune resistance to respiratory infections. 
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2.6.3 Saliva IgA secretion and exercise 

Many studies have been done to examine how exercise affects the slgA concentration and 

secretion rate. However, the results have been inconsistent. The possible mechanisms 

involved in the regulation of saliva lgA secretion during prolonged exercise are illustrated 

in Figure 2.5. 

[ Prolonged Exercise ) <==:> Decreased CHO availabilitv 

~--------------~ 

SNS i 

Immediate Effects 

Decrease 

saliva flow rate 

by constricting 

the blood 

supply to 

saliva glands 

Dose-independent 
above threshold? 

Increase slgA secretion via 
elevated transcytosis from the 

glandular lgA pool 

J:l,. Long-term stimulation 

Depleted slgA pool 

Impairment of oral mucosal defence? 

HPA i 
Delayed Effects 

Inhibit slgA 

secretion and 

antigen

specific lgA 

production 

after 24 h 

Figure 2.5 The possible mechanisms involved in the regulation of saliva lgA secretion 

during prolonged exercise 
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Saliva flow rate 

A decreased saliva flow rate has .been consistently observed following strenuous exercise 

(Steerenberg et al., 1997, Blannin et al., 1998, Walsh et al., 2002). A steady blood flow to 

salivary glands is required for maintenance of adequate salivation because the water of 

saliva is from the plasma (Smaje, 1998). Anderson and Garrett ( 1998) demonstrated that 

the a-adrenergic receptor activation causes vasoconstriction, whereas the ~-adrenergic 

activity induces vasodilation in rat submandibular glands. Further, recent studies have 

shown that a 1-adrenergic blockade by doxazosin and ~-adrenergic blockade by propanolol 

have no effect on saliva flow rate after 8-min sub maximal cycling at 50W (Winzer et al., 

1999, Ring et al., 2000). However, a 2-adrenoceptor agonist dexmedetomidine infusion 

induces vasoconstriction in men (Talke et al., 2003). This suggests that the a2-adrenergic 

receptors may play an important role in the exercise-induced decrease of saliva flow rate. 

Rantonen and Meurman (2000) suggested that the saliva flow rate was likely to be the 

single salivary defensive factor which significantly affected oral health. This notion was 

supported by recent studies, which showed the absence of caries in children with familial 

dysautonomia was associated with a higher saliva flow rate (Mass et al., 2002), and the 

increased incidence of oral candida! infections in HIV -infected patients (Lin et al., 200 I) 

was related to a lower saliva flow rate. Fox et al. (1985) also suggested individuals who 

suffered from dry mouth syndrome had an increased incidence ofURTI. 

Saliva lgA concentration 

Previous studies have shown paradoxical results in slgA concentration immediately after 

exercise; some reported increased (Gleeson et al., 200\a, Dimitriou et al., 2002), 

unaffected (Housh et al., 1991, McDowell et al., 1991 ), or decreased slgA concentration 

(Tomasi et al., 1982, Mackinnon et al., 1987, Tharp and Bames, 1990, McDowell et al., 

1992, Krzywkowski et al., 2 001). A few studies have demonstrated ad elayed effect of 

exercise on the saliva IgA response. Mackinnon and her colleagues reported a significant 
' 

decrease in slgA level occurred between 2 to 24 h after intense prolonged exercise 

(Mackinnon et al., 1987) or on the second and third consecutive days of moderate intensity 

exercise, but not on the first day (Mackinnon and Hooper, 1994). 
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Saliva IgA secretion rate 

The protective effect of sigA in the respiratory tract ts dependent on both sigA 

concentration and saliva flow rate - the total amount of sigA covering the mucosal surface 

(Mackinnon and Hooper, 1994). In vitro, sigA is secreted by both acinar and ductal units 

under the stimulation of a- and P-adrenoreceptors and peptidergic receptor. The secretion 

rate of sigA is relatively constant for each agonist across a range of doses (Proctor and 

Carpenter, 2002). The a-adrenoreceptor agonist phenylephrine has been demonstrated to 

,stimulate the secretion of IgA and protein via P-adrenoreceptor-dependent pathway with a 

manner of dose-independent above a certain threshold (Proctor et al., 2003). However, 

Ring et al. (2000) suggested that the acute decrease in sigA secretion rate was mediated by 

a 1-adrenergic mechanisms. Furthermore, prolonged stimulation of P-adrenoreceptor 

agonist isoprenaline appeared to reduce the replenishment of IgA into the glandular pool 

(Proctor et al., 2003). 

Several studies showed no alteration in sigA secretion rate after tennis drill (Nieman et al., 

2000), soccer play (Bishop et al., 1999a) or cycling (Blannin et al., 1998). On the other 

hand, other studies reported a decrease in sigA secretion rate following Olympic-distance 

triathlon race (Steerenberg et al., 1997), competitive marathon race (Nieman et al., 2002) 

and 2 h cycling (Krzywkowski et al., 2001). Recovery of saliva immunog1obulins to pre

exercise levels usually occurs within 24 h. However, in elite athletes undertaking multiple 

exercise sessions in a single day a ndlor habitual intensive training, the recovery will be 

affected by the intensity of the training sessions. The recovery rate may prove to be a key 

indicator of the long-term consequences of accumulative mucosal immunodepression in 

high performance athletes (Gleeson, 2000b ). 

2.6.4 Carbohydrate ingestion and exercise-induced saliva lgA responses 

Since exercise influences saliva flow rate and composition via the activation of 

sympathetic nerves and the HP A-axis, the blunted responses of stress hormones after CHO 

ingestion m ay attenuate the effect on o raJ immunity ( Chicharro et a I., 1 998). However, 

CHO ingestion appears not to affect sigA concentration (Nehlsen-Cannarella et al., 2000, 

Nieman et al., 2002), secretion rate (Nehlsen-Cannarella et al., 2000, Nieman et al., 2002) 
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and saliva flow rate (Bishop et al., 2000) following a single bout of prolonged exercise 

compared with a PLA trial (Table 2.5). 

Table 2.5 Carbohydrate ingestion and exercise-induced saliva lgA responses 

Reference Experimental Design Subject Main Findings 

Nieman Marathon race. Exercise volume was CHO: 48 Saliva lgA secretion rate decreased 

et al., -4.4 hat 83% HR max. 
PLA: 50 

34% compared with pre-race level; 

2002 however, there was no difference 

between CHO and PLA. 

Bishop Three trials: CHO, PLA and restricted 15 males CHO feeding better maintained plasma 

et al., fluid intake (RFI). 2 h cycling at glucose concentration compared with 

2000b 60% YOzmax PLA and RFI. Saliva flow rate and 

slgA concentration in CHO was higher 

than RFI but not different to· PLA. 

Nehlsen- 2 h rowing consisted of a 3-min rest 15 female CHO ingestion had no effect on saliva 

Cannarella every 15 min. Subjects drank a 6% rowers flow rate and slgA concentration and 

et al., CHO or PLA beverage for 12 and 4 secretion rate compared with PLA. 

2000 mL·kg·' body mass before and every 

15 min during rowing, respectively. 

Bishop 90 min soccer·specific exercise 8 males CHO ingestion had no effect on saliva 

et al., protocol. Subjects drank 400 mL of a flow rate and slgA concentration and 

1999a 6% CHO or PLA beverage at 10 min secretion rate compared with PLA. 

before the start of each 45 min of 

exercise and 150 mL at 14 and 29.5 

min into each period of exercise. 

The saliva samples of all studies in this table were from the unstimulated whole-mixed saliva and the slgA 

concentration was measured using ELISA. 
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2.7 Effects of Daily Repeated Exercise on Immunoendocrine Responses 

Although there have been numerous studies that have examined immune responses to 

single bout of exercise in recent decades, few investigations have been carried out to 

determine how repeated bouts of exercise on the same day influence immunoendocrine 

responses. The studies presented in this thesis were performed to contribute knowledge in 

this area. 

2.7.1 Leukocyte mobilisation, IL-6 and plasma stress hormone responses 

Field et al. (1991) conducted two bouts of exhaustive cycling for 12.9 and 13.2 mm 

separated by I h recovery interval and showed that the plasma concentrations of adrenaline 

and blood counts of total leukocytes, neutrophils, lymphocytes and monocytes were 

increased to the same I eve is during both exercise trials. However, a I ater study using a 

protocol of cycling for two 30-min sessions at 70% VOz max separated by a 3-h recovery 

interval s bowed the circulating counts o f I eukocytes, n eutrophils and I ymphocytes were 

48%, 62% and 6% higher in the second bout (EX2) than in the first bout (EX!), 

respectively. The plasma concentrations of adrenaline and cortisol were also 21% and 6% 

higher in EX2 compared with EX! (McCarthy et al., 1992). Subsequently, Rohde et al. 

(1998) carried out a protocol of three bouts of cycling for 60, 45, and 30 min at 

73% VOz max separated by 2-h recovery intervals. The blood concentrations of neutrophils 

and monocytes continuously increased at the end of each cycling bout and lasted at least 

for 2 h. The blood lymphocyte concentration increased with exercise but declined below 

resting values within 2 h post-exercise. 

Recently, Ronsen and colleagues conducted as eries o fi nvestigations using ani dentical 

experimental design: two bouts of 75 min cycling consisting of I 0 min at 50% VOz max and 

65 min at 75% VOzmax separated by a 3-h (TWO-EX-SHORT) or a 6-h (TWO-EX

LONG) recovery interval, identical single cycling bout in the afternoon (PMEX) and 

resting control trial (REST). During each trial, subjects were served 4 standardised meals 

(1000 kcal·mear1
) at 2.5 h before the morning exercise, 1.8 h before the afternoon 

exercise, 1.2 h and 5 h after the afternoon exercise. The results showed that: I) the second 

exercise bout evoked higher circulating counts of total leukocytes (50% and 25%), 
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neutrophils (63% and 53%) and lymphocytes (33% and 33%) compared with the first 

exercise bout and PMEX, respectively (Ronsen et al., 200 I b); 2) the second exercise bout 

induced higher plasma concentrations of adrenaline (336% and 408%), ACTH (131% and 

88%), cortisol (32% and 18%) and GH (52% and 39%) compared with the first exercise 

bout and PMEX, respectively (Ronsen et al., ZOO la); 3) during the second bout, there were 

significant increases in plasma concentrations of adrenaline, ACTH and cortisol, but not in 

GH, and greater neutrophilia and lymphopenia in TWO-EX-SHORT compared with TWO

EX-LONG (Ronsen et al., 2002a); 4) the second exercise bout in TWO-EX-SHORT 

induced a significantly higher plasma IL-6 level than PMEX, but not compared with TWO

EX-LONG (Ronsen et al., 2002b). 

A very recent study investigating the effect of two bouts of 60 min cycling consisting of 

three 20-min segments: 5 min at 50% vo, ""' and 15 min at 70% vo, "'", separated by a 4-

h passive recovery. During the final 2 h of the recovery period subjects were given 1.63 g 

CHO·kg-1 body weight. The results showed that after two bouts of exercise the blood 

counts of leukocytes and neutrophils were higher than the identical single bout completed 

in the morning (69% and 46%) and in the afternoon (33% and 36%) only. Circulating 

lymphocyte number after the single bout in the afternoon was 14% higher than the 

identical single bout in the morning (McFarlin et al., 2003). 

2. 7.2 Neutrophil function 

Pyne et al. (1996) reported that after 40 min running on the treadmill at a heart rate 140 

beat·min-1
, PMA-induced CL release by isolated neutrophils declined 41% compared with 

pre-exercise. However, the values of CL did not change further during the 1-h recovery 

interval and after the second identical bout of running. Another study using the same 

protocol as Ronsen's showed that the PMA-induced CL release by isolated granulocytes at 

post-exercise was not different to pre-exercise in any of the trials (Boyum et al., 2002). 
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2.8 Summary 

In this chapter an attempt was made to present an overview of the current knowledge of the 

immunoendocrine responses to exercise. In particular, literature concerning the circadian 

variation in plasma stress hormones, IL-6, circulating numbers of leukocytes and slgA, 

plasma glucose and immune responses, plasma stress hormones and leukocyte 

mobilisation, neutrophil function, IL-6 response, slgA response, and effects of repeated 

exercise on immunoendocrine responses was highlighted. The available evidence suggests 

that exercise affects the immune system via stimulation of SNS and HP A-axis and the 

secretion of cytokines during exercise. However, limited information exists on the effects 

of repeated prolonged exercise on immunoendocrine responses. Therefore, the effects of 

repeated prolonged exercise and CHO supplementation on leukocyte redistribution, 

neutrophil function, plasma stress hormones and IL-6 responses, saliva flow rate and IgA 

responses as well as the effect of time of day on these parameters are the main research 

questions of the present thesis. 

35 



Chapter 3 General Methods 

CHAPTER THREE 

General Methods 

3.1 Ethical Approval 

Approval for these studies was issued by Loughborough University Ethical Advisory Sub

committee. The nature and purpose of each study was fully explained verbally and in 

writing to each subject. All subjects completed informed consent forms (Appendix A) and 

were made fully aware that they were free to withdraw from the study at any time. Subjects 

were also inspected by a health screen (Appendix B) and a physical activity questionnaire 

(Appendix C) to determine whether they were suitable for doing exercise trials. On the day 

of exercise trials, subjects were again completed a health questionnaire (Appendix D) to 

ensure that they were well and fit to participate in the study. If the subject responded 'yes' 

to any of the questions on the health screen (Appendix B), he would be asked to withdraw 

from the study. If the subject responded 'yes' to any of the questions on the health 

questionnaire (Appendix D), he would be asked to postpone his trial until fully recovery. 

3.2 Protocol for Determination of Maximal Oxygen Uptake ( VOz max) 

For the determination of maximal oxygen uptake and trial workloads subjects performed a 

continuous incremental exercise test on a cycle ergometer (Monark 874E, Monark Exercise 

AB, Sweden) to volitional exhaustion. Participants began cycling at 70 W with increments 

of 35 W every 3 min. The cadence remained at 70 rev·min-1 and heart rate was monitored 

continuously using radiotelemetry (Polar Electra Oy, Finland). During the third min of 

each work rate increment, expired gas was collected in Douglas bags. An oxygen/carbon 

dioxide analyser (Servomex 1400B, Crowborough, UK) was used along with a dry gas 

meter (Harvard Apparatus, Edenbridge, UK) for determination of vo, and VCQ,. From 

the vo, ~work rate rel!ltionship, the work rate equivalent to 60% vo,""' was interpolated. 
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3.3 Blood Sampling and Analysis 

3.3.1 Blood collection and treatment 

Venous blood samples were taken from an antecubital vein by venepuncture, and were 

collected into three Vacutainer tubes (Becton Dickinson, Oxford, UK). Blood samples in 

two K3EDTA vacutainers (4 mL) were used for haematological analysis and determination 

of changes in the plasma concentrations of stress hormones and interleukin-6 (IL-6). For 

neutrophil respiratory burst assay, 0.5 mL K3EDT A aliquots of whole blood were added to 

eppendorf tubes (1.5 mL capacity) for later measurement within 7 hours. As for the blood 

dispensed into a lithium heparin vacutainer (7 mL), 1 mL was immediately added to an 

eppendorf tube containing 50 ~L of 10 mg·mL·1 bacterial lipopolysaccharide (LPS) 

solution (Stimulant, Sigma, Poole, UK). Blood and LPS were mixed by gentle inversion 

and then incubated for I h at 37 •c, being gently mixed again every 20 min. After 

incubation, the mixture was centrifuged for 2 min at 15000 g. The supematant was 

immediately stored at -80 •c prior to analysis of elastase concentration to determine the 

neutrophil degranulation response as described in Section 3.3.4 

The remaining K3EDTA and heparinized whole blood was spun at 1500 g for 10 min in a 

refrigerated centrifuge at 4 •c within 10 min of sampling. The plasma obtained was 

immediately stored at -80 •c prior to analysis. 

To obtain accurate measurements, the whole-blood samples in our laboratory were stored 

at the ideal conditions: I) keeping at temperatures of 20 •c to 24 •c; 2) measuring blood 

composition and cell counts and cellular activities within 10 min and 7 h, respectively; 3) 

no centrifugation or agitation, but gentle and multi-axle mixing before testing (Li, 2003). 

· 3.3.2 Determination of total and differentialleukocyte counts 

Haematological analysis including haemoglobin, haematocrit, and total and differential 

leukocyte counts using a haematology analyser (A c•T™ Sdiff analyzer, Beckman Coulter, 

UK). The intra-assay coefficient of variation was 0.9%, 1.1% and 1.3% for haemoglobin, 

haematocrit and leukocyte counts, respectively. Plasma volume changes were calculated 

from measurements of haemoglobin concentration and haematocrit according to Dill and 

Costill (1974). 
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3.3.3 Determination of plasma glucose, stress hormones and IL-6 

Plasma aliquots were analysed to determine the concentration of glucose (GOD-PAP 

method, Randox, UK) using an automatic photometric analyser (Cobas-Mira plus, Roche). 

Human growth hormone (GH), cortisol (both DRG Instruments GmbH, Germany), 

adrenaline (IDL GmbH, Hamburg), adrenocorticotropic hormone (ACTH) (Biomerica, 

Newport Beach, CA) and IL-6 (High Sensitivity Kit, Diaclone Research, France) were 

determined using enzyme-linked immunosorbant assay (ELISA) kits. The intra-assay 

coefficient of variation was 1.3%, 2.4%, 6.9%, 12.7%, 5.1% and 1.6% for glucose, GH, 

cortisol, adrenaline, ACTH and IL-6, respectively, based on duplicate analyses. 

3.3.4 Determination of LPS-stimulated neutrophil degranulation 

For the neutrophil degranulation assay, elastase concentration in plasma before and after 

treatment with LPS was determined using an ELISA kit specific for polymorphonuclear 

cell elastase (Merck, Lutterworth, UK). After thawing, both stimulated and unstimulated 

plasma samples were initially diluted 20 times by adding 30 1-1L plasma to 570 1-1L dilution 

medium in an eppendorf tube and mixed by shaking. I 00 1-1L of diluted stimulated samples 

were then further diluted with 1000 1-1L dilution medium in another eppendorf tube, giving 

a final dilution of 220x. 1000 1-1L of wash solution was added to each pre-labelled 

antibody-coated tube and incubated for 10-20 min at room temperature; then fluid was 

discarded and tubes tapped on tissue paper. 500 1-1L of either elastase standard (range from 

0.4 to 10.0 1-1g-L.1) or plasma was then added to the tubes in duplicate (single for 

unstimulated samples) and incubated for 60 min at room temperature. After incubation the 

tubes were tipped upside down over the sink then blotted and washed with 1000 1-1L wash 

solution. Tubes were then emptied, blotted and washed with 2000 1-1L wash solution again. 

500 1-1L antibody-enzyme solution was added to each tube. The tubes were then incubated 

at room temperature for 30 min. After incubation the tubes were tipped, then blotted and 

washed with 2000 1-1L wash solution. Tubes were then tipped, blotted and wash procedure 

was repeated one more time. 500 1-1L substrate solution was added to each tube. The tubes 

were then incubated in the dark at room temperature for 30 min. 100 1-1L stop solution was 

then added to every tube. After gentle shaking, 2 00 1-1L of solution from each tube was 
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added to a clear 96-well plate. Then the absorbance was measured at 405 run. The intra

assay coefficient of variation was 3.9% for the elastase assay. 

3.3.5 Determination of PMA-induced neutrophil oxidative burst 

A microplate luminometer cell activation kit (Knight Scientific Limited, Plymouth, UK) 

was used to measure the neutrophil oxidative burst activity. Sample analysis was 

performed in duplicate as follows: 20 J.LL of K3EDT A whole blood sample was added into 

a dilution tube with 2 mL of blood dilution buffer (HBSS without calcium and magnesium 

but with 20 mM HEPES, pH 7.4). A 20-J.LL aliquot of each diluted sample was then added 

into an opaque white microplate well. 90 J.LL reconstitution and assay buffer (HBSS with 

20 mM HEPES, pH 7.4) was then added into each well followed by the addition of20 J.LL 

reconstituted Adjuvant-K™ and 50 J.LL Pholasin® (10 J.Lg·mL.1
). The microplate was placed 

into a luminometer (Anthos Lucy 1 Microplate Luminometer, Anthos Labtec Instrument, 

Austria) after adding 20 J.LL PMA (phorbol-12- myristate-13-acetate, 5 J.Lg·mL.1
) into each 

well. After 1 min shaking and incubation at 37 °C, Pholasin®-enhanced chemiluminescence 

(CL) was measured at 1-min intervals for 30 min, and the incremental area under the curve 

(IAUC) was calculated. The oxidative burst activity per cell was calculated by dividing the 

IAUC by the numbers of neutrophils in each sample. The intra-assay coefficient of 

variation was 5.7% for the chemiluminescence assay. 

3.4 Saliva Sampling and Analysis 

3.4.1 Saliva collection and treatment 

Participants were seated during all saliva collections. With an initial swallow to empty the 

mouth, unstimulated whole saliva was collected by expectoration into a pre-weighed vial 

(7 mL-capacity plastic Bijou tubes with screw top) for 2 min with eyes open, head tilted 

slightly forward and making minimal orofacial movement. All saliva samples were stored 

at -20 °C until analysis. 

3.4.2 Determination of saliva flow rate 

Saliva flow rate (mL·min.1
) was determined by weighing. The density of saliva was 

assumed to be 1.0 g·mL·1 (Chicharro et al., 1998). 
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3.4.3 Determination of saliva IgA concentration and secretion rate 

The concentration of salivary IgA (mg·L.1
) was determined by a sandwich-ELlS A method 

similar to that described by Gomez et al. (1991). Briefly, flat-bottomed microtitration 

plates (Costar EWRIA plate, Sigma, Poole, UK) were coated with the primary antibody, 

rabbit anti-human IgA (I-8760, Sigma, Poole, UK), at a dilution of I in 800 in carbonate 

buffer, pH 9.6, and kept at 4 °C over night. After washing with phosphate buffered saline 

(PBS, pH 7.2) the plates were coated with blocking protein solution (2 g·L·1 bovine serum 

albumin in PBS). Sample analysis was performed in quadruplicate using saliva samples 

diluted l in 500 with deionised water. A range of standards (Human colostrum IgA, I-

2636, Sigma) up to 600 1-1g· 1·1 was used for calibration. Standards were incorporated into 

each micro-well plate, and all samples from a single subject were analysed on a single 

plate. The plates were incubated for 9 0 m in at room temperature. Following a washing 

step, peroxidase-conjugated goat anti-human IgA (A-4165, Sigma) was added and the plate 

incubated for a further 90 min at room temperature. Following another washing step, the 

substrate, ABTS (Boehringer Mannheim, Lewes, UK), was added and after 30 min the 

absorbance was measured at 405 nm. The intra-assay coefficient of variation was 7.6% for 

slgA assay. 

The slgA secretion rate (l-!g·min.1
) was calculated by multiplying the slgA concentration by 

the saliva flow rate. 
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CHAPTER FOUR 

Determination of Saliva Collection Method 

Summary 

The aims of the two studies described in this chapter were: (I) to determine the effects of 

different salivary volumes on collection efficiency and slgA concentration using the 

Salivette swab collection method (Study 1), (2) to investigate the influence of different 

saliva collection methods on slgA concentration and saliva flow estimation (Study 2). In 

Study 1, eight healthy male subjects were asked to produce 15 mL of unstimulated saliva 

by dribbling into a tube over a 20 - 30 min period. The samples then were divided into the 

following volumes: 4, 3, 2, I, 0.7, 0.4, 0.2, and -3 mL (control). Swabs were put into each 

vial (except for the control sample) and placed on a shaker at 500 rpm for 2 min. After 

shaking the swabs were removed and centrifuged spun at 1500 g for I 0 m in at 18 °e. 

Samples were then stored frozen at -20 o e prior to analysis, which would e stirriate the 

efficiency of saliva collection with the swab and the effect of. different saliva volumes on 

selected salivary biomarkers. In Study 2, twelve healthy male subjects completed three 2-

min unstimulated saliva sample collection periods in a counterbalanced ·order; · this 

involved on two occasions putting a Salivette cotton swab under tongue or on the other 

occasion dribbling into a centrifuge tube. The "DB" sample was collected by dribbling into 

a collection tube, the "Se" sample was collected with a swab placed under the tongue and 

centrifuged immediately, and the "SF" sample was collected with a swab without 

centrifugation before being stored frozen. Saliva samples were analysed for flow rate and 

· slgA concentration. 

Study 1 showed that the Salivette swab became saturated at the saliva volumes of between 

2 mL and 3 mL, and this range also produced the best efficiency for collecting saliva 

samples. The slgA level was significantly affected by the presence of the Salivette swab. In 

Study 2, the saliva flow rate was not significantly different among the three groups, but the 

volume of saliva not released from swab in SF was significantly higher than that in se. 

Saliva IgA was significantly absorbed by swab in SF and se compared with DB. The 

findings from Study 1 and Study 2 indicate that the swab collection method is not an ideal 
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method because it affects the results of sigA. With regard to previously reported studies 

that have collected saliva using swabs, our findings suggest that the results may need to be 

viewed with some caution, particularly of absolute IgA values are key to the findings 

(rather than patterns of change) and if flow rates exceed I mL·min·', increasing the 

likelihood of swab saturation. 

42 



Chapter 4 Determination of Saliva Collection Method 

4.1 Introduction 

Numerous studies have used a cotton swab placed under the tongue to collect saliva 

samples (Blannin et al., 1998; Hucklebridge et al., 1998; Bishop et al., 2000b; Shirtcliff et 

al., 2001) for investigating the changes of salivary biomarkers before and after physical or 

psychological stress. The cotton-based swab collection methods are definitely convenient 

and practical, but to our knowledge, there has been few studies inspecting if this collection 

method affects the concentrations of salivary biomarkers. Therefore, the aim of this chapter 

was to compare and determine a relatively ideal saliva collection method the Study I was 

to determine the effects of different saliva volumes on collection efficiency and on slgA 

level using a cotton-based swab collection method. The aim of Study 2 was to investigate 

the influence of different saliva collection methods on slgA level and on the estimation of 

saliva flow rate. 
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4.2 Methods 

Subject 

Eight healthy men (mean± S EM: age 2 9.1 ± 2.9 years; body m ass 7 4.2 ± l .3 kg) and 

twelve healthy men (age 28.3 ± 2.1 years; body mass 74.6 ± 1.7 kg) volunteered to 

participate in Study 1 and Study 2, respectively. 

Experimental Procedures 

Study 1: Salivette centrifuge tubes (Sarstedt, Gemany), empty vials and dry swabs were 

labelled and weighed before subjects' arrival. Subjects visited the Biochemistry Laboratory 

(this study was carried out at The University of Birmingham) at 9:00 after an overnight fast 

(from 23:00 the night before experimental trial). Subjects were asked to drink 200 mL 

water 10 min before saliva collection and then to dribble unstimulated saliva into a 

Universal tube until tube was half full (about 15 mL). The saliva was divided into aliquots 

of the following volumes: 4, 3, 2, 1, 0.7, 0.4 and 0.2 mL and placed in separate labelled 

vials (7 mL-capacity plastic Bijou tubes with screw top). The remaining volume of saliva 

(-3 mL) was placed in another vial (designated as the control sample). Swabs were put into 

each vial (except for the control sample) and placed on a shaker at 500 rpm for 2 min. 

After shaking the swabs were removed with tweezers and placed into the top part of 

respective Salivette centrifuge tubes, and then were spun at 1500 g for 10 min at 18 °C. 

Afterwards each swab, the bottom part of Salivette centrifuge tube and vial was weighed. 

Samples were then stored frozen at -20 °C prior to analysis. 

Study 2: The empty bottom part of Salivette centrifuge tubes, empty vials and dry swabs 

were labelled and weighed before subjects' arrival. Subjects visited the Biochemistry 

Laboratory (this study was carried out at The University of Birmingham) at 13:00 after a 4-

h fast (from 9:00 the day of experimental trial). Subjects were asked to drink 150 mL water 

5 min before sampling and then were assigned in a counterbalanced order to complete 

three 2-min unstimulated saliva sample collection periods: two of which involved putting a 

Salivette cotton swab (SC) under the tongue and the other collection was made by 

dribbling (DB) into a centrifuge tube. Each saliva collection was separated by a 5-min 

interval and a drink of water (150 mL), and the mouth was emptied by an initial swallow 
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before collection. The "DB" saliva sample was weighed to calculate the saliva flow rate. 

One of the "SC" saliva samples was centrifuged immediately after collection at 1500 g for 

10 min at 18 °C. The bottom part of the Salivette centrifuge tube and the swab were 

weighed before being frozen. The other sample collected with a cotton swab, designated 

"SF" was not centrifuged before being frozen. All samples were stored at -20 °C until 

analysis. On the day of analysis the SF samples were allowed to thaw at room temperature 

for 100 m in before being spun at 1500 g for 10 min at 18 °C and weighed. 

Analytical Methods 

Saliva flow rate, slgA concentration, glucose, adrenaline, cortisol, maximal oxygen uptake, 

and equivalent work rate were determined (as described in Chapter 3) 

Statistical analysis 

Data in the text and tables are presented as mean values and standard errors of the mean(± 

SEM). In Study 1, the data were examined using repeated measures one-way ANOV A and 

paired 1-tests. In Study 2, statistical evaluation was carried out using paired /-tests and 

Pearson's product-moment formula. P < 0.05 were accepted significant. 
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4.3 Results 

St11dy 1 

The percentage of saliva not absorbed by the Salivette swab was relatively low (-1 %) for 

saliva volumes of0.2- 2 mL but increased to 1.5% and 10.7% for saliva volumes of3 and 

4 mL respectively (Table 4.1). The percentage of saliva not released from the swab after 

centrifugation was higher at lower saliva volumes. The amount of saliva retained by the 

swab was not a constant amount and not a constant percentage of the saliva sample 

volume. This implies that the Salivette swab was very effective in absorbing saliva but it 

became saturated between the saliva volumes of 2 mL and 3 mL, and this range also 

produced the best efficiency for collecting saliva samples (Table 4.1). 

The slgA level was significantly affected by exposure to the Salivette swab (Figure 4.1 A). 

The slgA concentration in the control sample (197 ± 14 mg·L- 1
) was significantly higher 

than the average (165 ± 18 mg·L-1
) of all the sample volumes that were exposed to the 

swab (P < 0.05). There was no significant difference in slgA concentration among 

samples, which were exposed to the swab (Figure 4.1B). 

Table 4.1 The efficiency of saliva collection with Salivette swab for sampling volumes of 

0.2-4.0 mL. 

Saliva not absorbed by swab Saliva not released from swab Saliva obtained for analysis 

Volume(mL) Percentage Volume (mL) Percentage Volume (mL) Percentage 

4mL 0.430 (0.074) 10.7 0.277 (0.025) 6.9 3.286 (0.076) 82.1 

3mL 0.044 (0.009) 1.5 0.269 (0.009) 9.0 2.706 (0.012) 90.2 

2mL 0.007 (0.001) 0.4 0.242 (0.011) 12.1 1.775 (0.010) 88.7 

I mL 0.004 (0.001) 0.4 0.163 (0.009) 16.3 0.849 (0.004) 84.9 

0.7mL 0.004 (0.001) 0.6 0.148 (0.008) 21.1 0.582 (0.006) 83.1 

0.4 mL 0.003 (0.001) 0.8 0.090 (0.014) 22.3 0.309 (0.006) 77.2 

0.2mL 0.002 (0.001) 1.1 0.091 (0.007) 45.5 0.127 (0.006) 63.4 

Mean± (SEM) 
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Figure 4.1 The slgA concentrations (4.1A) in control were significantly higher than the average of all other 

groups (*P < 0.05). There was no significant difference in slgA concentration among samples, which were 

exposed to the swab (4.18). 

Study 2 

The average saliva flow rate was not significantly different among the three groups (Figure 

4.2A & B), but the volume of saliva not released from the swab in SF (0.232 ± 0.009 mL) · 

was significantly higher than for SF (0.206 ± 0.007 mL) (Figure 4.2C). 

The slgA concentration was also influenced by swab collection (Figure 4.3). The slgA 

concentration of the sample collected by DB (111.1 ± 16.1 mg-1'1
) was significantly higher 

than that in SC (55.1 ± 8.9 mg·L'1) and SF (33.0 ± 7.7 mg·L'1). Furthermore, the slgA 

concentration in SC was also significantly higher than in SF. 
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Figure 4.2 Saliva flow rate with the dribbling and swab collection method including the saliva volume 

retained in the swab (4.2A), excluding the saliva volume retained in the swab (4.28). The volume of saliva 

remaining within the swab (4.2C). There was a notable difference between SC and SF (*P < 0.05) in the 

volume of saliva not released from the swab. SF samples were stored at -20'e for 9 ± 1.1 days (range from 2 

to 14 days) before analysis. There was no correlation between the volume of saliva not released from swab 

and the number of days of storage. There was no significant difference among collection methods. 
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Figure 4.3 The slgA concentration 

collected by DB was significantly higher 

than se and SF (* • P < 0.0 1) and se was 

significantly higher than SF (1 P < 0.05). 



Chapter 4 Determination of Saliva Collection Method 

4.4 Discussion 

In this Chapter, the results of Study 1 (Table 4.1) show that the Salivette swab has good 

efficiency for saliva sample collection, especially for volumes between I mL to 3 mL, 

suggesting that a 4-min sampling period might be better than a 2-min sampling period 

based on the usual resting unstimulated flow rate of about 0.3 - 0. 7 mL·min·1
• However, the 

swab became saturated at saliva volumes greater than 3 mL. Furthermore, our finding 

shows that the smaller the volume of sample, the larger the proportion of sample volume 

that is retained in the swab. Study 1 also indicates that exposure of whole saliva to a cotton 

swab for a 2-min period results in a- 15% lower slgA level. 

The use of a cotton swab to collect saliva samples profoundly affected the results of the 

selected salivary biomarkers that we analysed. For example, the swabs absorbed 51% slgA 

immediately and 70% slgA when stored frozen for an average of 9 days prior to 

centrifugation. This finding is similar to that reported by Shirtcliff et al. (200 I) who also 

used a Salivette swab to collect saliva and then stored samples at -80°C until the day of 

assay. They showed the slgA concentration in swab-collected samples was 72% lower than 

that in expectorated samples (49 mg·L·1 vs 177 mg-1.1
). The results of these two studies 

strongly confirm that swabs absorb a substantial amount of slgA in a saliva sample. There 

are different densities of immunoglobulin-producing cells in the salivary glands and most 

of the saliva appearing in the mouth is secreted from submandibular glands (65%) and 

parotid glands (23%) (Crawford et al., 1975). The slgA concentration secreted by 

submandibular glands has been reported similar to that secreted by the parotids; however, 

both resting and stimulated IgA outputs a re higher in the former ( Stuchell and M andel, 

1978). Hence, it might be important to determine the contributions from these two major 

glands to slgA in whole saliva at rest and during exercise in the future. 

The mechanism by which swab collection results in lower slgA concentration in this study 

is still unknown. However, the different slgA concentration collected by cotton-based 

swab method may be due to following reasons: I) absorption of IgA by the swab material, 

2) swab (placed under tongue) may absorb higher proportion of submandibular and 

sublingular saliva than collection by dribbling, 3) whole saliva may contain some cell 

debris and precipitated protein particles that are filtered out by the swab. It seems likely 
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that certain molecules in the sample adhere to the cotton fibres. We presume some slgA 

molecules and other proteins may adhere and are trapped in the voids in cotton fibres 

(Misra et al., 1991; Ramasubbu et al., 1996; Parslow et al., 2001; Shirtcliff et al., 2001). In 

comparison with Study 1, the augmentation of decreased slgA level in Study 2 might be 

because the samples were exposed to cotton swab longer than that in Study 1. As the 

described previously, the swab was put under tongue for 2 min to collect saliva in SC and 

SF, and the SF samples were even put at room temperature for 100 min for thawing before 

being centrifugation. Therefore the longer exposure to swab possibly gradually increases 

the absorption of saliva by the swab. Determination of saliva flow and composition 

depends on accurate sampling procedures; thus, to study the effect of exercise on oral 

immunity requires the use of a standard procedure of sampling that does not interfere with 

analytical methods. It has been clearly shown that a cotton-based Salivette swab collection 

method is not reliable since the swab absorbs some of the salivary constituents, which are 

not released following centrifugation. 

In conclusion, the data from Study 1 and Study 2 has shown that the swab collection 

method is not an ideal method because it affects the result of salivary IgA. With regard to 

previously reported studies that have collected saliva using swabs, our findings suggest 

that the results may need to be viewed with some caution, particularly if absolute IgA 

values are key to the findings (rather than patterns of change) and if flow rates exceed I 

mL·min·1
, increasing the likelihood of swab saturation. Therefore, the saliva collection 

method adopted in this thesis was as follows: subjects were seated and with an initial 

swallow to empty the mouth, unstimulated whole saliva was obtained by expectoration into 

a pre-weighed vial for 2 min with eyes open, head tilted slightly forward and making 

minimal orofacial movement. 
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CHAPTER FIVE 

Effects of prolonged cycling performed once or twice and times 

of day on immunoendocrine responses 

Summary 

The present study was designed to compare 1) redistribution of leukocyte subsets, 2) stress 

hormones and IL-6 responses, 3) alteration of neutrophil degranulation capacity and 4) 

saliva flow rate and slgA responses to a single bout of prolonged cycling at different times 

of day and to a second bout of cycling at same intensity on the same day. In a 

counterbalanced design, eight males participated in three experimental trials separated by 

at least 4 days. On the afternoon exercise only trial (PMEX), subjects cycled for 2 h at 60% 

V02 m" starting at 14:00. On the other two trials, subjects performed either two bouts of 

cycling at 60% V02 m" for 2 h (EX! started at 09:00 and EX2 started at 14:00) or a. 

separate resting trial. Venous blood samples were taken 5 min before exercise and 

immediately post-exercise in the exercise trials and were taken at 09:00, 11:00, 14:00 and 

16:00 in the resting trial. Unstimulated whole saliva samples were obtained at 10 min 

before exercise, after 58 - 60 min and during the last 2 min of exercise at 60~,{ VOz m><, at 

I hand 2 h post-exercise, and every hour from 9:00 to 18:00 during a resting control trial. 

Subjects remained fasted throughout. 

The main findings were 1) PMEX induced larger increases in circulating numbers of 

leukocytes, neutrophils, and monocytes than EX!; 2) compared with EX!, EX2 caused 

greater increases in circulating numbers of leukocytes, lymphocytes, and monocytes and 

responses of plasma ACTH, cortisol, and GH; 3) plasma glucose concentration and LPS

stimulated neutrophil degranulation on per cell basis were lower after EX2 than after EX!; 

4) there were circadian rhythms in the circulating concentrations in ACTH and cortisol, 

counts of Ieukocytes, neutrophils and lymphocytes, and sigA concentration; 5) cycling at 

60% vo, = for 2 h significantly influenced saliva flow rate and sigA concentration but 

did not affect sigA secretion rate; 6) performing prolonged exercise in the morning or in 

the afternoon had similar effects on salivary variables in the short-term; and 7) in terms of 
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oral immunity, a 3 h rest was enough to recover from previous strenuous exercise, but was 

insufficient for circulating numbers of leukocytes, neutrophils, and monocytes, and 

neutrophil function. 

The findings of this study suggest I) a single bout of prolonged exercise performed in the 

afternoon induces a larger neutrophilia and monocytosis than an identical bout of morning 

exercise. This may be due to reduced carbohydrate availability and circadian rhythms in 

blood neutrophil counts and c ortisoll evels; 2) a second prolonged exercise bout causes 

greater irnmunoendocrine responses but lower plasma glucose levels and neutrophil 

function compared with the first bout; 3) during such exercise, sympathetic stimulation 

appears to be strong enough to inhibit saliva flow rate; however, it seems likely that it does 

not affect slgA production or transcytosis; and 4) a 3-h recovery period is sufficient for 

oral immunity but is insufficient for neutrophil function to recover after prolonged 

exercise. 
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5.1 Introduction 

Routine training programs of elite endurance athletes may be composed of several bouts of 

intensive exercise in a day. Epidemiological studies have demonstrated that endurance 

athletes are at increased risk of upper respiratory tract infection (URTI) after heavy 

training and/or competition and the vulnerable period can last up to 2 weeks (Nieman, 

1997). The higher incidence of infection in elite athletes may be due, at least in part, the 

repetitive intensive exercise bouts without sufficient recovery. Failure to fully recover 

between training sessions has been suggested to evoke chronic fatigue, underperformance, 

and more severe immunodepression (Gleeson, 1998, Maughan, 2002). 

Recently, several studies investigated the effects of repeated exercise bouts in the same day 

on immunoendocrine responses (McCarthy et al., 1992, Rohde et al., 1998, Ronsen et al., 

2001a, 2001b, Boyum et al., 2002, Ronsen et al., 2002a, Ronsen et al., 2002b, McFarlin et 

al., 2003). In general these studies have shown that a second bout of exercise on the same 

day induces more pronounced changes in the circulating leukocyte counts and stress 

hormones compared with a single bout of identical exercise. 

Although blood leukocytes represent a small portion of the total number of leukocytes in 

the body, the blood is a necessary passage by which immune cells travel between different 

tissues and may be crucial to pathogen surveillance as well as affecting the ability of the 

immune system to respond to potential or ongoing immune challenge (Dhabhar and 

McEwen, 1997). It has been showed that acute exercise results in a transient, significant, 

and reversible redistribution of leukocyte subsets in the circulation, marginal pools and the 

bone marrow (Gleeson and Bishop, 1999). This exercise-induced mobilisation has been 

related to elevated secretion of stress hormones (Toft et al., 1994, Benschop et al., 1996). 

Exercise disturbs homeostasis and, consequently, both the sympathetic nervous system 

(SNS) and hypothalamic-pituitary-adrenal (HPA) axis become activated, resulting in 

increased circulating levels of catecholamines and glucocorticoids (Elenkov et al., 2000). 

Interleuk.in-6 (IL-6) is a 2 1- to 2 8-kDa glycoprotein secreted by various cells including 

monocytes, macrophages, lymphocytes, epithelial cells, and myofibres. Its receptors are 

also present in a variety of cells including most leukocytes, liver, adipose, and epithelial 

53 



Chapter 5 Effects of Repeated Cycling at Tirnes of Day 

cells (Keller et al., 1996). It has well known that prolonged strenuous exercise induces 

marked elevations (up to lOO-fold) in the plasma II..-6 level (Nieman, 1997, Ostrowski et 

al., 1999, Pedersen et al., 2001) and this elevation may induce neutrophil redistribution 

(Suwa et al., 2001) and affect neutrophil functions (Sitaraman et al., 2001, Kaplanski et al., 

2003). The phagocytic neutrophil plays an important role in innate immunity, defending 

the body against various bacterial infections (Nieman, 1994). Following recognition of 

pathogens, n eutrophils kill them via b 6th oxygen-dependent (release of reactive oxygen 

species, ROS) and oxygen-independent (release of proteases) mechanisms (Fukatsu et al., 

1996, Johnson et al., 1998). It has been recently suggested that neutrophils serve as a last 

line of defense to block the "open window" during the period of immunodepression after 

prolonged exercise (Pedersen, 1999). Muns et al. (1994) reported that after long-distance 

running nasal neutrophils were less able to ingest bacteria and the effect was lasted for 3 

days. This notion was supported by recent studies, which showed that the endurance 

training temporarily reduced neutrophil phagocytosis (Blannin et al., 1996), degranulation 

(Blannin et a 1., I 997), and o xidative burst ( Gabriel et a 1., I 994, P yne et a 1., I 996). An 

impaired neutrophil microbicidal capacity may increase the susceptibility to infection in 

stressed athletes (Fukatsu et al., 1996). 

Immunity against microorganisms at remote sites, such as the nasal cavity, oral cavity, 

respiratory tract, digestive tract and gut, is primarily due to secretory immunoglobulin A, 

which has been considered as the first line of defence to infection in the lumen (Quan et 

al., 1997). Secretory lgA is produced in local plasma cells and seems to function as a 

multi-layered mucosal defense. For example, IgA prevents antigens and microbes from 

adhering to and penetrating the epithelium (immune exclusion), interrupts replication of 

intracellular pathogens during transcytosis through epithelial cells (intracellular 

neutralization), and binds antigens in the lamina propria facilitating their excretion through 

the epithelium back into the I umen (immune excretion) (Lamm, I 998). Mucosal lgA is 

also a major mediator of nasal immunity (Asahi et al., 2002). Lower levels of salivary lgA 

(slgA) or chronic si gA deficiency have been associated with ani ncreased frequency of 

URTI episodes (Gleeson et al., 1999), recurrent URTI (Isaacs et al., 1984), or reduced 

protection against certain epithelial infections (Asahi et al., 2002) because the low slgA 
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'level may allow easier entry of pathogens into body tissues via the epithelial surface 

(Ostergaard, 1977). 

Numerous studies have examined how the slgA concentration or secretion rate is affected 

by exercise. However, the results have been inconsistent to date. Some studies showed 

slgA concentration was depressed after strenuous exercise (Tomasi et al., 1982, 

Mackinnon et al., 1987, Tharp and Bames, 1990), whereas other studies reported slgA to 

be unaffected (McDowell et al., 1991, Walsh et al., 1999, Nieman et al., 2002) or even 

elevated (Tharp, 1991, Ljungberg et al., 1997, Blannin et al., 1998). Some recent studies 

reported that s ali va flow rate and si gA secretion rate, but not si gA concentration, were 

reduced following a triathlon race (Steerenberg et al., 1997) or tennis drills (Novas et al., 

2003). However, several studies have also shown a stable secretion rate of slgA following 

tennis drills (Nieman et al., 2000), soccer play (Bishop et al., 1999a), and cycling (Blannin 

et al., 1998). Jeriunott and McClelland (1989) concluded from a meta-analysis of nine 

studies that the level of IgA secretion might indicate the vulnerability toward URTI. 

Mackinnon and Hooper (1994) further suggested that the protective effect might not only 

depend on slgA concentration but also on saliva flow rate. 

Most components of the immune system show rhythmic changes (Shephard and Shek, 

1996). Plasma cortisol exhibits a prominent diurnal rhythm, which peaks immediately after 

awakening and then falls progressively during the m oming, stabilising in the a ftemoon, 

and reaching a nadir at around midnight (Porterfield, 2001); this could impose diurnal 

variation on immune function (Petrovsky et al., 1998). Plasma ACTH also shows a 

pronounced diurnal pattern, which peaks in the early morning and declines to a nadir in the 

evening (Porterfield, 2001). Circulating leukocyte and neutrophil counts demonstrate 

circadian rhythms increasing from early morning and peaking in the evening (Haus, 1994) 

and lymphocyte counts are elevated during the night and decline after wakening (Dhabhar 

et al., 1994). This inverse relationship between cortisol and peripheral blood leukocyte 

numbers suggests that the endocrine system might play an important role in regulating the 

circadian cycle of immune cells (Dhabhar et al., 1994). Gleeson et al. (2001a) showed that 

a diurnal variation in slgA concentration exists: slgA concentration was the highest at 

08:00 followed by a decline during the morning and then was stable from 12:00 onwards. 
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This finding was supported by a recent study (Dimitriou et al., 2002), which showed there 

was a significant difference in slgA concentration, slgA secretion rate, and saliva flow rate 

at 06:00 compared with 18:00: a lower slgA concentration but a higher saliva flow rate and 

slgA secretion rate were observed at 18:00. 

Hence, the aims of this present study were to compare changes in redistribution of 

leukocyte subsets, stress hormones, IL-6, neutrophil function, and saliva flow rate and 

slgA responses to a single bout of prolonged cycling at different times of day and to a 

second bout of cycling at same intensity on the same day. 
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5.2 Methods 

Subjects 

Eight male volunteers (age 28.9 ± 1.8 years, body mass 72.2 ± 2.5 kg, vo, =, 56.1 ± 2.8 

mL·kg'1·min-1
; means± S.E.M.), who were recreationally active and familiar with cycling, 

participated in the study. After receiving written information about this study and passing a 

Health Questionnaire screen, subjects gave their written informed consent. Subjects were 

asked not to perform any strenuous exercise or consume alcohol or medication for 2 days 

before each trial. The protocol was approved by the Ethics Committee of Loughborough 

University before the study began. 

Experimental Procedures 

The subject's workload was determined by a preliminary maximal oxygen uptake testing 

procedure as described in Chapter 3.2. The subjects completed three experimental trials in 

a counterbalanced order, each separated by at least 4 days. For the afternoon exercise trial 

(PMEX), subjects reported to the laboratory at 13:30 after fasting from 23:00 the previous 

day, then performed i'h cycling at 60% VO'"""' starting at 14:00. On the other two trials, 

subjects reported to the laboratory at 08:30 after an overnight fast, then either performed 

two bouts of exercise (EX! started at 09:00 and EX2 started at 14:00) or a separate resting 

control trial. EX! consisted of cycling for 2 h at 60% vo, =,, whereas in EX2 subjects 

cycled at the same exercise intensity to fatigue (75 ± 11 min). Subjects were asked to 

empty the bladder before measurement of body mass, and performed cycling at 70 rev-min-

1 on the same ergometer used to determine vo,"""'. Heart rate was recorded continuously 

during exercise by radiotelemetry. Ratings of perceived exertion (RPE) were obtained at 

15-min intervals. Venous blood samples were taken 5 min before exercise and immediately 

post-exercise in the exercise trials and were taken at 09:00, 11:00, 14:00 and 16:00 in the 

resting trial. Unstimulated whole saliva samples were obtained at 10 min before exercise, 

after 58 - 60 min and during the last 2 min of exercise at 60% vo, =,, at 1 h and 2 h post

exercise, and every hour from 9:00 to 18:00 during a resting control trial. Subjects 

remained fasted throughout. No food was consumed until the trials finished at 18:00 

though water ingestion was allowed ad libitum during the trials except for 5 min before 
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each saliva sampling. The laboratory temperature and relative humidity were 21.4 ± 0.4 °C 

and 54± 3%, respectively. 

Analytical M etltods 

Methods of preliminary measurements and blood and saliva collection and analysis are 

presented in Chapter 3. 

Statistical analysis 

All results are presented as mean values and standard errors of the mean (± SEM). Data 

were checked for normality, homogeneity of variance and sphericity before statistical 

analysis, and where appropriate the Huynh-Feldt method was applied for adjustment of 

degrees of freedom for the F-tests. Data were analysed using a tWo-factor (trial x time) 

repeated measures ANOV A with post hoc !-tests. Physiological variables and RPE were 

examined using paired !-tests. The circadian variations were examined using a one- factor 

repeated measure ANOV A with post hoc Tukey tests. P, t, and adjusted F values are 

presented and statistical significance was accepted at P < 0.05. 
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5.3 Results 

Physiological Variables and RPE 

The effects of one or two bouts of exercise on heart rate (HR), rating of perceived exertion 

(RPE), body mass loss, water intake, and the percentage change in plasma volume are 

presented in Table 5.1. There were significantly higher HR responses in EX2 than EX! (t = 

3.05, P = 0.019) and higher RPE responses in EX2 and PMEX compared with EX! (t = 

11.23, P < 0.001 and t = 3.-23, P = 0.011, respectively). Exercise intensity, body mass loss, 

water intake and percentage change in plasma volume did not differ significantly between 

trials. 

Table 5.1 The exercise intensity and the effect of exercise on HR, RPE, body mass loss, 

water intake, and percentage change in plasma volume 

EX! EX2 PMEX 

% V02max 60.7 (0.2) 59.9 (0.2) 61.2 (0.3) 

HR (beats·rnin.1
)' 146 (2) 151 (3)* 148 (3) 

RPE' 14.1 (0.2) 17.1 (0.2)** 15.3 (0.4)1 

Body mass loss (g·rnin. 1
) b 12.2 (1.4) 12.2 (1.4) 12.4 (1.4) 

Water intake (rnL) 935(129) 934 (268) 989 (189) 

Plasma volume change(%)' -4.4 ( 1.5) -6.0 (1.4) -2.4 (1.3) 

Values are mean(± SEM, n = 8). Significantly different from EX! (*P <·0.05, ••p < 0.01). 1 Significantly 

different from EX2 (P < 0.05). • Measurements made in last 15 rnin of exercise.' After correction for water 

intake.' Immediately post-exercise compared with pre-EX. 

Leukocyte counts 

Circadian Variation 

A circadian rhythm was observed for circulating numbers of leukocytes (F 3, 18 = 21.8, P < 

0.001), neutrophils (F 3, 18 = 18.3, P < 0.001), and lymphocytes (F 3, 18 = 5.8, P = 0.006). 

Resting blood counts of totalleukocytes and neutrophils were increased with time, lower in 
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the morning and higher in late afternoon (Table 5.2). However, lymphocyte numbers 

declined during the morning and then increased during the afternoon. 

Table 5.2 The circadian rhythms of blood leukocyte subsets and plasma stress hormones 

Parameter 09:00 11:00 14:00 16:00 

Total Leukocytes (109·L' 1
) 4.57 (0.36) 4.64 (0.24) 5.24 (0.36)** 5.74 (0.42)** 

Neutrophils (109·L"1
) 2.22 (0.28) 2.40 (0.26) 2.75 (0.28)* 3.08 (0.39)** 

Lymphocytes (109·L.1
) 1.80 (0.16) 1.74 (0.17) 1.95 (0.13) 2.08 (0.18)* 

ACTH(pM) 7.78 (0.96) 6.04 (0.57) 5.93 (0.58) 5.55 (0.29)* 

Cortisol (nM) 387 (80) 242 (37) 199 (39)** 218 (37)* 

Values are mean(± SEM, n = 7). Significantly different from 09:00 (*P < 0.05, **P < 0.01). 

The effects of exercise at different times of day (EXI vs PMEX) 

There was a significant main effect of time for the blood counts ofleukocytes (F 1, 7 = 29.4, 

P = 0.001, Figure 5.1A), neutrophils (F 1, 7 = 27.6, P = 0.001, Figure 5.1B), lymphocytes 

(F 1, 7 = 17.0, P = 0.004, Figure 5.1C), and monocytes (F 1, 7 = 35.4, P = 0.001, Figure 

5.1D), with values higher at post-EX compared with pre-EX. There was also a significant 

main effect of trial for the blood leukocyte (F 1, 7 = 8.9, P = 0.021) and neutrophil (F 1• 7 = 

7.8, P = 0.027) counts, which were a higher in PMEX than EX!. Furthermore, there were 

significant main effects of trial (F 1, 7 = 7.2, P = 0.032) and interaction between trial and 

time (F 1, 7 = 21.1, P = 0.003) for monocytes, with a significantly higher monocyte count at 

post-PMEX compared with post-EX!. 

The effects of the second exercise bout compared with the first bout (EX2 vs EXI) 

There was a significant main effect of time for the circulating numbers of!eukocytes (F 1, 7 

= 53.7, P < 0.001, Figure 5.1A), lymphocytes (F 1, 7 = 35.0, P = 0.004, Figure 5.1C), and 

monocytes (F 1, 7 = 96.0, P < 0.001, Figure 5. !D), with higher values at post-EX compared 

with pre-EX. For blood neutrophils, there was a significant main effect of time (F 1, 7 = 

27.9, P < 0.001, Figure 5.18) and main effect of trial (F 1, 7_ = 25.0, P = 0.002). Both 
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leukocyte and monocyte counts showed a significant main effect of trial (F 1.1 = 31.3, P = 

0.001 and F 1, 7 = 107.2, P < 0.001), with higher values in EX2 compared with EX!. In 

addition, a significant main effect of trial (F 1, 7 = 15.8, P = 0.005) and interaction between 

trial and time (F 1, 7 = 28.2, P = 0.001) were observed for lymphocyte counts, with higher 

values at post EX2 compared with post-EX!. 
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Figure 5.1 Changes in circulating counts oftotalleukocytes (5.1A), neutrophils (5.18), lymphocytes (5.1C) 

and monocytes (5.1 D). Values are means± SEM (n = 8). Significantly different from the pre-EX ( P < 0.05, 

"P < 0.01), significantly different from PMEX (1 P < 0.05, 11 P < 0.01), significantly different from EX! (' P 

< 0.05, •• p < 0.01). 
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Comparison between the second bout and the single afternoon bout of prolonged cycling 

(EX2 VS PMEX) 

There was a significant main effect oftime for the circulating numbers of leukocytes (F 1, 7 

= 5.9, P = 0.046, Figure 5.1A), neutrophils (F 1, 7 = 18.3, P = 0.004, Figure 5.1B), 

lymphocytes (F 1, 7 = 48.0, P < 0.001, Figure 5.1C), and monocytes (F 1, 7 = 67.1, P < 

0.001, Figure 5.1D), with higher values at post-EX compared with pre-EX. There was a 

significant main effect of trial for leukocyte (F 1, 7 = 5.9, P = 0.046) and monocyte (F 1, 7 ~ 

16.8, P = 0.005) counts. 

Stress Hormones 

Circadian Variation 

A circadian rhythm was observed for plasma concentrations of ACTH (F J, I8 = 5.1, P = 

0.026) and cortisol (F 3, 18 = 6.6, P < 0.006), with higher values in the early morning and a 

decline with time to lower levels in the late afternoon (Table 5.2). 

The effects of exercise at different times of day (EXJ vs PMEX) 

There was a significant main effect of time for plasma concentrations of adrenaline (F 1,1 = 

15.7, P = 0.029, Figure 5.2A), ACTH (F 1, 7 = 10.5, P = 0.014, Figure 5.2B), cortisol (F 1, 7 

= 7.0, P = 0.033, Figure 5.2C), and GH (F 1,1 = 31.7, P = 0.001, Figure 5.2D), with higher 

levels at post-EX than pre-EX. Furthermore, there was a significant interaction between 

trial and time for plasma cortisol (F 1• 7 = 7.2, P = 0.031). Exercise in the morning did not 

affect the plasma cortisol concentration, whereas exercise in the afternoon resulted in a 2-

fold increase in this variable (Figure 5.2C). 

The effects of the second exercise bout compared with the first bout (EX2 vs EXJ) 

There was a significant main effect of time for plasma concentrations of adrenaline (F 1,1 = 

31.2, P = 0.005, Figure 5.2A), ACTH (F 1, 7 = 15.7, P = 0.005, Figure 5.2B), cortisol (F 1,1 

= 15.7, P = 0.007, Figure 5.2C)and GH (F 1, 7 = 27.7, P = 0.001, Figure 5.2D), with higher 

levels at post-EX than pre-EX. A significant main effect of trial and an interaction between 

trial and time were also observed for plasma ACTH (F 1,1 = 12.4, P = 0.010 and F 1,1 = 
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17.7, P = 0.004), cortisol (F 1.1 = 6.4, P = 0.045 and F 1.1 = 21.7, P = 0.003), and OH (F 1• 

1 = 5.9, P = 0.045 and F 1• 1 = 5.9, P = 0.046), with higher levels at post-EX2 compared 

with post-EX I. 
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Figure 5.2 Changes in plasma concentrations of adrenaline (5.2A), ACTH (5.28), cortisol (5.2C) and GH 

(5.20). Values are means± SEM (n = 8). Significantly different from the pre-EX ( P < 0.05, "P < 0.01) and 

significantly different from EX!(' P < 0.05, "P < O.Ol). 
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Comparison between the second bout and the single afternoon bout of prolonged cycling 

(EX2 VS PMEX) 

A significant main effect of time was observed for the plasma concentrations of adrenaline 

(F 1, 7 = 18.0, P = 0.005, Figure 5.2A), ACTH (F 1, 7 = 18.4, P = 0.004, Figure 5.2B), 

cortisol (F 1, 7 = 22.0, P = 0.003, Figure 5.2C), and GH (F 1, 1 = 24.3, P = 0.002, Figure 

5.2D). 

Glucose and IL-6 

The effects of exercise at different times of day (EXI vs PMEX) 

There was a significant main effect of time (F 1, 7 = 38.9, P < 0.001, Figure 5.3A) and an 

interaction between trial and time (F 1, 7 = 5.9, P = 0.044) for plasma glucose 

concentration, which was lower at post-PMEX (but not at post-EX1) compared with pre

EX. Plasma IL-6 concentration showed a significant main effect of time (F 1. 7 = 36.1, P = 

0.001, Figure 5.3B), with higher values at post-EX than pre-EX. 

The effects of the second exercise bout compared with the first bout (EX2 vs EXI) 

There were significant main effects of trial (F 1, 7 = 5.6, P = 0.050) and time (F 1, 7 = 18.8, 

P = 0.003) and an interaction between trial and time (F 1, 7 = 7.5, P = 0.029) for plasma 

glucose concentration, with values at post-EX2 significantly lower than at pre-EX2 and 

post-EX1 (Figure 5 .3A). Plasma IL-6 concentration at post-EX was significantly higher 

than pre-EX (main effect oftime: F 1, 7 = 23.4, P = 0.002, Figure 5.3B). 

Comparison between the second bout and the single afternoon bout of prolonged cycling 

(EX2 VS PMEX) 

There was a significant main effect of time (F 1, 7 = 25.2, P = 0.002) and an interaction 

between trial and time (F 1, 7 = 6.0, P = 0.044) for plasma IL-6 (Figure 5.3B), with a higher 

concentration at post-EX than pre-EX in both EX2 and PMEX. 
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Figure 5.3 Changes in plasma concentrations of glucose (5.3A) and IL-6 (5.3B). Values are means± SEM (n 

= 8). Significantly different from the pre-EX ( P < 0.05, "P < 0.01) and' significantly different from EXI 

(P < 0.05). 
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Figure 5.4 Changes in total LPS-stimulated elastase release (5.4A) and LPS-stimulated elastase release per 

neutrophil (5.4B). Values are means ± SEM (n = 8). Significantly different from the pre-EX ( P < 0.05, "P 

< 0.0 1), 11 significantly different from PMEX (P < 0.0 1), "significantly different from EX! (P < 0.01). 
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Neutrophil Degranulation 

The effects of exercise at different times of day (EXI vs PMEX) 

There was a significant main effect of time (F 1, 7 = 46.9, P < 0.001) for total LPS

stimulated elastase release, which was higher at post-EX than pre-EX (Figure 5.4A). In 

contrast, 2 h cycling at 60% vo,"""' caused a significantly lower LPS-stimulated elastase 

release per neutrophil in post-EX compared with pre-EX (main effect of time: F 1, 7 = 7.3, 

P = 0.031, Figure 5.4B). 

The effects of the second exercise bout compared with the first bout (EX2 vs EXJ) 

There were significant main effects of trial (F 1, 7 = 11.1, P = 0.012) and time (F 1, 7 = 26.1, 

P = 0.001) and an interaction between trial and time (F 1, 7 = 18.0, P = 0.004) for total LPS

stimulated elastase release, which was higher at pre-EX2 than pre-EXI and at post-EX! 

than pre-EXI (Figure 5.4A). For LPS-stimulated elastase release per neutrophil, there were 

significant main effects of trial (F 1, 7 = 32.4, P = 0.001) and time (F 1, 7 = 8.4, P = 0.023), 

with higher values at pre-EX than post-EX and a higher values in EX! compared ·with EX2 

(Figure 5.4B). 

Comparison between the second bout and the single afternoon bout of prolonged cycling 

(EX2 VS PMEX) 

There was a significant main effect of time (F 1, 1 = 37.5, P < 0.001) and an interaction 

between trial and time (F 1, 7 = 19.4, P = 0.003) for total LPS-stimulated elastase release 

(Figure 5.4A) and a main effect of time (F 1, 7 = 10.6, P = 0.014) for LPS-stimulated 

elastase release per neutrophil (Figure 5.4B). 

Saliva Flow Rate 

The effects of exercise at different times of day (EXI vs PMEX) 

There was a significant main effect of time for saliva flow rate (F 4, 28 = 8.0, P < 0.00 I), 

which was decreased following exercise and returned to the levels of pre-EX within I h 

(Figure 5.5). 
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The effects of the second exercise bout compared with the first bout (EX2 vs EXJ) 

Similarly, a significant main effect of time for saliva flow rate was observed (F 4, 28 = 10.3, 

P = 0.002), which was decreased following exercise and returned to the levels of pre-EX 

within 1 h (Figure 5.5). 

Comparison b.etween the second bout and the single afternoon bout of prolonged cycling 

(EX2 vs PMEX) 

There was a significant main effect of time (F 4• 28 = 11.4, P = 0.001) and an interaction 

between trial and time (F 4, 28 = 3.1, P =0.030) for saliva flow rate, which was also 

decreased following exercise and returned to the levels of pre-EX within 1 h in both trials 

(Figure 5.5). 
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Figure 5.5 Changes in saliva flow rate. Values are means± SEM (n = 8). u Significantly lower than pre-EXl 

(P < 0.01), ''significantly lower than pre-EX2 (P < 0.01), "'significantly lower than pre-PMEX (P < o·.Ol). 
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Salivary lgA Concentration and Secretion Rate 

Circadian Variation 

Circadian variations were also found in resting slgA concentration (F 9, 63 = 3.6, P = 
0.009), which decreased with time from the highest value in the early morning to the 

lowest value in the evening (Table 5.3). 

Table 5.3 The circadian variation of slgA concentration and slgA secretion rate at rest 

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 

s1gA 
125 128 107 125 119 115 110 93 74* 75* concentration 

(mg·L·') (26) (18) (20) (24) (27) (200) (13) ( 18) ( 11) (10) 

slgA 
68 74 58 68 68 70 76 66 56 59 secretion rate 

(].lg·min' 1
) 

(8) (9) (9) (8) (9) ( 11) (5) (9) (4) (9) 

Values are mean(± SEM). *Significantly different from 09:00 (P < 0.05). 

The effects of exercise at different times of day (EXJ vs PMEX) 

There was a significant main effect of time for slgA concentration (F 4, 28 = 5 .8, P = 0.026), 

with an increase with exercise and returned to pre-EX level within I h (Figure 5.6). There 

were no significant differences in slgA secretion rate in both trials throughout experimental 

protocol (Figure 5. 7). 

The effects of the second exercise bout compared with the first bout (EX2 vs EXJ) 

There were significant main effect of trial (F 1, 7 = 7.3, P = 0.031), main effect of time (F 4, 

28 = 3.0, P = 0.035), and interactions between trial and time (F 4, 28 = 3.8, P = 0.021) for 

slgA concentration. The slgA concentration was increased with exercise and remained 

elevated for at least 2 h in EX2 after exercise cessation.. Furthermore, the slgA 

concentrations at post-1 h and post-2h in EX2 were significantly higher than the same time 

points in EX! (Figure 5.6). Only a significant interaction between trial and time was 

observed for slgA secretion rate (F 4, 28 = 5.0, P = 0.004, Figure 5.7). 
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Figure 5.6 Changes in slgA concentration. Values are means± SEM (n = 8). 'Significantly higher than pre

EXI (P < 0.05), ''significantly higher than pre-EX2 (P < 0.01), 'significantly higher than pre-PMEX (P < 

0.05), ' significantly higher than EX I (P < 0.05). 
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Figure 5. 7 Changes in slgA secretion rate. Values are means± SEM (n = 8). • Significantly higher than pre

EX2 (P < 0.05). 
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Comparison between the second bout and the single afternoon bout of prolonged cycling 

(EX2 VS PMEX) 

There was a significant main effect of time in slgA concentration (F 4, 28 = 4.4, P = 0.0 I 0) 

and slgA secretion rate (F 4, 28 = 3.5, P = 0.021 ). 

70 



---------------

Chapter 5 Effects of Repeated Cycling at Times of Day 

5.4 Discussion 

The main findings were I) PMEX induced larger increases in circulating numbers of 

leukocytes, neutrophils, and monocytes than EX!; 2) compared with EX!, EX2 caused 

greater increases in circulating numbers of leukocytes, lymphocytes, and monocytes and 

responses of plasma ACTH, cortisol, and GH; 3) plasma glucose concentration and LPS

stimulated neutrophil degranulation on per cell basis were lower after EX2 than after EX 1; 

4) cycling at 60% YOzm" for 2 h significantly influenced saliva flow rate and slgA 

concentration but did not affect slgA secretion rate; 5) performing prolonged exercise in 

the morning or in the afternoon had similar effects on salivary variables in the short-term 

6) a 3 h rest was enough -for oral immunity, but was insufficient for circulating numbers of 

. leukocytes, neutrophils and monocytes and neutrophil function to recover; and 7) there 

were circadian rhythms in plasma concentrations of ACTH and cortisol, circulating counts 

of leukocytes, neutrophils and lymphocytes, and slgA concentration. 

The latter findings were similar to previous studies, which showed that resting blood 

counts of leukocytes and neutrophils increased from early morning and peaked around 

19:00 - 21 :00 (Haus, 1994); whereas blood lymphocyte concentrations were elevated 

during the night time (due to release of cells from lymphoid organs) and declined after 

wakening (by movement of lymphocytes back to the lymphoid tissues under the influence 

of cortisol) (Dhabhar et al., 1994, Gatti et al., 1994). A diurnal variation of slgA 

concentration was also found supporting the findings of previous studies (Gleeson et al., 

2001a, Dimitriou et al., 2002). The findings suggest that the diurnal variation must be 

considered when the aim of a study is to compare the effect of exercise performed at 

different times of day on the aforementioned parameters. 

A reduction of plasma glucose levels was found at post-PMEX and post-EX2 but not at 

post-EX! in the present study. Glucose has been indicated to be the primary energy source 

of immune cells (Pedersen, 1999). Muscle glycogen depletion and hypoglycaemia are 

potential causes of fatigue during prolonged exercise (Coyle et al., 1983, Costill and 

Hargreaves, 1992) and the reduction in plasma glucose levels has been linked to HP A 

activation, increasing the release of stress hormones (Mitchell et al., 1990). In this study, 

plasma glucose concentration was unchanged after 2 h cycling at 60% YOz"'"' in the 
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mornmg. However, plasma glucose levels fell markedly during EX2 and subjects were 

exhausted after 75 ± 11 min. Although there was no direct evidence to prove that subjects' 

fatigue during EX2 in this study was caused by glycogen depletion, it can be assumed that 

the subjects' glycogen stores would have been almost fully depleted at the end of EXl. 

During 2 h of cycling at 60% vo, max, the rate of carbohydrate oxidation was about 1. 7 

g·min·1 (estimated from the respiratory exchange ratio and VQ, data during EX!). Thus, 

after 2 h cycling, around 200 g of carbohydrate would have been oxidised, which probably 

corresponds to >80% of the total available glycogen stores after an overnight fast. 

Glycogen resynthesis was probably minimal during the 3 h recovery under fasting 

conditions (Satabin et al., 1989). Thus, it is not surprising that plasma glucose 

concentrations at post-EX2 were significantly lower than post-EX! and below normal 

fasting values. Plasma glucose levels were also lower at post-PMEX compared with post

EX! and this may be, at least partly, due to the lower liver and muscle glycogen stores in 

the afternoon (Clark and Conlee, 1979) and the longer period of fasting than for the 

morning exercise bout. 

Several hormones are involved in the redistribution of immune cells during exercise. GH is 

likely one of the candidates since it has been shown to cause blood neutrophilia after GH. 

injection (Kappel et al., 1993). However, cortisol appears to have a more wide-reaching 

effects and has been reported to cause neutrophilia together with lymphopenia, 

monocytopenia, eosinopenia, and a suppression of NK and T cell function (Fauci, 1976, 

Cupps and Fauci, 1982) with a time Jag of at least 2 h, peaking at 4 h after administration 

(Pedersen et al., 1997b ). Adrenaline seems to be an important hormone in recruiting 

lymphocytes and neutrophils into circulation during the first 90 min of intensive exercise. 

However, after 9 0 m in of exercise, its effect is minimised by the rising cortisol, which 

attenuates lymphocytosis and subsequently induces lymphopenia, which can develop 

before exercise has finished (Nieman, 1997). In this study, the lower pre-EX blood counts 

of leukocytes and neutrophils in EXI compared with PMEX could be due to circadian 

rhythms. However, the higher circulating numbers of leukocytes, neutrophils and 

monocytes at post-PMEX compared with post-EX! could be caused by plasma cortisol 

because plasma cortisol concentration was significantly higher at post-PMEX than post

EX!. Compared with EX!, EX2 caused larger increases in circulating numbers of 
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leukocytes, lymphocytes and monocytes and this effect may be attributable to the greater 

increase in plasma cortisol and GH during EX2. Furthermore, the blood lymphocyte count 

and plasma stress hormones returned to pre-EX values, whereas the leukocytosis, 

neutrophilia, and monocytosis induced by EX! did not return to the values of pre-EX after 

the 3-h recovery period. This finding was similar to the results of the study conducted by 

Ronsen et al. (Ronsen et al., 200lb), which showed that the elevated counts ofleukocytes 

and neutrophils did not return to resting values within 3 h after a 75 min cycling consisting 

of a I 0-min at 50% Y02 max and a 65-min at 75% Y02 mox. There were no significant 

differences in blood counts of total leukocytes, leukocyte subsets or the plasma 

concentrations of stress hormones between PMEX and EX2 in this study, whereas Ronsen 

et al. (200la, 200ib) showed that a second bout ofcycling induced significantly higher 

blood counts of leukocytes, neutrophils, and lymphocytes and plasma concentrations of 

adrenaline, ACTH, cortisol, and GH compared with an identical single bout of cycling 

performed at the same time of day. The differences between the results of Ronsen et al. 

and the present study may be related to differences in carbohydrate availability. In the 

studies of Ronsen et al. subjects were served 2 standardized meals (2,000 kcal in total) 

before performing the single afternoon cycling. However, subjects in our study remained 

fasted from 23:00 the day before trial until 18:00 on the trial day. Furthermore, subjects in 

our study were unable to complete 2 h of cycling in the second exercise bout. 

In the present study, the plasma IL-6 concentration was elevated after exercise in all trials. 

These results were similar to previous studies, which have shown that prolonged strenuous 

exercise induces a marked elevation in the plasma IL-6 level (Ostrowski et al., 1999, 

Pedersen et al., 2001). Recent studies have demonstrated that IL-6 is produced in and 

released from contracting skeletal muscle into the circulation (Steensberg et al., 2000, 

Langberg et a 1., 2 002) and that IL-6 m ay a et in a hormone-like fashion to p remote the 

hepatic glucose production and stimulate lipolysis in adipose tissue during exercise 

(Gleeson, 2000a, Febbraio and Pedersen, 2002). However, in the present study, the 

absolute plasma concentrations of IL-6 at post-EX were relatively low and there were no 

significant differences between trials. 
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Total LPS-stimulated elastase release was significantly increased after exercise. However, 

this effect was likely due to the blood neutrophilia after exercise. When total LPS

stimulated elastase was divided by the neutrophil count and presented on per cell basis, the 

capacity of L PS-stimulated elastase release per neutrophil was lower at post-PMEX and 

post-EX2 compared with pre-EX. The results of this study also showed that 2 h cycling at 

60% vo, ""' induced a fall in neutrophil degranulation capacity on per cell basis and this 

decline could not be fully recovered after a 3-h rest period. Thus, the exercise-induced 

depression of the neutrophil degranulation response rriay be further deteriorated if athletes 

begin another exercise bout after insufficient recovery. To our knowledge, this is the first 

study investigate how repeated bouts of exercise on the same day influence the LPS

stimulated neutrophil degranulation response. Previous studies have shown that the LPS

stimulated neutrophil degranulation response is decreased on per cell basis after a single 

exercise bout and this decline does not recover within 2 h after exercise (Robson et al., 

1999, Walsh et al., 2000a). Exposure to glucocorticoids has been reported to depress 

neutrophil functions, including chemotaxis, adherence to surfaces, phagocytosis, 

degranulation, oxidative burst, and antibody-dependent cytotoxicity (Liles et al., 1995) in a 

dose-related manner (Tintinger et al., 2001). The higher plasma cortisol levels during 

exercise and the entry into the circulation of less mature neutrophils released from the bone 

marrow under the influence of cortisol (Pyne, 1994) and IL-6 (Suwa et al., 2000) may be 

responsible for the observed fall in the LPS-stimulated neutrophil degranulation response 

after exercise in this study although a recent study suggested that release of less mature 

cells was not the reason for the fall in LPS-stimulated elastase release after a 2 h cycle at 

70% VOz .,., (Bishop et al., 2003). 

Saliva flow rate significantly decreased at post-EX compared with pre-EX and this fall 

returned to pre-EX values within I h. Salivary glands are innervated by both 

parasympathetic cholinergic nerves and sympathetic adrenergic nerves. During exercise, 

the sympathetic stimulation is increased and induces vasoconstriction, which limits saliva 

secretion rate (Chicharro et al., 1998). Plasma adrenaline concentration was increased 

during exercise and therefore, it is not surprising to find a significant decrease in saliva 

flow rate in the present study. Previous studies have also consistently reported falls in 

saliva flow rate during strenuous exercise (Ljungberg et al., 1997, Steerenberg et al., 1997, 
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Nieman et al., 2002). Rantonen and Meurman (2000) indicated that the saliva flow rate 

appeared to be the single salivary defensive factor which affected oral health to a 

significant degree. This notion was supported by recent studies, which showed the absence 

of caries in children with familial dysautonomia was associated with a higher salivary flow 

rate (Mass et al., 2002), and the increased incidence of oral candida! infections in HIV

infected patients (Lin et al., 2001) was associated with a lower saliva flow rate. Fox et al. 

( 1985) also suggested individuals who suffered from dry mouth syndrome had an increased 

incidence of URTI. The results of this Chapter indicate that saliva flow rate responses to 

prolonged cycling are not affected by time of day or by performing more than one bout of 

endurance exercise on the same day if the adrenaline responses to exercise are similar. 

A significant elevation in sigA concentration at post-EX compared with pre-EX was 

found. The alteration seemed to mainly result from the reduction of saliva flow rate since 

no changes in sigA secretion rate were observed during this period. Saliva IgA secretion 

has been shown to be stimulated by u-adrenoceptors (Proctor et al., 2003) and depressed 

by glucocorticoid 24 h after a single injection (Wira et al., 1990). The observed changes in 

sigA concentration and secretion rate in the present study support the notion that cortisol 

does not affect si gA l eve! acutely. Since the inhibitory effect of exercise on si gA l eve! 

seems to occur on the following day after exercise, further investigations may need to 

examine longer-term responses to experimental exercise interventions. 

In conclusion, the findings of this study suggest that 1) a single bout of prolonged exercise 

performed in the afternoon induces a larger neutrophilia and monocytosis than an identical 

bout of morning exercise. This may be due to reduced carbohydrate availability and 

circadian rhythms in blood neutrophil counts and cortisol levels; 2) a second prolonged 

exercise bout causes greater immunoendocrine responses but lower plasma glucose levels 

and neutrophil function compared with the first bout; 3) during such exercise, sympathetic 

stimulation appears to be strong enough to inhibit saliva flow rate; however, it seems likely 

that it does not affect sigA production or transcytosis; and 4) a 3-h recovery period is 

sufficient for oral immunity but is insufficient for neutrophil function to fully recover after 

prolonged exercise. 
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CHAPTER SIX 

Effects of carbohydrate supplementation during the recovery 

interval on immunoendocrine responses to a repeated bout of 

prolonged cycling 

Summary 

The purpose of this study was to examine the effect of CHO feeding during the recovery 

interval separating two 90-min cycling bouts (EX I started at 09:00 and EX2 started at 

13 :30) at 60% vo, ""'' on leukocyte redistribution, neutrophil degranulation response to 

LPS, plasma IL-6, stress hormones, saliva flow rate and slgA responses to a 3-h recovery 

interval and the subsequent EX2. This study consisted of two trials, which were completed 

in a counterbalanced order and separated by at least 4 days. Subjects (n = 8) consumed a 

lemon flavoured 10% w/v glucose (CHO) or PLA beverage (22 mL·kg·1 body mass) during 

the first hour of the recovery interval following EX l. Venous blood samples were taken 5 

min before exercise and immediately post-exercise and unstimulated whole saliva samples 

were collected at 10 min before exercise, 48-50 min and 88-90 m in of exercise, and 1 h 

and 2h post-exercise for both trials. The main findings were that ingestion of CHO 

compared with PLA during the recovery interval did not affect immunoendocrine 

responses during the recovery interval and the E X2. Compared with EX 1, E X2 evoked 

significantly higher circulating numbers of leukocytes, neutrophils, lymphocytes and 

monocytes, higher plasma adrenaline concentration and lower plasma glucose 

concentration. These findings suggest that CHO ingestion during the recovery interval 

between two bouts of prolonged exercise does not attenuate immunoendocrine responses 

during a 3-h recovery interval and a subsequent bout of 90 min cycling at 60% vo,""". A 

second prolonged exercise bout causes a greater disturbance in immunoendocrine 

responses than the first exercise bout on the same day and this is not substantially 

influenced by CHO supplementation during the recovery interval. 
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6.1 Introduction 

Numerous studies have been done to examine the influence of an acute single exercise bout 

on the immune system and the results indicate that after intensive prolonged exercise, such 

as a marathon race, immunity is depressed for several hours (Mackinnon, 1999). During 

this so-called "open window" period, pathogens may invade and cause infections in 

stressed athletes (Pedersen, 1997). The training regimens of many athletes involve several 

bouts of exercise in a day. Although a few studies have examined the effects of daily 

repeated exercise bouts on immunoendocrine responses (McCarthy et al., 1992, Rohde et 

al., 1998, Ronsen et al., 2001a, Ronsen et al., 2001b, Boyum et al., 2002, Ronsen et al., 

2002a, Ronsen et al., 2002b, McFarlin et al., 2003), no study has investigated the influence 

ofCHO ingestion during repeated bouts of exercise on immunoendocrine responses. 

During stressful periods of training involving multiple exercises with short recovery 

intervals, it is particularly important for athletes to maintain immunocompetence (Gleeson, 

2000c) and rapidly restore glycogen (Maughan, 2002) during recovery if they are to 

maintain training quality in subsequent bouts of exercise. It has been suggested that 

inadequate nutrition may result in glycogen depletion and subsequent elevation of stress 

hormones with impairment of immune cell function during prolonged exercise, leading to 

an increased incidence of infection (Venkatraman and Pendergast, 2002). The ingestion of 

CHO compared with PLA in drinks consumed during exercise appears to better maintain 

plasma glucose concentration, improve endurance exercise performance, and attenuate the 

elevation of plasma stress hormones and perturbation of circulating counts of total 

leukocytes and leukocyte subsets (Gleeson et al., 2001b). 

Price et al. ( 1994) reported that the recovery of glycogen after glycogen depleting exercise 

is biphasic: an initial rapid phase (insulin-independent) of glycogen synthesis (27 ± 

mmol·L·'·h-1
, determined by 13C-nuclear magnetic resonance spectroscopy) lasting 30- 60 

minis followed by a slower (insulin-dependent) phase (2.9 ± 0.8 mmol-L"1·h-1
). If CHO is 

not provided during recovery, gluc_ose availability will be the limiting factor for glycogen 

synthesis since gluconeogenesis would not be able support the maximal rate of glycogen 

synthesis (Satabin et al., 1989). In the present study subjects were provided with 2.2 g 

CHO·kg·' body mass during the first hour of the recovery period, which was estimated to 

77 



Chapter 6 Effects of CHO Ingestion During the Recovery Interval 

be equivalent to the amount of CHO oxidised during the first exercise bout and is 

comparable with the recommendation oflvy et al. {1988), who suggested that the optimal 

strategy to restore glycogen is to consume -1.5 g CHO·kg·1 body mass immediately after 

exercise and similar amounts at 2 h intervals thereafter. 

Therefore, the first aim of the present study was to examme the effect of CHO · 

supplementation during the recovery interval on leukocyte mobilisation, neutrophil 

degranulation response to LPS, plasma IL-6, stress hormones, saliva flow rate and slgA 

responses to a 3-h recovery interval and a subsequent second bout of prolonged exercise. 

The second aim was to compare the magnitude of the immunoendocrine response between 

the first and the second exercise bout. We hypothesised that CHO ingestion may be 

beneficial to blunt the perturbation of immunoendocrine responses during the recovery 

interval and the subsequent exercise bout and that the second exercise bout would evoke 

greater immunoendocrine responses compared with the first bout. 
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6.2 Methods 

Subjects 

Eight male volunteers (age 29.8 ± 1.6 years, height 175 ± 2 cm, body mass 75.4 ± 2.6 kg, 

Y02max 45.5 ± 2.2 mL·kg· 1·min.1
; means± S.E.M.), who were recreationally active and 

familiar with cycling, participated in the study. After receiving written information about 

this study and passing a Health Questionnaire screen, subjects gave their written informed 

consent. Subjects were requested to complete the dietary record sheet on the day prior to 

Trial 1 and then repeated it again before Trial 2. Subjects were also asked not to perform 

any strenuous exercise or consume alcohol or medication for 2 days before each trial. The 

protocol was approved by the Ethics Committee of Loughborough University before the 

study began. 

Experimental Procedures 

The subject's workload was determined by a preliminary maximal oxygen uptake testing 

procedure as described in Chapter 3.2. The subjects completed two trials in a 

counterbalanced order, each separated by at least 4 days. Subjects arrived at the laboratory 

at 08:30 after fasting from 23:00 the previous day and were asked to empty the bladder 

before body mass was recorded. Subjects then performed two bouts of 90 min cycling 

(EX! started at 09:00 and EX2 started at 13:30) at 60% vo, max at 70 rev·min-1 on the 

same ergometer used to determine vo, max. Subjects consumed a lemon flavoured 1 0% 

w/v CHO (glucose) beverage or artificially sweetened placebo (22 mL·kg-1 body mass) 

during the first hour of the recovery period (i.e. 10:30-11:30). The amount of CHO 

ingested ( -165 g) was approximately equivalent to the amount of CHO oxidised during 

EX! based on measurements of respiratory gas exchange. Heart rate was recorded 

continuously during exercise by radiotelemetry. Ratings of perceived exertion (RPE) were 

obtained at 15-min intervals. Venous blood samples were taken 5 min before exercise and 

immediately post-exercise and unstimulated whole saliva samples were collected at 10 min 

before exercise, 48-50 min and 88-90 min of exercise, and 1 h and 2h post-exercise for 

both trials. Water ingestion was allowed ad libitum during the exercise bouts except for 5 

min before each saliva sampling. The laboratory temperature and relative humidity were 

23.9 ± 0.1 °C and 31 ± 1%, respectively. 
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Analytical Methods 

Methods of preliminary measurements and blood collection and analysis are presented in 

Chapter 3. 

Statistical analysis 

All results are presented as mean values and standard errors of the mean (± SEM). Data 

were checked for normality, homogeneity of variance and sphericity before statistical 

analysis, and where appropriate the Huynh-Feldt method was applied for adjustment of 

degrees of freedom for the F-tests. Data were analysed using a two-factor (trial x time) 

· repeated measures ANOV A with post hoc Tukey tests and paired t-tests, where 

appropriate. For the blood variables the time points used in the ANOVA were post-EX!, 

pre-EX2 and post-EX2 since the intervention (CHO or PLA) occurred after post-EX!. P 

and adjusted F values are presented and statistical significance was accepted at P < 0.05. 
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6.3 Results 

Physiological Variables and RPE 

There were significant main effects of time for % V02"""' (F 1, 7 = 11 .7, P = 0.013) and 

RPE (F 1,1 =21.0, P = 0.003) (Table 6.1). 

Table 6.1 The exercise intensity and its effect on HR, RPE, body mass loss, water intake, 

and percentage change in plasma volume 

CHO PLA 

EX! EX2 EX! EX2 

% V02max 59.6 (1.3) 62.0 (1.3) 60.2 (1.2) 63.1 (1.0)** 

HR (beats·min' 1
)' 140 (3) 146 (3) 142 (4) 148 (3) 

RPE' 13.1 (0.4) 15.0 (0.5)* 13.4 (0.3) 15.1 (0.2)** 

Body mass loss (kg) h 1.19 (0.15) 1.23 (0.19) 1.26 (0.18) 1.22 (0.13) 

Water intake ( rnL) 686 (127) 833 (99) 800 (129) 808(51) 

Plasma volume change(%)' - 4.0 (0.5) - 3.0 (0.4) - 3.9 (0.7) - 3.3 (0.5) 

Values are mean (±SEM, n = 8). Significantly different from EX! (*P < 0.05, ••p < 0.01).' Measurements 

made in last 15 min of exercise. h After correction for water intake.' Immediately post-EX compared with 

pre-EX. 

Leukocyte counts 

There was a significant main effect of time and an interaction between trial and time for 

the blood counts ofleukocytes (time: F 2,1 4 = 63.6, P < 0.001; interaction: F 2,14 = 6.0, P = 

0.013; Figure 6.1A) and neutrophils (time: F 2, 14 = 26.3, P < 0.001; :interaction: F 2, 14 = 

6.6, P = 0.025; Figure 6.1B). There was significant main effect of time for circulating 

lymphocytes (F 2, 14 = 63.1, P < 0.001, Figure 6.1C) and monocytes (F 2,14 = 36.2, P < 

0.001, Figure 6.10) 
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Figure 6.1 Changes in circulating counts oftotalleukocytes (6.lA), neutrophils (6.lB), lymphocytes (6.lC), 

and monocytes (6.lD). Values are means± SEM (n = 8). Significantly different from post-EX! in CHO (' P 

< 0.05, ""P < 0.01) and PLA (bb P < 0.01). 

Stress Hormones 

There was a significant main effect of time for plasma concentrations of adrenaline (F 1, 7 = 
32.8, P = 0.001, Figure 6.2A) and GH (F 2, 14 = 12.1, P = 0.003, Figure 6.20). There were 

significant main effect of trial (F 1, 7 = 6.1, P = 0.043) and time (F 2,14 = 13.1, P = 0.008) 

and an interaction between trial and time (F 2, 14 = 7.0, P = 0.030) for plasma ACTH 

concentration (Figure 6.28). For plasma cortisol concentration (Figure 6.2 C), there was a 

significant main effect of time (F 2, 14 = 32.8, P < 0.001) and an interaction between trial 

and time (F 2, 14 = 3.9, P = 0.044). 
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Figure 6.2 Changes in plasma concentrations of adrenaline (6.2A), ACTH (6.2B), cortisol (6.2C), and 

growth hormone (6.20). Values are means± SEM (n = 8). Significantly different from post-EX! in CHO (" 

P < 0.01) and PLA (bb P < 0.01), significantly different between trials ( P < 0.05). 

Glucose and IL-6 

There was a significant main effect of time for concentrations of plasma glucose (F 2. 14 = 

21. 7, P < 0.001, Figure 6.3A) and IL-6 (F 2, 14 = 11.9, P = 0.001, Figure 6.3B). 

Neutrophil Degranulation 

There was a significant main effect of time (F 2, 14 = 12.1, P = 0.001) and an interaction 

between trial and time (F 2• 14 = 9.0, P = 0.003) for total LPS-stimulated elastase release, 

which was higher at post-EX2 in PLA compared with post-EX! (Figure 6.4A). There was 

no main effect and interaction in LPS-stimulated elastase release on a per neutrophil basis 

(Figure 6.4B). 

83 



Chapter 6 Effects of CHO Ingestion During the Recovery Interval 

-'"" 2.0 

-<>- "" 

' '·' ~ 
.s 
• 5 • 8 

s 1.0 

" " • 0.5 

3 00'-----------------
pre-EXt post-EX1 ,...ex, post-EX2 pre-EX2 post·EX2 

(6.3A) (6.38) 

Figure 6.3 Changes in plasma concentrations of glucose (6.3A) and plasma IL-6 (6.38). Values are means± 

SEM (n = 8). Significantly different from post-EX 1 in CHO (uP< 0.0 1) and PLA (bb P < 0.0 1). 
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Figure 6.4 Changes in total LPS-stimulated elastase release (6.4A) and LPS-stimulated elastase release per 

neutrophil (6.48). Values are means± SEM (n = 8). Significantly different from post-EX! in PLA (bb P < 

0.01). 

Saliva Flow Rate 

A significant mam effect of time was observed for saliva flow rate (F 9. n = 7.8, P < 

0.001), which was decreased at post-EX2 and returned to the values of pre-EX within I h 

after exercise (Figure 6.5). 
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Figure 6.5 Changes in saliva flow rate. Values are means± SEM (n = 8). Significantly different from pre

EXI in the CHO (' P < 0.05) and PLA (' P < 0.05) trials. 

Salivary lgA Concentration and Secretion Rate 

There was a significant main effect of time for slgA concentration (F 9. n = 9.6, P < 0.001), 

with an increase with exercise followed by a return to pre-EX levels within 2 h (Figure 

6.6). However, there was no main effect and interaction for slgA secretion rate (Figure 6. 7) 
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Figure 6.6· Changes in slgA concentration. Values are means± SEM (n = 8). Significantly different from 

pre-EXl in PLA (' P < 0.05) trial. 
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Figure 6.7 Changes in slgA secretion rate. Values are means± SEM (n = 8). 
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6.4 Discussion 

The main findings of the present study were that ingestion of CHO compared with PLA 

during the recovery interval did not affect immunoendocrine responses to a 3-h recovery 

interval and a subsequent bout of prolonged exercise. Compared with EX!, EX2 evoked 

significantly higher circulating numbers of leukocytes, neutrophils, lymphocytes and 

monocytes, higher plasma adrenaline concentration and lower plasma glucose 

concentration. 

CHO supplementation during the first hour of the recovery interval was intended to replace 

previously depleted hepatic and muscle glycogen stores to enhance the CHO availability 

during the subsequent 90 min bout of cycling. Although CHO ingestion did not attenuate 

the decrease of plasma glucose concentration compared with PLA in this study, no 

hypoglycaemia was found throughout the experimental protocol in either trial. 

Furthermore, these were no significant differences in plasma concentrations of adrenaline, 

cortisol and GH between trials. This suggests that endogenous CHO availability was still 

sufficient in PLA trial throughout two bouts of 90 min cycling at 60% V02 max and did not 

further activate the sympathetic nervous system (SNS) and the hypothalamic-pituitary

adrenal (HP A) axis compared with CHO trial. 

Circulating counts of total leukocytes, neutrophils, lymphocytes and monocytes were 

significant increased at post-EX2 compared with post-EX!; however, there were no 

differences between CHO and PLA trials. The result may be mainly attributable to the 

higher plasma stress hormone responses during EX2 since previous studies have 

consistently demonstrated that adrenaline and cortisol mobilise leukocytes into the 

circulation (Cupps and Fauci, 1982, Dhabhar et al., 1994, Benschop et al., 1996). This 

observation agrees with the findings of our recent study (Chapter 5) and other previous 

studies (McCarthy et al., 1992, Ronsen et al., 200la, 2001b), which showed that the 

second exercise bout on the same day evokes more pronounced changes in leukocyte 

subsets and stress hormones compared with the first bout of identical exercise on the same 

day. 
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In the present study, we did not find a significant difference in plasma IL-6 levels neither 

throughout experimental protocol nor between CHO and PLA trials. However, this is not 

surprising because IL-6 is not produced in large amounts by contracting muscle until 

glycogen is nearly depleted (Gleeson and Bishop, 2000b, Febbraio and Pedersen, 2002). 

The low IL-6 concentrations (only about 1.65 ng·L"1
) at post-EX2 may indicate that 

subjects did not deplete their muscle glycogen after two bouts of 90 min cycling at 

60% YOz "'". Although IL-6 has been suggested to maintain glucose homeostasis and 

stimulate lipolysis during exercise (Gleeson, 2000a), the relatively low plasma 

concentrations of IL-6 in this study may not exert significant metabolic effects because the 

criterion level for initiating acute metabolic responses may be as high as 25-65 ng·L·' 

(Tsigos et al., 1997). 

There was no significant difference between trials in total LPS-stimulated elastase release 

~d on a per neutrophil basis. LPS-stimulated elastase release per neutrophil was not 

significantly decreased until 3 h after EX! in both trials and there was no further decline 

during EX2 and no difference between CHO and PLA throughout the experimental 

protocol. This finding was similar to previous studies of single bouts of prolonged 

exercise, which have reported a reduced response of neutrophil degranulation to LPS 

stimulation in vitro on per cell basis (Robson et al., 1999, Walsh et al., 2000a) and found 

that CHO ingestion did not blunt the decline of LPS-stimulated elastase release per 

neutrophil during exercise (Bishop et al., 2001, Bishop et al., 2002, Lancaster et al., 2003). 

The delayed decline of LPS-stimulated elastase release per neutrophil may be due to the 

influence of plasma cortisol because cortisol is known to induce delayed neutrophilia with 

less mature neutrophils entering the circulation from the bone marrow (Pyne, 1994). We 

observed significantly higher counts of circulating neutrophils at pre-EX2 compared with 

post-EX!, which coincides with the decreased neutrophil degranulation responses to LPS. 

Saliva flow rate was decreased at post-EX2 in this study. Since saliva is formed from 

plasma, a steady blood flow to the salivary glands is required for maintenance of adequate 

salivation (Smaje, 1998). In the present study, the lower saliva flow rates coincided with 

the higher plasma adrenaline concentrations, suggesting that the decline of saliva flow rate 

during exercise may be due to the influence of SNS activity. Noradrenaline is the primary 
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neurotransmitter of the SNS and may exert its actions via a- and ~- adrenergic receptors. 

Anderson and Garrett ( 1998) demonstrated that a-adrenergic receptor activation causes 

vasoconstriction, whereas the ~-adrenergic activity induces vasodilation in the 

submandibular gland of the rat. Recent studies reported that the Ut-adrenergic blocker 

doxazosin and the ~-adrenergic blocker propanolol did not influence saliva flow rate 

during submaximal cycling at SOW for 8 min (Winzer et al., 1999, Ring et al., 2000). A 

very recent study reported that infusion of the a2-adrenoceptor agonist dexmedetomidine 

caused vasoconstriction in m en ( Talke et a 1., 2 003). Accordingly, this suggests that the 

exercise-induced decline in the saliva flow rate may be mainly mediated by the SNS 

through a2-adrenergic receptors: effectively, the vasoconstriction limits water supply to 

salivary glands. Furthermore, Talke et al. (2003) reported that the effect of 

dexmedetomidine on vasoconstriction was dose-dependent with a threshold of 0.15 pg· L-t. 

Therefore, we speculate there may be a threshold level of SNS activity to constrict salivary 

glandular vessels. However, this assumption needs to be confirmed by further studies. 

Regarding the slgA concentration during exercise, the alterations seemed to mainly result 

from the reduction of saliva flow rate since no change in slgA secretion rate was observed. 

In vitro, slgA is secreted by both acinar and ductal units under the stimulation of a- and ~

adrenoceptors and peptidergic receptor. Saliva IgA secretion rate is relatively constant for 

each agonist across a range of doses (Proctor and Carpenter, 2002). The stimulation of~

adrenoreceptors increased IgA secretion in a dose-independent manner above a certain 

threshold; however, prolonged ~-adrenergic stimulation appeared to reduce the_ 

replenishment of IgA into the glandular pool (Proctor et al., 2003). Ring et al. (2000) 

suggested that the acute decrease in slgA secretion rate during exercise was mediated by 

Ut-adrenergic mechanisms. Therefore, the previous inconsistencies in responses of slgA 

secretion rate to exercise (Blannin et al., 1998, Bishop et al., 1999a, Nieman et al., 2002, 

Walsh et al., 2002) may be attributable to the interaction between different types of 

stimulation and their receptors during exercise. For example, when the Ut-adrenergic 

stimulation is stronger than other types, such as ~-adrenergic activity, and is above a 

certain threshold, slgA output may be decreased. Conversely, when the ~-adrenergic 

stimulation is stronger than Ut-adrenergic stimulation, slgA output increases. Cortisol has 

also been suggested to inhibit slgA mobilisation (Hucklebridge et al., 1998). However in 
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this study, we did not find any significant differences in either plasma cortisol concntration 

or si gA secretion rate between C HO and P LA. This suggests that two bouts of 9 0 m in 

cycling at 60% VOz nmx separated by 3 h recovery does not evoke sufficient activation of 

the SNS or HP A-axis to modify slgA transcytosis. 

In conclusion, the findings of the present study suggest that CHO ingestion during the 

recovery interval between two bouts of prolonged exercise does not attenuate 

immunoendocrine responses to a 3-h recovery interval and a subsequent bout of 90 min 

cycling at 60% VOz nmx. A second prolonged exercise bout causes a greater disturbance in 

immunoendocrine responses than the first exercise bout on the same day and this is not 

substantially influenced by CHO supplementation during the recovery interval. 
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CHAPTER SEVEN 

Effects of carbohydrate supplementation during the first of two 

prolonged cycling bouts on immunoendocrine responses 

Summary 

The purpose of this study was to examine the effect of CHO feeding during the first of two 

90-min cycling bouts (EX! started at 09:00 and EX2 started at 13:30) at 60% VOzmax on 

leukocyte redistribution, neutrophil degranulation and oxidative burst, plasma IL-6, plasma 

stress hormone, saliva flow rate and slgA responses. This study consisted oftwo trials, 

which were completed in a counterbalanced order and separated by at least 4 days. 

Subjects (n = 9) consumed a lemon flavoured 10% w/v CHO (glucose) orPLA beverage 

during EX!: 500 mL just before exercise and 250 mL every 20 min during exercise. 

Venous blood samples were taken 5 min before exercise and immediately post-exercise for 

both trials and unstimulated whole saliva samples were collected at 10 min before exercise, 

48-50 min and 88-90 min of exercise, and 1 h and 2h post-exercise for both trials. The 

main findings of the present study were that ingestion of CHO compared with PLA during 

EX! 1) maintained higher plasma glucose concentration throughout the experimental 

protocol; 2) blunted the responses of plasma adrenaline, ACTH and cortisol during EX2; 3) 

attenuated circulating leukocytosis and monocytosis throughout the experimental protocol, 

neutrophilia during the recovery interval, and lymphocytosis during EX2; 4) lessened the 

decline in LPS-stimulated degranulation and PMA-induced oxidative burst on per 

neutrophil basis from 3 h post-EX! onwards; but 5) did not affect changes in plasma IL-6, 

saliva flow rate and slgA responses. These findings suggest that ingestion of CHO 

compared with P LAd uring the first exercise bout I) increases C HO availability during 

both bouts of exercise; 2) has a limited effect on immunoendocrine response during the 

first exercise bout but attenuates plasma stress hormone responses during the second 

exercise bout; 3) blunts the delayed neutrophilia and concurrent decline in LPS-stimulated 

degranulation and PMA-induced oxidative burst on per neutrophil basis after the first bout 

of prolonged cycling; and 4) however, does not affect oral immunity. 
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7.1 Introduction 

Acute exercise alters immune cell function and modifies leukocyte trafficking between the 

circulation and tissue compartments and these effects may last for several hours after 

exercise (Gleeson and Bishop, 1999). During this period, immunity is likely depressed and 

may open a window to invading pathogens, increasing opportunistic infections in stressed 

athletes (Pedersen, 1999). This temporarily reversible alteration in immune function IS 

related to elevated plasma concentrations of stress hormones (Benschop et al., 1996). 

Nutritional strategies are often used to manipulate exercise-induced immunoendocrine 

responses. CHO supplementation during exercise is one of the most successful means to 

attenuate immunoendocrine responses during prolonged exercise (Gleeson et al., 200lb). 

Ingestion of CHO compared with PLA better maintains plasma glucose concentration, 

blunts HPA activation (Mitchell et al., 1990) and minimises immunological perturbation to 

an acute single bout of non-fatiguing, fixed duration exercise (Gleeson and Bishop, 

2000b ). The most effective and common method applied to increase carbohydrate 

availability is to ingest CHO-rich drinks during prolonged exercise (Jeukendrup and 

Jentjens, 2000). 

Training programmes of endurance athletes usually involve several bouts of intensive 

exercise in a day. Therefore maintenance of immune competence during repeated exercise 

bouts is of crucial importance to prevent athletes froin immunodepression and 

opportunistic pathogen invasion. A few studies have examined the effect of two exercise 

bouts on the same day on immunoendocrine responses and have shown that the second 

exercise bout induced a greater hormonal response and a larger leukocyte mobilisation 

compared with a single identical exercise bout (Ronsen et al., 2001a, 2001b). However, the 

limited information available is insufficient to fully evaluate the effect of repeated bouts of 

exercise on inimune cell functions and warrants further investigation. 

For various considerations, many athletes wake up in early morning and train without 

breakfast. However, no study has examined the effect of CHO ingestion during the first of 

two prolonged exercise bouts on immunoendocrine responses. Hence, the aims of the 

present study were to compare the effect of CHO supplementation during the first of two 
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prolonged cycling bouts on responses of leukocyte redistribution, LPS-stimulated 

degranulation and PMA-induced oxidative burst by neutrophils, plasma stress hormones, 

IL-6, saliva flow rate, and sigA concentration and secretion rate. We hypothesised that 

ingestion of CHO compared with PLA during the fust exercise bout would be beneficial to 

attenuate the perturbation of immunoendocrine responses throughout both during the first 

bout and the subsequent recovery period and second bout of exercise. 
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7.2 Methods 

Subjects 

Nine male volunteers (age 29.7 ± 1.6 years, height 177 ± 2 cm, body mass 72.0 ± 1.6 kg, 

VOo"""' 49.4 ± 2.0 mL·kg·1·min.1
; means± S.E.M.), who were recreationally active and 

familiar with cycling, participated in the study. After receiving written information and 

passing a Health Questionnaire screen, subjects gave their written informed consent. 

Subjects were requested to complete the dietary record sheet the day prior to Trial 1 and 

then repeated it again before Trial 2. Subjects were also asked not to perform any strenuous 

exercise or consume alcohol or medication for 2 days before each trial. The protocol was 

approved by the Ethics Committee of Loughborough University before the study began. 

Experimental Procedures 

Subject's workload was determined by a preliminary maximal oxygen uptake testing 

procedure as described in Chapter 3.2. The subjects completed two trials in a 

counterbalanced order, each separated by at least 4 days. Subjects arrived at the laboratory 

at 08:30 after fasting from 23:00 the previous day and were asked to empty the bladder 

before body mass was recorded. Subjects then performed two bouts of 90 min cycling 

(EX! started at 09:00 and EX2 started at 13:30) at 60% \ro, max at 70 rev·min·1 on the 

same ergometer used to determine VO,max. Subjects were given a lemon flavoured 10% 

w/v CHO (glucose) or artificially sweetened placebo beverage during the first exercise 

bout: 500 mL just before exercise and 250 mL every 20 min during exercise. Subjects were 

asked to consume each drink within 3 min. Heart rate was recorded continuously during 

exercise by radiotelemetry. Ratings of perceived exertion (RPE) were obtained at 15-min 

intervals. Venous blood samples were taken 5 min before exercise and immediately post

exercise and unstimulated whole saliva samples were collected at 10 min before exercise, 

48-50 min and 88-90 min of exercise, and 1 h and 2h post-exercise for both trials. Water 

ingestion was allowed ad libitum during recovery interval and the second exercise bout 

except for 5 min before each saliva sampling. The laboratory temperature and relative 

humidity were 26.3 ± 0.2 °C and 39 ± 1%, respectively. 
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Analytical Methods 

Methods of preliminary measurements and blood collection and analysis are presented in 

Chapter 3. 

Statistical analysis 

All results are presented as mean values and standard errors of the mean (± SEM). Data 

were checked for normality, homogeneity of variance and sphericity before statistical 

analysis, and where appropriate the Huynh-Feldt method was applied for adjustment of 

degrees of freedom for the F-tests. Data were analysed using a two-factor (trial x time) 

repeated measures ANOV A with post hoc Tukey and paired t-tests, where appropriate. P 

and adjusted F values are presented and statistical significance was accepted at P < 0.05. 
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7.3 Results 

Physiological Variables and RP£ 

There were significant main effects of time and interactions between trial and time for HR 

(time: F I. 8 = 9.4,P = 0.015 and interaction: F I. s= 28.0,P = 0.001) and percentage 

change in plasma volume (time: F 1, 8 = 16.1, P = 0.004 and interaction: F 1, 8 = 7.1, P = 

0.029). For RPE there were main effects of trial (F 1, 8 = 8.9, P = 0.018) and time (F 1. 8 = 

42.5, P < 0.001) (Table 7.1). 

Table 7.1 The exercise intensity and its effect on HR, RPE, body mass loss, water intake, 
and percentage change in plasma volume 

CHO PLA 

EX! EX2 EX! EX2 

% V02mall 60.7 (1.8) 59.9 ( 1.0) 60.9 ( 1.5) 59.7 (1.4) 

HR (beats·rnin.1
)' 146 (3) 148 (3) 140 (2) 149 (2)** 

RPE' 13.1 (0.5) 15.2 (0.4)** 13.4 (0.2) 16.8 (0.5)**11 

Body mass loss (kg) • 1.32 (0.09) 1.13 (0.09)* 1.43 (0.07) 1.24 (0.14) 

Water intake (rnL) CHO 768 (108)** PLA 854 (129)** 

Plasma volume change(%)' -7.5 (1.0) -2.5 (0.4)** -5.2 (0.5) -3.7 (0.6) 

Values are mean (±SEM, n = 9). Significantly different from EX! (*P < 0.05, ••p < 0.01) in same trial; 

significantly different from the same time point in CHO trial (VIP< 0.01).' Measurements made in last 15 

rnin of exercise. • After correction for water intake.' Immediately post-EX compared with pre-EX. 

Leukocyte counts 

There were significant main effects of trial (F 1, 8 = 26.7, P = 0.001) and time (F 3, 24 = 

48.7, P < 0.001) for the circulating numbers of leukocytes (Figure 7.1A), with higher 

values in PLA than CHO and higher values at pre-EX2 and post-EX2 compared with pre

EXl. There were significant main effects of trial (F 1, 8 = 20.8, P = 0.002) and time (F 3, 24 

= 31.4, P < 0.001) and an interaction of trial and time (F 3, 24 = 4.0, P = 0.033) for blood 
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neutrophil counts (Figure 7.18), with a higher value at pre-EX2 in PLA than CHO and 

higher values at pre-EXl and post-EX2 than pre-EXI. There were significant main effects 

of trial (F 1. 8 = 30.0, P = 0.001) and time (F J. 24 = 31.7, P < 0.001) and an interaction of 

trial and time (F J. 24 = 8.5, P = 0.001) for blood lymphocyte counts (Figure 7.1C), with a 

higher value at post-EX2 compared with pre-EXI. Furthermore, the value at post-EX2 in 

PLA was higher than in CHO. For blood monocyte counts (Figure 7.10), there were also 

significant main effects of trial (F 1. 8 = 12.1, P = 0.008) and time (F J. 24 = 44.1, P < 0.001) 

and an interaction between trial and time (F J. 24 = 3.3, P = 0.037), with higher values in 

PLA than CHO. The blood monocyte counts at pre-EX2 and post-EX2 were higher than 

pre-EX I in both trials. 
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Figure 7.1 Changes in circulating counts oftotalleukocytes (7.IA), neutrophils (7.18), lymphocytes (7.1C), 

and monocytes (7.ID). Values are means± SEM (n = 9). Significantly different from pre-EX I in CHO (0 P < 

0.0 I) and PLA (bbP < 0.0 I); significantly different between trials ( P < 0.05, "P < 0.01). 
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Stress Hormones 

There were significant main effects of trial (F 1, 8 = 7.6, P = 0.025) and time (F 2. 16 = 20.6, 

P = 0.001) and an interaction of trial and time (F 2, 16 = 7.7, P = 0.009) for plasma 

adrenaline (Figure 7 .2A), which showed a higher value at post-EX2 compared with pre

EXI in both trials and the value at post-EX2 in PLA was higher than in CHO. For plasma 

ACTH (Figure 7.28) and cortisol (Figure 7.2C), there were significant main effects of trial 

(Fl,B = 13.7, P=0.006 andF 1,8 = 10.1, P= 0.013) and time (F3,24 =25.9,P <0.001 and 

F 3, 24 = 28.9, P < 0.001) and an interaction of trial and time (F 3, 24 = 16.5, P = 0.001 and F 

3, 24 = 7.3, P = 0.002), with higher values at post-EX2 in PLA compared with pre-EXI and 

post-EX2 in CHO. There were significant main effects of trial (F 1, 8 = 9.8, P = 0.014) and 

time (F 3, 24 = 14.7, P = 0.002) and an interaction of trial and time (F 3, 24 = 5.4, P = 0.009) 

for plasma OH (Figure 7.2D), with higher values at post-EX2 compared with pre-EXI m 

both trials and the value at post-EX! in PLA was higher than in CHO. 
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Figure 7.2 Changes in plasma concentrations of adrenaline (7.2A), ACTH (7.28), cortisol (7.2C), and 

growth hormone (7.20). Values are means± SEM (n = 9). Significantly different from pre-EX1 in CHO (' P 

< 0.05, uP< 0.01) and PLA (bb P < 0.01); significantly different between trials ( P < 0.05, "P < 0.01). 
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Glucose and /L-6 

There were significant main effects of trial (F 1, s = 23.8, P = 0.001) and time (F 3, 24 = 

59.7, P < 0.001) and an interaction between trial and time (F 3, 24 = 35.4, P < 0.001) for 

plasma glucose concentration (Figure 7.3A), which showed carbohydrate feeding during 

EX! significantly increased plasma glucose concentration compared with pre-EXI. 

However, the plasma glucose concentration was lower at pre-EX2 and post-EX2 than pre

EXI in CHO. In PLA, the plasma glucose concentration was significantly decreased after 

EX I and remained low throughout the experimental protocol. Furthermore, the plasma 

glucose concentrations at post-EX in CHO were significantly higher compared with the 

same time points in PLA. Plasma IL-6 concentrations at post-EX were significantly higher 

than pre-EX (main effect of time: F 3, 24 = 18.7, P < 0.001, Figure 7.38). 
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Figure 7.3 Changes in plasma concentrations of glucose (7.3A) and plasma IL-6 (7.38). Values are means± 

SEM (n = 9). Significantly different from pre-EXl in CHO (uP< 0.01) and PLA (bP< 0.05, bb P < 0.01); 

significantly different between trials ( P < 0.05, "P < 0.01). 
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Neutrophil Degranulation 

There was a significant main effect of time (F 3. 24 = 25.4, P < 0.001) and an interaction 

between trial and time (F 3, 24 = 4.1, P = 0.018) for total LPS-stimulated elastase release, 

which was increased with exercise in both trials (Figure 7.4A). For LPS-stimulated elastase 

release per neutrophil, there were significant main effects of trial (F 1• s = 6.2, P = 0.038) 

and time (F 3. 24 = 9.6, P = 0.002), with higher values in CHO compared with PLA and 

lower values at post-EX2 than pre-EXl (Figure 7.48). 
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Figure 7.4 Changes in total LPS-stimulated elastase release (7.4A) and LPS-stimulated elastase release per 

neutrophil (7.48). Values are means± SEM (n = 9). Significantly different from pre-EXl in CHO (uP< 

0.01) and PLA (bb P < 0.01); significantly different between trials ( P < 0.05). 
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Neutrophil Oxidative Burst 

A significant main effect of time was observed for total PMA-induced oxidative burst (F 3, 

24 = 39.0, P < 0.001, Figure 7.5A), with an increase with exercise. There were significant 

main effects of trial (F 1, s = 8.0, P = 0.022) and time (F 3, 24 = 18.8, P < 0.001) and an 

interaction between trial and time (F 3, 24 = 5.1, P = 0.007) for PMA-induced oxidative 

burst per neutrophil (Figure 7.58), which showed lower levels at pre-EX2 and post-EX2 in 

PLA compared with pre-EXl and the same time points in CHO. 
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Figure 7.5 Changes in total PMA-induced oxidative burst (7.5A) and PMA-induced oxidative burst per 

neutrophil (7.58). Values are means± SEM (n = 9). Significantly different from pre-EXl in CHO (" P < 

0.01) and PLA (bP< 0.05, bb P < 0.01); significantly different between trials ( P < 0.05). 
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Saliva Flow Rate 

There was a significant main effect of time for saliva flow rate (F 9, 12 = 4.4, P = 0.013), 

with a decrease at post-EX2 and a return within I h after exercise (Figure 7 .6). 
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Figure 7.6 Changes in saliva flow rate. Values are means± SEM (n = 9). • Significantly different from pre

EX I in PLA (P < 0.05). 
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Salivary lgA Concentration and Secretion Rate 

There was a significant main effect of time (F 9, 72 = 5.0, P < 0.001) for slgA concentration 

(Figure 7. 7). However, there was no main effect and interaction for si gA secretion rate 

(Figure 7 .8). 
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7.4 Discussion 

The main findings of this study were that ingestion of CHO compared with PLA during 

EX! I) maintained higher plasma glucose concentration throughout the experimental 

protocol; 2) blunted the responses of plasma adrenaline, ACTH and cortisol during EX2; 3) 

attenuated the leukocytosis and monocytosis throughout the experimental protocol, 

neutrophilia during the recovery interval, and lymphocytosis during EX2; 4) lessened the 

decline in LPS-stimulated degranulation and PMA-induced oxidative burst on per 

neutrophil basis from 3 h post-EX! onwards and 5) did not affect plasma IL-6 levels and 

oral immunity. 

In the present study, ingestion of CHO compared with PLA during EX I significantly better 

maintained plasma glucose concentration during EX! and EX2. Although the amount of 

glucose (150g) consumed in the present study was in excess of the upper limit (-1 g·min-1
) 

for glucose absorption during exercise (Jeukendrup and Jentjens, 2000) and might not have 

been completely absorbed during EX!, it helped to maintain CHO availability during EX2 

since a mild hypoglycaemia was only observed at post-EX2 in PLA. Plasma glucose 

concentration· at this point was 3.3 ± 0.1 mM, reaching the· threshold for evoking 

adrenaline (3.8 ± 0.1 mM), GH (3.7 ± 0.1 mM) and cortisol (3.2 ± 0.2 mM) secretions 

(Schwartz et al., 1987). Therefore, it was not surprising to find higher plasma stress 

hormone responses in PLA compared with CHO during EX2. 

Ingesting a CHO beverage compared with PLA in the present study· attenuated the 

responses of plasma stress hormones and circulating leukocytes and subsets. These results 

were similar to previous studies, which indicated that CHO supplementation during 

prolonged exercise maintains euglycaemia and attenuates HP A activation, leading to a 

smaller perturbation of circulating leukocytes and subsets (Mitchell et al., 1990, Nieman et 

al., 1997, Bishop et al., !999b). Elevated plasma levels of catecholamines, glucocorticoids 

and GH during exercise are related to the redistribution (trafficking) of leukocytes (Cupps 

and Fauci, 1982, Kappel et al., 1993, Benschop et al., 1996) and alteration of neutrophil 

function (Liles et al., 1995, Ruy et al., 1997, Tintinger et al., 2001). Plasma adrenaline is 

likely responsible for the recruitment of lymphocytes and neutrophils into the circulation 

during 90 min intensive exerctse, whereas the later rise of plasma cortisol seems to 
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attenuate adrenaline-induced lymphocytosis and dominate the delayed neutrophilia and 

lymphopenia that develops in the first few hours after exercise cessation (Nieman, 1997). 

Furthermore, GH also appears to mobilise neutrophils into the circulation (Kappel et al., 

1993). The higher number of circulating monocytes after EX! in PLA compared with CHO 

may be due to the effects of GH. Although there is no direct evidence to support this 

suggestion, we did not observe any differences between CHO and PLA in other possible 

candidates, such as plasma concentrations of adrenaline and cortisol or haemodynamic 

factors (heart rate). The higher blood counts of total leukocytes, neutrophils, lymphocytes 

. and monocytes during EX2 and the differences between PLA and CHO are most likely 

attributable to the effect of elevated plasma concentrations of adrenaline and cortisol in the 

PLA trial. 

In the present study, the responses of LPS-stimulated elastase release per neutrophil during 

EX I were similar to previous studies, which reported that during moderate duration 

exercise ( 60-90 m in) C HO ingestion did not affect neutrophil degranulation on per cell 

basis (Bishop et al., 2002, Lancaster et al., 2003). However, a significant decline in LPS

stimulated elastase release per neutrophil was found at pre-EX2 and post-EX2. A delayed 

blood neutrophilia induced by cortisol generally occurs after 90 min of exercise and lasts 

for a few hours after exercise cessation (Nieman, 1997). Nakagawa et al. (1998) reported 

that about I 0% of the circulating neutrophilia was derived from the bone marrow after 

infusion of the synthetic glucocorticoid dexamethasone and that these neutrophils 

possessed a lower content of granular digestive enzymes compared with fully mature 

neutrophils (Pyne, 1994). Recent studies reported that the neutrophil degranulation 

response to LPS stimulation in vitro on per cell basis fell after 2 h cycling at 60% vo, max 

(Walsh et al., 2000a) and following cycling to fatigue (98 ± 7 min in the CHO trial) at 

75% V02max (Bishop et al., 2001). Accordingly, a possible explanation for why the 

decrease in LPS-stimulated elastase release was not observed until pre-EX2 in the present 

study is likely that there was an influx of relatively immature and less functionally 

competent neutrophils from the bone marrow during the recovery period after EX! 

although a recent study suggested that release of less mature cells was not the reason for 

the fall in LPS-stimulated elastase release after a 2 h cycle at 70% vo, max (Bishop et al., 

2003). Regarding the greater decrease in neutrophil degranulation response to LPS on per 
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cell basis in PLA compared with CHO, this may reflect a higher number of less mature 

neutrophils entering the circulation from the bone marrow under the influence of higher 

cortisol levels in PLA. 

The negative effect of exercise on PMA-induced oxidative burst activity on per neutrophil 

basis was blunted by C HO ingestion in the present study. Neutrophil o xi dative burst is 

activated through receptor-dependent mechanisms, such as fMLP (N-formyl-Met-Leu

Phe), which are short-lasting (typically less than 5 min), or receptor-independent 

mechanisms, such as PMA, which can last for a much longer period (reviewed by Chanock 

et al., 1994, Meenan eta/., 2002). Suzuki et al. (1999) showed after 90 min cycling at 

-53% vo, "'" the PMA-induced CL response of isolated neutrophils was increased. 

However, a transient suppression of the oxidative burst after exercise has been also 

reported (Gabriel et al., 1994, Pyne et al., 1996). Pyne et al. (1996) showed that the PMA

induced CL response of isolated neutrophils declined 41% after 40 min running at a heart 

rate of 140 beat·min-1
• However, the CL values did not change further during the I h 

recovery interval or after a second identical bout of running. The results from the PLA trial 

in the present study are similar to a recent study (Morozov et al., 2003), which reported 

that neutrophil oxidative burst activity (zymosan-induced CL) did not change until 3 h 

after exercise. Previous studies have shown that ingestion of C HO compared with P LA 

does not affect granulocyte oxidative burst activity (determined by flow cytometry) 

(Nieman et al., 1997) or PMA-stimulated intracellular H20 2 production (Smith et al., 

1996) after a single exercise bout. However, -the decrease of PMA-induced oxidative burst 

activity per neutrophil was blunted by CHO ingestion from 3 h after EX! onwards in the 

present study. 

Many factors are associated with the regulation of neutrophil oxidative activity. However, 

the most important factor during exercise m ay be the extent of neutrophil mobilisation. 

Berkow and Dodson ( 1986) reported that neutrophils in the bone marrow have lower 

NADPH-dependent oxidase activity and superoxide response to PMA stimulation 

compared to those in the circulation. Moreover, the nitro blue tetrazolium (NBT)-negative 

neutrophils in marginated pools produce less 0 2-. in response to in vitro stimulation 

(Suzuki et al., 1996). Therefore, the greater decline of neutrophil oxidative burst activity 
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per cell in PLA compared with CHO in the present study may be due to a larger influx of 

these two types of neutrophils into the circulation in PLA. Another possible cause is the 

elevated plasma adrenaline concentration, which appears to inhibit neutrophil superoxide 

production in a dose-related manner (Barnett et al., 1997, Tintinger et al., 2001). 

Furthermore, neutrophil ROS producing activity is likely to decline with repeated 

stimulation (Prasad et al., 1991 ). In contrast, many studies have demonstrated that GH 

primes and stimulates neutrophils to produce 0 2- via Ca2
+ signalling (Ruy et al., 1997, 

Smith et al., 1996) or protein kinase C (Fu et al., 1991) pathways. However, this effect 

maybe opposed by increased levels of other hormones that inhibit neutrophil oxidative 

burst activity. Laboratory techniques m ay also influence neutrophil o xidative responses. 

Many studies have measured neutrophil oxidative burst by isolated neutrophils. However, 

Fukuda and Schmid-Schonbein (2002) suggested that the cell isolation procedures affect 

the determination of neutrophil functions. For example, neutrophil ROS production 

consistently increased after 1 min agitation on a test tube shaker at medium speed. 

In the present study, IL-6 levels were not affected by CHO ingestion. IL-6 is a multi

functional cytokine and mediates many physiological functions, such as maintaining 

glucose homeostasis, stimulating lipolysis (Gleeson, 2000a) and inducing a biphasic 

neutrophilia (Suwa et al., 2001). However, the post-exercise plasma IL-6 concentration in 

this study was relatively low (2-3 ng· L-1
) and may not have exerted significant metabolic 

effects since the threshold for initiating acute metabolic responses may be as high as 25-65 

ng· 1·1 (Tsigos et al., 1997). 

Saliva flow rate was only decreased at post-EX2 in PLA. As described in Chapter 6 the 

decline of saliva flow rate during exercise may be due to the influence of SNS activity and 

there may be a threshold level of SNS activity to constrict salivary glandular vessels. In 

this study plasma adrenaline concentration was 1.34 nM in PLA and 0.85 nM in CHO at 

post-EX2. Therefore, the minimal concentration to initiate sufficient SNS activity may be 

between the ranges. Saliva IgA is secreted by both acinar and ductal units under the 

stimulation of a- and P-adrenoceptors and peptidergic receptor (Proctor and Carpenter, 

2002). The insignificant alteration in slgA response in this study suggests that two bouts of 
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90 min cycling at 60% \rQ, max separated by 3 h recovery may not evoke sufficient 

activation of the SNS or HP A-axis to modify slgA transcytosis. 

In conclusion, ingestion of CHO compared with PLA during the first exercise bout I) 

increased CHO availability during both bouts of exercise; 2) had a limited effect on the 

imrnunoendocrine response during the first exercise bout, but attenuated plasma stress 

hormone responses during the second exercise bout; 3) blunted the delayed neutrophilia 

and concurrent decline in LPS-stimulated degranulation and PMA-induced oxidative burst 

on per neutrophil basis following the first bout of 90 min cycling at 60% VQ, """ and 4) 

does not affect oral immunity. The findings of the present study suggest that carbohydrate 

availability is an important determinant of immunoendocrine responses to repeated bouts 

of exercise. If athletes need to perform more than one bout of prolonged exercise in a day, 

regular ingestion of CHO-rich drink providing - 1-2 g CHO·min·1 before and during the 

first exercise bout onwards is beneficial to minimise the impact of exercise on immunity. 
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CHAPTER EIGHT 

Effects of carbohydrate supplementation during the second of 

two prolonged cycling bouts on immunoendocrine responses 

Summary 

The purpose of this study was to examine the effect of CHO feeding during the second of 

two 90-min cycling bouts (EX! started at 09:00 and EX2 started at 13:30) at 60% V02max 

on leukocyte redistribution, neutrophil degranulation and oxidative burst, plasma IL-6, 

plasma stress hormone, saliva flow rate and sigA responses in EX2. This study consisted 

of two trials, which were completed in a counterbalanced order and separated by at least 4 

days. Subjects (n = 9) consumed a lemon flavoured 10% w/v CHO (glucose) or PLA 

beverage during EX2: 500 mL just before exercise and 250 mL every 20 min during 

exercise. Venous blood samples were taken 5 min before exercise, immediately post

exercise and 18 h post-EX2; unstimu1ated whole saliva samples were collected at 10 min 

before exercise, 48-50 min and 88-90 min of exercise, I h post-exercise, and 18 h post

EX2 for both trials. The main findings of this study were that ingestion of CHO compared 

with PLA during EX2 better maintained plasma glucose concentration, blunted the 

responses of plasma adrenaline, ACTH, cortisol, GH and IL-6, and attenuated the 

leukocytosis and monocytosis, but had no effect on LPS-stimulated neutrophil 

degranulation, PMA-induced neutrophil oxidative burst activity, saliva flow rate and sigA 

responses. Furthermore, the immunoendocrine disturbances induced by two bouts of 

prolonged exercise returned to resting values within 18 h. These findings suggest that 

ingestion of CHO compared with PLA during the second of two bouts of 90 min cycling at 

60% Y02"""' maintains better CHO availability, blunts hypothalarnic-pituitary-adrenal 

activation, and attenuates leukocyte trafficking, but does not affect neutrophil function and 

oral immunity. Furthermore, the disturbances of immunoendocrine responses induced by 

two bouts of prolonged exercise on the same day recover within 18 h. 
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8.1 Introduction 

Prolonged strenuous exercise affects immunoendocrine responses (Chapter 2). Previous 

chapters of this thesis have demonstrated immunoendocrine ·responses when subjects 

ingested CHO during the recovery interval (Chapter 6) and the first exercise bout (Chapter 

7). However, during a second exercise bout liver and muscle glycogen content may be 

compromised by the previous exercise bout. This may induce an energy crisis in the 

working muscle, affecting SNS and HP A activation. Therefore, we hypothesised that CHO 

supplementation during the second of two prolonged exercise bouts would be particularly 

effective in minimising immunoendocrine responses. Furthermore, previous studies 

demonstrated that the immunodepression induced by intensive strenuous exercise may last 

for several hours post-exercise (Mackinnon, 1999). Hence, the aims of the present study 

were to determine the effect of CHO supplementation during the second of two prolonged 

cycling bouts on !eukocyte redistribution, LPS-stimulated neutrophil degranulation and 

PMA-induced oxidative burst activity in vitro, plasma stress hormones, IL-6, saliva flow 

rate and sigA responses in EX2. In addition, we also examined if the aforementioned 

parameters recover from the influence of the two bouts of 90 min cycling at 60% vo, "'" 
within 18 h. 
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8.2 Methods 

Subjects 

Nine male volunteers (age 28.7 ± 1.6 years, height 174 ± 2 cm, body mass 74.4 ± 3.2 kg, 

V02"",x SO.3 ± 2.4 mL·kg-l·min- l; means ± S.E.M.), who were recreationally active and 

familiar with cycling, participated in the study. After receiving written information and 

passing a Health Questionnaire screen, subjects gave their written informed consent. 

SUbjects were requested to complete the dietary record sheet on the day prior to Trial I and 

then repeated it again before Trial 2. Subjects were also asked not to perform any strenuous 

exercise or consume alcohol or medication for 2 days before each trial. The protocol was 

approved by the Ethics Committee of Loughborough University before the study began. 

Experimental Procedures 

Subject's workload was determined by a preliminary maximal oxygen uptake testing 

procedure as described in Chapter 3.2. The subjects completed two trials in a 

counterbalanced order, each separated by at least 4 days. SUbjects arrived at the laboratory 

at 08:30 after fasting from 23:00 the previous day and were asked to empty the bladder 

before body mass was recorded. Subjects then performed two bouts of 90 min cycling 

(EXI started at 09:00 and EX2 started at 13:30) at 60% V02""" at 70 rev·min- I on the 

same ergometer used to determine V02""". Subjects were given a lemon flavoured 10% 

w/v CHO (glucose) beverage or artificially sweetened placebo during the second exercise 

bout: SOO mL just before exercise and 2S0 mL every 20 min during exercise. Subjects were 

asked to consume each drink within 3 min. Heart rate was recorded continuously during 

exercise by radiotelemetry. Ratings of perceived exertion (RPE) were obtained at IS-min 

intervals. Venous blood samples were taken S min before exercise, immediately post

exercise and 18 h post-EX2; unstimulated whole saliva samples were collected at 10 min 

before exercise, 48-S0 min and 88-90 min of exercise, 1 h post-exercise, and 18 h post

EX2 for both trials. Water ingestion was allowed ad libitum during the first exercise bout 

and the recovery interval except for S m in before each saliva sampling. The laboratory 

temperature and relative humidity were 24.S ± 0.2 °C and 33 ± 2%, respectively. 
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Analytical Methods 

Methods of preliminary measurements and blood collection and analysis are presented in 

Chapter 3. 

Statistical analysis 

. All results are presented as mean values and standard errors of the mean (± SEM). Data 

were checked for normality, homogeneity of variance and sphericity before statistical 

analysis, and where appropriate the Huynh-Feldt method was applied for adjustment of 

degrees of freedom for the F-tests. Data were analysed using a two-factor (trial x time) 

repeated measures ANOV A with pOSI hoc Tukey and paired I-tests, where appropriate. For 

the blood variables, the time points used in the ANOVA were pre-EX2 and the post-EX2 

since the intervention (CHO or PLA) occurred during EX2. Comparison of 

immunoendocrine responses between pre-trial and 18 h post-EX2 (both at 09:00) were 

examined using paired I-tests. P, I, and adjusted F values are presented and statistical 

significance was accepted at P < 0.05. 
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8.3 Results 

Physiological Variables and RPE 

There were significant main effects of time and interactions between trial and time for RPE 

(time: F 1.8 = 28.0, P = 0.001 and interaction: F 1.8 = 14.6, P = 0.005) and body mass loss 

(time: F 1.8 = 14.1, P = 0.006 and interaction: F 1.8 = 9.1, P = 0.017). There was a 

significant main effect of trial (F 1.8 = 7.5, P = 0.025) and an interaction between trial and 

time (F 1.8 = 16.3, P = 0.004) for percentage change in plasma volume. A main effect of 

time was found for % Y02ma, (F 1.8 = 7.9, P = 0.023) and HR (F 1.8 = 23.3, P = 0.001) 

(Table 8.1). 

Table 8.1 The exercise intensity and its effect on HR, RPE, body mass loss, water intake, 

and percentage change in plasma volume 

eHO PLA 

EXI EX2 EXI EX2 

% VOzm:u: 60.7 (0.2) 62.4 (1.7) 58.8 (1.5) 63.1 (2.0)"" 

HR (beats·min· l
) • 144 (5) 157 (4)"" 142 (3) 150 (5)" 

RPE' 12.8 (0.3) 14.2 (0.4)"" 12.8 (0.4) 16.0 (0.8),·1 

Body mass loss (kg) b 1.11 (0.09) 1.16 (0.08) 1.03 (0.13) 1.42 (0.13)** 

Water intake (mL) 813(111) eHO"" 989 (189) PLA** 

Plasma volume change (%) , ·3.8 (0.4) -4.7 (0.5) -3.7 (0.6) -1.8 (1.0)" 

Values are mean (±SEM, n = 9). Significantly different from EXI ("P < 0.05, ""P < 0.01) in same trial, 

significantly different from the same time point in eHO trial (I P < 0.05, Ti P < 0.01).' Measurements 

made in last 15 min of exercise. b After correction for water intake. ' Immediately post-EX compared with 

pre-EX. 
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Leukocyte counts 

There was a significant main effect of trial for the blood counts of leukocytes (F 1.8 = 6.S, 

P = 0.031, Figure S.IA) and monocytes (F 1.8 = 10.7, P = 0.011, Figure S.ID), with values 

higher in PLA compared with CHO. There was a significant main effect of time for the 

blood leukocyte (F I. 8 = 44.5, P < 0.00 I), neutrophil (F 1.8 = 14.2, P = 0.006, Figure S.I B), 

Iymphocyte (F 1.8 = 47.7, P < 0.001, Figure S.IC) and monocyte (F 1.8 = 43.7, P < 0.001) 

counts, with higher values at post-EX2 than pre-EX2. Furthermore, there was a significant 

interaction between trial and time for blood leukocyte (F I. 8 = 16.0, P = 0.004), 

Iymphocyte (F 1.8 = 6.4, P = 0.035) and monocyte (F I. 8 = 17.1, P = 0.003) counts. No 

difference was found between pre-EXI and ISh-p-EX2. 
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Figure 8.1 Changes in circulating counts of total leukocytes (8.1 A), neutrophils (8.1 B), Iymphocytes (8.1 C), 

and monocytes (8. ID). Values are means ± SEM (n = 9). Significantly different from pre-E)<2 in CHO (M P < 

0.01) and PLA (bb P < 0.01); significantly different between trials (' p < 0.05, .. P < 0.01). 
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Stress Hormones 

There was a significant main effect of trial for plasma concentrations of adrenaline (F 1.8 = 

8.8, P = 0.018, Figure 8.2A), ACTH (F I. 8 = 10.7, P = 0.0 11, Figure 8.28), cortisol (F 1.8 = 

12.8, P = 0.007, Figure 8.2C) and OH (F 1,8 = 14.3, P = 0.005, Figure 8.20), with higher 

values in PLA compared with CHO. A significant main effect of time was observed for 

adrenaline (F 1,8 = 11.9, P = 0.009), ACTH (F 1,8 = 22.2, P = 0.002) and cortisol (F 1,8 = 
70.3, P < 0.001), with higher values at post-EX compared with pre-EX. Furthermore, there 

was a significant interaction between trial and time for plasma adrenaline (F 1,8 = 6.9, P = 

0.031), ACTH (F 1,8 = 10.3, P = 0.012), cortisol (F 1,8 = 11.4, P = 0.010) and OH (F 1,8 = 
14.2, P = 0.006). No difference was found between pre-EXI and ISh-p-EX2. 

2.0 bb' "0 aabb* 
_,"0 _,"0 
-<>-~ -<>-~ 

~ 80 

S 1.5 ~ • " ~ x " c >-

~ 
1.0 U 

~ 

• " • ~ 
~ 0.5 £ .. 
"- 20 

0.0 

.,.EX' poll-EX1 pre-EX2 poll.EX2 18I1-polt-EX2 .,.EX' polt.EXl ,,~EX2 polt-EX2 18h-po.t-EX2 

(S.2A) (S.28) 

800 aabb·· 20 

-"" -,~ 

-<>- .... -<>- "" •• 
~800 

~ " S 

~ 
~ 

.:, 
400 X 

" U " • 
~ J • 200 5 0: 

0 

_EX' poIl-EX1 _EX2 pcm-.EX2 16h-po.1-EX2 _EX. pol$-EX1 _EX2 pol1-EX2 18h-poi:l-EX2 

(S.2CI (S,20) 

Figure 8.2 Changes in plasma concentrations of adrenaline (S.2A), ACTH (8.2B), cortisol (S.2C), and human 

growth hormone (S.2D). Values are means ± SEM (n = 9). Significantly different from pre-EX2 in CHO (U P 

< 0.01) and PLA (bb P < 0.01); significantly different between trials <' p < 0.05, .. P < 0.01). 
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Glucose and IL-6 

There was a significant main effect of trial and an interaction between trial and time for 

plasma glucose (trial: F 1.8 = 62.2, P < 0.001; interaction: F 1.8 = 33.7, P < 0.001; Figure 

8.3A) and lL-6 (F 1.8 = 6.4, P = 0.035; F 1.8 = 7.0, P = 0.030; Figure 8.38), which were 

higher at post-EX2 in PLA compared with CHO. A significant main effect of time for· 

plasma IL-6 was observed (F 1.8 = 22.5, P = 0.00 1). No difference was found between pre

EXl and 18h-p-EX2. 
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Figure 8.3 Changes in plasma concentrations of glucose (8.3A) and plasma IL-6 (8.38). Values are means ± 

SEM (n = 9). Significantly different from pre-EX2 in CHO (0) P < 0.01) and PLA (bb P < 0.01); significantly 

different between trials (" P < 0.05, •• P < 0.01). 
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Neutrophil Degranulation and Oxidative Burst 

There was no main effect of trial, time, or interaction between trial and time for LPS

stimulated neutrophil elastase release in total or on per cell basis (Figure 8.4A and 8.4B) 

and total PMA-induced oxidative burst (Figure 8.5A) from pre-EX2 to post-EX2. 

However, there was a significant main effect of time for PMA-induced oxidative burst per 

neutrophil (F I, 5 = 6.6, P = 0.050), which showed a lower value at post-EX2 compared 

with pre-EX2 (Figure 8.5B). No difference was found between pre-EXl and 18h-p-EX2. 
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Figure 8.4 Changes in total LPS-stimulated elastase release (8.4A) and LPS-stimulated elastase release per 

neutrophil (8.4B). Values are means ± SEM (n = 8). 
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Figure 8.5 Changes in total PMA-induced oxidative burst (8.5A) and PMA-induced oxidative burst per 

neutrophil (8.58). Values are means ± SEM (n = 6). Significantly different from pre-EX2 in PLA (b P < 

0.05). 

117 



Chapter 8 Effects of CHO Ingestion During the Second Cycling Bout 

Saliva Flow Rate 

There was a significant main effect of time for saliva flow rate (F 3, 21 = 4.6, P = 0.014, 

Figure 8.6), with a lower value at post-EX2 compared with pre-EX2 and post-EX 1 (t = 3.0, 

P = 0.016) in PLA. No difference was found between pre-EXl and 18h-p-EX2. 
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Figure 8.6 Changes in saliva flow rate. Values are means ± SEM (n = 8). b Significantly different from pre

EX2 in PLA (P < 0.05). 
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Salivary /gA Concentration and Secretion Rate 

There was a significant main effect of trial (F 1.7 = 48.6, P < 0.001) for sIgA concentration 

(Figure 8.7). The sIgA concentrations at mid-E)(2 and post-EX2 in PLA were significantly 

higher compared with the respective time points in CHO. There were no significant 

changes for sIgA secretion rate in both trials (Figure 8.8). No difference was found 

between pre-EXI and 18h-p-EX2. 
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8.4 Discussion 

The main findings of this study were that ingestion of CHO compared with PLA during 

EX2 better maintained plasma glucose concentration, blunted the responses of plasma 

adrenaline, ACTH, cortisol, GH and IL-6, and attenuated the leukocytosis and 

monocytosis, but had no effect on LPS-stimulated neutrophil degranulation, PMA-induced 

neutrophil oxidative burst activity, saliva flow rate and sIgA responses. Furthermore, the 

immunoendocrine disturbances induced by two bouts of prolonged exercise returned to 

resting values within 18 h. 

In the present study, ingestion of CHO compared with PLA better maintained plasma 

glucose concentration. The plasma glucose level at the end of EX2 was as low as 3.75 ± 

0.22 mM, reaching the threshold for inducing elevated plasma adrenaline (3.8 ± 0.1 mM) 

and GH (3.7 ± 0.1 mM) secretion (Schwartzet aI., 1987). Since a low blood glucose level 

is also associated with HP A activation and stress hormones secretion (Mitchell et aI., 

1990), it was not surprising to find higher concentrations 0 f plasma adrenaline, A CTH, 

cortisol and GH at post-EX2 in PLA than CHO in this study. 

EX2 elicited significant increases in circulating counts of total leukocytes and subsets, 

whereas ingestion of CHO compared with PLA blunted the leukocytosis and monocytosis, 

but not the neutrophilia and lymphocytosis. It is well known that acute exercise leads to a 

significant but reversible redistribution of leukocyte subsets between the circulation, 

marginated pools and the bone marrow (Gleeson and Bishop, 1999). This exercise-induced 

mobilisation of leukocytes is linked to elevated plasma concentrations of stress hormones 

(Benschop et al., 1996). Catecholamines exert an immediate effect, initiating a 

lymphocytosis within 10 min and subsequently evoke a neutrophilia and monocytosis with 

a relative lymphopenia (Benschop et al., 1996). The later rise of plasma cortisol during 

prolonged strenuous exercise induces a further neutrophilia from the spleen and the bone 

marrow into the circulation (Toft et al.; 1994) but mobilises other leukocyte subsets from 

the circulation into the bone marrow, lymphoid, skin and injured tissue (Wira et al., 1990, 

Toft et al., 1992). The leukocyte trafficking during EX2 is likely mediated by the elevated 

plasma adrenaline rather than cortisol or GH since we did not find a lymphopenia at post

EX2. Moreover, Nieman (1997) has suggested that cortisol does not dominate leukocyte 
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mobilisation until the duration of exercise is in excess of 90 min and the effect of GH on 

neutrophil trafficking may not occur until 2 h after infusion (Kappel et al., 1993). 

No significant effect of CHO ingestion on neutrophil degranulation and oxidative burst 

activity was found in the present study. The results support the findings of previous 

studies, which reported that CHO ingestion during exercise did not affect neutrophil 

degranulation on per cell basis (Bishop et al., 2002, Lancaster et al., 2003). Although there 

were no differences in LPS-stimulated elastase release per neutrophil between pre-EX2 

and p ost-EX2 in both trials, a significant decrease was o.bserved at p ost-EXl compared 

with pre-EXl in both trials. The findings were similar to previous studies, which 

demonstrated that neutrophil degranulation on per cell basis fell after 2 h cycling at 

60% VOz max (Walsh et al., 2000a) and following cycling to fatigue (98 ± 7 min in the 

CHO trial) at 75% VOZmax (Bishop et al., 2001). Nakagawa et al. (1998) reported that the 

circulating neutrophilia after dexamethasone infusion was from the bone marrow (10%), 

marginated pools (61%) and prolongation of neutrophil intravascular half-life (29%) in 

rabbits. The neutrophils released from the bone marrow appear to have a lower content of 

granular digestive enzymes compared with fully mature neutrophils (Pyne, 1994). 

Therefore, an important factor determining the effect of exercise on neutrophil 

degranulation response to LPS on a per cell basis may be the mobilisation of neutrophils, 

although Bishop et al. (2003) reported that release of less mature cells may be not the 

reason for the fall in LPS-stimulated elastase release after strenuous exercise a nd m any 

other factors seem to associated with neutrophil degranulation, such as the level of 

intracellular cAMP (Ottonello et al., 1997), phagocytic activity (Morozov et al., 2003), 

platelet-neutrophil contacts (Losche et al., 1996), adrenaline (Tintinger et al., 2001), 

glucocorticoids (Liles et al., 1995) and 1L-6 (Johnson et al., 1998). This suggestion is 

supported by observations in the present study: a neutrophilia during EXl coincided with 

a decline in LPS-stimulated elastase release, whereas the similar neutrophilia in CHO and 

PLA was associated with similar values of elastase release per neutrophil throughout the 

experimental protoco\. 

In the present study, the PMA-induced neutrophil oxidative burst activity (determined by 

CL) on per cell baSis did not decline during EXl until pre-EX2. The CL was only further 
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decreased in PLA during EX2. However, there was no significant difference between CHO 

and PLA throughout the experimental protocol. A few studies have examined the effect of 

exercise on PMA-induced neutrophil oxidative burst activity and the results were 

inconsistent. Pyne et al. (1996) reported that PMA-induced CL decreased 41 % during the 

first bout of 40 min running at a heart rate -140 beats'min-! and the CL values did not 

change further during the I-h recovery interval or in a second bout of identical exercise. 

However, Suzuki et al. (1999) showed that the PMA-induced CL of isolated neutrophils 

was increased a fier 9 0 min cycling at - 53% VO, nu,. Moreover, C HO ingestion did not 

appear to affect PMA-stimulated intracellular HzOz production (Smith et al., 1996). The 

neutrophils in the bone marrow are less mature with lower NADPH-dependent oxidase 

activity and superoxide response to PMA stimulation (Berkow and Dodson, 1986), 

whereas the nitro blue tetrazolium (NBT)-negative neutiophils in the marginated pools are 

likely to produce less Oz'· in response to in vitro stimulation (Suzuki et aI., 1996). 

Therefore, the decline of the PMA-induced CL on per neutrophil basis at pre-EX2 and 

onwards in the present study may be due to the influx of these two types of neutrophils into 

the circulation. Other factors also appear to affect neutrophil oxidative burst activity, 

including adrenaline (Tintinger et aI., 2001), GH (Ruyet aI., 1997), repeated stimulation 

(Prasad et aI., 1991), and cell isolation procedures (Fukuda and Schmid-Schonbein, 2002). 

In the present study, the plasma IL-6 concentration was elevated during exercise and CHO 

ingestion blunted the IL-6 response compared with PLA. It is accepted that prolonged 

exercise elicits IL-6 production and release from contracting skeletal muscle into the 

circulation (Steensberg et al., 2000). The plasma IL-6 level is not markedly elevated until 

the later stage of prolonged exercise (glycogen depleted state) and CHO ingestion during 

exercise attenuates the plasma IL-6 response (Febbraio and Pedersen, 2002). The relatively 

low level 0 f plasma IL-6 in the present study may reflect a sufficient CHO availability 

during EX2 and may not exert marked metabolic effects on hepatic glucose production, 

muscle glucose uptake, and lipolysis during exercise (Gleeson, 2000a). 

Similar to Chapter 7, saliva flow rate was only decreased in PLA at post-EX2 compared 

with pre-EX2. Ford et al. (1997) reported that regular fluid intake appeared to prevent the 

decline of saliva flow rate during exercise. However, this notion is not fully supported by 
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the results of the present study because a significant decrease in saliva flow rate was still 

observed under sufficient water intake (1.5 L) during EX2. Since a steady blood flow to 

the salivary glands is required for maintenance of adequate salivation (Smaje, 1998), 

vasoconstriction may decrease saliva flow rate. Therefore, the lower saliva flow rate at 

post-EX2 in this study may be due to the higher adrenaline concentration (SNS 

stimulation). However, the magnitude of SNS stimulation is likely not greater enough to 

modify sIgA transcytosis. 

In conclusion, ingestion of CHO compared with PLA during the second of two bouts of 90 

min cycling at 60% VO, max maintained better CHO availability, blunted HP A activation, 

and attenuated the leukocytosis and monocytosis; however, had no effect on the neutrophil 

degranulation response to LPS and oxidative burst activity induced by PMA on per cell 

basis during the second exercise bout. Oral immunity is likely not affected by exercise 

itself or CHO ingestion. Furthermore, the disturbances of immunoendocrine responses 

induced by two bouts of prolonged exercise on the same day recovered within 18 h. 
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CHAPTER NINE 

General Discussion 

The aim of this chapter is to attempt to integrate the findings from all studies in this thesis. 

In order to develop an overall view of the effects of repeated bouts of prolonged exercise 

and carbohydrate supplementation on immunoendocrine responses, this chapter is divided 

into three sections. The first section, general discussion, will review and comprehensively 

discuss the main findings of previous chapters. The second section, conclusions, will 

present the outcomes of this thesis. Finally, some suggestions derived from the findings of 

this thesis are given that may help athletes to minimise the impact of repeated bouts of 

exercise on their immunoendocrine system and may inform researchers of directions that 

may be worthy of further investigation. 

9.1 General Discussion 

Repeated training sessions during one day are a common training procedure for many elite 

athletes nowadays. However, only a few studies have been done on the impact of this type 

of training programme on immunoendocrine responses (McCarthy et al., 1992, Rohde et 

aI., 1998, Ronsen et al., 2001a, 20Mb, Boyum et al., 2002, Ronsen et aI., 2002a, 2002b, 

McFarlin et aI., 2003). Thus, the main aims of this thesis were to determine how two bouts 

of prolonged exercise performed on the same day affect immunoendocrine responses and 

the influence of nutritional intervention. This section is divided into five parts. Firstly, it 

was deemed necessary to clarify the effect of different saliva collection methods on 

measurement of saliva composition in order to determine the optimal method to use in the 

studies of this thesis. Secondly, the effect of exercise performed at different times of day 

on immunoendocrine responses was investigated. Thirdly, the difference in the 

immunoendocrine responses between the first and the second of two bouts of prolonged 

exercise was compared. Fourthly, the effect of ingestion of CHO compared with PLA on 

immunoendocrine responses during the second of two bouts of prolonged exercise was 

determined. Finally, it was established how much recovery time is needed to recover from 

two bouts of prolonged exercise. 

124 



Chapter 9 General Discussion 

9.1.1 Saliva collection methods 

10 the literature, the findings regarding the effect of exercise on saliva composition are 

inconsistent (see 2.6 saliva immunoglobulin A responses to exercise) and the reasons for 

this may be attributable, at least in part, to the different saliva collection methods, 

treatment and storage methods, assay techniques, and exercise protocols used. Therefore, 

we determined the effects of different saliva volumes on collection efficiency and saliva 

IgA concentration using the Salivette swab collection method (Study 1 in Chapter 4) and 

investigated the influence of different saliva collection methods on saliva 19A 

concentration and saliva flow rate estimation (Study 2 in Chapter 4) before the start of 

exercise studies in this thesis. The findings from these two studies indicated that the swab 

collection method is not an ideal method because it affects measured values of saliva IgA 

concentration. Therefore, the optimal saliva collection method used in this thesis is 

described as the following: with an initial swallow to empty the mouth, unstimulated whole 

saliva is then expectorated (dribbled) into a pre-weighed vial for 2 min with eyes open, 

head tilted slightly forward and making minimal orofacial movement. 

9.1.2 Different times of day 

Many physiological variables exhibit circadian rhythms (see 2.1 Circadian variation in 

plasma stress hormones I L-6, circulating numbers 0 fl eukocytes a ndsI gA) and the best 

performance of elite athletes is often observed in the early evening (Atkinson and Reilly, 

1996). However, in terms of the immune system, what time of day is best for exercising is 

still unknown. 

10 order to compare the effects of exercise performed at different times of day on 

immunoendocrine responses, we investigated time-dependent changes in plasma stress 

hormones, IL-6, circulating numbers of leukocyte subsets, neutrophil function, saliva flow 

rate, and saliva I gA responses. The results showed that there are circadian variations in 

plasma concentrations of ACTH and cortisol, circulating counts of leukocytes, neutrophils, 

lymphocytes and saliva 19A concentration (Chapter 5). The observations are similar to 

previous findings (Dhabhar et a t., 1994, Haus, 1994, G leeson eta t., 2 OOla, P orterfield, 

2001) and support the notion that the diurnal variation must be considered when the aim of 
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a study is to compare the effect of exercise performed at different times of day on the 

aforementioned parameters. 

The main findings regarding the comparison of immunoendocrine responses between a 

single bout of prolonged exercise in the morning and in the afternoon are presented in 

Table 9.1 (EXl vs. PMEX). 

The plasma concentrations of glucose, adrenaline, ACTH, cortisol, GH and IL-6 and 

neutrophil degranulation response to LPS on per cell basis in EXI are similar to PMEX 

whereas the perturbations of circulating leukocytes and subsets in EXI are greater 

compared with PMEX. The larger redistribution of leukocytes and subsets into the 

circulation at post-PMEX compared with post-EX I may be caused by higher HPA 

activation since the !AUC of plasma cortisol was significantly higher in PMEX (83.2 

nM·h·1
) than EXl (3.5 nM·h·1

) although no difference in absolute plasma concentration 

was found under the influence of circadian rhythms. Furthermore, saliva flow rate, slgA 

concentration and IgA secretion rate was not altered between EX I and PMEX. 

In summary, a single bout of prolonged exercise performed in the afternoon induces a 

larger perturbation in redistributing leukocyte into the circulation than an identical bout of 

morning exercise, which may be due to .higher HP A activation and circadian rhythms. 

However, in terms of oral mucosal immunity, performing prolonged. cycling at different 

times of day does not differently affect the salivary responses. 

9.1.3 The first vs. the second of two bouts of prolonged exercise 

Ronsen and his colleagues reported that the second exercise bout induced greater responses 

of stress hormones and circulating counts of leukocyte subsets compared with an identical 

first bout of intensive exercise on the same day (Ronsen et al., 2001a, 2001b). In this thesis 

we further compared the differences between the first and the second of two bouts of 

prolonged cycling in plasma glucose, IL-6, stress hormones, leukocyte trafficking, 

neutrophil function, saliva flow rate and slgA responses. The main findings about the 

comparison of immunoendocrine responses between the first and the second of two bouts 

of prolonged exercise are presented in Table 9.1 (EXl vs. EX2). 
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Table 9.1 The comparison of immunoendocrine responses between single bout of exercise 

in the morning and in the afternoon (EXl vs. PMEX) and between the first and the second of 

two bouts of prolonged exercise (EXl vs. EX2) 

EXl vs. EX2 
EXl vs. PMEX 

NON-CHO CHO-REC CHO-EXl CHO-EX2 

Glucose - ! !! !! it 

IL-6 - - - i -
Adrenaline - - it i -
ACTH - it· i - -
Cortisol - it i - it 

GH - i i ii -
Leukocyte count ! i it ii it 

Neutrophil count ! - it ii it 

Lymphocyte count - it it ii .it 

Monocyte count !! it it ii i 

.Degranulation per 
neutrophil - !! - - !! 

Oxidative burst pe, 
neutrophil -
Saliva flow rate - - - ! -
Saliva IgA concentration - - - - -
Saliva IgA secretion rate - - - - -
EXl vs. PMEX and NON-CHO: no CHO supplementation (i.e. PLA or water; Chapter 5); CHO-REC: CHO 

supplementation during the recovery interval (Chapter 6); CHO-EXI: CHO supplementation during EXl 

(Chapter 7); CHO-EX2: CHO supplementation during EX2 (Chapter 8). 

Significantly higher at post-EX2 than post-EX 1 C p < 0.05,11 P < 0.01); significantly lower at post-EX2 than 

post-EX 1 (I P < 0.05, U P < 0.01); - similar between post-EX2 and post-EX!. 
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Muscle glycogen depletion and hypoglycaemia potentially cause fatigue (Coyle et aI., 

1983, Costill and Hargreaves, 1992) and elevate HP A and SNS stimulation during 

prolonged exercise (Mitchell et al., 1990). Low plasma glucose concentration itself may 

impair neutrophil functions (Leist et aI., 1997, Healy et ai., 2002). The higher plasma 

concentrations of adrenaline and cortisol released by elevated HP A and SNS stimulation 

evoke the redistribution of leukocytes from marginal pools and the bone marrow into the 

circulation (Gleeson and Bishop, 1999). 

Plasma glucose concentration was significantly lower at post-EX2 compared with post

EXI when subjects ingested water throughout the experimental protocol (Chapter 5) or 

CHO during the recovery interval (Chapter 6) or EXI (Chapter 7). Although CHO 

supplementation increases CHO availability during the experimental protocol, it is likely 

that the CHO ingestion during any period of two prolonged exercise bouts cannot attenuate 

the greater activation of HP A and increase in blood counts of leukocyte subsets in EX2 

compared with EX!. However, the ingestion ofCHO during the recovery interval and EXI 

may be beneficial to blunt the decline of neutrophil function and feeding CHO during EXI 

seems more effective in· this regard. Performing two bouts of prolonged cycling on the 

same day appears to inhibit saliva flow rate but does not alter sIgA transcytosis in either 

EXI or EX2. However, EX2 did not evoke greater changes in sIgA secretion compared 

with EX!. 

In summary, the second compared with the first of two bouts of prolonged exercise on the 

same day induces a greater HP A activation, a larger leukocyte trafficking into the 

circulation, and a decreased neutrophil degranulation response to LPS on per cell basis and 

a lower saliva flow rate; but does not increase plasma IL-6, or change sIgA secretion rate. 

Furthermore, CHO ingestion during any period of two bouts of prolonged exercise shows 

limited beneficial effect to blunt these higher responses in the second exercise bout 

compared with the first identical exercise bout on the same day. 

9.1.4 Carbohydrate supplementation during two bouts of prolonged exercise 

The main findings concerning the effect of CHO ingestion on immunoendocrine responses 

during the second of two bouts of prolonged exercise are presented in Table 9.2. 
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Table 9.2 The effect of CHO ingestion on immunoendocrine responses during the second 

of two bouts of prolonged exercise 

NON-CHO CHO-REC CHO-EXI CHO-EX2 

Glucose U U " - " if 

IL-6 i i i 'if 

Adrenaline if if 
, 

'if 

ACTH if ' i " i 'if 

Cortisol n • i ,. n ., n 

GH n i n " -
LeukocYte count i 'n ., n " n 
Neutrophil count - - n i 

Lymphocyte count n n " ii if 

Monocyte count n n 'n " n 
Degranulation per neutrophil U - '- -
Oxidative burst per neutrophil '- -
Saliva flow rate U U U -
Saliva IgA concentration if n '- ,-

Saliva IgA secretion rate - - - -
NON-CHO: no CHO supplementation (i.e. PLA or water; Chapter 5); CHO-REC: CHO supplementation 

during the recovery interval (Chapter 6); CHO-EXI: CHO supplementation during EXI (Chapter 7); CHO

EX2: CHO supplementation during EX2 (Chapter 8). 

Significantly different from PLA at post-EX2 (' P < 0.05, " P < 0.01); significantly higher at post-EX2 than 

pre-EX2 e P < 0.05,11 P < 0.01); significantly lower at post-EX2 than pre-EX2 (I P < 0.05, 11 P < 0.01); -

similar between post-EX2 and pre-EX2. 
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Ingestion of CHO compared with PLA during EXI or EX2 appears consistently to better 

maintain the plasma glucose concentration, attenuate the activation of SNS and HP A, blunt 

the increase in blood numbers of leukocytes and monocytes, and minimise the elevation of 

sIgA concentration during EX2. CHO supplementation during EX2, moreover, attenuates 

the decline of neutrophil degranulation response to LPS and oxidative burst activity to 

PMA on per cell basis compared with PLA. However, CHO ingestion during the recovery 

interval seems less effective and only blunts the HP A activation and circulating 

lymphocyte count compared with PLA. Ingesting CHO-rich drinks during prolonged 

exercise is the most effective and common strategy applied to support CHO availability 

during exercise (Jeukendrup and Jentjens, 2000), which can attenuate activation of HP A 

and perturbation of the circulating numbers of leukocytes and subsets (Mitchell et al., 

1990, Nieman et al., 1997, Bishop et al., 1999b). In contrast, the CHO ingestion during the 

recovery interval in Chapter 6 did not appear to attenuate the decline of plasma glucose 

concentration and was not effective in blunting the immunoendocrine responses during 

EX2 compared with PLA. The findings suggest that the greatest benefit of CHO 

supplementation to attenuation of immunoendocrine responses during two bouts of 

prolonged exercise is obtained when CHO is consumed at the earliest opportunity since it 

allows more time for absorption and storage of glucose. For example, when CHO drink is 

consumed during EXI, some ingested CHO is emptied and absorbed (-I g·min
O

') to 

maintain plasma glucose concentration during the first bout of prolonged exercise, and 

some ingested CHO may provide substrate for glycogen synthesis in the liver and muscle 

during the recovery interval, and attenuate the decrease in CHO availability and 

immunoendocrine responses during the subsequent bout of exercise. However, if CHO is 

consumed during the recovery interval, there is less time available for absorption and 

glycogen synthesis and may also cause a rebound hypoglycaemia in the early stage of the 

subsequent exercise bout, inducing the activation of HP A. If CHO is consumed during the 

second exercise bout, some, but probably not all of the ingested CHO, is absorbed to 

maintain plasma glucose concentration but it is unlikely to be directed to resynthesis of 

liver and muscle glycogen during exercise. 
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In summary, ingestion of CHO compared with PLA during the recovery interval attenuates 

HP A activation to the second exercise bout to a small extent. If CHO is supplemented 

during the second exercise bout, the responses of SNS and HP A, plasma glucose, 

circulating leukocytosis and monocytosis, and sIgA level during the second exercise bout 

are blunted compared with PLA. Moreover, if CHO is ingested during the first of two 

bouts of prolonged exercise, the decline in neutrophil function can be prevented (compared 

with PLA) during the second exercise bout. It seems that when two bouts of exercise are 

performed on the same day, the greater benefit in terms of circulating immunoendocrine 

responses is obviously by feeding CHO at the earliest opportunity. 

9.1.5 Recovery time 

The main findings about the recovery of immunoendocrine variables 3 h after the first and 

18 h after the second of two bouts of prolonged exercise are presented in Table 9.3. 

It has been suggested that the alteration in immune cell function and leukocyte trafficking 

may last for several hours after exercise (Gleeson and Bishop, 1999). The results from the 

studies in this thesis show that the responses of activated SNS and HP A, circulating 

lymphocyte count, and oral immunity return to pre-EXl but plasma glucose and IL-6, 

circulating counts of leukocytes, neutrophils and monocytes, and neutrophil function did 

not recover to pre-EX values within 3 h after EXI when subjects only ingest water or 

placebo during EXI and the recovery interval (NON-CHO-3h and CHO-EX2-3h). 

However, if subjects ingest CHO during EXl or the recovery interval, the decline in 

neutrophil degranulation response to LPS on per cell basis can be prevented. This may be 

because the ingestion of CHO compared with PLA attenuates the delayed neutrophilia that 

arises due to release of cells from the bone marrow into the circulation after EXl. 

Obviously, a 3-h interval is insufficient for recovery of leukocyte mobilisation and 

neutrophil function but oral mucosal immunity (sIgA secretion rate) from the impact of 

previous prolonged exercise. According to Ronsen et al. (2002a), a 6-h recovery interval 

may be better for athletes to recover their cellular immunity for the next training bout. 
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Table 9.3 The immunoendocrine responses at 3 h after the first and 18 h after the second 

of two bouts of prolonged exercise 

NON-CHO-3h CHO-REC-3h CHO-EXI-3h CHO-EX2-3h CHO-EX2-18h 

Glucose +-+ U U t +-+ 

IL-6 i - +-+ +-+ +-+ 

Adrenaline +-+ +-+ +-+ 

ACTH U +-+ +-+ - -
Cortisol - U U - +-+ 

GH +-+ - - - +-+ 

Leukocyte count it it it it +-+ 

Neutrophil count it it it it +-+ 

Lymphocyte count +-+ t +-+ - +-+ 

Monocyte count it it it it +-+ 

Degranulation per 
U neutrophil 

+-+ +-+ t 

Oxidative burst per 
t t +-+ 

neutrophil 

Saliva flow rate +-+ +-+ +-+ +-+ +-+ 

sIgA concentration +-+ +-+ +-+ - +-+ 

sIgA secretion rate - - +-+ +-+ +-+ 

NON-CHO: no CHO supplementation (i.e. PLA or water; Chapter 5); CHO-REC: CHO supplementation 

during the recovery interval (Chapter 6); CHO-EXI: CHO supplementation during EXI (Chapter 7); CHO

EX2: CHO supplementation during EX2 (Chapter 8). 

Significantly higher than pre-EXl C P < 0.05,11 P < 0.01); significantly lower than pre-EXI e P < 0.05, U P 

< 0.01); - similar from pre-EX!. 
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Muns et al. (1994) reported that nasal neutrophil function was depressed for 3 days after 

prolonged running. Moreover, Peters and Bateman (1983) suggested that the depression of 

sIgA concentration could last up to 18 h after marathon running and that repeated bouts of 

intense exercise may exert a cumulative effect on mucosal immunity (Mackinnon and 

Hooper, 1994). However, we did not observe a delayed effect of exercise on 

immunoendocrine variables 18 h after two bouts of prolonged exercise. 

In summary, a 3 h interval is insufficient for recovery of leukocyte mobilisation and 

neutrophil function from the impact of previous exercise whether subjects consumed 

placebo or CHO during exercise or recovery. However, an 18 h interval is sufficient for 

full recovery of all immunoendocrine variables we measured in this thesis from the impact 

of two bouts of prolonged exercise. 
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9.2 Conclusions 

The major conclusions from this thesis are: 

I) The use of a swab for collecting saliva is not an ideal method because it affects the 

results of saliva composition. 

2) A single bout of prolonged exercise performed in the afternoon induces a larger 

perturbation in the redistribution of leukocytes into the circulation than an identical 

bout of morning exercise, which may be due to higher HP A activation and circadian 

rhythms. However, in terms of oral mucosal immunity, performing prolonged cycling 

at different times of day does not differently affect the salivary responses. 

3) The second compared with the first of two bouts of prolonged exercise on the same 

day induces a greater HPA activation, a larger leukocyte trafficking into the 

circulation, and a decreased neutrophil degranulation response to LPS on per cell 

basis and a lower saliva flow rate; but does not increase plasma IL-6, or change sIgA 

secretion rate. Furthermore, CHO ingestion during any period of two bouts of 

prolonged exercise shows limited beneficial effect to blunt these higher responses in 

the second exercise bout compared with the first identical exercise bout on the same 

day. 

4) When two bouts of exercise are performed on the same day, the greatest benefit in 

terms of circulating immunoendocrine responses is obtained by feeding CHO at the 

earliest opportunity. 

5) A 3 h interval is insufficient for recovery of leukocyte mobilisation and neutrophil 

function from the impact of previous exercise whether subjects consume placebo or 

CHO during exercise or recovery. However, an 18 h interval is sufficient for full 

recovery of all immunoendocrine variables we measured in this thesis from the impact 

of two bouts of prolonged exercise. 
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9.3 Suggestions 

Some practical suggestions that can be given to athletes based on the findings ofthis thesis 

include: 

1) If athletes have only a single session of training in a day, performing it in the morning 

is likely to better minimise the impacts of exercise on immunoendocrine responses 

compared with afternoon exercise. 

2) Maintaining CHO availability during exercise IS very important to attenuate 

immunoendocrine responses. Ifpossible, ingest a CHO-rich drink (- 1-2 g CHO'min

I) during each exercise session and recovery interval. 

3) If a training programme consists of more than one session of exercise, a recovery 

interval of more than 3 h is essential for maintaining immunocompetence in a 

subsequent training session. 

Possible future studies from the remaining questions in this thesis: 

1) . Determine how long it takes to fully recover from the impact of two bouts of 

prolonged exercise. 

2) Quantify neutrophil release from the bone marrow and the redistribution of NBT

negative neutrophils from the marginated pools into the circulation following different 

periods of repeated exercise and measure their function. 

3) Compare neutrophil function in. isolated cell suspensions and whole blood samples. 

4) Examine the balance of T hi and T h2 to repeated bouts of exercise on the same day. 

135 



References 

REFERENCES 

Alverdy, J. and Aoys, E. (1991). The effect of glucocorticoid administration on bacterial 

translocation. Evidence for an acquired mucosal immunodeficient state. Ann. Surg., 214, 

719-723. 

Anderson, L. C. and Garrett, J. R. (1998). Neural regulation of blood flow in the rate 

submandibular gland. Eur. J Morphol., 36,213-218. 

Asahi, Y., Yoshikawa, T., Watanabe, I., Iwasaki, T., Hasegawa, H., Sato, Y., Shimada, S., 

Nanno, M., Matsuoka, Y., Ohwaki, M., Iwakura, Y., Suzuki, Y., Aizawa, c., Sata, T., 

Kurata, T. and Tamura, S. (2002). Protection against influenza virus infection in 

polymeric I g receptor knockout mice immunized intranasally with adjuvant-combined 

vaccines. J Immunol., 168,2930-2938. 

Atkinson, G. and Reilly, T. (1996). Circadian variation in sports performance. Sports Med., 

21,292-312. 

Bamett, C. C., Moore, E. E., Partrick, D. A. and Silliman, C. C. (1997). ~-Adrenergic 

stimulation down-regulates neutrophil priming for superoxide generation, but not 

elastase release. JSurg. Res., 70, 166-170. 

Benschop, R. J., Rodriguez-Feuerhahn, M. and Schedlowski, M. (1996). Catecholamine

induced leukocytosis: early observations, current research, and future directions. Brain 

Behav. Immun., 10, 77-9\. 

Berczi, I. (1997). Pituitary hormones and immune function. Acta Paediatr., 423,70-75. 

Berczi, I., Chalmer, I. M., Nagy, E. and Warrington, R. J. (1996). The immune effects of 

neuropeptides. Baillieres Clin. Rheumatol., 10,227-257. 

Berkow, R. L. and Dodson, R. W. (1986). Purification and functional evaluation of mature 

neutrophils from human bone marrow. Blood, 68,853-860. 

136 



References 

Bishop, N. C., Blannin, A. K., Rand, L., Johnson,R. and Gleeson, M. (2000a). The effects 

of carbohydrate supplementation on neutrophil degranulation responses to prolonged 

cycling. Int. J. Sports Med., 21, S73. 

Bishop, N. C., Blannin, A. K., Robson, P. J., Walsh, N. P. and Gleeson, M. (1999a). The 

effects of carbohydrate supplementation on immune responses to a soccer-speCific 

exercise protocol. J. Sports Sci., 17, 787-796. 

Bishop, N. C., Blannin, A. K., Walsh, N. P., Armstrong, E., Riclanan, M. and Gleeson, M. 

(2000b). Carbohydrate and fluid intake affect the saliva flow rate and IgA response to 

cycling. Med. Sci. Sports Exerc., 32, 2046-205\. 

Bishop, N. C., Blannin, A. K, Walsh, N. P. and Gleeson, M. (2001). Carbohydrate 

beverage ingestion and neutrophil degranulation responses following cycling to fatigue 

at 75% VOz max. Int. J. Sports Med., 22,226-231. 

Bishop, N. c., Blannin, A. K, Walsh, N. P., Robson, P. J. and Gleeson, M. (1999b). 

Nutritional aspects of immunosuppression in athletes. Sports Med., 28, 151-176. 

Bishop, N. C., Gleeson, M., Nicholas, C. W. and Ali, A. (2002). Influence of carbohydrate 

supplementation on plasma cytokine and neutrophil degranulation responses to high 

intensity intermittent exercise. Int. J. Sport Nutr. Exerc. Metab., 12, 145-156. 

Bishop, N. c., Walsh, N. P. and Scanlon, G. A. (2003). Effect of prolonged exercise and 

Carbohydrate on total neutrophil elastase content. Med. Sci. Sports Exerc., 35, 1326-

1332. 

Blannin, A. K, Chatwin, L. J., Cave, R. and Gleeson, M. (1996). Effects of sub maximal 

cycling a nd long term endurance training 0 n neutrophil phagocytic activity in middle 

aged men. Br. J. Sports Med., 30, 125-129. 

Blannin, A. K., Gleeson, M., Brooks, S. and Cave, R. (1997). The effects of endurance 

training in the bacterially stimulated degranulation of human neutrophils in vitro. J. 

Sport Sci., 15,28. 

137 



References 

Blannin, A K., Robson, P. J., Walsh, N. P., Clark, A. M., Glennon, L. and Gleeson, M. 

(1998). The effect of exercising to exhaustion at different intensities on saliva 

immunoglobulin A, protein and electrolyte secretion. Int. 1. Sports Med., 19,547-552. 

Boyum, A, Ronsen, 0., Tennfjord, V. A, Tollefsen, S., Haugen, A. H., Opstad, P. K. and 

Bahr, R. (2002). Chemiluminescence response of granulocytes from elite athletes during 

recovery from one or two intense bouts of exercise. Eur. 1. Appl. Physiol., 88,20-28. 

Brandtzaeg, P. (1998). Synthesis and secretion of human salivary immunoglobulins. Front 

Oral BioI. In Glandular Mechanisms of Salivary Secretion,VoI.10. (edited by J. R. 

Garrett, J. Ekstrom and L. C. Anderson), pp.167-199. London: Basel, Karger. 

Brenner, l. K. M., Shek, P. N. and Shephard, R. J. (1994). Acute infections and exercise. 

Sports Med., 17,86-107. 

Busch, L., Sterin-Borda, L. and Borda, E. (2002). Differences in the regulatory mechanism 

of amylase release by rat parotid and submandibular glands. Arch. Oral Bioi., 47, 717-

722. 

Calvano, S. E., Barber, A. E., Hawes, A. S., De Riesthal, H. F., Cole, S. M. and Lowry, S. 

F. (1992). Effect of combined cortisol-endotoxin administration on peripheral blood 

leukocyte counts and phenotype in normal humans. Arch. Surg., 127, 181-186. 

Chanock, S. J., Nenna, J. E., Smith, R. M. and Babior, B. M. (1994). The respiratory burst 

oxidase. 1. Bioi. Chem., 269,24519-24522. 

Chicharro, J. L., Lucia, A., Perez, M., Vaquero, A. F. and Urena, R. (1998). Saliva 

composition and exercise. Sports Med., 26, 17-27. 

Clark, J. H. and Conlee, R. K. (1979). Muscle and liver glycogen content: diurnal variation 

and endurance. J. Appl. Physiol., 47,425-428. 

Costill, D. L. and Hargreaves, M. (1994). Carbohydrate nutrition and fatigue. Sports Med., 

13,86-92. 

138 



References 

Coyle, E. F., Hagberg, J. M., Hurley, B. F., Martin, W. H., Whsani, A. A. and Holloszy, J. 

O. (1983). Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. 

J. Appl. Physiol., 55,230-235. 

Crawford, J. M., Taubman, M. A. and Smith, D. J. (1975). Minor salivary glands as a 

major source 0 f secretory immunoglobulin A in the human 0 ral cavity. Science, 190, 

1206-1209. 

Crofford, 1. J., Kalogeras, K. T., Mastorakos, G., Magiakou, M. A., Wells, J., Kanik, K. 

S., Gold, P. W., Chrousos, G. P. and Wilder, R. 1. (1997). Circadian relationships 

between interleukin (IL)-6 and hypothalamic-pituitary-adrenal axis hormones: failure of 

IL-6 to cause sustained hypercortisolism in patients with early untreated rheumatoid 

arthritis. J. Clin. Endocrinol. Metab., 82, 1279-1283. 

Cupps, T. R. and Fauci, A. S. (1982). Corticosteroid-mediated immunoregulation in man. 

Immunol. Rev., 65, 133-155. 

Dhabhar, F. S. and McEwen, B. S. (1997). Acute stress enhances while chronic stress 

suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. 

Brain Behav. Immun., 11,286-306. 

Dhabhar, F. S., Miller, A. H., Stein, M., McEwen, B. S. and Spencer, R. 1. (1994). Diurnal 

and acute stress-induced changes in distribution of peripheral blood leukocyte 

subpopulations. Brain Behav. Immun., 8,66-79. 

Dill, D. B. and Costill, D. L. (1974). Calculation of percentage changes in volumes of 

blood, plasma, and red cells in dehydration. J. Appl. Physiol., 37,247-248. 

Dimitriou, 1., Sharp, N. C. and Doherty, M. (2002). Circadian effects on the acute 

responses of salivary cortisol and 19A in well trained swimmers. Br. J. Sports Med., 36, 

260-264. 

Douglas, D. J. and Hanson, P. G. (1978). Upper respiratory infections in the conditioned 

athlete. Med. Sci. Sports Exerc., 10,55. 

139 



References 

Elenkov,1. J., Wilder, R. L., Chrousos, G. P. and Vizi, E. S. (2000). The sympathetic nerve 

-- an integrative interface between two supersystems: the brain and the immune system. 

Pharmacol. Rev., 52,595-638. 

Elsbach, P. (1980). Degradation of microorganisms by phagocytic cells. Rev. Infect. Dis., 

2, 106-128. 

Ernstrom, U. and Sandberg, G. (1974). Adrenaline-induced release of lymphocytes and 

granulocytes from the spleen. Biomedicine, 21,293-296. 

Fauci, A. S . ( 1976). Mechanism 0 f corticosteroid action 0 n 1 ymphocyte s ubpopulations. 

Clin. Exp. Immunol., 24, 54-62. 

Fauci, A. S. and Dale, D. C. (1975). The effect of hydrocortisone on the kinetics of normal 

human lymphocytes. Blood, 46,235-243. 

Febbraio, M. and P edersen, B. K. (2002). Muscle derived i nterleukin-6 mechanisms for 

activation and possible biological roles. FASEB J, 16, 1335-1347. 

Febbraio, M. A, Steensberg, A, Keller, C., Starkie, R. L., Nielsen, H. B., Krustrup, P., 

Ott, P., Secher, N. H. and Pedersen, B. K. (2003). Glucose ingestion attenuates 

interleukin-6 release from contracting skeletal muscle in humans. J. Physiol., 249, 607-

612. 

Field, C. J., Gougeon, R. and Marliss, E. B. (1991). Circulating mononuclear cell numbers 

and function during intense exercise and recovery. J Appl. Physiol., 71, 1089-1097. 

Fleshner, M. (2000). Exercise and neuroendocrine regulation of antibody production: 

protective effect of physical activity on stress-induced suppression of the specific 

antibody response. Int. J Sports Med., 21, SI4-S19. 

Ford, J., Trevatt, N., Dix, C. A and Fallowfield, J. L. (1997). The effect of fluid 

replacement and heat on salivary flow rate and optical density at 280 om in responses to 

exercise. J Sports. Sci., 15,49-50. 

140 



References 

Foster, N. K., Martyn, J. B., Rangno, R. E., Hogg, J. C. and Pardy, R. L. (1986). 

Leukocytosis of exercise: role of cardiac output and catecholamines. J. Appl Physiol., 

61,2218-2223. 

Fox, P. C., van der Ven, P. F., Sonies, B. C., Weiffenbach, J. M. and Baum, B. J. (1985). 

Xerostomia evaluation of a symptom with increasing significance. J. Am. Diet Assoc., 

110,519-525. 

Fricker, P. A., McDonald, W. A., Gleeson, M. and Clancy, R. L. (1999). Exercise

associated hypogammaglobulinemia. Clin. J. Sport Med., 9,46-49. 

Fu, Y. K., Arkins, S., Fuh, G., Cunningham, B. c., Wells, J. A., Fong, S., Cronin, M. J., 

Dantzer, R. and Kelley, K. W. (1992). Growth hormone augments superoxide anion 

secretion of human neutrophils by binding to the prolactin receptor. J. Clin. Invest., 89, 

451-457. 

Fu, Y. K., Arkins, S., Wang, B. S. and Kelley, K. W. (1991). A novel role of growth 

hormone and insulin-like growth factor-I. Priming neutrophils for superoxide anion 

secretion. J. Immunol., 146,1602-1608. 

Fukatsu, K., Sato, N. and Shimizu, H. (1996). 50-mile walking race suppresses neutrophil 

bactericidal function by inducing increases in cortisol and ketone bodies. Life Sci., 58, 

2337-2343. 

Fukuda, S. and Schmid-Schonbein, G. W. (2002). Centrifugation attenuates the fluid shear 

response of circulating leukocytes. J. Leukoc.Biol., 72, 133-139. 

Gabriel, H., Muller, H. J., Urhausen, A. and Kindermann, W. (1994). Suppressed PMA

induced oxidative burst and unimpaired phagocytosis of circulating granulocytes one 

week after a long endurance exercise. Int. J. Sports Med., 15, 441-445. 

Gannon, G. A., Rhind, S. G" Shek, P. N. and Shephard, R. J. (2001). Differential cell 

adhesion molecule expression and lymphocyte mobilisation during prolonged aerobic 

exercise. Eur. J. Appl. Physiol., 84,272-282. 

141 



References 

Garcia, C., Pithon-Curi, T. C., De Lourdes Finnano, M., Pires De Melo, M., Newsholme, 

P. and Curi, R. (1999). Effects of adrenaline on glucose and glutamine metabolism and 

superoxide production by rate neutrophil. Clin. Sci., 96,549-555. 

Garrett, J. R. (1987). The proper role of nerves in salivary secretion: a review. J Dent. 

Res., 66,387-397. 

Gatti, G., Angeli, A. and Carignola, R. (1994). Chronobiology of endocrine-immune 

interactions. In Biologic Rhythms in Clinical and Laboratory Medcine (edited by Y. 

Touitou and E. Haus), pp.363-374. Berlin: Springer Verlag. 

Glaser, R., Rabin, B., Chesney, M. and Natelson, B. (1999). Stress-induced 

immunomodulation: implications for infecious diseases. JAMA, 281,2268-2270. 

Gleeson, M. (1998). Overtraining and stress responses. Sports Exerc. Injury, 4,62-68. 

Gleeson, M. (2000a). Interleukins and exercise. J Physiol., 529, 1. 

Gleeson,. M. (2000b). Mucosal immune response and risk of respiratory illness in elite 

athlets. Exerc. Immunol. Rev., 6, 5-42. 

GIeeson, M. (2000c). The scientific basis of practical strategies to maintain 

~ immunocompetence in elite athletes. Exerc.Immunol. Rev., 6,75-101. 

Gleeson, M. and Bishop, N. C. (1999). Immunology. In Basic and Applied Sciences for 

Sports Medicine (edited by R. J. Maughan), pp.199-236. Oxiford: Butterworth

Heinemann. 

Gleeson, M. and Bishop, N. C. (2000a). Elite athlete immunology: importance of nutrition. 

Int. J. Sports Med., 21, S44-S50. 

Gleeson, M. and Bishop, N. C. (2000b). Special feature for the Olympics: effect of 

exercise on the immune system: modification of immune responses to exercise by 

carbohydrate, glutamine and anti-oxidant supplements. Immunol. Cell BioI., 78, 554-

561. 

142 



References 

Gleeson, M., Bishop, N. C., Sterne, V. 1. and Hawkine, A. J. (2001a). Diurnal variation in 

saliva immunoglobulin A concentration and the effect of a previous day of heavy 

exercise. Med. Sci. Sports Exerc., 33, Supplement, ISEI abstract 54. 

Gleeson, M., Lancaster, G. 1. and Bishop, N. C. (200Ib). Nutritional strategies to minimise 

exercise-induced immunosuppresion in athletes. Can. J. Appl. Physiol., 26, S23-S35. 

Gleeson, M., McDonald, W. A., Pyne, D. B., Cripps, A. W., Francis, J. 1., Fricker, P. A. 

and Clancy, R. (1999). Salivary IgA levels and infection risk in elite swimmers. Med. 

Sci. Sports Exerc., 31,67-73. 

Gleeson, M., Walsh, N. P., Blannin, A. K., Robson, P. J., Cook, 1., Donelly, A. E. and 

Day, S. H. (1998). The effect of severe eccentric exercise-induced muscle damage on 

plasma elastase, glutamine and zinc concentrations. Eur. 1. Appl. Physiol., 77,543-546. 

Gomez, F. E., Villegas, J. and Bourges, H. (1991). An enzyme-linked immunosorbent 

assay for human secretory immunoglobulin A in parotid saliva. La Revista de 

Investigacion Clinica, 43,351-358. 

Goodrich, M. E. and McGee, D. W. (1998). Regulation of mucosal B cell immunoglobulin 

secretion by intestinal epithelial cell-derived cytokines. Cytokine, 10,948-955. 

Hansen, J. B., Wilsgard, 1. and Osterud, B. (1991). Biphasic changes in leukocytes 

induced by strenuous exercise. Eur. J. Appl. Physiol., 62, 157-161. 

Hattori, N., Saito, T., Yagyu, T., Jiang, B.-H., Kitagawa, K. and Inagaki, C. (2001). GH, 

GH receptor, GH secretagogue receptor, and ghrelin expression in human T cells, B 

cells, and neutrophils. J. C/in. Endocrinol. and Metab., 86, 4284-4291. 

Haus, E. (1994). Chronobiology of circulating blood cells and platelets. In Biological 

Rhythms in Clinical and Labratory Medicine (edited by Y. Touitou and E. Haus), 

pp.504-526. Berlin: Springer Verlag. 

143 



References 

Healy, D. A., Watson, R. W. G. and Newsholme, P. (2002). Glucose, but not glutamine, 

protects against spontaneous and anti-Fas antibody-induced apoptosis in human 

neutrophils. CUn. Sci., 103,179-189. 

Heath, G. W., Ford, E. S., Craven, T. E., Macera, C. A., Jacson, K. L. and Pate, R. R. 

(1991). Exercise and the incidence of upper respiratory tract infections. Med. Sci. Sports 

Exerc., 23, 152-157. 

Helge, J. W., Stallknecht, B., Pedersen, B. K., Galbo, H., Kiens, B. and Richter, E. A. 

(2003). The effect of graded exercise on 1L-6 release and glucose uptake in human 

skeletal muscle. J. Physiol., 546,299-305. 

Henson, D. A., Nieman, D. C., Nehlsen-Cannarella, S. 1., Fagoaga, O. R., Shannon, M., 

Bolton, M. R., Davis, J. M., Gaffney, C. T., Kelln, W. J., Austin, M. D., Hjertman, J. M. 

E. and Schilling, B. K. (2000). Influence 0 f carbohydrate 0 n cytokine and p hagocyic 

responses to 2 h of rowing. Med. Sci. Sports Exerc., 32, 1384-1389. 

Hoffman-Goets,1. and Pedersen, B. K. (1994). Exercise and the immune system: a model 

ofthe stress reponse? Immunol. Today, 15,382-387. 

Hogg, J. C. (1987). Neutrophil kinetics and lung injury. Physiol. Rev., 67, 1249-1295. 

Homo-Delarche, F. (1984). Glucocorticoid receptors and steroid sensitivity in normal and 

neoplastic human lymphoid tissue: A review. Cancer Res., 44, 431-437. 

Housh, T. J., Johnson, G. 0., Housh, D. J., Evans, S. L. and Tharp, G. D. (1991). The 

effect of exercise at various temperatures on salivary levels of immunoglobulin A. Int. J. 

Sports Med., 12,498-500. 

Hucklebridge, F., Clow, A. and Evans, P. (1998). The relationship between salivary 

secretory immunoglobulin A and cortisol: neuroendocrine response to a wakening and, 

the diurnal cycle. Int. J. Psychophysiol., 31,69-76. 

144 



References 

Isaacs, D., Webster, A. D. B. and Valman, H. B. (1984). Immunoglobulin levels and 

function in preschool children with recurrent respiratory infections. C/in. Exp. Immunol., 

58, 335-340. 

Ivy, J. L., Katz, A L., Cutler, C. L., Sherman, W. M. and Coyle, E. F. (1988). Muscle 

glycogen synthesis after exercis: effect of time of carbohydrate ingestion. J Appl. 

Physiol., 64,1480-1485. 

Jemmott, J. B. and McClelland, D. C. (1989). Secretory IgA as a measure of resistance to 

infections disease: Comment on Stone, Cox, Valdimarsdottir, and Neale. Behav. Med., 

15,63-71. 

Jentjens, R. L. P. G., Van Loon, L. J. C., Mann, C. H., Wagenmakers, A. J. M. and 

Jeukendrup, A. E. (2001). Addition of protein and amino acids to carbohydrates does not 

enhance postexercise muscle glycogen synthesis. J Appl. Physiol., 91, 839-846. 

Jeukendrup, A. E. and Jentjens, R. L. P. G. (2000). Oxidation of carbohydrate feedings 

during prolonged exercise. Current thoughts, guidelines and directions for future 

research. Sports Med., 29,407-424. 

Johansen, F.-E., Braathen, R. and Brandtzaeg, P. (2001). The J chain is essential for 

polymeric Ig receptor-mediated epithelial transport of IgA J Immunol., 167, 5185-

5192. 

Johnson, J. L., Moore, E. E., Tamura, D. Y., Zallen, G., Biffl, W. L. and Silliman, C. C. 

(1998). Interleukin-6 augments neutrophil cytotoxic potential via selective enhancement 

of elastase release. J.Surg. Res., 76,91-94. 

Kanaley, J. A, Weltman, J. D., Veldhuis, J. D., Rogol, A D., Hartman, M. L. and 

Weldhuis, A (1997). Human growgh hormone response to repeated bouts of aerobic 

exercise. J. Appl. Physiol., 83,1756-1761. 

Kanaley, J. A, Weltman, J. Y., Pieper, K. S., Weltman, A. and Hartman, M. L. (2001). 

Cortisol and growth hoemone responses to exercise at different time of day. J. C/in. 

Endocrinol. Metab., 86,2881-2889. 

145 



References 

Kaplanski, G., Marin, V., Montero-lulian, F., Mantovani, A. and Famarier, C. (2003). IL-

6: a regulator of the transition from neutrophil to monocyte recruitment during 

inflammation. TRENDS in Immunol., 24,25-29. 

Kappel, M., Hansen, M. B., Diamant, M., Jorgensen, J. O. L., Gyhrs, A. and Pedersen, B. 

K. (1993). Effects of an acute bolus growth hormone infusion on the human immune 

system. Horm. Metabol. Res., 25, 579-585. 

Keller, C., Keller, P., Marshal, S. and Pedersen, B. K. (2003). IL-6 gene expression in 

human adipose tissue in response to exercise-effect of carbohydrate ingestion. 1. 

Physiol., 550, 927-931. 

Keller, C., Steensberg, A., Pilegaard, H., Osada, T., Saltin, B., Pedersen, B. K. and Neufer, 

P. D. (2001). Transcriptional activation of the IL-6 gene in human contracting skeletal 

muscle: influence ofmusc\e glycogen content. FASEB 1., 15,2748-2750. 

Keller, E. T., Wanagat, J. and Ershler, W. B. (1996). Molecular and cellular biology of 

interleukin-6 and its receptor. Front. Biosci., 1, d340-d357. 

Kjaer, M. (1989). Epinephrine and some other hormonal responses to exercise in man: with 

special refence to physical training. Int. 1. Sports Med., 10,2-5. 

Krzywkowski, K., Petersen, E. W., Ostrowski, K., Link-Amater, H. 1. H., Boza, 1., 

Halkjaer-Kristensen, J. and Pedersen, B. K. (2001). Effect of glutamine and protein 

supplementation on exercise-induced decreases in salivary IgA. 1. Appl Physiol., 91, 

832-838. 

Kugler, 1. (1999). Biobehavioral influences on respiratory immunity. In 

Psychoneuroimmunology: An Interdisciplinary Introd,uction (edited by M. Schedlowski 

and U. Tewes), pp.359-371. New York: Kluwer AcademicIPlenum Publishers. 

Lamm, M. E. (1998). Current concepts in mucosal immunity IV. How epithelial transport 

of IgA antibodies relates to host defense. Am. 1. Physiol., 274, G614-G617. 

146 



References 

Lancaster, G. I., Jentjen, R. L. P. G., Moseley, L., Jeukendrup, A. E. and Gleeson, M. 

(2003). Effect of pre-exercise carbohydrate ingestion on plasma cytokine, stress 

hormone, and neutrophil degraulation responses to continuous, high intensity exercise. 

Int. J. Sport Nutr. Exerc. Metab., 13, 1-18. 

Landmann, R. (1992). Beta-adrenergic receptors in human leukocyte subpopulations. Eur. 

J. C/in. Invest., 22,30-36. 

Langberg, H., Olesen, J. L., Gemmer, C. and Kjar, M. (2002). Substantial elevation of 

interleukin-6 concentration in peritendinous tissue, in contrast to muscle, following 

prolonged exercise in human. 1. Physiol., 542, 985-990. 

Leist, M., Single, B., Castoldi, A. F., Kuhnle, S. and Nicotera, P. (1997). Intracellular 

adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis 

and necrosis. J. Exp. Med., 185, 1481-1486. 

Li, T.-L. (2003). How to store whole-blood samples for immunological tests. Quart. 

Chinese Phys. Edu., 17,74-80. 

Liles, W. C., Dale, D. C. and Klebanoff, S. J. (1995). Glucocorticoids inhibit apoptosis of 

human neutrophils. Blood, 86,3181-3188. 

Lin, A. L., Johnson, D. A., Patterson, T. F., Wu, Y., Lu, D. L., Shi, Q. and Yeh, C. K. 

(2001). Salivary anticandidal activity and saliva composition in an HIV-infected cohort. 

Oral Microbial. Immunol., 16, 270-278. 

Ljungberg, G., Ericson, T., Ekblom, B. and Birkhed;' D, (1997). Saliva and marathon 

running. Scand. J. Med. Sci. Sports, 7,214-219. 

Loeper, M. and Crouzon, O. (1904). l'Action de I'adrenaline sur le sang. Arch. Med. Exp. 

Anat. Pathol., 16,83-104. 

Losche, W., Dressel, M., Krause, S., Redlich, H., Spangenberg, P. and Heptinstall, S. 

(1996). Contact-induced modulation of neutrophil elastase secretion and phagocytic 

activity by platelets. Blood Coagul. Fibrinolysis, 7,210-213. 

147 



References 

Lyngso, D., Simonsen, L. and Bulow, J. (2002). Interleukin-6 production in human 

subcutaneous abdominal adipose tissue: the effect of exercise. J. Physiol., 543,373-378. 

Mackinnon, L. T. (1999). Advances in Exercise Immunology, Champaign IL: Human 

Kinetics. 

Mackinnon, L. T. (2000). Chronic exercise training effects on immune function. Med. Sci. 

Sports Exerc., 32, S369-S376. 

Mackinnon, L. T., Chick, T. W., Van As, A. and Tomasi, T. B. (1987). The effect of 

exercise on secretory and natural immunity. Adv. Exp. Med. Bio/., 216A, 869-876. 

Mackinnon, L. T., Ginn, E. and Seyrnour, G. (1991). Temperal relationship between 

exercise-induced decreases in salivary IgA concentration and subsequent appearance of 

upper respiratory illness in elite athletes. Med. Sci. Sports Exerc., 23, S45. 

Mackinnon, L. T., Ginn, E. and Seyrnour, G. J. (1993). Temporal relationship between 

decreased salivary IgA and upper respiratory track infection in elite athletes. Australian 

J. Sci. Med. Sport, 25,94-99. 

Mackinnon, L. T. and Hooper, S. (1994). Mucosal (secretory) immune system responses to 

exercise of varying intensity and during overtraining. Int. J. Sports Med., 15, S 179-

S183. 

Mass, E., Gadoth, N., Harell, D. and Wolff, A. (2002). Can salivary composition and high 

flow rate explain the low caries rate in children with familial dysautonomia? Pediatr. 

Dent., 24,581-586. 

Matthews, C. E.,Ockene, 1. S., Freedson, P. S., Rosal, M. C., Merriam, P. A. and Hebert, J. 

R. (2002). Moderate to vigorous physical activity and risk of upper-respiratory tract 

infection. Med. Sci. Sports Exerc., 34, 1242-1248. 

Maughan, R. (2002). The athlete's diet: nutritional goals and dietary strategies. Proc. Nutr. 

Soc., 61,87-96. 

148 



References 

McCarthy, D. A. and Dale, M. M. (1988). The leucocytosis of exercise: a review and 

model. Sports Med., 6,333-363. 

McCarthy, D. A., Macdonald, I., Grant, M., Marbut, M., Walling, M., Nicholson, S., 

Deeks, 1., Wade, A. J. and J.D., P. (1992). Studies on the immediate and delayed 

leucocytosis elicited by brief (30-min) strenuous exercise. Eur. J App/. Physio/., 64, 

513-517. 

McDowell, S. 1., Chaloa, K., Housh, T. J., Tharp, G. D. and Johnson, G. O. (1991). The 

effect of exercise intensity and duration on salivary immunoglobulin A Eur. 1. App/. 

Physio/., 63, 108-111. 

McDowell, S. 1., Hughes, R. A, Hughes, R. J., Housh, D. J., T.J., H. and Johnson, G. O. 

(1992). The effect of exhaustive exercise on salivary immunoglobulin A 1. Sports Med .. 

Phys. Fitness, 32,412-415. 

McFarlin, B. K., Mitchel, J. B., McFarlin, M. A and Steinhoff, G. M. (2003). Repeated 

endurance exercise affects leukocyte number but not NK cell activity. Med. Sci. Sports 

Exerc., 35, 1130-1138. 

Meenan, B. J., McConnell, J., Knight, J., Boyd, A. and Bell, A (2002). Development of a 

sensitive whole blood chemiluminescence method for assessing the bioactivity of 

calcium phosphate powders. Biomateria/s, 23,2431-2445. 

Mestecky, J. (1993). Saliva as a manifestation of the common mucosal immune system. 

Ann. N. Y Acad. Sci., 694, 184-194. 

Misra, T., Bisoyi, D. K., Khan, M. N. and Patel, T. (1991). The effect of temperature on 

the fine structural characteristic of .cotton fibre-a small-angle X-ray scattering 

investigation using correlation functions. 1. App/. Cryst., 24,712-714. 

Mitchell, J. 8., Costill, D. 1., Houmard, J. A., Flynn, M. G., Fink, W. J. and Beltz, J. D. 

(1990). Influence of carbohydrate ingestion on counterregulatory hormones during 

prolonged exercise. Int. J. Sports Med., 11, 33-36. 

149 



References 

Mohamed-Ali, V., Goodrick, S., Rawesh, A., Katz, D. R., Miles, J. M., Yudkin, J. S., 

Klein, S. and Coppack, S. W. (1997). Subcutaneous adipose tissue releases interleukin-

6, but not tumor necrosis factor-alpha, in vivo. J. C/in. Endocrinol. Metab., 82,4196-

4200. 

Morozov, V. 1., Pryatkin, S. A., Kalinski, M. 1. and Rogozkin, V. A. (2003). Effect of 

exercise to exhaustion on myeloperoxidase and lysozyme release from blood 

neutrophils. Eur. J. Appl. Physiol., 89,257-262. 

Mostov, K. E. (1994). Transepithelial transport of immunoglobulins. Ann. Rev. Immunol., 

12,63-84. 

Motulsky, H. J. and Insel, P. A. (1982). Adrenergic receptors in man. Direct identification, 

physiologic regulation, and clinical alterations. N. Engl. J. Med., 307, 18-29. 

Moyer, E., Cerra, F., Chenier, R., Peters, D., Oswald, G., Watson, F., Vu, L., McMenamy, 

R. H. and Border, J. R. (1981). Multiple systems organ failure: VI. Death predictors in 

the trauma-septic state--the most critical determinants. J. Trauma., 21,862-869. 

Mullen, P. G., Windsor, A. C. 1., Walsh, C. J., Fowler, A. A. and Sugerman, H. J. (1995). 

Tumor necrosis factor-a and interleukin-6 selectively regulate neutrophil function in 

vitro. J. Surg. Res., 58, 124-130. 

Muns, G. (1994). Effect of long-distance runlllng on polymorphonuclear neutrophil 

phagocytic function of the upper airways. Int. J. Sports Med., 15, 96-99. 

Nakagawa, M., Terashima, T., D'yachkova, Y., Bondy, G. P., I.C., H. and Van Eeden, S. F. 

(1998). Glucocorticoid-induced granulocytosis: contribution of marrow release and 

demargination of intravascular granulocytes. Circulation, 98,2307-2313 . . 

Nehlsen-Cannarella, S. L., Niernan, D. C., Fagoaga, O. R., Kelln, W. J., Henson, D. A., 

Shannon, M. and Davis, J. M. (2000). Saliva immunoglobulins in elite women rowers. 

Eur. J. Appl. Physiol., 81, 222-228. 

150 



References 

Newsholme, P., Costa Rosa, L. F., Newsholme, E. A and Curl, R. (1996). The importance 

of fuel metabolism to macrophage function. Cell Biochem. Funct., 14,1-10. 

Nieman, D. C. (1994). Exercise, infection, and immunity. 1nt. J. Sports Med., 15, S 131-

SI41. 

Nieman, D. C. (1997). Immune response to heavy exertion. J. App/. Physio/., 82, 1385-

1394. 

Nieman, D. C., Davis, J. M., Henson, D. A, Walberg-Rankin, J., Shute, M., Dumke, C. L., 

Utter, A. C., Vinci, D. M., Carson, J. A, Brown, A., Lee, W. J., McAnulty, S. R. and 

McAnulty, L. S. (2003). Carbohydrate ingestion influences skeletal muscle cytokine 

rnRNA and plasma cytokine levels after a 3-h run. J. App/. Physio/., 94, 1917-1925. 

Nieman, D. C., Fagoaga, O. R., Butterworth, D. E., Warren, B. J., Utter, A, Davis, J. M., 

Henson, D. A. and Neh1sen-Cannarelia, S. L. (1997). Carbohydrate supplementation 

affects bood granulocyte and monocyte trafficking but not function after 2.5 h of 

running. Am. J Clin. Nutr., 66, 153-159. 

Nieman, D. C., Henson, D. A,Fagoaga, O. R., Utter, A C., Vinci, D. M., Davis, l. M. and 

Nehlsen-Cannarella, S. L. (2002). Change in salivary IgA following a competitive 

marathon race.1nt. J Sports Med., 23,69-75. 

Nieman, D. C., Henson, D. A., Smith, L. L., Utter, A. C., Vinci, D. M., Dave, J. M., 

Karninsky, D. E. and Shute, M. (2001). Cytokine changes after a marathon race. J App/. 

Physio/., 91, 109-114. 

Nieman, D. c., Johanssen, L. M., Lee, J. W. and Arabatzis, K. (1990). Infectious episodes 

in runners before and after the Los Angeles marathon. J Sports Med. Phys. Fitness, 30, 

316-328. 

Nieman, D. C., Kemodle, M. W., Henson, D. A., Sonnenfeld, G. and Davis, J. M. (2000). 

Acute immune responses to tennis drills in adolescent athletes. Res. Quart. Exerc. Sport, 

71,403-408. 

151 



References 

Novas, A. M., Rowbottom, D. G. and Jenkins, D. G. (2003). Tennis, incidence of URTI 

and Salivary IgA. Int. J. Sports Med., 24,223-229. 

Ostergaard, P. A. (1977). 19A levels, bacterial carrier rate, and the development of 

bronchial asthma in children. Acta: Pathol. Microbiol.Scand., 85, 187-195. 

Ostrowski, K., Rohde, T., Asp, S., Schjerling, P. and Pederseri, B. K. (1999). Pro- and anti~ 

inflammatory cytokine balance in strenuous exercise in humans. J. Physiol., 515, 287-

291. 

Ostrowski, K., Rohde, T., Zacho, M., Asp, S. and Pedersen, B. K. (1998). Evidence that 

interleukin-6 is produced in human skeletal muscle during prolonged running. J. 

Physiol .. 508,949-953. 

Ottonello, 1., Barbera, P., Dapino, P., Sacchetti, C. and Dallegri, F. (1997). 

Chemoattractant-induced release of elastase by lipopolysaccharide (LPS)-primed 

neutrophils; inhibitory effect of the anti-inflammatory drug nimesulide. Clin. Exp. 

Immunol., 110, 139-143. 

Pangerl, A., Ramien, J. and Haen, E. (1986). The number of beta-adrenoreceptor sites on 

intact human lymphocytes depends on time of day, season, and on sex. Ann. Rev. 

Chronopharmacol., 3, 331-334. 

Pars10w, T. G., Stites, D. P., Terr, A. L and Imboden, J. B. (2001). Medical Immunology, 

New York: McGraw-Hill Companies. 

Pedersen, B. K. (1997). Exercise and infection. In Exercise Immunology (edited by B. K. 

Pedersen), pp.133-148. Heidelberg: Spring-Verlag. 

Pedersen, B. K. (1999). Exercise and Immune Function. In Psychoneuroimmunology: An 

interdisciolinary introduction (edited by M. Schedlowski and U. Tewes), pp.341-358. 

New York: K1uwer AcademicIP1enum Publishers. 

152 



References 

Pedersen, B. K., Bruunsgaar, H., Klokker, M., Kappel, M., MacLean, D. A., Nielsen, H. 

B., Rohde, T., Ullum, H. and Zacho, M. (1997a). Exercise-induced immunomodulation

possible roles of neuroendocrine and metabolic factors. Int. J. Sports Med., 18, S2-S7. 

Pedersen, B. K. and Hoffman-Goetz, L. (2000). Exercise and the immune system: 

regulation, integration, and adaptation. Physiol. Rev., 80, 1055-1081. 

Pedersen, B. K., Kappel, M. and Klokker, M. (1997b). Possible role of stress hormones in 

exercise-induced immunomodulation. In Exercise Immunology (edited by B. K. 

Pedersen), pp.39-60. Heidelberg: Springer-VerJag. 

Pedersen, B. K., Steensberg, A. and Schjerling, P. (2001). Muscle-derived interleukin-6: 

possible biological effects. J Physiol., 536,329-337. 

Peters, A. M., Allsop, P., Stuttle, A. W., Arnot, R. N., Gwilliam, M.' and Hall, G. M. 

(1992). Granulocyte margination in the human lung and its response to strenuous 

exercise. C/in. Sci., 82,237-244. 

Peters, E. M. and Bateman, E. D. (1983). Ultramarathon running and upper respiratory 

tract infections. An epidemiological survey. S. Afr. Med. J., 64, 582-584. 

Peters, E. M., Goetzsche, 1. M., Grobbelaar, B. and Noakes, T. D. (1993). Vitamin C 

supplementation reduces the incidence of postrace symptoms of upper-respiratory-tract 

infection in ultramarathon runners. Am. J. C/in. Nutr., 57, 170-174. 

Petrovsky, N., McNair, P. and Harrison, L. C. (1998). Diurnal rhythms of pro

inflammatory cytokines: regulation by plasma cortisol and their therapeutic implications. 

Cytokine, 10,307-312. 

Porterfield, S. P. (2001). Endocrine Physiology, SI. Louis: A Harcourt Health Sciences 

Company. 

Prasad, K., Chaudhary, A. K. and Kalra, 1. (1991). Oxygen-derived free radicals producing 

activity and survival of activated polymorphonuclear leukocytes. Mol. Cell. Biochem., 

103, 5\-62. 

153 



References 

Price, T. 8., Rothman, D. L., Taylor, R., Avison, M. J., Shulman, G. 1. and Shulman, R. G. 

(1994). Human muscle glycogen resynthesis after exercise: insulin-dependent and -

independent phases. J. Appl. Physiol., 76, 104-11. 

Proctor, G. 8. and Carpenter, G. H. (2002). Neural control of salivary secretion. In 

International Review of Neurobiology,Vo1.52. (edited by A. Clow and F. Hucklebridge), 

pp.187-212. London: Academic Press. 

Proctor, G. B., Garret!, J. R., Carpenter, G. H. and Ebersole, L. E. (2003). Salivary 

secretion of immunoglobulin A by submandibular glands in response to autonomimetic 

infusions in anaesthetised rats. J. Neuroimmunol., 136, 17-24. 

Pyne, D. B. (1994). Regulation of neutrophil function during exercise. Sports Med., 17, 

245-258. 

Pyne, D. 8., Baker, M. S., Smith, J. A. and Telford, R. D. (1996). Exercise and the 

neutrophil oxidative burst: biological and experimental variability. Eur. J. Appl. 

Physiol., 74,564-571. 

Quan, C. P., Bememan, A., Pires, R., Avrameas, S. and Bouvet, J. (1997). Natural 

polyreactive secretory immunoglobulin A autoantibodies as a possible barrier to 

infection in human. Infect. Immun., 65,3997-4004. 

Rabin, 8. S., Moyna, M. N., Kusnecov, A., Zhou, D. and Shurin, M. R. {1996). 

Neuroendocrine effects 0 f immunity. In Exercise and Immune Function (edited by L. 

Hoffman-Goets), pp.21-38. Boca Raton: CRC Press. 

Ramasubbu, N., Paloth, V., Luo, Y., Brayer, G. D. and Levine, M. L. (1996). Structure of 

human salivary a-Amylase at 1.6? resolution: implications for its role in the oral cavity. 

Acta Cryst., D52, 435-446. 

Rantonen, P. J. F. and Meurrnan, J. H. (2000). Correlations between total protein, 

lysozyme, immunoglobulins, amylase, and albumin in stimulated whole saliva during 

daytime. Acta Odontol. Scand., 58, 160-165. 

154 



References 

Reichl, S., Arnhold, 1., Knight, 1., Schiller, 1. and Amold, K. (2000). Reactions ofPholasin 

with peroxidases and hypochlorous acid. Free Radic. BioI. Med., 28, 1555-1563. 

Reid, M. R., Mackilmon, 1. T. and Drummond, P. D. (2001). The effects of stress 

management on symptoms of upper respiratory tract infection, secretory 

immunoglobulin A, and mood in young adults. 1.Psychosomatic Res., 51,721-728. 

Ring, C., Harrison, 1., Winzer, A., Carroll, D., Drayson, M. and Kendall, M. (2000). 

Secretory immunoglobulin A and cardiovascular reactions to mental arithmetic, cold 

pressor, and exercise: Effects of alpha-adrenergic blockade. Psychophysiology, 37, 634-

643. 

Ritchie, D. G. (1990). Interleukin 6 stimulates hepatic glucose release from prelabeled 

glycogen pools. Am. 1. Physiol., 258, E57-E64. 

Robson, P. 1., Blannin, A. K., Walsh, N. P., Castell, 1. M. and Gleeson, M. (1999). Effects 

of exercise intensity, duration and recovery on in vitro neutrophil function in male 

athletes. Int. 1. Sports Med., 20, 128-135. 

Rohde, T., MacLean, D. A. and Pedersen, B. K. (1998). Effect of glutamine 

supplementation on changes in the immune system induced oy repeated exercise. Med. 

Sci. Sports Exerc., 30, 856-862. 

Ronsen, 0., Haug, E., Pedersen, B. K. and Bahr, R. (200Ia). Increased neuroendocrine 

response to a repeated bout of endurance exercise. Med. Sci. Sports Exerc., 33, 568-575. 

Ronsen, 0., Kjeldsen-Kragh, 1., Haug, E., Bahr, R. and Pedersen, B. K. (2002a). Recovery 

time affects imrnunoendocrine responses to a second bout of endurance exercise. Am. 1. 

Physiol. Cell Physiol., 283, CI612-CI620. 

Ronsen, 0., Lea, T., Bahr, R. and Pedersen, B. K. (2002b). Enhanced plasma IL-6 and IL

I ra responses to repeated vs. single bouts of prolonged cycling in elite athletes. 1. Appl. 

Physiol., 92,2547-2553. 

155 



References 

Ronsen, 0., Pedersen, B. K., Oritsland, T. R., Bahr, R. and Kjeldsen-Kragh, J. (2001b). 

Leukocyte counts and Iymphocyte responsiveness associated with repeated bouts of 

strenuous endurance exercise. J. Appl. Physiol., 91,425-434. 

Ruy, H., Jeong, S.-M., Jun, C.-D., Lee, I.-H., Kim, J.-D., Lee, B.-S. and Chung, H.-T. 

(1997). Involvement of intracellular Ca2+ during growth hormone-induced priming of 

human neutrophils. Brain Behav. Immun., 11, 39-46. 

Samuels, A. J. (1951). Primary and secondary leucocyte changes following the 

intramusclar injection of epinephrine hydrochloride. J. Clin. Invest., 30,941-947. 

Satabin, P., Bois-Joyeux, B., Chanez, M., Guezennec, C. Y. and Peret, J. (1989). Post

exercise glycogen resynthesis in trained high-protein or high-fat-fed rats after glucose 

feeding. Eur. J. Appl. Physiol., 58,591-595. 

Scharhag, J. , M eyer, T ., G abriel, H. H. W ., A uracher, M. and K indermann, W. (2002). 

Mobilization and oxidative burst of neutrophils are influenced by carbohydrate 

supplementation during prolonged cycling in humans. Eur. J. Appl. Physiol., 87, 584-

587. 

Schwartz, N. S., Clutter, W. E., Shah, S. D. and Cryer, P. E. (1987). Glycemic thresholds 

for activation of glucose counterregulatory systems are higher than the threshold for 

symptoms. J. Clin. Invest., 79,777-781. 

Shephard, R. J. and Shek, P. N. (1996). Interactions between sleep, other body rhythms, 

immune responses, and exercise. Can. J. Appl. Physiol., 22, 95-116. 

Shirtcliff, E. A., Grander, D. A., Schwartz, E. and Curran, M. J. (2001). Use of salivary 

biomarkers in biobehavioral research: cotton-based sample collection methods can 

interfere with salivary immunoassay results. Psychoneuroendocrinology, 26, 165-173. 

Sitaraman, S. V., Merlin, D., Wang, L., Wong, M., Gewirtz, A. T., Si-Tahar, M. and 

Madara, J. L. (2001). Neutrophil-epithelial crosstalk at the intestinal lumenal surface 

mediated by reciprocal secretion of adenosine and IL-6. J. C/in. Invest., 107,861-869. 

156 



References 

Smaje, L. H. (1998). Capillary dynamics in salivary glands. In Glandular Mechanisms of 

Salivary Secretion, VoU O. (edited by J. R. Garrett, J. Ekstrom and L. C. Anderson), 

pp.118-13!. Basel: Karger. 

Smith, J. A (1997). Exercise immunology and neutrophils. Int. J. Sports Med., 18, S46-

S55. 

Smith, J. A., Gray, A. B., Pyne, D. B., Baker, M. S., Telford, R. D. and Weidemann, M. J. 

(1996). Moderate exercise triggers both priming and activation of neutrophil 

subpopulations. Am. J. Physiol., 270, R838-R845. 

Smith, J. A and Pyne, D. B. (1997). Exercise, training, and neutrophil function. Exerc. 

Immunol. Rev., 3,96-116. 

Smith, J. A, Telford, R. D., Mason, 1. B. and Weidemann, M. J. (1990). Exercise, training 

and neutrophil microbicidal activity. Int. 1. Sports Med., 11, 179-187. 

Sondergaard, S. R., Ostrowski, K., Ullum, H. and Pedersen, B. K. (2000). Changes in 

plasma concentration of interleukin-6 and interieukin-l receptor antagonists in response 

to adrenaline infusion in human. Eur. 1. Appl. Physiol., 83, 95-98. 

Starkie, R. L., Arkinstall, M. J., Koukoulils, 1., Hawley, J. A. and Febbraio, M. A. (2001). 

Carbohydrate ingestion attenuates the increase in plasma interleukin-6, but not skeletal 

muscle interieukin-6 mRNA, during exercise in human. J. Physiol., 533, 585-59!. 

Steensberg, A, Febbraio, M. A, Osada, T., Schjeriing, P., Hall, G. and Pedersen, B. K. 

(2001a). Interleukin-6 production in contracting human skeletal muscle is influenced by 

pre-exercise muscle glycogen content. 1. Physiol., 537,633-639. 

Steensberg, A., Fischer, C. P., Keller, C., Moller, K. and Pedersen, B. K. (2003). IL-6 

enhances plasma IL-lra, IL-lO, and cortisol in human. Am. J. Physiol. Endocrinol. 

Metab., 285, E433-E437. 

157 



- - ------------------ ---

References 

Steensberg, A., Hall, G., Osada, T., Sacchetti, M., Saltin, B. and Pedersen, B. K. (2000). 

Production of interleukin-6 in contracting human skeletal muscle can account for the 

exercise-induced increase in plasma interleukin-6. J Physiol., 529,237-242. 

Steensberg, A., Toft, A. D., Schjerling, P., Halkjaer-Kristensen, J. and Pedersen, B. K. 

(200 I b). Plasma interleukin-6 during strenuous exercise: role of epinephrine. Am. J. 

Physiol. Cell Physiol., 281, C1001-C1004. 

Steerenberg, P. A., van Asperen, 1. A., van Nieuw Amerongen, A., Biewenga, A., Mol, D. 

and Medema, G. 1. (1997). Salivary levels of immunoglobulin A in triathletes. Eur. J 

Oral Sci., 105,305-309. 

Stouthard, J. M., Romijn, J. A., Van der Poll, T., Endert, E., Klein, S., Bakker, P. J., 

Veenhof, C. H. and Sauerwein, H. P. (1995). Endocrinologic and metabolic effects of 

interleukin-6 in humans. Am. J. Physiol., 268, E813-E819. 

Stuchell, R. N. and Mandel, 1. D. (1978). Studies of secretory 19A in caries-resistant and 

caries-susceptible adults. Adv. Exp. Med. Bioi., 107,341-348. 

Suwa, T., Hogg, J., c., Quinlan, K. B. and Van Eeden, S. F. (2002). The effect of 

interleukin-6 on L-selectin levels on polymorphonuclear leukocytes. Am. J Physiol. 

Heart Circ. Physiol., 283, H879-H884. 

Suwa, T., Hogg, J. C., English, D. and Van Eeden, S. F. (2000). Interleukin-6 induces 

demargination of intravascular neutrophils and shortens their transit in marrow. Am. J 

Physiol. Heart Circ. Physiol., 279, H2954-H2960. 

Suwa, T., Hogg, J. C., Klut, M. E., Hards, 1. and Van Eeden, S. F. (2001). Interleukin-6 

changes deformability of neutrophils and induces their sequestration in the lung. Am. J 

Respir. Crit. Care Med., 163,970-976. 

Suzuki, K. and Machida, K. (1995). Effectiveness of lower-level volutary exercise in 

desease prevention of mature rats. 1. Cardiovascular risk factor modification. Eur. J 

Appl. Physiol., 71,240-244. 

158 



References 

Suzuki, K, Sato, H., Kikuchi, T., Abe, T., Nakaji, S., Sugawara, K, Totsuka, M., Sato, K. 

and Yamaya, K. (1996). Capacity of circualting neutrophils to produce reactive oxygen 

species after exhaustive exercise. J. Appl. Physial., 81, 1213-1222. 

Suzuki, K., Totsuka, M., Nakaji, S., Yamada, M., Kudoh, S., Liu, Q., Sugawara, K, 

Yamaya, K. and Sato, K. (1999). Endurance exercise causes interaction among stress 

hoemones, cytokines, neutrophil dynamics, and muscle damage. J. Appl. Physial., 87, 

1360-1367. 

Talke, P., Lobo, E. and Brown, R. (2003). Systemically administered alpha2-agonist

induced peripheral vasoconstriction in human. Anesthesialagy, 99, 65-70. 

Tharp, G. D. (1991). Basketball exercise and secretory immunoglobulin A. Eur. J. Appl. 

Physial., 63,312-314. 

Tharp, G. D. and Bames, M. W. (1990). Reduction of saliva immunoglobulin levels by 

swim training. Eur. J. Appl. Physial., 60, 61-64. 

Tintinger, G. R., Theron, A. l., Anderson, R. and Ker, l. A. (2001). The anti-inflammatory 

interactions of epinephrine with human neutrophils in vitro are acheieved by cyclic 

AMP-mediated accelerated resequestration of cytosolic calcium. Biachem. Pharmacal., 

61, 1319-1328. 

Toellner, K-M., Luther, S. A., Sze, D. M.-Y., Choy, R. K-W., Tayor, D. R., MacLennan, 

C. M. and Acha-Orbea, H. (1998). T halper 1 (Thl) and Yh2 characteristics start to 

develop during T cell priming and are associated with an immediate ability to induce 

imunoglobulin class switching. J. Exp. Med., 8, 1193-1204. 

Toft, P., Helbo-Hansen, H. S., Lillevang, S. T., Rasmussen, 1. W. and Christensen, N. l. 

(1994). Redistribution of granulocytes during adrenaline infusion and following 

administration of cortisol in healthy volunteers. Acta Anaesthesial. Scand., 38, 254-258. 

Toft, P., Tonnesen, E., Svendsen, P. and Pasmussen, 1. W. (1992). Redistribution of 

lymphocytes after cortisol administration. APMIS, 1000, 154-158. 

159 



References 

Tomasi, T. B., Trudeau, F. B., Czerwinski, D. and Erredge, S. (1982). Immune parameters 

in athletes before and after strenuous exercise. J. Clin. Immunol., 2, 173-178. 

Tsigos, C., Papanicolaou, D. A., Kyrou, I., Defensor, R., Mitsiadis, C. S. and Chrousos, G. 

P. (1997). Dose-dependent effects of recombinant human interleukin-6 on glucose 

regulation. J. Clin. Endocrinol. Metab., 82,4167-4170. 

Tunovuo, J. (1998). Antimicrobial function of human saliva-how important is" it for oral 

health? Acta Odontol Scand., 56, 250-256. 

Tumbull, A. V. and Rivier, C. L. (1999). Regulation of the hypothalamic-pituitary adrenal 

axis by cytokines: actions and mechanisms of action. Physiol. Rev., 79, 1-71. 

Tvede, N., Kappel, M., Klarlund, K., Duhn, S., Halkjaer-Kristensen, J., Galbo, H. and 

Pedersen, B. K. (1994). Evidence that the effect of bicycle exercise on blood 

mononuclear cell proliferative responses and subsets in mediated by epinephrine. Int. J. 

Sports Med.. 15, 100-104. 

van Hall, G., Steerenberg, A., Sacchetti, M., Fischer, C., Keller, c., Achjerling, P., 

Hiscock, N., Moller, K., Saltin, B., Febbraio, M. and Pedersen, B. K. (2003). 

Interieukin-6 stimulated lipolysis and fat oxidation in human. J. Clin. Endocrinol. and 

Metab., 88,3005-3010. 

Venkatraman, J. T. and Pendergast, D. R. (2002). Effect of dietary intake on immune 

function in athletes. Sports Med., 32,323-337. 

Walsh, N. P., Bishop, N. C., Blackwell, J., Wierzbicki, S. G. and Montague, J. C. (2002). 

Salivary 19A response to prolonged exercise in a cold environment in trained cyclists. 

Med. Sci. Sports Exerc., 34, 1632-1637. 

Walsh, N. P., Blannin, A. K., Bishop, N., Robson, P. J. and Gleeson, M. (2000a). Effect of 

oral glutamine supplementation on human neutrophil lipopolysaccharide-stimulated 

degranulation following prolonged exercise. Int. J. Sport Nutr. Exerc. Metab., 10, 39-50. 

160 



References 

Walsh, N. P., Blannin, A. K., Clark, A. M., Cook, L., Robson, P. J. and Gleeson, M. 

(1999). The effect of high-intensity intennittent exercise on saliva IgA, total protein and 

a-amylase. J Sports Sci., 17, 129-134. 

Walsh, N. P., Blannin, A. K. and Gleeson, M. (2000b). Human neutrophil degranulation is 

not affected by the plasma concentration of cortisol within the physiological range. Int. 

J Sports Med., 21, S78. 

White, A. and Dougherty, T. F. (1945). Effect of prolonged stimulation of the adrenal 

cortex and of adrenalectomy on the numbers of circulating erythrocytes and 

lymphocytes. Endocrinology, 36, 16-24. 

Winzer, A., Ring, C., Carroll, D., Willemsen, G., Drayson, M. and Kendall, M. (1999). 

Secretory immunoglobulin A and cardiovascular reactions to mental arithmetic, cold 

pressor, and exercise: Effect 0 fb eta-adrenergic blockade. Psychophysiology, 36,591-

601. 

Wira, C. R. and Rossoll, R. M. (1991). Glucocorticoid regulation of humoral immune 

system. D examethason stimulation 0 f secretory component ins erum, saliva, and bile. 

Endocrinology, 128,835-842. 

Wira, C. R., Sandoe, C. P. and Steele, M. G. (1990). Glucocorticoid regulation of the 

humoral immune system. 1. In vivo effects of dexamethasone on IgA and IgG in serum 

and at mucosal surfaces. J Immunol., 144, 142-146. 

161 



Appendix A Statement of Informed Consent 

APPENDIX A 

Statement of Informed Consent 

I have read the subject infonnation sheet, detailing the procedure and requirements which 

are involved with this study and I fully understand what is required of me. I have had an 

opportunity to ask for further infonnation and clarification of the demands of each of the 

procedures. 

I am aware that I have the right to withdraw at any time with no obligation to give 

reasons for my decision. 

I agree to take part in the study. 

Name: ..................................................... Phone: .......................................... . 

Age: ............................................... Date of Birth: .......................................... . 

. Address: ................................................................................................. . 

Signed: .................................................... Date: ............................................. . 

Witnessed by: .......................................... Date: ............................................. . 
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APPENDIX B 

Health Screen for Study Volunteers 

Name: .................................................. Phone: ............................................. . 

Address: ................................................................................................. . 

It is important that volunteers participating in research studies are currently in good health 

and have had no significant medical problems in the past. This is to ensure (i) their own 

continuing well-being and (ii) to avoid the possibility of individual health issues 

confounding study outcomes. 

Please complete this brief questionnaire to confirm fitness to participate: 

I. At present, do you have any health problem for which you are? 

(a) On medication, prescribed or otherwise YesD NoD 

(b) Attending your general practitioner YesD NoD 

(c) On a hospital waiting list YesD NoD 

2. In the past two years, have you had any illness which require you to? 

(a) Consult your GP YesD NoD 

(b) Attend a hospital outpatient department YesD NoD 

(c) Be admitted to hospital YesD NoD 

3. Have you ever had any of the following? 

(a) Convulsions/epilepsy YesD NoD 

(b) Asthma YesD NoD 

(c) Eczema YesD NoD 
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(d) Diabetes YesD NoD 

(e) A blood disorder YesD NoD 

(f) Head injury YesD NoD 

(g) Digestive problems YesD NoD 

(h) Heart problems YesD NoD 

(i) Problems with bones or joints YesD NoD 

(j) Disturbance of balance/coordination YesD NoD 

(k) Numbness in hands or feet YesD NoD 

(I) Disturbance of vision YesD NoD 

(m) Earlhearing problems YesD NoD 

(n) Thyroid problems YesD NoD 

(0) Kidney or liver problems YcsD NoD 

(P) Allergy to nuts YesD NoD 

4. Has any, otherwise healthy, member of your family under the age of 35 died 

suddenly during or soon after exercise? YesD NoD 

If YES to any question, please describe briefly if you wish (e.g. to confirm problem 

was/is short-lived, insignificant or well controlled). 

J have completed the questionnaire to the best of my knowledge and any questions I have 

been answered to my full satisfaction. 

Signed: .............................................. ... Date: ............................................... . 
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APPENDIX C 

Physical Activity Questionnaire 

The following questions are designed to give us an indication of your current level of 

physical activity. 

Name: ........................................................................................................... . 

Do you practice ENDURANCE TRAINING? YesD NoD 

If YES, how many days each week do you usually train? 

How may minutes does each session last? 

What is your weekly mileage? 

Do you practice the following training? 

Weight training D Interval training D Skills training D· 

If YES, how many days each week do you usually train? 

How many minutes does each session last? 

Signed: .................................................... Date: ............................................. . 
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APPENDIX D 

Health Questionnaire 

Please complete the following brief questions to confirm your fitness to participate: 

At present, do you have any health problems for which you are? 

1) On medication, prescribed or otherwise 

2) Attending your general practitioner 

YesD 

YesD 

NoD 

NoD 

3) Have you any symptoms of ill health, such a s those associated with a cold or other 

common infection? YesD NoD 

If you have answered YES to any of the above questions please give more details: 

Do you want to take part in today's experiments? Yes D NoD 

Signed: ................................................. Date: ............................................... . 
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APPENDIX E 

Food Record Diary 

CONFIDENTIAL 

Name and Address 

Age .................. Years 

Start Date of Diet: ....... ..1. ....... ./ ......... . 

Please record everything you eat and drink during the day before first trial, and then repeat 

the diet as accurately as possible during the day before second trial. Instructions and an 

example are attached. Information about your diet will be treated in confidence and results 

will be returned to you as soon as possible. 

If you have problem, please contact with: 

Professor Mike Gleeson at Sport Hall RRO I 0 or ext. 6345 

Mr Tzai-Li Li at Sport Hall RRI05 or ext. 635! 

Exercise Immunology Laboratory 

School of Sport and Exercise Sciences 

Loughborough University, Leicestershire, LE!! 3TU, OK 
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INSTRUCTION FOR USING THE FOOD DIARY 

Everything that you eat and drink the day before first exercise trial should be 

weighed, and the weight and type of foods or drinks should be recorded. 

The solid foods should be separately placed on a plate or in a container on a scale to be 

weighed after the scale has been zeroed with the plate or the container; for example: Zero 

the scale with plate, then place the Roast Beef on plate. If the scale shows 100 g, then the 

weight of Roast Beef is 100 g. 

Drink or liquid food should be added into a cup or a glass on a scale to be weighed after 

the scale has been zeroed with the cup or the glass. Please remember to record the separate 

weight of tea, milk and sugar before putting together. 

Do not forget to weigh and record second helpings and snacks between meals. The 

nutrition information (ingredients, weight, and energy) of most snacks has been labelled on 

the packet. You do not need to weigh it if you eat whole packet once. Any leftovers (e.g. 

apple cores) should also be weighed and recorded in the leftovers column. 

Eating Out - Please carry your diary and scales with you wherever you go. If it is 

inconvenient, please record the type of foods eaten with an estimated weight - but please 

note it on the sheet. 

Name and description of foods should be as detailed as possible, including the brand and 

any other available information; e.g. Cheese - is insufficient information, Cheese Cheddar 

(shape reduced fat) - is sufficient information. 

The space provided at the food of each page for general comments is for you to give any 

further information about your diet and your training/activity for that day; e.g. Steady 

run, morning, 1 hour. Lunch missed due to stomach pain. 

Please record this diary during the day before first exercise trial and then repeated it 

as accurate as possible during the day before the second exercise trial. 
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Name: Date: I I Please use a separate row for each item 

Office 
A B C D E F 

Use 

Brand name FuU description of each item Actual 
Time Food eaten including: Served Leftover 

of each item -whether fresh, frozen, canned 
Weight 

am/pm home 
(except fresh -cooked: boiled, griUed, fried, (gms) (gms) (gms) away 
food) roasted. 

-what type of fat food fried in 

GENERAL COMMENTS: 
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APPENDIX F 

Normal Range of Blood Leukocytes 

Leukocytes 

Neutrophils 

Lymphocytes 

Monocytes 

Eosinophils 

Basophils 

4.0 - 11.0 

2.00 - 8.00 

1.00 - 5.00 

0,10 -1.00 

0.00 - 0.40 

0.00 - 0.20 

Data is from the NHS Leicester Hospital. 
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Percentage of Leukocytes 

50.0 - 80.0 

25.0- 50.0 

2.0-10.0 

0.0-5.0 

0.0-2.0 




