

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/58823

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/58823

Computers for learning:

An Empirical Modelling perspective

by

Chris Roe

Thesis

Submitted in partial fulfilment of

the requirements for the degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

University of Warwick

November 2003

i

Contents

Contents ... i

List of Figures ... vii

List of Tables .. x

List of Listings ... xi

Acknowledgments ... xii

Declarations .. xiii

Abstract ... xiv

Abbreviations .. xv

1 Introduction ... 1

1.1 Construction of computer models by children .. 3

1.2 Construction of computer models by adults ... 5

1.3 Introducing Empirical Modelling ... 6

1.4 Motivations for the thesis .. 7

1.5 Research contributions .. 12

1.6 Contents of the thesis .. 14

2 Paradigms for exploratory modelling ... 18

2.0 Overview of the chapter .. 18

2.1 Empirical Modelling and Spreadsheets: In principle and practice 18

2.2 Spreadsheets ... 20

2.2.1 Introducing spreadsheets ... 20

ii

2.2.2 Key aspects of exploratory modelling 25

2.2.3 Spreadsheets for exploratory modelling 29

2.3 Extensions of the spreadsheet concept .. 31

2.3.1 Forms/3 .. 31

2.3.2 Spreadsheets for Images .. 34

2.3.3 Agentsheets .. 36

An Agentsheets example .. 37

Agentsheets and the key aspects of exploratory modelling .. 40

2.4 Practical Empirical Modelling .. 43

2.4.1 Definitive scripts .. 44

2.4.2 The TkEden modelling tool ... 45

2.4.3 State-transitions: Implementing agency in TkEden 50

2.4.4 Building an example model ... 51

2.4.5 Distributed modelling: The DTkEden tool 53

2.4.6 Empirical Modelling for exploratory modelling 55

2.5 Empirical Modelling and spreadsheets.. 57

2.6 Summary of the chapter .. 62

3 A computational perspective on computers and learning 63

3.0 Overview of the chapter .. 63

3.1 Challenges for computers for learning ... 63

3.2 A perspective on learning ... 67

3.2.1 Learning skills, learning about artefacts and learning about

situations ... 69

iii

3.2.2 An experiential framework for learning (EFL) 73

3.3 Learning by experience ... 77

3.3.1 Experiential learning .. 78

3.3.2 Radical Empiricism .. 80

3.4 Principles of Empirical Modelling .. 82

3.4.1 Construals .. 83

3.4.2 State-as-experience and behaviour-as-abstracted 85

3.4.3 Observation, dependency and agency 88

3.5 Modelling restaurant management ... 93

3.5.1 Experiential learning and the restaurant manager model 96

3.5.2 Empirical Modelling principles and the restaurant manager

model .. 96

3.6 Chapter Summary: Empirical Modelling and the EFL 99

4 An educational perspective on computers for learning102

4.0 Overview of the Chapter ...102

4.1 Constructionism and instructionism ... 102

4.1.1 Objectivism, Cognitivism and Constructivism103

4.1.2 Instructionism and Constructionism .. 105

4.2 Bricolage ...109

4.3 Situated Learning ..116

4.4 Concept Maps ... 119

iv

4.4.1 Reviewing concept maps ... 119

4.4.2 Concept Maps and the EFL ... 122

4.5 Programming for domain learning .. 124

4.5.1 Programming from a learning perspective 124

4.5.2 Conventional programming, constructionism and the EFL ... 128

4.6 Empirical Modelling, constructionism and the EFL 130

4.6.1 Empirical Modelling and bricolage ... 131

4.6.2 Empirical Modelling and situated learning134

4.7 The digital watch case study ... 136

4.8 Summary of the chapter .. 143

5 Scaffolding different types of learning ..144

5.0 Overview of the chapter ..144

5.1 Model use vs Model building .. 144

5.1.1 Constructionist learning environments 144

5.1.2 Supporting different types of learning 148

5.2 Learning as comprehension of a fixed referent 151

5.2.1 The racing cars case study ... 152

5.3 Learning as exploring possibilities and invention 158

5.3.1 Cognitive layering .. 158

5.3.2 The noughts-and-crosses case study .. 160

5.3.3 Case study - Adapting layers to form a family of models 164

V1 - Altering the computer strategy 166

v

V2 - Altering the rules of the game 169

V3 - Altering the pieces that are being played171

V4 - Altering the board ... 173

5.4 Learning languages ... 174

5.4.1 The Agent-Oriented parser .. 175

5.4.2 Case study - A clown-and-maze language 177

5.4.3 Case study - A learning environment for relational query

 languages .. 181

5.5 Chapter Summary: Scaffolding with Empirical Modelling189

6 Exploratory learning and the EFL ..192

6.0 Overview of the chapter ..192

6.1 Integrating model used and model building ..192

6.2 Monotone Boolean Functions in 4 variables .. 195

6.2.1 P4: The lattice of subsets of {1,2,3,4} ordered by inclusion ... 198

6.2.2 FDL4 as the lattice of decreasing subsets of P4 ordered by

inclusion...200

6.2.3 FDL4 as monotone boolean functions in 4 variables ordered

by implication ... 202

6.2.4 S4: The symmetric group on 4 symbols 204

6.3 The Heapsort model ... 207

6.4 The Robotic Simulation Environment .. 212

6.4.1 Building and programming robots ...214

6.4.2 The Empirical Modelling Robotic Simulation Environment .. 219

vi

6.4.3 Layering in the Robotic Simulation Environment 221

6.5 Chapter summary: Supporting learning across the EFL in Empirical

Modelling .. 226

7 Summary and conclusions ... 228

7.0 Overview of the chapter ..228

7.1 Review of the thesis ..228

7.2 Future work ...231

7.2.1 Empirical Testing ...231

7.2.2 Comparative studies ...232

7.2.3 Developing an Empirical Modelling environment for

children ... 232

7.3 Conclusions .. 234

7.3.1 Reservations about the research 234

7.3.2 Conclusions of the thesis .. 235

Bibliography ... 237

Appendix A - An example of constructing a model for the simple game of

Jugs .. 257

Appendix B - An example of building a parser ... 267

Appendix C - Glossary of models used in the thesis ... 280

Appendix D - Example model building interactions in EM 286

vii

List of Figures

Figure 2.1: Connecting Empirical Modelling, practical spreadsheet tools and

principles of spreadsheet use .. 20

Figure 2.2: Cyclic dependency ... 22

Figure 2.3: An example spreadsheet and chart in Excel ... 23

Figure 2.4: A diagram of an Excel spreadsheet with the key characteristics of the

paradigm being highlighted .. 24

Figure 2.5: Cantwell-Smith’s program, process and subject matter ………………. 25

Figure 2.6: A simple tax spreadsheet .. 26

Figure 2.7: A spreadsheet to explore income tax .. 27

Figure 2.8: Example of a Forms/3 form with a set of cells to define a circle and its

attributes .. 33

Figure 2.9: An example of a spreadsheet for images, taken from [Lev94] 35

Figure 2.10: Structure of an Agentsheet, taken from [Rep93] 37

Figure 2.11: A screenshot of the Agentsheets epidemic model 38

Figure 2.12: A VisualAgenTalk rule for a person in the epidemic model 39

Figure 2.13: The significant concepts associated with Empirical Modelling 43

Figure 2.14: The three windows in the TkEden modelling environment 46

Figure 2.15: An example Donald fragment to define a circle 47

Figure 2.16: An example Scout fragment to display the drawing in Figure 2.16

in a window ... 48

Figure 2.17: An example of a Sasami fragment to display a coloured cube 49

Figure 2.18: The Jugs model from Appendix A ... 52

Figure 2.19: Screenshots of the Clayton Tunnel simulation from the perspectives

of each of the participants ... 54

Figure 2.20: A small example TkEden spreadsheet ... 58

Figure 2.21: The TkEden spreadsheet illustrating geometrical shapes in a

spreadsheet .. 60

viii

Figure 2.22: The restaurant model in a spreadsheet ... 61

Figure 3.1: An experiential framework for learning ... 74

Figure 3.2: Kolb’s experiential learning cycle .. 78

Figure 3.3: State-based and Behavioural-based views on development processes .. 87

Figure 3.4: The restaurant manager model ... 94

Figure 4.1: Relating constructionism and instructionism to the EFL 108

Figure 4.2: An example concept map of this chapter ... 120

Figure 4.3: The simple jugs model from Figure 2.19 in the DMT 123

Figure 4.4: The development history of the digital watch 138

Figure 4.5 - The digital watch artefact (top right), an analogue clock (middle right)

and a mental stategraph (left) ..139

Figure 4.6: Situational observables - timing two runners .. 142

Figure 4.7: A partially obscured digital display ... 142

Figure 5.1: A spectrum of learning perspectives .. 147

Figure 5.2: Soloway’s TILT model [SGH94] ...150

Figure 5.3: The microworlds in the racing cars model ... 153

Figure 5.4: Microworld 2 of the racing cars model .. 154

Figure 5.5: Microworld 3 of the racing cars model .. 155

Figure 5.6: Microworld 4 of the racing cars model .. 156

Figure 5.7: Microworld 7 of the racing cars model .. 157

Figure 5.8: Differences between scaffolding and cognitive layering 159

Figure 5.9: The structure of the OXO model ..161

Figure 5.10: Microworld 1 of the OXO model ... 162

Figure 5.11: Microworld 2 of the OXO model ... 163

Figure 5.12: Microworld 4 of the OXO model ... 164

Figure 5.13: A tree of possible models based on the cognitively layered OXO

model ...165

Figure 5.14: A problem situation for the OXO computer player167

ix

Figure 5.15: The board and pieces of the number cross model 171

Figure 5.16: The game of number cross with the rules present 172

Figure 5.17: Adaptable and formal languages .. 175

Figure 5.18: The structure of the clown-and-maze language 178

Figure 5.19: The clown and maze environment ... 179

Figure 5.20: The relationship between the query languages in SQL-EDDI 182

Figure 5.21: Example queries in SQL and EDDI to illustrate the flaws in SQL185

Figure 5.22: The SQL-EDDI environment in use, illustrating queries 2a) and 2b) ..185

Figure 5.23: Using the RAT to support understanding of operations on tables 188

Figure 6.1: Conflating model-building and model-use ...194

Figure 6.2: The diverse components of the MBF4 model .. 196

Figure 6.3: (a) The lattice of subsets P4; (b) an example of a decreasing subset

of P4 ..199

Figure 6.4: The Hasse diagram with 166 nodes corresponding to the set of

decreasing subsets of {1,2,3,4}..200

Figure 6.5: (a) A Cayley diagram for S4; (b) an example of a CPL map204

Figure 6.6: The complete MBF4 model ..206

Figure 6.7: The heapsort model showing a representation of a heap209

Figure 6.8: Heapsort and its associated formal specification 212

Figure 6.9: An example robot and its main features ...215

Figure 6.10: Using the IPPE to create a command ... 216

Figure 6.11: The iterative robot programming cycle .. 217

Figure 6.12: Learning and the Robotic Simulation Environment220

Figure 6.13: The RSE being used to investigate the relationship between the

motors and the robot’s movement..222

Figure 6.14: An example task for a robot program to solve (from [JKS02]) 224

Figure 6.15: The RSE in use in solving the task from Figure 6.14 225

Figure A.1: The simple jugs model .. 266

x

List of Tables

Table 2.1: Some example Forms/3 commands, from Appendix B of [BAD+01] 32

Table 4.1: Differences between bricolage and ‘planning’, as identified in

[TP91, Ben01] ...115

Table 4.2: Comparing problem solving in situation and abstract settings (adapted

from Table 1 in [BCD89]) ... 117

Table 4.3: Comparing school learning and everyday learning [Res87] 118

Table 5.1: The evaluation strategy for player X in OXO .. 166

xi

List of Listings

Listing 2.1: An example of a simple definitive script ... 44

Listing 3.1: Part of an LSD specification for the restaurant manager model 98

Listing 5.1: The new definition that describes the state of the board for when

player x should play ..169

Listing 5.2: The example command for the down operator in the krusty

language described in section 5.4.2 .. 176

Listing 5.3: An EDDI extract illustrating the definition of the FRUITS database ... 183

Listing 6.1: An example robot program listing ... 216

xii

Acknowledgements

I am indebted to a number of people who have helped me in various ways during the

writing of this thesis.

First and foremost, I would like to thank my supervisor and friend Meurig Beynon for

his unselfish support throughout the preparation of this thesis. I am very grateful for

all the comments, discussions, encouragement and feedback. This thesis would not

have been completed without his assistance.

Thanks also to the other members of the Empirical Modelling research group for

providing a stimulating and interesting environment within which to conduct

research. In particular, thanks to Steve Russ for useful guidance whenever it was

requested, and a huge thank you to Ashley Ward for his friendship, discussions and

seemingly unbounded technical knowledge. Further thanks to Dave Pratt from

Warwick Institute of Education for stimulating discussions and constructive feedback.

Last, but certainly by no means least, I would like to thank my parents, Andy and

Margaret, my sister Nicky, and girlfriend Sophie for all the support that they have

given me during the course of this research. It means more to me than I could ever

write down.

xiii

Declarations

This thesis is presented in accordance with the regulations for the degree of Doctor of

Philosophy. It has been composed by myself and has not been submitted in any

previous application for any degree. The work in this thesis has been undertaken by

myself, except where otherwise stated.

The perspective of Empirical Modelling for educational technology is discussed in

connection with constructionism in [RB02]. The restaurant manager model described

in section 3.5 was discussed in [RRR00] in connection with strategic decision support

systems. The digital watch model described in section 4.7 was discussed in [RBF00]

in connection with engineering education. The use of Empirical Modelling to

simulate LEGO Mindstorms robots described in section 6.4 was discussed in

[EJR+02].

xiv

Abstract

In this thesis, we explore the extent to which computers can provide support for domain

learning. Computer support for domain learning is prominent in two main areas: in education,

through model building and the use of educational software; and in the workplace, where

models such as spreadsheets and prototypes are constructed. We shall argue that computer-

based learning has only realised a fraction of its full potential due to the limited scope for

combining domain learning with conventional computer programming. In this thesis, we

identify some of the limitations in the current support that computers offer for learning, and

propose Empirical Modelling (EM) as a way of overcoming them.

We shall argue that, if computers are to be successfully used for learning, they must support

the widest possible range of learning activities. We introduce an Experiential Framework for

Learning (EFL) within which to characterise learning activities that range from the private to

the public, from the empirical to the theoretical, and from the concrete to the abstract. The

term ‘experiential’ reflects a view of knowledge as rooted in personal experience. We discuss

the merits of computer-based modelling methods with reference to a broad constructionist

perspective on learning that encompasses bricolage and situated learning. We conclude that

traditional programming practice is not well-suited to supporting bricolage and situated

learning since the principles of program development inhibit the essential cognitive model

building activity that informs domain learning. In contrast, the EM approach to model

construction directly targets the semantic relation between the computer model and its

domain referent and exploits principles that are closely related to the modeller’s emerging

understanding or construal. In this way, EM serves as a uniform modelling approach to

support and integrate learning activities across the entire spectrum of the EFL. This quality

makes EM a particularly suitable approach for computer-based model construction to support

domain learning.

In the concluding chapters of the thesis, we demonstrate the qualities of EM for educational

technology with reference to practical case studies. These include: a range of EM models that

have advantages over conventional educational software due to their particularly open-ended

and adaptable nature and that serve to illustrate a variety of ways in which learning activities

across the EFL can be supported and scaffolded.

xv

Abbreviations

AOP - Agent-oriented parser

BBC - British Broadcasting Corporation

CAI - Computer Assisted Instruction

CPL maps - Combinatorially Piecewise Linear maps

EDEN - Evaluator of DEfinitive Notations

DMT - Dependency Modelling Toolkit

DoNaLD - Definitive Notation for Line Drawing

DTkEden - Distributed TkEden

EDDI - Eden Definitive Database Interpreter

EM - Empirical Modelling

EFL - Experiential Framework for Learning

FDL - Free Distributive Lattice

ILE - Interactive Learning Environments

IPPE - Instructive Portable Programming Environment

ISBL - Information Systems Base Language

ITS - Interactive Tutoring Systems

MIT - Massachusetts Institute of Technology

OO - Object-Oriented

OpenGL - Open Graphics Library

OXO - Noughts-and-crosses style games

P4 - The lattice of subsets of {1,2,3,4}

PENGUIMS - Programmable ENvironment for Graphical User Interface

Management and Specification

RAT - Relational Algebra Tutor

RCX - Robotic Command eXplorer

RSE - Robotic Simulation Environment

S4 - The symmetric group on 4 symbols

xvi

SASAMI - Solids Animation Simulator And Modelling Interface

SCOUT - SCreen LayOUT notation

SI - Spreadsheet for Images

SIN - Situation, Ignorance, Nonsense

SIV - Spreadsheet for Information Visualisation

SQL - Structured Query Language

SQLTE - SQL to EDDI translator

SQLZERO - a variant of SQL whose semantics is consistent with relational theory

TILT - Tools / Interfaces / Learner’s needs / Tasks

TkEden - Tk/Tcl EDEN interpreter

UML - Unified Modelling Language

VAT - Visual Agent Talk

VBA - Visual Basic for Applications

VCCS - Vehicle Cruise Control Simulator

ZPD - Zone of Proximal Development

1

Chapter 1 – Introduction

The recent explosion in computer usage is transforming every aspect of our society.

The rapidly increasing presence of computer technology in the workplace, the home

and the school is almost certain to have impacts on the ways in which we learn. In

education, the importance placed on using computers in schools is evident from

governmental policy and the consequent levels of funding being deployed. For

instance, in its latest policy document, the UK government has proposed that, by

2005-6, there should be an annual funding of £700 million on computer-based

technology for the education sector [DFE03]. The same policy document states that

the number of computers in schools has virtually doubled in the four years from

1998-2002 – an indication of the amount of money that has already been spent on

computers for education. This dramatic increase in computer technology in schools is

not limited to the UK. In the USA, for instance, funding for computers in schools in

the year 2000 was estimated to be in the region of $8 billion [AFC00].

Governmental reports paint a rosy picture of the positive influence of computers on

students and the commensurate increases in achievement that the use of computers

effects. For instance, in the UK, the government claims that research shows that:

‘[Information and Communication Technology] can have a direct positive
relationship to pupil performance – equivalent in some subjects to half a
GCSE grade.’ [DFE03]

Academic researchers are more ambivalent about whether computers enhance the

quality or standard of learning. There are those who champion the use of computers

by children (see e.g. [MO94, Tap98, Ben99, BR99]). However, a significant number

of researchers claim that there is no positive impact on standards in children using

computers, and further that the use of computers may indeed be harmful to their

educational development (see e.g. [Tur95, Kay96, Opp97, KC98, Hea99, AFC00,

Opp03]).

Chapter 1: Introduction

 2

The increased interest in using ‘computers for learning’, and the conflicting

viewpoints emerging from pedagogical research, give rise to questions that need to be

addressed in order to guide future practical developments. To understand how we can

use computers fruitfully in learning for both the construction and use of models, we

must recognise what learning we wish to support on computers. This thesis addresses

this theme with reference to two main categories of computer use for learning: the

construction of models by children, and the construction of models by professional

adults. The broader context for this research is conveniently framed using a similar

bipartite classification in the agenda of the Human-Centric Computing symposium of

2001 [HCC01]. In respect of children realising domain learning through

programming:

‘The first part of the Symposium will focus on educational issues and end-user
programming for beginners. How can kids build their own games? How can
education be enriched with computational literacy allowing people to express
complex ideas with interactive media? What kinds of programming
approaches are particularly well suited to computer users with no
programming background? What are the cognitive road blocks in
programming for beginners?’

In respect of professional adults realising domain learning through programming:

‘The second part of the Symposium will focus on professional users. How can
users gain more control over their high functionality applications, such as
word processors, browsers, and spreadsheets, through end-user programming?
How well do end-user programming languages scale? How can end-user
programming be integrated into high functionality applications? How can the
reuse of end-user programs be stimulated? What are the trade offs between
domain-specific and generic end-user programming languages?’

This thesis is concerned with investigating an alternative approach to providing

computer support for learning that bears on many of the questions raised in the above

agenda.

Chapter 1: Introduction

 3

1.1 Construction of computer models by children

In 1980, Seymour Papert published a seminal work on computers for children, called

‘Mindstorms’ [Pap80]. He described a vision for how children could ‘unleash the

power of computer programming’ to aid their learning in a personally meaningful

domain. ‘Mindstorms’ contains many anecdotes of practical programming undertaken

by children together with comments on the perceived effects it had on them. Papert’s

vehicle for practical programming was the computer language Logo. Logo is a simple

procedural programming language originally targeted at the domain of geometry. It

has a small number of commands that can be combined to produce complex

geometrical patterns. In early versions of Logo, the language could be used to control

a floor device called a turtle. There have been many subsequent programming

languages inspired by Logo and Papert’s vision. Development environments such as

Microworlds Project Builder [LCS03] and Imagine [KB00] are examples of Logo-

like languages in a more general-purpose context. Logo also spawned research

languages aimed at specific contexts, such as massively parallel Logo (as represented

in *Logo [Res94] and NetLogo [Wil99]) and Logo interfaced to physical devices

such as vehicles and robots [ROP88].

In some respects, Logo has been a spectacular success, but in others a failure. This is

apparent when we contrast Papert’s visions for Logo with its practical applications in

education. Papert saw Logo as pioneering a new wave of technology aimed at

children that would liberate the child from the ‘oppressive nature of school-based

instruction’ [Pap80]. In his vision, children would be able to use computer technology

in a free way to learn personally important subjects at a pace and style that suited

them. His ‘Mindstorms’ book was targeted at teachers and imparted his message that

teaching would become a radically different profession under the influence of

computer technology. Logo has been successful in terms of its widespread use –

programming a floor turtle is mentioned in the United Kingdom National Curriculum

[UNC03] as a way of teaching aspects of geometry. Due to this, it is almost certainly

the programming language that has had the greatest exposure in UK classrooms.

Chapter 1: Introduction

 4

However, Papert would not necessarily interpret this wide adoption of Logo as an

indication of success. His second book, ‘The Children’s Machine’, published in 1993,

was already expressing concern about the way in which Logo was being used. For

him, the classroom use of Logo – and computer technology in general – was moving

away from his vision to reinforce traditional school-based instruction [Pap93].

Papert’s design rationale for Logo was that of taking what he perceived as the best

ideas from computer science and ‘child engineering’ them (as reported by Kahn

[Kah01] in notes from a Logo project meeting in 1977). There have been a number of

attempts at providing programming languages that are either designed for children, or

are accessible to children. They include:

i) Boxer – a programming language that was spawned from the Logo project

[diSA86]. It is a general purpose language that adopted a mixture of

programming paradigms.

ii) Agentsheets – a rule-based visual programming language and

development environment that is related to spreadsheets (see section 2.3.3)

[Rep93].

iii) Toontalk – an animation-based programming language in which programs

are created by manipulating animated tools and training robots by

demonstration [Too03].

Each of these products takes its inspiration from a particular programming paradigm

and attempts to develop a simplified programming language in this idiom. As Kahn

mentions in [Kah01], these more recent languages are again attempting to ‘child

engineer’ what are seen by their proponents to be the best ideas of computer science.

The motivation for the educational use of the programming languages listed above is

a belief that children constructing their own programs will concurrently be engaged in

meaningful domain learning. In this thesis, we shall argue that the support that

program construction can offer to domain learning is heavily influenced by the choice

of programming paradigm – a theme we shall return to in chapter 4.

Chapter 1: Introduction

 5

1.2 Construction of computer models by adults

In 1993, Bonnie Nardi wrote a seminal book on end-user programming called ‘A

small matter of programming’ [Nar93]. Her investigations were centred on how non-

programmers can utilise computers to create their own models through programming,

or more generally through model construction. Nardi’s basic argument [Nar93] is

that:

‘the problem with programming is not programming; it is the languages in
which people are asked to program’.

Her research suggested that end-users can build their own models if the conditions are

right. She highlighted several successful end-user languages:

i) Logo – widely used in the domain of geometry by a large number of

children.

ii) Mathematica – a general software system for mathematical applications

[GG00].

iii) Computer-Aided Design languages – used extensively in architecture and

product design [Dug99].

iv) Spreadsheets – a ubiquitous desktop application used in many domains by

an enormous number of end-users, ranging from children to accountants.

Nardi noted that these languages had been successful in part because of their domain

specific primitives and in part because their design characteristics made it easier for

non-programmers to learn through model building. She observed that spreadsheet

development was a particularly successful end-user programming environment

because [Nar93]:

‘Managing dependency relationships is a particularly good example of the
way in which an end user programming system can allow users to focus on
their domain-related problems at a very high level’.

Chapter 1: Introduction

 6

Spreadsheets have been successful in the end-user programming domain because, in

specific learning domains, there is a close relationship between constructing a model

and learning about the domain. In the light of this observation, we use spreadsheets as

our starting point for investigating ‘computers for learning’ (see chapter 2) and go on

to connect spreadsheets with an approach to computer-based model construction that

we have developed – called Empirical Modelling.

1.3 Introducing Empirical Modelling

In this section, we give a brief overview of the fundamental concepts of the Empirical

Modelling (EM) approach. Dr Meurig Beynon initiated EM research in 1983 at the

University of Warwick with the design of the definitive notation ARCA [Bey83].

Over the subsequent 20 years, the project has encompassed a wide range of interests

including definitive notations [Yun90, Yun93, Run02], geometry [Car94, Car99],

computer graphics [ABC+98], business [BRR00, CRB00, RRR00], artificial

intelligence [Bey99] and educational technology [Bey97].

Empirical Modelling is an approach to constructing models – typically computer-

based – that can assist our understanding of a phenomenon. The term ‘empirical’ is

used to reflect the emphasis on experiment, observation and interaction during the

construction of a model. In contrast to typical computer models – which are formal

mathematical models – the development of an EM model more closely resembles the

development and use of a spreadsheet than that of a traditional computer program, in

that the model is incrementally constructed through interaction with a partially

completed model.

In EM, the primary emphasis is on modelling state-as-experienced rather than

behaviour-as-abstracted, as respectively represented by spreadsheets and traditional

computer programs. Whereas the construction of a traditional program relies upon the

prior specification of its abstract behaviour, the development of a spreadsheet model

evolves through the representation of state as currently perceived. The crucial

Chapter 1: Introduction

 7

distinction between spreadsheet development and conventional programming is that

there is no circumscription of the possible future states that the system may enter. The

identification of sensible behaviours is found through experimentation and interaction

with the spreadsheet. An EM model exhibits similar qualities to a spreadsheet, in that

the modeller has complete discretion over the interactions they perform.

Within the framework of observation-oriented state-based modelling, EM identifies

three key concepts: observables, dependency and agency. Each of these concepts has

a part to play in understanding and exploring a phenomenon. An observable is a

perceived element of the state to which we can ascribe a value. Dependencies are

indivisible relationships that exist between observables. Agency is concerned with

attribution and realisation of state change.

In this thesis, we discuss and illustrate how the principles of EM can enable

computer-based models to be constructed in a way that is intimately linked with

domain learning. We shall discuss the concepts and orientation of EM in much

greater depth in chapter 3.

1.4 Motivations for the thesis

The research in this thesis exploring connections between EM and learning is

motivated by research from fields such as experimental science, education and

psychology that has direct relevance to our exploration of computer-based modelling

as a learning aid. Here we outline key ideas that have guided this thesis and which are

discussed in detail in later chapters:

- Constructionism. In [Pap80, Pap93], Papert describes how children can

use computers as exploratory tools to further their own private active

learning. His theory of constructionism asserts that learning is most

beneficial when learners are actively building their own knowledge

structures in a domain of personal interest. In this thesis, we explore how

Chapter 1: Introduction

 8

EM as a modelling approach can enable learners to construct computer-

based models in a constructionist framework.

- End-user programming. In [Nar93], Nardi describes how successful end-

user programming environments, such as spreadsheets, have allowed non-

specialists to harness the power of the computational medium to construct

their own artefacts to help them in solving their personal tasks. In this

thesis, we explain the potential of EM as a way in which computer users

can construct artefacts that builds on the principles embodied in

spreadsheets.

- Open development. In [Brö95], Brödner describes two cultures in

engineering that he calls ‘closed-world’ and ‘open-development’. In a

closed-world approach, the assumption is that all properties and

relationships between objects can be stated as objectified, explicit,

propositional knowledge. An open-development approach does not contest

our ability to form objectified, explicit, propositional knowledge, but

assumes the primary existence of practical experience that has been gained

through an individual’s interaction in the world. In this thesis, we explore

how EM can be viewed as an open-development approach that emphasises

the primacy of personal experience in constructing computer-based

models that embody our emerging understanding of a phenomena.

- Construals. In [Goo90], Gooding describes how the physicist Michael

Faraday constructed physical artefacts to enable him to understand

electromagnetic phenomena. These concrete artefacts are termed

‘construals’ by Gooding. In this thesis, we argue that EM models should

be considered as construals rather than preconceived programs and discuss

the impact of this change in interpretation with reference to learning.

- Bricolage. In [Lev68], Levi-Strauss describes the idea of bricolage.

Bricolage refers to an approach to construction that is hands-on,

negotiational, exploratory, interactive and experimental. In domains where

knowledge is provisional, a bricolage approach allows learners to

construct physical models concurrently with their emerging understanding

Chapter 1: Introduction

 9

of that domain. In this thesis, we explore how EM can be used as a

computer-based modelling approach that embodies bricolage and consider

the resulting benefits from a learning perspective.

- Situated learning. In [Lav88], Lave emphasises the need for learning to

be situated in realistic situations, especially when the subject matter

concerns human interaction or is hard to grasp in abstract terms. In this

thesis, we explore how EM can act as a situated modelling approach (cf.

Suchman [Suc87], Goguen [Gog96]) that allows personal viewpoints and

conflicting interests to be represented.

Constructionism, originally introduced by Papert, was primarily concerned with

children learning through writing computer programs. End-user programming is more

generally concerned with domain learning through the construction of computer-

based models. In respect of both these agendas, Brödner draws attention to the

significance of practical experience explored through open development as a

complement to propositional knowledge of the closed world. Gooding considers the

role that the construction of artefacts can play in embodying our understanding.

Brödner and Gooding’s views endorse our use of artefacts in support of experiential

learning activities. Levi-Strauss and Lave describe the key qualities that modelling

approaches require to support the open-development approach to constructing

artefacts.

Previous research has considered the relationship between EM and conventional

methods in different application domains. Two common themes in this comparative

research are: the emphasis placed on the human element in the modelling process;

and the distinctive characteristics of the EM approach when compared to

conventional programming and software development. Generally, these advantages

are concerned with the knowledge that can be gained more easily using EM than with

conventional methods in the particular application domain. However, none of them

has considered in detail why this should be possible from a learning perspective.

Chapter 1: Introduction

 10

Broadly speaking research has been directed at two main areas: software system

development and business applications.

With reference to software system development, Paul Ness [Nes97], Patrick Sun

[Sun99] and Allan Wong [Won03] have all compared development in EM with

conventional software system development. Ness was concerned with identifying

how computer technology could offer support for the construction of creative

artefacts, which promote exploratory representation of unfamiliar subjects, rather

than analytical artefacts, which promote methodological representation of familiar

subjects. He argued that conventional software development focuses on analytical

artefacts, whereas EM focuses on creative artefacts. Ness argued that the support for

creative model building in EM stems from properties of creative artefacts that are not

to be found in analytical artefacts. These properties, namely novelty, ambiguity,

implicit meaningfulness, emergence, incongruity and divergence were identified in

the work of Finke [FWS92]. These properties are ideally suited for supporting

exploratory model building for learning, where there are misunderstandings,

inconsistencies and digressions. Sun was concerned with identifying how computer

technology could support distributed modelling. He argued the case for EM as an

amethodical approach to software development for distributed applications in which

knowledge was ‘cultivated’ through situated modelling. Situated modelling for

learning is a prominent theme in this thesis. Wong identified EM as supplying ‘a

suitable setting for both the cognitive and collaborative aspects of system

development in which the emphasis is on heuristic human problem solving and

maintaining conceptual integrity in a system design’ [Won03]. These characteristics

of EM are significant in respect of learning because they relate to the negotiation of

meaning in both the private and the public domains. Wong also considered how EM

can be used to construct environments in which the user takes responsibility for the

circumscription and customisation of a system. This vision is well matched to the

needs of a teacher who needs to develop and customise resources to suit their

educational context.

Chapter 1: Introduction

 11

In terms of applications to business, Suwanna Rasmequan [Ras01], Soha Maad

[Maa02] and Yih-Chang Chen [Che01] have compared an EM approach with

currently used systems in various business areas. Rasmequan was concerned with the

integration of human cognitive processes and computing processes in business

software development. She argued that EM supports cognitive processes by

promoting rich representations of situations that offer direct experience, encourage

active engagement and spontaneous involvement. Maad was concerned with

identifying a framework within which to conduct software system development in the

domain of finance. She argued that EM offers support for an alternative culture in

finance through an approach to software development that integrates experiential and

situated aspects of finance together with close human involvement. Chen was

concerned with how EM could be viewed as an approach to Business Process Re-

engineering (BPR) where businesses revise their practices to adapt to new computer

technology. He argued that the failures of BPR systems were attributable to the

inability to preconceive or predict all the causalities when modelling real-world

situations with high levels of human involvement. He argued that these problems

could be alleviated by using EM for requirements engineering to gather knowledge

prior to the construction of a business software system. All three of these authors

stress the role that EM can play in acquiring and applying domain understanding

throughout the development of a business system. This suggests that EM is well

suited to active knowledge construction in many different domains.

This thesis establishes a connection between EM and learning that accounts for its

fitness for active knowledge construction, and that can also offer a unifying

perspective on the previous work described above. The potential of EM in relation to

learning was first outlined by Beynon in his 1997 paper entitled ‘Empirical Modelling

for Educational Technology’ [Bey97]. In the paper, Beynon outlined issues for

technology in education from the perspectives of IT management, teachers and

pupils. The relationship between EM and learning is at the core of the EM for the

educational technology agenda. Beynon framed his discussion with reference to a

perspective on learning that he termed the ‘Empiricist Perspective on Learning’. This

Chapter 1: Introduction

 12

perspective highlights the role that the experiential activities that inform pre-articulate

understanding play in learning.

Beynon’s paper did not discuss the Empiricist Perspective on Learning with reference

to any received learning theories such as constructionism and situated learning. In

1999, I undertook a taught Masters project investigating the potential of EM for

educational technology [Roe99]. This preliminary study comprised a limited literature

review that concentrated on the work of Seymour Papert [Pap80, Pap93] on LOGO

and the theory of constructionism. The limited scope of my study did not enable a full

investigation of the potential of EM with respect to educational technology. For

instance, it made no reference to Beynon’s Empiricist Perspective on Learning or to

other learning theories.

The past work on EM and educational technology, my MSc thesis, and the ideas of

other authors outlined in this section have together motivated the research in this

thesis.

1.5 Research Contributions

The major contention of this thesis is that computer-based model building, as

generally practised, does not give adequate support for the experiential aspects of pre-

articulate learning. We believe that the principles and practice of Empirical Modelling

offer fuller support for pre-articulate learning in respect of both model building and

model use. With regard to the construction of models, this thesis develops the

‘Empiricist Perspective on Learning’ introduced by Beynon in 1997 [Bey97].

Beynon’s perspective has been revised in the light of the research in this thesis, and is

now referred to as an ‘Experiential Framework for Learning’ (EFL). This thesis

contains the first comprehensive account of the relationships between EM, the EFL

and the use of computers for learning. This research has involved a careful

investigation, synthesis and analysis of ideas from many learning theories. Relating

learning theories and EM has required studying the literature from both fields to

Chapter 1: Introduction

 13

identify common ground. With regard to the use of EM models in an educational

context, this thesis also gives a full account of principles and techniques that allow

the creation of flexible and extensible learning environments.

In the course of this research, I have been the primary author of two papers [RB02,

RBF00], and contributed to several other publications [BCH+01, BRW+01, EJR+01,

RRR00, BBC+01] that relate to the ideas presented in this thesis. A central claim of

the thesis – that EM better supports pre-articulate learning and its integration with

formal learning – is discussed in [RB02] and developed in chapter 4. The digital

watch artefact described in section 4.7 of the thesis was discussed in [RBF00] in

connection with engineering education. The model has also been used as a case study

for investigating cognitive aspects of user-artefact interaction [BRW+01] and was also

demonstrated at a workshop on cognitive dimensions (see e.g. [Gre89]) to which I

contributed (see [BBC+01]). The extent to which EM allows the computer to be used

as an instrument rather than a tool is discussed in [BCH+01]. The restaurant case

study, discussed in chapter 3, featured as an illustrative example in a paper on

Strategic Decision Support Systems [RRR00] and was also adopted as a case study by

Rasmequan [Ras02]. The application of EM principles to simulate LEGO

Mindstorms robots (developed in conjunction with the researchers at a children’s

technology club in Finland) was discussed in [EJR+01]. This is described in section

6.4 of the thesis.

For this thesis, I have also constructed several example models of differing levels of

sophistication. These include:

i) the spreadsheet model [EMRep, spreadsheetRoe2002], discussed in

section 2.5.

ii) the restaurant manager model [EMRep, restaurantRoe2000], discussed in

section 3.5.

iii) the digital watch model [EMRep, digitalwatchRoe2001], discussed in

section 4.7.

iv) the variations on the OXO model, discussed in section 5.3.3.

Chapter 1: Introduction

 14

v) the clown-and-maze model [EMRep, krustyRoe2002], discussed in section

5.4.2.

vi) the relational algebra tutor [EMRep, ratRoe2003], discussed in section

5.4.3.

vii) the robotic simulation environment [EMRep, rseRoe2003], discussed in

section 6.4.

1.6 Contents of the thesis

This thesis is organised into seven chapters, of which this is the introductory one.

In Chapter 2, we consider the potential of exploratory modelling for learning. We first

consider the spreadsheet as a tool for exploratory modelling. Three considerations

motivate our choice of the spreadsheet as a starting point:

• it is a popular programming paradigm for the end-user.

• it is widely used in education for creating models and exploring phenomena

through the use of ‘what-if?’ style queries.

• it is a ubiquitous application.

We use the spreadsheet concept to draw out two key aspects of exploratory

modelling: namely, the negotiation and elaboration of the relationship between a

computer model and its referent (designated as ‘the semantic relation �’ by Cantwell-

Smith [Smi97]). We will argue that spreadsheets are well suited to negotiation but are

limited in respect of elaboration. We identify research products based on spreadsheet

ideas that have attempted to overcome some of the limitations of spreadsheets and

consider their qualities in respect of negotiation and elaboration. In the final part of

the chapter, we introduce practical Empirical Modelling and conclude that it offers

support for negotiating and elaborating the semantic relation.

In Chapter 3, we outline the major challenges for the use of computers for learning.

These challenges are concerned with bridging the gap between how the computer

Chapter 1: Introduction

 15

scientist and the educationalist view the use of computers for learning. A computer

scientist is primarily interested in issues of usability, requirements specification and

the choice of programming paradigm. The educationalist focuses on the qualities of

the learning that is taking place, the actual computer implementation being of only

secondary concern. Marrying these two viewpoints requires an approach to computer-

based model construction which is such that:

• there is a close connection between domain learning and model construction.

• educational software that is developed can be easily and flexibly adapted in

response to different learning situations and competencies.

With reference to many examples of learning activities, we describe a view of

learning that presumes that knowledge is rooted in our personal experience. These

examples motivate our ‘Experiential Framework for Learning’ (EFL). The EFL

comprises many learning activities ranging from the private to the public, from the

empirical to the theoretical, and from the concrete to the abstract. We introduce the

key principles of EM: the development of construals; the primary emphasis on

representing state-as-experienced; and the concepts of observable, dependency and

agency. We argue that EM model construction that is based on these principles

respects the relationships between activities in the EFL, so that EM can support the

integration of the empirical and the theoretical within a single modelling

environment. We illustrate these ideas with reference to the construction of a

restaurant manager model.

In Chapter 4, we consider computers for learning from an educational perspective.

We begin by discussing the educational theories of instructionism and

constructionism. We adopt a broad perspective on constructionism that encompasses

both bricolage and situated learning. Bricolage is a style of construction that puts

emphasis on close personal engagement with a task where the evolving construction

goes hand in hand with increasing comprehension of the task. Situated learning holds

that the surrounding domain context of a problem is not incidental to its solution but

provides the necessary social handles for learners to grapple successfully with the

Chapter 1: Introduction

 16

problem. We argue that principles and techniques for computer-based model

construction must support bricolage and situated learning if they are not to inhibit

domain learning. In the remainder of the chapter, we consider three practical

techniques that can be applied in domain learning: concept mapping, conventional

programming and EM. We discuss the extent to which each of these techniques

supports the broad perspective on constructionism and how it is related to the EFL.

We argue that concept mapping is only useful in the very early stages of learning and

that knowledge gained using it is typically set aside when constructing models. We

argue that conventional programming is not well oriented to the constructionist

agenda because it emphasises planning, abstraction and circumscription and this

detracts from its usefulness as an approach to model construction that promotes

domain learning. Finally, we argue that an EM approach to model construction can

support our broad perspective on constructionism and learning activities across the

EFL, enabling effective domain learning to proceed in tandem with model

construction. We illustrate this claim with reference to the construction of a digital

watch model.

In Chapter 5, we consider the advantages of using EM to construct learning

environments that support many different types of learning objective. We identify

three types of learning that can be scaffolded in EM: comprehension of a fixed

referent; exploration of possibilities and invention; and learning languages. We

illustrate each of these types of learning by case studies in the form of EM models in

which learning is scaffolded through gradual embellishment of the model. A different

style of presentation to the learner is characteristic of each type of learning. In the

Racing Cars model, the referent is fixed from the outset and each layer of the model

adds a greater subset of the functionality to the interface so that the learner can

explore more complex ideas. In the OXO case study, the model is built up

incrementally, and – although a specific learning path is mapped out – the model is

flexibly adaptable to different teaching requirements. We illustrate this adaptability

by creating a family of games related to noughts-and-crosses. In respect of learning

languages, we introduce an EM parsing utility that can allow languages to be

Chapter 1: Introduction

 17

incrementally extended or refined as a learner is interacting with a model. We use

case studies based on a simple LOGO-like language and a more complex database

query language to illustrate language learning in conjunction with emerging domain

understanding.

In Chapter 6, we discuss and illustrate the links between EM and the EFL with

reference to more elaborate case studies. Conventionally, there are two ways in which

computers support learning: through personal model building and through the use of

pre-constructed models that cannot be revised by the user. We argue that it is possible

to have a third category, namely models that are partially built and that can be

extended by a learner in response to their particular learning needs. We present three

EM case studies that exhibit different degrees of model building and model use: the

Free Distributive Lattice model; the Heapsort model; and the Robotic Simulation

Environment. Each model places different demands on the learner and this is

reflected in the specific learning activities that it supports within the EFL. These case

studies give practical evidence in justification of our claim that EM can support

learning activities from across the whole of the EFL.

Chapter 7 summarises the research undertaken for the thesis, drawing some

conclusions, considering its limitations and outlining possible future work.

18

Chapter 2 – Paradigms for exploratory modelling

2.0 Overview of the chapter

In this chapter, we consider computer-based support for exploratory modelling. We

firstly discuss modelling with spreadsheets and identify two key aspects of

exploratory modelling with reference to a specific example. These two key aspects

are negotiating and elaborating the semantic relation between the model and its

referent. We argue that spreadsheets are suitable for negotiating the semantic relation

in certain domains but have limitations in respect of elaborating the semantic relation.

We discuss research products that extend the spreadsheet concept and the

implications for their support of the key aspects of exploratory modelling. We

consider how practical Empirical Modelling supports the key aspects of exploratory

modelling and conclude that it offers better support than spreadsheets and

Agentsheets for negotiating and elaborating the semantic relation.

2.1 Empirical Modelling and spreadsheets: In principle and practice

In this section, we consider the relationship between spreadsheets and EM. We

explore this relationship through the examination of practical spreadsheet applications

(e.g. Microsoft Excel™) and the academic literature in the field of spreadsheets

[Lew90, WL90, Nar93, Lev94, VK96, CRB+98, BAD+01, Gro02]. It is apparent that

spreadsheet construction is markedly different from conventional program

construction, although both aspire to allow users to exploit computational power in

problem solving. Unlike programming, constructing spreadsheets has become a

common skill that can be used in education for a variety of purposes [New01,

UNC03]. For instance spreadsheets can be used for data capture, exploratory

Chapter 2: Paradigms for exploratory modelling

 19

modelling and graph plotting. This suggests that there are aspects of spreadsheet use

that are particularly significant from a learning perspective.

Previous research in Empirical Modelling (see e.g. [Bey87a, Geh96, RRB00]) has

identified Empirical Modelling as based on a “radical generalisation of spreadsheets”

(cf. [RRB00]). In this thesis we are led to look more critically at this informal claim,

and conclude that EM generalises those features of spreadsheet use that are intimately

connected with learning. There are two complementary relationships to be

understood: the relationship between Empirical Modelling principles and principles

of spreadsheet use; and the relationship between Empirical Modelling tools and

practical spreadsheet applications. This chapter is organised around these two

comparisons.

The structure of the chapter is as follows: firstly in section 2.2 we identify the features

of potential spreadsheet use that are particularly significant in a learning context. In

section 2.3 we outline research that has extended the spreadsheet idea and its impact

on potential applications of spreadsheet principles. Section 2.4 introduces Empirical

Modelling from a practical perspective, describes the TkEden modelling tool, and

(2.4.6) explores the relationship between Empirical Modelling principles and

principles of spreadsheet use. In section 2.5, we demonstrate the relationship between

Empirical Modelling tools and spreadsheets by building a spreadsheet program using

the Empirical Modelling tool TkEden (introduced in section 2.4.2). This provides

further practical evidence that Empirical Modelling offers better support for

exploiting spreadsheet principles in learning since the TkEden spreadsheet allows

models to be constructed that would be hard to replicate in a conventional spreadsheet

program. Figure 2.1 depicts the relationship between the subsections of this chapter.

Chapter 2: Paradigms for exploratory modelling

 20

Practical Empirical Modelling <2.4>

 <2.5>

 <2.4.6>

Practical

spreadsheet tools

<2.2>, <2.3>

 <2.2>, <2.3>

Principles of spreadsheet

use <2.2>

Figure 2.1 – Connecting Empirical Modelling, practical spreadsheet tools and

principles of spreadsheet use

2.2 Spreadsheets

The principal purpose of this section is to identify principles of spreadsheet use that

are significant in a learning context. To this end, we firstly review the essential

characteristics of a spreadsheet as commonly identified. This review serves two

purposes: it highlights the distinction between the routine use of spreadsheets and

their applications in exploratory and creative model construction; it also supplies a

convenient base from which to introduce EM.

2.2.1 Introducing spreadsheets

Since the introduction of the spreadsheet into the commercial software world with

VisiCalc in 1979 the spreadsheet has been one of the most widely used application

packages on computers. Indeed it has been described as the ‘killer app’ that helped

Chapter 2: Paradigms for exploratory modelling

 21

launch the personal computer market [CK95]. The spreadsheet has remained at the

forefront of the application market and is used by millions of people every day, from

home users to large corporations [MKT93]. Spreadsheets allow users to build their

own programs, and have developed into the most popular ‘end-user’ programming

paradigm [Nar93]. Users construct their own spreadsheets to perform tasks that they

would find impossible using general purpose programming languages such as C or

Java.

The spreadsheet features reviewed in this section (2.2.1) are typical of Microsoft

Excel, the most widely used spreadsheet on the market today [Lan03]. A spreadsheet

is a rectangular arrangement of cells, organised into a collection of columns, (usually

identified by letters) and rows (usually identified by numbers). Each cell therefore has

a unique reference (e.g. A3, B12) that is identified by the column and row headers.

Each cell can contain one of a number of different elements. The basic type that a cell

can have is a value. This can be either numeric (e.g. 12, 3.14) or textual (e.g. “VAT

Rate”). There are a limited range of other types that are supported, including times

and dates. Value cells can be combined through cells that contain formulas. A

formula is a function composed of operators and values in the spreadsheet. Operators

can be applied to individual cells or to groups of cells, such as columns, rows or two-

dimensional regions. Examples of formulae are ‘=MAX(B1,B2);’ and ‘IF

(B12=0), 100, 0;’. Spreadsheet applications usually provide a large number of

built-in functions that users can deploy in their spreadsheets. These functions cover a

wide range of domains. In general, a spreadsheet will provide mathematical operators

(e.g. sum, max, min, +, -, *, /), statistical operators (e.g. variance), financial operators

(e.g. term, rate), time-based operators (e.g. month, year), logical operators (e.g. and,

or, not) and textual operators (e.g. substr, findstr). Sophisticated calculations can be

achieved using multiple cells or ranges of cells in multi-stage computational

processes.

The essential feature of spreadsheet calculations is that when a value is changed, any

formula that references that value, directly or indirectly, is automatically recomputed.

Chapter 2: Paradigms for exploratory modelling

 22

In this way, a single alteration to a spreadsheet can lead to widespread change. The

major restriction for formulae is that there can be no cyclic dependencies. In the

example below (Figure 2.2), the arrows show how the update of one cell propagates

to the other cells, leading to an infinite cycle. The following cell definitions would not

be permitted:

A1 = A3+3 A1

A2 = A1+1

A3 = A2*4

 A3

 A2

Figure 2.2 – Cyclic dependency.

Spreadsheets allow users to create charts based upon data in the spreadsheet. A wide

variety of chart types are usually supported, including pie charts, bar graphs, line

graphs, and scatter plots. Charts are dependent on the spreadsheet and an update to a

relevant part of the spreadsheet will cause an update to the graph. Charts overlay a

region of cells in the spreadsheet (as shown in Figure 2.3).

Formulae are the main way to describe relationships between cells. To provide the

spreadsheet user with more control, procedural add-on languages are often supplied.

Procedures can be written in a high-level language to create effects that would be

impossible with the sole use of formulas. In Excel, this procedural language is Visual

Basic for Applications (VBA). One common use of VBA is to provide front-end

interfaces to spreadsheets so that users can click on buttons in the spreadsheet to

perform actions.

Chapter 2: Paradigms for exploratory modelling

 23

Figure 2.3 – An example spreadsheet and chart in Excel.

Following [CRB+98], we can summarise the characteristic features of a conventional

spreadsheet as follows:

F 1: There is an automatic mechanism in charge of dependency

maintenance. Cells are automatically updated whenever one of the

values or formulas that affects it has been changed.

F 2: Operators are used to construct relationships between cells through

the definition of formulas. Examples of operators include arithmetical

and statistical operators.

F 3: There is a tabular layout. Cells are organised into a two-dimensional

grid. Users can exploit this regular structure to simplify their

computations.

The three features, F1, F2 and F3 are shown in Figure 2.4. A further feature was

originally identified by Allan Kay in 1984 [Kay84]. This is the value rule:

F 4': A cell’s value is defined solely by the formula explicitly given to it by

the user.

Chapter 2: Paradigms for exploratory modelling

 24

Burnett et al [BAD+01] interpret the value rule as ‘[disallowing] devices such as

multi-way constraints, state modification, or other non-applicative mechanisms’. In

this thesis, we prefer to work with a more relaxed version of the value rule, which

admits the possibility of procedural extensions provided that they respect the

relationship between the value of a cell and its defining formula. By this criterion, the

automatic updating of the value of an explicitly defined spreadsheet cell would not

violate the value rule, neither would the automatic assignment of a new formula to a

cell provided that this was indivisibly associated with its re-evaluation. This relaxed

version of the value rule can be defined as follows:

F 4: A cell’s value is always consistent with the formula currently assigned

to it from the perspective of the spreadsheet user.

This legitimises the principled use of procedural extensions to the spreadsheet (e.g.

through the use of VBA).

OPERATORS

DEPENDENCY

MAINTENANCE

2D GRID

Figure 2.4 – A diagram of an Excel spreadsheet with the key characteristics of the

paradigm being highlighted

Chapter 2: Paradigms for exploratory modelling

 25

As illustrated in Figure 2.4, conventional numerical spreadsheets exhibit the four

features F1, F2, F3 and F4.

2.2.2 Key aspects of exploratory modelling

Spreadsheets are considered to be useful tools for learning through exploratory

modelling [Nar93, New01, Gro02]. We aim to articulate some general principles as to

why spreadsheets are suitable for exploratory modelling. To motivate this discussion

we give a small example of a learning situation in which spreadsheets can be

beneficially used and then abstract from this discussion some key aspects of

exploratory modelling.

Brian Cantwell Smith [Smi97] identifies three aspects of a computer system: the

program, the process and the subject matter (see Figure 2.5). The program is the

source code, the process is the behaviour associated with the executing program, and

the subject matter is the task domain to which the system refers. Conventionally,

computer science is primarily concerned with understanding the relationship �

between the program and the executable process.

Figure 2.5 - Cantwell-Smith’s program, process and subject matter [Smi97]

Chapter 2: Paradigms for exploratory modelling

 26

The relationship � is the semantic relation between the computer model and its real-

world referent. In exploratory modelling, this is the important relation: understanding

how to correlate the computer model with its subject matter. For instance, in

spreadsheets the learner is not concerned with the relation between program and

process because – through dependency maintenance – the spreadsheet abstracts away

the details of the � relation (cf. [Nar93]). The question is then how does the

spreadsheet support the � relation? We can demonstrate some of the activities that are

involved by considering an example of learning about tax. This is in a similar spirit to

Noss and Hoyles’s investigations into helping bankers to explore the financial

mathematics underlying the tools they had been using without full understanding

[NH96].

Taxation is a concept that can be explored through the construction of small example

spreadsheets. A spreadsheet can be easily constructed to investigate how a basic tax is

calculated. We simply set up three cells A1, A2, A3 that respectively represent a

taxable monetary quantity, a fixed rate of tax, and the tax payable:

B1 = <Quantity>

B2 = <Tax rate>

B3 = B1 * (A2/100)

Figure 2.6 - A simple tax spreadsheet

This simple spreadsheet is sufficient for comprehending a basic tax such as Value

Added Tax.

Exploratory modelling can give a fuller understanding of how to calculate the price

before tax was added or the effect of the fixed percentage on the total price.

Embellishments can take the model into more sophisticated taxes such as income tax

where tax rates are dependent on the amount of money earned. The original

spreadsheet can be extended or refined to explore many different types of taxation.

Chapter 2: Paradigms for exploratory modelling

 27

Figure 2.7 - A spreadsheet to explore income tax

There are two aspects to the exploratory understanding of taxation. The first aspect is

concerned with ‘knowing that the formulae correctly characterise income tax’. The

spreadsheet supports several relevant types of learning activity. For instance, the tax

model can be embellished by adding new data to the spreadsheet or refined by

experimenting with its dependencies. This allows us to correlate the experience

gained from the spreadsheet with our prior experience of the concept of tax. In the tax

example, the regular grid structure is advantageous because it makes it so convenient

to make appropriate changes to the model interactively. The types of activities that

are important here are probing our current understanding and experimenting to further

our understanding. This probing and experimenting is valuable from a learning

perspective not only because it helps us to appreciate the implications of established

theory and rules but also because it enables us to deal with pre-theory situations

where the right answer (if one exists) is unknown and can emerge through having the

freedom to experiment and the license to make mistakes.

The second aspect is concerned with ‘exploring the broad personal and social

implications of income tax’. The spreadsheet supports this aspect of exploratory

modelling by enabling us to conveniently search and explore possible solutions to

problems, to survey entire state spaces and to generate relevant patterns of behaviour.

Chapter 2: Paradigms for exploratory modelling

 28

For instance, we can use the spreadsheet to find out how to minimise tax or explore

the consequences of life-changes. We can also use it to survey and present the

implications of tax regimes on different social groups. For instance, the spreadsheet

could be set up to compute the tax for a particular group (e.g. characterised by

income, age, area of residence), under a particular tax regime (e.g. as determined by

income tax, petrol tax, cigarette tax). It can also be used to explore the effects of

varying taxation levels and to predict future strategies based on current data. In

exploration of this nature, we exploit the facility offered by the spreadsheet to link

data from diverse real-world domains through dependency. For instance, in

calculating the tax payable on a project, a company might link a spreadsheet

associated with the specific project to a general spreadsheet embodying tax

regulations.

Both aspects of exploratory modelling discussed above relate to understanding Brian

Cantwell-Smith’s semantic relation �. The first aspect is concerned with the essential

nature of the association between process and subject matter. For instance, in

understanding income tax it is important to appreciate the different roles played by

capital savings and interest on savings. The second aspect is concerned with

experiencing the implications of this relation in its domain context to its fullest

possible extent. The breadth of this activity is reflected in the myriad ways in which

spreadsheets are used both personally and by businesses to explore ‘what-if?’

scenarios.

In the above discussion, we have identified two key aspects of exploratory modelling

in relation to understanding a concept X:

A1 - negotiation of the semantic relation �. This involves satisfying ourselves that we

understand the essential nature of the concept X (as apprehended through the relation

between the model and the subject matter).

Chapter 2: Paradigms for exploratory modelling

 29

A2 - elaboration of the semantic relation � in its domain context. This involves

satisfying ourselves that our understanding of concept X is consistent with the ways

in which it can be applied in a domain context.

These two aspects are intrinsically intertwined. Neither A1 nor A2 can be carried out

to completion - our understanding of a concept is always potentially open to future

revision in the light of new insights and discoveries. In the negotiation of the

semantic relation, elaboration has an essential role to play in confirming that our

understanding is coherent. In the elaboration of the semantic relation, it may be

necessary to renegotiate the semantic relation.

2.2.3 Spreadsheets for exploratory modelling

The above discussion has identified the qualities of spreadsheets in supporting the key

aspects of exploratory modelling. They stem from three features:

• being able to record dependencies.

• making it convenient to explore state and generate behaviours that are

meaningful to the modeller.

• being able to extend models easily through dependency.

The merits of spreadsheets for exploratory modelling and learning are endorsed by

Grossman in his discussion of ‘spreadsheet engineering’ [Gro02]:

‘When performing exploratory modeling in a spreadsheet, the spreadsheet
serves as a modeling tool to structure, explore, and understand a problem; it
becomes a means for expressing one’s ideas’.

‘During the modeling process, exploratory modelers learn much and benefit
greatly. When they are done with their exploratory modeling, they find
themselves in possession of an artifact: a spreadsheet. This spreadsheet
artifact is the residue of their inchoate modeling process. This spreadsheet
artifact is intimately connected to the powerful learning the user acquired
during its creation’.

Chapter 2: Paradigms for exploratory modelling

 30

The spreadsheet is ideally suited to exploratory understanding of taxation because the

data is numerical, can be suitably formatted into the spreadsheet grid and there are

numerical relationships between the various components. In more general

applications, spreadsheets have limitations that do not allow them to fully support A1

and A2. In respect of A1, the limited number of types and reliance on the grid leads to

problems. For instance, imagine trying to construct a spreadsheet to investigate the

concept of a vehicle cruise controller. In this situation, we would ideally require an

exploratory construction tool that could support a wide range of graphical types and a

display that did not impose a grid organisation upon values and dependencies.

Furthermore, a spreadsheet obliges the modeller to display the entire state of the

model in the grid interface. This is inappropriate for a model of such complexity as

the vehicle cruise controller. Complexity in spreadsheets can lead to errors in

construction and comprehension (see e.g. Panko’s discussion of the prevalence of

spreadsheet errors [Pan00]).

In respect of A2, the spreadsheet allows ‘what-if?’ style modelling by being able to

set up templates of dependencies and change specific parameters. However, in a

spreadsheet this is still constrained to a limited range of applications by the grid.

Spreadsheets also give limited conceptual support for using procedural actions in

combination with dependency (cf. the discussion of the relaxed version of the value

rule F4 in section 2.2.1). Though procedural extensions to spreadsheets (such as VBA

with Excel) in principle offer arbitrary computational power, it is hard in practice to

integrate this within a spreadsheet without comprising intelligibility (cf. the

discussion of the value rule in section 2.2.1). It is well recognised that the state-

transitions in an application such as a vehicle cruise controller are derived from very

diverse and subtle stimulus-response patterns [Deu88, Deu89]. For instance, the

transitions to be modelled stem from time-based dynamic behaviour, human

interventions, automatic responses by components and the influence of environmental

factors. Though it may be possible to model such activity in a spreadsheet with

procedural extensions there is very limited conceptual support for dealing with the

complex issues of interaction and synchronisation that arise.

Chapter 2: Paradigms for exploratory modelling

 31

In this section, we have identified key aspects of exploratory modelling and shown

that spreadsheets can only support these aspects to a limited extent. In the following

section, we discuss research inspired by the spreadsheet principle and consider the

impact for supporting exploratory modelling.

2.3 Extensions of the spreadsheet concept

This section describes existing research influenced by spreadsheet principles. Each

system to be described exhibits some of the characteristic features of spreadsheets.

The first feature, namely dependency maintenance, is the fundamental distinctive idea

of the spreadsheet. To support the construction of dependencies between variables,

formulae use operators to construct relationships between variables. Some systems

have a broader range of operators than can be found in a conventional spreadsheet.

These two features (F1 and F2) are crucial to the spreadsheet approach. In this

section, we describe research that:

i) relaxes the need for a grid (F3). This is exemplified in the Forms/3 system.

ii) relaxes the value rule (F4). This is exemplified in the Spreadsheets for

Images system.

iii) takes the form of a programming system based on generalising

spreadsheet principles using agents. This is exemplified in the Agentsheets

programming environment.

2.3.1 Forms/3

Forms/3 is a research-oriented declarative visual language that has been developed at

Oregon State University. The Forms/3 language exhibits three of the four features

(F1, F2, F4) of a spreadsheet because it does not require the use of a grid. The aim of

the Forms/3 system was to provide end-users with powerful programming

capabilities, and to equip professional programmers with tools that are as easy to use

as a spreadsheet [BAD+01].

Chapter 2: Paradigms for exploratory modelling

 32

The basic building block of a Forms/3 ‘program’ is a collection of cells and formulae

similar to that underlying a spreadsheet. Users are free to place cells wherever they

like on a form (the basic structure) and give each cell a name (since they are not

identified by grid position). Cells can be connected through formulas given by the

user. These formulae are not restricted to the simple types permitted in conventional

spreadsheets. Formulae can include graphical types and complex conditional

dependencies, as shown in the following table adapted from Burnett et al [BAD+01].

Type Format Examples and Explanation

Algebraic Expressions Integers and floating point

numbers

Operators such as +, -, *, /.

Example: A2*(100-53)

Logical Expressions not (A and B). A and B can

be numbers, cell references,

Boolean expressions.

Example: not (A2=100 and

B3>10)

Box box Width Height Draws a box of given

dimensions, which can be

references to other cells, or

the results of expressions.

Example: box 20 A3

Graphics glyph filename Loads an external graphics

file into a cell.

Example:glyph “disc.bmp”

Compose compose X at (x1,y1) with

Y at (x2,y2)

Composes graphical

objects together.

Example: compose (box

10,10) at (50,50) with

(circle 8) at (25,25)

if/then/else if condition then E1 else E2 if (B2<0) then 0 else B2

Table 2.1 – Some example Forms/3 commands, from Appendix B of [BAD+01].

Chapter 2: Paradigms for exploratory modelling

 33

A form is the basic structure in Forms/3, akin to a module or subprogram in a

conventional programming language. It can consist of many kinds of elements, such

as grids of cells, single free-floating cells, or a definition of a type, such as a circle.

Forms allow abstract patterns of cells and formulae (‘abstractions’) to be collected

together so that they can be reused. The example below (Figure 2.8) shows a form to

define a circle with attributes defined in the cells.

Figure 2.8 – Example of a Forms/3 form with a set of cells to define a circle and its

attributes.

The Forms/3 system has advantages over spreadsheets in respect of the number of

available types. For example, dependencies in Forms/3 can encompass graphical

types and exploit data abstractions. Forms/3 allows the animation of values where

dependencies are changing over time. It achieves this through an in-built model of

time, where a cell’s value changes over time. Forms/3 combines the ease of use of the

spreadsheet with some of the powerful aspects of conventional programming

languages. Removing the necessity for a grid allows programmers to only use a grid

in situations where it is appropriate.

However, there is no way of specifying agent actions in Forms/3. This limits the

extent to which Forms/3 can be used to support state exploration (A2). In his PhD

thesis, Wong illustrates this by contrasting the construction of a business deal model

Chapter 2: Paradigms for exploratory modelling

 34

using Forms/3 and using EM tools [Won03]. He concludes that Forms/3 cannot

capture the semantics of the business deal model faithfully because it does not

support agent actions.

NoPumpG is an early example of a spreadsheet-related system that attempts to extend

the power of spreadsheets through relaxing the grid rule (F3) [Lew90, WL90].

NoPumpG uses free floating cells and allows the manipulation of graphical types, but

it contains no facilities for grouping elements or implementing abstractions. Like

Forms/3, NoPumpG has only limited support for agency. The Penguims

(Programmable ENvironment for Graphical User Interface Management and

Specification) environment is another spreadsheet style development environment.

Penguims is specifically targeted at creating user interfaces [Hud94]. Components of

an interface can be linked through dependency across a wide range of arithmetical

and graphical types. Penguims gives support for exploratory modelling solely within

the domain of user interface design.

2.3.2 Spreadsheets for Images

Levoy’s spreadsheet for images (SI) [Lev94] enables users to visualise complex

graphical data in a spreadsheet. Cells can contain 2D images, 3D volumes, movies or

various interface widgets. The defining formula for a cell is written into the cell and

takes the form of a fragment of the Tcl language [Tcl03] that can range in size from

one line to a large program. An example spreadsheet, taken from [Lev94], is specified

as:

a1: load alps.rgb

b1 : slider -from 0 -to 90 \ -label angle -tickinterval

30

b2: rotate a1 [b1]

Chapter 2: Paradigms for exploratory modelling

 35

Figure 2.9 – An example of a spreadsheet for images, taken from [Lev94]

Complex interactive visualisations of graphical data can be built using the extended

range of types controlled by interactive widgets within a spreadsheet grid. The SI

system relaxes the value rule (F4) by allowing a cell to modify values in other cells.

SI is a special-purpose system that is best suited to the manipulation of graphical data.

In its particular domain, it has advantages over spreadsheets in the presentation and

investigation of graphical data. Where aspects A1 and A2 are concerned, SI is

effective within its restricted domain of application. Its use of a grid layout constrains

the organisation of visual images, however (cf. the free organisation of the visual

components and textual annotations in the vehicle cruise controller model discussed

in section 2.2.3).

Chapter 2: Paradigms for exploratory modelling

 36

There are other systems that are similar to SI described above. The Spreadsheet for

Information Visualisation (SIV) system, developed by Chi [CRB+98], allows the

definition of a wide variety of graphical primitives in a spreadsheet grid. SIV does not

adhere to the value rule (F4). The Finesse system [VK96] (now known as ACUMEN

[Acu03]) was developed to visualise real-time financial data. This system permits a

wider variety of types than conventional spreadsheets. It uses acyclic relationships for

formulae, and cyclic relationships to define the presentation of the cells. Both SIV

and Finesse offer only application-specific support for aspect A2.

2.3.3 Agentsheets

Spreadsheet style grids have influenced the design of programming environments that

are based on different programming paradigms. One such environment is

Agentsheets, an interactive programming environment aimed at a wide range of users,

that was developed by Alexander Repenning in 1993 [Rep93, Age03]. It exploits the

simplicity of the grid environment in combination with a visual programming

language. Agentsheets can be seen as an ‘end-user programming’ system as defined

by Nardi [Nar93].

Agentsheets is targeted at creating interactive and exploratory simulations through

locating agents in the cells of a grid and specifying their behaviour through a set of

rules. Agentsheets has been used to build many hundreds of different simulations

ranging from simple models constructed by children to models being used for serious

research purposes at universities [Rep00, MPG+02]. An Agentsheet incorporates two

layers of abstraction: a graphical depiction of an agent and a set of rules that govern

its behaviour as controlled by sensors and effectors [Rep93] (see Figure 2.10). The

visible environment shows a graphical depiction of agents who can move and interact

within the grid. Each agent has sensors to obtain information about the environment.

These are fed into rules that affect, and are affected by, the current state of the

environment.

Chapter 2: Paradigms for exploratory modelling

 37

Figure 2.10 – Structure of an Agentsheet (taken from [Rep93])

Relationships between agents are defined in terms of rules that are bound to each type

of agent. Each rule takes the form of an if-then clause and rules are executed in

discrete time steps. Each agent can have many rules, although only the satisfied rule

with the highest priority is executed in each time step. Agentsheets can be readily

programmed to maintain dependencies between states of neighbouring agents; for

example in Figure 2.10 the state of the light will depend on the state of the switch (cf.

[Run03, p27] for a more sophisticated example of a similar nature). In other models,

such as the epidemic model described in the next section, rules are time-dependent as

agents move around their environment and change their physical characteristics. We

shall use the epidemic example to illustrate in more detail how an Agentsheets model

is constructed (see [RI01] for more details).

An Agentsheets example

The epidemic model illustrates how a contagious disease spreads throughout a

population. It can be used to explore many questions; for example to investigate how

Chapter 2: Paradigms for exploratory modelling

 38

quickly treatment needs to be available to control or extinguish the disease. As shown

in Figure 2.11, a rectangular grid of squares represents the environment. There are

two types of agent in the model: doctors and people. People can either be healthy or

sick, as shown in the facial expressions in Figure 2.11.

Doctor

Sick person

 Healthy

 person

Figure 2.11 – A screenshot of the Agentsheets epidemic model

Each type of agent has rules that govern its behaviour and interactions with other

agents in the model. Agents are programmed in Agentsheets using a visual

programming language called VisualAgenTalk (VAT) [RA97]. Rules are composed

through drag-and-drop construction from a menu of possible commands. Each rule

has an identical structure and is expressed as an IF-THEN clause. By way of

illustration, the rules for the behaviour of a person in the epidemic model are shown

in Figure 2.12.

Chapter 2: Paradigms for exploratory modelling

 39

Figure 2.12 – A VisualAgenTalk rule for a person in the epidemic model.

Rules can be used to specify interactions with other agents and the environment. The

top rule in Figure 2.12 can be read as: 'If I see a sick person next to me (i.e 1 square

away in any direction) then, with a 5% chance, I become a sick person (i.e I get

affected by the disease)'. Each agent can have multiple rules. Rules are checked in

turn; if one has a conditional expression that evaluates to true, its THEN clause is

executed and the other rules are ignored. In the spirit of investigative exploration,

rules can be dropped onto agents to see their effects in the model [RIA98]. The

following rules define the epidemic model:

i) person agent – if I am next to a sick person, then with a 5% chance, I

become sick.

– I otherwise move around randomly in the world

ii) doctor agent – if I see a sick person to my left, make them healthy.

 – I otherwise move around randomly in the world.

Experimentation can be used to investigate the conditions required for epidemics to

spread by varying the number of people and doctors, their movement rules and the

doctor’s treatment rule.

Chapter 2: Paradigms for exploratory modelling

 40

The Agentsheets environment allows users to turn their Agentsheets simulations into

Java applets for public demonstration on the Internet. Agents’ behaviours are turned

directly into class files and the agents’ pictorial representations are turned into

graphic files [RIA98]. After this compilation, no exploratory investigation of the

simulation can be performed. We now discuss the support that Agentsheets offers for

the key aspects of exploratory modelling A1 and A2.

Agentsheets and the key aspects of exploratory modelling

To support A1 and A2 in a computer-based modelling tool we need convenient

metaphors and techniques to represent both dependency and agency. As the taxation

example illustrated, the negotiation of the semantic relation is intimately linked with

the identification of dependencies (cf. Figure 2.6, 2.7) and its elaboration is assisted

by multiple types of agency. Although Agentsheets and spreadsheets share common

characteristics, they also have significant differences. Agentsheets provides powerful

mechanisms to implement both spreadsheet-like dependency and agency but lacks the

explicit representations for dependencies (cf. [Her02]) that feature in spreadsheets.

We now discuss the implications of this design and implementation strategy for

exploratory modelling in more detail.

Both Agentsheets and spreadsheets use grids, but in a spreadsheet the grid is not

usually a metaphor for space. By this we mean that the position of values and

formulas in the spreadsheet are not representative of geometry in the referent. In

contrast, in an Agentsheet, the grid is typically used as a metaphor for space in the

referent being modelled (cf. [Rep93]). Agents’ rules are defined with reference to the

regular structure of the grid, for example using conditions that identify adjacent

agents in a particular direction. Agentsheets is therefore especially suited to

modelling situations where a rectangular geometry can be imposed on the referent.

The visual language leverages this regular grid structure in the design of its

primitives. As in spreadsheets, the use of a grid imposes some restriction on the range

of modelling applications that can be conveniently supported by Agentsheets.

Chapter 2: Paradigms for exploratory modelling

 41

It may appear superficially that Agentsheets subsume spreadsheets in so far as they

can be readily programmed to exhibit dependencies between cells (cf. [Run02, p27]).

There is nonetheless a fundamental distinction between the use of spreadsheet-like

definitions and the use of triggered actions to maintain dependencies between cells.

Though triggered action can give the appearance of indivisibility in change, there is

no counterpart in a rule-based system for the explicit identification of an indivisible

relation in a spreadsheet definition. In rule-based programming, it is the modeller’s

responsibility to maintain the coherence of the state, and this is achieved by

exploiting knowledge of the evaluation mechanisms. This is particularly relevant to

supporting key aspect A1 of exploratory modelling.

Where the use of spreadsheets to support aspect A1 is concerned, the emphasis is on

understanding the state of a referent and investigating ‘atomic actions’ from that state

through manual state-transitions. It is this emphasis that motivates us to describe the

development of a spreadsheet as concentrating on the representation of state-as-

experienced (cf. section 3.4.2). A spreadsheet allows the user to identify the important

observables in a situation and the relationships between them without any

presumption of how they might change in the future. State-transitions are completely

at the discretion of the human modeller, but the focus is on identifying - rather than

automating - reliable behaviours.

In contrast, in Agentsheets the emphasis is on representing agents’ behaviour through

the construction of rules, not on the identification of important observables and

relationships. Agentsheets concentrates on how a situation is changed through the

overt behaviours of autonomous agents. Due to this, Agentsheets is not as suitable as

a spreadsheet for investigating referents where there is limited knowledge at the

outset of construction. It is in this respect that spreadsheets surpass Agentsheets in

their capacity to support aspect A1.

Chapter 2: Paradigms for exploratory modelling

 42

Agentsheets has more power with respect to A2 than spreadsheets due to its use of

agents that can perform autonomous actions in the grid. Whereas a spreadsheet offers

no features specifically designed to model concurrent interaction, Agentsheets

overcomes this through the creation of agents and rules to specify their behaviours.

Agent rules, defined in the VAT language, are a way of introducing autonomous

action that does not require the intervention of a human modeller.

Unlike the spreadsheet, where provision for autonomous action is of secondary

importance, Agentsheets offers facilities for specifying action that are easy for the

modeller to invoke. It has been shown that it is easier for the non-specialist to

construct rules through the Agentsheets visual interface than to write them in textual

form [RIZ00]. Syntax errors are eliminated through the dragging and dropping of pre-

defined code primitives into each rule, which can be easily comprehended through the

combination of graphical agent depictions and English language.

The support for specifying actions in Agentsheets extends to model design. The

design philosophy of Agentsheets is that of participatory theater, an approach that

combines direct manipulation of agents and delegation of roles to agents [RS94]. This

builds on the interactive qualities of a spreadsheet system, where the user has

complete discretion over the redefinitions that are made and the times at which they

are made. Agentsheets draws on the metaphor of a theatre where the modeller is the

director in charge of proceedings. The modeller has control over the roles that are

given to agents, but once the simulation (or play) has started agents act according to

their own ‘script’ of rules. Users can intervene in the play at any time and make

alterations to agents’ rules on the fly. In this way, Agentsheets potentially supports

the incremental and evolutionary construction that is observed in spreadsheets. The

only problematic issue is that the absence of explicit dependency may make it

difficult to link one model to another through dependency.

In this section, we have discussed three research products, Forms/3, Spreadsheet for

Images, and Agentsheets, how they differ from spreadsheets and how this impacts on

Chapter 2: Paradigms for exploratory modelling

 43

their support for exploratory modelling. We have concluded that none of these

products succeeds entirely in supporting the key aspects of exploratory modelling. In

the following section, we introduce modelling with definitive scripts, using the

TkEden modelling tool developed by the Empirical Modelling research group. We

shall argue that this tool offers better support for the key aspects of exploratory

modelling.

2.4 Practical Empirical Modelling

The purpose of this section is to introduce practical Empirical Modelling and discuss

the support that it offers for the key aspects of exploratory modelling discussed in

section 2.2.2. An EM model consists of a definitive script together with a set of agent

actions. Figure 2.13 is an abstract depiction of the way in which the significant

concepts associated with EM are represented in practical model development.

Figure 2.13 - The significant concepts associated with Empirical Modelling

The key concepts and relationships depicted in Figure 2.13 will be introduced in this

section from a practical perspective (cf. section 3.4 for a complementary conceptual

perspective). We firstly introduce the idea of a definitive script and then describe the

TkEden modelling tool, showing how it can be used to support the key aspects of

exploratory modelling A1 and A2.

Chapter 2: Paradigms for exploratory modelling

 44

2.4.1 Definitive scripts

The construction of computer-based models in EM is primarily achieved through the

creation of definitive scripts. A definitive script is a set of definitions that represents

dependencies between observables (represented as variables). A definition is of the

form:

 q is f(a, b, …)

where f is a function and a,b are parameters passed to that function such as can be

found in conventional programming languages. Definitions take the form of one-way

dependencies that satisfy the value rule (cf. section 2.2.2). The value of q will always

reflect the value of the function f applied to the parameters a and b. This is the

literal meaning of the keyword ‘is’. Redefining either a, b, or the function f will

mean that q is automatically re-evaluated. A collection of definitions forms a

definitive script, which is used to represent the current state of a model. In Listing

2.1, the values of E, F and G will indivisibly change if A, B, C or D change. As in

spreadsheets, there is no circumscription of the future states of the model. The user is

free to make whatever redefinitions they desire.

A = 3;

E is A+B;

B = 4;

F is max(C,E);

C = 5;

G is D*pow(A,F);

D = 6;

Listing 2.1 – An example of a simple definitive script

Chapter 2: Paradigms for exploratory modelling

 45

A definitive script can be thought of as extracting the values and formulae from a

spreadsheet and discarding the information regarding their grid locations (such a

conversion from spreadsheet to script can also be found in Jocelyn Paine’s Model

Master [Pai01]). The relationships between variables in Listing 2.1 could be

replicated in the cells of a spreadsheet by mapping the variables used onto valid cell

references. Listing 2.1 preserves spreadsheet features F1 and F2 (section 2.2.1) in that

it uses operands to define formulae, and uses dependency maintenance to ensure that

those definitions are always correctly maintained. The primary difference is that the

definitive script does not use the grid structure of the spreadsheet to display its values.

A definitive script supports one-way dependencies (multi-way constraints are not

allowed) and therefore supports the value rule. However, as described in the next

section, models developed using TkEden combine definitive scripts to represent the

state of a referent with agent actions to specify transitions between states.

2.4.2 The TkEden modelling tool

The Empirical Modelling research group has developed many computer-based tools

to construct definitive scripts. The Eden tool (Evaluator of DEfinitive Notations) has

been, and is currently, the most commonly used. It was originally written in 1989 by

Y.W.Yung [Yun90]. It was updated by Y.P.Yung to run under a Tcl/Tk interface and

acquired the name TkEden [Yun93]. Current versions run on Unix, Windows and

Macintosh platforms. Several hundred student projects and academic case studies

have been produced using it. A significant number of these can be accessed through a

web repository of models that contains descriptions, screenshots and download

facilities [EMRep].

The TkEden modelling environment comprises three windows, as shown in Figure

2.14 [BWM+00]:

i) The input window (top): This allows the modeller to add new definitions

to the model, redefine existing definitions, introduce new scripts of

Chapter 2: Paradigms for exploratory modelling

 46

definitions or interrogate the values of variables and formulae in the

model.

ii) The interface window (bottom left). This shows the interface to the model

that has been constructed by the modeller. In contrast to a spreadsheet (cf.

section 2.2.1), not all the values are permanently displayed; the modeller

chooses which values should be on screen and the form in which they are

displayed.

iii) The commentary window (bottom right). This can be used to give

information about the current state of the model when the modeller

requests it.

Figure 2.14 – The three windows in the TkEden modelling environment.

TkEden is an interactive modelling environment in which (in typical use) a modeller

can create, modify and interrogate a definitive script. Firstly, new variables or

definitions can be introduced to the script (cf. adding new cells to a spreadsheet).

Secondly, definitions can be created or modified to update the network of

dependencies in the script (cf. modifying the formulae in a spreadsheet). Thirdly,

Chapter 2: Paradigms for exploratory modelling

 47

there are facilities for the modeller to query the values and defining formulae of

variables in the script (cf. viewing the spreadsheet).

The main modelling notation used in TkEden is EDEN. The EDEN notation allows

the modeller to create dependencies between observables using the keyword ‘is’, as

shown in Listing 2.1. TkEden uses dynamic typing to determine the type for a

variable when it is defined. The TkEden tool contains a number of built-in notations

that allow definitive scripts to be created to fulfil different specific functions. EDEN

is a general-purpose notation. The special-purpose notations included in TkEden are

DoNaLD (for 2-D line drawing), SCOUT (for screen layout), Sasami (for 3-D

modelling) and Eddi (for database handling).

DoNaLD is a strongly typed notation for defining two-dimensional line drawings

[BAB+96]. Graphical objects are created that can be dependent on any variable in the

script. For instance, the length of a line can depend on a scalar value recorded in

EDEN. A number of geometrical constructions and transformation functions are

included as standard. When any element is changed, the consequent dependencies are

indivisibly updated. For example, if the point p is moved in the example below then

the line and circle will both be automatically updated.

%donald

viewport example

point p,q

line l

circle c

l = [p,q]

p = {50,50}

q = {100,100}

c = circle(q, dist(p,q))

Figure 2.15 – An example DoNaLD fragment to define a circle

Chapter 2: Paradigms for exploratory modelling

 48

SCOUT is a definitive notation that describes screen layout [Yun93]. Its functionality

is similar to the Penguims system in which interface objects can be related through

the use of dependency [Hud94]. It can be used to define windows on the screen into

which text, images and DoNaLD drawings can be placed. Each window has a number

of attributes that can be dependent on EDEN variables in the script. The picture in the

SCOUT window (Figure 2.16) is the DoNaLD drawing defined in Figure 2.15.

%scout

window donpic = {

 type: DONALD

 box: [{10, 10}, {200, 200}]

 pict: "example"

 border: 2

 xmax : 500

 ymax : 500

};

screen = <donpic>;

Figure 2.16 – An example of a SCOUT fragment to display the drawing in Figure

2.15 in a window

The Sasami notation [Car00] defines three-dimensional shapes, using the OpenGL

library to render the graphics [OGL03]. It contains primitives to describe polygons

together with their colour, material and lighting attributes. These can be linked

through dependency to any part of an EDEN model. Files in OpenGL format can be

loaded as Sasami data types. The listing below defines a 3D cube with distinct

coloured faces.

Chapter 2: Paradigms for exploratory modelling

 49

%sasami

`size = 0.2;

viewport 280 280

open_display

vertex blf -size -size size

vertex brf size -size size

. . .

polygon frontp

polygon backp

. . .

poly_geom_vertex frontp blf brf trf tlf

poly_geom_vertex backp blb tlb trb brb

. . .

poly_colour frontp 0 1 0 1

poly_colour backp 1 0 0 1

. . .

object cube

object_poly cube frontp backp topp bottomp leftp rightp

Figure 2.17 – An example of a Sasami fragment to display a coloured cube

The TkEden interpreter also includes a special purpose parser generator that enables

user-defined definitive notations to be created interactively. This allows domain-

specific notations for interaction to be created – a key consideration for end-user

programming [Nar93]. New notations are implemented by using a novel observation-

oriented parsing approach discussed in detail in section 5.4.1. This will be illustrated

Chapter 2: Paradigms for exploratory modelling

 50

with reference to the EDDI (Eden Definitive Database Interpreter) notation for

relational algebra.

2.4.3 State-transitions: Implementing agency in TkEden

The definitive notations described in the previous section supply rich metaphors for

representing state-as-experienced in a computer model. TkEden has more expressive

power than a conventional spreadsheet due to the larger number of types that can be

used. The features of EM models as described thus far do not include facilities for

moving between states automatically, though they support state-change through

manual redefinition by the modeller. However, TkEden also allows the specification

of automatic state transitions implemented using triggered actions. A triggered action

is a procedure that is run every time any one of a set of variables is changed (cf.

activation-oriented programming in Boxer [diS97a]). Triggered actions are usually

incorporated into a model in order to automate reliable patterns of behaviour observed

in the referent.

In exploratory modelling, a human modeller makes changes to one or more values or

definitions to test whether they are sensible interactions. For example, redefining the

capacity of a jug may be sensible, but defining the capacity to depend on the content

clearly is not. A group of one or more redefinitions in a triggered action can represent

a stimulus-response action based upon a well-understood change in an observable.

For example, in the restaurant model (to be discussed in detail in chapter 3), I – as the

modeller – experimented as if in the role of a restaurant manager allocating tables in

response to queries. Initially I performed these actions manually, but when I gained

enough understanding of the situation, I could introduce an automatic agent to carry

out the routine. The crucial difference between EM and conventional programming is

that such reliable behaviours are the end result of experience gained through

interaction with the model, and not the starting point for writing a program.

We now give a small example to illustrate the EM model building approach.

Chapter 2: Paradigms for exploratory modelling

 51

2.4.4 Building an example model

The easiest way to appreciate how a model is constructed is to build one yourself.

With this in view, I will briefly outline the construction of an example model (see

[Bey01] for a more extended account of the experience of constructing a simple clock

model). Our example is a model of the game of Jugs, based on a program first

developed for the BBC microcomputer by Ruth Townsend of the Chiltern Advisory

Unit. The full listing for the model can be found in Appendix A. We recommend the

reader consult Appendix A in conjunction with this section.

The basic game of Jugs is formulated as follows: There are two jugs of specified

capacities that have no intermediate markings on them. The aim of the game is to

collect a specific quantity of water in one of the jugs. There are three permissible

operations: emptying a jug completely; filling a jug completely; or pouring water

from one jug to the other until the destination jug becomes full or the source jug

becomes empty.

The development of the model is interactive and evolutionary, beginning from

identifying important aspects of the Jugs game and moving towards the automation of

reliable behaviours. Construction starts by recognising the essential observables of

the jugs game, such as the capacities and contents of the jugs. Development of the

graphical interface is interspersed with the development of the underlying model.

Throughout development the input window can be used to perform experiments or

explore possibilities. Reliable behaviours can be automated through the use of actions

to represent filling, emptying and pouring. At this point, the model merely represents

two jugs and operations that can be performed on them. The model is open to any

purpose to which we wish to put it. In particular, we can fix the functionality of the

jugs model as a game in which the player manipulates the jugs to obtain a particular

target. This is realised by introducing a target variable and a message that is

dependent on the jugs contents, which tells us whether we have achieved the target.

Chapter 2: Paradigms for exploratory modelling

 52

The Jugs model can be built interactively in one modelling session by entering the

definitions and actions into the input window and executing them. Figure 2.18 shows

the Jugs model from Appendix A.

 This listing contains some small

 fragments of the Jugs model. The full

 listing can be seen in Appendix A.

 %eden

 capA = 5;

 capB = 7;

 scalefactor = 100;

 Afull is (capA == contentA);

 Aempty is (contentA == 0);

 %donald

 Asurface = [Abotleft + {0,contentA! * scalefactor},

 Abotright + {0,contentA! * scalefactor}]

 Aleft = [Abotleft,

 Abotleft + {0, capA!*scalefactor}]

Figure 2.18 – The Jugs model from Appendix A

A model is always open to extension or refinement (cf. how a spreadsheet is always

extensible). For instance, we can add a feature to identify whether a particular

instance of the jugs problem is solvable by introducing the following definition:

targetachievable is gcd(capA,capB,target) == gcd(capA,capB);

Personal appreciation of this criterion emerged through interaction with the model. A

further extension of the model involves adding a feature to give advice on which

operation is best performed next to achieve the specified target. This requires an

intimate understanding of the Jugs game and the underlying mathematical concepts

(see [Roe99, Appendix B]).

The purpose of highlighting opportunities for future development is to illustrate how

EM supports exploratory modelling without preconception of intended use. The

Chapter 2: Paradigms for exploratory modelling

 53

model is akin to a laboratory for investigating Jugs-based activities, because the

emphasis is on open and flexible interactive construction. We now discuss an

enhancement of the TkEden modelling tool that enables a group of modellers to

collaboratively construct and/or interact with a model.

2.4.5 Distributed modelling: The DTkEden tool

The key aspects of exploratory modelling identified in section 2.2.2 can also be

supported in situations where many distributed modellers interact to construct a joint

model, or where many users play roles within a pre-constructed model. The DTkEden

(Distributed TkEden) tool, built by Patrick Sun [Sun99], enables many modellers to

construct a model collaboratively across a local area network. DTkEden exhibits a

client-server architecture. To facilitate collaboration, communication between

participants is mediated by sending definitions between clients, or to the central

server. Different communication modes can simulate different types of inter-personal

communication [BS99]. For instance, to simulate group conversations, communicated

definitions are sent to every client.

An example of a distributed model is the Clayton Tunnel model, developed by Patrick

Sun. It allows the enactment of railway operation in the vicinity of the Clayton

Tunnel near Brighton in 1861 and can be used to illustrate how the use of a telegraph

device contributed to a historic railway accident [Rol82]. For a fuller account of this

model and the accident scenario see [Sun99, chapter 6]. The participants in the

situation were the two signalmen at the ends of the tunnel (Killick and Brown), and

three train drivers. The perspective of each participant is modelled at one of the client

workstations. For example, the signalman Killick can operate the telegraph device,

wave flags and reset an alarm that rings if the signal fails. Killick can only see trains

when they are within a certain distance of his signalbox. The server shows the

unfolding situation from the perspective of an external observer with exceptional

state-changing privileges. The interfaces for the server and clients can be seen in

Figure 2.19.

Chapter 2: Paradigms for exploratory modelling

 54

Figure 2.19 – Screenshots of the Clayton Tunnel simulation from the perspectives of

each of the participants.

The Clayton Tunnel model has been used in a role-playing exercise in which users

take the part of the participants and act out their roles to investigate how and why the

crash occurred, and to explore how it could have been averted. In general, distributed

simulations give a good idea of how situations that involve many interacting agents

can be faithfully represented and explored [BS99]. Other applications of DTkEden in

understanding situations involving concurrent interactions have been considered in

different fields, such as business process reengineering [Che01], decision support

systems [Ras01] and financial applications [Maa02]).

Chapter 2: Paradigms for exploratory modelling

 55

2.4.6 Empirical Modelling for exploratory modelling

In this section we describe how Empirical Modelling offers support for the key

aspects of exploratory modelling introduced in section 2.2.2.

To the extent that EM generalises the spreadsheet concept, it inherits many of the

spreadsheet’s qualities in respect of the key aspect of exploratory modelling A1.

Because EM is centrally concerned with modelling with definitive scripts, the

construction of a model using TkEden has the same evolutionary and incremental

character as the construction of spreadsheets. At any time, new definitions can be

added to a model or existing definitions redefined in the light of new understanding of

the situation.

The relaxing of the grid restriction in the TkEden modelling tool has implications that

extend beyond simple practical matters. These relate directly to the observation in

section 2.2.3 that the limited data types and the grid in the spreadsheet restrict the

support for A1. Only certain types of data can be conveniently displayed in a grid.

Moreover, in a spreadsheet, all the values are displayed on the interface. In an EM

model, the interface contains only the features that the modeller requires to apprehend

and interact with the current state of the model. This hiding of information enhances

the model’s usefulness as a metaphorical representation of its referent. In a

spreadsheet, the grid constrains the way in which information can be visualised and

dependency relationships can be conveyed. In a script, there is no grid and the

interface can be organised to present the model in a way that is most suitable for the

referent. The grid, although useful in certain applications, can in general lead to a

comprehension problem because it detracts from the experiential, metaphorical role

of the spreadsheet. One further practical advantage of the free format script is that,

although spreadsheets do allow the modeller to add new variables at any time, the

locations of new cells are potentially constrained by the information already in the

grid. For example, to add a block of data cells to a spreadsheet in a sensible place

may require some large scale editing of the spreadsheet. This in turn can lead to

Chapter 2: Paradigms for exploratory modelling

 56

comprehension problems and errors in the spreadsheet. Spreadsheet errors that arise

in this way are well documented in the literature [NM91, PH96, GP96, PH97] and

numerous methods have been proposed for overcoming them. These include:

visualisation of dataflow [IMC+98]; and the concept of ‘tested cells’ [BSR99].

However, Panko doubts whether any of these methods will eliminate errors in sizable

spreadsheets [Pan00]. In model building with TkEden, such errors in dependency

structures that stem from the use of a grid are eliminated. The use of a grid also

means that the organisation of an interface within a spreadsheet is relatively tightly

constrained.

Computer-based support for key aspect A2 of exploratory modelling hinges on being

able to complement dependency with powerful and appropriate means to represent

procedural action. As a general purpose programming language, TkEden offers the

same unrestricted functionality as procedural extensions to spreadsheets, but unlike

these, it privileges the procedural actions that entail redefinition in a definitive script.

Through the use of triggered procedures, TkEden supports an agent metaphor for

action similar in character to that afforded by Agentsheets. Although TkEden does

not have a visual agent language, agent communication and interaction is more

general than in Agentsheets since agents are not defined with reference to grid

locations. Although TkEden does not offer the end-user the facility to manage

dependency and agency on the same scale as Excel and Agentsheets respectively, it

makes more general provision for dependency and agency and gives greater support

to their integrated use.

The relative merits of TkEden in supporting key aspect A2 of exploratory modelling

are exemplified by revisiting the problem of modelling the concept of a vehicle cruise

controller discussed in section 2.2.3. A TkEden model of a vehicle cruise controller

can be found in [EMRep, cruisecontrolPavelin2002] and more details of its

development are described in [BBY92].

Chapter 2: Paradigms for exploratory modelling

 57

2.5 Empirical Modelling and spreadsheets

In the previous sections of this chapter, we have identified principles for exploratory

modelling and considered the extent to which the spreadsheet supports them. We

looked at research efforts that have been based on the spreadsheet concept and

discussed their support for these principles. We then discussed the extent to which

practical EM overcomes some of the limitations of other approaches.

In this final section, we explore the relationship between EM and practical

spreadsheets by considering a case study that implements a spreadsheet using

TkEden. The primary motivation for this case study is to ‘close the loop’ in Figure

2.1 by investigating the links between EM and spreadsheets. A secondary motivation

for this case study is to give practical evidence in support of claims made in past EM

research concerning the connection between definitive scripts and spreadsheets. The

following quotes, taken from past EM papers, illustrate these claims:

‘A spreadsheet – stripped of its tabular interface – provides the simplest
example of a definitive notation in which the underlying algebra is traditional
arithmetic’ [Bey87a]

‘Definitive notations are a more general way of modelling than spreadsheets
because they are not constrained by the grid interface and data type’ [Geh96]

‘The key significant idea of spreadsheets – state change through dependency
and agency – has not really been taken up seriously in conventional software’
[RRB00]

Spreadsheets are by far the most commonly referenced standard computing topic in

EM research publications. I have used TkEden to construct a model that both

replicates the essential features of a conventional spreadsheet and also allows

significant extensions [EMRep, spreadsheetRoe2002]. This model:

i) exhibits all the essential features of a spreadsheet identified in section

2.2.1.

Chapter 2: Paradigms for exploratory modelling

 58

ii) illustrates the dependency over a wider range of types than a conventional

spreadsheet (cf. Forms/3 in section 2.3.1) that can be leveraged in support

of aspect A1 of exploratory modelling.

iii) enables manual and automatic execution of many varieties of procedural

action consistent with the relaxed value rule (F4) that can be leveraged in

support of aspect A2 of exploratory modelling.

The spreadsheet model comprises an underlying definitive script that defines the

contents of the spreadsheet and its visual layout. An example spreadsheet can be

defined by specifying values and definitions of cells, as shown in Figure 2.20. It is

also possible to specify the attributes of cells as values or definitions. For instance,

the definition:

D2_bgcolor is (D2 > 8) ? “green” : “red”;

determines the background colour of the cell D2 in such a way that it is green if its

value is above a certain threshold.

A1 = “Student”; B1 = “Test1”;

C1 = “Test2”; D1 = “Avg Mark”;

A2 = “Ashley”; A3 = “Bob”;

A4 = “Chris”;

B2 = 7;

B3 = 6;

B4 = 8;

C2 = 6;

C3 = 4;

C4 = 9;

D2 is average(B2,C2);

D3 is average(B3,C3);

D4 is average(B4,C4);

Figure 2.20 – A small example TkEden spreadsheet

Chapter 2: Paradigms for exploratory modelling

 59

The TkEden spreadsheet readily illustrates the four characteristic features of a

spreadsheet identified in section 2.2.1. Dependency maintenance is handled via the

underlying Eden interpreter that automatically maintains definitions. Formulae can

utilise any of the operators or functions available in the EDEN interpreter. These

include the usual arithmetic operators, predefined functions and user-defined

functions. The spreadsheet grid is defined as a set of SCOUT windows whose widths

and heights depend on their contents, and whose positions depend on the other cells

in the spreadsheet. A pure definitive script necessarily satisfies the relaxed version of

the value rule. These four features show that a definitive script can be used to

replicate a conventional spreadsheet.

In accordance with the demands of aspect A1 of exploratory modelling, the TkEden

spreadsheet can generalise the notion of dependency by supporting a wider range of

types and dependencies between types. To illustrate this, Figure 2.21 shows how the

EM spreadsheet can be used to maintain dependencies based on transformations of

geometrical shapes. In Figure 2.21, the rectangular block of cells (A4..B6) define the

coordinates of three points in 2-dimensional space. The triangle defined by these

three points is displayed on coordinate axes in cell A9. Cells G2 and H2 contain

values relating to geometrical transformations, namely an angle of rotation and a

degree of scaling, that are performed on the triangle in cell A9. Rows 8 and 10

contain the results of applying these transformations, and this incidentally shows that

their order does not affect the final result. The shaded cells show the data values with

which a user is expected to experiment.

In accordance with aspect A2 of exploratory modelling, we illustrate how the

dependency in a spreadsheet script can be used to make the preconditions for agent

actions visible to the user. For instance, in the restaurant manager example in Figure

2.22 cell B8 represents a menu option that is available provided that the cells C4, C5

and C6 have valid data. A definition of the general form:

B8_bgcolor is (C4!=””)&&(C5!=””)&&(C6!=””)?“green” :“red”;

Chapter 2: Paradigms for exploratory modelling

 60

guarantees that the colour of the menu option always faithfully reflects its

availability.

Figure 2.21 – The TkEden spreadsheet illustrating geometrical shapes in a

spreadsheet

Figure 2.22 is a spreadsheet that has been derived from an EM restaurant manager

model that was originally developed without the use of a grid. The EM restaurant

manager model is discussed in detail in chapter 3, and can also be found in

[EMRep,restaurantRoe2000] and [RRR00, Ras01]. The interface of the restaurant

model has been adapted to be displayed in the spreadsheet. Clicking on cells in the

spreadsheet performs various actions in the restaurant model. For example, clicking

on cell D2 will start a clock running that continues until a customer event is

generated. Each event is one of three types: telephone enquiries, off-the-street

enquiries and cancellations. By clicking on cell B8, C8 or B14 an appropriate action

is undertaken, such as allocating an appropriate table. These actions resemble the

roles and choices a restaurant manager is faced with when allocating tables in

restaurants.

Chapter 2: Paradigms for exploratory modelling

 61

Figure 2.22 – The restaurant model in a spreadsheet

The original restaurant model (see Figure 3.4) does not use a spreadsheet grid

interface and is not constrained by its geometry. It was advantageous to develop the

model without the grid interface because this allowed freedom to organise interface

objects at will and to refer to observables hidden from view. For instance, the

graphical depictions of the restaurant utilise many observables that are dependent on

the occupancy of the restaurant. It is instructive that once a useful functionality for

the model has been identified, the use of a spreadsheet grid to display the model can

assist the user in both comprehending and manipulating the model. This is because

the key observables of experimental interest in the underlying data model can be

added to the restaurant visualisation in the spreadsheet. Users can then use the

familiar cell names to reference and change these observables directly.

The above examples illustrate some aspects of the practical relationship between

Empirical Modelling and spreadsheets. There are many more examples in [EMRep,

spreadsheetRoe2002]; these include features such as dependencies in images,

Chapter 2: Paradigms for exploratory modelling

 62

presentational dependencies and the visualisation of other pre-existing EM models in

spreadsheet grids.

2.6 Summary of the chapter

In this chapter, we have shown that an EM approach to model construction builds on

the support that spreadsheets offer for negotiation and elaboration of the semantic

relation �. In the following chapters, we shall consider the role of negotiation and

elaboration of the semantic relation � from a learning perspective, with specific

reference to the relationship between domain learning and computer-based model

construction.

63

Chapter 3 – An experiential perspective on learning

3.0 Overview of the chapter

In this chapter, we set out the main challenges that are faced in using computers for

learning and discuss the broad framework on learning that informs the research in this

thesis. In the field of computers for learning, there are two perspectives that need to

be considered: that of the educationalist and that of the computer specialist. Each

typically has different concerns, and it is the successful marriage of these concerns

that will yield positive results. In this chapter, we shall set out a major claim of this

thesis: that in respect of learning through building computer models, EM is in general

more suitable than other approaches because model construction and development of

domain understanding are intimately linked. The latter part of the chapter discusses

the theme of EM and learning in detail to conclude that the principles of EM model

construction support a wide variety of learning activities. We introduce an

Experiential Framework for Learning (EFL) that describes how learning activities are

broadly related and are rooted in our personal and private experience. We shall argue

that the EFL supports a general view of learning and that the principles of EM are

well aligned to supporting the range of activities described in the EFL.

3.1 Challenges for computers for learning

In this thesis, we consider the challenges that are faced in successfully using

computers for learning. There are a range of important issues that span computer

science and education. The perspectives of the specialists in these two fields differ to

such an extent that it is hard to identify a common agenda. Achieving a closer

collaboration between all the participants in using computers for learning, namely

educationalists, computer specialists and learners, is necessary for successful

Chapter 3: An experiential perspective on learning

 64

computer-based learning [diS97b]. In examining the issues from the perspectives of

the educationalist and the computer scientist, we consider two rather different ways in

which computers are used to support learning through:

• the use of educational software. In traditional educational software, a learner

interacts with the software but does not modify it. This way of using

computers for learning embraces different learning paradigms, including both

instructionist and constructionist approaches (these terms are introduced in

section 4.1).

• building of computer-based models. There are a number of areas in which

computers are currently being used for building models to aid learning,

including: financial models built in spreadsheets; scale models built in

engineering; and prototypes built for software engineering. The primary

objective in building these types of models is to acquire domain related

knowledge. These models may be constructed using a variety of different

programming languages and development environments. Tools for computer-

based model building – often developed with children in mind – include

programming languages and development environments.

Where the use of educational software is concerned, there are many issues and

challenges relating to its development. The perspectives of the educationalist and the

computer specialist are traditionally different. When constructing software, the

computer scientist is typically concerned with issues such as the usability of the

software, requirements specification, and the choice of programming paradigm. The

educationalist’s focus is on the quality of the learning activities that are supported,

and the actual computer implementation is a secondary concern. In the field of

educational software – where educationalists and computer specialists have a

common interest – the primary concern is typically that the software is ‘as easy as

possible’ to adapt for use in different learning contexts. The demand for adaptable

educational software stems from the fact that learners often have different needs,

abilities and approaches to learning. Learners’ different requirements arise

dynamically in the learning context and teachers would ideally like to respond to

Chapter 3: An experiential perspective on learning

 65

individual situations as they occur. The particular features of the culture within which

learning takes place may also require software to be adaptable [RB02]. The concept

of being ‘as easy as possible’ to adapt is not well defined – we shall take this to mean

that a non-computer specialist (such as a teacher) can adapt the software themselves,

or that a computer specialist can adapt the software quickly with very little effort. We

acknowledge that this requirement is particularly difficult to satisfy given the

demands on teachers’ time. There may also be a conflict between the expectations of

the educationalist and the computer specialist where the qualities of the software are

concerned. The focus in software development is on providing polished software

products to users [Bey01]. In contrast, a teacher may appreciate the benefits of ‘do-it-

yourself’ software that may lack the sophistication of a commercial product but

allows a higher degree of ownership, engagement and adaptability. Such qualities

were in evidence in the ‘cottage’ educational software industry of the 1980’s [Ker92].

Given the current focus on object-oriented principles in software development, the

favoured way of trying to develop such adaptable software is through object re-use.

The merits of EM as an approach to the development of educational software are

discussed and illustrated in detail in chapters 5 and 6.

The issues and challenges in using computers for learning through model building are

considered in chapters 3 and 4. In such use of computers, we are not concerned with

the incidental learning of programming knowledge that is a necessary part of the

process, but rather the way in which characteristics of the model construction

approach assist or hinder the learning of domain knowledge. In chapter 2 we

concluded that the synergy between learning domain knowledge and constructing a

computer model depends on the paradigm that is used in the model construction. For

instance, in building a spreadsheet – and in EM – the modeller’s attention is focused

on the semantic relation � that is intimately linked to understanding domain

knowledge.

Chapter 3: An experiential perspective on learning

 66

The above discussion motivates the two central claims of this thesis:

1) EM for computer-based model building. In respect of learning through

the construction of computer-based models, EM is in general more

suitable than other approaches because model construction is more

intimately linked to the development of domain understanding. This claim

is developed in chapters 3 and 4.

2) EM for the development and use of educational software. In respect of

learning through the use of computer-based models, if EM is used for the

development of educational software (following the principles of software

development outlined in previous theses [Nes97, Ras01, Won03]) then

this software will have qualities that are well-suited to the educational

needs of learners and teachers. This claim is discussed in detail in chapters

5 and 6.

In justifying the first claim, we first address the question of how learning and EM are

connected (in sections 3.2 – 3.6), and then review learning through model building in

relation to established educational theories (in chapter 4).

In section 3.2, we discuss what we mean by ‘learning’ and delineate the scope of the

learning activities that we aspire to support in computer-based exploratory modelling.

We informally describe some types of learning that we undertake in the world,

including learning skills, learning about situations and learning about artefacts. We

use these examples to motivate a broad framework on learning encompassing a

variety of learning activities. We have termed this framework an Experiential

Framework on Learning (EFL) because it reflects the way in which learning is rooted

in our personal and private experience. Within the EFL, we can analyse how

computer-based modelling tools can support a wide-ranging view of learning. From

section 3.3 onwards, we introduce the principles underlying EM and describe the

extent to which it supports the learning activities described in the EFL.

Chapter 3: An experiential perspective on learning

 67

3.2 A perspective on learning

In this section, we discuss learning in detail to explore various types and applications

of learning that motivate the learning framework we use in the remainder of the

thesis. It is evident that learning on computers cannot replicate the enormous diversity

of learning that can take place ‘in the world’ at the present time – but a major

aspiration of using computers for learning is to apply computers in as wide a range as

possible of learning situations. In education, critics of children’s use of computers for

learning stress that the virtual nature of computer reality leads children to less rich

and engaging learning experiences (see e.g. [Tal95]). This has been one justification

for arguing that young children should not use computers in learning [Hea99,

AFC00], and that educational systems based on personal engagement with the world

and other people are more beneficial (see e.g. [Opp97], [Opp03], Waldorf education

[Aep86], Alliance For Childhood [AFC00]). It cannot be denied, however, that the

interactive nature of the computer offers advantages over building real-world

artefacts, in that experimentation can often be more easily performed.

It would be impossible to give an authoritative view on exactly what learning is:

major debates in psychology centre on how we learn, what knowledge is, and what

are the best ways to learn [HO96]. It is the difficulty of giving an objective definition

of learning and how it occurs that motivates us to discuss the perspective on learning

that informs this thesis. To this end, we shall first describe some examples of learning

in abstract terms, then complement this with longer discussions of the learning of

skills, learning about artefacts and learning about situations. Our framework for

learning, the EFL, is intended to provide a general setting within which diverse

learning activities can be discussed.

The definition of the verb to ‘learn’ from the Oxford English Dictionary is:

‘gain knowledge of or skill in by study, experience, or being taught’ [OED97].

Chapter 3: An experiential perspective on learning

 68

This definition is so broad as to encompass self-directed learning and teacher-directed

learning. These two activities are representative of constructionism and instructionism

respectively (see section 4.1). In this thesis, the term ‘learning’ is used in a broad

sense to embrace any kind of activity that enables us to adapt our future behaviour.

One particular difficulty with this broad definition is in identifying separate learning

activities that may be taking place concurrently within one and the same situation. For

instance, in constructing a computer model, I may be learning new insights about the

model’s domain, peculiarities of the modelling tool and better ways of organising my

model. A wide variety of different types of learning may also be concurrently

represented:

i) learning as equipping us to respond to questions of fact – e.g.

what is the capital of England?

ii) learning to understand a concept – e.g. what is taxation and how

is it applied?

iii) learning about social situations – e.g. learning the roles and

responsibilities of signalmen and drivers in the safe passage of

trains through a tunnel.

iv) learning a physical skill – e.g. playing the piano, or learning to

row.

v) learning about a real-world artefact – e.g. learning about the

controls of a new watch.

The distinction between these different types of learning is manifest in the different

ways in which we would assess whether learning has taken place. From one

perspective, the knowledge that two times three is six is a matter of fact. One kind of

activity that informs such knowledge is rote learning of multiplication tables. From

another perspective, knowing that two times three is six entails knowing the meaning

of ‘two’, ‘three’ and ‘times’ and being familiar with many concrete examples of how

‘times’ occurs in practical situations. Such illustrations show the subtlety of the

distinctions between different notions of learning and the difficulty of expressing

Chapter 3: An experiential perspective on learning

 69

them formally. To address this subtlety, we shall introduce a framework within which

to organise the activities associated with different types of learning.

To motivate this framework, we now describe some informal examples of learning.

We shall do this with reference to contexts in which the learning process is complex,

such as learning a new skill (e.g. a new sport or a musical instrument), learning about

an artefact (e.g. a digital watch) or learning about a situation (e.g. being a restaurant

manager). In the discussion that follows, it is useful to refer to a learning situation

you have been in and reflect on the learning activities that you undertook. I will use

two examples of learning skills: firstly that of learning how to row in a boat (an

activity that I first attempted to learn two years ago); and secondly that of learning to

play the piano (as we discussed in a previous paper [RB02]).

3.2.1 Learning skills, learning about artefacts and learning about situations

Watching an expert performing a skill, honed to near-perfection through innumerable

learning experiences belies the difficulty of undertaking it for yourself. Any task can

seem easy when performed by somebody who has been through an extensive learning

process to reach their advanced standard. The first time you sit in a boat and try and

row, or sit at a piano to learn how to play is a daunting experience. You have none of

the necessary skills; you have acquired none of the language of the domain. Where

conscious learning of a skill is involved, your primary source of knowledge is an

initial idea of how you think the skill is executed derived from previous experience of

observing others. Howell claims that learning a skill passes through a succession of

four stages [How82]:

1) Unconscious incompetence – we don’t know that we don’t know how

to do something.

2) Conscious incompetence – we know we want to do something but we

don’t know how to do it.

Chapter 3: An experiential perspective on learning

 70

3) Conscious competence – we can do something but only by

concentrating fully on it and by focusing on individual parts of the

task.

4) Unconscious competence – we know how to do something and can do

it automatically whilst concentrating on other things.

A fifth stage has been proposed by Pike [Pik89], namely conscious unconscious

competence, which is taken to mean an ability to do a task without thinking about it,

yet retain a level of awareness of how it is done that enables you to teach the skill.

Performing a skill initially requires a commitment of time and energy to learn the

‘basic’ skills of the discipline, such as the rudiments of the rowing stroke or

performing scales on a piano (cf. moving through conscious incompetence). Through

our interactions we move from having to consciously think about each and every

element of the stroke to a level where it is a natural, ingrained movement that we can

perform without conscious thought, (cf. progressing from stage 1 to stage 4 of

Howell’s stages). This leaves our minds free to engage in more advanced thoughts,

such as ‘are we rowing at an appropriate speed and stroke rate to win this race’, or

‘have we started to play this piece of music at a tempo that is feasible for the most

difficult passages’.

In learning, we gradually build up experience of important features of a situation and

how they are dependent on each other. For example, the balance of a rowing boat

depends on the positions of the oars in such a way that if the heights are the same then

the boat is balanced and ‘runs’ along the water more smoothly. Understanding the

‘feel’ of the boat running requires experience and experimentation in order for it to

become repeatable (cf. Howell’s stage 3). Each individual rower (through personal

experience) will learn to ‘feel’ a good stroke and be aware of relationships between

the position of the hands on the oar and the feel of the blade in the water. This

requires observation of factors such as ‘is the blade in the water?’, ‘is it at the right

angle?’ and ‘am I putting an appropriate amount of force on the oar for its position in

the water?’. Over time, experienced oarsmen gain a comprehensive understanding of

Chapter 3: An experiential perspective on learning

 71

how their individual movements affect the run of the boat and the performance of the

crew as a whole.

During the entire learning process the learner is engaged in non-verbal

communication through the use of artefacts and physical hands-on demonstrations.

The coach of a rowing crew will demonstrate the particular stroke pattern they are

looking for and (on a land-based simulator) will physically control the oarsmen,

isolating each part of the stroke to perfect it. The learning of skills often involves a

coach who will demonstrate how to perform an aspect of the skill, communicating

through physical manipulation, pictorial representations and the use of domain-

oriented language.

The novice rower meets language that they have not encountered before that refers to

either directly observable features of the skill or skill domain, or more complex

culturally situated features of the environment that are meaningful only with

reference to that skill. For example, in rowing, there are simple concepts such as ‘bow

side’ and ‘stroke side’ that refer to sides of the boat that are accessible to a beginner.

These are directly observable and have a definite meaning. There are then terms such

as ‘drive’, ‘recovery’, ‘quarter slide’ and ‘backstops’ that are particular positions

within the rowing stroke, or particular phases of the stroke. There may be some

disagreement over the precise meaning of these terms, but their meaning is

unambiguous enough to enable rowers with a modest amount of experience to

communicate. However, other terms are imbued with meaning that is more difficult to

directly apprehend. For example, the terminology of different oar pressures is a

purely individual matter. A coach may ask for a particular training interval to be

completed at ‘half pressure’ but it is almost certain that individual rowers (and the

coach) will interpret this term in different ways. It is also likely that an individual’s

interpretation of such a term will change with their experience. As a rower gains

confidence and can apply more pressure to the oar, the concept of half pressure will

change.

Chapter 3: An experiential perspective on learning

 72

The specialist language of a domain can also have exceptionally broad and rich

cultural connotations. For example, in musical performance – as in rowing – there are

different types of language that are appropriate at different competency levels and are

directly correlated with the experience of the performer. Over and above this, the

intelligent interpretation of music can draw upon diverse kinds of knowledge (e.g. of

history and of musical forms) and experience (e.g. of emotions and of symbolic

pattern recognition) as explained in [RB02]:

‘For each level of attainment and genre of piano-playing, there is a pianistic
competence and an appropriate level of sophistication in musical language (cf.
“Play Middle C”, “Play the harmonic scale of C sharp minor”, “Play the
octave passages in the coda of the Rondo in Beethoven’s Waldstein sonata as
glissandi”). It is significant that at its most sophisticated the language
associated with a culture draws on such extensive experience and so many
different sources of knowledge (e.g. in the above instance: music theory –
octave; classical musical forms – coda, Rondo; musical history – Beethoven,
Waldstein; and instrumental techniques – glissando) that it is only intelligible
to the musical specialist.’

In summary, it is through extensive experience of gaining the necessary skills,

identifying patterns of interaction and stimulus-response mechanisms and the

acquisition and understanding of the relevant language of the domain that a learner

progresses from a complete beginner to an expert in a domain.

Learning a skill is one aspect of learning about situations or artefacts. In learning to

face a new situation or to use an unfamiliar artefact, learners are required to correlate

the acquisition of new skills with the identification of important features in their

context. Learning about artefacts need not commence with a user digesting formal

instructions from a manual. The experimental psychologist John Carroll’s theory of

minimalism suggests that learning is more successful if learners are involved in

hands-on tasks and not on reading obstructive instructional materials [Car90].

There is some evidence for Carroll’s claim in the empirical observation of typical

users of a new product [Nor98]. Exploratory interaction provides an initial

Chapter 3: An experiential perspective on learning

 73

understanding of how to use an artefact. We prefer to experiment, noting important

observations and building up experience through interaction, without relying on

objective prescriptions for how to use the artefact. We create mental models of the

artefact under study that inform us throughout our learning [Joh83, Nor83]. This

everyday, hands-on, empirical approach to learning contrasts with traditional

educational approaches where problems and skills are mediated to the learner through

the use of language, and particular emphasis is placed on logical and mathematical

thinking as the most important aspect of intelligence [Gar93]. As the concrete

examples described in this section illustrate, learning is much more than can be

described through formal representable knowledge. Exploratory interaction is a key

feature of complex learning situations. We now outline a framework for learning that

is informed by the above discussion and that will be used in the remainder of the

thesis.

3.2.2 An experiential framework for learning (EFL)

This section introduces an Experiential Framework for Learning (EFL) as a way of

classifying learning activities on a spectrum between the private and the public

domain. An earlier version of the EFL appeared in [Bey97], and has been adapted

from a previous paper on educational technology [RB02] for this thesis. Figure 3.1

shows different categories of learning activity within the EFL. These categories range

from concrete to formal learning and are concerned with issues that span empirical

and theoretical knowledge. Activities towards the formal end have their foundation in

experience-driven activities at the concrete end. This view is consistent with Noss and

Hoyles’s perspective on learning, as expressed in [NH96]:

‘Although knowledge is constantly constructed and reconstructed through
experience, this same experience also shapes and reforms a global and
theoretical perspective’.

The purpose of the EFL is not to portray learning as a simple linear transition from

private experience to public knowledge, but rather to express the way in which

Chapter 3: An experiential perspective on learning

 74

different learning activities depend upon each other. For instance, the learner can only

progress to using symbolic representations meaningfully when they have a degree of

experience gained through interaction in the domain. The interdependency between

learning activities does not prescribe the learning pattern completely, but it imposes

some loose constraints on the order in which they can occur. For instance, the focus

of attention typically moves gradually from private experience to public knowledge

as we learn about a domain.

Figure 3.1 – An experiential framework for learning

As our examples of learning about rowing and piano-playing have illustrated,

learning begins from private experience. Our preliminary interactions are informed by

our previous experience. We begin to understand the persistent and important features

of the domain and acquire the practical skills to manipulate them. Our interactions

can lead us to understand the dependencies between our actions and events and

understand how other agencies can affect the situation. With experience we come to

understand that particular patterns of interaction are common and stable and we can

communicate within the domain through non-verbal means. We are continually

extending and refining our understanding of the situated language of the domain.

Learning can eventually lead us to be able to establish the empirical basis for

private experience / empirical / concrete

interaction with artefacts: identification of persistent features and contexts

practical knowledge: correlations between artefacts, acquisition of skills

identification of dependencies and postulation of independent agency

identification of generic patterns of interaction and stimulus-response mechanisms

non-verbal communication through interaction in a common environment

directly situated uses of language

identification of common experience and objective knowledge

symbolic representations and formal languages: public conventions for interpretation

public knowledge / theoretical / formal

Chapter 3: An experiential perspective on learning

 75

common experience and objective knowledge, which can in turn be representable as

formal languages and have public conventions for interpretation.

In learning, there are identifiable ways in which we move from one category of

learning activity to another within the EFL. Practising to develop a skill,

experimenting to frame a theory or hypothesis and identifying new concepts in

deriving new words are characteristic of moving from the empirical to the theoretical

within the EFL. Practising to refine and debug skills, experimenting to test theories

and hypotheses and devising situations in which to test the integrity of new

vocabulary are characteristic of moving from the theoretical to the empirical within

the EFL. These characteristic aspects of learning can be regarded as metaphorically

‘moving down and up between levels’ within the EFL in a way that may tend to

stability. We may understand a concept and its application so thoroughly that

exploratory interaction with it is unnecessary – but it is unnecessary precisely because

we possess the experience of interaction with it that informs its use. When we are

learning about a new concept, it then becomes important to support the learning

activities that enable us to gain the broad base of experience required to interact with

it in the fullest possible way.

In understanding the EFL, it is important to consider how it can be applied to support

learning in practice.

The EFL is to be viewed as a generic template for learning. The specific character of

learning activities in the EFL can be entirely different depending on the context in

which learning takes place. Relevant considerations are: the subject domain (e.g.

learning to row, to count, to write); the nature of the learning task (e.g. learning the

concept of number, learning to use a calculator, learning times tables); the character

of the learning environment (e.g. teacher-supported, self study); and the technology

available (e.g. physical artefact, computer, virtual reality environment). There are

nevertheless general patterns according to which learning activities are organised, as

has been explained above.

Chapter 3: An experiential perspective on learning

 76

‘Moving up and down between levels within the EFL in a way that tends to stability’

can be interpreted as negotiation of the semantic relation � (cf. section 2.2.2).

Negotiation can be associated with genuine creation and novel discovery (as e.g. in

Newton’s discovery of the refraction of light [CW95]). In this context, the learning

activities in the EFL are emergent rather than previously understood. Negotiation can

also be associated with coming to a common understanding through personal

experiment and communication (as e.g. in learning to generate a spectrum using a

prism). In this context, the learning activities in the EFL are familiar to the

knowledgeable observer.

‘Moving from the empirical towards the theoretical within the EFL’ is a process of

abstraction. Abstraction is concerned with formalising learning. ‘Moving from the

theoretical towards the empirical within the EFL’ is a process of concretisation.

Concretisation is concerned with gaining familiarity with underpinning activities and

experience. For instance, this concretisation may take the form of testing abstract

relationships or refining primitive skills.

Concretisation is one aspect of elaboration of the semantic relation � (cf. section

2.2.2). It is associated with enriching the specific experiences that inform a particular

learning objective. For instance, in learning to row, diagnosing the difficulties in

achieving a smooth stroke may involve working on particular basic elements of the

stroke in isolation. A further aspect of elaboration is associated with setting a learning

activity in a richer domain context. For instance, a novice may be introduced to

rowing on a static machine, and progress via rowing a machine on slides to rowing in

a boat on the water. In this example, the learning activity changes from one context to

another – the skills become more complex (e.g. balance becomes important) and the

terminology is necessarily embellished (e.g. concepts regarding the oar become

relevant). In elaboration of this nature, the mapping from the EFL to specific learning

activities is hard to formalise as the learning activities in themselves evolve.

Chapter 3: An experiential perspective on learning

 77

As stated earlier, the ‘computers for learning’ agenda must aspire to support the

widest possible range of different types of learning. This aspiration cannot be fully

realised with existing computer technology: computer-supported interaction and

visualisation is limited in comparison with activity in the real world (cf. the accounts

of learning to row and play the piano in section 3.2.1). Developments in computing

are already introducing richer interaction metaphors that potentially offer support to a

wider range of learning activities (see e.g. [RJM+98]). The principles of EM to be

introduced and discussed in this thesis are conceived as potentially general enough to

embrace computer-related technology as it may develop in the future (cf. the

discussion of ubiquitous computing in [Won03]).

In considering EM for learning, we aspire to provide computer support for the whole

range of learning activities described in the EFL. In the world, learning often begins

from tentative hypotheses, a type of interaction we aspire to support in EM model

construction. A computer-based approach to model construction that reflects the EFL

must be able to support fluid movement between many different types of learning

activities. In the remainder of the chapter, we discuss how the principles of EM model

construction (section 3.3, 3.4) match up with the EFL (section 3.6). We shall illustrate

EM principles with reference to the construction of a restaurant manager model

(section 3.5).

3.3 Learning by experience

Within the EFL, the most primitive learning activities originate from private

experience. In this section, we expand on the role of experience in learning by

considering Kolb’s theory of experiential learning and relating the EFL to an

underlying philosophical attitude of Radical Empiricism first promoted by William

James [Jam96].

Chapter 3: An experiential perspective on learning

 78

3.3.1 Experiential learning

The dictionary definition of learning (as cited in section 3.2) is: to ‘gain knowledge of

or skill in by study, experience, or being taught’ [OED97]. Many scholars have

emphasised that experience is fundamental to learning. The seminal American

educationalist, John Dewey, made the claim that learning has to be grounded in

experience [Dew38]. Jean Piaget, in research on children’s learning, proposed that

children have different stages of learning, from sensori-motor, through concrete

learning to abstract learning [Bra78]. Piaget stressed the important experience gained

through interaction between the learner and their environment. Kurt Lewin’s research

in organisational behaviour also emphasised the importance of experience in learning,

particularly stressing the active nature of the learner [Lew51]. The ideas of Dewey,

Piaget and Lewin underpin David Kolb’s well-known experiential learning cycle

[Kol84].

Kolb’s experiential learning cycle is based on an iterative cycle of four activities,

namely concrete experience, reflective observation, abstract conceptualisation and

active experimentation. Experience initiates the cycle; as Kolb says [Kol84]:

‘Immediate personal experience is the focal point for learning, giving life,
texture, and subjective personal meaning to abstract concepts and at the same
time providing a concrete, publicly shared reference point for testing the
implications and validity of ideas created during the learning process’.

Concrete Experience

Active Experimentation

Reflective Observation

Abstract Conceptualisation

Figure 3.2 – Kolb’s experiential learning cycle

Chapter 3: An experiential perspective on learning

 79

In Kolb’s cycle (see Figure 3.2), reflection on our personal experience gives rise to

new concepts or ideas. These ideas in turn stimulate experiments that typically lead to

new experience or new perspectives on our previous experience.

The four activities in Kolb’s experiential learning cycle can refer either to private or

public activities. Atherton’s interpretation of Kolb’s cycle makes this private/public

distinction [Ath02]. Atherton classes concrete experience and reflective observation

as internal activities, and abstract conceptualisation and active experimentation as

external activities. This classification is appropriate in certain circumstances.

Concrete experience and reflective observation are surely private activities. The

nature of abstract conceptualisation and active experimentation depends on the

learning context. Abstract conceptualisation may or may not involve concepts that

belong to the public domain. Active experimentation may or may not be publicly

interpretable or accessible. However, Atherton’s interpretation makes it apparent that

experiential learning can involve both private and public learning activities.

Kolb’s experiential learning cycle is reflected in the learning activities in the EFL. As

we pointed out in section 3.2.2, the learning activities associated with the EFL are not

necessarily addressed in a rigid sequence; learners will move between activities in a

fluid fashion. Concrete experience and reflective observation are closely related to

activities at the private end of the EFL, whilst – depending on context – active

experimentation and abstract conceptualisation are more closely related to the

learning activities at the public end of the EFL.

As Kolb’s cycle illustrates, learning can consist of many different types of activities,

which draw on our experience, and change our experience. In many ways, learning

can be considered to be reclassification of experience. We can understand this with

reference to different categories to which experience may belong. Some of our

experience is stable and revisitable (“I know how to do this now and I know I can do

it again”), whereas parts might be unstable and tentative (“I have done that, but I am

Chapter 3: An experiential perspective on learning

 80

not sure how I did it or if I could do it again”). With reference to Howell’s learning

stages [How82] (cf. section 3.2.1), the process by which our experience migrates

from being tentative to reliable is mirrored in the move from stage 2 to stage 4. In

terms of Kolb’s cycle, the reclassification of experience is mediated by a succession

of activities that sees us experiment, reflect and form new ideas. All of our experience

is open to reclassification in the light of new insights or of new circumstances to be

taken into account. In learning, we always have the possibility of being surprised (“I

didn’t know that that could happen”) and this can lead to new classification for our

experience. When we are entirely sure that our experience of some phenomena is

reliable, it is in some circumstances appropriate to explore the possibility of ‘sharing

the experience’. This notion of sharing experience depends on observing the social

interaction that underpins inter-subjectivity. Part of the communication difficulty in

establishing inter-subjectivity stems from the fact that it is hard for you to relate my

account of my experience with your newly forming experience which you do not yet

understand (“You are telling me this is true and I am not sure if I believe you until I

try it for myself”). Our personal experience of a phenomenon in the social context can

be said to be public knowledge when we can share it and others agree that it is true (“I

know this and you agree with me”).

3.3.2 Radical Empiricism

In this section, we outline William James’s ‘philosophic attitude’ of Radical

Empiricism, as first described in his “Essays in Radical Empiricism”, first published

in 1912 [Jam96]. According to Naur [Nau95], James was the pioneer of the

experiential view of knowledge. Radical Empiricism has been considered in

connection with EM in previous papers [Bey97, Bey99, Bey03]. The relevance of

James’s thinking to emphasising the concrete above the abstract in education can be

seen in the following quote [Jam96]:

‘… the one thing that is sure is the inadequacy of the extant school solutions.
The dissatisfaction with these seems due for the most part to a feeling that
they are too abstract and academic. Life is confused and superabundant, and

Chapter 3: An experiential perspective on learning

 81

what the younger generation appears to crave is more of the temperament of
life in its philosophy, even though it were at some cost of logical rigor and of
formal purity’.

Radical Empiricism draws on James’s descriptive account of human mental activity

in his “Principles of Psychology” [Jam90]. As emphasised by Naur (cf. the entry for

stream of thought in [Nau01), James’s philosophic attitude is distinguished by his

readiness to talk about such issues as thought, feeling, association and knowledge by

placing them in clear relation to every person’s experience of his or her thoughts and

feelings. Central to James’s thinking is the capacity of the mind to make associations

between experiences in the stream of thought. James identifies the roots of knowledge

in how ‘one experience knows another’ in the stream of thought [Jam96]. He

characterises the relationship between two experiences, one of which knows the

other, as being given in experience and not rationally apprehended with reference to

some explicit preconceived account.

Beynon [Bey97, Bey03] has made the connection between William James’s outlook

on experience and the philosophical issues raised by focusing on Cantwell-Smith’s

semantic relation � as it relates to spreadsheet design and use (cf. section 2.2.3). The

key observation is that the evolution of a spreadsheet in design and use is similar in

character to that of states of mind in the stream of thought. Changes to the

spreadsheet are not to be interpreted as specifying a new spreadsheet, but as reflecting

some change in our experience of its referent.

By generalising spreadsheet principles (cf. chapter 2), EM aims to account for the

semantic relation � between a computer-based model and its referent in terms of

James’s notion of one experience knowing another. Experience of the computer

model stimulates us to understand it in terms of our experiences of corresponding

interaction with its referent. This correspondence leads to a conflation of the external

and computer-based experiences, resembling what Turner has characterised as

blending [Tur96]. The negotiative process of blending gives rise to new insights and

directions in which to take the computer-based model, much in the spirit of Levi-

Chapter 3: An experiential perspective on learning

 82

Strauss’s bricolage [Lev68], a theme we return to in chapter 4. Negotiational blending

of this nature is the vehicle for learning through the reclassification of experience

discussed in the previous section. This is consistent with James’s view that [Jam96]:

‘subjectivity and objectivity are affairs not of what an experience is
aboriginally made of, but of its classification. Classifications depend on our
temporary purposes’.

EM endorses a view of knowledge that is consonant with James’s idea that

knowledge is rooted in personal experience. The EFL can be viewed as mapping out

the activities that account for public knowledge with reference to private experience

(cf. [Bey99]). It also represents a particular perspective on learning as ‘gaining

knowledge’. In his essay ‘The experience of activity’ [Jam96] James advocates

Radical Empiricism as an appropriate philosophical stance from which:

‘… to try and solve the concrete questions of where effectuation in this world
is located, of which things are the true causal agents there, and of what the
more remote effects consist’.

EM could be seen as bringing computer support to this agenda. As will be discussed

in detail in section 3.4.3, negotiational blending in EM traces the progression of

model building through the elements identified in James’s quote above: identifying

agency, attributing state-changes to those agents, and interpreting agent interaction in

global state-based terms (cf. [Bey03]). As will be discussed in the next section, this is

reflected in the way that, in EM, the model and the modeller’s construal of the

referent evolve together.

3.4 Principles of Empirical Modelling

In this section, we describe how the private experience that forms the basis of

learning can be utilised in computer-based model construction at the empirical end of

the EFL. Our understanding when we begin to construct a model is tentative and

Chapter 3: An experiential perspective on learning

 83

requires computer support that does not commit us to build on experience that is at

present unstable. As Russ remarks [Rus97]:

‘where there is no adequate theory we may wish to build models simply in
order to aid our understanding; any specific purpose may be unknown, or
provisional, and it is then only an impediment to make early commitments to
certain properties we wish to preserve in the model’.

EM models that support the agenda above can be regarded as construals in the sense

of Gooding [Goo90], rather than as conventional programs with preconceived

functionality. This shift in perspective stems from focusing on state-as-experienced

as being prior to behaviour-as-abstracted (cf. the distinction between EM and

conventional programs described in chapter 4). Furthermore, this shift in perspective

requires a different set of key concepts that underlie the modelling process; in EM

these are observables, dependency and agency.

3.4.1 Construals

Real-world learning can often involve the making of models to supplement current

understanding of a situation and give the opportunity to experimentally comprehend

how changes affect it. For example: an engineer creates a prototype to gain

fundamental knowledge about an artefact before the construction of the final system;

a financial analyst constructs a spreadsheet to understand and explore potential

changes to a situation. David Gooding introduces the term construal to refer to a

concrete artefact that is used to embody evolving understanding of a phenomenon

[Goo90]. He developed the idea of a construal from studying the experimental

practices that Michael Faraday used in investigating electro-magnetic phenomena.

Faraday used physical objects to convey his evolving understanding of

electromagnetism. Gooding [Goo90, p22] characterises construals as:

‘… a means of interpreting unfamiliar experience and communicating one's
trial interpretations. Construals are practical, situational and often concrete.
They belong to the pre-verbal context of ostensive practices. … A construal

Chapter 3: An experiential perspective on learning

 84

cannot be grasped independently of the exploratory behaviour that produces it
or the ostensive practices whereby an observer tries to convey it’.

Gooding emphasises the close connection between the evolving understanding of a

referent and the exploratory interactions that are used in developing the construal.

In EM, we observe an external referent, and concurrently build a computer model that

metaphorically exhibits similar patterns of observables, dependency and agency

[BS98]. ‘What-if?’ style modelling enables the interrogation of personal construals in

testing beliefs about a referent. If experiments return expected results then a

modeller's construal is reinforced (cf. stabilising our experience). Unexpected results

in experiments serve to change a modeller's construal, because either the construal is

mistaken or the referent exhibits some previously unknown characteristic (cf. new

insights). A construal in EM is a voyage of discovery, a creative process quite unlike

conventional modelling where the emphasis is on the representation of well-

understood behaviours. The key features of a construal are that (cf. [Bey99]):

i) it is empirically established. It is informed by past experience and

subject to modification in the light of future experience.

ii) it is experimentally mediated. Our experience with it guides its

evolution.

iii) the choice of agents is pragmatic (what is deemed to be an agent may

be shaped by the context for our investigation of the system); it only

accounts for changes of state in the system to a limited degree (the

future states of the system are not circumscribed).

A construal must be testable beyond the limits of the expected range of interactions

with it [BRS99]. In specifying a conventional program, the modeller has to

preconceive its behaviour thereby restricting the exploratory interactions that can be

undertaken. In contrast, EM model construction privileges experimental interaction.

Interactions can take account of the changing real-world situation; can probe

unknown aspects of a referent; and may even be nonsensical in the world. Beynon has

described these interactions, which reflect Situation, Ignorance and Nonsense (SIN)

Chapter 3: An experiential perspective on learning

 85

respectively, as exhibiting the SIN modelling principle [Bey01]. He claims that this

principle is not well supported in classical computer programming, which requires the

abstraction of well-understood problems. The SIN principle can also be seen in

spreadsheets: the spreadsheet refers to an external situation; there is incomplete

understanding; and we can test our understanding by making experimental changes

that may be nonsensical.

Building construals using EM is closely associated with learning. The process of

model construction is a private learning experience and our construal represents our

evolving understanding of a situation [Bey97]. Experiments performed during the

early stages of modelling an artefact are tentative and exploratory; they are a

reflection of our provisional construal. Modelling dependencies is a prominent aspect

of the early stages of EM. Rungrattanaubol [Run02] highlights the significance of

modelling of this nature when knowledge is pre-articulate, informal, situational and

takes account of personal viewpoints. Such modelling is intimately concerned with

state-as-experienced rather than behaviour-as-abstracted, as discussed in the

following section.

3.4.2 State-as-experienced and behaviour-as-abstracted

Formal computer science encourages the view that the only significant semantics of a

computer program resides in the abstract patterns of behaviour and interaction that it

supports. This is consistent with what Brödner has characterised as the ‘closed world’

paradigm:

‘ …, the “closed world” paradigm, suggests that all real-world phenomena, the
properties and relations of its objects, can ultimately, and at least in principle,
be transformed by human cognition into objectified, explicitly stated,
propositional knowledge” .’ [Brö95]

To support this ‘closed world’ paradigm, the key requirement is to be able to develop

programs which support planned user interactions and preconceived interpretations.

Chapter 3: An experiential perspective on learning

 86

The users of such a program have no choice but to adapt themselves to the features of

the program and its interaction style. In contexts where a domain is well understood,

this viewpoint is satisfactory – both the designer and the user conceive of the program

in a similar way. In situations where knowledge is uncertain, the programmer faces

problems because they cannot conceive the abstract behaviour of the referent in its

entirety. Beynon [Bey99] suggests that classical computer science has limitations that

stem from concentrating on a ‘closed world’ paradigm.

EM is attempting to supply principles that can support what Brödner identifies as a

counterposition – the ‘open development’ paradigm:

‘…, the “open development” paradigm, does not deny the fundamental human
ability to form explicit, conceptual, and propositional knowledge, but it
contests the completeness of this knowledge. In contrast, it assumes the
primary existence of practical experience, a body of tacit knowledge grown
with a person’s acting in the world.’ [Brö95]

The emphasis on practical experience and on growing knowledge in ‘open

development’ requires an approach to modelling that enables unconstrained

interaction with a computer model. This cannot be achieved if explicit behaviours are

the primary concern of the modelling process. EM emphasises modelling that is state-

based, where the term ‘state’ is to be understood as referring to ‘state-as-experienced’

rather than abstract computational state. The term ‘state-as-experienced’ necessarily

refers to the experience of an individual, which may not be objective because our

interpretation of the world may well be different from that of another person. State-

as-experienced may confound us by changing in unpredictable and uncircumscribed

ways, for example through events occurring that are beyond our expectations. State-

transitions in EM are constrained only by the modeller’s imagination. An open

development approach requires a close correlation between the state of the computer

model and the state of its external referent that reflects Cantwell-Smith’s semantic

relation � [Smi97]. Open development in EM has close connections with spreadsheet

development that was discussed in section 2.2. For example, a spreadsheet user

always interprets the spreadsheet with reference to its current state and in relation to

Chapter 3: An experiential perspective on learning

 87

the external situational state to which it refers. Construction of a spreadsheet goes

hand in hand with its use; changes can be made on-the-fly as insights occur. Although

spreadsheets can be used in a rigid predefined way, circumscribed use occurs only

after significant evolutionary development.

The distinction between the concept of state in EM and in traditional computer-based

modelling is depicted in Figure 3.3.

redefinition state

 definitive script

 transition

 (a) EM (b) traditional computer-based modelling

Figure 3.3 – State-based and Behavioural-based views on development processes

The concept of state in Figure 3.3(b) relies upon a circumscription of system

behaviour that is characteristic of the closed world paradigm. Each circle depicts an

abstract computational state and each edge a valid state-transition consistent with the

abstract system behaviour.

In contrast, Figure 3.3(a) depicts the concept of state as it applies to modelling in an

open development paradigm. The characteristics of such a state are not defined with

reference to preconceived neighbouring states or an abstract behaviour. In keeping

with the notion of state-as-experienced, the semantics of the state is implicitly defined

by exploring plausible atomic state-transitions in an experimental fashion. It is for

this reason that the state is represented by a spreadsheet-like definitive script and

possible redefinitions (cf. section 2.4.1), rather than by a configuration of abstract

states.

Chapter 3: An experiential perspective on learning

 88

The identification of the plausible atomic state-transitions in Figure 3.3(a) depends on

the modeller’s viewpoint (who’s making the observations?) and notion of

indivisibility (when are observations deemed to be simultaneous?) [BC95]. In EM,

these issues – which are crucial to changing our perspective on developing models

from behaviour-as-abstracted to state-as-experienced – are addressed by introducing

special concepts. In the following section we outline the three key concepts that

underpin this shift in perspective, namely: observables; dependency; and agency.

3.4.3 Observation, dependency and agency

In this section we describe the EM concepts of observables, dependency and agency.

An observable is a feature of the situation or domain that we are modelling to which

we can attach an identity (cf. a cell in a spreadsheet). The main requirement of an

observable is that it has a current value or status (cf. a value in a spreadsheet). An

observable can refer to a physical entity, an abstract entity or a conceptual entity.

Examples of observables could be the mass of an object, the status of my bank

account, whether I own a car, and the quality of the television reception. Observables

can be of different kinds. These include: events (my train has arrived); quantities that

are directly or indirectly measurable (the amount of petrol in the tank); booleans (my

tank is half-full of petrol). What we deem to be an observable will in general depend

on the context and the observer. An observable is understood to be something that an

agent can apprehend instantly but such apprehension may be dependent on experience

(e.g. this knot is a reef knot).

Observables in the domain are represented in EM by variables in a definitive script.

The meaning that the modeller attaches to a variable in the script is negotiated in

relation to the referent for the model [Nes97]. The plausible redefinitions for such a

variable are those that have counterparts in interaction with the referent (cf. the way

in which states acquire their semantics in Figure 3.3(a)). As discussed in [Run02], this

Chapter 3: An experiential perspective on learning

 89

gives definitive variables in the script the characteristic qualities of observables rather

than abstract programming variables.

A dependency is a relationship between observables that expresses how they are

indivisibly linked in change. A change to the value of an observable will cause

changes to the observables that are dependent on it. For instance: the amount of tax

payable is dependent on the current tax rate, personal income and tax-free

allowances; the quality of the television reception depends on the weather conditions,

distance from transmitter and strength of the signal. Unlike constraints between

observables, which express persistent relationships between values in a closed-world,

dependencies express the modeller’s current expectation about how a change to one

variable will affect the value of another. In open development, such expectations are

subject to change. In EM, dependencies between observables are represented by

definitions in a definitive script.

Observables and dependencies together are used to represent the current state of an

EM model. The concept of agency is used to express state-transitions.

An agent is an entity in the domain being modelled that is perceived as capable of

initiating state-change. The agents identified by the modeller will depend upon their

construal and the purpose of the modelling. On this basis, the notion of agency

encompasses such diverse possibilities as the manager of a restaurant, the battery of a

digital watch or the modeller in the role of experimenter.

In an EM model, an agent is conceived as an entity that is capable of changing the

values of observables or dependencies. Such an agent is itself typically associated

with a set of observables. In practical EM using TkEden, the actions of agents are

represented by redefinitions that may be manual (performed by the modeller via the

input window) or automated (through the use of triggered actions as described in

section 2.4.3).

Chapter 3: An experiential perspective on learning

 90

In EM, there is a special purpose notation called LSD for describing observables,

dependency and agency that can help in classifying agents and their capabilities. The

LSD notation was initially motivated by research into the CCITT Specification and

Description Language, and offers a way of describing systems at an abstract level

[Bey86]. The LSD notation can be used in an Empirical Modelling framework:

i) to guide our evolving understanding of a situation by elaborating the

observable elements of a situation and how they are viewed and controlled

by agents.

ii) as a documentation tool to be used after model construction to guide

others to the important features of the model.

Constructing an LSD account involves the identification of agents and the

classification of observables with respect to agents. Each observable belongs to

categories that reflect its status with respect to an agent. Observables can be classified

into the following categories:

State observables – these are the observables that are associated with the presence of

the agent. If the agent ceased to exist, such an observable would disappear. Examples

include: the speed of a car (bound to the car) or the number of tables in a restaurant

(bound to the restaurant).

Oracle observables – these are the observables to which an agent can respond in the

current state of the environment. An agent does not necessarily have privileges to

change the values of such observables. Examples include: the colour of a traffic light

(an oracle to a car driver) or the time at which a customer phones the restaurant (an

oracle to the manager). In certain contexts, a very significant oracle is the ‘absolute

time’, which all agents can be presumed to know but none has the privilege to change

[Bey86].

Handle observables – these are the observables that an agent has the privilege to

conditionally change. Examples include: the speed of the car (a handle for the driver)

Chapter 3: An experiential perspective on learning

 91

or the table allocated to a customer in a restaurant (a handle for the manager). An

agent does not necessarily need to have an observable as an oracle in order to change

it.

Observables that are related through dependencies in the view of the agent are termed

derivates. This term reflects the fact that the value of an observable can be derived

from the values of other observables. An example of a derivate is: whether there is a

table free in a restaurant depends on the occupancy of the tables.

An observable can be classified in different ways with respect to different agents (e.g.

I can see the speed you are driving but have no control over it) and may appear in

many different categories for a single agent (e.g. to you, the speed of your car is both

a handle and an oracle).

The privileges that the agent has to make changes to observables are recorded as a set

of guarded sequences of redefinitions. This set of redefinitions is referred to as the

agent's protocol. Examples of protocols include: if a customer has requested a

booking, the manager will allocate an appropriate table; and when a customer leaves

the manager will take payment.

The protocols of the agents in an LSD account specify possible state changes that the

system of agents can perform. They are not in general construed as circumscribing the

behaviour of the system for a variety of reasons that are discussed in detail in

[BNO+90]. For instance, an LSD account does not take matters of synchronisation,

speed and reliability of response into consideration. A more typical use of an LSD

account is in documenting our evolving understanding of a situation so that for

instance other privileges could be added to the protocol of an agent.

In developing an EM model, our perspective on agency within the domain evolves

with our construal. The way that we perceive agency is related to our experience of

the situation and our current purpose for studying it. In [Bey97], Beynon has

Chapter 3: An experiential perspective on learning

 92

identified three viewpoints on agency that are representative of how the modeller’s

perception of agency may develop during model building in EM:

View 1: The modeller identifies primitive entities as agents. In this view, every

observable or object-like set of observables is potentially an agent, as is the external

observer. Any entity that is a cause, cue or trigger for some action on the part of

another agent is identified as being an agent.

View 2: The modeller attributes state-changes to agents. In this view, the modeller

construes specific observables and objects as responsible for particular state changes.

This corresponds to understanding how state changes can be correlated with the

presence (and action) of a particular agent (e.g. a flag moves only if there is a wind).

View 3: The modeller identifies a system behaviour. In this view, the modeller

understands the system so comprehensively that it is possible to circumscribe its

behaviour; agents act through reliable and objective stimulus-response patterns and

have no capacity for surprise. This corresponds to virtual agency in the closed world.

Each of the above viewpoints can be correlated with different learning activities

within the EFL. In View 1, we are concerned with identifying entities that can

potentially cause state change in a domain, whereas in View 3 we have identified a

specific systematic behaviour within the domain and are interested in whether we

have identified all the relevant agents together with their actions. Moving from a

View 1 to a View 3 perspective is like moving from a broad unfocused view of a

domain to a narrow specialised application within the domain. Making this transition

requires correlating agents with state changes as described in View 2. EM is

concerned with facilitating the transition between a View 1 and View 3 perspective

by providing ways of describing agents and actions in an exploratory way so as to

embrace the learning that occurs in this process of correlation. In learning about a

specific system, the View 1 – View 2 – View 3 transition is enabled in EM by a

development environment in which agency in all three viewpoints can co-exist. This

means that, even as we aspire to understand a system completely enough to represent

it from a View 3 perspective, we can always override automatic operation to take

Chapter 3: An experiential perspective on learning

 93

advantage of new insights or experiments. One of the central problems in developing

learning environments is that we need to accommodate incomplete and imperfect

understanding. This demands support for modelling that is broader than mere

specialisation to a View 3 perspective on a system. This is particularly problematic

for conventional system development, which focuses on a View 3 perspective.

The model building discussed in this thesis makes use of the TkEden modelling tool

(see section 2.4.2). Because this tool does not give full support for modelling agency,

we shall not normally make explicit use of object-like abstractions and LSD accounts

of situations. As discussed in detail in [Run02, Chapter 3], modelling with TkEden

can be construed as taking place within an ‘abstract definitive modelling’ framework

in which there is more comprehensive conceptual support for agency and entities. The

way in which agency is implicitly represented in modelling with TkEden will be

illustrated in the following section.

3.5 Modelling restaurant management

To illustrate the concepts of model construction introduced in this chapter we

describe a case study of a restaurant management model. The restaurant manager

model was originally developed in order to investigate decisions that a manager might

make regarding the allocation of customers to tables in a restaurant. It is a model that

could be used in order to inform decision support within a business context [RRR00].

Decisions on table allocations are an important and imprecise task for a restaurant

manager. There is a need to accommodate the particular needs of each client, but both

the requirements (numbers of tables, available time) and the resources available

(tables, waiting staff, chefs) are changing dynamically. The customers (or potential

customers) are agents who can act in unforeseen ways and so make the job of

allocating tables more than a merely quantitative exercise in profit maximisation.

Figure 3.4 shows the model in use. The model contains two main display windows, a

clock window and three forms which are used to generate customer events. The top

Chapter 3: An experiential perspective on learning

 94

window shows a plan view of a fictional restaurant with a total of eight tables of two

different sizes. Below this is a window that contains a representation of a booking

timetable for the restaurant for an evening. The booking timetable has a record of the

current bookings for the evening and can be interpreted to establish when particular

tables will be occupied or empty. The vertical red line shows the current time in the

evening as displayed on the clock window in the bottom right. The other three

windows are used to generate customer events. Potential customers can walk in off

the street and request a booking immediately or may telephone the restaurant

requiring a booking for a time in the future. It is also possible for customers with

bookings to ring up and cancel their booking. Furthermore, when a customer departs

the restaurant manager may record customer information for later analysis.

Figure 3.4 – The restaurant manager model

Chapter 3: An experiential perspective on learning

 95

My motivation in constructing the restaurant manager model was to gain an

appreciation of the issues involved in restaurant management. For example, during

the construction of the model, I – as the modeller – initially allocated tables.

Identifying the factors involved in human judgment was important in understanding

how to add an automatic table allocation routine (cf. the changing viewpoints of

agency discussed in the previous section). This involved understanding complex

issues such as the relationship between unused capacity and unused time (cf. section

3.5.2).

The restaurant model had no prior specification, and in the model building I had no

specific features in mind – these emerged during the construction of the model as a

direct result of interaction with the partial model. This is possible in EM because of

the emphasis placed on the representation of state rather than the recognition of

abstract patterns of behaviour (see section 3.4.2). Initial model construction focused

on identifying the important qualities of a restaurant and building on these basic ideas

to shape the more advanced concepts such as automation of table booking (see

section 3.5.2). In constructing a conventional program to perform restaurant

management we would primarily consider the important actions that the restaurant

manager has to perform and set out to automate these (cf. software development

based on the analysis of use cases in the spirit of Jacobson [Jac92]). In the

construction of the EM model, there is no circumscription of the possible uses to

which the model can be put and these remain open throughout the development. For

example, we might wish to add waiters to the restaurant model and animate them on

the restaurant window, or consider the effect that changing the number of waiters has

on customers and fellow staff. In a conventional program, where use is preconceived,

it can be much more difficult to alter the interpretation of the partially constructed

program flexibly since it is already optimised to serve a particular function.

Chapter 3: An experiential perspective on learning

 96

3.5.1 Experiential learning and the restaurant manager model

The initial construction of the restaurant manager model was guided by my

experience of visiting restaurants. Each visit to a restaurant has built up the

background knowledge of how restaurants look and function on which I drew in

building the model. Some aspects of my experience of restaurants are stable and

represent objective knowledge. For instance, customers are allocated to a table, eat,

and then depart after a period of time. Other knowledge acquired through experience

such as my conception of the thought processes behind how tables are allocated to

customers take the form of subjective hypotheses. The initial phase of model

construction is concerned with building a computer model that embodies my

objective and stable knowledge of restaurants.

Interaction with the model, through experiments and observations, is the source of

new insights into restaurant management. New experience is acquired as a direct

result of intimate engagement with the restaurant model. As Kolb’s cycle indicates,

new experience results from reflection, conceptualisation and experimentation. This

cycle works repeatedly in our ongoing and increasing experience of restaurant

management. Experience matures from tentative hypotheses about aspects of

restaurant management to stable experience that we can reliably revisit and reproduce

as requested. My stable experience – for instance that there are tables to which

customers are allocated – is embodied as part of the restaurant model that I am

assured is valid. In summary, stable experience of actual restaurants underpins our

initial construction of the model, and our emerging experience gained from the

computer-based restaurant model guides its future construction.

3.5.2 Empirical Modelling principles and the restaurant manager model

The EM restaurant model is a construal of restaurant management. Throughout the

model building, the computer-based model is always provisional and reflects my

current understanding of restaurant management. It is always open to new insight and

Chapter 3: An experiential perspective on learning

 97

new exploration based on my emerging understanding of the situation. In developing

the restaurant construal, there were three broad phases in the model construction: I

initially concentrated on the representation of state; then investigated sensible

behaviours through experimental manual redefinitions; and finally automated

appropriate behaviours.

There are a number of observables that are important in the restaurant model. The

most primitive observables concern the physical characteristics of the restaurant

itself. These include: the room layout; the number of tables; and the number of people

that can sit at each table. As illustrated in Figure 3.4, the model includes a

visualisation of the restaurant with different size tables and a table-booking sheet for

an evening. Other relevant observables include: the time of each booking; the number

of bookings; the number of people in each booking; and customer preferences (such

as smoking or window seats). A possible classification of these observables with

respect to the restaurant manager is shown in the LSD account in Listing 3.1.

The modeller initially defines customer events using the forms on the interface (see

Figure 3.4). Through creating sample reservations and cancellations, a preliminary

appreciation of the booking experience and knowledge that a manager possesses can

be gained. Choosing a sensible table for a customer is not a trivial matter. There are

many issues to consider, including customer satisfaction, staff morale and past

occupancy patterns. Each of these factors will consciously (or subconsciously)

influence the decision made by the manager. In justifying his or her decision, a

manager may appeal to their tacit knowledge, which may be exceedingly difficult to

articulate (“I feel that’s the right decision”). Experience gained through the

experimental generation of enquiries can lead to insights into the manager’s job, even

if their task is viewed simply in terms of maximising profit without considering other

resources such as numbers of waiters and chefs.

Chapter 3: An experiential perspective on learning

 98

 agent restaurant_manager {

 oracle

table1_position, table2_position, ...

 table1_occupancy, ...

 future_bookings

 telephone_ringing

 customer_preferences

 size_of_customer_party

 restaurant_full

 handle

table1_occupancy, ...

 future_bookings

table1_position, ...

 derivate

 restaurant_full is (table1_occupancy>0) && ...

 protocol

 table1_occupancy==0

� table1_occupancy = size_of_customer_party,

 ...

size_of_customer_party > maxtablesize

� table1/2 = table1+table2;

table1/2_occupancy = size_of_customer_party,

...

 ...

 }

Listing 3.1 – Part of an LSD specification for the restaurant manager model

The eventual construction of an automated routine to simulate a restaurant manager in

allocating tables to potential customers entails deeper insights into the subtle nature of

the job. There are obvious considerations, such as ensuring that there is enough time

to fit in a particular booking on a table and that there are enough seats for the number

Chapter 3: An experiential perspective on learning

 99

of people in a party. The results of applying these simple conditions leave a set of

possible tables on which to place a party. As the model is developed, more

sophisticated questions emerge. For instance, what is the relationship between unused

capacity (such as results from seating a party of 2 at a table for 4) and unused time (as

when a table has no people on it for a period of time)? The answer to this question

could guide the manager in deciding whether to accept a party of 2 on an empty table

for 4. Other factors relevant to the above question may include: the type of restaurant;

the type of cuisine; the night of the week; and the geographical area. These factors

influence the manager but are very difficult to quantify. The decision to refuse a

booking for a couple when a table for four is free might indicate that the restaurant

manager believes that a larger party is likely to arrive soon enough to be more

profitable. The elements of the model are linked through dependencies so that we can

easily perform ‘what-if’ style queries to see the effects of changing features such as

the length of booking slots or the opening hours of the restaurant. Queries of this

nature can be made ‘on-the-fly’, and can support other interactions, such as changing

the layout of the restaurant to simulate bookings from large groups.

From a personal viewpoint, experimentation with the model led to personal insights

that have enabled me to understand some of the difficulties of a restaurant manager’s

job, although it would of course be impossible to fully replace a manager’s decision-

making by an automated routine. The construction of a faithful model of a restaurant,

where human agents can play roles as they would in the real world, allows the

judgments and insights of the individual to be expressed through interaction. The

process of model construction in EM is intimately associated with domain learning.

3.6 Chapter Summary: Empirical Modelling and the EFL

In the final section of this chapter, we discuss connections between EM and the EFL

and argue that they are intimately linked. In section 3.2.2, we proposed the EFL as a

generic learning framework that can be interpreted with reference to any subject

domain. We shall now argue that ‘EM supports the EFL’, in the sense that it supports

Chapter 3: An experiential perspective on learning

 100

learning activities from across the whole of the EFL and enables fluid movement

between them.

EM endorses a view of knowledge similar to that proposed in Radical Empiricism (cf.

section 3.3). In this view, all knowledge is rooted in the primitive notion of ‘one

experience knows another’ in personal experience. In EM, the building of an artefact

offers experience that ‘knows’ experience of its referent. In [Bey99], Beynon

considers the way in which EM allows objective and theoretical knowledge to be

traced to its experiential roots. In [Bey03], Beynon discusses the similarities between

the perspectives on knowing represented in EM and in Radical Empiricism. The EFL

is also motivated by the idea that learning is rooted in private experience and that

abstract activities are grounded in our sound understanding of concrete examples.

EM emphasises interaction and experimentation with artefacts in order to generate

and test our construal of a referent (see section 3.4.1). During construction, the

modeller is always able to interact with the evolving artefact. As discussed in section

3.4.2, our early interactions are primarily concerned with exploring the current state

of the artefact. This is analogous to the experimental changes a spreadsheet modeller

might make in order to work out sensible future states. In EM model construction, the

emphasis is on interactive exploration of plausible state transitions to increase our

understanding: the modeller is exploring the ‘space of sense’ (cf. [Bey01] and section

3.4.2). It is through the occasional verifiably mistaken experiment that appropriate

stimulus-response mechanisms and generic patterns of interaction are identified

[Bey01]. The account of the construction of a clock model in Appendix D gives a

practical illustration of how model construction in EM can be experimental, reflecting

our evolving understanding of the referent and the differing purposes to which we

may want to put the model. With reference to the EFL, activities of this nature are

concerned with the identification of dependencies, generic patterns of interaction and

stimulus-response mechanisms at the concrete end.

Chapter 3: An experiential perspective on learning

 101

In section 3.4.3, we discussed how agency in EM can be used to automate reliable

behaviours of an artefact and hence move towards the abstract end of the EFL.

Because the modeller has the discretion to perform experimental interactions at all

times, they can always step back from an abstract behaviour into a concrete situation.

The activities described in the previous two sentences are forms of abstraction and

concretisation respectively (cf. section 3.2.2).

The above discussion of EM and the EFL leads to two conclusions:

i) EM is well suited to support learning activities at the concrete end of the

EFL because of its primary emphasis on experimental interactions with

artefacts and the representation of state-as-experienced.

ii) EM can support the fluid movement between learning activities in the EFL

due to its ability to integrate the abstract and the concrete within a single

modelling environment.

In later sections of the thesis, we will discuss the connections between EM and the

EFL from different perspectives. In section 4.6, we consider the links between EM

and the EFL with respect to the educational theory of constructionism. In section 6.5,

we consider the links between EM and the EFL with reference to sizable EM case

studies.

102

Chapter 4 – Constructionism and computers for learning

4.0 Overview of the Chapter

In this chapter, we introduce the theories of constructionism and instructionism and

discuss them with reference to the EFL. All approaches to domain learning that

involve programming satisfy Seymour Papert’s basic definition of constructionism. It

is impossible for a learner to construct computer models passively; there has to be a

degree of engagement with the task. In this thesis, we take a broad view of

constructionism that embraces bricolage and situated learning. We observe that

constructionism can be broadly identified with activities at the concrete end of the

EFL, and that instructionism can be broadly identified with activities at the formal

end of the EFL. We argue that conventional programming is typically concerned with

learning activities that are found at the formal end of the EFL, and hence that it is not

well suited for supporting domain learning through constructionist model building. In

contrast, EM – which gives support to learning activities at the concrete end of the

EFL – is better placed than conventional programming to support domain learning

through constructionist model building. The construction and use of a digital watch

model is used to illustrate the ideas presented in this chapter.

4.1 Constructionism and instructionism

To motivate the theory of constructionism defined by Seymour Papert [Pap93] we

shall first briefly review the theories of objectivism and constructivism.

Chapter 4: Constructionism and computers for learning

 103

4.1.1 Objectivism, Cognitivism and Constructivism

Psychology is full of debates about how learning occurs [HO96]. Theories of learning

and the nature of understanding have a profound influence on the design of

instructional materials, teaching philosophies and learning. The epistemological

debate between objectivist and constructivist positions can be traced back to issues of

ontology debated by the Greeks [Sae67].

Objectivism contends that there is a given reality which learners are expected to

reproduce in their minds. There is no personal reconstruction of reality from an

individual’s viewpoint [Jon91]. The work of Skinner is characterised in the theory of

behaviourism [Ski74]. Skinner developed a theory from experiments with animals

placed in boxes. When an animal discovered the secret to escaping from a box the

likelihood of it repeating that behaviour in the future was increased. Skinner proposed

a theory of human learning called operant conditioning, which claims that learning

can be totally characterised in terms of changes in overt behaviour [Dri00]. Learning

occurs in response to environmental stimuli where particular stimulus-response

patterns are reinforced through reward, and are thereby more likely to occur in the

future. Skinner was motivated by his experiments to introduce the behaviourist

approach to learning, in which the mind is treated as a black box. Behaviourism

contends that the internal processes of the mind are not important in studying

learning; it is sufficient to concentrate on the overt behaviour of the learner.

Cognitivism came to prominence in the 1950’s [BGA56]. The assumption behind

cognitivism is that the brain acts as an information processor. It takes input from the

world and processes this to produce overt behaviours. Cognitivism places importance

on the internal processes of the mind but is still objective in its approach – it assumes

that there is a given reality that the mind processes and a learner’s role is to passively

acquire knowledge transmitted by an instructor [May99]. Newell and Simon’s work

on human problem solving was a major research project that took a cognitivist

approach; it viewed problem solving as an information processing system [NS72].

Chapter 4: Constructionism and computers for learning

 104

Constructivism is founded on Kantian beliefs: it claims that the knower constructs

reality based upon their mental activity [Jon91]:

‘… What the mind produces are mental models that explain to the knower
what he or she has perceived … We all conceive of the external reality
somewhat differently, based on our unique set of experiences with the world
and our beliefs about them.’ [Jon91]

The origins of constructivism may be found in John Dewey’s view of learning as a

constant reorganisation or reconstructing of experience [Dew16]. The research of

Piaget [Bra78] and Vygotsky [Vyg62] provides the cognitive development theories

that underpin the constructivist position. In their view, all meaning is rooted in

personal interpretation of the world. The educational researcher Cooper [Coo93]

compares constructivism with cognitivism and behaviourism in the following terms:

‘The constructivist… sees reality as determined by the experiences of the
knower. The move from behaviourism through cognitivism to constructivism
represents shifts in emphasis away from an external view to an internal view.
To the behaviourist, the internal processing is of no interest; to the cognitivist,
the internal processing is only of importance to the extent to which it explains
how external reality is understood. In contrast, the constructivist view the
mind as a builder of symbols – the tools used to represent the knower’s
reality. External phenomena are meaningless except as the mind perceives
them… Constructivists view reality as personally constructed, and state that
personal experiences determine reality, not the other way around’ [Coo93,
p16].

Piaget stated that constructivism requires the learner to actively build their own

knowledge structures, based on their own mental activity [Bra78]. Learning builds on

existing knowledge, and each learner creates an individual representation of the

subject being studied. It is inevitable that our initial constructions are naive and

contain misconceptions. Personal constructions become more realistic as our

experience grows. This approach is more natural for learners because it directly

addresses the process of knowledge construction and is sensitive to mistakes in the

learning process [Ben01]. The construction of viable mental models is also an

Chapter 4: Constructionism and computers for learning

 105

important part of the learning process, since these are the containers within which the

knowledge can be organised [Ben01] (cf. the discussion of construals in section

3.4.1). In 1991, Merrill collated ideas from a variety of sources to identify the

assumptions of constructivism [Mer91]. These assumptions are that:

i) knowledge is constructed from experience;

ii) learning is an active process;

iii) learning is collaborative with meaning negotiated from multiple

perspectives;

iv) learning should be situated in realistic settings;

v) testing should be integrated with the task, not a separate activity;

vi) interpretation of reality is personal – there is no shared reality.

These assumptions are consistent with Kolb’s model of experiential learning, as

described in section 3.3.1.

Vygotsky stresses the importance of social and cultural contexts within the learning

environment in supporting a discovery-based learning model [Vyg62]. His Zone of

Proximal Development (ZPD) is an important concept with regard to learning because

it defines the potential of a learner, in contrast with traditional tests that give only an

accurate measure of current performance. In learning situations, the ZPD is an area

within which a learner can interact given suitable assistance from other people and

supporting technologies.

In the next section, we consider how the objectivist and constructivist movements

have influenced the design of educational technology.

4.1.2 Instructionism and Constructionism

The dominant educational approach in the 20th century assumed an objectivist

viewpoint, and was termed instructionism. In an instructionist approach, knowledge is

transmitted to passive learners, for example through the use of lecturing and whole

class teaching. Friere has described this as a ‘banking method of education’, where a

Chapter 4: Constructionism and computers for learning

 106

student’s mind is an empty receptacle to be filled up with knowledge, in much the

same way that you might top up your bank account [Fri70]. The instructionist

approach is epitomised by John Carroll’s notion of the Nurnberg funnel [Car90], a

mythological device that allows teachers to pour facts directly into a learner’s head.

Instructionism is characterised by Jonassen in the following terms:

‘Learning consists of assimilating objective reality. The role of education is to
help students learn about the real world. The goal of designers or teachers is to
interpret events for them. Learners are told about the world and are expected
to replicate its content and structure in their thinking’. [Jon92]

Skinner’s operant conditioning, when applied to instructional design, organises

material into graded problems to which the student must correctly respond. This

model was adopted in early software for computer-based instruction [Dri00]. The

software followed the pattern of traditional teaching, where teachers reward students

who do well with praise – a form of extrinsic motivation [Cov98]. Students are

conditioned to achieve good results by linking the stimuli of good test results with the

response of good marks and praise. The influence of the behaviourist approach can be

seen in the proliferation of computer-assisted instruction (CAI) and ‘drill-and-kill’

educational software. This type of software aims to teach students by presenting a

topic together with a selection of questions that they have to answer. Feedback is then

given on their answers. CAI is simply an extension of the student-teacher

transmission model of learning that has come in for strong criticism from many

authors [Fri70, Ill71, Pap80, Pos92, Tal95, Opp97].

Constructionism has its basis in the theory of constructivism [Pap80]. In addition to

the active building of knowledge structures, Papert claims that construction that takes

place in the head often happens especially felicitously when it is supported by

construction of a more public sort ‘in the world’ [PH91]. By ‘in the world’, Papert

means that the public nature of a constructed artefact enables discussion,

examination, probing and admiration [Pap93]. Although the theory of

constructionism was originally introduced with reference to children, it is relevant

Chapter 4: Constructionism and computers for learning

 107

across all age groups, as Papert demonstrated by describing examples from his own

learning processes [Pap80]. Knowles’s andragogical model of adult learning is related

to constructionism and places emphasis on self-direction, positive use of previous

experience and internal motivation [Kno70, Kno90]. The important connection

between andragogy and constructionism is the emphasis placed on the active role of

the learner. The constructionist emphasis in learning is on the process, not on the

product [KR96]. Jonassen supports the idea that constructionist educational software

emphasises the process of knowledge construction as being more important than the

resulting product:

‘if meaning is determined by the mental processes of the individual, and these
processes are grounded in perception and grow out of experience, then those
are the things we should evaluate – not the extant behaviour or the product of
that behaviour’ [Jon92].

Ostwald endorses this emphasis on process over product in learning in his study of

knowledge construction in software development [Ost96]. In his view, the building of

artefacts enables us to learn through their construction, through experimentation (to

see how they work) and through modification (to make them ‘better’). He claims that

the construction of an artefact and its understanding proceed in tandem:

‘Experiential artefacts allow us to interact with the world. They provide
information that enables us to interpret a situation through our perceptions.
The danger is that they don’t provide us with the knowledge – they provide us
with information that is tacitly interpreted. When what we perceive is different
from what we tacitly expect, a breakdown occurs, and the cause of this
breakdown is brought to the surface where it can be interpreted and
knowledge can be constructed’ [Ost96].

The personal construction of artefacts is quite a different kind of activity from the

assimilation of material designed by others. A constructionist perspective is well

aligned with the learning activities at the concrete, empirical end of the EFL and an

instructionist perspective is well aligned with the activities at the formal, theoretical

end (cf. Figure 4.1).

Chapter 4: Constructionism and computers for learning

 108

Figure 4.1 – Relating constructionism and instructionism to the EFL

Constructionism is closely linked with the learning activities at the concrete end of

the EFL. Active knowledge construction plays a prominent part in interaction with

artefacts and practical knowledge. These activities rely on our personal interpretation

of the world, based on our private experience. At the formal end of the EFL, an

important learning activity is the identification of common experience and objective

knowledge. In an instructionist approach this is not an end-goal, but a prerequisite –

the goal of education is to transmit objective knowledge. This is reflected in the quote

from Jonassen cited above:

‘Learners are told about the world and are expected to replicate its content and
structure in their thinking’ [Jon92].

Ever since Papert defined the theory of constructionism, and used the Logo

programming language as its vehicle for delivery, constructionism has been closely

associated with Logo. There are good reasons to expect computers to play a major

role in the future of constructionism in the classroom. On the other hand, it is not

obvious that the use of computers is allowing constructionist principles to be fully

private experience / empirical / concrete

interaction with artefacts: identification of persistent features and contexts

practical knowledge: correlations between artefacts, acquisition of skills

identification of dependencies and postulation of independent agency

identification of generic patterns of interaction and stimulus-response mechanisms

non-verbal communication through interaction in a common environment

directly situated uses of language

identification of common experience and objective knowledge

symbolic representations and formal languages: public conventions for interpretation

public knowledge / theoretical / formal

Constructionism

Instructionism

Chapter 4: Constructionism and computers for learning

 109

expressed in educational practice. For instance, not all educationalists are convinced

that programming in Logo promotes domain learning [Sol93, Ste94, Tal95]. To

address this concern, we need a better understanding of the relationship between

computers and constructionism. To this end, we consider a broader view of

constructionism that encompasses model-building approaches such as bricolage and

situated learning, which are not necessarily computer-based.

Bricolage [Lev68] is a style of construction that places emphasis on concrete

experimentation and negotiation with artefacts. Bricolage is situated in the realm of

primitive knowledge that concerns the acquisition of practical knowledge and the

identification of persistent features and contexts. The style and manner of

construction is important as well as the finished product. Situated learning [Lav88]

advocates learning in the context of interaction in real-world situations, and is a

prominent feature of a constructionist approach to learning. This can be seen from

Papert’s view of the public nature of the artefact constructed in learning and the role

it plays in the ‘real world’ [Pap93]. It is very difficult to create our own model of

reality without interacting in the real-world situation we are seeking to understand.

We discuss the notions of bricolage and situated learning in more detail in sections

4.2 and 4.3 respectively. This supplies the context for the subsequent discussion of

concept mapping (section 4.4), traditional computer programming (section 4.5) and

EM (section 4.6) in support of constructionist approaches to learning.

4.2 Bricolage

The concept of bricolage originates in the work of Claude Levi-Strauss, an

anthropologist who studied people working in primitive societies [Lev68]. Levi-

Strauss was interested in contrasting approaches to task solving in what he

characterised as ‘primitive’ and ‘western’ societies. In western societies, the most

advanced form of thought is generally believed to be abstract and scientific. Jean

Piaget’s well-known theory of the stages of learning identifies abstract thinking as

evidence of maturity [Bra78]. The importance attached to abstract thought can be

Chapter 4: Constructionism and computers for learning

 110

seen in the style of instruction and evaluation in the traditional Western schooling

system. Levi-Strauss argued that primitive societies view ‘concrete’ thinking

processes as more important than abstract thought [Lev68]. He defined bricolage as a

way of performing work that emphasises human involvement and engagement where

subjective interaction with the artefact guides solving of a task. A person who is

involved in bricolage style activity is called a bricoleur. This French word is best

translated as ‘a handyman’; it emphasises a working style that takes advantage of

whatever tools are at hand to perform tasks for which these tools were not specifically

designed.

We can illustrate bricolage by considering an example of a situation in which it is

used. Imagine that we are going to build a chair. One approach would be to design the

chair and create a plan specifying how the chair should be built before production

begins. The end result is a chair that matches our original plans which has been

shaped entirely away from the situation in which the construction takes place. There

are advantages to this ‘planning’ approach; we can be confident that the plan will

realise a functional chair. However, if requirements for the chair change, or new

insights become available during construction then this approach cannot take

advantage of them. The planning approach to chair building has parallels in the

‘waterfall’ stereotype for software development [Boe76] where the knowledge-

gathering phase freezes requirements, which are then rigidly implemented according

to the specification. In contrast, the bricolage approach emphasises minimal forward

planning and continual negotiation with the referent throughout the process of

construction. Levi-Strauss characterises this negotiation in the following terms

[Lev68, p18]:

‘Consider the bricoleur at work and excited by his project. His first practical
step is retrospective. He has to turn back to an already existent set made up of
tools and materials, to consider or reconsider what it contains and engage in a
sort of dialogue with it and, before choosing between them, to index the
possible answers which the whole set can offer to his problem’.

Chapter 4: Constructionism and computers for learning

 111

With reference to chair building, the process of construction is characteristic of a

craftsman at work – changes are made to the current prototype chair, and construction

is guided by the current state of the chair:

‘bricolage involves an informal subjective interaction between a craftworker
and the artefact he/she is creating that more closely resembles discovery than
organised construction. The model-building activity has an experimental and
creative quality: if it is successful, the character of the artefact itself changes
in the mind of the discoverer as it develops – it is continuously being newly
conceived and reinterpreted in stimulating ways’ [RB02].

Turkle and Papert have taken up the idea of bricolage and applied it in different fields

as a way of validating individual approaches to problem solving [TP91]. Even in

mathematics and science, there is problem solving activity that is not centrally

concerned with the manipulation of formal symbols. Mathematicians and scientists

stumble across discoveries through concrete model-building activities resembling

bricolage, and only later do they refine these into scientifically acceptable formal

abstractions. In this connection, Turkle and Papert [TP91] stress the importance of the

computer as a tool that has ‘revalued concrete thought’. They claim that the computer

can be used in a way that privileges thinking with concrete artefacts rather than

abstract thought and suggest that:

‘the diversity of approaches to programming suggests that equal access to
even the most basic elements of computation requires accepting the validity of
multiple ways of knowing and thinking’.

Turkle and Papert refer to this ‘validity of multiple ways of knowing and thinking’ as

an epistemological pluralism [TP91].

Although Turkle and Papert recognise that classically computer science promotes a

structured planning approach, they argue that the distinction between planners and

bricoleurs is manifest in the process of construction, not in the end result [TP91].

Papert identified two styles of programming that he called ‘hard-edged’ and ‘smoky’

and observed that to move from a hard-edged to a smoky style requires moving from

Chapter 4: Constructionism and computers for learning

 112

an abstract formal approach to a concrete bricolage approach [Pap93]. Turkle and

Papert call the users of these two styles ‘planners’ and ‘bricoleurs’ respectively, and

claim that:

‘observation[s] of programmers at work calls into question deeply entrenched
assumptions about the classification and value of different ways of knowing.
It provides examples of the validity and power of concrete thinking in
situations that are traditionally assumed to demand the abstract’ [TP91].

The importance of concrete thinking in programming has been endorsed over the

subsequent decade through the emergence, and growing popularity, of programming

paradigms that emphasise non-traditional development cycles (e.g. eXtreme

Programming [Bec00] and Rapid Application Development [Mar92]). Planners value

hierarchy and abstraction; bricoleurs prefer negotiation and concrete experiments.

Many differences can be identified between the bricoleur’s and planner’s approaches

to programming. Ownership of a program is one important difference. Planners

typically want to be able to ignore the detail of individual components in their

program and treat each component as a black box. Bricoleurs want the internal

workings of their model to be exposed because they are personally involved with

their program and want to maintain their engagement with it. If we consider the

learning style of bricoleurs and planners, we find another distinction:

 ‘…the bricoleurs are happy to get to know a new object by interacting with it,
learning about it through its behaviour the way you would learn about a
person, while the planners usually find this intolerable. Their more analytic
approach demands knowing how the program works with a kind of assurance
that can only come from transparent understanding, from dissection and
demonstration’ [TP91, p173].

The above discussion shows that there are fundamental differences between bricolage

and planning approaches. Turkle and Papert claim that an epistemological pluralism

is a necessary condition for a computer culture that encompasses every individual

[TP91]. This view is endorsed in psychology by Gardner’s work on multiple

Chapter 4: Constructionism and computers for learning

 113

intelligences [Gar93], work on different learning styles [DD93] and approaches to

problem solving [Pol57]. It is difficult for current computer programming cultures to

accept an epistemological pluralism, because this:

‘requires calling into question, not simply computational practices, but
dominant models of intellectual development and the rarely challenged
assumption that rules and logic are the highest form of reason’ [TP91, p185].

Turkle and Papert propose to achieve epistemological pluralism through the

development of computer programming languages that embrace both planning and

bricolage styles. However, their critics claim that what Turkle and Papert identify as

bricolage in computer programming is not a case of ‘trial-and-error vs planning’ but

of ‘aimless trial-and-error vs planning’ [YB01]. For instance, Ben-Ari is concerned

that the development of explicit mental models must take place in tandem with trial-

and-error, or learning will be hindered. In respect of programming, Ben-Ari claims

that:

‘premature attempts to write programs lead to bricolage and delay the
development of viable models … There is nothing wrong with
experimentation and bricolage-style debugging, as long as it supplements,
rather than supplants, planning and formal methods’ [Ben01].

Although Ben-Ari believes that we all practise some bricolage thinking, he does not

see it as a substitute for the conventional programming discipline:

‘The manifestation of bricolage in computer science is endless debugging: try
it and see what happens. While we all practice a certain amount of bricolage
and while concrete thinking can be especially helpful – if not essential – for
students in introductory courses, bricolage is not an effective methodology for
professional programming, nor an effective epistemology for dealing with the
massive amount of detailed knowledge (that) must be constructed and
organised in levels of abstraction (cf. object-oriented programming). The
normative planning style that we call software engineering must eventually be
learned and practiced’ [Ben01].

Chapter 4: Constructionism and computers for learning

 114

In due course, we shall argue for a radically different view of the place of bricolage in

computer programming from that represented by Ben-Ari. We attribute the failure of

current programming and software engineering practices to support bricolage fully to

their lack of maturity and contend that – by adopting different practices – it is

possible to integrate the construction of computer-based artefacts and mental models.

The possibility of better computer support for bricolage notwithstanding, we endorse

Ben-Ari’s claim that planning has an essential role in large scale software

development. However, in considering the wider agenda of ‘learning through creating

computer models’ – where process is more important than product – bricolage is

profitable if it leads to a more valuable learning experience on the part of the student.

In this context, what we wish to recognise as bricolage in conventional programming

is the province of experts – who shape their programs skilfully in response to

emerging requirements, rather than that of novices – who hack their program in an

undirected manner. Without better support for bricolage, learners who are not expert

programmers are forced to write programs in a style that may not be appropriate for

them (cf. [TP91, Gar93]). With reference to Ben-Ari’s quotes above, we see bricolage

as an important aid in learning through model-construction, and in the prototyping –

rather than the production – of a final product.

A further criticism of bricolage in computer programming has been made by Steve

Talbott. He claims that – although an approach to programming may be conceived in

isolation from the computer as bricolage – at the level of implementation, no matter

how the student may think about the problem, it has to be coded in an abstract

algorithmic method:

‘While it may be legitimate to speak of the hard-edged and smoky effects the
programmer aims at, the programming itself – which is the child’s immediate
activity – possesses a fundamental character that remains the same regardless
of the style of the effects. The programmer may start with an interest in some
aspect of the world, but the act of programming forces him to begin filtering
that interest through a mesh of almost pure abstraction. To draw a figure with
Logo, the child must derive a step-by-step procedure (algorithm) by which he
can construct the desired result.’ [Tal95, p157].

Chapter 4: Constructionism and computers for learning

 115

It would be hard to refute Talbott’s claim that all computer programming involves

some aspects of learning (typically abstract in character) that are not related to

domain learning. For instance, in the use of Logo, a child requires some rudimentary

knowledge of abstract computational ideas such as parameters and procedures.

However, as Nardi has argued, a programming activity such as spreadsheet

construction is more closely linked to domain learning than conventional

programming [Nar93]. More generally, computer model-building that enables the

modeller to focus primarily on the semantic relation � between the model and the

real-world (cf. section 2.2.2) can alleviate the emphasis on abstraction. Current

computer programming practice arguably obscures the possibility of a bricolage-

based approach that does not force the learner to ‘filter their interest through a mesh

of almost pure abstraction’. As will be discussed in section 4.6, we believe that there

is scope for alternative practices that give more access to a concrete, experiential

learning style and move away from computer programming as an abstract

preconceived activity.

Who is making it? Bricoleur Planner

What is being made? Concrete artefact Abstract program

Usage of tools Uses whatever tools are already

available

Uses standard tools with

preconceived modes of use

Type of thought Concrete Abstract

Level of preplanning Minimal Entirely preplanned

Priorities Negotiation, Engagement Hierarchy, Abstraction

Knowledge Construction Through open-ended interaction Through analysis

Most suitable for Non-programmers Software engineers

Most similar software

development style

RAD, XP Conventional software

development

Scale of application Suitable for prototyping and

small scale production

Suitable for mass production and

large systems

Cognitive implications Delays the construction of viable

mental models

Demands mental models as a

prerequisite

Table 4.1 – Differences between bricoleurs and planners, as identified in [TP91,

Ben01]

Chapter 4: Constructionism and computers for learning

 116

The differences between the approaches to computer programming of the bricoleur

and the planner that have been discussed in this section lie in the process and not the

product. These are summarised in Table 4.1.

4.3 Situated learning

The proponents of situated learning claim that, for meaningful learning to take place,

a learner must be placed within a realistic cultural and situational context. They also

argue that the abstraction of problems from their real-world origins does not remove

the complexity of the problem – it removes their essence [Lav88, Gog96]. In this

section, we outline what situated learning is and how it relates to bricolage and

planning approaches to model construction.

Situated learning is linked with John Dewey's claim that learning develops from

experience and through social interaction [Dew38]. Learning in a situation is

promoted in the idea of cognitive apprenticeship:

‘Cognitive apprenticeship supports learning in a domain by enabling students
to acquire, develop and use cognitive tools in authentic domain activity’
[BCD89].

Apprentices, in trades such as mechanics and medicine, learn through authentic

hands-on activities. Apprenticeship highlights how learning is an active process that

is context-dependent, situated and cultural [BCD89]. Apprenticeship skills often arise

out of what Lave and Wenger term legitimate peripheral participation [LW91].

Learners come to understand a skill by initially watching others perform the activity

and gradually they take on some aspects of the role. Learning occurs through hands-

on interaction. The full role is learnt legitimately through peripheral participation.

This approach is in evidence in job shadowing for new employees.

Chapter 4: Constructionism and computers for learning

 117

Problems that are encountered in apprenticeship situations are different in character

from problems met in abstract school-like settings. This is illustrated by Table 4.2,

which has been extracted from Table 1 in [BCD89]. Table 4.2 can be interpreted as

showing how problem solving in a situation (i.e. by practitioners) differs from

problem solving in an abstract setting (i.e. by students).

 Students Practitioners

Reasoning with Laws Casual models

Acting on Symbols Conceptual situations

Resolving Well-defined

problems

Ill-defined problems

Producing Fixed meaning

and immutable

concepts

Negotiable meaning and

socially constructed

understanding

Table 4.2 – Comparing problem solving in situation and in abstract settings (adapted

from Table 1 in [BCD89])

In the spirit of learning through cognitive apprenticeship, many researchers have

called for a revolution in the school environment, where problems set for students are

often devoid of real-world relevance (see e.g. [Dew38, Fri70, Ill71, Pap80, Pos92,

Tal95, Opp97]). In [Res87], Lauren Resnick compares learning in a school

environment with what she terms ‘everyday learning’, namely learning that takes

place out in the world rather than in a classroom setting. She reasons that school

learning often consists of individuals thinking abstractly about ways of solving

problems where the emphasis is on the manipulation of formal symbols and the

generation of general routines for solving classes of problems. In contrast, everyday

learning often involves solving particular concrete problems where the structure of

the task or the tools available can guide the solution to a problem, as in bricolage

Chapter 4: Constructionism and computers for learning

 118

[Lev68]. The differences between school and everyday learning are summarised in

Table 4.3.

 In school Everyday learning

Type of learning Primarily mental

‘THINKING’

Tool manipulation

‘DOING’

Personnel Individualised Shared cognition

Applicability General Situation-specific

Objects of Thought Concentrated on manipulating

symbols

Contextualised reasoning

Table 4.3 – Comparing school learning and everyday learning [Res87].

CAI provides support for delivering and assessing traditional school problems. In

CAI, the computer is used as a rigid device for asking students questions and eliciting

responses from them, as in an instructionist approach. Providing support for

Resnick’s everyday learning requires understanding the part situational elements play

in the learning process and their implications on the design of learning environments.

Jean Lave promotes the idea of situated learning, claiming that the situation within

which a problem is posed is not incidental to its successful solution, but often

provides the enabling factor through which learners can solve the problem [Lav88].

Lave gave examples of adult shoppers and tailors who could perform mathematical

calculations in a real-world situation, but were unable to solve the same problems

posed as abstract mathematical questions.

The psychologist, John Anderson has raised two concerns about situated learning

approaches. He argues firstly that abstract knowledge can be transferred between

tasks; and secondly that studying parts of an activity in isolation before considering

them in combination can be more effective than instruction in complex, social

environments [ARS96]. Anderson also observes that learning that is situated in the

world is not necessarily to be preferred. In many respects, learning to solve a

particular instance of a problem in a specific real-world context is limited in

comparison with understanding a general abstract solution to that particular class of

Chapter 4: Constructionism and computers for learning

 119

problems. However, the knowledge that leads to comprehension of the general is

often gained from the experience of interacting with particular concrete problems.

Anderson’s critique of situated learning motivates domain learning techniques that

make it possible to combine situational and abstract approaches to learning. With

reference to the EFL, such domain learning techniques need to support a fluid

migration between concrete and formal learning activities.

Having introduced our broad perspective on constructionism, we now consider the

extent to which this is supported by three domain learning techniques: concept

mapping (section 4.4), conventional programming (section 4.5) and EM (4.6).

4.4 Concept mapping for domain learning

In this section, we consider concept mapping and discuss how this technique of

representing emerging domain knowledge is related to the EFL. We shall argue that

concept mapping is particularly closely connected with private and experiential

learning activities in the EFL. We shall also argue that concept maps cannot support

learning activities across the whole of the EFL, particularly the integration of

experiential and formal learning activities.

4.4.1 Reviewing Concept Maps

Concept maps were introduced by Joseph Novak, an educational psyhcologist at

Cornell University in the 1960’s. Concept maps draw on the psychologist Ausubel’s

idea that the most important factor in learning is what the learner already knows

[Aus68]. Concept maps are an example of a cognitive tool: a mental or computational

device that can support, guide or extend the thinking process of its user [KJM92].

Cognitive tools support a constructionist approach because they actively engage

learners in organising their knowledge to reflect their comprehension and conception

of a domain [GKL+01].

Chapter 4: Constructionism and computers for learning

 120

Concept maps are a way of representing knowledge in a visual graph structure, as

seen in the concept map of this chapter in Figure 4.2. Nodes in a graph represent

concepts. Connections between nodes define relationships between concepts. Novak

states that concept mapping comprises three important elements: concepts;

propositions; and learning [NG84]. A concept in the context of a concept map is ‘a

perceived regularity, designated by a label’. Concepts can be well understood or only

partially understood; the concept map does not require knowledge to be complete or

formalised. A proposition in the context of a concept map is defined as ‘a link

between concepts’. Propositions can be labelled with arrows and, if appropriate,

annotated with a description of the link that should be concise, as complete as

possible, and understandable to another person. A set of concepts linked by

propositions constitutes a concept map. Novak’s third element of concept mapping,

namely learning, is ‘the active construction of new propositions’. Creating a concept

map is an active learning process – the actual process of constructing it furthers our

knowledge and affects the structure of the map itself.

Digital watch case study

 4.7

Instructionism

 Empirical Modelling 4.1

Constructionism

 Programming 4.2

Bricolage

 Concept mapping 4.3

Situated Learning

 4.4

Experiential Framework for Learning

Figure 4.2 – An example concept map of this chapter

4.6

4.5

Chapter 4: Constructionism and computers for learning

 121

Mind maps, developed at the British Broadcasting Corporation (BBC) by Tony Buzan

is an idea related to concept maps. They consist of one central word or concept,

around which you draw the 5 to 10 main ideas that relate to that word [BB95]. The

essential difference between mind maps and concept maps is that a mind map has one

central concept but a concept map may contain several.

Learning through linking together concepts is endorsed by Marvin Minsky [Min86]:

‘The secret of what anything means to us depends on how we’ve connected it
to all the other things we know. That’s why it’s almost always wrong to seek
the ‘real meaning’ of anything. A thing with just one meaning has scarcely
any meaning at all’.

Uri Wilenski has also argued that establishing connections between concepts is a

powerful learning objective. He describes a concept as being ‘concrete’ if it is well

connected to other concepts, we have multiple representations of it, and we know

how to interact with it in many modalities [Wil93]. In Wilenski’s view, a concept

becomes concrete through connecting it to other concepts, through many modes of

interaction and through engaging in activities followed by reflection (a process he

calls ‘concretion’). Wilenski’s use of the term ‘concrete’ differs from our use of the

term in this thesis where it refers to existing in a material form; real [OED97], as

opposed to being abstract. His notion of ‘concretion’ closely resembles the notion of

the elaboration of a concept introduced in section 2.2.2.

The general nature of concept mapping means that it is widely applicable. Concept

maps can be used, for example:

i) to see connections between current ideas. This is helpful in establishing our

current state of knowledge.

ii) to connect new ideas to knowledge that we already possess. This is helpful in

organising and understanding the place of new ideas. The assimilation of new

knowledge is associated with adding new concepts and connections between

concepts.

Chapter 4: Constructionism and computers for learning

 122

Concept maps can be constructed using pencil and paper, but there are also many

software programs that support their construction (e.g. Inspiration [Ins93]). The major

advantage of computer-supported concept mapping over pencil and paper approaches

is the forgiving nature of the medium – links and concepts can be edited or removed

easily. Anderson-Inman and Zeitz [AZ93] found that the computer-based medium

encouraged learners to revise their maps as their understanding changes. In their

research, Heeren and Kommers [HK92] concluded that concept mapping software

should allow expressive flexibility so that students with different learning styles and

techniques can demonstrate and develop their knowledge and understanding.

In summary, concept mapping is a constructionist approach to articulating current

knowledge, organising current ideas and establishing links between current and

emerging ideas. We now consider how concept maps can be viewed from the

perspective of the EFL.

4.4.2 Concept maps and the EFL

Concept mapping, as an activity to explore and classify personal knowledge, has

many characteristics in common with learning activities at the private end of the EFL.

Concept mapping involves surveying a domain with a view to identifying important

features and contexts. The construction of a concept map is not an objectively defined

process; it is an iterative process that encourages reflection on construction as active

learning to stimulate new knowledge [GKL+01]. The process of constructing a

concept map to articulate our current knowledge is related to Gooding’s notion of a

construal (cf. section 3.4.1) [Goo90]. A concept map can be viewed as a construal

because it is a concrete artefact being used to understand a phenomenon. Gooding

views construals as concrete and situational interpretations of unfamiliar experience

and trial interpretations – this characterisation is consistent with the role that concept

maps play in representing the known and connecting the known to our emerging

understanding.

Chapter 4: Constructionism and computers for learning

 123

In other respects, concept mapping does not necessarily resemble EM at the private

end of the EFL. Like the jugs visualisation in Figure 2.19, the concept map in Figure

4.2 serves as an artefact, but its nodes depict concepts that are much more

sophisticated than the primitive observables that represent the current contents of a

jug. Likewise the relationships between the nodes in the concept map in Figure 4.2

are less precisely prescribed than the dependencies between primitive observables.

This loose analogy between observables and nodes, and dependencies and

propositions was exploited by Wong in his design of the Dependency Modelling

Toolkit (DMT) [Won03]. Figure 4.3 shows the DMT representation of the jugs model

shown in Figure 2.19.

Figure 4.3 – The simple jugs model from Figure 2.19 in the DMT

In [Won03], Wong envisages the DMT as the basis of a visual environment for EM.

It is evident that such an environment could be used to construct complex definitive

scripts that support EM at the concrete end of the EFL. In effect, Wong has identified

a particular kind of concept map that can be used to migrate from primitive learning

activities towards objective knowledge (cf. the discussion of heapsort in section 6.3

Chapter 4: Constructionism and computers for learning

 124

and in [Run02]). Though concept maps are in general suitable for expressing our

current level of understanding and assist as a learning device in assimilating new

knowledge neither computer-based nor pencil-and-paper concept maps can integrate

experiential and formal learning activities. In effect, the concept map is set aside

when constructing a computer model based on the knowledge that it embodies.

4.5 Programming for domain learning

Computer-based modelling has had a crucial role in the development of

constructionist approaches to learning. The future prospects for constructionist

model-building approaches will depend on the quality of the paradigm being used to

build models. For this reason, we need to consider conventional approaches to

programming and the implications for their support of constructionism. In this

section, we first review the main tenets of the Object-Oriented (OO) approaches to

model construction that are so prominent in modern approaches to software

development (e.g. [Jac92]). We then describe how programming can be viewed from

within the EFL, and conclude that programming as classically conceived has

deficiencies with respect to constructionism because of its emphasis on

preconception, abstraction and generality over flexibility and experimentation. The

work reported in this section draws on material from three previous EM theses,

namely Allan Wong’s research on software system development in EM [Won03], and

comparative studies of OO and EM in Timothy Heron’s MSc thesis [Her02] and

Ruyuan Wang’s MSc thesis [Wan03].

4.5.1 Programming from a learning perspective

If computer-based model building is to support the educational objectives of

constructionism, then the programming activity must be well-aligned to domain

learning. In general, a program is primarily conceived as a piece of software that

fulfils some purpose based on a set of requirements. Programming involves writing

computer code to satisfy the intended specification of the program. In general, the

Chapter 4: Constructionism and computers for learning

 125

programmer’s objective is not to learn from the construction of the program, but to

deliver a final product. In the context of the constructionist agenda, the main question

is whether the programming process is beneficial from a learning perspective.

If we consider the programming process as having two aspects – the design and

analysis of the domain, and the writing of code – then learning is predominantly

associated with the design and analysis activities. In the constructionist approach to

learning, the evolving artefact is an embodiment of ignorance, and interactions with it

serve to shape the artefact and its interpretation. Knowledge of the domain is acquired

as the artefact is constructed. The roles that artefacts and domain knowledge play in

programming are in contrast quite different. While knowledge of the domain plays a

fundamental role in programming, the only essential knowledge is concerned with the

intended interaction and interpretation of the program that is prerequisite for

conventional programming. There is a role for interaction with artefacts (as

represented by use cases, UML diagrams [JCJ+92], and prototypes of various kinds)

but these artefacts embody the knowledge prerequisite for programming and are

typically discarded once programming commences.

In previous EM theses, particular case studies have been used for comparative studies

of model building in EM and program construction using OO principles. We will

discuss these briefly to highlight their key conclusions. Heron’s MSc thesis compares

EM and OO development with reference to two case studies: a game of draughts

[EMRep, draughtsRawles1997]; and a vehicle cruise control simulator (VCCS)

[EMRep, cruisecontrolPavelin2002]. From these comparisons, he concludes that

changes in the OO model are as easy to make as in EM as long as the change has

been preconceived in advance. In his study of the VCCS model, he observes that the

OO programmer has more to do; for example, all the method calls used to propagate

changes of state have to be worked out and ordered before coding. Wang’s MSc

thesis discusses the VCCS models developed in OO and EM in much greater depth.

She concludes that the functionality of the object-oriented VCCS is abstractly and

precisely prescribed, whereas in EM the VCCS model can take account of issues that

Chapter 4: Constructionism and computers for learning

 126

are outside the normal scope of correct operation and that might be useful for

learning. Her key observation is that use-cases [Jac92] only give an account of typical

interaction between a system and external actors. However, from a learning

perspective this requires all interactions to be conceived before any programming

takes place – there is no room for evolution of ideas in tandem with the developing

program.

Wong’s PhD thesis contains a comparative study of EM and OO development of a

dishwasher model. Through implementing models using both approaches, he

identifies a number of characteristics from which to compare the two development

styles [Won03]:

i) Modelling focus – In EM, the focus is initially on the subjective

interpretations of the modeller. Observations recorded in the EM model

are based on the imagined interactions in the system, but there is no

circumscription of the system boundary. In UML, the focus is on

modelling the structure and behaviour of the system. Once the system

boundary has been established, the system is constructed in isolation from

its operating environment.

ii) Interactiveness – In EM, the modeller can always get feedback on any part

of the model, because there is always a working model. Experimental

interactions to test new insights or consolidate current understanding are

part of the modelling approach. In UML, diagrams are abstract

representations that are not primarily to be interpreted with reference to a

particular state of a system. The main role of the UML is to specify system

behaviour; experimental interactions are limited in their extent and

changes must be compiled into an executable program for each change.

iii) Comprehension – In EM, comprehension is typically gained from

experimental interactions with the model. Exploration in this sense is not

part of the UML approach; the diagrams purely represent the

predetermined relationships between components rather than allowing the

exploration of possible alternatives.

Chapter 4: Constructionism and computers for learning

 127

iv) Openness – In EM, there is no particular viewpoint from which a model

should be built, and the model emerges from experimental interactions

rather than through prior circumscription. There is no system boundary

within which construction must take place and the modeller is always in

the position of being able to step in and make experimental changes. In

UML, a fixed set of diagrams guides the modelling process. Use-cases and

class diagrams constrain the interactions between components until

implementation is clear. The emphasis is on circumscription as the guiding

principle of system construction.

v) Interfaces – In EM, model building and user interface construction occur

within the same framework. In UML, there is no support for specifying

interfaces of the target system. Interfaces must therefore be constructed

and tested separately.

The comparative studies of EM and OO approaches to software development

highlight the following distinctions:

• in conventional programming, the artefacts generated to represent the program

requirement reflect richer knowledge of the application domain than the

program itself. In EM, in contrast, the knowledge prerequisite for realising an

abstract behaviour is cultivated throughout the modelling process and is never

discarded.

• in conventional programming, domain knowledge and identification of

purpose are essential prerequisites for writing a program, and optimisation to

purpose is a measure of program quality. In EM, in contrast, the identification

of purpose emerges during the process of model construction and this

identification does not compromise the character of the model as a construal.

In the next section, we interpret the conclusions from the comparative studies of EM

and programming with reference to the EFL and our broad perspective on

constructionism.

Chapter 4: Constructionism and computers for learning

 128

4.5.2 Conventional programming, constructionism and the EFL

Conventionally, programs are built by defining an external system boundary and

circumscribing the possible interactions and interpretations. With reference to the

EFL, these principles for programming are targeted at the identification of common

experience and objective knowledge together with symbolic representations and

formal languages. In other words, programming is associated with activities at the

theoretical end of the EFL. What is more – though computer programs may be able to

support learning activities at the end of the EFL – conventional programming activity

itself is very different in character from the learning activities at the empirical end of

the EFL.

The discussion above indicates that conventional programming is only well aligned to

a small subset of the learning activities that make up the EFL. It is obvious that model

construction using a conventional programming language satisfies Papert’s basic

definition of constructionism in so far as the act of programming involves actively

creating a personally meaningful entity. However, as we shall argue below,

conventional programming lacks the characteristics needed to give full support to the

broad perspective on constructionism that we adopt in this thesis (cf. Figure 4.1).

The aspiration in bricolage and situated learning is to support concrete learning

through interaction and exploration. However, this aspiration is not being well served

by the current emphasis on computers in learning. Our experience of EM has led us to

believe that the paradigm used for model building has a significant bearing on the

quality of support for the constructionist approach that computers can provide. As we

have argued in a previous paper:

‘there are profound conceptual issues to be addressed before such a shift in
emphasis [from ‘planning’ to ‘bricolage’ in computer model construction] can
be achieved: the fundamental preconceptions about computation that inform
classical computer science are ill-oriented for this purpose’ [RB02].

Chapter 4: Constructionism and computers for learning

 129

We agree with Ben-Ari (cf. section 4.2) that computer programming – as practised –

contains elements of bricolage [Ben01] and with Brooks’s view [Bro95] that

programmers see their work as a craft where they wrestle with incompletely

understood meaning. Software development identifies two general phases, of

knowledge gathering and knowledge deployment. The first phase is one of

engagement with the world, and of preliminary knowledge gathering, whilst the

second is a complementary phase where knowledge is deployed in program

specification and design. Interaction with artefacts is common in gathering

knowledge (through the building of prototypes, the creation of use-cases and UML

diagrams [JCJ+92]), but this knowledge is targeted at achieving a specific functional

goal. The obligation to frame knowledge in this goal-directed fashion reflects the

conception of programs within the classical theory of computation. This means that in

practice, even though the phases of knowledge gathering and deployment are

interleaved, the intimate relationship between the two is obstructed by the way in

which knowledge is deployed.

The relationship between knowledge gathering and knowledge deployment in

computer programming reflects a commonly accepted view of the relationship

between experiment and theory in science [LJ98]. Our concern about the classical

separation between the open-ended experience that informs requirements and the

circumscribed behaviour of a program mirrors Gooding’s concern about the

bifurcation of the scientist’s world into the empirical and the literary:

“Scientists’ descriptions of nature result from two sorts of encounter: they
interact with each other and with nature. Philosophy of science has, by and
large, failed to give an account of either sort of interaction. Philosophers
typically imagine that scientists observe, theorize and experiment in order to
produce general knowledge of natural laws, knowledge which can be applied
to generate new theories and technologies. This view bifurcates the scientist’s
world into an empirical world of pre-articulate experience and know-how and
another world of talk, thought and argument. Most received philosophies of
science focus so exclusively on the literary world of representations that they
cannot begin to address the philosophical problems arising from the
interaction of these worlds: empirical access as a source of knowledge,
meaning and reference, and of course, realism.” [Goo90, p. xi]

Chapter 4: Constructionism and computers for learning

 130

The alternation between requirements gathering and program specification testifies to

the bifurcation of the computer scientist’s world. This is evidenced by the problems

encountered in conventional programming approaches when seeking to admit truly

experimental interactions and achieve flexible adaptation of the program as it is being

developed. In our view, software development to support constructionist use demands

a conceptual integration of the pre-articulate exploration and formalisation of

knowledge that are respectively associated with the phases of knowledge gathering

and knowledge deployment [RB02].

The above discussion suggests that conventional programming is inadequate as a

basis for a general constructionist approach to model building (cf. the observations by

Soloway [Sol93] and by Steinberger [Ste94] that general purpose programming

languages obstruct meaningful domain learning). This may be a factor in accounting

for the relative lack of popularity of programming as a learning tool for the non-

specialist (cf. [Nar93]), and the emergence and subsequent disappearance of Logo

from the National Curriculum in the United Kingdom (cf. [NH96]). In the following

section, we consider the merits of EM as an approach to model construction that

enables the conceptual integration of concrete and formal learning required to support

our broad notion of constructionism.

4.6 Empirical Modelling, constructionism and the EFL

In this section, we discuss the connections between EM, constructionism and the

EFL. The strength of these connections determines the extent to which EM can

support our broad notion of constructionism. Like conventional programming, EM

evidently satisfies Papert’s basic definition of constructionism. In section 3.6, we

showed that EM can support a wide range of learning activities that are identified in

the EFL. It remains to show that EM is well suited to supporting broader aspects of

constructionism such as bricolage and situated learning.

Chapter 4: Constructionism and computers for learning

 131

4.6.1 Empirical Modelling and bricolage

In this section, we discuss how EM model construction supports bricolage. To do this

we review the literature on both EM and bricolage, to identify their common points.

Bricolage and EM originate from entirely different contexts. In developing the

concept of bricolage, the anthropologist Levi-Strauss was concerned with the

construction of physical artefacts within ‘primitive’ societies. In contrast, EM is

concerned with computer-based model construction that has been observed in

practice, primarily in the work of computer science students at the University of

Warwick over the past fifteen years. This has involved the construction of several

hundred models in connection with student projects and academic research (see

[EMRep] for a representative sample).

Evidence that the EM modeller is a bricoleur rather than a planner can be seen in key

phrases taken from Russ’s comparison of EM and programming in [CRB00]:

• ‘there is really no counterpart in EM to the ‘planning’ phase. ... conceptual

modelling in EM can conveniently be directly put into a script with a

visualisation and experimented with on the computer.’

• ‘it is significant that testing occurs in advance of any commitment to a

particular form of program.’

• ‘in an EM development it is typical that the interface is left until an advanced

stage of the development – when the purpose and requirement has been

clarified through extensive use of the very open-ended phase of model

construction and exploration.’

In EM, the purpose of model building may not be initially clear:

‘The objective of a (student) project has often been uncertain at the early
stages, and a theme has emerged as the model-building activity proceeds
incrementally. The profile of work on the project is distinctively different
from that practised in other paradigms, such as object-oriented software
development. Students typically carry out significant model construction even
at the early stages, and are guided by this in their strategic decisions’ [Bey01].

Chapter 4: Constructionism and computers for learning

 132

Though the modeller may have a general problem in mind, the initial phase of work

involves surveying tools and models both to identify useful resources and to shape the

provisional direction of development. This preliminary activity typically influences

the modeller’s original conception of their project. This resonates with Levi-Strauss’s

account of bricolage in the preliminary stages of a project:

‘Consider the bricoleur at work and excited by his project. His first practical
step is retrospective. He has to turn back to an already existent set made up of
tools and materials, to consider or reconsider what it contains and to engage in
a sort of dialogue with it and, before choosing between them, to index the
possible answers which the whole set can offer to his problem.’ [Lev68, p18]

‘Once it materialises the project will therefore inevitably be at a remove from
the initial aim, a phenomenon which the surrealists have felicitously called
“objective hazard”.’ [Lev68, p21]

The influence of the developing artefact over the modeller’s conception of his or her

project is prominent throughout the development of an EM model, and the final

outcome of a project may differ significantly from the initial idea.

As highlighted above, the process of model construction in EM is one of negotiation;

the modeller uses the partially constructed artefact (and its real world counterpart if it

exists) to further refine their current understanding of it. This emphasis on

understanding the artefact under construction is also seen in bricolage. Levi-Strauss

says of model building:

‘Now the model being an artefact, it is possible to understand how it is made
and this understanding of the method of construction adds a supplementary
dimension.’ [Lev68, p24]

The products of EM and bricolage both relate to the embodiment of rich experience in

a real-world artefact. In both, the emphasis is on human engagement in the model

building and concrete rather than abstract representations of knowledge. Levi-Strauss

Chapter 4: Constructionism and computers for learning

 133

refers to the products of bricolage as ‘miniatures’ and stresses the importance of real-

world human engagement:

‘… miniatures have a further feature. They are ‘man made’ and, what is more,
made by hand. They are therefore not just projections or passive homologues
of the object: they constitute a real experiment with it.’ [Lev68,p24]

The emphasis in EM and bricolage is on the learning that occurs during construction

of an artefact rather than on the finished product, as illustrated in the quotes below:

‘... the ‘bricoleur’ also, and indeed principally, derives his poetry from the fact
that he does not confine himself to accomplishment and execution ... The
‘bricoleur’ may not ever complete his purpose but he always puts something
of himself into it.’ [Lev68, p21]

‘Computer models constructed using Empirical Modelling principles are not
to be viewed as implementing an abstract mathematical model. Their
significance is instead similar to that of the physical model that an
experimental scientist might build to account for a phenomena, or that an
engineer constructs to prototype or test a design concept.’ [BS99]

The qualities of bricolage in relation to the EFL can be inferred from Table 4.1. The

defining characteristic of bricolage – of intimate engagement through interaction with

the artefact – is found in activities at the empirical end of the EFL. Planners – who

preconceive modes of use and functionality of their product before programming – do

not engage with the empirical learning activities during construction. This approach is

only suitable if they have a good understanding of the situation they are modelling.

Model building approaches that embrace bricolage must be capable of supporting

learning activities at the experimental end of the EFL.

In summary, the discussion in this section has illustrated that there are close links

between EM and bricolage, and that both offer support to the concrete learning

activities at the empirical end of the EFL.

Chapter 4: Constructionism and computers for learning

 134

4.6.2 Empirical Modelling and situated learning

In situated learning, hands-on interaction with tangible artefacts guides the learning

process. The technologist, John Seely Brown claims that educational practice has

been dominated by a belief that conceptual representation (typically abstract and

symbolic) is of the most importance, and argues that situated cognition, giving

activity and perception a prior place over representation, could solve some of the

problems in school learning:

‘For centuries, the epistemology that has guided educational practice has
concentrated primarily on conceptual representation and made its relation to
objects in the world problematic by assuming that, cognitively, representation
is prior to all else. A theory of situated cognition suggests that activity and
perception are important and epistemologically prior -- at a non-conceptual
level -- to conceptualisation and that it is on them that more attention needs to
be focused. An epistemology that begins with activity and perception, which
are first and foremost embedded in the world, may simply bypass the classical
problem of reference -- of mediating conceptual representations’ [BCD89].

In Seely Brown et al [BCD89], situated learning is associated with ‘cognitive

apprenticeship’ in which learning progresses from activity embedded in a situation to

general principles of the culture. Apprenticeship goes together with coaching, and

students undertake modelling in situ that is scaffolded to get them started in authentic

activity.

To give computer support to situated learning as characterised by Seely Brown

requires a modelling approach that gives a high priority to activity and perception. As

discussed in section 3.3.2, in EM, activity and perception are viewed as

‘epistemologically prior to conceptualisation’ and the idea of ‘one experience

knowing another’ may be seen as ‘bypassing the classical problem of reference’ (cf.

[Run02, chapter 2]). The fundamental concept of EM is not that ‘activity and

perception are first and foremost embedded in the world’, but rather that activity and

perception are first and foremost embedded in personal experience, that can then be

classified as subjective or objective. In EM, activity and perception that is embedded

Chapter 4: Constructionism and computers for learning

 135

in objective experience is nevertheless important. In such a context, EM is a form of

situated modelling.

Situated modelling is an essential constituent of computer support for situated

learning. The situated nature of EM has been discussed in detail in connection with its

potential role in software development [Sun99]. In particular, EM can be seen as

meeting Goguen’s concern for situatedness in requirements analysis:

‘EM activities are carried out with reference to an external situation, even
though in practice this situation can be imaginary rather than concrete.
Practical experience of EM confirms its status as a situated modelling method,
and activities in EM exhibit Goguen’s “qualities of situatedness”: emergence,
contingence, locality, openness and vagueness [Gog96]. The main reason why
EM exhibits these qualities is that, because of the nature of the modeller’s
interaction, the process of formulating definitive scripts is never separated
from the modelling context.’ [BS98]

The qualities of EM as a situated modelling approach are that:

‘the properties of openness and situatedness reduce the separation of model
and world and offer the possibility of a user deriving qualitative knowledge of
the world through interactive use of the model’ [BRR00].

These qualities are significant for the computer support that EM can give to situated

learning. They support the learner in interacting with artefacts and developing

practical skills in particular concrete situations and also assist the learner in applying

and understanding general abstract solutions.

The organisation of the constituent learning activities within the EFL is consonant

with Seely Brown’s claim for the prior place of activity and perception over

conceptual representation. Modelling an artefact is situated; its construction takes

place with and during consultation of a real-world referent. In situated modelling in

EM, the important activities have direct counterparts in the real world: namely the

identification of salient features (through observation); understanding the nature of

indivisible changes in the referent (through dependency); and determining who, or

Chapter 4: Constructionism and computers for learning

 136

what, is responsible for those changes (through agency). With reference to the EFL,

situated learning is concerned with interaction and experimentation with particular

concrete instances of a problem in context and this corresponds to learning activities

at the concrete end of the EFL.

In summary, the discussion in this section has illustrated that there are close links

between EM and situated learning, and that both offer support to the concrete learning

activities at the empirical end of the EFL.

The above discussion has considered situated factors in model construction. The

benefits of EM as an approach to situated modelling can also be seen in relation to

learning environments where situational factors have an important role to play. This

is illustrated by the Clayton Tunnel model (see section 2.4.5). In this model, each

participant views the situation from his or her own perspective on a different

computer. These perspectives only contain the elements that each participant can see

and interact with. For example, train drivers can only interact with controls related to

their train and can only see the signalman from particular parts of the track. Despite

the limited nature of the visualisation in this model, the open-endedness of the

interaction between participants and environmental factors in the situation offers

elements of realism that would not necessarily be within the scope of an immersive

environment. For instance, it is in principle quite straightforward to simulate failures

of communication due to misunderstanding; mechanical breakdowns; and

environmental variations that lie within the frame of the construal.

4.7 The digital watch case study

We conclude this chapter with a concrete example to illustrate how EM supports the

broad view of constructionism taken in this thesis. The construction of a digital watch

model is an example of situated modelling in EM since the referent is an actual digital

watch. The digital watch model has been used to illustrate many aspects of EM; for

Chapter 4: Constructionism and computers for learning

 137

more detailed information, see [BC95, RBF00, FB00, BRW+01]. Relevant issues

illustrated in this section include:

i) bricolage style development involving the re-use of previous models.

ii) knowledge gained through hands-on interaction rather than reference to a

user manual.

iii) the combined use of formal and informal artefacts.

iv) multiple perspectives on digital watch design and use.

v) incorporating situated aspects of digital watch use in the model.

An important facet of bricolage is the unprescribed path that the development of the

artefact follows. Bricolage involves subjective interaction of the modeller with the

artefact, and the character of both the artefact and the modeller’s relationship to it are

subject to change through exploratory interaction. This can be illustrated with

reference to the digital watch through the re-use and extensions made to the model by

a group of modellers over an extended period of time (see Figure 4.4).

Four different people were involved in the development of the digital watch model

over a period of eight years. The collaboration and communication between the

modellers involved was limited; at each stage, the artefact itself embodied much of

the knowledge that guided its future development. Beynon constructed the initial

digital display and a basic statechart (as presented in [Har87a]) in 1992. Richard

Cartwright added the analogue clock and the digital watch buttons in 1994 [BC95];

he also developed a chess clock variant of the model [BC95]. The functionality of the

digital watch at this stage was restricted to that of Harel’s original statechart, which

describes the display functions in detail but omits the functionality of components

such as the stopwatch and the mechanisms for setting the time. The full functionality

for the watch, together with buttons for updating the date and time, was added by

Carlos Fischer in 1999 [FB00]. In 2000, I altered the functionality to match the watch

I was using at the time and added an alternative visualisation that aided

comprehension of tasks that could be undertaken with the watch [RBF00]. My

version of the model is shown in Figure 4.5.

Chapter 4: Constructionism and computers for learning

 138

 Harel’s statecharts [Har88]

Beynon 1992

 (digital watch statechart without buttons)

 Cartwright 1994-5 [BC95]

 (created an interface to the digital watch)

 Cartwright 1995 [BC95]

 Fischer 1999 [FB00] (chess clock variant)

 (completion of digital watch functionality)

 Roe 2000 [RBF00] My actual digital watch

 (altered functionality to match an actual watch)

Figure 4.4 – The development history of the digital watch

Conceptually, the model was constructed in one continuous sequence of interactions

as in one ‘stream of thought’ (cf. section 3.3.2). The introduction of new definitions

to attach components to the model, and the addition of procedural actions to simulate

agents, are examples of typical interactions involved in the development. As in

bricolage, the impact of additions to the model guided the modeller in making future

changes. There is no sense in which the model in its current state represents a finished

product or the development process has reached a point of closure; within EM, the

Chapter 4: Constructionism and computers for learning

 139

model always remains open to potential future revision and extension. For instance,

the functionality of the digital watch could be extended to include the heart rate

monitoring facilities on a sports watch.

Figure 4.5 – The digital watch artefact (top right), an analogue clock (middle right)

and a mental stategraph (left)

The model consists of a digital watch artefact, a corresponding analogue timepiece

and a ‘mental stategraph’ that indicates the user’s current level of familiarity with the

states of the digital watch. The buttons labelled A,B,C,D on the digital watch

interface in Figure 4.5 depict four physical buttons that were similarly located on my

personal watch. The functionalities of these buttons correspond to the physical watch

operations. There are many dependencies present in the artefact. For instance, the

visible elements of the watch are dependent on its internal state. Button pressing

Chapter 4: Constructionism and computers for learning

 140

allows certain patterns of state change corresponding to watch operations to be

performed through the interface. These patterns reflect the circumscribed

functionality of the actual digital watch. They are expressed on the mental stategraph

by using coloured arrows to represent the state transitions that will occur if a button is

pressed. The current state is indicated with a bold border. For example (see Figure

4.5), if button A is pressed then the watch enters the time setting mode, and if button

D is pressed then the watch enters the alarm mode.

Beynon’s initial model was originally conceived with Harel’s agenda of using

visualisation to support complex system development in mind [Har87b, Har88]. It

features a statechart (a concept introduced in [Har87a]) that is used to specify state-

transitions and events. Statecharts are much richer than traditional state transition

diagrams because they exploit the notions of depth and orthogonality [Har88]. A

statechart is most suitable for recording reliable and comprehensive system

knowledge; it is not necessarily the most appropriate way to represent our emerging

understanding of the system that it describes.

The interface to my digital watch model was designed to be as faithful as possible to

my construal of the behaviour of the actual watch. In Figure 4.5, the visual

organisation of states in the stategraph reflects my conception of the main and

subsidiary functions of the watch. The changes of state are precisely correlated to the

actions of pressing and releasing buttons. In the stopwatch component, the effect of a

button press is dependent on the current state of the stopwatch: specifically the

transition made in response to button press B is determined by whether or not the

stopwatch is running. In all these respects, the stategraph differs from a statechart. Its

primary role is to provide an experiential rather than an abstract representation of

state.

The stategraph is better oriented than the statechart towards studying a learner’s

interaction with an artefact as it is conceived by Carroll (cf. section 4.1.2 and

[Car90]). The learner does not have the comprehensive knowledge of the artefact that

Chapter 4: Constructionism and computers for learning

 141

the user manual and the statechart abstractly supply: they develop understanding

haphazardly through experiment with the artefact itself. The stategraph in the digital

watch model is intended to be helpful in tracing a learner’s emerging understanding.

With this in mind, the stategraph in Figure 4.5 discloses states to the user as they

encounter them. This is a preliminary step towards representing the current

knowledge of the learner more accurately. For instance, from Figure 4.5 we can

deduce that the user has explored changing the time of the main clock and altering the

alarm, but has not yet encountered the other features. Visualisation of this kind is only

a first step towards evaluating a learner’s understanding; the fact that a learner has

encountered a particular function is no guarantee of understanding. More insight can

be gained from using the visualisation in conjunction with a worksheet that specifies

activities to be undertaken by the learner, such as setting the clock to British Summer

Time (see Figure 4.5).

It is evident that the digital watch model supplies a useful environment for situated

learning. For instance, it can be used to learn about telling the time on digital and

analogue clocks, to learn about the relationship between different time zones and to

understand many issues concerning the design and use of clocks, stopwatches and

digital watches (cf. Appendix D). Specific applications of the watch model in situated

learning are targeted by the worksheet questions that are incorporated into the model.

To illustrate situated use in a broader context, the modeller can introduce extra

observables to embellish the current model. These observables – rather than referring

to the digital watch itself – will be situational in nature. Situational observables

become significant when specific user activities involving the watch are being

studied, such as when the stopwatch feature is being used to record the finishing

times for two runners in a race. Figure 4.6 is a simple line drawing to represent a race

between two runners. The horizontal lines extend to the right towards the vertical

finishing line when the stopwatch is started. The watch user can then record the

finishing times of both the runners using the ‘split time’ feature. The TkEden

definitions and action required to model the runners in this extension is also displayed

Chapter 4: Constructionism and computers for learning

 142

in Figure 4.6. Note that there are two aspects to this extension, of the model: firstly,

the actual script has been changed; and secondly, the way that the user interacts with

the script changes to reflect the new situational emphases.

Figure 4.6 – Situational observables – timing two runners.

The potential for extension of the digital watch model is such that we can take

account of the exceptionally rich aspects of experience and knowledge that can

inform everyday interaction. Figure 4.7 depicts the digital watch display as it might

appear when observed when lying in bed, where it may be partially obscured.

Figure 4.7 – A partially obscured digital display

In this situation, careful observation of the clock is required before we can establish

the correct time. This will take into account such factors as the parts of the digits we

can observe, our knowledge of the patterns that govern the digits changing and

contextual knowledge, such as our estimation of the current time [BRW+01].

Chapter 4: Constructionism and computers for learning

 143

4.8 Summary of the chapter

In this chapter, we have considered how techniques for domain learning are related to

the educational theories of constructionism and instructionism. We have shown that

there is a paradoxical aspect to the way that conventional programming offers support

for constructionism. It satisfies Papert’s basic definition of constructionism, yet on

deeper inspection it is not well aligned to the constructionist learning activities in the

EFL, or to the ideas of bricolage and situated learning. Further, we have shown that

model construction in EM can support the ideas of bricolage and situated learning,

and the broad range of learning activities in the EFL. It is for this reason that we

regard EM as establishing a more intimate link between domain learning and model

construction than other approaches.

144

Chapter 5 – Scaffolding different types of learning

5.0 Overview of the Chapter

The focus in this chapter is on the merits of EM for the development of educational

software. In previous chapters, we have argued that the EM approach to model

construction supports a wide range of learning activities based on a broad

constructionist view. We now consider the potential of EM for the development and

use of learning environments. We shall argue that the use of EM in developing

learning environments is advantageous because the highly flexible and adaptable

nature of EM allows for relatively easy customisation of learning resources through

its support for a very broad definition of scaffolding. We discuss scaffolding in

relation to three different types of learning: of fixed referents; of exploration of

possibilities; and of learning languages. We illustrate these ideas with reference to

EM case studies of learning environments.

5.1 Model use vs Model building

5.1.1 Constructionist learning environments

Up to this point in the thesis we have been concerned with the support for learning

that is afforded by EM model-building activity. We have concluded that EM offers

better support for learning than conventional programming due to its ability to

integrate pre-articulate and formal learning activities. However, it is not always

possible for users to create their own models, and therefore in order to provide a

rounded picture of learning and EM we also need to consider the benefits of EM

models in use.

Chapter 5: Scaffolding different types of learning

 145

There are many reasons why learners may not be able to, be allowed to, or wish to,

create their own models. This is especially true in the educational context, where, for

example:

i) school children generally do not have enough computing expertise to be

able to construct models to meet all their educational needs.

ii) model construction following personal interests cannot guarantee that

learning relevant to the curriculum occurs.

iii) teachers may lack the necessary skills or the available time to be able to

construct models for pedagogical use.

We elaborate each of these points in turn.

In respect of the first point, Nardi [Nar93] has observed that the construction of

programs by end-users may not be a realistic aim. This is apparent in relation to EM

model construction with our current tools. To date, all the authors of models built

using EM tools have had prior knowledge of the fundamentals of computers and

programming. For instance, understanding functions, variables and parameter passing

are at present an essential prerequisite to EM model creation. Our own experiments

with 17 – 18 year old college students have exposed this problem. We found that

students without any previous programming experience could not use the TkEden

tool to create models because they lacked essential computing knowledge. However,

students with programming experience succeeded in extending previously created

models. When students do not have a good understanding of basic programming

concepts they cannot develop their own models and are reliant on others to produce

learning environments for them.

In respect of the second point, even if students can create their own models, there

needs to be a degree of accountability where learning through model creation is

concerned. Students are usually following a prescribed curriculum and if they follow

their own interests when creating models they may be learning subjects outside their

curriculum. Further evidence of the difficulties of accountability in constructionist

learning is evident in Noss and Hoyles’s idea of the play paradox where time spent at

Chapter 5: Scaffolding different types of learning

 146

the computer may not be being used for meaningful learning [NH92]. Even in the

established practice of computer-based model building for learning, such as was

introduced by Papert through Logo [Pap83], it could be argued that the need to learn

computer programming skills detracts from domain learning. The disappearance of

Logo from the United Kingdom National Curriculum in the 1990s has been cited as

evidence of uncertainty about its educational merits [NH96].

In respect of the third point, although teachers have the educational knowledge

required to develop useful learning environments they cannot put that into practise

without the necessary programming skills. Ideally, teachers want to be able to

customise educational resources to suit individual learning needs. This requires that

small, but often unpredictable, changes to programs can be made with limited

knowledge of their construction. Traditional approaches to programming favour

development in which very high cognitive demands are placed upon the developer

prior to programming, and do not lend themselves to unpredictable end-user

customisation. As Nardi observes [Nar93]:

‘While programmers can be called in to provide applications for minority
areas, once the software is written, users are stuck with the applications given
them by programmers, and the applications cannot easily be changed,
extended, or tailored to meet the demands for local conditions.’

This is diSessa’s motivation for proposing that teachers and software designers

should work closely together with children to produce useful learning environments

[diS97b].

Broadly speaking, educational software can be classified on a spectrum between

instructionist and constructionist-based approaches (see Figure 5.1). This spectrum

has historical significance in that Computer Assisted Instruction (CAI) preceded

Intelligent Tutoring Systems (ITS), which in turn preceded Interactive Learning

Environments (ILE). CAI uses computers to replicate the traditional school learning

model that has been criticised by many [Fri70, Ill71, Pap93, Opp97]. CAI has often

Chapter 5: Scaffolding different types of learning

 147

been called the ‘drill-and-kill’ approach, whereby students are presented with a set of

textbook style questions to answer. ITS, introduced by Hartley and Sleeman in 1973

[HS73], are an extension of CAI. In addition to providing exercises for students, an

ITS system assesses what a student knows and what they should know, and generates

new exercises based on this assessment. However there is no scope for a learner to

take control of their own learning experience because the system designer has

preconceived the material for delivery and the mode of interaction. CAI and ITS are

instructionist approaches aimed at imparting and testing objective knowledge.

Computer-Assisted Instruction (CAI)

Intelligent Tutoring Systems (ITS)

 Interactive Learning Environments (ILE)

Instructionist --- Constructionist

1960’s --------------1970’s --------------1980’s -------------1990’s ---------------- 2000’s

Figure 5.1 – A spectrum of learning perspectives

Constructionist software takes advantage of the medium of the computer to provide a

qualitatively different learning experience. The essential difference between

constructionist computer environments and CAI/ITS systems is that the learner has

more control over their learning. As Soloway et al note, this necessitates a switch

from user-centred design to learner-centred design [SGH94]. ILEs are constructionist

because they emphasise the active role of the learner and are often called

microworlds. A microworld is a small world within which students can understand

concepts through active learning [Pap93]. For example, Cockburn’s microworld to

support the learning of Newtonian physics allows students to manipulate the

parameters in physical laws and observe the resulting behaviour of objects [CG95].

Chapter 5: Scaffolding different types of learning

 148

The important requirements for constructionist software are that it should provide a

learning environment in which:

1) a learner can explore the consequences of hypotheses whether or not they are

correct.

2) learning objectives are situated in realistic domain contexts.

3) the designer or the learner can adapt or extend the environment to shape the

learning process.

In the remainder of this chapter, we shall consider EM techniques for creating

constructionist models that can support many types of learning activities.

5.1.2 Supporting different types of learning

In the 1980s, teachers had a high level of software ownership (as witnessed by the

proliferation of small educational software companies often set up by teachers such as

4mation [4mat03] and Sherston [She03]) through being able to create software for

their own particular teaching requirements. In recent years, software has become

more powerful and more complex, but also less easily understood and adapted by its

users [Joh03]. This motivates educational software that: can embrace a wide range of

competencies; that is easily adaptable by both developers and users; and can provide

teachers with resources that can be tailored to their particular pedagogical needs and

context.

A standard approach to developing educational software that can be targeted at

different learning scenarios is to expose simple concepts before more complex ones.

This is similar in spirit to the HCI principle of progressive disclosure, which states

that software should initially provide only the most commonly used features to a user,

keeping more complex choices hidden in order to not overwhelm new users

[PRS+94]. As a user becomes more competent, exploration leads them to find and

explore the more complex features. In this way, the program is easy to learn for

novices but still contains the powerful features that advanced users require. A simple

Chapter 5: Scaffolding different types of learning

 149

example can be found in expanding menu systems. For instance, in the Microsoft

Office range of products, only the most commonly selected options from the menu

are visible – to use other choices the mouse can be positioned over a double arrow to

reveal all the possibilities.

The principle of progressive disclosure is not in general suitable for educational

software. The purpose of progressive disclosure in application software is to hide the

complex features of the software from novice users. In educational software, the aim

is not to learn how to use a particular set of features, but to learn the concepts

embedded within a learning environment. The exploration of progressively more

complex concepts is associated with the idea of scaffolding. Scaffolding is defined as

a technique for providing support to learners whilst they are learning a new task

[Rog90]. EM gives support for scaffolding many different types of learning. For

example:

i) Learning as comprehension of a fixed referent – a simple model of a

specific referent is initially presented to the learner. This model is then

gradually refined and extended by introducing more advanced concepts

associated with the referent. The focus is on providing a computer-based

model that accurately reflects its referent and level-by-level is guided by

more precise observation of the referent.

ii) Learning as in exploring possibilities and invention – a simple model is

initially presented to the learner. Although specific learning paths can be

mapped out, the learner has discretion over how the model is extended at

each layer, and different paths are associated with different referents. At

each layer a learner is encouraged to interact as if in an exploratory

laboratory.

iii) Learning languages – as a learner becomes more competent in a domain,

their knowledge of domain specific language is progressively enhanced

(cf. the music and rowing examples discussed in chapter 2). This can be

reflected in the language used for interaction with the model of the

domain.

Chapter 5: Scaffolding different types of learning

 150

Scaffolding of learning is analogous to the scaffolding that is used in constructing a

building, which is removed when the building can stand by itself. As Soloway et al

note [SGH94], scaffolding is provided to help a learner with a task they do not know

how to do, and it gradually becomes less important as the learner becomes more

competent. In educational terms, scaffolding is operating in Vygotsky’s ZPD. The

ZPD is defined as an area of domain knowledge, beyond a students’ current

comprehension, but which they can successfully navigate their way through with the

assistance of their peers or an expert (such as a teacher) [Vyg62]. Soloway’s Tools /

Interfaces / Learner’s needs / Tools (TILT) model [SGH94] is a classification of

different types of scaffolding and their roles in the learning environment (cf. Figure

5.2). To scaffold learning tasks, software can coach a learner by providing helpful

advice at appropriate points in the learning process. To support a learner’s growing

competence the tools in a model must be adaptable to the task in question (cf.

bricolage). To support the learner at a communication level, the interface must

provide different means of expression appropriate to the learners’ competency.

 Tasks

 Scaffolding:

Coaching

Scaffolding: Modelling

Modes of expression

Learner’s needs Scaffolding:

Adaptation

 Interfaces

 Tools

Figure 5.2 – Soloway’s TILT model [SGH94]

Chapter 5: Scaffolding different types of learning

 151

The remaining sections of this chapter describe – and illustrate with reference to case

studies – how EM learning environments can scaffold each type of learning identified

in i), ii), iii) above. Our case studies also illustrate how EM could be exploited in

different types of scaffolding similar to those identified in Soloway’s TILT model,

namely through scaffolding – for Tasks (section 5.2), cognitive layering – for Tools

(section 5.3), and domain specific notations – for Interfaces (section 5.4).

5.2 Learning as comprehension of a fixed referent

In some learning environments, the major aim is to allow students to gain an exact

understanding of a specific referent. The typical application is in modelling ‘real-

world’ situations. In such a context, the domain being modelled is presumed to

behave reliably according to some well-defined rules. For instance, balls on a snooker

table will, after being struck, behave in a definite manner when bouncing off the

cushions, colliding with other balls and slowing down through friction. In order to

give the leaner an appropriate construal of the real-world situation the balls, as

modelled, should ideally behave according to similar physical rules. Pratt associates

this similarity between model and domain with the ideas of surface and cultural

familiarity [Pra98]. Surface familiarity is concerned with whether objects in the

computer environment look like their real-world counterparts. Cultural familiarity is

concerned with whether objects in the computer environment behave like their real-

world counterparts. Where models have both surface and cultural familiarity, learners

can leverage prior experience of the real-world situation and can successfully transfer

knowledge gained from the computer-based environment back into the world. The

ideas of surface and cultural familiarity are similar to Green’s notion of ‘closeness of

mapping’ in the Cognitive Dimensions framework [GP96].

The scaffolding principle suggests that the concepts in a learning environment should

be layered and introduced only when the learner has a solid understanding of simpler

concepts. For example, the benefit that can be gained from a fully functioning

snooker model in learning mechanics could be limited because the complexity of the

Chapter 5: Scaffolding different types of learning

 152

complete model obscures the learning of simple concepts. Understanding the

complete model requires comprehension of a number of inter-related concepts. In a

snooker model for learning about mechanics, a first layer could consist of a single

ball that bounces around a 2D table without ever slowing down. This could be used to

explore how a ball bounces off a cushion. A second layer could introduce a concept

of friction, so that the ball slows down over time. This could be used to explore forces

acting on a ball. A third layer could introduce more balls and illustrate what happens

when balls collide with each other. This could be used to investigate principles such

as the conservation of momentum. A model constructed with these simple layers

learners can serve as an exploratory environment for learning about mechanics (cf.

[EMRep, billiardsMoissenkov1999] for a prototype implementation).

The notion of developing increasingly complex microworlds, where each microworld

adds more complex ideas or tasks to perform, is a well-established educational

strategy (cf. Burton et al [BBF84]). The various layers of the snooker model can be

viewed as a series of graded microworld instances in the sense of Graci et al

[GON92]. This means that each microworld builds on the concepts in the previous

level to provide a more complete picture of the real-world situation portrayed in the

model. As Graci et al note [GON92], these graded microworld instances are

essentially increasing subsets of the functionality of the complete learning

environment. These microworld instances provide the means for scaffolding the

domain.

In the next section, we consider a case study that illustrates the idea of scaffolding in

a practical EM learning environment, where the emphasis is on construing how the

real-world domain of car racing works.

5.2.1 The racing cars case study

In this section, we describe an EM learning environment targeted at exploring factors

that are important in car racing. Applying Pratt’s principles to this real-world

Chapter 5: Scaffolding different types of learning

 153

situation [Pra98], the computer-based learning environment must be recognisable as a

car racing environment (‘surface familiarity’), and the cars should be set up to behave

like their real-world counterparts so that learners are able to draw on their prior

experience of the domain (‘cultural familiarity’). The racing cars model was

constructed by Simon Gardner in 1999 [EMRep, racingGardner1999] and takes the

form of a series of increasingly complex microworlds. The final microworld contains

two customisable cars racing each other around a partially customisable track. The

full functionality of the model is implicit in each microworld, but only a subset of that

functionality is exposed to the learner. There are seven microworlds in Gardner’s

model, and we discuss four that give a flavour of the increasing complexity of the

concepts being introduced. Figure 5.3 shows the main concepts in Gardner’s seven

microworlds and highlights the four discussed in this section.

Microworld 7 – Track customisable and other race controls – Figure 5.7

Microworld 6 – Introduction of a second car

Microworld 5 – Obstacle detection

Microworld 4 – Customisable tyre and wing settings, engine and tyres – Figure 5.6

Microworld 3 – Customisable entry and exit points for each corner – Figure 5.5

Microworld 2 – Zoom view of the car and extra diagnostic information – Figure 5.4

Microworld 1 – Car not alterable and simply runs around track

Figure 5.3 – The microworlds in the racing car model

Microworld 2 (see Figure 5.4) shows a car that is moving around a track. The learner

is able to observe many significant attributes of the car, but there are no controls for

Chapter 5: Scaffolding different types of learning

 154

the learner to experiment with the car and its environment. The ‘Car 1 status’ table

contains information about the car such as its acceleration, braking, friction and wind

resistance. The acceleration and braking values refer to the change in speed that will

occur in the next clock cycle if the car is accelerating or braking respectively. On the

plan view of the track, the symbol ‘1’ will move around the track. The zoom view on

the left depicts the car and its neighbourhood in more detail.

Figure 5.4 – Microworld 2 of the racing cars model

In this elementary microworld, learners can observe how patterns of acceleration and

braking are correlated with the motion of the car and its position on the track. This

can be used to gain a basic understanding of how the car accelerates and brakes in

cornering, and how concepts such as wind resistance and friction are related to car

speed. These concepts form the necessary background for exploring how to move the

car around the track faster in the more advanced microworlds.

Chapter 5: Scaffolding different types of learning

 155

Microworld 3 (see Figure 5.5) builds on the previous microworld and introduces the

concept of braking, turn-in and accelerate-out points for corners. These respectively

refer to the key control points on the track where the car will begin to brake for a

corner, where it will start turning inwards to take the corner, and where it will start to

accelerate away from the corner. The set of crosshairs in the top right of the interface

can be used to alter the significant points for each corner. Clicking on a different

position in each rectangle will move the corresponding point on the track. This

selection method restricts the key control points to a sensible region of the track.

Changes to the points can be made at any time, even whilst the car is approaching the

point being moved.

Figure 5.5 – Microworld 3 of the racing cars model

By manipulating the key control points and monitoring changing lap times, learners

can explore the positioning of points required to achieve optimum car performance. If

a car brakes too late for a corner then it will not stay on the track. In a stable situation,

the speed at each position on each lap will be the same. If a car is going faster at the

Chapter 5: Scaffolding different types of learning

 156

same track position on each successive lap then eventually the car will miss a corner

and leave the track. These characteristics of car racing can be appreciated by

interacting with the model. Additional insight could be obtained from the model by

linking it to an auxiliary model to plot graphs of speed against lap position and so

more easily observe how the car responds to the key track points being changed. In

this microworld, the behaviour of the car on the circuit can be explored, but only for a

given car set-up. In reality, the car could be set up in many different ways. This

additional complexity is introduced in the next microworld.

Microworld 4 (see Figure 5.6) builds on the previous microworlds and allows

exploration of how factors associated with the design of the car, such as braking

efficiency, engine torque (power), tyres and wing settings affect the behaviour of the

car on the track. For instance, an increase in braking efficiency means that the car can

brake later for each corner. Likewise, an increase in engine torque means that the car

will accelerate faster so that the braking point for each corner must occur further in

advance of the corner.

Figure 5.6 – Microworld 4 of the racing cars model

Chapter 5: Scaffolding different types of learning

 157

There is a trade-off between the tyre setting and the wing setting. This trade-off can

be explored through experimenting with different settings and observing the effect on

lap times. Empirical investigation plays an essential role in learning about this trade-

off and forms a large part of the experimental testing undertaken by Formula 1 teams.

In Figure 5.6, tyre efficiency, tyre wear, turning efficiency and turning angle are also

displayed in the ‘Car 1 Status’ table. Microworld 4 addresses learning objectives for

which modelling is essential, such as finding the optimum route around the track for

the current car specification, and the optimum set-up of the car for the current track.

Figure 5.7 – Microworld 7 of the racing cars model

Microworld 7 (see Figure 5.7) shows two fully customisable cars that can be raced

around a partially customisable track. In this final microworld each car has a means

for obstacle detection: each car avoids obstacles within a scan area of specified radius

and distance from the front of the car. There are also facilities for editing the corners

of the track and the position of the starting line. One interesting area for exploration is

trying to change the set-up of one car to beat the other around the track. Microworld 7

reflects the construal an expert has when exploring car racing situations. If all the set-

up options in Figure 5.7 were available in an initial microworld, a learner would be

likely to be overwhelmed by the complexity of the model. The object of constructing

Chapter 5: Scaffolding different types of learning

 158

the racing cars model is to enable a learner to come to appreciate this level of

complexity.

The racing cars environment is constructionist because the learner is free to

experiment and is not given a set of questions to answer. From a personal viewpoint,

the experience gained through interaction with the model proved useful to me in

developing my cornering technique the first time that I went go-karting. However, in

such an environment, there is a limit to the level of creativity and invention that a

learner can exhibit because the fixed referent constrains the construal that is being

explored. In the next section, we consider more abstract microworlds where

meaningful interaction is not constrained by a fixed referent and there is learning

benefit in open exploration.

5.3 Learning as exploring possibilities and invention

Where the layering of microworlds is constrained by a fixed referent it is

inappropriate to allow learners to interact in ways that subvert their emerging

understanding. In other contexts, it can be beneficial for a learner to explore

unrealistic scenarios and invent scenarios of their own. This is typically the case

where the learning activity is directed towards design or invention rather than mere

comprehension. For instance, in designing a new board game, learners can benefit

from tinkering with the rules of an existing game in an ad hoc way that reflects the

open-ended nature of experimentation in the world. Developing learning

environments for this purpose requires a different style of scaffolding for which we

have introduced the term cognitive layering.

5.3.1 Cognitive Layering

Scaffolding in educational software is analogous to scaffolding for building houses.

This type of scaffolding is sensible if the learning environment is targeted at a

learning objective that can be attained through a well understood progression of

Chapter 5: Scaffolding different types of learning

 159

stages. In such a context, the form of the scaffolding is itself shaped by the prior

knowledge of the overall structure of the learning task. Not all learning tasks can be

so structured or have such clear objectives from the start. A different type of

scaffolding is required for these tasks. To appreciate this, imagine that, during the

construction of a building, its plans were to be changed. This might well mean that

the building itself would become impossible to construct with the existing

scaffolding.

The term ‘cognitive layering’ describes an approach to scaffolding microworlds that

takes the fact that learners can benefit from open exploration into account [RB02]. To

support this open exploration, it is essential to offer the learner less restricted access

to the underlying data model than is afforded by closed interfaces such as can be

found in the racing cars model. Such open interaction is supported in our principal

EM tool TkEden through the specification of redefinitions in the input window. Open

interaction is necessary because the designer cannot preconceive the possibilities that

a learner may want to explore. With conventional scaffolding, the complete model is

preconceived and the learner only has access to a partial subset of its functionality. In

cognitive layering, future layers are not preconceived, and can be flexibly adapted in

any direction. Figure 5.8 depicts this essential difference between scaffolding and

cognitive layering.

 Possibility 1

 Layer 5 Layer 3

 Layer 4 Layer 2

 Layer 3 Layer 1

 Layer 2 Layer 2

 Layer 1 Layer 3

 Possibility 2

 Scaffolding Cognitive Layering

Figure 5.8 – Differences between scaffolding and cognitive layering

Chapter 5: Scaffolding different types of learning

 160

We now describe an EM case study in the form of a laboratory for investigating

noughts-and-crosses style games.

5.3.2 The noughts-and-crosses case study

Noughts-and-crosses is a simple two-player game. Players take turns to place

counters on a 3x3 grid aiming to make a straight line containing three of their own

counters. From a strategy perspective, noughts-and-crosses is simple because of the

limited number of different games that can be played. However, for children the game

can be a challenge, as evidenced by Lawler’s research into children’s learning that

used noughts-and-crosses as a case study [Law85]. In this section, we describe how a

series of microworlds to investigate the game of noughts-and-crosses illustrates the

idea of cognitive layering in practice. The scope of this investigation embraces a

whole family of noughts-and-crosses style games to be referred to generically as

OXO games.

The EM OXO model has been developed by a number of people over the past 10

years. The initial model ran in a textual interface and was developed by Meurig

Beynon and Mike Joy in 1994 [BJ94]. Simon Gardner added a graphical interface in

1999 [EMRep, oxoGardner1999]. I adapted the model to create a 3D version of OXO

using the Sasami notation in 2001 [EMRep, 3doxoRoe2001]. The OXO model that is

illustrated in this section is Gardner’s 1999 version.

The OXO model is a layered series of four microworlds, each of which introduces

concepts not in the previous layer. This is in contrast to the racing cars model

described in 5.2.2, where the concepts of tyre compound and wing settings were

present in every layer of the model, but were initially inaccessible to the learner. In

the OXO model, each microworld embellishes the situation by building upon the

previously introduced concepts. Successive microworlds specialise the OXO model

so that it more closely resembles the game of noughts-and-crosses [BJ94]. The layers

Chapter 5: Scaffolding different types of learning

 161

of the OXO model are depicted in Figure 5.9. These layers reflect: the layout and

geometry of the board; the placing of pieces on the board; rules governing the playing

of pieces; and strategic play.

Microworld 4 – Issues of strategic play, the complete model – Figure 5.12

Microworld 3 – Defining how the pieces can be placed on the board

Microworld 2 – Defining the pieces that can be placed on the board – Figure 5.11

Microworld 1 – Defining the board that the game is to be played on – Figure 5.10

Figure 5.9 – The structure of the OXO model

At all times, the learner can alter aspects of the OXO model by redefining relevant

parts of the model using the TkEden input window. In the OXO model, a specific

learning path directed towards learning conventional noughts-and-crosses has been

mapped out by the model designer. At every layer, redefinitions allow the learner to

deviate from the mapped out path to explore variants in the OXO family. The

discussion of the layers that follows is illustrated by examples of experimental

redefinitions. It is important to note that the experiments that can be carried out are

only limited by the learner’s imagination.

Microworld 1 specifies the geometry of the board and the concept of lines upon it

(see Figure 5.10). There is no presumption about the desired functionality, except that

there is a regular geometric board with significant lines. When learning to play a new

board game, our attention is initially directed to the geometry of the board and its

important features. In our OXO model, the significant lines are highlighted through

animation as displayed in Figure 5.10.

Chapter 5: Scaffolding different types of learning

 162

Figure 5.10 – Microworld 1 of the OXO model

In keeping with the theme of learning through exploring possibilities, changes can be

made to the board. For example, the significant lines on the board can be redefined

individually, or as a whole. The example redefinition:

lines[1] = [1,8,3];

will replace the horizontal line across the top row of the board by a new ‘line’ that

contains the top left square, the bottom middle square and the top right square. The

significance of such a redefinition is not apparent in this microworld, but in later

microworlds this would have an impact on winning conditions and good strategic

play. In the EM OXO model, the scope for adaptation of this nature is not

preconceived. In contrast, educational software designers usually preconceive the

useful adaptations that a learner can make in order to guide the learner to explore the

possibilities that are deemed important by the designer.

Microworld 2 introduces the concept of placing pieces on the board (see Figure 5.11)

and the criteria for a winning position. There are no restrictions on where pieces can

be placed or on the order in which they should be placed. This might reflect a

situation where players have yet to decide upon the rules of play. The interface in

Figure 5.11 displays information that can be ascertained about the state of the board

from a static analysis of a position. This includes the number of pieces of each type

Chapter 5: Scaffolding different types of learning

 163

and whether the board is full. These can be determined by observing the current state

of the board.

Figure 5.11 – Microworld 2 of the OXO model

This microworld resembles a laboratory where learners can explore the placing of

pieces without adhering to any rules of play. It can be used, for instance, to

experiment with OXO strategies, or to devise new OXO-like games. For example,

learners can experiment with different ways of placing pieces, since the model

imposes no restriction on the placement of pieces. Such unrestricted interaction would

be outside the scope of a conventional environment for learning about noughts-and-

crosses.

Microworld 3 (figure not shown) introduces the concept of playing rules that are

characteristic of an OXO-like game. For example, in noughts-and-crosses the rules

are simple; players take turns to place pieces and a piece cannot be placed on an

occupied square. This microworld is the first layer in which there are two players who

are constrained to play according to the current rules. Note that, in keeping with our

aspiration to develop an open learning environment, this microworld can reflect the

extraordinary variety of ways in which playing rules can be enacted in the world. For

instance, we might imagine that players take turns to throw a piece onto the board and

forfeit their turn if their piece does not land on an empty square.

Chapter 5: Scaffolding different types of learning

 164

Microworld 4 introduces the issues of strategy required to construct an automatic

OXO player (see Figure 5.12). This involves two aspects: evaluating the squares on

the board and deciding on the ‘best’ move to make. The value of individual squares is

dependent on the state of the board, the rules of the game being played and the

evaluation function being used. For example, in noughts-and-crosses the value of a

square is dependent on the number of lines that pass through it and the number of

pieces already in each line. In this OXO microworld, the learner can investigate the

factors that are important in the positional evaluation of OXO boards by tinkering

with the scores for each type of line identified.

Figure 5.12 – Microworld 4 of the OXO model.

5.3.3 Case study – Adapting layers to form a family of models

The previous section considered the benefits of cognitive layering of microworlds

from the perspective of the learner. There are also advantages in using cognitive

Chapter 5: Scaffolding different types of learning

 165

layering for the developers of models, since microworlds can be extended in different

directions to create a family of models. In the EM OXO model discussed above, each

successive microworld constrains the model to more accurately resemble the game of

noughts-and-crosses. Adding a different set of rules creates a variant of noughts-and-

crosses. In this way, games in the OXO family can be created by reusing some of the

original microworld layers. In this section, we give examples of variations that can be

introduced at each layer. This leads to a tree of possible models, as depicted in Figure

5.13.

BOARD GAMES

 Geometry 3 x 3 7 x 6

 Pieces 1 type each Numeric (1,3,5,7,9) and (2,4,6,8) 1 type each

 Rules Alternate turns Alternate turns Alternate turns Alternate turns

 Place one piece 1st turn place 2 Place one piece Place one piece

 No overwriting No overwriting No overwriting No overwriting

 Strategy ~~~~~~~ ~~~~~~~ ~~~~~~~ ~~~~~~~ ~~~~~~~

  ~~~~~~~ ~~~~~~~ ~~~~~~~ ~~~~~~~ ~~~~~~~ 

 

 

 GAME =    Noughts-and-crosses       OXO rules variant (V2)                       Connect 4 (V4) 

OXO, different strategy (V1)           Number Cross (V3) 

 

Fig 5.13 – A tree of possible models based on the cognitively layered OXO model  

 



Chapter 5: Scaffolding different types of learning 

 

 166 

In Figure 5.13, four variants (V1, V2, V3, V4) are created by reusing some of the 

original OXO model. If any layer is altered, then the subsequent layers will, in 

general, be different. For example, changing the rules of noughts-and-crosses will 

probably mean that a different strategy is required. The variants outlined in Figure 

5.13 are illustrative of the kind of adaptation that a teacher might want to carry out in 

order to customise learning resources. 

 

V1 – Altering the computer strategy. 

 

The computer OXO player described in section 5.2.2 contains a serious flaw because 

a particular pattern of opposition moves is guaranteed to lead to a win. In this variant, 

we adapt the computer player to eliminate this defect in its play. In the original 

model, the computer player does not use a minimax algorithm (see [BB96]) but 

simply analyses the set of lines incident with each square to compute its value. The 

value of a square is dependent on the number of pieces in the line, and these values 

are summed to give each square an overall value (see Table 5.1). In EM terms the 

values weight1, …, weight5 can be regarded as observables for the computer 

player and can be changed to alter the way the computer plays. 

 

Condition Observable Value 

X X _, X _ X, _ X X   weight1 100 

O O _, O _ O, _ O O weight2 40 

X _ _, _ X _, _ _ X weight3 10 

O _ _, _ O _, _ _ O weight4 6 

_ _ _  weight5 4 

 

Table 5.1 – The evaluation strategy for player X in OXO 

 

Using this evaluation routine, the computer player would respond to the game 

situation in Figure 5.14 by playing in the bottom left, as indicated by the highlighted 

square. The value of 22 attached to this square can be construed as the result of a 



Chapter 5: Scaffolding different types of learning 

 

 167 

particular ‘mode of observation’ on the part of the computer player. The threatened 

winning diagonal from bottom left to top right contributes 10 to the value of the 

square (cf. weight3). The blocking of the left and bottom lines each contributes 6 to 

the value of the square (cf. weight4). The opponent can respond by playing in the 

top right square thereby blocking the potential diagonal winning line and creating two 

winning squares for their next move.  

 

 
Figure 5.14 – A problem situation for the OXO computer player. 

 

The problem with the existing evaluation routine is that the computer player does not 

observe situations where the opponent can introduce a fork: a situation where the 

opponent can make a move that sets up two independent ways to win. An extra 

condition to recognise fork situations, together with a change to the evaluation 

routine, changes the strategy of the computer player to avoid the trap in Figure 5.14.  

 

This example is fairly trivial due to the simple nature of noughts-and-crosses. In more 

complex games such as chess, changes to the computer player could alter its strategy 

to play defensively, to attack, or to try and control particular important squares. The 

OXO variant described in this example uses the same board, the same pieces and the 

same rules as noughts-and-crosses. The only difference is in the strategy of the 

computer player. EM principles are well-suited for making changes of this nature, 

which involve changing the way in which the computer player is construed to observe 

the state of the game. The above example shows how our modelling principles enable 



Chapter 5: Scaffolding different types of learning 

 

 168 

the computer strategy to evolve through experimental interaction. Papert has observed 

that children use a similar style of development when writing computer programs to 

play noughts-and-crosses [Pap93]: 

 

 ‘rather than following strictly in the path of the so-called “knowledge 
engineers” who build expert systems, children followed in the path of 
psychologists who deliberately construct a series of “inexpert” systems that 
made the computer act like a “novice” and then pass through a progression of 
levels of increasing expertise’.  

 

It would be of particular interest to adapt the computer player so as to model human 

strategies employed in learning to play noughts-and-crosses. Understanding of good 

strategic play emerges from experience of the game. Learners, especially children, 

cannot initially expect to fully understand how to play a good game. Lawler’s 

extensive study of how an individual child learnt to play noughts and crosses supports 

this claim [Law85]. His study led him to recognise four stages of comprehension in 

playing noughts-and-crosses, namely [Law85]: 

i) Naive comprehension – the learner’s play is guided by individual 

inclinations but with no idea about how to achieve particular outcomes. 

They typically move anywhere for obscure reasons. 

ii) Fragmentary comprehension – the learner acts on the basis of highly 

specific knowledge of one or two games. They typically respond in a rigid 

way, independent of the opponent’s strategy. 

iii) Procedural comprehension – the learner can recognise situations in which 

victory can be forced. They typically know when they are going to win 

before their opponent plays their last piece.  

iv) Systematic comprehension – the learner is familiar with all the possible 

game situations and appropriate responses (cf. Lawler’s comprehensive 

classification of noughts-and-crosses games – such classification is only 

possible for simple games). They typically make the optimum move at all 

times. 

  



Chapter 5: Scaffolding different types of learning 

 

 169 

In applying EM principles to model these particular stages in learning we would 

adapt the computer player to reflect the observation and construal of the child at their 

current level of competency. This would also be a way of providing an appropriate 

opponent to scaffold the child’s learning of noughts-and-crosses at each of Lawler’s 

stages. 

 

V2 – Altering the rules of the game 

 

Variant 1 only differs from the standard OXO model of noughts-and-crosses at the 

strategy layer. Variant 2 differs from the standard model at the rules layer; the board 

and the pieces placed on it are the same as for the game of noughts-and-crosses. In 

variant 2, the standard rules of noughts-and-crosses have been changed so that, on 

their first turn only, each player can place two pieces. In the OXO model, there are 

definitions for whose turn it is to play. To make the simple change to the rules 

specified above, it suffices to replace these definitions. The new definition for player 

x is shown in Listing 5.1.  

 

x_to_play is (!end_of_game) &&  

  ( /* X is about to make their first move */ 

( (( nofx<2)&&(nofo==0)&&(startplayer==x)) || 

((nofo==2)&&(nofx<2)&&(startplayer==o))  

  ) 

|| 

  ( /* X is about to make a subsequent move */ 

((nofo>nofx)&&(nofo>1)) || ((nofo==nofx)&&(startplayer==x)) 

  ) 

); 

 

Listing 5.1 – The new definition that describes the state of the board for when player 

x should play. 

 



Chapter 5: Scaffolding different types of learning 

 

 170 

In general, a change to the rules of a game also requires a change of playing strategy. 

The best playing strategy will depend on the specific features of the game, the board, 

the pieces and the rules. 

 

The sample rule change described above is one of a number of possibilities that is 

limited only by the imagination of the learner. Experimentation with different rules 

gives the OXO model the flavour of a ‘rule laboratory’ in which the implications of 

different rules for the game can be explored. Many changes can be made: rules can be 

added to an existing set; existing rules can be redefined; or rules can be removed.  

 

Educational arguments have been made in favour of acquainting pupils with the 

notion of devising and adapting rules because of the significant part this plays in 

social behaviour [BFP+03]. On this basis, experimentation with rules is perceived as 

an important educational activity in programming games within the Pathways 

programming environment [GKN+01]. In Agentsheets (see section 2.3.3), the creation 

and manipulation of agents’ rules is the main programming activity [RRP+98]. Both 

Agentsheets and Pathways are rule-based programming systems and the rules are 

obligations to agents to behave according to the specified rules. Rule-based 

programming is recognised to be a problematic way of specifying behaviour since 

changes to rules are liable to lead to instability and incoherence [Akm00]. For 

instance, the requirement to bind rules to agents can lead to difficult issues relating to 

object-orientation (cf. [GKN+01, section 6.1]).  

 

From an educational perspective, it is important that the semantics of rules in 

programming should conform as closely as possible to that of rules in the world. In 

EM, rules are implemented in conjunction with dependencies in such a way as to 

guarantee that the integrity of state is preserved: the maintenance of dependency is 

not itself the product of user-specified rule-based action (cf. the discussion of 

Agentsheets in section 2.3.3). This makes it much easier to imitate the semantics of 

real-world rules inside EM models.  For instance, the rules in the EM OXO model 

place a constraint on the moves that can be made and so shape the referent. This shifts 



Chapter 5: Scaffolding different types of learning 

 

 171 

the emphasis from using rules to maintain the semantic relation � to using rules to 

maintain the semantic relation � (cf. section 2.2.2). 

 

V3 – Altering the pieces that are being played  

 

This variant of the OXO model only re-uses the board layer. The second layer of the 

OXO model describes the pieces to be used. We will refer to the game in this section 

as number cross, a game based on noughts-and-crosses. In noughts-and-crosses, each 

player has just one type of piece. Number cross uses the same board as noughts-and-

crosses but uses the numbers 1...9 as the pieces. The aim of the game is to complete a 

line of three numbers that sum to 15. Figure 5.15 shows the number cross model. At 

this layer, the rules of the game are as yet unspecified. 

 

 
Figure 5.15 – The board and pieces of the number cross model  

 

The interface in Figure 5.15 allows each player to select a piece to place on the board 

– a feature that is not required for noughts-and-crosses. There are no restrictions on 

where a number may be placed, or any rules governing who can play a particular 

number.   

 



Chapter 5: Scaffolding different types of learning 

 

 172 

In number cross, the players take turns to place pieces. The player who starts (‘odd’) 

can only place odd numbers and his opponent  (‘even’) can only play even numbers. 

Each number can only be used once and may only be placed in an empty square. 

These rules are introduced into the model at the next layer. Figure 5.16 shows the 

game with the rules layer added. 

 

 
Figure 5.16 – The game of number cross with the rules present.  

 

In order to model the game of number cross, the rules of noughts-and-crosses have 

been extended through adding game rules such as: 

n1valid is isodd(player) && not_used(1); 

to indicate that piece 1 can only be placed by the ‘odd’ player and it is not already on 

the board. 

 

The strategy layer for the number cross model is quite different from that of the 

noughts-and-crosses model because winning lines can use opponent’s pieces.  

 

The example described in this section illustrates that different board games can be 

constructed with little revision. This ease of revision can be of educational benefit 

when teachers can adapt the model to take advantage of a particular learning 

situation. For instance, a related game to number cross is ‘the game of 15’ where 



Chapter 5: Scaffolding different types of learning 

 

 173 

there are no restrictions on which pieces can be played. There is an intimate 

relationship between the game of 15 and noughts-and-crosses. If the numbers 1, 2, ... , 

9 are placed on a 3x3 grid so that they form a magic square, then the game of 15 is 

equivalent to noughts-and-crosses. Learners and teachers can use the game of 15 as a 

base from which to explore simple properties of odd and even numbers and the 

mathematics of magic squares.  

 

V4 – Altering the board 

 

The above sections have illustrated how the EM OXO model can be adapted through 

systematically replacing layers. The purpose of introducing this final variant is to 

illustrate that the OXO model can serve as a template from which to construct more 

general board games. This level of adaptation is typical of what might be required in 

educational contexts. Each of the variants discussed so far has used some of the 

original OXO model. Even when we change the board, it is still possible to maintain 

the same layered structure of the model. By way of illustration, in a game of Connect 

4, the vertical ‘board’ has 7 columns and 6 rows, and a winning configuration is one 

in which four pieces of the same type lie on a line of contiguous squares. The 

Connect 4 model has the same layered structure as the OXO model, but differs at 

every layer. A layered model of Connect 4 can be found in the EM repository 

[EMRep, connect4Roe2003]. 

 

The model development discussed in this section illustrates principles that offer 

advantages to model developers, teachers and learners. These can be summarised as 

follows: 

• For the model developer – the structured design exhibited in the OXO model 

is an aid to reuse (cf. design patterns in OO programming [FRK+01]). 

• For the teacher – cognitively layered models allow easy customisation to take 

advantage of opportunities offered by learning situations. 

• For the learner – cognitively layered models allow issues in the 

neighbourhood of the original model to be explored. 



Chapter 5: Scaffolding different types of learning 

 

 174 

 

In the next section, we consider how EM models can address issues of learning to 

communicate and represent our emerging understanding of a referent using language. 

 

5.4 Learning languages 
 

Talking about our experience has a fundamental role in learning about a domain. 

With reference to the EFL, language is associated with moving from pre-articulate 

interactions to objective knowledge. As the discussions of rowing and piano-playing 

in chapter 3 illustrate, language skills develop alongside our experience of a domain. 

The role of language in learning often transcends the typical use of formal language – 

meanings are personal, determined by situation and negotiated through interaction. In 

the learning context, knowledge of domain specific language develops incrementally 

with the learner’s competency, and builds on their evolving experience and 

understanding of the domain.  

 

Conventionally, computer-based languages are not well suited for adaptation to their 

context in use. Interaction languages in computer-based learning environments 

typically have their functionality fixed by a designer. A learner must interact with the 

language of the domain as specified by the designer. This is appropriate when the 

designer understands a language well, and it is not subject to change. Enabling full 

engagement with the learning agenda involves adapting the language to the needs of 

the learner. For this purpose, the language must be opportunistically adaptable: to 

take account of new concepts as they are encountered; or to promote new ways of 

interacting with existing concepts. This level of adaptability is not a feature of formal 

languages, which stand in a preconceived relation to the domain (cf. Figure 5.17). It is 

more characteristic of natural language, as when we use the same word to describe 

rowing on a static machine, rowing on a machine with slides and rowing in a boat (cf. 

section 3.2.1). The key issue is that the semantics of a formal language is abstractly 

specified and independent of its context of use, whereas that of a natural language 

develops with experience of use in context. 



Chapter 5: Scaffolding different types of learning 

 

 175 

 

Pre-specified language development       Adaptable language development 

 

      Possible extension 1 

 Other language features    

              Current language 

 

 

 Language features in current use           Possible extension 2 

 

Figure 5.17 – The relationship between pre-specified and adaptable language 

development 

 

In this section, we argue that learning environments need to exploit languages that 

can be framed on-the-fly and opportunistically extended to match learners’ 

competencies. This is useful for teachers in customising learning resources to take 

advantage of particular learning situations. In the next section, we describe an 

approach to interactive parsing of adaptable computer-based languages, and then 

illustrate it with two practical case studies. 

 

5.4.1 The Agent-Oriented Parser 

 

The Agent-Oriented Parser (AOP) is a utility that can be used in conjunction with the 

EM tool TkEden, for interactive parsing of adaptable languages. The AOP utility was 

respectively constructed and refined by two final year undergraduates, Chris Brown 

[Bro01] and Antony Harfield [Har03]. 

 

The AOP differs from a conventional parser in many respects. Instead of parsing 

blocks or lines from left to right, the parser searches for the most salient features of a 

statement, in the way that we might derive the meaning of a statement by inspection. 

For example, when we look at the string ‘a=b+c;’ we recognise that it is an 



Chapter 5: Scaffolding different types of learning 

 

 176 

assignment by observing the = symbol, then expect to find a variable identifier on the 

left hand side and an expression on the right hand side. When parsing the string from 

left to right, symbols may have to be stored without knowing their semantic 

significance until the meaning of the entire statement becomes clear. The AOP also 

allows the parser itself to be modified on-the-fly, that is in such a way that the parsing 

conventions can be changed even whilst the interpreter is executing. 

 

A full technical discussion of setting up a parser for a complete notation is beyond the 

scope of this thesis. Appendix B contains documentation from [Har03] that shows 

how an example calculator notation can be constructed. The following discussion 

assumes a basic level of familiarity with the parsing approach described in Appendix 

B.  

 

Two key advantages of the AOP are its flexibility, and the way in which it generates 

parsers that can be adapted on-the-fly to suit particular learning circumstances, or to 

reflect a change in the language of interaction. Each AOP language contains a set of 

definitions that describes how the language should be parsed, together with the 

actions required to translate these statements into EDEN code for execution. For 

example, in the krusty notation (see section 5.4.2) the statement that recognises the 

down command translates this into a procedure call to move the clown in the maze 

(as shown in Listing 5.2).  

 

krusty_statement3 =  

["literal","down", 

["action", 

["later","move_clown(3,1);"]], 

["fail","krusty_statement3_2"]]; 

 

 

Listing 5.2 – The example command for the down operator in the krusty language 

described in section 5.4.2 



Chapter 5: Scaffolding different types of learning 

 

 177 

 

In building an EM learning environment, the languages that are developed with the 

AOP are not preconceived, and can be introduced, refined or extended on-the-fly to 

reflect emerging understanding or emerging requirements of a teaching/learning 

situation. Conventional parsing could easily be used to construct a language 

functionally equivalent to an AOP language, once all refinements and extensions have 

been specified. What is important to stress however, is that there is no restriction in 

how a language developed using the AOP can evolve and be reconfigured in 

interactive use. This is beyond the scope of conventional parsing approaches such as 

are described in [GBJ+00]. 

 

We now discuss two case studies that have used the AOP to define domain-specific 

languages. The first, the clown-and-maze environment, shows how a simple language 

can be defined for young children to navigate a maze and how this language can be 

subsequently adapted and extended to suit different learning requirements and 

abilities in a way that was not preconceived. The second, the SQL-EDDI 

environment, is targeted at learning about relational database query languages. In this 

example, the languages are much more complex and were developed incrementally to 

suit the evolving educational objectives of an undergraduate database module as it 

was being taught [BBR+03].  

 

5.4.2 Case study – A clown-and-maze language 

 

The clown-and-maze environment [EMRep, krustyRoe2002] shows how learners can 

be scaffolded towards understanding the Logo language [Pap93]. In this case study, 

we illustrate an extensible notation for young children that initially allows them to 

express geometric concepts in a simpler way than in Logo. In the Logo language, a 

turtle is controlled by giving it commands such as forward 50 or left 90, 

which move or turn the turtle appropriately. Commands can be combined into 

repeating blocks, or grouped into a procedure that can be referenced by name. Papert 

intended young children to use Logo to explore geometrical concepts. However, the 



Chapter 5: Scaffolding different types of learning 

 

 178 

concept of ‘angle’, and even of ‘turning’, may be too sophisticated for young 

children. The clown-and-maze environment provides basic primitives – in the form of 

the krusty language – that can be used as a starting point for learning about directions 

and turning. The krusty language can be incrementally extended towards Logo, and in 

this way can provide scaffolding for understanding Logo. Figure 5.18 shows the 

relationship between the languages described in this section.  

 

 Logo 

 build, repeat … until 

 

 

 forward <n>, backward <n>, left <n>, right <n> 

         

 

  

 Krusty 

 

forward, backward, turn left, turn right 

 

 

  up <n>, down <n>, left <n>, right <n>     north <n>, south <n>, west <n>, east <n> 

 

 

Figure 5.18 – The structure of the clown-and-maze languages  

 

Within the clown-and-maze environment, the learner’s task is to direct the clown to 

the treasure in the centre of a maze (see Figure 5.19). The maze is a 5x5 grid whose 

walls become visible as the clown visits the squares in the maze.  

 



Chapter 5: Scaffolding different types of learning 

 

 179 

 
Figure 5.19 – The clown-and-maze environment.  

 

Initially the clown can be controlled using the basic set of Krusty commands, up, 

down, left and right. Each of these directional commands can have an optional 

numeric parameter to move the clown that number of squares in the specified 

direction (e.g. up 2, left 3). This exposes the learner to the use of parameters, a 

concept required to use Logo. Krusty is a simpler interaction language than Logo 

because it is not necessary for the learner to take account of the way the turtle is 

facing.  

 

Using the AOP, we can incrementally and interactively adapt or extend the basic 

krusty language to scaffold learning of more advanced manipulation languages. For 

example, compass directions could easily be substituted for the basic movement 

commands (substituting ‘east’ for ‘right’ etc), to satisfy different educational 

objectives. To scaffold Logo learning, an intermediate language that introduces the 

concept of turning can be introduced. Children who are in the process of learning to 



Chapter 5: Scaffolding different types of learning 

 

 180 

distinguish ‘right’ from ‘left’ could benefit from a control language where the 

commands are forward, backward, turn left and turn right. Success in 

controlling the clown now depends on understanding the concept of turning. In Figure 

5.19, the point of reference for the direction the clown is facing is the tip of its nose. 

 

The next language layer introduces the concepts of distance and angle that are found 

in Logo. The new commands available in this layer are forward <d>, backward 

<d>, left <a> and right <a>. Controlling the clown using Logo is one way of 

learning about angles. The clown’s nose is actually a Logo turtle, re-used from an 

earlier EM student project [EMRep, logoEdwards2000]. In moving the clown around 

the maze, the values for the angle a should be confined to multiples of ninety degrees 

and d to multiples of the square size, in order to keep the clown in alignment with the 

maze.  

 

The clown-and-maze environment could be used to learn about more complex 

movements. For example, mazes could be irregular in shape, so that the learner would 

have to manoeuvre the clown through the maze using arbitrary angles and distances. 

This would refine the learner’s concepts of ‘angle of turn’ and ‘distance’. The clown-

and-maze environment could also be used in significantly more advanced learning 

situations. For instance, notations and primitives could be designed to allow users to 

investigate and develop algorithms for maze solving.  

 

The clown-and-maze case study illustrates how the learning of a domain-specific 

language for interaction can be scaffolded from a simple level through a number of 

competency levels. The AOP allows the construction of a flexible layered learning 

environment, where there is no restriction on how the interaction language at each 

layer can be extended or refined. It would not be difficult to construct a learning 

environment in which the interaction language would adapt dynamically to match the 

competency exhibited by the learner in moving the clown successfully around the 

maze. A more advanced illustration of the use of the AOP is described in the 

following section. 



Chapter 5: Scaffolding different types of learning 

 

 181 

5.4.3 Case study – A learning environment for relational query languages 

 

At the University of Warwick, a core 2nd year module is Introduction to Database 

Systems. The module aims to give students a basic understanding of relational 

database theory and practice. The practical component of the course comprises an 

introduction to SQL (Structured Query Language) and exposure to relational algebra, 

the mathematical language that underpins relational query languages. The objectives 

of the practical component of the course are to: 

1) teach SQL as a relational database query language 

2) get students to appreciate that relational query languages are based on 

relational algebra 

3) get students to appreciate that SQL has a poor mathematical semantics 

because it is unfaithful to the relational model of query languages.  

Objective 3 is the major focus of the learning environment discussed in this section. 

 

In the past, the practical component of the course was taught exclusively using a 

commercial relational database system. Whilst students have undoubtedly benefited 

from this experience, it is not ideally suited for the learning agenda outlined above. In 

particular, commercial database systems are not designed for highlighting the flaws in 

the design of SQL and so give little support for learning objective 3. A special 

purpose environment targeted at this objective could show how the design of SQL 

deviates from the relational model it supposedly embraces [Dat00, DD00].  

 

The SQL-EDDI environment [EMRep, sqleddiWard2003] was developed by Meurig 

Beynon from an original prototype developed by EM group members Chris Brown, 

Michael Evans and Ashley Ward. It allows learners to interact with tables and views 

using [BBR+03]: 

• a pure relational algebra query language (“EDDI”) 

• a variant of SQL whose semantics is consistent with relational theory 

(“SQLZERO”) 

• a subset of standard SQL.  



Chapter 5: Scaffolding different types of learning 

 

 182 

 

The main educational objective of the SQL-EDDI environment is to allow students to 

study the evaluation of relational algebra expressions, and relate these to the 

translation and interpretation of standard SQL queries.  

 

The interpreter can be interactively changed so that SQLZERO is interpreted 

according to the evaluation conventions of relational algebra, or those of standard 

SQL. Figure 5.20 shows how the languages within the SQL-EDDI environment are 

related. 

 

REPRESENTATIVE SUBSET OF STANDARD SQL 

 

  

SQLZERO        VARIANTS OF SQLZERO  

 

   orthodox evaluation      rogue evaluations 

 

      EDDI      UNEDDIFYING INTERFACE      PARSER CHANGES 

 

Figure 5.20 – The relationship between the query languages in SQL-EDDI 

 

EDDI is a relational algebra language that allows users to create tables and 

interrogate them using the basic relational operators of union, difference, intersection, 

projection, selection and natural join. It is loosely based on Todd’s Information 

Systems Base Language (ISBL) [Tod76], realising all of its functionality but adopting 

different syntactic conventions. The eddi interpreter is a front-end to the EDEN 

interpreter since commands are translated into EDEN for execution. Listing 5.3 

shows some EDDI code to create a small example database. The line numbers are not 

part of each command and are only included for purposes of discussion. Lines 1-12 

create the database by defining the tables and populating them with records. Lines 13 



Chapter 5: Scaffolding different types of learning 

 

 183 

and 14 create views on the tables, whose current value is always kept up to date, and 

line 15 assigns the value of a relational algebra expression to a table.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Listing 5.3 – An EDDI extract illustrating the definition of the FRUITS database 

 

Understanding of how standard SQL is related to relational algebra is scaffolded 

through the introduction of SQLZERO, an SQL-like notation.  SQLZERO queries are 

translated into EDDI by using the sqlte interpreter, which displays the translation 

but does not carry out the evaluation. The evaluation strategy in EDDI can be 

interactively changed so that SQLZERO is interpreted according to the evaluation 

conventions of relational algebra, or in such a way that it mimics standard SQL. 

Changes to the evaluation strategy are made via the ‘Uneddifying Interface’ to be 

described below (see Figure 5.22). 

 

When the orthodox evaluation conventions of relational algebra are adopted, 

SQLZERO is a variant of SQL that is faithful to Codd’s relational model [Cod70]. 

Through interaction with the SQL-EDDI environment in this orthodox evaluation 

mode, students can appreciate the intimate connection between SQLZERO and 

relational algebra. By interacting with the SQL-EDDI environment in other 

1. %eddi 
2. allfruits (name CHAR, begin INT, end INT); 
3. allfruits << ["granny",8,10],["lemon",5,12],  

    ["kiwi",5,6],["passion",5,7];  
4. allfruits << ["orange",4,11],["grape",3,6],  

    ["lime",4,7],["pear",4,8];  
5. allfruits << ["cox",1,12],["red",4,8];  
6. apple (name CHAR, price REAL, qnt INT);  
7. apple << ["cox",0.20,8],["red",0.35,4],["granny",0.25,10];  
8. citrus (name CHAR, price REAL, qnt INT);  
9. citrus << ["lime",0.30,3],["orange",0.55,8],  

 ["kiwi",0.75,5],["lemon",0.50,2];  
10. soldfruit (name CHAR, unitsold INT);  
11. soldfruit << ["cox",100],["granny",153],["red",70];  
12. soldfruit << ["kiwi",23],["lime",15],  

     ["lemon",55],["orange",78];  
13. fruits is allfruits % name;  
14. popcitrus is (fruits.citrus % name). 

(soldfruit : unitsold > 50 % name);  
15. nonapplesncox = allfruits- 
      (allfruits*apple%name,begin,end)+allfruits:name==”cox”; 
 



Chapter 5: Scaffolding different types of learning 

 

 184 

evaluation modes (cf. Figure 5.22), students become aware of the flaws in the design 

of standard SQL. Though changing the evaluation strategy readily makes it possible 

to mimic the interpretation of simple queries in standard SQL, it becomes evident that 

much more is required to support the interpretation of more complex standard SQL 

queries. It was at this point in developing the SQL-EDDI environment that the 

flexibility for exploratory language development proved to be most significant; it was 

only through experiment that a feasible strategy for implementing a more 

representative subset of standard SQL emerged.  

 

As stated above, the main educational objective of the SQL-EDDI environment is to 

provide a way of exploring how the design of SQL has deviated from the relational 

model and the implications of this. SQLZERO with the orthodox evaluation 

conventions differs from standard SQL in that: 

i) SELECT is treated as a synonym for SELECT DISTINCT, 

ii) type checking on constructing union, intersection and difference of 

relations takes account of both domain types and attribute names, 

iii) SELECT * FROM X,Y is interpreted as a natural join of relations. 

 

Figure 5.21 shows SQL and EDDI statements that can be used to highlight the flaws 

in the design of SQL that respectively stem from i), ii) and iii) above. Query 1b) is the 

nearest equivalent in relational algebra terms of the SQL query 1a). In EDDI, query 

1b) returns a set of distinct fruit names. In standard SQL, query 1a) returns duplicate 

rows for the cox, red and granny tuples. We should expect both queries 2a) and 2b) to 

be equivalent to the relational algebra expression underlying the EDDI query 2c). In 

standard SQL, queries 2a) and 2b) return tables with the same contents but with 

different attribute names (cf. the output tables in Figure 5.22). In EDDI, query 2c) 

causes a semantic error when type checked. Much syntactic complexity in standard 

SQL could be avoided if query 3a) generated the natural join that is specified in 

EDDI query 3c) but in practice query 3b) has to be used to achieve this result. In 

standard SQL, query 3a) returns a table with six columns (allfruits.name, begin, end, 

apple.name, price, qnt), two of which have identical contents whereas query 3c) 



Chapter 5: Scaffolding different types of learning 

 

 185 

returns the natural join of the two tables, namely a table with five distinct columns 

(name, begin, end, price, qnt). SQL query 3b) explicitly eliminates the duplicate 

column that is generated in query 3a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21 – Some example SQL queries and their EDDI equivalents  

 

 
Figure 5.22 – The SQL-EDDI environment in use (cf. queries 2a and 2b in Figure 

5.21) 

Duplicate rows: 
 
1a) SQL:  (SELECT name FROM apple) UNION (SELECT name FROM  

allfruits) 
1b) EDDI: ?apple % name + allfruits % name; 
 
Loose type checking in creating unions: 
 
2a) SQL:  (SELECT * FROM soldfruit) UNION (SELECT name, qnt FROM  

citrus) 
2b) SQL:  (SELECT name, qnt FROM citrus) UNION (SELECT * FROM  

soldfruit) 
2c) EDDI: ?soldfruit + citrus % name, qnt; 
 
Indirect and clumsy representation of natural join: 
 
3a) SQL:  SELECT * FROM allfruits, apple 
3b) SQL:  SELECT allfruits.name, begin, end, price, qnt FROM  

allfruits, apple WHERE allfruits.name=apple.name 

3c) EDDI: ?allfruits * apple; 

 



Chapter 5: Scaffolding different types of learning 

 

 186 

 EDDI queries obey the strict mathematical conventions of the relational model. In 

the SQL-EDDI environment, the interpretation of SQLZERO is changed via the 

‘Uneddifying Interface’; this adapts the evaluation so that (cf. the three logical flaws 

described above), it allows duplicate rows, typechecks on domains alone, and uses 

‘unnatural’ join. 

 

The design of the SQL-EDDI environment was not preconceived, and the 

pedagogical goals for the software emerged as the development was being carried out 

by Beynon on-the-fly in parallel with the teaching of the database module. The use of 

EM in the development of SQL-EDDI was significant in two respects:  

• the flexible and organic nature of the development meant that it could proceed 

alongside the teaching.  

• the adaptable language parsing offered by the AOP meant that incomplete 

languages could be developed and flexibly modified on-the-fly to support 

different teaching requirements.  

 

By way of illustration, the eventual development of a parser for a more representative 

subset of standard SQL required changes to both the syntax and the evaluation 

strategy used in implementing SQLZERO – this could be effected by introducing 

small files comprising new definitions and redefinitions. This was not a conceptually 

simple process, free of error, or technically straightforward, but the entire activity of 

testing, modifying and debugging the environment revolved around interpretation 

through experimental interaction of the modification of small groups of definitions. 

 

The EM development of SQL-EDDI was carried out within the same environment 

that the students were using for tutorial purposes. In principle, this process could be 

continued in extending the SQL-EDDI environment to address issues such as: 

1. supporting a larger subset of SQL features, (e.g. more sophisticated data 

definition, integrity constraints and support for nulls). 

2. implementing other relational query languages (e.g. QUEL [Dat87]). 

3. incorporating an interface to study optimisation of relational database queries. 



Chapter 5: Scaffolding different types of learning 

 

 187 

 

To further illustrate the concept of scaffolding we now show how the SQL-EDDI 

database environment can be tailored for use with younger age groups to introduce 

relational algebra operators as operators on tables.  

 

The Relational Algebra Tutor (RAT) uses colour coding to suggest how the operators 

of relational algebra work. Each of the six relational operators (project, select, union, 

intersection, difference, join) has a different meaning and is applicable in different 

circumstances. Students will be unable to formulate queries in EDDI without a sound 

conceptual grasp of how these operators work.  

 

Figure 5.23 shows the RAT in use. The interface is split into three sections: 

• The top section shows the input tables that are generated from EDDI queries. 

These can either be individual tables or complex EDDI queries.  

• The middle section contains a switching mechanism to change the currently 

selected operation, together with information about the currently selected 

operation. This information comprises the EDDI language statement that 

produces the output table from the input table(s), and the currently selected 

operator. The field for specifying parameters for a command is only required 

for the project operator (when it specifies the names of the columns to project) 

and the select operator (when it specifies the boolean condition used to select 

rows from the table). If an operation cannot be performed – for instance, if 

tables are not be compatible for union, intersection and difference – then this 

is reported in the error window.  

• The bottom section shows the output table formed by the operator applied to 

the input tables. The rows and column headers of the output and input tables 

are colour coded to show how the result of the query is composed from the 

input tables. For example, in Figure 5.23, the current operation (union) is 

coloured yellow, the column headers are also highlighted in yellow, and the 

rows from the output table are coloured differently depending on the input 

table from which they have been derived.  



Chapter 5: Scaffolding different types of learning 

 

 188 

Figure 5.23 – Using the RAT to support understanding of operations on tables 

 

The construction of the RAT environment illustrates a high degree of code re-use. 

The development time I required – as an EM expert – was about 2 days, but such 

development would be impossible for a non-computer specialist.  The RAT uses 

spreadsheet grids (see section 2.2.1) to display the input table(s), the operators table 

and the output table, and uses EDDI to generate the output table by executing the 

command string built up in the ‘Current command’ window. The high level of re-use 

meant that the majority of the model was constructed from existing resources. The 

colour coding for the input and output tables is dependent on each individual operator 

and was implemented using simple search and matching routines. 

 

With reference to the EFL, the purpose of the RAT is to allow learners to experiment 

with basic relational algebra operations on various tables to establish and reinforce 

their conceptual understanding of the operations on tables and the EDDI language. 

RAT provides the support for learners to gain the experience of interpreting symbolic 

relational algebra operators that is required to use EDDI successfully. 



Chapter 5: Scaffolding different types of learning 

 

 189 

 

5.5 Chapter Summary: Scaffolding with Empirical Modelling 
 

In this chapter, we have described EM case studies that have illustrated scaffolding 

operating in the zone of proximal development in a wide variety of contexts (cf. 

Soloway’s TILT model, Figure 5.2). The analogy suggested by scaffolding – of rigid 

and predefined buildings – seems inappropriate to describe the rich ways in which the 

EM models described in this chapter have been flexibly developed and presented. In 

[NH96] Noss and Hoyles described three criticisms of the scaffolding metaphor in 

computer learning: 

i) the notion of scaffolding suggests a structure being erected around the 

learner by an external agency. This may not take account of how learners 

structure their own learning. 

ii) The idea of a ‘zone’ is a useful metaphor that suggests the idea of a 

bounded territory. It is important to leave open how it is defined and 

where its limits are. 

iii) The idea of the scaffolding fading away with learning implies that, if the 

computer provides scaffolding, then it should be removed at some point. 

This is not always desirable. 

 

Our case studies illustrate how EM can give more support for learning than the 

traditional scaffolding metaphor suggests. For instance they exhibit support systems 

for learning with characteristics that address Noss and Hoyles’s criticisms outlined 

above: 

i) Our case studies support the idea that the learner should control their own 

learning. For instance, in the racing cars model (see section 5.2.1), the 

learner is always in control over when they move on to the next 

microworld.  

ii) The OXO family of games case study (see section 5.3.3) presumes no 

preconceived bounded territory within which learning is to take place, 

since the learner is always being encouraged to explore.  



Chapter 5: Scaffolding different types of learning 

 

 190 

iii) The SQL-EDDI environment (see section 5.4.3) gives support to learners 

that remain accessible to the expert. For instance, the SQLTE translation 

interface can always be used to confirm relationships between SQL and 

relational algebra. 

 

Noss and Hoyles propose an extension of scaffolding that they call webbing. This 

draws on the metaphor of the World Wide Web to convey that the learner accesses a 

support structure that they can draw upon and reconstruct as they learn. Webbing is 

distinctive because [NH96]: 

i) It is under the learner’s control. 

ii) It is available to signal possible user paths rather than point towards a 

unique, directed goal. 

iii) The local and global support structures are dependent on the learner’s 

current level of understanding.  

 

The support structures provided in the EM case studies described in this chapter give 

practical evidence of the use of webbing in learning environments. For instance, the 

specific OXO game is a possible path that a learner can follow, but there are many 

other games that can be explored ‘in the neighbourhood of OXO’. 

 

In chapter 2, we discussed how learning activity can be associated with the 

negotiation and elaboration of concepts (cf. section 2.2.2). The notion of scaffolding 

supports the negotiation of the semantic relation � but is limited in respect of 

elaboration. In the racing cars model, the concept of ‘car racing’ is gradually exposed 

to the learner. A learner understands the concept at a simple level before it is 

embellished. This leads the learner to embark on a process of negotiation of the 

concept through experimental interactions and making and testing hypotheses. When 

a learner is comfortable with the concept at a particular level of complexity they have 

the control to move on to the next level. However, the fixed nature of the referent 

limits the scope for investigative exploration around the subject. In this respect, 

scaffolding is limited with respect to elaborating the semantic relation �. 



Chapter 5: Scaffolding different types of learning 

 

 191 

 

In contrast to scaffolding, webbing offers better support for learning through the 

elaboration of the semantic relation �. Since webbing is an extension of scaffolding it 

is natural to expect that it still supports negotiation of the semantic relation �. The 

analogy that underpins webbing – that of building connections in a flexible structure 

as in the Web – shows that elaboration of the semantic relation is represented in a 

webbing approach. The scope for using EM in ‘building connections in a flexible 

structure’ is illustrated in our OXO case study. 

 

Learning is nevertheless much more than can be represented in terms of scaffolding 

or indeed webbing. Our previous discussions (cf. chapter 3) have shown how learning 

activities can be very diverse. This diversity cannot be represented within 

preconceived frameworks for presenting models to learners. Model use can be more 

varied than is represented in the case studies presented in this chapter. Model building 

can likewise take exceedingly diverse forms. In the following chapter, we discuss 

three EM case studies that illustrate a variety of different types of learning and ways 

of developing and interacting with models, and interpret them with reference to the 

EFL. 

 



192 

Chapter 6 – Exploratory learning and the EFL 
 

 

6.0 Overview of the Chapter 
 

In this chapter, we discuss three case studies that represent different ways of applying 

EM to educational technology. These case studies show: how EM can be used to 

support pre-articulate exploration in a private learning scenario; how pre-articulate 

and formal learning activities can be connected within a common exploratory 

learning environment; and how a learning environment can reinforce a learner’s 

construal of a physical situation. Broadly speaking, the application of computers for 

learning can be classified into building models and using models. In EM, the 

distinction between model construction and model use is blurred. Many EM models 

exhibit qualities of both model construction and model use. This enables modellers to 

explore partial models and build on top of them. The case studies in this chapter have 

been selected to highlight how EM can be used in learning activities across the whole 

range of the EFL. 

 

 

6.1 Integrating model use and model building 
 

In this section, we consider the use of EM to support a range of learning activities 

within the EFL. We also show how EM modelling can blur the distinction between 

building and using models. As discussed in chapter 3, the use of computers for 

learning is broadly of two kinds. These are:  

i) learning through model-building: this involves the construction of models 

to enhance our personal understanding of a domain. In chapters 2, 3 and 4 

we discussed the EM approach to the construction of models from 

computational and educational perspectives. We concluded that model 

construction in EM has two advantages over writing conventional 



Chapter 6: Exploratory learning and the EFL 
 

 193 

programs. Firstly, EM supports the pre-articulate learning activities 

situated at the experiential end of the EFL; and secondly, it allows model 

construction to integrate pre-articulate and formal activities in a single 

modelling approach. 

ii) learning through model-use: this involves the use of a pre-constructed 

learning environment in the form of (e.g.) instructionist software or a 

constructionist microworld. In chapter 5, we discussed how EM learning 

environments can support many different types of learning. The emphasis 

was on describing techniques for model development that offer flexibility 

to the developer and facilitate an enhanced learning experience.  

 

The two perspectives outlined above relate to traditional perspectives on the use of 

computers for learning – users either write their own programs or use programs 

written by other people. However, in EM, the learner has complete discretion over the 

interactions they undertake with a model, and is free to add new definitions to a 

model or refine existing definitions. Therefore, in EM, learning environments can 

combine model building with model exploration. The two traditional perspectives 

outlined above define the extreme ends of a spectrum ranging from model building to 

model use, as represented by the restaurant model and the relational algebra tutor 

respectively. In this chapter, we discuss three further EM case studies representative 

of learning environments within which model building and model-use for learning are 

conflated in different ways. These models are: the Monotone Boolean Functions in 4 

variables (MBF4); Heapsort; and the Robotic Simulation Environment (RSE) (see 

Figure 6.1). We shall first informally describe the roles played in each case study by 

model building and model use, then discuss some of those aspects that are most 

significant for learning with reference to the EFL. 

 

 

 

 

 



Chapter 6: Exploratory learning and the EFL 
 

 194 

Restaurant model  

(Section 3.5) 

 Monotone Boolean Functions in 4 variables (MBF4) 

Heapsort 

Robotic Simulation Environment (RSE) 

 

Relational Algebra Tutor 

(Section 5.4.3) 

 

 

Model-building ---------------------------------------------------------------------- Model-use 

 

Figure 6.1 – Conflating model building and model use 

 

The Monotone Boolean Functions in 4 variables (MBF4) model [EMRep, 

mbf4Beynon2003], is primarily the work of Meurig Beynon with some contribution 

from myself. This model was originally developed by Beynon as a private artefact 

[EMRep, fdl4Beynon2002] through which to enhance his comprehension of the 

relationships between several different abstract realisations of FDL4 (“learning 

through model-building”). There have been two aspects to my engagement with the 

model as a learner: I have interacted with the model to gain experience of unfamiliar 

mathematical concepts (“learning through model-use”) and have extended the model 

in ways that make it more easily intelligible to the learner (“learning through model-

building”). 

 

The Heapsort model [EMRep, heapsortBeynon1998] was constructed by Meurig 

Beynon, Amanda Wright  and Jaratsri Rungrattanaubol and has been discussed in 

[Bey98, BRS+98, BRS00, Run02]. The model has a particular pedagogical aim, 

namely to support the exposition of the heapsort algorithm, but it has been 

constructed in stages in such a way that learners can carry out experiments and 

extensions. Learning therefore combines elements of model building and model use. 



Chapter 6: Exploratory learning and the EFL 
 

 195 

Rather than focusing exclusively on the heapsort algorithm, the model promotes 

exploration of the concepts around heapsort through interaction outside the bounds of 

heapsort. Unconstrained exploration can aid learning about heapsort by challenging 

and reinforcing the construal of the learner.  

 

The Robotic Simulation Environment (RSE) [EMRep, rseRoe2003] is an example of 

a learning environment that aims to promote conceptual understanding of a real-world 

situation. I have constructed the model on the basis of a preliminary design developed 

in collaboration with researchers from the Kids’ Club in Joensuu, Finland, as 

documented in [EJR+02]. In the Kids’ Club, the children use the LEGO Mindstorms 

robot programming environment to program robot behaviours. The RSE is intended 

to supplement the current system. It provides an exploratory environment for the 

investigation of robot behaviour through a computer model. The RSE is to be 

regarded as a case study in model use for learning because the environment contains 

all the necessary elements for exploratory investigation of the robots. In keeping with 

a constructionist approach, the environment supports many different styles of 

interaction and allows learners to engage with the problems of robot programming at 

many levels.  

 

6.2 Monotone Boolean Functions in 4 variables 

 

The EM model of Monotone Boolean Functions in 4 variables (MBF4) illustrates 

Wilenski’s observation that: 

 
‘[t]he more connections we make between an object and other objects the 
more concrete (familiar) it becomes for us. The richer the set of 
representations of the object, the more ways we have of interacting with it, the 
more concrete it is for us’ [Wil93]. 

 

The MBF4 model [EMRep, mbf4Beynon2003] has been composed by combining 

resources created by a number of different people. These include Bibi Hussain’s EM 

model of the free distributive lattice on 3 elements [EMRep, fdl3Hussain2001], Allan 

Wong’s EM model of the group of symmetries of a cube [EMRep, 



Chapter 6: Exploratory learning and the EFL 
 

 196 

symcubeWong2001] and John Buckle’s diagrammatic representation of the Hasse 

diagram for the Free Distributive Lattice on 4 generators (FDL4) [Buc90]. The 

relevant parts of the EM models have been brought into a single environment and, 

using dependency, links have been created between them to establish the appropriate 

connections. The three main components of the MBF4 model are depicted in Figure 

6.2. 

 

 

 

 

 

  

 

 

 

      

 

 

 

 

  

 

Figure 6.2 – The diverse components of the MBF4 model  

 

The original prototype for the MBF4 model (see [EMRep, fdl4Beynon2002]) was 

developed by Beynon as a personal visual aid to mathematical research, and its 

interface was not designed for use by novices. The visual representations of the 

lattices P4 and FDL4 in this model are Hasse diagrams [Bir95] with 16 and 166 nodes 

respectively, and S4 is represented by a Cayley diagram in which the edges 

correspond to the basic transpositions (12), (23) and (34).  

 

 The symmetric group S4  

   The Free Distributive Lattice FDL4 

 The lattice of subsets P4 



Chapter 6: Exploratory learning and the EFL 
 

 197 

The above description of the model components is appropriate for the mathematical 

expert – it presumes some advanced knowledge of mathematical concepts and 

terminology. Our purpose in this section is to describe how interaction with the 

original MBF4 model – involving both model use and model building – can assist the 

novice in gaining the understanding of the mathematical objects involved. In this 

section, writing as a novice lattice theorist, I give an account of the types of activities 

that contributed to my learning, and the partial comprehension of the abstract 

mathematics represented in the model that emerged during the interaction. In the 

process of learning, I have also enhanced the model as a learning artefact. 

 

For a learner, the principal role of the MBF4 artefact is to provide concrete support 

for coming to understand the concepts behind the artefact. Interaction and 

experimentation with the artefact can provide a stable source of experience on which 

to base an understanding of the lattice theoretic concepts in the model. The primary 

objective of the learner is to utilise the experience gained from interacting with the 

MBF4 artefact in order to understand the formal mathematics it embodies. The 

central importance of concrete intuitions as a foundation for formal mathematics is 

something that I have observed in my experience of teaching mathematics to 

undergraduates (cf. the emphasis placed on concrete understanding by Papert and 

others [TP91, Pap93, Wil93]). For instance, it would be absurd to expect a learner to 

reason symbolically about decreasing subsets if they did not have some experiential 

support for grasping the concept. The role of the interactive artefact is to provide a 

concrete means by which to attain the appropriate construal. In the following 

discussion, we outline the abstract mathematics underlying the MBF4 model, and 

explain the role of the model in helping a learner gain concrete experience of abstract 

structures through active experimentation. Each of the mathematical components in 

Figure 6.2, (P4, FDL4 and S4) exists as an EM model. We shall discuss each of these 

in isolation before illustrating how their connections can be explored. 

 

 



Chapter 6: Exploratory learning and the EFL 
 

 198 

6.2.1 P4: The lattice of subsets of {1,2,3,4} ordered by inclusion 
 

The EM model of P4 can be used to illustrate some basic concepts of lattice theory, 

including decreasing subsets, partially ordered sets and lattices. Figure 6.3(a), which 

has been extracted from a screenshot of the executing P4 model, shows all the subsets 

of the set {1,2,3,4}. These are depicted using the conventional representation of a 

partially ordered set as a Hasse diagram. The role of the Hasse diagram is to provide 

concrete support for the abstract notion of a partial order on the subsets in P4. For 

instance, one subset contains another if there is an upward path in the Hasse diagram 

between the two. A mathematician might describe this visual relationship more 

formally as: the subset X contains the subset Y if and only if there is an upward path 

in the Hasse diagram from the node x that represents X to the node y that represents 

Y. This attempt to give a more precise and abstract description of a visual experience 

does not convey the immediate and concrete way in which the Hasse diagram is 

apprehended by the learner. 

 

In similar fashion, the set of subsets of {1,2,3,4} ordered by inclusion is an example 

of a partially ordered set since inclusion of sets is reflexive, antisymmetric and 

transitive. For instance, in the Hasse diagram, if there is an upward path from node x 

to node y and from node y to node z there is an upward path from node x to node z. 

We can also establish that the partially ordered set {1,2,3,4} with inclusion is a lattice 

because every pair of elements has a union and an intersection, where both are 

defined as being the minimal instances of such unions and intersections. For example, 

the pair of elements {1,2} and {1,4} have a union of {1,2,4} and an intersection of 

{1}, both of which exist and can easily be apprehended by following links on the 

Hasse diagram. By virtue of being an interactive artefact, the P4 model can provide 

additional visual support for identifying unions and intersections by allowing the 

learner to select a pair of subsets and displaying their union and intersection. 

 

The mathematical concepts discussed above could be introduced to the learner 

through their formal representations, but this does not give a learner access to the 



Chapter 6: Exploratory learning and the EFL 
 

 199 

stable experience that underpins this formal representation. The problems faced by 

the learner become more significant as the concepts become more complex. For 

instance, the notion of a decreasing subset in a partial order relies upon prior 

understanding of the notion of ‘subset’ and ‘partial order’. Its mathematical 

formalisation is: 

 

A subset Y of a partially ordered set P is decreasing if ∀x,y∈P: y∈Y and x ≤ y � x∈Y. 

 

Figure 6.3(b) depicts a decreasing subset Z of the partially ordered set P4 as a set of 

blue nodes linked by red edges. The fact that Z is a decreasing subset can be 

appreciated by observing that all nodes beneath a blue node are blue. Reasoning about 

formal concepts can also gain experiential support from artefacts. For instance, a 

learner can observe that the decreasing subset Z is not a lattice as not all pairs of 

elements have a union in the subset (e.g. {2,4} and {3,4} are in the subset, but 

{2,3,4} is not). 

 

 
(a) (b) 

 

Figure 6.3 – (a) The lattice of subsets P4; (b) an example of a decreasing subset of P4 

 

 

 



Chapter 6: Exploratory learning and the EFL 
 

 200 

6.2.2 FDL4 as the lattice of decreasing subsets of P4 ordered by inclusion  

 

Each decreasing subset of {1,2,3,4} can be regarded as itself an element in a set. This 

set of decreasing subsets is itself a partial order when ordered by inclusion. This 

partial order is depicted as a Hasse diagram on the right of Figure 6.4 – it defines one 

representation of the free distributive lattice on 4 generators (FDL4). The Hasse 

diagrams of P4 and FDL4 are linked by dependency in the EM model MBF4 in such 

a way that the selection of a node in FDL4 leads to the display of the corresponding 

decreasing subset of P4. Through experimenting with the selection of nodes in FDL4, 

I could observe that there is a line between two nodes if one of the associated 

decreasing subsets can be obtained from the other by adding a single subset of P4. 

From this, we can infer that the horizontal row of a node in FDL4 is determined by 

the number of subsets of P4 in the corresponding decreasing subset. 

 

 
Figure 6.4 – The Hasse diagram with 166 nodes corresponding to the set of 

decreasing subsets of {1,2,3,4}  



Chapter 6: Exploratory learning and the EFL 
 

 201 

 

Other experiments that can be performed with the Hasse diagram of FDL4 include 

picking pairs of nodes and establishing their point of union and intersection. For this 

purpose an interface to select two points and show their union and intersection is 

essential, given the size and complexity of the diagram. It is clearly infeasible to 

verify by hand that all pairs have a union and an intersection. However, through 

testing many examples we can become convinced that this is indeed true. As Beynon 

observes, such testing still leaves room for uncertainty: 

 

‘expectations developed through experiment are always subject to 
falsification, and are asserted subject to faith in prediction from past evidence. 
Expectations can be confirmed and confounded – but never justified – by 
experiment’ [BAC+94].  

 

As it happened, the visualisation in the original model contained an error: the internal 

model of union and intersection of decreasing subsets was correct but one link 

between two nodes was wrongly placed. It was only through personally extending the 

FDL4 artefact that I encountered this error in the display of the lattice – it appeared 

that a pair of nodes had no intersection. The model user/developer’s response to 

encountering anomalies of this nature in a model is heavily dependent on the context 

in which they occur. For instance, in model building at the frontiers of research such 

occurrences might dispose the modeller to discard a valid hypothesis. In our lattice 

example, had I encountered this error during my early interactions with the model I 

would have been less likely to believe that the structure was truly a lattice. As it was, 

I was already convinced that the structure was a lattice – and I construed the anomaly 

as an error in the graphical representation rather than an abnormality in the 

underlying mathematical structure.  

 

 



Chapter 6: Exploratory learning and the EFL 
 

 202 

6.2.3 FDL4 as monotone boolean functions in 4 variables ordered by implication 

 

FDL4 (see Figure 6.4) admits another interpretation – as a lattice of monotone 

boolean functions in 4 variables. A monotone boolean function is a function               

f:{0,1}4 � {0,1} such that f(x1,x2,x3,x4) is defined by a logical expression in 

x1,x2,x3,x4 using the operators or and and. An example of such a function is: 

f(x1,x2,x3,x4) = (x1 and x3) or (x1 and x4) or (x2 and x3).  

Such a function is commonly represented by a circuit containing and and or gates. 

For this reason, we often refer to the tuple (x1,x2,x3,x4) as an input value and to 

f(x1,x2,x3,x4) as the output. Given a monotone boolean function, we can consider 

the input values for which the output is 0. For instance, for the function f above, if 

x1=1, x2=1, x3=0, x4=0 then f(x1,x2,x3,x4) = 0. We can identify this input value 

with the set {1,2}, the set of indices of x’s that are assigned the value 1. With this 

convention, for the example function f above, the complete set of input sets for which 

f(x1,x2,x3,x4) = 0 is { {}, {1}, {2}, {3}, {4}, {1,2}, {2,4}, {3,4} }. 

This set is exactly the decreasing subset that is depicted in Figure 6.3(b). By applying 

this general construction, the diagram of FDL4 in Figure 6.4 can be interpreted as the 

set of logically distinct monotone boolean function in 4 variables. Under this 

interpretation, the ordering of monotone boolean functions is by implication.  

 

For me as a learner, the interactive artefacts described above played an important role 

in understanding lattices and related concepts. Drawing on my own personal 

experience, the interaction with the artefact served to both create and reinforce my 

understanding of the connections between the abstract mathematical objects P4 and 

FDL4, and monotone boolean functions in 4 variables. Interaction based on a formal 

symbolic approach would not have been as effective as I did not have the solid 

conceptual understanding needed to interpret the formal representations.  

 

I was able to introduce the extra visualisations apparent in Figure 6.4 despite my 

incomplete understanding of the mathematics they represent. The following account 

of how I carried out this development is included to show that there is an intimate 



Chapter 6: Exploratory learning and the EFL 
 

 203 

correspondence between analysing the dependencies in the model and understanding 

the relationship between different abstract representations of FDL4. 

 

The red and green lines in Figure 6.4 are defined such that, if a line is above 

(respectively below) the currently selected point and it can be reached from the point 

by a strict upward (respectively downward) path then it is red  (respectively green). 

With this convention, determining whether a particular line should be coloured red or 

green is equivalent to checking that the union of the selected point and the points at 

the ends of the line is either the selected point or one end of the line. Each point in 

Figure 6.4 is stored in an internal database and has a representation in EDDI (see 

section 5.4.3). This representation takes the form of a tuple that contains sixteen 

fields, each corresponding to a different subset of {1,2,3,4}, together with an 

identifier for each point. To discover the criterion for colouring lines above, I 

generated EDDI queries to construct tables of three example points, and observed a 

correlation between the existence of an upward/downward path in the Hasse diagram 

and a relationship between the internal representations of the three points. It was on 

the basis of this experimental evidence that I was able to understand the general 

relationship and implement this through introducing appropriate definitions (this was 

the activity that disclosed the visualisation error described earlier in this section).  

 

The artefacts described in this section illustrate representations of particular concrete 

instances of free distributive lattices. The FDL4 artefact – which has only 166 nodes 

– can be used to support learners in gaining experience of the concepts underlying the 

MBF4 model in an exploratory fashion, but this approach cannot be extended to 

larger free distributive lattices. The visualisation of FDL5 would be impossible as it 

has several thousand nodes. The FDL4 artefact can nevertheless be used to gain the 

experience and concrete understanding necessary to be confident in manipulating the 

more general abstract concepts (cf. learning about geometry in 2 or 3 dimensions and 

moving to higher-order dimensional geometry). 

 



Chapter 6: Exploratory learning and the EFL 
 

 204 

6.2.4 S4: The symmetric group on 4 symbols 

 

The third artefact that is part of the MBF4 model is a Cayley diagram for the 

symmetric group S4 of permutations of the 4 elements {1,2,3,4}. The structure of this 

Cayley diagram can be informally explained as follows. The numbers {1,2,3,4} can 

be arranged in 24 different permutations. Each permutation can have a pair of 

elements switched in three different ways – by transposing the first and second, 

second and third, and third and fourth elements respectively. In the Cayley diagram, 

two permutations are connected by an edge if each can be obtained from the other by 

such a transposition. This edge is coloured red, green or blue respectively, according 

to whether the transposition involves the first, second or third pair of elements. This is 

shown in Figure 6.5(a).  

 
        (a)      (b) 

  

Figure 6.5 – (a) A Cayley diagram for S4; (b) an example of a CPL map 

 

Beynon’s purpose in constructing the MBF4 model was to investigate the relationship 

between monotone boolean functions and functions defined on the Cayley diagram. 

This correspondence is formally described in the paragraph that follows. It represents 

an aspect of the MBF4 model that is outside the scope of interest of the novice 

learner. 

 



Chapter 6: Exploratory learning and the EFL 
 

 205 

Each monotone boolean function g in 4 variables determines a function G from the 

symmetric group S4 into the set {1,2,3,4}. To determine the function G, we interpret 

each permutation of {1,2,3,4} as an ordering for switching on the inputs to the 

monotone boolean function g. If we then switch on the inputs to the monotone 

boolean function g in the order associated with permutation p then the value of G on 

the permutation p is the index of the input that switches the output from false to true. 

For instance, for the function f introduced above, the switching sequence {1,4,2,3} 

will make the function true for the first time when input 4 switches from false to true 

(since f(1,0,0,0)=0 and f(1,0,0,1)=1). On this basis, the function F: S4 � {1,2,3,4} 

associated with f assigns the value 4 to the permutation 1423. The functions F and G 

generated in this way are known as combinatorially piecewise linear maps (CPL 

maps) [Bey74]. There is a constraint on a CPL map H: if two permutations are 

connected by an edge in the Cayley diagram and the value of H at one of the 

permutations is not one of the pair of values being transposed across the edge then H 

must have the same value at the other permutation. This constraint is sufficient to 

characterise CPL maps [Bey74]. For a given CPL map H, an edge of the Cayley 

diagram is non-singular if the value of H at the endpoints of the edge is not one of the 

pair of values being transposed. 

 

The characteristic features of a CPL map can be visually represented as shown in 

Figure 6.5(b). For a given switching sequence, the index of the input that switches the 

output from false to true is circled. The singular edges are thicker than the non-

singular edges. As Figure 6.5(b) illustrates, for some of the nodes in FDL4 (Figure 

6.4) the singular edges form cycles in the Cayley diagram. For instance, in the 

example displayed in Figure 6.5(b), there is a Hamiltonian cycle of length 24. The 

interactive nature of the artefact allows the researcher to record and explore the 

relationship between FDL4 and CPL maps far more effectively than any paper-based 

approach (cf. the way in which this relationship is documented in [Bey74, Bey87b]).  

 

The MBF4 artefact comprising the FDL4, S4 and P4 models described above is 

shown in Figure 6.6. As explained above, each correspondence between a pair of 



Chapter 6: Exploratory learning and the EFL 
 

 206 

components reflects a different perspective on lattice theoretic issues. Other 

relationships can easily be added to the model as they are encountered, by linking 

them through dependency to the relevant parts of the existing artefact.  

 

 
Figure 6.6 – The complete MBF4 model  

 

The discussion in this section has focused on how the MBF4 model permits 

experimental interaction in order to learn about the concepts that inform its 

construction. This experiential approach is different in character from interacting with 

symbolic representations. Essentially this model has been used for two contrasting 

purposes: firstly as a learning aid, so that I personally could come to understand some 

of the basic concepts of lattice theory; and secondly as a research aid, so that 

exploration of connections between mathematical objects could be undertaken.  

 

 

 



Chapter 6: Exploratory learning and the EFL 
 

 207 

6.3 The Heapsort model 
 

The heapsort model is intended to demonstrate the potential for the pedagogical use 

of EM to support understanding of formal algorithms. Heapsort is an advanced 

sorting method that relies on maintaining partial orders within a data structure known 

as a heap. For a fuller description of the heapsort algorithm, see [AHU82]. Meurig 

Beynon constructed the basic EM heapsort model discussed here, initially with the 

assistance of Amanda Wright [BRS+98]. Significant extensions to the model were 

made by Jaratsri Rungrattanaubol and the relationship between her model and a 

conventional program to teach heapsort is discussed in [Run02, Chapter 6].  

 

The EM heapsort model is not intended to be a formal representation of the heapsort 

process, but rather an environment within which activities that are related to heapsort 

can be investigated in an experiential fashion. The emphasis is on exposing the 

empirical knowledge that contributes to the design of the heapsort algorithm. 

Conventional ways of providing computer assistance for teaching heapsort involve 

animating the algorithm and displaying the stages of the process (cf. the JELIOT 

system [BMS+02], Animated Algorithms [GDL]). However, this approach assumes 

that the learner has already understood the notion of a heap and the basic operations 

that can be performed upon it. The approach adopted in the EM heapsort model has 

more in common with that of the Brazilian educator Valdemar Setzer, who proposed 

that learners manually perform the sorting operations with physical objects [SH93]. 

 

In contrast to a conventional animation, the EM heapsort model can fulfil many 

different learning objectives [Bey98]. For instance, it can be used as: 

1) an environment for testing a student’s understanding of the concept of a heap 

and of the procedures used in heapsort. 

2) a visualisation aid for the exposition of the heapsort algorithm. 

3) a prototype for the implementation of heapsort in a conventional programming 

paradigm. 

4) a platform for investigating variants of the heapsort algorithm. 



Chapter 6: Exploratory learning and the EFL 
 

 208 

 

This diverse range of learning objectives can be satisfied within a single EM learning 

environment by building up the partial heapsort model with combinations of agent 

actions that are stored in separate auxiliary files. In general these files are added to the 

model according to the current needs of the learner and the purpose for which they 

are using the heapsort model.  

 

Beynon describes three stages in using the EM model to learn about heapsort 

[Bey98]: 

1) experimental manipulation of a visual heap to understand the heap concept. 

This is possible because the heap is embedded in a definitive script that does 

not constrain the possible agent actions to be added to the model later. 

2) the construction of state-based models to represent the stages in the heapsort 

process, allowing the user to trace the steps involved in heap-building and sort 

extraction through a sequence of manual operations. These stages are 

introduced as agents to perform parts of the sorting activity. 

3) the introduction of automatic mechanisms to carry out the appropriate 

sequence of steps. This is achieved through the automation of sensible 

heapsort behaviours in particular patterns. 

 

As mentioned above, the implementation of a conventional heapsort teaching 

program engages primarily with the activities at stage 3. Stages 1 and 2 are concerned 

with obtaining a solid construal of the concepts and basic operations involved in 

heapsort. Stages 1 and 2 admit exploratory learning and experiments to achieve the 

necessary background knowledge to fully appreciate the heapsort process. As Beynon 

remarks in [Bey98]:  

 

‘the most effective way to present the model construction is to systematically 
introduce the underlying concepts as they might have been encountered in the 
discovery of the heapsort algorithm’.  

 



Chapter 6: Exploratory learning and the EFL 
 

 209 

Initial exploration of the heapsort model centres on understanding the heap structure. 

Figure 6.7 shows the heap data structure. A binary tree is a heap if each node satisfies 

the heap condition, which states that the value of a node is greater than that of both its 

children. Figure 6.7 shows how the visualisation of the heap structure provides cues 

to the learner about the state of the heap. Edges and nodes are coloured to reflect the 

current status of the heap condition at each node and the relationships between nodes 

and their children. For instance, if all the edges are blue then the tree is a heap.  

 

 
 

Figure 6.7 – The heapsort model showing a representation of a heap  

 



Chapter 6: Exploratory learning and the EFL 
 

 210 

Embellishments to the basic model add agent actions that correspond to primitive 

operations on the heap and are a stepping-stone to understanding the heapsort 

algorithm. The simplest operation on the heap is exchanging a pair of elements. This 

can be performed manually, or by agents that can be attached to the nodes of the heap 

model to perform this exchange automatically, given a pair of indices. The learner 

can attempt to manipulate the tree into a heap by exchanging suitable pairs of 

elements. Through exploration, the learner will begin to comprehend sensible 

strategies for establishing a heap. For example, if a node does not satisfy the heap 

condition then the most effective strategy is to exchange values with the child node 

that has the larger value. The index of the child with the larger value is maintained by 

dependency and can be consulted as an observable by the agent at each node (cf. 

Figure 6.4 in [Run02]). Such agents can then automatically establish and maintain the 

heap condition at each node. The model can be set up so that these agents act 

autonomously to perform the complete process of heap construction. This is most 

appropriate when the learner has first understood how manual redefinitions can 

establish a heap.  

 

All the basic operations required to understand heapsort are exercised in the heap 

construction phase (stage 2). From this point, it is a relatively easy to derive the 

complete heapsort algorithm, which repeatedly removes the root of the tree and then 

re-establishes the heap condition until the tree becomes empty (stage 3). As is typical 

of other EM models discussed in this thesis, the openness of the EM approach allows 

interaction and exploration outside the scope of normal heapsort operation. 

Rungrattanaubol outlines many possible scenarios for the use of the EM heapsort 

model that would be impossible with conventional educational software [Run02, 

pages 177–178].  

 

The heapsort learning environment described above illustrates interaction with an EM 

model that conflates both model-use and model-building perspectives. This conflation 

of perspectives allows the integration of concrete and formal learning activities within 

a single learning environment. The definitions in the heapsort model are organised 



Chapter 6: Exploratory learning and the EFL 
 

 211 

into files in a directory. Each file addresses a different feature of the model. Initially 

the learner is presented with a simple model of a binary tree within which they can 

explore the concept of a heap. This approach is beneficial in two respects:  

i) personally constructing the model gives the learner an appreciation of the 

key concepts and operations involved in heapsort.  

ii) because of its interactive nature, the heapsort model allows the learner to 

experiment at each step in the construction to ensure that they understand 

the interaction between components. 

 

Note that in the model building the learner has flexibility in how and when the 

supplementary files are added to the existing model, but in general they constrain the 

heapsort model towards the heapsort algorithm. The learner can follow a prescribed 

sequence of steps in the construction of the model (cf. the README file in [EMRep, 

heapsortBeynon1998]). The learner nonetheless has complete discretion over their 

interactions with the model, can interact outside the scope of conventional heapsort, 

or can manually perform heapsort operations. This flexible style of interaction is 

essential to experiential learning and provides the type of activities that can foster a 

full and deep understanding of the heapsort algorithm.  

 

The heapsort model exemplifies the way in which EM can support the wide range of 

learning activities in the EFL. Stages 1 and 2 referred to above are concerned with 

understanding the observables and dependencies that are characteristic of the heap 

data structure and subsequently identifying the indivisible stimulus-response 

mechanisms that govern the behaviour of the heapsort algorithm. The discussion 

above has described how, in using the heapsort model, the learner initially focuses on 

the heap structure, then moves through manual operation of the sorting process to the 

automation of heapsort. The basic heap model is a definitive script that describes the 

state of the heap. It is gradually embellished with agent actions to represent necessary 

operations on the heap. This process reflects the emphasis on state-as-experienced as 

prior to behaviour-as-abstracted, fundamental to the EM approach, that was discussed 

in chapter 3. A further extension of the heapsort model that has been implemented by 



Chapter 6: Exploratory learning and the EFL 
 

 212 

Rungrattanaubol [Run02] complements the model with a formal specification of 

heapsort in the Weakest Precondition formalism [Dij76] (see Figure 6.8).  

 

 
Figure 6.8 – Heapsort and its associated formal specification 

 

In this extension, the logical relationships between key variables are themselves 

interpreted as observables at a high level of abstraction, as discussed in detail in 

[BRS00]. This extension of the heapsort model illustrates how EM can support 

learning activities across the whole of the EFL, from experimental interaction to 

formal reasoning. 

 

6.4 The Robotic Simulation Environment 
 

In this section, we describe a prototype EM learning environment developed to help 

learners understand the behaviour of robots in LEGO Mindstorms™, a system that 

allows computer programming and the construction of physical LEGO robots to be 



Chapter 6: Exploratory learning and the EFL 
 

 213 

integrated. The learning environment to be described in this section is targeted at the 

particular scenario being used in Kids’ Club, Joensuu, Finland. It shows how EM can 

be used to provide support for experiential learning activities.  

 

The concept of out-of-school technology clubs for children has been successful in 

giving children a deeper understanding of, and confidence with, computer 

programming and technology in many different cultural contexts [RR96, RRC98, 

ESV+02]. The primary aim of these clubs is to give children of various ages the 

chance to work on personally meaningful technology-based projects within a relaxed 

and informal setting. These clubs employ students and teachers to assist children in 

achieving their own personal goals without imposing rigid curricula or examinations 

on them. The first technology club for children was set up in 1993 and run by the 

Computer Museum in Boston in collaboration with the MIT Media Laboratory 

[Com03]. The aim was to create an atmosphere within which children and adults 

could collaboratively construct technological artefacts facilitated by computer 

technology. Many computer clubhouses now exist across the world under the 

auspices of the Intel Computer Clubhouse Network [Com03].  

 

The Kids’ Club, run by the Educational Technology Research Group based in the 

Computer Science Department at the University of Joensuu in Eastern Finland, is a 

recent initiative that shares the ideology of the Intel computer clubhouse. The 

motivations behind the Kids’ Club are twofold: firstly to be an environment where 

children can undertake technological projects built on their own interests beyond the 

boundaries of the school curriculum; and secondly as a laboratory setting within 

which researchers can field test new educational technologies [ESV+02]. Children are 

not merely participants in the technological phase of the project; they often contribute 

to the research that is being undertaken. The close involvement of the children in the 

research process is the main difference claimed by the Kids' Club organisers from the 

Intel Computer Clubhouses [ESV+02]. 

 



Chapter 6: Exploratory learning and the EFL 
 

 214 

There is a wide range of technology-based activities that children undertake in the 

Kids’ Club. They have the opportunity to program computers, to use the Internet, to 

create interactive Java type animations and to use modern digital media such as video 

cameras. One task in which children have been heavily involved is in constructing 

LEGO™ Mindstorms robots (hereafter to be referred to as ‘robots’) and programming 

them to achieve tasks in a real-world environment. In the next section, we discuss the 

fundamentals of robot construction and programming and outline some of the 

conceptual problems facing learners. These problems motivate the EM learning 

environment to be discussed in section 6.4.2. 

 

6.4.1 Building and programming robots 

 

LEGO Mindstorms robot kits consist of conventional LEGO blocks and pieces, 

wheels, connectors, a programmable device, and sensors that can be attached together 

to build robots. Wheels are connected to motors that enable the robots to move. 

Robots have independently operating motors to drive the wheels on each side of the 

robot. This allows the robot to turn with only one motor running. Sensors can be 

attached to the robots that allow it to interact with its environment. For example, a 

touch sensor will return a positive value if it is touching an object in its environment. 

Each construction kit contains touch sensors, light sensors and colour sensors which 

are used in conjunction with the programming language so that the robot can interact 

with, and respond to, its environment. At the heart of a robot is the Robotic Command 

eXplorer (RCX) Programmable Brick. This is a large LEGO brick that provides the 

battery power for the motors and is also a computer that can store and run programs. 

The programs are written on a personal computer before being uploaded to the brick 

by an infrared communication device.  

 

Robots can be constructed in many different ways. In our prototype environment, we 

have chosen one specific robot design. An example of such a robot can be seen in 

Figure 6.9: it has a motor attached to the pair of wheels on each side. In principle, our 

environment could be extended to encompass arbitrary robot design. 



Chapter 6: Exploratory learning and the EFL 
 

 215 

             The RCX programmable brick 

 

 

 

 

 

 

 

     

 

 

   

Motors 

 

 

 

 

 

Figure 6.9 – An example robot and its main features  

 

Robot programs are created on a computer and transferred to the programmable brick. 

The robot programming language has commands to control the motors that drive the 

wheels. The controls allow the robot to move forwards or backwards in a straight line, 

to rotate on the spot, to rotate in either direction centred on a wheel, or to move in a 

circular path forward or backward. Each motor can be turned on or off or have its 

speed or direction changed. The complex behaviour that can emerge from a set of 

simple commands requires a good understanding of how the commands map onto the 

real-world movement of the robot. There are commands that allow the robot to 

respond to input from the sensors. For instance, when a robot touches an obstacle, a 

touch sensor will return a true value that can trigger a change in the robot’s 

movement. Programming language constructs such as ‘if-then-else’ or ‘while-do’ 

loops can be used to create more complex robot behaviours. Listing 6.1 illustrates 



Chapter 6: Exploratory learning and the EFL 
 

 216 

how a robot can be programmed to move around a room. When it hits an obstacle, the 

robot reverses, changes direction and then moves forward again.  

 

REPEAT FOREVER 

 AB: On forward. speed 7. 

 IF TS1 = 1  

  AC: On reverse. speed 2. Continue 2 seconds. 

  A: On forward. speed 2. Continue 1 second. 

 END IF 

END REPEAT 

 

Listing 6.1 – An example robot program listing  

 

Robot programs are developed on a computer using either a text editor or a specially 

designed programming environment such as the Instructive Portable Programming 

Environment (IPPE) [JKS02]. The IPPE allow commands to be built in a visual 

manner, thereby eliminating syntax errors. It uses a clipboard to store potentially 

useful commands before they are committed to a program. Commands can be added 

to a program from the clipboard in any order, and new ones can be placed on the 

clipboard at any time. In the IPPE, commands are created using dialog boxes such as 

that shown in Figure 6.10, where the command is 'Turn on motors A and C with 

speed 7' [JKS02].  

 

 
Figure 6.10 – Using the IPPE to create a command  



Chapter 6: Exploratory learning and the EFL 
 

 217 

 

Complete programs can be transferred to the programmable brick using an infrared 

communication device. When the program has been uploaded to the robot it can be 

run and the behaviour of the robot can be observed. Following observation of the 

robot’s behaviour, the program can be debugged if required by considering the 

problem, making changes to the program, transferring the program to the brick and 

running it. This leads to an iterative program development cycle comprising 

programming the robot, testing its behaviour and conceptual debugging (see Figure 

6.11). Each of these phases occurs in a different context: programming on the 

computer, testing in the world and conceptual debugging in the mind. 

 

Programming the robot 

 

 

 

 Testing 

 

 

 

                                                                                                   Conceptual Debugging 

 

Figure 6.11 – The iterative robot programming cycle  

 

The problem with the current programming environment, and the iterative 

developmental style outlined above, is that significant cognitive demands are placed 

on the learner. This becomes apparent when we consider the steps involved in a 

typical robot programming scenario. 

 

In practice, each iteration of the development cycle outlined above can take several 

minutes. During this period, the learner has to remember the modifications they had 

made and what they were trying to correct, and at the same time check whether their 



Chapter 6: Exploratory learning and the EFL 
 

 218 

revised program solves the problem through analysing the observed behaviour. If a 

shorter amount of time were required to complete a cycle, then – in addition to the 

intrinsic timesaving benefit – the cognitive demands on the learner would be 

drastically reduced.  

 

A related problem in understanding a robot program is that the program code and the 

resulting behaviour are studied in separate environments. The learner’s task – trying 

to grasp why the robot is not performing as it should, and working out how to debug 

the code – combines observation of the robot with analysis of the program code. This 

requires an understanding of how the available robot commands relate to primitive 

robot behaviour. If the learner has an inadequate construal of this relationship, the 

programming task is exceedingly difficult.  

 

A further problem with the current robot programming approach – with its associated 

long feedback loop – is that it is difficult to perform experiments to determine the 

reasons for a robot’s undesired behaviour. An environment in which commands and 

programs can be easily tested, that allows users to interact on a level appropriate to 

their understanding, promotes exploratory learning. This accords with diSessa’s 

observation that a key factor in the design of learning environments that promote 

active learning is that it should be easy to explore personal hypotheses [diS01]. 

 

The demands discussed above can only be met if the learner has sufficient experience 

of the relationship between robot programs and robot behaviour. The construction of 

a robot simulation environment is motivated by the fact that novices do not possess 

the experience that is required to program successfully. A visualisation to make the 

relationship between the program code and the robot's behaviour more explicit would 

simplify the understanding of robot programming. This would reduce the cognitive 

load on the learner by bringing together the elements of programming, testing and 

conceptual debugging into a common environment. From an EFL perspective, robot 

programming in the existing environment assumes that the learner understands the 

relationship between robot program and robot behaviour and does not require support 



Chapter 6: Exploratory learning and the EFL 
 

 219 

for the experiential learning activities that inform this understanding. This support can 

be established by providing features that enable exploratory learning to establish a 

solid construal.  

 

In the next section we discuss a prototype EM robot simulation environment targeted 

at solving the problems associated with learning to program robots in the Kids' Club.  

 

6.4.2 The Empirical Modelling Robotic Simulation Environment 

 

The primary aim of the EM Robotic Simulation Environment (RSE) is to reduce the 

cognitive demands in learning to program the robots. The work that is reported in this 

section originated from group work with Pasi Eronen, Järi Järvela and Marjo Virnes 

at an Educational Technology summer school held in Finland in August 2002 

[EJR+02]. 

 

The RSE supports the development of a child’s construal of robot behaviour by 

targeting a better understanding of how program commands are related to the 

behaviour of the robot. This is achieved through a layered environment that 

eliminates the long feedback loop associated with the current programming approach. 

With reference to the EFL, the RSE permits learners to undertake activities situated at 

the experiential end of the EFL, by providing different perspectives that can support 

the development of objective knowledge. 

 

The RSE provides cognitive support for the key feedback loop that is driven by the 

problem that the learners are trying to solve (see Figure 6.12). Through observations 

about the robot behaviour in the environment they can test hypotheses and gain 

feedback on them. Solutions to their problems are the catalyst for successful concrete 

robot building. Learners’ construals are used as the basis for solving new problems 

that are refined to suit the context of their new understanding. 

 

 



Chapter 6: Exploratory learning and the EFL 
 

 220 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12 – Learning and the Robotic Simulation Environment [EJR+02] 

 

The complexity and duration of the feedback loop is dramatically reduced in the RSE 

because of the computer-based environment and the quality and type of feedback 

provided. With the current approach, a large proportion of the time spent debugging 

is taken up with physical manipulation of the robot and observation of its behaviour 

in the real world. In a computer-based model, the resultant behaviour can be more 

easily correlated with the program that defines it through tracking the program 

commands as they are executed. For this purpose, the behaviour of the simulated 

robots must match that of their real-world counterparts, otherwise the environment 

would not allow for the transfer of knowledge from the RSE to robot programming. 

Ideally, the simulated robots should be programmed using the same programming 

language that is used to control the physical robots (cf. Listing 6.1). This feature has 

not yet been implemented in our prototype RSE but it would be possible to specify 

the programming language for the robot using the AOP (see section 5.4.1). In 

essence, the RSE allows the learner to concentrate on the essential features of 

programming the robots and supports experimental activities targeted at establishing 

or reinforcing their construal of robot behaviour [EJR+02].  

 

 

Problem 
Concrete 

robot 
building 

Feedback 

Testing Cycle 

Robotics 
simulation 

environment 

Hypothesis 

Solution 

Observations Learners 
Construal 

Acquiring new problem/applying results to new situations 

Testing 



Chapter 6: Exploratory learning and the EFL 
 

 221 

6.4.3 Layering in the Robotic Simulation Environment 

 

The RSE is designed to support learners at many different levels of competency 

[EJR+02]. Some learners will use the environment to learn about the basic concepts 

involved in robot programming. For instance, the learner may wish to explore the 

relationship between primitive robot movement and the programming commands 

needed to produce that movement. Other learners will already understand the basics 

of robot programming and will use the environment to test hypotheses. For instance, 

the learner may wish to confirm that a particular program successfully achieves its 

goal irrespective of the initial orientation of the robot. Both these agendas can be 

satisfied in a single layered environment. We now illustrate different types of use 

within the RSE by describing two different layers. For a fuller description, see 

[EJR+02]. 

 

The basic layer of the RSE allows learners to manipulate the robot using predefined 

controls to establish how robot movements are related to the underlying program code 

that produces them. This of course makes fundamental assumptions about the 

environment such as: the terrain is flat, the friction is uniform, and there is no wind. It 

also assumes that the robot has already been configured so that the touch and light 

sensors are attached. As depicted in Figure 6.13, the robot is controlled using a set of 

buttons labelled ‘Forward’, ‘Backward’ etc, to specify an intended movement of the 

robot. If the learner presses ‘Forward’ then the robot will move forward in a straight 

line until it receives a further command or until it hits an obstacle. By using these 

buttons and referring to the current status of the components, the learner can explore 

how the movement of the robot is related to the internal state of its motors. For 

instance, when the robot is moving forward, both motors are running in the same 

direction at the same speed. To provide scaffolding for writing robot programs, each 

time a button is pressed, the equivalent robot command for that movement is 

displayed using the syntax of the IPPE language. For instance, in Figure 6.13 pressing 

the forward button has set motors A and B to ‘RUNNING’ and the code output 

window shows ‘A,B: on forward. speed 2’. The important activity in this 



Chapter 6: Exploratory learning and the EFL 
 

 222 

layer is concerned with understanding the basic repertoire of movements of the robot 

and the dependencies between commands and movements. The robots are assumed to 

possess some automatic stimulus-response mechanisms. For instance, if a robot 

touches a wall then the touch sensor will return a true value, which is registered in the 

code output window.  

 

 
Figure 6.13 – The RSE being used to investigate the relationship between the motors 

and the robot’s movement  

 

The exploratory nature of the RSE helps to develop the learner’s construal of the 

relationships between the movement of the robot, the setting of the motors attached to 

it and the equivalent program code needed to generate that behaviour. The learner 

needs to understand the fundamentals of robot behaviour in order to program the 

robots effectively. This support for establishing and reinforcing a learner’s construal 

is a major advantage that the RSE has over the IPPE. 

 



Chapter 6: Exploratory learning and the EFL 
 

 223 

A layer of the RSE to support more advanced learning gives learners the power to 

simulate the physical construction of a robot and write programs in the IPPE 

language. In programming the physical robot, sensors and motors must be attached to 

the robot, and wired to the programmable brick in order for program instructions to 

be passed to the motors and sensors. Forgetting to connect devices is a common 

mistake that children must learn to avoid. To support this in the RSE, attaching and 

connecting the motors are two separate actions, which reinforces the need for this to 

be carried out in the real world. To program the simulated robot the learner must enter 

code into the robot commands window (see Figure 6.15). In the current prototype, the 

robot is programmed using direct EDEN counterparts of the primitives and control 

structures available in the IPPE language. Because of this close syntactic similarity 

between EDEN and IPPE code, providing a translator from IPPE into EDEN using 

the AOP should not prove too technically demanding. By entering code fragments 

into the input window, it is envisaged that children will be able to write simple 

commands to replicate single operations, or construct programs using the full range of 

commands and high-level language constructs available in the IPPE language. When 

commands are being executed in the RSE, the status of the motors and sensors is kept 

up to date by dependency so that learners can use the environment to debug their real-

world programs, or determine how their program influences the internal state of the 

robot.  

 

The layers of the RSE are not intended to be completely separate and we envisage 

that learners writing their own programs could also use the direct manipulation 

controls to test a hypothesis about a situation they are trying to understand in their 

program. With reference to the EFL, this reflects the way in which learning activities 

migrate from the concrete to the abstract and vice versa as a learner consolidates his 

or her advanced understanding by exploring areas of uncertainty. The intention is that 

as learners become more competent they gain a better conceptual understanding of 

programming robots and more of their time is spent testing hypotheses and 

experimenting with real-world programming. 

 



Chapter 6: Exploratory learning and the EFL 
 

 224 

We now describe a practical example of how the RSE can be utilised by learners in 

trying to solve a programming task. The scenario described here is originally from 

[JKS02]. The objective is to write a program to navigate a robot around a rectangular 

obstacle, as shown in Figure 6.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           (START)          (FINISH) 

 

Figure 6.14 – An example task for a robot program to solve (from [JKS02]) 

 

Setting up the problem scenario in this example requires specifying the world in 

which the robot will interact. This simply contains four boundary walls to represent a 

square room and three interior walls to represent the obstacle. These walls are 

specified as definitions and can be changed whilst the robot is moving as when 

simulating a moving obstacle. 

 

Learners can interact at either a direct manipulation level, or at a programming level 

in order to solve the problem. Direct manipulation may be used to understand the 

types of commands that are needed to solve the problem and to identify a starting 



Chapter 6: Exploratory learning and the EFL 
 

 225 

point for writing a program to navigate around the obstacle. Alternatively learners can 

write a program for the robot. When the program is run, the behaviour of the robot 

can be observed and debugged as required. Figure 6.15 shows the RSE in use in 

solving the given problem. 

 

 
Figure 6.15 – The RSE in use in solving the task from Figure 6.14 

 

This example shows that the RSE can be used to solve problems that are encountered 

in robot programming in the Kids Club. There are many ways robots can be 

constructed, and many tasks that the robots could be programmed to perform in the 

real-world. The RSE will not be able to support them all, but this example illustrates 

that it can play a role in establishing a conceptual understanding of robot 

programming. 

 

In its present form, the RSE is not sufficiently developed to deal with robot 

programming in its full generality. However, the above example establishes proof-of-



Chapter 6: Exploratory learning and the EFL 
 

 226 

concept, and illustrates that the RSE can be applied to at least some of the problems 

that learners face when programming robots in the Kids’ Club. There are many things 

that still need to be added to make it more suitable for its intended audience. 

Providing an interface for the IPPE language is one of the principal concerns. 

However, there are a number of other features that could be added to the RSE in order 

to enhance its usability. These include: 

• a graphical interface to enable learners to create and manipulate the robots’ 

environment interactively.  

• a more realistic visual representation of the robot, potentially in 3D using the 

Sasami notation. 

• support for developing and simulating different robot designs. 

 

The RSE has further potential as a test bed for designing new features that enhance 

the robots. For example, it would be of interest to introduce communication sensors 

so that teams of robots could work collaboratively or competitively to achieve a task 

[EJR+02]. 

 

In this section, we have shown that the RSE can allow learners to gain an 

understanding of the concepts underlying robot programming without having to 

concentrate initially on specifying the behaviours of the robot in abstract program 

code. This approach allows the learner to intersperse concrete manipulation and 

abstract programming according to their current task and learning needs. 

 

6.5 Chapter summary: Supporting learning across the EFL in 

Empirical Modelling 
 

In this final section, we draw together the three characteristic case studies described 

in this chapter and relate them to the EFL. We argue that model building and model 

use – from the perspectives of many different learners – requires support for learning 

activities across the whole range of the EFL. 

 



Chapter 6: Exploratory learning and the EFL 
 

 227 

By way of illustration, in section 6.2, we discussed the MBF4 model from the 

perspective of a learner and a mathematical researcher. For a learner, the primary 

learning activity is in understanding the mathematical concepts embedded in the 

model. Learners require support for formal concepts through the visualisation of 

concrete examples, allowing them to move from the abstract end to the concrete end 

of the EFL. For the mathematical researcher, the primary learning activity is 

investigating potential connections between various mathematical objects. This task 

involves adding to the model in order to test out conjectures through experimentation 

with concrete examples. 

 

Both model building and model-use can be associated with learning activities 

throughout the EFL. As discussed above, in respect of model building, the MBF4 

model is primarily focused on the learning activities at the concrete end of the EFL. 

In respect of model use, the primary focus of the RSE in section 6.4 is to give learners 

access to an experimental environment in which they can seek to consolidate their 

understanding of programming LEGO Mindstorms robots. With reference to the EFL, 

this is associated with enabling learners to connect the formal symbols in robot 

programs with their concrete meanings in the world. The Heapsort model in section 

6.3 – which integrates aspects of model building and model use – seeks to integrate 

the formal characteristics of the heapsort algorithm with the experiential elements that 

inform it. With reference to the EFL, this gives learners the scope to move either 

towards the abstract or towards the concrete in their exploration of heapsort.  

 

The case studies described in this chapter – and more generally throughout the thesis 

– are practical evidence of the claim that EM can support learning across a wide 

range of learning activities and domain contexts. 



228 

Chapter 7 – Summary and Conclusions 
 

 

7.0 Overview of the Chapter 
 

In this chapter, we review the thesis, discuss possible future work, discuss 

limitations of the research and draw conclusions. 

 

 

7.1 Review of the thesis 

 

In this section, we review the contents of the thesis and evaluate them with 

reference to EM and learning.  

 

In Chapter 2, we considered the qualities of software based on spreadsheet 

principles where learning is concerned. We identified a connection between the 

support spreadsheets offer to learning and their characteristics as tools for 

exploratory modelling. We examined how exploratory modelling is related to 

Cantwell Smith’s semantic relation � and argued that it has two key aspects: 

negotiation and elaboration. Negotiation of the semantic relation � is essentially 

concerned with understanding the nature of a concept. Elaboration of the 

semantic relation � is essentially concerned with understanding how a concept 

can be applied in its wider domain context. We evaluated computer-based 

modelling tools in respect of supporting the two key aspects of the semantic 

relation �. We argued that spreadsheets are well suited to negotiation in certain 

domains but are limited in respect of elaboration. We also considered research 

products related to the spreadsheet and found that these also had limitations 

where supporting the semantic relation � is concerned. We introduced the 

practical EM tool, TkEden, and argued that it offers general support for both 

negotiation and elaboration of the semantic relation �, and hence is a good tool 

for exploratory modelling. 



Chapter 7: Summary and Conclusions 
 

 229 

 

In Chapter 3, we outlined the challenges of exploiting ‘computers for learning’. 

These difficult challenges can be attributed in part to the differing concerns of 

the educationalist and the computer specialist. In learning, typical computer use 

can be separated into two types of activity: building models and using models. 

We argued that satisfying the requirements of the educationalist and the 

computer specialist requires that: 

• in model building there is a close connection between the model 

construction approach and domain learning. 

• in model use there is easy and flexible adaptability of software in response 

to different learning situations. 

We introduced an experiential framework for learning that can be used to 

describe different domain learning activities on a spectrum that ranges from the 

concrete, empirical and private to the abstract, theoretical and public. We 

argued that this framework can be viewed as being generally applicable to any 

learning situation. We introduced the key features of EM: the development of 

construals; the emphasis on state-as-experienced being prior to behaviour-as-

abstracted; and the concepts of observables, dependency and agency. We argued 

that model construction in EM can support learning activities, and migration 

between learning activities, across the whole range of the EFL. This close 

connection between EM and the EFL suggests that domain learning and model 

construction can be intimately linked.   

In Chapter 4, we examined the relationship between model construction and 

domain learning from an educational perspective. We took a broad 

constructionist perspective on learning embracing bricolage and situated 

learning. We argued that all computer-based model construction approaches 

involve active knowledge construction through building a public entity, and 

hence satisfy Papert’s basic definition of constructionism. By relating 

instructionist and constructionist theories to the EFL, we established that 

instructionism is typically concerned with abstract learning activities and 

constructionism is typically concerned with concrete learning activities. We 



Chapter 7: Summary and Conclusions 
 

 230 

examined how three domain learning techniques: concept mapping, 

conventional programming and EM, are related to our broad constructionist 

perspective on learning and the EFL. We concluded that: 

• concept mapping is primarily useful in brainstorming activities and that 

knowledge gained using it is typically set aside when constructing models.  

• conventional programming is not well oriented to the broad perspective 

on constructionism adopted in this thesis because it emphasises planning, 

abstraction and circumscription. These emphases align programming 

with abstract learning in the EFL, and this detracts from its usefulness as 

an approach to model construction that promotes domain learning.  

• an EM approach to model construction supports our broad perspective 

on constructionism and learning activities across the EFL, enabling 

effective domain learning to proceed in tandem with model construction.  

 

In Chapter 5, we considered the advantages to learners, teachers and software 

developers in using EM to construct learning environments that support many 

different types of learning objective. We described three different types of 

learning that can be scaffolded: comprehending a fixed referent; exploring 

possibilities and invention; and learning domain-specific languages. In each of 

these types of learning environment, an initial seed model was embellished by 

extending or refining the existing model. The case studies used to illustrate 

scaffolding of EM learning environments exhibited advantages for: 

• learners, since the learning environments lend themselves to exploration 

of the model domain and referent.  

• teachers, since environments are – in principle – customisable resources 

that can be utilised to take advantage of their particular teaching 

requirements.  • software developers, since the approach to model development means 

that families of models can be easily created in response to teacher 

demands and flexibly adapted or extended to suit different contexts or 

learner competencies.   

 



Chapter 7: Summary and Conclusions 
 

 231 

 

In Chapter 6, we described EM case studies illustrating model building and 

model use in relation to the EFL. We recalled the two categories in the use of 

computers for learning identified in chapter 3: the construction of computer-

based models by learners; and the use of existing models where a user does not 

make any changes to the model. We argued that a third category was 

particularly appropriate in EM: where a partially complete model can be used 

as it stands, or extended to fulfil some learning criterion. The three case studies 

described in the chapter: the Free Distributive Lattice model; the Heapsort 

model; and the Robotic Simulation Environment give practical illustration to 

our claim that the use of EM in learning can support a wide range of learning 

activities within the EFL.  

7.2 Future work 

 

7.2.1 Empirical Testing 

 

In this thesis, the focus has been on establishing a solid conceptual foundation 

for future EM-based educational research. It is the author’s opinion that future 

work needs to be targeted at practical developments for use in educational 

situations.   

The quality of computational resources in an educational environment is 

assessed with reference to the learning objectives to which they are being put. 

Many hundred models have been developed in practical EM case studies as a 

result of student project work and academic research. The majority of these 

models have not been developed with education in mind. There is a definite need 

to target schools more effectively with regard to the development of EM models 

as learning resources. In my view, this targeting should involve a close 

relationship with a particular school and model development based on their 

educational requirements. This arrangement would have a two-way benefit. The 

school – who are not so interested in the underlying computer implementation – 

will receive specifically relevant educational software. The research group would 



Chapter 7: Summary and Conclusions 
 

 232 

have the opportunity for valuable empirical testing of EM models in practical 

educational situations. 

7.2.2 Comparative studies 

 

To date, there has been no evaluation of EM in education in comparison with 

other programming languages or software environments. There is a need for 

comparative studies to ascertain whether there are quantitative and/or 

qualitative improvements in learning that occur in practice through the adoption 

of an EM approach. An exemplar for this type of comparative study can be seen 

in the Playground Project [Pla03], a 3-year European research project that 

compared the Toontalk programming environment [Too03] and a Logo-based 

language called Imagine [KB00]. Imagine was used to create a simple game-

programming environment called Pathways [GKN+01]. Children built their own 

games on top of these environments, and these games were used as the vehicle 

for discussing how they coped with ideas such as building rules, cause and effects 

and issues of object-orientation (cf. section 5.3.3). The primary concern in the 

Playground project was to compare and contrast the quality of the children’s 

evolving understanding of both their game domain and their programs in the 

two environments. Comparative studies of EM with other educational 

programming languages and software is essential to identify whether, in 

practice, the suitability of EM for learning argued in this thesis can be realised. 

Further, in this thesis we have argued that there are advantages in respect of 

domain learning when using EM models rather than conventional 

programming. We have explored this claim insofar as it relates to theoretical 

and conceptual issues. Practical evidence in support of such a claim can only 

arise from realistically scaled comparative testing, and not through the 

anecdotal accounts described in this thesis (and referenced from [Her02, Won03, 

Wan03]).  

 

7.2.3 Developing an Empirical Modelling environment for children 

 

The current EM tools are suitable for programmers and not for end-users, 

whether adults or children. Our own experiments in trying to introduce our 



Chapter 7: Summary and Conclusions 
 

 233 

tools to 17-18 year old students showed that non-computing students could not 

grasp the fundamental ideas underlying programming languages, such as 

functions or parameter passing. We had evidence that students grasped the 

conceptual ideas of analysing a domain such as the jugs game (discussed in 

section 2.4.4) in terms of observables, dependency and agency, but they could 

not translate these into the necessary computer definitions. The creation of a 

simpler development environment or visual language, developed in accordance 

with EM principles, could potentially enable students to construct their own 

models. 

 

There have been many attempts at giving what Papert termed ‘the power of 

programming’ to children [Pap80]. Most share his vision for the Logo language: 

of providing the children with a tool with which they can construct their own 

models or programs according to their desires. Programming languages aimed 

at children typically take inspiration from a particular programming paradigm, 

and translate the important features of each paradigm into an appropriate and 

simple form. For example, Logo was a language aimed at children that was built 

on the procedural programming paradigm [Pap80]. Agentsheets (as discussed in 

section 2.3.3) uses a visual programming language to specify rules to give agents 

in a simulation [Rep93]. Toontalk associates computational notions such as 

procedures and message passing with actions such as training robots and 

sending birds back to their nests [Too03].   

Without significant empirical testing, it is difficult to imagine how the principles 

of EM can be expressed using metaphors with which children will be 

comfortable. In order for an EM language aimed at children to be successful, it 

is essential to remove the syntactic barriers presented by our current notations. 

Previous research by Wong [Won98, Won03] has been targeted at developing 

end-user EM languages. However, the DMT tool (see chapter 4 and [Won03]) 

and the WING environment [Won98] – although they are both visual – are still 

too complicated for children to use in developing their own models. Both still 

require users to interact with complex syntax.   



Chapter 7: Summary and Conclusions 
 

 234 

At present, the construction of models could proceed with children and expert 

modellers collaboratively building models. The child would provide the ideas 

and the expert would translate them into definitions and program code. It 

remains for future work to ascertain whether this is an appropriate mode of 

working from a pedagogical perspective. Careful planning and evaluation would 

be required to establish the educational benefits to the child in such an 

arrangement.   

7.3 Conclusions 
 

In this final section of the thesis, we identify limitations of the research described 

in this thesis and put forward the final conclusions that have been reached. 

 

7.3.1 Reservations about the research 

 

Although the EM research group has been in existence since the early 1980’s, 

there has been relatively little empirical testing with software users, and very 

little use of the tools for model construction outside the University of Warwick. 

Although many models developed by the EM group have been deployed in ‘one-

off’ trials with students, or demonstrated to teachers, only two have been more 

extensively tested in educational contexts: 

• The current SQL-EDDI environment (see section 5.4.3) has been used 

over a three-year period by approximately eight hundred computer 

science students as part of an undergraduate database course. An earlier 

version of the EDDI interpreter was used in the previous two years by 

approximately five hundred computer science students. With this level of 

exposure, and the associated feedback from students, we have evidence 

for the educational merits of the environment (see [BBR+03] for more 

details).  • The Clayton Tunnel accident scenario (see section 2.4.5) has been used on 

several occasions as the basis for University of Warwick open days for 14-

year-old children. Each session has lasted for an hour and involved 

children playing the roles of the participants in the situation and taking 



Chapter 7: Summary and Conclusions 
 

 235 

part in discussions on railway safety issues. The educational benefit of 

such sessions is hard to evaluate, but the quality of the post-mortem 

discussions indicated that the close engagement with the model stimulated 

a positive learning experience. 

 

The models described in chapters 5 and 6 that are targeted at educational 

settings (see e.g. racing cars (section 5.2.1), the OXO models (section 5.3.2), the 

clown-and-maze environment (section 5.4.2), the heapsort model (section 6.3) 

and the RSE (section 6.4)) have not been tested in educational contexts. To fully 

evaluate the claims made in this thesis, these models should be tested in the 

environment in which they are intended to be deployed. Only after such an 

evaluation can we be sure of the validity of our conclusions. 

 

Writing by itself is not the ideal way to disseminate EM. In this thesis, we have 

argued that model construction in EM is different in character from developing 

a conventional program. It is difficult for the reader who is unfamiliar with EM 

to form a considered view on this claim without any practical exposure to 

developing models. In our opinion, such exposure is vital to fully appreciate the 

distinctive character of EM in relation to conventional programming. Whilst 

discussions in previous papers (see e.g. the discussion of the clock model in 

Appendix D and [Bey01] and the discussion of the lift model in [Bey03]) can give 

an impression of the open-ended and flexible nature of model construction, it is 

only through personal and practical engagement (as Papert himself would 

advocate!) that the reader can fully appreciate the nature of EM model 

development.   

7.3.2 Conclusions of the thesis 

 

In this thesis, we have explored the potential of EM in the application of 

computers for learning. This exploration has addressed its merits in respect of 

the construction of models, and the use of models.  

 



Chapter 7: Summary and Conclusions 
 

 236 

In respect of model building, we have argued that in EM, the process of model 

construction is intimately linked with furthering domain understanding. This 

intimate link exists because of the support EM model construction offers for a 

wide range of learning activities, as reflected in the EFL. In particular, EM 

supports the concrete learning activities in the EFL that are more closely 

associated with constructing spreadsheets than writing programs. Furthermore, 

the model construction approach in EM allows the modeller to move at will 

between learning activities across the EFL in response to their learning needs at 

the time.  

In respect of model use, we have argued that EM learning environments are 

flexibly adaptable in response to different learning contexts. This flexibility 

stems in part from the openness of the model development approach. The use of 

cognitive layering – the layered development of microworlds in which future 

layers are not preconceived, and can be flexibly adapted - has advantages for all 

the stakeholders in educational software development. Our case studies have 

illustrated that EM is able to support the wide range of different learning 

activities represented in the EFL, and confirm its potential as an approach for 

addressing the agenda of ‘computers for learning’. 



237 

Bibliography 
 
 
[4mat03] 4mation Educational Resources. Online at http://www.4mation.co.uk. 
  [Accessed on November 1st, 2003]. 
 
[ABC+98]  J.Allderidge, W.M.Beynon, R.I.Cartwright, Y.P.Yung. Enabling 

technologies for Empirical Modelling in Graphics. In Proceedings of 
Eurographics UK, 16th Annual Conference, pages 199-213, 1998. 

 
[Acu03]  ACUMEN spreadsheet system. Online at: 

http://www.threedgraphics.com/tdg/defaulta.asp. [Accessed on 
November 1st, 2003]. 

 
[Aep86] W.Aeppli. Rudolf Steiner Education and the Developing Child. 

Hudson, N.Y: Anthroposophic Press, 1986. 
 
[AFC00] The Alliance For Childhood. Fools Gold: A critical look at computers 

in childhood. Report into the use of computers by children. Online at: 
http://www.allianceforchildhood.net/projects/computers/computers_re
ports.htm [Accessed on November 1st, 2003] 

 
[Age03]  Agentsheets Inc Website at http://www.agentsheets.com [Accessed on 

November 1st, 2003] 
 
[AHU82]  A.V.Aho, J.E.Hopcroft, J.D.Ullman. Introduction to Algorithms and 

Data Structures. Addison-Wesley, 1982. 
 
[Akm00] V.Akram. Rethinking context as a social construct. In Journal of 

Pragmatics 32(6), pages 743-759, 2000. 
 
[ARS96]  J.R.Anderson, L.M.Reder, H.A.Simon. Situated learning and 

education, Educational Researcher 25 No.4, pages 5-11, May 1996. 
 
[Ath02]  J.S.Atherton. Learning and Teaching. Online at: 

http://www.dmu.ac.uk/~jamesa/learning/contents.htm, 2002. 
[Accessed on November 1st, 2003]. 

 
[Aus68]  D.Ausubel. Educational psychology: A cognitive view. New York: 

Holt, Rinehart, and Winston, 1968. 
 
[AZ93]  L.Anderson-Inman, L.Zeitz. Computer-based concept-mapping: 

Active studying for active learners. The Computing Teacher, 21(1). 6-
8, 10-11. (EJ 469 254), August/September 1993.  

 



Bibliography 
 

 238 

[BAB+96] W.M.Beynon, D.Angier, T.Bissell, S.Hunt. DoNaLD: A line-drawing 
system based on definitive principles. Research Report RR-86, 
Department of Computer Science, University of Warwick, 1983. 

 
[BAD+01]  M.Burnett, J.Atwood, R.Djang, H.Gottfried, J.Reichwein, S.Yang. 

Forms/3: A first-order visual language to explore the boundaries of the 
spreadsheet paradigm. In Journal of Functional Programming 11(2), 
pages 155-206, March 2001. 

 
[BB95]  T.Buzan, B.Buzan. The Mind Map Book. BBC Consumer Publishing, 

1995. 
 
[BB96] G.Brassard, P.Bratley. Fundamentals of Algorithmics. Prentice Hall, 

1996. 
 
[BBC+01]  A.F.Blackwell, C.Britton, A.Cox, T.R.G.Green, C.Gurr, G.Kadoda, 

M.S.Kutar, M.Loomes, C.L.Nehaniv, M.Petre, C.Roast, C.Roe, 
A.Wong, R.M.Young. Cognitive Dimensions of Notations: Design 
tools for Cognitive Technology. In Proceedings 4th International 
Conference on Cognitive Technology: Instruments of Mind, University 
of Warwick, August 2001, LNAI 2117, Springer-Verlag, pages 325-
341, 2001. 

 
[BBF84]  R.Burton, J.S.Brown, G.Fischer. Skiing as a model of instruction. In 

B.Rogoff, J.Lave (eds), Everyday cognition: Its development in social 
context, Cambridge MA: Harvard University Press, pages 139-150, 
1984. 

 
[BBR+03]  W.M.Beynon, A.Bhalerao, C.Roe, A.Ward. A computer-based 

environment for the study of relational query languages. In 
Proceedings of the Teaching, Learning and Assessment in Databases 
Workshop, Coventry, United Kingdom, 14th July, pages 104-108, 
2003. 

 
[BBY92] W.M.Beynon, I.Bridge, Y.P.Yung. Agent-oriented modelling for a 

vehicle cruise controller. In Proceedings ESDA Conference, ASME 
PD-Vol 47-4, pages 159-165, 1992. 

 
[BC95]  W.M.Beynon, R.I.Cartwright. Empirical Modelling principles for 

cognitive artifacts. In Proceedings IEE Colloquium: Design systems 
with users in mind: The role of cognitive artifacts, Digest No.95/231, 
8/1-8/8, December 1995.  

 
[BCD89]  J.S.Brown, A.Collins, S.Duguid. Situated cognition and the culture of 

learning. Educational Researcher, 18(1), pages 32-42, 1989.  
 



Bibliography 
 

 239 

[BCH+01]  W.M.Beynon, Y-C Chen, H-W Hseu, S.Maad, S.Rasmequan, C.Roe, 
J.Rungrattanaubol, S.Russ, A.Ward, A.Wong. The computer as 
instrument. In Proceedings 4th International Conference on Cognitive 
Technology: Instruments of Mind, University of Warwick, August 
2001, LNAI 2117, Springer-Verlag, pages 476-489, 2001. 

 
[Bec00]  K.Beck. eXtreme Programming explained, Addison Wesley, 2000. 
 
[Ben99] F.Bennett. Computers as tutors: Solving the crisis in education. Faben 

Inc., 1999. 
 
[Ben01]  M.Ben-Ari. Constructivism in Computer Science Education. In 

Journal of Computers in Mathematics and Science Teaching, 20 (1), 
pages 45-73, 2001. 

 
[Bey74] W.M.Beynon. Combinatorial aspects of piecewise-linear maps. In 

Journal London Mathematical Society (2) 7, pages 719-727, 1974. 
 
[Bey83]  W.M.Beynon. A definition of the ARCA notation. Research Report 

RR-54, Department of Computer Science, University of Warwick, 
1983.  

 
[Bey86]  W.M.Beynon. The LSD notation for communicating systems. 

Research report RR-87, Department of Computer Science, University 
of Warwick, 1986.  

 
[Bey87a]  W.M.Beynon. Definitive Principles for Interactive Graphics. Research 

report RR-93, Department of Computer Science, University of 
Warwick, 1987.  

 
[Bey87b] W.M.Beynon. Monotone Boolean Functions as Combinatorially 

Piecewise Linear Maps. Research report RR-109, Department of 
Computer Science, University of Warwick, 1987. 

 
[Bey97]  W.M.Beynon. Empirical modelling for educational technology. In 

Proceedings of Cognitive Technology 1997, pages 54-68. University of 
Aizu, Japan, IEEE, 1997.  

 
[Bey98]  W.M.Beynon. Modelling state in mind and machine. Research Report 

RR-337, Department of Computer Science, University of Warwick, 
1998. 

 
[Bey99]  W.M.Beynon. Empirical modelling and the foundations of artificial 

intelligence. In Proceedings Computation for Metaphors, Analogy and 
Agents, Lecture Notes in Artificial Intelligence 1562, Springer, pages 
322-364, 1999.  



Bibliography 
 

 240 

 
[Bey01]  W.M.Beynon. Liberating the computer arts. In Proceedings of the 1st 

International Conference on Digital and Academic Liberty of 
Information (DALI’2001), University of Aizu, Japan, 2001.  

 
[Bey03]  W.M.Beynon. Radical Empiricism, Empirical Modelling and the 

nature of knowing. In K.Freyburg, H-J.Petsche, B.Klein (Eds). 
Proceedings of the WM 2003 Workshop on Knowledge Management 
and Philosophy. Luzern, April 2003. Online at 
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-
85/ [Accessed on November 1st, 2003]. 

 
[BFP+03] K.Brady, M.B.Forton, D.Porter, C.Wood. Rules in school. Northeast 

foundation for children, 2003. 
 
[BGA56] J.Bruner, J.Goodnow, A.Austin. A study of thinking. New York: 

Wiley, 1956. 
 
[Bir95] G.Birkhoff. Lattice theory (3rd edition). American Mathematical 

Society Colloquium Publications, Vol. 25, 1995. 
 
[BJ94]  W.M.Beynon, M.S.Joy. Computer Programming for Noughts-and-

Crosses: New Frontiers. In Proceedings PPIG’94, Open University, 
pages 27-37, January 1994.  

 
[BMS+02] M.Ben-Ari, N.Myller, E.Sutinen, J.Tarhio. Perspectives on program 

animation with Jeliot. Software Visualization: International Seminar. 
Dagstuhl Castle, Germany, Lecture Notes in Computer Science 2269, 
pages 31-45, 2002. 

 
[BNO+90] W.M.Beynon, M.T.Norris, R.A.Orr, M.D.Slade. Definitive 

specification of concurrent systems. In Proceedingss UKIT’90, IEE 
Conference Publications 316, pages 52-57, 1990. 

 
[Boe76]  B.W.Boehm. Software Engineering. In IEEE Transactions on 

Computers, Vol. C-25, No.12, pages 1226-1241, 1976. 
 
[BR99] H.J.Becker, J.Ravitz. The influence of computer and internet use on 

teachers’ pedagogical practices and perceptions. Journal of Research 
on Computing in Education, 31(4), pages 356–384, 1999. 

 
[Bra78]  C.Brainerd. Piaget’s theory of intelligence, Englewood Cliffs, NJ: 

Prentice-Hall, 1978. 
 
[Bro95]  F.P.Brooks. Jr. The Mythical Man-Month: Essays on Software 

Engineering. Addison-Wesley, 1995. 



Bibliography 
 

 241 

 
[Brö95]  P.Brödner. The two cultures in engineering. In Skill, Technology and 

Enlightment, Springer-Verlag, pages 249-260, 1995. 
 
[Bro01]  C.Brown. An agent-based parsing system in Eden. Final year project, 

Department of Computer Science, University of Warwick, 2001. 
 
[BRR00]  W.M.Beynon, S.Rasmequan, S.B.Russ. The use of Interactive 

Situation Models for the development of business solutions. In 
Proceedings workshop on Perspective in Business Informatics 
Research (BIR-2000), Rostock, Germany, March 31-April 1, 2000. 

 
[BRS+98]  W.M.Beynon, J.Rungrattanaubol, P.H.Sun, A.E.M.Wright. 

Explanatory models for open-ended human computer interaction. 
Research report RR-346, Department of Computer Science, University 
of Warwick, 1998. 

 
[BRS00]  W.M.Beynon, J.Rungrattanaubol, J.Sinclair. Formal specification from 

an observation-oriented perspective. Journal of Universal Computer 
Science, Vol. 6 (4), pages 407-421, 2000. 

 
[BRW+01]  W.M.Beynon, C.Roe, A.Ward, A.Wong. Interactive situation models 

for cognitive aspects of user-artefact interaction. In Proceedings 4th 
International Conference on Cognitive Technology: Instruments of 
mind, University of Warwick, LNAI 2117 Springer-Verlag, pages 356-
372, 2001. 

  
[BS98]  W.M.Beynon, P.H.Sun. Empirical Modelling: A new approach to 

understanding requirements. In Proceedings 11th International 
Conference on Software Engineering and its Applications, Vol 3, 
Paris, December 1998. 

 
[BS99]  W.M.Beynon, P.H.Sun. Computer-mediated communication: A 

distributed Empirical Modelling perspective. In Proceedings of the 3rd 
International Conference on Cognitive Technology (CT’99), pages 
115-132, August 1999. 

 
[BSR99]  M.Burnett, A.Sheretov, G.Rothermel. Scaling up a ‘What you see is 

what you test’ methodology to testing spreadsheet grids. In 1999 IEEE 
Symposium on Visual Languages, Tokyo, Japan, pages 30-37, 
September 13-16, 1999. 

 
[Buc90]  J.Buckle. Computational aspects of lattice theory. PhD Thesis, 

Department of Computer Science, University of Warwick, March, 
1990. 

 



Bibliography 
 

 242 

[BWM+00]  W.M.Beynon, A.Ward, S.Maad, A.Wong, S.Rasmequan, S.B.Russ. 
The Temposcope: A computer instrument for the idealist timetabler. In 
Proceedings of the third international conference on the practice and 
theory of automated timetabling, Constance, Germany, pages 153-175, 
16-18th August 2000. 

 
[Car90]  J.M.Carroll. The Nurnberg Funnel: Designing minimalist instruction 

for practical computer skill. Cambridge, MA: MIT Press, 1990. 
 
[Car94]  A.Cartwright. Application of definitive scripts to CACD. PhD Thesis, 

Department of Computer Science, University of Warwick, July 1994. 
 
[Car99]  R.I.Cartwright. Geometric Aspects of Empirical Modelling: Issues in 

Design and Implementation, PhD Thesis, Department of Computer 
Science, University of Warwick, May 1999. 

 
[Car00]  B.Carter. Solids Animation Simulator And Modelling Interface. Final 

year project, Department of Computer Science, University of 
Warwick, 2000. 

 
[CCS96] D.Canfield-Smith, A.Cypher, K.Schmucker. Making programming 

easier for children. Interactions. Volume 3, Issue 5, Sept/Oct, 1996. 
 
[Che01]  Y-C.Chen. Empirical Modelling for participative business process 

reengineering. PhD Thesis, Department of Computer Science, 
University of Warwick, December 2001. 

 
[CG95]  A.Cockburn, S.Greenberg. TurboTurtle: A collaborative microworld 

for exploring Newtonian physics. In ACM Conference on Computer 
Supported Cooperative Learning (CSCL 95), Bloomington, Indiana, 
pages 62-66, Lawrence Erlbaum Associates Inc, October 1995 

 
[CK95] M.Campbell-Kelly. Development and structure of the international 

software industry, 1950-1990. In Business and Economic History, 
Volume 24, no. 2, pages 94-107, Winter 1995.  

 
[Cod70]  E.F.Codd. A Relational Model of Data for Large Shared Data Banks. 

CACM 13, No.6, 1970. 
 
[Com03]  The Computer Clubhouse (Boston). Website - 

http://www.computerclubhouse.org (Accessed on November 1st, 
2003). 

 
[Coo93]  P.A.Cooper. Paradigm shifts in Designed Instruction: From 

behaviourism to cognitivism to constructivism. In Educational 
Technology, Vol 33 (5), pages 12-19, 1993. 



Bibliography 
 

 243 

 
[Cov98]  M.Covington. The will to learn: A guide for motivating young people. 

New York: Cambridge University Press, 1998. 
 
[CRB+98]  E.Chi, J.Riedl, P.Barry, J.Konstan. Principles for information 

visualization spreadsheets. IEEE Computer graphics and applications, 
Volume 18, No.4, pages 30-38, July/August 1998. 

 
[CRB00]  Y-C.Chen, S.B.Russ, W.M.Beynon. Empirical Modelling for Business 

Process Reengineering: An experience-based approach. In 
Proceedings workshop on Perspective in Business Informatics 
Research (BIR-2000), Rostock, Germany, March 31-April 1, 2000. 

 
[CW95] I.B.Cohen, R.S.Westfall (Selected and Edited), Newton, Norton, 1995. 
 
[Dat87] C.J.Date. A guide to INGRES. Addison-Wesley, 1987. 
 
[Dat00]  C.J.Date. An introduction to database systems (7th edition). Reading, 

Mass.:Addison-Wesley, 2000. 
 
[DD93]  K.Dunn, R.Dunn. Teaching secondary students through their 

individual learning styles: Practical approaches for grades 7-12. 
Allyn & Bacon: Boston, 1993. 

 
[DD00]  C.J.Date, H.Darwen. Foundations for future database systems: The 

Third Manifesto (2nd edition). Reading, Mass.:Addison-Wesley, 2000. 
 
[Deu88] M.S.Deutsch. Focusing real-time systems analysis on user operations. 

IEEE Software, September 1988. 
 
[Deu89] M.S.Deutsch. Enhancing testability with scenario oriented 

engineering. In Proceedings of the 6th International Conference on 
Testing Computer Software, 1989. 

 
[Dew16]  J.Dewey. Democracy and Education. New York: MacMillan, 1916. 
 
[Dew38]  J.Dewey. Experience and Education. New York: MacMillan, 1938. 
 
[DFE03] DfES (Department for Education and Skills). Fulfilling the potential: 

Transforming teaching and learning through ICT in schools, DfES 
publications, 2003.  

 
[Dij76]  E.W.Dijkstra. A discipline of programming. Prentice Hall, 1976. 
 
[diSA86]  A. diSessa, H. Abelson. Boxer: A Reconstructible Computational 

Medium.Communications of the ACM, 29 (9), pages 859 - 868, 1986. 



Bibliography 
 

 244 

 
[diS97a] A.diSessa. Twenty reasons why you should use Boxer (instead of 

Logo). In M.Turcsanyi-Szabo (Ed.), Learning and exploring with 
Logo: Proceedings of the sixth European Logo conference, pages 7-
27, 1997. 

 
[diS97b] A.diSessa. Open toolsets: New ends and new means in learning 

mathematics and science with computers. In E.Pehkonen (Ed.) 
Proceedings of the 21st Conference of the International Group for the 
Psychology of Mathematics Education. Vol. 1. Lahti, Finland, pages 
47-62, 1997. 

 
[diS01]  A.diSessa. Changing minds: Computers, learning and literacy. MIT 

Press, 2001. 
 
[Dri00]  M.P.Driscoll. Psychology of Learning for Instruction (2nd Ed). Boston: 

Allyn and Bacon, 2000. 
 
[Dug99] V.Duggal. CADD primer: A general guide to Computer Aided Design 

and Drafting. Mailmax Publishing, 1999. 
 
[EMRep, <project_name>]  The Empirical Modelling Repository. Online at 

http://empublic.dcs.warwick.ac.uk. The second 
argument is the name of the project in the repository. 

 
[EJR+02]  P.J.Eronen, J.Jarvela, C.Roe, M.Virnes. Using Empirical Modelling to 

simulate robotics in Kids' Club. 2nd Annual Finnish/Baltic Sea 
Conference on Computer Science Education (Koli Calling), University 
of Joensuu, Finland, 18-20 October, pages 63-68, 2002.  

 
[Ern95]  P.Ernest. The one and the many. In L.P.Steffe, J.Gale (eds), 

Constructivism in education, pages 459-486, Hillsdale, NJ: Lawrence 
Erlbaum Associates, 1995. 

 
[ESV+02]  P.J.Eronen, E.Sutinen, M.Vesisenaho, M.Virnes. Kids' Club as an 

ICT-Based learning laboratory. Informatica Journal 13 (4), pages 1-
12, 2002. 

 
[FB00]  C.N.Fischer, W.M.Beynon. Empirical Modelling of Products. In 

Proceedings International Conference on Simulation and multimedia 
in engineering education, Phoenix, Arizona, pages 20-26, The Society 
for Modelling and Simulation International, 2001. 

 
[Fri70]  P.Freire. Pedagogy of the oppressed. Penguin Books. 1970. 
 



Bibliography 
 

 245 

[FRK+01] K.Fernandes, V.Raja, J.Keast, W.M.Beynon, P.S.Chan, M..Joy. 
Business and IT perspectives on AMORE: a methodology for Object-
Orientation in re-engineering enterprises. In P.Henderson (Ed.), 
Systems Engineering for Business Process Change: New Directions, 
Springer-Verlag, December 2001. 

 
[FWS92] R.A.Finke, T.B.Ward, S.M.Smith. Creative Cognition: Theory, 

Research and Applications. The MIT Press, 1992. 
 
[Gar93]  H.Gardner. Frames of mind: The theory of multiple intelligences. (2nd 

Edition), New York: Basic Books. 1983. 
 
[GBJ+00]  D.Grune, H.Bal, C.Jacobs, K.Langendoen. Modern Compiler Design, 

Wiley, 2000. 
 
[GDL] P.Gloor, S.Dynes, I.Lef. Animated Algorithms (A Hypermedia 

Learning Environment for Introduction to Algorithms). CD-ROM. 
 
[Geh96]  D.Gehring. Spreadsheets and programming. In Proceedings of the 

PPIG ’96 Student Workshop, pages 53-58, 1996. 
 
[GG00] J.Glynn, T.W.Gray. The beginner’s guide to Mathematica Version 4, 

Cambridge University Press, 2000. 
 
[GKL+01]  P.Gerdt, P.A.M.Kommers, C-K.Looi, E.Sutinen. Woven stories as a 

cognitive tool. In Proceedings 4th International Conference on 
Cognitive Technology: Instruments of mind, University of Warwick, 
LNAI 2117 Springer-Verlag, pages 233-247, 2001. 

 
[GKN+01]  R.Goldstein, I.Kalas, R.Noss, D.Pratt. Building Rules. In Proceedings 

4th International Conference on Cognitive Technology: Instruments of 
mind, University of Warwick, LNAI 2117 Springer-Verlag, pages 267-
281, 2001. 

 
[Gog96]  J.A.Goguen. Formality and informality in requirements engineering. In 

Proceedings 2nd International Conference on Requirements 
Engineering, pp 102-108, 1996. 

 
[Goo90]  D.Gooding. Experiment and the making of meaning. Kluwer 

Academic Publishers, 1990. 
 
[GON92]  C.Graci, R.Odendahl, J.Narayan. Children, chunking and computing. 

Journal of Computing in Childhood Education 3, 3/4, pages 247-258, 
1992. 

 
 



Bibliography 
 

 246 

[Gre89]  T.R.G.Green. Cognitive dimensions of notations. In People and 
Computers V, A.Sutcliffe, L.Macaulay (Eds), Cambridge University 
Press: Cambridge, pages 443-460, 1989. 

 
[Gro02]  T.A.Grossman. Spreadsheet engineering: A research framework. In 

Proceedings EUSPRIG 2002, pages 23-34, 18th-19th July, 2002. 
 
[Har87a] D.Harel. Algorithmics. Addison-Wesley, 1987. 
 
[Har87b]  D.Harel. Statecharts: A visual formalism for complex systems. Science 

of Computer Programming, Vol. 8, pages 231-274, July 1987. 
 
[Har88]  D.Harel. On visual formalisms. Communications of the ACM, Vol. 31, 

No. 5, May, pages 514-530, 1988. 
 
 
[Har03]  A.Harfield. Agent-oriented parsing with Empirical Modelling. Final 

year project, Department of Computer Science, University of 
Warwick, 2003.  

 
[HCC01] Conference Paper Call for the IEEE Symposia on Human-Centric 

Computing Languages and Environments (HCC’01) (Symposium on 
End-User Programming), Stresa, Italy, September, 2001. Available 
Online at http://iis.cse.eng.auburn.edu/~SEUP/ [Accessed on 
November 1st, 2003]. 

 
[Hea99] J.Healy. Failure to connect: How computers affect our children’s 

minds - for better and worse. Simon and Schuster, 1999. 
 
[Her02]  T.Heron. Programming with dependency. MSc dissertation, 

Department of Computer Science, University of Warwick, September 
2002. 

 
[HK92]  E.Heeren, P.A.M.Kommers. Flexibility of expressiveness: A critical 

factor in the design of concept mapping tools for learning. In 
P.A.M.Kommers, D.Jonassen, T.Mayes (eds.) Cognitive tools for 
learning. Berlin: Springer-Verlag, pages 85 - 101, 1992.  

 
[HO96] B.R.Hergenhahn, M.H.Olsen. An introduction to theories of learning. 

Prentice Hall, 1996. 
[How82]  W.S.Howell. The empathic communicator. Belmont, CA: Wadsworth, 

1982. 
 
[HS73]  J.R.Hartley, D.H.Sleeman. Towards more intelligent teaching systems. 

In International Journal of Man-Machine Studies, 5(2): pages 215-
236, 1973. 



Bibliography 
 

 247 

 
[Hud94]  S.Hudson. User interface specification using an enhanced spreadsheet 

model. ACM transactions on graphics 13(4), pages 209-239, 1994. 
 
[Ill71]  I.Illich. Deschooling society. Marion Boyars, London, 1971. 
 
[IMC+98]  T.Igarashi, J.D.Mackinlay, B-W.Chang, P.T.Zellweger. Fluid 

visualization of spreadsheet structures. In Proceedings of IEEE 
Symposium on Visual Languages, pages 118-125,1998. 

 
[Ins93]  D.Helfgott, M.Helfgott, B.Hoof. Inspiration, The visual way to quickly 

develop and communicate ideas, Inspiration Software Inc. 
http://www.inspiration.com, 1993. [Accessed on November 1st, 2003] 

 
[Jam90] W.James. Principles of psychology. (2 volumes), Holt, New York, 

1890. 
 
[Jam96]  W.James. Essays in Radical Empiricism. Bison Books. 1996. 
 
[JCJ+92]  I.Jacobson, M.Christeron, P.Jonson, G.Overgaard. Object-oriented 

Software Engineering: A use-case driven approach. Addison-Wesley, 
1992. 

 
[JKS02]  I.Jormanainen, O.Kannusmaki, E.Sutinen. IPPE - How to visualize 

programming with robots. In Second Program Visualisation 
Workshop, The 7th Annual Conference on Innovation and Technology 
in Computer Science Education, Aarhus, Denmark, June 24-26, 2002.  

 
[Joh83] P.N.Johnson-Laird. Mental models: towards a cognitive science of 

language, inference and consciousness, Cambridge: Mass.: Harvard 
University Press, 1983. 

 
[Joh03] J.M.Johnson. Then, Now and Beyond: From lofty beginnings to the 

age of accountability. In Learning and Leading with Technology, 
Volume 30, Number 7, International Society for Technology in 
Education, April 2003. 

 
[Jon91]  D.H.Jonassen. Objectivism versus Constructivism: Do we need a new 

philosophical paradigm? In Journal of Educational Research, 39 (3), 
pages 5-14, 1991. 

 
[Jon92]  D.H.Jonassen. Evaluating constructivistic learning. In T.M.Duffy, 

D.H.Jonassen (eds), Constructivism and the technology of instruction: 
A conversation, Hillsdale, N.J: Lawrence Erlbaum Associates, pages 
137-148, 1992. 

 



Bibliography 
 

 248 

[Kah01]  K.Kahn. Is Toontalk a colleague, competitor, successor, sibling, or 
child of Logo? In Proceedings of EuroLogo, 2001. 

 
[Kay84]  A.Kay. Computer Software. Scientific American 251(3), pages 52-59, 

September 1984. 
 
[Kay96] A.Kay. Revealing the elephant: The use and misuse of computers in 

education. EduCom 31 (4), 1996. 
 
[KB00]  I.Kalas, A.Blaho. Imagine… New Generation of Logo: Programmable 

pictures. In Proceedings of WCC2000, Beijing, pages 427-430, 2000. 
 
[KC98] H.Kirkpatrick, L.Cuban. Computers make kids smarter - right? 

TECHNOS Quarterly, Vol.7, No.2, Summer 1998. 
 
[Ker92] J.Kernane. Address to the Maryland Instructional Computer 

Coordinators Association conference in Baltimore, 1992. (Appeared in 
Driver/Education Newsletter, 1992). 

 
[KJM92]  P.A.M.Kommers, D.H.Jonassen, T.J.Mayes. Cognitive tools for 

learning. Berlin: Springer-Verlag, 1992. 
 
[Kno70]  M.Knowles. The modern practice of adult education: Andragogy 

versus Pedagogy. New York: Association Press, 1970. 
 
[Kno90]  M.Knowles. The Adult Learner: A neglected species (4th Edition). 

Houston: Gulf Publishing, 1990. 
 
[Kol84]  D.Kolb. Experiential Learning: Experience as the source of learning 

and development. Prentice Hall, 1984. 
 
[KR96]  Y.B.Kafai, M.Resnick. Introduction. In Y.B.Kafai, M.Resnick (eds). 

Constructionism in practice: Designing, thinking, and learning in a 
digital world. Hillsdale, NJ: Lawrence Erlbaum Associates, 1996. 

 
[Lan03] M.Langer. Microsoft Office Excel 2003 for Windows: Visual 

QuickStart guide. Peachpit Press, 2003. 
 
[Lav88]  J.Lave. Cognition in practice: Mind, mathematics and culture in 

everyday life. New York: Cambridge University Press, 1988. 
 
[Law85]  R.Lawler. Computer experience and cognitive development: A child’s 

learning in a computer culture. Ellis Horwood, 1985. 
 
[LCS03] Logo Computer Systems Inc. http://www.microworlds.com. [Accessed 

on November 1st, 2003]. 



Bibliography 
 

 249 

 
[Lev68]  C.Levi-Strauss. The savage mind. University of Chicago Press. 1968. 
 
[Lev94]  M.Levoy. Spreadsheets for images. In Computer Graphics 

(Proceedings SIGGRAPH ’94), Volume 28, No.4, pages 139-146, 
ACM Press, New York, 1994. 

 
[Lew51]  K.Lewin. Field theory in social science. New York: Harper Collins, 

1951. 
 
[Lew90]  C.Lewis. NoPumpG: Creating interactive graphics with spreadsheet 

machinery. In E.Glinert (ed.) Visual Programming Environments: 
Paradigms and systems, IEEE CS Press, Los Alamitos, California, 
pages 526-546, 1990. 

 
[LJ98] M.Loomes, S.Jones. Requirements engineering: A perspective through 

theory-building. In Proceedings 3rd International IEEE Conference on 
Requirements Engineering. IEEE Computer Society Press, pages 100-
107, 1998. 

 
[LW91]  J.Lave, E.Wenger. Situated Learning: Legitimate peripheral 

participation. New York: Cambridge University Press, 1991. 
  
[Maa02]  S.Maad. An Empirical Modelling approach to software system 

development in finance: Applications and prospects. PhD Thesis, 
Department of Computer Science, University of Warwick, March 
2002. 

 
[Mar92]  J.Martin. Rapid Application Development, Prentice Hall, 1992.  
 
[Mer91]  M.D.Merrill. Constructivism and Instructional Design. In Educational 

Technology, 31 (5), pages 45-53, 1991. 
 
[Min86]  M.Minsky. The society of mind. New York, NY: Simon & Schuster, 

1986. 
 
[MKT93]  E.McLean, L.A.Kappelman, J.P.Thompson. Converging end-user and 

corporate computing. In Communications of the ACM (36:12), pages 
79-92, December 1993. 

 
[MO94] B.Means, K.Olsen. The link between technology and authentic 

learning. In Educational Leadership, vol.5, pages 15-18, February 
1994. 

 
 



Bibliography 
 

 250 

[MPG+02] N.A.M.Maiden, P.Pavan, A.Gizikis, O.Clause, H.Kim, X.Zhu. Making 
Decisions with Requirements: Integrating i* Goal Modelling and the 
AHP. In Proceedings REFSQ'2002 Workshop, 9-10 September 2002, 
Essen, Germany, 2002. 

 
[Nar93]  B.Nardi. A Small Matter of Programming: Perspectives on End User 

Computing. MIT Press, 1993. 
 
[Nau95]  P.Naur. Knowing and the mystique of logic and rules. Kluwer 

Academic Publishers, 1995. 
 
[Nau01] P.Naur. Anti-philosophical Dictionary. naur.com publishing, 2001. 
 
[Nes97]  P.E.Ness. Creative software development -- An Empirical Modelling 

framework. PhD Thesis, Department of Computer Science, University 
of Warwick, 1997. 

 
[New01]  L.Newton, L.Rogers. Teaching science with ICT. Continuum 

International Publishing Group, 2001. 
 
[NG84]  J.D.Novak, D.B.Gowin, Learning how to learn. Cambridge University 

Press, Cambridge, 1984. 
 
[NH92] R.Noss, C.Hoyles. Looking back and looking forward. In R.Noss, 

C.Hoyles (Eds.), Learning mathematics and Logo, pages 431-468, 
MIT Press, 1992.  

 
[NH96]  R.Noss, C.Hoyles. Windows on mathematical meanings: learning 

cultures and computers. Dordrecht: Kluwer, 1996. 
 
[NM91]  B.Nardi, J.Miller. Twinkling lights and nested loops: Distributed 

problem solving and spreadsheet development. International Journal of 
Man-Machine studies 34, pages 161-194, 1991. 

 
[Nor83] D.A.Norman. Some observations on mental models. In D.Gentner, 

A.L.Stevens (Eds.), Mental models, Lawrence Erlbaum Associates, 
pages 7-14, 1983. 

 
[Nor98] D.A.Norman. The Invisible Computer: Why good products can fail, 

the personal computer is so complex, and information appliances are 
the solution. Cambridge, Mass., MIT Press, 1998. 

 
[NS72]  A.Newell, H.A.Simon. Human problem solving. Prentice Hall, 1972. 
 
[OED97]  The Oxford English Dictionary, Oxford University Press, 1997. 
 



Bibliography 
 

 251 

[OGL03] The OpenGL graphics library website. Online at 
http://www.opengl.org. [Accessed on November 1st, 2003]. 

 
[Opp97]  T.Oppenheimer. The computer delusion. Atlantic Monthly, July 1997. 

Also Online at: http://www.theatlantic.com/issues/97jul/computer.htm. 
[Accessed on November 1st, 2003]. 

 
[Opp03] T.Oppenheimer. Flickering minds: The false promise of technology in 

the classroom and how learning can be saved. Random House, 2003. 
 
[Ost96]  J.Ostwald. Knowledge construction in software development: The 

evolving artifact approach. PhD dissertation, University of Colorado 
at Boulder, 1996. 

 
[Pai01] J.Paine. Safer spreadsheets with model master. In Proceedings 

EuSprig2001, Amsterdan, Netherlands, pages 17-38, 2001. 
 
[Pan00]  R.R.Panko. Two corpuses of spreadsheet errors. Proceedings of the 

33rd International Conference on System Sciences. Maui, Hawaii, 
January 4-7, 2000. 

 
[Pap80]  S.Papert. Mindstorms: Children, Computers and powerful ideas. New 

York: Basic Books, 1980. 
 
[Pap93]  S.Papert. The Children’s Machine. New York: Basic Books, 1993. 
 
[PH91]  S.Papert, I.Harel. Situating Constructionism. In S.Papert, I.Harel (eds). 

Constructionism: Research reports and essays, Ablex Publishing, 
pages 1-11, 1991. 

 
[PH96]  R.R.Panko, R.P.Halverson Jr. Spreadsheets on trial: A survey of 

research on spreadsheet risks. Hawaii International Conference System 
Sciences, Maui, Hawaii, Jan 2-5, 1996.  

 
[PH97]  R.R.Panko, R.P.Halverson Jr. Are two heads better than one? (At 

reducing errors in spreadsheet modelling?), In Office Systems 
Research Journal (15:1), pages 21-32, Spring 1997. 

 
[Pik89] B.Pike. Creative training techniques handbook. Lakewood 

Publications, 1989. 
 
[Pla03]  The Playground Project - Online at http://www.ioe.ac.uk/playground/ 

[Accessed on November 1st, 2003]. 
 
[Pol57]  G.Polya. How to solve it: A new aspect of mathematical method.  

Princeton, NJ, 1957. 



Bibliography 
 

 252 

 
[Pos92]  N.Postman. Technopoly: The surrender of culture to technology. 

Vintage Books, 1992. 
 
[Pra98]  D.Pratt. The construction of meaning in and for a stochastic domain of 

abstraction. PhD dissertation, Institute of Education, University of 
London, 1998.  

 
[PRS+94]  J.Preece, Y.Rogers, H.Sharp, D.Benyon, S.Holland, T.Carey. Human 

Computer Interaction. Addison-Wesley, 1994. 
 
[RA97]  A.Repenning, J.Ambach. The Agentsheets Behaviour Exchange: 

Supporting social behaviour processing. CHI 97, Conference on 
Human Factors in Computing Systems, Extended Abstracts, (Atlanta, 
Georgia), pp26-27, ACM Press. 

 
[Ras01]  S.Rasmequan. An approach to computer-based knowledge 

representation for the business environment using Empirical 
Modelling. PhD Thesis, Department of Computer Science, University 
of Warwick, November 2001. 

 
[RB02]  C.Roe, W.M.Beynon. Empirical Modelling principles for learning in a 

cultural context. In Proceedings 1st International Conference on 
Educational Technology in Cultural Context, University of Joensuu, 
Finland, pages 151-172, September 2002. 

 
[RBF00]  C.Roe, W.M.Beynon, C.N.Fischer. Empirical Modelling for the 

conceptual design and use of products. In Proceedings International 
Conference on Simulation and multimedia in engineering education, 
Phoenix, Arizona, pages 27-32, The Society for Modelling and 
Simulation International, 2001. 

 
[Rep93]  A.Repenning. Agentsheets: A tool for building domain-oriented 

dynamic, visual environments. PhD Dissertation, University of 
Colorado at Boulder, 1993. 

 
[Rep00] A.Repenning. Agentsheets: An interactive simulation environment 

with end-user programmable agents. In Proceedings of the IFIP 
Conference on Human Computer Interaction (INTERACT ’2000), 
Tokyo, Japan, 2000. 

 
[Res87]  L.B.Resnick. Learning in school and out. Educational Researcher, 

16(9), pages 13-20, 1987. 
 
[Res94] M. Resnick. Turtles, Termites and Traffic Jams: Explorations in 

Massively Parallel Microworlds. MIT Press, 1994. 



Bibliography 
 

 253 

 
[RI01] A.Repenning. A.Ionnidou. Engaging learners through simulation-

based design. In C. Daetwyler (Eds.), The use of Computers in 
(medical) Education (German title: Zeitschrift für Hochschuldidaktik) 
Austrian Association for Didactics in Higher Education, 2001. 

 
[RIA98]  A.Repenning, A.Ioannidou, J.Ambach. Learn to communicate and 

communicate to learn. Journal of Interactive Media in Education, 98 
(7), www-jime.open.ac.uk/98/7, 1998.  

 
[RIZ00] A.Repenning, A.Ioannidou, J.Zola. Agentsheets: End-user 

programmable simulations. In Journal of Artificial Societies and 
Social Simulation, Vol.3, No.3, June 2000. Online at 
http://www.soc.surrey.ac.uk/JASSS/3/3/forum/1.html [Accessed on 1st 
November, 2003]. 

 
[RJM+98] M.Roussos, A.Johnson, T.Moher, J.Leigh, C.Vasilakis, C.Barnes. 

Learning and Building Together in an Immersive Virtual World. In 
Presence, vol 8, no 3, June, 1999, special issue on Virtual 
Environments and Learning; W.Winn, M.J.Moshell (Eds.) MIT Press, 
pages 247-263, 1998. 

 
[Rob02]  Robocup 2002 - http://www.robocup2002.org/ [Accessed on 

November 1st, 2003] 
 
[Roe99]  C.Roe. The EMPTY project, MSc thesis, Department of Computer 

Science, University of Warwick, 1999. 
 
[Rog90]  B.Rogoff. Apprenticeship in thinking: Cognitive development in social 

context. New York: University Press, 1990. 
 
[Rol82]  L.T.C.Rolt. Red for danger. Pan Books 4th Edition, 1982. 
 
[ROP88]  M.Resnick, S.Ocko, S.Papert. Lego, Logo and Design. Children's 

Environmental Quarterly, 5(4), pp. 14-18, 1988. 
 
[RR96]  M.Resnick, N.Rusk. Access is not enough: Computer clubhouses in 

the Inner City. American Prospect, no. 27, pages 60-68, July-August 
1996. 

 
[RRB00]  S.Russ, S.Rasmequan, W.M.Beynon. An experience-based approach 

to decision support systems. Working conference on Decision Support 
through Knowledge Management, Stockholm, Sweden, 2000. 

 
 



Bibliography 
 

 254 

[RRC98]  M.Resnick, N.Rusk, S.Cooke. The Computer Clubhouse: 
Technological fluency in the Inner city. In D.Schon, B.Sanyal, 
W.Mitchell (Eds). High Technology and Low-income communities. 
Cambridge: MIT Press, pages 266-286, 1998.  

 
[RRP+98] A.Repenning, M. Rausch, J. Phillips, A. Ioannidou. Using Agents as a 

Currency of Exchange between End-Users. In Proceedings of the 
WebNET 98 World Conference of the WW, Internet, and Intranet, 
Orlando, FL, Association for the Advancement of Computing in 
Education, pp. 762-767, 1998. 

 
[RRR00]  S.Rasmequan, C.Roe, S.Russ. Strategic decision support systems: An 

experience-based approach. In Proceedings of the 18th International 
Association of Science and Technology for Development (IASTED) 
Conference on Applied Informatics, Innsbruck, Austria, 14-17th 
February 2000. 

 
[RS94]  A.Repenning, T.Sumner. Programming as problem solving: A 

participatory theater approach. Workshop on Advanced Visual 
Interfaces (AVI’94), pages 182-191, Bari, Italy, 1994.  

 
[Run02]  J.Rungrattanaubol. A treatise on modelling with definitive scripts, PhD 

Thesis, Department of Computer Science, University of Warwick, 
2002. 

 
[Rus97]  S.B.Russ. Empirical Modelling: the computer as a modelling medium. 

BCS Computer Bulletin, pages 296-301, April 1997. 
 
[Sae67] P.Saettler. A history of instructional technology. New York, N.Y: Mc 

Graw Hill, 1967. 
 
[SGH94]  E.Soloway, M.Guzdial, K.E.Hay. Learner-centered design the 

challenge for HCI in the 21st century. Interactions, pages 36-48, April 
1994. 

 
[SH93] V.W.Setzer, R.Hirata Jr. Algoritmos e sua análise: uma introdução 

didática. São Paulo: Caderno da Revista do Professor de Matemática, 
Brazilian Mathematical Society, Vol. 4, No. 1, pp. 1-38, 1993. English 
translation: Algorithms and their analysis: A pedagogical introduction. 
Online at http://www.ime.usp.br/~vwsetzer/alg/alg-eng.html. 
[Accessed on November 1st, 2003]. 

 
[She03] Sherston Educational Software. Online at http://www2.sherston.com. 

[Accessed on November 1st, 2003]. 
 
[Ski74]  B.F.Skinner. About behaviourism. Random House Inc, 1974.  



Bibliography 
 

 255 

 
[Smi97]  B.Cantwell-Smith. One hundred billion lines of C++. CogSci News, 

Volume 10, Number 1, Spring 1997.  
 
[Sol93] E.Soloway. Should We Teach Students to Program? CACM, 36(1), 

October 1993. 
 
[Ste94] M.Steinberger. Where does Programming fit in? Logo Update. Vol. 2 

(3), 1994. 
 
[Suc87]  L.A.Suchman, Plans and situated actions: the problem of human-

machine communication, Cambridge University Press, 1987.  
 
[Sun99]  P.H.Sun, Distributed Empirical Modelling and its application to 

software system development, PhD Thesis, Department of Computer 
Science, University of Warwick, July 1999. 

 
[Tal95]  S.Talbott. The future does not compute: Transcending the machines in 

our midst. O’Reilly and Associates Inc, 1995.  
 
[Tap98] D.Tapscott. Growing up digital: The rise of the Net generation. 

McGraw Hill, 1998. 
 
[Tcl03] Tcl/Tk Developer Xchange. Online at http://www.tcl.tk/ [Accessed on 

November 1st, 2003] 
 
[Tod76]  S.J.P.Todd. The Peterlee Relational Test Vehicle-- A system overview, 

IBM Systems Journal 15(4), pages 285-308, 1976. 
 
[Too03]  Toontalk website - http://www.toontalk.com. [Accessed on November 

1st, 2003]. 
 
[TP91]  S.Turkle, S.Papert. Epistemological Pluralism and the revaluation of 

the concrete. In S.Papert, I.Harel (eds), Constructionism: Research 
reports and essays 1985-90, MIT media laboratory, 1991.  

 
[Tur95] S.Turkle. Life on the screen: Identity in the age of the Internet. New 

York: Simon and Schuster, 1995. 
 
[Tur96]  M.Turner. The literary mind. Oxford University Press. 1996. 
 
[UNC03] The United Kingdom National Curriculum. Online at 

http://www.nc.uk.net/index.html. [Accessed on November 1st, 2003]. 
 



Bibliography 
 

 256 

[VK96]  A.Varshney, A.Kaufman. FINESSE: A financial information 
spreadsheet. In Proceedings of the IEEE Symposium on Information 
Visualization, pages 70-71, 1996. 

 
[Vyg62]  L.Vygotsky, Thought and language, Cambridge, MA: MIT Press, 

1962. Original work published in 1934.  
 
[Wan03]  R.Wang. Modelling for software system development: Object-

Oriented and Empirical Modelling perspectives. MSc dissertation, 
University of Warwick, January 2003. 

 
[Wil93]  U.Wilensky Connected Mathematics: Building Concrete Relationships 

with Mathematical Knowledge. PhD Thesis. Cambridge, MA: MIT 
Media Laboratory, 1993.  

 
[Wil99] U.Wilensky. NetLogo. http://ccl.northwestern.edu/netlogo. Center for 

Connected Learning and Computer-Based Modeling. Northwestern 
University, Evanston, IL, 1999. 

 
[WL90]  N.Wilde, C.Lewis. Spreadsheet-Based interactive graphics: From 

prototype to tool. ACM Conference on Human Factors in Computing 
Systems, Seattle, Washington, pages 153-159, 1990. 

 
[Won98] A.Wong. Implementing a definitive notation for windowing and 

graphics using Modd, Final year project, Department of Computer 
Science, University of Warwick, 1998. 

 
[Won03]  A.Wong. Before and Beyond Systems: An Empirical Modelling 

approach. PhD Thesis, Department of Computer Science, University 
of Warwick, January 2003.  

 
[YB01]  T.Yeshno, M.Ben-Ari. Salvation for bricoleurs. In 13th workshop of 

the Psychology of Programming Interest Group, Bournemouth, UK, 
pages 225-235, 2001. 

 
[Yun90]  Y.W.Yung. EDEN: An engine for definitive notations. MSc 

dissertation, Department of Computer Science, University of Warwick, 
September 1990. 

 
[Yun93]  Y.P.Yung. Definitive Programming: A paradigm for exploratory 

programming, PhD Thesis, Department of Computer Science, 
University of Warwick, January 1993. 

 
 



Appendices 
 

 257 

Appendix A – An example of constructing a model for the simple 

game of Jugs. 
 

The game of jugs is formulated as follows: There are two jugs of known quantities 

that have no intermediate markings on them. The aim of the game is to achieve a 

specific quantity of water in one of the jugs. The only permissible operations are to 

empty or fill a jug or pour water from one jug to the other such that the destination is 

full or the source is empty. 

 

To aid in the elaboration of the model construction each of the lines of the model 

have been numbered, although these numbers are not part of the script. To begin we 

can define the capacities of the two jugs, which we will denote A and B respectively. 

 

1. %eden 

/* set some capacities of the jugs */ 

 

2. capA = 5;  

3. capB = 7; 

 

We use the line drawing notation to specify the display of the jugs. The size of the 

jugs has a fixed width in this model and a height that is dependent on the capacities of 

the jug. 

 

/* develop an interface for the jugs */ 

4. %donald 

 

5. int scalefactor 

6. scalefactor = 100 

 

7. point Abotleft, Abotright 

8. line Abase, Aleft, Aright 



Appendices 
 

 258 

 

9. Abotleft = {100,100} 

10. Abotright = Abotleft + {300,0} 

11. Abase = [Abotleft,Abotright] 

12. Aleft = [Abotleft, Abotleft+{0,capA!*scalefactor}] 

13. Aright = [Abotright, Abotright+{0,capA!*scalefactor}] 

 

14. point Bbotleft, Bbotright 

15. line Bbase, Bleft, Bright 

 

16. Bbotleft = Abotleft + {400,0} 

17. Bbotright = Bbotleft + {300,0} 

18. Bbase = [Bbotleft,Bbotright] 

19. Bleft = [Bbotleft, Bbotleft+{0,capB!*scalefactor}] 

20. Bright = [Bbotright, Bbotright+{0,capB!*scalefactor}] 

 

In the DoNaLD notation, variables have to be declared and are strongly typed unlike 

in EDEN. The ‘=’ sign in DoNALD has the same functional equivalence as the is 

operator in EDEN in maintaining dependencies. The reference points of the jug 

display are dependent on the base point of the jug (Abotleft). The position of jug 

B is dependent on jug A. The variable scalefactor is used to scale the display of 

the jug heights to be visible. The ‘!’ operator is used to reference EDEN variables in 

DoNaLD. Statements are terminated by line breaks unlike EDEN which uses the ‘;’ 

symbol 

 

21. %eden 

 

/* initial contents of the jugs */ 

 

22. contentA = 0; 

23. contentB = 0; 

 



Appendices 
 

 259 

We can now define the amount of water in the jugs. Note that comments in the EDEN 

notation are between the /* */ symbols. 

 

/* some information about the jugs */ 

 

24. Afull is (capA==contentA); 

25. Bfull is (capB==contentB); 

26. Aempty is (contentA==0); 

27. Bempty is (contentB==0); 

 

These definitions are commonsense observations of the jug situation. A jug is only 

full if its content is equal to its capacity and is empty if it has no water. These 

conceptual observables define information we can ascertain by looking at a jug. 

 

/* now we can define the surface of the liquid */ 

 

28. %donald 

 

29. line Asurface 

30. Asurface = [Abotleft+{0,contentA!*scalefactor}, 

Abotright+{0,contentA!*scalefactor}] 

31. line Bsurface 

32. Bsurface = [Bbotleft+{0,contentB!*scalefactor}, 

Bbotright+{0,contentB!*scalefactor}] 

 

We have now added a water surface to the jugs model in the line drawing. The 

surface is represented as a line from the left side of the jug to the right side of the jug. 

Its height is dependent on the content of the jug.  

 

 

 



Appendices 
 

 260 

33. %eden 

 

/* now we define some jug operations */ 

 

34. proc fillingA { 

35.   if (!Afull) { 

36.  contentA++;  

37.   eager();  

38.   fillingA(); 

39.   } 

40. } 

 

41. proc fillingB {  

42.  if (!Bfull) { 

43.   contentB++;  

44.   eager();  

45.   fillingB(); 

46.   } 

47. } 

 

48. proc emptyingA { 

49.   if (!Aempty) { 

50.   contentA--;  

51.   eager();  

52.   emptyingA(); 

53.   } 

54. } 

 

55. proc emptyingB { 

56.   if (!Bempty) { 

57.   contentB--;  

58.   eager();  



Appendices 
 

 261 

59.   emptyingB(); 

60.   }  

61. } 

 

62. proc pouringAtoB { 

63.   if ((!Bfull)&&(!Aempty)) { 

64.   contentA--;  

65.   contentB++;  

66.   eager();  

67.   pouringAtoB(); 

68.   } 

69. } 

 

70. proc pouringBtoA { 

71.   if ((!Afull)&&(!Bempty)) { 

72.   contentB--;  

73.   contentA++;  

74.   eager();  

75.   pouringBtoA(); 

76.   } 

77. } 

 

These six actions are the important state transitions. They conform to the basic 

operations in the jugs game, namely emptying, filling and pouring. They can be tested 

by running them in the input window with commands of the form ‘emptyA();’. 

Each procedure runs as a stepwise operation since we cannot (in practice) determine 

the current content of a jug by inspection if it is partially full. Each step consists of 

checking whether an enabling condition is satisfied, making a stepwise change to the 

contents, updating the display and then continuing by recursively calling the same 

action.  

 



Appendices 
 

 262 

/*now develop a scout interface for the main operations*/ 

 

78. %scout 

 

79. window fillA = { 

80.   type: TEXT 

81.   string: "Fill A" 

82.   frame: ([{10, 10}, {80, 30}]) 

83.   border : 1 

84.   sensitive: ON 

85. }; 

 

86. window fillB = { 

87.   type: TEXT 

88.   string: "Fill B" 

89.   frame: ([{90, 10},{160, 30}]) 

90.   border : 1 

91.   sensitive: ON 

92. }; 

 

93. window emptyA = { 

94.   type: TEXT 

95.   string: "Empty A" 

96.   frame: ([{170, 10}, {240, 30}]) 

97.  border : 1 

98.  sensitive: ON 

99.}; 

 

100. window emptyB = { 

101.   type: TEXT 

102.   string: "Empty B" 

103.   frame: ([{250, 10}, {320, 30}]) 



Appendices 
 

 263 

104.   border : 1 

105.   sensitive: ON 

106. }; 

 

107. window pourAB = { 

108.   type: TEXT 

109.   string: "A -> B" 

110.   frame: ([{330, 10}, {400, 30}]) 

111.   border : 1 

112.   sensitive: ON 

113. }; 

 

114. window pourBA = { 

115.   type: TEXT 

116.   string: "B -> A" 

117.   frame: ([{410, 10}, {480, 30}]) 

118.   border : 1 

119.   sensitive: ON 

120. }; 

 

The lines 78-120 define interface windows to activate the emptying, filling and 

pouring operations. The user does not then need to know the procedure names but can 

perform operations using a graphical user interface. The Scout notation is used to 

define the windows. Each window is sensitive to mouse button events (sensitive: 

ON). When the mouse is clicked in a window a definition for that mouse event is 

created. This can be used to trigger an action based on that variable’s new value. 

 

121. display operations = <fillA/ fillB/ emptyA/ emptyB/ 

pourAB/ pourBA>; 

 

122. screen = operations; 

 



Appendices 
 

 264 

Lines 121 and 122 group the set of windows into a display and then set the screen to 

display those windows on the interface, as shown in Figure A.1. 

 

123. %eden 

 

/* now we can define some routines to be triggered on the 

mouse click on a window */ 

 

124. proc filljugA : fillA_mouse_1 { 

125.  if (fillA_mouse_1[2]==5) { /*on button 

release*/ 

126.   fillingA(); 

127.  } 

128. } 

 

129. proc filljugB : fillB_mouse_1 { 

130.  if (fillB_mouse_1[2]==5) { /*on button 

release*/ 

131.   fillingB(); 

132.  } 

133. } 

 

134. proc emptyjugA : emptyA_mouse_1 { 

135.  if (emptyA_mouse_1[2]==5) { /*on button 

release*/ 

136.   emptyingA(); 

137.  } 

138. } 

 

139. proc emptyingjugB : emptyB_mouse_1 { 

140.  if (emptyB_mouse_1[2]==5) { /*on button 

release*/ 



Appendices 
 

 265 

141.   emptyingB(); 

142.  } 

143. } 

 

144. proc pourAB : pourAB_mouse_1 { 

145.  if (pourAB_mouse_1[2]==5) { /*on button 

release*/ 

146.   pouringAtoB(); 

147.  } 

148. } 

 

149. proc pourBA : pourBA_mouse_1 { 

150.  if (pourBA_mouse_1[2]==5) { /*on button 

release*/ 

151.   pouringBtoA(); 

152.      } 

153. } 

 

The lines 124-153 define actions to be taken on mouse button presses in the windows. 

Definitions of the form ‘window’_mouse_1 are created each time a mouse event is 

received in a sensitive window. It is a list specifying the button that has been pressed 

or released and the window coordinates at which it has been pressed. The second 

element of the list has a value of 5 when the button is released and this condition 

causes the action to be executed. We have now constructed a working model that 

allows us to play the game of jugs. 



Appendices 
 

 266 

 
Figure A.1 – The simple jugs model 

 



Appendices 
 

 267 

Appendix B – An example of building a parser 
 

This appendix is taken from Antony Harfield’s final year project on the agent-

oriented parser [Har03]. It includes information about the agent-oriented parser that is 

essential for understanding the discussion in section 5.4.1. 

 

 

Getting Started 

Parser concepts 

In order to learn to use the Agent-oriented Parser in Eden we must put aside our prior 

knowledge of parsing. Conventional parsers read each input character, one at a time, 

and not until the entire string is read can any meaning be derived. Instead, it is useful 

to think about how we, as humans, read languages (natural or otherwise). When we 

read sentences, we do not remember each character, or even each word, but our brains 

register the important words. From this we are able to derive meaning. 

An agent is an independent entity capable of acting on and interacting with an 

environment. In the Agent-oriented Parser, the agents have a set of rules (a grammar) 

with which to parse any input. Each agent will take an input string and a rule, with 

which it will determine whether the rule can be applied. If the rule is applied, then 

more agents could be generated to work on substrings. The agent will fail if it cannot 

apply the rule. 

A rule specifies a string that must be observed in the input string. For example, an 

agent might have the input ‘1+2’ and the most important string it must find could be 

‘+’. When the agent observes a match, it will pass the remaining substrings (if any) to 

new agents. These are called child agents. 



Appendices 
 

 268 

The diagram shows how agents could parse a string. In this example the input is an 

arithmetic expression and the rules are such that the expression is parsed using 

standard operator precedence. 

Writing notations 

A notation is defined as a set of rules, which specify the behaviour of our agents. A 

rule is simply an Eden list. The basic template for a rule: 

myrule = [ operation, pattern, [ rule, ... ], [ "fail", rule ] 

]; 

An operation is a string containing the name of the operation an agent should 

perform. These will be explained in detail later. A pattern defines what string the 

agent is trying to find (or observe) in the input. A rule is a string containing the name 

of a rule (a variable name of an Eden list). 

The first item in the list is always an operation. The second item is always the string 

to be matched. The third item is optional, it is a list of rules to apply to the resulting 

substrings – the number of substrings depends on the operation to be performed. This 

is the minimum that a rule can contain. It is likely that most rule definitions will have 

a fail clause, such that if the agent fails then it will try another rule. The fail clause is 

1 2 * 3 + 4 5 / 6 - 7 8 9  

1 2 * 3  4 5 / 6 - 7 8 9  

3  1 2  7 8 9  4 5 / 6  

6  4 5  



Appendices 
 

 269 

a two item list, the first item is always the string "fail" and the second item is a string 

containing the name of a rule. 

Developing a calculator notation 

A simple calculator is able to accept digits and arithmetic operators. It will calculate 

the result of the input expression. Calculators also allow nested expressions using 

brackets. 

Start with a simple model 

Recall that our Agent-oriented Parser uses an agent to observe a string in the input. 

The simplest agents therefore match the input entirely. On a calculator, the user can 

input just a digit, and the result will be that same digit. 

The first operation we will be introduced to is "literal". This operation attempts to 

match the entire input string (see diagram right). It does not create any child agents. 

Lets define a rule that matches the digit ‘1’: 

number1 = [ "literal", "1" ]; 

To invoke the parser, you must supply an input string and a starting rule. The only 

input our rule should match is ‘1’, so to test this run the parser: 

dfparse("1", "number1", []); 

It should accept. The first parameter is the input and the second is the starting rule. 

Try other inputs to get the parser to reject. 

Our language is not very powerful, being only able to accept the digit ‘1’. Now we 

will introduce the fail clause. We can get our parser to try another rule should the 

operation fail: 

number1 = [ "literal", "1", [ "fail", "number2" ] ]; 

number2 = [ "literal", "2" ]; 

The language will now accept either of the digits ‘1’ or ‘2’. We could extend this 

method to accept all the digits. 

1  



Appendices 
 

 270 

Iteratively developing the model 

Now that our calculator can parse digits, we will introduce operators to the input. This 

is an important concept in Empirical Modelling, the ability to build up a model in an 

iterative fashion. 

Our current model allows us to parse positive numbers, so an obvious extension is to 

allow negative numbers too. We can define an integer as a number with an 

optional minus symbol (-) in front of it. 

The next agent operation we shall introduce is "prefix". This operation 

matches a string at the beginning of the input. If a match is made then a 

child agent is created with its input as the unmatched part of the agents input 

(see diagram right). This operation can be used to detect a minus symbol at 

the beginning of our number: 

term = [ "prefix", "-", "number1", [ "fail", "number1" ] ]; 

Notice that we use the same rule for the child (third item) and the fail clause. The 

parser will try to match a minus sign at the start of the input, if it matches then it will 

match the remainder of the input as a number, else it will match the entire input as a 

number. 

A similar operation is "suffix" which does exactly the same as "prefix", but at the end 

of a string. An example of using suffix is to remove the semi-colon from the end of a 

string (i.e. to parse a statement in C/Java/Eden)  

The parser should now accept any positive and negative numbers. We shall now look 

at how we can parse arithmetic operations (e.g. +, -, *, /). As always we will begin 

with something simple and build the model up. We will first try to parse expressions 

containing only additions of terms, where our terms are the integers we 

learnt to parse above. 

This is where the most powerful agent operation comes in. The "pivot" 

operation searches the input (left to right) for a specified string. If it 

finds a match, then it creates two child agents, one for the left substring 

and one for the right substring (as shown in the diagram on the right). 

Our parser would pivot on the addition sign: 

-  3  

3 

1 2 + 3  

3 1 2  



Appendices 
 

 271 

expr = [ "pivot", "+", "expr", "expr", [ "fail", "term" ] ]; 

An "expr" agent is looking for an addition sign, and if it finds one it creates two 

children that also search for expressions. If the agent finds no addition sign on the 

input, then the fail clause specifies that the input must be a term. 

In order for our parser to recognise expression containing other operators it is 

necessary for us to have a rule for each string to be matched: 

expr = [ "pivot", "+", "expr", "expr", [ "fail", "expr2" ] ]; 

expr2 = [ "pivot", "-", "expr", "expr", [ "fail", "expr3" ] ]; 

expr3 = [ "pivot", "*", "expr", "expr", [ "fail", "expr4" ] ]; 

expr4 = [ "pivot", "/", "expr", "expr", [ "fail", "term" ] ]; 

Notice that we search for operators in their reverse precedence order. This can be 

explained by taking an example, say the input is ‘1+2*3’. First we would pivot on the 

addition sign giving us two substrings ‘1’ and ‘2*3’. We have broken the calculation 

down into two sub-calculations which we will add together later. The deepest level 

will get calculated first, which in this example is ‘2*3’. Therefore we are observing 

the rules of precedence correctly. 

Regular expressions 

Using just the pivot and literal operations gives you all the power you need to develop 

languages. However, the rules would be quite cumbersome without regular 

expressions. The Agent-oriented Parser has 3 other operations that deal with basic 

regular expressions. 

The first is "read_all", which is a regular expression version of the "literal" operation. 

This will attempt to match every character in the input string with a set of characters 

specified in the rule. For example, the following will match any number using a 

single rule (compare with our inefficient earlier method): 

number = [ "read_all", [["0","9"]] ]; 



Appendices 
 

 272 

The second item in the list is a list of tuples. The tuples define the range of characters 

included in the set to be matched (inclusive). Note that the "read_all" operation 

accepts the empty string. 

The other two regular expression operations are "read_prefix" and "read_suffix", 

which operate in much the same way but you also specify the number of characters to 

attempt to match. For example, the following will match one letter of the alphabet at 

the beginning of the input string: 

letter = [ "read_prefix", [[["a","z"],["A","Z"]],1], "nextrule" 

]; 

Perl-style regular expressions 

The above regular expressions lack power, for example, you cannot specify rules for 

real numbers or identifiers. Our definition of a "number" will accept the empty string 

– not desirable in most cases! 

Three more regular expression operations exist in the latest version of the Agent-

oriented Parser. These are "literal_re", "prefix_re" and "suffix_re". The first matches 

the whole input, where as the other 2 match the beginning and the end of the input 

respectively. The pattern to be matched is a perl-style regular expression. For 

example, the following correctly parses a number: 

number = [ "literal_re", "[0-9]+" ]; 

More information on perl regular expressions can be found in any good perl book or 

on the web. 

Blocks 

Now we shall look at adding brackets to our notation. This will give our calculator the 

ability to work out expressions like ‘(1+2)*3’. We have seen how to use the "prefix" 

and "suffix" operations, so we can use these to parse brackets: 

expr5 = [ "prefix", "(", "expr6", [ "fail", "term" ] ]; 

expr6 = [ "suffix", ")", "expr" ]; 



Appendices 
 

 273 

This gives us a bit of a problem. Think about the input ‘(1+2)*3’. The first agent will 

use the pivot operation on the ‘+’, leaving two substrings ‘(1’ and ‘2)*3’. Instead, we 

really want the parser to pivot on the ‘*’ and break the input into the two smaller 

expressions ‘(1+2)’ and ‘3’. The parser needs to be sensitive with our brackets. 

This is where blocks are a very useful feature of the Agent-oriented Parser. We can 

define a block and instruct agents to ignore that block. To define a block: 

bras = [ ["(", ")"], ["bras"] ]; 

addblocks("bras"); 

The first statement is the block definition. The first item of the list is a pair of strings, 

the first being the starting string of the block and the second the end string. The 

second item is a list containing names of blocks that may be 

contained within the block. The second statement adds the 

block definition to the environment. 

Now for a particular rule we can specify it to ignore blocks. 

For our calculator notation, we want to ignore any strings 

between brackets when the agent is looking for an arithmetic 

operator (+,-,*,/). We add an ignore clause to our rule: 

expr = [ "pivot", "+", "expr", "expr" , 

         [ "ignore", ["bras"] ], 

         [ "fail", "expr2" ] ]; 

This behaviour is demonstrated in the diagram (right). The string within the brackets 

is ‘greyed-out’ because it is ignored. Hence the most important string to be observed 

is the multiplication sign (*) and a pivot is made. 

It is important to remember that when an agent ‘ignores’ a block it is not removing 

that block from the input. It is perhaps better described as preserving the block. The 

agent simply preserves the contents of the block and leaves it for another agent to 

parse. 

( 1 + 2 ) * 3  

( 1 + 2 )  3  



Appendices 
 

 274 

Scripting 

A parser that either accepts or rejects an input is of little use unless it produces some 

output. Our simple calculator needs some way of outputting the result of an 

expression. This is achieved with agent actions. If an agent does not fail to match the 

input then it can optionally perform some actions. Each action can be performed 

before or after the actions of the agent’s children. 

The format for including agent actions in a rule definition is similar to the other 

optional components of a rule. Here we modify our "term" rule by adding an action 

that prints out some random comment: 

term = 

  [ "literal_re", "[0-9]+", 

    [ "action", 

      [ "now", "writeln(\"somerandomcomment\");" ] ] ]; 

The third item in the list above is the action declaration. This sublist begins with the 

"action" tag to recognise it from the other optional tags. The items following the head 

tag are the commands to execute. Each command is a list containing only 2 items, the 

first being either "now" or "later" depending on whether the command will be 

executed before or after the child agents. The second part of the command is the 

command string which is typically some eden code to be executed. 

An agent has some data associated with it that can used in its actions. Each agent also 

has a unique variable associated with it. This agent data can be substituted into the 

command string using the following: 

$i = the input string to the agent 

$j = the name of a variable containing the input string 

$t = the token/string that was matched by the agent 

$v = the variable name that belongs to the agent 

$s1 = the first substring of the input 

$s2 = the second substring of the input (and so on for 3rd, 

4th, ..) 



Appendices 
 

 275 

$p1 = the variable name of the first child agent (parameter 1) 

$p2 = the variable name of the second child agent 

Now we can make our "term" rule more useful by adding an action that stores the 

term value in the agent variable: 

term = 

  [ "literal_re", "[0-9]+", 

    [ "action", 

      [ "now", "$v = $t;" ] ] ]; 

We would then add actions to our other rules. The "expr" rule can do the addition of 

the two sub-expressions: 

expr = 

  [ "pivot", "+", [ "expr", " expr" ], 

    [ "action", 

      [ "later", "$v = $p1 + $p2;" ] ], 

    [ "fail", "term" ] ]; 

Take a look at the final calculator notation at the end of the document for more 

examples of agent actions. 

Note: The dollar sign is a special character in the command string. If you want to 

print a single dollar sign ($) in your command string then you must follow it by 

another dollar sign ("$$" will produce a single dollar in the command string). 

The original version of the Agent-oriented Parser had a different method for writing 

scripts, using the "script" tag. Although the parser will still accept these scripts, it is 

recommended you use the "action" notation. For more information on the "script" tag, 

refer to Chris Brown’s third year project [Bro01]. 

Installing notations 

Now that we are happy with our calculator notation, it is probably a good idea to 

make it more accessible. We can install new notations into the Eden environment, 



Appendices 
 

 276 

which can then be used in scripts as you would existing notations (e.g. %eden, 

%donald, %scout). In tkeden this will add a radio button for our new notation to the 

environment. 

First we must create an initialisation rule: 

calc_init = [ "\n", "calc", [] ]; 

The first item in the list is the string to split the input on. For our calculator notation 

we would like to separate each command by the end-of-line character (\n). For other 

notations you may wish to split the input on other characters (e.g. semi-colon for 

C/Java/Eden). The second item is the starting rule. The third item is a list of blocks to 

ignore in the splitting procedure. 

To install the notation in the environment: 

installAOP("%mynotation", "calc_init"); 

Notations must begin with a percent (%) character. 

You can now switch to the new notation by typing %mynotation. Do not forget to 

switch back to %eden for Eden code! 

The final calculator notation 

calc_init = 

  [ "\n", "calc", [] ]; 

 

calc = 

  [ "prefix", "", "calc_expr", 

    [ "action", 

      [ "later", "writeln('=',$p1);" ] ], 

    [ "fail", "calc_err" ] ]; 

 

calc_expr = 

  [ "pivot", "+", [ "calc_expr", "calc_expr" ], 



Appendices 
 

 277 

    [ "ignore", ["bras"] ], 

    [ "action", 

      [ "now", "$v is $p1 + $p2;" ] ], 

    [ "fail", "calc_expr2" ] ]; 

 

calc_expr2 = 

  [ "pivot", "-", [ "calc_expr", "calc_expr" ], 

    [ "ignore", ["bras"] ], 

    [ "action", 

      [ "now", "$v is $p1 - $p2;" ] ], 

    [ "fail", "calc_expr3" ] ]; 

 

calc_expr3 = 

  [ "pivot", "*", [ "calc_expr", "calc_expr" ], 

    [ "ignore", ["bras"] ], 

    [ "action", 

      [ "now", "$v is $p1 * $p2;" ] ], 

    [ "fail", "calc_expr4" ] ]; 

 

calc_expr4 = 

  [ "pivot", "/", [ "calc_expr", "calc_expr" ], 

    [ "ignore", ["bras"] ], 

    [ "action", 

      [ "now", "$v is $p1 / $p2;" ] ], 

    [ "fail", "calc_expr5" ] ]; 

 



Appendices 
 

 278 

calc_expr5 = 

  [ "prefix", "(", "calc_expr6", 

    [ "action", 

      [ "now", "$v is $p1;" ] ], 

    [ "fail", "calc_term" ] ]; 

 

calc_expr6 = 

  [ "suffix", ")", "calc_expr", 

    [ "action", 

      [ "now", "$v is $p1;" ] ], 

    [ "fail", "calc_err" ] ]; 

 

calc_term = 

  [ "literal_re", "[0-9]+", 

    [ "action", 

      [ "now", "$v = $t;" ] ], 

    [ "fail", "calc_err" ] ]; 

 

calc_err = 

  [ "read_all", [], 

    [ "action", 

      [ "now", "writeln(\"calc: syntax error\");" ] ] ]; 

 

installAOP("%calc", "calc_init"); 



Appendices 
 

 279 

Extensions 

If you want to experiment with this notation, then here are a few ideas of how to 

extend it: 

• Add some common constants like ‘pi’ and ‘e’. 

• Introduce power and square root functions. 

• Add memory capabilities like you would normally find on a calculator (e.g. 

M+, MR, etc). 

 



Appendices 
 

 280 

Appendix C – Glossary of models used in the thesis 

 

This appendix contains brief descriptions of the EM models used as case studies in 

this thesis. For each model, we give a reference to its location in the EM model 

repository [EMRep], a short description of the model and a screenshot of it in use. 

For further details on individual models, consult the documentation files provided 

with each model in the repository. 

 

The jugs model – [EMRep, jugsBeynon1988] and [EMRep, jugsPavelin2002] 

 

This is a model of a simple educational game first developed for the BBC computer 

in the 1980’s by the Chiltern Advisory Unit. The game revolves around trying to 

measure a specified amount of water 

where there are two jugs of known 

quantities that have no markings on 

them. A set of basic operations is 

available on the interface to empty a 

jug, fill a jug, or pour water between 

the jugs. 

 

The spreadsheet model – [EMRep, spreadsheetRoe2002] 

 

This spreadsheet created 

using TkEden illustrates 

connections between 

spreadsheets and modelling. 

The model can replicate the 

essential functionality of 

conventional spreadsheets 

and can show how the 



Appendices 
 

 281 

generalised notion of dependency in EM allows the spreadsheet model to support a 

wider variety of types. It also illustrates agent actions in a spreadsheet.  

 

The restaurant model – [EMRep, restaurantRoe2000] 

 

This case study illustrates how a model 

can be constructed to investigate 

restaurant management. The user of the 

model can play through fictional scenarios 

of bookings in the restaurant to gain 

experience of how to best allocate tables 

in order to maximise profit. The model 

contains a seating plan for a fictional 

restaurant, a timetable booking sheet and a 

set of forms to enter data in. Scenarios can 

either be created manually or a random 

sequence of events can be generated to 

simulate the activity on an evening. 

 

The digital watch – [EMRep, digitalwatchRoe2001] 

 

The digital watch model has been 

developed by a number of different 

people over a period of eight years. 

It consists of a digital watch display 

with a number of buttons to activate 

its functionality, an analogue clock 

display and a graphical depiction of 

all the states that the watch can be in. 

States emerge when they have been 

visited for the first time. 



Appendices 
 

 282 

The racing cars model – [EMRep, racingGardner1999] 

 

This model can be used to explore the setup of racing cars in order to minimise lap 

times around a track. It is 

layered so that learners are 

exposed to more functionality at 

each successive layer. The final 

layer of the model is shown in 

the screenshot, and contains two 

fully customisable cars that race 

against each other on a partially 

customisable track. 

 

The OXO model – [EMRep, oxoJoy1994], [EMRep, oxoGardner1999] and [EMRep, 

3doxoRoe2001] 

 

This is a layered model that introduces different concepts of noughts-and-crosses at 

each layer. The layers 

introduce the board and its 

geometry, the pieces to be 

placed on the board, the 

rules by which the pieces 

can be placed on the board, 

and strategy considerations 

for a computer player. At 

each layer there is no 

prescription about future 

layers that are to be added.  

 

 

 



Appendices 
 

 283 

The clown-and-maze model – [EMRep, krustyRoe2002] 

 

The clown-and-maze model illustrates 

how languages for interaction can be 

interactively extended from very simple 

languages. In this model, the initial 

language contains just four simple 

directional commands and gradually the 

functionality of a Logo style language is 

added. The language for interaction can 

be interactively altered whilst the model 

is running. The aim of the underlying 

model is to direct a clown around a maze 

to find treasure. 

 

 

The SQL-EDDI model – [EMRep, sqleddiWard2003] 

 

The SQL-EDDI environment has been used on the 2nd year Introduction to Database 

Systems module at the University 

of Warwick to explore the 

relationship between relational 

algebra and relational query 

languages. It comprises an 

interpreter for a subset of SQL and 

a relational algebra language 

(“EDDI”). ‘The Uneddifying 

Interface’ is used to control the 

way in which queries are evaluated 

and illustrate flaws in the design of 

SQL. 



Appendices 
 

 284 

The RAT – [EMRep, ratRoe2003] 

 

The Relational Algebra Tutor 

was developed to show how 

the basic operations of 

relational algebra produce 

output tables from one or two 

input tables. The operations 

are colour coded so that the 

learner can see directly how 

an output table is created. The 

syntax of the resultant 

relational algebra query in the 

EDDI language is displayed. 

 

The MBF4 model – [EMRep, mbf4Beynon2003] 

 

The MBF4 model illustrates 

how several independently 

developed models can be 

integrated into a single model 

using dependency. The model 

was developed to explore 

connections between different 

realisations of an abstract area 

of mathematics surrounding 

lattice theory.  

 

 

 

 



Appendices 
 

 285 

The heapsort model – [EMRep, heapsortBeynon1998] 

 

The heapsort model is an example of a 

partially built model to which a learner can 

add small fragments of script to embellish the 

basic model. The initial model consists of a 

heap structure that a learner can manipulate 

to gain understanding of the essential nature 

of a heap. Agent actions can be added to the 

model to introduce the basic transitions of 

heapsort that are eventually directed at 

automation of the heapsort algorithm. By 

building up the model gradually, a learner can 

introduce new definitions as their 

competency increases.  

 

The RSE – [EMRep, rseRoe2003] 

 

The robot simulation environment 

is a prototype for understanding 

programming of LEGO 

Mindstorms robots. The 

environment is an exploratory 

laboratory where learners can 

directly manipulate robots in order 

to understand how the movement 

of the motors and the state of the 

sensors is related to the real-world 

behaviour of the robot. 



Appendices 
 

 286 

Appendix D – Example model building interactions in EM  
 

The following extract is taken from the paper ‘Liberating the Computer Arts’ by 

Meurig Beynon [Bey01]. This extract describes model building in EM with reference 

to the construction of a simple analogue clock.  

 

 

4.2. Principles and Tools of EM 

 

The principles and tools of EM will be briefly described and illustrated with reference 

to a simple but extended example.  This focuses on model-building activity 

surrounding an imaginary analogue clock. 

 

The primary focus for representation in EM, as in art – and in contrast to computer 

programs that are targeted at behaviour, is on situation.  In the initial situation in 

which we observe the modelling activity, the model consists of the outline of the 

clock.  This is defined by a family of definitions of variables (a definitive script) in a 

special-purpose notation (a definitive notation) for line-drawing – DoNaLD. 

 

%donald 

viewport CLOCK 

 

openshape clock 

 

within clock { 

    real sixthpi 

    line eleven, ten, nine, eight, seven, six, five, …, one 

    line noon 



Appendices 
 

 287 

    point centre 

    real radius 

    circle edge 

 

    sixthpi = 0.523599 

    radius = 150.0 

    eleven = rot(noon, centre, -11 * sixthpi) 

    ... 

} 

 

The variables in this script represent observables in the clock: the rim of the face, 

represented by the circle clock/edge, its centre clock/centre and the divisions 

eleven, ten, nine, ... etc that indicate the hours. 

 

The artefact that is defined in this fashion is depicted on a screen, as in Figure 1.1: 

 

 

 

 

Figure 1.1: The clock face Figure 1.2: The scaled face Figure 1.3: With time set 

 



Appendices 
 

 288 

The definitions in the script establish dependencies between the variables similar to 

those in a spreadsheet.  Interaction with the script takes place in an environment in 

which the values of variables are always open to redefinition. For instance, the 

redefinition 

 

clock/radius = 100.0 

 

has the effect of making the clock smaller, simultaneously changing all the positions 

of the divisions and the rim of the clock.  The display also depends directly upon the 

values of variables in the script, and is simultaneously updated (see Figure 1.2). 

The hands of the clock are not yet displayed, but there are already variables and 

definitions in the script that refer to them: 

 

within clock { 

  line minHand, hourHand 

  real minAngle, hourAngle 

  real size_minHand, size_hourHand 

  int t 

  size_minHand, size_hourHand = 0.75, 0.5 

  minAngle = (pi div 2.0) - float (t mod 60) * (pi div 30.0) 

  hourAngle = (pi div 2.0) - float (t mod 720) * (pi div 360.0)  

  minHand = [centre + {size_minHand*radius @ minAngle}, centre] 

  hourHand = [centre + {size_hourHand*radius @ hourAngle}, centre] 

  centre = {200, 200} 

  .... 

} 



Appendices 
 

 289 

 

They are not currently displayed because the value of the integer t, which represents 

the current time, has yet to be determined.  Assigning different values to t readily 

establishes that t can be interpreted as the time elapsed in minutes from midnight, so 

that (for instance) assigning t to 138 sets the clock to time 2.18 (see Figure 1.3.). 

 

The modeller's interaction with the clock script is not directed towards any particular 

goal or constrained by a preconceived interpretation.  The modeller views interaction 

with the artefact from the perspectives of many different human agents, shifting 

perspective arbitrarily, much in the way that an artist saturates their imagination 

through attention to the emerging work of art. For instance, in developing a play a 

playwright might reflect upon a particular situation from the viewpoint of the 

fictitious characters in the play, the actors, the audience or the producer.  The 

simultaneous consideration of all these viewpoints is not associated with a separation 

of concerns, but with a dwelling in the situation so as to draw out all its possibilities 

and enrich the experience of the author in the writing and the audience in the 

appreciation of the work.  This holistic approach is vital to the activity, and is 

complemented by an openness and responsiveness to what is encountered that 

characterises creative thought. 

 

The act of setting the time on the clock supplies a modest illustration.  It might be that 

the clock is to be sold, and the hands placed in the most aesthetically pleasing 

configuration.  It might be that the user is setting the clock to the current time.  The 

time on the clock potentially represents an aspect of the clock that is beyond user 

control.  The script is intended to reflect all these possible interpretations, and support 

them in so far as they can co-exist in the modeller's imagination.  The novelty in this 

approach lies in the ontology of the model: there is no prescribed interpretation, only 

certain interpretations that may acquire particular significance and permanence as the 

modeller's imagination shapes the model and the referent. 



Appendices 
 

 290 

 

The description of EM activity is framed in terms of 'how the modeller construes the 

situation'.  Observables, agency and dependency are the key concepts used to express 

construals.  Where there is a fixed external physical referent, construal is concerned 

with how the observations of the referent can be explained with reference to agency, 

dependency and observables.  It is also appropriate to regard the relationship in which 

the modeller chooses to stand to the referent as a form of construal, where the 

emphasis is placed upon the agency of the observer rather than agency that operates 

within the referent.  Interaction with the script can be associated with elaborating a 

construal of either kind. The parametrisation of the clock face in terms of noon and 

radius is concerned with construal from the modeller's perspective.  As a simple 

illustration of how construal applies to the clock mechanism itself, the following 

revised definition for hourAngle establishes the dependency between minute and 

hour hand that is typically present in a mechanical clock: 

 

within clock { 

 minAngle = (pi div 2.0) - float (t mod 720) * (pi div 30.0) 

 hourAngle = (pi div 2.0)  - ((pi div 2.0) - minAngle) div 12.0 

 ... 

} 

 

Through this redefinition, hourAngle depends upon minAngle, and is no longer 

directly defined in terms of the time t.  Note also that the definition of minAngle has 

also been modified (so that it records the reflects the number of minutes elapsed over 

a 12 hour period rather than a single hour) so that it delivers the correct result for 

hourAngle.  This can be interpreted as reflecting whether or not we are taking the 

state of the internal mechanism of the clock into account in observing the position of 

the minute hand.  The relationship between these two scripts illustrates how the 

removal of dependency can be associated with optimisation and information loss. 



Appendices 
 

 291 

The practical techniques that the modeller can use to support construal include the use 

of definitions to express dependency and the introduction of triggered procedures to 

represent agent actions.  The underlying framework is supplied by the EDEN 

interpreter, which serves both as an "evaluator of definitive notations" (in particular 

for DONALD) and as a hybrid definitive/procedural environment that interfaces with 

the user and the computer.  Through EDEN it is possible to increment the variable 

clock/t repeatedly for instance, so as to simulate the clock in operation.  The speed 

at which it is appropriate to carry out this update is at the discretion of the modeller: it 

may be useful to observe the hands in slow motion, as in the construction of the 

rotating clock described below, to run it as fast as possible to obtain an overall 

impression of the clock behaviour, or to synchronise the update of variable clock/t 

with the system clock.  

 

The above discussion illustrates many of the distinctive features of EM in a simple 

setting.  The most significant issue is that the context is such that the term modelling 

is not entirely apposite (so obscure is the referent and the goal of the modeller): there 

are many roles for agency, the conventions for observation and interpretation are 

fluid, and modelling activity is as much concerned with exploring what the referent is 

as with representing it. 

 

4.3. The SIN principle in EM 

 

The messiness of our real engagement with the world is at odds with the systematic 

models of behaviour to which a science aspires.  In building artefacts that can support 

this engagement, the idea of making things easy for the user is suspect.  It is 

appropriate to eliminate unnecessary frustration, but not to suppose that all frustration 

can be eliminated (cf. Donofrio's [IBM Vice-President] "what we want, when we 

want it, where we want it"), or even that that would be a desirable goal.  Art works 

often both with and against the tools and the medium, and this is not something that 



Appendices 
 

 292 

can be designed away.   One aspect of the artist's skill is to overcome the limitations 

of the instrument: "a bad workman blames his tools". 

 

The evidence is that in certain respects the tools of EM are not easy to use. Even after 

making allowance for some obvious flaws in the tools – and acknowledging that a 

bad designer blames the workman – there is an essential reason for difficulty in use.  

It is quite usual in conventional programming to achieve an end without explicitly 

considering what assumptions have been made in order to achieve it.  In EM, there is 

no choice but to engage with the experience that should inform our constructions.  

This activity is expensive in terms of human time and effort – but there is no 

substitute for it.  The potential advantage of the EM approach is that, when we 

subsequently identify problems, the model itself can help us to access the knowledge 

that informed our original solution, and that is required to improve this solution. 

 

An actual illustration drawn from developing a rotating clock model is useful at this 

point.  I wish to highlight the noon position on the clock by marking it with a longer 

line segment.  I choose to do this because of the limitations of the tools: the attributes 

of a line drawing are not preserved if I create a new image of it by rotation. I first 

think of refining the line noon, but realise that this will affect all the other divisions 

by dependency.  This means that I shall introduce a new line noon2 to mark the noon 

division.  My idea is to derive noon2 by elongating the line noon.  This I can do by 

addressing its endpoints noon.1 and noon.2.  My first attempt is: 

 

within clock { 

 line noon2 

 noon2 = [noon.1, noon2*2] 

 ... 

} 



Appendices 
 

 293 

 

This is identified as a cyclic definition, since noon2 appears on the right hand side of 

the definition of noon2 – a mistake precipitated by my own choice of notation.  I 

correct the redefinition of noon2 thus: 

 

 noon2 = [noon.1, noon.2*2] 

 

This is a conceptual mistake – it results in a spike at noon, not a longer line – I am 

forgetting that the elongation has to be along the direction of the line noon.  I next try: 

 

 noon2 = [noon.2 + (noon.1 - noon.2)*2]; 

 

This a type checking mistake – I am getting confused about what sub-expressions are 

lines and what are points. To correct this, I enter: 

 

 noon2 = [noon.2 + (noon.1 - noon.2)*2, noon.2] 

 

This is a mistake because the endpoints noon.1 and noon.1 are not the way round 

that I thought they were.  Only then do I get what I wanted: 

 

 noon2 = [noon.1, noon.1+ (noon.2 - noon.1)*2] 

 

The interpreter itself poses its own syntactic challenges to correct input, and the steps 

detailed above were further complicated by such vagaries.  Pencil and paper also 

played a role in supporting his interaction.  On several counts, EM offers poor quality 



Appendices 
 

 294 

end-user interaction, but it is unusual in that it supports a degree of engagement even 

in error and misconception. 

 

The experimental form of my interaction points to a significant danger: that EM 

encourages sloppiness in thought and practice.  That said, I know that the kind of 

activity exposed above is quite characteristic of my inner thought processes, and 

(modulo the vagaries of the tools) that it is harder to trace this on paper or in my head. 

The end result is also much more satisfactory – not only do I derive the correct 

answer, but I construct an environment in which my mistakes and misconceptions 

have been captured and recorded to an extent that is otherwise problematic. 

 

As highlighted in this example, 'making mistakes' is an essential part of employing 

EM.  For the traditional programmer, this is a difficult concept: the most significant 

mistakes that the skilled programmer makes are in the early stages of design, and 

hopefully never reach the implementation.  Though it can be frustrating and 

embarrassing to follow through the experimental phases of design in EM interactively 

– and whilst it is tempting to focus on flaws in the notations, the interface or the 

interpreter – there is some virtue in exposing our imperfect thought processes.    

 

4.4. Illustrating the SIN principles of representation in EM 

 

This section develops the theme of the simple clock model to illustrate how 

representation operates in EM.  The significance of using EM in representation is best 

understood by considering the continuity in the cognitive activity that accompanies 

the modelling.  When a conventional program is executing, there are at least two 

aspects of its state that are relevant.  There is the computational state, with which the 

user may or may not be interacting, which – in so far as it is intended to be interpreted 

by the user – is meaningful in terms of the application of the program.  There is also – 



Appendices 
 

 295 

at a meta-level – the state of the program code itself, which is not typically known to 

the user. 

 

When making a redefinition in a script, the modeller can be changing the associated 

state in what conventionally would be regarded as affecting both of these aspects.  On 

the one hand, the state that is visible to the user may be changed.  On the other, the 

underlying pattern of dependency maintenance ("part of the program code") may also 

be changed.  The aspiration for EM, to some considerable degree supported even by 

our current tools, is for it to be possible to change the program code without 

disrupting that part of the state with which the user is engaging.  An analogy can be 

made between a conventional programming paradigm and the way in which a 

traveller might use a vehicle built by a mechanic at a workshop, travel about in it to 

discover its limitations, then return to the workshop so that it can be modified to 

overcome these.  The aspiration for EM is that the mechanic and his workshop can 

journey with the traveller, to effect modifications in the context where they are 

needed, potentially with more first-hand appreciation of the requirement. 

 

A few examples will serve to illustrate how EM helps to address issues concerned 

with situation, ignorance and nonsense.  

 

• Representing situation 

 

The representation of situation in EM can be illustrated in many ways.  For instance, 

to set the clock to Japanese time: 

 

 

 



Appendices 
 

 296 

%eden 

uk_time is tnsecs / 60; 

/* tnsecs = the number of seconds that have elapsed since a fix date 

*/ 

japan_time is uk_time + 480; 

_clock_t is japan_time; 

 

To represent a broken clock, in which the minute hand hangs loose: 

 

%donald 

clock/minAngle = - pi div 2 

 

It is also possible to take account of observables present in the situation, but 

previously unrecorded.  For example, to add a secondhand that is coloured red (see 

Figure 3): 

 

%donald 

within clock { 

 line secHand 

 real secAngle, size_secHand 

 secHand = [centre + {size_secHand*radius @ secAngle}, centre] 

 size_secHand = 0.8 

} 

%eden 

sec_mod_60 is tnsecs % 60; 

A_clock_secHand = "color=red"; 



Appendices 
 

 297 

• Representing ignorance 

 

The primary respect in which EM deals with missing knowledge is through 

supporting variables whose value is as yet undefined.  The graceful handling of the 

unspecified time on the clock discussed above is a simple illustration. 

 

Another kind of ignorance is that associated with exploratory design, where 

something is known only after it is constructed and recognised in interaction. As a 

simple illustration, the modeller can act in the role of a clock designer via the 

redefinition:  

 

within clock { 

 circle inner_edge 

 real width_edge 

 inner_edge = circle(centre, radius - width_edge) 

  width_edge = 20.0 

 ... 

} 

 

Such a redefinition is here to be construed as changing the clock itself. 

 

 

   

 

 

 



Appendices 
 

 298 

 

 

 

 

 

 

Figure 2: Hand and Rim added 

 

Further experimentation with values of width_edge elicits tacit knowledge about 

what is an acceptable design through interaction. 

 

Conventional programming is knowledge-driven, in that a program is designed with a 

specific functionality in mind. Being able to make use of a model even though we are 

ignorant about how we might wish to use it is possible to the extent that we have an 

effective construal.  The rotating clock, in which the clock pivots freely about its 

centre according to the moments associated with its hands, was conceived as an 

opportunistic extension of the clock model. This construction illustrates the way in 

which automatic agency, such as here represents the clock rotating into equilibrium as 

time passes, is developed from – or as if from – a pattern of interaction by the 

modeller.  For instance, the modeller might compute the moments of the clock with 

minute hand and hour hand pointing vertically downwards, then when the rotation of 

the clock lies halfway between these positions, and proceed by binary search to locate 

the rotation that makes the moment of the clock zero.  This can be represented by 

using the pattern of observation: 

 

 

 



Appendices 
 

 299 

%eden 

hA = _hrAngle; 

mA = _mnAngle; 

momentH is moment(_hrAngle, _mnAngle, hA); 

momentHM is moment(_hrAngle, _mnAngle, (hA+mA)/2.0); 

momentM is moment(_hrAngle, _mnAngle, mA); 

 

– where _hrAngle and _mnAngle refer to the current positions of the hour and minute 

hands in the normal sense, and the function moment() returns the moment of the 

clock about the angle specified by its third argument – and assigning hA or mA to 

(hA+mA)/2 according to the sign of momentHM.  This binary search can then be 

performed automatically by an agent that responds to the changing time.  This 

illustrates how EM can be used as a way of specifying the functions that maintain 

dependencies themselves. 

 

The use of this model to explore the dynamics of the rotating clock is another more 

familiar sense in which EM is concerned with the discovery of knowledge rather than 

its exploitation. 

 

 

Figure 3: The rotating clock 



Appendices 
 

 300 

 

• Representing nonsense 

 

A much-neglected concern in our representation of the world is the way in which our 

minds impose relationships upon possible situations and events.  We are accustomed 

all the while to organise our experience according to the degree to which it is familiar 

and 'makes sense'.  This leads us to say "I don't think that's possible", or "if that can 

happen, then that is also plausible".  Though nonsense suggests the antithesis of 

sense, it in fact refers to what is – in this mind-space – near enough to sense to blend 

with it in some respects.  Perhaps the most important feature of the EM representation 

of a situation by a script is that it establishes such relationships: namely, nearness as 

assessed by the kind of redefinition that is required to transform one script to another, 

and by the kind of agency that would be involved.  The extent to which these 

relationships match those that we encounter in the world reflects the quality of our 

construal, as determined by the observables, dependency and agency we identify. The 

clock study is a useful source of examples. 

 

It is easy to modify the clock so that the length of the second hand depends on the 

time: 

 

_clock_size_secHand is (float(sec_mod_60)/60.0) * 

_clock_size_minHand; 

 

In the days of the mechanical clock, this would have been implausible if not 

nonsensical, but it would seem unremarkable on a computer desktop.  There are 

simple redefinitions to create a mirror image clock: 

 

 



Appendices 
 

 301 

%scout 

window clockwin = { 

    type: DONALD 

    box: [clockwinNW, clockwinSE] 

    pict: "CLOCK" 

    xmin: 30 

    ymin: 370 

    xmax: 370 

    ymax: 30 

    bgcolor: "white" 

    border: 1 

}; 

 

or an the upside-down clock: 

 

%donald 

clock/radius = -100.0 

 

These examples highlight the role that agency of the observer plays in discriminating 

sense from nonsense: the conventions by which we read the time are in principle so 

arbitrary.  The rotating clock with nothing to distinguish noon from other divisions 

would be more absurd as a timepiece. 

 

Another extension of the basic clock model serves to illustrate how visual art exploits 

both the sense of space and 'the space of sense'. 

 



Appendices 
 

 302 

 

Figure 4: A model loosely based upon Richard Wentworth’s The Warwick Dials 

(1999)  

 

This model is loosely based on a construction on display in the Warwick Arts Centre.  

It is made by a simple extension of the original model in which the line drawing of 

the clock is displayed in several windows, each partially occluded by a blank window 

whose size can be altered by redefining the variable blankedge. 

 

%scout 

integer blankedge = 83; 

 

window blank1 = { 

    type: DONALD 

    box: [clockwinNW, clockwinSE - {blankedge*clockwinScale, 0}] 

    bgcolor: "black" 

    border: 1 

}; 

... 

 

display screen = <blank1/clockwin/blank2/clockwin2/blank3/ 

clockwin3/blank4/clockwin4>; 



Appendices 
 

 303 

 

In the space of sense, there is a distinction between nonsense and meaninglessness.  

In EM, this can be explored by transforming artefacts through random redefinition of 

variables.  The arbiter in matters of sense is the observer, who may or may not be able 

to connect in any way with the experience offered by the transformation of an 

artefact.  The redefinition of variables that correspond to observables beyond the 

control of any recognised agent, and redefinitions that subvert our physical intuitions 

about the permanence and reliability of objects are some of the most effective in 

destroying the semantic relation, as in the corrupted clock in Figure 5: 

 

within clock { 

 sixthpi = 1.0 

 minHand = [centre + {0.75*radius @ minAngle}, hourHand.1] 

 ... 

} 

 

 
 

Figure 5: The corrupted clock 

 


	coverroe.pdf
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap


