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UNIVERSITY OF SOUTHAMPTON 
 

ABSTRACT 
 

FACULTY OF SCIENCE 
SCHOOL OF OCEAN AND EARTH SCIENCES 

Doctor of Philosophy 
 

Seasonal and spatial distribution of the mesozooplankton of Southampton Water 
with particular reference to the contribution of copepods and barnacle larvae to 

pelagic carbon flux. 
 

By Erik Muxagata 
 

In the past half century, a number of studies have described the general composition of the mesozooplankton 
of Southampton Water, highlighting aspects about the seasonality of the major components and identifying 
calanoid copepods and barnacle larvae as the major elements. Despite the number of studies, almost all 
knowledge about species composition, dominance and succession patterns of the mesozooplankton as a 
whole, is described from only a few studies, usually located at stations in the mid and lower estuary. It is 
clear that generalizations made for these stations will not reflect other parts of this estuary. Because of this, a 
120 µm net-haul study comprising upper, mid and lower stations within Southampton Water was conducted 
over a period of 19 months, from 12/01/01 until 16/07/02, in order to critically re-evaluate the 
mesozooplankton community of the estuary, as well as to assess the importance of copepods and barnacle 
larvae to pelagic carbon fluxes. Additional biological and non-biological water column parameters were 
measured concurrently. A total of 144 different taxa were recorded within the zooplankton of Southampton 
Water during this study, with 92 identified to species, 30 to genus and 22 identified at a higher level. From 
these 31 were identified as holoplankton, 72 as meroplankton and 41 as tycoplankton, with 90 taxa recorded 
for the first time in Southampton Water. Numerically the zooplankton community was mainly composed of 
holoplankton forms (~69%), followed by meroplankton (~30%) and tycoplankton (~1%). Copepod nauplii 
were the most abundant holoplanktonic taxa, averaging 38% of all forms, followed by the calanoid Acartia 
spp. (31%), the cyclopoid Oithona nana (11%), the harpacticoid Euterpina acutifrons (11%) and the 
appendicularia Oikopleura sp. (5%). Barnacle larvae averaged 53% of the meroplanktonic forms, followed 
by polychaete (19%), gastropod (13%), bivalve (9%) and bryozoan larvae (3%). Harpacticoid copepods 
comprised 97% of the tycoplanktonic forms recorded. One unexpected finding of this study was the 
significant occurrence of the cyclopoid Oithona nana within the upper estuary, contrasting with previous 
studies where calanoids of the genus Acartia were considered the only dominant copepod form. Although 
present throughout the estuary, O.nana was clearly most abundant in the upper estuary where it presented a 
clear seasonal pattern, and was numerically the most abundant form from late-summer until early-winter, 
then replaced by copepod nauplii and Acartia spp. during mid-winter to late-spring, and by copepod nauplii, 
Acartia spp. and E.acutifrons during early to mid-summer. Barnacle larvae presented the same composition 
and seasonality reported in the past, with Elminius modestus the most abundant and frequent, and occurring 
throughout the year although it was outnumbered by Balanus crenatus from February to May. Of the 
remaining barnacle species found only Balanus improvisus, Semibalanus balanoides and Verruca stroemia 
were present in substantial numbers. Production of several copepod components was calculated, and an 
overall averaged production of 253.48 mg C m-3 yr-1 was estimated, with Acartia accounting for 55.6% of the 
production followed by E.acutifrons (16.0%), copepod nauplii (15.2%) and O.nana (13.2%). This previously 
unaccounted production may assist in readdressing the relatively low copepod secondary production 
previously estimated for Southampton Water. Production of barnacle larvae was also calculated and an 
overall averaged production of 32.80 mg C m-3 yr-1 was estimated, with E.modestus alone accounting for 
54.7% followed by B.crenatus (35%), B.improvisus (6.7%), S.balanoides (3.1%) and V.stroemia (0.5%). 
Overall, production of barnacle larvae within Southampton Water is significantly lower than that of calanoid 
copepods contradicting previous assumptions that barnacle larvae could provide as much secondary 
production as calanoids. A new set of simple linear regression equations applicable to a range of crustacean 
zooplankton types are proposed for the preliminary estimation of production based primarily on the total 
number of organisms.  Abundance, in conjunction with temperature, salinity and chlorophyll a pattern were 
also employed in the elaboration of multiple regression equations. Production values calculated by this new 
method were usually ±20% of the averaged value obtained by more conventional methods. When applied to 
an independent data set, differences of only ±7% were observed between production estimates using 
conventional and the new equations. The new estimated production values for barnacle larvae 
(meroplankton), Acartia (calanoid), Oithona (cyclopoid), Euterpina (harpacticoid) and copepod nauplii 
components of the mesozooplankton are integrated into an existing carbon-flux box-model for Southampton 
Water. 
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Chapter 1 – General community structure 

Chapter 1 
General community structure. 

 

 

 
1.1. Introduction. 

 
Estuaries are areas in which seawater is gradually diluted by freshwater, creating a 

transition zone between the stability of the marine environments and the instability of the 

limnic ones (Kinne, 1967; Ketchum, 1983). The shallow nature of most of the estuaries, 

coupled with tidal mixing, freshwater run-off and anthropogenic interferences promotes a 

rapid cycling of resources, and consequently, makes the estuary more productive than the 

surrounding areas (Riley, 1967). This high productivity of estuarine areas is often reflected 

by its biota, that is present at least seasonally, as high abundances of plankton, benthos and 

nekton1 (Riley, 1967; Haedrich, 1983; Wolff, 1983; Day Jr. et al., 1989), making these 

environments excellent nursery and feeding grounds for many important commercial 

species (Kinne, 1967; Haedrich, 1983; Ketchum, 1983; Day Jr. et al., 1989).  

The term plankton includes communities of zooplankton, phytoplankton and 

bacterioplankton (Day Jr. et al., 1989). The subject of this study, the zooplankton, may be 

defined as the community of all phagotrophic organisms (Lenz, 2000), which includes 

representatives from most phyla of the animal kingdom.  

Being so diverse, there are several different ways of classifying the zooplankton, 

with size and length/type of life history the most common way of doing so (Bougis, 1976; 

Omori & Ikeda, 1992; Lenz, 2000). Classifying by size is a well accepted way, and an 

example is shown in Table 1. 

 

 

 

                                                 
1 Plankton, benthos and nekton are terms often used to classify groups of aquatic organisms according with 
their interactions with the environment where they live. The meaning of the word plankton comes from the 
greek “planktos” for “wanderer” or “drifter”, which comprises those organisms that have very limited 
movement capabilities, so that its horizontal distribution is related mostly with the movement of the mass of 
water that the organism is in. Nekton also came from the greek term “nektos” for “swimming”, and in 
contrast with plankton, are those animals with active free locomotion capabilities. Benthos (greek for “depth 
of the sea”) refers to those organisms that live in/on the sediment at the bottom of a body of water (Perkins, 
1974; Bougis, 1976; Wolff, 1983; Lenz, 2000). 
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Chapter 1 – General community structure 
Table 1. – Size ranges attributed to zooplankton organisms. Adapted from Bougis (1976), Omori & Ikeda 
(1992) and Lenz (2000). 

Category Length Size Organisms 
Nanozooplankton 2 ⌐ 20 µm Nanoflagelates 

Microzooplankton 20 ⌐ 200 µm Foraminiferans, tintinids, rotifers, ciliates, crustacean 
nauplii and smaller copepods 

Mesozooplankton 200 ⌐ 2000 µm Adult forms of appendicularians, doliolids, chaetognaths, 
ctenophores and most crustaceans found in the plankton 

Macrozooplankton 
(Includes some called 

Micronekton) 
2 ⌐ 20 mm 

Large specimens of hydromedusae, siphonophores, 
scyphomedusae, ctenophores, mysids, amphipods, 
copepods, fish larvae and euphausiids 

Megazooplankton >20 mm Large scyphomedusae, siphonophores, thaliaceans 
 

With reference to its life history, zooplankton can be divided in three wide 

categories: holoplankton, meroplankton and tycoplankton (Jeffries, 1967; Raymont, 1983; 

Omori & Ikeda, 1992). The term holoplankton are employed for those animals where all 

stages of its development lives in the water column throughout their entire life cycle, such 

as calanoid copepods, euphausiids and appendicularians. Meroplankton in contrast, 

represents that large array of animals that lives as free swimming planktonic (or planktic as 

recently suggested by Lenz (2000)) organisms only during part of their life, such as eggs 

and/or larval stages of benthic and nektonic species. The third group, tycoplankton, is a 

term employed especially in shallow estuaries for those animals, especially mysids and 

other crustaceans, that actively spend part of the day/night as plankton or even for those 

animals that are accidentally swept from the bottom, such as some harpacticoid copepods, 

gammarid amphipods, cumaceans, isopods and ostracods (Jeffries, 1967; Raymont, 1983). 

Estuarine zooplankton can also be divided according to its period of residence/ 

retention within the estuary which will be dependent primarily on the balance between 

individual reproduction rates and loss due to tidal flushing and net river flow (Rogers, 

1940; Perkins, 1974). Based on that it can be divided in three main components: 

1. Autochthonous populations, the permanent residents, where the rate of 

reproduction exceeds the loss due to flushing and mortality and thus these 

animals are always present in estuaries;  

2. Temporary autochthonous, or those introduced from neighbouring 

regions and capable of limited proliferation; usually with maintenance 

dependant upon reinforcements from the parent population; 

3.  Allochthonous populations, or those brought into the estuary either from 

the sea or river and unable to propagate, probably dying within the estuary. 

 Not withstanding these classifications, and based on selected studies that were 

performed along the entire axis of an estuary, it is possible to draw generalizations about 

the presence and abundance of typical estuarine zooplanktonic species. According to the 
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classical studies of Cronin et al., (1962) at the Delaware Bay (USA) and Bousfield et 

al.,(1975) in the St. Lawrence River (Canada), estuarine mesozooplankton communities 

are generally composed of holoplanktonic calanoid copepods, with mysids (tycoplankton), 

harpacticoid copepods (holo/tycoplankton), barnacle larvae (meroplankton) and 

cladocerans (holo/tycoplankton) also playing important roles. According to these reports, 

and also several other studies from tropical-temperate estuaries around the world (Haertel 

& Osterberg (1967) in the Columbia river (USA); Heinle (1972) in Chesapeake Bay 

(USA); Frolander et al.,(1973) in Yaquina Bay (USA); Reeve (1975) in Biscayne Bay 

(USA); Hulsizer (1976) in Narragansett Bay (USA); Hopkins (1977) in Tampa Bay, 

Turner (1982) in Long Island (USA); Montú (1980) in Lagoa dos Patos (Brazil); 

Hoffmeyer (2004) in Bahía Blanca (Argentina); Perissinotto et al.,(2000) in Eastern Cape 

(South Africa); Imabayashi & Endo (1986) in Hiroshima Bay; Ryan et al., (1986) in 

Killary Harbour (Ireland); Alcaraz (1983) in the ría of Vigo (NW. Spain); Soetaert & Van 

Rijswijk (1993) in the Westerschelde (NE Europe); Baretta & Malschaert (1988) in the 

Ems (Germany); Williams & Collins (1986) in the Bristol Channel (UK) and Raymont & 

Carrie (1964) in Southampton Water(UK)) estuarine mesozooplankton, regardless of life 

history and residence can also be divided in three groups, according to its apparent 

preferences. 

• Marine coastal species which enter the estuary from the sea and are usually 

limited to regions influenced by the saltwater intrusion. They were represented 

mainly by oceanic/neritic calanoid copepods like Calanus finmarchicus, 

Calanus hyperboreus, Labidocera aestiva, Centropages typicus, Centropages 

hamatus, Temora longicornis, Paracalanus parvus, and Pseudocalanus 

minutus, the marine cladocerans Penilia avirostris and Evadne nordmanni, the 

barnacle larvae of Balanus crenatus and Semibalanus balanoides, the 

chaetognath Sagitta setosa and even euphausiids such as Thysanoessa spp.  

• Estuarine-endemic species which can live within a wide range of estuarine 

conditions of temperature and salinity. These are typically represented by the 

calanoid copepods Acartia tonsa, Acartia clausi, Acartia bifilosa, Acartia 

discaudata, Acartia margalefi, Eurytemora affinis, the harpacticoids 

Ectinosoma curticorne and Scottolana canadensis, the cladoceran Podon 

polyphemoides, the barnacle larvae of Balanus improvisus and Elminius 

modestus and mysids like Neomysis americana and Mesopodopsis slabberi . 

• Freshwater species which extend into the brackish water regions of the upper 

estuary. Exemplified by the cladocerans Bosmina longirostris and Daphnia sp., 
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the calanoid copepod Pseudodiaptomus coronatus, the cyclopoid copepod 

Cyclops viridis and the amphipod Gammarus fasciatus. 

Many others studies on estuarine zooplankton are available, and accommodating 

regional variations and different sampling methodologies most of them reports essentially 

the same species composition, or at least different species from the same genera, as the 

most abundant in estuaries. In addition the following species, Parvocalanus crassirostris 

(calanoid), Oithona spp viz. O.similis and O.nana (cyclopoid) and Euterpina acutifrons 

(harpacticoid), are small species which are being found to be quite abundant in estuaries 

where smaller mesh-size were employed (Reeve, 1975; Montú, 1980; Soetaert & Van 

Rijswijk, 1993; Hopcroft et al., 1998) as they were usually under-sampled by the 200 µm 

mesh-size recommended by the working party №.2 (WP2) of UNESCO as standard mesh-

size for mesozooplankton sampling (Bé et al., 1968).  

An exception are Australian estuaries that apart from the fact that Acartia spp. 

Oithona spp. and Paracalanus sp. are important constituents in the downstream reaches, 

provide a curious contrast in that there are no representatives of the genera that provides 

the bulk of euryhaline species in the main estuaries of other regions (viz. Acartia spp. and 

Eurytemora spp.) with Gladioferens spp. and Sulcanus conflictus being present instead 

(Perkins, 1974; Miller, 1983). 

It is clear therefore that, a mixture of holo, mero and tycoplanktonic organisms, to 

various degrees and proportions, characterize the zooplankton of estuaries (Jeffries, 1967; 

Raymont, 1983). The mixture will usually be dependent on a complex combination of 

water-column factors like temperature, salinity, degree of tidal mixing, flushing rates, 

advection, type of estuary, input of freshwater, concentration of dissolved gases, turbidity, 

light, nutrients and biological bottom-up/ top-down resource and predator pressure (Kinne, 

1967; Perkins, 1974; Vernberg, 1983; Miller, 1983; Day Jr. et al., 1989).  

Temperature and salinity are universally considered the most important non-

biological factors regulating the distribution of zooplankton organisms in estuaries, since 

they often undergo considerable spatial and temporal fluctuations. These two factors will 

usually interact with each other, forcing and counteracting physiological and/or 

behavioural patterns from organisms, making estuaries extremely challenging and stressful 

habitats (Kinne, 1967). The ecological consequence of this is that any estuarine organism, 

regardless of its life story, will either have to be able to cope with substantial, perhaps 

extreme environmental changes and thrive even under sub-optimal conditions (Kinne, 

1967; Vernberg, 1983; Miller, 1983) or be able to move to more favourable conditions or 

die.  
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This ability to cope with changeable conditions will be more noticeable in 

holoplanktonic organisms since they are permanently in the water column and more 

susceptible to the extreme variations. They will typically have characteristic behaviour 

patterns, rapid growth and reproduction rates, broad physiological tolerances, and in some 

cases, even resting eggs/stages (Perkins, 1974; Miller, 1983; Raymont, 1983; Mauchline, 

1998). Such attributes have been reported in copepods of the genus Acartia, and explain 

why it is one of the most abundant genera within estuaries (Jeffries, 1967; Conover, 1979; 

Miller, 1983; Buskey, 1993), with congeners being found from nearly fresh to hypersaline 

waters and from 0 to 40 ºC, in clear or turbid estuaries from low to high latitudes (Day Jr. 

et al., 1989).  

The meroplankton, in contrast, only spend a relatively brief, usually 2 – 4 weeks, 

but very specific time in the plankton, so they are usually found/released when productivity 

is high and conditions are favourable for survival and growth (Raymont, 1983). However, 

even they have, occasionally, to cope with extreme variations on tidal and perhaps on a 

seasonal basis, and so will also possess some physiological/behavioural mechanisms to 

make them more capable of adapting to changing conditions.  

One of the most widely reported patterns of behaviour of zooplankton to remain in a 

relative fixed position within estuaries, and so avoid changeable and potentially 

detrimental conditions, is Selective Tidal Stream Transport (STST). STST had been 

reported mainly for meroplanktonic organisms (Olmi & Orth, 1995; Epifanio, 1995; 

Garvine et al., 1997; Garrison & Morgan, 1999) but has also observed in copepods 

(Jacobs, 1968; Trinast, 1975; Wooldridge & Erasmus, 1980; Hough & Naylor, 1991). 

The tycoplankton are considered to be found in the plankton by accident, usually 

removed by force from its ideal niche, so its presence is usually neglected or considered 

occasional and of little importance to structuring the composition of the zooplankton 

community (Day Jr. et al., 1989). 

Only few species seem to sustain optimum conditions in estuaries, and because of 

that it is considered that the richness of zooplanktonic populations in estuaries will increase 

towards the sea, mainly due to the contribution of meroplanktonic larvae and 

holoplanktonic copepods present in greater diversity in the relative stability offered by 

fully marine environments (Riley, 1967; Kinne, 1967; Perkins, 1974; Raymont, 1983; Day 

Jr. et al., 1989). Equally, within the main body of the estuary, where major environmental 

variations occur, zooplankton diversity is expected to be low with high abundances (Jeffries, 

1967; Riley, 1967), and usually distributed in large patches (Jeffries, 1967; Raymont, 

1983; Day Jr. et al., 1989). Holoplanktonic copepods are generally the main constituents of 
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these patches and, in general, the brackish upstream is characterised by Eurytemora affinis, 

and Acartia tonsa, with Acartia spp. (including A.clausi, A.bifilosa and A.discaudata) in 

the middle reaches and Centropages hamatus, Temora longicornis, Paracalanus parvus 

and Pseudocalanus minutus at the mouth, where the marine influence is more noticeable 

(Perkins, 1974). Small species like Euterpina acutifrons and Oithona spp. (O.similis and 

O.nana) are also expected to be among the dominant elements in those patches, and 

together with Acartia spp and Eurytemora sp. are almost always the greatest contributors 

to the total biomass (Jeffries, 1967; Conover, 1979; Miller, 1983; Raymont, 1983; Day Jr. 

et al., 1989; Buskey, 1993; Escaravage & Soetaert, 1995). However, other parts of the 

same estuary can also have patches where copepods are not the dominant component 

(Jeffries, 1967; Day Jr. et al., 1989), particularly close to areas where large concentrations 

of benthic animals could be supplying larvae and/or adults to the water column (Raymont, 

1983). 
 
In estuaries, as in other aquatic systems, the zooplanktonic organisms play a key 

role by grazing the primary production of the phytoplankton and bacterioplankton and 

transporting it, in terms of energy and matter, to different depths and ecosystems. This role 

could be either active, through daily vertical migrations, or even passive through the 

downward flux of faecal pellets. Because of this, zooplanktonic organisms are considered 

as the main link between primary production of the phytoplankton and bacterioplankton 

and the many important carnivores, including many commercial fish, at higher trophic 

levels (Buskey, 1993; Banse, 1995; Lenz, 2000). Not forgetting that zooplanktonic 

organisms also play a key role in nutrient cycling and remineralization (Day Jr. et al., 

1989). 
 
In Southampton Water, several authors have described the mesozooplankton 

populations of the estuary (Conover, 1957; Soares, 1958; Lance & Raymont, 1964; 

Raymont & Carrie, 1964; Bird, 1972; Barlow & Monteiro, 1979; Frid, 1984; Reubold, 

1988; Zinger, 1989; Williams & Reubold, 1990; Geary, 1991; Lucas, 1993; Lucas & 

Williams, 1994; Lucas et al., 1995; Hirst, 1996; Castro-Longoria & Williams, 1996; Lucas 

et al., 1997; Castro-Longoria, 1998; Hirst et al., 1999; Chinnery, 2002; Muxagata et al., 

2004), highlighting aspects of the basic spatial and temporal patterns of the major groups 

of the mesozooplankton.  

From all of those, the work of Raymont & Carrie (1964) is the most taxonomically 

detailed, up to this date, and the one from which most of the species described for this 

estuary are known. In this work, the mesozooplankton of Southampton Water was 
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numerically dominated by barnacle nauplii throughout much of the year. Calanoid 

copepods were reported as the next most abundant group, particularly during the winter, 

when zooplankton abundance is at a minimum, and also during early-spring when calanoid 

copepods from the genus Acartia became the most abundant group. During summer-

autumn, they also recognized the harpacticoid Euterpina acutifrons as an important 

component. Recently Hirst (1996) and other authors (Zinger, 1989; Lucas, 1993; Castro-

Longoria, 1998) have presented a slightly different picture. In these studies almost the 

same group/species composition were identified, but the mesozooplankton was found to be 

primarily dominated by calanoid copepods from the genus Acartia, with barnacle nauplii 

numerically dominating only during short periods in early-spring (March - April) and 

summer (July - September). The major differences between the investigation of Raymont 

& Carrie (1964) and the recent ones can probably be attributed to different sampling gear 

and procedures.  

Again, when most of those zooplanktonic studies are contrasted with the work of 

Raymont & Carrie (1964) it is clear that most of the studies characterized the 

zooplanktonic populations of this estuary based on: 

1. the identification of the dominant holoplanktonic and meroplanktonic forms 

at “group” level (Bird, 1972; Reubold, 1988; Zinger, 1989), 

2. or were only focused on detailed aspects of a specific group (Conover, 

1957; Soares, 1958; Frid, 1984; Williams & Reubold, 1990; Lucas, 1993; 

Lucas & Williams, 1994; Lucas et al., 1995; Lucas et al., 1997; Hirst et al., 

1999; Chinnery, 2002; Muxagata et al., 2004), 

3. and/or were only based at a single station at the mouth (Conover, 1957; 

Soares, 1958; Hirst, 1996; Hirst et al., 1999), mid-section (Barlow & 

Monteiro, 1979) or at the head of the estuary (Geary, 1991; Castro-

Longoria, 1998; Muxagata et al., 2004).  

It is clear that some detailed general overview of the distribution, composition and 

abundance of the different species, as a community, along the estuary as a whole is needed.  

Since rates, like reproduction, grazing, birth and death in zooplankton populations 

are performed at species level, any study related to fluxes in zooplanktonic communities 

requires detailed information about the spatial-temporal importance of species, abundances 

and biomasses before attempting to quantify any specific processes, like production and 

the rate of interactions with other trophic levels (Soetaert & Van Rijswijk, 1993). So, 

quantifying the different parameters related with species and understanding the processes 

controlling it within an ecosystem is a major objective of biological oceanography.   
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Abundance, biomass and production rates of some components of the pelagic 

community of Southampton Water are known, with ciliates (Leakey et al., 1992), bacteria 

(Antai, 1989), size-fractionated primary production (Iriarte & Purdie, 1994), gelatinous 

predators (Lucas et al., 1995; Lucas et al., 1997), calanoid copepods (Hirst, 1996; Hirst et 

al., 1999) already reported. The remaining major unresolved component in this estuary is 

the meroplankton. Detailed production studies of the meroplankton of this estuary are only 

available for few specific components, some gelatinous predators (Lucas et al., 1995; 

Lucas et al., 1997) and a single barnacle species, Elminius modestus, from data already 

published from this study (Muxagata et al., 2004). As said earlier, most of those 

zooplankton studies lack the in depth composition approach, spatial coverage or even both 

for generalizations. Despite of not being concerned with production, only the detailed work 

of Raymont & Carrie (1964) gives some overall qualitative-quantitative idea of almost all 

the species found within this estuary, from which generalizations on the importance of 

each holo, meroplanktonic species can be drawn. The problem is that this work is now 

more than 40 years old and major changes could have occurred to modify the overall 

zooplankton composition. 

 

1.2. Aims of the study.  
 

 

This study aims, therefore, to evaluate the contribution of holo-meroplanktonic 

components, but particularly barnacles, to the pelagic carbon flux of this estuary. 

Secondarily, as a consequence of the sampling strategy, it will monitor and re-evaluate the 

distribution, composition and abundance of the organisms found in zooplankton catches of 

Southampton Water on a taxonomically intensive approach, identifying and quantifying 

the dominant forms and comparing current patterns with earlier studies. Concurrent data on 

water column environmental variables will also be determined. The data generated in this 

study will allow a better evaluation of the estuarine zooplankton community of 

Southampton Water as a whole, and will also try to “fill the gaps” left by earlier studies. 

Despite being concerned with the contribution of the major mesozooplankton 

components, the seasonality of minor/less abundant groups such as Decapoda, Amphipoda, 

Euphausiacea, Mysidacea, Isopoda, as well as other parasitic crustacean forms found in 

this estuary will also be described in detail. The study will therefore provide the first 

account of the distribution, composition and abundance of those crustacean components.  
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The work is divided in major sections, Chapter 1 will present the general 

methodology employed for collection, identification, and will present the general results of 

the analysis of the physico-chemical environmental variables. It will also introduce the 

importance of the different groups within the mesozooplankton.   

Chapter 2 will be primarily focused in the seasonality and abundance of the 

different species of the holoplankton; while chapter 3 will be focused on the species of the 

meroplankton and tycoplankton.   

Chapter 4 will highlight the seasonality of production of the different barnacle 

larvae present in this estuary, and apart from the recent published paper generated from 

data obtained during the present study (Muxagata et al., 2004 see this on Appendix I) this 

will be the first reported account of the contribution barnacle larvae to field production.  

Chapter 5 will present the seasonality of production of the most important copepod 

species present in this estuary, particularly Acartia.  

Chapter 6 will offer a new empirical way of estimating the production of some 

components within this estuary, as well as some general insights on pelagic community 

flux estimated from data available for this estuary.   

Taxonomic intensive studies are not really appealing, but one must bear in mind 

that it is only through these kind of studies that the required data to detect any changes 

within the estuary is supplied; and when allied with retrospective studies it can also give 

some feedback concerning major environmental changes or even human impact on the 

environment.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 9 



Chapter 1 – General community structure 

1.3. Study Area. 
 

Southampton Water is a shallow, partially mixed coastal plain estuary (Dyer, 1973) 

located on the South Coast of England (Hampshire, southern England), that discharge into 

the Solent (Figure 1).  

 
Figure 1 – The study area, with detail showing the position of the sampling locations (●) and sites of interest 
and/or sampled in previous studies. 
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At its head it is fed by the rivers Test and Itchen which border the industrialised 

city of Southampton, and near the mouth (~4 km) is the river Hamble (Figure 1). The 

largest rivers, Test and Itchen are chalk streams that pass through intensively farmed land 

(Howard et al., 1995), and have a mean annual discharge of 8.81 and 3.26 m3 s-1, 

respectively (Sylaios & Boxall, 1998). They are responsible for about 45% of the total 

inflow of freshwater into the Solent system (Webber, 1980), while the Hamble, with a 

mean annual discharge of 0.28 m3 s-1, constitutes a smaller input of freshwater (Sylaios & 

Boxall, 1998). 

The estuary is a drowned river valley in nature ~11 Km in length and 1.9 - 2.5 km 

wide (Dyer, 1973; Webber, 1980; Dyer, 1982), running in a NW - SE direction. Broad 

intertidal mudflats with shingle and sand border the eastern side, with salt marshes on the 

western side. It is a shallow estuary, with depths usually between 1 - 8 m, except in the 

dredged shipping channel, where a maximum depth of ~13 m occurs. Southampton Water 

is essentially marine in character, with little salinity variation near the mouth and some 

stratification at the head of the estuary (Raymont & Carrie, 1964). This stratification at the 

head of the estuary depends on the state of the tide and the freshwater inflow. 

The water temperature of Southampton Water varies with the season, with minima 

during the winter  (T < 5 °C in December – February) and maxima during the summer       

(T > 17 °C June – August) (Raymont & Carrie, 1964; Leakey et al., 1992; Howard et al., 

1995; Hirst, 1996). The tidal features of the Solent area are complex and are characterised 

by a “stand” of high water (also called double high water), during a period of 2 to 3 hours, 

where little tidal water movement occurs.  The consequence of this double high water is to 

shorten the period of ebb to around 4 hours instead of 6 hours, which make ebb currents 

faster than the corresponding flood, and so flushing silt and contaminants in a seaward 

direction (Webber, 1980). Within Southampton Water the tidal range varies from 2 to 4m 

(Sylaios & Boxall, 1998). 

A number of authors have reported the seasonal cycle of abundance, biomass and 

production rates for several components of the pelagic community of the Southampton 

Water. Ciliates were studied in detail by Leakey et al. (1992) and Kifle & Purdie (1993), 

bacteria by Antai (1989) while phytoplankton were the subject of several studies 

(Williams, 1980; Iriarte, 1991; Iriarte, 1993; Iriarte & Purdie, 1994; Howard et al., 1995). 

Based on those studies, Southampton Water can be considered as a productive estuary, 

with annual rates of primary production estimated as 177g C m-2 yr-1 and 130g C m-2 yr-1 at 

the middle and mouth respectively, with March and August being the most productive 

months (Iriarte & Purdie, 1994).  
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1.4. Materials and Methods. 
 

1.4.1. Field Methodology. 
  

During the period between 12/01/01 to 16/07/02, samples were collected (on board 

the University of Southampton boats RV “Bill Conway” and “Prince II”) at three fixed 

sites, marked by permanent shipping buoys within Southampton Water (Figure 1). The 

geographic location and name of the buoys are given in Table 2. 
 

Table 2. Fixed buoys and geographical positions of the sampling sites. 
Buoy Coordinates 

Cracknore 50053’93” N, 01025’12” W 
NW.Netley 50052’28” N, 01022’64” W 
Calshot Spit 50048’33” N, 01017’52” W 

 

These particular sampling stations where chosen because they were among the 

most sampled stations in previous studies, so it was decided to repeat these sites in order to 

compare the results of this work with the data from previous studies. 

These sites were sampled on the same day, wherever possible, in association with 

the relatively extended 2 – 3 hour period of “slack water” at high tide. This procedure was 

done in order to attempt to sample the “same body of water”, and also to standardize tidal 

influence (see Figure 2 showing the relative time in minutes to or from the first high water 

when sampling was performed).  

Sampling frequency was carried out on a time scale that was comparable to the 

breeding and recruitment phases of the target species, and associated with boat availability 

and tide conditions (i.e. sometimes the high tide “falls” on a certain period of time when 

there is no boat available, so sampling were carried during boat availability i.e. flood or 

ebb. During this study 14% of the samples were collected during flood and 5% on ebb 

conditions). 

For the target organisms, i.e. barnacles, moulting occurs at regular intervals and the 

metanauplius stage is usually reached within 3 – 4 weeks (Bassindale, 1936; Pyefinch, 

1948b; Harms, 1984), followed by the cyprid stage. Because of that, a bimonthly sample 

programme was carried during the non-breeding season of the barnacles. During the 

breeding months a more focused and intensive sampling programme, involving a shorter 

sample frequency (3 – 4 times a month) was carried out. Later, following the analysis of 

the samples collected from October and November 2001 it was decided to collect only 

once a month between November 2001 until February 2002, resuming the more intensive 
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sampling effort (3 – 4 times a month) for samples collected from March 2002 until July 

2002. 

 
Figure 2 – Time when the sampling was carried out in the different station and months in relation the 
predicted time of the first high water at Southampton Water. Shaded area is the approximate duration of the 
“slack water” period. 
 

Due to the amount of samples to be processed, and the labour-intensive task of 

sorting and identifying the species present, sampling at NW.Netley only started on March 

2001. It was only sampled once a month until October 2001, after which it was sampled at 

the same frequency as the other sites (See Appendix II for dates, locations sampled and 

type of data gathered). 

During the 19 month survey, on only one occasion (24/05/02) was it not possible to 

sample at Calshot due to extremely bad weather. On this particular date sampling was 

carried out at Hook Buoy (Figure 1), and since this buoy is fixed at ~1.35 nautical miles 

from Calshot Buoy, the data was computed as being from Calshot.  

Mesozooplankton2 samples were collected from 5m double oblique tows using 

conventional cod-end plankton net of 50 cm of mouth diameter and 120 µm mesh, with a 

towing speed around 2 knots. Towing times varied according to season, but was generally 

                                                 
2 In this work and throughout the text when referring to mesozooplankton, it is good to have in mind that the 
120µm mesh employed also collected a large parcel of microzooplanktonic organisms that usually would 
pass trough the conventional 200 µm mesh employed for mesozooplankton sampling (Bé et al., 1968).   
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5 - 10 min. during autumn – winter and 3 – 5 min. during spring – summer, in order to 

minimize phytoplankton clogging, sampling on average ~40 m3 on each tow. Despite that 

some clogging could have occurred on 04/04/2001, 18/05/2001, 22/06/2001, 03/07/2001 

and 02/08/2001 at Cracknore, 07/06/2002 and 02/08/2001 at NW.Netley and 18/05/2001 

and 07/06/2001 at Calshot where ~6 m3 were filtered instead of the average of 20 m3 for ~3 

min tows, but no attempt to correct the values was made. The volume of water filtered at 

each tow was estimated by a calibrated flowmeter  (TSK - Tsurumi Seiki-Kosakusho and 

on very few occasions a Hydrobios) attached to the mouth of the net (See Appendix III 

a,b,c for field data).  

After collection all samples were preserved in approximately 4% formaldehyde-

seawater solution buffered with borax (Steedman, 1976) until processing.  

At each station samples of water were collected with a 5 litre Niskin water bottle 

from surface (only on Cracknore site), 2 and 8 metres depth for chlorophyll a and 

dissolved oxygen analysis, following the procedures shown below: 

 

• Chlorophyll a: At each station/depth 2 samples of 60 ml of water were 

filtered through 2.5 cm glass microfibre filters (Whatman GF/F) 

(Mantoura et al., 1997), using a 60 ml syringe with a filter holder 

attachment (Millipore – Swinnex 25). Each of the filter papers were then 

folded in half, wrapped in foil, sealed in labelled plastic bags and frozen      

(- 70°C) until processing.   

• Dissolved Oxygen: At each station/depth 2 stoppered glass bottles were 

filled with water and immediately 1.0 ml of Manganous Chloride solution 

(MnCl2) followed by 1.0 ml of Alkaline-Iodide solution (NaOH + KI) were 

added. The bottles were then stoppered, shaken and stored under water until 

analysis could take place (Strickland & Parsons, 1965). 

 

Temperature and salinity measurements were obtained at 1m depth intervals at each 

station, using a digital field Thermo-salinometer (WTW – LF597-S) connected to a 

salinity-temperature probe. The results were expressed as temperature (°C) and salinity 

during the period of study (see Appendix IV a,b,c). Following the recommendations of 

UNESCO (1985), in this work the salinity will be expressed as an absolute value with no 

figures expressing salinity proportions. The temporal variability of temperature and salinity 

were drawn using SigmaPlot for Windows. 

 

 14 



Chapter 1 – General community structure 
1.4.2. Laboratory Methodology. 

 
1.4.2.1. Zooplankton. 

 
In the laboratory, the zooplankton samples were concentrated in suitably sized 

containers, ensuring that the material will be in the proportion of 9 parts of fixative 

solution to 1 part of planktonic material (Steedman, 1976). When large quantities of 

gelatinous species were collected, those greater than ~5 mm were manually removed, 

counted and stored in a separate container. When large quantities of Pleurobrachia pileus 

were detected, they were also manually removed, counted, their gut content analysed and 

then stored in a separate container.  

Because of the large number of organisms present in the samples, sub-samples of 

0.4 to 12.5% of the original sample3 were made using a Folsom plankton sample splitter 

(Appendix III a,b,c) after the removal of the large gelatinous species. According to Postel 

et al. (2000) sub-sampling with the Folsom splitter accounts for a coefficient of variation 

of 5-18%. 

An average of 2558 organisms were counted and identified on each sub-sample. 

They were counted and initially identified in Bogorov tray chambers using a dissecting 

stereo-microscope (Wild MZ-5). When necessary, the identification and observation of 

detailed taxonomic features were made using a microscope. Mysidacea, Euphausiacea, 

Decapoda, Chaetognatha, Amphipoda, Isopoda, Cumacea, Vertebrata as well as rare and 

less abundant species were enumerated from the whole sample. The counting error, based 

on the number of all specimens counted following a Poisson distribution (Frontier, 1981; 

Postel et al., 2000), averaged ±10 % for all samples, with ± 6 % for the most abundant and 

± 19 % for the less abundant ones. (See Appendix III a,b,c). 

For comparison with other studies, the organisms present in the samples were 

initially identified to the following “grouping” levels: Gelatinous (Organisms belonging to 

Phylum Cnidaria and Ctenophora), Mollusca (the veligers of bivalves and gastropods 

pooled), Polychaeta, Chelicerata, Cladocera, Cirripedia, Copepoda, Ostracoda, 

Stomatopoda, Mysidacea, Isopoda, Amphipoda, Cumacea, Euphausiacea, Decapoda, 

Phoronida, Bryozoa, Chaetognatha, Echinodermata, Tunicata (Appendicularia and 

                                                 
3 In estuarine research, sub-samples ranging from 0.5 to 10% are usual  (McLaren & Corkett, 1981; Buskey, 
1993; Hirst, 1996), but it should be noted that the size is entirely dependant to the researcher. The common 
sense is that the sub-samples should be large enough to permit a practical count of the animals in it; with the 
expectation that it will contain at least 100 individuals of the target species. This, according with a Poisson 
distribution, will result in counting errors around ± 20%, which is acceptable for zooplankton research 
(Frontier, 1981; Postel et al., 2000).  
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Ascidiacea pooled) and Pisces (larvae/ eggs of fish). Besides the fact that Foraminifera and 

Rotifera were noted in some samples, they were not counted in this investigation and the 

results presented here do not include them. 

The Cnidaria, Ctenophora, Mollusca, Polychaeta, Chelicerata, Cladocera, 

Stomatopoda, Mysidacea, Isopoda, Amphipoda, Cumacea, Euphausiacea, Decapoda, 

Chaetognatha and Appendicularia present in the samples were identified to the lowest 

taxonomic level possible based on: (Apstein, 1901; Williamson, 1915; Webb, 1921; 

Lebour, 1928; Russell, 1939; Rammner, 1939; Lebour, 1940; 1943; Heegaard, 1948; 

Berrill, 1950; Russell, 1950; Nouvel, 1950; Forneris, 1957; Williamson, 1957; Jones, 

1957a; Naylor, 1957a; Jones, 1957b; Naylor, 1957b; Jones, 1957c; Pike & Williamson, 

1959; Williamson, 1960; Hannerz, 1961; Pike & Williamson, 1961; Russell, 1963; Newell 

& Newell, 1963; Scourfield & Harding, 1966; Williamson, 1967; Fretter & Pilkington, 

1970; Mauchline, 1971; Pike & Williamson, 1972; Smirnov, 1974; King, 1974; Della 

Croce, 1974; Greve, 1975; Rice & Ingle, 1975a; 1975b; Le Roux, 1976; Makings, 1977; 

Russell, 1978; Fincham & Williamson, 1978; Lincoln, 1979; Mauchline, 1980; Ramírez, 

1981; Stop-Bowitz, 1981; Emig, 1982; 1984; Montú & Gloeden, 1986; Isaac et al., 1990; 

Elliot et al., 1990; Pessani & Godino, 1991; Ingle, 1992; Paula, 1996; González-Gordillo et 

al., 1996; Martin, 2000; González-Gordillo & Rodríguez, 2000). The different species of 

Cnidaria, Polychaeta, and Amphipoda were, in the end, grouped, and only a list of species 

is presented. 

Copepoda were identified to species based on: (Sars, 1903; 1905; van Breemen, 

1908; Sars, 1911; 1916; 1918; 1921; Rose, 1933; Farran, 1948a; 1948b; Farran, 1951a; 

1951b; 1951c; Isaac, 1975; Boxshall, 1977; Kabata, 1979; Björnberg, 1981; Huys & 

Boxshall, 1991; Piasecki, 1996; Boxshall & Montú, 1997; Bradford-Grieve, 1999; 

Bradford-Grieve et al., 1999; Boxshall & Halsey, 2004). Individuals were also subdivided 

in adults, copepodites and nauplii. Copepoda nauplii were, in the end, grouped together 

due to the almost impossible task of identifying then to species, or even orders, within a 

limited time frame. 

Cirripedia were identified to species level based on: (Hoek, 1909; Bassindale, 

1936; Veillet, 1943; Pyefinch, 1948a; Pyefinch, 1949; Knight-Jones & Waugh, 1949; 

Jones & Crisp, 1954; Crisp, 1962; Tighe-Ford et al., 1970; Turquier, 1972; Barker, 1976; 

Lang, 1980; Branscomb & Vedder, 1982; Dalley, 1984; Collis & Walker, 1994; Lee et al., 

1998). They were also sorted to larval stage, in accordance with the definitions presented 

in Lang (1979). 
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The taxonomic system adopted in this work follows that of Howson & Picton 

(1997) for the species directory of the marine fauna and flora of the British Isles and 

surrounding seas. The results were expressed as number of organisms m-3 or percentages 

during the period of study. (Appendix III a,b,c shows the total animal abundance on each 

sampling day. Due to the large number of organisms present, this was synthesized showing 

only the most abundant on a species basis. Appendix V shows a picture of every single 

taxa observed during this investigation).  

Graphics and statistical calculation were made using several software’s, including 

Microsoft Excel, Sigma Plot for Windows, Statistica for Windows and Macromedia 

Freehand for Windows  
 
 

1.4.2.2. Chlorophyll a. 
 

The fluorometric technique introduced by Welschmeyer (1994) was used to 

determine chlorophyll a concentration. This particular method was chosen because it can 

provide sensitive measurements of extracted chlorophyll a free from the errors associated 

with conventional acidification techniques, ie, maximum sensitivity to Chlorophyll a 

without the interference of Chlorophyll b and phaeopigments. This method still maintains 

the higher sensitivity when compared with the spectrophotometric methods (Jeffrey & 

Welschmeyer, 1997).  

Since the procedure for extraction of pigments was different from the reported 

literature for fluorometry (Yentsch & Menzel, 1963; Holm-Hansen et al., 1965) the 

extraction protocol is described: 

 

• Soaking/Sonication4/Centrifugation: Frozen filters with material were 

placed in 8ml of 90% acetone in centrifuge tubes (Polypropylene centrifuge 

tubes of 13 ml with screw caps), sonicated for 30 s (sonicator set in 50%) 

with a VibraCell sonicator with the probe inserted directly into the solvent 

and then centrifuged for 10 min at 3000 rpm. 

 

The fluorescence of the chlorophyll a extract was measured with a calibrated 

Turner Designs Fluorometer (Model 10 AU) fitted with a F4T41/2B2 (Type 10-089 Turner 

Designs Inc.) lamp as proposed by Welschmeyer (1994). The concentration of chlorophyll 
                                                 
4 Wright et al. (1997) recommends sonication in dimethyl formamide for almost 100% of extraction, but due 
to the toxicity of this extractor it must be avoided. They also proposed sonication in methanol as an 
alternative, since methanol was the second most efficient extractor. However, since no fluorometric equations 
in methanol are available, this solvent cannot be used for extracted fluorometry (Wright & Mantoura, 1997). 
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a for each sample is calculated from the following equation (Jeffrey & Welschmeyer, 

1997): 

 

Chlorophyll a(µg l-1) = 
Vs

KFvu ,     (1) 

 

where, K5= fluorescence sensitivity coefficient in extraction solvent, F = fluorescence 

response (no acidification), vu = Volume of acetone used for extraction (in millilitres),  

Vs= Volume of sample filtered (in millilitres). 

 The final chlorophyll a concentration for each stratum on each sample is then 

obtained by averaging the duplicate results (Appendix VI a,b,c). Differences between 

replicas varied and errors were calculated as a percentage of the mean averaged for all 

measurements; during this work it was around ± 3.9 %. The results were expressed as mg m-3
 

(equivalent to µg l-1) of chlorophyll a during the period of study. The temporal variability 

of Chlorophyll a was drawn using SigmaPlot for Windows. 

 

1.4.2.3. Dissolved oxygen. 

 

      The dissolved oxygen present on the samples was estimated by the Winkler 

method, using an end point detector and an automatic titrator (Dosimat 665 - Metrohm), 

connected to a chart recorder (Servoscribe), as described by Bryan et al. (1976).  

The oxygen concentration in each sample was calculated as follows: 

 

Dissolved oxygen (mlO2l-1) = 4.22
4)2(

103









−V

AN ,    (2) 

 

where, A = volume of thiosulphate added (in ml), N = Normality of the thiosulphate,         

V = volume of the sample bottle (in ml). 

For each station/depth the dissolved oxygen concentration were the averages of the 

two samples taken. 

   The oxygen concentration may be converted to units of mg O2l-1 by multiplying 

by 1.4286 and to n moles l-1 by dividing by 22.4. 

                                                 
5 In the fluorometer model employed in this study there is no need of this coefficient, since this fluorometer 
model gives straight readings (D. Purdie, pers. comm.) 
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Following Weiss (1970), the percentage of oxygen saturation could be calculated 

using the equation: 
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where, C  = The solubility of oxygen in ml (STP) l-1 from water saturated air at a total 

pressure of one atmosphere, T  = Absolute temperature. (Temperature of the sample in °C 

+ 273.15), A’s and B’s = are constants (A 1 = -173.4292; A 2 = 249.6339; A3 = 143.3483;     

A 4 = -21.8492; B1 = -0.033096; B 2 = 0.014259; B 3 = -0.0017000). 

This value of C gives the 100% saturation, when compared with the measured 

value the oxygen saturation is obtained.  

The standard difference between replicas as a percentage of the mean averaged for 

all measurements was ± 1.2 % (Appendix VII a,b,c). The results were expressed as 

dissolved oxygen in ml l-1 or as percentages of saturation during the period of study. The 

temporal variability of dissolved oxygen and oxygen saturation were drawn using 

SigmaPlot for Windows. 
 

1.4.2.4. Correlation Analysis. 
 
Due to the oblique pattern of the zooplankton haul samplings, the data of 

temperature, salinity, chlorophyll a, and oxygen (dissolved and saturation) from each 

stratum of each station had to be averaged before any analysis could be made (Appendices 

III, V, VI). The Pearson’s product-moment correlation coefficient r was used in order to 

measure the intensity of the association between the biotic and abiotic variables. To 

stabilize the variance of the data, zooplankton abundances were  transformed 

and the average oxygen saturation and average Chl. a were log transformed before 

analysis (Prepas, 1984; Zar, 1999; Clarke & Warwick, 2001). Usually, percentages are 

arcsine transformed, but this only applies when the percentages reflects proper 

probabilities (K. Clarke, pers. comm.). In the case where percentages values are considered 

a continuous variable, like the oxygen saturation values, other transformations can be used, 

i.e. .  

)1(log10 +x

)(10 x

)(log10 x
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1.5. Results. 
1.5.1. Temperature and salinity. 

 
        The temporal variability of the water temperature and salinity at three depths at the 

sampling stations during the period of study can be observed in Figure 3. 
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Figure 3 - Temporal variability of the temperature (open symbols) and salinity (solid symbols), at the three 
stations and depths in Southampton Water during 2001/02.  
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The temperature varied accordingly with season, with minima observed during the 

winter (December – February) and maxima from mid-summer through early autumn (July 

– September). The minimum temperature recorded during this investigation was 5.3 °C in 

January 2002 at NW.Netley, and the maximum 20.4 °C at Cracknore in August 2001. No 

remarkable differences of temperature with depth were observed, within any station. On 

some occasions slight differences of temperature in the surface layer at Cracknore were 

observed, but this never exceeded 2.3 °C. No differences in temperature were observed 

between stations, with the same pattern observed at the three locations (Figure 3). 

 Salinity, on the other hand, did not have any seasonal variation but showed an 

increasing gradient towards Calshot (Figure 3). There was some vertical stratification at 

NW Netley and particularly at Cracknore, where the lowest salinity values were recorded, 

with minimum values always in the surface layer and the salinity gradually increasing with 

depth. The minimum recorded value was 11.7 at Cracknore and a maximum of 34.1 at 

Calshot.    
 
 

1.5.2. Dissolved oxygen. 
 
 
          Oxygen concentration and oxygen saturation for the three depths at Cracknore, and 

at 2 and 8 metres at NW.Netley and Calshot are illustrated in Figure 4. 

          Overall, in 2001 the oxygen concentration values of the depths and stations 

decreased from 7 - 8 ml l-1 in the beginning of the year to 5 – 6 ml l-1 in November 2001. 

During this period two peaks of >8.6 ml l-1, in May and July, and another one of 7.4 ml l-1 

in August were observed at Cracknore; with only one of >7.9 ml l-1 clearly discernible in 

May at NW.Netley and Calshot. From December 2001 values start to increase again, and by 

January 2002 concentrations again reach 7 - 8 ml l-1
, and again decline in spring towards July 

2002. A slight increase was noted in April 2002 at all stations but no peaks, as in 2001, 

were observed. Usually the oxygen concentration were the same through the water column, 

exceptions occurring during the peaks of 2001 where oxygen concentrations were higher at 

the surface and 2 meters, compared with the values found at 8 meters.   

In terms of saturation, values stayed between 90 and 100% throughout the 2001 – 

2002 season at all stations. Peaks on February 2001 (115%), May 2001 (144%), July 2001 

(164%), August 2001 (137%) and April 2002 (114%) were observed at Cracknore, while at 

NW.Netley and Calshot they were only observed on May 2001 (>128%), August 2001 

(113%) and April 2002 (112%). 
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Figure 4 - Temporal variability of dissolved oxygen concentration (open symbols) and oxygen saturation 
(solid symbols) for the three stations in Southampton Water during 2001/02. A break in the plot indicates 
lack of data. 
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1.5.3. Chlorophyll a. 

 
          Measured chlorophyll a concentration for the three depths at Cracknore and 2 and 8 

metres depths at NW.Netley and Calshot are shown in Figure 5. 
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Figure 5 - Temporal variability in the concentration of Chlorophyll a at the three stations in Southampton 
Water during 2001/02. A break in the plot indicates lack of data. 
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It is clear that during winter 2001 the initial concentration of chlorophyll a, at all 

three sites, was usually <2 mg m-3 (Figure 5). After May, and until the end of August the 

concentration of chlorophyll a increased to an average of 15 mg m-3 in Cracknore, 13 mg 

m-3 in NW.Netley and 8 mg m-3 in Calshot, with four peaks being observed at Cracknore, 

two in N.W Netley and only one in Calshot. After this, in September, concentrations 

returned to values around or lower than 2 mg m-3. In 2002 the chlorophyll a values started 

to increase slowly only after May, with no major peaks observed.  

Generally, the level of chlorophyll a was uniform with depth during the low 

concentration period. However, during May and through September, the upper layers 

usually recorded higher concentrations (Figure 5). 

 

1.5.4. Zooplankton. 

 
 
 During the present study 276,348 organisms were counted and identified at the 3 

stations. A total of 144 different taxa were found within the zooplankton of Southampton 

Water during this study, with 92 identified to species, 30 to genus and 22 identified at a 

higher level. Of these 90 taxa are recorded for the first time within the zooplankton of this 

estuary (see the species with  in Table 3 – note that this list also includes 3 new taxa 

observed on samples of previous investigations).  Only an overall list of species will be 

presented in this chapter, the results concerning each species/group will be detailed in 

Chapters 2 and 3. 

A photographic record of most species/organisms identified during the present 

investigation can be seen in Appendix V (or on the attached CD, which presents a pdf file 

containing “The Mesozooplankton of the Solent-Southampton Water system: A 

photographic guide” which was elaborated from data obtained during the present 

investigation, and made available as Internal document No 97 of the Southampton 

Oceanography Centre (Muxagata & Williams, 2004 unpublished manuscript ). Numbers in 

front of each taxa in Table 3 indicate the number of the picture in Appendix V.   
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Table 3- Taxa reported in the zooplankton of Southampton Water, with all previous records. (Part 1 of 4)  
 

Phylum Protozoa 
Class Sarcodina 

Subclass Rhizopoda 
Order Foraminifera 

1-Unidentified (13,14)   
Phylum Cnidaria  

2-Unidentified (15)   
Class Scyphomedusae 

Order Samaeostomeae 
Family Ulmaridae  

3-Aurelia aurita (Linnaeus, 1758) (4,7,9,11,14,15) 
Class Leptolida 

Subclass Anthoathecatae 
Order Capitata 

Family Corynidae 
4-Sarsia sp. (11,15) 

Subclass Leptothecatae 
Order Conica 

Suborder Campanulinida 
Family Phialellidae 

5-Phialella quadrata (Forbes,1848 ) (11,15) 
Order Proboscoida 

Suborder Campanulariida 
Family Campanulariidae 

6-Clytia hemisphaerica (Linnaeus, 1767) (11,15) 
7-Obelia sp. (11)  
 

Phylum Ctenophora 
Class Tentaculata 

    Order Cydippida 
Family Pleurobrachiidae 

8-Pleurobrachia pileus (O F Müller, 1776)(4,9,11,12,14,15) 
    Class Nuda 

Order Beroida  
Family Beroidae 

Beroe sp. (7,11) 
 

Phylum Mollusca  
Unidentified (11) 

Class Gastropoda 
9-Veliger unidentified (4,11,13,14,15) 

Order Mesogastropoda 
Family Littorinidae 

10-Littorina littorea (Linnaeus, 1758) (4,14)  
Class Pelecypoda 

11-Veliger unidentified (4,9,11,13,14,15) 
Order Mytiloida 

Family Mytilidae 
Mytilus edulis Linnaeus, 1758 (4) 

Class Cephalopoda 
12-Unidentified  ∗ (16) 

 

Phylum Annelida 
Class Polychaeta 

13-Unidentified (4,9,11,13,14,15) 
Order Phyllodocida 

Family Syllidae 
14-Autolytus edwardsi Saint-Joseph, 1886 (14,15) 

Order Spionida 
15-Unidentified spionidea larvae (15) 

Family Spionidae 
Polydora ciliata (Johnston, 1838 ) (5,6) 
Polydora cornuta Bosc, 1802 (5) 

Phylum Chelicerata 
Class Arachnida 

Subclass Acari 
Order  Acarina 

16-Unidentified  ∗(15) 
 Class Pycnogonida 

Family Ammotheidae 
17-Achelia sp. ∗ (15) 

Family Nymphonidae 
18-Nymphon brevirostre Hodge, 1863 ∗ (15) 

Phylum Crustacea 
Class Branchiopoda 

Subclass Diplostraca 
Order Cladocera 

Unidentified (9) 
Suborder Eucladocera 

Superfamily Daphnioidea 
Family Bosminidae 

19-Bosmina sp. ∗(15) 
Family Chydoridae 

20-Unidentified ∗(15) 
Family Daphniidae 

21-Daphnia sp. ∗(15) 
Superfamily Polyphemoidea 

Family Polyphemidae 
22-Evadne nordmanni Lovén,1836 (14,15) 

Family Podonidae 
23-Podon sp. (14) 

Class Maxillopoda 
     Subclass Cirripedia 

Unidentified (4,9,11,13) 
Order Thoracica 

     Suborder Lepadomorpha 
Family Lepadidae 

24-Conchoderma sp. ∗(15) 
Suborder Verrucomorpha 

Family Verrucidae 
25-Verruca stroemia (O F Müller, 1776) (2,15) 

Suborder Balanomorpha 
Superfamily Chthamaloideaa 

Family Chthamalidae 
26-Chthamalus stellatus (Poli, 1791 )∗(15) 

Superfamily Balanoidea 
Family Archaeobalanidae 

27-Elminius modestus Darwin, 1854 (2,6,10,15) 
28-Semibalanus balanoides (Linnaeus, 1767 ) (1,2,6,15) 

Family Balanidae 
29-Balanus crenatus Bruguière, 1789 (2,6,15) 
30-Balanus improvisus Darwin, 1854 (2,15) 

Order Acrothoracica 
Suborder Apygophora 

Family Trypetesidae 
31-Trypetesa sp. ∗ (15) 

Order Rhizocephala 
 Suborder Kentrogonida 

        Family Sacculinidae 
32-Sacculina carcini J.V. Thompson, 1836 (2,15) 

        Family Peltogastridae 
33-Peltogaster paguri Rathke, 1842 (2,10,15) 

Subclass Copepoda 
34-Unidentified nauplii (11,13,15) 

Order Calanoida 
Unidentified (9,11) 

       Superfamily Diaptomoidea 
Family Acartiidae 

35- Acartia bifilosa (Giesbrecht, 1881) (1,4,13,14,15) 
36-Acartia tonsa Dana, 1849 (1,4,14,15) 
37-Acartia clausi Giesbrecht, 1889 (1,4,6,13,14,15) 
38-Acarita discaudata (Giesbrecht, 1881 ) (1,4,6,13,14,15) 
39-Acartia  margalefi (Alcaraz, 1976) (13,14,15) 
Acartia grani (G.O.Sars, 1904) (3,4) 

Family Centropagidae 
40-Centropages hamatus (Lilljeborg, 1853) (1,4,6,13,14,15)  
41-Centropages typicus Kröyer, 1849 (13,14) 
42-Isias clavipes Boeck, 1865 (14,15) 

Family Parapontellidae 
43-Parapontella brevicornis (Lubbock, 1857) (13,14,15) 

Family Pontellidae 
44-Anomalocera patersoni  Templeton, 1837 (14,15) 
45-Labidocera wollastoni (Lubbock, 1857) (14,15) 

Family Temoridae 
46-Eurytemora affinisa (Poppe, 1880) (4,11,13,14,15) 
47-Temora longicornis (O F .Müller, 1795) (1,4,13,14,15) 
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Table 3- Taxa reported in the zooplankton of Southampton Water, with all previous records. (Part 2 of 4)  
 

Phylum Crustacea (cont.) 
Class Maxillopoda (cont.) 

Subclass Copepoda (cont.) 
Order Calanoida (cont.) 

Superfamily Clausocalanoidea  
Family Clausocalanidae 

48-Pseudocalanus elongatusb (Boeck, 1864) (1,4,13,14,15) 
Family Stephidae 

49-Stephos minor (T Scott, 1892) (14)  
50-Stephos scotti G O Sars, 1902 (14, 15) 

Superfamily Calanoidea 
Family Calanidae 

51-Calanus helgolandicusc (Claus, 1863) (1,4, 13,14,15)  
Family Paracalanidae 

52-Paracalanus parvus (Claus, 1863) (1,4,13, 14,15) 
Superfamily Pseudocyclopoidea 

Family Pseudocyclopiidae 
53-Pseudocyclopia sp. ∗ (15)  

Order Harpacticoida 
           54- Unidentified (9,11,13,15) 

Suborder Polyarthra 
Family Canuellidae 

55-Canuella sp. (4,15) 
Suborder Oligarthra 
  Superfamily Ectinosomatoidea 

Family Ectinosomatidae 
56-Microsetella norvegica (Boeck, 1864)∗(15) 

  Superfamily Tachidioidea 
Family Harpacticidae 

Harpacticus spp. (4) 
Harpacticus flexus Brady & Robertson, 1873 (4, 13) 
Zaus sp. (14) 

Family Euterpinidae 
57-Euterpina acutifrons (Dana, 1849) (4,6,13,14,15)  

Family Peltidiidae 
Alteutha sp. (14) 

Family Tisbidae 
58-Sacodiscus sp. ∗ (15) 
59-Tisbe spp. ∗ (15) 

Family Thalestridae 
60-Thalestris sp.∗(15) 

Order Cyclopoida 
61-Unidentified (13,15) 

Family Cyclopinidae 
62-Cyclopinoides littoralis (Brady, 1872) ∗(15) 

Family Notodelphydae 
63-Unidentified ∗ (15) 
64-Notodelphys allmani  Thorell, 1859 (14) 

Family Oithonidae 
65-Oithona nanad Giesbrecht, 1892 (14,15) 
66-Oithona similise Claus, 1863 (4,13,14) 

Order Poecilostomatoidaf 
Family Corycaeidae 

67-Corycaeus anglicus Lubbock, 1855 (14, 15) 
Family Oncaeidae 

68-Oncaea sp. ∗(15) 
Oncaea similis G O Sars, 1918 (14) 

Order Siphonostomatoida 
69-Unidentified (14,15) 

Family Asterocheridae 
70-Asterocheres sp. ∗(15) 

Family Caligidae 
71-Caligus elongatus von Nordmann, 1832 ∗(15) 
72-Caligus minimus Otto, 1821 ∗(16) 

Family Cancerillidae 
73-Cancerilla tubulata Dalyell, 1851∗(15) 

Family Artotrogidae 
74-Bradypontius papillatusg (T Scott, 1888)∗(15)  

   Order Monstrilloida 
Unidentified (14) 

Family Monstrillidae 
Monstrilla sp. (13) 
75-Monstrilla conjunctiva  Giesbrecht, 1902 ∗(15) 
76-Monstrilla helgolandica Claus, 1863 ∗(15) 
77-Cymbasomah longispinosus (Bourne, 1890)∗(15) 
78-Cymbasomah rigidus (I C Thompson, 1888)∗(15) 
79-Cymbasomah thompsoni Giesbrecht, 1892 ∗(15) 

Class Ostracoda 
80-Unidentified (13,14,15) 

Class Malacostraca 
Subclass Hoplocarida 

Order Stomatopoda 
Suborder Unipeltata 

Family Squillidae 
81-Rissoides desmaresti (Risso, 1816) ∗(15) 

Subclass Eumalacostraca 
Order Mysidacea 

Unidentified (11) 
     Suborder Mysida 

Family Mysidae 
82- Siriella armata (H Milne-Edwards, 1837)∗ (15) 
83- Siriella clausii (G O Sars, 1877)∗ (15) 
84- Anchialina agilis (G O Sars, 1877)∗ (15) 
85- Gastrosaccus sanctus  (van Beneden, 1861)∗(15) 
86- Leptomysis lingvura (G O Sars, 1866)*(15) 
87- Mysidopsis gibbosa G O Sars, 1864 ∗ (15)  
88- Acanthomysis longicornis(H Milne-Edwards, 1837)∗(15) 
89- Mesopodopsis slabberi (P J van Beneden, 1861)(4,14,15) 
90- Paramysis arenosa (G O Sars, 1877) ∗(15) 
Neomysis integer (Leach, 1814) (4) 
91- Schistomysis kervillei (G O Sars, 1885)∗(15) 

Order Isopoda 
Suborder Gnathiidea 

Family Gnathiidae 
92- Unidentified praniza  ∗ (15) 

Suborder Valvifera 
Family Idoteidae 

93- Idotea sp. ∗ (15) 
Suborder Epicaridea 

94-Unidentified cryptonistic form ∗ (15) 
Order Amphipoda 

Unidentified (11,14) 
Suborder Gammaridea 

95-Unidentified (15) 
Superfamily Leucothoidea 

Family Amphilochidae 
96-Amphilochus manudens Bate, 1862 ∗(15) 
97-Gitana sp.∗(15) 

Family Pleustidae 
98-Parapleustes sp.∗(15) 

Superfamily Corophioidea 
        Family Aoridae 

99-Aora gracilis (Bate, 1857)∗(15) 
Family Corophiidae 

100-Corophium spp.∗(15) 
Family Ischyroceridae 

101-Jassa sp.∗(15) 
Superfamily Eusiridae 

Family Eusiridae 
102-Apherusa spp.∗(15) 

Superfamily Dexaminoidea 
Family Dexaminidae 

103-Atylus vedlomensis (Bate & Westwood, 1862)∗(15) 
Superfamily Gammaroidea 

Family Gammaridae 
104-Echinogammarus marinus (Leach, 1815)∗(15) 

Superfamily Melphidippoidea 
Family Melphidippidae 

Megaluropus agilis Hoek, 1889∗(15) 
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Table 3- Taxa reported in the zooplankton of Southampton Water, with all previous records. (Part 3 of 4)) 
 

Phylum Crustacea (cont.) 
Class Malacostraca  (cont.) 

Subclass Eumalacostraca (cont.) 
Order Amphipoda (cont.) 

Suborder Gammaridea (cont.) 
Superfamily Hadzioidea 

Family Melitidae 
Melita sp. ∗(15) 

Superfamily Lysianassoidea 
Family Lysianassidae 

105-Orchomene humilis (Costa, 1853)∗(15) 
Superfamily Synopioidea 

Family Argissidae 
Argissa hamatipes (Norman, 1869)∗(15) 

Superfamily Phoxocephaloidea 
Family Phoxocephalidae 

106-Parametaphoxus fultoni (T Scott, 1890)∗(15) 
Suborder Caprellidea 

Superfamily Caprelloidea 
Family Caprellidae 

107- Pariambus typicus (Kröyer, 1845)∗(15) 
Superfamily Phtisicoidea 

Family Phtisicidae 
108- Phtisica marina Slabber, 1769 ∗(15) 

Order Cumacea 
Family Pseudocumatidae 

109-Pseudocuma similis G O Sars, 1900 ∗(15) 
Subclass Eucarida 

Order Euphausiacea 
Family Euphausiidae 

110-Unidentified (14,15) 
111-Meganyctiphanes norvegica (M Sars, 1857) ∗ (15) 

Order Decapoda  
           Unidentified (11) 

Suborder Pleocyemata 
      Infraorder Caridea 

Unidentified  (9) 
Superfamily Palaemonoidea 

Family Palaemonidae 
112-Palaemon spp.∗ (15) 
113-Palaemon elegans Rathke, 1837 ∗(15) 

Superfamily Alpheoidea 
Family Alpheidae 

114-Alpheus glaber (Olivi, 1792)∗(15) 
115-Athanas nitescens (Leach, 1814)∗(15) 

Family Hippolytidae 
116-Hippolyte spp. ∗ (15) 
117-Thoralus cranchii (Leach, 1817)∗(15) 

Family Processidae 
118-Processa sp. ∗(15) 

Superfamily Crangonoidea 
Family Crangonidae 

119-Crangon crangon (Linnaeus, 1758)∗(15) 
120-Crangon bispinosus (Hailstone, 1835)∗(15) 
121-Crangon trispinosus (Hailstone, 1835)∗(15) 
122-Crangon fasciatus (Risso, 1816)∗(15) 

Infraorder Thalassinidea 
Superfamily Thalassinoidea 
Family Axiidae 

123-Axius stirhynchus  Leach, 1815 ∗(15) 
Family Callianassidae 

124-Callianassa sp. ∗(16) 
Family Upogebiidae 

125-Upogebia sp.∗(15) 
 Infraorder Palinura 

Superfamily Palinuroidea 
Family Scyllaridae 

Scyllarus sp.i (6) 
 Infraorder Anomura 

        Unidentified  (9,14) 

 
Superfamily Paguroidea 

Family Diogenidae 
126-Diogenes pugilator pugilator (Roux, 1829)∗(15) 

Family Paguridae 
Unidentified (14) 
127-Anapagurus hyndmanni (Bell, 1845)∗(15) 
128-Pagurus bernhardus (Linnaeus, 1758)∗(15) 

Superfamily Galatheoidea 
Family Galatheidae 

129-Galathea squamifera  Leach, 1814 ∗(15) 
Family Porcellanidae 

130-Pisidia longicornis (Linnaeus, 1767) (6,14, 15) 
131-Porcellana platycheles (Pennant, 1777) ∗ (15) 

 Infraorder Brachyura 
       Unidentified  (9,13,14) 

Superfamily Leucosioidea 
Family Leucosiidae 

132-Ebalia tuberosa (Pennant, 1777)∗(15) 
133-Ebalia tumefacta (Montagu, 1808)∗(15) 

Superfamily Majoidea 
Family Majidae 

134-Maja squinado (Herbst, 1788)∗(15) 
135-Hyas sp. ∗(15) 
136-Inachus sp.∗(15) 
137-Macropodia spp.∗(15) 
138-Pisa sp.∗(15) 

Superfamily Cancroidea 
Family Corystidae 

139-Corystes cassivelaunus (Pennant, 1777)∗(15)  
Superfamily Portunoidea 

Family Portunidae 
140-Liocarcinus spp.∗(15) 
Necora puber (Linnaeus, 1767) (2) 
141-Carcinus maenas (Linnaeus, 1758)∗ (15) 

  Superfamily Xanthoidea 
Family Xanthidae 

142-Pilumnus hirtellus (Linnaeus, 1761)∗(15) 
Superfamily Pinnotheroidea 

Family Pinnotheridae 
143-Pinnotheres pisum (Linnaeus, 1767)∗(15) 

Phylum Phoronida  
Family Phoronida 

144-Actinotrocha unidentified* (15) 
Phylum Bryozoa  

145-Cyphonaute unidentified (4,13,14,15) 
 

Phylum Chaetognatha 
Unidentified  (14) 

Class Sagittoidea 
Order  Phragmorpha 

Family Spadellidae 
146-Spadella cephaloptera (Busch, 1851) ∗ (15) 

Order Aphragmophora 
Suborder Ctenodontia 

    Family Sagittidae 
147-Sagitta setosa (J Müller, 1847) (4,5,11,12,15) 

Phylum Echinodermata  
Class Ophiuroidea 

Order Ophiurida 
Family Amphiuridae 

148- Amphipholis squamata (Chiaje, 1828) ∗ (15) 
Phylum Chordata 

Subphylum Tunicata 
Class Appendicularia 

    Order Copelata 
Family Oikopleuridae 

149-Oikopleura sp. (4,9,11,13,14,15) 
Class Ascidiacea 

150-Unidentified (9,13,14,15) 
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Table 3- Taxa reported in the zooplankton of Southampton Water, with all previous records. (Part 4 of 4)) 
 

Phylum Chordata (cont.) 
Subphylum Pisces 

Class Osteichthyes 
151-Unidentified fish egg (3,9,11,14,15) 
152-Unidentified fish larvae (3,9,11,13,14,15) 

Family Gobiidae 
Pomatoschistus minutus (Pallas, 1970) (8) 

 
 

∗ Taxon reported for the first time within the zooplankton of this 
estuary 

 
 

References: 
1   = Conover (1957);   
2  = Soares (1957); 
3    = Lance &Raymont (1964); 
4    = Raymont & Carrie (1964);  
5    = Bird (1972);  
6    = Barlow & Monteiro (1979); 
7    = Reubold (1988);  
8  = Hayes et al.  (1989) 
9  = Zinger (1989);  
10  = Geary (1991); 
11  = Lucas (1993);  
12 = Frid et al. (1994) 
13  = Hirst (1996); 
14  = Castro–Longoria (1998); 
15  = Present study. 
16 = Personal observation on previous samples. 
 
Note: 
Other references are available on the Zooplankton of Southampton Water, but 
were based on data generated primarily from the references detailed above. 
 
 
 
 
 
 

 

a Eurytemora affinis = Eurytemora hirundoides (Nordquist, 1888), see Busch & Brenning, 1992 
 
 
b Pseudocalanus elongatus = Three forms of Pseudocalanus minutus were regarded as belonging to this genera P. m. elongatus; P. m. major and P. m. 
gracilis as described by Farran (1951). The species described by Conover (1957) as P. minutus were now known to be P. m. elongatus or simply P. 
elongantus as it is generally know nowadays. 
 

 

c Calanus helgolandicus = Previous studies within this estuary misidentified C. helgolandicus as Calanus finmarchicus according to Hirst (1996). 
During this study the only Calanidae found here was C. helgolandicus according with the descriptions in Sars (1903). 
 
 
d Oithona nana = Oithona  minuta (Kritchaguine, 1873) as suggested by Hansson (1998). 
 
 
e Oithona similis = Oithona helgolandica Claus, 1863 as indicated in Howson & Picton  (1997). 
 
 
f Poecilostomatoida = According to Boxshall & Halsey (2004) , Poecilostomatoida is not considered as a different order any more, with all families 
attributed to this order being part of the Cyclopoida. However, during this study it was decided to follow the old classification. 
 

 

g Bradypontius papillatus = Howson & Picton  (1997) includes B. papillatus into the family Dyspontiidae, but Boxshall & Halsey (2004)  and 
references therein, includes B.papillatus into the Artotrogidae.  
 
 
h Cymbasoma = Howson & Picton  (1997) uses Thaumaleus, but this work followed Boxshall & Halsey (2004) and references therein, where 
Thaumaleus is not a valid genus with Cymbasoma being assigned.  
 
 
i Scyllarus sp. = Barlow & Monteiro (1979) recorded the larvae of Scyllarum (?) spp. withim this estuary, but since no decapod is associated to this 
genera, I believe that in fact, this was a misprint error when they were referring to Scyllarus sp., probably, Scyllarus arctus since this is the only 
species that have been reported around (Bodo et al., 1965; Howson, 1987).  
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1.5.4.1. Total abundance. 

 

Throughout the text when referring to seasonal averages, its important to note that 

spring is considered from 21st March to 20th June; Summer from 21st June to 20th 

September; Autumn from 21st September to 20th December and winter from 21st of 

December to 20th March.  

As expected, the total zooplankton abundance varied with season (Figure 6) with 

the lowest abundances of organisms recorded during the winter at all three stations 

(averaging 1165 organisms m-3 in 2001 and 2940 organisms m-3 in 2002 for the three 

stations). 

 
  

������������	�� 
�����������	�� �����������	��

�

�����

�����

�����

�����

�����

�����

�����

�����

������
������

�����
������

�����
������
������

������
 �����
!�	���
"�#���
$�����
������
������

�����
������

�����
������
������

������

�%
��%

��%

��%

��%

��%
��%

��%

��%

&�%
���%

�%

��%

��%

��%

��%

��%
��%

��%

��%

&�%
���%

�%

��%

��%

��%

��%

��%
��%

��%

��%

&�%
���%

�

�����

�����

�����

�����

�����

�����

�����

�����

�

�����

�����

�����

�����

�����

�����

�����

�����

������
������

�����
������

�����
������
������
������
 �����
!�	���
"�#���
$�����
������
������

�����
������

�����
������
������

������

�
��

��
��

�
�	

�

�

�
��

��
��

�
�	

�

�

�
��

��
��

�
�	

�

�

'��������

"()"�	���

'��*+�	

 
Figure 6. Temporal variability of the total abundance of zooplanktonic organisms at the three sites during  
2001/02. Also shown is the percentage contribution of the holo, mero and tycoplankton on each station.   

 

From early- spring numbers start to increase (spring averages of 7343 organisms m-3 

in 2001 and 11376 organisms m-3 in 2002 for the three stations) reaching maximum values 

usually during the summer, where peaks of 79393, 28048, 33475 organisms m-3 were 

observed in August 2001 at Cracknore, NW.Netley and Calshot, respectively. During 

summer/01, large outbursts of animals were observed at Cracknore, where an average of 
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24728 organisms m-3 was maintained throughout the entire summer-autumn period at this 

station, with NW.Netley and Calshot presenting averages of 11986 and 11094 organisms 

m-3 for the same period, respectively.     
 

The zooplanton community mainly comprised holoplanktonic organisms (~69% on 

average for the three stations), with meroplankton (~30%) abundant towards spring and 

summer. Tycoplanktonic organisms averaged ~1% and were much more abundant at 

Calshot (Figure 6). 

 Copepods comprised on average 95% of the holoplankton at the three stations, 

followed by appendicularians ~5%. The other components of the holoplankton, like 

euphausiids, ctenophores, cladocerans and chaetognaths only contributed with less than 1% 

fractions. (See Chapter 2). 

           Contrasting with the holozooplankton, the merozooplankton comprised a great 

number of organisms from different groups, such as crustacean decapod, stomatopod, 

barnacle larvae, parasitic copepods (cyclopoid, siphonostomatoid and monstrilloid) and 

isopod species; polychaete and mollusc larvae; gelatinous species (excluding the 

holoplanktonic ctenophore Pleurobrachia pileus); ascidian, bryozoan and phoronid larvae 

as well as fish larvae and eggs. Barnacle larvae averaged ~53 % of all meroplankton over 

the sample period at the three stations (Chapter 3). The tycoplankton were composed 

mainly of harpacticoid copepods, ~97% on average (several unidentified); with mysids, 

amphipods, cumaceans, isopods, ostracods and cladocerans together with the chaetognath 

Spadella cephaloptera completing the remaining fraction. (Chapter 3)  

In order to be able to draw comparisons with previous investigations, the results 

presented in this chapter will only refer to “groups”, and so only present a general 

overview of the zooplankton results. In this way it will act as an introduction to the 

dominant groups, and facilitate the presentation of the results from the generic/specific 

components of the holo, mero and tycozooplankton that are presented in Chapters 2 and 3. 

Based on this, the zooplankton component can be divided into its major components, 

where Copepoda averaged ~66%, Cirripedia ~18%, Polychaeta ~5%, Urochordata ~4%, 

Mollusca ~5%, and all the other groups, pooled under “remaining groups”, ~2% for all 

stations over the sample period.  

From Figure 7, it is clear that Copepoda constitute the major fraction the 

zooplankton at the three sites, with overall averages for the whole season of 10280, 8811, 

4498 organisms m-3 followed by Cirripedia (1032, 2132, 1657 organisms m-3), Mollusca 

(830, 668, 579 organisms m-3), Urochordata (475, 529, 461 organisms m-3) and Polychaeta 

(616, 339, 118 organisms m-3) at Cracknore, NW.Netley and Calshot, respectively. 
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Usually, averaged abundances of each component were higher inside the estuary than at its 

mouth, particularly for Copepoda and Polychaeta.  
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Figure 7. Temporal variability of the total abundance of Copepoda, Polychaeta, Urochordata, Mollusca, 
Cirripedia and all the other groups (remaining groups) at the three sites during  2001/02.  

 

On a general basis, the abundance of each component varied with season (Figure 

7). The lowest abundances of organisms were recorded during the winter at all three 

stations, with the exception of NW.Netley where an early outburst of barnacle larvae in 

2002 increased the overall abundance at this station. From early-spring numbers of each 

component start to increase, reaching a spring maxima usually between April-June. 

Summer-autumn usually had the highest abundance values for each zooplankton 

component. 

Although the dominant group, copepods is a broad category, and can easily be sub-

divided with regard to the Order to which the species belong as: Calanoida, Harpacticoida, 

Cyclopoida, Poecilostomatoida, Siphonostomatoida, Monstrilloida and Copepoda nauplii.  

In this study only Calanoida and Poecilostomatoida were comprised exclusively of 

holoplanktonic species, while Siphonostomatoida and Monstrilloida, in contrast, are 

composed only of meroplanktonic forms. Cyclopoida contain mainly holoplanktonic 
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Chapter 1 – General community structure 
species, but a small percentage of meroplanktonic forms were included (<1%). 

Harpacticoida, in comparison, are composed of 93% holoplanktonic and 7% 

tycoplanktonic forms.         

The temporal abundance distribution of Copepoda from these 6 orders + nauplii, as 

well as the temporal variation of the percent contribution of each order + nauplii for the 19 

month sample period can be seen in Figure 8.  
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Figure 8. Temporal variability of the total abundance of the different Copepoda orders at the three sites 
during  2001/02.  
 

From Figure 8 it is easy to see that only Calanoida and copepod nauplii follow the 

overall spring-summer pattern of abundance, with Cyclopoida and Harpacticoida 

presenting a summer-autumn pattern. Due to their low abundance values, 

Poecilostomatoida, Siphonostomatoida and Monstrilloida had to be pooled as “Remaining 

copepod orders”, and their contribution was only noticeable during the winter, particularly 

at Calshot. Cyclopoida presented the highest abundances of a single order in the estuary at 

Cracknore during the summer-autumn months of 2001, but its importance was clearly 

confined to the inner reaches of the estuary and diminished towards the mouth of the 

estuary. In terms of total numerical dominance, Calanoida with an average for the whole 

season and stations of 2609 organisms m-3
 was followed by Copepoda nauplii (2244 
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organisms m-3), Cyclopoida (1891 organisms m-3), Harpacticoida (1111 organisms m-3) and 

“remaining Copepoda” (8 organisms m-3). 

 

1.5.4.2. Correlation analysis. 

 

 The physico-chemical environmental variables were correlated against each other, 

and with the total abundance of holo, mero and tycoplanktonic organisms (Table 4). 

Temperature was positively correlated with salinity, and both were positively correlated 

with chlorophyll a and negatively with dissolved oxygen. Oxygen saturation was positively 

correlated with temperature and chlorophyll a. Total abundances of holo, mero and 

tycoplanktonic organisms also showed positive correlations with temperature and 

chlorophyll a. 

 

 
Table 4. Pearson’s product-moment correlation of biotic and abiotic parameters from data collected at the 
three stations. Correlations in red are significant at p<0.05, and shaded at p<0.01, ns = not significant.  

 T °C S Chl.a O2 O2 Sat Holo Mero Tyco 
T °C 1.00 0.33 0.70 -0.57 0.37 0.68 0.57 0.77 
S  1.00 0.19 -0.24 ns 0.24 ns 0.46 
Chl.a   1.00 ns 0.72 0.49 0.57 0.59 
O2    1.00 0.54 -0.49 -0.31 -0.43 
O2 Sat     1.00 ns 0.21 0.32 
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Chapter 1 – General community structure 

1.6. Discussion. 
 
 1.6.1. Temperature and salinity. 

 

  The temperature and salinity results of this investigation are in agreement with the 

values reported during other studies in this estuary (Raymont & Carrie, 1964; Zinger, 

1989; Kifle, 1992; Leakey et al., 1992; Iriarte, 1993; Lucas, 1993; Iriarte & Purdie, 1994; 

Hirst, 1996; Castro-Longoria, 1998; Hirst et al., 1999).  

The only significant aspect of the temperature-salinity distribution, other than the 

seasonality of temperature, is the surface salinity stratification at Cracknore. This 

stratification is normal and reflects the partially mixed nature of this estuary. This is a 

broad estuary classification however, within the same estuary different mixing regimes in 

different areas can be seen (Dyer, 1973). Dyer (1973) and Ketchum (1983) discussed the 

types of mixing regimes that can occur in different areas of an estuary, and in this respect 

Southampton Water can be arbitrarily divided in two distinct zones. A well-mixed zone 

with almost no temperature and salinity variation with depth, that is generally found at 

mid-estuary and is more established towards Calshot at the mouth of the estuary. In 

contrast, a weak/partially stratified zone, with some surface temperature and salinity 

stratification, is usually found at the head of the estuary at Cracknore, and can sometimes 

be detected towards mid-estuary at NW.Netley 

It is important to note that the very clear stratification found mostly at the 

beginning of the study at Cracknore could, in part, be explained by the fact that sampling 

was carried out after extensive flooding that occurred at the end of 2000, but without 

corroborative data this is only speculation. 

 

 1.6.2. Dissolved oxygen. 

 

 Normally, dissolved oxygen concentrations lie within the range of 1 - 6 ml l-1, with 

a theoretical maximum of 14 ml l-1 (at 30 of salinity) (Perkins, 1974). During this 

investigation the value of dissolved oxygen ranged from 5 – 9 ml l-1 and, as expected, it 

was inversely correlated with both temperature and salinity. In a temperate estuary like 

Southampton Water with little salinity variation along the main axis, oxygen concentration 

usually reflects the seasonality of temperature. However, several other factors are likely to 

influence the concentration of oxygen within an estuary, like the input of well-oxygenated 
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waters, photosynthesis, re-aeration, pollution and respiratory consumption by the animals, 

all of which in turn, make dissolved oxygen results difficult to interpret.  

By a simple superposition of the figures between Chl. a and dissolved oxygen a 

well-marked pattern can be identified, but no significant correlation between these two 

parameters were observed.  An alternative is to express the oxygen concentration is in 

terms of oxygen saturation, and when this was correlated with Chl a strong positive 

correlation were evident. 

  

1.6.3. Chlorophyll a. 

 

 Typical values of chlorophyll a in Southampton Water are reported to be 1 – 2 mg 

m-3 in the winter and 10 – 20 mg m-3 during the summer, with values above 40 mg m-3 

during the peak of a bloom (Williams, 1980). The present values are within these limits, 

and agree with most chlorophyll a data reported previously for this estuary (Iriarte, 1991; 

Leakey et al., 1992; Iriarte, 1993; Kifle & Purdie, 1993; Iriarte & Purdie, 1994; Howard et 

al., 1995; Ali, 2003). Considering that values around 1 – 10 mg m-3 are reported as normal 

for other inshore and estuarine environments (Raymont, 1980), the values reported here 

indicate the potentially productive nature of Southampton Water, since production values 

of 130-177 g C m-2yr-1 have been reported by Iriarte & Purdie (1994) in a season when 

lower levels of chlorophyll a were detected. 

In Southampton Water spring and summer blooms are common, with the diatoms 

Skeletonema costatum and Guinardia delicatula usually blooming during spring (max. 10 

– 40 mg. m-3) with ciliates like Mesodinium rubrum during summer (max 40 – 60 mg. m-3) 

(Antai, 1989; Iriarte, 1991; Leakey et al., 1992; Kifle & Purdie, 1993; Ali, 2003). The 

seasonal pattern of the chlorophyll a concentration observed in this investigation during 

2001 also showed this spring – summer pattern, but in 2002 no distinguishable pattern was 

observed. It was probable that a single summer bloom might be detected later, since 

chlorophyll a values were starting to rise toward the end of the sampling survey. This 

different temporal pattern cannot be interpreted as unusual, since single summer blooms 

have been reported within this estuary (Williams, 1980).  

Phytoplankton species identification was not part of the present study, but it is 

important to note that the early peak in May (17 – 38 mg. m-3 in 18/05/02) was associated 

with a massive bloom of Phaeocystis sp. (D. Purdie pers. comm.). Phaeocystis sp. is a 

colonial prymnesiophyte algae previously reported in this estuary (Iriarte, 1991; Iriarte & 
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Purdie, 1994). Copepods are known to consume this alga, but it has been reported as 

having toxic effects on other fauna (Mauchline, 1998). 

Chlorophyll a concentrations were positively correlated with all the other factors 

tested with the exception of dissolved oxygen, suggesting that the amount of available food 

is strongly linked with temperature, and an important driving factor of total zooplanktonic 

abundances. Care should be taken when interpreting these results, since rates truly occur at 

species level, which will be investigated in more detail in the following chapters.    

 

 1.6.4. Zooplankton. 

 

In terms of overall general composition, the results presented here lie somewhat 

between the recent studies (Zinger, 1989; Lucas, 1993; Hirst, 1996; Castro-Longoria, 

1998) and that of Raymont & Carrie (1964). The general similarity, that Copepoda is the 

dominant form followed by Cirripedia with some seasonal contribution of other 

meroplanktonic forms is clear. However, when examining the components making up the 

Copepoda differences/similarities between this study and the others arise. 

 During this survey, Cirripedia were observed throughout the year, but only 

dominated the plankton composition in short bursts, usually during spring. Calanoida were 

the dominant form of Copepoda during late-winter through late-spring at all three stations, 

with late-spring to early-summer being dominated by harpacticoids. From mid-summer 

through to early-winter these two, plus cyclopoids at the inner stations, occur together. 

  Attention should be drawn, however, to the two ends of the estuary, where 

contrasting situations are seen.  At the mouth of the estuary, exemplified by Calshot, 

almost no cyclopoids were recorded and the summer-autumn period was clearly dominated 

by calanoids and harpacticoids. At Cracknore, cyclopoids clearly dominate the summer-

autumn period, outnumbering all other organisms pooled. Based on this, a generalistic 

abundance pattern of copepods within this estuary during this survey might be best 

illustrated by the NW.Netley composition depicted in Figure 8, where cyclopoids have an 

intermediate importance.  

From the results presented here, the major differences between this study and 

previous ones lies in the fact that when Copepoda were broken down to orders, it was not 

only composed by calanoids, with other orders like cyclopoids and harpacticoids 

outnumbering calanoids on particular seasons/locations (see above). Harpacticoids and 

cyclopoids, on average, were also most abundant even than barnacle larvae that had been 

previously considered as the second most abundant form after calanoids. Despite that, it is 
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felt that most of these differences can clearly be explained by differences in methodologies 

and sampling gears employed.     

It was suggested earlier that probably the major differences highlighted between the 

early investigation of Raymont & Carrie (1964) compared with the more recent studies 

might be attributed to the use of different gear and sampling procedures, since Raymont & 

Carrie (1964) employed pumps while the majority of the remaining studies, including this 

one, utilized nets, albeit of different mesh sizes. Pumps are known to obtain discrete 

samples, although usually filtering smaller volumes when compared with towed nets 

(Omori & Ikeda, 1992; Sameoto et al., 2000). Thus, one could assume that differences 

between the recent studies and that of Raymont & Carrie (1964) could be due to 

differences based from counts of samples represented by small volumes. Supporting this is 

that even when similar mesh sizes is employed elsewhere, pump collected samples usually 

gave values of abundances 8 times higher than the net samples (Bousfield et al., 1975). 

However, this would account mainly for differences in abundance, with the different 

proportions of organisms probably due to other causes. Mesh sizes is certainly a factor, 

since retention of a particular organism by a particular mesh clearly depends of the 

organisms largest cross-section (Bé et al., 1968). Raymont & Carrie (1964) employed 

~158 µm meshes in conjuction with a pump, while other studies employed towed nets with 

meshes within 100 – 220 µm. The use of meshes only ~30% bigger (i.e. 220 µm) than that 

employed by Raymont & Carrie (1964) almost completely under-sampled harpacticoids 

and copepod nauplii in the investigations carried out by Lucas (1993) and Castro-Longoria 

(1998) in this estuary, and this clearly would change the proportions of each component. 

Another thing that one must bear in mind is that the more shallow and protected nature of 

the sampling locations of Raymont & Carrie (1964) i.e. Marchwood and Calshot Pier 

(Figure 1) could be a place of natural accumulation/ release of barnacle nauplii.  

Despite harpacticoids being noted in high numbers by Raymont & Carrie (1964), 

Hirst (1996) and Zinger (1989) during the summer-autumn months, they were not recorded 

in investigations where coarser mesh-size were employed (Lucas, 1993; Castro-Longoria, 

1998), its importance was somehow excluded and/or ignored in the overall generalizations 

made for this estuary. 

The occurrence of cyclopoids within Southampton Water is a recent feature, since 

they were only detected in significant numbers by Castro-Longoria (1998) at Bury Buoy 

(Figure 1), but due to the coarse mesh used the importance of this component, like 

harpacticoids, were clearly underestimated. Based on the fact that even with a 220µm mesh 

Castro-Longoria (1998) was able, at least, to detect this group, its complete absence from 
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Chapter 1 – General community structure 
previous studies indicates/suggests that this group only recently appeared, probably after 

the 1985-1987 or 1990-1991 samplings carried out at the inner estuary by Zinger (1989), 

and Lucas  (1993), respectively.   

In terms of total zooplankton numbers, the results presented here agree with 

previous investigations, where the inner estuary stations usually presented higher 

abundances. However, numbers presented in this study should only be compared with those 

of Zinger (1989) and Hirst (1996) where similar sampling devices were used (Figure 9). 
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Figure 9. Temporal variability of the total abundance of Copepoda, Polychaeta, Urochordata, Mollusca, 
Cirripedia and all the other groups (remaining groups) at the three sites during  1985-1987 and 1992-1994, 
draw from the data of Zinger (1989) and Hirst (1996), respectively. (Temporal scale from the data of Hirst 
was extended for a better comparison with the data of Zinger). 
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Chapter 1 – General community structure 
When comparing the general composition indentified in the present study with 

those of Zinger (1989) and Hirst (1996) (Figure 9), the same major groups were observed, 

with similar seasonality.  If we assume that cyclopoids did not occurred before 1990’s, and 

that the slight finer mesh, of 100 µm, used by Zinger (1989) would efficiently capture more 

bivalve veligers, the results presented here are quite similar with that of 1985-1987. 

Differences in this case, would certainly be due to the contribution of cyclopoids and inter-

annual variability. During the present study copepods had a total average of 7863 

organisms m-3 for the three stations with maxima of 66531, 43164 and 26084 organisms m-3 

at Cracknore, NW.Netley and Cracknore, respectively. These values are greater than the 

total average of 4007 organisms m-3, and maxima of 16518, 69322, 15114 organisms m-3 at 

the same stations reported by Zinger (1989), and even the 1604 organisms m-3 average 

reported at Calshot by Hirst (1996). The removal of the cyclopoid component from the 

present study will bring total copepod values down to an overall average of 5980 

organisms m-3 , and closer to the overall values observed by Zinger (1989)  

Hirst’s (1996) values are unusually low and this could, in part, be explained by his 

temporal coverage, where sampling occurred usually once a month and clearly missed 

some major peak abundances. However, it is clear that Hirst’s samples must have been 

analysed/sampled in a different manner to other studies, since the “remaining groups” 

accounted for an uncharacteristic 22% of the total community, with Foraminifera 

accounting, on average, for 54% of this group, and 15% of the total zooplankton 

community.  

Straightforward comparisons between numbers of different organisms obtained in 

different investigations are clearly simplistic, especially when several biotic and abiotic 

factors will determine the amount of a particular species within an estuary. However, since 

no major differences were observed among the environmental parameters currently 

measured when compared to the previous studies, it could be assumed that the influences 

of these variables would be the same/similar in all investigations. Equally, as sampling 

occurred during the same period of slack water at high tide in all investigations, this might 

standardize to some degree the variability introduced by tidal mixing, flushing and 

advection and allow comparisons between the studies. Since general trends are quite 

similar for several components any differences in spatial and/or temporal patterns of 

density might therefore be attributed primarily to different sampling efforts/methodologies 

and inter-annual variability.  

In this study copepod nauplii were not identified to Order, but if they were sampled 

correctly, this group will clearly constitute the major component of any copepod analysis.  
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Chapter 1 – General community structure 
Only limited conclusions can be made from zooplankton data at the level of 

identification presented in this chapter and this serves primarily as a basis for the 

introduction of the species constituents in following chapters. Comparisons with other 

estuarine systems will also be drawn in following chapters, taking advantage of the more 

detailed identifications. 

 

1.7. Chapter Conclusions. 
 

• Temperature, Salinity, Chlorophyll a and Dissolved Oxygen results are in 
agreement with previous studies within this estuary.  

 
• Overall, copepod nauplii and Calanoida were the numerically dominant 

copepod forms within this estuary for most of the seasons, with 
harpacticoids and cyclopoids becoming as important as calanoids from 
early-summer and throughout autumn.  

 
• At the inner estuary, cyclopoids outnumber all other copepod orders 

together from late-summer to late-autumn. 
 

• Barnacle larvae are the most abundant meroplanktonic component, followed 
by Mollusca, Urochordata and Polychaeta. 

 
• Allowing for inter-annual variability and the occurrence of cyclopoids at the 

inner station, the current study compares well with previous investigations 
that employed similar sized meshes. 
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Chapter 2 
The holoplankton of Southampton Water. 

 

 

 
2.1. Introduction. 

 
Over the past 48 years, the zooplankton community of Southampton Water have 

been the subject of several published reports (Conover, 1957; Raymont & Carrie, 1964; 

Lance & Raymont, 1964; Barlow & Monteiro, 1979; Williams & Reubold, 1990; Lucas & 

Williams, 1994; Lucas et al., 1995; Castro-Longoria & Williams, 1996; Lucas et al., 1997; 

Hirst et al., 1999; Muxagata et al., 2004), together with unpublished M.Sc. and Ph.D. 

reports (Soares, 1958; Bird, 1972; Frid, 1984; Reubold, 1988; Zinger, 1989; Geary, 1991; 

Lucas, 1993; Hirst, 1996; Castro-Longoria, 1998; Chinnery, 2002). Although differing in 

detail, these studies indicated that calanoid copepods from the genus Acartia, are the 

dominant holoplanktonic element in this estuary. 

 Acartia is represented in Southampton Water by 6 different species and according 

to Conover (1957), Raymont & Carrie (1964) and Hirst (1996) three of them establish a 

clear seasonal succession, with A.bifilosa the commonest species early in the year and until 

July when both A.discaudata and A.clausi become common, with A.bifilosa only 

reappearing in November-December. Three other Acartia species have also been recorded 

within Southampton Water: A.tonsa and A.margalefi towards the inner reaches, and 

A.grani (= Paracartia grani) that has been reported only in the 1960’s (Conover, 1957; 

Raymont & Carrie, 1964; Lance & Raymont, 1964; Castro-Longoria & Williams, 1996; 

Hirst, 1996; Castro-Longoria, 1998; Hirst et al., 1999).  

Of the remaining holoplanktonic calanoid species found within Southampton Water 

in significant numbers, Centropages hamatus is the next most abundant followed by 

Temora longicornis, Paracalanus parvus, Pseudocalanus elongatus and Eurytemora 

affinis (affinis) (Raymont & Carrie, 1964; Hirst, 1996; Castro-Longoria, 1998). Several 

other holoplanktonic calanoid copepod species were also reported to occur sporadically, 

and usually in very low numbers, with Centropages typicus, Calanus helgolandicus and 

Parapontella brevicornis among them (Raymont & Carrie, 1964; Hirst, 1996; Castro-

Longoria, 1998). Castro-Longoria (1998) also recorded the presence of Labidocera 
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wollastoni, Anomalocera patersoni, Isias clavipes, Stephos minor and Stephos scotti in the 

Solent area, but stated that this species could occasionally be found within Southampton 

Water.  

Among other copepod orders, the cyclopoids Oithona similis and Oithona nana, the  

harpacticoid Euterpina acutifrons and the poecilostomatoids Corycaeus anglicus and 

Oncaea similis are the remaining holoplanktonic copepods reported within Southampton 

Water (Raymont & Carrie, 1964; Hirst, 1996; Castro-Longoria, 1998).  

 Pleurobrachia pileus (Ctenophora), Evadne nordmanii and Podon sp. (Cladocera), 

Sagitta setosa (Chaetognatha) and Oikopleura spp. (Urochordata) represent the remaining 

holoplanktonic species that has been observed within the estuary (Raymont & Carrie, 

1964; Lucas, 1993; Castro-Longoria & Williams, 1996). A summary of all previously 

reported species within the mesozooplankton of Southampton Water, as well as the 

findings of this study is summarized on Table 3 (Chapter 1). (Pictures of most of them can 

be seen on Appendix V, or in the enclosed cd containing a copy of the photographic 

zooplankton guide of the Solent – Southampton Water).  

With so many species described, the generalization that calanoids from the genus 

Acartia are the dominant form is quite simplistic. Within the entire estuary other 

holoplanktonic components, like copepod nauplii, harpacticoids and cyclopoids have been 

recorded to outnumber calanoids in different seasons and locations (see Chapter 1). One of 

the problems in assessing the statement is that most of the knowledge about species 

composition, dominance and succession of holoplanktonic species throughout 

Southampton Water comes from Conover (1957), and principally Raymont & Carrie 

(1964). These studies remained the sole source of specific information until studies on 

Pleurobrachia pileus and Sagitta setosa (Lucas, 1993) and “copepods” (Hirst, 1996; 

Castro-Longoria, 1998; Hirst et al., 1999) were reported some 30 years later. Of these, 

only Lucas (1993) and Castro-Longoria (1998) give any information on what is occurring 

in the inner reaches of the estuary, but they employed net mesh sizes > 200 µm that would 

have under-sampled/missed the overall contribution of other zooplankton components, like 

copepod nauplii and harpacticoids. 

It is clear that the historical generalizations based on studies that under-sampled 

some components and/or were based on data primarily from a single station, Calshot, at the 

mouth of the estuary (Conover, 1957; Hirst, 1996; Hirst et al., 1999) would not be 

expected to reflect other parts of this estuary. It is well known that abundance is usually 

higher within the estuary, while the diversity of zooplankton increases towards the sea 

(Riley, 1967; Miller, 1983). Since Calshot is marine in nature, it should have smaller 
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abundances and higher diversity when compared with Cracknore, within the inner reaches 

of the estuary. These general differences of abundances have already been presented in 

Chapter 1, and also observed in the studies of Raymont & Carrie (1964) and Castro-

Longoria (1998) at Marchwood and Bury Buoy, respectively, but not truly investigated. 

As pointed out most of the knowledge of species distribution and composition 

throughout this estuary is based on the study of Raymont & Carrie (1964), and as this work 

is now 41 years old, changes may well have modified the overall zooplankton composition 

in this estuary. In line with this argument is the recent report by Castro-Longoria (1998) of 

the cyclopoid Oithona nana in significant numbers toward the innermost part of 

Southampton Water. Previously, cyclopoids were notable absentees from the zooplankton 

record, and on the very few occasions when they were found, they were individuals of 

Oithona similis (Raymont & Carrie, 1964; Hirst, 1996). 

While the zooplankton community structure of temperate estuaries is variable on a 

seasonal/annual basis it usually follows a pattern that repeats year after year (Day Jr. et al., 

1989). Major changes in species composition have been usually attributed to climate 

changes and/or human activities (Soetaert & Van Rijswijk, 1993; Uye, 1994). Therefore 

knowledge of zooplankton composition, distribution and abundance, and the processes 

controlling it through time is vital and one of the major objectives of biological 

oceanography. Detection of any changes within an estuary, allied with retrospective studies 

can also give some feedback concerning major environmental changes or even human 

impact on the environment and can provide the baseline necessary for advanced studies 

and general theories/models concerning the zooplankton of this or any other estuary.  So, 

in order to further extend the knowledge about the holoplankton of Southampton Water, a 

taxonomically detailed investigation of its components were carried out to observe the 

general/main trends on the composition, distribution and abundance of those components.   
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2.2. Materials and Methods. 
 
 The methodology employed for collection and identification of the different species 

has been fully described in Chapter 1.  

 

2.2.1. Data analysis. 

 

As in the previous chapter, Pearson’s product-moment correlation coefficient r was 

used in order to measure the intensity of the association between the biotic and abiotic 

variables. To stabilize the variance of the data, zooplankton abundances were  

transformed, and the average oxygen saturation and average Chl. a were 

transformed before analysis (Prepas, 1984; Zar, 1999; Clarke & Warwick, 2001).  

)1(log10 +x

)(log10 x

In order to further investigate the relationship between samples collected at 

different stations and seasons, a Bray-Curtis similarity matrix was constructed using all 

holoplaktonic species abundances after a 5.0+x transformation. This transformation was 

chosen instead of  in order to adjust the influence of numerically dominant 

species and so allowing for the contribution of “intermediate” species without losing 

information about the dominant ones.  

)1(log10 +x

Ordination was done by non-metric multi-dimensional scaling (MDS), with plots 

being calculated using the PRIMER 5 package (Clarke & Warwick, 2001). MDS plots 

were chosen to illustrate the results as they allow a more informative visualisation of the 

configuration of distances between stations than the corresponding dendrogram from the 

cluster analyses (Appendix VIII). Clustering does not display their inter-relations in a 

continuous scale, with many possible re-arrangements of the samples being possible. MDS 

plots attempt to satisfy all conditions imposed by the ranks of the similarity matrix, so it 

usually elaborates a “map” of the relative spatial distribution of the samples in a specified 

number of dimensions (Clarke & Warwick, 2001). Summarizing, MDS will place two 

samples closer and/or further apart according to their similarities, i.e. if sample “a” is more 

similar to “c” than “b”, than sample “a” will be closer to “c” then to “b” in the plot. The 

theory and computations behind MDS can be found in (Kruskal, 1964; Clarke & Warwick, 

2001). The stress factor is a measure of the stress required to force a two-dimensional 

representation upon the similarity matrix, where values <0.01 indicates a perfect 

representation and >0.3 indicates that the points were probably arbitrarily placed. Stress 

values between 0.2 and 0.3 should be discarded, while values <0.2 gives potentially useful 

picture (Clarke & Warwick, 2001). Values close to 0.2 should be cross-checked against 
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those obtained from an alternative technique (i.e. Cluster analysis), while those close to 0.1 

or below corresponds to a good ordination, with no real prospect of misleading 

interpretations. Accordingly MDS plots were checked for consistency against dendrograms 

of station/season (Appendix VIII) from the cluster analysis performed on the same Bray-

Curtis similarity matrix, using the group average linkage rule (= UPGMA Sneath & Sokal, 

1973). After the MDS ordination was established, its relation with 

biological/environmental measures was visualized by superimposing bubble plots onto the 

ordination.      

 
2.2.2. Other studies. 

 
 Since most of the information on this estuary is based on unpublished Ph.D. 

dissertations, raw data from previous investigations were compiled and graphs redrawn in 

order to have a better understanding when discussing/comparing results. This was already 

introduced in the previous chapter and will be used to substitute extensive comments on 

some species and/or groups.     
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2.3. Results. 
 
 During the present survey, a total of 31 taxa were observed among the holoplankton 

of this estuary, with 24 identified to species, 5 to genus and 2 to order/class (Table 5). Of 

these, 6 taxa are reported for the first time within this estuary. Numbers in front of each 

taxon, indicates the number of its picture on Appendix V. 

 
Table  5. Holoplanktonic taxa observed in the zooplankton of Southampton Water during the present 
investigation. (For more details see Table 3 – Chapter 1). 
Phylum Ctenophora 

8-Pleurobrachia pileus (O F Müller, 1776) 
Phylum Crustacea 
   Subclass Diplostraca 
     Order Cladocera 

19-Bosmina sp. * 
21-Daphnia sp. * 
22-Evadne nordmanni Lovén,1836  

   Subclass Copepoda 
34-Unidentified nauplii 

     Order Calanoida 
       35- Acartia bifilosa (Giesbrecht, 1881) 

36-Acartia tonsa Dana, 1849  
37-Acartia clausi Giesbrecht, 1889 
38-Acarita discaudata (Giesbrecht, 1881) 
39-Acarita  margalefi (Alcaraz, 1976)  
40-Centropages hamatus (Lilljeborg, 1853)  
42-Isias clavipes Boeck, 1865 
43-Parapontella brevicornis (Lubbock, 1857) 
44-Anomalocera patersoni Templeton, 1837 
45-Labidocera wollastoni (Lubbock, 1857) 
46-Eurytemora affinis (Poppe, 1880) 
47-Temora longicornis (O F Müller, 1795) 
48-Pseudocalanus elongatus (Boeck, 1864) 
50-Stephos scotti (G O Sars, 1902) 
51-Calanus helgolandicus (Claus, 1863)  
52-Paracalanus parvus (Claus, 1863) 
53-Pseudocyclopia sp.  

     Order Harpacticoida 
       56-Microsetella norvegica (Boeck, 1864)  
       57-Euterpina acutifrons (Dana, 1849)  

     Order Cyclopoida 
65-Oithona nana Giesbrecht, 1892 

    Order Poecilostomatoida 
67-Corycaeus anglicus Lubbock, 1855 
68-Oncaea sp.  

   Subclass Eucarida 
     Order Euphausiacea 

110-Unidentified  
111-Meganyctiphanes norvegica (M Sars, 1857)  

Phylum Chaetognatha 
     Order Aphragmophora 

147-Sagitta setosa (J Müller, 1847) 
Phylum Chordata 
     Order Copelata 

149-Oikopleura sp.  
 

 Taxon reported for the first time within the holoplankton of this estuary 
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2.3.1. Total abundances. 

 

As pointed out in chapter 1, copepods comprised the majority of the holoplankton 

at the three stations, followed by appendicularians. Again, if we divide the holoplankton in 

all its major components, copepod nauplii averages 38, 43 and 33% of the total 

holoplankton followed by Calanoids (26, 38 and 40%), Harpacticoids (9, 7, 16%), 

Cyclopoids (24, 6, 3%) and Appendicularia (3, 5 and 7%) at Cracknore, NW. Netley and 

Calshot, respectively, with Poecilostomatoida, and others (Cladocera, Euphausiids, 

Ctenophora and Chaetognatha pooled) averaging less than 1% (Figure 10). 

 

Since only the genus Oikopleura (probably O.dioica) was observed in Southampton 

Water during this study, the temporal variability of abundance and composition is the same 

as that presented in Figure 10 under the heading Appendicularia. Overall, this species was 

almost absent during the winter months, with abundances < 1 organisms m-3 (Table 6), but 

during spring its abundance started to increase, remaining abundant until late autumn 

(spring-autumn average of 699, 602 and 557 organisms m-3 in 2001 for Cracknore, 

NW.Netley and Calshot respectively). In a single year, two peaks were observed at each 

station during this investigation, one in May 2001 (2736, 3032 and 3954 organisms m-3 at 

Cracknore, NW.Netley and Calshot respectively) and other in August 2001 (4079, 921, 

1362  organisms m-3 Cracknore, NW.Netley and Calshot respectively). 

 

Holoplanktonic harpacticoids were represented by only two species, Microsetella 

norvegica and Euterpina acutifrons. Since only a single individual of M.norvegica was 

observed on January 2001, E.acutifrons averages >99.99% of all harpacticoids depicted on 

Figure 10, at all the three sites. E.acutifrons is found all year round (Table 6) but it usually 

appears in significant numbers in plankton catches during April-May, becoming abundant 

during mid-summer (August) were peaks of 11346, 7125 and 9115 organisms m-3 were 

observed at Cracknore, NW. Netley and Calshot respectively. From mid-summer and 

throughout autumn, this species maintains abundances usually above 1000 organisms m-3 

until the end of October (Table 6), when it averaged 11, 26 and 42% of the holoplankton at 

Cracknore, NW.Netley and Calshot respectively. After this period its abundance on 

plankton catches starts to decline with very few individuals (< 4 organisms m-3) being 

observed during winter (Figure 10 and Table 6).  
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Figure 10. Temporal variability and seasonal contribution of the different Holoplanktonic groups at 
Cracknore, NW. Netley and Calshot during 2001/02. (Note that abundance interval indicates 10000 
organisms m-3). 
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Holoplanktonic cyclopoids were found all year round at all the three stations 

(Figure 10 and Table 6) especially during summer-autumn and extending until early-

winter. Despite this, they were detected in high numbers only within the inner reaches of 

Southampton Water where, between late-summer to early-winter, they became the 

dominant group at Cracknore (Figure 10). Oithona nana was the only holoplanktonic 

cyclopoid copepod recorded in Southampton Water and occurred in 77% of all samples 

(Table 6). At Cracknore this species occurred in 90% of the samples and accounted for 

51% of the total holoplanktonic copepods. O.nana occurred in low abundances from mid-

winter through to mid-summer, but from late-summer until late-autumn O.nana accounted 

for 61% of all copepods, averaging 18192 organisms m-3, with peaks of 36916, 23880 and 

40092 organisms m-3 in August, September and October/November 2001 respectively, and 

48199 organisms m-3 in July 2002. This high abundance starts to decline by 

November/December, reaching the winter–spring low values around January/February. At 

NW. Netley and Calshot O. nana accounted numerically for only 5.5% and 1.5% of the 

total holoplanktonic copepods at these stations, with late-summer to late-autumn averages 

of 1970 and 236 organisms m-3, representing 26% and 3.8% of all holoplanktonic 

copepods at NW.Netley and Calshot, respectively (Figure 10). 
 

Copepod nauplii (Figure 10) were clearly the most abundant holoplanktonic group 

within this estuary. Despite being found all year round (Table 6), they were usually present 

with high abundances from spring through to autumn (Figure 10). Small peaks in May 

(>2500 organisms m-3), followed by larger ones in July-August (>5000 organisms m-3) 

were observed at the three stations.  
 

Despite being the most diverse order found in the holoplankton of Southampton 

Water, with 17 taxa recorded during this investigation, the genus Acartia alone averaged 

93, 94 and 81% of the calanoid composition at Cracknore, NW. Netley and Calshot, 

respectively (Figure 11). Apart from Acartia, only Centropages hamatus, Temora 

longicornis, Eurytemora affinis, Pseudocalanus elongatus and Paracalanus parvus had 

minor, seasonal contributions (Figure 11).  

Centropages hamatus averaged 2, 4 and 10% of the calanoids composition at 

Cracknore, NW. Netley and Calshot, respectively (Figure 11). They were usually found all 

year round (Table 6), and usually recorded in high numbers from late-spring to late-autumn 

with two major peaks of abundance, one in May-June and another one in August at all 

three stations. 
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Figure 11. Temporal variability and seasonal contribution of abundant calanoid species at Cracknore, NW. 
Netley and Calshot during 2001/02. The seasonality of abundance of Acartia was omitted for a better view of 
the variability of the other species, but note that the abundance of some species at some stations were too low 
to appear in the graphic (Note that abundance interval indicates 100 organisms m-3).  
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Usually, C.hamatus was more abundant towards Calshot where it averaged 156 

organisms m-3 for the whole season, than at Cracknore where on average 42 organisms m-3 

were observed (Figure 11). Temora longicornis was the third most abundant calanoid, 

averaging 1, 1 and 4% of the calanoids composition of Cracknore, NW. Netley and Calshot 

respectively. This species was found all year round (Table 6), but was usually detected 

from late-spring to late-autumn and was much more abundant in spring when peaks of 147, 

408 and 439 organisms m-3 were recorded at Cracknore, NW.Netley and Calshot 

respectively (Figure 11). Pseudocalanus elongatus had a very marked pattern of 

seasonality, usually occurring in high numbers only during winter – spring when peaks of 

97, 17 and 110 organisms m-3 were observed at Cracknore, NW.Netley and Calshot 

respectively (Figure 11), although it was also present in catches from September to June 

(Table 6). Eurytemora affinis was only abundant at the innermost stations of the estuary 

from late-winter to early-summer, particularly at Cracknore where it averaged 2% of the 

calanoids and presented a maximum of 217 organisms m-3 in April 2001 (Figure 11). 

Paracalanus parvus was usually found from late-summer to early-winter in 2001, however 

in 2002 it was also present during late-winter to early-summer (Figure 11). Maximum 

abundances of P.parvus recorded were 172, 175 and 133 organisms m-3 in October 2001 at 

the three stations respectively. 

During this investigation only 5 of the 6 congeneric species of Acartia previously 

reported within Southampton Water were found. Abundances and overall contribution 

during 2001/02 are shown in Figure 12, where it is clear that the “combined” copepodite 

stages of Acartia are the most abundant form, averaging 73, 81 and 71% of the total 

Acartia composition at Cracknore, NW.Netley and Calshot, respectively.  

Figure 12 illustrates that the total abundance of Acartia is, as expected, strongly 

influenced by the copepodite stages. When several congeneric species are present at the 

same period copepodite stage identification is very difficult because of the great 

resemblance of the early stages. Therefore identification of copepodite stages at species 

level was not possible in the time frame of the study. Generally, the total abundance of 

Acartia was relatively low through winter, with overall averages for the three stations, of 

164 and 265 organisms m-3 being observed during 2001 and 2002, respectively. During 

spring, the average abundance increased to 1626 organisms m-3 in 2001 and 3429 

organisms m-3 in 2002, with maximum of 5297 organisms m-3 in May 2001 at Cracknore, 

27331 organisms m-3 in May 2002 at NW.Netley and 3908 organisms m-3 in May 2001 at 

Calshot. In both years, abundances fell abruptly around early-summer before increasing 

again in mid-summer, when peaks of 12925, 3820 and 9805 organisms m-3 were observed 
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at Cracknore, NW.Netley and Calshot respectively. A Summer-Autumn average of 2766 

organisms m-3 was recorded for all three stations in 2001. 

Since this is the most studied calanoid group within this estuary, the seasonality of 

occurrence of the adults of each species is highlighted to better understand any possible 

pattern between them. Of the five species recorded, A.margalefi, A.discaudata and A.clausi 

were found throughout the year at all three stations. A.margalefi and A.tonsa were more 

abundant towards the inner reaches of the estuary while A.bifilosa and A.clausi were more 

common at the mouth. 

Acartia margalefi was the commonest species during winter at Cracknore and 

NW.Netley, although barely detected at Calshot. Overall winter averages of 10, 13 and 1 

organisms m-3, were observed for each station, respectively. During spring, A.margalefi 

averaged 140, 149 and 7 organisms m-3, with peaks of 631, 1478 and 28 organisms m-3 

observed at Cracknore, NW.Netley and Calshot, respectively (Figure 12). During summer-

autumn, A.margalefi presented averaged abundances of 357, 72 and 50 organisms m-3 with 

peaks of 2682, 173 and 140 organisms m-3 at Cracknore, NW.Netley and Calshot 

respectively, becoming the dominant adult form at Cracknore during this season (Figure 

12).  

A.discaudata presented winter averages of 1, 14 and 8 organisms m-3 for Cracknore, 

NW.Netley and Calshot respectively. During spring A.discaudata numbers increased to 

averages of 314, 606 and 156 organisms m-3 at Cracknore, NW.Netley and Calshot (peaks 

of 2302, 2956 and 394 organisms m-3 observed for each station respectively) making it the 

most abundant spring species at Cracknore and NW.Netley. During summer-autumn it 

averaged 197, 266 and 570 organisms m-3 (peaks of 781, 863 and 3563 organisms m-3) for 

the three stations, respectively. A.discaudata was also the most abundant adult form during 

this period at NW. Netley and Calshot (Figure 12). 

 A.bifilosa had winter averages of 3, 13 and 55 organisms m-3 at Cracknore, 

NW.Netley and Calshot, and was clearly more abundant than the others species at Calshot. 

During spring, as with the other species, its numbers increased to averages of 150, 76 and 

314 organisms m-3 (peaks of 1137, 291 and 1009 organisms m-3) at the three stations, and 

again it clearly dominate the catches of Calshot. During summer-autumn it almost 

disappears, being caught sporadically only towards the end of the season (Figure 12).   

A.clausi was particularly abundant during the summer-autumn where it averaged 

37, 24 and 69 organisms m-3 (peaks of 370, 116 and 436 organisms m-3) for the three 

stations respectively (Figure 12). Despite being found in each month, very low abundances 

were recorded from January to May (Table 6).   
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Figure 12. Temporal variability and seasonal contribution of the different Acartia species at Cracknore, NW. 
Netley and Calshot during 2001/02. (Note that abundance interval of adults indicates 1000 organisms m-3). 
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A.tonsa was recorded at the three stations only from July to November (Table 6), 

presenting summer-autumn averages of 56, 9 and 16 organisms m-3 at Cracknore, 

NW.Netley and Calshot, respectively. Substantial numbers were only recorded at 

Cracknore, where a peak of 329 organisms m-3 was observed (Figure 12). 
 

Table 6. Seasonal occurrence of holoplanktonic species in Southampton Water, with the frequency of occurrence 
(FO) of each taxa. Where ■ = Cracknore; ▲= NW. Netley, ● = Calshot. Colour shades indicate average abundances 
where,            = 0,           = 0.001 ⌐  0.01,           = 0.01 ⌐ 0.1,           = 0.1 ⌐ 1.0,            = 1.0 ⌐ 10,    
         = 10 ⌐ 100,          = 100 ⌐ 1000  and          = ≥ 1000 organisms  m-3. 

Species J F M A M J J A S O N D FO 
Ctenophora 

Pleurobrachia pileus ● ●  ■▲● ■▲● ■▲● ■▲● ■   ● ■  ■▲●   41% 
Cladocera 

Bosmina sp.            ■   1% 
Daphnia sp.   ■   ■  ■         4% 
Evadne nordmanni   ▲           1% 

Copepoda 
Copepoda nauplii ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● 100%
Acartia copepodites ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● 100% 
Acartia bifilosa  ■   ● ■▲● ■▲● ■▲● ■▲● ■    ●   ■▲● 59% 
Acartia tonsa       ■   ● ■   ● ■▲● ■▲● ■▲●  19% 
Acartia clausi ■▲● ■▲● ■  ▲ ■▲ ■▲● ■▲● ■   ● ■▲● ■▲● ■▲● ■▲● 41% 
Acarita discaudata ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● 96% 
Acarita  margalefi ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲ ■▲ 87% 
Centropages hamatus  ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● 87% 
Isias clavipes       ▲● ■▲●  ● ■   ●   ▲●   ▲● ●  16% 
Parapontella brevicornis    ■   ● ■▲● ■▲● ■   ● ■▲● ■   ● ■▲● ■▲●   43% 
Anomalocera patersoni      ●        1% 
Labidocera wollastoni        ▲●     ▲● ■   ●    6% 
Eurytemora affinis ■  ■▲ ■▲ ■▲● ■▲● ■  ●  ■     31% 
Temora longicornis  ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■   ● ■▲● 92% 
Pseudocalanus elongatus  ■▲● ■▲● ■▲● ■▲● ■▲● ■▲   ■   ● ■   ● ■   ● ■▲● 65% 
Stephos scotti  ▲  ●   ■        4% 
Calanus helgolandicus ● ▲  ■▲● ■▲● ▲ ■  ● ■   ● ■    24% 
Paracalanus parvus ■▲● ■▲●   ▲● ■▲● ■▲● ■▲● ●  ■▲● ■▲● ■▲● ■▲● 44% 
Pseudocyclopia sp.    ■  ■   ●       3% 
Microsetella norvegica ■             1% 
Euterpina acutifrons  ■▲●   ▲●   ▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● 76% 
Oithona nana ■▲● ■▲● ■▲● ■   ● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● 77% 
Corycaeus anglicus ● ● ▲      ■   ● ● ●  8% 
Oncaea sp. ■   ● ■▲● ■   ● ■   ● ▲  ■▲● ●  ■   ● ●  25% 

Euphausiacea 
Unidentified Euphausiacea   ▲● ● ■▲● ■▲● ■▲●       ■  27% 
Meganyctiphanes norvegica  ●   ●      ● ■   4% 

Chaetognatha 
Sagitta setosa ■▲● ■▲● ■▲● ■▲● ▲● ■▲ ▲● ● ■▲● ■▲● ■   ● ■▲● 48% 

Appendicularia 
Oikopleura sp ■   ● ▲ ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● 81% 

 

Of the minor calanoid copepod contributors, Parapontella brevicornis was usually 

found from spring until mid-autumn with abundances rarely exceeding 10 organisms m-3 

(Table 6). Isias clavipes was also found during this period, but usually at abundances 

below 1 organism m-3 (Table 6). Calanus helgolandicus was usually recorded from January 

to October and, like I.clavipes, it usually presented abundances below 1 organism m-3 

(Table 6). The remaining calanoids, Anomalocera pattersoni, Labidocera wollastoni, 

Stephos scotti and Pseudocyclopia sp. were only found sporadically. Among the 

poecilostomatoids, Corycaeus anglicus was usually found at NW.Netley and Calshot at 
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very low abundance (<1 organism m-3) during autumn-winter. Oncaea sp. was recorded 

from January to October, usually with abundances above 1 organism m-3 and achieving a 

maximum of 35 organisms m-3
 recorded at Calshot in August 2001 (Table 6).  

 

Among the remaining holoplanktonic species recorded during the present 

investigation, cladocerans were only recorded a few times, and in very low abundances 

(never exceeding 2 organisms m-3), and were only represented by three taxa. The 

freshwater species Bosmina sp and Daphnia sp were only found at Cracknore while 

Evadne nordmanni, a marine species, was found only once at NW.Netley (Table 6). 

The ctenophore Pleurobrachia pileus was found from January to October (Table 6), 

but was relatively abundant in June, with abundances > 1 organism m-3 recorded. It was 

usually much more abundant at Cracknore (peak of 20 organisms m-3 recorded in June 

2001). Gut contents of P.pileus were also analysed and it was observed that of the 1230 

individuals captured at the three stations (88% at Cracknore), 34% of them had from 1 to 

38 animal prey items inside their gut (phytoplankton was also observed in large quantities 

but was not quantified). A total of 24 different prey types were identified (Table 7), with 

Copepoda averaging 71, 84 and 73% of the total number of items identified from P.pileus 

collected from Cracknore, NW.Netley and Calshot, respectively. Although some variation 

in the composition of the diet was observed, it usually reflected in situ mesozooplankton 

composition.  
Table 7. Averaged percentage composition of prey items in Pleurobrachia pileus found at each site.      
Type of Prey Cracknore NW. Netley Calshot 
Unidentified barnacle nauplii 20.30 13.40 14.86 
Unidentified barnacle cypris 1.36 0.50 1.35 
Sacculina carcini 0.14 0.00 0.00 
Copepoda nauplii 13.76 18.86 9.46 
Unidentified Copepoda.  2.72 1.24 2.7 
Acartia discaudata (adults) 1.50 0.50 0.00 
Acartia bifilosa (adults) 0.27 0.00 0.00 
Acartia spp. (copepodites+adults) 31.74 49.14 22.97 
Pseudocalanus elongatus (copepodites+adults) 0.41 0.00 0.00 
Eurytemora affinis (copepodites+adults) 0.00 0.25 0.00 
Temora longicornis (copepodites+adults) 1.23 0.99 4.05 
Centropages hamatus (copepodites+adults) 0.14 0.74 0.00 
Unidentified Harpacticoida (copepodites+adults) 0.27 0.00 1.35 
Euterpina acutifrons (copepodites+adults) 18.66 12.66 31.08 
Tisbe sp. (copepodites+adults) 0.14 0.00 0.00 
Oithona nana (copepodites+adults) 0.41 0.00 0.00 
Unidentified siphonostomatoida (copepodite) 0.00 0.00 1.35 
Decapoda larvae 1.23 0.25 4.05 
Unidentified Crustacea 0.82 0.00 1.35 
Gastropoda Veliger 2.18 1.24 4.05 
Bivalve Veliger 1.23 0.00 0.00 
Oikopleura sp. 0.68 0.00 0.00 
Polychaeta 0.68 0.25 1.35 
Ant (Terrestrial) 0.14 0.00 0.00 
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Euphausiid nauplii were usually found from October to March and always at low 

abundances (Table 6) at all three stations. A total of 3 furcilia and 1 caliptopis of 

Meganyctiphanes norvegica were identified in the samples. 

The chaetognath Sagitta setosa was also a minor component of the holoplankton, 

and despite being found all year round it was only relatively abundant (>1 organism m-3) in 

September and October, when abundances up to 62 organisms m-3 were recorded. It was 

found throughout the estuary, but tended to be more abundant and frequent at Calshot. 

 

2.3.2. Statistical analysis. 

 

Correlations between biotic and abiotic factors that could be forcing spatial and 

temporal patterns in the species distribution can be seen in Table 8.  
 

Table 8. Pearson’s product-moment correlation of biotic and abiotic parameters from data collected at the 
three stations. Correlations in red are significant at p<0.05, and shaded at p<0.01, ns = not significant. 
Species T °C S Chl.a O2 O2Sat% 
Acartia discaudata 0.35 0.34 ns -0.38 ns 
Acartia bifilosa  -0.46 ns ns 0.38 ns 
Acartia margalefi  0.43 ns ns -0.42 ns 
Acartia tonsa  ns ns ns -0.59 -0.24 
Acartia clausi 0.42 0.29 ns -0.54 ns 
Acartia Copepodites  0.53 0.27 0.34 -0.46 ns 
Pseudocalanus elongatus -0.65 -0.26 -0.40 0.35 -0.26 
Temora longicornis 0.65 0.45 0.60 -0.33 0.32 
Centropages hamatus 0.79 0.53 0.65 -0.42 0.36 
Isias clavipes ns 0.22 ns ns ns 
Paracalanus parvus 0.20 0.36 ns -0.32 ns 
Eurytemora affinis -0.21 -0.43 ns ns ns 
Calanus helgolandicus ns ns 0.20 ns 0.25 
Labidocera wollastoni 0.25 ns ns ns ns 
Anomalocera pattersoni ns ns ns ns ns 
Parapontella brevicornis 0.30 ns 0.26 ns ns 
Stephos scotti ns ns ns ns ns 
Pseudocyclopia sp. ns ns ns ns ns 
Oithona nana ns ns -0.25 -0.48 -0.38 
Oncaea sp. ns 0.32 ns ns ns 
Corycaeus anglicus ns ns ns ns ns 
Euterpina acutifrons 0.91 0.43 0.56 -0.60 0.27 
Microsetella norvegica ns ns ns ns ns 
Copepod nauplii 0.54 ns 0.60 -0.25 0.27 
Euphausiid larvae ns ns ns ns ns 
Meganycthiphanes norvegica ns ns ns ns ns 
Daphnia sp. ns -0.23 ns ns ns 
Evadne nordmanii ns ns ns ns ns 
Bosmina sp. ns ns ns ns ns 
Pleurobrachia pileus 0.24 ns 0.30 ns ns 
Sagitta setosa ns 0.24 ns -0.31 ns 
Oikopleura sp: 0.64 0.29 0.50 -0.38 0.22 

  

As expected, temperature, salinity and chlorophyll were positively correlated with 

those species abundant during spring – autumn (e.g. C.hamatus, T.longicornis, 
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E.acutifrons, Oikopleura sp.) and negative for those peaking during winter-spring (e.g. 

P.elongatus). Contrasting with this was the negative correlation found for O. nana with 

chlorophyll. Dissolved oxygen was usually negatively correlated with those species present 

during spring – autumn and positively with those peaking during winter – spring, while 

oxygen saturation was the opposite. 

 

MDS ordination plots, based on Bray-Curtis similarities of species abundances 

from all samples collected for all stations show a clear seasonal pattern (Figure 13 a) but 

with apparently no distinction between the three sites in terms of holoplanktonic 

composition, with all sites intermingling together in a big cluster (Figure 13 b), with the 

exception of a cluster composed mainly by summer-autumn samples of Cracknore (Figure 

13 a,b).  
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Figure 13. MDS ordinations of the 108 samples, based from Bray-Curtis similarities on square root 
transformed abundances of all holoplanktonic organisms, found in the zooplankton of Southampton Water 
during 2001/02. Indicated in the figure is an apparent distinctive cluster indicating spatial differentiation of 
some Cracknore samples.   
 
 

When the relative abundance of each species was superimposed over the MDS 

ordination (Figure 14 a to r), the seasonality of occurrence of several species is clear. 

Species shown in Figures a to d had a winter-spring pattern, while species shown on 

Figures e to j and p to r had a spring-summer and k to o had a summer-autumn distribution.  

From Figure 14 it is also clear that the summer-autumn cluster of Cracknore 

samples highlighted on Figure 13 is clearly due to the contribution of O.nana (Figure 14 o). 
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Figure 14. MDS of the three sites, as in Figure 13, with superimposed circles representing relative species 
abundances at the three sites. (Note that abundances are in the same proportional scale for a clearer 
evaluation of patterns).  
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By superimposing the physico-biological parameters measured on the MDS 

presented on Figure 13 (Figure 15), it is clear that temperature, dissolved oxygen and 

chlorophyll clearly follows the seasonal pattern in Figure 13 and when contrasted with the 

patterns of the species presented on Figure 14 its easy to identify which are responsible for 

some patterns presented by the different holoplanktonic species.  
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Figure 15. MDS of the three sites, as in Figure 13, with superimposed circles representing the range of values 
of the physico-chemical parameters of all three sites. (Note that concentrations are in the same proportional 
scale for a clearer evaluation of patterns). 
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2.4. Discussion. 
 

Calanoids have been always considered the dominant holoplanktonic form within 

estuaries (Jeffries, 1967; Conover, 1979; Miller, 1983; Buskey, 1993) and until the present 

study it was also the dominant form reported within Southampton Water. Generalizing, in 

terms of overall major species composition and seasonal occurrences, the results presented 

here agree with those presented by Raymont & Carrie (1964), Hirst (1996) and Castro-

Longoria (1998), with Acartia being the most abundant calanoid form and only C.hamatus, 

T.longicornis; P.parvus; P.elongatus and E.affinis of the remaining calanoid species with 

some minor/major importance depending on the seasons and/or location. This is also 

similar to what is observed in other North-European estuaries (Baretta & Malschaert, 1988; 

Soetaert & Van Rijswijk, 1993; Irigoien & Castel, 1995). 

 In terms of total numbers both Hirst (1996) and Castro-Longoria (1998) presented 

raw data for each Acartia species individually, however the results presented here can only 

be compared with those of Hirst (1996) which sampled with a comparable mesh size. 

Based on this, the results presented here contrast with those of Hirst (1996), where his total 

values never exceeded 1665 organisms m-3
 (Figure 16). As pointed out in Chapter 1, this 

could be a reflection of the lack of temporal coverage, since sampling only occurred once a 

month. However, the numbers presented in that study are even lower than from samples 

collected with a coarser meshes, 220 µm, that have also been collected only once a month 

(Castro-Longoria, 1998). This would indicate that it was either a year of unusually lower 

abundance, or that some kind of under-estimation occurred.      

 Unexpectedly, the total numbers of Acartia presented here are comparable with 

those of Castro-Longoria (1998), collected with 220 µm mesh at different stations and tide 

conditions. Despite the fact that the general composition reflected the coarser mesh i.e. 

were mainly composed of adult forms, it was surprising to note that the abundances of 

some adults reported by her were usually 2 to 5 times higher than the values recorded in 

the present study (Figure 16). Of course inter-annual variability, the composition at 

different stations and different tide conditions could be responsible for this although these 

differences were only observed in the spring samples. The remaining samples, usually with 

similar or lower values to the present study, suggest that the finer mesh nets employed 

during this investigation may have been clogged by the high concentration and/or type of 

phytoplankton during spring (See probable dates on section 1.4.1. on Chapter 1), thereby 

underestimating abundances and partially explaining the differences in abundances of 

adults found between the two studies.  
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Figure 16. Temporal variability and seasonal contribution of Acartia species at Bury Buoy and  Bourne Gap 
during 1994/96 and Calshot in 1992/94 from the raw data of Castro-Longoria (1998) and Hirst (1996), 
respectively. (Note that abundance interval of adults indicates 1000 organisms m-3). Data for different depth 
strata were averaged. 
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Supporting this is the fact that during spring 2002 no phytoplankton bloom was 

present to clog the nets and volumes filtered (Appendix III) as well as abundances of adults 

were usually higher than those reported for the spring of 2001 at the inner stations (Figure 

12). At Calshot however, abundances of Acartia during the spring of both years were 

similar, suggesting that nets were only clogged at the inner stations where the bloom of 

Phaeocystis sp. in 2001 was more evident. 

Conover (1957) was the first to indicate a successional pattern among the different 

Acartia species in this estuary, particularly at Calshot. Although differing in detail, 

Raymont & Carrie (1964) and Hirst (1996) endorsed this suggestion. Based on Conover 

(1957) and  Raymont & Carrie (1964) it was observed that usually at the beginning of the 

year A.discaudata is the commonest species, with the occasional appearance of A.clausi 

and A.bifilosa. During February and until March A.bifilosa begins to replace A.discaudata, 

and from March to early July A.bifilosa clearly dominates the Acartia populations, with 

few A.discaudata and A.clausi coexisting during this period. From July-August both 

A.discaudata and A.clausi became common again, with A.bifilosa almost disappearing 

from the zooplankton catches after August. Hirst (1996) also observed this pattern, but 

additionaly reported the presence of A. bifilosa during November-December, and also 

stated that this species is the commonest during the first 5 months of the year at the mouth 

of the estuary (Figure 16). 

Recently, Castro-Longoria (1998) in a specific study of the Acartia populations in 

the Solent–Southampton Water system reported that while A.discaudata, A.clausi and 

A.bifilosa are the dominant forms in the Solent (and consequently at Calshot), no clear 

succession pattern was observed among them, either in the Solent or further up the estuary. 

Castro-Longoria (1998) also reported the co-occurrence of A.tonsa and A.margalefi in 

addition to the other three species (Figure 16). Despite not observing any succession, 

Castro-Longoria (1998) reports that almost all species coexisted, with each one having a 

single sequential seasonal maximum between late-spring and early autumn, with A.bifilosa 

peaking on May, A.discaudata in May/June, A.margalefi in June, A.clausi in August and 

A.tonsa in September (Figure 16).  

The results of the current study agree, in part, with those of Castro-Longoria 

(1998), since no clear succession pattern was observed among the different Acartia 

species, and all species were seen coexisting and usually peaking at the same time (Figure 

12). In contrast with her results, during this investigation at least two peaks of abundance 

were recorded for some species in a single season, one in spring and another one/two 

during summer-autumn (Figure 12). This should probably be a reflection of the higher 
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sampling frequency carried out during this study, where two to three samples were 

collected during summer-autumn, while only single monthly samples were collected in the 

previous studies (Hirst, 1996; Castro-Longoria, 1998). Raymont & Carrie (1964) also 

observed this pattern of two peaks of abundance usually at the inner stations, and attributed 

the later peak to A.discaudata.  

Based on all previous records (Conover, 1957; Raymont & Carrie, 1964; Hirst, 

1996; Castro-Longoria, 1998) it is clear that, some seasonal and spatial preferences occurs 

within this estuary, with  A.margalefi and A.tonsa occurring and attaining higher 

abundances preferably in the inner reaches with A.clausi and A.bifilosa at the mouth. In 

terms of seasonality, it is clear that A.bifilosa is a winter-spring form while A.clausi and 

A.tonsa are autumn ones. A.margalefi and A.discaudata are present through the year, but 

occurs in elevated numbers during spring-summer (Figures 12 and 14).  

Throughout the world, but especially in estuaries, harbours and semi-enclosed areas 

where changeable environmental conditions occur, the species living within those systems 

must be able to deal with those changes. They can occur by physiologically tolerating a 

wide range of temperature and salinity conditions, by being able to move to more 

favourable locations, having rapid growth and reproduction rates, or through the 

production of dormant stages/eggs for unfavourable periods (Raymont & Carrie, 1964; 

Kinne, 1967; Miller, 1983; Hairston & Munns, 1984; Castro-Longoria, 1998; Chinnery, 

2002). The genus Acartia is certainly one that meets these requirements, since it has been 

reported that congeners can found from nearly fresh to hypersaline waters and from 0 to 40 

ºC, in clear or turbid estuaries from low to high latitudes (Day Jr. et al., 1989) resulting in 

it being one of the most abundant elements within estuaries (Jeffries, 1967; Conover, 1979; 

Miller, 1983; Buskey, 1993), with as many as 9 congeneric species presenting spatial and 

seasonal patterns of abundances have been reported in the Cochin Backwater, a monsoonal 

estuarine lagoon in Kerala, India (Tranter & Abraham, 1971).  

Temperature and salinity have been identified as the main factors behind spatial 

and seasonal occurrence of Acartia congeners in estuaries (Jeffries, 1962; 1967; Tranter & 

Abraham, 1971; Wooldridge & Melville-Smith, 1979; Greenwood, 1981; Alcaraz, 1983; 

Castro-Longoria, 1998), but food utilization, high growth rates and characteristic 

behaviours are also important (Tranter & Abraham, 1971; Greenwood, 1981; Miller, 1983; 

Castro-Longoria, 1998; Chinnery, 2002). The correlations with temperature (Table 8) 

confirm the overall seasonal occurrence/preferences of most species (also shown on MDS 

plots in Figures 14 a,g,i,m,n,p). Salinity would be expected to have a significant negative 

correlation with A.margalefi and A.tonsa but was not. Examining MDS plots depicted in 
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Figures 13, 14 and 15 it is possible to observe that both A.margalefi and A.tonsa high 

abundances (Figure 13 i and n) were restricted to samples at Cracknore and NW. Netley 

(Figure 13 b) of relatively lower salinities (Figure 15 b). It has also been reported that these 

two species are often restricted to environments of low salinity (Lance, 1964; Alcaraz, 

1976; Alcaraz, 1983; Escaravage & Soetaert, 1995; Irigoien & Castel, 1995; Castro-

Longoria & Williams, 1996) supporting the occurrence of these two species at higher 

abundances towards the inner reaches of the estuary, where salinity oscillations were more 

evident (Figure 3 – Chapter 1). The complete absence of A.bifilosa, A.tonsa and to some 

extent of A.clausi adults from plankton catches of this estuary at certain seasons was also 

expected, since those species produces resting eggs to avoid some adverse conditions 

(Castro-Longoria, 1998; Chinnery, 2002).   

Acartia congeners are often reported to occur in seasonal successions where usually 

one congener is abundant during winter-spring and another in summer-autumn (Conover, 

1956; Jeffries, 1962; Jeffries, 1967; Herman et al., 1968; Hulsizer, 1976; Wooldridge & 

Melville-Smith, 1979). Patterns similar to the one observed during the present study, with 

one or more Acartia species coexisting within the total range of estuarine salinity and 

temperature have also been observed (Tranter & Abraham, 1971; Greenwood, 1981; 

Turner, 1982; Alcaraz, 1983; Baretta & Malschaert, 1988; Kimmerer, 1993). Of these, 

Alcaraz (1983) and Baretta & Malschaert (1988) recorded almost the same species in the 

ría of Vigo in Spain and at the Ems estuary between Germany and The Netherlands, 

respectively. At Vigo A.discaudata, A.clausi, A.margalefi and A.grani were also observed 

coexisting, with the first three occurring all year round and with similar spatial segregation 

to the present study, i.e. A.discaudata being predominantly found within the estuary, with 

A.margalefi and A.grani predominantly at the fresher end and A.clausi at the marine one 

(Alcaraz, 1983).  In contrast, Baretta & Malschaert (1988) in the Ems show that although 

A.discaudata, A.clausi, A.tonsa, A.bifilosa and Acartia sp. were seen coexisting for most of 

the year, A.tonsa and A.bifilosa were clearly  the dominant species and occurred 

throughout the year.  

Allowing for regional differences and the particularities of each estuary the Acartia 

component reported in Southampton Water is similar to that that reported in other North-

European estuaries (Alcaraz, 1983; Williams & Collins, 1986; Baretta & Malschaert, 1988; 

Soetaert & Van Rijswijk, 1993; Irigoien & Castel, 1995), with any one of A.discaudata, 

A.bifilosa, A.clausi, A.tonsa and A.margalefi being the most abundant form in particular 

localities and/or seasons.    
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In an attempt to view the seasonal/spatial pattern of Acartia within Southampton 

Water more clearly, the species/pair of species responsible for most of the abundance 

encountered at each station and/or season were grouped, and a summary can be seen in 

Table 9 where the importance of A.discaudata is evident, as it appears as a dominant/co-

dominant on 10 out of 15 possible combinations. 
 

Table 9. Overall seasonal/spatial pattern of dominance of Acartia species within Southampton Water, based 
on the average values for each season.  
Station Winter Early Spring Late Spring Summer Autumn 
Cracknore A.margalefi A.margalefi 

A.bifilosa 
A.discaudata 

A.bifilosa A.margalefi A.margalefi 
A.discaudata 

NW.Netley 
A.margalefi 

A.discaudata 
A.bifilosa 

A.margalefi 
A.discaudata 

A.discaudata 
A.bifilosa 

A.margalefi 
A.discaudata A.discaudata 

Calshot A.bifilosa A.bifilosa A.discaudata 
A.bifilosa A.discaudata A.discaudata  

 

Chinnery (2002) reports that A.discaudata has the same hatch success and 

assimilation efficiency over the range of temperatures and salinities found at this estuary 

(i.e. 5 – 20 ºC and salinities higher than 23 on average), and so, it is possible to infer that 

with enough food supply it should be able to reproduce all year round, so reflecting its 

continuous presence in the water column. Castro-Longoria (1998) indeed reported that 

A.discaudata is capable of producing eggs within the range of temperature and salinity 

observed for this estuary, with the rate being clearly temperature dependant. At 5 ºC it 

produced less than 1 egg ♀-1d-1, with rates increasing to 2.6 and 4.9 eggs ♀-1d-1 at 10 and 

20 ºC respectively. From Table 9 however, is clear that under particular 

circumstances/seasons other congeners are able to overshadow the importance of 

A.discaudata at some seasons/stations. The pattern presented in Table 9 is only a 

summary/abstraction, since no single simplistic pattern can summarize the different 

combination of five Acartia species coexisting with seasonal/spatial preferences and 

different life strategies. Future monitoring studies should explore this further, as well as 

establish which factors apart from temperature and salinity control the seasonal/spatial 

distribution of Acartia species. Inter-annual patters with other dominance patterns may also 

occur since, potentially, A.discaudata, A.bifilosa, A.clausi and possibly A.margalefi can 

hatch and survive within the range of salinity and temperature conditions encountered in 

Southampton Water (Chinnery, 2002). 

In addition to trying to match calanoid abundances recorded by different 

investigators, in different years, using different sampling methodologies and with different 

taxonomic skills, a question occurs concerning the situation observed in 2002 (Figure 5 – 

Chapter 1), specifically, what supported the relatively high copepod abundances recorded 

during spring when no early phytoplankton bloom was recorded? 
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Figure 17. Seasonal pattern of Chlorophyll a concentration and Acartia spp. abundance at the three stations 
during 2001/02.  

 

The answer to this is not straightforward particularly as no data for an in-depth 

analysis is available. At the moment, based on data provided by this study and from 

previous reports (Hirst, 1996; Castro-Longoria, 1998), it is possible to say that a spring 

peak in chlorophyll is usually followed by a peak of Acartia abundance. However, despite 

the fact that no chlorophyll peaks were recorded during 2002 (Figure 17) the general spring 

pattern of Acartia abundance was repeated at all three stations (see also Figure 12), 

together with a massive peak at NW. Netley.  

This could imply that the chlorophyll levels reported in spring 2002, i.e <5 mg m-3, 

are enough to support the spring copepod abundances (Figure 17). Chlorophyll levels of <2 

mg m-3 are matched by abundances of Acartia well over 3000 organisms  m-3 on average, 

at Cracknore and NW.Netley from September to December (Figure 17) assuming that 

Acartia (mainly A.discaudata and A.margalefi) only graze on diatoms and ciliates, the 

main producers of chlorophyll reported for Southampton Water (Iriarte, 1991; Leakey et 

al., 1992; Kifle & Purdie, 1993; Iriarte, 1993; Iriarte & Purdie, 1994; Howard et al., 1995; 

Ali, 2003). However other, unaccounted food sources, could also be being utilized by these 

copepods, possible detritus, bacterio-aggregates, flagellates and even earlier copepod 

stages, since all have been indicated as alternative food sources for this genus (Day Jr. et 

al., 1989; Mauchline, 1998).  
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Figure 18. Temporal variability and seasonal contribution of the most abundant calanoid species at Bury 
Buoy and  Bourne Gap during 1994/96 and Calshot in 1992/94 from the raw data of Castro-Longoria (1998) 
and Hirst (1996), respectively. The seasonality of abundance of Acartia was omitted for a better view of the 
variability of the other species (Note that abundance interval indicates 100 organisms m-3). Data for different 
strata were averaged. 

 

Other than Acartia, only C.hamatus, T.longicornis, P.parvus, P.elongatus and 

E.affinis were present with some importance, contributing up to 80 % of the calanoid 

fraction on some occasions (Figure 11). From these, C.hamatus and T.longicornis were 

found throughout the year but especially during spring-autumn where peak abundances 

were seen. Usually both species presented higher abundances towards the mouth of the 

estuary. P.parvus and P.elongatus also had higher abundances towards the mouth, with 
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P.parvus usually found during autumn and P.elongatus in winter-spring. E.affinis, in 

contrast, was confined to the inner reaches of the estuary and usually found during spring. 

Correlations with environmental parameters (Table 8) and MDS plots (Figure 14) clearly 

reflect these patterns, with the only anomalous result being the negative correlation of 

P.elongatus with salinity.  

In terms of abundance, the values recorded here (Figure 11) are surprisingly similar 

to those of  Hirst (1996), and again it raises the question of why only Acartia abundances 

were so low in that study. Reflecting the coarser mesh used by Castro-Longoria (1998) the 

values reported by her were anticipated to be lower than the present study, perhaps with the 

exception of E.affinis which, as an estuarine copepod, is expected to be in higher numbers 

further up the estuary at Bury Buoy  (Figure 18).  

Nothing different/unusual was observed in the occurrence and distribution of these 

species during this investigation, with seasonal and spatial patterns similar to those 

reported previously in this estuary (Figure 18) (Raymont & Carrie, 1964; Hirst, 1996; 

Castro-Longoria, 1998) and other north European estuaries (Baretta & Malschaert, 1988; 

Soetaert & Van Rijswijk, 1993). These species are also typical constituents of the English 

Channel and North Sea zooplankton (Digby, 1950; Bodo et al., 1965; Evans, 1977). 

 

Euterpina acutifrons is a widespread neritic species (Rose, 1933; Björnberg, 1981) 

inhabiting a range of estuaries (Hopkins, 1977; Montú, 1980; Roper et al., 1983; Baretta & 

Malschaert, 1988; Soetaert & Van Rijswijk, 1993; Hopcroft et al., 1998; Dunbar & 

Webber, 2003; Hoffmeyer, 2004). It has been reported within Southampton Water several 

times (Raymont & Carrie, 1964; Hirst, 1996; Castro-Longoria, 1998), and always with a 

seasonal summer-autumn occurrence. Zinger (1989) reported an average of 561, 938 and 

1170 harpacticoid organisms m-3 occurring from August through November, at Cracknore, 

NW.Netley and Calshot, with a maximum of 3834 organisms m-3 at NW.Netley in 

October. Hirst (1996), sampling at the mouth of the estuary, recorded E.acutifrons with an 

average of 1955 organisms  m-3 for the same period (August-November), with maximum 

of 2524 organisms  m-3 also in October. Raymont & Carrie (1964) reported a maximum of 

10900 organisms  m-3, at Marchwood, with E.acutifrons and occurring mostly during 

August and lasting until October-November with abundances over 1000 organisms  m-3 

being reported. This species was substantially under-sampled by mesh-size greater than 

200 µm, reflecting the low numbers of harpacticoids reported by Lucas (1993) and Castro-

Longoria (Castro-Longoria, 1998).    
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The results presented here approach closely those of Raymont & Carrie (1964) and 

clearly indicate little change in distribution pattern and seasonality in the past 43 years. 

The differences noted with the data of Hirst (1996) and Zinger (1989) could probably be 

attributed to a different sampling effort and inter-annual variability. Significant 

correlations were obtained between E.acutifrons and environmental parameters (Table 8, 

also shown on the MDS plot on Figure 14 l ) reflecting that the species was only abundant 

during the warm, saline and most productive period of the year, although it can be found 

throughout the year at Calshot. Despite the fact that O.nana overshadowed the numeric 

importance of this species at Cracknore during the summer-autumn season, it is clear that 

E.acutifrons, at least numerically, has the same impact as calanoids during summer-autumn 

through the entire estuary. E.acutifrons is also found at relative high abundances (up to 

45000 organisms m-3) in other north European estuaries (Baretta & Malschaert, 1988; 

Soetaert & Van Rijswijk, 1993), but surprisingly its significance is usually ignored or it is 

relegated as a minor component. Clearly more attention should be drawn to this species in 

the future, especially as it is clearly underestimated by coarser meshes. 

 

Probably the major difference noted between previous reports and this study was 

the appearance of cyclopoids, particularly Oithona nana, within the upper estuary, and its 

progressive elimination towards the mouth of the estuary (Figure 10). O.nana is a 

widespread neritic species, commonly found in The Atlantic (Björnberg, 1981; Bradford-

Grieve et al., 1999), Pacific, Indian, Mediterran, Red Sea (Rose, 1933), sea lochs in 

Scotland (Lampitt, 1979), the English Channel (Digby, 1950) and on tropical-temperate 

estuaries elsewhere (Reeve, 1975; Montú, 1980; Soetaert & Van Rijswijk, 1993; Hopcroft 

et al., 1998). The late-summer pattern of occurrence observed in this study is quite similar 

to that reported in the Westerschelde (Soetaert & Van Rijswijk, 1993) and Killary Harbour 

(Ryan et al., 1986). 

This species was first recorded in Southampton Water in 1995/96 by Castro-

Longoria (1998), but due to the 220 µm mesh used most of O.nana nauplii and earlier 

copepodite forms were not collected, resulting in an underestimation of the impact that 

O.nana has on total copepod abundance in this estuary.  Its absence in previous studies of 

the zooplankton of Southampton Water could also be due, to some degree, to the larger 

mesh-size used in other studies, in fact, the absence of O.nana within Southampton Water 

was specifically mentioned by Raymont and Carrie (1964) who expected it to be plentiful 

since it was abundant off the Isle of Wight (Figure 1 – Chapter 1). Perkins (1974) 

attributed this absence to the shallow nature of coastal plain estuaries, although this is 
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unlikely since it has been reported in other shallow estuaries elsewhere (Reeve, 1975; 

Montú, 1980; Hopcroft et al., 1998).  

Investigations that employed finer mesh-size (Reeve, 1975; Montú, 1980; Ryan et 

al., 1986; Roff et al., 1988; Hopcroft et al., 1998; Richard & Jamet, 2001) usually ranked 

O.nana among the most abundant species. Reeve (1975) attributed 50% of the total 

copepod biomass of Card Sound in southern Florida to O.nana alone, while Lampit (1978) 

in a sea loch on the west coast of Scotland, indicates that it can amount up 67% of the 

biomass as dry weight (90 % in terms of numbers). Ryan et al. (1986) considered O. nana 

as the most abundant copepod in the Irish inlet of Killary Harbour, with abundances over 

50000 organisms m-3, similar to those of the present investigation, being reported. In 

contrast, in the Westerschelde, Soetaert & Van Rijswik (1993) reported maximum values 

of 12000 organisms m-3. The widespread acceptance and use of 200 µm mesh as the 

standard net for mesozooplankton (Bé et al., 1968) should, however, be reconsidered as the 

importance of oithonids and other small copepod species in zooplankton catches is being 

reassessed (Kiørboe & Nielsen, 1994; Nielsen & Sabatini, 1996; Hopcroft et al., 1998; 

Gallienne & Robins, 2001; Hansen et al., 2004). In the particular case of O.nana, Richard 

& Jamet (2001) reported that over 80% of adults and copepodites can pass through a 

200µm mesh.   

Zinger (1989) and Hirst (1996) studies are the only previous investigations carried 

out in Southampton Water where similar nets to the present study were employed, i.e. 100 

– 120 µm mesh. Of these two, only Hirst (1996) reported the occurrence of any cyclopoid 

at all, and, despite the fact that overall copepod densities reported by him (Figure 9 – 

Chapter 1) were much lower than in the present study, the proportion of cyclopoids 

(~2.7%) and seasonality of occurrence at Calshot were very similar to the values presented 

here. This would suggest that the identification of those cyclopoids as Oithona similis by 

Hirst (1996), could be in error. A definitive answers for the “sudden” appearance of 

O.nana in Southampton Water must certainly include the possibility that they have been 

either ignored or under-sampled by particular sampling devices/protocols, although this is 

unlikely since O.nana had been systematically recorded in every investigation since 1995 

(J.A.Williams pers. comm.) in abundances up to 1507 organisms m-3, even when 220µm 

mesh were employed (Castro-Longoria, 1998). Its complete absence in previous studies 

indicates/suggests that the species appeared after the 1985-1987 or 1990-1991 samplings 

carried out by Zinger (1989), and Lucas  (1993) respectively, both of which included inner-

estuarine sampling sites which are the most probable place for this species to be found in 

high numbers.     
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The recent occurrence of this species is possibly related to environmental or 

biological changes in this estuary. Richard & Jamet (2001) indicate O.nana to be a suitable 

species to act as a biological indicator of anthropogenic perturbed systems, and the 

negative correlation with dissolved oxygen could be related to this, but further studies and 

other parameters should be measured in order to further investigate this. Changes in 

copepod composition, where smaller and more numerous organisms replace large species 

that had been previously detected, have been associated with increasing eutrophication in 

other planktonic communities (Zaitsev, 1992; Uye, 1994). In Tokyo Bay, Uye (1994) 

suggested that nutrient loading promoted a shift from diatoms to flagellates and thus 

favoured O.davisae  that feeds well on flagellates (Uchima & Hirano, 1986). At the present 

moment no data indicating such changes are available in Southampton Water, but this 

should clearly be addressed in future investigations. 

Anyway, it is clear that O.nana is now established within this estuary and is found 

throughout the year at the inner stations, with maxima usually occurring during summer-

autumn months and minima in spring. Of the environmental factors measured (Table 8), 

chlorophyll a and dissolved oxygen (concentration and % saturation) showed a significant 

negative correlation (P<0.05) with the abundance of O.nana, while MDS plot highlighted 

the spatial preference.  

The impact of grazing could, of course, produce this kind of relationship with 

chlorophyll. While O.nana peaked at Cracknore around 20 days after the last major peak of 

chlorophyll a and could indeed have grazed phytoplankton down, it also maintained high 

abundances, >13000 organisms m-3, for more than three months after the last 

phytoplankton bloom, when chlorophyll a. concentrations were, on average, 1.19 mg m-3 

(Figure 19).  

This would suggest that an additional/alternative feeding strategy to phytoplankton 

grazing could be part/all of the answer to its high numbers in late-autumn and early-winter. 

Lampitt & Gamble (1982) reported that O.nana is a raptorial feeder with an opportunistic 

diet, able to consume particulates from detritus to phytoplankton and including the earlier 

stages of calanoid nauplii, and even copepodite stages (Lampitt, 1979). This, allied with a 

low metabolic demand, could explain its high numbers in low phytoplankton 

concentrations (Lampitt & Gamble, 1982). Although no significant correlation was found 

between copepod nauplii and O. nana the potential value of nauplii as a food resource 

cannot be ruled out since the mesh employed in this investigation clearly under-sampled 

copepod nauplii. O.nana, however, strongly correlated (r = 0.34,  p<0.01) with the smallest 

copepodite stages of Acartia reported here, i.e. 288 – 360 µm prosome length (Chapter 5), 
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and these are within the upper size limit that can be eaten by O. nana (Lampitt & Gamble, 

1982). Further investigation is clearly required regarding what is maintaining this large 

community in Southampton Water before any further comment, as no data on other 

possible food sources are available. Certainly there is a growing body of literature 

suggesting that oithonids consume other food material in preference to diatoms. Uchima & 

Hirano (1986) demonstrated that O.davisae does not feed on diatoms but preferably on 

motile flagellates, while Nakamura & Turner (1997) report that O.similis has a diet based 

on autotrophic/heterotrophic (dino)flagellates, ciliates and nauplii, with heterotrophic 

dinoflagellates and ciliates as its main food source. Additionally, González & Smetacek 

(1994) reported that O.similis can meet 20 to 30% of its daily carbon requirement by faecal 

matter alone, and also point out that on the Weddel Sea (Antarctica) Oithona could subsist 

and reproduce entirely from faecal material. Either way it is clear that Oithona plays an 

important role in pelagic food webs, possibly being responsible for reprocessing faecal 

material and/or making nano, microflagelates and ciliates available to higher trophic levels.      
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Figure 19. Seasonal pattern of Chlorophyll a concentration and Oithona nana abundance at Cracknore in 
2001/02.  
 

 

The importance of O.nana  is clearly reflected by the Cracknore data during the 

present study, where it represented 50% of total copepods and had a biomass equivalent to 
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a total of 752 mg C m-3 (Chapter 5), or 76% of the total biomass of Acartia spp. (991 mg C 

m-3 – Chapter 5) for the same period. Acartia, in turn, represented only 18% of the total 

copepods and 96% of the calanoids at Cracknore (Figure 11). Even allowing for its low 

relative importance in the lower estuary, where the total biomass of O. nana were only 9 

mg C m-3 i.e. 1.03% of the biomass of Acartia spp (873 mg C m-3 – Chapter 5), this 

previously unconsidered abundance/biomass, together with copepod nauplii and 

E.acutifrons, can go some way to explain the low copepod secondary production estimate 

within Southampton Water (Hirst et al., 1999), which was exclusively based on calanoid 

copepods (see Chapter 5). 

Increases in the knowledge of the biology and ecology of oithonids is a current “hot 

topic” in pelagic ecology, since its potential role was clearly underestimated by coarser 

meshes employed in earlier studies. Recently, oithonids together with other small species, 

were proposed at the Marine Zooplankton Colloquium 2 (Paffenhöfer et al., 2001) as a 

potential topic for future studies  because its occurrence in vast numbers can clearly affect 

processes underlying marine ecosystems function. 

 

Of the remaining holoplanktonic groups, only Oikopleura had high abundances, 

with the numbers recorded during this survey higher than any previous estimates and 

approaching those of Zinger (1989) for total Urochordates. Oikopleura is a relatively small 

organism and if caught without its mucus capsule the smaller forms can clearly pass 

through the coarser mesh-size employed by Lucas (1993) and Castro-Longoria (1998), 

resulting in the relative low numbers reported by them, where a maximum of 1091 

organisms m-3 were reported by Castro-Longoria (1998) in May 1995. Hirst (1996), 

employing a 118 µm mesh, reported values similar to those of Lucas (1993) and Castro-

Longoria (1998) recording a maximum of 1172 organisms m-3 in May 1993. In contrast to 

Castro-Longoria (1998), who suggested that Oikopleura had an inconsistent distribution 

pattern within this estuary, the results presented here and in other studies indicate that 

Oikopleura was always found within Southampton Water with peaks of abundance during 

May. During the present study another peak in August, in addition to the May peak (>3000 

organisms m-3), was observed at the three stations. These values and the pattern of 

seasonality are similar to those reported by Ryan et al., (1986) at Killary Harbour, where a 

peak of 3054 organisms m-3 was reported early in June. In the Westerschelde maximum 

abundances of 8000 organisms m-3 in July have been reported (Soetaert & Van Rijswijk, 

1993). Hansen & Anderson (1962) also found a maximum of 3500 organisms m-3 during 

August at Bloden Ground, while Paffenhöfer (1976) also found greatest numbers of 
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O.dioica in June-July in the southern North-Sea, with a maximun of 8500 organisms m-3. 

In other estuaries O.dioica was observed with averaged abundances of 7364 organisms m-3 

(peak of 11343 organisms m-3) at Tampa Bay (Hopkins, 1977), while at North Inlet (South 

Carolina) averaged values of 9581 organisms m-3 (peak of 20072 organisms m-3) have been 

reported (Costello & Stancyk, 1983). At the Avon-Heathcote estuary (New Zealand) 

maximum of 548 organisms m-3 were reported. 

In the present study, the abundance of Oikopleura was significantly correlated with 

chlorophyll (Table 8) and this is clearly illustrated in the MDS plots (Figure 14 r and 

Figure 15 e). The size of population is, in part, clearly linked with the occurrence of 

phytoplankton blooms since abundances were much lower in spring 2002 when compared 

with 2001 when blooms occurred. Appendicularians are important and efficient filter 

feeders, and with the aid of their mucus capsules they are capable of filtering and retaining 

particles as small as nanoplankton (Esnal, 1981).  (It has been reported that these houses 

can be produced in 5 to 240 minutes (Esnal, 1981; Raymont, 1983), and with Oikopleura 

dioica having a life cycle between 3 - 5 days (22 ºC) and 10 - 12 days (14 °C) this can 

result in the production of up to 8 houses per day (Fenaux, 1976). The production of this 

mucopolysaccharide capsule is one of the most important factors about the biology of these 

organisms, because in bloom conditions these capsules became easily clogged and then 

abandoned by the animal, which will secret another one. The discarded capsules become a 

potentially concentrated source of energy as it contains mucus, detritus, phytoplankton and 

bacteria that otherwise would remain unavailable. Esnal (1981) and Raymont (1983) report 

that several zooplanktonic organisms benefit from this rich food source including 

copepods, euphausiids and fish).  

Little attention has been given to this group in Southampton Water so far, but as 

seen in Figure 9 (Chapter 1) and Figure 10 they are clearly important during their peak 

season, in addition to which discarded capsules will clearly boost the significance of this 

group to overall energy flow within the mesozooplankton community. 

   
 The “gelatinous” predators Sagitta setosa (Chaetognatha) and Pleurobrachia 

pileus (Ctenophora) were reported previously by several zooplanktonic studies (Zinger, 

1989; Lucas, 1993; Hirst, 1996; Castro-Longoria, 1998), and were the subject of specific 

studies within this estuary (Frid, 1984; Lucas, 1993; Frid et al., 1994). Despite the 

difference in mesh sizes, the abundance and seasonal/spatial distribution of P.pileus found 

during this investigation agrees with that reported by Lucas (1993), where P.pileus was 

usually found from April to October, and peaking in June, with abundances up to 20 

organisms m-3. Spatially it was usually much more abundant at Cracknore compared with 
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the other two stations. At Killary Harbour, Ryan et al., (1986) observed P.pileus at similar 

abundances with up to 26 organisms m-3 being reported in May however, a second peak of 

75 organisms m-3 were also observed in September. In contrast to ctenophores, S.setosa 

was observed in higher abundances, up to 62 organisms m-3, and found throughout the 

year. Like previous investigations, it was more abundant and frequent at Calshot and 

usually found from September to October. Again, mesh sizes is considered the cause of the 

higher abundances and frequency of occurrence of S.setosa in this study. At Killary 

Harbour, where finer meshes (90 µm) were employed, Ryan et al., (1986) observed similar 

S.setosa abundances with up to 55 organisms m-3 being reported in early November. 

Baretta & Malschaert (1988), sampling with a 200 µm mesh net, only reported 5 organisms 

m-3 in the Ems estuary. 

Ctenophores and chaetognaths are active predators and can be responsible for the 

large-scale depredation of zooplankton in some areas (Boltovskoy, 1981a; Raymont, 1983; 

Båmstedt, 1998; Kasuya et al., 2000). Despite the fact that simplistic inverse correlations 

between copepods and these predators have been reported (Fraser, 1962; 1970; Deason & 

Smayda, 1982), no significant correlation was observed during the present study. However, 

the decline in Acartia abundance during early-summer could be related with the peak 

abundance of P.pileus by simple superposition of abundance graphs at Cracknore, where it 

was more abundant (Figure 20).  
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 Figure 20. Seasonal pattern of abundance of Pleurobrachia pileus and Acartia spp. at Cracknore in 2001/02.  
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Analysis of the gut contents of P.pileus indicates that Acartia spp. is the main prey 

item, but E.acutifrons, copepod nauplii and barnacle nauplii are also important in the diet. 

Despite their relatively low abundance, the real impact the two predators can have on the 

zooplankton of this estuary should be investigated further. 

 

Of the remaining copepods found, Anomalocera pattersoni, Labidocera wollastoni 

and Stephos scotti had been previously reported by Castro-Longoria (1998) at abundances 

lower than 1 organism m-3 within the Solent, and were probably brought into the estuary in 

water from the English Channel. The occurrences of Calanus helgolandicus and Corycaeus 

anglicus within this estuary are probably due to the same processes. Isias clavipes and 

Parapontella brevicornis were also reported by Castro-Longoria (1998) as an occasional 

occurrence, but despite the low abundances found in this study both showed a seasonal 

pattern within the estuary.  

Six new taxa are reported for the first time within the holoplankton of Southampton 

Water. Bosmina sp. and Daphnia sp. are freshwater species and were certainly brought into 

the estuary by riverine input. Microsetella norvegica is a widespread neritic harpacticoid 

copepod that was probably transported into the estuary from the English Channel, where it 

is known to occur  (Rose, 1933; Raymont, 1983). Little is known about the distribution of 

Pseudocyclopia sp. and apart from its record, no further comments can be made. Attention 

should also be drawn to the occurrence of Oncaea sp., which, like Oithona nana, is a small 

species that has been consistently under-sampled by meshes of small size and was 

identified by the marine Zooplankton Colloquium 2 (MZC2) as a potential species for 

future studies (Paffenhöfer et al., 2001).   

The euphausiid Meganyctiphanes norvegica is also identified for the first time 

within this estuary, however unidentified specimens were observed previously in the 

Solent region by Castro-Longoria (1998). During the present study only three late furcilia 

and one caliptopis stage of M. norvegica were caught on different occasions at Calshot and 

Cracknore, although unidentified nauplii of euphausiids were found on a regular basis 

further into the estuary at Cracknore and NW. Netley. Meganyctiphanes norvegica was 

also reported by Williams & Collins (1986) in the inner reaches of the Bristol Channel and 

also in Killary Harbour (Ryan et al., 1986). The occurrence of euphausiids in these shallow 

waters is remarkable, since they are usually of open water distribution (Mauchline, 1980; 

Raymont, 1983; Mauchline, 1984).  

Podon sp., Acartia grani, Centropages typicus, Stephos minor, Oithona similis and 

Oncaea similis had previously been reported within the holoplankton of this estuary and 
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surrounding areas but were not observed in this study. Of these, A.grani is a Mediterranean 

species that was only reported in the 1950’s (Raymont & Carrie, 1964; Lance & Raymont, 

1964). Podon sp., C.typicus, S.minor, Oncaea similis and Oithona similis were reported at 

Calshot and in the Solent, usually on single occasions and at very low abundances. Their 

prior occurrence within Southampton Water clearly indicates the occasional/regular 

incursion of species usually found in the English Channel (Rose, 1933; Digby, 1950; 

Raymont, 1983; Green et al., 1993).  
 
 Estuaries which do not drain completely during ebb tides have a characteristic 

zooplankton composition, which will be a reflection of the interaction of physical, 

biological and environmental factors, allied with the chance of organisms being caught, or 

not, by  particular sampling artefacts or surveys (Raymont & Carrie, 1964; Perkins, 1974; 

Soetaert & Van Rijswijk, 1993). Accordingly, it can be said (Perkins, 1974) that these 

estuarine plankton can be summarized into three main components:   

1 - Autochthonous populations; the permanent residents or those organisms always 

present in the estuary. 

2 - Temporary autochthonous; those introduced from neighbouring regions and 

capable of limited proliferation, although dependant upon reinforcement from the parent 

population. 

3 - Allochthonous populations; those brought into the estuary either from the sea or 

river which are unable to propagate and probably dying rapidly within the estuary. 
 
The holoplankton of Southampton Water can be considered with respect to these 

categories and also according to its origin as indicated in Table 10.  
 

Table 10. Autochthonous and allochthonous holoplanktonic populations of Southampton Water, with all 
previous records and origin. 

Autochthonous Temporary autochthonous Allochthonous  
Acartia discaudata (E/M)† Pseudocalanus elongatus (M) Labidocera wollastoni (M) 
Acartia margalefi (E)  Isias clavipes (M) Anomalocera pattersoni (M) 
Acartia clausi (E/M) † Paracalanus parvus (M) Stephos scotti (M) 
Acartia bifilosa (E/M)  Eurytemora affinis (E) Pseudocyclopia sp. (M) 
Acartia tonsa (E) Calanus helgolandicus (M) Corycaeus anglicus (M) 
Temora longicornis* (E/M) † Parapontella brevicornis (M) Microsetella norvegica (M) 
Centropages hamatus* (E/M) † Oncaea sp. (M) Meganycthiphanes norvegica (M) 
Oithona nana (E/M) † Pleurobrachia pileus (M) Daphnia sp.(F) 
Euterpina acutifrons (E/M) † Sagitta setosa* (M) Evadne nordmanii (M) 
 Oikopleura sp*(E/M) † Bosmina sp.(F) 
  Podon sp. (M) 
  Centropages typicus (M) 
  Oithona similis (M) 
  Oncaea similis (M) 
  Acartia grani (M) 
  Stephos minor (M) 
Highlighted species are known to produce resting eggs, so they can be temporarily “absent” from the water column.  
* species that were found throughout the year, and not clear if autochthonous or temporary autochthonous. 
† species of marine origin, but since they were present at this estuary all year round (E/M) was attributed.  
(E) = Estuarine; (M) = Marine; (F) = Fresh Water 
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This division presented in Table 10 is clearly arbitrary and only considers the 

patterns observed during this study. This clearly reflects the marine nature of Southampton 

Water, since several “marine” species were considered “estuarine” inhabitants. The results 

presented here are in line with classical estuarine studies in which the estuarine 

holoplankton communities are generally composed of calanoid copepods of the genus 

Acartia and/or Eurytemora (Conover, 1956; Jeffries, 1962; Cronin et al., 1962; Jeffries, 

1967; Haertel & Osterberg, 1967; Heinle, 1972; Frolander et al., 1973; Bousfield et al., 

1975; Reeve, 1975; Hulsizer, 1976; Wooldridge & Melville-Smith, 1979; Alcaraz, 1983; 

Baretta & Malschaert, 1988; Buskey, 1993). However, when considering studies where a 

finer mesh-size was employed (Reeve, 1975; Hopkins, 1977; Montú, 1980; Turner, 1982; 

Ryan et al., 1986; Soetaert & Van Rijswijk, 1993; Hopcroft et al., 1998; Hoffmeyer, 2004) 

estuarine holoplankton communities in addition to Acartia and Eurytemora, will also be 

dominated in some seasons and/or locations by the calanoid Parvocalanus crassirostris, 

the cyclopoid Oithona spp (viz. O.similis, O.nana and O.colcarva) and the harpacticoid 

Euterpina acutifrons. These reports clearly reflect Southampton Water, since at some 

seasons and locations, other components like E.acutifrons and O.nana clearly overshadow 

the numerical importance of Acartia (Table 11). 

  
Table 11. Overall seasonal/spatial pattern of dominance of holoplanktonic forms within Southampton Water, 
based on the averaged value for each season. For the dominance of each Acartia species see Table 9. 

Station Winter Spring Summer Autumn 
Cracknore O.nana 

Copepod nauplii 
Acartia spp. 

Copepod nauplii O.nana O.nana 

NW.Netley Copepod nauplii Acartia spp. 
Copepod nauplii 

E.acutifrons. 
Copepod nauplii 

Acartia spp. 
O.nana 

Calshot Acartia spp. 
Copepod nauplii 

Acartia spp. 
Copepod nauplii 

E.acutifrons. 
Acartia spp. 

E.acutifrons. 
Acartia spp. 

 

 As proposed in Chapter 1, attention should be drawn to the two “ends” of this 

estuary, where contrasting situations are seen.  At the mouth of the estuary, exemplified by 

Calshot, virtually no cyclopoids were recorded, with winter-spring dominated by Acartia 

spp. and copepod nauplii while the summer-autumn period was defined by Acartia spp. 

and E.acutifrons. At the head, at Cracknore, the cyclopoid O.nana clearly dominates the 

summer-autumn period, even outnumbering all other organisms summed. Therefore the 

overall pattern of copepods within the estuary as a whole might, simplistically, be best 

illustrated by the NW.Netley composition depicted in Figure 10, not forgetting that almost 

all calanoids are Acartia spp., harpacticoids E.acutifrons and all cyclopoids O.nana.  
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2.5. Chapter Conclusions 
 

• 31 taxa were recorded among the holoplankton, with 6 taxa being reported 
for the first time within this estuary. 

  
• Apart from Acartia, very few calanoids had any numerical importance, with 

C.hamatus, T.longicornis, P.parvus, P.elongatus and E.affinis having some 
significance during their respective seasons. 

 
• Five Acartia species were recorded coexisting during this study; with 

A.margalefi, A.discaudata found throughout the year while A.tonsa and 
A.clausi was found during summer-autumn and A.bifilosa in winter-spring. 
A.margalefi and A.tonsa were more abundant at the inner reaches, while 
A.clausi and A.bifilosa at the mouth. A.discaudata was found at high 
abundances throughout the estuary.   

 
• Contrary to previous studies, no simplistic species succession in the Acartia 

species was observed, with all species co-existing and peaking almost at the 
same periods.  

 
• Other than calanoids, copepod nauplii, Oikopleura (Urochordata), 

E.acutifrons (Harpacticoida) and O.nana (Cyclopoida) had high 
abundances, even outnumbering Acartia in different seasons and locations. 
Acartia only dominated zooplankton samples throughout the estuary during 
spring.  

 
• E.acutifrons had a consistent pattern of abundance at all three stations, 

peaking during summer, and maintaining high numbers throughout autumn. 
 

• O.nana was observed in substantial numbers only towards the inner reaches 
of this estuary, where it clearly dominates from late-summer to early-winter.  

 
• Correlations between biological and non-biological environmental variables 

reflect the seasonal patterns observed. 
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Chapter 3 

The mero and tycoplankton of Southampton Water. 

 

3.1. Introduction. 

 

 
As already pointed out in previous chapters, the major constituents of the 

zooplankton community of Southampton Water have been described (Conover, 1957; 

Soares, 1958; Raymont & Carrie, 1964; Lance & Raymont, 1964; Bird, 1972; Barlow & 

Monteiro, 1979; Frid, 1984; Reubold, 1988; Zinger, 1989; Williams & Reubold, 1990; 

Geary, 1991; Lucas, 1993; Lucas & Williams, 1994; Lucas et al., 1995; Hirst, 1996; 

Castro-Longoria & Williams, 1996; Lucas et al., 1997; Castro-Longoria, 1998; Hirst et al., 

1999; Chinnery, 2002; Muxagata et al., 2004). Despite the number of studies, only the 

holoplankton are described in any detail, with the meroplankton and tycoplankton either 

being virtually ignored, relegated to broad taxonomic groups or only included on lists of 

“occurrence”. 

Apart from the work of Raymont & Carrie (1964) and the Ph.D theses of Hirst 

(1996) and Castro-Longoria (1998) where several mero and tycoplanktonic species were 

briefly reported, only barnacle larvae (Soares, 1958; Muxagata et al., 2004) and gelatinous 

predators (Williams & Reubold, 1990; Lucas, 1993; Lucas & Williams, 1994; Lucas et al., 

1995; Lucas et al., 1997) are reported in detail, with the composition, seasonality and 

abundance of the different species given.  

This lack of study is probably due to the fact that apart from Cirripedia, Mollusca 

and Polychaeta that have some substantial contribution (Chapter 1), the remaining 

meroplankton and tycoplankton species only constitute a small fraction of the zooplankton 

of Southampton Water. Because of this they were often combined within a “general” group 

in the zooplankton of the estuary (Zinger, 1989; Lucas, 1993; Hirst, 1996; Castro-

Longoria, 1998), with no specific details being given. 

Decapods can be used as an example of the magnitude of the lack of information 

for this zooplankton fraction. It is well known that decapods, as a whole, contain 

potentially commercial species, but despite this importance, and the fact that more than 50 

species are reported on the French side of the English Channel (Bodo et al., 1965; Martin, 

2000), the occurrence of larvae of only three species, Necora (Portunus) puber, 
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Scyllarum(?) spp. and Pisidia (Porcellana) longicornis (Barlow & Monteiro, 1979; Castro-

Longoria, 1998) have been described so far, with no data on other constituents or any 

general seasonality. Information on other groups, such as the minor elements of the 

tycoplankton or even commensal and parasitic species, that have a short, free-living 

planktonic form at some stage of their life cycle, could be expected to be even more 

problematic. Surprisingly, the occurrences of the parasitic meroplankton species Sacullina 

carcini, Peltogaster paguri, Notodelphys allmahi and Monstrilla sp. and tycoplankton 

Harpacticus spp, Canuella sp., Zaus sp., Altheuta sp., Mesopodopsis slaberri and 

Neomysis integer have been reported in several species list of Southampton Water (Soares, 

1958; Raymont & Carrie, 1964; Hirst, 1996; Castro-Longoria, 1998; Muxagata et al., 

2004) and more frequently than species of decapod, mollusc and polychaete. However, 

apart from barnacle larvae and gelatinous predators, no critical detail is available regarding 

the distribution and seasonality of any of the remaining mero-tycoplanktonic species. 

This is not a particular feature of Southampton Water. Specific information on 

invertebrate larvae in plankton catches are usually scarce and confined to broad taxonomic 

groups, with the exception of decapod and mollusc larvae (Lebour, 1947; Sankarankutty, 

1975; Wehrtmann, 1989) that have been described in more detail because they have some 

representatives of commercial importance (Raymont, 1983). Usually in estuarine studies, 

invertebrate larvae are relegated to broader taxonomic groups (Hopkins, 1977; Turner, 

1982; Williams & Collins, 1986; Imabayashi & Endo, 1986; Baretta & Malschaert, 1988; 

Kimmerer, 1993; Soetaert & Van Rijswijk, 1993; Hoffmeyer, 2004) with usually only 

holoplanktonic copepods being described  in any detail. This absence of data on 

invertebrate larvae is of concern considering that several species have meroplanktonic 

larvae that can be seasonally abundant. Basic studies about the distribution, abundance and 

composition of meroplanktonic larvae can provide a unique source of data to be used in the 

management, monitoring and/or exploitation of these resources, or even to assess 

human/environmental impacts. Such data, allied with retrospective studies, can also be 

used to investigate recruitment of new commercial populations as well as to study dispersal 

and colonization of new environments; identify reproductive regions and seasons; predict  

future captures and estimate the size and health of parental populations (Boschi, 1981; 

Wehrtmann, 1989). In fact, since rates in zooplankton populations originate at species 

level, information about the spatial-temporal importance of species is vital before any 

attempt to quantify and model specific processes (Soetaert & Van Rijswijk, 1993). 

Considering these points, the objective of the present chapter is to evaluate the 

contribution of mero and tycoplanktonic species, especially crustaceans, within the estuary, 
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and so offer a baseline reference of most of the species that compose this group together 

with their seasonality of occurrence in the zooplankton.  

 

3.2. Materials and Methods. 
 

 The methodologies employed for collection and identification of the 

different species are fully described in Chapter 1.  

 

3.2.1. Data Analysis. 

 

As in the previous chapter, Pearson’s product-moment correlation coefficient r was 

used to measure the intensity of the association between the biotic and abiotic variables. To 

stabilize the variance of the data, zooplankton abundances were  transformed, 

and the average oxygen saturation and average Chl. a were log transformed before 

analysis (Prepas, 1984; Zar, 1999; Clarke & Warwick, 2001).  

)1(log10 +x

)(10 x

In order to further investigate the relationship between samples collected at 

different stations and seasons, a Bray-Curtis similarity matrix was constructed using all 

meroplanktonic taxa abundances after a 5.0+x transformation. This transformation was 

chosen in order to adjust the influence of numerically dominant species and allow for the 

contribution of “intermediate” species without losing information about the dominant ones. 

Ordination was done by non-metric multi-dimensional scaling (MDS), with plots 

calculated using the PRIMER 5 package (Clarke & Warwick, 2001) in the same form 

described in Chapter 2.  

 

3.2.2. Other studies. 

 
 As with the previous chapter, raw data of previous investigations of Southampton 

Water were compiled and graphs redrawn with the same standards and scales used in this 

study, in order to form a clearer understanding when discussing/comparing results.    

 
 

3.3. Results. 
 

A total of 113 taxa were identified, consisting of 72 meroplanktonic and 41 

tycoplanktonic forms. Of these, 84 are new records for the zooplankton of Southampton 

Water (species with * and ** in Table 12), although most of them have been observed as 
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adults in the benthos of Southampton Water and the Solent (Barnes et al., 1973; Hibbert, 

1975; Thorp, 1980; Rowe, 1999; Guyard, 2000; Collins & Mallinson, 2000) (species with 

** on Table 12). Numbers in front of each taxon, indicates the number of its picture on 

Appendix V.  
 
Table 12. Meroplankton (M) and tycoplankton (T) taxa observed in the zooplankton of Southampton Water 
during the present investigation. (For more details see Table 3 – Chapter 1). 

Phylum Cnidaria  
2-Unidentified  (M) 
3-Aurelia aurita (M) 
4-Sarsia sp. (M) 
5-Phialella quadrata (M) 
6-Clytia hemisphaerica(M) 

Phylum Mollusca  
9-Gastropod Veliger unidentified (M) 
11-Bivalve veliger unidentified (M) 

 

Phylum Annelida 
13-Unidentified Polychaeta (M) 
14-Autolytus edwardsi (M) 
15-Unidentified spionidea larvae (M) 

Phylum Chelicerata 
  Order  Acarina 

16-Unidentified Acari∗ (T) 
17-Achelia sp. ∗∗ (T) 
18-Nymphon brevirostre ∗∗ (T) 

Phylum Crustacea 
          Order Cladocera 

20-Unidentified Chydoridae∗ (M) 
Subclass Cirripedia 
  Order Thoracica 

24-Conchoderma sp. ∗ (M) 
25-Verruca stroemia  (M) 
26-Chthamalus stellatus∗ (M) 
27-Elminius modestus  (M) 
28-Semibalanus balanoides  (M)  
29-Balanus crenatus  (M) 
30-Balanus improvisus  (M) 

Order Acrothoracica 
31-Trypetesa sp. *(M) 

Order Rhizocephala 
32-Sacculina carcini (M)  
33-Peltogaster paguri (M) 

Subclass Copepoda 
     Order Harpacticoida   

54- Unidentified (T) 
55-Canuella sp. ∗∗ (T) 
58-Sacodiscus sp.∗ (T)  
59-Tisbe spp.∗ (T) 
60-Thalestris sp.∗  (T) 

           Order Cyclopoida 
61-Unidentified (M) 
62-Cyclopinoides littoralis ∗ (M) 
63-Unidentified notodelphydae ∗ (M)  

           Order Siphonostomatoida 
69-Unidentified (M) 
70-Asterocheres sp. ∗(M) 
71-Caligus elongatus ∗ (M) 
73-Cancerilla tubulata ∗ (M) 
74-Bradypontius papillatus∗ (M) 
 
 

Order Monstrilloida 
75-Monstrilla conjunctiva ∗ (M) 
76-Monstrilla helgolandica ∗ (M) 
77-Cymbasoma longispinosus∗ (M) 
78-Cymbasoma rigidus∗ (M) 
79-Cymbasoma thompsoni∗ (M) 

 Class Ostracoda 
80-Unidentified ostracod (T) 

Subclass Hoplocarida 
   Order Stomatopoda 

81-Rissoides desmaresti ∗∗ (M) 
         Subclass Eumalacostraca 
            Order Mysidacea 

82- Siriella armata ∗∗ (T) 
83- Siriella clausii ∗∗ (T) 
84- Anchialina agilis∗ (T) 
85- Gastrosaccus sanctus ∗ (T) 
86- Leptomysis lingvura ∗∗(T) 
87- Mysidopsis gibbosa ∗ (T) 
88- Acanthomysis longicornis ∗(T)  
89- Mesopodopsis slabberi (T) 
90- Paramysis arenosa  ∗∗ (T) 
91- Schistomysis kervillei ∗∗ (T) 

            Order Isopoda 
92- Unidentified praniza∗ (T) 
93- Idotea sp. ∗∗ (T) 
94-Unidentified cryptonistic form ∗(M) 

Phylum Crustacea 
            Order Amphipoda 

95-Unidentified (T) 
96-Amphilochus manudens ∗ (T) 
97-Gitana sp.∗ (T) 
98-Parapleustes sp.∗ (T) 
99-Aora gracilis∗∗ (T) 
100-Corophium spp. ∗∗ (T) 
101-Jassa sp.∗ (T) 
102-Apherusa spp. ∗∗ (T) 
103-Atylus vedlomensis ∗∗(T) 
104-Echinogammarus marinus ∗∗(T) 
Megaluropus agilis ∗ (T) 
Melita sp. ∗ (T) 
105-Orchomene humilis∗(T) 
Argissa hamatipes.∗ (T) 
106-Parametaphoxus fultoni ∗∗ (T) 
107- Pariambus typicus ∗∗ (T) 
108- Phtisica marina ∗∗ (T) 

 Order Cumacea 
109-Pseudocuma similis ∗(T) 

            Order Decapoda  
                Infraorder Caridea 

112-Palaemon spp. ∗∗ (M) 
113-Palaemon elegans ∗ (M) 

114-Alpheus glaber ∗∗ (M) 
115-Athanas nitescens ∗∗ (M) 
116-Hippolyte spp. ∗∗ (M) 
117-Thoralus cranchii ∗∗ (M) 
118-Processa sp. ∗∗ (M) 
119-Crangon crangon ∗∗ (M) 
120-Crangon bispinosus ∗∗ (M) 
121-Crangon trispinosus ∗∗ (M) 
122-Crangon fasciatus ∗∗ (M) 

   Infraorder Thalassinidea 
123-Axius stirhynchus ∗∗ (M) 
125-Upogebia sp. ∗∗ (M) 

  Infraorder Anomura 
126-Diogenes p.pugilator ∗∗ (M) 
127-Anapagurus hyndmanni ∗∗ (M) 
128-Pagurus bernhardus ∗∗ (M) 
129-Galathea squamifera ∗∗ (M) 
130-Pisidia longicornis (M) 
131-Porcellana platycheles ∗∗ (M)  

                 Infraorder Brachyura 
132-Ebalia tuberosa ∗ (M) 
133-Ebalia tumefacta ∗∗ (M) 
134-Maja squinado ∗∗ (M) 
135-Hyas sp. ∗∗ (M) 
136-Inachus sp.∗∗ (M) 
137-Macropodia spp.∗∗ (M) 
138-Pisa sp.∗∗ (M) 
139-Corystes cassivelaunus ∗∗(M) 
140-Liocarcinus spp.∗∗ (M) 
141-Carcinus maenas∗∗ (M) 
142-Pilumnus hirtellus ∗∗ (M) 
143-Pinnotheres pisum ∗∗ (M) 

Phylum Phoronida  
144-Actinotrocha unidentified* (M)  

Phylum Bryozoa  
145-Cyphonaute unidentified (M) 

 

Phylum Chaetognatha 
            Order  Phragmorpha 

146-Spadella cephaloptera ∗ (T) 
Phylum Echinodermata  

Order Ophiurida 
148- Amphipholis squamata ∗∗ (T) 

Phylum Chordata 
      Class Ascidiacea 

150-Unidentified (M) 
      Class Osteichthyes 

151-Unidentified fish egg (M)  
152-Unidentified fish larvae (M) 

 
∗ Taxon reported for the first time in the 
zooplankton of Southampton Water 
∗∗ Reported within the benthos of the 
surrounding area. 

 
As most of the knowledge about the benthic species occurring in this estuary and 

surrounding area is sparse, and based on unpublished reports and personal observations, the 

species that could be supplying adults and/or larvae to the zooplankton, apart from 

barnacles and fish, are summarized in Table 13.  
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Table 13. Benthic organisms found in the Southampton Water and the Solent (Part 1 of 3). 
Phylum Mollusca 

Class Polyplacophora 
Acanthochitona crinita (Pennant, 1777) (6,7) 
Lepidochitona cinerea (Linnaeus, 1767) (6,7) 
Leptochiton asellus (Gmelin, 1791) (1,6,7) 

Class Gastropoda 
Order Archaeogastropoda 

Diodora graeca (Linnaeus, 1758) (6,7) 
Tricolia pullus (Linnaeus, 1758) (6,7) 
Gibbula cineraria (Linnaeus, 1758) (1,3) 
Gibbula umbilicalis (da Costa, 1778) (6,7,8) 
Calliostoma zizyphinum (Linnaeus, 1758) (6,7) 

Order Patellogastropoda 
Patella depressa Pennant, 1777 (2) 
Patella ulyssiponensis Gmelin, 1791 (2) 

Order Mesogastropoda 
Lacuna crassior (Montagu, 1803) (1) 
Lacuna vincta (Montagu, 1803) (6,7) 
Littorina littorea (Linnaeus, 1758) (1)  
Hydrobia ulvae (Pennant, 1777) (8) 
Crepidula fornicata (Linnaeus, 1758) (1,2,3,6,7) 
Trivia monacha (da Costa, 1778) (1,6,7)  

Order Neogastropoda 
Nucella lapillus (Linnaeus, 1758) (1,3) 
Ocenebra erinacea (Linnaeus, 1758) (1,6,7) 
Buccinum undatum Linnaeus, 1758 (1,3,6,7) 
Neptunea antiqua (Linnaeus, 1758) (1,2) 
Hinia reticulata (Linnaeus, 1758) (1,2,3,6,7,8) 
Hinia incrassata (Ström, 1768) (6,7) 

              Order Anaspidea 
Akera bullata O F Müller, 1776 (1) 

Order Nudibranchia 
Goniodoris castanea Alder & Hancock, 1845 (6,7) 
Doto coronata (Gmelin, 1791) (1) 
Acanthodoris pilosa (Abildgaard, 1789) (1,6,7) 
Onchidoris bilamellata (Linnaeus, 1767) (1,6,7) 
Archidoris pseudoargus (Rapp, 1827) (1) 

Class Pelecypoda 
Order Mytiloida 

Mytilus edulis Linnaeus, 1758 (1,2,6,7,9) 
Modiolus modiolus (Linnaeus, 1758) (1) 

Order Nuculoida 
Nucula spp. (2,8) 
Nucula nitidosa Winckworth, 1930 (1,3,6,7) 
Nucula nucleus (Linnaeus, 1758) (6,7)  

Order Ostreoida 
Ostrea edulis Linnaeus, 1758 (1,2,3,6,7,9)  
Chlamys varia (Linnaeus, 1758) (1,6,7)  
Aequipecten opercularis (Linnaeus, 1758) (1,6,7)  

             Order Veneroida 
Cerastoderma edule (Linnaeus, 1758) (1,2,6,7,8,9)  
Cerastoderma glaucum (Poiret, 1789) (2,9)  
Parvicardium ovale (G B Sowerby II, 1840) (6,7) 
Parvicardium exiguum (Gmelin, 1791) (1) 
Spisula elliptica (Brown, 1827) (6,7) 
Lutraria angustior Philippi, 1844 (6,7) 
Lutraria lutraria (Linnaeus, 1758) (6,7) 
Solen marginatus Pulteney, 1799 (2) 
Ensis siliqua (Linnaeus, 1758) (2) 
Ensis ensis (Linnaeus, 1758) (2) 
Abra nitida (O F Müller, 1776) (1,9) 
Tapes decussatus (Linnaeus, 1758) (2,9) 
Tapes rhomboides (Pennant, 1777) (2) 
Tapes aureus (Gmelin, 1791) (9) 
Venerupis senegalensis (Gmelin, 1791) (9) 
Macoma balthica (Linnaeus, 1758) (9) 
Scrobicularia plana (daCosta, 1778) (9) 
Mercenaria mercenaria (Linnaeus, 1758) (2,8,9) 
Petricola pholadiformis Lamarck, 1818 (2,9) 

Order Myoida 
Corbula gibba (Olivi, 1792) (6,7) 
Mya truncata Linnaeus, 1758 (2) 
Mya arenaria Linnaeus, 1758 (2) 
Barnea candida (Linnaeus, 1758) (1) 

Pholas dactylus (Linnaeus, 1758) (3) 

 Class Cephalopoda 
Sepia officinalis Linnaeus, 1758 (1) 

Phylum Annelida 
Class Polychaeta 

Order Phyllodocida 
Aphrodita aculeata Linnaeus, 1758 (1,6,7) 
Harmothoe sp. (8) 
Gattyana cirrosa (Pallas, 1766) (6,7) 
Lepidasthenia argus Hodgson, 1900 (6,7) 
Lepidonotus squamatus (Linnaeus, 1767) (6,7) 
Lepidonotus clava (Montagu, 1808) (6,7) 
Pholoe inornata Johnston, 1839 (6,7,8) 
Sthenelais boa (Johnston, 1839) (1,6,7) 
Sthenelais limicola (Ehlers, 1864) (6,7) 
Eteone longa (Fabricius, 1780) (1,6,7,8) 
Mysta picta (Quatrefages, 1866) (6,7)  
Anaitides mucosa (Oersted, 1843) (6,7,8) 
Eulalia viridis (Linnaeus, 1767) (6,7) 
Eumida bahusiensis Bergstrom, 1941 (8) 
Eumida sanguinea (Oersted, 1843) (8) 
Eumida sp. (8) 
Glycera tridactyla Schmarada, 1861 (8) 
Glycera sp. 
Glycinde nordmanni (Malmgren, 1866) (6,7) 
Kefersteinia cirrata (Keferstein, 1862) (8) 
Syllidia armata Quatrefages, 1866 (8) 
Ehlersia cornuta (Rathke, 1843) (8) 
Syllis sp. (8) 
Syllis gracilis Grube, 1840 (8) 
Streptosyllis websteri Southern, 1914 (6,7,8) 
Syllides benedicti Banse, 1971 (8) 
Typosyllis armillaris (O F Müller, 1771) (6,7) 
Exogone hebes (Webster & Benedict, 1884) (8) 
Exogone naidina Oersted, 1845 (8) 
Sphaerosyllis sp. (8) 
Sphaerosyllis erinaceus Claparède, 1863 (8) 
Autolytus sp. (6,7,8) 
Hediste diversicolor (O F Müller, 1776) (2) 
Neanthes irrorata (Malmgren, 1867) (2) 
Nereis longissima Johnston, 1840 (2,8) 
Nereis pelagica Linnaeus, 1761 (1) 
Perinereis cultrifera (Grube, 1840) (6,7,8) 
Platynereis dumerilii (Audouin & Milne-Edwards, 1834) (1,6,7,8) 
Websterinereis glauca (Claparède, 1870) (8) 
Nephtys caeca (Fabricius, 1780) (2,8) 
Nephtys assimilis Oersted, 1843 (8) 
Nephtys hombergii Savigny, 1818 (1,6,7,8) 
Nephtys incisa Malmgren, 1865 (2) 
Nephtys cirrosa Ehlers, 1868 (6,7,8) 
Nephtys sp. (6) 

Order Eunicida 
Lysidice ninetta Audouin & Milne-Edwards, 1833 (6,7) 
Marphysa sanguinea (Montagu, 1813) (6,7) 
Parougia caeca (Webster & Benedict, 1884) (8) 
Protodorvillea kefersteini (McIntosh, 1869) (8) 

Order Orbiniida 
Scoloplos armiger (O F Müller, 1776) (6,7,8) 
Aricidea minuta Southward, 1956 (8) 

Order Spionida 
Poecilochaetidae serpens Allen, 1904 (8) 
Polydora sp. (6,8) 
Polydora caeca (Oersted, 1843) (8) 
Polydora ciliata (Johnston, 1838) (8) 
Pseudopolydora antennata (Claparède, 1870) (8) 
Pseudopolydora pulchra (Carazzi, 1895) (8) 
Pygospio elegans Claparède, 1863 
Spio armata Thulin, 1957 (6,7) 
Spio decorata Bobretzky, 1870 (8) 
Spio martinensis Mesnil, 1896 (8) 
Spiophanes bombyx (Claparède, 1870) (8) 
Apelochaeta ssp. (8) 
Aphelochaeta marioni (Saint-Joseph, 1894) (8) 
Cirriformia tentaculata (Montagu, 1808 ) (1,8) 
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Table 13. Benthic organisms found in the Southampton Water and the Solent (Part 2 of 3). 
Phylum Annelida (cont.) 

Class Polychaeta (cont.) 
Order Spionida (cont.) 

Caulleriella bioculata (Keferstein, 1862) (6,7) 
Caulleriella alata (Southern, 1914) (8) 
Caulleriella zetlandica (McIntosh, 1911) (8) 
Chaetozone sp. (6) 
Chaetozone gibber Woodham & Chambers, 1994 (8) 
Chaetozone setosa Malmgren, 1867 (8) 
Tharyx sp. (8) 
Tharyx killariensis (Southern, 1914) (8) 

Order Flabelligerida 
Pherusa plumosa (O F Müller, 1776) (1,2)  

Order Capitellida 
Capitella capitata (Fabricius, 1780) (8) 
Notomastus latericeus M Sars, 1851 (8) 
Arenicola sp. (8) 
Arenicola marina (Linnaeus, 1758) (3) 
Clymenura sp. (8) 
Euclymene oerstedii (Claparède, 1863) (6,7,8)  

Order Opheliida 
Ophelia bicornis Savigny, 1818 (2)  
Ophelia rathkei  McIntosh, 1908 (2) 
Scalibregma inflatum Rathke, 1843 (2) 

Order Terebellida 
Polycirrus sp. (6,7) 
Ampharete sp. (6,7) 
Lagis koreni Malmgren, 1866 (6,7) 
Amphitritides gracilis (Grube, 1860) (1) 
Lanice conchilega (Pallas, 1766) (1,3,6,7,8) 
Eupolymnia nebulosa (Montagu, 1819) (1,6,7) 
Sabellaria spinulosa Leuckart, 1849 (1,6,7) 
Melinna palmata(Grube, 1869 (2,6,7) 
Terrebellides stroemi M Sars, 1835 (2) 
Thelepus cincinnatus (Fabricius, 1780) (1) 

Order Sabellida 
Sabella pavonina Savigny, 1820 (2,6,7) 
Sabella spp. (3) 
Hydroides sp. (8) 
Hydroides ezoensis Okuda (8) 
Branchiomma bombyx (Dalyell, 1853) (1) 
Laonome kroyeri Malmgren, 1866 (1) 
Pomatoceros triqueter (Linnaeus, 1758) (6,7,8) 
Pomatoceros lamarcki (Quatrefàges, 1866) (8) 

Phylum Crustacea 
Class Maxillopoda 
  Subclass Copepoda 

Order Harpacticoida 
Asellopsis intermedia (T Scott, 1895) (8) 
Canuella perplexa T Scott & A Scott, 1893 (8) 
Halectinosoma sp. (8) 
Rhizothrix sp.  (8) 

Order Poecilostomatoida 
Hersiliodes sp. (8) 

Class Malacostraca 
  Subclass Hoplocarida 

Order Stomatopoda 
Rissoides desmaresti (Risso, 1816) (4) 

      Subclass Eumalacostraca 
 Order Mysidacea 

Siriella armata (H Milne-Edwards, 1837) (6,7) 
Siriella clausii (G O Sars, 1877) (6,7) 
Gastrosaccus spinifer (Goës, 1864) (6,7) 
Leptomysis gracilis (G O Sars, 1864) (6,7) 
Leptomysis lingvura (G O Sars, 1866) (6,7) 
Leptomysis mediterranea G O Sars, 1877 (6,7) 
Mysidopsis angusta G O Sars, 1864 (6,7) 
Paramysis arenosa (G O Sars, 1877) (6,7) 
Praunus neglectus (G O Sars, 1869) (6,7) 
Schistomysis kervillei (G O Sars, 1885)  (6,7) 
Schistomysis ornata (G O Sars, 1864)  (6,7) 
Schistomysis spiritus (Norman, 1860)  (6,7) 

 
 Order Isopoda 

Gnathia oxyuraea (Liljeborg) (6,7) 
Limnoria lignorum  (Rathke, 1799) (2) 
Limnoria tripunctata (Menzies, 1957) (2) 
Limnoria quadripunctata Holthuis, 1949 (2) 
Sphaeroma serratum (Fabricius, 1787) (1) 
Sphaeroma monodi Bocquet Hoestlandt & Levi, 1954 (8) 
Idotea linearis (Pennant, 1777) (1,6,7) 
Idotea baltica (Pallas, 1772) (1,6,7) 
Athelges paguri (Rathke, 1843) (6) 

Order Tanaidacea 
Tanaissus lilljeborgi Stebbing, 1891 (8) 

Order Cumacea 
Vaunthompsonia cristata Bate, 1858 (6,7) 
Bodotria pulchella (G O Sars, 1879) (8) 
Bodotria scorpioides (Montagu, 1804) (8)  
Iphinoe trispinosa (Goodsir, 1843) (6,7) 
Eudorellopsis deformis (Kroeyer, 1846) (8) 
Diastylis bradyi Norman, 1879 (6,7) 
Diastylis rathkei typica (Kröyer, 1841) (6,7) 
Diastylis rugosa G O Sars, 1865 (6,7) 
Nannastacus unguiculatus (Bate, 1859) (6,7) 
Pseudocuma longicornis (Bate, 1858) (6,7) 

Order Amphipoda 
Apherusa ovalipes Norman & T Scott, 1906 (6,7) 
Gammarellus angulosus (Rathke, 1843) (6,7,8) 
Monoculodes carinatus (Bate, 1856) (6,7) 
Perioculodes longimanus (Bate & Westwood, 1868) (6,7) 
Pontocrates arenarius (Bate, 1858) (6,7,8) 
Pontocrates altamarinus (Bate & Westwood, 1868) (6,7) 
Amphilochus neapolitanus Della Valle, 1893 (8) 
Leucothoe incisa Robertson, 1892 (6,7,8) 
Leucothoe lilljeborgi  Boeck, 1861 (8) 
Leucothoe procera Bate, 1857 (8) 
Leucothoe sp. (8) 
Iphimedia eblanae Bate, 1857 (6,7) 
Ampithoe rubricata (Montagu, 1808) (6,7) 
Urothoe brevicornis Bate, 1862 (6,7) 
Urothoe poseidonis Reibisch, 1905 (8) 
Parametaphoxus fultoni (T Scott, 1890) (8) 
Harpinia pectinata G O Sars, 1891 (6,7) 
Lysianassa ceratina (A O Walker, 1889) (6,7) 
Atylus guttatus (Costa, 1851) (6,7) 
Atylus vedlomensis (Bate & Westwood, 1862) (6,7) 
Atylus swammerdamei (H Milne-Edwards,1830) (6,7,8) 
Dexamine spinosa (Montagu, 1813 (6,7,8) 
Ampelisca aequicornis Bruzelius, 1859 (6,7) 
Ampelisca brevicornis (Costa, 1853) (6,7,8) 
Ampelisca diadema (A Costa, 1853) (3,6,7) 
Ampelisca macrocephala Liljeborg, 1852 (6,7) 
Ampelisca tenuicornis Liljeborg, 1855 (6,7) 
Ampelisca typica (Bate, 1856) (6,7) 
Ampelisca sp. (6) 
Siphonoecetes striatus Myers & McGrath, 1979 (6,7) 
Bathyporeia elegans Watkin, 1938 (6,7) 
Bathyporeia guilliamsoniana Bate, 1856 (6,7,8) 
Bathyporeia pelagica (Bate, 1856) (6,7) 
Bathyporeia sarsi Watkin, 1938 (8) 
Echinogammarus marinus (Leach, 1815) (6,7) 
Gammarus locusta (Linnaeus, 1758) (6,7,8) 
Gammarus sp. (8) 
Cheirocratus sp. (8) 
Abludomelita obtusata (Montagu, 1813) (7) 
Maera othonis (H Milne-Edwards,1830) (6,7) 
Melita palmata (Montagu, 1804) (6,7,8) 
Ericthonius sp. (8) 
Ericthonius punctatus (Bate, 1857) (8) 
Aora gracilis  (Bate, 1857) (8) 
Corophium arenarium Crawford, 1937 (8) 
Corophium sextonae Crawford, 1937 (6,7) 
Corophium volutator (Pallas, 1766) (1) 
Pariambus typicus Kröyer, 1845) (8) 
Phtisica marina Slabber, 1789 (8) 
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Table 13. Benthic organisms found in Southampton Water and the Solent (Part 3 of 3). 
Phylum Crustacea (cont.) 
      Subclass Eumalacostraca (cont.) 

Order Decapoda 
      Infraorder Caridea 

Palaemon longirostris H Milne-Edwards, 1837 (4) 
Palaemon serratus (Pennant, 1777) (4) 
Alpheus glaber (Olivi, 1792) (6,7) 
Athanas nitescens (Leach, 1814) (1,6,7) 
Eualus occultus (Lebour, 1936) (6,7) 
Hippolyte varians Leach, 1814 (6,7) 
Hippolyte sp. (4) 
Thoralus cranchii (Leach, 1817) (5,7) 
Processa nouveli holthuisi Al-Adhub & Williamson, 1975 (6,7) 
Pandalina brevirostris (Rathke, 1837) (4,5,6,7)  
Pandalus montagui Leach, 1814 (4) 
Crangon allmanni Kinahan,1857 (6,7) 
Crangon crangon (Linnaeus, 1758) (1,4,6,7,8) 
Crangon bispinosus neglecta (Hailstone, 1835) (6,7)  
Crangon trispinosus (Hailstone, 1835) (6,7) 
Crangon fasciatus (Risso, 1816) (5,6,7) 
Infraorder Astacidea 
Homarus gammarus (Linnaeus, 1758)  (1,4) 
Infraorder Palinura 
Palinurus elephas (Fabricius, 1787) (4) 
Infraorder Thalassinidea 
Axius stirhynchus Leach, 1815 (5) 
Upogebia deltaura (Leach, 1815) (5) 
Infraorder Anomura 
Diogenes pugilator pugilator (Roux, 1829) (6,7) 
Anapagurus chiroacanthus (Liljeborg, 1856) (6,7) 
Anapagurus hyndmanni (Bell, 1845) (4,6,7) 
Pagurus bernhardus (Linnaeus, 1758) (1,3,4,6,7,8) 
Pagurus cuanensis Bell, 1845 (4,6,7) 
Pagurus spp (3) 
Galathea squamifera Leach, 1814 (3,4,6,7) 
Galathea intermedia Liljeborg, 1851 (1,6,7) 
Galathea strigosa (Linnaeus, 1767) (1) 
Pisidia longicornis (Linnaeus, 1767) (1,3,4,5,6,7) 
Porcellana platycheles  (Pennant, 1777) (4) 
Infraorder Brachyura 
Ebalia tumefacta (Montagu, 1808) (2,6,7) 
Ebalia sp (4,5)  
Maja squinado  (Herbst, 1788) (4,6,7) 
Hyas coarctatus Leach, 1815 (1) 
Inachus dorsettensis (Pennant, 1777) (1) 
Inachus leptochirus Leach, 1814 (6,7) 
Inachus phalangium (Fabricius, 1775) (4,6,7) 
Macropodia deflexa  Forest, 1978 (6,7) 
Macropodia linaresi Forest & Z Alvarez, 1964 (5,6,7) 
Macropodia rostrata  (Linnaeus, 1761) (1,3,6,7) 
Macropodia sp.  (4,8) 
Pisa tetraodon (Pennant, 1777) (1,3,4) 
Corystes cassivelaunus (Pennant, 1777) (2,6,7) 
Pirimela denticulata  (Montagu, 1808) (2) 
Cancer pagurus Linnaeus, 1758 (1,4,6,7) 
Liocarcinus arcuatus (Leach, 1814) (1,4,5,6,7,8) 
Liocarcinus depurator (Linnaeus, 1758) (1,4,6,7) 
Liocarcinus holsatus (Fabricius, 1798) (1,6,7) 
Liocarcinus pusillus (Leach, 1815) (2,5,6,7) 
Liocarcinus spp (3,6,7) 
Necora puber (Linnaeus, 1767) (4,6,7) 
Carcinus maenas (Linnaeus, 1758) (1,2,4,8) 
Portumnus latipes (Pennant, 1777) (2,6,7) 
Goneplax rhomboides (Linnaeus, 1758) (4) 
Pilumnus hirtellus (Linnaeus, 1761) (1,4,5,6,7) 
Brachynotus sexdentatus (Risso, 1826) (6,7) 
Pinnotheres pisum (Linnaeus, 1767) (1,2,6,7) 

 
Phylum Chelicerata 

Class Pycnogonida 
Anoplodactylus pygmaeus (Hodge, 1864) (8) 
Nymphon brevirostre Hodge, 1863 (6,7) 
Nymphon gracile Leach, 1814 (6,7) 
Nymphon rubrum (Hodge, 1865) (6) 
Achelia echinata Hodge, 1864 (6,7) 

Phylum Bryozoa  
Class Gymnolaemata 

Order Ctenostomatida 
Alcyonidium gelatinosum (Linnaeus, 1761) (1) 
Alcyonidium spp. (3) 
Amathia lendigera (Linnaeus, 1758) (1) 

Order Cheilostomatida 
Flustra foliacea (Linnaeus, 1758) (1,3) 
Bugula turbinata Alder, 1857 (3) 
Bugula spp. (3) 

Phylum Echinodermata  
Class Asteroidea 

Order Velatida 
Crossaster papposus (Linnaeus, 1767) (1) 

Order Spinulosida 
Henricia sanguinolenta (O F Müller, 1776) (1)  

Order Forcipulatida 
Asterias rubens Linnaeus, 1758 (1) 

Class Ophiuroidea 
Order Ophiurida 

Ophiura sp. (4) 
Ophiothrix fragilis (Abildgaard, 1789) (1,6,7) 
Amphipholis squamata (Chiaje, 1829) (6,7) 

Class Echinoidea 
Order Echinoida 

Psammechinus miliaris (Gmelin, 1778) (1) 
Class Holothurioidea 

Order Dendrochirotida 
Thyone fusus (O F Müller, 1776) (1) 

Phylum Chordata 
Class Ascidiacea 

Order Enterogona 
Clavelina lepadiformis (O F Müller,1776) (1,3) 
Archidistoma aggregatum Garstang, 1891 (1)  
Morchellium argus (Milne-Edwards, 1841) (1,3) 
Sidnyum sp. (1) 
Diplostoma listerianum (Milne-Edwards, 1841) (1) 
Ciona intestinalis (Linnaeus, 1767) (1,3) 
Perophora listeri Forbes, 1848 (1) 
Ascidiella aspersa (O F Müller,1776) (1) 
Ascidia conchilega O F Müller,1776 (1) 

Order Pleurogona 
Styela clava Herdman, 1882 (1,2,3) 
Polycarpa pomaria (Savigny, 1816) (1) 
Polycarpa scuba Monniot, 1970 (1,3) 
Dendrodoa grossularia (van Beneden, 1846) (1,3) 
Botryllus schlosseri (Pallas, 1766) (1) 
Botrylloides leachi (Savigny, 1816) (1) 
Molgula occulta Kupffer, 1875 (1) 

 
Underlined species were observed within Southampton 
Water  
 
References: 
1 = Barnes et al., (1973); 
2 = Thorp (1980); 
3 = Collins & Mallinson (2000); 
4 = Mallinson (Pers. Com.); 
5 = Widiawari (Pers. Com.) 
6 = Axelsson (Pers. Com); 
7 = Guyard (2000); 
8 = Rowe (1999); 
9 = Hibbert (1975); 
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3.3.1. Meroplankton. 

 

After copepods, barnacle larvae were numerically the second most abundant group 

found in the mesozooplankton of Southampton Water during 2001-2002 (Figure 7 – 

Chapter 1). They averaged 45, 57 and 57% of the meroplankton at Cracknore, NW.Netley 

and Calshot, respectively; contributing up to 95% on some occasions (Figure 21). 

 

������

���	
	�

�������

�������

�����	��

�������	��

�����	�	��

�	��������

����������

��
���
���
���
���
���
���
���
 ��
!��
����

"�#��
$
�%#��

&
��#��

�
��#��

&
��#��

"'#��
"'�#��
�
'(#��

)
��#��

�
��#��

*
	+#��

�
��#��

"�#��
$
�%#��

&
��#��

�
��#��

&
��#��

"'#��
"'�#��

�
'(#��

��
���
���
���
���
���
���
���
 ��
!��
����
��
���
���
���
���
���
���
���
 ��
!��
����

 
Figure 21. Seasonal contribution of the different meroplankton groups at Cracknore (Top), NW. Netley 
(Middle) and Calshot (Bottom) during 2001/02.  

 

Polychaeta, Gastropoda, Pelecypoda (bivalves), Ascidia, Cnidaria, Bryozoa, and 

Decapoda complete the remaining major meroplanktonic contributors that had substantial 

 87 



Chapter 3 – The mero and tycoplankton of Southampton Water 

numerical contributions (Figure 21). The remaining meroplanktonic groups/species were 

considered minor contributors and were grouped under the heading “Others” in Figure 21. 

Apart from the barnacles and decapods that were detailed to species, the remaining major 

contributors were only accounted as groups, with a few species of polychaetes and 

cnidarians identified (Table 12) but not quantified. 

After barnacles, polychaetes were the next in abundance with larvae present in the 

plankton throughout the whole period (Table 14), and averaging 32, 17 and 9% of the 

meroplankton at Cracknore, NW.Netley and Calshot, respectively. Lower abundances were 

usually observed during autumn and winter and maxima from early-spring to late-summer. 

Peaks of abundance in April (3140 organisms m-3) and August (2696 organisms m-3) were 

observed at Cracknore where polychaetes were much more abundant when compared with 

abundances at the other stations (Figure 22).  
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Figure 22. Temporal variability of the major meroplanktonic groups at Calshot, NW. Netley and Cracknore 
during 2001/02. (Note that figures are on different scales, and that the order of stations is changed for the 
Gastropoda)  
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Mollusca were differentiated into veligers of bivalves and gastropods and both, like 

Polychaeta, were present in plankton catches throughout the entire sample period (Table 

14). Bivalves had a marked “seasonality”, where high abundances were only observed 

from May to August, with peaks observed in June-July (more than 6000 organisms m-3 at 

Cracknore) and August. Like polychaetes, bivalves were more abundant in the inner 

estuary, with abundances gradually decreasing towards the mouth of the estuary, averaging 

11, 9 and 7% of the meroplankton composition at Cracknore, NW.Netley and Calshot, 

respectively. Gastropods, in contrast, were much more abundant at Calshot with abundance 

diminishing towards the inner estuary. Several peaks of abundance were recorded from late 

spring throughout autumn, with a maximum of 2748 organisms m-3 in April 2002 at 

Calshot (Figure 22). Gastropods averaged 7, 10 and 21% of the meroplankton at 

Cracknore, NW.Netley and Calshot, respectively 

 
Bryozoans were also observed at higher abundances inside the estuary than at the 

mouth. Cyphonaute larvae were recorded throughout the year at abundances usually >1 

organism m-3 (Table 14), with a peak abundance of 1414 organisms m-3 at Cracknore in 

July 2002 (Figure 22). They usually averaged 3% of the meroplankton at each station. 

Ascidians were usually observed from May through to November (Table 14), and were 

relatively abundant from June to September, peaking in August (636 organisms m-3). 

Abundances were much higher at the inner stations than at the mouth (Figure 22). Overall, 

ascidians averaged 0.7, 0.5 and 0.1% of the meroplankton at Cracknore, NW.Netley and 

Calshot, respectively. Cnidarians were mainly noted from February to October, with peak 

abundances observed from May through to August (Table 14). The maximum abundance 

recorded was 325 organisms m-3 observed at NW.Netley in July 2002 (Figure 22). 

Cnidarians usually averaged  ~1% of the meroplankton at each station. 

 
 

Table 14. Seasonal occurrence of the major meroplanktonic groups in Southampton Water, with the frequency of 
occurrence (FO) of each taxa. Where ■ = Cracknore; ▲= NW. Netley, ● = Calshot. Colour shades indicates 
average abundances, where,            = 0,           = 0.001 ⌐  0.01,           = 0.01 ⌐ 0.1,            = 0.1 ⌐ 1.0,  
           = 1.0 ⌐ 10,            = 10 ⌐ 100,          = 100 ⌐ 1000  and          = ≥ 1000 organisms m-3. 

Species J F M A M J J A S O N D FO 
Major contributors 

Cirripedia (total) ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● 100% 
Decapoda (total) ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● 100% 
Cnidaria (total)  ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■ ■▲●  ▲ 81% 
Bivalve veliger (total) ■    ● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■ ▲ 78% 
Gastropod veliger (total) ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ▲● 98% 
Polychaeta (total) ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● 100% 
Unidentified Bryozoa (total)  ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● 90% 
Unidentified ascidian (total) ▲  ■▲ ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■ ■  47% 
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During this study 10 species of Cirripedia were identified, and Figure 23 illustrates 

the temporal abundance distribution of the most abundant ones at Southampton Water. Of 

those, Elminius modestus was the most numerically abundant, occurring in the plankton 

throughout the year and found in every single sample, averaging between 56-60% of 

barnacle larvae at each station. This species typically had lower abundances in winter, with 

averages of 36, 58 and 47 organisms m-3 at Cracknore, NW.Netley and Calshot. During 

spring its abundance began to increase with averages of 351, 558 and 320 organisms m-3 at 

the same stations, and with a maximum of 1037 organisms m-3 in May 2002 at Cracknore. 

Maximum abundances were recorded during the summer-autumn months (July to 

December) with averages of 1053, 1299 and 1512 organisms m-3, and a maximum of 9940 

organisms m-3 in July 2002 at Cracknore. From autumn its abundance gradually declines 

towards the winter values (Figure 23). 

The second most abundant species, Balanus crenatus, presented a marked seasonal 

pattern of abundance (Figure 23). It was most abundant during late-winter and early-

spring, with winter-spring averages of 175, 1130 and 1149 organisms m-3 at Cracknore, 

NW.Netley and Calshot. Apart from Cracknore, abundances were much higher at 

NW.Netley and Calshot in 2002, with peaks up to 11963 organisms m-3 in April. During 

winter-spring B.crenatus averaged 36, 50 and 49 % (or 24, 36 and 33% during the entire 

sampling period) of the barnacles at Cracknore, NW.Netley and Calshot, respectively. 

Occasionally, very few larvae of this species were found during summer-autumn. 

Balanus improvisus also had a very marked seasonal pattern of abundance (Figure 

23). It usually appeared during summer-autumn, with averages of 339, 148 and 16 

organisms m-3, at Cracknore, NW.Netley and Calshot respectively, and was much more 

abundant and frequent at the inner stations, where a peak of 1767 organisms m-3 were 

recorded at Cracknore in 2002. This species was present in relative very low numbers 

during the winter and spring, with averages of 0.4, 0.8 and 0.1 organism m-3 recorded at 

the three stations during winter compared with 52, 29 and 4 organisms m-3 during spring. 

B.improvisus was absent from samples between mid-autumn to early-winter (November – 

January) averaging 10, 3 and 1% of the barnacles during the entire sampling period at 

Cracknore, NW.Netley and Calshot, respectively. 
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Figure 23. Temporal variability and seasonal contribution of barnacle larvae at Cracknore, NW. Netley and 
Calshot during 2001/02. (Note that abundance interval indicates 1000 organisms m-3 and that the temporal 
variability of S.carcini, P.paguri and others are not shown due to the low abundances) 
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Semibalanus balanoides and Verruca stroemia expressed the same pattern of 

distribution as B.crenatus, but at much lower abundances. A maximum of 441  organisms 

m-3 were recorded for S.balanoides in April 2002 at NW.Netley and 486 organisms m-3 for 

V.stroemia in April 2001 at Calshot (Figure 23). Both completely disappear from the 

plankton from June to February. While S.balanoides was observed at apparent similar 

abundances at all three stations throughout the sample period V.stroemia was clearly more 

abundant in 2001 compared with 2002, particularly at Calshot. During the entire sampling 

period S.balanoides averaged 2-3% of the barnacle composition at each station while 

V.stroemia accounted for <1, 1 and 5% of the barnacles at Cracknore, NW.Netley and 

Calshot, respectively. 

The remaining barnacle species, Sacculina carcini, Peltogaster paguri, Chthamalus 

stellatus, Conchoderma sp. and Trypetesa sp. were present at very low abundances. The 

parasitic species S.carcini and P.paguri were found throughout the year, with abundances 

up to of 106 organisms m-3 observed for S.carcini in August 2001 and 19 organisms m-3 

for P.paguri in February 2002 (Table 15). Only single individuals of Chthamalus stellatus, 

Trypetesa sp. and Conchoderma sp. were observed in a few samples (Table 15). 

 
Table 15. Seasonal occurrence of Cirripedia larvae species found in Southampton Water, with the frequency of 
occurrence (FO) of each taxa. Where ■ = Cracknore; ▲= NW. Netley, ● = Calshot. Colour shades indicates 
average abundances, where,            = 0,           = 0.001 ⌐  0.01,           = 0.01 ⌐ 0.1,           = 0.1 ⌐ 1.0,   
          = 1.0 ⌐ 10,           = 10 ⌐ 100,          = 100 ⌐ 1000  and          = ≥ 1000 organisms m-3. 

Species J F M A M J J A S O N D FO 
Trypetesa sp.       ●      1% 
Conchoderma sp.    ▲         1% 
Chthamalus stellatus   ■ ▲         2% 
Elminius modestus ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● 100% 
Verruca stroemia ■ ■    ● ■▲● ■▲● ● ● ●      38 
Semibalanus balanoides ■    ● ■▲● ■▲● ■▲● ■▲● ▲       44% 
Balanus crenatus ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■    ●     77% 
Balanus improvisus ■ ■    ● ■▲ ■▲● ■▲● ■▲● ■▲● ■▲● ■▲ ■▲   62% 
Peltogaster paguri ■    ● ■▲● ■▲● ■▲● ■    ● ■    ● ■    ●  ● ■    ● ● ▲ 37% 
Sacculina carcini ■    ● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● 72% 

 

During the present survey a total of 16102 decapod larvae were recorded at the 

three stations, averaging only 1% of the total meroplankton at each station (Figure 21). 

Decapod larvae do not generally constitute a large fraction of the mesozooplankton of 

Southampton Water only averaging 0.25% of the total mesozooplankton, with maximum 

abundances never exceeding 250 organisms m-3 (Figure 22).  

A total of 31 decapod taxa were identified (but not staged), belonging to four 

infraorders (Table 12). Figure 24 indicates the abundance of each infraorder at each 

station, and it is clear that brachyuran larvae are the most abundant form, averaging 92% of 

all decapod larvae found. 
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Figure 24. Temporal variability and seasonal contribution of the different Decapoda infraorders at Cracknore, 
NW. Netley and Calshot during 2001/02.  

 

In terms of individual contribution, Carcinus maenas, Liocarcinus spp., Pagurus 

bernhardus, Crangon crangon, Pisidia longicornis and Macropodia spp. are the most 

numerically common and abundant and together account for 98% of all decapod larvae 

found in Southampton Water. The temporal and spatial abundance of these species can be 

seen in Figure 25. Of all species found, only the brachyuran C.maenas had any numerical 

importance in catches at all stations (Figure 25), accounting, on average, for 78, 66 and 

53% of the decapods at Cracknore, NW Netley and Calshot, respectively. C.maenas larvae 

were found throughout the year (Table 16), but were more abundant during spring, 

particularly in April when maximum abundances of 191, 182 and 39 organisms m-3 were 

recorded at Cracknore, NW. Netley and Calshot, respectively.  
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Figure 25. Temporal variability of the six most abundant Decapoda species at Calshot, NW. Netley and 
Cracknore during 2001/02. (Note that the top 2 graphs are on a different scale and that the order of stations 
were changed for Carcinus maenas and Crangon crangon).  

 

Liocarcinus-type larvae were the second most common decapod larvae, and were 

more abundant at Calshot than at the inner sites (Figure 25). In contrast to C.maenas, 

relative high abundances of Liocarcinus-type larvae were concentrated in May (Table 16). 

Macropodia spp. were relatively common during May to October (Table 16), averaging 

0.24 organisms m-3 at all three stations during this period, with a maximum of 2.7 

organisms m-3 observed at NW. Netley in August 2001. Crangon crangon was the only 

caridean of numerical importance in Southampton Water during the investigation (Figure 

25). It usually occurred from April to September, with peak abundance of 5.2 organisms m-3 

during the summer (Table 16). Among the anomurans, Pagurus bernhardus and Pisidia 

longicornis were the only species with abundances greater than 1 organism m-3. The 

temporal abundance variability of P. bernhardus and P. longicornis is illustrated on Figure 

25, with both species being more abundant towards Calshot and NW. Netley during spring 

and summer, respectively (Table 16).  

Of the remaining species found, only 5, Pilumnus hirtellus, Pinnotheres pisum, 

Galathea squamifera, Thoralus cranchii and Hyppolite spp. were recorded with 
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abundances higher than 1 organism m-3 at a single sample. The seasonal appearance of each 

species, together with its averaged abundance within the estuary, is shown in Table 16. 

Pilumnus hirtellus, Pinnotheres pisum and Galathea squamifera have a marked seasonal 

occurrence in the zooplankton of Southampton Water, with the first two occurring from 

June to October and G.squamifera from January to June. All three were usually more 

abundant towards Calshot, with P.hirtellus presenting abundances as high as 1.8 organisms 

m-3 and P.pisum and G.squamifera 1.2 and 2.7  organisms m-3, respectively. Larvae of 

Thoralus cranchii and Hippolyte spp. were commonly found from May to December 

(Table 16) with maxima of 1.8 and 1.3 organisms m-3 for each species being recorded at 

Calshot and NW. Netley respectively.  

 
Table 16. Seasonal occurrence of Decapoda larvae found in Southampton Water, with the frequency of occurrence 
(FO) of each taxa. Where ■ = Cracknore; ▲= NW. Netley, ● = Calshot. Colour shades indicates average 
abundances, where,            = 0,           = 0.001 ⌐  0.01,           = 0.01 ⌐ 0.1,           = 0.1 ⌐ 1.0,             = 1.0 ⌐ 10,  
           = 10 ⌐ 100,          = 100 ⌐ 1000  and          = ≥ 1000 org. m-3. 

Species J F M A M J J A S O N D FO 
Palaemon elegans        ● ▲●     3% 
Palaemon spp.     ● ▲ ■     ■     7% 
Alpheus glaber       ●      2% 
Athanas nitescens       ■▲ ■▲● ■▲● ■▲●    12% 
Hippolyte spp.   ■   ● ■▲● ■▲ ■▲● ■▲● ■▲● ■   ● ■▲● ● ● 28% 
Thoralus cranchii   ■ ■ ■▲● ■▲● ■▲● ■   ● ▲● ▲   24% 
Processa sp.      ▲ ■   ● ● ●    9% 
Crangon crangon   ■   ● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲●   56% 
Crangon bispinosus     ● ●  ●  ■▲●   7% 
Crangon trispinosus   ■ ■ ■   ● ▲ ● ● ●    10% 
Crangon fasciatus     ▲● ■▲● ■▲● ▲● ▲    19% 
Axius stirhynchus       ● ●     2% 
Upogebia sp.     ■   ● ▲ ● ● ▲● ▲   13% 
Diogenes p.pugilator       ■ ●     2% 
Anapagurus hyndmanni   ● ● ■▲●   ■   ● ● ▲●   12% 
Pagurus bernhardus ■   ● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲ ■   ●     58% 
Galathea squamifera ●  ■▲● ■▲● ■▲● ▲       31% 
Pisidia longicornis     ■▲● ■▲● ■▲● ■▲● ■▲● ▲●   36% 
Porcellana platycheles      ▲● ■▲● ▲●     11% 
Ebalia tuberosa     ▲● ▲ ●  ● ▲●   8% 
Ebalia tumefacta         ● ▲●   4% 
Maja squinado         ●      2% 
Hyas sp.  ● ● ● ●        4% 
Inachus sp      ■      ●   ●   3% 
Macropodia spp    ▲ ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ● ● 35% 
Pisa sp           ●      ●      3% 
Corystes cassivelaunus  ● ▲● ■▲● ■▲●        17% 
Liocarcinus spp   ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲ ▲ ■▲ 69% 
Carcinus maenas ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● 98% 
Pilumnus hirtellus      ■▲● ■▲● ■▲● ■▲● ■▲●   23% 
Pinnotheres pisum      ■▲ ■▲● ■▲● ▲● ▲   19% 
Megalopas (Brachyura)     ■▲● ■▲● ■▲● ■   ● ● ■▲   30% 

 
Considering the remaining species, all of which showed individual average sample 

abundances < 1 organism m-3, Hyas sp. and Corystes cassivelaunus only occurred early in 

the season, in January-June. Apart from these, the remaining species usually presented a 

pattern of appearance during May to August (Table 16) with a few species, Ebalia 

tuberosa, E.tumefacta, Crangon bispinosus, C.trispinosus, Anapagurus hyndmanni and 

Upogebia sp., also extending into October. Generally, most decapods were usually found 
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towards the mouth of the estuary at Calshot, where consistent tidally-associated salinity 

variation is minimal (Figure 3 - Chapter 1). Similarly, many of the species that were 

recorded at all three sites (Table 16) had highest abundances at Calshot. 
  
Apart form the groups/species mentioned, all the remaining meroplanktonic forms 

identified were considered as minor contributors (Table 17) and were grouped together as 

“Others” in Figure 21. With the exception of the Chydoridae (Cladocera), Cyclopinoides 

littoralis (copepod), Rissoides desmaresti (stomatopod), Actinotrocha larvae (Phoronida) 

and fish larvae and eggs, all the remaining minor contributors of the meroplankton are 

regarded as parasitic and/or commensal taxa. Only C.littoralis, unidentified copepodites of 

Siphonostomatoida, unidentified cryptonistic isopods and unidentified fish larvae and eggs 

were recorded frequently enough to present any pattern based on presence throughout the 

year along the entire estuary (Table 17). Cyclopinoides littoralis were usually found from 

January to October on a consistent basis while unidentified copepodites of 

Siphonostomatoida and cryptonistic isopods were found all year round, but more 

abundantly from July to September. Fish eggs were usually found from December to July 

while larvae from February to October (Table 17). The remaining species/taxa were only 

caught sporadically and predominantly at Calshot (Table 17) toward the mouth of the 

estuary. 

 
Table 17. Seasonal occurrence of the minor meroplanktonic species/groups in Southampton Water, with the 
frequency of occurrence (FO) of each taxa. Where ■ = Cracknore; ▲= NW. Netley, ● = Calshot. Colour shades 
indicates average abundances, where,            = 0,           = 0.001 ⌐  0.01,           = 0.01 ⌐ 0.1, 
           = 0.1 ⌐ 1.0,            = 1.0 ⌐ 10,            = 10 ⌐ 100,          = 100 ⌐ 1000  and          = ≥ 1000 organisms m-3. 

Species J F M A M J J A S O N D FO 
Cladocera 

Unidentified Chydoridae    ■    ■     2% 
Copepoda 

Unidentified Cyclopoida ■    ● ■ ▲ ■    ● ■    ●  ■▲● ■    ●   ● ● 9% 
Cyclopinoides littoralis ■▲● ■    ● ■▲● ■▲ ■▲● ■    ● ■    ● ■    ● ● ■▲●   30% 
Unidentified Notodelphydae  ●      ●   ●  2% 
Unidentf.Siphonostomatoida ■    ● ■▲● ■▲● ■    ● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ▲● ■▲ 73% 
Asterocheres sp. ●   ●   ●      4% 
Caligus elongatus ●            1% 
Cancerilla tubulata ●            1% 
Badypontius papillatus   ●    ●      2% 
Monstrilla conjunctiva ● ●           2% 
Monstrilla helgolandica         ▲    1% 
Cymbasoma longispinosus         ●    1% 
Cymbasoma rigidus     ●   ● ●    3% 
Cymbasoma thompsoni     ■▲ ● ■ ■ ▲ ▲   7% 

Isopoda 
Unidentified cryptonistic  ▲● ▲● ■▲● ● ■▲● ▲● ●  ● ■▲● ● ▲● 68% 

Stomatopoda 
Rissoides desmaresti       ▲● ●     3% 

Phoronida 
Unidentified Actinotrocha    ■   ●          3% 

Pisces 
Unidentified fish egg ● ■▲● ■▲● ■▲● ■▲● ■   ● ■   ●     ▲ 56% 
Unidentified fish larvae  ■   ● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■   ●   70% 
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3.3.2. Tycoplankton. 
 

Tycoplanktonic species only averaged 0.6, 0.5 and 1.8% of the total zooplankton at 

Cracknore, NW.Netley and Calshot, respectively but contributing up to 6% on some 

occasions (Figure 6 – Chapter 1). Harpacticoid copepods comprised 97% of the 

tycoplankton found, with unidentified individuals recorded throughout the year with high 

abundances found particularly from June to September (Table 18). 

  
Table 18. Seasonality of occurrence of Tycoplanktonic species/groups in Southampton Water, with the frequency of 
occurrence (FO) of each taxa. Where ■ = Cracknore; ▲= NW. Netley, ● = Calshot. Colour shades indicates 
average abundances, where,            = 0,           = 0.001 ⌐  0.01,           = 0.01 ⌐ 0.1,           = 0.1 ⌐ 1.0,  
           = 1.0 ⌐ 10,            = 10 ⌐ 100,          = 100 ⌐ 1000  and          = ≥ 1000 organisms m-3. 

Species J F M A M J J A S O N D FO 
Chelicerata 

Unidentified Acari       ●      1% 
Achelia sp.       ●      1% 
Nymphon brevirostre      ▲   ▲    2% 

Harpacticoida 
Unidentified Harpacticoida ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■    ● 92% 
Canuella sp. ■    ● ■    ●  ■ ● ▲● ■▲● ■    ●   ●  15% 
Sacodiscus sp. ●  ▲     ■     3% 
Tisbe spp. ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■▲● ■    ● ■▲● ● ● ▲● 62% 
Thalestris sp. ● ■    ● ■▲● ■▲● ■▲● ▲● ● ■    ●     32% 

Isopoda 
Unidentified praniza        ●     1% 
Idotea sp.    ■         1% 

Cumacea 
Pseudocuma similis ●  ▲● ●  ● ● ●     12% 

Ostracoda 
Unidentified Ostracoda ■▲● ● ■    ● ■    ● ■ ■    ● ■▲● ■    ● ■▲ ■▲   34% 

Mysidacea 
Siriella armata       ● ● ● ●   6% 
Siriella clausii        ●  ●   2% 
Anchialina agilis ●         ●   2% 
Gastrosaccus sanctus        ●     1% 
Leptomysis lingvura    ●         1% 
Mysidopsis gibbosa       ● ●     2% 
Acanthomysis longicornis       ●   ●      2% 
Mesopodopsis slabberi ■    ● ▲● ■    ● ■    ● ■▲ ● ■    ● ■    ● ■▲● ■▲●   ▲● ■▲● 38% 
Paramysis arenosa ●            1% 
Schistomysis kervillei ●  ▲          2% 

Amphipoda 
Gammaridea (Total) ■    ● ● ■▲●   ▲● ■▲● ■▲● ■▲● ■    ● ■▲● ■▲● ■    ● ■    ● 55% 
Unidentified    ● ■    ●   ▲● ▲ ■▲● ■▲● ■    ● ■▲● ■▲●  ● 29% 
Amphilochus manudens ▲     ■    ● ●  4% 
Gitana sp.     ●  1% 
Parapleustes sp.    ●   1% 
Aora gracilis  ● ● ■   ■  4% 
Corophium spp. ■    ●  ■ ▲ ■▲ ■ ■▲ ▲ ■ 14% 
Jassa sp. ■ ●  ■▲● ■ ■    ● ■    ●   ▲●  ■ 16% 
Apherusa spp.  ● ● ● ●  ● 8% 
Atylus vedlomensis ● ● ● ● ● ▲● ● ●  ● 17% 
Echinogammarus marinus   ●   ●  3% 
Megaluropus agilis     ●  1% 
Melita sp.     ● ●  2% 
Orchomene humilis ● ● ●    ● ● ● 6% 
Argissa hamatipes     ●  1% 
Parametaphoxus fultoni     ●  1% 
Pariambus typicus ●      1% 
Phtisica marina    ● ■    ● ■ ●  6% 

Chaetognatha 
Spadella cephaloptera   ●         ● 2% 

Echinodermata 
Amphipholis squamata        ●     1% 
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With the exception of all harpacticoids, ostracods, Mesopodopsis slabberi, 

Corophium spp., Jassa sp. and Phitisica marina, most of the taxa reported within the 

estuary were restricted to Calshot (Table 18). 

Of the organisms identified to species, only Canuella sp, Tisbe spp., Thalestris sp., 

M.slabberi, Corophium spp., Jassa sp. and A.vedlomensis were reported with some 

regularity, probably reflecting some seasonal pattern within this estuary. Tisbe spp. was 

found throughout the year on a consistent basis while Canuella sp. and Thalestris sp. were 

usually found from January to August. Canuella sp. was more abundant in summer and 

Thalestris sp. in winter-spring. Mesopodopsis slabberi were also found throughout the 

year, but clearly more abundant during spring and autumn. Corophium spp., Jassa sp. and 

A.vedlomensis were usually found from June to October (Table 18).   

 

3.3.3. Statistical analysis. 

 
Correlations between biotic and abiotic factors that could act as potential forcing 

factors for the distribution patterns highlighted in different species are presented in Table 

19 (Only taxa with 5% or greater frequency of occurrence were considered). As expected, 

temperature was positively correlated with those species abundant during spring – autumn 

(e.g. E.modestus, B.improvisus, E.acutifrons, P.longiornis, P.hirtellus.) and negative for 

those peaking during winter-spring (e.g. B.crenatus, S.balanoides, V.stroemia, 

P.bernhardus). Salinity and Chlorophyll were also positively correlated with most species 

abundant during spring – autumn. Dissolved oxygen was usually negatively correlated with 

those species present during spring – autumn, and positively with those peaking during 

winter – spring, while oxygen saturation was the opposite (Table 19). 
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Table 19. Pearson’s product-moment correlation of biotic and abiotic parameters collected at the three 
stations. Correlations in red are significant at p<0.05, and shaded at p<0.01, ns = not significant. Only shown 
organisms that presented any significant correlation. 
Species/groups T °C S Chl.a O2 O2Sat% 
Polychaeta (total) ns -0.31 0.36 ns ns 
Gastropoda (total) 0.62 0.55 0.57 -0.29 0.35 
Bivalvia (total) 0.84 0.22 0.69 -0.40 0.39 
Ascidian (total) 0.76 ns 0.55 -0.39 0.29 
Cnidaria (total) 0.59 ns 0.68 ns 0.49 
Bryozoan (total) 0.30 ns 0.32 ns ns 
Elminius modestus  0.84 0.27 0.61 -0.56 0.22 
Balanus crenatus  -0.36 ns ns 0.31 ns 
Balanus improvisus  0.69 ns 0.66 -0.29 0.32 
Semibalanus balanoides  -0.47 ns ns 0.30 ns 
Verruca stroemia  -0.41 ns ns 0.26 ns 
Sacculina carcini  0.55 ns 0.26 -0.48 ns 
Pagurus bernhardus -0.28 ns ns 0.27 ns 
Crangon vulgaris 0.42 ns 0.39 ns 0.21 
Liocarcinus spp. ns 0.25 0.41 ns 0.41 
Macropodia spp. 0.51 0.35 0.25 -0.36 ns 
Pilumnus hirtellus 0.37 0.31 ns -0.37 ns 
Psidia longicornis 0.40 0.29 0.25 -0.22 ns 
Porcellana platycheles 0.34 0.20 ns -0.20 ns 
Pinnotheres pisum 0.38 0.20 ns -0.22 ns 
Thoralus cranchii ns 0.20 ns ns ns 
Crangon trispinosus 0.25 0.26 ns -0.26 ns 
Crangon fasciatus 0.33 0.27 0.22 ns ns 
Anapagurus hyndmani ns 0.20 ns ns 0.23 
Athanas nitescens 0.37 ns 0.20 -0.28 ns 
Processa sp 0.38 0.23 ns -0.22 ns 
Upogebia sp 0.34 0.30 ns -0.32 ns 
Cymbasoma thompsoni ns ns 0.34 ns 0.25 
Canuella sp. 0.35 0.14 0.29 ns ns 
Pseudocuma similis ns 0.28 ns ns ns 
Siriella armata 0.26 0.22 ns -0.23 ns 
Mesopodopsis slaberri ns ns ns -0.35 -0.23 
Corophium spp. 0.31 ns 0.28 ns ns 
Jassa sp. 0.34 ns ns -0.24 ns 
Apherusa spp. 0.31 0.24 ns ns ns 
Atylus vedlomensis 0.32 0.28 ns ns 0.20 
Orchomene humilis ns 0.23 ns ns ns 
Phitisica marina 0.25 ns ns -0.31 ns 

 
MDS ordination plots, based on Bray-Curtis similarities of meroplankton and 

tycoplankton species/groups abundances from all samples and for all stations show a clear 

cyclic seasonal pattern (Figure 26 a), with a slight distinction between Calshot and 

NW.Netely/Cracknore in terms of mero-tycoplanktonic composition during spring and 

summer (Figure 26 b). When only spring-summer samples where selected for analysis, the 

spatial differentiation is more evident (Figure 26 c and d). 

Considering the mesozooplankton as a whole, the holoplankton was also added to 

the analyses (Figure 26 e and f) and the cyclic seasonal pattern was still clear, someway 

between Figures 26 (a) and Figure 13 (a - Chapter 2). Again, all sites were intermingled 

together in a big cluster, with only the cluster composed by summer-autumn samples of 

Cracknore shown of Figure 13 (Chapter 2) being evident (Figure 26 e).  
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Figure 26. MDS ordinations of the 108 samples, based from Bray-Curtis similarities on square root 
transformed abundances of all mero-tycoplanktonic organisms (a and b), and only considering spring-
summer samples (c and d). Also included is the MDS for all organisms (holo, mero and tycoplankton) found 
in all samples of the zooplankton of Southampton Water during 2001/02 (e and f). Indicated in Figure b and d 
is an apparent cluster indicating spatial differentiation of Calshot spring-summer samples.   
 
 
 

When the relative abundance of each species/groups (Figure 27 a to r) was 

superimposed over the MDS ordination (Figure 26 a and b), it is easy to follow the 

seasonal occurrence of several species. Species/groups shown in Figure 27 a to d were 

found at the inner stations during spring-summer, while e to j found at the three sites 

during spring-summer. Species/groups k to p were found primarily at Calshot during 

spring-summer, and r shows the distribution of Tisbe spp which was found over the entire 

estuary throughout the year and at similar abundance. 
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Figure 27. MDS of the three sites, as in figure 26 (a and b), with superimposed circles representing relative 
species/group abundances at the three sites. Marked area indicates Calshot spring-summer samples. (Note 
that abundances are in the same proportional scale for a clearer evaluation of patterns). 
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By superimposing the physico-biological parameters measured onto the same MDS 

plot presented in Figure 26 (a and b), it is clear that temperature is responsible for most of 

the pattern presented by the mero and tycoplankton (Figure 28). 
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Figure 28. MDS of the three sites, as in Figure 26 (a and b), with superimposed circles representing the range 
of values of the physico-chemical parameters of all three sites. (Note that concentrations are in the same 
proportional scale for a clearer evaluation of patterns). 

 
 
 

3.4. Discussion. 
 

Before discussing each component of the mero-tycoplankton fraction of 

Southampton Water, it is necessary to point out that both meroplankton and tycoplankton 

compositions of each estuary will be different. The composition and seasonality of 

invertebrate larvae are clearly dependant on the sampling devices utilized and 
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particularities of the distribution and composition of the parental benthic population in the 

near vicinity, which in turn will be a reflection of several aspects, like type of sediments, 

presence/absence of hard substrates, health of the parent populations, recruitment and even 

socio-economical aspects of the surrounding human communities that could be exploiting 

particular species. 

As an example, Bousfield et al., (1975) in the St. Lawrence estuary (Canada) 

reports tycoplanktonic harpacticoid copepods, followed by barnacle larvae and mysids to 

be the most abundant mesozooplankton component after holoplanktonic copepods when 

collecting with pumps and retained on ~158 µm meshes.  Hopkins (1977) in Tampa Bay 

(USA) reports a meroplankton fraction mainly composed by bivalve veligers, followed by 

barnacle larvae, polychaetes and gastropods veligers when employing towed nets of 74 µm 

of mesh-size. In Long Island (USA), Turner (1982) recorded polychaetes, bivalves, 

gastropods and echinoderm larvae as the main constituents when employing towed nets of 

73 µm of mesh-size. In the estuary of Lagoa dos Patos (Brazil) Montú (1980) observed 

barnacle larvae as the most abundant meroplanktonic organism reaching densities even 

higher than all holoplanktonic copepods, followed by decapod larvae as the second most 

abundant meroplanktonic form using 200 µm towed nets. Perissinotto et al., (2000) reports 

unidentified harpacticoid copepods (possible tycoplanktonic) as the dominant form of the 

mero-tycoplankton  fraction, followed by polychaetes in the Nyara estuary (South Africa) 

when employing two nets of 90 and 200 µm mesh-size. Soetaert & Van Rijswijk (1993) 

report bivalve larvae as the most abundant component within the meroplankton of the 

Westerchelde estuary (NW Europe), followed by polychaetes, barnacles, cyphonautes, 

gastropods and equinoderm larvae when collecting with pumps and retaining them on 55 

µm meshes. Baretta & Malschaert  (1988) in the Ems estuary (NW Europe) report similar 

overall composition, with barnacle larvae followed by polychaetes as the most abundant 

components after holoplanktonic copepods when employing 200 µm towed nets. 

So, contrary to what was seen in the holoplankton where estuaries from different 

locations and latitudes present almost similar species composition, the meroplankton and 

tycoplankton compositions are usually different, with different components of both groups 

usually ranking second after holoplanktonic copepods.  

Based on the results presented here, Cirripedia were the most abundant component 

of the mero - tycoplankton fraction of Southampton Water, followed by Polychaeta, 

Gastropoda, Pelecypoda (bivalves), Ascidia, Cnidaria, Bryozoa and Decapoda. All other 

components, including all tycoplanktonic organisms, were considered to have a minor 

numerical contribution. 
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3.4.1  Cirripedia. 
 
 As with most meroplanktonic organisms, barnacle nauplii usually have a very short 

planktonic life, although they can represent a large proportion of the total zooplankton on a 

seasonal time scale (Figure 7 – Chapter 1). In terms of species composition, only Soares 

(1958), Raymont & Carrie (1964) and Geary (1991) have reported on barnacle larvae 

within Southampton Water. Soares (1958) sampled at Calshot Pier, a station at the mouth 

of Southampton Water (Figure 1 – Chapter 1), recording the nauplii of both Semibalanus 

balanoides and Balanus crenatus as the most abundant forms during spring and Elminius 

modestus during the summer. Raymont & Carrie (1964) offered a very general picture of 

the distribution of the dominant species over the entire estuary based on Soares (1958) 

results. Geary’s (1991) results from Cracknore should be compared cautiously with the 

present study, as only summer-autumn samples were available and all individuals found in 

the summer were assumed to be E. modestus.  
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Figure 29. Temporal variability and seasonal contribution of barnacle larvae during 1985/87, 1990/91, 
1992/94 and 1994/96 from the raw data of Zinger (1989), Lucas (1993), Hirst (1996) and Castro-Longoria 
(1998) at different stations in Southampton Water and the Solent. (Note that temporal scale of Hirst, Lucas 
and Castro-Longoria data was extended for a better comparison with the 1985-1987 results. Figures are also 
on different scales. Data for different depth strata were averaged, and data obtained with meshes larger than 
220 µm are not included). 

 

 

 In terms of total barnacle larvae abundance the values reported here concur with 

those presented by Zinger (1989) for the same stations, the only differences being the 
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relative size of the summer-autumn peaks (Figure 29). Again, Hirst’s (1996) values were 

unusually low, even lower than the values presented by Lucas (1993) and Castro-Longoria 

(1998) where a coarser mesh were used (Figure 29). 

 Zinger (1989) reported that barnacles and calanoids represented, on average, 37% 

each of the total zooplankton composition at the three stations considered, whereas in the 

present study barnacles and calanoids represented on average only 18 and  23.5%, 

respectively, of the total zooplankton. This difference could partly be explained if Zinger 

(1989) had included copepod nauplii as calanoids in her raw values, but, as can be clearly 

seen in Figure 29, the period studied had very high numbers of barnacle larvae.   

The species recorded during the present  study indicated the same composition and 

seasonal pattern as the study of Soares (1958) (Figure 30), although Semibalanus 

balanoides, Balanus crenatus, Balanus improvisus and Peltogaster paguri presented 

higher abundance values at Calshot when compared with the present study. In contrast, 

Elminius modestus, Verruca stroemia and Sacculina carcini occured at higher abundances 

in the current survey.  
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Figure 30. Temporal variability and seasonal contribution of each barnacle larvae species during 1955/57, 
from the raw data of Soares (1958) at Calshot (Note that scale shoul be re-initiated at the base of each 
category). 

 

These differences could be due, in part, to the different locations and sampling gear 

used. Raymont & Carrie (1964) report that higher abundances of both S.balanoides and 

B.crenatus were commonly found at Calshot in the spring compared with Marchwood 

(Figure 1 – Chapter 1), with the opposite occurring for E.modestus during the summer. 

Supporting this observation, is the idea that both E.modestus and B.improvisus could be 

more tolerant to lower salinities than the other two, as they are common inhabitants of 

brackish water regions in several British estuaries (Jones & Crisp, 1954) with B.improvisus 
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clearly a brackish species elsewhere (Montú, 1980; Baretta & Malschaert, 1988), and the 

results presented here confirms that.   

Peltogaster paguri and Sacculina carcini are endoparasites of decapods and have a 

short free, non-feeding, planktonic stage, and their occurrence is related to the presence of 

the infected benthic host within the estuary. Adult Peltogaster paguri have been reported 

to infect pagurid crabs, such as Pagurus bernhardus, Pagurus cuanensis, Anapagurus 

chiroachantus and Anapagurus laevis while Sacculina carcini is reported in portunid and 

pirimelid crabs (Hansson, 1998). In Southampton Water the larvae of both P.paguri and 

S.carcini were found freely in the plankon almost all year round, with the larvae of S. 

carcini being particularly abundant at times (Muxagata et al., 2004). (A single specimen of 

P.bernhardus infected by P.paguri was observed late in 2002 from pagurids collected in 

the estuary (Pers. obs.)).   

Chthamalus stellatus, Trypetesa sp. and Conchoderma sp. are reported for the first 

time within Southampton Water. Conchoderma, possibly C.auritum has been reported 

settled on “Very Large Crude Oil Carriers” (VLCCs) (Dalley, 1984) and its occurrence 

here could clearly be associated with this. Trypetesa sp. is a burrowing barnacle usually 

found in the shells of gastropod molluscs (Turquier, 1967; Turquier, 1972).     

Figure 23 and Table 15 clearly show the general seasonal breeding pattern 

presented by the different barnacle species in Southampton Water. Generalizing, in the 

beginning of the year larvae of E.modestus dominate the composition of barnacles in the 

mesozooplankton. It is then replaced in numerical dominance by B.crenatus larvae from 

February to May, with S.balanoides and some V.stroemia also occurring. At the innermost 

station, Cracknore, B.improvisus begins to replace B.crenatus from May and then co-

dominates along with E.modestus. From July to January E.modestus is typically the 

dominant barnacle larvae in the estuary. A remarkable feature is the strong percent 

composition of Sacculina carcini during late-autumn (Figure 23), but this is clearly a 

reflection of the low total numbers of barnacle larvae found. In contrast with the copepods 

(Chapter 2) where a major change is observed in the composition of holoplanktonic 

species, no major changes have apparently occurred in the barnacle populations of the 

estuary in the past half century, with the same composition and seasonality being reported 

in all the, albeit few, studies.  

Correlations with temperature confirmed the seasonal occurrence of most species, 

being positive for those more abundant during summer (E.modestus, B.improvisus and 

S.carcini), and negative for those peaking during winter-spring (S.balanoides, B.crenatus 

and V.stroemia). This was also shown on the MDS plots (Figure 27 d,e,f,p).  Chlorophyll 
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was positively correlated with those peaking during summer (also shown on MDS plots). 

The secondary production of the different barnacle species is described in Chapter 4, 

together with more detailed information on stage composition patterns. 

Specific information on barnacle larvae abundance in estuaries seems scarce, with 

Bousfield (1955) and Bousfield et al., (1975) reporting the seasonality of occurrence and 

abundance of B.improvisus and B.crenatus larvae at the Miramichi and St.Lawrence 

estuary (Canada), and  Montú (1980) indicating that B.improvisus larvae can overwhelm 

copepods during spring and summer at Lagoa dos Patos (Brazil). Studies carried out in 

North European estuaries (Isaac, 1979; Ryan et al., 1986; Williams & Collins, 1986; 

Baretta & Malschaert, 1988; Soetaert & Van Rijswijk, 1993) only mentioned barnacle 

larvae as a broad taxonomic group, with a few describing the overall species composition 

and even fewer giving any detail of specific seasonality and/or abundance patterns. In this 

respect, Baretta & Malschaert (1988) report that the barnacle larvae composition found in 

the Ems estuary is mainly composed of S.balanoides, B.crenatus, B.improvisus and 

E.modestus with a total abundance of 3365 organisms m-3 reported in June at the inner 

estuary and so, approaching to the summer values reported at this estuary in 2001 when a 

maximum of 3346 organisms m-3 were observed at Cracknore (maximum of 12415 

organisms m-3 were observed in April 2002 at Calshot). In the Bristol Channel 

S.balanoides, B.crenatus, C.stellatus, V.stroemia and E.modestus larvae were all reported, 

with  E.modestus clearly dominating summer samples, but no density values were given 

(Isaac, 1979; Williams & Collins, 1986). Ryan et al., (1986) in Killary harbour report 

abundances of barnacle larvae reaching  7197 organisms m-3 in April. While Soetaert & 

Van Rijswijk (1993) recorded abundance up to 45000 organisms m-3 in pump collected 

samples from the Westerchelde. At Tampa Bay, Hopkins (1977) reported maxima of 4600 

organisms m-3 in May while Perissinotto et al., (2000) reported averages of 5848 

organisms m-3 in March at the Nyara estuary. At the Avon-Heathcote estuary (New 

Zealand), Roper et al.,(1983) observed maximum of 1172 barnacle larvae m-3.     
 

3.4.2  Polychaeta. 
 
 
Polychaeta were present throughout the year although most proeminently from 

spring to early autumn (Figure 22). Although not identified to species, several different 

forms were clearly present and the discrete peaks possibly reflect the breeding of species 

reported for the area (Table 13). (Pictures of some of the different forms can be seen in the 

zooplankton guide (Muxagata & Williams, 2004) included as a pdf file in the attached 

CD).  
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When compared with previous studies (Figure 31), the values presented here were 

lower than those of Zinger (1989) but much higher than those of Lucas (1993), Hirst 

(1996) and Castro-Longoria (1998). Again, Hirst’s (1996) values were unusually low, even 

lower than the values presented by Lucas (1993) and Castro-Longoria (1998) where a 

coarser mesh were used (Figure 31). 
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Figure 31. Temporal variability and seasonal contribution of polychaete larvae during 1985/87, 1990/91, 
1992/94 and 1994/96 from the raw data of Zinger (1989), Lucas (1993), Hirst (1996) and Castro-Longoria 
(1998) at different stations in Southampton Water and the Solent. (Note that temporal scale of Hirst, Lucas 
and Castro-Longoria data was extended for a better comparison with the 1985-1987 results. Figures are also 
on different scales. Data for different depth strata were averaged, and data obtained with meshes larger than 
220 µm are not included). 
 
 

Not much can be deduced from data at this level however, from the results 

presented on Figures 22 and 31, the pattern of higher abundances in the upper estuary is 

clear and consistent, suggesting that polychaete larvae remain essentially confined within 

the inner reaches of Southampton Water, with a limited dispersal into the Solent 

(exemplified by the Bourne Gap values). A negative correlation of polychaetes with 

salinity reflects the higher abundances into the estuary. This is the second most abundant 

meroplanktonic group, and with so many species described in the benthos of the 

surrounding region (Table 13), a more in-depth analysis of species composition needs to be 

made.     

Comparing the maximum value of 3140 organisms m-3 reported during this study at 

the inner estuarine station of Cracknore (Figure22), in April, with those reported in north 
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European estuaries it is possible to observe some similarities, especially with the report of 

Baretta & Malschaert (1988), that also reported higher abundances of polychaetes in the 

inner reaches of the Ems estuary, also in April, where a maxima of 1111 organisms m-3 

were reported. At Killary harbour Ryan et al., (1986) found that polychaetes abundance 

could reach 7639 organisms m-3 in June, while Soetaert & Van Rijswijk (1993) report 

abundances, collected by pump, of up to 242000 organisms m-3 in the Westerchelde. In 

estuaries elsewhere, Hopkins (1977) reported maxima of 3800 organisms m-3 in August at 

Tampa Bay, while in Long Island Turner (1982) observed polychaetes reaching 3770 

organisms m-3 in June. At the Nyara estuary Perissinotto et al., (2000) reported averages of 

7437 organisms m-3 in March. Roper et al.,(1983) found maximum of 1283 polychaetes m-3 

in the Avon-Heathcote estuary (New Zealand).    
 
3.4.3  Mollusca. 
 
 
Both pelecypod and gastropod veligers were found throughout the year in the 

estuary, and when compared with the previous studies of Zinger (1989), Lucas (1993), 

Hirst (1996) and Castro-Longoria (1998) the number of bivalves recorded here was, as 

with polychaetes, usually lower than in Zinger (1989) and much higher than those of Hirst 

(1996) (Figure 32). The coarser mesh employed in some earlier studies (Lucas, 1993; 

Castro-Longoria, 1998) will undoubtedly be the reason for the complete absence of bivalve 

veligers in these studies. By contrast, gastropod larvae were usually recorded at higher 

abundances during this investigation than at these earlier studies (Figure 32).  

It is clear that, like polychaetes, the number of bivalve larvae is substantially higher 

within the upper reaches of the estuary than at its mouth. Gastropod larvae, in contrast, 

present the inverse pattern and are more abundant towards Calshot and the Solent, where 

Castro-Longoria (1998) reported peaks of 2670 organisms m-3 at Bourne Gap (Figure 1 – 

Chapter 1).  

No attempt to identify the larvae of molluscs was made, but the July peak of 

bivalves reported here (Figure 22) coincides with the reported peak of Mytilus by Raymont 

& Carrie (1964). The gastropod Crepidula fornicata is reported as the most abundant 

species in the Solent (Barnes et al., 1973; Guyard, 2000).  

It is relatively straightforward to identify the main breeding season of both bivalves 

and gastropods and more or less pinpoint larval release. The two major peaks of bivalves 

(Figure 22) probably reflect the release of two species, while the numerous peaks presented 

by gastropods could be related with the breeding of several of the species reported (Table 

13). This can only be answered after detailed species analyses. 
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Since both groups have potentially important commercial species, a more in-depth 

analysis at species level should be made in the future, as well as a clarification of which 

mechanisms are confining bivalve larvae within Southampton Water and “restricting” 

dispersal into the Solent. Significant correlations with all environmental variables 

measured were achieved, but at a group level it is very difficult to interpret the results.  
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Figure 32. Temporal variability and seasonal contribution of mollusc larvae during 1985/87, 1990/91, 
1992/94 and 1994/96 from the raw data of Zinger (1989), Lucas (1993), Hirst (1996) and Castro-Longoria 
(1998) at different stations in Southampton Water and the Solent. (Note that temporal scale of Hirst, Lucas 
and Castro-Longoria data was extended for a better comparison with the 1985-1987 results. Figures are also 
on different scales. Data for different depth strata were averaged, and data obtained with meshes larger than 
220 µm are not included). 

 

Comparing the maximum abundances of 2784 and 8878 organisms m-3 observed 

for gastropods and bivalves at this estuary, Ryan et al., (1986) found in Killary harbour 

that gastropods presented maximum abundances of 11783 organisms m-3, while bivalves 

attained even higher abundances of 31388  organisms m-3. Ryan et al., (1986) attributed 

these abundances to the gastropod Turritella communis and to the bivalve Mytilus edulis. 
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Soetaert & Van Rijswijk (1993) usually recorded higher abundances of  bivalves (up to 

96000 organisms m-3) at the mouth of the Westerchelde, while gastropods were usually 

found at mid-estuary (maximun of 3000 organisms m-3). Hopkins (1977) reported maxima 

of 15500 bivalves m-3 and 3300 gastropods m-3 in  Tampa Bay while in Long Island Turner 

(1982) observed maxima of 112485 bivalves m-3 and 4685 gastropods m-3. Roper et 

al.,(1983) reports maximum of 402 bivalves m-3 and 1010 gastropods m-3  in the Avon-

Heathcote estuary (New Zealand).    
 
 

3.4.4  Bryozoa and Ascidia. 
 
 
Previous reports of cyphonaute larvae within Southampton Water have been made 

by Raymont & Carrie (1964), Hirst (1996) and Castro-Longoria (1998) recording numbers 

mainly at the mouth of the estuary and in the Solent, where abundances up to 432 

organisms m-3 have been reported (Castro-Longoria, 1998). During this study however, 

cyphonaute larvae were commonly found, occurring in 90% of samples, and presenting an 

average of 44 organism m-3 for the entire season and throughout the estuary. By contrast to 

Castro-Longoria (1998), maximum abundances, up to 1414 organisms m-3  were reported 

inside the estuary, possibly indicating the recent presence of bryozoan colonies near 

Cracknore. Good correlation with environmental variables is clear, but at a “group” level it 

is very difficult to interpret the results. At Killary harbour Ryan et al., (1986) reported 

bryozoans in Feruary, April, May, June and September with a maximum of 422 organisms 

m-3. Soetaert & Van Rijswijk (1993) recorded bryozoans, with densities up to 10000 

organisms m-3, at the mouth of the Westerchelde in April. Hopkins (1977) reported an 

average of 173 bryozoans m-3 over the entire season (maxima of 880 organisms m-3 in 

August) and throughout the estuary in  Tampa Bay. Roper et al.,(1983) reports maximum 

of 72 bryozoans m-3 in the Avon-Heathcote estuary (New Zealand).    

Ascidian larvae were only previously reported in Southampton Water by Hirst 

(1996), with maximum abundances up to 30 organism m-3 at Calshot. Similar abundances 

are observed for this station in the present study (Figure 33), but with abundances usually 

much higher inside the estuary. Despite the fact that ascidians were not identified to 

species, the seasonal occurrence of ascidian larvae in Southampton Water plankton is in 

agreement with the reported pattern of breeding of Ciona intestinalis and Dendrodoa 

grossularia (Table 13) in southern Britain waters, which usually extends from March/April 

to November (Raymont, 1983). In the current study maximum abundances occurred from 

June to September, with a peak reported on August (636 organisms m-3), the same period 
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reported by Holmes (1968 cited in Raymont, 1983) as the breeding period of the immigrant 

species Styela clava within Southampton Water. Ascidian larvae may also be confined 

within the estuary (Figure 22) and this should be investigated. At Killary harbour Ryan et 

al., (1986) reported ascidians at a maximum of 37 organisms m-3 while Roper et al.,(1983) 

reports maximum abundances of only 5 organisms m-3 in the Avon-Heathcote estuary 

(New Zealand).   
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Figure 33. Temporal variability and seasonal contribution of ascidian larvae at Calshot during 2001/02 and 
1992/94 from the raw data of Hirst (1996). (Note that temporal scale of Hirst data was extended from 
February 1994 to August 1994 for a better comparison with the 2001-2002 results. Data of ascidian for the 
remaining stations is shown on Figure 22 on a different scale). 

 
 
3.4.5  Cnidaria. 

 
 

Cnidarians are one of the few meroplanktonic “groups” where information is 

available (Williams & Reubold, 1990; Lucas, 1993; Lucas & Williams, 1994; Lucas et al., 

1995; Lucas et al., 1997). In terms of total abundances the values reported here are in 

agreement of those presented by Zinger (1989) and, as expected, much higher than those of 

Lucas (1993) who used a 220µm mesh (Figure 34).  
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Figure 34. Temporal variability and seasonal contribution of Cnidaria during 1985/87 and 1990/91 from the 
raw data of Zinger (1989) and Lucas (1993), respectively. (Note that temporal scale of Lucas data was 
extended from December 1991 to May 1992 for a better comparison with the 1985-1987 results. Figures are 
also on different scales. Data for different depth strata were averaged, and data obtained with meshes larger 
than 220 µm were not included). 

 112 



Chapter 3 – The mero and tycoplankton of Southampton Water 

Considering species composition, the same species reported by Lucas (1993) are 

currently recorded, however, several unidentified species were found that were not 

accounted in previous studies. (The seasonal occurrence and pictures of identified and 

unidentified cnidarians can be seen on the zooplankton guide (Muxagata & Williams, 

2004) included as a pdf file in the attached CD). 

Cnidarians are recognized as important predators and often present a inverse 

correlation with copepods and fish, the main components of their diet (Ramírez & 

Zamponi, 1981). Because of that they can seriously affect fish stocks by either consuming 

the fish or its main prey (Möller, 1978; Purcell, 1985).   

Despite the fact that no negative correlation was observed between cnidarians and 

copepods, by comparison of the numerical abundance patterns of cnidarians and calanoid 

copepods, Figure 35, it is clear that the “peak” of cnidarian presence matches with the late-

spring decline experienced by some Acartia species, the main spring calanoid genus 

(Chapter 2). This suggests that cnidarians, together with Pleurobrachia (Chapter 2), could 

be one of the factors structuring the early-summer decline of Acartia reported in the 

previous chapter. However, it must be remembered that clogging by phytoplankton could 

also be the reason for this decline (Chapter 2). 
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Figure 35. Seasonal pattern of abundance of Cnidaria and Acartia spp. at Southampton Water in 2001/02.  
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3.4.6. Decapoda. 
 

 
Despite the fact that decapod larvae abundance was relatively low, with an overall 

average of 19.34 organisms m-3, the results presented here were close to the average 

decapod abundance of 8.16, 16.76, 7.01 and 26.77 larvae m-3 presented by Zinger (1989), 

Lucas (1993), Hirst (1996) and Castro-Longoria (1998) respectively, in other studies of the 

estuary (Figure 36). This was unexpected, since the larger mesh-size used by Lucas (1993) 

and Castro-Longoria (1998) might be expected to capture a greater number of these 

relatively motile individuals. The total abundance data presented here are, however, 

comparable with the results of Grabe (2003) at New Hampshire where an average of 21.3 

decapod larvae m-3 were recorded with a mesh of 505 µm, and with data on shrimp at 

Helgoland where an average of 1.48 carideans m-3 (this study recorded an average of 0.53 

carideans m-3) were collected with a 500 µm mesh (Wehrtmann, 1989). 
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Figure 36. Temporal variability and seasonal contribution of larvae of Decapoda during 1985/87, 1990/91, 
1992/94 and 1994/96 from the raw data of Zinger (1989), Lucas (1993), Hirst (1996) and Castro-Longoria 
(1998) at different stations in Southampton Water and the Solent. (Note that temporal scale of Hirst, Lucas 
and Castro-Longoria data was extended for a better comparison with the 1985-1987 results and figures are on 
a different scale). Data for different depth strata were averaged, and data obtained with meshes larger than 
220 µm are not included. 

 

Total abundance data presented here are also comparable with the results found on 

other estuaries where finer meshes were employed. At Killary harbour Ryan et al., (1986) 

reported two main peaks of abundance with a 97 µm mesh net, one in April (up to 104 
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organisms m-3) and another in August (197 organisms m-3). Hopkins (1977) sampling with 

a 74 µm mesh net reported a maxima of 190 larvae m-3 in  Tampa Bay, while in Long 

Island Turner (1982), using a 73 µm mesh, observed a maxima of ~100 larvae m-3. In the 

estuary of Lagoa dos Patos (Brazil) Montú (1980) observed a maxima of 198 larvae m-3 

when sampling with a 200 µm mesh net.  

Information on specific decapod larvae seasonality, composition and abundance 

from the surrounding area are presented by Lebour (1947), Bodo et al., (1965) and Martin 

(2000) but, unfortunately, no clear indication of the mesh-size employed were given. 

However, based on the similarities of the abundance results obtained with different mesh-

sizes (shown above) those studies can still be compared.       

Of the present species recorded, the brachyuran C.maenas was the most abundant 

and found throughout the year in significant numbers at each station, usually during spring 

and summer. Lebour (1947) associated this with the fact that adults breed in any month, 

but highest larval concentrations are usually expected for spring-summer, when peaks of 

more than 40 larvae m-3 have been reported around the UK (Ryan et al., 1986; Martin, 

2000). These current data support the suggestion of Barnes et al.,(1973) that C.maenas is 

the dominant crab species in the Solent - Southampton Water system. Lebour (1947), Bodo 

et al., (1965) and Martin (2000) also recorded the persistent appearance of C.maenas 

larvae in the zooplankton off Plymouth, Roscoff and North Coast of France respectively.  

Liocarcinus spp. and N.puber were grouped together under Liocarcinus spp. during 

this study. Differentiation of Polybiinae species beyond subfamilial level is not an easy 

task (Paula, 1996), and with 5 different Polybiinae species reported for this region (Table 

13) this was necessary due to time constraints. When combined, the values of Liocarcinus 

spp. and N. puber reported by Martin (2000) for the French coast of the Channel were 

similar with those presented here.  

The identification of Macropodia spp. and Inachus spp. to species was also not 

attempted since there are at least three different species of each occurring in the area 

(Table 13). Martin (2000) reports similar abundances for Macropodia spp. of the North 

Coast of France, although values for Inachus larvae are higher, with abundances increasing 

towards the western end of the Channel. 

Corystes cassivelaunus, Pilumnus hirtellus and Pinnotheres pisum appeared in 

zooplankton catches with a marked seasonal occurrence (Table 16) and Lebour (1947), 

Bodo et al., (1965) and Martin (2000) also noted this same marked seasonality of C. 

cassivelaunus, P.hirtellus and P.pisum off Plymouth, Roscoff and other stations in the 

North Coast of France, respectively. Abundance values for these species on the north coast 
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of France (Martin, 2000) are usually higher than those reported here, however further south 

on the Portuguese coast Pilumnus hirtellus is reported at lower maximum abundances  

(max of 0.8 organisms m-3), but occurring through the entire year (Paula, 1987). 

Lebour (1947), Bodo et al., (1965) and Martin (2000) observed larvae of Ebalia 

spp. throughout the entire year off Plymouth, Roscoff and North Coast of France, but, like 

this sudy, chiefly from July to September (Lebour, 1947; Martin, 2000). Generally, the 

maximum abundance values of E.tuberosa and E.tumefacta presented by Martin (2000) for 

the North Coast of France are 10 – 100 fold higher than those presented here. 

 The remaining brachyurans Maja squinado, Hyas sp. and Pisa sp. were all 

restricted to Calshot (Table 16). Hyas sp. and Pisa sp. could be the larvae of Hyas 

coarctatus and Pisa tetraodon since these are the only species reported locally (Table 13). 

The seasonal occurrence of Hyas sp. found in this work (Table 16) also agrees with that of 

Hyas coarctatus off  Plymouth and Roscoff  (Lebour, 1947; Bodo et al., 1965). The 

abundance values Hyas sp. and Pisa sp. off the south coast of the Channel were usually 10 

fold higher than those presented here (Martin, 2000), but both studies reported the same 

seasonality. 

Carideans are of particular interest, as most of the species are of some potential 

commercial value. The seasonal occurrence of Crangon crangon larvae is in agreement 

with that reported by Lebour (1947) off Plymouth, Bodo et al., (1965) off Roscoff,  

Wehrtmann (1989) for the Helgoland area and Martin (2000) for the North coast of France. 

Maximum abundances of C.crangon reported here are also comparable with a peak of 7 

larvae m-3 reported by Wehrtmann (1989) at Helgoland, and with ~6 larvae m-3 reported by 

Martin (2000) for the Penly region. Martin (2000) also suggests that the abundance of 

C.crangon increases towards the eastern end of the English Channel.  

Crangon bispinosus and C.trispinosus were found from March throughout October 

(Table 16), but always in very low numbers which agreed with the values reported by 

Wehrtmann (1989) and Paula (1987) off Helgoland and the Portuguese coast. Lebour 

(1947) and Bodo et al., (1965) reported similar seasonality pattern. In contrast, Martin 

(2000) found higher abundances of C.trispinosus off the french coast of the English 

Channel, also suggesting that the abundance of C.trispinosus increases towards the North 

Sea. Crangon fasciatus, in contrast with C.bispinosus and C.trispinosus was common and 

also had the same seasonal pattern as that reported by Lebour (1947), Bodo et al., (1965) 

and Martin (2000). The abundance data of Martin (2000) is similar to that presented here, 

but also indicates a gradual increase of abundance towards the Atlantic. 
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Palaemon elegans is recorded for the first time in Southampton Water, but was 

found only on three occasions, twice at Calshot and once at NW. Netley, and at very low 

abundances. The unidentified species of Palaemon spp. that were found through the 

estuary could be that of P.longirostris and/or P.serratus (Table 13). Martin (2000) reports 

Palaemon spp. abundances an order of magnitude greater on the north coast of France, but 

with the same seasonal pattern.  

Processa sp. were only identified to genus level as the few larvae found presented 

characteristics ascribable to both P.edulis and P.nouveli holthuisi (Fincham & Williamson, 

1978). Of these, only adults of P. nouveli holthuisi have been previously reported in the 

surrounding area (Table 13). Thoralus cranchii and Hippolyte spp. records are in good 

agreement with Martin (2000) with almost the same seasonality and abundance recorded. 

At least 2 different species of Hippolyte come under Hippolyte spp. with, probably 

Hippolyte varians one of these. 

Larvae of Alpheus glaber were very rare, and found at Calshot on only two 

occasions in July 2001 (Table 16). In contrast, Athanas nitescens was relatively common 

and found in the plankton from June to September at all stations (Table 16). The seasonal 

pattern observed for A.nitescens in this study is in good agreement with Lebour (1947) off 

Plymouth, Bodo et al., (1965) off Roscoff,  Wehrtmann (1989) for the region of Helgoland 

and Martin (2000) for the north coast of France. Present abundance values were, however, 

greater than those reported by Wehrtmann (1989) but lower than those of Paula (1987) in 

the Portuguese coast. Martin (2000) also suggests that the abundance of A.nitescens 

increases towards the western end of the Channel.     

The Infraorder Thalassinidea included the presence of Axius stirhynchus and 

Upogebia sp. The first was only caught on 2 occasions, at Calshot and at abundances never 

exceeding 0.04 organisms m-3. Upogebia sp, probably Upogebia deltaura, since this is the 

only species recorded in the region (Table 13) was found in abundances up to 0.23 

organisms m-3 at Calshot, where it was relatively more frequent and abundant although it 

was also recorded at Cracknore and NW Netley. Both A.stirhynchus and U.deltaura are 

very common in the plankton off Plymouth and the North coast of France and are 

suggested to be much more abundant and frequent towards the western portion of the 

English Channel. (Lebour, 1947; Bodo et al., 1965; Martin, 2000).  

Larvae of six different anomurans were recorded (Table 12) but the contribution of 

anomuran larvae to the zooplankton recorded in this study is much lower when compared 

with the seasonally data presented by Lebour (1947), Bodo et al., (1965) and Martin 

(2000) off Plymouth and the NW coast of France. Ryan et al., (1986) recorded 

 117 



Chapter 3 – The mero and tycoplankton of Southampton Water 

P.longicornis abundance values as high as 184 larvae m-3 at Killary harbour and Martin 

(2000) observed values as high as 900 larvae m-3 of  P.longicornis on the north coast of 

France. Paula (1987) in contrast, reports abundances of anomurans on the Portuguese coast 

particularly P.longicornis and A.hyndmani closer to those reported here. 

 (The previous record for the palinuran larvae of Scyllarum (?) spp. by Barlow & 

Monteiro (1979) is probably in error, and refers to Scyllarus sp., probably Scyllarus arctus, 

since this is the only species of this genus that has been reported in the area (Bodo et al., 

1965; Howson, 1987). However it could also have been mistaken for the relatively similar 

larvae of Palinurus elephas (vulgaris) that occurs in the English Channel (Bodo et al., 

1965; Martin, 2000). Mallinson (Pers. com.) confirms that P.elephas was found in the 

surrounding area of Southampton Water in the 1970’s).  

As a general statement the seasonal pattern of decapod larvae highlighted in Table 

15 is in good agreement with the patterns presented by Lebour (1947) off Plymouth, Bodo 

et al., (1965) for the region around Roscoff, Werthman (1989) for Helgoland, and with the 

report of Martin (2000) for the north coast of France. Only the numbers of thalassinid and 

anomuran larvae in the present study are low compared to these reports, which also show 

them to be more important toward the western end of the English Channel and North-

Atlantic.   

In the present study many species were only found toward the mouth of the estuary 

at Calshot and NW. Netley, where consistent tidally-associated salinity variation is 

minimal (Figure 3 – Chapter 1). Equally, of the species that were recorded at all three sites 

(Table 16), many had highest densities at Calshot. The temporal distribution of some 

species, including three carideans, Hippolyte spp., Thoralus cranchii, Processa sp. (Table 

16) suggested patterns of movement down the estuary with time, perhaps indicating some 

distributional behaviour. Unfortunately as no record of the larval stages is available, this 

pattern is conjecture. 

The absence of larvae of any decapod listed on Table 13 does not necessarily imply 

that they do not occur in the plankton of the Solent - Southampton Water region since no 

other data, especially long-term data, is available. Further studies for the area are clearly 

needed as the sampling strategy of the present study was not focused primarily on the 

capture of decapods. This report is considered simply a starting point, where the common 

species and their basic spatial-temporal distributions are identified. 

 
 
 
 
 
 118 



Chapter 3 – The mero and tycoplankton of Southampton Water 

3.4.7. Minor meroplanktonic contributors. 
 

This is the first record of Actinotrocha and Stomatopoda larvae within this estuary. 

Stomatopod larvae were found in Calshot and NW. Netley with Actinotrocha at Calshot 

and Cracknore (Table 17). Stomatopod larvae are commonly reported in samples from the 

southern portion of the North Sea, English Channel and off the west coast of Ireland during 

the summer (Mauchline, 1984). Adults of Rissoides desmaresti were recently reported 

within the Solent – Southampton Water region (Mallinson, Pers. com.), and probably local 

populations could have established. No previous record of phoronids was found, but the 

presence of early stages clearly indicates the presence of adults locally. Bodo et al., (1965) 

reported Rissoides desmaresti larvae off Roscoff during July-August. Roper et al.,(1983) 

observed maximum of 0.04 stomatopods m-3 in the Avon-Heathcote estuary (New 

Zealand). At Killary harbour Ryan et al., (1986) reported phoronid larvae with a maximum 

of 24 organisms m-3 in July. Lebour (1947) reports phoronid larvae from April to August 

off Plymouth.  

 

About 1550 species of Siphonostomatoida have been described, with around 1050 

species related to fish and nearly 500 associated with invertebrate hosts (Huys & Boxshall, 

1991). In Southampton Water four species of siphonostomatoid copepod were recorded 

(Table 12), together with individuals pooled in an “unidentified copepodites” category.   

While siphonostomatoid copepodites were found throughout the estuary and all through 

the year, the identified taxa were less frequent and predominantly recorded in the lower 

estuary at Calshot (Table 17). 

Previously, only the pennelid Lernaeocera lusci has been reported in Southampton 

Water (Evans et al., 1983) infecting Trisopterus luscus, the pouting, by Calshot at the 

mouth of Southampton Water. Pennelids are unique among parasitic copepods in having 

intermediate hosts in their life cycle. Hatching as nauplii, these siphonostomatoids develop 

into a free-swimming copepodite that requires a intermediate host, usually a fish, 

cephalopod or pteropod, to complete development. In the intermediate host they reproduce, 

and impregnated females undergo another period of free-swimming before finding the 

definitive host, which will be another fish, or even a marine mammal (Kabata, 1979). 

Based on differences in the mouth parts of the different “unidentified copepodites of 

siphonostomatoids” found, at least five different species are present, and it is almost 

certain that copepodites of L.lusci occur among them. 

Considering the identified siphonostomatoids, Asterocheridae are reported on a 

wide variety of hosts, either as internal or external associates, or even as parasites.  
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Asterocheres sp. (Table 12) is considered as an ectoparasite of echinoderms (Isaac & 

Moyse, 1990), but is also reported in association with Porifera, Mollusca, Cnidaria, 

Urochordata and Bryozoa (Hansson, 1998; Boxshall & Halsey, 2004; Gotto, 2004).  Four 

adults were caught free in the plankton.  

Caligids are ectoparasites that  are usually found on the outer surface, mouth, gills 

and opercular cavity of fish hosts (Boxshall & Halsey, 2004). Caligus elongatus is 

regarded as the most common parasitic copepod in British waters (Kabata, 1979) and was 

reported associated with more than 80  species of fish (Kabata, 1979; Isaac & Moyse, 

1990) Only a single adult female of C.elongatus was caught in the zooplankton during this 

study, probably having been detached from its host. An adult female of Caligus minimus, 

usually reported on perciform fishes (Kabata, 1979), was identified in an opportunistic 

sample and re-analysis of the samples of  Castro-Longoria (1998) highlighted an adult 

male of C.elongatus.   

  A single specimen of the cancerillid Cancerilla tubulata was found free. 

Cancerillids are typical ectoparasites of brittle stars, with this species reported on 

Amphipholis squamata, Ophiocomina nigra, Ophiothrix fragilis and Ophiopsila aranea 

(Isaac & Moyse, 1990; Hansson, 1998; Gotto, 2004), and at least two of these hosts are 

reported in the Solent – Southampton Water area (Table 13).   

Little is known from the Artotrogidae, but they have been reported as possible 

associates of sponges, scleractinians and ascidians (Hansson, 1998; Gotto, 2004), 

bryozoans (Kim, 1996) and the polychaete Pomatoceros triqueter (Hansson, 1998). In this 

estuary only two specimens were caught freely in plankton samples.  

Cyclopoid notodelphyids were recorded sporadically throughout the year, but only 

at Calshot. A single unidentified Notodelphydae taxon has been reported, possibly 

Doropygus sp, on three occasions free in the water column. Notodelphyids are usually 

associated with ascidians, and found inhabiting the pharynx or atrium, presumably sharing 

the food brought in by the host. Because of this many species of this family are considered 

commensals rather than parasitic (Boxshall & Halsey, 2004). Previously, N.allmahi has 

been reported by Castro-Longoria (1998) in the estuary. Both N.allmahi and Doropygines, 

like Doropygus pulex are reported to be associated with ascidians, including Ascidia 

conchilega, Ascidiella aspersa and Ciona intestinalis (Chordata: Ascidiacea) that have 

been reported here (Table 13) (Isaac & Moyse, 1990; Gotto, 2004).  

Monstrilloids have an endoparasitic naupliar stage which burrows into the host, 

finally emerging in the last copepodite stage, to moult into a free-swimming, non-feeding 

adult (Huys & Boxshall, 1991; Boxshall & Halsey, 2004; Gotto, 2004). Of those recorded 
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in Southampton Water, Cymbasoma rigidus is reported as a parasite of the polychaetes 

Salmacina dysteri, Polydora ciliata and Polydora giardi while Monstrilla helgolandica is 

recorded in the gastropod Brachystomia rissoides (Hansson, 1998). Only free-living adults 

were caught during this survey, usually between May to October and toward the lower 

estuary, with only C.thompsoni being relatively abundant and frequent throughout the 

summer (Table 17). Isaac (1979) also reported the occurrence of Monstrilla helgolandica 

and Cymbasoma rigidus at Swansea Bay. 

Unidentified epicaridean isopods were recorded frequently, usually found free or 

attached to the calanoid copepods Acartia spp, Centropages hamatus and Temora 

longicornis, although it is possible that they can also be found attached to other copepods. 

(Pictures of those epicaridean isopods attached to copepods can be seen in the zooplankton 

guide (Muxagata & Williams, 2004) included as a pdf file in the attached CD). Isaac 

(1979) also reported the occurence of epicaridean isopods in zooplankton samples of 

Swansea Bay. 

This is the first report of “free-living” forms of parasitic/commensal species within 

the mesozooplankton of Southampton Water. The occurrence of the larvae and/or adults in 

plankton samples is a reasonable indicator of the presence of the infected/associate host in 

the estuary or surrounding areas. Some of the known hosts of a particular species have not 

been reported (Table 13), so they could either be associated with another, as yet, 

undescribed host, or the benthic host still have to be recorded in the Solent – Southampton 

Water region.  

Gotto (2004) suggests that, particularly in copepod-invertebrate associations, very 

few ill-effects are discernible in hosts, with most species being regarded as harmless 

commensals. The real impact and degree of parasitism and/or association of the species 

reported here are ambiguous, and in many cases poorly known.  Considering that the more 

well-known parasitic species of fish, like the Caligidae, are capable of serious damage to 

fisheries and aquaculture, it is reasonable to presume that a comparable impact could be 

expected on the individual and/or community-status of some invertebrate hosts.  

 

3.4.8. Tycoplankton. 
 
 
Of the taxa reported as tycoplankton in this study only mysids have a true 

tycoplanktonic way of life, and are found in significant numbers in zooplankton samples, 

especially during the night (Makings, 1977). In fact, Raymont & Carrie (1964) reported 

appreciable quantities of  Mesopodopsis slabberi  and Neomysis integer at night in 
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Southampton Water. Despite the fact that all sampling for this study was done during the 

day, 9 new species of Mysidacea were recorded, with Anchialina agilis, Gastrosaccus 

sanctus, Mysidopsis gibbosa and Acanthomysis longicornis being recorded for the first 

time in this region.  

From the species reported during the present study G.sanctus and P.arenosa are 

sand-burrowing species, while Siriella clausii, S.armata, A.agilis, Leptomysis lingura, 

M.gibbosa, A.longicornis and Schistomysis kervillei are species usually found near the 

bottom in shallow waters (Makings, 1977). These species were never abundant, with only 

very few individuals recorded at Calshot. Mesopodopsis slabberi, by contrast, is usually 

found in the water column of estuaries (Makings, 1977) and was previously recorded by 

Raymont & Carrie (1964) and Castro-Longoria (1998) at Marchwood and Bury Buoy 

(Figure 1 - Chapter 1) in the inner estuary. In the present study M.slabberi was much more 

frequent and abundant in the brackish waters of Cracknore and NW. Netley. M.slabberi 

was found at abundances up to 78 organisms m-3 at the inner stations of the Ems estuary 

(Baretta & Malschaert, 1988).  

Nothing much can be said of the remaining species/groups reported as 

tycoplankton. They were probably caught in samples through tidal resuspension of 

sediments, especially at Calshot where samples usually contained a relatively heavy layer 

of sand and other particules.   

 

3.4.9. General remarks. 
 

From the results presented here and in Chapter 2 it is clear that most of the diversity 

found in the mesozooplankton of Southampton Water is primarily due to the contribution 

of mero-tycoplanktonic species. As in the previous chapter, estuarine mero-tycoplankton 

can be summarized according to its origin:   

• Marine coastal species which enter the estuary from the sea and are usually 

limited to regions influenced by the saltwater intrusion. They were represented 

by the bulk of the organisms listed in Table 12, with the exception of the 

species listed below.  

• Estuarine-associated species which can live within a wide range of estuarine 

conditions of temperature and salinity. These are typically represented here by 

the cnidarian Aurelia aurita, the cyclopoid copepod Cyclopinoides littoralis, the 

harpacticoid copepod Tisbe spp, the decapod larvae of Carcinus maenas and 

Crangon crangon, the barnacle larvae of Balanus improvisus, Elminius 
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modestus and Sacculina carcini, the amphipods Corophium spp and Jassa sp. 

and the mysid Mesopodopsis slabberi. 

• Freshwater species which extend into the brackish water regions of the upper 

estuary. Exemplified by the unidentified chydoridae cladocerans. 

Of course this classification reflects mainly larval occurrences/preferences found in 

this estuary, which reflects the essentially marine nature of Southampton Water (Raymont, 

1983).  

 

On a general basis the mero-tycoplankton composition of estuaries everywhere 

(Bousfield et al., 1975; Hopkins, 1977; Montú, 1980; Turner, 1982; Baretta & Malschaert, 

1988; Soetaert & Van Rijswijk, 1993; Perissinotto et al., 2000; Hoffmeyer, 2004) is much 

more diverse/variable than the holoplankton, where the bulk of the estuarine population is 

composed by a few copepod species/genera that are common in almost every estuary 

(Conover, 1956; Cronin et al., 1962; Jeffries, 1962; Jeffries, 1967; Haertel & Osterberg, 

1967; Heinle, 1972; Frolander et al., 1973; Bousfield et al., 1975; Reeve, 1975; Hulsizer, 

1976; Wooldridge & Melville-Smith, 1979; Alcaraz, 1983; Baretta & Malschaert, 1988; 

Buskey, 1993). This implies that mero-tycoplankton composition of an estuary is “unique” 

and in this sense probably more useful in describing/observing changes/patterns on a 

regional/smaller basis, since it usually mirrors the composition and health of the parental 

populations of the surrounding area and so is probably more useful to detect 

immediate/localized changes.  

Despite the effort employed during this investigation, which tripled the number of 

identified species in the mero-tycoplankton, there are still “large components”, like 

Polychaeta, Mollusca, Bryozoa and Ascidia about which almost nothing is known. With 

the exception of few organism of particular economical importance; these components are 

also not described for other estuaries. This is surprising since rates occur at species level, 

and knowledge of the species present in a particular area is needed before any attempt to 

quantify/evaluate/model specific processes (Soetaert & Van Rijswijk, 1993). This idea of 

producing models of aquatic systems should have promoted and supported new basic 

descriptive studies since models can not go beyond the limitation of the original data, and 

thus erroneous and/or even incomplete community analysis will certainly lead to an 

erroneous/dubious model. 

Estuaries are also known as nurseries for several commercial species of fish and 

invertebrates and to improve our knowledge on the functioning of these ecosystems we 

clearly need more detailed information on several “unknown” components of the 
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zooplankton, particularly meroplanktonic larvae, and the role they play in the overall 

distribution of adults in these ecosystems (Stancyk & Feller, 1986). Understanding of 

estuarine ecology can only be achieved after knowing the basics about patterns of 

distribution and abundance of species, which in turn will also enable us to predict natural 

and/or anthropogenic effects in estuaries. 

 

3.5. Chapter Conclusions 
 

• 113 taxa were observed and considered within the mero-tycoplankton 
category, 72 meroplanktonic and 41 tycoplanktonic. 84 taxa are reported for 
the first time within the plankton of Southampton Water. 

  
• Barnacles were the most abundant meroplanktonic component, followed by 

Polychaeta, Mollusca, Bryozoa, Ascidia, Decapoda and Cnidaria. All of 
them were only abundant during spring and summer. 

 
• 10 barnacle species were identified, with five species being seasonally 

abundant. Elminius modestus larvae occurred all year long and were found 
on every sample. E.modestus larvae usually dominated the barnacle larvae 
composition of the mesozooplankton, except from February to May where 
the abundance of Balanus crenatus larvae clearly overwhelms any other. 
Some Semibalanus balanoides and Verruca stroemia also occurs during 
February to May. At the innermost station of Cracknore B.improvisus also 
appears in high numbers from May, and co-dominates with E.modestus 
from June to August. Usually E.modestus is the dominant barnacle larvae in 
this estuary from July to January. 

 
• Peltogaster paguri and Sacculina carcini had been previously reported, and 

despite the low abundance they appeared on a regular basis in plankton 
catches.   

 
• The barnacle larvae of Chthamalus stellatus, Conchoderma sp. and 

Trypetesa sp. are reported fot the first time within this estuary. 
 

• A total of 31 Decapoda, belonging to 4 infraorders were observed. The 
brachiurans Carcinus maenas, Liocarcinus spp., Pagurus bernhardus, 
Pisidia longicornis and Macropodia spp. were the most common and 
abundant larval forms. These, together with the caridean Crangon crangon 
accounted for 98% of all decapod larvae found in Southampton Water. With 
the exception of P.longicornis that has been previously reported, all the 
remaining species are being recorded for the first time in plankton catches.    

 
• In terms of numerical importance only C.maenas had any significance in 

catches at each station, accounting, on average, for 78, 66 and 53% of the 
decapods at Cracknore, NW Netley and Calshot, respectively. C.maenas 
larvae were found throughout the year, but were more abundant during 
spring, particularly in April when maximum abundances were recorded.   
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• Several other meroplankton species are being reported for this estuary, but 
most of then occurred rarely, or in very low numbers, usually during spring 
and summer. 

 
• Tycoplanktonic organisms are also described, with species reported for the 

first time within this estuary. Mysids are the only organisms with a real 
tycoplanktonic way of life, and from the species reported here only 
Mesopodopsis slabberi was found on a regular basis.   

 
• Correlations with biological and non-biological environmental variables 

measured reflect most of the seasonal patterns observed, with temperature 
being clearly the most important. 

 
• Generally, mero and tycoplanktonic organisms were more abundant during 

spring-summer clearly reflecting the breeding patterns of adults present in 
the surrounding area. This is considered as only a start point, and 
continuous monitoring studies should be carried to extend this knowledge 
further. Polychaeta, Mollusca, Bryozoa and Ascidia species are yet to be 
identified, and as presented here they constitute a large fraction of the 
meroplankton of this estuary.    
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Chapter 4 
The secondary production of barnacle larvae in Southampton water    

 

 

 
4.1. Introduction. 

  
 It is widely accepted that in aquatic communities, zooplanktonic organisms play a 

critical role representing the main link between the phytoplankton and bacterioplankton 

and higher trophic levels (Buskey, 1993; Banse, 1995), and so the measurement of 

secondary production has been one of the primary goals of zooplankton research (Runge & 

Roff, 2000). This importance is attested by the numerous reviews concerning 

methodologies for estimation of the secondary production of zooplanktonic organisms 

(Yablonskaya et al., 1971; Winberg et al., 1971; Pechen et al., 1971; Bougis, 1976; Greze, 

1978; Rigler & Downing, 1984; Kimmerer, 1987; Omori & Ikeda, 1992). 

The measurement of zooplankton production is time consuming, involving the 

laborious task of sorting, identifying and measuring the different stages of the species 

present in plankton, but such population level estimations are necessary because they 

constitute one of the most important parameters for estimating the total community 

productivity (Greze, 1978; Kimmerer, 1987), being also the basis for the elaboration of 

general theories of biological productivity (Downing, 1984). By improving our knowledge 

about the production of the zooplanktonic organisms, we are not just increasing the 

understanding about the fate and flow of energy and matter through planktonic food webs, 

but also improving the estimation and management of the production of commercially 

species that rely on zooplankton for food (Mullin, 1969; Winberg, 1971; Greze, 1978; 

Williams, 1984; Downing, 1984; Huys & Boxshall, 1991). Alternatively, the measurement 

of zooplanktonic secondary production, can also be used as an indicator of its 

physiological and nutritional state (Kimmerer, 1987; Omori & Ikeda, 1992) as well as to 

determine the response of species to changes, such as pollution, in environmental 

conditions (Winberg, 1971; Downing, 1984). 

Copepods generally form the largest component of zooplankton biomass of all 

groups present in estuarine, neritic and oceanic areas, and as such, almost all zooplankton 

production studies refers only to the contribution of the copepod component. (Evans, 1977; 

 126 



Chapter 4 - Barnacle Production 
Landry, 1978; Burkill & Kendall, 1982; Daro & van Gijsegen, 1984; Kimmerer & 

McKinnon, 1987; Castel & Feurtet, 1989; Chisholm & Roff, 1990a; Escaravage & 

Soetaert, 1993; Poulet et al., 1995; Peitsch, 1995; Hay, 1995; Webber & Roff, 1995; 

Fransz & Gonzalez, 1995; Escaravage & Soetaert, 1995; Uye & Sano, 1998; Hirst et al., 

1999). Although organisms like polychaete larvae, cladocerans, barnacles and decapod 

larvae are also seasonally important, especially in neritic and estuarine waters (Raymont, 

1983), it is really surprising that there is a limited amount of data on the secondary 

production of these components. 

The zooplankton community structure of Southampton Water offers a scenario for 

the evaluation of a non-copepod component, as all the studies that have monitored the 

composition, distribution and abundance of the micro-mesozooplankton population of this 

estuary (Conover, 1957; Soares, 1958; Raymont & Carrie, 1964; Lance & Raymont, 1964; 

Bird, 1972; Zinger, 1989; Williams & Reubold, 1990; Geary, 1991; Lucas, 1993; Lucas & 

Williams, 1994; Lucas et al., 1995; Hirst, 1996; Castro-Longoria & Williams, 1996; 

Castro-Longoria, 1998; Hirst et al., 1999; Chinnery, 2002), including the present study 

(Chapters 1 and 3), indicate that the larvae of barnacles constitute one of the major 

elements within the meroplankton. Hirst et al. (1999) even suggested that barnacle larvae 

could be expected to account for at least as much secondary production as calanoid 

copepods. 

Unfortunately, apart from a recently published work concerning the potential 

production of Elminius modestus at Cracknore, originated from data presented here 

(Muxagata et al., 2004 see attached pdf file or Appendix 1), no other data on production of 

barnacle larvae are available anywhere.  

The content of the present chapter is designed to add to the body of information on 

pelagic carbon flux within Southampton Water by measuring the production and 

contribution of barnacle larvae to pelagic fluxes. Production will be determined by a 

number of methodologies including the use of ecological growth equations developed for 

copepods. The resulting data will be used to advance and refine the current perceptions of 

carbon flux in Southampton Water. 
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4.1.1. The Theory of Secondary Production. 
 

In order to facilitate the understanding of the results concerning the secondary 

production of zooplanktonic organisms, this section introduces and explains the concepts 

behind the theoretical aspects of the secondary productivity of aquatic invertebrates.        

Imagine a hypothetical finite population living within a closed system where there 

is no mortality. After a period of time (t), the number of animals in a cohort6 in the end (Nf) 

of the investigation will be the same as in the beginning (Ni). Accepting this, we could say 

that the production (P) over this period of time will be the difference between the biomass 

at the end (Bf) and the beginning (Bi) of the period in question. This can be defined by the 

equation: 

)( if BBP −= or ( ) ( iiff NwNwP ** −= ) ,   (4) 

where, fw  = average weight of an organism at end of the period; iw = average weight of an 

organism at the beginning of the period; N = is abundance. 

 In this simplest case, if we also assume that the population was not food-limited, 

the biomass will be expected to be higher at the end of the period due to the growth of the 

individuals, and this growth could then be assumed to be the production7 of those 

organisms for this period. 

Systems like this are only theoretical. In the real world individuals die or are 

eliminated through disease, predation, malnutrition, environmental/physical factors, etc. 

Then, if in the end, we have equal biomass at the end and beginning of the period, one 

could say that the production of that period was equal to the amount eliminated (Be), so, 

production can then be expressed as: 

)( ife BBBP −+=       (5) 

with 

)(* fie NNwB −=       (6) 

 

where, w = average weight of an organism over the period, if t is short then 

)(2
1

fi www += . 
                                                 
6 The term “cohort” means an aggregate of individuals of the same species born at the same time and which 
live together under the same conditions (Neess & Dugdale, 1959) or according to Polishchuk (1990)“Cohort 
is an assemblage of individuals born exactly at the same moment and having at every instant exactly the same 
age”. 
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Thus, we could rewrite equation 2 as: 

)(*2/)( ifif wwNNP −+=    (7) 

This concept, outlined in equations 4 to 7 were summarized by Winberg et al. 

(1971) and was based on the principle (eq. 7) introduced by Boysen-Jensen (1919) for the 

calculation of production of aquatic organisms with well defined generations. Since then, 

many different methods based on this principle were developed to estimate secondary 

production from field data, see the International Biological Programme (IBP) reviews of 

this subject: Pechen et al.,(1971); Yablonskaya et al., (1971); Winberg et al. (1971); and 

Rigler & Downing, (1984). 

For zooplanktonic invertebrates, the problem really arises with the need to identify 

cohorts of species that reproduce more or less continuously. In this case, with the 

continuous recruitment, the cohorts will overlap and the individuals spread throughout 

different size classes, making it virtually impossible to follow the changes in abundance 

with time. Since most zooplanktonic organisms belong to this category, it is necessary to 

use methods that do not require proper cohort recognition. 

According to the review of Rigler & Downing (1984), the two most frequently used 

methods for the calculation of the production of populations with continuous reproduction 

from field data are the “increment-summation” and “instantaneous-growth” protocols. 

These methods were also derived from the Boysen-Jensen concepts and are 

basically the same as those used for production calculations of populations that have 

identifiable cohorts, but some assumptions are needed.   

For “increment-summation” one must assume that all the individuals at the same 

size group and/or larval stage are growing at the same constant rate. By doing so the 

production can be calculated by: 

[ ]∑ +→+= 1iii1i /D) w- w(*iNP ,    (8) 

where, P = the production of a particular size class per unit of time, Ni = number of  

animals in the ith size class, wi = weight/mass of an individual in the ith size class, wi+1 = 

weight/mass of an individual in the i+1 size class, D = time in days taken by an average 

animal to grow from wi to wi+1. (In the case of larval stages one can assume larval 

development as growth, then wi+1 = the average weight of the preceding stage and wi = the 

average weight of that stage, remembering that you are ignoring the contribution of 

exuviae to total production). 

 The other method “instantaneous-growth or growth-rate”, was recently reviewed by 

Kimerer (1987) and endorsed by Runge & Roff (2000) for the “ICES Zooplankton 

methodology manual”(Harris et al., 2000). By this method we have to assume that all the 
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individuals within a size class are growing exponentially, so the daily secondary 

production can be calculated as: 

∑= ii gBPR *        (9) 

with, 

iii wNB *=       (10) 

where, Bi = is the mean biomass of the ith size class class over a certain time and gi = is the 

instantaneous growth rate of the individuals in the ith size class class, Ni = number of 

organisms in the ith size class class and wi = weight/mass of organism in ith size class. The 

annual production of a population by either method (defined by equations 8 and 9) will be 

equal to the sum of weight increments of all the stages throughout the year. According to 

Rigler & Downing (1984), when there is no mortality and the population is in an 

approximately steady state, equations 8 and 9 are identical. However, Kimerer (1987) 

pointed out some errors with the determination of secondary production using the 

“increment-summation” equation, and since the data required for the “growth rate” method 

is basically the same, the later should be used instead. 

Another very popular method for the calculation of secondary production of aquatic 

invertebrates, although not recommended by the IBP, is the so-called “Hynes method” 

(Waters & Hokenstrom, 1980) or simply the “size-frequency method”. Despite not being 

used in this work, this method should be mentioned, since it was a matter of discussion for 

nearly 12 years (Hynes & Coleman, 1968; Hamilton, 1969; Fager, 1969; Gillespie & 

Benke, 1979; Benke, 1979; Menzie, 1980; Krueger & Martin, 1980) after it was first 

published by Hynes & Coleman (1968). 

The method was originally developed for the calculation of secondary production 

of univoltine8 animals (Hamilton, 1969), but later modifications introduced by Benke 

(1979) allowed its application with multivoltine8 animals as well. This method has now 

been “clarified” by Menzie (1980) and Krueger & Martin (1980) as: 

( ) ( )
CPIPa

PewwnnfP
i

ij
jjjj

365**** 21
11 








−= ∑

=
++       (11) 

where, P = annual production, f = the number of size categories, jn = mean number of 

organisms in size class j, wj = is the mean weight of an organism in the jth size category, Pe 

= estimated proportion of life cycle spent in a particular length class, Pa = actual 
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proportion of life cycle spent in a particular length class, CPI = cohort production interval 

or average larval development time in days.  

The “Hynes method” is similar to the “removal-summation” method for estimating 

secondary production (Menzie, 1980), and is thus a simplified version of the “increment-

summation” described above (Rigler & Downing, 1984). Since the data required for the 

three methods are the same, the use of this simplified method should be avoided (Rigler & 

Downing, 1984).  

So, it is clear that an estimate of the secondary productivity of continuously 

reproducing animals in the field will need: 

1 - An accurate estimate of population size of each of the different size classes (or 

larval stages), 

2 - The average body mass of each of the instars, 

3 - The time taken for an animal to grown from the minimum to the maximum size 

within a size class (or larval stage) or the specific growth-rate of each organism. 

Of these, probably the most difficult and laborious to obtain are accurate estimates 

of the population size, because it involves a good spatial coverage of the sampling site, 

with many samples, i.e. numerous hours counting and identifying animals from field data 

at the microscope, probably the most demanding task of any zooplankton investigation. 

The weight of each size class can be obtained after weighing individuals from that 

particular age class (larval stage) from field samples. Later a length-weight relationship 

can be derived, and weights can be estimated straight from length measurements of 

animals from the field.  

The development time and growth rate of each instar can be obtained in different 

ways: 

• The most common was to try to simulate the field conditions in the 

laboratory and estimate the duration of each stage or even the growth rates 

at different temperatures. This approach is often criticized because it is very 

difficult to simulate all variables that affects the development rate in the 

field, however, it is recognized and accepted that temperature and food are 

the main factors that should be controlled (Landry, 1975a; 1975b; McLaren, 

1978; Vidal, 1980a; 1980b; McLaren & Corkett, 1981).    

•  Another approach is the method elaborated by Rigler & Cooley (1974) 

where estimates of development times of field populations can be obtained 

from the mean pulse time of instar abundances from the field data. 
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However, due to the high degree of subjectivity needed in analysing the 

data, it becomes almost impossible to standardize and repeat the procedures.    

• Alternatively, one can use any published specific development/growth-rates 

for each component/species, or use predictive generalist growth-rate 

equations from the literature. 

 

4.2. Material and Methods. 
 
 The methodology employed for sampling, counting and identification of the 

different species/larval stages have been presented on Chapter 1. 

 
 4.2.1. Barnacle larvae weight measurements. 

 

For Dry Weight (DW) determinations, between 25 – 4000 organisms of a particular 

size/stage, were sorted from the samples after at least 1 year of preservation, time 

necessary for the organisms to reach equilibrium volume and weight (Ahlstrom & 

Thrailkill, 1963; Beers, 1976; 1981b). Later, pre-counted batches of 50 – 1000 (Table 20) 

larvae were concentrated, and these larvae together with 200 – 400 µl, of the preserving 

fluid were pipetted onto 4 ml of de-ionised water for dilution of salt and preserving fluid. 

After repeating the dilution procedure a second time, the organisms were then pipetted into 

pre-weighed and ashed aluminium vessels of ± 200 µl capacity. After the animals have 

settled at the bottom of each container, the surrounding liquid was removed, as much as 

possible, with a fine pipette, taking care not to remove any animal. This material were then 

dried in an electric oven for 16-24 hours at 60 °C and transferred to silica gel desiccators 

for cooling (for at least 1 hour) before weighing (Lovegrove, 1966).  

 
Table 20. Number (no) of naupliar stages utilized in each biomass determination, with rep. indicating the 
number of replicates made for each determination.  

Stages E.modestus B.crenatus B.improvisus S.balanoides V.stroemia 
 no rep. no Rep. no rep. no rep. no rep. 

N2 1000 4 1000 4 1000 2 700 3 1000 2 
N3 800 4 500 4 800 2 265 2 356 2 
N4 500 4 200 4 500 3 142 2 240 1 
N5 200 4 100 4 200 4 100 4 90 1 
N6 100 4 100 4 100 2 100 4 25 1 

Cypris 100 2+2 50 2+2 25 1 50 4+1 - - 
 

Note: the + sign indicates that replicates with two different sizes where made 

 

Blanks were made with ± 200 µl of the last dilution solution of four different 

batches, and they averaged ± 9.2% of the sample weights. Since the amount of surrounding 

liquid on each determination was variable, but always less than 200 µl, it was decided not 
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to apply any correction. Tests were also made to estimate the effect of preservation on 

weight loss so, the same procedure were also applied to freshly caught barnacles larvae of 

E. modestus, but due to the numbers needed only stages 5, 6 and Cypris were considered. 

The averaged weight of those stages obtained in replicate experiments indicated losses of 9 

– 23 %. DW estimates for all species/stages were later corrected by the averaged weight 

loss value of 18.15% (±7.31). 

After DW determination, samples were then placed in an electric muffle furnace 

and ashed at 500 °C (Beers, 1976; 1981b), for ±4 hours ((Kimmerer & McKinnon, 1987). 

After ashing, samples were placed on silica gel desiccators (for at least 1 hour) and then 

weighted (the same procedure was later repeated, with no difference being observed 

between ashings). The Ash Free Dry Weight (AFDW) were determined after subtracting 

the Ash Weight (AW) from the DW (AFDW = DW – AW). All weighing were performed 

on a Mettler MT 5 (±1 µg) scientific balance. The individual weights of each specie/stage 

in terms of Dry Weight (DW) were the averaged values of the replicates after the 

correction factor of 18.15% were applied. For AFDW the % of ash determined for the 

preserved animals was subtracted from the corrected DW. Differences between replicas 

varied and errors were calculated as a percentage of the mean and averaged for all 

determinations; during this work it was around ± 3.13 %. 
 
 4.2.2. Barnacle larvae size measurements. 
 
When less than 10 specimens of any particular stage were present on the sub-

sample, all specimens of that stage were measured, otherwise, at least 10 specimens of 

each species/stage present at each sub-sample from each station were measured with a 

micrometric scale (± 20 µm) attached to the Stereomicroscope eyepiece. The 

measurements taken can be seen on Figure 37, where: 

CW

T
L

C
L

CW

T
L

C
L

Figure 37. Nauplii 6 of Balanus 
crenatus showing the measurement 
axes. 

 
TL = Total Length: measured from the anterior 
margin of the carapace to the end of the caudal 
spine. 
 
CW = Carapace Width: or the widest section of 
the larvae. 
 
CL = Carapace Length: measured from the 
anterior margin of the carapace to the tip of the 
carapace spines (carapace spines are only present 
after the third naupliar stage, i.e. nauplius 4 
according to Lang (1979)).  
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4.2.3. Regression analysis. 

 

 To stabilize the variance of the data, weight and Chlorophyll a values were log10 

transformed before being used in any analysis. Simple linear regressions and Backwards 

stepwise multiple regression analysis (F to enter = 4.0 and F to remove = 3.9) were 

calculated with STATISTICA for Windows. Regression graphs were drawn using 

SigmaPlot for Windows. 

 

 4.2.4. Development rates. 

 

During this work, the development rates of each barnacle species were not directly 

measured, although the approximate duration of each larval stage in the field was estimated 

through the power function: 

ln D = ln b + m ln T ,             (12) 

 

Where: D = development rate in days; b and m are constant values obtained from Harms 

(1984; 1986) for Elminius modestus and Semibalanus balanoides and summarized in 

(Table 21), and T = thermal influence, i.e. field temperature in °C. 

Since there is no specific data on the effect of temperature on the development rate 

of the other species, i.e. Balanus crenatus, Balanus improvisus and Verruca stroemia it 

was decided to use E.modestus values of b and m for B.improvisus and S.balanoides values 

of b and m for B.crenatus and V.stroemia, since those species occur at the same period 

(Chapter 3) and probably had similar development rates.  

 
 Table 21. Constant values needed in the power function to obtain development times of barnacles in the field 
(data from Harms, (1984; 1986)).  

 E.modestus E.modestus S.balanoides 
Species→ and and B.crenatus 
 B.improvisus B.improvisus V.stroemia 
Reference (Harms, 1986)  (Harms, 1984)  (Harms, 1984) 
Stage b m b m b m 
II to III 158 -1.51 73.79 -1.261 16.278 -0.923 
III to IV 176 -1.65 82.43 -1.489 15.185 -0.984 
IV to V 147 -1.52 84.73 -1.424 8.97 -0.627 
V to VI 235 -1.61 79.65 -1.249 8.687 -0.499 
VI to Cypris 433 -1.63 140.55 -1.3 9.64 -0.349 

 
 

 

 

 

 134 



Chapter 4 - Barnacle Production 
 4.2.5. Growth rates. 
 
Growth rates were estimated using the general equations/methods proposed/used by 

Ikeda & Motoda (1978), Landry (1978), McLaren et al., (1989), Huntley & Boyd (1984), 

Huntley & Lopez (1992), Hirst & Sheader (1997), Hirst & Lampitt (1998) and Hirst et al. 

(2003). The set of equations employed are summarized on Table 22. 
 
Table 22. Growth rate equations employed in the production estimates (Eq. a to h). Also shown are the 
equations used to estimate Production (Eq.8 and 9) and development (Eq. 12). 

 

Eq.8→∑P = Ni*(wi+1 - wi)/Di→i+1 
 

Eq.9→∑P = B*g 

 

Eq.12→lnD =lnb + (m*lnT) 

  

Growth Equation 
 

taxon 
 

Reference 
 

a 
 

g=7.714*10[0.254*(T)-0.126]*Wi
(-0.0109+0.892)*wic

-1 
 

all/copepods 
 

(Ikeda & Motoda, 1978) 
 

b 
 

g=(1/D)*ln(wi+1/wi) 
 

all/copepods 
 

(Landry, 1978) 
 

c 
 

 

g=(wi+1/wi)1/D-1 

 

all/copepods 
 

(McLaren et al., 1989) 
 

d 
 

 

g=0.0542*e0.110*(T) 
 

all/copepods 
 

(Huntley & Boyd, 1984) 
 

e 
 

 

g=0.0445*e0.111*(T) 
 

all/copepods 
 

(Huntley & Lopez, 1992) 
 

f 
 

Log10(g)=-1.1355+[0.0246*(T)]-[0.2962*log10 (wic)] 
 

all/copepods 
 

(Hirst & Sheader, 1997) 
 

g 
 

Log10 (g)=-1.1408+[0.0208*(T)]-[0.3221*log10(wic)] 
 

Br+S (adults+juveniles) 
 

(Hirst & Lampitt, 1998) 
 

h 
 

Log10 (g)=-1.529+[0.0345*(T)]- [0.128  *log10 (wic)] 
 

Br+S (all Br+S) (Hirst et al., 2003) 
 

Where:  
P = average production of a particular size class/stage in mg dry weight m-3d-1;  
Ni= number of organisms m-3 at stage i;  
wi = the average dry weight at stage i (in µg individual-1);  
wi+1= the average dry weight at stage i+1 (in µg individual-1);  
D = development rate in days;  
B = biomass (i.e. Ni*wi);  
g = growth rate d-1; 
b and m are constant values (Table 21);  
Wi = the average dry weight at stage i (in mg dry weight individual-1);  
wic = the average carbon weight at stage i (in µg carbon individual-1);  
T = temperature in °C;  
Br = Broadcast-spawners; 
S = Sac-spawners. 

 
4.2.6. Production. 

 
Production of each barnacle larvae stage were calculated by the “increment-

summation” and “instantaneous-growth” approaches described by equations 8 and 9  

presented earlier, and also summarized in Table 22.  

For the final annual production estimates, the calculated daily production and 

biomass of a particular larval stage for a sampling day was assumed to represent the mean 

over a time interval between two successive midpoints of the inter-sample period, and 

converted to carbon assuming the carbon: dry weight ratios obtained by Harms (1987) for 

each larval stage of E.modestus,  and extrapolated for all the species found here (Table 23). 

Total annual production of a population will be equal to the sum of weight increments for 

all the stages throughout the year, excluding the non-feeding nauplius 1 (NI ) and cypris. 
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4.3. Results. 
 The total composition and general contribution of each barnacle larvae in the 

mesozooplankton of Southampton Water has been already presented in Chapter 3. These 

results will now present the contribution of each larval stage of E.modestus, B.crenatus, 

B.improvisus and V.stroemia in terms of weight, length and total abundance necessary for 

the estimates of secondary production.  

 
 4.3.1. Weight-length.  

 
The mean-weight values of the larval stages of the barnacle species found in 

Southampton Water are presented in Table 23, while the reported values from the literature 

can be seen in Appendix X. 
Table 23. Mean weight values (µg) of the naupliar stages II to VI + cypris of the species considered. Also 
shown is the % of Ash and Carbon (C) considered for each stage, as well as the averaged body measurements 
of each larval stage used in the biomass analysis.  

Average Weight (µg) Stage CW ± SD    (n) TL  ± SD     (n) 
**DW± SD (n) AFDW±SD (n) 

%Ash ±SD *%C ± SD Species 
 

I ---- ---- ---- ---- ---- ---- 
II 156 ± 8.4   (10) 364   ± 15.8(10) 0.29 ± 0.01   (4) 0.24 ± 0.01   (4) 17.03 ± 6.25 43.31± 0.33* 
III 180 ± 0.0   (10) 390   ± 14.0(10) 0.49 ± 0.05   (4) 0.40 ± 0.04   (4) 17.88 ± 4.00 44.17± 5.24* 
IV 216 ± 8.4   (10) 428   ± 14.0(10) 0.77 ± 0.70   (4) 0.65 ± 0.06   (4) 15.25 ± 6.82 40.40± 3.42* 
V 262 ± 6.3   (10) 478   ± 22.0(10) 1.20 ± 0.09   (4) 1.03 ± 0.08   (4) 13.61 ± 6.41 39.37± 2.22* 
VI 314 ± 9.8     (7) 537   ± 13.8  (7) 2.23 ± 0.05   (4) 1.90 ± 0.04   (4) 14.57 ± 7.74 44.69± 5.53* 

Cypris ---- 
---- 

530   ± 10.9  (6) 
666   ± 25.0(10)  

3.34 ± 0.04   (2) 
7.46 ± 0.21   (2) 

3.30 ± 0.05   (2) 
7.10 ± 0.20   (2) 

  1.06 ± 0.74 
  0.05 ± 2.11 

51.94± 4.54* 
51.94± 4.54* 

Elminius 
modestus 

 

 

I ---- ---- ---- ---- ---- ---- 
II 164 ± 8.4   (10) 438   ± 11.4(10) 0.46 ± 0.01  (4) 0.41 ± 0.01   (4) 11.03 ± 6.27 43.31± 0.33* 
III 196 ± 8.4   (10) 486   ± 25.0(10) 0.74 ± 0.05  (4) 0.63 ± 0.05   (4) 14.13 ± 3.68 44.17± 5.24* 
IV 250 ± 10.5 (10) 580   ± 16.3(10) 1.48 ± 0.04  (4) 1.18 ± 0.03   (4) 20.30 ± 1.97 40.40± 3.42* 
V 316 ± 12.6 (10) 682   ± 14.8(10) 2.70 ± 0.04  (4) 2.21 ± 0.03   (4) 18.02 ± 4.73 39.37± 2.22* 
VI 396 ± 15.8 (10) 800   ± 29.8(10) 5.47 ± 0.58  (4) 4.27 ± 0.45   (4) 21.90 ± 9.59 44.69± 5.53* 

Cypris ---- 
---- 

854   ± 14.0(10) 
650   ± 42.4(10) 

11.49±0.20  (2) 
6.50 ± 0.01  (2) 

11.15 ± 0.20 (2) 
6.19 ± 0.01   (2) 

3.01 ± 2.82 
4.73 ± 3.61 

51.94± 4.54* 
51.94± 4.54* 

Balanus 
crenatus 

 

I ---- ---- ---- ---- ---- ---- 
II 144 ± 8.4   (10) 318   ± 14.8(10) 0.27 ± 0.03  (2) 0.20 ± 0.02   (2) 25.05 ± 3.85 43.31± 0.33* 
III 180 ± 0.0   (10) 354   ± 19.0(10) 0.46 ± 0.00  (2) 0.36 ± 0.00   (2) 20.46 ± 0.01 44.17± 5.24* 
IV 222 ± 6.7     (9) 416   ± 15.8(10) 0.76 ± 0.03  (3) 0.62 ± 0.02   (3) 18.90 ± 4.00 40.40± 3.42* 
V 294 ± 13.5 (10) 493   ± 10.4  (9) 1.42 ± 0.06  (4) 1.18 ± 0.05   (4) 17.12 ± 0.75 39.37± 2.22* 
VI 380 ± 0.0   (10) 600   ± 0.0  (10) 2.87 ± 0.25  (2) 2.34 ± 0.21   (2) 18.44 ± 4.34 44.69± 5.53* 

Cypris ---- 530   ± 0.0  (10) 4.90             (1) 3.88              (1) 20.69 51.94± 4.54* 

 
Balanus 

improvisus 
 

 

I ---- ---- ---- ---- ---- ---- 
II 196 ± 8.4   (10) 472   ± 19.3(10) 0.69 ± 0.02   (3) 0.56 ± 0.02   (3) 18.23 ± 2.29 43.31± 0.33* 
III 230 ± 16.7   (6) 557   ± 23.4  (6) 1.11 ± 0.06   (2) 0.86 ± 0.05   (2) 22.37 ± 4.13 44.17± 5.24* 
IV 313 ± 10.4   (8) 678   ± 22.5  (8) 2.47 ± 0.15   (2) 2.01 ± 0.12   (2) 18.97 ± 1.02 40.40± 3.42* 
V 398 ± 35.8 (10) 798   ± 61.4(10) 5.56 ± 0.51   (4) 4.49 ± 0.42   (4) 19.22 ± 5.42 39.37± 2.22* 
VI 505 ± 38.2   (8) 1008 ± 42.7  (8) 10.41 ± 0.23 (4) 8.51 ± 0.18   (4) 18.31 ± 2.39 44.69± 5.53* 

Cypris ---- 
---- 

797   ± 29.2  (7) 
930   ± 49.2(10) 

9.79 ± 0.37   (4) 
23.19            (1) 

9.21 ± 0.35   (4) 
21.80            (1) 

5.93 ± 2.47 
6.01 

51.94± 4.54* 
51.94± 4.54* 

Semibalanus 
balanoides 

 

I ---- ---- ---- ---- ---- ---- 
II 180 ± 0.0   (10) 408   ± 10.3(10) 0.33 ± 0.03  (2) 0.25 ± 0.03   (2) 25.17 ± 6.76 43.31± 0.33* 
III 204 ± 15.8 (10) 452   ± 27.0(10) 0.49 ± 0.02  (2) 0.37 ± 0.01   (2) 23.20 ± 2.17 44.17± 5.24* 
IV 242 ± 17.5 (10) 468   ± 23.5(10) 0.79             (1) 0.55              (1) 30.00 40.40± 3.42* 
V 297 ± 19.7   (6) 545   ± 25.2  (4) 1.32             (1) 1.15              (1) 12.94 39.37± 2.22* 
VI 360 ± 30.6   (3) 660   ± 30.6  (3) 3.06             (1) 2.50              (1) 18.18 44.69± 5.53* 

Cypris ---- ---- ---- ---- ---- ---- 

Verruca 
stroemia 

 

Where: DW = Dry Weight; AFDW = Ash Free Dry Weight; CW = Carapace width (µm); TL = Total length (µm); C = carbon; 
SD = ±1 Standard Deviation; ---- = not available; n = number of organisms measured/ or replicates (the no of larvae utilized for each 
weight replica in this work can be seen on Table 20).  
* %C values used were obtained from Harms (1987) after averaging the results of different temperatures/experiments. 
**Values of DW were obtained after applying a correction factor of 18.15% due to formalin preservation.  
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During this study a total of 15974 size measurements were taken from 3277 

E.modestus, 1706 B.crenatus, 786 B.improvisus, 771 S.balanoides and 344 V.stroemia. 

The total averaged value for total length, carapace length and width of these species for 

each stage for the three stations can be seen on Table 24, while the reported values from 

the literature can be seen in Appendix IX a,b,c,d,e.  

 
Table 24. Total length, carapace length and width of the naupliar stages I to VI + cypris of the barnacle 
species considered. (All measurements in µm) 

 

Carapace   Stage 
Width ± SD      (n) Length ± SD    (n) Total Length ± SD (n) 

Species 
 

I  123 ±  7             (70) ---- 242 ± 22                  (70) 
II 157 ± 13         (1033) ---- 392 ± 33              (1033) 
III 187 ± 14           (732) ---- 421 ± 39                (732) 
IV 222 ± 18           (538) 299 ± 22        (538) 451 ± 45                (533) 
V 271 ± 21           (440) 359 ± 27        (441) 500 ± 53                (433) 
VI 328 ± 23           (339) 436 ± 28        (341) 565 ± 54                (330) 

Cypris ---- ---- 553 ± 53                (122) 

 Elminius modestus 
 

 

I 144 ± 9               (63) ---- 274 ± 21                  (63) 
II 172 ± 12           (609) ---- 433 ± 28                (609) 
III 203 ± 11           (342) ---- 502 ± 25                (339) 
IV 247 ± 13           (254) 404 ± 22        (254) 575 ± 28                (249) 
V 311 ± 19           (199)  502 ± 30        (199) 679 ± 39                (198) 
VI 397 ± 29           (165) 635 ± 47        (165) 814 ± 54                (161) 

Cypris ---- ---- 779 ± 78                  (74) 

 Balanus crenatus 

 

I 139 ± 22             (16) ---- 285 ± 59                  (16) 
II 148 ± 12           (282) ---- 316 ± 26                (281) 
III 181 ± 12           (188) ---- 356 ± 27                (187) 
IV 227 ± 20           (144) 311 ± 27        (145) 412 ± 37                (137) 
V 289 ± 27             (77) 392 ± 33          (77) 492 ± 50                  (78) 
VI 369 ± 27             (71) 502 ± 29          (71) 621 ± 48                  (65) 

Cypris ---- ---- 523 ± 20                    (6) 

 
 Balanus improvisus 

 

 

I 179 ± 17            (22) ---- 319 ± 28                  (22) 
II 203 ± 11          (286) ---- 475 ± 28                (286) 
III 238 ± 13          (157) ---- 562 ± 30                (156) 
IV 298 ± 15            (89) 446 ± 22          (89) 662 ± 38                  (84) 
V 385 ± 22            (96) 556 ± 31          (96) 795 ± 40                  (79) 
VI 503 ± 33            (78) 725 ± 51          (79) 990 ± 66                  (76) 

Cypris ---- ---- 835 ± 81                  (42) 

 Semibalanus balanoides 

 

I 140 ± 28               (2) ---- 280                            (2) 
II 180 ±  9            (170) ---- 412 ± 36                (169) 
III 212 ± 13           (116) ---- 456 ± 34                (114) 
IV 256 ± 21             (37) 297 ± 26          (37) 500 ± 37                  (29) 
V 311 ± 18             (15) 371 ± 27          (15) 590 ± 44                  (12) 
VI 353 ± 31               (3) 427 ± 23            (3) 653 ± 31                    (3) 

Cypris ---- ---- 480                            (1) 

 Verruca stroemia 

 

Where: SD = ±1 Standard Deviation; n = number of organisms measured/ or replicas; ---- = Value/measure not available.  

 
Considering the seasonal variation of the total length and breadth of each naupliar 

stage of each species, presented on Figures 38, 39, 40, 41, 42 and 43, it can be seen that the 

total length and carapace width of naupliar stages II to VI of E.modestus, B.crenatus and 

B.improvisus were usually bigger during winter and spring when compared with sizes 

found latter in the season or during the summer (Figures 38, 39, 40). S.balanoides and 

V.stroemia, in contrast, did not show any consistent change in total length and carapace 

width, except for some of the later stages (Figures 41, 42). With the exception of Elminius 
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modestus cyprids that also showed a decrease in size towards summer, none of the 

remaining species showed any seasonal trend (Figure 43).  
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Figure 38. Seasonal changes in mean carapace width (left) and  total length (right) of naupliar stages I to VI 
of Elminius modestus in Southampton Water in the three stations during 2001/02. (Error bars = ±1 Standard 
Deviation (SD), lines are only given when individuals were caught in consecutive samples).  
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Figure 39. Seasonal changes in mean carapace width (left) and  total length (right) of naupliar stages I to VI 
of Balanus crenatus in Southampton Water in the three stations during 2001/02. (Error bars = ±1 Standard 
Deviation (SD), lines are only given when individuals were caught in consecutive samples).  
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Figure 40. Seasonal changes in mean carapace width (left) and total length (right) of naupliar stages I to VI of 
Balanus improvisus in Southampton Water in the three stations during 2001/02. (Error bars = ±1 Standard 
Deviation (SD), lines are only given when individuals were caught in consecutive samples).  
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Figure 41. Seasonal changes in mean carapace width (left) and total length (right) of naupliar stages I to VI of 
Semibalanus balanoides in Southampton Water in the three stations during 2001/02. (Error bars = ±1 
Standard Deviation (SD), lines are only given when individuals were caught in consecutive samples).  
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Figure 42. Seasonal changes in mean carapace width (left) and total length (right) of naupliar stages I to VI of 
Verruca stroemia in Southampton Water in the three stations during 2001/02. (Error bars = ±1 Standard 
Deviation (SD), lines are only given when individuals were caught in consecutive samples). 
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Figure 43. Seasonal changes in mean total length of the cyprids of the barnacles found in Southampton Water 
in the three stations during 2001/02. (Error bars = ±1 Standard Deviation (SD), lines are only given when 
individuals were caught in consecutive samples). 

 

The decrease of total length and carapace width of E.modestus, B.crenatus and 

B.improvisus towards the summer suggests that an inverse relationship between these two 

measures, with some seasonal environmental forcing parameter, so in order to better 

evaluate this the average of both measures were regressed against temperature, salinity and 

chlorophyll a and the results presented in Table 25.  
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Table 25. Results of the  Backwards stepwise multiple regression analysis (F to enter = 4.0 and F to remove = 
3.9) between Total Length and Carapace Width of naupliar stages I to VI + cypris of each barnacle species 
considered with Temperature (T), Salinity (S) and Chlorophyll (C) concentration (equations in red considered 
all parameters, but only shows those parameters that added significantly to the prediction). Also shown are 
the results between the two measures with temperature (in black). All equations shown are significant at 5%.  
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Elminius modestus 
stage Carapace Width Equation r2 n Total Length Equation r2 n 

n I - ns - 25 r11 TL=262.0-2.39*T 0.17 25 

n II r1 
r2 

CW=176.9-1.56*T 
CW=181.7-2.15*T+7.76*C 

0.44 
0.49 107 r12 

r13 
TL=458.2-5.34*T 
TL=532.6-6.47*T-2.14*S+19.35*C 

0.63 
0.69 107 

n III r3 
r4 

CW=221.0- 2.39*T 
CW=249.9-2.61*T-0.91*S+5.93*C 

0.64 
0.67 89 r14 

r15 
TL=541.4-  8.46*T 
TL=546.5-9.21*T+11.81*C 

0.82 
0.83 89 

n IV r5 
r6 

CW=273.6- 3.42*T 
CW=279.1-4.25*T+13.00*C 

0.56 
0.61 77 r16 

r17 
TL=617.7-11.03*T 
TL=624.1-12.00*T+15.08*C 

0.83 
0.84 77 

n V r7 
r8 

CW=343.3- 4.74*T 
CW=349.3-5.85*T+19.61*C 

0.63 
0.72 68 r18 

r19 
TL=709.8-13.69*T 
TL=623.9-16.26*T+3.42*S+32.36*C 

0.82 
0.86 68 

n VI r9 
r10 

CW=425.9- 6.20*T  
CW=429.0-7.29*T+23.77*C 

0.59 
0.68 59 r20 

r21 
TL=826.4-16.28*T 
TL=830.3-17.57*T+27.43*C 

0.82 
0.84 58 

cypris - - - - r22 
r23 

TL=629.1- 5.15*T 
TL=638.4-9.01*T+80.65*C 

0.17 
0.57 40 

Balanus crenatus 
n I - ns - 20 - ns 0.11 20 

n II r24 
r25 

CW=188.52- 1.513*T 
CW=207.9-0.81*T-0.83*S-7.29*C 

0.44 
0.51 74 r31 

r32 
TL=477.1- 4.23*T 
TL=553.6-3.59*T-2.70*S 

0.57 
0.62 74 

n III r26 CW=218.6- 1.54*T 0.42 51 - 
r33 

ns 
TL=2410.4-65.94*S 

0.07 
0.64 51 

n IV r27 CW=266.9- 2.14*T 0.37 45 r34 
r35 

TL=629.7-5.92*T 
TL=648.1-8.65*T-43.38*C 

0.54 
0.64 44 

n V r28 
r29 

CW=355.3- 4.17*T 
CW=366.0-5.8*T+22.39*C 

0.37 
0.44 42 r36 

r37 
TL=789.0-10.21*T 
TL=809.9-13.50*T+44.12*C 

0.60 
0.68 42 

n VI - 
r30 

ns 
CW=2070.1-51.01*S 

- 
0.51 35 r38 TL=914.2-8.59*T 0.17 33 

cypris - - - - - 
r39 

ns 
TL=1214.9+101.20*C 

- 
0.23 25 

Balanus improvisus 
n I ns ns - 4 - ns - 4 

n II r40 
r41 

CW=163.6- 0.98*T 
CW=219.1-2.17*S 

0.11 
0.11 52 r46 TL= 352.2-2.39*T 0.17 52 

n III r42 CW=223.6- 2.45*T 0.46 38 r47 TL= 453.8-5.60*T 0.55 38 
n IV r43 CW=281.6- 3.22*T 0.21 31 r48 TL= 556.9-8.87*T 0.48 30 
n V r44 CW=375.0- 4.94*T 0.21 33 r49 TL= 656.0-9.61*T 0.30 29 
n VI r45 CW=480.0- 6.82*T 0.63 26 r50 TL= 804.8-11.52*T 0.63 26 
cypris - ns - - - ns - 3 

Semibalanus balanoides 

n I - 
r51 

ns 
CW=166.2+89.39*C 

- 
0.48 8 - 

r55 
ns 

TL=279.1+206.55*C 
- 

0.54 8 

n II - 
r52 

ns 
CW=261.1-1.96*S 

- 
0.16 41 - ns - 41 

n III - 
r53 

ns 
CW=296.1+26.62*C 

-
0.17 31 - ns - 31 

n IV - 
r54 

ns 
CW=377.5+35.93*C 

- 
0.20 23 r56 

r57 
TL=605.6+5.93*T 
TL=449.8+5.36*S 

0.20 
0.29 23 

n V - ns - 18 - ns - 18 
n VI - ns - 17 - ns - 16 

cypris - ns - - - 
r58 

ns 
TL=805.6+92.97*C 

- 
0.46 9 

Verruca stroemia 
n I - - - - - - - - 
n II - ns - 36 - ns - 35 

n III - 
r59 

ns 
CW=210.4+20.85*C 

- 
0.20 20 - ns - 20 

n IV - 
r60 

ns 
CW=466.68-6.42*S 

- 
0.43 14 - 

r61 
ns 

TL=921.8-13.10*S 
- 

0.58 12 

n V - ns - 6 - ns - 6 
n VI - ns - 3 - ns - 3 
cypris - - - - - - - - 
 

Where: ns = not significant with temperature or any other variable (if the case); CW = carapace width (µm); TL = total length (µm); 
T = temperature (°C); S = Salinity; C = Chlorophyll a  log10 (mg m-3); r2 = determination coefficient; p = significance level; n = number of 
observations; - = indicates that no data were available; r 1 to 61 indicates the number of the resulting equation 



Chapter 4 - Barnacle Production 
On a general basis, the regression analysis between total-length and carapace-width 

with the environmental variables confirmed the strong relationship of temperature in the 

sizes of E.modestus, B.crenatus and B.improvisus, but also indicated that salinity and 

chlorophyll a are also important for some stages of these species. Usually for the three 

species, both size measurements were negatively related with temperature and salinity and 

positively with chlorophyll. S.balanoides and V.stroemia did not show any relationship 

with temperature, but chlorophyll and salinity did have some significant influence in the 

sizes of some stages (Table 25).  

In order to be able to predict the weight of each larval stage, at each sampling day, 

the average width and length of the animals used in the weight analysis were recorded 

(Table 23), and length-weight and width-weight relationships were established using all 

data available (Figure 44). 
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Equation r2 significance n Species 

r62 
r63 

Log10(DW) =   -6.655+2.797*log10(CW) 
Log10(DW) = -13.401+5.038*log10(TL) 

0.987 
0.985 

p<0.01 
p<0.01 

20 
20 Elminius modestus 

r64 
r65 

Log10(DW) =   -6.513+2.786*log10(CW) 
Log10(DW) = -10.991+4.037*log10(TL) 

0.996 
0.996 

p<0.01 
p<0.01 

20 
20 Balanus crenatus 

r66 
r67 

Log10(DW)  =  -5.729+2.389*log10(CW) 
Log10(DW)  =  -9.653+3.641*log10(TL) 

0.995 
0.995 

p<0.01 
p<0.01 

13 
13 Balanus improvisus 

r68 
r69 

Log10(DW)  =  -6.788+2.890*log10(CW) 
Log10(DW)  =-10.105+3.716*log10(TL) 

0.997 
0.988 

p<0.01 
p<0.01 

15 
15 Semibalanus balanoides 

r70 
r71 

Log10(DW)  =  -7.428+3.078*log10(CW) 
Log10(DW)  =-12.713+4.686*log10(TL) 

0.989 
0.980 

p<0.01 
p<0.01 

7 
7 Verruca stroemia 

r72 Log10(DW)  =  -6.985+2.763*log10(TL) 0.926 p<0.01 13 Cypris 
Figure  44. Regression analysis between Dry Weight values with Carapace Width (a) and also with Total 
Length  (b) measurements. Regression equations are also shown. Where DW = Dry Weight (µg individual-1); 
CW = Carapace Width (µm individual-1); TL = Total Length (µm individual-1); r2 = coefficient of 
determination; n = number of data points and r 62 to 72 indicates the number of the resulting equation.   
 

On a general basis both measures were highly positively correlated with dry weight 

values, with carapace width giving slightly stronger correlations. So, the seasonal overall 

decrease in size observed for some species also means an overall decrease in weight.   
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4.3.2. Abundance, biomass and production. 

 
 4.3.2.1. Elminius modestus.  

 

During this investigation all stages of Elminius modestus were found at the three 

stations, with naupliar stage 2 present throughout the year and the most abundant, 

averaging 50 % of all E.modestus nauplii encountered (Figure 45).  
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Figure 45. Temporal variability of the larval stages of Elminius modestus present in the zooplankton of 
Southampton Water during 2001/02. 

 

Older stages were found as early as March, but they only contributed significantly 

in numbers from May to November (Figure 45). Apart from a massive burst in July 2002 at 

Cracknore, the abundance of E.modestus was usually quite homogeneous at the three 

stations.  

There was a clear seasonal variation in the biomass of E.modestus, with highest 

values found during summer-autumn and lowest during winter (Figure 46). Total biomass 

of E.modestus for the period, was 99.61, 96.15 and 85.77 mg C m-3 at Cracknore, NW. 

Netley and Calshot respectively.   
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Chapter 4 - Barnacle Production 
 Based on the temporal variability of the abundance and biomass values, the 

production of Elminius modestus for the three stations over the period studied was also 

calculated (Table 26), and its daily variability can be seen on Figure 46.  In terms of stage 

contribution, nauplii 2, 3 and 4 together accounted for ~72% of the production. 
Table 26. Production estimates of each larval stage of Elminius modestus obtained using the respective 
equations summarized in Table 22. (all refer to total production in terms of mg C m-3; and year is the annual 
production in terms of mg C m-3yr-1). Production using Harms (1986) data on Eq. 12 is highlighted in red. 

Elminius modestus – Cracknore 
 Nauplii 2 Nauplii 3 Nauplii 4 Nauplii 5 Nauplii 6 Total 
Equation all year all year all year all year all year all year 
Eq.8+12 7.36 4.78 11.52 7.48 10.2 6.63 5.44 3.53 2.09 1.35 36.62 23.78 
Eq. 9+a 10.48 6.80 7.44 4.83 7.26 4.71 5.66 3.68 2.59 1.68 33.43 21.71 
Eq.9+12+b  5.70 3.70 8.74 5.68 7.66 4.97 4.14 2.69 1.59 1.03 27.83 18.08 
Eq.9+12+c  6.44 4.18 11.22 7.29 9.43 6.12 4.70 3.05 1.73 1.12 33.51 21.76 
Eq.9+d  9.06 5.88 7.40 4.81 7.70 5.00 6.90 4.48 4.18 2.72 35.24 22.89 
Eq.9+e 7.57 4.92 6.19 4.02 6.43 4.18 5.77 3.75 3.50 2.27 29.46 19.13 
Eq.9+f  9.14 5.94 6.24 4.05 5.65 3.67 4.30 2.79 2.14 1.39 27.47 17.84 
Eq.9+g 8.22 5.34 5.50 3.57 4.91 3.19 3.69 2.40 1.80 1.17 24.13 15.67 
Eq.9+h 3.82 2.48 2.88 1.87 2.81 1.83 2.35 1.53 1.31 0.85 13.17 8.56 
Eq.8+12 6.94 4.51 8.59 5.58 7.76 5.04 5.26 3.41 1.77 1.15 30.32 19.69 
Eq.9+12+b  5.38 3.49 6.52 4.23 5.83 3.78 4.00 2.60 1.35 0.88 23.08 14.98 
Eq.9+12+c  6.04 3.93 7.84 5.09 6.82 4.43 4.52 2.94 1.45 0.94 26.67 17.33 

Average 7.18 4.66 7.51 4.88 6.87 4.46 4.73 3.07 2.13 1.38 28.41 18.45 
Elminius modestus – NW. Netley 

 Nauplii 2 Nauplii 3 Nauplii 4 Nauplii 5 Nauplii 6 Total 
Equation all year all year all year all year all year all year 
Eq.8+12 7.69 5.58 11.52 8.36 9.86 7.15 6.06 4.40 2.89 2.10 38.02 27.59 
Eq. 9+a 9.16 6.65 8.13 5.90 6.51 4.73 6.08 4.41 3.62 2.63 33.51 24.32 
Eq.9+12+b  5.63 4.09 8.83 6.41 7.26 5.27 4.55 3.30 2.20 1.59 28.47 20.66 
Eq.9+12+c  6.61 4.80 10.95 7.94 9.05 6.56 5.21 3.78 2.40 1.74 34.21 24.83 
Eq.9+d  7.59 5.51 8.14 5.91 6.85 4.97 7.22 5.24 5.77 4.18 35.58 25.82 
Eq.9+e 6.34 4.60 6.80 4.94 5.73 4.16 6.04 4.38 4.83 3.50 29.74 21.58 
Eq.9+f  7.86 5.70 7.10 5.15 5.21 3.78 4.51 3.27 2.87 2.08 27.55 19.99 
Eq.9+g 7.07 5.13 6.29 4.56 4.56 3.31 3.86 2.80 2.41 1.75 24.18 17.55 
Eq.9+h 3.25 2.36 3.24 2.35 2.56 1.86 2.47 1.79 1.78 1.29 13.30 9.65 
Eq.8+12 7.34 5.33 8.51 6.17 7.49 5.43 5.89 4.27 2.48 1.80 31.71 23.00 
Eq.9+12+b  5.36 3.89 6.53 4.74 5.51 4.00 4.42 3.21 1.88 1.37 23.70 17.21 
Eq.9+12+c  6.27 4.55 7.64 5.55 6.51 4.73 5.05 3.66 2.03 1.48 27.50 19.97 

Average 6.68 4.85 7.81 5.66 6.42 4.66 5.11 3.71 2.93 2.13 28.96 21.01 
Elminius modestus – Calshot 

 Nauplii 2 Nauplii 3 Nauplii 4 Nauplii 5 Nauplii 6 Total 
Equation all year all year all year all year all year all year 
Eq.8+12 7.49 4.87 6.98 4.53 6.46 4.20 4.00 2.60 2.36 1.53 27.29 17.72 
Eq. 9+a 9.32 6.05 4.72 3.06 4.53 2.94 3.84 2.49 4.20 2.73 26.60 17.28 
Eq.9+12+b  5.58 3.62 5.34 3.47 4.79 3.11 2.97 1.93 1.92 1.24 20.60 13.38 
Eq.9+12+c  6.44 4.18 6.73 4.37 5.97 3.88 3.42 2.22 2.04 1.33 24.60 15.98 
Eq.9+d  7.84 5.09 4.71 3.06 4.72 3.07 4.61 2.99 6.86 4.46 28.73 18.66 
Eq.9+e 6.55 4.25 3.93 2.55 3.95 2.56 3.85 2.50 5.74 3.73 24.02 15.60 
Eq.9+f  8.13 5.28 4.04 2.62 3.47 2.25 2.86 1.86 3.42 2.22 21.92 14.24 
Eq.9+g 7.33 4.76 3.57 2.32 3.02 1.96 2.45 1.59 2.87 1.86 19.24 12.49 
Eq.9+h 3.35 2.18 1.85 1.20 1.73 1.12 1.56 1.01 2.11 1.37 10.60 6.88 
Eq.8+12 7.10 4.61 5.18 3.36 4.92 3.20 3.89 2.53 2.00 1.30 23.09 15.00 
Eq.9+12+b  5.30 3.44 4.00 2.60 3.71 2.41 2.91 1.89 2.31 1.50 18.23 11.84 
Eq.9+12+c  6.07 3.94 4.71 3.06 4.31 2.80 3.32 2.15 1.72 1.12 20.13 13.07 

Average 6.71 4.36 4.65 3.02 4.30 2.79 3.31 2.15 3.13 2.03 22.09 14.34 
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Chapter 4 - Barnacle Production 
The overall average production of Elminius modestus was 26.49 mg C m-3, which 

represented an annual production of 17.93 mg C m-3 yr-1 for the three stations. (The 

production equation used to illustrate the daily contribution of each barnacle stage in 

Figure 46 was the equation that gave the closest value to the average of all equations used 

in Table 26).  
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Figure 46. Seasonal production and biomass of the larval stages of Elminius modestus present in the 
zooplankton of Southampton Water during 2001/02. 
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Chapter 4 - Barnacle Production 
 4.3.2.2. Balanus crenatus. 

 
Balanus crenatus nauplii occurred from December/January to July and like 

E.modestus, all naupliar stages were found at the three stations (Figure 47). Nauplii 2 

accounted, on average, for 83% of all stages of B.crenatus found in Southampton Water. 

Older stages were only observed after March and were much more abundant towards 

Calshot. Despite a very similar composition in 2001, major abundances of nauplii 2 were 

only observed at NW. Netley and Calshot in 2002 (Figure 47).  
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Figure 47. Temporal variability of the larval stages of Balanus crenatus present in the zooplankton of 
Southampton Water during 2001/02. 
 
 

Total biomass of B.crenatus for the sampling period, was 48.35, 148.86 and 119.74 

mg C m-3 at Cracknore, NW. Netley and Calshot respectively, and its daily variation can be 

seen in Figure 48.  

The calculated production of Balanus crenatus, based on the temporal variability of 

biomass and abundance, is summarized on Table 27. The calculated productions at the 

three sites were unequal, with Cracknore presenting production approximately an order of 

magnitude lower than the other two sites.  
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Chapter 4 - Barnacle Production 
Table 27. Production estimates of each larval stage of Balanus crenatus obtained using the respective 
equations summarized in Table 22. (all refer to total production in terms of mg C m ; and year is the annual 
production in terms of mg C m yr ) 

-3

-3 -1

Balanus crenatus – Cracknore 
Nauplii 3 Nauplii 4 Nauplii 5 Nauplii 6  Nauplii 2 Total 

Equation all year All year all year all year all year all year 
Eq.8+12 3.17 2.06 0.30 0.20 0.20 0.13 0.49 0.32 0.23 0.15 4.40 2.86 
Eq. 9+a 1.51 0.98 0.08 0.05 0.06 0.04 0.14 0.09 0.12 0.08 1.90 1.23 
Eq.9+b+12  2.56 1.66 0.23 0.15 0.14 0.09 0.33 0.21 0.17 0.11 3.42 2.22 
Eq.9+c+12  2.84 1.85 0.28 0.18 0.17 0.11 0.38 0.25 0.18 0.12 3.85 2.51 
Eq.9+d  2.05 1.33 0.11 0.07 0.08 0.05 0.23 0.15 0.28 0.18 2.74 1.78 
Eq.9+e 1.70 1.10 0.09 0.06 0.07 0.04 0.19 0.12 0.23 0.15 2.27 1.48 
Eq.9+f  2.52 1.64 0.11 0.07 0.07 0.04 0.16 0.10 0.15 0.09 3.01 1.95 
Eq.9+g 2.38 1.55 0.11 0.07 0.06 0.04 0.14 0.09 0.13 0.08 2.81 1.83 
Eq.9+h 1.00 0.65 0.05 0.03 0.03 0.02 0.08 0.05 0.09 0.06 1.26 0.82 

Average 2.19 1.42 0.15 0.10 0.10 0.06 0.24 0.15 0.18 0.11 2.85 1.85 
Balanus crenatus – NW. Netley 

 Nauplii 2 Nauplii 3 Nauplii 4 Nauplii 5 Nauplii 6 Total 
Equation all year All year all year all year all year all year 
Eq.8+12 29.96 21.74 4.63 3.36 2.57 1.86 2.62 1.90 0.38 0.27 40.16 29.14 
Eq. 9+a 14.33 10.40 1.07 0.78 0.75 0.54 0.94 0.68 0.42 0.31 17.51 12.71 
Eq.9+b+12  24.27 17.61 3.36 2.44 1.83 1.32 1.88 1.37 0.32 0.23 31.65 22.97 
Eq.9+c+12  26.98 19.58 4.26 3.09 2.18 1.58 2.14 1.56 0.33 0.24 35.90 26.05 
Eq.9+d  19.28 13.99 1.51 1.09 1.10 0.80 1.58 1.15 0.94 0.68 24.41 17.71 
Eq.9+e 15.98 11.60 1.25 0.91 0.92 0.66 1.31 0.95 0.78 0.57 20.25 14.69 
Eq.9+f  23.72 17.21 1.52 1.10 0.91 0.66 1.06 0.77 0.50 0.36 27.70 20.10 
Eq.9+g 22.35 16.22 1.40 1.01 0.82 0.59 0.94 0.68 0.43 0.31 25.93 18.82 
Eq.9+h 9.40 6.82 0.66 0.48 0.44 0.32 0.58 0.42 0.31 0.23 11.40 8.27 

Average 20.70 15.02 2.18 1.59 1.28 0.93 1.45 1.05 0.49 0.36 26.10 18.94 
Balanus crenatus – Calshot 

 Nauplii 2 Nauplii 3 Nauplii 4 Nauplii 5 Nauplii 6 Total 
Equation all year All year all year all year all year all year 
Eq.8+12 19.40 12.60 10.88 7.07 3.15 2.05 1.73 1.13 0.90 0.58 36.07 23.43 
Eq. 9+a 8.22 5.35 2.64 1.72 0.86 0.56 0.49 0.32 0.45 0.29 12.65 8.23 
Eq.9+b+12  15.19 9.86 8.13 5.28 2.22 1.44 1.19 0.77 0.65 0.42 27.38 17.78 
Eq.9+c+12  17.22 11.21 9.83 6.39 2.62 1.71 1.37 0.89 0.70 0.46 31.74 20.65 
Eq.9+d  10.76 7.00 3.81 2.48 1.26 0.82 0.83 0.54 1.04 0.68 17.70 11.52 
Eq.9+e 8.92 5.79 3.16 2.05 1.05 0.68 0.69 0.45 0.86 0.56 14.68 9.54 
Eq.9+f  13.52 8.78 4.08 2.65 1.13 0.74 0.60 0.39 0.58 0.38 19.91 12.93 
Eq.9+g 14.56 9.46 4.25 2.76 1.14 0.74 0.62 0.40 0.62 0.40 21.20 13.77 
Eq.9+h 5.28 3.43 1.74 1.13 0.53 0.35 0.32 0.21 0.36 0.23 8.23 5.34 

Average 12.56 8.16 5.39 3.50 1.55 1.01 0.87 0.57 0.68 0.45 21.06 13.69 
 
In terms of developmental stage contributions, nauplii 2 alone accounted for ~72% 

of the production (Table 27). The daily contribution of each barnacle stage can be seen in 

Figure 48, and the production value chosen to illustrate the daily contribution of each 

barnacle stage were those produced by the equation that gave the closest value to the 

average. 

Total averaged production of Balanus crenatus for the three stations over the period 

studied was 16.67 mg C m-3, which represented an average annual production of 11.49 mg 

C m-3 yr-1.  
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Figure 48. Seasonal production and biomass of the larval stages of Balanus crenatus present in the 
zooplankton of Southampton Water during 2001/02. 
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Chapter 4 - Barnacle Production 
 4.3.2.3. Balanus improvisus.  

 

Balanus improvisus nauplii were found at all three stations from January/February 

until November, and ‘somehow’ confined to the inner reaches of Southampton Water 

where it was much more abundant. Naupliar stage 2 was the most abundant, averaging 45 

% of the stages found (Figure 49). Older stages were found as early as March, but they 

only contributed significantly in numbers from June to September (Figure 49).  
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Figure 49. Temporal variability of the larval stages of Balanus improvisus present in the zooplankton of 
Southampton Water during 2001/02. 

 

 

Total biomass of B.improvisus for the period was 19.38, 8.59 and 1.03 mg C m-3 at 

Cracknore, NW. Netley and Calshot respectively, and its daily variation can be seen in 

Figure 50. 

The production of Balanus improvisus calculated, based on the temporal variability 

of biomass and abundance, is summarized in Table 28. Contrasting with B.crenatus, the 

production at Cracknore was approximately an order of magnitude higher than at 

NW.Netley and 20 times higher that at Calshot (Table 28). 
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Table 28. Production estimates of each larval stage of Balanus improvisus obtained using the respective 
equations summarized in Table 22. (all refer to total production in terms of mg C m-3; and year is the annual 
production in terms of mg C m-3yr-1). Production using Harms (1986) data on Eq. 12 is highlighted in red. 

Balanus improvisus – Cracknore 
 Nauplii 2 Nauplii 3 Nauplii 4 Nauplii 5 Nauplii 6 Total 
Equation all year all year All year all year all year all year 
Eq.8+12 2.11 1.37 2.99 1.94 2.18 1.42 1.24 0.80 0.28 0.18 8.79 5.71 
Eq. 9+a 2.95 1.92 1.93 1.25 1.37 0.89 1.04 0.68 0.31 0.20 7.60 4.94 
Eq.9+b+12  1.60 1.04 2.27 1.47 1.59 1.03 0.90 0.59 0.21 0.14 6.57 4.27 
Eq.9+c+12  1.84 1.20 2.93 1.90 2.00 1.30 1.04 0.68 0.23 0.15 8.04 5.22 
Eq.9+d  2.43 1.58 1.91 1.24 1.47 0.95 1.32 0.85 0.52 0.34 7.65 4.97 
Eq.9+e 2.03 1.32 1.60 1.04 1.23 0.80 1.10 0.71 0.44 0.28 6.40 4.15 
Eq.9+f  2.34 1.52 1.58 1.02 1.07 0.70 0.80 0.52 0.27 0.17 6.05 3.93 
Eq.9+g 2.08 1.35 1.39 0.90 0.93 0.60 0.68 0.44 0.22 0.15 5.30 3.44 
Eq.9+h 1.00 0.65 0.73 0.48 0.54 0.35 0.44 0.29 0.16 0.11 2.87 1.87 
Eq.8+12 2.02 1.31 2.23 1.45 1.66 1.08 1.19 0.77 0.24 0.15 7.34 4.76 
Eq.9+12+b  1.54 1.00 1.69 1.10 1.21 0.78 0.87 0.57 0.18 0.12 5.49 3.57 
Eq.9+12+c  1.76 1.14 2.05 1.33 1.44 0.93 1.00 0.65 0.19 0.12 6.44 4.17 

Average 1.97 1.28 1.94 1.26 1.39 0.90 0.97 0.63 0.27 0.18 6.54 4.25 
Balanus improvisus – NW. Netley 

 Nauplii 2 Nauplii 3 Nauplii 4 Nauplii 5 Nauplii 6 Total 
Equation all year all year all year all year all year all year 
Eq.8+12 0.78 0.57 1.44 1.05 0.82 0.59 0.84 0.61 0.11 0.08 3.99 2.90 
Eq. 9+a 0.96 0.70 1.00 0.73 0.67 0.48 0.79 0.57 0.13 0.10 3.55 2.57 
Eq.9+b+12  0.59 0.43 1.10 0.80 0.61 0.44 0.61 0.44 0.08 0.06 2.99 2.17 
Eq.9+c+12  0.68 0.49 1.42 1.03 0.77 0.56 0.72 0.52 0.09 0.07 3.68 2.67 
Eq.9+d  0.83 0.60 0.99 0.72 0.71 0.52 0.94 0.68 0.22 0.16 3.69 2.67 
Eq.9+e 0.69 0.50 0.83 0.60 0.60 0.43 0.79 0.57 0.18 0.13 3.08 2.24 
Eq.9+f  0.79 0.57 0.78 0.56 0.48 0.35 0.53 0.39 0.10 0.07 2.68 1.95 
Eq.9+g 0.70 0.51 0.67 0.49 0.43 0.31 0.45 0.33 0.08 0.06 2.34 1.70 
Eq.9+h 0.34 0.25 0.37 0.27 0.25 0.18 0.30 0.22 0.06 0.05 1.33 0.96 
Eq.8+12 0.74 0.48 1.08 0.70 0.63 0.41 0.84 0.54 0.10 0.06 3.39 2.19 
Eq.9+12+b  0.56 0.36 0.83 0.54 0.46 0.30 0.61 0.40 0.07 0.05 2.53 1.65 
Eq.9+12+c  0.64 0.42 1.00 0.65 0.56 0.36 0.72 0.47 0.08 0.05 3.00 1.95 

Average 0.69 0.49 0.96 0.68 0.58 0.41 0.68 0.48 0.11 0.08 3.02 2.14 
Balanus improvisus – Calshot 

 Nauplii 2 Nauplii 3 Nauplii 4 Nauplii 5 Nauplii 6 Total 
Equation all year all year all year all year all year all year 
Eq.8+12 0.04 0.03 0.09 0.06 0.16 0.11 0.04 0.03 0.08 0.05 0.43 0.28 
Eq. 9+a 0.05 0.03 0.07 0.04 0.10 0.07 0.04 0.03 0.10 0.06 0.35 0.23 
Eq.9+b+12  0.03 0.02 0.07 0.05 0.12 0.08 0.03 0.02 0.06 0.04 0.32 0.21 
Eq.9+c+12  0.04 0.02 0.09 0.06 0.15 0.10 0.04 0.02 0.07 0.04 0.39 0.25 
Eq.9+d  0.04 0.03 0.06 0.04 0.10 0.07 0.05 0.03 0.16 0.11 0.43 0.28 
Eq.9+e 0.04 0.02 0.05 0.04 0.09 0.06 0.04 0.03 0.14 0.09 0.36 0.23 
Eq.9+f  0.05 0.03 0.05 0.03 0.07 0.05 0.03 0.02 0.08 0.05 0.28 0.18 
Eq.9+g 0.04 0.03 0.05 0.03 0.06 0.04 0.03 0.02 0.06 0.04 0.24 0.16 
Eq.9+h 0.02 0.01 0.02 0.02 0.04 0.02 0.02 0.01 0.05 0.03 0.15 0.10 
Eq.8+12 0.04 0.03 0.07 0.05 0.13 0.08 0.04 0.03 0.07 0.05 0.35 0.24 
Eq.9+12+b  0.03 0.02 0.05 0.04 0.09 0.06 0.03 0.02 0.05 0.03 0.25 0.17 
Eq.9+12+c  0.03 0.02 0.07 0.04 0.11 0.07 0.03 0.02 0.06 0.04 0.30 0.19 

Average 0.04 0.02 0.06 0.04 0.10 0.07 0.03 0.02 0.08 0.05 0.32 0.21 
 

The averaged production of B.improvisus for the three stations over the period 

studied was 3.32 mg C m-3, which represented an average annual production of 2.23 mg C 

m-3 yr-1. In terms of stage contribution, nauplii 2, 3 and 4 together accounted for ~72% of 

the production (Table 28). Based on the values presented in Table 28, the equation that 
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gave the closest value to the average was chosen to illustrate the contribution of each 

barnacle stage on a daily basis (Figure 50). 
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Figure 50. Seasonal production and biomass of the larval stages of Balanus improvisus present in the 
zooplankton of Southampton Water during 2001/02. 
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Chapter 4 - Barnacle Production 
 4.3.2.4. Semibalanus balanoides. 

 

Semibalanus balanoides nauplii were found at all three stations from 

January/February until June/July, with naupliar stage 2 the most abundant and averaging 

63 % of all stages found at the three stations (Figure 51). Older stages were usually found 

from February to July, particularly at NW.Netley and Calshot (Figure 51). The abundance 

of S.balanoides was generally quite similar at each of the three stations in 2001, with 

higher abundances found at NW.Netley and Calshot in 2002.  
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Figure 51. Temporal variability of the larval stages of Semibalanus balanoides present in the zooplankton of 
Southampton Water during 2001/02. 
 

Total biomass of S.balanoides for the period was 3.01, 16.00 and 6.79 mg C m-3 at 

Cracknore, NW. Netley and Calshot respectively, with the daily variation illustrated in 

Figure 52.  

The production of S.balanoides, averaged for the three stations, over the period 

studied was 1.46 mg C m-3. This represented an average annual production of 1.02 mg C 

m-3 yr-1. Like B.crenatus, the production of S.balanoides at Cracknore was 4 to 10 times 

lower when compared with Calshot and NW.Netley values respectively (Table 29).  
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Table 29 Production estimates of each larval stage of Semibalanus balanoides obtained using the respective 
equations summarized in Table 22. (all refer to total production in terms of mg C m-3; and year is the annual 
production in terms of mg C m-3yr-1) 

Semibalanus balanoides – Cracknore 
 Nauplii 2 Nauplii 3 Nauplii 4 Nauplii 5 Nauplii 6 Total 
Equation All year all year all Year all year all year all year 
Eq.8+12 0.35 0.23 0.09 0.06 0.02 0.01 0.01 0.01 0.00 0.00 0.47 0.31 
Eq. 9+a 0.15 0.10 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.12 
Eq.9+b+12  0.28 0.18 0.07 0.04 0.01 0.01 0.01 0.00 0.00 0.00 0.37 0.24 
Eq.9+c+12  0.31 0.20 0.08 0.05 0.01 0.01 0.01 0.00 0.00 0.00 0.42 0.27 
Eq.9+d  0.23 0.15 0.04 0.02 0.01 0.00 0.00 0.00 0.01 0.00 0.28 0.18 
Eq.9+e 0.19 0.12 0.03 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.23 0.15 
Eq.9+f  0.32 0.21 0.04 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.37 0.24 
Eq.9+g 0.24 0.15 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.18 
Eq.9+h 0.11 0.07 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.08 

Average 0.24 0.16 0.05 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.30 0.20 
Semibalanus balanoides – NW. Netley 

 Nauplii 2 Nauplii 3 Nauplii 4 Nauplii 5 Nauplii 6 Total 
Equation All year all year all Year all year all year all year 
Eq.8+12 1.13 0.82 1.34 0.97 1.03 0.75 1.26 0.92 0.21 0.15 4.98 3.61 
Eq. 9+a 0.40 0.29 0.20 0.14 0.23 0.17 0.34 0.25 0.47 0.34 1.64 1.19 
Eq.9+b+12  0.87 0.63 0.90 0.65 0.71 0.52 0.88 0.64 0.19 0.14 3.55 2.58 
Eq.9+c+12  1.00 0.73 1.17 0.85 0.86 0.63 1.01 0.74 0.20 0.14 4.24 3.08 
Eq.9+d  0.56 0.40 0.31 0.23 0.39 0.28 0.67 0.49 1.24 0.90 3.18 2.31 
Eq.9+e 0.46 0.34 0.26 0.19 0.33 0.24 0.56 0.41 1.03 0.75 2.64 1.92 
Eq.9+f  0.77 0.56 0.36 0.26 0.36 0.26 0.53 0.39 0.82 0.60 2.84 2.06 
Eq.9+g 0.57 0.41 0.27 0.19 0.24 0.18 0.33 0.24 0.46 0.33 1.87 1.36 
Eq.9+h 0.26 0.19 0.13 0.10 0.15 0.11 0.23 0.17 0.38 0.28 1.15 0.83 

Average 0.67 0.49 0.55 0.40 0.48 0.35 0.65 0.47 0.56 0.40 2.90 2.10 
Semibalanus balanoides – Calshot 

 Nauplii 2 Nauplii 3 Nauplii 4 Nauplii 5 Nauplii 6 Total 
Equation All year all year all Year all year all year all year 
Eq.8+12 0.49 0.32 1.18 0.76 0.36 0.23 0.25 0.16 0.03 0.02 2.30 1.49 
Eq. 9+a 0.21 0.13 0.19 0.12 0.07 0.04 0.05 0.03 0.06 0.04 0.57 0.37 
Eq.9+b+12  0.39 0.25 0.82 0.53 0.24 0.16 0.16 0.11 0.02 0.01 1.63 1.06 
Eq.9+c+12  0.43 0.28 1.02 0.66 0.29 0.19 0.19 0.12 0.02 0.02 1.95 1.27 
Eq.9+d  0.30 0.20 0.31 0.20 0.12 0.08 0.09 0.06 0.16 0.11 0.99 0.64 
Eq.9+e 0.25 0.16 0.26 0.17 0.10 0.06 0.08 0.05 0.14 0.09 0.82 0.53 
Eq.9+f  0.43 0.28 0.38 0.25 0.12 0.08 0.08 0.05 0.12 0.08 1.14 0.74 
Eq.9+g 0.33 0.21 0.28 0.18 0.09 0.06 0.05 0.04 0.07 0.05 0.82 0.53 
Eq.9+h 0.14 0.09 0.14 0.09 0.05 0.03 0.03 0.02 0.05 0.04 0.42 0.27 

Average 0.33 0.21 0.51 0.33 0.16 0.10 0.11 0.07 0.08 0.05 1.18 0.77 
 

In terms of stage contribution, nauplii 2 and 3 together accounted for ~69% of the 

production (Table 29). The daily contribution of each barnacle stage can be seen on Figure 

52 (The production value chosen to illustrate the daily contribution of each barnacle stage 

were those produced by the equation that gave the closest value to the average of all 

equations summarized on Table 29). 
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Figure 52. Seasonal production and biomass of the larval stages of Semibalanus balanoides present in the 
zooplankton of Southampton Water during 2001/02. 
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 4.3.2.5. Verruca stroemia. 

 

Verruca stroemia nauplii were found at each of the three stations from January until 

July, with naupliar stage 2 the most abundant, and averaging 69 % of al the stages found at 

the three stations (Figure 53). Older stages were usually found at Calshot, with nauplii 3 

and 4 sometimes found at the inner stations (Figure 53).  
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Figure 53. Temporal variability of the larval stages of Verruca stroemia present in the zooplankton of 
Southampton Water during 2001/02. 
 

Total biomass of V.stroemia for the period was 0.11, 0.46 and 3.27 mg C m-3 at 

Cracknore, NW. Netley and Calshot respectively, with the daily variation illustrated in 

Figure 54. 

V.stroemia production averaged for the three stations over the period studied was 

0.09 mg C m-3, which represented an average annual production of 0.06 mg C m-3 yr-1. 

Like B.crenatus, the production of V.stroemia at Cracknore was lower when compared 

with Netley and Calshot, where productions values between 5 to 30 times higher were 

found respectively. In terms of developmental stage contribution, nauplii 2 and 3 together 

accounted for ~94% of the estimated production (Table 30).  
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Table 30. Production estimates of each larval stage of Verruca stroemia obtained using the respective 
equations summarized in Table 22. (all refer to total production in terms of mg C m-3; and year is the annual 
production in terms of mg C m-3yr-1) 

Verruca stroemia – Cracknore 
 Nauplii 2 Nauplii 3 Nauplii 4 Nauplii 5 Nauplii 6 Total 
Equation All year all year all year all year all year all year 
Eq.8+12 0.02 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.02 
Eq. 9+a 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 
Eq.9+b+12  0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02 
Eq.9+c+12  0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02 
Eq.9+d  0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 
Eq.9+e 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 
Eq.9+f  0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 
Eq.9+g 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 
Eq.9+h 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 

Average 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 
Verruca stroemia – NW. Netley 

 Nauplii 2 Nauplii 3 Nauplii 4 Nauplii 5 Nauplii 6 Total 
Equation All year all year all year all year all year all year 
Eq.8+12 0.08 0.06 0.10 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.13 
Eq. 9+a 0.03 0.02 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.04 
Eq.9+b+12  0.06 0.04 0.08 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.10 
Eq.9+c+12  0.07 0.05 0.09 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.12 
Eq.9+d  0.03 0.02 0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.05 
Eq.9+e 0.03 0.02 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.04 
Eq.9+f  0.05 0.03 0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.06 
Eq.9+g 0.05 0.04 0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.07 
Eq.9+h 0.02 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.03 

Average 0.05 0.03 0.05 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.07 
Verruca stroemia – Calshot 

 Nauplii 2 Nauplii 3 Nauplii 4 Nauplii 5 Nauplii 6 Total 
Equation All year all year all year all year all year all year 
Eq.8+12 0.40 0.26 0.45 0.30 0.15 0.10 0.01 0.01 0.00 0.00 1.03 0.67 
Eq. 9+a 0.16 0.11 0.11 0.07 0.05 0.03 0.01 0.00 0.01 0.01 0.34 0.22 
Eq.9+b+12  0.31 0.20 0.33 0.21 0.11 0.07 0.01 0.01 0.00 0.00 0.76 0.50 
Eq.9+c+12  0.35 0.23 0.39 0.26 0.13 0.08 0.01 0.01 0.00 0.00 0.88 0.57 
Eq.9+d  0.21 0.13 0.15 0.10 0.07 0.05 0.01 0.01 0.01 0.01 0.46 0.30 
Eq.9+e 0.17 0.11 0.13 0.08 0.06 0.04 0.01 0.01 0.01 0.01 0.38 0.25 
Eq.9+f  0.30 0.20 0.19 0.12 0.07 0.05 0.01 0.01 0.01 0.01 0.58 0.38 
Eq.9+g 0.31 0.20 0.20 0.13 0.07 0.05 0.01 0.01 0.01 0.01 0.60 0.39 
Eq.9+h 0.11 0.07 0.08 0.05 0.03 0.02 0.00 0.00 0.01 0.00 0.23 0.15 

Average 0.26 0.17 0.23 0.15 0.08 0.05 0.01 0.01 0.01 0.00 0.58 0.38 
 

Based on the values presented in Table 30, the equation that gave the closest 

production value to the averaged values was chosen to illustrate the daily contribution of 

each barnacle stage (Figure 54). 
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Figure 54. Seasonal production and biomass of the larval stages of Verruca stroemia present in the 
zooplankton of Southampton Water during 2001/02. 
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4.4. Discussion. 
 

4.4.1. Considerations about the methodology employed.  

 
Despite being aware of changes in weight due to formalin preservation the use of 

freshly caught material for weight analysis during this work was impractical. The counting 

and identification of the individuals required for replicate weight measurements from 

preserved samples often took more than a single day to obtain (i.e. more than 8 continuous 

hours of microscope usage), and for some stages even weeks were required until the 

numbers necessary for a single replicate were obtained.  

There is a huge body of literature concerning the effects of formalin preservation on 

zooplanktonic organisms, suggesting that weight losses are most likely to occur depending 

on the fixative fluid, rinsing method, species composition and even stage of development 

(Beers, 1976; Omori, 1978; Böttger & Schnack, 1986; Giguère et al., 1989; Postel et al., 

2000). Among some selected literature, Omori (1970) reported changes of 30 to 35% for 

Calanus cristatus (Copepoda), with Landry (1978) reporting losses of 37% for Acartia 

clausi. Williams & Robins (1982) reported changes between 29 to 49% for Calanus 

helgolandicus, while Böttger & Schnack (1986) found losses of 30 to 35% for Eurytemora 

affinis. Giguère et al. (1989) in an extensive compilation reported changes around 37 to 

43% for total zooplankton, while Buskey (1993) applied a correction factor of 25%. 

Contrasting with them, Dumont et al. (1975) reported smaller losses of 5 to 10% for a 

selection of Copepoda, Cladocera and Rotifera, while Chisholm & Roff (1990b) did not 

observe any loss for a selection of tropical copepods. Omori (1978) attributes these weight 

changes primarily to the loss of stored lipids, and also suggests that the utilization of 

Hexamethylene-tetramine as a buffer in formaldehyde will minimize losses by 10% when 

compared with Borax buffered fixative. Based on those works one could assume that an 

overall loss of ~25% seems likely to occur when using formalin preserved sample.  

  Despite the fact that during the present work there was no evidence of lipid leakage 

or accumulation in sample bottles a correction factor of 18.15% was obtained after 

employing the same methodology for freshly caught E.modestus larvae of the same size 

employed in the analysis. This 18.15% correction factor is within the lower limits of the 

reported values from literature shown above and closed to that hypothetical 25% loss. 

When the averaged corrected weight value of each barnacle stage of E.modestus  presented 

in this study were compared with the averaged values of laboratory-cultured larvae of 

Harms (1987), weights 27 to 52% lower were still observed (see Appendix X). This could 

suggest that preservation losses were much greater and an underestimation still occurred 
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after the correction factor of 18.15% was applied. However, comparing Harms (1987) data 

with the present data it is possible to observe that differences found in larval weights from 

specimens obtained from natural populations of Helgoland (North Sea) and cultured at 12, 

18 and 24 °C under excess food were much smaller than the present study. The same 

occurred with data on carapace width (Harms, 1986) for specimens obtained and cultured 

in similar conditions (see Table 31). The difference is mainly due to the fact that usually 

smaller organisms of each stage were found on this study (see section 4.4.2. below). When 

the weight-width and/or length equations derived in the present study (equations r62 and 

r72) were applied to Harms data (Table 31),  differences ranging from +15 to -35% were 

found when it was assumed that the width data of each stage presented in Harms (1986) is 

linked with the weight data published in Harms (1987). Therefore an overall averaged 

difference of -10% could be assumed between the present weight values and the relatively 

higher values of Harms (1987).  

 
Table 31. Mean carapace width (µm) and weight values (µg) of the naupliar stages II to VI + cypris of 
Elminius modestus cultured in laboratory at given temperatures by Harms (1986; 1987). Also shown are the 
predicted DW values using equations r62 and r72 on Harms data, the % of difference and the average and 
range of DW predicted from Carapace Widths (CW) or Total Length (TL) in this investigation for 
comparison.  

 

Elminius modestus 
(Harms, 1986) (Harms, 1987)  

Difference 
Present study  

CW (µm) 
Present study 

Predicted DW (µg) Stage T  
(°C) 

CW (µm) ± SD(n) DW(µg)±SD(n) 

(Harms, 1986) 
Predicted  
DW (µg)   % Average(range) Average (range) 

 

I ---- ---- ---- ---- ----  ---- 
 
 

II 
 

6 
9 
12 
18 
24 

175 ±  1         *** 
175 ±  4         *** 
174 ±  2         *** 
174 ±  3         *** 
172 ±  2         *** 

---- 
---- 

0.39 ± 0.03 (27) 
0.41 ± 0.03 (27) 
0.39 ± 0.03 (26) 

0.42* 
0.42* 
0.41* 
0.41* 
0.40* 

---- 
---- 

+5.89% 
+0.72% 
+2.28% 

157 (120-180) 0.31  (0.15 - 0.45)* 

 
III 

6 
9 
12 
18 
24 

208 ±  3         *** 
200 ± 10        *** 
208 ±  6         *** 
203 ± 10        *** 
210 ±  7         *** 

---- 
---- 

0.71 ± 0.04 (19) 
0.75 ± 0.07 (13) 
0.70 ± 0.14   (8) 

0.67* 
0.61* 
0.68* 
0.63* 
0.69* 

---- 
---- 

-4.78% 
-16.26% 
-1.46% 

187 (160-220)  0.50 (0.32 - 0.79)* 

 
IV 

 

6 
9 
12 
18 
24 

252 ±  1         *** 
244 ±  4         *** 
254 ±  9         *** 
261 ± 20        *** 
257 ±  7         *** 

---- 
---- 

1.20 ± 0.08 (20) 
1.47 ± 0.15 (13) 
1.06 ± 0.10 (15) 

1.16* 
1.05* 
1.18* 
1.28* 
1.22* 

---- 
---- 

-1.70% 
-13.22% 
+15.26% 

222 (180-260) 0.81 (0.45 – 1.26)* 

 
V 
 

6 
9 
12 
18 
24 

312 ±  6         *** 
307 ±  5         *** 
315 ±  7         *** 
311 ±  5         *** 
311 ±  4         *** 

---- 
---- 

2.45 ± 0.16 (23) 
2.62 ± 0.18 (20) 
2.33 ± 0.17 (19) 

2.10* 
2.01* 
2.16* 
2.09* 
2.08* 

---- 
---- 

-7.18% 
-20.35% 
-14.98% 

271 (240-340) 1.42 (1.01 - 2.67)* 

 
VI 

 

6 
9 
12 
18 
24 

390 ± 12        *** 
388 ±  4         *** 
384 ± 10        *** 
379 ±  9         *** 
362 ±  5         *** 

---- 
---- 

4.27 ± 0.17 (60) 
5.19 ± 0.18 (39) 
4.39 ± 0.75 (10) 

3.92* 
3.88* 
3.75* 
3.63* 
3.19* 

---- 
---- 

-12.27% 
-30.11% 
-27.44% 

328 (280-400) 2.52 (1.55 - 4.21)* 

 
 

Cypris 

6 
9 
12 
18 
24 

559 ± 10        *** 
568 ± 26        *** 
573 ±  8         *** 
545 ± 38        *** 
528 ± 14        *** 

---- 
---- 

4.56 ± 0.48 (20) 
5.81 ± 0.27 (22) 
4.38 ± 0.28 (28) 

4.04** 
4.21** 
4.33** 
3.76** 
3.44** 

---- 
---- 

-5.10% 
-35.27% 
-21.46% 

553 (460-700) 4.04 (2.36 - 7.52)** 

 

Where CW = Carapace Width; DW = Dry Weight; SD = ± 1 Standard Deviation; n = number of replicas; * predicted using equation 
r62; ** predicted using equation r72; *** n not given. Cypris values are Total Length 
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4.4.2. Weight x Size measurement.  

 

Width-weight and length-weight regressions accounted for more than 98% of the 

variability for naupliar stages, and length-weight for 92% for cyprids. The predicted 

weights of all barnacle species/stages considered from width equations shown on Figure 

44, differed from measured weights by +15 to -10%, while the equations of length differed 

by +13 to -29%, with an overall average of -0.3% for all stages/species on this study, and 

by an average of -10% against a independent data (Table 31) and can, therefore, be 

considered accurate and reproducible. 

Unfortunately, apart from some weight determinations on some stages of 

S.balanoides from colder regions (i.e. larger animals), no other weight data exists on the 

species investigated here. The data on Balanus eburneus of  Jorgensen & Vernberg (1982) 

is one, if not the only one, on other barnacle larvae (Appendix X a,b). Geary (1991) also 

provides some weight data for E.modestus for this estuary (Appendix X a), but these values 

were usually 3 to 10 greater than the ones presented by Harms (1987), and even higher 

when compared with the values measured here. There is no way to explain why Geary’s 

(1991) values were so high, only that maybe an insufficient number of animals for each 

replicate (5 – 50  depending of stage) were used. The present study followed the numbers 

employed by Harms (1987) i.e. between 100 – 1000 depending of the stage being 

considered, and since both results are comparable to the values of Jorgensen & Vernberg 

(1982) for Balanus eburneus  that has a similar sized larvae (West & Costlow, 1987), it 

was decided not to consider Geary (1991) data any further.  

The seasonal, overall decrease in size observed for some species was expected, 

since body size of marine crustaceans is usually inversely related to temperature (McLaren, 

1969; Landry, 1978; Mauchline, 1998). V.stroemia and S.balanoides nauplii did not show 

this relationship with temperature because the larvae were only present during a short 

period of time, when very little temperature variation occurred. An interesting factor was 

the overall positive effect of chlorophyll a concentration for some species/stages (Table 

25), suggesting that sizes in the field are also affected, in some smaller degree, by food 

concentration.  This food influence could also be inferred from Harms (1986; 1987) data, 

where an overall lack of variation in size and weight (Table 31) were observed from 

laboratory cultured barnacles larvae with excess of food (105 cells ml-1 of Skeletonema 

costatum or ~ 46 mg m-3 Chl a, according to Anil & Kurian (1996)). This indicates that 

some mechanism, probably related to the utilization or quality of food or even a 

combination of biotic and abiotic factors, limited size and consequently the weight of 

 163 



Chapter 4 - Barnacle Production 
E.modestus within Southampton Water for most of the year, since developmental sizes of 

this species, even at similar field levels of chlorophyll (~ 41 mg m-3) were usually lower 

than the ones reported from laboratory cultures Harms (1986; 1987) (Appendix XI).  

About the remaining species nothing can be said, since no published data is 

available for comparison. However, by similarity, it is possible to infer that the same 

limitation could occur with the nauplii of other species recorded here presenting an overall 

mean-size smaller than those obtained from laboratory cultures (Appendix XI). A contrast 

might be B.improvisus, which is apparently influenced by temperature alone (Table 25), 

explaining why sizes reported from laboratory and field samples are comparable 

(Appendix XI d). 

 

 
 
 

4.4.3. Abundance, biomass and production.  

 
 

In terms of stage composition, apart from the recent work of Muxagata et al, (2004) 

on the potential production of E.modestus at Cracknore, estimated with data presented 

here, only the unpublished M.Sc. dissertations of Soares (1958) and Geary (1991) give 

some information on barnacle larval stages. Geary’s (1991) results must be ignored, as  

only summer-autumn samples were available and all barnacle larvae were assumed to be 

those of E.modestus. In Soares (1958) study the same species and seasonal pattern to the 

present study was found (Figure 55), although total abundances of B.crenatus and  

S.balanoides at Calshot Pier (Figure 1 – Chapter 1) were higher than the values shown here 

for Calshot. This was mostly due to a higher contribution of older stages (Figure 55). In 

contrast, E.modestus occurred in higher abundances in this survey, where values 74% 

higher were recorded, on average, for each stage (Figure 45). Soares (1958) did not 

differentiate B.improvisus and V.stroemia to stages, but the present total values were 18% 

lower for the first and 74% higher for the later species.  Those differences could probably 

be due the sampling method used i.e. pump filtration into a ‘109 meshes to the inch’ net 

(i.e. № 10 ~158 µm according to Boltovskoy (1981b) and Omori & Ikeda (1992)), which 

would be expected to retain fewer animals but more of the larger forms. Anyway, the 

shallow and more protected location of Calshot Pier (Figure 1 – Chapter 1) could also be a 

factor.  
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Figure 55. Temporal variability of the larval stages of Elminius modestus, Balanus crenatus and Semibalanus 
balanoides present in the zooplankton of Calshot during 1956, from the raw data of Soares (1958) (temporal 
scale were extended from January 1957 to August 1957 for a better comparison with the 2001-2002 results). 

 

 

During this study the development/growth-rate of barnacles was not measured 

directly, mainly because of experimental and logistic issues. Short incubations to detect 

growth of each stage/species considered would require hundreds/thousands of replicates to 

detect any significant variations in weight (Hirst & McKinnon, 2001), and usually involve 

live sorting of several hundreds of specimens for each replicate. As pointed out earlier, 

sorting of some stages from preserved samples, usually took days, and even weeks, to be 

completed. Even if this task were possible to accomplish there are still several factors that 

affect the development/growth of specimens in the field that are very difficult to account 

for in simulated conditions. 

Laboratory experiments usually measure the affect of a single parameter, 

sometimes two and rarely three or more, since the ‘addition’ of parameters greatly 

increases the number of replicate experiments to discriminate effects. This again raises the 

problems of sorting and counting the several hundreds/thousands of animals needed for 
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each replicate experiment, not including the possible effects of handling on final results. 

Since inclusion of  all variables that affect the development/growth-rate of a particular 

species in the field is virtually impossible to reproduce in laboratory conditions, greater 

weight was given to those identified as being more important to the larval development 

and/or growth, such as temperature and food (Landry, 1975a; Landry, 1975b; McLaren, 

1978; Vidal, 1980a; 1980b; McLaren & Corkett, 1981). 

Based mainly on the effects of these two parameters, several models have been 

elaborated for growth-rate estimations of zooplanktonic animals with continuous 

reproduction, particularly copepods. The model proposed by Ikeda & Motoda (1978) 

relates growth-rate to respiration, and so requires body-weight and temperature data. The 

models proposed by Huntley & Boyd (1984) and Huntley & Lopez (1992) are temperature-

dependant models, where temperature is the forcing function and animals are not 

considered food-limited. The models of Landry (1978) and McLaren et al., (1989) assume 

exponential growth and were usually employed to estimate growth rate from preserved 

samples using demographic information (Runge & Roff, 2000), requiring information on 

development and weight. Recent growth-rate models (Hirst & Sheader, 1997; Hirst & 

Lampitt, 1998; Hirst et al., 2003) developed with copepod data are based on weight and 

temperature. With the exception of the models of Huntley & Boyd (1984) and Huntley & 

Lopez (1992) the remaining models need inputs of temperature and weights found in the 

field, and this should imply that the growth-rates calculated by these equations already 

account any variability caused by other factors (e.g. food) and so possibly reflecting actual 

growth-rates.  

When the potential-production of 28.08 mg C m-3y-1 for E.modestus calculated at 

Cracknore, using the weight data of Harms (1987) for animals cultured on a food-saturated 

environment (Muxagata et al., 2004), is compared with the values obtained using field-

weight values and employing the same equation (i.e. equation 9+12+b in red on Table 26), 

values ~47% lower were found. This again suggests that some limitation, at least for 

E.modestus, occurred.  

  The estimates of secondary production presented here are subject to several 

potential biases. Growth rates are very difficult to measure in situ conditions, and so one 

must rely on the empirical approaches. Since there is no “ideal” method covering all the 

variability, and also no standard method widely accepted, the averaged value using all the 

methods possible could be considered a better approximation of the “real” production.  

 Based on this assumption, the total production of barnacle larvae in Southampton 

Water from data presented on Tables 26 through 30, could then be assumed to be 24.77, 
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44.26 and 29.39 mg C m-3 yr-1 at Cracknore, NW.Netley and Calshot respectively, or 32.80 

mg C m-3 yr-1 (0.09 mg C m-3 d-1) on average for the three stations. With E.modestus alone 

accounting for 54.7% of the production followed by B.crenatus (35%), B.improvisus 

(6.7%), S.balanoides (3.1%) and V.stroemia (0.5%). Unfortunately, apart from the results 

of Muxagata et al.,(2004) derived from data presented here, no other data concerning the 

secondary production of barnacle larvae were found in the literature. 

Previous zooplankton production studies within Southampton Water have 

suggested that barnacle larvae could contribute as much secondary production as calanoid 

copepods (Hirst, 1996; Hirst et al., 1999). The results found here could be taken to 

corroborate this assumption. The published value of 32.2 mg C m-3 yr-1 for calanoids at 

Calshot for the 1993/ 94 period by Hirst et al. (1999) is very close to the 29.39 mg C m-3
 yr-1 

calculated for barnacles, at Calshot, in the present study. However, as seen in previous 

chapters, the current zooplankton composition and abundance values of barnacles (Chapter 

3) and calanoids (Chapter 2) found during this investigation is significantly higher than the 

ones presented by Hirst (1996), from which the production values presented on Hirst et al. 

(1999) are derived. Current abundance values approaches those recorded by Zinger (1989) 

(Chapter 1). If the 1985/86 production values of 345.9, 526.65 and 263.85mg C m-3 yr-1 for 

calanoids at Cracknore, NW Netley and Calshot, respectively, estimated from the data of 

Zinger (1989) by Hirst (1996), are accepted then barnacle larvae production is lower than 

that of calanoids for these stations, representing 7, 8 and 11% of calanoids production at 

Cracknore, NW. Netley and Calshot, respectively. Copepod production was also estimated 

in this investigation, and production values based on copepod abundance derived in this 

study will be discussed on the following chapters. The production of barnacle larvae 

estimated during this investigation represented 20 to 31% of Acartia spp production, 

assuming only the production of copepodite stages and adult females. 

Looking at values of cirripede production within Southampton Water, the overall 

value of 32.80 mg C m-3 yr-1 calculated in the current study is low compared with some 

selected literature for calanoids in other European estuaries. Escaravage & Soetaert (1993; 

1995) reported production rates around 724 mg C m-3 yr-1 for Eurytemora affinis and      

556 mg C m-3 yr-1 for Acartia tonsa in the Westerschelde, The Netherlands  (assuming C as 

40% of DW). Similarly, Guerrero & Rodriguez (1994; 1997) reported values between 768-

1304 mg C m-3 yr-1 for three different species of Acartia in Malaga harbour, Spain 

(assuming C as 40% of DW, and that no production occurred after the study period). 

 167 



Chapter 4 - Barnacle Production 
In conclusion, within the main body of Southampton Water meroplankton 

production, exemplified by the production of barnacle larvae, is lower than that of calanoid 

copepods.     

 

4.5. Chapter Conclusions. 
 

• Weights for each developmental larval stage of E.modestus, B.crenatus, 
B.improvisus, S.balanoides and V.stroemia are measured for the first time within 
Southampton Water, and represent the only field data on these species available 
anywhere.   

 
• For each barnacle species, regression equations relating carapace-width and total-

length with weights for easy biomass assessments are presented. 
 

• Carapace-width and total-length of the stages of E.modestus, B.crenatus and 
B.improvisus were negatively correlated with temperature and in some cases also 
with salinity and positively correlated with chlorophyll concentration. S.balanoides 
and V.stroemia did not show any relationship with temperature, but chlorophyll and 
salinity did have some significant influence on the sizes of some stages.  

 
• Multiple regression equations relating carapace-width and total-length with 

temperature, salinity and chlorophyll concentration are also presented. 
 

• Comparing production of field and laboratory incubated specimens, production of 
E.modestus was assumed to be limited within Southampton Water, with the same 
assumption being possible for the other species occurring here. 

 
• Production values of each stage of each barnacle species are being presented for the 

first time within this estuary as a whole and, an overall production of 32.80 mg C 
m-3 yr-1 or 0.09 mg C m-3 d-1, was estimated. E.modestus alone accounts for 54.7 % 
of the production, followed by B.crenatus (35%), B.improvisus (6.7%), 
S.balanoides (3.1%) and V.stroemia (0.5%). 

 
• Overall, production of barnacle larvae within Southampton Water is lower than that 

of calanoid copepods.     
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Chapter 5 
The secondary production of copepods in Southampton Water 

 

 

 
5.1. Introduction. 

  
The study of an ecosystem is not complete without knowledge of all of its parts, 

and even knowing that this will be practically impossible to accomplish, one must try to 

gather as much information as possible from a single survey in order to make 

generalizations more credible, without the bias introduced by inter-annual variability, 

sampling effort and different methodologies. In line with this, and since barnacle larvae 

accounted on average for 18% of the overall zooplankton community in this study 

(Chapter 1), the assessment of secondary production of barnacles presented in the previous 

chapter would be more useful with the assessment of a previously studied major 

component for comparison.  

The copepods are an obvious choice, since they are the largest component of all 

groups present in the zooplankton of estuarine, neritic and oceanic areas (Raymont, 1983; 

Mauchline, 1998; Boxshall & Halsey, 2004), and the most reported zooplankton 

component (Evans, 1977; Durbin & Durbin, 1978; Landry, 1978; Burkill & Kendall, 1982; 

Uye, 1982; Daro & van Gijsegen, 1984; Kimmerer & McKinnon, 1987; Castel & Feurtet, 

1989; Chisholm & Roff, 1990a; Escaravage & Soetaert, 1993; Escaravage & Soetaert, 

1995; Peitsch, 1995; Hay, 1995; Poulet et al., 1995; Webber & Roff, 1995; Fransz & 

Gonzalez, 1995; Mauchline, 1998; Uye & Sano, 1998; Hirst et al., 1999). Also, copepods 

and their larval stages form the single largest food resource for several important pelagic 

predators.  

During this study copepods contributed on average 66%, by abundance, of the 

zooplankton community of this estuary, and were identified in Chapter 1, as the largest and 

the most important component to be investigated. Despite the number of investigations on 

the zooplanktonic community of Southampton Water (Conover, 1957; Soares, 1958; 

Raymont & Carrie, 1964; Lance & Raymont, 1964; Reubold, 1988; Zinger, 1989; 

Williams & Reubold, 1990; Geary, 1991; Lucas, 1993; Lucas & Williams, 1994; Frid et 

al., 1994; Lucas et al., 1995; Hirst, 1996; Castro-Longoria & Williams, 1996; Lucas et al., 

 169 



Chapter 5 - Copepod Production 
1997; Castro-Longoria, 1998; Hirst et al., 1999; Chinnery, 2002; Muxagata et al., 2004) 

only Hirst (1996) and Hirst et al. (1999) have presented results on the secondary 

production of copepods within this estuary. From Hirst et al. (1999) total calanoid 

production at Calshot was estimated to be only 32.2 mg C m-3yr-1, which was considered to 

be very low; however, in retrospect, it only reflected the low abundance values found. As 

indicated in previous chapters, the abundance values of Hirst (1996) (from which Hirst et 

al. (1999) production values are derived) were atypically low for ~118µm mesh 

collections, contrasting with the results of this study and with other studies at the same 

station (Zinger, 1989) or neighbouring areas (Raymont & Carrie, 1964) employing similar-

sized meshes.    

Based on that, the present chapter is designed to expand the previous information 

on pelagic carbon flux within Southampton Water presented by Hirst (1996) and Hirst et 

al. (1999) by reassessing the production and contribution of calanoids to pelagic fluxes, as 

well as by assessing the contribution of copepod nauplii, harpacticoids and cyclopoids. 

Production will be determined by a number of methodologies including some already 

employed for barnacle larvae on Chapter 4. 
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5.2. Material and Methods. 
 
 The methodology employed for counting and identification of the different species 

has been already presented in Chapter 1. 

 

5.2.1. Weight measurements. 

 

The same methodology utilized for barnacle larvae dry weight determination was 

employed for copepods. The difference was in the numbers used, and in the fact that for 

Euterpina acutifrons, Oithona nana and copepod nauplii no distinction of size/stage were 

made, and the weights for these three groups were based on an average of all 

determinations, irrespective of stages (see Table 32). For copepod Dry Weight (DW) 

determinations, between 25 – 7288 organisms of a particular species were sorted from the 

preserved samples and pre-counted batches of 25 – 2500 organisms (Table 32) were then 

submitted to the same procedures employed for barnacle larvae, and fully described in 

Chapter 4.  

The individual weights of each species/stage, in terms of Dry Weight (DW), were 

the averaged values of the replicates after the correction factor of 18.15% established for 

barnacles were applied. Differences between replicates varied, and errors were calculated 

as a percentage of the mean averaged for all determinations. During this work the error was 

around  ± 4 %. 
 

Table 32. Number (no) of copepods utilized in each biomass determination.  
Stages Acartia spp. Euterpina 

acutifrons 
Oithona 

 nana 
Nauplii 

 PL no rep. no rep. no rep. no rep. 
nauplii - - - - - - - 300 2 

adults+copepodites - - - 100 2 100 2 - - 
adults+copepodites - - - 150 1 200 2 - - 
adults+copepodites - - - 200 1 344 2 - - 
adults+copepodites - - - 300 1 500 2 - - 
adults+copepodites - - - 400 1 1000 1 - - 
adults+copepodites - - - - - 1500 1 - - 
adults+copepodites - - - - - 2500 1 - - 

Acartia spp. C1  288 50 2 - - - - - - 
A. margalefi  adult ♀ 504 100 2 - - - - - - 
A. margalefi  adult ♀ 576 100 1 - - - - - - 
A.discaudata adult ♀ 684 80 2 - - - - - - 
A.discaudata adult ♂ 648 60 2 - - - - - - 

A.bifilosa  adult ♀ 828 50/60 2/1 - - - - - - 
A.bifilosa  adult ♂ 828 50 2 - - - - - - 
A.clausi adult ♀ 792 50 2 - - - - - - 
A.clausi adult ♂ 792 25 1 - - - - - - 
A.tonsa adult ♀ 900 30/60 1/2 - - - - - - 

 

Where: rep. = the number of replicates made for each determination; PL= the average prosome length in 
µm individual-1 of the Acartia utilized; - = indicates no data. 
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5.2.2. Size measurements. 

 
During this investigation only Acartia spp. were measured, with prosome length 

measurements being taken for all Acartia copepodites present in the sub-samples using a 

micrometric scale (± 36 µm) attached to the Stereomicroscope eyepiece. Since 5 different 

species were recorded during the present investigation (Chapter 2), the differentiation of 

the congeneric copepodites stages was difficult. Because of that, it was decided to group 

Acartia into 11 size categories, 5 for copepodites and another 6 reflecting the different 

adult species (Table 33). Only copepodites I to V were measured on a regular basis, with 

copepodite VI, i.e. adults, identified, sexed and sometimes measured for consistency. The 

division of copepodites into 5 size categories alluded the five pre-adult copepodite stages, 

but it is clear that different stages are present on each one of the defined size-intervals. 

That was not the best option, but was dictated by time constraints. 

 
Table 33. Prosome-Length (PL) size categories considered for Acartia spp. copepodites and observed range 
of sizes of adults. 

Category PL - Interval       (average) Species PL - Interval       (average) 
 

C1 288 – 360 µm     (324 µm) 
 

A. margalefi  adults ♀+♂ 432 – 576 µm     (504 µm) 
C2 361 – 432 µm     (396 µm) A.discaudata adult ♂ 576 – 720 µm     (648 µm) 
C3 433 – 504 µm     (468 µm) A.discaudata adult ♀ 612 – 756 µm     (684 µm) 
C4 505 – 576 µm     (540 µm) A.clausi adults ♀+♂ 756 – 828 µm     (792 µm) 
C5 577 – 648 µm     (612 µm) A.bifilosa  adults ♀+♂ 720 – 936 µm     (828 µm) 
- - A.tonsa adult ♀ 864 – 936 µm     (900 µm) 
 

5.2.3. Regression analysis. 

 

 To stabilize the variance of the data, weight and prosome length were log10 

transformed before being used in any analysis. Simple linear regressions were calculated 

with STATISTICA for Windows. Regression graphs were drawn using SigmaPlot for 

Windows. 

 

5.2.4. Growth rates. 

 

Growth rates were estimated using the general equations/methods proposed/used by 

Ikeda & Motoda (1978), Huntley & Boyd (1984), Huntley & Lopez (1992), Hirst & 

Sheader (1997), Hirst & Lampitt (1998), Hirst & Bunker (2003) and Hirst et al. (2003). 

The set of equations employed are summarized on Table 34. Since no distinction between 

stages or even between males and females were made for O.nana and E.acutifrons, both 

were assumed to grow at the same rate as copepodites. Acartia were differentiated in 
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copepodites and adults (males and females) and, in this case, production was calculated for 

each component assuming that males grow9 as much as females, or that both grow as much 

as copepodites (when growth of females were not defined individually). 
 

Table 34. Production equation employed with the equations used to estimate copepod growth. 
 

Eq.9→∑P = B*g 

  

Growth Equation 
 

taxon applied 
 

Reference 
 

a 
 

 

g=7.714*10[0.254*(T)-0.126]*Wi
(-0.0109(T)+0.892)* wic

-1 
 

all 
 

(Ikeda & Motoda, 1978) 
 

d 
 

 

g=0.0542*e0.111*(T) 
 

all 
 

(Huntley & Boyd, 1984) 
 

e 
 

 

g=0.0445*e0.111*(T) 
 

all 
 

(Huntley & Lopez, 1992) 
 

f 
 

Log10(g)=-1.1355+[0.0246*(T)]-[0.2962*log10 (wic)] 
 

all 
 

(Hirst & Sheader, 1997) 
 

g 
 

Log10 (g)=-1.1408+[0.0208*(T)]-[0.3221*log10(wic)] 
 

Br+S (adults+juv.) 
 

(Hirst & Lampitt, 1998) 
 

h 
 

Log10 (g)=-1.529+[0.0345*(T)]- [0.128  *log10 (wic)] 
 

Br+S (all Br+S) (Hirst et al., 2003) 
 

i 
 

Log10 (g)=-0.6447+[0.0111*(T)]-[0.2917*log10(wic)] 
 

Br (juveniles) 
 

(Hirst & Lampitt, 1998) 
 

j 
 

Log10 (g)=-0.6516 -[0.5244*log10 (wic)] 
 

Br (adults) 
 

(Hirst & Lampitt, 1998) 
 

k 
 

Log10 (g)=-0.7568+[0.0087*(T)]-[0.4902*log10(wic)] 
 

Br (adults+juveniles) 
 

(Hirst & Lampitt, 1998) 
 

l 
 

Log10 (g)=-1.7255+[0.0464*(T)] 
 

S (adults+juveniles) 
 

(Hirst & Lampitt, 1998) 
 

m 
 

Log10 (g)=-0.418-[0.141*log10 (wic)] 
 

Br (nauplii) 
 

(Hirst et al., 2003) 
 

n 
 

Log10 (g)=-1.230+[0.0352*(T)]- [0.233  *log10 (wic)] 
 

Br (copepodite) (Hirst et al., 2003) 
 

o 
 

Log10 (g)=-1.196+[0.0232*(T)]- [0.285  *log10 (wic)] 
 

Br (adults) (Hirst et al., 2003) 
 

p 
 

Log10 (g)=-1.222+[0.0271*(T)]- [0.287  *log10 (wic)] 
 

Br (all Br) (Hirst et al., 2003) 
 

q 
 

Log10 (g)=-1.185+[0.0138*(T)]- [0.252  *log10 (wic)] 
 

S (nauplii) (Hirst et al., 2003) 
 

r 
 

Log10 (g)=-1.647+[0.0324*(T)]+[0.0657*log10 (wic)] 
 

S (all S) (Hirst et al., 2003) 
 

s 
 

Log10 (g)=-0.105+[-0.0143*(T)]+[-0.363*log10 (wic)]+[0.135*log10 (Chla)] 
 

Br (juveniles) (Hirst & Bunker, 2003) 
 

t 
 

Log10 (g)=-1.348+[ 0.0125*(T)]+ [-0.230*log10 (wic)]+[0.729*log10 (Chla)] 
 

Br (adults) (Hirst & Bunker, 2003) 
 

Where:  
P = average production of a particular size class/stage in mg dry weight m-3d-1;  
B = biomass (i.e. Ni*wi);  
Ni= number of organisms m-3 at stage i;  
wi = the average dry weight at stage i (in µg individual-1);  
g = growth rate d-1 (for adults it is considered as the specific egg/spermatophores production rate d-1);  
Wi = the average dry weight at stage i (in mg individual-1);  
wic = the average carbon weight at stage i (in µg individual-1); 
Chla = Chlorophyll a concentration (µg Chl a L-1); 
T = temperature in °C;  
Br = Broadcast-spawners; 
S = Sac-spawners. 

 

5.2.5. Production. 
 

Production of each copepod species was calculated by the “instantaneous-growth” 

approach as described by equation 9 presented in Chapter 4 and also summarized in Table 

34. For the annual production estimates, the calculated daily production and biomass of a 

particular stage/species for a sampling day was assumed to represent the mean over a time 

                                                 
9 Growth had been defined on previous chapter as the increase in mass from one stage to another, in this 
sense adult male and female does not grows, but  when they reach maturity their growth can be expressed as 
the output of eggs and spermatophores as well as changes in body weight (Hirst & McKinnon, 2001). Since 
most growth and production of males are usually considered negligible, the results will present those values 
of males and females separately. 
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interval between two successive midpoints of the inter-sample period, and converted to 

carbon assuming carbon as 40% of dry-weight (Omori & Ikeda, 1992; Postel et al., 2000). 

Total annual production of Acartia will be equal to the sum of weight increments for all the 

stages throughout the year.  

 
5.3. Results. 

 
 The total composition and general contribution of each copepod species in the 

mesozooplankton of Southampton Water have been already presented in Chapters 2 and 3. 

The results presented here illustrate the contribution of each size category of Acartia spp, 

as well as such details necessary for the estimates of secondary production of Acartia spp., 

E.acutifrons, O.nana and copepod nauplii.  

 
5.3.1. Weight-length. 

 
The mean weight values of copepod nauplii, O.nana, E.acutifrons and Acartia 

(size-stages and adults) measured from organisms found in Southampton Water are 

presented in Table 35. 

 
Table 35. Mean weight values (µg) of the copepods/stages considered. Also shown are the prosome lengths  
(PL) of the Acartia species/stages used in the biomass analysis    

Species/stages PL±SD (n) **DW±SD     (n) 
Copepod nauplii ---- 0.45±0.09      (2) 

Oithona nana ---- 0.54±0.07    (11) 
Euterpina acutifrons ---- 0.99±0.14      (6) 

Acartia  ┐ ---- ---- 
Acartia spp. C1  288±0.00  (100) 0.56±0.03      (2) 

A. margalefi  adult ♀ 504±0.00  (200) 1.37±0.15      (2) 
A. margalefi  adult ♀ 576±0.00  (100) 3.27               (1) 
A.discaudata adult ♀ 684±0.00  (160) 4.68±0.17      (2) 
A.discaudata adult ♂ 648±0.00  (120) 4.29±0.03      (2) 

A.bifilosa  adult ♀ 828±0.00  (160) 7.79±0.20      (3) 
A.bifilosa  adult ♂ 828±0.00  (100) 7.70±0.37      (2) 
A.clausi adult ♀ 792±0.00  (100) 5.85±0.22      (2) 
A.clausi adult ♂ 792±0.00    (25) 6.24               (1) 
A.tonsa  adult ♀ 900±0.00  (150) 9.96±0.36      (3) 

 

Where:  
DW = Dry Weight (µg);  
PL = Prosome Length (µm);  
SD = Standard deviation;  
---- = not available;  
n = number of organisms measured/ or replicas (the n° of organisms utilized for each weight replica in this 
work can be seen inTable 32) 

 

    In order to estimate the biomass of each size class of Acartia considered, the 

average prosome length of the animals used in the weight analysis were recorded (Table 

35), and length-weight relationship were established using all data available (Figure 56). 

The resulting equation (r73) can be seen on (Figure 56). Euterpina acutifrons, Oithona 
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nana and copepod nauplii were not measured and their biomass was based on the average 

values presented in Table 35. 

 

                                       Acartia spp.

r73-   Log10(DW) = -6.707+2.597*Log10(PL)
r = 0.98;  r2 = 0.96; n = 20; p < 0.01
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Figure 56. Regression analysis between Acartia Dry Weight (DW) values with  prosome length (PL) 
 

5.3.2. Abundance, biomass and production. 
 

 5.3.2.1. Acartia spp. 
 

 Total seasonal contributions of Acartia in Southampton Water have already been 

presented in Chapter 2, and is now presented in more detail, with the seasonal contribution 

of each size category. From Figure 57 it is possible to see that size class C2 is the most 

abundant, averaging ~29% of all Acartia found. Usually, trends in the abundance of each 

copepodite size class followed the same pattern at the three stations, with an early burst 

observed in spring, usually followed by a greater one during summer. At Cracknore and 

NW.Netley a late outburst was also detected in late autumn, i.e. November-December. A 

remarkable feature was the massive peak of C2 in April 2002 at NW. Netley with 9965 

organisms m-3, with C3, C4 and C5 also presenting peaks well in excess of 2000 organisms 

m-3 at the same time. With five congeneric species occurring together it was not possible to 

distinguish any obvious cohorts, with no clear relation being observed between the peaks 

of adults and copepodites. At Calshot and NW. Netley however, adult Acartia discaudata 

peaks were followed by peaks of copepodite stages, while at Cracknore, adults and 

copepodites apparently peaked at the same time.  
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Figure 57. Temporal variability of the size stages of Acartia spp. present in the zooplankton of Southampton 
Water during 2001-2002 defined as abundance and % composition (Note that scale should be re-initiated at 
the base of each category).  
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Usually males were less abundant than females, with females averaging 75, 68 and 

58% of the adult population at Cracknore, NW.Netley and Calshot respectively. Males 

were apparently more abundant than females earlier in the season, however. 

Total biomass of Acartia for the period was 990.95, 1221.45 and 873.38 mg C m-3 

at Cracknore, NW. Netley and Calshot, respectively. Its daily variation followed total 

Acartia abundances and can be seen of Figure 58. The production of Acartia based on its 

temporal abundance and biomass variability is summarized in Table 36. 
Table 36. Annual production estimates (in mg C m-3yr-1) of each size category of Acartia spp. obtained using 
the respective equations summarized in Table 34. Total column also shows the production of males assuming 
that males and females grows at the same rate or as much as copepodites.  

Cracknore 
 C1 C2 C3 C4 C5 ♀Acartia ♀Acartia ♀Acartia ♀Acartia ♀Acartia Total 
Equation      margalefi discaudata bifilosa clausi tonsa +♀   /+♀♂ 
Eq. 9+a 6.38 17.77 12.56 13.11 23.50 9.30 11.67 2.87 1.48 3.20 101.84/110.04 
Eq. 9+d  6.68 21.88 17.88 20.67 40.54 13.52 21.97 6.21 3.04 7.31 159.70/172.97 
Eq. 9+e  5.58 18.26 14.91 17.23 33.81 11.30 18.30 5.16 2.54 6.10 133.21/144.25 
Eq. 9+f  5.53 15.86 12.08 12.43 22.11 7.70 11.45 3.28 1.15 2.64 94.24  /102.88 
Eq. 9+g 4.90 13.92 10.60 10.79 19.02 6.59 9.83 2.85 0.95 2.16 81.60  /89.18 
Eq. 9+h 2.60 8.05 6.43 7.06 13.28 4.45 7.11 2.07 0.83 1.97 53.85  /58.68 
Eq. 9+i+j  10.26 29.93 23.70 24.32 43.26 9.50 13.69 4.09 1.01 2.24 162.00/173.95 
Eq. 9+k  9.47 25.00 18.28 17.41 29.02 10.32 14.52 4.18 1.17 2.60 131.95/144.22 
Eq. 9+n+o 6.12 17.93 13.67 14.44 26.24 6.32 9.58 2.78 0.96 2.20 100.25/107.47 
Eq. 9+p 4.92 14.14 10.75 11.10 19.81 6.95 10.25 2.90 1.06 2.42 84.30  /91.94 
Eq. 9+s+t 18.08 52.43 43.02 41.23 71.59 2.68 7.44 16.58 4.43 2.29 259.78/274.13 

Average 7.32 21.38 16.72 17.25 31.11 8.06 12.35 4.82 1.69 3.19 123.88/133.61 
NW.Netley 

 C1 C2 C3 C4 C5 ♀Acartia ♀Acartia ♀Acartia ♀Acartia ♀Acartia Total 
Equation      margalefi discaudata bifilosa clausi tonsa +♀   /+♀♂ 
Eq. 9+a 11.33 28.49 15.63 14.62 23.56 3.93 19.70 1.62 0.93 0.47 120.27/133.65 
Eq. 9+d  12.10 36.71 22.83 23.56 41.70 5.96 37.36 3.49 1.93 1.07 186.71/211.17 
Eq. 9+e  10.10 30.58 19.01 19.62 34.70 4.97 31.09 2.90 1.61 0.89 155.46/175.82 
Eq. 9+f  10.36 29.59 16.59 15.40 25.80 3.94 20.53 1.81 0.84 0.43 125.28/139.26 
Eq. 9+g 9.23 26.44 14.71 13.54 22.63 3.46 17.77 1.56 0.70 0.38 110.42/122.52 
Eq. 9+h 4.80 14.35 8.57 8.44 14.69 2.14 12.46 1.15 0.57 0.31 67.49  /75.79 
Eq. 9+i+j  19.58 59.37 33.81 31.55 54.09 5.69 25.81 2.20 0.83 0.40 233.34/250.99 
Eq. 9+k  18.13 50.11 26.24 22.77 36.72 5.85 26.89 2.27 0.93 0.45 190.36/209.05 
Eq. 9+n+o 11.29 31.89 18.17 17.22 28.93 3.27 17.22 1.53 0.70 0.36 130.57/142.05 
Eq. 9+p 9.19 26.09 14.65 13.63 22.81 3.50 18.28 1.60 0.76 0.39 110.88/123.31 
Eq. 9+s+t 35.40 111.9 62.49 57.06 97.36 0.59 4.00 18.39 1.69 0.28 389.22/398.85 

Average 13.77 40.50 22.97 21.58 36.64 3.94 21.01 3.50 1.04 0.49 165.45/180.22 
Calshot 

 C1 C2 C3 C4 C5 ♀Acartia ♀Acartia ♀Acartia ♀Acartia ♀Acartia Total 
Equation      margalefi discaudata bifilosa clausi tonsa +♀   /+♀♂ 
Eq. 9+a 8.87 13.87 7.41 8.30 15.30 0.68 21.25 6.14 2.26 0.74 84.82  /101.01 
Eq. 9+d  8.93 16.70 10.29 13.00 26.36 0.99 38.94 13.31 4.68 1.69 134.88/166.64 
Eq. 9+e  7.46 13.95 8.59 10.85 21.99 0.83 32.57 11.05 3.90 1.38 112.56/137.41 
Eq. 9+f  6.78 11.49 6.51 7.71 14.45 0.55 16.72 7.36 1.95 0.57 74.10  /89.28 
Eq. 9+g 5.92 10.01 5.66 6.69 12.46 0.47 13.91 6.45 1.62 0.47 63.64  /76.64 
Eq. 9+h 3.31 5.96 3.56 4.40 8.64 0.32 11.27 4.55 1.35 0.44 43.80  /53.31 
Eq. 9+i+j  11.89 21.11 12.36 15.09 28.61 0.65 16.37 9.68 1.89 0.46 118.11/136.08 
Eq. 9+k  10.87 17.54 9.48 10.81 19.25 0.72 18.60 9.71 2.12 0.54 99.64  /118.67 
Eq. 9+n+o 7.81 13.31 7.58 8.99 17.06 0.45 13.82 6.27 1.62 0.48 77.40  /90.09 
Eq. 9+p 6.09 10.30 5.83 6.89 12.92 0.50 15.28 6.48 1.77 0.53 66.60  /80.20 
Eq. 9+s+t 18.50 34.84 20.91 26.13 49.44 4.94 0.42 13.31 11.12 0.44 180.05/197.50 

Average 8.77 15.37 8.93 10.81 20.59 1.01 18.10 8.57 3.12 0.70 95.96  /113.17 
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Based on Table 36, the overall average annual production of Acartia spp. for the 

three stations was 128.43 mg C m-3 (assuming only adult female growth), with copepodite 

stages I to V accounting for 75% of this value, on average. Production calculated using the 

growth rates of Hirst & Lampitt (1998) gave the closest production estimate to the overall 

mean, and because of this it was chosen to illustrate the daily contribution of each size 

category in Figure 58 (note that production of males were not included) . 
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Figure 58. Seasonal production and biomass of the size stages of Acartia spp. present in the zooplankton of 
Southampton Water during 2001-2002. Adult biomass reflects the biomass of males and females while 
production only includes females.   

 

Overall biomass and production followed the seasonality of abundance, being low 

during winter and having two productive seasons, a short one during spring and an 

extended one during summer-autumn.  
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  5.3.2.2. Copepod nauplii, Oithona nana and Euterpina acutifrons. 

 

The total seasonal contribution of copepod nauplii, O.nana and E.acutifrons have 

been presented in Chapter 2. Total biomass of copepod nauplii for the period was 198.21, 

251.76, 116.46 mg C m-3, while for E.acutifrons it was 252.22, 190.03 and 256.58 mg C m-3 

and for O.nana 757.22, 76.34 and 8.64 mg C m-3 at Cracknore, NW. Netley and Calshot 

respectively. Daily biomass variation of those three groups/species can be seen in Figure 

59. 
Table 37. Total and annual production estimates (in mg C m-3yr-1) of copepod nauplii, Oithona nana and 
Euterpina acutifrons obtained using the respective equations summarized in Table 34. Production values 
assume that both male and female grow at the same rate or as much as copepodites.   

Cracknore 
 Nauplii O. nana E. acutifrons Total 
Equation all year all year all year all year 
Eq. 9+a 71.10 46.17 261.40 169.77 89.90 58.39 422.40 274.33 
Eq. 9+d  65.67 42.65 258.06 167.60 102.63 66.77 426.36 277.03 
Eq. 9+e  54.86 35.63 215.53 139.98 85.84 55.75 356.22 231.36 
Eq. 9+f  60.04 38.99 222.51 144.51 68.18 44.28 350.72 227.78 
Eq. 9+g 53.71 34.89 197.61 128.34 58.77 38.17 310.09 201.39 
Eq. 9+h 64.26 41.73 101.95 66.21 35.85 23.28 202.06 131.23 
Eq. 9+l - - 84.88 55.12 33.60 21.82 215.04 139.66 
Eq. 9+m 96.56 62.72 - - - - added above 
Eq. 9+q 33.09 21.49 - - - - added below 
Eq. 9+r - - 53.21 34.56 20.89 13.56 107.19 69.61 

Average 62.41 40.53 174.39 113.26 61.96 40.25 298.76 194.07 
NW.Netley 

 Nauplii O. nana E. acutifrons Total 
Equation all year all year all year all year 
Eq. 9+a 75.28 54.63 21.58 15.66 68.05 49.38 164.92 119.67 
Eq. 9+d  72.49 52.60 22.30 16.18 77.51 56.24 172.30 125.03 
Eq. 9+e  60.48 43.88 18.60 13.50 64.83 47.05 143.91 104.43 
Eq. 9+f  71.04 51.55 20.77 15.07 51.34 37.25 143.15 103.87 
Eq. 9+g 64.27 46.64 18.67 13.55 44.25 32.11 127.19 92.30 
Eq. 9+h 73.81 53.56 9.21 6.69 27.02 19.60 110.04 79.85 
Eq. 9+l - - 7.37 5.35 25.37 18.41 155.39 112.76 
Eq. 9+m 122.65 89.00 - - - - added above 
Eq. 9+q 40.41 29.33 - - - - added below 
Eq. 9+r - - 4.84 3.51 15.74 11.42 60.99 44.26 

Average 72.55 52.65 15.42 11.19 46.76 33.93 134.74 97.77 
Calshot 

 Nauplii O. nana E. acutifrons Total 
Equation all year all year all year all year 
Eq. 9+a 37.42 24.31 3.13 2.03 87.05 56.54 127.60 82.87 
Eq. 9+d  35.51 23.06 3.03 1.97 100.29 65.25 138.83 90.28 
Eq. 9+e  29.64 19.25 2.53 1.65 83.85 54.46 116.02 75.35 
Eq. 9+f  33.85 21.99 2.55 1.66 67.96 44.14 104.37 67.78 
Eq. 9+g 30.49 19.80 2.26 1.47 58.77 38.17 91.52 59.44 
Eq. 9+h 35.60 23.12 1.18 0.77 35.44 23.01 72.22 46.90 
Eq. 9+l - - 1.00 0.65 32.87 21.35 90.61 58.85 
Eq. 9+m 56.74 36.85 - - - - added above 
Eq. 9+q 19.00 12.34 - - - - added below 
Eq. 9+r - - 0.73 0.48 20.68 13.43 40.42 26.25 

Average 34.78 22.59 2.05 1.33 60.87 39.54 97.70 63.46 
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Chapter 5 - Copepod Production 
The production of copepod nauplii, O.nana and E.acutifrons based on their 

temporal abundance and biomass variability is summarized in Table 37. The overall, 

averaged annual production of copepod nauplii for the three stations was 38.59 mg C m-3yr-1, 

while for O.nana and E.acutifrons it was 41.93 and 37.91 mg C m-3yr-1, respectively. Since 

production calculated using the growth equation (g on Table 34) of Hirst & Lampitt (1998)  

gave a close value to the overall average (Table 37), this estimate was chosen to illustrate 

the daily contribution of each at each station (Figure 59). 
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Figure 59. Seasonal production and biomass of copepod nauplii, Oithona nana and Euterpina acutifrons 
present in the zooplankton of Southampton Water during 2001-2002.  
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5.4. Discussion. 
 

The effects of formalin preservation on marine micro-crustaceans have been 

discussed (Chapter 4), however it is useful to stress that the correction factor of 18.15% 

used during this investigation seems appropriate here, since the corrected weight of the 

different species of Acartia in this study falls in the range reported for this genus (Durbin 

& Durbin, 1978; Landry, 1978; Hirst & Lampitt, 1998; Hirst et al., 2003). This is also 

confirmed when the prosome length-weight relationship established for A.bifilosa and 

A.clausi (Durbin & Durbin, 1978; Landry, 1978; Uye, 1982; Tanskanen, 1994; Mauchline, 

1998) predicts weights, on average -12% lower in terms of dry weight and -15% for 

Carbon, than the ones employed here. The length-weight equation established during this 

investigation (r73 on Figure 56) accounted for more than 96% of the variability 

encountered, with predicted weights of any Acartia species/categories differing from 

measured weights by only +1.4% on average.  

As stated in the methods section, size measurements were only done regularly for 

copepodite stages of Acartia primarily to enable them to be grouped in size intervals, with 

adults only being measured occasionally, and with the average size-range of each class 

being used for biomass assessments (Table 33). However, differences in size were noted 

between adults of the same species, possibly reflecting the negative relationship with 

temperature that has been reported for some calanoid species in this estuary (Hirst et al., 

1999), and observed for other species of Acartia (Durbin & Durbin, 1978; Landry, 1978; 

Uye, 1982; Mauchline, 1998) and for barnacle larvae (Chapter 4). As time constraints 

prevented a more detailed analysis of this variability, adults from different sampling days 

were picked randomly to establish, at least, the range of sizes for each adult species 

considered. It was also noted that in any given sample, males of Acartia were usually 

smaller than females, but the same prosome-length range was recorded for both sexes. The 

exception was A.discaudata, where the range of prosome-length of males and female was 

different (Table 33), resulting in different weights being attributed for each sex.  

Considering that the size classification employed for Acartia copepodites (CI to 

CV) reflects the stage classification of Hirst (1996) and Hirst et al., (1999), abundance 

values for each copepodite in this study were, on average, 4 times higher than reported by 

Hirst (1996) from which Hirst et al., (1999) is derived. This difference could, in part, be 

explained by the temporal coverage employed. Hirst (1996) sampling effort occurring at 

~26 days intervals (i.e. 16 samples covering a time interval of 416 days), while in the 

present study the interval was ~ 13 days (i.e. 42 samples covering 562 days). This 
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argument is supported, in part, by the NW. Netley data presented here, where it is clear that 

the longer sampling interval (~30 days) carried out at this station in 2001 clearly missed 

some peak abundances when compared with the other two sites where sampling occurred 

on ~13 days intervals. Even if the lowest values of any month from the Calshot data 

presented in this study is compared with Hirst’s (1996) data for an equivalent period, total 

abundance values are still 2-3 times higher in this study, suggesting that the 1993/94 

season studied (Hirst, 1996; Hirst et al., 1999) had lower zooplankton abundances or were 

underestimated on some way.  

The growth rates of copepods were not measured directly, again for the same 

reasons explained in the previous chapter. However, several global predictive equations 

have been developed with copepod data, and have been widely used to predict growth 

rates, usually needing inputs of field temperature and weights (Ikeda & Motoda, 1978; 

Huntley & Boyd, 1984; Huntley & Lopez, 1992; Hirst & Sheader, 1997; Hirst & Lampitt, 

1998; Hirst et al., 2003) and even Chlorophyll a as an indicator of environmental food 

(Hirst & Bunker, 2003). The use of those empirical models listed above usually wielded 

growth rates below 0.7 d-1 for any particular stage, decreasing with size and increasing 

with temperature. The only exception was the model of Hirst & Bunker (2003) where rates 

as high as 1.2 d-1 were calculated for periods of high chlorophyll concentrations, possibly 

overestimating production. Again, since there is no “ideal” method covering all the 

variability, and also no standard method widely accepted, the averaged value using all the 

methods possible could be considered a better approximation of the “real” production.  

The estimates of secondary production presented here from the current study are 

subject to several potential biases, from the method employed for collection, changes in 

numerical abundance during sampling intervals, presence/absence of predators and 

including the estimations of growth rates. However, when the biomass data of each size 

class of Acartia derived in this study was applied to the raw abundance data of each 

Acartia stage of Hirst (1996), an estimated production of 18.61 mg C m-3 yr-1 for 

copepodites + females of Acartia was determined (using equation 9+f). This value is only 

5% higher than the published value of 17.62 mg C m-3 yr-1 (Hirst et al., 1999) using the 

same equation (Table 38), and suggests that the values obtained in this study are 

comparable. However, the annual production of 95.96 mg C m-3 yr-1 estimated for Acartia 

at Calshot, using abundance data obtained during this investigation is ~4-5 times higher 

than the previous estimate, and again confirms the low zooplankton abundance values of  

Hirst in 1993/94 (Hirst, 1996; Hirst et al., 1999). 
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When yearly production values of Acartia predicted here are compared with 

Acartia production reported elsewhere (Table 38) the values were only directly comparable 

with those of Uye (1982) and Kimmerer & McKinnon (1987) for A.omorii (A.clausi ?) and 

A.tranteri, the dominant copepods at Onagawa Bay (Japan) and Westernport Bay 

(Australia), respectively. Like these two investigations,  yearly production in the range of 

96-165 mg C m-3 yr-1 reported here were considered low, because production of Acartia 

elsewhere (Table 38) is usually 3 to 20 times higher than the values reported here. 

 
 Table 38. Yearly production estimates of estuarine/marine copepods.   
Species (groups),region                        Daily production         Interval ~depth (Source) Method of collection 
 

Acartia clausi,(nauplii to adults) 
Jakles Lagoon, Washington, USA. 

2677-3285 mg C m-3 yr-1 ~518 3 (Landry, 1978) sampled with a 
core-tube fitted with a 53 µm mesh 

Acartia tonsa,(nauplii to adults) 
Narragansett Bay, Rhode Island, USA 1663-2009 mg C m-3 yr-1 103 7.5 (Durbin & Durbin, 1981) 

sampled pumping  into a 60 µm mesh 
Acartia hudsonica,(nauplii to adults) 
Narragansett Bay, Rhode Island, USA 768-1304 mg C m-3 yr-1 120 7.5 (Durbin & Durbin, 1981) 

sampled pumping  into a 60 µm mesh 
Acartia spp, (nauplii to adults of 3 sp.), 
Malaga Harbour, Spain 773-1618 mg C m-3 yr-1 139 7 (Guerrero & Rodríguez, 1994; 1997) 

sampled using nets with 100µm mesh 
Acartia tonsa,(nauplii to adults) 
Westerschelde, The Netherlands 556 mg C m-3 yr-1 365 - (Escaravage & Soetaert, 1995) 

sampled pumping  into a 55 µm mesh 
Acartia tranteri,(nauplii to adults) 
Westernport Bay, Australia 130 mg C m-3 yr-1 ~700 5 (Kimmerer & McKinnon, 1987) 

sampled using nets with 50µm mesh 
Acartia omorii,(nauplii to adults) 
Onagawa Bay, Japan 180 mg C m-3 yr-1 558 15 (Uye, 1982) 

sampled using nets with 94µm mesh 
Acartia omorii,(nauplii to adults) 
Fukuyama harbour, Japan  749 mg C m-3 yr-1 257 8 (Liang & Uye, 1996a a) 

sampled using nets with 62µm mesh 
Acartia lilljeborgi,(nauplii to adults) 
Praia do Segredo, São Sebastião, Brazil 230 mg C m-3 yr-1 399 4 (de La Rocha, 1998) sampled using 

nets with 10 and 100µm mesh   
Cetropages abdominalis,(nauplii to adults) 
Fukuyama harbour, Japan  355 mg C m-3 yr-1 204 8 (Liang et al., 1996) 

sampled using nets with 62µm mesh 
Paracalanus sp.(nauplii to adults) 
Fukuyama harbour, Japan  734 mg C m-3 yr-1 365 8 (Liang & Uye, 1996b b) 

sampled using nets with 62µm mesh 
Pseudodiaptomus marinus,(nauplii to adults) 
Tomo harbour, Japan  20.7 mg C m-3 yr-1 365 7 (Uye et al., 1983) 

sampled using nets with 94µm mesh 
Pseudodiaptomus marinus,(nauplii to adults) 
Fukuyama harbour, Japan  51 mg C m-3 yr-1 365 8 (Liang & Uye, 1997) 

sampled using nets with 62µm mesh 
Eurytemora affinis,(nauplii to adults) 
Westerschelde, The Netherlands 724 mg C m-3 yr-1 365 - (Escaravage & Soetaert, 1993; 1995) 

sampled pumping  into a 55 µm mesh 
Eurytemora affinis,(nauplii to adults) 
Elbe estuary 289 mg C m-3 yr-1 134 - (Peitsch, 1995) 

sampled pumping  into a 55 µm mesh 
Oithona davisae, (copepodites to adults) 
Fukuyama harbour, Japan 650 mg C m-3 yr-1 365 8 (Uye & Sano, 1998) 

sampled using nets with 62 µm mesh 
Acartia spp (copepodites to adults of 4 sp.), 
Southampton Water, UK. 17.62 mg C m-3 yr-1 416 13 (Hirst et al., 1999) 

sampled using nets with 118µm mesh 
Centropages hamatus, (copepodites to adults) 
Southampton Water, UK. 8.16 mg C m-3 yr-1 416 13 (Hirst et al., 1999) 

sampled using nets with 118µm mesh 
Temora longicornis, (copepodites to adults) 
Southampton Water, UK. 4.77 mg C m-3 yr-1 416 13 (Hirst et al., 1999) 

sampled using nets with 118µm mesh 
Para-pseudocalanus, (copepodites to adults)  
Southampton Water, UK. 1.67 mg C m-3 yr-1 416 13 (Hirst et al., 1999) 

sampled using nets with 118µm mesh 
Acartia spp. (copepodites to adults of 5 sp.), 
Southampton Water, UK. 96-165 mg C m-3 yr-1 562 13 This study 

sampled using nets with 120µm mesh 
Oithona nana, (copepodites to adults), 
Southampton Water, UK. 1.33-113 mg C m-3 yr-1 562 13 This study 

sampled using nets with 120µm mesh 
Euterpina acutifrons, (copepodites to adults) 
Southampton Water, UK. 34-40 mg C m-3 yr-1 562 13 This study 

sampled using nets with 120µm mesh 
Copepod nauplii, 
Southampton Water, UK. 23-53 mg C m-3 yr-1 562 13 This study 

sampled using nets with 120µm mesh 
 

Original dry-weight/carbon values were converted/re-calculated using a conversion factor of 40%. 
Interval represents the number of days from which yearly production was calculated/averaged. 
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Kimmerer & McKinnon (1987) attribute their low production  to a combination of 

low growth-rate with low biomass, but if we indiscriminately apply the highest growth rate 

of 0.89 d-1 for A.tonsa of Durbin & Durbin (1981) to the data presented here, production in 

this extreme case will be in the range of 396 - 692  mg C m-3 yr-1 still in the lower range of 

the values presented on Table 38  i.e., 650 - 3285 mg C m-3 yr-1. This indicates that 

differences in biomass is probably the major factor behind these differences, since growth 

in copepods usually does not exceed 0.9 d-1, and rates higher than 0.7 d-1 were only 

reported for Acartia with temperature above 16°C  (Hirst et al., 2003 and references 

therein). Apart from the results obtained with the model of Hirst & Bunker (2003), growth-

rates in this study were usually below  0.7 d-1. 

Biomass reflects body weights and abundances of each stage, and since body 

weights considered in this study are in agreement with values reported from the literature, 

probably the factor behind the “low production” reported in Southampton Water, and in 

Onagawa and Westernport Bays (Uye, 1982; Kimmerer & McKinnon, 1987) should be 

credited to differences in abundance. However, looking at the sampling methods of studies 

where production level would be considered “normal”, these usually employed pumps 

instead of nets, with production based on abundances estimated from volumes of water of 

0.023-0.48 m-3, while in this study abundances were based on volumes, on average, of 39 

m-3 which is 80-1700 times higher. This clearly suggests that direct, simplistic comparisons 

between the different methods should not be considered/attempted.  

Differences in abundances between samples collected by pumps and nets were 

briefly commented on Chapter 1. Anyway, when the abundance results of calanoids 

presented here were compared with those carried at Southampton Water where samples 

were collected with pumps instead of nets (Raymont & Carrie, 1964), abundances 

estimated from 0.5 m-3 samples retained on ~158 µm meshes would be expected to be 

lower when compared with the values presented here. However, abundance values of 

calanoids and barnacle larvae in the present investigation were usually 22 – 85% lower 

when compared with those recorded by Raymont & Carrie (1964). The exception being the 

abundance of calanoids at Calshot, where the averaged values presented here, for a similar 

time interval, were ~4 times higher than those of Raymont & Carrie (1964). This was 

completely unexpected, since coarser meshes should retain fewer organisms, unless pump 

sampling is more efficient or the lower volume sampled gave a huge overestimation of 

organisms. When Raymont & Carrie (1964) used a finer net mesh with ‘200 meshes to the 

inch’ (i.e. № 25 or ~64 µm according to Boltovskoy (1981b) and Omori & Ikeda (1992)) in 

conjunction with the № 10 mesh (i.e. ~158 µm), for a more detailed analysis of Acartia in 
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the same study, they reported abundances ~ 5 times higher than the ones presented in the 

current study. In the classical work of Bousfield et al., (1975) an 8 fold increase in 

abundances collected with a pump strained with № 10 meshes (~158 µm) is reported when 

compared with catches with a towed № 10 net. If a 5 fold increase in abundance, reported 

above for Raymont & Carrie (1964) using finer meshes, is applied indiscriminately to all 

Acartia stages in the abundance data of this study, yearly production in the range of 588 to 

1165 mg C m-3 yr-1, using equation 9k is derived for Acartia, approaching of those 

collected with smaller meshes (Table 38). So, instead of our production values being 

considered low it is possible that those derived from pump collected samples were 

abnormally high, probably due to an overestimation in abundance due the small amount of 

water sampled.     

Discussion concerning the use of pump and net samplers is well documented, and 

will not be discussed here, but advantages/disadvantages of the use of pumps in relation of 

nets are detailed on Beers (1981a), Boltovskoy (1981c), de Bernardi (1984), Omori & 

Ikeda   (1992) and Sameoto et al.,(2000). All that can be said, based on these studies in 

Table 38, is that, pumps gave values of production usually an order of magnitude greater 

than ones collected with nets.  

It is now suggested, that the low-high rates of secondary production should be 

revised, since most of the studies where “high” values of secondary production were 

reported are based on collections with pumps and sampling less than a cubic metre of 

water. Since collection with nets is more widespread, and volumes collected are higher, 

relative ‘low-high’ secondary production values for copepods should be set to values 

obtained with net samples. So, in light of this it is possible to say that the production of 

Acartia within Southampton Water is in agreement with the reported production of Acartia 

in other regions, collected in a similar fashion from regions under similar seasonal 

variations in temperature and similar rates of primary production i.e. 100 – 200 g C m-2 yr-1. 

 Production of the other calanoid species were not measured directly, but estimates 

of their production will be given in Chapter 6, together with equations proposed for the 

estimation of production of several components.  

No previous estimates of copepod nauplii, E.acutifrons and O.nana production are 

available for Southampton Water, and the values presented here are the first attempt to 

quantify it. Since this study was primarily focused on barnacle larvae production (Chapter 

4), and later expanded to predict production of Acartia, the optimal way of predicting 

production of copepods was not followed. If time allowed the same method employed for 

barnacles would have been used, where each stage of each component is systematically 
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measured, and length-weight relationships established. However the measurement of 

prosome lengths of Acartia to fit it in size intervals was already a major time consumer, 

and to repeat this for the other species was impractical, if not impossible. So, due to time 

constraints, only Acartia copepodite size-classes could be measured, with the production of 

the other components estimated using other methods. Because of this, the production 

values of these components should be considered with caution since they include males, 

and were based on single averaged weight for all organisms of a particular group/species 

(Table 35). Another factor is that due to the small size of copepod nauplii and earlier 

copepodite stages, the mesh size used probably under-sampled most of those earlier stages. 

This is supported by the overall “heavy weight” measured for copepod nauplii, clearly 

indicating that it is dominated by later naupliar stages.  

However, the consistency of production calculated for copepod nauplii and 

E.acutifrons is remarkable, with similar values being reported for all three stations. O.nana 

in contrast had much higher production inside the estuary at Cracknore where 113.26 mg C 

m-3 yr-1 was calculated. Even allowing for the low relative importance of O.nana in the 

lower estuary where the production of this species were calculated as only 1.33 C m-3 yr-1  

i.e. 1.18% of the total production of Acartia spp (113.17 mg C m-3 yr-1), this previously 

unconsidered production, together with that of copepod nauplii and E.acutifrons, can go 

some way to explain the relatively low copepod secondary production estimate of 32.2 mg 

C m-3yr-1 within Southampton Water (Hirst et al., 1999), which was exclusively based on 

calanoid copepods.   

It is important to stress that the production of O.nana at Cracknore, and in 

Southampton Water as a whole, is expected to be much higher when abundance is more 

rigorously assessed and sampled i.e., with 62 µm meshes. Comparing the width of O.nana 

copepodites (~88 - 142 µm for copepodites 1 to 6) with Acartia copepodites of the same 

stage (~93 - 342 µm for copepodite 1 to 6 of the different Acartia species), the earlier 

copepodites stages of O.nana will be much more under-sampled by the 120 µm mesh than 

Acartia copepodites. The production of O.nana at Cracknore alone could be higher than 

that of total calanoids, since the production of O.nana, at Cracknore, amounted to 85% of 

that calculated for Acartia at the same station in the present study. If a factor of five, 

derived from the work of Raymont & Carrie (1964) discussed earlier, is also applied to 

O.nana in a attempt to correct values to finer meshes, the potential production of this 

species over the estuary is expected to range from 7 mg C m-3 yr-1 at Calshot to 565 mg C 

m-3 yr-1 at Cracknore, approaching the value of 650 mg C m-3 yr-1 reported by Uye & Sano 

(1998) for O.davisae in Fukuyama Harbour (Table 38).  
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  As one of the aims of this study was to give as good an estimate of secondary 

production as possible, it is believed that the averaged value presented in Tables 36 and 37 

based on all the conventional equations described, is a ‘best approximation’ of production. 

Altogether, copepod nauplii, Acartia spp., E.acutifrons and O.nana represent 99, 98 and 

91% of the copepod fraction collected with a 120 µm mesh at Cracknore, NW.Netley and 

Calshot, respectively. Based on the averaged values presented in Tables 36 and 37 the total 

production of those copepods in Southampton Water can be assumed to be 327.68, 256.13 

and 176.63 mg C m-3 yr-1 at Cracknore, NW.Netley and Calshot respectively, or 253.48 mg 

C m-3 yr-1 (including the production of Acartia males) as an average for the three stations. 

Simplisticaly this value could therefore be considered representative of 96% of the 

copepods in Southampton Water, when 120 µm mesh nets are being used. As a best case 

view, production values presented here are clearly underestimations since a considerable 

number of earlier stages were not properly sampled.  

In conclusion, copepod production within Southampton Water is in agreement with 

production values elsewhere, when similar sampling methodologies were employed.  
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5.5. Chapter Conclusions. 
 

• Weights for size classes of Acartia, as well as an averaged weight for copepod 
nauplii, O.nana and E.acutifrons were measured and presented for the first time 
within Southampton Water.   

 
• Regression equations relating prosome-length to weight for easy biomass 

assessments of all Acartia species are presented. 
 

• Seasonal differences in prosome-length of the adults of the different species of 
Acartia were noted, but not investigated. 

  
• Production of Acartia presented here is in line with other production estimates in 

temperate regions where similar sampling devices were employed. 
 

• Production values of several copepod components/species are presented for the first 
time within this estuary as a whole, and an overall averaged production of 253.48 
mg C m-3 yr-1 was estimated, with Acartia accounting for 55.6 % of the production 
followed by E.acutifrons (16.0%), copepod nauplii (15.2%) and O.nana (13.2%).  

 
• O.nana production at the inner estuary was comparable to that of calanoid 

copepods, and with proper sampling and detailed production measurements it is 
expected to be greater than that of calanoids. As said in previous Chapters the 
assessment of the importance of oithonids and other small species is a current ‘hot 
topic’ on pelagic ecology and the results presented here clearly indicates the 
potential importance of this species within this estuary.  

 
•  The production of O.nana together with copepod nauplii and E.acutifrons can go 

some way to explain the low copepod secondary production estimate within 
Southampton Water, which was exclusively based on calanoid copepods.     
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Chapter 6 
Zooplankton production within the overall carbon flux of 

Southampton Water  

(A simpler way of estimating zooplankton production?) 

 
6.1. Introduction. 

 
Secondary production has long being defined as the growth of biomass, whether or 

not that biomass is retained by the organisms (Ricker, 1946; McLaren et al., 1989). Despite 

the mathematics being simple in principle (Chapters 4 section 4.1.1.) zooplankton 

production estimates are often laborious, requiring sorting, identifying, counting, 

measuring, weighing and estimating the growth rates of each stage of the animals 

considered. Sorting, identifying and counting zooplanktonic organisms at species level is a 

daunting task but essential if measuring community fluxes, since rates on zooplanktonic 

organisms occurs at species level (Soetaert & Van Rijswijk, 1993).  

Direct measurements of growth of small animals are also very difficult, and to do it 

properly involves the procedures listed above. These procedures is usually done under 

controlled situations in laboratories, with the inherent assumptions and methodological 

constraints already discussed in previous chapters, and with reference only to those 

parameters presumed to be important for the animal development/growth, such as 

temperature and food (Landry, 1975a; 1975b; McLaren, 1978; Vidal, 1980a; 1980b; 

McLaren & Corkett, 1981).  

Despite the fact that in situ experiments would be preferable as they might 

accommodate all variables, carrying out these experiments and including all ranges of 

temperature/food conditions necessary for generalizations is impractical. Live handling of 

animals, even in laboratory conditions, is already a challenge and, as pointed out recently 

by Hirst & Mckinnon (2001), the number of replicates for detection of 1-10% changes in 

body weights by standard destructive methods is generally prohibitive. In addition, 

handling procedures and even removal of predators could also bias the results. Based on 

that, one must take the decision of trying to measure growth rates (lab/in situ) or rely on 

published growth-rates models like the ones provided by Ikeda & Motoda (1978), Huntley 

& Boyd (1984), Huntley & Lopez (1992), Hirst & Sheader (1997), Hirst & Lampitt (1998), 

Hirst & Bunker (2003) and Hirst et al. (2003). Either way, several assumptions will still be 
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included, making the use of empirically derived models much more appealing since they 

allow simple and repeatable estimations without the need for incubations, usually requiring 

only data on temperature, body-weights and development (Landry, 1975b; Ikeda & 

Motoda, 1978; McLaren et al., 1989; Hirst & Sheader, 1997; Hirst & Lampitt, 1998; Hirst 

et al., 2003).  

 During the present study, the production of different mesozooplankton components 

was estimated (Chapters 4 and 5) using several growth rate and production equations, with 

the averaged value being arbitrarily considered as a best estimate of the secondary 

production of those components. One of the aims of the present chapter is to determine if 

there is an easier way of predicting this production, without the need for sorting, 

measuring, weighing and estimating the growth rates of each stage of the animals 

considered. With the calculation of production of different mesozooplankton components, 

like barnacle larvae (Chapter 4) and copepods (Chapter 5), the simple pelagic carbon box 

flux model proposed by Hirst et al., (1999), was re-analysed. This model is based in the 

Southampton Water – Solent site at Calshot, and represented the carbon flux of the main 

components of the pelagic food web which had been investigated, albeit independently, 

during a series of studies in the 1990’s. Discrimination within the individual ‘box’ 

components was only possible as far as data allowed, and so no description of significant 

resource parameters such as detritus was made. Several mesozooplankton parameters are 

added and/or modified to accommodate the new figures and/or findings. 
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6.2. Methods. 
 
 As described in Chapter 4 and 5, production of different components was estimated 

by equations 8 and 9 (Chapter 4 section 4.1.1.) and growth rate with equations a to r which 

are fully described on Tables 22 and 34 in Chapters 4 and 5. Due to the high growth rates 

observed when using equations s and t (Table 34 – Chapter 5), the production values 

calculated with those equations were not considered in the following analysis.  

In order to investigate the relationship of production with specific environmental 

parameters, multiple regression analyses were carried out using the number of organisms 

m-3 (n), Temperature (°C), Salinity (S) and Chlorophyll a (Chl a) as independent variables. 

Production was also regressed against the total number of organisms and simple linear 

regressions derived.  

 

6.2.1. Statistical analysis. 

 

In order to stabilize the variance of data the number of organisms m-3 (n), 

production values (mg C m-3d-1) and Chlorophyll a (mg m-3) were log10 transformed before 

being used in the analysis.  

Both simple linear and backwards step-wise multiple regression analyses were 

completed separately for each species individually, as well as for groups and the 

combination of them, with the production of all methods described in Chapters 4 and 5 

being considered together on a single equation. For multiple regressions, F to enter was set 

to 4.0, and F to remove at 3.9. Where no independent variable were removed, a multiple 

linear regression was produced on the form Log10 P = a(T°C)+b(S)+c(log10 Chl a)+d(log10 n)+e. If 

any of the independent variables did not add significantly to the prediction it was excluded, 

and the regression completed using the remaining variables. Zero values were not included 

in the analyses. Simple and multiple regressions were calculated with STATISTICA for 

Windows, while simple regression graphs were drawn using Sigma-Plot for Windows. 

 

6.3. Results and Discussion. 
 

Backwards step-wise regression analyses were performed between the production 

of a particular species/group of organisms and the number of organisms m-3 (n), 

temperature (°C), salinity and chlorophyll a as independent variables. The results are 

shown on Table 39.  
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Table 39. Results of the backwards stepwise multiple regression analyses between production, with temperature, 
salinity, chlorophyll a concentration and total number of organisms of a particular species/stage. Also shown is the 
linear regression between production and the total number of organisms of a particular species/stage.   

eq Copepod Nauplii (n = all copepod nauplii)  
 

r2 
 

N 
 

range 
 

sig. 
r74 Log10(P) = -4.833+0.031*(T)+1.002*log10(n) 0.919 864  p<0.01 
r75 Log10(P) = -4.808+1.123*log10(n) 0.894 864 30 - 20025 p<0.01 
 Acartia spp.  (n = all adults)     
r76 Log10(P) = -4.721+0.010*(T)+0.028*(S)+0.041*log10(Chl a)+1.031*log10(n) 0.969 1070  p<0.01 
r77 Log10(P) = -3.794+1.065*log10(n) 0.960 1070 1 - 4725 p<0.01 
 Acartia spp.  (n = adult females)     
r78 Log10(P) =-4.811+0.002*(T)+0.030*(S)+0.046*log10(Chl a)+1.033*log10(n) 0.968 1070  p<0.01 
r79 Log10(P) =-3.794+1.073*log10(n) 0.957 1070 1 - 3031 p<0.01 
 Acartia spp. (n = copepodites + adult females)     
r80 Log10(P) =-4.653+0.012*(T)+0.014*(S)+1.064*log10(n) 0.943 1080  p<0.01 
r81 Log10(P) =-4.215+1.115*log10(n) 0.938 1080 6 - 25517 p<0.01 
 Acartia spp. (n = copepodites)     
r82 Log10(P) =-4.293+0.017*(T)+1.049*log10(n) 0.942 1080  p<0.01 
r83 Log10(P) =-4.248+1.109*log10(n) 0.935 1080 6 - 22605 p<0.01 
 Acartia spp. (n = copepodites + adults males and females)     
r84 Log10(P) =-4.682+0.010*(T)+0.015*(S)+1.073*log10(n) 0.943 1080  p<0.01 
r85 Log10(P) =-4.206+1.118*log10(n) 0.939 1080 7 - 27330 p<0.01 
 Oithona nana (n = copepodites + adults males and females)     
r86 Log10(P) =-5.019+0.039*(T)+0.999*log10(n) 0.962 664  p<0.01 
r87 Log10(P) =-4.639+1.054*log10(n) 0.944 664 1 - 48199 p<0.01 
 Euterpina acutifrons (n = copepodites + adults males and females)     
r88 Log10(P) =-4.388+0.041*(T)-0.014*(S)+1.004*log10(n) 0.980 656  p<0.01 
r89 Log10(P) =-4.456+1.093*log10(n) 0.977 656 1 - 11346 p<0.01 
 Copepoda (n = Acartia spp.+O. nana+E. acutifrons)     
r90 Log10(P) =-5.214+0.034*(S)+0.177*log10(Chl a)+1.028*log10(n) 0.936 648  p<0.01 
r91 Log10(P) =-4.302+1.092*log10(n) 0.920 648 20 - 58873 p<0.01 
 Copepoda (n = all nauplii + all Acartia spp.+ all O. nana+ all E. acutifrons) 
r92 Log10(P) =-5.674+0.011(T)+0.034*(S)+0.065*log10(Chl a)+1.088*log10(n) 0.938 648  p<0.01 
r93 Log10(P) =-4.790+1.182*log10(n) 0.924 648 80 - 65428 p<0.01 
 Elminius modestus (n = all nauplii stages)     
r94 Log10(P) =-5.049+0.040*(T)+0.146*log10(Chl a)+1.024*log10(n) 0.974 1296  p<0.01 
r95 Log10(P) =-5.065+1.263*log10(n) 0.956 1296 2 - 9440 p<0.01 
 Balanus crenatus (n = all nauplii stages)     
r96 Log10(P) =-4.465+0.014*(T)+0.357*log10(Chl a)+0.973*log10(n) 0.960 738  p<0.01 
r97 Log10(P) =-4.156+0.950*log10(n) 0.929 738 1 - 11963 p<0.01 
 Balanus improvisus (n = all nauplii stages)     
r98 Log10(P) =-5.312+0.078*(T)-0.069*log10(Chl a)+0.915*log10(n) 0.976 804  p<0.01 
r99 Log10(P) =-4.509+1.111*log10(n) 0.942 804 1 - 1767 p<0.01 
 Semibalanus balanoides (n = all nauplii stages)     
r100 Log10(P) =-5.493+0.065*(T)+0.026*(S)+0.360*log10(Chl a)+0.951*log10(n) 0.949 414  p<0.01 
r101 Log10(P) =-4.157+1.022*log10(n) 0.912 414 1 - 441 p<0.01 
 Verruca stroemia (n = all nauplii stages)     
r102 Log10(P) =-5.374+0.039*(T)+0.017*(S)+0.999*log10(n) 0.929 369  p<0.01 
r103 Log10(P) =-4.434+0.957*log10(n) 0.908 369 1 - 486 p<0.01 
 Cirripedia (n = all nauplii)     
r104 Log10(P) =-4.866+0.014*(T)+0.174*log10(Chl a)+1.102*log10(n) 0.959 972  p<0.01 
r105 Log10(P) =-4.897+1.199*log10(n) 0.945 972 2 - 12407 p<0.01 
 Cirripedia (n = all nauplii + cypris)     
r106 Log10(P) =-4.907+0.016*(T)+0.142*log10(Chl a)+1.113*log10(n) 0.960 972  p<0.01 
r107 Log10(P) =-4.921+1.205*log10(n) 0.948 972 2 - 12407 p<0.01 
 Total (n = all copepod and cirripedia nauplii + Acartia spp. + O.nana + E.acutifrons) 
r108 Log10(P)=-5.561+0.021*(T)+0.024(S)+1.095*log10(n) 0.937 648  p<0.01 
r109 Log10(P)=-4.982+1.215*log10(n) 0.922 648 151-72279 p<0.01 
Where P = average production of a particular size class/stage in mg C m-3d-1; T = temperature in °C; S = Salinity;  
Chl a = Chlorophyll a in mg m-3; n = total number of organisms m-3 of particular type. N = number of data points; range = 
range of organisms m-3 employed; sig. = significance level and eq. = refers to the number of the resulting equation. 
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As expected, production was positively related with the number of organisms and, 

in most cases, also with temperature. Salinity and chlorophyll were also significant in some 

analysis (Table 39). With a determination coefficient (r2) ranging from 0.91-0.98 these 

equations can be considered/employed for estimations of production in this estuary, since 

most of the variability is explained by those parameters.  
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Figure 60. Regression analysis between Production values with total number of organisms. Different 
coloured letters indicates a production value calculated with a particular growth-equation (Tables 22 and 34) 
using equation 9. Cirripedia also shows the production values calculated with equation 8. For the regression 
equation see Table 39. 

a

a

a
a

a
a

a

a

a
a

a

a
a

a
a

a
a

a

a

a

aa
a

a

a

a

a
a

a

a

a
a

a

a

aa

a

a

a

a

a

a
aa

a

a

a

a
a

a

a
a

a

a
a

d

d

d
d

d
d

d d

d

d

d d

d

d
d

d
d

d

d

d

d

d

d
d

d

d
d

d

d

d

d
d

d

d

dd

d

d

d

d

dd

d

d

d

d

d

d
d

d

d
d

d

d

e

e

e
e

e

e

e

e
e

e

e ee

e

e
e

e
e

e
e

e

e

e

e

ee
ee

e

e

e e

e
e

e

e

e

e
e

e

e

ee

e

e

e

e

e

e
ee

e

e

e

e

e

e
e

e

e
e

e

e
e

h

h

h

h

h
h

h

h

h

h

hh

h

rr

r

rr

r

r

r

r
r

r

r

rr

r

r

r

f

f

f
f

f

f
f

ff
fff

f

f

f

ff ff

f

f
f

f f
f

f

f

f

f

f

ff
ff

f

ff

f f

f
f

f

f

f

f
f

f

f

ff

f

f

f

f

f

f

f

ff

f

f

f

f

f

f
f

f
f

f

f

f
f

gg

g

g

g

g

g
g

g

g

g

g

g

gg
gg

g

gg

g

g
g

g

g

g

g
g

g

g

gg

g

g

g

g

g

g

g

g

g

g

g

g
g

g
g

g

g

g
g

ll

l

l

l

l
l

l

l

l

ll

l

l

a
a

a

a

a

a a
a

a

a

aaa

a
a

a
a

a

a

aa

a

a

a
aaa

a

a
aa
a

a

a
a

a

a

a

a

a a

a

a

a

a

a

a
a

a

a

d

d

d
d

dd
d

d
d

d

d d
d

dd

d

ddd

d
ddd

d
d

d

d

dd

d

d

d

d
d ddd

d

d

d
dd
d

d

d
d

d

d

d

d

d d

d

d

d
d

d

d

d
d

d

d

e
ee

e

e
e

e

e e
e

e

e

eee

e
ee

e
e

e

e

ee

e

e

e

e
e eee

e

e

e
ee
e

e

e
e

ee

e

e

e e

e

e

e

e

e

e
e

e

e

h
h

h
h

h

h

h

h

h
h

h

h

h h
r

f

f

f
f f

f
f

ff
f

f
f

f

f ff

ff
f

f

fff

f

f

f

f

f
f

f
f

f

f

f

ff

f

f

f

f
f fff

f

f

f

f
f

f
f

f
f

f

f
f

f

f

f

f

f

f f

f

f

f
f

f

f

f f
fff

f

g

g

g
g g

g
g

g
g

g
g

g

g gg

gg
g

g

ggg

g

g

g

g

g
g

g
g

g

g

g

gg

g

g

g

g
g ggg

g

g

g

g
gg g

g

g
g

g

g

g

g

g

g g

g

g

g
g

g

g

g g
g

g

l

l
l

l

l

l

l

l

l
l

l

l

b
b

b

bb
b

b
b

b

b

b
bb

b
b

bb
b

bb

b

b

b b

b

b
b

b

bb
b

b

b
b

b

b
bb

b

b

b

b

b
b

b

b b
b

b

b
b

b

b
b

b

b

b
b

b

b

b

b
bbb

b
b

b b
b

b
b

b

b

b

b

b

b
b

b

b

b

b
b

b

b

b

b

b
b

b

b

b

b

a
a

aa

a
aa

a

a

a

aa

aa

a

a

a a

a

a

a

a

a
a

aa
a

aaa

a

a

a
aa

a
a

a

a
a

a

a
a

aa

a a

a

aaa
a

a

a a
a

a
a

a
a

a

a
a

a

a

a

a

aa

a

a
a

a

a

a

a

c
c

c

cc
c

c
c

cc
cc

c
c

cc
c

c
c

c

c

c c

c

c
c

c

cc
c

c
c c

c
c

c

c

c

c

c
c

c

c c
c

c

c
c

c

c
c

c

c
c

c
c

c

c

c

c

c
ccc

c

c c
c

c
c

c

c

c

c

c

c

c

c
c

c

c
c

c

c

c

c

c

c
c

c

c

c

8
8

8

8

88
8

8
8

8
88

8
8

88
8

8

8

8

8 8

8

8
8

8

88
8

8
8 8

8
8

8

8

8

8

8

8

8
8

8

8 8
8

8

8

8

8

8
8

8

88

8
8

8

8

8

8

8
888

8

8 8
8

8
8

8

8

8

8

8

8

8

8
8

8

8
8

8

8

8

8

88

8

8

d

d
d

d

dd
d

d
d

d

d
d

d
d

d
d

d

d
d

d

d

d d

d

d
d

d

dd d

d

d

d dd
d

d
dd

d

d

d

d

d
d

d

d
d

d

d

d
d

d

dd

d
d

d d

d

d

dddd
d

d

d d
d

d
d

d

d

d

d

d
d

d

d

d

d
d

d

d

d

d

d
d

d

d

d

e
e

ee
e

e
e

e

e
e

e
e

e
e

ee

e
e

e

e

e e

e

e

e e

e

e

e ee
e

e
ee

e

e

e

e
e

e

ee
e

e

e

e
e

e

e
e

e

e
e

e e

e

eeee
e

e

e e
e

e
e

e

e

e

e

e

e
e

e

e

e

e
e

e

e

ee

e

e
e

e

e

e

e

h
h

h

h

h
h

hh

h
hh

hh
h

h
h

h

h

h

h
h

h
h

h

h
h

h h
h

h
h

h

h

h

h
hh

h

h
h

hh

h

f
f

f
f

f

ff
f

f
f

f
f

f
f

f

f
f

f f
f

ff

f

f

f f

f

f
f

f

ff f

f

f
f ff

f

fff

f

ff
f

f

f

f

f

f
f

f

f
f

f
f

f

f
f

f

f
f

f

ff

f f

f

f

f

f

fffff
f

f f
f

f
f

f

f

f

f

f

f
f

f

f

f
f

f

f
f

f

f

ff

f

f
f

f

f

f

f

g

g
g

g

g

gg
g

g
g

g
g

g
g

g

g
g

gg
g

gg

g

g

g g

g

g
g

g

gg g

g

g

g
gg

g

ggg

g

g

g

g

g

g

g
g

g

g
g

g
g

g

g
g

g

g
g

g
gg

g g

g

g

g

g

ggggg
g

g g
g

g
g

g

g

g

g

g

g
g

g

g

g
g

g

g
g

g

g

g
g

g

g
g

g

g

g

g

f ff

f
f

f f
f

f

f

f

f

f

f
f

f

f

f

f

f

f

f

f

f

f
f

f

f

f

f

f

f

f

f

f
f

f
f

f

f

f

f

f

f
f

f

f
e

e

e

e

e

e

e

e

e

h

h
h

h

h

m

m

m

m

mm

m

m

m

m

m
m

m

m

m

m

m

m
m

mm

mm

m

mm
m

g

g
g

g g

g

g
g

g

g

g

g
g

g

g

g

g

g

g

g

g

g

g

g
g

gg

g

g

g

g

g

g

g

g

g

g
g

g
g

g g

g

g

g
g

g
g

g

a

a

h

h

h

h

h
h

h

a

a
aa

a
a

a
a

a

a

a

aa a

a

a

a

a

a

a

a

aa
aa

a

a

a

a

a

aa
a

a

a

aaa
a

a a
aa

a

a

a

a a
a

a

a

aa
aa

a

a

a

a

aa
aa

aa

a

a

a

a

a

a
a

aa

a
a

a

a

ddd

d
d

d

d
dd

d
d

d
d

ddd

d

d

d

d

dd

d

d

d
d

d

d

d

d
d

d

dd
d

d
d

d

d

d

d

dd
d

d d
dd

d

d

d

d

d d
d

d

d

d
d

d

d

d

d

d

d
d

dd

d

d

d
ddd

d

dd
d

d

d

ee

e
e

e

e
ee

e
e

e

e

e

e
ee

e

e

e

e

ee
e

e

e
e

e

e

e

e

e
e

ee

e

e

e

e

e

eee
e

e e
ee

e

e

e

e

e e
e

e

e

e
ee

e

e

e

e

e
e

ee

e

ee

e

e
eee

e

e

e
e

ee

e
e

e

e

h

h
h

h
h

h

h h
hh

h
h

h
h

h h

h h

h

h

hh
hh

h

h
h

hh
h

h
h h

h

h
h

h
h

h

hh
h

h

h h

h

hh
hhh
h

h

h

fff

f
f

f

f
ff

f
f

f

f
f

f

f
ff

f
f

f
f

f f

f

f

f

f

f

ff
f

f

ff
ff

f

f

f
f

f

f

f
f

f
f f

ff
f

f

f

f

f
ff

f
f

f

f

f

f
f

ff

f

f

f

f

f f
f

f

f

ff
ff

f

f

f

f

f

f
f

ff

f
ff

f

f

f

fff

f

f

f
f

ff

f
f

f

f

ggg

g
g

g

g
gg

g
g

g

g
g

g

g
gg

g
g

g
g

g g

g g

g

g

g

g

gg
g

g

gg
gg

g

g

g
g

g

g

g
g

g
gg

gg
g

g

g

g

g
gg

g
g

g

g

g

g
g

gg

g

g

g

g

g g
g

g

g

gg
gg

g

g

g

g

g

g
g

gg

g
gg

g

g

g

ggg

g

g
g

g

gg

g
g

g

g

a

a a
a

aa
a

a

a

a
a

a

a

a

dd

d

d
d

dd

d

d

dd

d
d

d

d
d

d

d

d

ee

e

e

e
e

e

e

e

e
e

hh

ff

f

f f

f

f

a
a

a

ad

b

b

a a

acc

c

88

8
8

d

d

d
d

d
de

f

a
a

a
a

a

a

d

d

d

d

d
d

e

e
e

e
e

e

e

e

e

f

a aa

a

a

a
a

a
a

a

a

a

a

a

a
aa

aa

a a

a a

a

a

aa

aa

a
a

a
a

a
a

a

a

a

a

a
a a

a

a

a
a

a

a

a

a

a

a
a

a

aa
a

a

a
a

a
a

a
a

a

a

a

a

a
a

a
a

a

a

a
a a

a

a aa

a

a

a
a

a

a

a
a

aa

a
a

a

a

d dd

d

d

d
d

d
d

d

d

d
d

ddd

d

d

d

d

dd

d
d

d d

d

d

d

d

d d

dd

d

d
d

d

d

d

d

d

d
d

dd
d

d

d
d

d

d
d

d

d

d

dd
d

d

d

d

d
d d

d

d d

d

d

d

d

d
d

d

d

d
d

dd

d
d

d
d

e ee

e

e

e
e

e
e

e

e

e

e

e
e

ee

e

e

e

e

e

e
e

ee

e
e

e
e
e

e

e

e

e

e

e e

ee

e

e
e

e

e

e

e

e

e
e

e

ee
e

e
ee

e

e
e

e

e
e

e

e

e

ee
e

e

e

e

e
e e

e

e e
e

e

e

e

e

e
e

e

e

e
e

ee

e
e

e
e

h h

h

h

h
h

h
h

h

h

h

h

h
h

h

h h

h h

h

h

h

hh

h
h

h
h

h
h

h
h

h

hh
h

h

h
h

h

h

h

h

h

hh
h

h

h
h

h
h

h

hh

h
h

h
h

h

h

h h

h
h

h

h

h
h

p pp

p

p

p
p

p
p

p

p

p

p

p
p

pp

p
p

p p

p p

p

p

pp

pp

p
p

p
p

p
p

p

p

p

p

p

p

p p

pp

p

p
p

p

p

p

p

p

p
p

p

pp
p

p

p
p

p
p

p

p

p
p

p

p

p

p
p

p
p

p

p

p

p

p p
p

p pp

p

p

p

p

p
p

p

p

p
p

pp

p
p

p
p

f ff

f

f

f
ff

f
f

f

f

f

f

f
f

ff f

f
f

f f

f f

f

f

ff

ff

f
f

f
f

f
f

f

f

f

f

f

f

f f

ff

f

f
f

f

f

f

f

f

f
f

f

f f
f

f

f

f
f

f

f

f

f
f

f

f

f

f
f

f
f

ff

f

f

f

f f
f

f ff

f

f

f

f

f
f

f

f

f
f

ff

f
f

f
f

g gg

g

g

g
g

g
g

g

g

g

g

g
g

gg

g
g

g g

g
g

g

g

gg

gg

g
g

g
g

g
g

g

g

g

g

g

g

g g

gg

g

g
g

g

g

g

g

g

g
g

g

gg
g

g

g

g
g

g

g

g

g
g

g

g

g

g
g

g
g

g

g

g

g

g g
g

g
gg

g

g

g

g

g
g

g

g

g
g

gg

g
g

g
g

k

k

k
k

k
k

k

k k
k

kkk

kk

k k

k
k

kk

k
k

k
k

k
k

k

k

k

k

kk

k
k

k

k
k

k
k

k

k

k

k

k

kk
k

k

k

k
k

k

k

k
k

k

k

k
k

k
k

k

k

k

k k
k

k
kk

k

k

k

k
k

k

k

kkk

k
k

k
k

+jj

i+ji+j
j

i+j

i+j +j
i+j

i+ji+j

i+j

i+j

i+jj

j

i+j

i+j
i+ji+j

i+j

i+j

i+j
i+j

i+j

i+j
i+j

i+j
i+j

i+j

i+j

i+j

i+j
i+j

i+j

i+j

i+j
i+j

i+j

i+j j

i+j

i+j
i+j

i+j

i+j

i+j

j

i+j

i+j
i+j

i+j
i+j

i+j

i+j

i+j

i+j
i+j

i+j

i+j

i+ji+ji+j

i+j
i+j

i+j
i+j

n+on+on+o

n+on+o

n+o

n+o
n+on+o

n+o
n+o

n+o

n+o

n+o

n+o

n+o

n+o
n+on+on+o

n+on+o

n+on+o

n+o
n+o

n+o

n+o

n+on+o

n+on+o

n+o
n+o

n+o
n+o

n+o
n+o

n+o

n+o

n+o

n+o

n+o

n+o

n+on+o

n+on+o

n+o

n+o
n+o

n+o

n+o

n+o

n+o

n+o

n+o
n+o

n+o

n+on+o
n+o

n+o

n+o
n+o

n+on+o
n+o

n+o
n+o

n+o

n+o
n+o

n+o

n+o

n+o

n+o
n+o

n+o
n+o

n+on+on+o

n+o

n+o

n+o
n+on+o

n+o

n+on+on+o

n+o

n+o

n+o

n+o

n+o
n+o

n+o

n+o

n+o
n+o

n+on+o

n+o
n+o

n+o

n+o

a

a

aa

aa

d

d

d

dd

e

e

ee

ee

h

h

hh

hh

p

p

pp

ppp

f

f

ff

g

g

gg

ggg
k

k

k
kk

i+j

i+j

i+j

i+j

i+j

i+j

i+j
i+ji+ji+jf

f

mm
gg

d

a

e

e

aaddeeffgg

aaddeegg

d

8

a

d
d d

d

e

e
e

ec
b

bbc
c88ddee
gg

 193 



Chapter 6 – Zooplankton production 
Despite a greater variability being accounted for multiple regression analyses, the 

objective of an easy way of predicting production is not fully accomplished, because 

parallel measurements of chlorophyll, temperature and salinity are still required. However, 

when production was regressed with only the total abundance values of specific 

components, significant relationships were still found (Figure 60). Overall, total abundance 

numbers still accounted for more than 89% of the variability of the production estimates 

(Table 39) and it is assumed that it could be used to predict the production of these groups, 

based on total numbers alone, when temperature, salinity and chlorophyll values are not 

available. Since this would be the simplest way of predicting production, the values needed 

to estimate the standard error of any value predicted by the simple linear regressions can be 

calculated by the equations:  

( ) ( )










 −
++=

∑ 2

2
2

.1ˆ
11

x
XX

n
ss i

XYYi
                                              (12) 

95 or 99% confidence interval = ( )
iYi st ˆ*ˆ ±Y             (13) 

The definitions can be seen in Zar (1999) and on Table 40. The set of values needed 

to complete equations 12 and 13 can be seen on Table 40. 

 
Table 40. Values needed to calculate the standard errors of predicted values of the linear regression between 
production and the total number of organisms of a particular species/stage shown on Table 39.   

Equation 2
.XYs  n X  ∑ 2x  t 0.05(2) t 0.01(2) 

r75 0.0538 864 2.9800 309.2964 1.963 2.582 
r77 0.0345 1070 2.1260 782.7556 1.962 2.581 
r79 0.0373 1070 1.9178 765.6055 1.962 2.581 
r81 0.0365 1080 2.8921 477.3982 1.962 2.581 
r83 0.0368 1080 2.8188 463.2485 1.962 2.581 
r85 0.0365 1080 2.9324 484.8741 1.962 2.581 
r87 0.0873 664 1.8471 872.4360 1.963 2.583 
r89 0.0596 656 2.1021 1377.192 1.963 2.583 
r91 0.0534 648 3.2141 332.7414 1.963 2.583 
r93 0.0454 648 3.4825 254.3036 1.963 2.583 
r95 0.0422 1296 2.3074 741.9449 1.962 2.581 
r97 0.0868 738 1.8945 920.9226 1.963 2.582 
r99 0.0830 804 1.1904 871.3439 1.963 2.582 

r101 0.1271 414 0.8948 519.2434 1.966 2.588 
r103 0.0813 369 0.8928 320.3416 1.967 2.590 
r105 0.0467 972 2.6992 543.5680 1.962 2.581 
r107 0.0442 972 2.7065 540.6889 1.962 2.581 
r109 0.0427 648 3.6181 221.9984 1.963 2.583 

Where: = the sample residual mean square of the population, n = number of observations, 
2

.XYs X  = mean abundance value, 

= sum of squares and t = critical values of the t distribution. ∑ x 2

  

In order to observe the difference of total production calculated by the use of 

multiple and simple linear regressions, the production of each component was calculated 
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Chapter 6 – Zooplankton production 
with some of the equations presented in Table 39. These results can be seen in Table 41, 

together with the difference observed by the use of these equations when compared with 

the averaged production value presented for each organism in Chapters 4 and 5. 
Table 41. Annual production estimates (in mg C m-3yr-1) of each component obtained using the respective 
equations summarized in Table 39 (equation number in parentheses). The % difference from the production 
values presented on Tables 26 to 30 in Chapter 4 and Tables 36 and 37 in Chapter 5 are also shown.  

Cracknore 
n Averaged Multiple % Single % 

 production regression difference regression difference 
Copepoda Nauplii 40.53   34.54     (r74) -14.78   32.25        (r75) -20.43 
Acartia (females) 29.77   24.48     (r78) -17.76   25.76        (r79) -13.46 
Acartia (copepodites) 80.52   61.11     (r82) -24.11   59.81        (r83) -25.72 
Acartia (all) 119.56   93.87     (r84) -21.49   96.57        (r85) -19.23 
O.nana 113.26   98.85     (r86) -12.72   90.57        (r87) -20.03 
E.acutifrons 40.25   36.21     (r88) -10.04   31.69        (r89) -21.27 
E.modestus 18.45   18.85     (r94) 2.17   19.51        (r95) 5.75 
B.crenatus 1.85     1.61     (r96) -12.97     1.96        (r97) 5.95 
B.improvisus 4.25     3.80     (r98) -10.59     4.08        (r99) -4.00 
S.balanoides 0.20     0.19   (r100) -5.00     0.23      (r101) 15.00 
V.stroemia 0.01     0.004 (r102) -60.00     0.01      (r103) 0.00 
Cirripedia (Total) 24.76   27.22   (r104) 9.94   23.70      (r105) -4.28 
Total 342.02 405.12   (r108) 18.45 431.21      (r109) 26.08 

Average ---- ---- -12.22 ---- -5.82 
NW.Netley 

n Averaged Multiple % Single % 
 production regression difference regression difference 
Copepoda Nauplii 52.65   44.76     (r74) -14.99   45.10        (r75) -14.34 
Acartia (females) 30.49   24.50     (r78) -19.65   41.47        (r79) 36.01 
Acartia (copepodites) 112.59   87.84     (r82) -21.98   94.44        (r83) -16.12 
Acartia (all) 158.36 134.54     (r84) -15.04 141.06        (r85) -10.92 
O.nana 11.19     9.87     (r86) -11.80     9.10        (r87) -18.68 
E.acutifrons 33.93   29.17     (r88) -14.03   25.90        (r89) -23.67 
E.modestus 21.01   21.31     (r94) 1.43   19.23        (r95) -8.47 
B.crenatus 18.94   17.60     (r96) -7.07   18.05        (r97) -4.70 
B.improvisus 2.14     1.97     (r98) -7.94     1.55        (r99) -27.57 
S.balanoides 2.10     1.53   (r100) -27.14     1.07      (r100) -49.05 
V.stroemia 0.07     0.02   (r102) -71.43     0.06      (r103) -14.29 
Cirripedia (Total) 44.26   45.43   (r104) 2.64   50.75      (r105) 14.66 
Total 300.98 245.49   (r108) -18.44 247.07      (r109) -17.90 

Average ---- ---- -17.34 ---- -11.93 
Calshot 

n Averaged Multiple % Single % 
 production regression difference regression difference 
Copepoda Nauplii 22.59   19.21     (r74) -14.96   16.87       (r75) -25.32 
Acartia (females) 31.63   23.10     (r78) -26.97   20.26       (r79) -35.95 
Acartia (copepodites) 55.92   44.05     (r82) -21.22   40.79       (r83) -27.06 
Acartia (all) 104.73   76.80     (r84) -26.67   70.63       (r85) -32.56 
O.nana 1.33     1.15     (r86) -13.53     0.81       (r87) -39.10 
E.acutifrons 39.54   32.76     (r88) -17.15   31.63       (r89) -20.01 
E.modestus 14.34   14.13     (r94) -1.46   14.02       (r95) -2.23 
B.crenatus 13.69   12.34     (r96) -9.86   11.90       (r97) -13.08 
B.improvisus 0.21     0.17     (r98) -19.05     0.10       (r99) -52.38 
S.balanoides 0.77     0.60   (r100) -22.08     0.57      (r100) -25.97 
V.stroemia 0.38     0.09   (r102) -76.32     0.32      (r103) -15.79 
Cirripedia (Total) 29.39   28.29   (r104) -3.74   31.99      (r105) 8.85 
Total 198.16 167.74   (r108) -15.35 141.82      (r109) -28.43 

Average ---- ---- -20.64 ---- -23.77 
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Chapter 6 – Zooplankton production 
Predicting production of zooplanktonic components using the equations presented 

in Table 39 gave values on average ~14 - 17% lower than the averaged value presented in 

Chapters 4 and 5. The highest differences were noted when multiple regression equation 

r102 (Table 39) was employed to predict the production of V.stroemia nauplii. This was 

more a contrasting exception than the rule, since multiple regression equations usually 

gave the closest results, when compared with the averaged value presented on Chapters 4 

and 5. The differences presented in Table 41 appears to be high, but it should be 

considered that the averaged values established in previous chapters, were arbitrarily 

chosen as the best representation of production estimated by the different methods, 

considering only the end production result. Production calculated by the equations 

presented in Table 39 consider the best fit for all measurements using all equations, and 

probably reflects better the variation found within methods than a simple average.  

There is no single way of saying that these are high or low differences, but 

predicted production with equations presented on Table 39 will clearly be within the range 

of values obtained with different equations (Chapters 4 and 5). However, when the 

multiple regression equations r78/r82 (Table 39) and the simple linear regressions r79/r83 

(Table 39) were applied to a different data set where production was calculated 

independently i.e. the raw data of Acartia from Hirst (1996), a combined production of 

copepodites + females of 18.17 were calculated with the multiple regression and 15.91 mg 

C m-3 yr-1 for the simple liner regressions. These two values are, respectively, +3% and      

-10% different from the 17.62 mg C m-3 yr-1  published for Acartia by Hirst et al., (1999) 

(if equations r80 and r81 (Table 39) are used, values of 17.66 and  15.21 mg C m-3 yr-1 are 

obtained, with each one differing +1% and -14% respectively). 

Since production values of other calanoid species were not measured during this 

investigation, equations r84 and r85 (Table 39) derived for Acartia (copepodites + males 

and females) was also applied to the raw total calanoid data of Hirst (1996), resulting in 

values of 33.94 and 29.81 mg C m-3 yr-1, respectively. Again these values are only  +5% 

and -7% different to the 32.22 mg C m-3 yr-1 presented in Hirst et al., (1999), and 

confirming again that the use of such equations could indeed be used for rapid estimations 

of the secondary production of zooplanktonic components within this estuary, predicting 

values within ±20% or lower from the standard methods.  

 Application of these equations (Table 39) needs to be assessed using more 

independent data collected with similar sampling devices and tested for accuracy when 

applied for other regions. However, it is believed that these methods could be used for 

quick estimations of the production of those components found in the Solent-Southampton 
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Water estuarine system and neighbouring regions, if similar sampling devices were 

employed.   

To be able to make comparisons with previous zooplanktonic investigations, data 

presented here and in previous investigations (Soares, 1958; Zinger, 1989; Geary, 1991; 

Lucas, 1993; Hirst, 1996; Castro-Longoria, 1998) were ‘scaled’ to a common unit where 

all calanoids were assumed to be Acartia, harpacticoids to be E.acutifrons and cyclopoids 

to be O.nana.  

 
Table 42. Yearly/daily production estimates using equation r85 for calanoids, r89 for harpacticoids, r87 for 
cyclopoids, r75 for copepod nauplii and r107 for barnacle larvae on data from the present study and previous 
zooplankton investigations in Southampton Water. Details of equations can be seen on Table 39. All values 
as mg C m-3 d-1/yr-1 

Cracknore Buoy 
Ref Calanoids 

(r85) 
Harpacticoids 

(r89) 
Cyclopoids 

(r87) 
Cirripedia 

(r107) 
C.nauplii 

(r75) 
 

 day year day year day year day year day year o/i 
2 0.73 267.2 0.02 6.9 ---- ---- 0.08 28.7 ---- ---- 37/723 
3 0.25 92.9 <0.01 0.1 ---- ---- 0.02 9.0 ---- ---- 34/622 
4 0.31 111.8 ---- ---- ---- ---- 0.03 9.4 ---- ---- 25/350 
7 0.32 117.3 0.09 33.1 0.25 90.6 0.07 24.1 0.09 32.2 42/562 

NW.Netley Buoy 
2 1.22 444.1 0.03 12.6 ---- ---- 0.14 50.9 ---- ---- 39/736 
3 0.30 110.7 <0.01 0.1 ---- ---- 0.02 8.5 ---- ---- 19/267 
7 0.54 195.4 0.08 27.8 0.02 9.1 0.14 50.8 0.12 45.1 24/503 

Calshot Buoy/Pier 
1 ---- ---- ---- ---- ---- ---- 0.10 38.3 ---- ---- 39/851 
2 0.49 178.3 0.04 15.7 ---- ---- 0.38 139.8 ---- ---- 30/736 
5 0.08 29.8 0.05 16.6 <0.01 0.03 0.02 7.1 0.01 3.9 16/416 
7 0.26 96.1 0.10 34.9 <0.01 0.8 0.09 32.3 0.05 16.9 42/562 

Bourne Gap 
6 0.18 66.2 <0.01 0.3 ---- ---- 0.01 5.3 ---- ---- 14/383 

Bury Buoy 
6 0.40 144.7 <0.01 0.5 0.01 3.0 0.04 16.4 ---- ---- 13/395 

PAD 
2 0.79 289.5 0.02 7.2 ---- ---- 0.12 44.9 ---- ---- 38/736 

Greenland Buoy 
3 0.12 44.7 ---- ---- ---- ---- 0.02 8.5 ---- ---- 33/594 

Hamble Buoy 
2 0.39 140.6 0.04 15.0 ---- ---- 0.22 80.2 ---- ---- 35/723 

o/i = number of observations (o)/ interval days considered (i); ---- = indicates no data 
Ref = references employed (see below). 
1 – 01/1955 – 04/1957 (Soares, 1958) collected with pump and filtered onto ~ 158 µm mesh ;  
2 – 04/1985 – 04/1987 (Zinger, 1989) collected with 100 µm net;  
3 – 03/1990 – 12/1991 (Lucas, 1993) collected with 212 µm net; 
4 – 08/1990 – 08/1991 (Geary, 1991), collected with 150 and 212 µm nets and all copepods = calanoids;  
5 – 12/1992 – 01/1994 (Hirst, 1996) collected with 118 µm net;  
6 – 10/1994 – 04/1996 (Castro-Longoria, 1998) collected with 212 µm net;  
7 – 01/2001 – 07/2002 Present investigation collected with 120 µm net;  
Assuming all calanoids as Acartia spp; all harpacticoids as Euterpina acutifrons and all cyclopoids as 
Oithona nana . Sample sites can be seen on Figure 1 – Chapter 1. 
 

Since some environmental data were not complete /available for all studies, 

production for the three copepod categories/ species were predicted using the simple linear 
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regression equations r85, r89 and r87, respectively. Similarly, copepod nauplii and 

barnacle larvae were predicted with equations r75 and r107, respectively (see Table 39). 

Their use implies that the results generated will be probably underestimations, as the 

calanoid data of Hirst (1999) predicted values usually 7% lower when using the same 

simple linear equation derived for Acartia (i.e. r85 on Table 39). Assuming the 

composition found in this work is representative of other investigations, Acartia, 

Euterpina, Oithona + copepod nauplii together will represent ~96% of the copepod 

component found at this estuary, and thus, the inclusion of abundance of other species as 

one of those genera mentioned above, indicates that some of the production of the 

remaining ~4% are being accounted for.  

From Table 42 only the results of Zinger (1989) and Hirst (1996) can be directly 

compared with those presented in this study because of the same methodologies employed, 

with differences usually attributed to inter annual variation. From the data of Zinger (1989) 

and the present investigation, it is clear that production of calanoids in the inner estuary, 

was greater than that calculated around the mouth, i.e. Calshot, Hamble and Bourne Gap 

(Figure 1 – Chapter 1). This agrees with the concentration of chlorophyll observed during 

the present study (Chapter 1), and with most of the data on chlorophyll concentrations 

available for this estuary (Leakey et al., 1992; Iriarte & Purdie, 1994; Howard et al., 1995), 

where chlorophyll concentrations at the inner estuary stations were usually higher than at 

the mouth region, and so, able to support higher productions. 

Also from the data of Zinger (1989) it is clear that production, and consequently the 

abundance of calanoids, was much higher during 1985-1987 than in subsequent years 

(Figures 61, 62 and 63 - Table 42). However, it is believed that  Zinger (1989) counted all 

copepod nauplii as calanoids, since the finer 100 µm mesh employed by Zinger (1989) was 

anticipated to collect much more copepod nauplii than any other study at this estuary, 

however, no copepod nauplii were presented by her. Supporting this argument is the fact 

that if the copepod nauplii abundances of the present study are added to calanoids, the 

production of calanoids will be predicted to be 255.2, 394.5 and 172.7 mg C m-3 yr-1 for 

Cracknore, NW. Netley and Calshot respectively, which are similar to the values 

calculated from the data of Zinger (1989) presented on Table 42. If we argue the other 

way, i.e. that a similar proportion of copepod nauplii to the present study i.e. 46 – 56% 

were included into Zinger’s (1989) calanoid data, and if this proportion is excluded form 

the raw calanoids data of Zinger (1989), calanoid production in 1985-1987 would now be  

42 – 52 % lower, or 112.19, 195.52, and 93.3 mg C m-3 yr-1  for Cracknore, NW. Netley 

and Calshot respectively. Either way, these results are remarkably close to the ones 
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presented here, i.e. 117.3, 195.4 and 96.1 mg C m-3 yr-1 for Cracknore, NW. Netley and 

Calshot respectively, suggesting that this was probably the case. 

The production of harpacticoids presented here is double that calculated from 

Zinger (1989) and Hirst (1996) data. Barnacle larvae presented similar production values 

only with Zinger’s (1989) data (Table 42). It is clear that a major contribution by barnacles 

was recorded at Calshot in 1985-1987, since production was 72 % higher than that 

calculated in the present investigation using the same equations (Figure 63).    

Generally, when comparing studies conducted in this estuary (Table 42) where 

coarser mesh sizes was used, production values were usually higher in investigations that 

employed finer mesh sizes, with the exception of Hirst (1996) where the lowest calanoid 

production values were derived (Figure 63, Table 42), clearly reflecting the low 

abundances found. It should be stressed however, that these low values presented could, in 

part, be a reflection of a low sampling effort represented by the bigger sampling interval 

(Table 42). Calculation of production with the equations presented on Table 39 are not 

recommended for data collected with different sampling devices (Soares, 1958; Geary, 

1991; Lucas, 1993; Castro-Longoria, 1998), since different methodologies collect different 

proportions of the community giving different results and clearly different interpretations. 

It is possible to generalize that overall, calanoids are the greatest contributors to copepod 

biomass with barnacle larvae, harpacticoids, copepod nauplii and cyclopoids altogether 

potentially equalling that production, when finer meshes are employed. However, 

examined on an individual basis, cyclopoids had comparable production to calanoids 

towards the inner reaches of this estuary in 2001-2002, probably contributing to more 

production alone than all calanoids together at Cracknore if properly sampled and assessed, 

i.e. with  nets of 64 µm mesh or smaller. This sudden occurrence/detection of O.nana in 

the inner estuary has been discussed in Chapters 2 and 5, but it is good to point out again 

that the sudden occurrence of this small species in higher abundances, positively detected 

only after the 1994-1996 investigation carried out by Castro-Longoria (1998), could be the 

first indication of major changes in the copepod community of this estuary. This may be 

associated with increasing eutrophication since this species is recognized as a biological 

indicator of anthropogenic perturbed systems (Richard & Jamet, 2001). Certainly, such 

changes in copepod communities, where smaller, more numerous species start to occur 

where only large species have been previously detected, has been associated with 

increasing eutrophication in other planktonic communities (Zaitsev, 1992; Uye, 1994).   
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Figure 61. Integrated production of cirripedes, calanoids, harpacticoids, copepod nauplii and cyclopoids at 
Cracknore for the last 18 years calculated from the raw data of Zinger (1989), Lucas (1993), Castro-Longoria 
(1998) and the present investigation. Castro-Longoria (1998) data presented for Cracknore are from Bury 
Buoy (BB). 
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Figure 62. Integrated production of cirripedes, calanoids, harpacticoids, copepod nauplii and cyclopoids at 
NW.Netley for the last 18 years calculated from the raw data of Zinger (1989), Lucas (1993) and the present 
investigation.  
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Figure 63. Integrated production of cirripedes, calanoids, harpacticoids, copepod nauplii and cyclopoids at 
Calshot for the last 18 years calculated from the raw data of Zinger (1989), Hirst (1996), Castro-Longoria 
(1998) and the present investigation. Castro-Longoria (1998) data presented for Calshot are from Bourne Gap 
(BG). 
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Previous assumptions that suggested that, within Southampton Water, barnacle 

larvae could contribute as much secondary production as calanoid copepods (Hirst, 1996; 

Hirst et al., 1999) were not observed during the present study, nor in calculations of data 

from previous investigations, with barnacle larvae production generally being 8 to 34% of 

total calanoid production (Table 42). The exception was Zinger’s  (1989) Calshot and 

Hamble data, where barnacle larvae represented the equivalent of 57 – 78 % of calanoid 

production. If calanoid production of Zinger (1989) is corrected for the inclusion of 

copepod nauplii, as discussed above, production of barnacle larvae during the season 1985 

- 1987 will be 2 to 40 % higher than calanoids at Calshot and Hamble. Therefore within 

Southampton Water overall barnacle production is usually lower than that of calanoids, but 

in exceptional year’s /circumstances it can match it or even exceed calanoid production, at 

particular points/ regions of this estuary.       

Since abundance of animals of a particular species/stage at a particular point within 

an estuary is the result of a combination of several factors such as temperature, salinity, 

degree of tidal mixing, flushing rates, type of estuary, input of freshwater, concentration of 

dissolved gases, turbidity, light, nutrients, predators, advection and even a reflection of the 

sampling devices, the equations employed to predict production are clearly subjected to 

bias. However, if we consider that the equations derived in the present study were based on 

common production methods that require the same abundance data and are thus subjected 

to the same problems, we could consider them as an alternative, as good as any other, to 

provide easy and repeatable production estimates for this estuary based only on the total 

numbers of particular groups/species. Care must be taken to only compare production 

estimates based on catches with a 100-120 µm plankton mesh, which will be expected to 

sample the same proportion of the community. 

In light of the results presented here, the model of pelagic carbon flux proposed by 

Hirst et al., (1999) for Calshot were modified, with some parameters added. As with the 

earlier model, previous production estimates of bacteria (Antai, 1989), ciliate (Leakey et 

al., 1992) and size-fractioned primary production (Iriarte & Purdie, 1994) for the estuary 

are included. A hypothetical station is now proposed, where the averaged values of each 

component measured at this estuary will represent this hypothetical station which, in turn, 

represents Southampton Water as a whole. In this example, the primary production was 

13040 and 17650 mg C m-3 yr-1 for Calshot and NW.Netley respectively, resulting in an 

averaged value of 15345 mg C m-3 yr-1 (assuming an averaged depth of ~10 metres), with 

81.7% of this production in the >3µm fraction, 12.1% at the 1-3µm fraction and 6.2% at 

the <1µm fraction (Iriarte & Purdie, 1994). Annual bacterial production, based on the 
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median hourly rates calculated from January 1987 to January 1988 by Antai (1989) was 

26105 and 83746 mg C m-3 yr-1 at Calshot and NW.Netley respectively, giving an overall 

average of 54925 mg C m-3 yr-1.  Leakey et al., (1992) estimated the total potential 

production of heterotrophic ciliates at Calshot and NW.Netley as 2200 and 9200 mg C m-3 

yr-1 from June 1986 to June 1987 giving an overall average of 5700 mg C m-3 yr-1. 

Zooplanktonic production was presented earlier and will be based on the average of each 

group estimated from the results obtained only from the 2001 – 2002 data presented in 

Table 42.  

 To estimate the trophic importance of zooplanktonic components and the potential 

flow of carbon between the different compartments it is necessary to determine the amount 

of carbon required by the different consumers to support their estimated annual production. 

This can be determined from the ratio of ingested material that is incorporated into growth 

divided by the annual production. The gross growth efficiency (GGE) of ciliates ranges 

from 30 – 50 %, while for marine crustaceans it can range from 5 – 76 % with average 

around 33% for copepods (Parsons et al., 1984; Harms, 1987; Omori & Ikeda, 1992; 

Båmstedt et al., 2000 and references therein). Following Nielsen & Kiørboe (1994) and 

Leakey et al., (1992),  a value of 40 % GGE was employed for ciliates while a value of 

33% was considered for copepods and barnacles, with the exception of calanoids where a 

value of 29% was determined from the Scope for Growth (SfG) data of Chinnery (2002) 

for Acartia bifilosa and A.discaudata from this estuary. Based on these growth efficiencies, 

the averaged carbon requirements of ciliates and zooplanktonic organisms was estimated to 

be 14.3 g C m-3
 yr-1

 and 0.88 g C m-3
 yr-1

 or 99% of the total primary production (Figure 64 a).  

 Differences from the previous model Hirst et al., (1999) are evident (Figure 64 b), 

with the values of production of phytoplankton and bacteria much lower in the earlier 

model. Unfortunately Hirst et al., (1999) did not specify how those figures were reached, 

but on a re-evaluation of those values, total primary production should be 13040 mg C m-3 

yr-1 assuming an averaged depth of ~10 metres, with 10810 mg C m-3 yr-1 in the >3µm 

fraction, 1410 mg C m-3 yr-1 at the 1-3µm fraction and 820 mg C m-3 yr-1 at the <1µm 

fraction (Iriarte & Purdie, 1994). Bacteria production derived from the data of Antai (1989) 

at Calshot ranged from 0.06 to 5.9 mg C m-3 hr-1, resulting in an averaged value of 26105 

mg C m-3 yr-1. Corrections apart are also clear that production of calanoids were much 

lower during that particular year.  

From Figure 64 (a) it is clear that averaged annual bacterial production exceeds the 

averaged primary production. While this could indeed occur if unaccounted allochthonous 

inputs are being supplied or even if some material is being recycled, one must bear in mind 
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that these values were obtained during different investigations, by different investigators, 

and in different years. Inter-annual variability will play a major role, and that is why as 

much information as possible should be collected in a single investigation to eliminate the 

bias introduced from data obtained for a variety of purposes. Unless studies of several 

components are carried out at the same time and with the same goals, generalizations based 

on data collected by different methods and for different purposes should be interpreted 

carefully. Also from Figure 64 (a) it is possible to infer that, if the rates are typical for this 

estuary, almost all algae production will be grazed by ciliates and metazoan zooplankton, 

with ciliates the major grazers of primary production of this estuary, grazing ~93% of all 

phytoplankton production if only microalgae is being considered as food resource. It is 

reported, however, that both ciliates and copepods do not graze only on phytoplankton. 

The smaller oligotrich ciliates (10-15 µm) are bacterivorous, while ciliates, bacteria and 

detritus, among several other resources are considered important food resources for 

copepods (Raymont, 1983; Leakey et al., 1992; Kiørboe & Nielsen, 1994; Nielsen & 

Kiørboe, 1994; Mauchline, 1998). Based on that, the question that naturally arises as to 

why mesozooplankton grazing accounts for relatively so little of the pelagic carbon of 

Southampton Water? 
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Figure 64. Diagram of hypothetical carbon flux through the pelagic community of Southampton Water (a) 
determined from the present study compared with (b) showing the pelagic carbon flux at Calshot redraw from 
Hirst et al., (1999). All values in boxes are production estimates; those in ellipses are estimated ingestion 
demands for the production (all values in mg C m-3 yr-1). Solid arrows represent ingestion of carbon; dashed 
arrows represent movement to a non-living organic carbon ‘pool’. Modified from Hirst et al., (1999).  
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From the values presented in Figure 64 (a), mesozooplankton averaged production 

is only 1.6% of primary production, while ciliates accounted for more than 45%, if only the 

production of >3µm algae is being considered. However, the production of ciliates 

determined by Leakey et al., (1992) was predicted using the multiple-regression equation 

of Montagnes et al. (1988), which was later observed by the same authors (Leakey et al., 

1994), in study at Plymouth Sound – UK, to predict near maximal food saturated rates, 

giving values usually 32 – 56 % higher than the in situ rates measured by Leakey et al. 

(1994). The four dominant taxa in this later study by Leakey et al. (1994) grew at an 

averaged rate of 53.4% of those predicted by the Montagnes et al. (1988) equation, so, 

following Hirst (1996) a correction factor of 0.534 were applied to the production rates of 

Leakey et al., (1992), in an attempt to correct for sub-optimal growth. The averaged 

production of ciliates on Southampton Water, after this correction, falls to an average of 

3044 mg C m-3 yr-1 which represents 20% of the total primary production and requiring 

about 61% of total primary production for growth, if only algae are considered as a food 

source.  

This alone, only reduces the gap between the two, however, the production of 

copepods were clearly under-evaluated by the 120 µm mesh, when compared with a 64 µm 

(see previous chapters), and if we assume that mesozooplankton abundances is being 

underestimated by a factor of 5 (as shown on Chapter 5 from the data of (Raymont & 

Carrie, 1964)) due to the use of coarser meshes, mesozooplankton production, represented 

by those components, is expected to be at least 1344 mg C m-3 yr-1 or ~11% of primary 

production of the >3µm algae and requiring ~35% for growth, again if only algae >3µm 

are being considered as food. 

The contribution of detritus as a supply, possibly a major source of nutrition, for 

micro and macrozooplankton is not possible to assess within the present structure of the 

model. While references (Raymont, 1983; Leakey et al., 1992; Kiørboe & Nielsen, 1994; 

Nielsen & Kiørboe, 1994; Mauchline, 1998) identify the potential role of particulate 

detritus as a food resource, particularly in times of low phytoplankton supply, no data was 

available for Southampton Water. The original model presented in Figure 64 (b) (Hirst et 

al., 1999) was not, therefore, able to accommodate this component and the present study is 

not able to introduce the resource into the model. 

If both assumptions are correct, i.e. the production of ciliates were overestimated 

while production of zooplankton were underestimated, this correction increase the 

importance of copepods and barnacle larvae in relation to ciliates as major grazers of 

phytoplankton production. In either case, even allowing for this change between the 

 206 



Chapter 6 – Zooplankton production 
importance of ciliates and zooplankton, almost all phytoplankton primary production is 

consumed. In this sense, assuming only phytoplankton grazing, and ignoring the 

contribution of other known food sources like detritus and bacteria (Raymont, 1983; 

Leakey et al., 1992; Kiørboe & Nielsen, 1994; Nielsen & Kiørboe, 1994; Mauchline, 

1998), mesozooplankton production in Southampton Water is potentially limited by the 

amount of available phytoplankton.   

 Those later values seems more appealing, but are only assumptions, the real 

measured averaged production of mesozooplanktonic organisms during this investigation 

amounted only 1.6% of the primary production and despite of being low, it apparently 

reflects the amount of available phytoplankton. Anyway, this value is also in the lower 

range reported elsewhere (Uye, 1982; Uye et al., 1983; Kimmerer & McKinnon, 1987; 

Kiørboe & Nielsen, 1994; Liang et al., 1996; Liang & Uye, 1996a; 1996b; Liang & Uye, 

1997) when allowing for mesh corrections.   

 

6.4. Chapter Conclusions. 
 

• A new set of regression equations are being proposed for the quick estimation of 
production for copepod nauplii, Acartia spp., Euterpina acutifrons, Oithona nana, 
Elminius modestus, Balanus crenatus, Semibalanus balanoides, Balanus 
improvisus, Verruca stroemia and the combination of them, based  primarily on the 
total number of organisms as well as in conjunction with temperature, salinity and 
chlorophyll a. 

 
• Production values calculated by this new method were usually ±20% of the 

averaged value presented in previous chapters, however, when applied to an 
independent data set, differences of only ±7% were observed. 

 
• When the set of equations was applied to earlier zooplanktonic studies in this 

estuary, the production values obtained from samples collected with similar 
methodologies gave comparable results. 

 
• Of the groups investigated, calanoids were identified as the greatest contributor to 

total production. However, cyclopoids were also identified as a major contributor 
within the inner reaches of this estuary. 

 
• The earlier assumption that barnacle larvae could provide as much secondary 

production as calanoids were not observed during the present investigation, 
however data of one previous investigation indicates that this is possible on a 
localized basis. 

 
• Production of the mesozooplankton components investigated during the present 

study amounted to 1.6% of phytoplankton primary production, but it is estimated 
that this could be as high as 11% if samples are obtained with a finer mesh net, so 
collecting all life stages of the zooplankters. 
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Chapter 7 
General Conclusions and Future Suggestions 

 

 

 
This study was initiated with the primary objective of investigating the contribution 

of meroplankton, exemplified by barnacle larvae, to the pelagic carbon flux of 

Southampton Water, and was later extended to accommodate copepods, especially 

calanoids, for comparison. In order to do this, both elements had to be identified to species 

since rates in zooplankton populations are performed at species level, and any study 

considering fluxes in zooplanktonic communities requires detailed information about the 

spatial-temporal importance of species, abundances and biomasses before any attempt to 

quantify and model any specific processes (Soetaert & Van Rijswijk, 1993). During the 

identification of barnacles and calanoids it became clear that other components were 

relatively abundant and, despite the numerous studies reported in the estuary, several 

mesozooplankton components were completely undescribed. Effort was therefore made to 

identify as many as possible of the other zooplankton species found in zooplankton 

catches. In this respect, the present study identified a total of 144 different taxa within the 

zooplankton of Southampton Water, with 90 taxa being recorded for the first time. This 

doubled the number of recorded taxa creating the beginnings of a database to enable 

changes within the estuary resulting from long-term environmental change or even human 

impact to be detected through zooplankton diversity analysis.  

Most of the new records were among the mero and tycoplanktonic fraction that 

was, compared with the holoplankton, clearly understudied in the estuary. Effort was 

focused on the identification of crustaceans in general, and other important groups of the 

meroplankton, the Polychaeta, Pelecypoda, Gastropoda, Ascidia and Bryozoa remain to be 

described in detail. (Given the relative abundance of these groups they should, logically, 

have been investigated in preference to some of the less abundant crustacean groups, 

however the time required to identify them together with the crustaceans was considered to 

great for completion. Identification of soft-bodied organisms is a task in itself since for 

some, like gastropods, identification is only possible on live and/or unpreserved 

individuals (Fretter & Pilkington, 1970). In an attempt to aid future taxonomic studies on 

those groups, a list of the benthic adults reported in the Solent – Southampton Water 

estuarine system that could be supplying larvae to the water column is provided (Table 13 
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– Chapter 3). This list is probably incomplete,  since it was based on the very few benthic 

surveys carried out in this area (Barnes et al., 1973; Thorp, 1980; Collins & Mallinson, 

2000) and on personal communications).  

 

In terms of individual species, Oithona nana and Euterpina acutifrons were 

recognized as major components of the copepod fraction of this estuary, with both usually 

outnumbering Acartia during the summer-autumn months in parts of the estuary. This is a 

major observation as recent studies (Zinger, 1989; Lucas, 1993; Castro-Longoria, 1998) 

considered the mesozooplankton of Southampton Water to be dominated only by calanoid 

copepods, primarily from the genus Acartia.  The occurrence of these two species in high 

numbers was essentially attributed to the use of finer mesh-size nets (120 µm), since the 

coarser nets, mesh ~220 µm, employed by Lucas (1993) and Castro-Longoria (1998) 

clearly under-sampled these two components. The occurrence of Oithona nana is definitely 

a “new feature” of this estuary that should be investigated further, as it might be related 

with major environmental and/or biological changes in this estuary. Oithonids have been 

proposed at the Marine Zooplankton Colloquium 2 (MZC2) as a potential group for future 

studies (Paffenhöfer et al., 2001) since underestimation by coarser meshes employed in 

earlier studies clearly minimized the important role that this group could have in the 

functioning of ecosystems. In line with this, O.nana production in this estuary was 

comparable to that of Acartia in the inner estuary, and if this species is reassessed with nets 

of 62 µm or smaller, production estimates would be expected to be greater than for 

Acartia. This previously unaccounted production of O.nana together with that of Acartia, 

copepod nauplii and E.acutifrons, when considered with the previously low copepod 

secondary production estimate which was exclusively based on calanoid copepods re-

establishes in Southampton Water the “accepted” role of copepods in pelagic communities  

(Williams, 1984; Huys & Boxshall, 1991; Buskey, 1993; Williams et al., 1994; Banse, 

1995). Future studies at this estuary should clearly re-investigate the seasonal and spatial 

occurrence of both O.nana and E.acutifrons employing meshes of ~62 µm or lower, and 

compare the results with those obtained at this study. Production of both species should 

also be reassessed, ideally measuring in situ growth rates and also establishing/ measuring 

the weight of each stage. Egg production of both species under natural diet 

conditions/concentrations could also provide an alternate way of establishing growth rates. 

Since oithonids have been reported in estuaries where eutrophication and/or a shift in food 

resources has occurred (Uye, 1994) the diet together with other biological/nonbiological 
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parameters should also be investigated to try to explain its “sudden occurence” in this 

estuary.  

     

Acartia were only observed to numerically dominate zooplankton samples 

throughout the estuary during spring, and contrary to previous studies no simplistic species 

succession among the different Acartia species was observed. All species co-existed and 

peaked almost at the same period. Five Acartia species are identified, with A.margalefi and 

A.discaudata found throughout the year while A.tonsa and A.clausi are found during 

summer-autumn and A.bifilosa in winter-spring. A.margalefi and A.tonsa are more 

abundant in the inner reaches, with A.clausi and A.bifilosa at the mouth. A.discaudata is 

found at high abundances throughout the estuary, with no apparent spatial preferences. 

Acartia production has been reassessed and values 5 to 10 times higher than the previous 

estimate (Hirst et al., 1999) were obtained. Studies of Acartia should be continued in order 

to establish which factors, apart from temperature and salinity, control the seasonal/spatial 

distribution of Acartia species in this estuary. Like O.nana and E.acutifrons in situ growth 

rates should be measured for the different Acartia species in order to better evaluate the 

production of this component.  

Attention should also be drawn to the occurrence of Oncaea sp., which, like 

Oithona sp., is a small species that has been consistently under-sampled by coarser mesh-

size nets. The genus Oncaea has also been identified by the MZC2 as a potential species 

for future studies (Paffenhöfer et al., 2001) since it has also been reported in massive 

abundances, especially in the Antartic (Metz, 1998). Despite the fact that Oncaea is 

ubiquitous, except in estuaries (Paffenhöfer et al., 2001), the occurrence of this genera in 

Southampton Water should be closely monitored since, like O.nana, this genera were only 

observed recently at Southampton Water by Castro-Longoria (1998). 

   

Due to the larger mesh size employed in previous studies (Lucas, 1993; Castro-

Longoria, 1998), the numerical importance of Oikopleura sp. was missed. With the finer 

mesh size employed in this investigation, it is clear that it can account for ~5% of the total 

holoplankton. With rapid growth rates and short generation times (Deibel, 1998), 

appendicularians can attain massive number in short periods (Raymont, 1983) and this, 

coupled with the fact that they are efficient grazers (Fenaux, 1976), could suggest a huge 

feeding impact. Because of that, this species should be considered for future studies in 

Southampton Water. Due to their small size and the fact that they have very short 

generation time, probably an investigation with a finer mesh ~64 µm and relatively short 
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sampling interval ~2 to 3 days during April to June would give a clearer picture of the 

status of this species. Short incubations can also be conducted to investigate clearance rates 

in natural food concentrations, since O.dioica at densities of 4578 m-3 were reported to 

have filtered ~37.7% of the water available in the California current (Alldredge, 1981). 

Oikopleura sp. has also been identified at the MZC2 as a potential species for future 

studies (Paffenhöfer et al., 2001), since its high growth rates and massive abundances 

clearly indicate that a potential for a key role in marine ecosystems function. 

  

Ten barnacle species were identified during this study, with five of them being 

seasonally abundant. Elminius modestus larvae occurred all year long and were found in 

every sample, and usually dominated the barnacle larvae composition of the 

mesozooplankton except from February to May, when Balanus crenatus larvae clearly 

exceeded other barnacle larvae. Semibalanus balanoides and Verruca stroemia only 

occured from February to May. At the innermost station (Cracknore) B.improvisus also 

appeared in high numbers from May, and co-dominated with E.modestus from June to 

August. Overall, production of barnacle larvae for this estuary was estimated to be 32.80 

mg C m-3 yr-1, with E.modestus alone accounting for 54.7% of this production, followed by 

B.crenatus (35%), B.improvisus (6.7%), S.balanoides (3.1%) and V.stroemia (0.5%). This 

production value was substantially lower than that of calanoid copepods. In situ growth 

rates should be measured to enable a better estimation of production values. Length and 

width of larval stages of barnacle larvae from this estuary cultured on excess food (~105 

cells ml-1 of Skeletonema costatum or ~ 46 mg m-3 Chl a) should be obtained and 

compared with the values presented here for wild animals on natural diets, as well as to 

those of Harms (1986; 1987) in order to investigate if the species are food limited in the 

field.  

 

In the present study a total of 31 Decapoda taxa belonging to 4 infraorders were 

identified. The brachiurans Carcinus maenas, Liocarcinus spp., Pagurus bernhardus, 

Pisidia longicornis and Macropodia spp. together with the caridean Crangon crangon 

were the most common and abundant larval forms, accounting for 98% of all decapod 

larvae found. With the exception of P.longicornis, the other species are recorded for the 

first time in Southampton Water. This is the first assessment of decapod larvae in this 

estuary where basic temporal and spatial patterns are recognized. Future studies should 

evaluate this meroplankton component employing coarser meshes of ~300 – 500 µm 

concurrently with the 120 µm employed in this investigation, in order to assess the 
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importance of the older/ bigger larval stages. When critical data becomes more available 

for this group, together with the patterns observed during this study, this will allow more 

conclusive remarks about the exploitability of the adult population.  

 

Typically, mero and tycoplanktonic species were more abundant during spring-

summer clearly reflecting the breeding patterns of the adults present in the area. 

Continuous monitoring studies should be undertaken to extend meroplankton knowledge 

further. The Polychaeta, Mollusca, Bryozoa and Ascidia were not identified to species, and 

from the results of this study they clearly constitute a large fraction of the meroplankton 

(~44%) of this estuary.  
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Southampton Water, an estuary on the south coast of England, has been the focus of
a number of studies to determine the seasonality and productivity of its pelagic community.
Although recognized as important in previous studies, the meroplankton component and, in
particular, the cirripedes have been largely ignored, though they rank second to the
Copepoda in abundance. In order to estimate the contribution of barnacle larvae to the
pelagic community, 42 quantitative zooplankton samples were collected from a fixed
station within the estuary during a period of 19 months ( from 12 January 2001 until 16 July
2002). As expected, barnacles were the second most abundant group averaging 13% of the
total population, and accounting for up to 60% on some occasions. Eight barnacle species
were identified: Elminius modestus, Balanus improvisus, Balanus crenatus, Semibalanus
balanoides, Verruca stroemia, Chthamalus stellatus, Sacculina carcini, and Peltogaster
paguri. Of these E. modestus was the most abundant and frequent, dominating the
Cirripedia fraction throughout the year, but being outnumbered by B. crenatus from
February to May. Secondary production was calculated for E. modestus and mean daily
rates of 0.077 mg Cm�3 d�1 (28.08 mg Cm�3 yr�1) were found.
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Introduction

It is widely accepted that in aquatic communities zooplank-

ton play a critical role representing the main link between

phytoplankton and bacterioplankton and the higher trophic

levels (Buskey, 1993; Banse, 1995), and so the measure-

ment of secondary production has been one of the primary

goals of zooplankton research (Runge and Roff, 2000). This

importance is reflected in the numerous reviews concerning

the methodologies of zooplankton secondary production

(Pechen et al., 1971; Winberg et al., 1971; Yablonskaya

et al., 1971; Rigler and Downing, 1984; Kimmerer, 1987;

Omori and Ikeda, 1992).

Copepods generally form the largest component of zoop-

lankton biomass present in estuarine, neritic, and oceanic

areas and, as such, almost all zooplankton production refers

only to the copepod component. Although organisms such

as polychaete larvae, cladocerans, barnacles, and decapod

larvae are also seasonally important in estuarine and neritic

waters (Raymont, 1983), it is surprising that there is a lack

of data on the secondary production of these components.

The zooplankton community structure of Southampton

Water offers a scenario for the evaluation of a non-copepod

component, as all the studies that have monitored the

composition, distribution, and abundance of the micro-

mesozooplankton population of this estuary (Conover,

1957; Soares, 1958; Lance and Raymont, 1964; Raymont

and Carrie, 1964; Zinger, 1989; Williams and Reubold,

1990; Geary, 1991; Lucas, 1993; Lucas and Williams,

1994; Castro-Longoria and Williams, 1996; Hirst, 1996;

Lucas et al., 1997; Castro-Longoria, 1998; Hirst et al.,

1999) have indicated that the larvae of barnacles constitute

the major element within the meroplankton. Hirst et al.

(1999) even suggested that this component could be

expected to account for at least as much secondary pro-

duction as calanoid copepods. Unfortunately, despite the
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number of zooplankton studies, only unpublished MSc dis-

sertations (Soares, 1958; Geary, 1991) are available on

barnacle larvae in this estuary.

Soares (1958) recorded the dominance of three species of

barnacle larvae within the cirripedes at a station towards the

mouth of Southampton Water. The nauplii of both Semi-

balanus balanoides and Balanus crenatus were most

abundant during late February throughout early April, with

the cypris larvae only appearing after late March. On the

other hand, Elminius modestus were the most abundant

barnacle larvae during the summer months being com-

monly found throughout the year, and even during the zoop-

lankton winter minimum. The occasional appearance of

Balanus improvisus, Verruca stroemia, Sacculina carcini,

and Peltogaster paguri nauplii, always in very low numbers,

was also noted (Soares, 1958). Geary (1991) also working in

this region recorded the summer dominance of E. modestus.

Although the meroplankton component is undescribed in

detail, a number of authors have reported the seasonal cycle

of abundance, biomass, and production rates for several

components of the pelagic community of the Southampton

Water and Solent ecosystem on the south coast of the UK

(Figure 1). Ciliates (Leakey et al., 1992), bacteria (Antai,

1989), size-fractionated primary production (Iriarte and

Purdie, 1994), gelatinous predators (Lucas and Williams,

1994; Lucas et al., 1997), and calanoid copepods (Hirst,

1996; Hirst et al., 1999) have been highlighted in particular.

The present study, by giving a first estimation of the

density and secondary production of barnacle larvae, will

add the contribution of this meroplanktonic component to

the body of information on pelagic carbon flux within

Southampton Water.

Material and methods

Southampton Water is a coastal plain estuary (Dyer, 1973)

located on the south coast of England (Figure 1). It is

shallow, depths usually between 1 and 8 m, and is essen-

tially marine in character, with little salinity variation near

the mouth and some stratification based on the state of the

tide and the freshwater inflow at the head of the estuary

(Raymont and Carrie, 1964; Webber, 1980). Water tem-

perature varies with a winter minimum (T!7(C on

DecembereFebruary) and maximum during the summer

(T > 17(C JuneeAugust) (Raymont and Carrie, 1964;

Leakey et al., 1992; Howard et al., 1995; Hirst, 1996). The

tidal features of the Solent area are characterized by

a ‘‘stand’’ of high water (double high water), a period of

2e3 h where little tidal water movement occurs. The

consequence of this is to make the ebb currents faster than

the corresponding flood.

During a 19-month period between 12 January 2001 and

16 July 2002, 42 samples were collected at a fixed site,

marked by the Cracknore shipping buoy (50(53#93$N
01(25#12$W) within Southampton Water (Figure 1). This

site was sampled on a time scale that was comparable to

the breeding and recruitment phases of the target species

and also associated with tide conditions. In barnacle larvae,

moulting occurs at regular intervals and the metanauplius

stage is usually reached within 3e4 weeks (Bassindale,

1936; Pyefinch, 1948, Harms, 1984), followed by the

cyprid stage. Because of this, a bimonthly sampling pro-

gramme was carried out during the barnacle’s non-breeding

season. During the breeding season, a more focused and

intensive sampling programme involving a shorter sample

frequency, three to four times a month, was carried out.

Samples were collected in the extended period of ‘‘slack

water’’ during the high tide from 5-m double oblique tows

using conventional cod end plankton nets of 50-cm mouth

diameter and 120-mm mesh with a calibrated flowmeter

(TSK). Towing times varied according to season, but

sampled on average 39 m�3 in each tow. Samples were

preserved in approximately 4% formaldehydeeseawater

solution buffered with borax until processing. Temperature

and salinity measurements were obtained at 1-m depth inter-

vals. Samples of water were collected with a 5-l Niskin water

bottle from surface, 2- and 8-m depth for Chl a analysis.

Subsamples between 0.39% and 12.1% of the original

sample were taken and all individuals were counted and

identified, with an average counting error of G10%, based

on all specimens counted following a Poisson distribution

(Postel et al., 2000).

The Cirripedia were identified to species level based on

the following: Hoek (1909); Bassindale (1936); Pyefinch

(1948, 1949); Knight-Jones and Waugh (1949); Jones and

Crisp (1954); Crisp (1962); Lang (1980), and Branscomb

and Vedder (1982). They were also sorted to larval stage in

accordance with the definitions presented by Lang (1979)

for the production estimates. The results are expressed as

number of organisms per cubic meter or as percentages

during the period of study.

The fluorimetric technique of Welschmeyer (1994) was

used to determine Chl a concentration. The final Chl a

concentration (mg m�3) for each stratum on each sample

date was obtained by averaging the duplicate results.

Replica error was calculated as a percentage of the mean

averaged for all measurements; during this work replica

error was around G5.7%.

Assuming that all the individuals of the same size group

and/or larval stage are growing exponentially, the second-

ary production of continuously reproducing animals can be

calculated by the ‘‘instantaneous growth’’ approach (Rigler

and Downing, 1984; Kimmerer, 1987; Runge and Roff,

2000), using the equation:

PR ¼
X

BiGi ð1Þ

where PR is instantaneous rate of production by a particular

size class per unit of time (day), Bi is the biomass of the

particular stage, and Gi is the growth rate (d�1) of stage i.
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Figure 1. The study area with detail showing the position of the Cracknore sampling site and sites sampled in previous studies.
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Biomass was calculated as:

Bi ¼ NiWi ð2Þ

where Ni is the abundance of each developmental stage and

Wi is the average weight of each stage.

Growth rate was estimated assuming that development

and growth were linked; by doing so, the growth rate of

a particular stage can be estimated using the duration of

a particular larval stage in the equation:

Gi ¼ ð1=DÞlnðWiþ1=WiÞ ð3Þ

where Wi is the average weight of a stage, Wi+1 is average

weight of a successive stage, and D is the larval develop-

ment (d�1), i.e. the time taken by an average animal to

grow from one stage to another, or from Wi to Wi+1.

Weights of each larval stage of E. modestus were

obtained from Harms (1987) for cultured nauplii at 12, 18,

and 24(C. The average weight of each larval stage (at those
temperatures) was then considered in the production cal-

culations (Table 1).

According to Harms (1984, 1986), the influence of

temperature on the duration of the larval development of

E. modestus can be expressed as a power function:

ln D¼ ln bþm ln t ð4Þ

where t is thermal influence, D is larval development, and

b and m are constants (Table 2).

Using the most recent equations of Harms (1986) it was

possible to calculate the approximate duration of each

larval stage for each sampling day based on field temper-

atures ranging from 6(C to 24(C and salinities around 30.

For the final annual production estimates, the calculated

daily production of a particular larval stage for a sampling

daywas assumed to represent themean daily production over

a time interval between two successive midpoints of the

inter-sample period, and converted to carbon assuming the

average conversion ratio from each larval stage (Table 1).

Total annual production of a population will be equal to the

sum of weight increments for all the stages throughout the

year, excluding the non-feeding nauplius 1 (NI) and cypris.

Due to the oblique nature of the zooplankton sampling,

temperature, salinity, and Chl a data from each stratum of

each station had to be averaged before any analysis could

be made. The Pearson’s product-moment correlation coeff-

icient r was used in order to measure the intensity of the

association between the biotic and abiotic variables. To

stabilize the variance of the data, zooplankton abundances

were log10ðxþ 1Þ transformed and the average Chl a con-

centrations were log10ðxÞ transformed before analysis

(Prepas, 1984).

Results

The temporal variability of the water temperature, salinity,

and Chl a at three depths at the Cracknore buoy site during

the period of study can be seen in Figure 2. Temperature

(Figure 2a) varied according to season with the minimum

temperature recorded during this investigation being 5.4(C
in January 2002, and the maximum 20.4(C in August 2001.

No pattern of temperature difference with depth was

evident, but on some occasions slight differences of tem-

perature at the surface were observed but these never

exceeded 2.3(C. Salinity (Figure 2a) did not have any clear

seasonal variation, but presented some vertical stratification

with minimum values in the surface layer and gradually

increasing with depth. The minimum recorded was 11.7 and

the maximum 32.5.

Concentration of Chl a at Cracknore during the 2001e
2002 season is illustrated in Figure 2b. At the beginning of

2001, Chl a was low, !2 mgm�3, increasing to an average

of 14 mgm�3 from May through August 2001, with

successive peaks occurring in May (38 mgm�3), JuneeJuly
(31 mgm�3), JulyeAugust (63 mgm�3), and Auguste
September (13 mgm�3). During autumn the concentration

returned to low values of!2 mgm�3 until July 2002, apart

from two minor increases in April (3 mgm�3) and July

(5 mgm�3) of 2002 (Figure 2). Chl a was uniform with

depth during the low concentration period. During May

through September the surface layer usually had higher

concentrations.

After copepods, barnacles were the second most abun-

dant mesozooplankton group at Cracknore during 2001e
2002 (Figure 3). They averaged 13% of the total population

and contributed up to 60% on some occasions.

Table 1. Elminius modestus weights used in the production

calculations. Also shown is the carbon:dry weight ratio for each

larval stage (data from Harms, 1987).

Stage

Dry weight, mg

(average)

Average C as

% of dry weight

I Not considered Not considered

II 0.39e0.41 (0.397) 43.31

III 0.70e0.75 (0.72) 44.17

IV 1.06e1.47 (1.243) 40.40

V 2.33e2.62 (2.467) 39.37

VI 4.27e5.19 (4.617) 44.69

Cypris 4.38e5.81 (4.916) 51.94

Table 2. Constant values needed in the power function to obtain

growth rates of E. modestus in the field with salinities around 30

(data from Harms, 1986).

Stage b m

II to III 158 �1.51

III to IV 176 �1.65

IV to V 147 �1.52

V to VI 235 �1.61

VI to Cypris 433 �1.63
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During this investigation, eight Cirripedia species were

identified, and the temporal density distribution of the most

abundant ones at the Cracknore site can be seen in Figure 4.

E. modestus was the most abundant, occurring in the plank-

ton throughout the year with a frequency of occurrence

(FO) of 100%. Generally, this species had the lowest

densities in winter, with an average of 57 org. m�3 in 2001

and 16 org. m�3 in 2002. In spring, its density starts to

increase with averages of 326 org. m�3 in 2001 and

376 org. m�3 in 2002. Maximum density is reached during

the summereautumn months, with an average of

1053 org. m�3 in 2001. From autumn its density gradually

declined towards the winter values.

The second most abundant species was B. improvisus

(FO ¼ 83%), with a very marked seasonal pattern of

abundance and with a summereautumn average of

339 org. m�3 in 2001. This species was also present in very

low numbers during the winter, with an average of

0.4 org. m�3 in 2001 and 0.5 org. m�3 in 2002, and spring

with averages of 55 org. m�3 in 2001 and 49 org. m�3 in

2002. This species was absent from samples from mid-

autumn to early winter (OctobereFebruary).
Marked seasonality was also shown by B. crenatus

(FO ¼ 71%), which was most abundant during late winter

and early spring, with winterespring averages of

121 org. m�3 in 2001 and 229 org. m�3 in 2002. This species

was very rarely found during the summereautumn months.

S. balanoides (FO ¼ 45%) presents the same pattern of

distribution as B. crenatus, but with much lower densities,

and completely disappears from the plankton from June to
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Figure 2. Temporal variability of (a) temperature, salinity, and (b) Chl a at three depths at Cracknore during 2001e2002.

Figure 3. Total composition of the mesozooplankton at Cracknore during 2001e2002.

589Composition and temporal distribution of cirripede larvae



February. V. stroemia (FO ¼ 24%), P. paguri (FO ¼ 26%),

S. carcini (FO ¼ 86%), and Chthamalus stellatus

(FO ¼ 2%) were present at very low densities, and in Figure

4 are pooled under the heading ‘‘remaining Cirripedia’’.

V. stroemia occurred in the same winterespring period as

S. balanoides, and a maximum density of 41 org. m�3 in

April 2001 and 4 org. m�3 in March 2002 was observed.

C. stellatus was only present in one sample in March 2001.

The parasitic species P. paguri was present sporadically,

with a maximum of 11 org. m�3 detected in October 2001,

and was more frequent during the wintereearly spring of

2001. S. carcini was present throughout the year, with a

maximum density of 106 org. m�3 observed in August 2001.

Figure 5 shows the general seasonal pattern presented by

the different Cirripedia species. At the beginning of the

year, E. modestus generally dominates the composition of

Cirripedia, and is then replaced in dominance by B. crenatus

from February to May, with S. balanoides and some

V. stroemia also occurring. FromMay, B. improvisus begins

to replace B. crenatus and co-dominates along with

E. modestus. From September to January E. modestus is

again the dominant barnacle species at Cracknore. A

Figure 4. Density of the different Cirripedia species present in the zooplankton of Cracknore during 2001e2002.

Figure 5. Temporal variability of the different Cirripedia species present in the zooplankton of Cracknore during 2001e2002.
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remarkable feature is the strong peak of S. carcini during

late autumn, but this is also a reflection of the low total

numbers found.

Within the annual pattern, E. modestus alone contributes

an average of 60% of the total barnacle population, and its

larval stage composition can be seen in Figure 6a. The daily

secondary production of this specieswas estimated (Figure 7)

based on this larval density (Figure 6b). For the 2001e
2002period, productionwasestimatedas 0.077 mg Cm�3 d�1

or 43.15 mg Cm�3 over the whole period, which represents an

average annual production of 28.08 mg Cm�3 yr�1. In 2001

production was calculated as 21.21 mg Cm�3 yr�1.

Based on the seasonal distribution of the different barna-

cle species found, correlations with the environmental vari-

ables measured were made in order to identify any pattern

(Table 3). Within the barnacle species, the correlations con-

firmed the seasonality of occurrence, being positive for those

most abundant during summer (E. modestus, B. improvisus,

and S. carcini) and negative for those peaking during

winterespring (S. balanoides, B. crenatus, and V. stroemia).

Chlorophyll was positively correlated with those species,

with a very marked springesummer occurrence.

Discussion

The temperature and salinity profiles agree with the patterns

reported from other studies at this station (Zinger, 1989;

Lucas, 1993, Hirst, 1996) and neighbouring areas (Raymont

and Carrie, 1964; Castro-Longoria, 1998). Similarly, the

Chl a values measured at Cracknore concur with most

Chl a data reported for this estuary (Williams, 1980; Leakey

et al., 1992; Kifle and Purdie, 1993; Iriarte and Purdie,

1994; Howard et al., 1995), which corresponds to primary

production values of 130e177 g Cm�2 yr�1 (Iriarte and

Purdie, 1994).

Several authors have described the basic spatial and

temporal pattern of the micro-mesozooplankton popula-

tions of Southampton Water. Recently, Hirst (1996) and

others (Zinger, 1989; Lucas, 1993; Castro-Longoria, 1998)

Figure 6. Temporal variability of the larval stages of Elminius modestus present in the zooplankton of Cracknore during 2001e2002.

591Composition and temporal distribution of cirripede larvae



have reported that the zooplankton was primarily dominated

by calanoid copepods, with barnacle nauplii being more

numerous mainly during early spring (FebruaryeMarch)

and summer (JuneeSeptember). This reflects the generally

accepted view that, in estuaries, copepods, mainly from the

genus Acartia, Eurytemora, and Oithona, are dominant

(Jeffries, 1967; Conover, 1979; Miller, 1983; Escaravage

and Soetaert, 1995; Irigoien and Castel, 1995), with mero-

planktonic larvae being only seasonally abundant. In terms

of general community composition the present results agree

with earlier ones, identifying Copepoda as dominant fol-

lowed by Cirripedia, with some seasonal contribution by

other meroplankton (Zinger, 1989; Lucas, 1993; Hirst, 1996;

Castro-Longoria, 1998).

As with most meroplankton, barnacle nauplii usually

have a very short planktonic life, although they can

represent a large proportion of the zooplankton on a sea-

sonal time scale. In terms of species composition, only

Soares (1958), Raymont and Carrie (1964), and Geary

(1991) have studied cirripede larvae within Southampton

Water. Soares (1958) described a station at the mouth of

Southampton Water, with the nauplii of both S. balanoides

and B. crenatus being the most abundant forms during

spring and those of E. modestus during the summer;

Raymont and Carrie (1964) offered a very general picture of

the distribution of the dominant species over the entire

estuary. Geary’s (1991) results from Cracknore should be

compared cautiously with the present study, since only

summereautumn samples were available, and all individ-

uals found in the summer were assumed to be E. modestus.

In terms of total Cirripedia density, the values reported

here concur with those presented by Zinger (1989) for the

same station. However, Zinger (1989) found that barnacles

and calanoids represent on average 30.2% and 35.4% of the

total zooplankton composition, whereas in the present study

barnacles and calanoids represented on average only 13.6%

and 17.5%, respectively, of the total zooplankton. This

difference is mainly because of the large number of cyclo-

poids recorded in the present study and due to the fact that

Zinger (1989) did not include copepod nauplii in the data.

The species recorded at Cracknore are the same and show

the same seasonal pattern as in the study of Soares (1958),

although densities of S. balanoides and B. crenatus were

higher compared with the present study. In contrast,

E. modestus and B. improvisus occurred in higher densities

in this survey. These differences could, in part, be due to the

different location. Raymont and Carrie (1964) reported that

higher densities of both S. balanoides and B. crenatus were

commonly found at Calshot in the spring when compared to

Marchwood (Figure 1), with the opposite occurring with

Total production = 43.15 mg Cm-3 (0.077 mg Cm-3d-1 or 28.08 mg Cm-3y-1)

Figure 7. Seasonal production of the larval stages of Elminius modestus present in the zooplankton of Cracknore during 2001e2002.

Table 3. Pearson’s product-moment correlation of biotic and

abiotic parameters from data collected at Cracknore (marked

correlations * are significant at p!0:05 and ** at p!0:01).

T(C Salinity Chl a

Temperature 1.00

Salinity 0.58** 1.00

Chlorophyll a 0.77** 0.38* 1.00

E. modestus (total) 0.79** 0.41** 0.61**

B. crenatus (total) �0.48** �0.16 �0.27

B. improvisus (total) 0.86** 0.46** 0.78**

S. balanoides (total) �0.48** �0.25 �0.22

V. stroemia (total) �0.39** �0.32* �0.23

P. paguri (total) �0.09 �0.06 �0.17

S. carcini (total) 0.69** 0.48** 0.49**

C. stellatus (total) �0.17 �0.19 �0.11
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E. modestus during the summer. Supporting this is the idea

that both E. modestus and B. improvisus could be more

salinity tolerant than the other two, as they are common

inhabitants of brackish water regions in several British

estuaries (Jones andCrisp, 1954).P. paguri and S. carcini are

nauplii of parasitic forms that infect hermit crabs and crabs,

respectively, and their occurrence is linked with the presence

of the infected benthic host organism within the estuary.

Laboratory-defined growth rates for field production

estimates are commonly used for assessments of the

secondary production of species with continuous reproduc-

tion (Landry, 1978; Durbin and Durbin, 1981; McLaren and

Corkett, 1981; McLaren et al., 1989; Huntley and Lopez,

1992; Escaravage and Soetaert, 1995; Irigoien and Castel,

1995). The power function utilized during this study takes

into account variation in temperatures (Harms, 1984, 1986),

but does not account for food concentration, since it was

developed under optimal food conditions. The daily pro-

duction value of 0.077 mg Cm�3 d�1 estimated during this

investigation therefore represents potential production, as-

suming no food limitation.

As a first figure, the averaged value of 28.08 mg Cm�3

yr�1 reported here for E. modestus gives an indication of

the lowest potential production of barnacles at Cracknore,

since it does not include the production values of the

remaining barnacle species present. So, accepting that

E. modestus grossly averages 60% of the barnacles at this

station, the remaining 40% could probably contribute an

additional 20e30 mg Cm�3 yr�1, or more, considering that

E. modestus has the smallest larvae.

Previous zooplankton production studies within this

estuary suggested that barnacles might contribute as much

secondary production as calanoid copepods (Hirst, 1996;

Hirst et al., 1999), and the present results could be taken to

corroborate this assumption. However, the published value

of 32.2 mg Cm�3 yr�1 (36.2 mg Cm�3 yr�1 assuming C

as 45% of DW; Table 4) for calanoids at Calshot

(1993e1994) (Hirst et al., 1999) is not directly comparable

Table 4. Production estimates of estuarine copepods and cirripedes.

Species ( groups), region Daily production Interval (days) wDepth (m) Source

Acartia clausi,

Jakles Lagoon, Washington, USA

22e27 mg Cm�2 d�1 365 3 Landry, 1978

7.3e9 mg Cm�3 d�1 365 3

Acartia hudsonica,

Narragansett Bay, Rhode Island, USA

7.52e12.77 mg Cm�3 d�1 120 6 Durbin and

Durbin, 1981(2.47e4.19 mg Cm�3 d�1)* (365)* 6

Acartia tonsa,

Narragansett Bay, Rhode Island, USA

18.98e22.91 mg Cm�3 d�1 103 6 Durbin and

Durbin, 1981(5.35e6.46 mg Cm�3 d�1)* (365)* 6

Acartia tranterti,

Westernport Bay, Australia

0.4 mg Cm�3 d�1 365 5 Kimmerer and

McKinnon, 1987

Eurytemora affinis,

Westerschelde, The Netherlands

2.23 mg Cm�3 d�1 365 d Escaravage and

Soetaert, 1993, 1995

Acartia tonsa,

Westerschelde, The Netherlands

1.7 mg Cm�3 d�1 365 d Escaravage and

Soetaert, 1995

Acartia spp. (three species),

Malaga Harbour, Spain

13.1 mg Cm�3 d�1 139 7 Guerrero and

Rodrı́guez, 1997(4.99 mg Cm�3 d�1)* (365)* 7

Calanoids, Cracknore,

Southampton Water, UK

1.07 mg Cm�3 d�1 365 5 Hirst, 1996

Calanoids, NW Netley,

Southampton Water, UK

1.62 mg Cm�3 d�1 365 5 Hirst, 1996

Calanoids, Calshot,

Southampton Water, UK

0.813 mg Cm�3 d�1 365 5 Hirst, 1996

Calanoids, Calshot,

Southampton Water, UK

0.099 mg Cm�3 d�1 365 5 Hirst et al., 1999

Elminius modestus,

Cracknore, Southampton Water, UK

0.077 mg Cm�3 d�1 365 5 Present study

Dry weight values were converted to carbon using a conversion factor of 45% (original values obtained using a conversion value of 40%
where re-calculated and standardized at 45%).
Values in parentheses ( )* are calculated daily rates assuming that there was no production after the examined period.
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with the present study. This is because Calshot usually has

significantly lower zooplankton densities compared with

those of the inner stations (e.g. Cracknore), as well as

a different community (Raymont and Carrie, 1964; Zinger,

1989). The current zooplankton composition and density

values of barnacles and calanoids at Cracknore approach

those recorded by Zinger (1989) for the same location

(Figure 1). Comparing the averaged calanoid copepod

production value of 389.1 mg Cm�3 yr�1 (1985e1986)
(Table 4) estimated from the data of Zinger (1989) by

Hirst (1996), the current production of E. modestus

represents only 7% of the calanoid production. However,

if we add the production of the remaining barnacle species

we could expect values approaching to 12e15% of the

production of calanoids.

Looking at the overall value of cirripede production

within Southampton Water, the values of 0.077 mg Cm�3

d�1 in the current study are low compared with the

published literature for calanoids in other European estu-

aries (Table 4). Escaravage and Soetaert (1993, 1995)

reported production rates around 2.23 mg Cm�3 d�1 for

Eurytemora affinis and 1.7 mg Cm�3 d�1 for Acartia tonsa

in the Westerschelde, The Netherlands (assuming C as 45%

of DW), while Guerrero and Rodrı́guez (1997) reported

values of 4.99 mg Cm�3 d�1 for three different species of

Acartia in Malaga Harbour, Spain (assuming C as 45% of

DW and that no production occurred after the study period).

Hirst (1996) calculated the production of calanoids from the

data of Zinger (1989) for Southampton Water and it ranged

from 0.81 to 1.62 mg Cm�3 d�1. We can also speculate

that the high numbers of cyclopoids found in the upper part

of this estuary (Muxagata et al., unpubl.) would also

significantly increase estimated copepod production, and

thus the zooplankton production of Southampton Water as

a whole. In conclusion, within the main body of South-

ampton Water, meroplankton production using the pro-

duction of E. modestus as an example is substantially lower

than that of total calanoid copepods.
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Appendix II – Sampling dates, showing the data collected at each station (where, Zoo = 
Zooplankton samples, T-S = temperature and salinity; O2 = Oxygen; Chl-a = Chlorophyll-
a; x = data collected; - = data not collected).  

 Cracknore Calshot NW – Netley
Date Zoo T-S O2  Chl-a Zoo T-S O2 Chl-a Zoo T-S O2  Chl-a 
12/01/01 x x x x x x x x - - - - 
30/01/01 x x x x x x x x - - - - 
12/02/01 x x - x x x - x - - - - 
19/02/01 x x x x x x x x - - - - 
02/03/01 x x x x x x x x x x x x 
16/03/01 x x x x x x x x - - - - 
23/03/01 x x x x x x x x - - - - 
04/04/01 x x x x x x x x - - - - 
10/04/01 x x x x x x x x x x x x 
19/04/01 x x x x x x x x - - - - 
27/04/01 x x x x x x x x - - - - 
04/05/01 x x x x x x x x x x x x 
18/05/01 x x x x x x x x - x x x 
07/06/01 x x x x x x x x x x x x 
11/06/01 x x x x x x x x - - - - 
22/06/01 x x x x x x x x - - - - 
03/07/01 x x x x x x x x - - - - 
19/07/01 x x x x x x x x x x x x 
24/07/01 x x x x x x x x - - - - 
02/08/01 x x x x x x x x x x x x 
20/08/01 x x x x x x x x - - - - 
31/08/01 x x x x x x x x - - - - 
17/09/01 x x x x x x x x x x x x 
28/09/01 x x x x x x x x - - - - 
17/10/01 x x x x x x x x x x x x 
31/10/01 x x x x x x x x - - - - 
21/11/01 x x x x x x x x x x x x 
14/12/01 x x x x x x x x x x x x 
11/01/02 x x x x x x x x x x x x 
15/02/02 x x x x x x x x x x x x 
14/03/02 x x x x x x x x x x x x 
21/03/02 x x x x x x x x x x x x 
28/03/02 x x x x x x x x x x x x 
09/04/02 x x x x x x x x x x x x 
25/04/02 x x x x x x x x x x x x 
10/05/02 x x x x x x x x x x - x 
16/05/02 x x x x x x x x x x x x 
24/05/02 x x x x x x x x x x x x 
30/05/02 x x x x x x x x x x x x 
07/06/02 x x x x x x x x x x x x 
13/06/02 x x x x x x x x x x x x 
16/0702 x x x x x x x x x x x x 
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Appendix III a – Zooplankton data at Cracknore, showing the sampling dates, aliquot size, 
volume filtered, sampling time (British summer time corrected), organisms density per m3 
(only showing by species the most abundant), total density and counting errors based on 
total density of raw data.  

Date 
Aliquot 
size (%) 

Volume 
Filtered 

Samp. 
Time 

Acartia 
spp. 

Other 
Calanoida O.nana Other 

Cyclop E acutifrons Other 
harpact. 

Remaining 
Copepoda 

Copepoda 
Naupllii 

12/01/01 3.125 82.408 13:35 126.98 4.30 1318.71 0.42 0.39 2.00 0.17 66.40

30/01/01 6.250 73.631 15:55 7.17 0.43 41.72 0.22 0.00 3.04 0.22 30.64

12/02/01 6.250 93.514 11:57 78.53 13.35 295.31 1.37 0.00 13.10 0.51 249.80

19/02/01 3.125 79.994 12:07 100.41 13.21 80.81 0.05 0.00 2.43 0.04 120.81

02/03/01 3.125 86.754 13:46 239.02 9.64 362.59 0.00 0.00 1.12 0.37 695.30

16/03/01 3.125 40.279 12:42 130.29 19.14 139.03 0.00 0.00 1.66 0.07 181.16

23/03/01 3.125 50.982 10:31 330.78 49.68 345.85 1.88 0.00 12.02 0.63 299.40

04/04/01 3.125 6.197 10:24 1791.91 249.32 113.61 10.33 0.00 72.30 10.33 1709.29

10/04/01 1.563 35.490 12:40 2757.25 128.46 61.31 0.00 0.00 23.50 1.83 1718.55

19/04/01 1.563 34.364 09:44 1147.26 39.37 20.49 0.00 0.03 1.86 0.12 4223.99

27/04/01 12.100 44.504 14:05 19.87 11.35 0.56 0.37 0.02 2.79 0.02 155.62

04/05/01 1.563 38.589 10:02 543.99 61.88 11.61 0.03 1.66 29.85 0.16 3826.19

18/05/01 3.125 6.760 10:34 5296.98 222.78 0.00 0.30 56.80 123.08 0.59 3521.85

07/06/01 1.563 23.660 12:53 454.43 97.38 0.00 2.70 197.46 32.46 0.00 1893.47

11/06/01 1.563 19.154 13:59 1236.32 290.70 6.68 0.00 842.04 30.07 3.39 2890.32

22/06/01 1.563 6.197 12:08 454.43 73.26 0.00 0.00 640.34 51.64 31.15 1218.71

03/07/01 3.125 6.197 09:32 108.77 10.49 0.00 0.00 1022.47 108.44 0.00 258.20

19/07/01 1.563 32.674 10:17 352.58 17.66 82.27 0.03 1028.35 190.00 0.06 470.10

24/07/01 1.563 23.097 15:35 415.64 8.36 5.54 0.00 169.03 22.17 0.00 1174.87

02/08/01 1.563 4.225 12:29 590.76 227.69 136.33 0.00 11345.67 196.92 15.15 20025.33

20/08/01 0.391 24.918 12:55 12925.28 609.80 36916.06 10.31 9031.23 431.57 51.97 6555.09

31/08/01 0.391 58.964 13:01 2118.86 117.62 14667.00 0.00 1940.84 47.80 4.36 1419.81

17/09/01 0.391 46.904 13:06 5638.44 16.78 23880.04 0.00 2996.60 152.85 21.90 1173.53

28/09/01 0.781 24.918 11:24 3015.40 41.30 17989.39 0.00 482.87 15.41 0.04 2645.50

17/10/01 0.391 59.803 13:23 3056.65 38.65 13635.04 4.28 1339.96 55.65 12.84 406.70

31/10/01 0.391 22.279 12:13 5125.10 231.89 40092.62 0.00 2769.37 22.98 0.04 149.38

21/11/01 0.391 35.178 15:56 1725.16 15.10 15457.89 0.00 87.33 0.00 0.00 36.39

14/12/01 0.781 66.252 12:23 1605.51 23.29 1008.51 0.00 11.59 3.86 0.02 823.04

11/01/02 3.125 58.630 12:16 15.52 1.23 80.23 0.00 0.00 0.56 0.02 52.94

15/02/02 3.125 46.025 15:06 378.32 2.24 9.73 0.00 0.00 0.72 0.02 502.69

14/03/02 3.125 43.386 13:48 182.20 5.44 5.90 0.00 0.00 0.76 1.50 325.26

21/03/02 1.563 45.145 17:05 421.11 7.13 17.01 0.00 0.00 1.42 0.02 576.98

27/03/02 1.563 47.490 09:46 901.57 18.11 6.74 0.00 0.00 5.39 0.11 882.70

09/04/02 1.563 48.956 12:30 145.11 17.18 13.07 0.00 2.61 2.61 0.04 614.43

25/04/02 0.781 27.263 12:20 5108.17 38.62 18.78 0.00 4.70 9.39 0.00 9084.84

10/05/02 0.391 28.142 12:25 5121.70 56.64 245.62 0.00 627.70 45.49 0.00 1919.50

16/05/02 0.781 46.025 15:02 3256.69 14.56 33.37 0.00 41.72 22.25 0.00 2177.62

24/05/02 0.781 28.142 10:23 2324.18 19.40 72.77 0.00 259.25 45.48 0.07 2610.72

30/05/02 1.563 34.299 16:13 1082.29 22.57 39.19 0.00 214.59 33.62 7.46 1615.93

07/06/02 0.781 21.986 11:04 1129.48 105.38 145.55 0.00 5070.80 98.97 5.87 4168.42

13/06/02 1.563 27.556 15:07 966.57 26.38 30.19 0.00 1356.36 20.90 2.32 1066.04

16/07/02 0.391 12.312 16:46 3514.10 499.37 48199.35 0.00 5032.03 166.35 62.38 4283.46
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Appendix III a (cont.) – Zooplankton data of Cracknore.  
Count.error (%)

Date Polycha. Mollusca 
Elminius 
modestus 

Balanus 
improvisus 

Balanus 
crenatus 

Semibalan. 
balanoides

Remain. 
Cirripedia Urochor.

Remain. 
animals 

Total 
organisms lower higher

12/01/01 106.79 4.27 19.96 0.39 0.39 0.00 3.01 1.16 0.13 1655.47 -7.9 8.3

30/01/01 8.26 0.43 67.15 0.00 4.35 0.22 0.22 0.00 0.08 164.14 -13.8 15.2

12/02/01 79.39 2.22 62.79 0.86 8.90 1.71 1.37 0.00 2.17 811.38 -7.6 8.1

19/02/01 60.00 1.60 44.00 0.00 33.60 2.01 0.01 0.00 3.11 462.10 -11.5 12.4

02/03/01 925.46 2.97 40.97 0.03 106.53 1.29 1.49 0.00 9.49 2396.26 -6.8 7.1

16/03/01 351.95 2.38 107.58 0.84 296.36 2.98 6.50 0.00 26.32 1266.27 -10.1 10.8

23/03/01 518.45 7.53 18.95 1.27 8.83 12.38 2.59 0.63 43.78 1654.65 -8.3 8.8

04/04/01 1698.96 15.81 962.28 0.48 713.28 275.63 52.12 20.66 301.61 7997.92 -9.0 9.5

10/04/01 3139.55 9.10 103.58 12.65 51.39 30.99 30.66 27.05 74.95 8170.83 -6.9 7.3

19/04/01 1927.61 13.07 261.76 6.08 227.89 23.34 5.79 44.70 35.74 7979.08 -7.6 8.0

27/04/01 51.07 1.69 14.08 11.67 104.57 1.14 0.02 2.60 1.71 379.16 -10.0 10.7

04/05/01 786.14 51.41 264.74 10.99 189.90 18.66 1.71 1427.98 66.99 7293.88 -7.0 7.3

18/05/01 397.63 449.70 151.77 5.18 53.11 3.25 9.47 2736.06 63.90 13092.45 -8.5 9.0

07/06/01 173.12 916.98 592.85 132.63 0.04 0.00 0.00 73.03 54.90 4621.46 -9.7 10.4

11/06/01 504.55 9158.82 561.36 310.75 10.02 0.00 13.37 93.56 100.14 16052.11 -7.5 7.9

22/06/01 557.71 2478.72 1580.19 1735.11 0.00 0.00 30.98 196.23 193.00 9241.47 -12.9 14.1

03/07/01 278.86 304.68 289.51 418.61 0.00 0.00 15.49 72.30 96.02 2983.83 -14.8 16.5

19/07/01 107.73 144.95 1079.28 176.38 1.96 0.00 3.92 131.24 33.60 3820.10 -10.1 10.8

24/07/01 66.50 102.52 260.47 296.49 2.77 0.00 5.54 108.07 83.60 2721.57 -12.7 13.8

02/08/01 2696.30 4604.92 1608.03 1212.06 0.24 0.00 106.03 3862.68 237.87 46865.96 -8.7 9.3

20/08/01 2486.41 1746.65 4037.85 277.41 0.00 0.00 82.20 4171.42 59.20 79392.48 -6.4 6.7

31/08/01 117.23 447.22 1780.19 134.68 0.00 0.00 13.03 1011.67 5.72 23826.00 -7.3 7.6

17/09/01 27.29 289.29 1020.70 125.65 0.00 0.00 38.21 687.75 25.97 36095.00 -6.6 6.9

28/09/01 30.82 61.64 1145.61 10.27 0.00 0.00 10.27 749.99 1.69 26200.19 -7.5 7.8

17/10/01 68.50 222.61 368.18 0.00 0.00 0.00 21.41 166.96 23.95 19421.36 -7.4 7.8

31/10/01 68.95 68.95 471.14 11.49 0.00 0.00 45.96 632.01 28.14 49718.03 -7.8 8.2

21/11/01 43.67 14.56 7.28 0.00 0.00 0.00 7.28 116.47 22.91 17534.04 -9.4 10.1

14/12/01 32.84 0.00 44.44 0.00 0.00 0.00 11.59 69.55 13.99 3648.24 -10.2 11.0

11/01/02 8.19 0.00 1.64 0.00 0.55 0.02 0.55 0.00 1.38 162.82 -17.3 19.5

15/02/02 47.28 4.17 21.55 0.00 198.15 0.70 0.74 0.00 33.42 1199.73 -10.5 11.3

14/03/02 75.23 16.23 23.60 1.48 879.91 15.49 3.69 0.00 10.97 1547.66 -9.9 10.6

21/03/02 1611.87 9.92 95.05 2.84 616.72 12.76 5.67 1.42 129.05 3508.97 -9.4 10.0

27/03/02 1532.27 1.35 164.43 8.09 442.09 21.63 5.39 0.00 109.56 4099.42 -8.8 9.3

09/04/02 253.61 84.97 54.91 6.54 422.32 44.49 3.94 16.99 32.09 1714.92 -11.3 12.3

25/04/02 516.45 131.46 277.01 4.70 206.58 10.34 0.00 704.25 58.58 16173.86 -8.3 8.8

10/05/02 2674.56 2010.47 1037.08 109.24 81.91 0.00 9.10 454.86 405.64 14799.51 -10.0 10.7

16/05/02 205.80 303.14 164.09 47.30 41.76 0.00 2.78 305.92 33.07 6650.07 -9.4 10.0

24/05/02 168.29 318.38 268.35 18.26 36.49 0.00 4.55 773.21 64.35 6983.76 -10.6 11.4

30/05/02 123.15 138.08 151.46 24.46 28.02 0.00 1.87 87.70 39.21 3609.59 -10.0 10.7

07/06/02 558.89 7283.08 885.42 122.26 17.51 0.00 11.64 751.01 452.15 20806.42 -8.3 8.7

13/06/02 262.45 689.79 657.28 148.64 0.00 0.00 2.32 69.68 75.63 5374.55 -9.2 9.8

16/07/02 519.84 2744.74 9440.25 1767.45 41.59 0.00 83.17 374.28 1578.11 78306.48 -8.1 8.6
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Appendix III b – Zooplankton data at Calshot, showing the sampling dates, aliquot size, 
volume filtered, sampling time (British summer time corrected), organisms density per m3 
(only showing by species the most abundant), total density and counting errors based on 
total density of raw data.  

Date 
Aliquot 
size (%) 

Volume 
Filtered 

Samp. 
Time 

Acartia 
spp. 

Other 
Calanoida O.nana Other 

Cyclop E acutifrons Other 
harpact. 

Remaining 
Copepoda 

Copepoda 
Naupllii 

12/01/01 3.125 137.838 15:37 71.27 9.30 147.88 0.00 0.23 7.44 2.79 75.22

30/01/01 6.250 89.536 14:40 89.17 32.00 12.87 3.93 0.18 17.89 5.92 82.92

12/02/01 3.125 89.571 10:29 67.88 5.00 2.86 2.86 0.00 11.48 0.73 76.10

19/02/01 3.125 78.023 10:50 223.53 4.10 3.28 0.82 0.00 5.75 0.41 250.59

02/03/01 1.563 77.178 14:52 213.12 34.03 45.61 4.98 0.00 8.38 4.15 194.88

16/03/01 1.563 46.757 14:07 636.48 30.20 24.64 5.48 0.00 21.99 2.76 740.51

23/03/01 0.781 37.180 11:42 1886.58 123.96 34.43 0.00 0.00 20.66 0.00 919.19

04/04/01 0.781 56.334 11:36 986.12 27.44 4.54 0.00 0.00 27.27 0.00 495.33

10/04/01 0.781 45.349 13:56 1072.57 28.29 8.47 0.00 0.00 14.11 0.02 680.24

19/04/01 0.781 38.589 10:56 3137.91 56.54 3.32 0.00 0.00 16.61 6.63 1781.24

27/04/01 0.781 43.659 15:18 2275.09 26.64 0.00 0.00 2.93 23.50 0.00 1310.52

04/05/01 0.781 18.309 11:30 3908.12 174.89 0.00 0.00 27.97 62.98 0.00 2509.87

18/05/01 3.125 4.225 11:42 1234.54 1060.58 0.00 0.00 7.57 30.30 0.00 1567.79

07/06/01 3.125 5.070 14:46 549.11 637.67 0.00 0.00 429.19 157.79 0.20 1123.46

11/06/01 3.125 13.238 15:25 74.93 377.16 0.00 0.00 261.06 82.49 4.83 865.36

22/06/01 1.563 19.999 14:15 742.45 419.53 3.20 0.00 953.67 400.08 16.00 1692.92

03/07/01 0.391 48.166 11:11 1770.09 196.71 0.00 0.00 1626.49 350.81 10.67 2189.92

19/07/01 0.391 41.405 12:23 3159.61 154.68 6.18 0.00 2776.24 235.01 12.37 1681.82

24/07/01 0.391 32.110 14:18 2678.96 526.44 23.92 16.01 6171.11 470.41 71.85 2096.90

02/08/01 0.781 28.730 10:51 3114.20 494.60 49.01 8.91 9115.38 271.80 13.40 3684.47

20/08/01 0.391 21.986 14:06 9804.55 1152.97 1234.30 11.69 7685.28 931.55 104.80 5158.45

31/08/01 0.391 42.647 10:51 8236.28 486.42 114.06 0.05 3025.57 228.12 18.03 1200.62

17/09/01 0.391 41.041 11:00 1983.70 437.39 180.90 0.00 3399.74 87.33 37.48 767.28

28/09/01 0.781 30.781 10:06 2482.59 270.72 178.81 4.16 2395.26 149.70 20.86 1467.93

17/10/01 1.563 40.455 11:40 616.99 270.62 175.60 1.58 1430.14 75.94 18.98 188.26

31/10/01 3.125 31.367 10:39 1000.79 107.15 130.58 1.02 1889.37 19.38 5.10 217.30

21/11/01 3.125 34.299 14:37 142.75 81.40 33.59 0.96 224.85 29.86 7.49 32.65

14/12/01 1.563 43.973 10:30 689.88 40.84 30.56 1.46 26.20 11.64 0.00 148.46

11/01/02 3.125 38.403 10:33 81.66 34.24 15.83 0.83 3.33 4.19 0.89 256.65

15/02/02 3.125 51.301 13:06 51.77 12.65 3.12 1.89 2.50 11.23 8.77 106.66

14/03/02 0.781 34.005 11:50 500.63 1.12 0.00 0.00 3.76 11.41 0.00 485.57

21/03/02 0.391 62.148 15:23 395.47 8.75 0.00 0.00 4.12 20.68 28.85 168.90

27/03/02 0.391 31.367 11:26 1428.37 0.29 0.00 0.00 0.00 24.55 8.16 1199.80

09/04/02 0.391 34.005 10:37 2394.12 48.41 0.00 0.03 15.06 120.55 7.56 2973.83

25/04/02 0.781 33.126 10:41 606.65 144.21 0.00 0.00 19.32 11.59 0.00 1066.47

10/05/02 0.781 34.299 10:54 925.55 135.14 0.00 0.06 93.30 78.37 3.73 1477.84

16/05/02 0.781 16.710 13:31 1363.53 483.91 7.66 0.00 229.81 153.21 15.32 1447.79

24/05/02 1.563 16.416 12:15 982.49 589.10 0.00 0.00 413.24 50.86 7.92 2210.47

30/05/02 1.563 30.781 14:36 276.54 262.08 0.00 2.08 632.08 108.12 20.79 642.48

07/06/02 1.563 9.967 09:32 1200.75 745.05 6.42 19.26 4520.46 372.52 25.68 4931.42

13/06/02 0.781 29.022 13:45 317.55 264.63 4.41 0.00 1486.33 92.72 17.64 1477.50

16/07/02 0.781 22.573 14:54 754.23 374.35 158.78 0.00 2239.88 442.31 34.07 3090.47

 

 

 



Appendix III 

 254

Appendix III b (cont.) – Zooplankton data of Calshot.  
Count.error (%)

Date Polycha. Mollusca 
Elminius 
modestus 

Balanus 
improvisus 

Balanus 
crenatus 

Semibalan. 
balanoides

Remain. 
Cirripedia Urochor.

Remain. 
animals 

Total 
organisms lower higher

12/01/01 4.41 6.27 8.36 0.00 0.00 0.00 0.93 0.93 0.36 335.39 -11.7 11.4

30/01/01 10.01 7.51 21.62 0.00 0.36 0.01 4.29 1.61 1.55 291.83 -10.8 11.6

12/02/01 17.51 5.00 26.79 0.36 4.64 0.71 17.45 0.00 2.04 241.41 -14.0 15.5

19/02/01 25.02 4.92 13.53 0.41 6.56 1.23 0.47 0.00 47.02 587.66 -11.2 12.1

02/03/01 98.68 108.63 88.73 0.00 203.17 9.12 82.93 0.00 74.14 1170.53 -11.2 12.1

16/03/01 135.51 169.73 120.45 0.00 606.37 55.24 366.83 2.74 177.60 3096.51 -9.6 10.3

23/03/01 688.53 68.85 61.97 0.00 588.70 58.53 75.74 0.00 126.84 4653.98 -11.4 12.3

04/04/01 86.34 97.70 97.70 0.00 1049.74 245.39 490.79 4.54 85.12 3698.03 -10.6 11.4

10/04/01 228.63 87.50 73.39 0.00 268.17 50.81 307.68 16.94 57.25 2894.05 -12.4 13.5

19/04/01 384.78 89.56 318.46 3.32 928.97 53.18 109.46 238.83 190.60 7319.41 -9.7 10.3

27/04/01 193.50 87.95 208.16 14.66 375.27 41.05 49.84 504.27 103.51 5216.90 -10.3 11.1

04/05/01 517.35 657.18 216.78 6.99 398.50 20.97 49.10 3481.65 79.96 12112.32 -10.5 11.3

18/05/01 143.90 871.00 212.07 15.15 234.79 0.00 7.57 3953.56 342.95 9681.78 -11.6 12.6

07/06/01 88.36 1256.00 372.38 12.62 12.62 0.00 0.00 0.00 92.31 4731.70 -13.7 15.1

11/06/01 50.76 691.32 212.79 9.67 21.75 0.00 2.49 4.83 47.89 2707.33 -12.1 13.1

22/06/01 243.22 652.85 1120.08 35.20 51.20 0.00 6.40 9.60 283.27 6629.67 -9.8 10.5

03/07/01 79.73 696.31 3066.95 74.44 69.20 0.00 5.36 15.95 208.25 10360.89 -9.9 10.6

19/07/01 86.56 692.51 970.75 12.41 12.41 0.00 18.57 519.38 103.69 10442.21 -10.5 11.3

24/07/01 87.70 1897.58 1156.34 23.92 15.98 0.00 39.87 87.70 319.82 15684.50 -9.9 10.6

02/08/01 138.11 1109.35 1643.98 0.07 8.91 0.00 0.00 84.65 61.02 19797.85 -7.7 8.1

20/08/01 128.09 1548.70 4238.55 34.93 0.00 0.00 34.93 1374.03 31.84 33474.68 -8.8 9.4

31/08/01 24.01 1062.55 3872.01 30.02 0.00 0.00 12.01 846.44 5.89 19162.08 -8.5 9.0

17/09/01 18.71 455.38 536.47 0.00 0.00 0.00 0.00 542.71 134.92 8582.02 -10.9 11.8

28/09/01 20.79 1106.14 2603.18 0.00 0.00 0.00 41.58 324.36 38.43 11104.52 -9.0 9.6

17/10/01 7.91 213.57 174.05 0.00 0.00 0.00 20.57 79.10 41.43 3314.74 -9.8 10.5

31/10/01 17.34 117.32 228.52 0.00 0.00 0.00 5.10 144.87 26.43 3910.27 -8.2 8.7

21/11/01 3.73 53.18 35.45 0.00 0.00 0.00 4.66 61.58 4.40 716.56 -13.4 14.7

14/12/01 11.64 10.19 13.10 0.00 0.00 0.00 5.82 49.49 6.37 1045.65 -13.9 15.3

11/01/02 11.67 1.67 21.67 0.00 5.00 0.00 1.67 1.67 3.75 444.71 -15.0 16.6

15/02/02 26.82 11.85 23.08 0.00 819.63 4.99 10.60 0.00 5.17 1100.73 -10.4 11.2

14/03/02 120.45 63.99 97.87 0.00 3504.38 30.11 48.93 0.00 18.67 4886.89 -11.3 12.3

21/03/02 90.63 94.75 74.15 0.00 2578.79 12.36 119.46 0.00 60.57 3657.48 -12.4 13.5

27/03/02 220.37 106.11 89.85 0.00 3860.63 187.72 0.00 0.03 88.79 7214.67 -12.6 13.8

09/04/02 376.43 2747.97 127.99 0.00 11963.11 263.59 60.23 97.87 164.16 21360.90 -8.8 9.3

25/04/02 85.01 405.72 88.93 0.00 1217.17 4.92 7.76 1696.31 76.89 5430.96 -10.8 11.6

10/05/02 41.05 608.30 425.44 0.03 302.29 0.00 3.73 970.30 17.26 5082.39 -11.1 12.0

16/05/02 53.62 1578.02 727.97 0.00 429.10 0.00 7.72 1578.08 48.59 8124.32 -12.1 13.2

24/05/02 66.28 385.95 206.68 0.00 597.27 0.00 27.29 1060.40 213.44 6811.41 -9.6 10.3

30/05/02 43.66 646.64 162.18 2.08 241.19 0.00 6.24 207.92 41.65 3295.72 -10.7 11.6

07/06/02 179.79 1971.28 1264.96 0.00 154.81 0.00 32.11 1207.17 281.93 16913.61 -9.0 9.6

13/06/02 22.05 1204.06 1270.21 0.00 123.53 0.00 17.64 70.57 43.14 6411.98 -10.4 11.2

16/07/02 90.73 674.80 714.49 0.00 11.34 0.00 22.68 130.42 149.43 8887.99 -10.3 11.1
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Appendix III c – Zooplankton data at NW. Netley, showing the sampling dates, aliquot 
size, volume filtered, sampling time (British summer time corrected), organisms density 
per m3 (only showing by species the most abundant), total density and counting errors 
based on total density of raw data.  

Date 
Aliquot 
size (%) 

Volume 
Filtered 

Samp. 
Time 

Acartia 
spp. 

Other 
Calanoida O.nana Other 

Cyclop E acutifrons Other 
harpact. 

Remaining 
Copepoda 

Copepoda 
Naupllii 

12/01/01 - - - - - - - - - - - 

30/01/01 - - - - - - - - - - - 

12/02/01 - - - - - - - - - - - 

19/02/01 - - - - - - - - - - - 

02/03/01 3.125 57.179 16:00 162.30 1.19 3.36 0.56 0.00 1.14 0.00 940.21

16/03/01 - - - - - - - - - - - 

23/03/01 - - - - - - - - - - - 

04/04/01 - - - - - - - - - - - 

10/04/01 0.781 29.857 14:50 2705.19 13.20 0.00 4.29 0.00 4.59 0.00 4132.76

19/04/01 - - - - - - - - - - - 

27/04/01 - - - - - - - - - - - 

04/05/01 0.781 37.744 10:39 1051.30 20.77 0.00 0.00 3.39 6.81 0.05 3343.81

18/05/01 - - - - - - - - - - - 

07/06/01 0.781 13.802 13:37 1307.65 1140.79 0.00 0.00 231.85 64.92 9.27 4924.56

11/06/01 - - - - - - - - - - - 

22/06/01 - - - - - - - - - - - 

03/07/01 - - - - - - - - - - - 

19/07/01 1.563 21.689 11:13 681.69 112.13 0.00 0.00 843.95 29.51 11.90 1696.74

24/07/01 - - - - - - - - - - - 

02/08/01 0.781 10.422 11:47 2394.98 614.39 184.23 0.00 7123.54 49.13 12.28 7737.64

20/08/01 - - - - - - - - - - - 

31/08/01 - - - - - - - - - - - 

17/09/01 0.391 68.011 12:09 3820.81 131.80 3060.41 0.00 2187.08 527.01 15.13 1050.25

28/09/01 - - - - - - - - - - - 

17/10/01 0.391 48.370 12:39 3196.91 360.10 4536.01 5.29 2170.09 121.74 15.90 465.77

31/10/01 - - - - - - - - - - - 

21/11/01 1.563 39.575 15:31 941.19 5.00 1743.31 0.00 163.33 3.23 1.64 608.06

14/12/01 0.391 59.803 11:42 4803.43 81.86 325.36 0.00 25.69 8.56 4.28 2097.70

11/01/02 3.125 60.096 11:55 70.99 1.95 21.30 0.02 1.60 1.06 0.00 336.00

15/02/02 0.391 41.041 14:18 262.07 13.06 6.24 0.00 0.12 6.26 0.10 449.14

14/03/02 0.391 58.630 13:02 838.39 8.92 30.57 4.37 0.00 21.83 4.37 751.06

21/03/02 3.125 25.211 16:31 1477.45 3.97 5.08 2.54 2.54 5.12 0.00 930.39

27/03/02 3.125 61.855 10:28 117.44 3.14 0.52 0.00 0.02 0.52 0.02 231.25

09/04/02 0.391 32.540 11:35 2368.21 17.64 0.00 0.00 0.00 7.87 0.00 3477.57

25/04/02 0.391 28.436 11:36 10993.12 108.57 0.00 9.00 18.01 18.01 0.00 4951.86

10/05/02 0.391 22.866 11:45 27330.67 146.87 11.20 0.00 44.79 33.59 11.20 15585.53

16/05/02 0.391 32.833 14:25 11072.57 33.44 15.60 0.00 77.98 31.22 7.80 4132.71

24/05/02 0.391 30.781 11:12 11070.46 242.41 33.27 8.32 216.25 8.35 16.67 4083.84

30/05/02 0.781 26.090 15:27 4390.89 84.82 34.34 0.00 421.92 73.67 9.81 4768.65

07/06/02 0.391 27.556 10:17 2991.65 269.43 37.16 0.00 3158.84 167.45 9.29 9745.96

13/06/02 0.781 36.644 14:36 702.11 66.83 0.00 0.00 744.03 48.93 3.49 1086.35

16/07/02 0.781 18.468 15:55 1393.08 243.12 1282.18 20.79 1157.43 138.61 0.05 2571.30
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Appendix III c (cont.) – Zooplankton data of NW. Netley.  
Count.error (%)

Date Polycha. Mollusca 
Elminius 
modestus 

Balanus 
improvisus 

Balanus 
crenatus 

Semibalan. 
balanoides

Remain. 
Cirripedia Urochor.

Remain. 
animals 

Total 
organisms lower higher

12/01/01 - - - - - - - - - - - - 

30/01/01 - - - - - - - - - - - - 

12/02/01 - - - - - - - - - - - - 

19/02/01 - - - - - - - - - - - - 

02/03/01 198.11 25.18 19.64 0.00 40.29 2.27 4.48 0.00 16.12 1414.86 -9.2 9.8

16/03/01 - - - - - - - - - - - - 

23/03/01 - - - - - - - - - - - - 

04/04/01 - - - - - - - - - - - - 

10/04/01 325.82 124.33 85.78 0.00 222.93 171.79 60.02 38.58 117.06 8006.33 -10.2 10.9

19/04/01 - - - - - - - - - - - - 

27/04/01 - - - - - - - - - - - - 

04/05/01 108.52 27.13 20.43 3.44 106.03 10.20 0.00 3031.81 64.62 7798.32 -9.5 10.1

18/05/01 - - - - - - - - - - - - 

07/06/01 222.58 890.32 994.51 121.22 0.14 0.07 0.00 92.74 199.47 10200.10 -11.5 12.5

11/06/01 - - - - - - - - - - - - 

22/06/01 - - - - - - - - - - - - 

03/07/01 - - - - - - - - - - - - 

19/07/01 182.95 224.27 2304.62 301.08 11.80 0.00 23.61 153.44 89.17 6666.87 -9.7 10.4

24/07/01 - - - - - - - - - - - - 

02/08/01 1166.79 3574.05 3414.39 503.56 0.00 0.00 12.28 1007.12 253.22 28047.58 -8.4 8.9

20/08/01 - - - - - - - - - - - - 

31/08/01 - - - - - - - - - - - - 

17/09/01 82.82 436.66 1573.51 75.30 0.00 0.00 45.17 737.81 21.04 13764.80 -8.2 8.7

28/09/01 - - - - - - - - - - - - 

17/10/01 31.76 381.09 418.18 10.59 0.00 0.00 31.76 317.57 46.29 12109.04 -8.9 9.4

31/10/01 - - - - - - - - - - - - 

21/11/01 25.87 24.26 46.90 0.00 0.00 0.00 6.47 66.30 27.57 3663.14 -9.7 10.4

14/12/01 77.06 47.09 34.25 0.00 0.00 0.00 21.42 89.90 48.24 7664.84 -10.3 11.0

11/01/02 5.32 1.06 7.99 0.00 2.66 0.00 0.00 0.53 1.70 452.18 -13.1 14.4

15/02/02 268.24 99.81 143.48 0.00 7822.52 6.24 24.95 0.02 60.67 9162.92 -10.9 11.7

14/03/02 406.10 69.88 135.37 4.37 3916.91 52.40 34.95 0.00 35.63 6315.11 -10.7 11.5

21/03/02 316.05 67.27 142.16 7.62 1043.40 38.08 7.70 2.54 97.77 4149.67 -8.4 8.9

27/03/02 16.04 5.69 5.17 0.00 284.54 3.62 0.52 0.53 6.32 675.32 -11.0 11.9

09/04/02 1140.83 1148.70 149.52 7.87 11597.19 440.97 15.74 62.97 225.76 20660.84 -8.7 9.3

25/04/02 486.18 684.26 945.35 0.00 2818.06 351.34 0.07 1530.61 43.12 22957.55 -8.6 9.1

10/05/02 515.04 436.66 100.77 0.00 44.87 0.09 0.00 615.81 39.62 44916.70 -8.0 8.4

16/05/02 163.75 319.70 413.27 54.58 210.53 0.06 0.00 927.91 72.49 17533.62 -9.5 10.2

24/05/02 216.25 399.24 1089.61 8.32 74.92 0.00 8.32 1239.29 75.99 18791.51 -9.3 9.9

30/05/02 240.39 171.71 453.69 10.00 285.16 0.00 34.34 505.32 117.02 11601.74 -9.3 9.9

07/06/02 1644.46 4255.15 3669.83 74.33 65.14 0.00 18.58 1876.72 364.41 28348.41 -8.5 9.1

13/06/02 80.34 171.16 530.95 10.48 24.45 0.00 0.00 125.75 20.71 3615.59 -11.6 12.6

16/07/02 207.92 2439.62 3001.17 166.45 90.10 0.00 20.79 263.37 358.94 13354.91 -10.0 10.8
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Appendix IV a – Temperature and Salinity data collected on each sampling date at 
Cracknore (- = indicates no data) 

Date Temperature °C Salinity 
Cracknore Surf. 2m 4m 6m 8m average Surf. 2m 4m 6m 8m average 
12/01/01 5.6 5.6 5.7 5.9 5.9 5.7 21.9 22.2 28 28.6 28.7 25.9 
30/01/01 5.7 5.8 6.0 6.0 6.1 5.9 18.9 25.7 27.8 29.0 30.7 26.4 
12/02/01 8.4 7.7 7.2 7.1 7.0 7.5 11.7 21.1 26.9 28.7 29.4 23.6 
19/02/01 6.1 7.3 7.4 7.3 7.3 7.1 15.9 29.3 30.1 30.5 30.6 27.3 
02/03/01 6.4 6.4 6.4 6.4 6.4 6.4 26.4 29.0 30.0 30.4 30.5 29.3 
16/03/01 8.8 7.8 7.3 7.2 7.2 7.7 19.0 26.6 29.7 30.1 30.6 27.2 
23/03/01 9.1 7.6 7.1 6.9 6.8 7.5 12.1 25.6 29.3 30.3 30.7 25.6 
04/04/01 9.2 8.9 8.7 8.6 8.6 8.8 21.3 27.3 28.2 29.1 29.3 27.1 
10/04/01 9.2 9.1 9.1 9.1 9.1 9.1 28.8 28.9 29.4 29.9 30.1 29.4 
19/04/01 9.0 9.1 9.2 9.2 9.2 9.1 25.7 29.0 30.1 30.8 30.8 29.3 
27/04/01 10.8 9.9 9.6 9.6 9.6 9.9 20.0 26.8 28.9 29.6 29.9 27.0 
04/05/01 10.4 10.2 10.2 10.2 10.2 10.2 27.9 29.4 29.9 30.1 30.2 29.5 
18/05/01 12.4 12.4 12.4 12.6 12.5 12.5 28.5 30.3 30.8 31.5 31.6 30.5 
07/06/01 15.5 15.5 15.6 15.6 15.6 15.6 27.1 29.4 30.9 31.1 31.4 30.0 
11/06/01 16.2 15.7 15.5 15.4 15.4 15.6 27.3 29.5 30.6 31.0 31.4 30.0 
22/06/01 17.4 17.1 17.0 17.0 17.0 17.1 27.8 28.7 - - 31.0 29.2 
03/07/01 20.3 19.8 19.3 19.1 18.6 19.4 24.5 29.7 30.7 31.0 31.7 29.5 
19/07/01 17.8 17.8 17.8 17.8 17.8 17.8 30.9 31.1 31.3 31.4 31.6 31.3 
24/07/01 19.1 18.8 18.7 18.5 18.5 18.7 29.2 30.2 30.7 31.1 31.5 30.5 
02/08/01 19.8 20.3 20.4 20.4 20.3 20.2 27.2 30.7 31.3 31.5 31.6 30.5 
20/08/01 19.5 19.3 19.3 19.3 19.3 19.3 27.5 29.8 30.6 31.0 31.5 30.1 
31/08/01 19.8 19.8 19.8 19.8 19.7 19.8 31.3 31.4 31.6 31.9 32.4 31.7 
17/09/01 16.3 16.4 16.4 16.4 16.4 16.4 31.5 31.9 31.9 32.2 32.2 31.9 
28/09/01 15.5 15.7 15.7 15.7 15.7 15.7 28.2 31.0 31.4 31.6 31.9 30.8 
17/10/01 15.6 15.5 15.5 15.5 15.5 15.5 29.2 29.3 29.3 29.6 30.2 29.5 
31/10/01 14.7 14.8 14.9 14.9 14.9 14.8 29.7 29.8 31.0 31.2 31.5 30.6 
21/11/01 10.7 10.5 10.5 10.5 10.6 10.6 29.0 30.0 31.5 31.5 31.7 30.7 
14/12/01 8.4 8.6 8.6 8.7 8.7 8.6 29.2 30.0 30.9 31.1 31.1 30.5 
11/01/02 5.5 5.4 5.4 5.4 5.4 5.4 27.5 31.1 31.5 31.9 32.2 30.8 
15/02/02 9.2 9.2 9.0 9.0 9.0 9.1 29.2 29.3 30.2 30.4 30.6 29.9 
14/03/02 8.1 8.1 8.4 8.5 8.5 8.3 28.1 28.1 29.6 30.3 30.4 29.3 
21/03/02 9.6 9.3 8.9 8.9 8.7 9.1 27.0 29.0 31.0 31.1 31.4 29.9 
28/03/02 9.5 9.6 9.6 9.6 9.6 9.6 25.7 29.4 30.5 31.1 31.1 29.6 
09/04/02 11.1 10.9 10.9 10.9 10.9 10.9 30.1 30.9 31.4 31.5 31.8 31.1 
25/04/02 13.1 12.4 12 11.9 11.9 12.3 28.9 30.6 31.3 31.5 31.8 30.8 
10/05/02 12.7 12.6 12.4 12.4 12.4 12.5 30.9 31.2 31.5 31.6 31.7 31.4 
16/05/02 14.7 14.5 14.3 14 13.9 14.3 29.6 29.8 30.2 30.2 30.3 30.1 
24/05/02 14.9 14.8 14.8 14.8 14.8 14.8 27.6 27.9 28.5 29.0 30.3 28.7 
30/05/02 15.1 14.8 14.6 14.6 14.5 14.7 27.5 29.4 30.2 30.8 31.0 29.8 
07/06/02 14.7 15.2 15.2 15.2 15.2 15.1 26.6 31.0 31.6 31.7 31.9 30.6 
13/06/02 16.2 16.0 15.4 15.4 15.4 15.7 28.3 29.0 31 31.1 31.7 30.2 
16/07/02 19.2 18.4 18.0 18.0 18.0 18.3 29.2 31.4 32.2 32.5 32.5 31.6 
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Appendix IV b – Temperature and Salinity data collected on each sampling date at Calshot 
(- = indicates no data) 

Date Temperature °C Salinity 
Cracknore Surf. 2m 4m 6m 8m average Surf. 2m 4m 6m 8m average 
12/01/01 5.9 6.0 6.0 6.0 6.1 6.0 32.6 32.7 32.7 32.7 32.7 32.7 
30/01/01 5.8 5.8 5.8 5.8 5.8 5.8 32.1 32.1 32.1 32.2 32.4 32.2 
12/02/01 7.1 7.1 7.1 7.2 7.2 7.1 31.8 31.8 31.7 31.6 31.6 31.7 
19/02/01 6.7 6.9 6.8 6.9 6.9 6.8 31.0 31.0 31.1 31.1 31.3 31.1 
02/03/01 5.9 6.0 6.0 6.1 6.1 6.0 32.4 32.4 32.4 32.4 32.4 32.4 
16/03/01 7.3 7.3 7.2 7.2 7.2 7.2 32.4 32.5 32.5 32.5 32.6 32.5 
23/03/01 7.2 7.2 7.1 7.0 7.0 7.1 31.8 31.8 31.9 31.9 32 31.9 
04/04/01 8.6 8.6 8.6 8.6 8.6 8.6 30.9 30.9 30.9 30.9 30.9 30.9 
10/04/01 9.1 9.0 9.0 9.0 9.0 9.0 31.5 31.6 31.6 31.6 31.6 31.6 
19/04/01 9.0 9.0 8.9 8.9 8.9 8.9 31.5 31.5 31.7 31.7 31.7 31.6 
27/04/01 10.2 10.1 10.1 10.1 10.0 10.1 31.5 31.6 31.6 31.6 31.7 31.6 
04/05/01 10.2 10.2 10.2 10.2 10.2 10.2 31.8 31.8 31.8 31.9 31.9 31.8 
18/05/01 12.6 12.5 12.1 12.1 12.1 12.3 31.3 31.4 32.0 32.1 32.1 31.8 
07/06/01 15.4 15.3 15.3 15.3 15.3 15.3 32.8 32.8 32.8 32.8 32.8 32.8 
11/06/01 15.5 15.4 15.4 15.3 15.3 15.4 32.5 32.5 32.5 32.6 32.6 32.5 
22/06/01 17.0 17.0 17.0 17.0 17.0 17.0 - 32.5 - - 32.5 32.5 
03/07/01 19.4 19.0 19.0 19.0 19.0 19.1 32.7 32.8 32.8 32.8 32.8 32.8 
19/07/01 17.9 17.7 17.7 17.7 17.7 17.7 32.5 32.5 32.7 32.7 32.7 32.6 
24/07/01 18.8 18.5 18.5 18.5 18.5 18.6 32.8 33.1 33.1 33.1 33.1 33.0 
02/08/01 19.9 19.9 19.9 19.9 19.9 19.9 33.0 33.0 33.0 33.1 33.1 33.0 
20/08/01 19.2 19.2 19.2 19.3 19.3 19.2 32.9 32.9 32.9 33.0 33.0 32.9 
31/08/01 19.3 19.3 19.3 19.3 19.3 19.3 33.3 33.3 33.3 33.3 33.4 33.3 
17/09/01 16.1 16.4 16.4 16.4 16.4 16.3 33.6 33.6 33.6 33.6 33.6 33.6 
28/09/01 15.8 15.8 15.8 15.7 15.7 15.8 33.5 33.6 33.6 33.7 33.7 33.6 
17/10/01 15.5 15.5 15.5 15.5 15.5 15.5 33.4 33.4 33.4 33.4 33.4 33.4 
31/10/01 14.8 14.8 14.8 14.8 14.8 14.8 33.2 33.2 33.2 33.2 33.2 33.2 
21/11/01 10.7 10.7 10.7 10.7 10.7 10.7 33.7 33.7 33.7 33.7 33.7 33.7 
14/12/01 8.6 8.6 8.6 8.6 8.6 8.6 33.3 33.3 33.3 33.3 33.3 33.3 
11/01/02 5.7 5.8 5.8 5.8 5.9 5.8 33.6 33.6 33.6 33.6 33.6 33.6 
15/02/02 8.9 8.9 8.9 8.9 8.9 8.9 32.1 32.2 32.3 32.3 32.4 32.3 
14/03/02 8.1 8.2 8.2 8.2 8.3 8.2 33.2 33.1 33.1 33.1 33.1 33.1 
21/03/02 9.2 9.1 9.1 9.1 9.0 9.1 32.8 32.9 32.9 32.9 33.0 32.9 
28/03/02 9.6 9.6 9.6 9.6 9.6 9.6 32.4 32.4 32.4 32.4 32.4 32.4 
09/04/02 10.4 10.4 10.4 10.4 10.4 10.4 33.2 33.3 33.4 33.4 33.4 33.3 
25/04/02 12.1 11.8 11.8 11.7 11.7 11.8 33.1 33.3 33.3 33.3 33.3 33.3 
10/05/02 12.7 12.5 12.4 12.4 12.4 12.5 33.2 33.2 33.2 33.3 33.3 33.2 
16/05/02 13.5 13.5 13.4 13.4 13.3 13.4 33.3 33.4 33.4 33.4 33.5 33.4 
24/05/02 14.4 14.4 14.4 14.4 14.4 14.4 33.4 33.4 33.4 33.4 33.4 33.4 
30/05/02 14.5 14.5 14.5 14.5 14.5 14.5 33.0 33.0 33.0 33.0 33.1 33.0 
07/06/02 14.7 14.9 14.9 14.9 14.9 14.9 33.1 33.1 33.2 33.2 33.2 33.2 
13/06/02 15.3 15.2 15.2 15.2 15.2 15.2 32.8 33.1 33.1 33.2 33.2 33.1 
16/07/02 17.9 17.8 17.8 17.8 17.8 17.8 33.7 34.1 34.1 34.1 34.1 34.0 
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Appendix IV c – Temperature and Salinity data collected on each sampling date at NW - 
Netley (- = indicates no data) 

Date Temperature °C Salinity 
Cracknore Surf. 2m 4m 6m 8m average Surf. 2m 4m 6m 8m average 
12/01/01 - - - - - - - - - - - - 
30/01/01 - - - - - - - - - - - - 
12/02/01 - - - - - - - - - - - - 
19/02/01 - - - - - - - - - - - - 
02/03/01 5.7 5.9 6.0 6.0 6.1 5.9 28.5 28.5 30.0 30.7 31.3 29.8 
16/03/01 - - - - - - - - - - - - 
23/03/01 - - - - - - - - - - - - 
04/04/01 - - - - - - - - - - - - 
10/04/01 9.6 9.6 9.5 9.4 9.2 9.5 28.3 28.5 28.5 29.4 30.1 29.0 
19/04/01 - - - - - - - - - - - - 
27/04/01 - - - - - - - - - - - - 
04/05/01 10.2 10.3 10.3 10.3 10.3 10.3 28.7 28.6 28.6 30.2 30.8 29.4 
18/05/01 13.5 12.8 12.7 12.6 12.5 12.8 28.2 30.1 31.5 32.1 32.2 30.8 
07/06/01 15.3 15.6 15.6 15.6 15.6 15.5 31.4 31.4 31.6 31.6 32.4 31.7 
11/06/01 - - - - - - - - - - - - 
22/06/01 - - - - - - - - - - - - 
03/07/01 - - - - - - - - - - - - 
19/07/01 17.9 17.9 17.9 17.9 17.9 17.9 31.4 31.5 31.5 31.9 32.0 31.7 
24/07/01 - - - - - - - - - - - - 
02/08/01 20.3 20.3 20.3 20.3 20.3 20.3 31.9 31.9 31.9 32.1 32.1 32.0 
20/08/01 - - - - - - - - - - - - 
31/08/01 - - - - - - - - - - - - 
17/09/01 16.2 16.2 16.2 16.2 16.1 16.2 32.6 32.6 32.7 32.7 32.7 32.7 
28/09/01 - - - - - - - - - - - - 
17/10/01 15.6 15.5 15.5 15.5 15.5 15.5 31.9 31.9 31.9 32.1 32.1 32.0 
31/10/01 - - - - - - - - - - - - 
21/11/01 10.5 10.4 10.4 10.4 10.4 10.4 31.3 31.4 31.5 31.8 32.4 31.7 
14/12/01 8.3 8.3 8.3 8.3 8.3 8.3 31.7 31.7 31.7 31.7 31.9 31.7 
11/01/02 5.3 5.4 5.5 5.6 5.6 5.5 29.8 31.7 31.8 32.7 32.9 31.8 
15/02/02 8.7 8.7 8.7 8.7 8.7 8.7 29.4 29.6 29.7 29.8 29.8 29.7 
14/03/02 8.4 8.4 8.4 8.4 8.5 8.4 31.3 31.3 31.4 31.4 31.4 31.4 
21/03/02 9.6 9.6 9.3 9.1 9.0 9.3 29.0 29.4 30.3 31.6 32.2 30.5 
28/03/02 9.6 9.6 9.6 9.6 9.6 9.6 29.1 29.3 30.9 31.2 31.3 30.4 
09/04/02 10.8 10.8 10.8 10.7 10.7 10.8 29.8 29.8 31.3 31.5 31.9 30.9 
25/04/02 12.9 12.7 12.6 12.3 12.2 12.5 30.3 31.2 32.1 32.4 32.4 31.7 
10/05/02 13.1 13.0 12.9 12.9 12.7 12.9 31.4 31.5 31.6 31.8 32.4 31.7 
16/05/02 14.5 14.2 14 13.9 13.7 14.1 31.1 31.3 31.3 31.3 31.5 31.3 
24/05/02 15.0 15.0 14.9 14.9 14.9 14.9 30.9 31.0 31.1 31.1 31.3 31.1 
30/05/02 14.8 14.8 14.8 14.5 14.5 14.7 30.5 30.5 30.5 31.4 31.5 30.9 
07/06/02 15 15.2 15.2 15.2 15.2 15.26 31.5 31.5 31.8 31.9 32.0 31.7 
13/06/02 15.4 15.4 15.6 15.4 15.3 15.4 30.6 30.6 31.5 31.9 32.2 31.6 
16/07/02 19.3 18.8 18.5 18.4 18.4 18.7 31.4 32.4 32.8 33.1 33.1 32.6 

 

 



Appendix V
Zooplankton samples of any given area will contain organisms from several 

phyla, requiring the use of numerous taxonomic guides for the identification of the 

different species or group of animals present. These detailed, illustrated taxonomic 

references are vital, but are usually dispersed in different guides, atlases or individual 

papers, and usually intended for researchers with some prior knowledge in species 

identification. Students and 'new' researchers however, usually do not have time for 

searching through countless disparate references or the prior knowledge for the 

identification of rare species that only appear in low numbers. However, information 

about species and their spatio-temporal patterns is needed before attempting to 

quantify any planktonic processes (Soetaert & Van Rijswijk, 1993).

The primary objective of this work is to give a permanent photographic-record 

summary of the taxa recorded in the mesozooplankton of the Solent-Southampton 

Water (SW) system. In the attached pdf file (Zooplanktonguide.pdf) an extended 

version of the present Appendix is included, where each taxon is presented 

individually at an orientation to give a general overview of the whole animal, as well 

as highlighting features of taxonomic importance together with a suggested literature 

needed to identify them. This could aid future research and studies within this 

estuarine system and in neighbouring regions where a similar mesozooplankton 

composition would be expected to be found. 

A total of 152 different taxa are presented here, including  62 of the 90 

previously reported in the mesozooplankton of this system, together with 90 taxa

reported for the first time within this system. Only 62 of the previously reported taxa in 

this system were identified in this study, either because the species did not occurr in 

the sampling period (for methods see Muxagata et al., 2004), or they may be included 

as 'unidentified' specimens. The previously reported species Polydora ciliata and 

Polydora ligni could, in this study, be under 'unidentified Spionidae' or, as in the case 

of Necora puber which are under Liocarcinus spp. Taxa were identified to the nearest 

level possible, with 96 identified to species, 32 to genus and 24 only identified at a 

lower level i.e. Family, Class, Order or Phylum. 

This work is intended to be an aid to the detailed taxonomic guides, and 

species should ultimately be identified using the references provided. The 

identification of most of organisms was made by E. Muxagata. Taxa identified by the 

photo-numbers 23, 49, 64, 66 were in identified containers by Dr. E. Castro-Longoria, 

and taxa 17, 18, 96 to 107 and 109 were identified by Dr. M. Sheader. 
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Appendix VI a – Average final Chl. a concentration for each depth stratum at Cracknore. 
Differences between replicas were calculated as a percentage of the mean averaged for all 
measurements (error). (Where, * = indicates that no replicate were available; - = indicates 
no data).  
Cracknore Surface 2 meters 8 meters Total  

date 
Chlorophyl 
(mg m-3) error 

Chlorophyl 
(mg m-3) error 

Chlorophyl 
(mg m-3) error average 

12/01/01 0.19 * - - 0.05 * 0.12 
30/01/01 0.26 * 1.11 * 0.41 * 0.59 
12/02/01 0.98 * - - - - 0.98 
19/02/01 - - 0.52 * 0.49 * 0.51 
02/03/01 0.82 6.26 0.89 10.13 0.60 13.60 0.77 
16/03/01 1.08 0.92 0.88 26.08 0.63 5.32 0.86 
23/03/01 1.17 22.29 1.25 2.4 0.92 4.46 1.11 
04/04/01 1.22 0.38 1.27 0.99 0.93 3.58 1.14 
10/04/01 1.53 8.70 1.73 3.08 1.71 0.39 1.66 
19/04/01 1.27 2.79 1.40 2.86 1.35 0.60 1.34 
27/04/01 1.85 2.16 2.10 0.32 1.98 4.38 1.98 
04/05/01 1.15 1.05 2.57 1.54 2.81 0.0 2.18 
18/05/01 17.68 2.81 21.34 1.63 38.13 5.11 25.72 
07/06/01 8.06 1.79 9.79 2.58 14.40 2.14 10.75 
11/06/01 11.23 0.44 13.78 0.85 14.58 3.09 13.20 
22/06/01 19.00 2.46 16.18 0.27 15.40 6.49 16.86 
03/07/01 31.47 2.41 - - - - 31.47 
19/07/01 2.72 1.18 2.67 0.5 2.26 0.29 2.55 
24/07/01 10.35 1.03 7.41 0.45 3.02 15.67 6.92 
02/08/01 63.07 0.21 38.98 0.97 23.47 2.27 41.84 
20/08/01 3.99 2.68 6.47 2.37 2.83 1.18 4.43 
31/08/01 13.17 1.14 13.60 0.98 11.63 0.23 12.80 
17/09/01 2.04 3.70 1.99 3.38 1.77 1.50 1.93 
28/09/01 1.84 0.72 1.60 0.74 1.21 0.17 1.55 
17/10/01 1.20 3.88 1.23 0.0 1.07 0.06 1.17 
31/10/01 0.94 0.21 0.95 3.58 0.91 3.07 0.93 
21/11/01 0.64 0.21 0.68 0.69 0.91 2.58 0.74 
14/12/01 0.81 2.91 0.94 8.35 0.65 10.50 0.80 
11/01/02 0.40 5.88 0.47 4.77 0.46 10.43 0.44 
15/02/02 0.87 2.15 0.82 0.57 0.70 0.28 0.80 
14/03/02 1.02 3.13 1.04 1.15 0.81 9.06 0.96 
21/03/02 0.72 3.26 0.87 16.78 0.73 4.75 0.77 
28/03/02 0.63 0.64 0.84 0.16 0.77 1.38 0.75 
09/04/02 1.26 2.43 1.53 9.57 1.31 3.97 1.37 
25/04/02 2.67 1.25 3.05 2.41 2.18 3.40 2.63 
10/05/02 1.33 13.51 1.69 1.19 1.41 0.94 1.48 
16/05/02 1.57 1.28 1.73 0.37 2.07 2.89 1.79 
24/05/02 1.72 1.55 1.39 0.96 1.69 5.14 1.60 
30/05/02 1.67 0.8 1.80 2.22 2.25 1.48 1.90 
07/06/02 3.33 2.8 2.99 5.36 1.49 1.35 2.60 
13/06/02 2.49 2.67 2.44 4.92 4.13 9.21 3.02 
16/0702 5.95 1.68 5.47 1.71 2.43 0.00 4.62 
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Appendix VI b – Average final Chl. a concentration for each depth stratum at Calshot. 
Differences between replicas were calculated as a percentage of the mean averaged for all 
measurements (error). (Where, * = indicates that no replicate were available; - = indicates 
no data).  
Cracknore 2 meters 8 meters Total  

date 
Chlorophyl 
(mg m-3) error 

Chlorophyl 
(mg m-3) error average 

12/01/01 0.15 * 0.38 * 0.27 
30/01/01 0.32 * 0.51 * 0.42 
12/02/01 0.77 * 0.91 * 0.84 
19/02/01 0.08 * 0.69 * 0.38 
02/03/01 0.55 7.84 1.08 5.72 0.82 
16/03/01 1.13 14.71 0.83 48.55 0.98 
23/03/01 1.05 3.51 1.08 0.31 1.06 
04/04/01 1.43 3.26 1.43 3.26 1.43 
10/04/01 2.03 0.33 2.16 * 2.10 
19/04/01 0.89 2.86 1.45 2.75 1.17 
27/04/01 2.69 0.50 2.95 2.48 2.82 
04/05/01 6.91 4.26 8.19 0.41 7.55 
18/05/01 11.79 2.43 16.80 3.64 14.30 
07/06/01 15.47 6.03 34.53 2.70 25.00 
11/06/01 11.10 1.82 11.86 2.39 11.48 
22/06/01 8.94 0.70 9.80 0.05 9.37 
03/07/01 6.67 1.64 - - 6.67 
19/07/01 2.33 8.00 2.16 3.09 2.25 
24/07/01 2.67 0.50 2.75 1.16 2.71 
02/08/01 4.46 3.14 3.87 3.96 4.17 
20/08/01 2.92 0.91 2.77 1.92 2.85 
31/08/01 2.83 0.71 2.15 15.79 2.49 
17/09/01 1.62 4.52 1.76 1.01 1.69 
28/09/01 1.45 2.30 1.34 0.80 1.39 
17/10/01 1.51 5.73 1.46 0.46 1.49 
31/10/01 0.90 8.90 0.95 6.89 0.92 
21/11/01 0.89 1.94 0.84 0.24 0.86 
14/12/01 1.05 0.95 1.11 3.37 1.08 
11/01/02 0.71 9.88 0.69 12.84 0.70 
15/02/02 0.99 5.25 0.42 36.39 0.71 
14/03/02 1.81 1.47 1.76 10.61 1.79 
21/03/02 0.97 6.16 0.92 6.36 0.95 
28/03/02 1.85 6.14 1.82 0.37 1.83 
09/04/02 2.31 5.48 1.84 17.39 2.08 
25/04/02 3.35 4.17 3.95 1.35 3.65 
10/05/02 2.14 3.43 2.61 12.24 2.38 
16/05/02 2.40 1.82 2.60 1.93 2.50 
24/05/02 2.97 6.97 3.05 0.87 3.01 
30/05/02 3.38 3.75 3.43 4.28 3.40 
07/06/02 2.47 3.50 2.30 3.77 2.39 
13/06/02 3.21 0.62 3.17 2.74 3.19 
16/0702 3.20 4.58 2.82 1.35 3.01 
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Appendix VI c – Average final Chl. a concentration for each depth stratum at NW. Netley. 
Differences between replicas were calculated as a percentage of the mean averaged for all 
measurements (error). (Where, * = indicates that no replicate were available; - = indicates 
no data).  
Cracknore 2 meters 8 meters Total  

date 
Chlorophyl 
(mg m-3) error 

Chlorophyl 
(mg m-3) error average 

12/01/01 - - - - - 
30/01/01 - - - - - 
12/02/01 - - - - - 
19/02/01 - - - - - 
02/03/01 0.55 4.88 0.67 8.32 0.61 
16/03/01 - - - - - 
23/03/01 - - - - - 
04/04/01 - - - - - 
10/04/01 1.44 3.70 1.56 0.00 1.50 
19/04/01 - - - - - 
27/04/01 - - - - - 
04/05/01 1.85 3.60 4.80 5.28 3.33 
18/05/01 17.07 3.52 19.53 0.34 18.30 
07/06/01 11.23 2.40 15.53 0.43 13.38 
11/06/01 - - - - - 
22/06/01 - - - - - 
03/07/01 - - - - - 
19/07/01 3.22 1.86 2.07 0.00 2.64 
24/07/01 - - - - - 
02/08/01 20.93 2.55 16.60 1.20 18.77 
20/08/01 - - - - - 
31/08/01 - - - - - 
17/09/01 1.99 2.93 2.24 0.80 2.11 
28/09/01 - - - - - 
17/10/01 1.45 3.67 1.74 0.38 1.60 
31/10/01 - - - - - 
21/11/01 0.71 2.52 0.71 3.93 0.71 
14/12/01 0.85 2.26 0.80 2.00 0.83 
11/01/02 0.63 3.59 0.65 1.58 0.64 
15/02/02 0.65 2.07 0.63 0.11 0.64 
14/03/02 1.08 3.88 1.25 3.00 1.16 
21/03/02 0.66 0.30 0.96 2.79 0.81 
28/03/02 0.53 8.31 1.23 1.08 0.88 
09/04/02 1.28 5.04 5.52 * 3.40 
25/04/02 3.19 2.19 4.20 6.98 3.70 
10/05/02 1.59 0.00 1.95 3.07 1.77 
16/05/02 2.41 3.31 2.66 0.25 2.54 
24/05/02 1.80 3.70 2.90 3.19 2.35 
30/05/02 2.87 2.79 3.11 1.07 2.99 
07/06/02 2.73 4.39 1.57 5.08 2.15 
13/06/02 3.05 2.41 4.13 2.26 3.59 
16/0702 6.90 3.58 5.17 34.19 6.03 
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Appendix VII a – Average final dissolved Oxygen concentration and saturation for each 
depth stratum at Cracknore. Differences between replicas were calculated as a percentage 
of the mean averaged for all measurements (error). (Where, * = indicates that no replicate 
were available; - = indicates no data).  
Cracknore Surface 2m 8m  
 Oxygen error % Sat Oxygen error % Sat Oxygen error % Sat Total 

Date ml l-1   ml l-1   ml l-1   average
12/01/01 7.03 * 92.34 - - - 6.75 * 93.39 6.89 
30/01/01 7.61 * 98.26 6.84 * 92.59 7.25 * 102.03 7.23 
12/02/01 - - - - - - - - - - 
19/02/01 - - - 7.21 * 103.43 7.96 * 115.28 7.59 
02/03/01 6.95 * 95.89 6.92 * 96.98 6.63 * 93.92 6.83 
16/03/01 6.72 * 93.51 6.81 * 97.16 6.55 * 94.60 6.69 
23/03/01 6.71 * 89.88 6.61 * 93.28 6.17 * 88.26 6.49 
04/04/01 7.00 2.72 99.75 5.22 5.90 76.80 5.91 1.24 87.35 6.04 
10/04/01 6.66 0.05 99.49 6.55 0.06 97.79 6.59 0.25 99.10 6.60 
19/04/01 5.87 4.23 85.62 5.73 0.50 85.57 5.32 3.07 80.59 5.64 
27/04/01 6.77 0.32 99.22 6.62 0.05 99.27 6.50 0.09 98.77 6.63 
04/05/01 6.54 0.05 99.83 6.55 0.01 100.52 6.56 0.16 101.22 6.55 
18/05/01 8.78 0.54 140.50 8.91 0.96 144.12 8.24 0.21 134.78 8.64 
07/06/01 5.45 0.86 92.29 5.60 0.08 96.06 6.55 8.19 114.00 5.87 
11/06/01 6.26 0.00 107.60 6.59 1.22 113.59 5.45 0.43 94.56 6.10 
22/06/01 6.91 0.38 121.89 7.53 10.52 132.87 6.07 0.59 108.17 6.84 
03/07/01 8.99 - 164.50 - - - - - - 8.99 
19/07/01 4.87 0.27 88.20 4.88 0.28 88.50 4.87 0.18 88.67 4.87 
24/07/01 5.58 3.82 102.60 6.96 11.44 127.98 5.05 3.70 93.18 5.86 
02/08/01 7.47 0.19 137.66 6.96 7.09 132.16 5.75 0.23 109.78 6.73 
20/08/01 6.10 18.06 111.91 5.02 0.62 92.95 4.80 0.17 89.87 5.31 
31/08/01 6.02 14.48 113.64 6.16 14.27 116.24 5.19 0.14 98.40 5.79 
17/09/01 5.24 0.30 92.53 5.31 0.26 94.25 5.32 1.43 94.53 5.29 
28/09/01 5.36 0.44 91.27 5.34 0.95 92.88 4.95 0.31 86.59 5.22 
17/10/01 5.28 0.11 90.61 5.28 0.20 90.51 5.18 0.83 89.41 5.25 
31/10/01 5.35 0.19 90.54 5.38 0.06 91.32 5.39 0.03 92.54 5.38 
21/11/01 6.29 0.01 97.26 6.25 0.03 96.93 6.07 0.04 95.36 6.20 
14/12/01 6.51 0.24 95.72 6.33 0.16 94.12 6.30 0.13 94.44 6.38 
11/01/02 7.02 0.02 95.45 6.94 0.20 96.36 6.87 0.15 96.08 6.95 
15/02/02 6.54 0.18 98.03 6.49 0.09 97.34 6.40 0.01 96.33 6.48 
14/03/02 6.66 0.04 96.56 6.68 0.07 96.85 6.50 0.11 96.64 6.61 
21/03/02 6.50 0.03 96.97 6.47 0.24 97.04 6.38 0.02 95.90 6.45 
28/03/02 6.35 0.18 93.75 6.31 0.54 95.56 6.32 0.76 96.53 6.33 
09/04/02 6.37 0.11 100.18 6.35 0.53 99.85 6.38 0.15 100.96 6.37 
25/04/02 7.05 2.08 114.76 6.79 0.54 110.02 6.59 0.06 106.52 6.81 
10/05/02 6.09 0.08 99.55 - - - - - - 6.09 
16/05/02 6.12 0.60 103.47 6.18 0.08 104.18 6.04 0.39 100.90 6.11 
24/05/02 5.83 0.25 97.78 5.85 0.05 98.02 5.76 0.07 97.93 5.81 
30/05/02 5.95 0.02 100.03 5.93 0.03 100.27 5.72 0.28 97.19 5.87 
07/06/02 5.85 0.06 97.15 5.81 0.02 100.15 5.65 0.01 97.77 5.77 
13/06/02 5.88 1.65 101.73 6.01 0.05 104.31 5.82 0.12 101.01 5.90 
16/07/02 6.10 0.12 112.45 5.87 0.02 107.92 5.40 0.38 99.17 5.80 
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Appendix VII b – Average final dissolved Oxygen concentration and saturation for each 
depth stratum at Calshot. Differences between replicas were calculated as a percentage of 
the mean averaged for all measurements (error). (Where, * = indicates that no replicate 
were available; - = indicates no data; blank space = not processed).  
Cracknore 2m 8m  
 Oxygen error % Sat Oxygen error % Sat Total 

Date ml l-1   ml l-1   average
12/01/01 7.24 * 103.10 7.60 * 108.44 7.42 
30/01/01 - - - 6.99 * 98.87 6.99 
12/02/01 - - - - - - - 
19/02/01 6.80 * 97.82 - - - 6.80 
02/03/01 7.01 * 99.54 7.43 * 105.72 7.22 
16/03/01 7.32 * 107.28 6.87 * 100.47 7.09 
23/03/01 6.73 * 98.00 6.73 * 97.62 6.73 
04/04/01 6.63 0.76 99.06 5.61 21.63 83.76 6.12 
10/04/01 6.74 0.05 102.03 6.74 0.20 102.16 6.74 
19/04/01 5.42 11.20 82.02 6.07 0.41 91.76 5.74 
27/04/01 6.84 0.76 106.17 6.82 1.57 105.65 6.83 
04/05/01 7.52 4.29 117.12 7.22 0.89 112.50 7.37 
18/05/01 7.84 0.24 127.99 7.86 0.99 127.87 7.85 
07/06/01 6.66 4.11 116.30 6.34 0.03 110.62 6.50 
11/06/01 6.56 0.20 114.42 6.40 0.30 111.49 6.48 
22/06/01 6.42 4.18 115.59 7.10 8.14 127.82 6.76 
03/07/01 5.78 0.44 109.06 - - - 5.78 
19/07/01 5.19 0.24 94.81 5.39 3.62 98.52 5.29 
24/07/01 5.93 11.92 110.43 5.21 0.08 96.95 5.57 
02/08/01 5.82 5.72 111.09 6.72 7.51 128.49 6.27 
20/08/01 5.58 8.37 105.15 5.12 0.05 96.62 5.35 
31/08/01 5.35 0.60 101.19 5.25 0.81 99.40 5.30 
17/09/01 5.45 0.03 97.72 5.49 2.07 98.37 5.47 
28/09/01 5.55 1.55 98.36 5.44 0.53 96.16 5.50 
17/10/01 5.45 0.12 95.90 5.51 0.44 96.81 5.48 
31/10/01 5.68 0.15 98.43 5.64 0.08 97.67 5.66 
21/11/01 6.22 0.38 99.14 6.25 0.18 99.56 6.23 
14/12/01 6.51 0.33 98.78 6.61 0.22 100.34 6.56 
11/01/02 6.92 0.24 98.62 6.93 0.02 98.93 6.92 
15/02/02 6.50 0.20 98.65 6.69 3.98 101.65 6.60 
14/03/02 6.57 0.02 98.66 6.51 0.99 97.99 6.54 
21/03/02 6.52 0.59 99.87 6.57 0.10 100.45 6.55 
28/03/02 6.56 0.24 101.20 6.57 0.12 101.36 6.56 
09/04/02 6.62 0.04 104.59 6.63 0.16 104.72 6.62 
25/04/02 6.84 0.13 111.28 6.78 0.68 110.19 6.81 
10/05/02 6.35 * 104.92 6.35 * 104.73 6.35 
16/05/02 6.32 0.02 106.76 6.28 0.06 105.61 6.30 
24/05/02 6.06 0.22 104.24 6.06 0.03 104.22 6.06 
30/05/02 6.16 0.01 105.84 6.14 0.24 105.64 6.15 
07/06/02 6.00 0.75 104.02 5.97 0.05 103.53 5.98 
13/06/02 6.08 0.10 106.10 6.10 0.05 106.44 6.09 
16/07/02 5.80 0.51 107.10 5.79 0.51 107.03 5.80 
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Appendix VII c – Average final dissolved Oxygen concentration and saturation for each 
depth stratum at NW. Netley. Differences between replicas were calculated as a percentage 
of the mean averaged for all measurements (error). (Where, * = indicates that no replicate 
were available; - = indicates no data; blank space = not processed).  
Cracknore 2m 8m  
 Oxygen error % Sat Oxygen error % Sat Total 

Date ml l-1   ml l-1   average
12/01/01 - - - - - - - 
30/01/01 - - - - - - - 
12/02/01 - - -  - - - 
19/02/01 - - - - - - - 
02/03/01 7.06 * 97.49 6.76 * 95.58 6.91 
16/03/01 - - - - - - - 
23/03/01 - - - - - - - 
04/04/01 - - - - - - - 
10/04/01 6.74 0.64 101.38 6.75 0.24 101.79 6.75 
19/04/01 - - - - - - - 
27/04/01 - - - - - - - 
04/05/01 6.76 0.50 103.41 6.92 0.54 107.30 6.84 
18/05/01 8.67 0.06 141.34 7.54 1.06 123.73 8.11 
07/06/01 6.50 0.15 113.08 6.04 0.32 105.75 6.27 
11/06/01 - - - - - - - 
22/06/01 - - - - - - - 
03/07/01 - - - - - - - 
19/07/01 5.48 4.77 99.82 5.35 3.54 97.80 5.41 
24/07/01 - - - - - - - 
02/08/01 6.06 0.15 115.79 5.76 0.16 110.25 5.91 
20/08/01 - - - - - - - 
31/08/01 - - - - - - - 
17/09/01 5.28 0.72 93.62 5.49 2.91 97.33 5.38 
28/09/01 - - - - - - - 
17/10/01 5.39 0.32 93.87 5.30 0.62 92.51 5.34 
31/10/01 - - - - - - - 
21/11/01 6.26 0.42 97.74 6.19 0.12 97.16 6.22 
14/12/01 6.52 0.18 97.23 6.55 0.18 97.89 6.54 
11/01/02 7.03 0.08 97.93 6.91 0.08 97.56 6.97 
15/02/02 6.56 0.04 97.46 6.58 0.15 97.82 6.57 
14/03/02 6.56 0.22 97.75 6.56 0.04 98.06 6.56 
21/03/02 6.52 0.67 98.62 6.46 0.03 98.16 6.49 
28/03/02 6.60 0.04 99.87 6.47 0.19 99.18 6.54 
09/04/02 6.66 0.17 103.84 6.60 0.14 103.96 6.63 
25/04/02 6.88 0.30 113.10 6.80 0.15 111.08 6.84 
10/05/02 - - - - - - - 
16/05/02 6.46 2.91 109.28 6.09 0.14 101.99 6.28 
24/05/02 6.05 0.02 103.84 5.98 0.01 102.55 6.02 
30/05/02 6.07 0.13 103.45 5.82 0.12 99.14 5.95 
07/06/02 5.94 0.09 102.54 5.83 0.03 101.10 5.88 
13/06/02 6.34 1.77 110.52 6.06 0.10 105.44 6.20 
16/07/02 5.94 0.45 110.72 5.67 0.81 105.35 5.81 
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Appendix VIII. Dendrogram of the 108 samples, using group-average clustering from 
Bray-Curtis similarities on square root transformed abundance data of all holoplanktonic 
species/groups collected at the three sites during 2001/02. (a) showing seasons and (b) 
Meganyctiphanes norvegica stations    
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Appendix IX a. Dendrogram of the 108 samples, using group-average clustering from 
Bray-Curtis similarities on square root transformed abundance data of all mero – 
tycoplanktonic species/groups collected at the three sites during 2001/02. With (a) seasons 
and (b) stations    
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Appendix IX b. Dendrogram of the spring-summer samples, using group-average 
clustering from Bray-Curtis similarities on square root transformed abundance data of all 
mero – tycoplanktonic species/groups collected at the three sites during 2001/02.  With (a) 
seasons and (b) stations    
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Appendix IX c. Dendrogram of the 108 samples, using group-average clustering from 
Bray-Curtis similarities on square root transformed abundance data of all species/groups 
found in the mesozooplankton of Southampton water at the three sites during 2001/02. 
With (a) seasons and (b) stations    
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Appendix X a. Mean weight values (µg) of naupliar stages II to VI + cypris of Elminius 
modestus and Semibalanus balanoides from the literature, together with the values of the 
present investigation. Also shown is the % of Ash and Carbon (C) considered for each 
stage, as well as the averaged value of one of the body measurements (M) of each larval 
stage used in the biomass analysis (i.e.  for naupliar stages II – VI the value shown is the 
average carapace width (µm), while for cyprids the value shown is the averaged length 
(µm)  

 

Elminius modestus 
  Average Weight (µg)    

Stage M ± SD       (n) DW ±      SD(n) AFDW ± SD    (n) %Ash ±SD **%C ± SD References 
 

I ---- 
 

---- 
 

---- 
 

---- 
 

---- 
 

---- 
 
 

II 
 

---- 
---- 
---- 

156 ± 8.4    (10) 

 

0.3             **** 
0.40 ± 0.01 (80) 
2.4   ± 0.5     (6) 
0.29 ± 0.01   (4) 

 

---- 
---- 
---- 

0.24 ± 0.01       (4) 

 

---- 
---- 
---- 

17.03 ± 6.25 

 

---- 
43.31 ± 0.33 

---- 
43.31 ± 0.33 

 

(Bhatnager & Crisp, 1965)* 
(Harms, 1987)* 
(Geary, 1991) 
Present study 

 
III 

---- 
---- 

180 ± 0.0    (10) 

 

0.72 ± 0.03 (40) 
3.9   ± 0.2     (5) 
0.49 ± 0.05   (4) 

 

---- 
---- 

0.40 ± 0.04       (4) 

 

---- 
---- 

17.88 ± 4.00 

 

44.17 ± 5.24 
---- 

44.17 ± 5.24 

 

(Harms, 1987)*  
(Geary, 1991) 
Present study 

 
IV 

 

---- 
---- 

216 ± 8.4    (10) 

 

1.24 ± 0.21 (48) 
7.3   ± 0.9     (5) 
0.77 ± 0.70   (4) 

 

---- 
---- 

0.65 ± 0.06       (4) 

 

---- 
---- 

15.25 ± 6.82 

 

40.40 ± 3.42 
---- 

40.40 ± 3.42 

 

(Harms, 1987)*  
(Geary, 1991) 
Present study 

 
V 
 

---- 
---- 

262 ± 6.3    (10) 

 

2.47 ± 0.15 (62) 
10.4 ± 2.4     (5) 
1.20 ± 0.09   (4) 

 

---- 
---- 

1.03 ± 0.08       (4) 

 

---- 
---- 

13.61 ± 6.41 

 

39.37 ± 2.22 
---- 

39.37 ± 2.22 

 

(Harms, 1987)* 
(Geary, 1991) 
Present study 

 
VI 

 

---- 
---- 

314 ± 9.8      (7) 

 

4.62± 0.50(109) 
13.7± 2.4      (6) 
2.23 ± 0.05   (4) 

 

---- 
---- 

1.90 ± 0.04       (4) 

 

---- 
---- 

14.57 ± 7.74 

 

44.69 ± 5.53 
---- 

44.69 ± 5.53 

 

(Harms, 1987)* 
(Geary, 1991) 
Present study 

 
 

Cypris 

 

---- 
---- 

530 ± 10.9    (6) 
666 ± 25.0  (10) 
 

 

4.92 ± 0.78 (70) 
15.8 ± 0.9     (3) 
3.34 ± 0.04   (2) 
7.46 ± 0.21   (2) 
 

 

---- 
---- 

3.30 ± 0.05       (2) 
7.10 ± 0.20       (2) 
 

 

---- 
---- 

  1.06 ± 0.74 
  0.05 ± 2.11 

 

 

51.94 ± 4.54 
---- 

51.94 ± 4.54 
51.94 ± 4.54 

 

 

(Harms, 1987)*  
(Geary, 1991) 
Present study 
Present study 

 

 

Semibalanus balanoides 
  Average Weight (µg)    

Stage M ± SD       (n) DW ±     SD(n) AFDW ± SD    (n) %Ash ±SD **%C ± SD References 
 

I ---- 
---- 

 

0.63            *** 
1.02 ± 0.04   (4) 

 

---- 
0.90                  (4) 

 

---- 
11.3 

 

---- 
---- 

 

(Lucas, 1979)* 
(Achituv et al.,  1980)* 

 

II ---- 
196 ± 8.4    (10) 

 

0.78 ± 0.04   (3) 
0.69 ± 0.02   (3) 

 

0.51                  (3) 
0.56 ± 0.02       (3) 

 

35.2 
18.23 ± 2.29 

 

---- 
43.31 ± 0.33 

 

(Achituv et al.,  1980)* 
Present study 

 

III 230 ± 16.7    (6) 
    

1.11 ± 0.06   (2) 
    

0.86 ± 0.05       (2) 
 

22.37 ± 4.13 
 

44.17 ± 5.24 
 

Present study 
 

IV ---- 
313 ± 10.4    (8) 

 

7.45 ± 3.32  *** 
2.47 ± 0.15   (2) 

 

---- 
2.01 ± 0.12       (2) 

 

---- 
18.97 ± 1.02 

 

---- 
40.40 ± 3.42 

 

(Lucas, 1979)* 
Present study 

 

V 398 ± 35.8  (10) 
    

5.56 ± 0.51   (4) 
    

4.49 ± 0.42       (4) 
 

19.22 ± 5.42 
 

39.37 ± 2.22 
 

Present study 
 

VI 505 ± 38.2    (8) 
   

10.41 ± 0.23 (4) 
     

8.51 ± 0.18       (4) 
 

18.31 ± 2.39 
 

44.69 ± 5.53 
 

Present study 
 
 

Cypris 

---- 
---- 
---- 

797 ± 29.2    (7) 
930 ± 49.2  (10) 

 

37.70 ± 2.85 (3) 
32.60±0.85  *** 
32.15 ± 0.35 (2) 
9.79 ± 0.37   (4) 
23.19            (1) 

 

33.03 ± 2.50     (3) 
---- 

30.15 ± 0.35     (2) 
9.21 ± 0.35       (4) 
21.80                (1) 

 

12.4 
---- 

6.21 ± 1.69 
5.93 ± 2.47 
6.01 

 

---- 
---- 
---- 

51.94 ± 4.54 
51.94 ± 4.54 

 

(Holland & Walker, 1975)* 
(Lucas, 1979)* 

(Lucas et al.,  1979)* 
Present study 
Present study 

 

Where: DW = Dry Weight; AFDW = Ash Free Dry Weight; C = carbon; SD = ±1 Standard Deviation; n = number of organisms 
measured/ or replicates; ---- = not available (the no of larvae utilized for each weight replica in this work can be seen on Table 20 – 
Chapter 4).  
* Values obtained after averaging the averages for different temperatures/experiments. 
** %C values used were obtained from Harms (1987) 
**** n were not given 
***** values obtained from Harms (1987) 
**** values cited in Harms (1987) 
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Appendix X b. Mean weight values (µg) of the naupliar stages II to VI + cypris of Balanus 
eburneus available from the literature.  

 

Balanus eburneus 
  Average Weight (µg)    

Stage M ± SD       (n) DW             (n) AFDW ± SD    (n) %Ash ±SD %C ± SD References 
 

I ---- 
 

0.27            (25) 
 

---- 
 

---- 
 

---- (Jorgensen & Vernberg, 1982) 
 

II ---- ---- 
 

---- 
 

---- 
 

----  
 

III ---- ---- 
 

---- 
 

---- 
 

----  
 

IV ---- 
 

0.68            (19) 
 

---- 
 

---- 
 

---- (Jorgensen & Vernberg, 1982) 
 

V ---- ---- 
 

---- 
 

---- 
 

----  
 

VI ---- 
   

1.50              (9) 
 

---- 
 

---- 
 

---- 
(Jorgensen & Vernberg, 1982) 

 
Cypris ---- 

 

2.28            (16) 
 

---- 
 

---- 
 

---- (Jorgensen & Vernberg, 1982) 
 

Where: DW = Dry Weight; AFDW = Ash Free Dry Weight; C = carbon; SD = ±1 Standard Deviation; n = number of organisms 
measured/ or replicates; ---- = not available .  
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Appendix XI a – Total length, carapace length and width of the naupliar stages I to VI + 
cypris of Elminius modestus from the present study, with reported values from literature. 
(All measurements in µm) 

Elminius modestus (µm) 
  

Carapace     
Stage Width ± SD      (n) Length ± SD    (n) Total Length ± SD (n) Source L/F 

 

 
I 

   

125 ± 8               (25) 
130                     (10) 
105 ±  5**         **** 
123 ±  7             (70) 

 

---- 
---- 
---- 
---- 

   

250 ± 14**              (25) 
250                          (10) 
220 ± 14**             **** 
242 ± 22                  (70) 

 

(Knight-Jones & Waugh, 1949) 
(Soares, 1958) 
(Barker, 1976) 
Present study 

 

L 
F 
L 
F 

 
 
II 

    

161 ± 6              (25) 
140                    (10) 
158 ±  3**         **** 
155 ±  7**         **** 
174 ±  3***       **** 

---- 
157 ± 13         (1033) 

 

---- 
---- 
---- 
---- 
---- 
---- 
---- 

    

395 ± 49**              (25) 
370                          (10) 
388 ±  9**              **** 
370 ± 14**             **** 

---- 
369 ±  20                **** 
392 ± 33              (1033) 

 

(Knight-Jones & Waugh, 1949) 
(Soares, 1958) 

(Tighe-Ford et al.,  1970) 
(Barker, 1976) 
(Harms, 1986) 
(Geary, 1991) 
Present study 

 

F 
F 
L 
L 
L 
F 
F 

 
 
III 

    

190 ± 7               (41) 
200                     (10) 
195 ±  4**         **** 
190 ± 14**        **** 
206 ±  8***       **** 

---- 
187 ± 14           (732) 

 

---- 
---- 
---- 
---- 
---- 
---- 
---- 

    

390 ± 57 **             (41) 
410                          (10) 
438 ±  8**              **** 
430 ± 28**             **** 

---- 
414 ±  17                **** 
421 ± 39                (732) 

 

(Knight-Jones & Waugh, 1949) 
(Soares, 1958) 

(Tighe-Ford et al.,  1970) 
(Barker, 1976) 
(Harms, 1986) 
(Geary, 1991) 
Present study 

 

F 
F 
L 
L 
L 
F 
F 

 
 
IV 

    

238 ± 8               (48) 
220                     (10) 
241 ±  6**         **** 
230 ± 14**        **** 
254 ± 12***      **** 

---- 
222 ± 18           (538) 

   

320 ± 42**      (48) 
---- 

299 ±  7**     **** 
285 ±  7**     **** 
---- 
314 ±  10       **** 
299 ± 22        (538) 

     

445 ± 78**              (48) 
410                          (10) 
481 ±  8**              **** 

---- 
---- 

459 ±  17                **** 
451 ± 45                (533) 

 

(Knight-Jones & Waugh, 1949) 
(Soares, 1958) 

(Tighe-Ford et al.,  1970) 
(Barker, 1976) 
(Harms, 1986) 
(Geary, 1991) 
Present study 

 

F 
F 
L 
L 
L 
F 
F 

 
 
V 

    

292 ± 15             (48) 
270                     (10) 
304 ± 16**        **** 
280 ± 14**        **** 
312 ±  6***       **** 

---- 
271 ± 21           (440) 

     

390 ± 71**      (48) 
---- 

369 ± 13**    **** 
355 ± 21**    **** 

---- 
387 ±  18       **** 
359 ± 27        (441) 

    

510 ± 85**              (48) 
470                          (10) 
558 ± 12**             **** 

---- 
---- 

538 ±  35                **** 
500 ± 53                (433) 

 

(Knight-Jones & Waugh, 1949) 
(Soares, 1958) 

(Tighe-Ford et al.,  1970) 
(Barker, 1976) 
(Harms, 1986) 
(Geary, 1991) 
Present study 

 

F 
F 
L 
L 
L 
F 
F 

 
 
VI 

     

359 ± 19             (41) 
320                     (10) 
382 ± 14**        **** 
360 ± 14**        ****  
380 ± 13***      **** 

---- 
328 ± 23           (339) 

     

485 ± 92**      (41) 
---- 

382 ± 14**    **** 
460 ± 28**    ****  

---- 
438 ±  21       **** 
436 ± 28        (341) 

        

595 ± 163**            (41) 
570                          (10) 
648 ± 39**             **** 

---- 
---- 

579 ±  32                **** 
565 ± 54                (330) 

 

(Knight-Jones & Waugh, 1949) 
(Soares, 1958) 

(Tighe-Ford et al.,  1970) 
(Barker, 1976) 
(Harms, 1986) 
(Geary, 1991) 
Present study 

 

F 
F 
L 
L 
L 
F 
F 

 
 

Cypris 

---- 
---- 
----- 
---- 
---- 
---- 
---- 

---- 
---- 
---- 
---- 
---- 
---- 
---- 

     

550 ± 14**             **** 
570                          (10) 
566 ± 30                 **** 
545 ± 49**             **** 
554 ± 28**             **** 
536 ±  39***          **** 
553 ± 53                (122) 

 

(Knight-Jones & Waugh, 1949) 
(Soares, 1958) 

(Tighe-Ford et al.,  1970) 
(Barker, 1976) 
(Harms, 1986) 
(Geary, 1991) 
Present study 

 

F 
F 
L 
L 
L 
F 
F 

 

Where: SD = ±1 Standard Deviation; n = number of organisms measured/ or replicates; ---- = Value/measure not available; L/F 
indicates measurements were made on laboratory cultured nauplii (L) or field plankton samples (F) 
** Values obtained after averaging the range of sizes given.  
*** Values obtained after averaging the averages for different temperatures/experiments.  
**** n were not given 
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Appendix XI b – Total length, carapace length and width of the naupliar stages I to VI + 
cypris of Balanus crenatus from the present study, with reported values from literature. 
(All measurements in µm) 

Balanus crenatus (µm) 
  

Carapace    
Stage Width ± SD      (n) Length ± SD    (n) Total Length ± SD (n) Source L/F 

 
 
I 

 

133*                     ----   
140                     (10) 
142*                     ----  
125*                     ----   
144 ± 9               (63) 

 

---- 
---- 
---- 
---- 
---- 

 

280                         **** 
290                          (10) 
271*                          ----  
250*                          ----   
274 ± 21                  (63) 

 

(Pyefinch, 1948; 1949) 
(Soares, 1958) 
(Lang, 1980) 

(Branscomb & Vedder, 1982) 
Present study 

 

- 
F 
- 
L 
F 

 
 

II 

 

183*                     ----   
180                     (10) 
171*                     ----   
150*                     ----   

---- 
172 ± 12           (609) 

 

---- 
---- 
---- 
---- 
---- 
---- 

 

440                         **** 
440                          (10) 
485*                          ---- 
425*                          ----   
440                         **** 
433 ± 28                (609) 

 

(Pyefinch, 1948; 1949) 
(Soares, 1958) 
(Lang, 1980) 

(Branscomb & Vedder, 1982) 
(Geary, 1991) 
Present study 

 

- 
F 
- 
L 
F 
F 

 
 

III 

 

---- 
200                     (10) 
214*                     ----   
250*                     ----   

---- 
203 ± 11           (342) 

 

---- 
---- 
---- 
---- 
---- 
---- 

 

570                         **** 
530                          (10) 
542*                          ---- 
625*                          ----   
560                         **** 
502 ± 25                (339) 

 

(Pyefinch, 1948; 1949) 
(Soares, 1958) 
(Lang, 1980) 

(Branscomb & Vedder, 1982) 
(Geary, 1991) 
Present study 

 

- 
F 
- 
L 
F 
F 

 
 

IV 

 

350*                     ----   
270                     (10) 
242*                     ----   
350*                     ----   

---- 
247 ± 13           (254) 

 

480                 **** 
---- 

428*                 ----  
550*                 ----   
480                 **** 
404 ± 22        (254) 

 

730                         **** 
600                          (10) 
571*                          ----   

---- 
700                         **** 
575 ± 28                (249) 

 

(Pyefinch, 1948; 1949) 
(Soares, 1958) 
(Lang, 1980) 

(Branscomb & Vedder, 1982) 
(Geary, 1991) 
Present study 

 

- 
F 
- 
L 
F 
F 

 
 

V 

 

---- 
360                     (10) 
342*                     ----   
375*                     ----   

---- 
311 ± 19           (199)  

 

590                 **** 
---- 

514*                 ----  
600*                 ----    
500                 **** 
502 ± 30        (199) 

 

840                         **** 
760                          (10) 
714*                          ---- 

---- 
730                         **** 
679 ± 39                (198) 

 

(Pyefinch, 1948; 1949) 
(Soares, 1958) 
(Lang, 1980) 

(Branscomb & Vedder, 1982) 
(Geary, 1991) 
Present study 

 

- 
F 
- 
L 
F 
F 

 
 

VI 

  

433*                     ----   
460                     (10) 
450*                     ----   

---- 
397 ± 29           (165) 

 

630                 **** 
---- 

700*                 ----    
580                 **** 
635 ± 47        (165) 

 

910                         **** 
900                          (10) 

---- 
810                         **** 
814 ± 54                (161) 

 

(Pyefinch, 1948; 1949) 
(Soares, 1958) 

(Branscomb & Vedder, 1982) 
(Geary, 1991) 
Present study 

 

- 
F 
L 
F 
F 

 
Cypris 

---- 
---- 
---- 

---- 
---- 
---- 

 

711*                          ----   
875 ± 64                  (10) 
779 ± 78                  (74) 

 

(Pyefinch, 1948) 
(Soares, 1958) 
Present study 

 

- 
F 
F 

 

Where: SD = ±1 Standard Deviation; n = number of organisms measured/ or replicates; ---- = Value/measure not available; L/F 
indicates the measurements were made on laboratory cultured nauplii (L) or field plankton samples (F); - = not indicated. 
* Values obtained from drawings.  
**** n were not given 
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Appendix XI c – Total length, carapace length and width of the naupliar stages I to VI + 
cypris of Semibalanus balanoides, from the present study, with reported values from 
literature. (All measurements in µm) 

Semibalanus balanoides (µm) 
  

Carapace    
Stage Width ± SD      (n) Length ± SD    (n) Total Length ± SD (n) Source L/F 

 
I 

 

220                   **** 
130*                    ----   
170                     (10) 
189 ± 10           **** 
179 ± 17            (22) 

 

---- 
---- 
---- 
---- 
---- 

 

350                         **** 
340*                          ----   
400                          (10) 
333 ± 15                 **** 
319 ± 28                  (22) 

 

(Bassindale, 1936) 
(Pyefinch, 1948) 
(Soares, 1958) 
(Crisp, 1962) 
Present study 

 

L 
L 
L 
L 
F 

 
 

II 

 

220                   **** 
260*                    ----   
220                     (10) 
227 ± 22           **** 
302 ± 12           **** 
257*                    ----   

---- 
203 ± 11          (286) 

 

---- 
---- 
---- 
---- 
---- 
---- 
---- 

 

510                         **** 
540*                         ----    
460                          (10) 
526 ± 50                 **** 
702 ± 17                 **** 
585*                          ----   
550                         **** 
475 ± 28                (286) 

 

(Bassindale, 1936) 
(Pyefinch, 1948) 
(Soares, 1958) 
(Crisp, 1962) 
(Crisp, 1962) 
(Lang, 1980) 
(Geary, 1991) 
Present study 

 

L 
L 
F 
F 
F 
- 
F 
F 

 
 

III 

 

270                   **** 
307*                    ----   
270                    (10) 
290 ± 22           **** 
355 ±  9            **** 
285*                    ----   

---- 
238 ± 13          (157) 

 

---- 
---- 
---- 
---- 
---- 
---- 
---- 

 

620                         **** 
630*                          ----   
600                          (10) 
625 ± 22                 **** 
849 ± 60                 **** 
714*                          ----   
630                         **** 
562 ± 30                (156) 

 

(Bassindale, 1936) 
(Pyefinch, 1948) 
(Soares, 1958) 
(Crisp, 1962) 
(Crisp, 1962) 
(Lang, 1980) 
(Geary, 1991) 
Present study 

 

L 
L 
F 
F 
F 
- 
F 
F 

 
 

IV 

 

290                   **** 
384*                    ----   
380                     (10) 
330 ± 30           **** 
483 ± 14           **** 
371*                    ----   

---- 
298 ± 15            (89) 

 

410                 **** 
---- 
---- 

453 ± 34        **** 
635 ± 22        **** 
642*                 ----    
460                 **** 
446 ± 22          (89) 

 

690                         **** 
760*                          ----   
750                          (10) 
725 ± 35                 **** 
1005 ± 58               **** 
885*                          ----   
650                         **** 
662 ± 38                  (84) 

 

(Bassindale, 1936) 
(Pyefinch, 1948) 
(Soares, 1958) 
(Crisp, 1962) 
(Crisp, 1962) 
(Lang, 1980) 
(Geary, 1991) 
Present study 

 

L 
L 
F 
F 
F 
- 
F 
F 

 
 

V 

 

420                   **** 
480*                    ----   
450                     (10) 
500 ± 57           **** 
610 ± 19           **** 
571*                    ----   
385 ± 22            (96) 

 

530                 **** 
---- 
---- 

635 ± 41        **** 
780 ± 25        **** 
814*                 ----    
556 ± 31          (96) 

 

810                         **** 
920*                          ----   
900                          (10) 
944 ± 83                 **** 
1170 ± 58               **** 

---- 
795 ± 40                  (79) 

 

(Bassindale, 1936) 
(Pyefinch, 1948) 
(Soares, 1958) 
(Crisp, 1962) 
(Crisp, 1962) 
(Lang, 1980) 

Present study 

 

L 
L 
F 
F 
F 
- 
F 

 
 

VI 

 

620                   **** 
596*                    ----   
600                     (10) 
595 ± 27           **** 
888 ± 33           **** 

---- 
503 ± 33            (78) 

 

790                 **** 
---- 
---- 

786 ± 52        **** 
1093 ± 25      **** 
700                 **** 
725 ± 51          (79) 

 

1150                       **** 
1050*                        ----   
1110                        (10) 
1145 ± 102             **** 
1559 ± 36               **** 
1020                       **** 
 990 ± 66                 (76) 

 

(Bassindale, 1936) 
(Pyefinch, 1948) 
(Soares, 1958) 
(Crisp, 1962) 
(Crisp, 1962) 
(Geary, 1991) 
Present study 

 

F 
L 
F 
F 
F 
F 
F 

 
Cypris 

---- 
---- 
---- 
---- 
---- 
---- 

---- 
---- 
---- 
---- 
---- 
---- 

 

940                         **** 
1000 ± 141**         **** 
945   ± 92**            (10)  
1025 ± 26               **** 
1332 ± 53               **** 
835   ± 81                (42) 

 

(Bassindale, 1936) 
(Pyefinch, 1948) 
(Soares, 1958) 
(Crisp, 1962) 
(Crisp, 1962) 
Present study 

 

F 
L 
F 
L 
L 
F 

 

Where: SD = ±1 Standard Deviation; n = number of organisms measured/ or replicates; ---- = Value/measure not available; L/F 
indicates the measurements were made on laboratory cultured nauplii (L) or field plankton samples (F) 
* Values obtained from drawings.  
** Values obtained after averaging the range of sizes given. 
**** n were not given 
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Appendix XI d – Total length, carapace length and width of the naupliar stages I to VI + 
cypris of Balanus improvisus, from the present study, with reported values from literature. 
(All measurements in µm) 

Balanus improvisus (µm) 
  

Carapace    
Stage Width ± SD      (n) Length ± SD    (n) Total Length ± SD (n) Source L/F 

 
I 

 

130**                **** 
111 ±  8              (10) 
118 ± 17             (10) 
139 ± 22             (16) 

 

---- 
---- 
---- 
---- 

   

205 ±  7**              **** 
195 ± 20                  (10) 
228 ± 13                  (10) 
285 ± 59                  (16) 

 

(Knight-Jones & Waugh, 1949) 
(Jones & Crisp, 1954) 

(Lee et al.,  1998) 
Present study 

 

F 
F 
L 
F 

 
 

II 

    

155 ± 7**          **** 
147 ± 9              (10) 
150                     (10) 
157*                     ----   
154 ± 19             (10) 
148 ± 12           (282) 

 

---- 
---- 
---- 
---- 
---- 
---- 

 

345 ± 21**             **** 
323 ± 17                  (10) 
310                          (10)  
342*                          ----   
302 ± 13                  (10) 
316 ± 26                (281) 

 

(Knight-Jones & Waugh, 1949) 
(Jones & Crisp, 1954) 

(Soares, 1958) 
(Lang, 1980) 

(Lee et al.,  1998) 
Present study 

 

F 
F 
F 
- 
L 
F 

 
 

III 

 

183 ±  7                (3) 
200                     (10) 
171*                     ----   
187 ± 15             (10) 
181 ± 12           (188) 

 

---- 
---- 
---- 
---- 
---- 

 

367 ±  8                     (3) 
390                          (10) 
385*                          ----   
375 ± 11                  (10) 
356 ± 27                (187) 

 

(Jones & Crisp, 1954) 
(Soares, 1958) 
(Lang, 1980) 

(Lee et al.,  1998) 
Present study 

 

F 
F 
- 
L 
F 

 
 

IV 

 

230 ± 20             (10) 
230                     (10) 
 242*                    ----   
270 ± 21             (10) 
227 ± 20           (144) 

 

267 ±  21         (10) 
---- 

343*                 ----   
283 ± 16          (10) 
311 ± 27        (145) 

 

402 ± 15                  (10) 
400                          (10) 
471*                          ----   
423 ± 23                  (10) 
412 ± 37                (137) 

 

(Jones & Crisp, 1954) 
(Soares, 1958) 
(Lang, 1980) 

(Lee et al.,  1998) 
Present study 

 

F 
F 
- 
L 
F 

 
 

V 

 

281 ± 28             (12) 
290                     (10) 
314   *                  ----   
282 ± 13             (10) 
289 ± 27             (77) 

 

354 ± 18          (12) 
---- 

428*                 ----    
342 ± 19          (10) 
392 ± 33          (77) 

 

496 ±  23                 (12) 
480                          (10) 
571*                          ---- 
492 ± 19                  (10) 
492 ± 50                  (78) 

 

(Jones & Crisp, 1954) 
(Soares, 1958) 
(Lang, 1980) 

(Lee et al.,  1998) 
Present study 

 

F 
F 
- 
L 
F 

 
 

VI 

 

370 ± 14               (8) 
390                     (10) 
442 *                    ----   
337 ± 18             (10) 
369 ± 27             (71) 

 

465 ± 16            (8) 
---- 

585*                 ----  
461 ± 13          (10) 
502 ± 29          (71) 

 

624 ± 30                    (8) 
620                          (10) 

---- 
624 ± 15                  (10) 
621 ± 48                  (65) 

 

(Jones & Crisp, 1954) 
(Soares, 1958) 
(Lang, 1980) 

(Lee et al.,  1998) 
Present study 

 

F 
F 
- 
L 
F 

 
 

Cypris 
---- 
---- 
---- 

---- 
---- 
---- 

 

523 ± 12                    (8) 
523 ± 21                  (10) 
523 ± 20                    (6) 

 

(Jones & Crisp, 1954) 
(Lee et al.,  1998) 

Present study 

 

F 
L 
F 

 

Where: SD = ±1 Standard Deviation; n = number of organisms measured/ or replicates; ---- = Value/measure not available; L/F 
indicates the measurements were made on laboratory cultured nauplii (L) or field plankton samples (F) 
* Values obtained from drawings.  
** Values obtained after averaging the range of sizes given. 
**** n were not given  
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Appendix XI e – Total length, carapace length and width of the naupliar stages I to VI + 
cypris of Verruca stroemia, from the present study, with the reported values from 
literature. (All measurements in µm) 

Verruca stroemia (µm) 
  

Carapace    
Stage Width ± SD      (n) Length ± SD    (n) Total Length ± SD (n) Source L/F 

 
I 

 

120                    **** 
117*                     ---- 
140 ± 28               (2) 

 

---- 
---- 
---- 

 

270                         **** 
223*                          ---- 
280                            (2) 

 

(Bassindale, 1936) 
(Pyefinch, 1948)  
Present study 

 

L 
- 
F 

 
II 

 

190                    **** 
202*                     ---- 
170                    **** 
180 ±  9            (170) 

 

---- 
---- 
---- 
---- 

 

440                         **** 
400                         **** 
410                         **** 
412 ± 36                (169) 

 

(Bassindale, 1936) 
(Pyefinch, 1948) 
(Soares, 1958) 
Present study 

 

L 
- 
F 
F 

 
III 

 

250                    **** 
---- 

250                    **** 
212 ± 13           (116) 

 

---- 
---- 
---- 
---- 

 

500                         **** 
470                         **** 
490                         **** 
456 ± 34                (114) 

 

(Bassindale, 1936) 
(Pyefinch, 1948) 
(Soares, 1958) 
Present study 

 

L 
- 
F 
F 

 
IV 

 

280                    **** 
---- 

310                    **** 
256 ± 21             (37) 

 

340                 **** 
310                 **** 

---- 
297 ± 26          (37) 

 

580                         **** 
540                         **** 
560                         **** 
500 ± 37                  (29) 

 

(Bassindale, 1936) 
(Pyefinch, 1948) 
(Soares, 1958) 
Present study 

 

L 
- 
F 
F 

 
V 

 

300                    **** 
---- 

340                    **** 
311 ± 18             (15) 

 

370                 **** 
390                 **** 

---- 
371 ± 27          (15) 

 

630                         **** 
620                         **** 
600                         **** 
590 ± 44                  (12) 

 

(Bassindale, 1936) 
(Pyefinch, 1948) 
(Soares, 1958) 
Present study 

 

L 
- 
F 
F 

 
VI 

 

370                    **** 
---- 

390                    **** 
353 ± 31               (3) 

 

420                 **** 
470                 **** 

---- 
427 ± 23            (3) 

 

690                         **** 
730                         **** 
700                         **** 
653 ± 31                    (3) 

 

(Bassindale, 1936) 
(Pyefinch, 1948) 
(Soares, 1958) 
Present study 

 

L 
- 
F 
F 

 
 

Cypris 
---- 
---- 
---- 

---- 
---- 
---- 

 

530                         **** 
480*                          ---- 
480                            (1) 

 

(Bassindale, 1936) 
(Pyefinch, 1948) 
Present study 

 

L 
- 
F 

 

Where: SD = ±1 Standard Deviation; n = number of organisms measured/ or replicates; ---- = Value/measure not available; L/F 
indicates the measurements were made on laboratory cultured nauplii (L) or field plankton samples (F) 
* Values obtained from drawings. 
**** n were not given  

 
 
 
 
 
 
 
 
 
 
 
 
 


