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A Mesh Transparent Numerical Method for Large-Eddy Simulation of 

Compressible Turbulent Flows 

by 

Indi Himawan Tristanto 

Abstract 

A Large Eddy-Simulation code, based on a mesh transparent algorithm, for hybrid 

unstructured meshes is presented to deal with complex geometries that are often found in 

engineering flow problems. While tetrahedral elements are very effective in dealing with 

complex geometry, excessive numerical diffusion often affects results. Thus, prismatic or 

hexahedral elements are preferable in regions where turbulence structures are important. 

A second order reconstruction methodology is used since an investigation of a higher 

order method based upon Lele's compact scheme has shown this to be impractical on 

general unstructured meshes. The convective fluxes are treated with the Roe scheme 

that has been modified by introducing a variable scaling to the dissipation matrix to 

obtain a nearly second order accurate centred scheme in statistically smooth flow, whilst 

retaining the high resolution TVD behaviour across a shock discontinuity. The code 

has been parallelised using MPI to ensure portability. 

The base numerical scheme has been validated for steady flow computations over 

complex geometries using inviscid and RANS forms of the governing equations. The 

extension of the numerical scheme to unsteady turbulent flows and the complete LES 

code have been validated for the interaction of a shock with a laminar mixing layer, a 

Mach 0.9 turbulent round jet and a fully developed turbulent pipe flow. The mixing 

layer and round jet computations indicate that, for similar mesh resolution of the shear 

layer, the present code exhibits results comparable to previously published work using a 

higher order scheme on a structured mesh. The unstructured meshes have a significantly 

smaller total number of nodes since tetrahedral elements are used to fill to the far field 

region. The pipe flow results show that the present code is capable of producing the 

correct flow features. Finally, the code has been applied to the LES computation of 

the impingement of a highly under-expanded jet that produces plate shock oscillation. 

Comparison with other workers' experiments indicates good qualitative agreement for 

the major features of the flow. However, in this preliminary computation the computed 

frequency is somewhat lower than that of experimental measurements. 

Keywords: Computational Method, Unstructured Mesh, Finite-Volume, Compressible 

Flow, LES, RANS, Parallel Computing 
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All of them were silent. 
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Nomenclature 

The symbols used in the present thesis are based on what is commonly found in the 

literature. Whenever possible, all scalar quantities are printed as normal typeface char

acters whereas the tensor (including vector) quantities are printed as bold typeface 

characters. Consequently, elements of a tensor are written as scalars. 

Latin Characters 

a speed of sound 

CDES constant for DES model 

Cs constant for Smagorinsky model 

Cw constant for WALE model 

Csth constant for Sutherland viscous law, defined by 2.14 

Cbl a constant in Spalart-Allmaras model 

Cb2 a constant in Spalart-Allmaras model 

Cvl a constant in Spalart-Allmaras model 

Cwl a constant in Spalart-Allmaras model 

Cw2 a constant in Spalart-Allmaras model 

Cw3 a constant in Spalart-Allmaras model 

Gp specific heat at constant pressure 

Cv specific heat at constant volume 

c aerofoil chord length 

D nozzle jet diameter 

d nearest distance to a solid wall 

E specific total internal energy of the fluid, defined by 2.8 

F convective flux vector, defined by 2.3 

f specific external body force, f = fxi + fyj + fzk 



Nomenclature xvi 

fv1 viscosity function in Spalart-Allmaras model, defined by A.13 

fv2 viscosity function in Spalart-Allmaras model, defined by A.19 

fw wall function in Spalart-Allmaras model, defined by A.20 

G diffusive flux vector, defined by 2.4 

9 a parameter in Spalart-Allmaras model, defined by A.21 

Cartesian unit vector along x-direction 

j Cartesian unit vector along x-direction 

j imaginary component of a complex number, j = A 
k Cartesian unit vector along x-direction 

k heat conductivity 

K an adjustable constant for MUSCL extrapolation 

K an adjustable constant to tune Venkatakrishnan limiter 

L characteristic mesh spacing 

M Mach number 

N total number of samples for ensemble averaging 

n normal vector, n = nxi + nyj + nzk, n = 8ft 

ft unit normal vector, ft = nxi + nyj + nzk 

Pr Prandtl number 

Prt turbulent Prandtl number 

p pressure 

cl heat flux vector 

Q conservative state vector, defined by 2.2 

ReD Reynolds number based on nozzle jet diameter 

R nozzle exit radius 

pipe radius 

r Cartesian position vector, r = xi + yj + zk 

f unit cartesian position vector, f = rxi + ryj + rzk, r = Irlft 

!)\ specific gas constant, !)\ = Cp - Cv 

S source term vector 

8 surface area of the computational control volume 

component of velocity strain 

88th constant for Suther land viscous law, defined by 2.14 

Sd component traceless symmetric part of velocity gradient tensor 

T temperature 

time period 

t time 



Nomenclature xvii 

Un velocity component along unit normal direction, also: contravariant velocity, 

Un=u·n 

u velocity vector, u = ui + vj + wk 

U unit velocity vector 

u Cartesian velocity component along x-direction, also UI 

UT friction velocity on a solid wall 

v Cartesian velocity component along y-direction, also U2 

V volume of the computational control volume 

w Cartesian velocity component along z-direction, also U3 

x a spatial direction in Cartesian Coordinate Sytem, also: Xl 

y a spatial direction in Cartesian Coordinate Sytem, also: X2 

z a spatial direction in Cartesian Coordinate Sytem, also: X3 

Greek Characters 

f. a small number to avoid division by zero 

€ low cut-off value for the numerical dissipation switch, eq. 4.19 

r computational control volume 

er surface of the computational control volume 

"y ratio of specific heats, "y = cp/Cv 

~ specific filter size 

Oij Kronecker delta function, Oij = 1 if i = j, Oij = 0 if i =f j 

(" a local coordinate variable 

TJ a local coordinate variable 

() turbulent heat conduction 

K, von Karman constant 

>. eigen value of convective flux matrix 

/L molecular dynamic viscosity 

/Lt turbulent eddy viscosity based on Boussinesq hypothesis 

o a Venkatatkrishnan constant; scaled with the local cell size 

p density of the fluid 

a turbulent Prandtl number in Spalart-Allmaras model 

T Cartesian component of the shear stress 

T w shear stress on a solid wall 



Nomenclature 

if> numerical dissipation switch, defined by eq. 4.19 

<p a scalar variable 

X turbulent to molecular viscosity ratio,defined byeq.A.14 

'Ij; gradient limiter 

n magnitude of vorticity 

n modified vorticity in Spalart-Allmaras model, defined by eq. A.lS 

Subscripts 

x Cartersian x component of a vector, 8/8x 

y Cartersian y component of a vector, 8/8y 

z Cartersian z component of a vector, 8/8z 

i a Cartesian direction index 

a nodal index 

j a Cartesian index 

j a nodal index 

k a Cartesian index 

k a nodal index 

00 evaluated at free stream state 

1/2 evaluated at half centre line velocity state 

wall evaluated at wall state 

Operators 

\1 

GO 

RANS and LES filtered quantities 

RANS and LES Favre filtered quantities 

gradient operator, V' = 8/8xi + 8/8yj + 8j8zk 

convolution function for filtering 
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Chapter 1 

Introduction 

1.1 Motivation 

Turbulence is a natural phenomenon that occurs in many practical flows of aeronautical 

engineering interest. Thus its prediction through a simulation method always plays an 

important role in aerodynamic design. While Computational Fluid Dynamics (CFD) 

has been established as an important tool in flow simulation, its success in dealing with 

turbulent flows has largely been dependent on turbulence simulation techniques. These 

simulation techniques can be classified into two approaches (see McComb's review [761 

as an example), those that decompose the flow into a mean steady flow and a fluctuating 

turbulence component and those that try to resolve numerically the intermittent vortical 

structures in the fluctuating flow as much as possible. For ease of argument, the second 

approach is called the unsteady turbulence simulation. Reynolds-Averaged Navier

Stokes (RANS) turbulent simulation uses the first approach by introducing either an 

ensemble averaging or a time averaging to obtain a steady mean flow. The influence 

of the turbulence - in the form of normal and shear Reynolds stresses - on the mean 

flow is obtained from a semi-empirical turbulence model that has been built using 

statistical methods such as correlations, to take into account the physics of turbulence 

structures. The second approach includes Direct Numerical Simulation (DNS) that 

does not require any model and Large Eddy Simulation (LES) that is often performed 

with only a very simple turbulence model [34, 351. This approach relies heavily on the 

non-linear numerical schemes to simulate the time-varying nonlinear interaction among 

the turbulence scales. In some techniques, known either as monotonically Integrated 

LES (MILES) or embedded LES, the turbulence model is even provided solely by the 
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artificial dissipation of the numerics [16, 28]. 

The experience in the past decades, mainly from the late 1980s onward, has shown 

that a CFD solution with a RANS turbulence model is reasonably accurate in predict

ing skin friction and pressure distribution of an attached flow over a complex geome

try such as an aircraft in cruise configuration, but it suffers quite badly in separated 

flows [69, 114]. The situation is generally worse for flows where the prediction of partic

ular turbulence properties such as the root-mean square (rms) of individual fluctuations 

or Reynolds stresses are the main concern. Even a simple prototype problem such as a 

round free jet flow demonstrates this limitation very clearly [7]. This is because most 

RANS models assume that the turbulence eddies are isotropic [69], in spite of the fact 

that the large scale turbulence eddies are anisotropic and not linearly proportional to 

the Reynolds stresses. Furthermore, the anisotropy and non-linearity exhibited by the 

larger eddies are problem dependent. These limitations prove to be unsatisfactory for 

many modern design issues. Having been established as the most cost efficient tool 

for flow prediction, CFD is expected to be able to cope with these flows, in which the 

turbulent structures play an important role. Thus, the implementation of the unsteady 

turbulence simulation in practical CFD is a matter of necessity. 

An example of a flow problem where complex geometry as well as a complex flow

field with significant separation are involved is the Short Take-Off and Vertical Landing 

(STOVL) aircraft in ground effect. Figure 1.1 shows a typical scenario for a contempo

rary STOVL aircraft in vertical flight close to the ground with highly under-expanded 

supersonic jet from the rear engine nozzle impinging on the ground. Among other things, 

the jet impingement raises acoustic related problems ranging from airframe fatigue to 

ground crew health issues. When the nozzle is very close to the ground, the supersonic 

jet impingement becomes unsteady, which make it difficult for RANS to give an accurate 

prediction. Henderson et al. show that the ground impingement distance affects the jet 

acoustics [51]. Even when the impingement is steady, Parneix et al. have shown that 

unless the RANS turbulence model takes into account Reynolds stress anisotropy, the 

computational result will never be accurate [88]. In ref. [88] Parneix employed Durbin's 

v2f model [31] which involves as many as five partial differential equations rather than 

the one or two that are typically found in a simple RANS model. Another issue depicted 

in Fig. 1.1 is a possible engine surge due to the re-ingestion of the hot ground sheet (jet) 

flow caused by the ground vortex that is formed by interaction between the ground jet 

and the incoming headwind [86]. The prediction of hot gas ingestion using RANS has 

also met with limited success, mainly because of the RANS limitation in predicting the 

2 



1.1 Motivation 

separation that marks the beginning of the ground vortex [69]. 

Fan Inflow 
\ 

Headwind 

Ground Vortex 

-- ;;c Ground Jet 
Fountain Upwash 

Figure 1.1: Complex flow around a STOVL aircraft in ground effect. 

Another example of a practical engineering problem where accurate turbulent flow 

information is needed is turbulent mixing in a combustion chamber of an aero-engine, 

which has very complex geometry. Eventually such a mixing problem determines the 

quantity of pollutants emitted by an engine or noise generated by a jet , which is impor

tant in assessing the environmental impact of human flight. 

In Direct Numerical Simulation (DNS) one resolves all of the turbulent eddies that 

exist in the flow. Thus, DNS is essentially free from any empirical model. To capture the 

complete eddy spectrum, the mesh resolution must be able to resolve the smallest eddies. 

For turbulent flow through a pipe of diameter D , this means that the number of cells in 

the computational mesh is proportional to Re~4, where R eD is the Reynolds number 

based on pipe diameter. This mesh requirement means that DNS is too expensive for 

any practical flow. It is generally accepted that DNS is currently only useful for the 

investigation of the physics of turbulence [117]. 
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1.2 Aim 

Large-Eddy Simulation (LES) can be seen as a compromise between RANS and 

DNS. Here, the Navier-Stokes equations are filtered spatially to separate the large and 

small eddies. The large eddies, which are flow dependent , are directly resolved while the 

small ones, which are considered universal are modelled. Thus, the large scale turbulent 

unsteadiness is retained by the method, as in DNS, whereas the small scale relies more 

on empiricism like RANS. LES is often seen to be attractive due to its ability to give a 

more accurate result than RANS for a wider range of turbulence flow at a fraction of 

the cost of DNS. Hence LES could be very useful for flow prediction of STOVL aircraft 

in ground effect as well as the turbulent mixing in a combustion chamber. 

Theoretically, the spatial filter size, 6 , in LES does not have to be dependent on 

the mesh spacing size h, other than 6 2 h since filtering can only be done on the 

resolved flow-field which obviously depends on the cell size [36]. However , the two are 

often closely linked in practice [134]. In this case the length scale of the modelled eddies 

must be smaller than h. Hence the model is widely known as a sub-grid scale (SGS) 

model. This close relation between cell size and resolved turbulent scale means that LES 

requires a large number of cells, especially when a solid wall is involved. Furthermore, 

the unsteady nature of turbulent fluctuations needs a long time integration to gather 

the statistics . It must be emphasised that for wall bounded problems LES is still 

considerably more expensive than RANS. 

1.2 Aim 

The aim of the present research is to develop a practical tool to perform Large-Eddy 

Simulation for compressible turbulent flows involving complex geometries such as are 

typically found in industrial aeronautical engineering problems. Nevertheless, the re

sulting LES code is not aimed to replace RANS simulations especially on attached flow 

problems, as this still provides the most effective and efficient computational method 

for predicting skin friction and pressure distribution as typically required by engineers. 

1.3 Large Eddy Simulation for Engineering Flows 

It is generally acknowledged t hat the application of LES to a turbulent flow was pi

oneered by Smagorinsky who computed an atmospheric flow problem in 1963 [112]. 

LES application to internal flows of engineering interest followed shortly thereafter: 
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Deardroff 's computation of a channel flow problem in 1970 [25], and Schumann 's work 

in turbulent flow through an annulus which served as a very simplified model of flow 

in a modern reactor fuel rod assembly [103] . However , only recent developments in 

computer technology have made LES a more realistic tool for predicting practical engi

neering flows. 

Early LES works employed spectral methods to obtain high spatial resolution on a 

relatively coarse mesh [34]. Unfortunately, this efficient method needs a uniform struc

tured rectilinear mesh, which makes it awkward for complex geometries of practical 

engineering problems. Furthermore, difficult ies in defining boundary conditions, means 

that most spectral method LES computations were carried out for problems with pe

riodic boundary conditions [34] . During the 1970s Deardroff [25] and Schumann [103] 

pioneered the application of Finite Volume techniques, which had previously proved to 

be versatile for steady flow CFD [49] to address this limitation. Apart from its geomet

ric flexibility, the finite volume discretisation can be seen as an implicit filtering of the 

LES equation [134]. 

Together with finite volume discretisation on structured meshes, the second order 

central difference scheme is widely used in current finite volume LES solvers. (See 

review by Rodi et al. [96], for instance.) Recent ly, a study by Ghosal has indicated 

that the dispersion error of the second order central spatial discretisation may mask the 

sub-grid scale model [45] . This gave rise to the suggestion by Lele that higher order 

compact schemes with spectral like resolution [67] may offer superior performance (see 

refs. [14, 113 , 128, 129] for example). It must be noted that higher order discretisation 

is known to be unable to conserve both the momentum and energy at once [80]. 

1.3. 1 Computational Mesh 

CFD performs mathematical operations on a set of discrete points that are connected 

to one another to form a mesh or grid that covers the whole computational domain. 

The node connectivity, which is referred to as the mesh structure or simply structure, 

is important as calculation on each node requires information from its neighbours. This 

structure plays an important role in mesh topology, which affects the discretisation of 

the governing equation of the fluid flow for a given problem geometry. Without going 

into detail , there are two types of structure: structured and unstructured meshes. 

5 
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Structured meshes - as the name implies - arrange the nodes along a coordinate 

system so that these can be addressed by regular indexing, for instance node i is always 

placed between i - I and i + 1. The regular indexing makes each node directly accessible. 

When implemented in a CFD code this results in low memory usage and good CPU cache 

efficiency. This regular arrangement may be easily linked by Taylor Series expansion 

from which the finite difference and finite volume techniques have been derived. On the 

other hand such regularity leads to a fixed number of neighbours for each node: two 

in one dimension, four in two dimensions and six in three dimensions. This non-local 

nature restricts the fl exibility of the mesh in discretising a flow domain with complex 

geometry. 

In general, there are two types of structured mesh, namely a rectilinear or curvilinear 

mesh. A rectilinear mesh is obtained when the coordinate system is defined by a set of 

orthogonal straight lines, usually along Cartesian axis. Due to its simple construction, 

rectilinear meshes are found in many early CFD calculation such as that of Harlow 

and Welch [49]. As well as bringing simplicity to the mesh, the orthogonality supports 

flow decomposition along two or three linearly independent directions, which minimises 

discretisation errors due to cross derivatives. This means that a rectilinear mesh is 

particularly suitable for spectral methods as well as finite difference and finite volume. 

However, such an advantage quickly diminishes when a problem with a non-rectangular 

flow domain is encountered. Curvilinear meshes addresses the geometric limitation of 

a rectilinear mesh by having a coordinate system that is defined along a boundary 

curve, i.e. a boundary fitted mesh. Unlike a rectilinear mesh that is always orthogonal, 

such a mesh requires smoothing techniques to achieve near orthogonality, i.e. avoiding 

skewed and distorted cells as much as possible [125]. To handle flow domains with 

more complex geometry, the domain is divided into several topologically hexahedral 

blocks whose connection to one another is far more flexible than that of cells in a 

structured mesh. Each block is then discretised using curvilinear structured meshes. As 

demonstrated by Fig. 1.2, a multiblock curvilinear mesh makes structured discretisation 

on a relatively complex geometry easier than its single block counterpart. Despite the 

greater flexibility, multi block mesh generation is still time-consuming and the cells in 

the interface regions between blocks can be highly skewed and distorted. 

Unstructured m eshes are specifically designed to discretise complex flow domains 

by having nodes whose number of neighbours is not fixed. Hence the mesh has local 

properties as each cell can be placed independently. The local nature of the mesh means 
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Figure 1.2: Multi block mesh of a round jet with nozzle. Different colours are used to 

show different blocks. 

that a complex domain can be discretised with relative ease, which makes automatic 

mesh generation possible. Even when the geometry is simple, an unstructured mesh al

lows more efficient node clustering. Theoretically any cell shape can be used to discretise 

a problem geometry using an unstructured mesh. In practice, geometric simplices have 

proved to be the most widely used since these element types can easily tessellate any 

complex arbitrary shapes. Thus, triangles are often used for the surfaces of a domain 

boundary and tetrahedra for the domain 's volume. The less flexible prismatic cell, on 

the other hand, is more suitable for regions with high velocity gradients such as the 

viscous region near a solid wall boundary and a shear layer [101]. When mixed element 

types are employed in a flow solution algorithm (see Fig. 1.3) , it is desirable to avoid 

lists of element type - this results in a mesh-transparent algorithm. 

An unstructured mesh requires an explicit list of node to node connectivity to enable 

indirect memory addressing since it lacks any regular indexing pattern that provides im

plicit connectivity information in a structured mesh. As the neighbouring node number 

is not generally held in a memory address that is close, these are not normally cached 

at the same time resulting in longer CPU time to collect the data [71]. Although multi

block curvilinear meshes employ the same technique for block to block communications, 
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there are normally only very few blocks in a computational domain in comparison to 

the number of cells in each block. However, as computer speed grows, computation cost 

becomes much cheaper than the more labour intensive pre-processing. 

Figure 1.3: Unstructured mesh of a round jet with a nozzle. The irregular t riangular 

shapes inside the nozzle are tetrahedra that have been sliced by the centre plane to 

show this image 

1.3.2 LES on Unstructured Meshes 

One of t he most important aspects of implement ing LES on more realistic engineering 

flow problems is the ability to handle complex geometries. As in RANS CFD, this can 

be addressed by having either a structured multi-block curvilinear mesh or an unstruc

tured mesh. The work of Tang et al. [122] is an example of a successful application of 

multiblock LES on a lean premixed prevapourised combustor , which also highlight the 

difficult ies in generating a high quality structured multiblock curvilinear mesh. Despite 

being computationally more expensive, t he unstructured mesh is the preferred choice 

in this t hesis since it offers a higher degree of flexibility that allows automatic mesh 

generation. The following discusses some of t he issues of using an unstructured mesh 

for LES . 
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Numerical Dissipation is an important issue in a numerical schemes for LES be

cause it can interfere with the sub-grid scale model which is designed to simulate turbu

lence dissipation by small eddies. The dissipation can originate from the leading term of 

the truncation error that is associated with upwind discretisation. In the worst scenario, 

Beaudan and Moin [12] reported that the numerical dissipation can mask the sub-grid 

scale model contribution. Hence centred numerical schemes, whose truncation error 

does not behave as numerical dissipation, are usually preferred. Unfortunately there 

are some instances where upwind schemes are necessary, such as compressible flows with 

shock waves. Here, the dissipation is required to damp out non-physical fluctuations 

around the shock that sometimes cause the the solution to diverge [1]. For this reason 

LES of compressible jets [14, 26, 128] have employed a filter that is designed to remove 

such oscillations (see Lele [67] and Yee et al. [138]). 

State of the art unstructured finite volume solvers have been proved to be successful 

in RANS computations [71]. Flux evaluation along the direction normal to a face such 

as used in the finite volume technique creates artificial cross dispersion when a flow 

feature, such as shock, is not aligned to the face, irrespective of whether a centred or 

upwind scheme is employed. A properly designed structured mesh on a simple geometry 

can avoid this cross dispersion. On the other hand, polygonal cells of an unstructured 

mesh do not generally allow such alignment, unless a specific cell shape - cuboid - has 

been employed. 

The effect of the mesh misalignment in an LES computation is illustrated by com

paring computations of vortex shedding behind a cylinder using the 5th order upwind 

convective scheme reported by Beaudan and Moin [12] with that of Mittal and Moin [78]. 

The former employed an a-mesh topology whereas the later employed a C -mesh topol

ogy. Whilst the C topology mesh was aligned with the flow in the wake region, the 0 

topology was not. Beaudan and Moin reported that the numerical error was so large 

that the wake virtually became independent of Reynolds number. On the other hand, 

Mittal and Moin only noticed that the cut-off wave number of the energy spectrum had 

been reduced by the numerical error whereas the averaged Reynolds stresses in the wake 

were not seriously affected. Simons and Pletcher [109] carried out a similar comparison 

for homogeneous turbulence decay using two uniform meshes, consisting of hexahedral 

and tetrahedral cells, respectively. Unfortunately this investigation has not been useful 

since different numerical schemes were applied to each mesh. Whilst a centred convec

tive numerical scheme was employed for the first mesh, an upwind scheme was employed 

on the other. As a result, the dissipation that came from the cell geometry could not 
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be analysed in isolation from the upwinding dissipation. 

The simplest strategy that can be applied to deal with the inherent numerical dis

sipation in the numerical schemes is by introducing a scaling factor. If this is constant 

throughout the flow-field, as used by Bui [17] and Cammari and Salvetti [18], the scaling 

compromises the scheme's ability to dealing with shocks found in high speed flows. To 

address this shortcoming Ducros et al. [29] proposed a variable scaling factor, whose 

value depends on the velocity divergence and the vorticity to retain numerical dissipa

tion near a shock wave for stability whilst reducing it in regions of shear. This method 

is much simpler than the filtering technique that was suggested by Yee et al. [138]. It 

should be noted that neither the low speed computation of Jansen et al. [58], nor the 

high speed computation of Knight et al. [62] reported any special treatment to con

trol the amount of numerical dissipation in their schemes. Hence the inaccuracies due 

to excessive dissipation reported in those works may be alleviated by minimising the 

numerical dissipation. 

In a RANS turbulent flow computation using unstructured meshes for a three di

mensional problem, prismatic cells are often employed. Such a strategy has lead to 

the development of a mesh-transparent algorithm capable of handling virtually any cell 

geometry [50, 79, 102]. For the remainder of this thesis, such a mesh will be called 

a hybrid mesh. There is no reason why this strategy cannot be implemented in LES 

applications. Such implementation is very attractive as the numerical dissipation due 

to cell geometry can be reduced in areas where high shear due to turbulence exists by 

implementing prismatic cells in this region. In the meantime tetrahedral cells can be 

applied in other flow regions to ensure that a complex problem geometry can be handled 

correctly. It must be noticed that rather than trying to introduce complicated functions 

to minimise tetrahedral dissipation, this strategy simply opts to employ prismatic cells 

which are inherently less dissipative. The strategy also offers potential savings on the 

number of cells as more flexible mesh coarsening towards the far-field boundary can 

be achieved without sacrificing resolution in the region of interest. Despite this clear 

advantages, reference to this methodology in the literature is very rare. The author is 

only aware of two LES computation on hybrid meshes, namely turbulent flow in a round 

pipe [30, 84] and a combustion problem [105]. Both of these work have been performed 

at CERFACS. 

The Fluctuation Splitting technique has been developed since the mid 1990s through 

a reinterpretation of the Roe Flux Splitting scheme [97], the aim being to overcome the 



1.3 Large Eddy Simulation for Engineering Flows 11 

shortcomings of an unstructured finite volume solver by offering lower operating count 

and reduced numerical diffusion [108]. The first is achieved by avoiding face flux re

construction on the cell faces that characterise the finite volume approach. The later 

is achieved through a truly multidimensional operator as opposed to locally one dimen

sional numerical dissipation of the convective scheme as typically done in finite volume 

methods to provide stability. Even though this technique shows marked improvement 

in accuracy due to lower numerical diffusion over unstructured finite volume method in 

linear problems, the same cannot be said for a system of non-linear equations such as 

the Navier-Stokes equations [136]. Unlike the finite volume technique that guarantees 

conservation of property through flux balancing, Fluctuation Splitting behaves like a Fi

nite element method that may not conserve the flow properties [136]. There is no known 

LES application of this technique. As a number of researchers (e.g. [63, 80]) stipulate 

the conservative property as an important ingredient for LES, fluctuation splitting may 

not be suitable for LES. 

Higher Order Schemes are generally a desirable property in CFD as they usu

ally lead to smaller error than lower order schemes [45]. For ease of discussion, any 

discretisation scheme that is higher than second order is called a Higher Order Scheme. 

In finite difference and finite volume algorithms a high order scheme is achieved by 

increasing the size of the stencil. Lele introduced a numerical scheme based on Pade 

(Hermitian) interpolation to address this problem [67]. In a structured mesh, such a 

method has enabled 4th order spatial discretisation to be achieved by employing a stencil 

with two cells rather than four as needed for traditional schemes. Moreover, the Lele 

scheme also exhibits better resolution than the traditional discretisation scheme of the 

same order. Such a compact formulation can be particularly useful for unstructured 

meshes since a large stencil requires a complicated connectivity data structure. In spite 

of this, its implementation on unstructured meshes is rarely mentioned in the literature. 

The author is only aware of a preliminary study of Zingg and Lomax [144]. 

In the finite element method a higher order scheme is achieved by introducing 

a higher order trial function, i.e. a non-linear element is used. One method that 

has been gaining popularity in CFD is the Spectral Element technique (Discontinuous 

Galerkin) [21], which is essentially a finite volume based finite element algorithm that 

allows any order of spatial discretisation to be achieved by using a single element stencil. 

It is currently seen as one of the possible viable alternative methods to the traditional 

finite volume and finite element approach for LES on unstructured grids [60]. The 
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non linear element allows for a coarser mesh than typically used in CFD. Bassi and 

Rebay [11] demonstrated that the Discontinuous Galerkin method can give accurate 

results with a very coarse mesh. 

Ideally the implementation of a high-order scheme for LES is very desirable. Unfor

tunately, the cost of its implementation has proved to be quite expensive. For an un

structured mesh algorithm, the large stencil translates to more complex data structures 

that lead to longer execution time, whereas a compact stencil such as the Discontinuous 

Galerkin requires a larger number of operation count that makes it more expensive than 

a second order finite volume unstructured solver. Although the Discontinuous Galerkin 

method allows for a very coarse mesh, its implementation for LES would be limited 

by the resolution of the smallest resolvable turbulent eddies. Hence the saving that 

should result from a smaller number of cells may not materialise. Even for structured 

mesh LES, whose higher order extension is quite straight forward, one rarely imple

ments numerical schemes that are higher than 4th order accuracy. The author believes 

that a properly designed sub-grid scale (SGS) model should take care of the truncation 

error. Such a pragmatic approach is taken here for two reasons. Firstly, to keep the 

operation count low in response to the LES requirement for long time integration over 

a large number of cells so that computation of practical engineering flow problems are 

still within reach. Secondly, there is no evidence that LES computation using second 

order finite volume method leads to erroneous results. Furthermore, the second order 

scheme is less suceptible to numerical oscillations that often plague the higher order 

scheme. 

1.3.3 Sub-Grid Scale Model 

On the sub-grid scale modelling front, eddy viscosity models based on the Bousinesq hy

pothesis remains the most widely used. The simplest form is the standard Smagorinsky 

model that is very similar to the algebraic Prandtl mixing length RANS model. The 

SGS viscosity is calculated from the square of a length scale and velocity strain. The 

length scale is found from a characteristic filter length and a model constant, Cs, that 

is assumed to be uniform throughout the flow-field. Even though such an assumption 

has lead to a robust model since a positive value for Cs guarantees the model providing 

dissipation to the numerical scheme, it is generally not correct. To rectify this Germano 

et al. [44] introduced a dynamic procedure to calculate Cs by employing a local test 

filter. Thus Cs varies from point to point in a turbulent flow-field. Jansen [58] and 
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Vasilyev [131] and his co-workers have developed a dynamic procedure for an unstruc

tured mesh. While the dynamic procedure has improved the Smagorinsky SGS model 

significantly it increases the operation count dramatically as well as making the compu

tation less robust [96] as Cs can become negative. Although this can be interpreted as 

back-scattering which actually happens to a small amount in the physics of turbulent 

flow, the negative values sometimes become too large. This is not only physically in

correct as it represents large amount of back-scattering but also causes the solution to 

diverge. Rodi et al. [96] have noted that there are two ways commonly used to remedy 

this problem. One is to introduce a filter to clip the negative value. The other is to 

perform some averaging along the direction where the flow is expected to be homoge

neous such as utilised originally by Germano et al. [44]. However, the second remedy 

is only applicable to certain type of flow such as a channel flow or wing with infinitely 

long span (Le. statistically 2D problems), which do not represent typical engineering 

flow problems. 

The Scale Similarity model (mixed scale model) which was pioneered by Bardina et. 

al. [6] is another approach to SGS modelling that is based on the interaction around 

the cut-off frequency between the large and small scale eddies. This model allows 

energy back scatter but it does not normally produce enough dissipation and is therefore 

not robust [133]. Vreman et al. [133] showed that a hybrid of Scale Similarity and 

standard Smagorinsky model provides a good compromise between computational cost 

and accuracy. Rodi et al. [96] also mentioned this hybrid approach as a third way 

to remedy problems with the dynamic procedure. The deficiency with the Bardina 

model seems to have been addressed by later models such as that of Ta Phuoc Loc and 

Sagaut [99] and the structure function model of Metais and Lesieur [77], which is based 

on the interaction of kinetic energy at the cut-off frequency. 

A rather different approach to eddy viscosity SGS modelling is to employ the turbu

lent kinetic energy of the small eddies rather than resolved velocity strain to calculate 

the SGS viscosity. Just as in RANS, the kinetic energy evolution is calculated using a 

partial differential equation that is formed by modifying the Navier-Stokes equation [76]. 

The earliest model based on this method was developed by Yoshizawa and Horiuti [142], 

Horiuti [54] and Yoshizawa [140]. Recently, a dynamic procedure version of this model 

has been employed by Sinisa and Davidson [110]. 

SGS models based on the transport equation of the Reynolds stresses have also been 

suggested by Fureby et al. [41] and Carati and Wray [20]. Computationally this model 
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is very expensive since one has to calculate a set of coupled partial differential equations 

just like in RANS based on the Reynolds Stress model. Unlike the previous models, 

this type of model does not assume the SGS viscosity to be isotropic. The underlying 

motive is that the isotropy assumption for an existing SGS model can be violated by 

poor mesh resolution or even an anisotropic grid such as often seen in LES calculations. 

Fureby and Grinstein [39] and Drikakis [28] have shown that similar properties are also 

exhibited by embedded LES (also called MILES - Monotonically Integrated Large-Eddy 

Simulation), which was pioneered by Boris et al. [16]. Numerical dissipation, which is 

inherent in the convective numerical scheme, acts as a non linear sub-grid scale model in 

embedded LES rather than an explicit SGS model. It must be noted that MILES is still 

considered controversial as Garnier et al. [43] found that none of the upwind schemes 

they investigated actually mimic the behaviour of the Smagorinsky model in a number 

of homogeneous isotropic turbulent flows. However, such a discrepancy might be ac

ceptable since rigorous mathematical analysis performed by Fureby and Grinstein [39] 

demonstrated that, unlike embedded LES, the existing eddy viscosity SGS model such 

as the standard Smagorinsky actually lacks terms associated with high frequency dissi

pation that arise in mathematical analysis of the LES governing equations. Since this 

issue is beyond the scope of the present work, it is not discussed in this thesis any 

further. 

1.3.4 Near wall turbulence 

It has been mentioned briefly earlier that most practical engineering flow problems -

particularly in aerospace applications - involve the presence of a solid wall. Besides 

preventing the rapid growth of large scale turbulent eddies, the wall also reduces the 

turbulent intensities in comparison to levels found in free shear flows. Thrbulence is 

generated by instability in the very thin laminar sub layer near the wall, where short 

vortex filaments, called 'splats' or 'streaks', are lifted up from the wall and then burst. 

To resolve a streak, a very fine mesh, often not much coarser than DNS, is needed. 

Although the additional nodes in itself is not a serious problem for present day high 

speed parallel computers, the small cell size in such a fine mesh dictates a smaller time 

step which increases the number of time steps by several orders of magnitude. Thus, 

wall-resolved LES is often called Quasi-DNS (QDNS) [114]. For some internal flows 

such as a combustor, the near-wall turbulence is relatively insignificant in comparison 

to that of free stream turbulence. Thus, the need for QDNS can be avoided. However 

for most external flows, such as flow over an aircraft wing, near wall turbulence is very 
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important in predicting transition, separation, and ultimately skin friction. Spalart 

argues in his rather controversial paper that for for this reason alone wall-resolved LES 

over aircraft components will not be practicable until 2045 [1141. Similar conclusions 

can be drawn from the LESFOIL project, which intended to perform LES over a high 

lift aerofoil near stall [23, 68]. 

The standard Smagorinsky model that relies on a constant value of Cs is found to 

give the most inaccurate representation of a solid wall, since the finite value of velocity 

strain on the wall surface would result in a finite value of SGS viscosity there that should 

be zero. Van Driest damping is often introduced to ensure that Cs and hence the SGS 

viscosity is zero on the wall. However, such treatment still requires a fine mesh to 

resolve the streaks. Furthermore, the adoption of an eddy viscosity model does not lead 

to correct near wall velocity behaviour [69, 84]. Near wall modelling has often been cited 

as a more practical way to resolve the near wall problem, even though it means more 

reliance on empiricism. The simplest method is to employ a log-law wall function [96], 

which is often used in RANS. Hence the first node from the wall can be placed quite far 

away as resolution of wall streaks becomes irrelevant. At first glance both of the two 

methods, Le. Vand Driest Damping and log law wall function, seem to be quite straight 

forward as they only requires distance to the nearest wall in term of wall units, y+. This 

is true for structured meshes as y+ can be estimated fairly accurately along a coordinate 

direction. However, y+ computation in unstructured meshes is rather cumbersome as 

it requires a dedicated data structure to pair each interior node to a node on the solid 

wall [48]. Nicoud and Ducros have addressed this problem by introducing WALE [84], 

an SGS model that includes a term to give the correct turbulence behaviour near a wall 

without explicitly computing y+. WALE has also been shown to give correct near wall 

behaviour in ref. [841. 

Another alternative that has been proposed is to use RANS, which is reasonably 

accurate for attached flow with mild separation, for the near wall region and LES in 

the outer turbulence region [5, 19,24, 117, 123]. Although some RANS models require 

very close normal distance to the wall for the first point to resolve the laminar sub 

layer, they do not require the closely spaced nodes in the remaining directions that is 

needed by LES to resolve the streak. Hence a coarser mesh is possible by employing 

hybrid RANSjLES. Temmermann and Leschziner [123] have demonstrated that the 

RANS model actually responds relatively well to the LES fluctuation. Bagget [5] has 

demonstrated that in fact streaks are formed in the RANS region even though their 

sizes and spacing are not physically correct. 
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There are two approaches in a hybrid RANSjLES strategy that can be found in the 

literature. The first one is the zonal approach where t:lie the computational mesh is 

divided into separate RANS and LES zones. Normally the interface is defined before

hand in an area where RANS and LES are expected to produce fairly similar turbulence 

quantities. [24, 123]. The second approach is to devise a single model that switches from 

RANS to LES as soon as the nodes position reaches a certain distance from the solid wall. 

Thus, a relatively smooth transition between RANS and LES is guaranteed [19, 123, 99] 

by the second approach, whereas the first approach sometimes produces a kink on the 

zone interface [24]. Among several model that belongs to the second approach, the 

Detached Eddy Simulation (DES) scheme of Spalart et al. [117] seems to be the most 

mature at the time of writing [81, 118]. DES relies on a single model - usually the 

one equation Spalart-Allmaras model [116] although a two equation model of Menter 

SST - k - w has also been used [119] - this behaves either as a RANS turbulence 

model or an LES sub-grid scale model, depending on the cell size and its distance from 

the nearest wall. No explicit switching function is employed, this is provided by grid 

clustering [115] instead. 

1.4 Objectives 

Given the aim stated in section 1.2 and the summary of previous works outlined in 

section 1.3, the objectives of the present research are: 

1. To assess the viability of implementing higher order convective schemes, especially 

compact Pade scheme on an unstructured mesh to minimise interference between 

the numerics and SGS model. 

2. Development of a mesh-transparent numerical algorithm as a prediction tool suit

able for three dimensional turbulent flow problems found in practical engineering 

application using RANS and LES on hybrid unstructured mesh. 

3. Development of a portable parallel CFD code to take advantage of the current 

generation of parallel machines based on a distributed memory architecture. 

4. To demonstrate the capability of the code written for objectives 2 and 3 in per

forming LES on compressible turbulent flows. 
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1.5 Outline of Thesis 

The rest of the thesis is organised in the following chapters. 

The governing equations for the filtered Navier-Stokes equations and the turbulence 

models are presented in chapter 2. 

A preliminary study on the feasibility of the Compact Pade scheme for an unstruc

tured mesh is presented in chapter 3. The study is focused on mathematical analysis 

using Fourier transform as well as numerical experiments on the linear Burger's equa

tion. 

The algorithm of the numerical scheme for the mesh transparent edge-based un

structured flow solver is described in chapter 4. The chapter also discuses parallelisation 

issues of the present code using the MPI library. 

Chapter 5 is dedicated to verification of the basic steady solver. Two test cases are 

presented. The first is an inviscid flow over a generic wing-body configuration to assess 

the basic numerical scheme. The second is turbulent flow over an ONERA M6 wing 

designed to demonstrate the viscous part of the solver as well as addressing the Kutta 

condition problem that arises in inviscid flow problems. 

Unsteady flow verification is presented in chapter 6. A two dimensional supersonic 

mixing layer is employed to assess the Navier-Stokes solver in dealing with unsteady 

flow without having to include a sub-grid scale model. A more thorough verification 

is done by performing an LES computation of a Mach 0.9 round free jet. The wall 

bounded flow performance is also assessed through a low Mach number fully developed 

turbulent pipe flow case. 

Chapter 7 is dedicated to demonstration of the present method for a practical engi

neering flow, namely a preliminary LES of unsteady impingement of an under expanded 

jet. 

Chapter 8 presents the conclusions and some recommended further works. 



Chapter 2 

Mathematical Model 

The governing equations of fluid flow essentially consist of three conservation laws: 

the conservation of mass (continuity), the conservation of momentum as described by 

Newton's 2nd law, and the conservation of energy. By applying the three conservation 

laws on a fluid continuum, one arrives at a set of equations usually called the Navier

Stokes equations. The continuum assumption has to satisfy one condition, namely, the 

molecular scale of the fluid should be far smaller than any practical length scale to 

measure it. 

2.1 Navier-Stokes Equations 

The integral form of the Navier-Stokes equations for a stationary control volume r 
enclosed by surface ar can be written in vector form as follows: 

:t fft QdV + fiar F(Q)· ndS - fiar G(Q)· ndS = 1ft SdV (2.1) 

where n is the outward pointing unit vector orthogonal to ar whose Cartesian compo

nents are nx , ny and nz, and t is time. The state vector Q, convective flux vector F 

and diffusive flux vector G are defined by the following matrices. 

Q= 

p 

pu 

pv 

pw 

pE 

(2.2) 
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F·n=Un 

p 

pu 

pv 

pW 

p(E + p) 

o 
nx7 xx + ny7 yx + nz7 zx 

G . n = nx7 xy + ny7 yy + nz7 zy 

nx7 xz + ny7 yz + nz7 zz 

nxbx + nyby + nzbz 
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o 

(2.3) 

o 

(2.4) 

where p is the fluid density; u, v, w are velocity components in Cartesian coordinates 

x, y, z directions, respectively; p is pressure; E is the specific total internal energy. The 

contravariant velocity, Un is defined as 

(2.5) 

This contravariant velocity component plays an important role in flux computation 

across the control volume that will be discussed in chapter 4. 

In the absence of external forces and chemical reaction, the source term vector S is 

defined as 

o 
o 

S = 0 

o 
o 

(2.6) 

When a resultant of external body forces per unit mass f acts on the flow in a non

conservative system, the source term in the momentum equation must be equal to pf 

while the source term in the energy equation describes the external work done by f, 

hence the source term vector becomes 

S= 

o 
pfx 

pfy 

pfz 

p(fxu + fyv + fzw) 

where fx, f y, and fz are the Cartesian components of f. 

(2.7) 
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To provide a simple closure to the Navier-Stokes equation, the fluid is assumed to 

behave as a calorically perfect gas. Thus the total internal energy per unit volume can 

be defined as : 

pE= 
p(U2 + v2 + w2

) 

+ 2 (2.8) 

internal energy 
, , 

'" kinetic energy 

where T is the temperature. This assumption yields the well known ideal gas equation, 

namely p = pfJ\T, where fJ\ = cp-Cvi Cp is the specific heat capacity at constant pressure, 

and Cv is the specific heat capacity at constant volume. The two specific heat capacities 

are related by ~ = /. Hence the total internal energy can be recast as a function of p 
Cv 

and velocity components u, v, and w as follows 

(2.9) 

Components of bXi in the last element of vector G are defined using tensor notation 

with the summation convention implied as: 

(2.10) 

where i, j = 1,2,3 indicate individual Cartesian coordinate directions. The heat transfer 

in the Cartesian coordinate system qXi follows Fourier law of conduction as: 

The heat conductivity, k can be modelled as 

k = J.lCp 
Pr 

where Pr is the non-dimensional Prandtl number. 

(2.11) 

(2.12) 

For Newtonian fluids, such as air, the viscous stress components TXiXj in the diffusive 

flux G are defined as follows, using tensor notation with the summation convention 

implied. 

(
aUi aUi) 2 aUk 

TXiXj = J.l aXj + aXi - Oii3J.l aXk (2.13) 

The symbol Oij is the Kronecker delta function, which returns unity value when i = j 

and 0 otherwise. The molecular viscosity, J.l is a function of temperature that follows 

the Sutherland Law 

CsthT3/2 
J.l= 

T + 8sth 
(2.14) 
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where Csth and 8 sth are the Sutherland constants. 

Throughout the rest of the thesis, air is assumed to be the working fluid. Thus, the 

empirical values of the constants are given by table 2.1 

I constant I value unit 

'Y 1.4 -
Dt 287 Jj(kg K) 

Pr 0.72 -

Csth 1.458E-6 N.sj(m2K1/ 2 ) 

8sth 110.4 K 

Table 2.1: Empirical constants for air. 

2.1.1 N on-dimensionalisation 

In some computations, it is more convenient to work in non-dimensional terms. For 

instance, in aerofoil applications the physical dimensions that come from wind tunnel 

measurements are typically normalised by the chord length. Thus, computational results 

that have been carried out in non-dimensional terms can be compared directly. 

Non-dimensionalisation can be carried out easily by defining a set of reference 

quantities to scale the continuity, momentum and energy equations by (Prefuref )-1, 

(PrefU;ef) -1, and (PrefurefDtrefTref )-1, respectively. The reference quantities are 

Xref, Pref, Uref, Tref, Dtref for length, density speed, temperature and gas constant, re

spectively. The dimensionless variables are then: 

X~ = 2:L 
~ Xref 

T*--L 
- Tref 

t* - t 
- Xref!Uref 

Dt* = ---2L 
~ef 

p* = --E- u~ = ~ 
Pref ~ Uref P* - p - 2 

PrefUref 

Jl* = fI 
PrefUrefXref 

It must be noted that strictly speaking, Dtref can be derived from reference temper

ature and pressure, which in turn are functions of reference density and speed. Here, 

Dtref is defined explicitly so that an arbitrary value for Tref can be chosen while main

taining the simple scaling factor for the energy equation. Otherwise, a more complex 

scale based on (T - To) j (T1 - To) as non-dimensional temperature that involves two 

reference values, To and T1, must be used. 
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For the works in this thesis, the free stream density and sound speed are used as ref

erence values. Consequently, the non-dimensional free stream velocity is the free stream 

Mach number, the non-dimensional free stream density is unity and the non-dimensional 

free stream pressure is 1/'Y. Since the non-dimensional free stream temperature is set 

to unity, ~ef must be defined in such a way that ~* = ~ for consistency. 

For the rest of the thesis, non dimensional variables are printed without the star (*) 

to simplify the notation. Such simplification does not cause any difficulties since the 

dimensional equation can be recovered by simply setting all of the reference variables 

to unity. 

2.2 Filtered Navier-Stokes Equations 

In laminar flow, the application of the Navier-Stokes equations is fairly straightforward. 

This is not the case for turbulent flows as the governing equations must deal with the in

termittent coherent structures of the turbulence. As mentioned in the previous chapter, 

all of the turbulence eddies are resolved numerically in DNS. Hence, the Navier-Stokes 

equations can also be applied directly for DNS of turbulent flows. Unlike DNS however, 

the LES methodology relies upon filtering and modelling. For each flow variable, the 

following decomposition of filtered and modelled variables is used. 

(2.15) 

where (j5 is the filtered and cp' is the modelled quantity. 

LES employs a filtering operation to separate larger eddies to be solved numerically 

and smaller eddies to be modelled. Consider that the field cp is a function of coordinate 

position ~ in the domain (-00, +00). The filtering operation is defined by 

(2.16) 

where 6 is the filter width, and 17 is the coordinate position relative to the filter frame of 

reference. These coordinate position can be spatial coordinates if the filtering operation 

is done in space or wave numbers for frequency domain operation. G is a filter function. 

The simplest form of G returns unity when 17 is within the filter width and 0 otherwise. 

This behaviour is exhibited by a Fourier cut-off filter in the frequency domain and a 

top hat filter in the spatial domain. Thus the former is mostly used in conjunction with 

the spectral method while the later is used mainly for finite difference and finite volume 
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based LES. Furthermore, it is easy to see that top hat filtering can be done implicitly 

during the finite volume discretisation [134] by specifying the computational cell as the 

filter width. Spatial filtering is used at the present work. 

Inspection of the state vector Q shows that many of its elements are a product of 

density and other flow-field variables. Thus the filtered variables will have a rather 

tedious form [14]. As a common practice Favre averaging (density weighted averaging) 

is often use to simplify them. Favre averaging is defined as: 

pep 
ep = -=

p 

Thus the variable decomposition becomes 

- 11 ep=ep+ep 

The notation defined by eq. 2.18 will be used for the following discussions. 

(2.17) 

(2.18) 

Using the above filtering and Favre averaging technique, the convective term in the 

momentum equation becomes 

------ ------
PUiUj = PuiUj + Puiuj + pU~/Uj + pu~ uj (2.19) 

The second and third terms on the right hand side are correlations between filtered 

and un filtered components of the velocity field. In LES, these terms are usually called 

"cross term", which are not Galilean invariant. Since these are normally considered to 

be quite small in comparison to the last term, this is often neglected [89]. However, for 

the present work, the last three terms are simply formulated as PUiUj - PuiUj, which are 

subsequently modelled by a sub-grid scale model. Thus the filtered convective terms 

becomes 

(2.20) 

Using the above filtering and Favre averaging technique, the convective term in the 

energy equation is treated in manner as indicated in appendix A. 

~ - - 1 
pEuj = pEuj + e + 2:lj - 'Dj (2.21) 

where "Ve is the SGS heat flux, "V.J is the SGS turbulent diffusion and "VD is the SGS 

viscous diffusion. These quantities are defined as follows 

(2.22) 
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(2.23) 

(2.24) 

It must be noticed that the cross terms between the high and low frequencies have not 

been neglected yet at this stage. 

Martin et. al. [75], showed that the SGS viscous diffusion is very small. Thus the 

term is neglected at the present work. Following Knight et al. [62], the SGS turbulent 

diffusion is approximated as 

(2.25) 

which has been shown to be reasonably accurate [75]. 

2.2.1 Governing LES Equations 

The filtering and decomposition of (2.15, 2.18) that has been described above modifies 

the Q, F and G terms (and also S when the system of equation is not conservative) in 

the Navier-Stokes equation as follows: 

p 

Pu 
Q= Tv 

pill 

pE 

p 0 

Pu nx 

F· ft = Un Tv +]5 ny 

pill n z 

pE +]5 0 

o 
nx(Txx + axx ) + ny(Tyx + ayx ) + nz(Tzx + azx ) 

G· ft = nx(Txy + axy ) + ny(Tyy + ayy ) + nz(Tzy + azy ) 

nx(Txz + axz ) + ny(Tyz + ayz ) + nz(Tzz + azz ) 

nxbtx + nybty + nzbtz 

where the contravariant velocity, Un is defined as: 

(2.26) 

(2.27) 

(2.28) 

(2.29) 



2.2 Filtered Navier-Stokes Equations 25 

and btx ; are defined using tensor notation with the summation convention implied as: 

(2.30) 

where 0 and 0= are the two modelled quantities. The former has been defined earlier 

while the later is defined as 

(2.31) 

2.2.2 Eddy Viscosity Hypothesis for SGS term 

For the present work, the LES SGS models are based on the eddy-viscosity hypothesis of 

Boussinesq. Hence it is assumed that the filtered kinematic viscosity iJ can be mimicked 

by an eddy viscosity Vt. Using the analogy that kinematic viscosity and molecular 

viscosity J-t is related to J-t = pv, the eddy viscosity can be related to the "turbulence 

viscosity" as J-tt = pVt. Thus the O=XiXj term is modelled as "turbulence viscosity" J-tt 

multiplied by velocity strain as for the filtered counterpart. 

_ _ (fJiii fJUj) _2 aUk 2_ --;;--;, 
a XiXj = pJ-tt aXj + aXi - P"3J-tt aXk Dij - "3PUkUkDij (2.32) 

As shown by W~ [135], the last term on the right hand side involving the turbulent 

kinetic energy, u~u~, is required to give the correct trace of the Reynolds stress, which 

takes into account compressibility effects on the turbulence field. Consequently, this 

term is not significant in low Mach number flows where no appreciable change of density 

has been observed. 

For low Mach number LES where the flow is practically incompressible, Bui [17] 

demonstrated a good agreement with a DNS flow-field when the turbulent kinetic energy 

term was neglected. Unlike the Bui computation [17], the present research is aimed at 

compressible flow in transonic and supersonic region. Thus, following Martin et al. [75] 

this term is retained, which leads to the following expression in LES computation of the 

stress terms in 2.28: 

_ _ _ (aUi aUj 2 aUk ) 2_ --;;--;, 
T XiXj + a XiXj = P (J-t + J-tt) aXj + aXi -"3 aXk Dij - "3pukUkDij 

Similarly, 0 is modelled as "turbulence conduction" 

Ox' = J-ttCp aT 
, Prt aXi 

(2.33) 

(2.34) 



2.3 Sub-Grid Scale Model 26 

where the turbulent Prandtl Number Prt is fixed at 0.9 for the present work. Hence 

the conduction term in 2.30 becomes: 

-. - (J.LtCp J.LCp) aT 
qXi +()Xi = -p +-p -a 

rt r Xi 
(2.35) 

To simplify notation, the filtered variables for the rest of the thesis are written 

without tilde 0) and over-bar (="). 

2.3 Sub-Grid Scale Model 

Three sub-grid scale (SGS) models are considered, namely the standard Smagorinsky 

model [36], the WALE model [84] and the DES version ofthe S-A turbulence model [117]. 

The stan,dard Smagorinsky model is the simplest sub-grid scale model that is commonly 

used in LES. Its accuracy is often cited to be inferior to the dynamic variation of the 

Smagorinsky model (e.g Refs. [44, 133]) but its lower computational cost is judged to 

be important for the present work. The WALE model has been designed by Nicoud and 

Ducros [84] to improve the standard Smagorinsky model without incurring significant 

additional cost. At the time of writing, DES is still seen as rather controversial within 

the LES community. The model is considered here simply because it offers a built-in 

near wall model [85] as well as a straightforward extension from the RANS S-A model, 

which can be easily implemented on an unstructured solver. 

2.3.1 Standard Smagorinsky model 

The standard Smagorinsky model is derived from Prandtl mixing layer theory. In 

this model, the sub-grid scale turbulence dissipation is simply proportional to velocity 

strain rate and a filter length scale, which in a finite volume implementation is simply a 

characteristic cell dimension. In many ways, it is very similar to an algebraic turbulence 

model of RANS. The standard Smagorinsky model, with summation convention implied, 

is defined as follows 

(2.36) 

and following Martin et al. [75], who implemented the Yoshizawa model [139], the SGS 

kinetic energy in eq. 2.32 is modelled as: 

(2.37) 
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where strain rate is defined as 

(2.38) 

It is obvious that this model is limited by having a single value of Smagorinsky 

constant Cs throughout the flow domain. This can be an important issue for wall 

bounded flows. On the wall surface, the dissipation must be zero. Since the strain rate 

is not zero on the wall, this implies that Cs should be zero. To rectify this a simple 

damping function based upon Van Driest damping is often introduced by replacing C; 
in (2.36) by C. An example of such modification is presented by DeBonis and Scott [26] 

as follows: 

where d+ is the distance from nearest wall in wall units, defined as 

d+ = puTd 
J1, 

Friction velocity UT is defined as a function of wall shear stress T w as 

(2.39) 

(2.40) 

(2.41) 

However, such a damping function is not implemented for the present work since the 

calculation of d+ would require an awkward data structure to store the corresponding 

wall shear stress for each vertex. 

As there is no agreement in the literature on the value of Cs and Cl that is applicable 

for general flow conditions, they will be defined according to the acceptable values for 

a particular flow problem. 

The dynamic procedure that was introduced by Germano et. al. [44] tried to address 

this problem by calculating Cs through a test filtering. Hence its value becomes a 

function of space and time. This method has become one of the most popular practices 

in LES [96]. The implementation of the dynamic procedure is felt unnecessary for the 

present work because of problems related to robustness of the computation as Cs may 

become negative. One way to cure this problem is by taking a spatial averaging along a 

direction that is statistically uniform (e.g. the span-wise direction of a channel). Whilst 

such a direction can be found easily in simple problems it is not generally available in 

practical three dimensional engineering problems that typically need an unstructured 

mesh. 



2.3 Sub-Grid Scale Model 28 

2.3.2 WALE model 

In ref. [84] Nicoud and Ducros argued that the standard Smagorinsky model suffered 

from two problems. Firstly the strain rate disagrees with the kinematic and dynamic 

properties of turbulence. Instead, these properties should be better represented by 

both strain rate - the symmetric part of the velocity gradient - and vorticity - the 

anti-symmetric part of velocity gradient. Hence WALE is derived from the velocity 

gradient tensor as follows. 

S~. - ~ (aUi aUk + aUj aUk) _ ~8 .. aUk aUk 
t] - 2 aXk aXj aXk aXi 3 l.J aXk aXk (2.42) 

where the summation convention is implied. Secondly, the near wall behaviour of the 

standard Smagorinsky model with Van Driest damping is in general analytically incor

rect. The WALE model is defined as 

= C2 !::,2
0P1 

J.Lt wP OP2 (2.43) 

(2.44) 

(2.45) 

where Cw is a model constant. This model can easily be related to a standard Smagorin

sky model by defining Cw as follows 

102 (S .. S .. )3/2 C2 = C 2 V 4 t] t] 

W 8 SijSij OP1jOP2 
(2.46) 

WALE is especially attractive to an unstructured mesh solver as it does not requires 

the computation of d+. The Yoshizawa model [139] is also used for the compressibility 

correction as defined in equation 2.37. 

2.3.3 Modified S-A model for Detached-Eddy Simulation 

It was argued by Spalart et al. [117] that the dissipation provided by the Spalart

Allmaras model 1 is proportional to the nearest wall distance d that appears in the 

destruction of the source term. The dissipation of the model can be made proportional 

to filter size as in the Smagorinsky sas model by replacing the d in equations A.16 

and A.22 with J which is a function of filter size. 

J = min( CDES!::" d) (2.47) 

lThe full description of the S-A model is given in section A.4. 
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where CDES is 0.65, as suggested by Spalart et. al. 

In this modified form, the S-A model can be considered as a one equation sub-grid 

scale model similar to that of Yoshizawa [139, 141]. It has been shown by Shur et 

al. [106] that DES mimics the standard Smagorinsky based large eddy simulation for 

decaying homogeneous flow. It must be emphasised that the compressibility correction 

used in conjunction with the other two models is not needed by the DES. 

Nikitin et al. [85] has shown DES can be seen as a form of LES with a built-in wall 

function, which is provided by the RANS part of the model. Unlike the mainstream 

research on wall modelling for LES whose aim is to obtain a near wall cell that lies in the 

logarithmic region of a boundary layer while maintaining low aspect ratio cells, DES 

retains the characteristics of a low-Reynolds-number turbulence model based RANS 

simulation that employs a very high aspect ratio cell that is capable of resolving the 

laminar sub-layer. 



Chapter 3 

Feasibility study of Pade 

Compact Scheme on 

Unstructured Grids 

3.1 Introduction 

The resolved component of an LES computation requires a numerical simulation for the 

convection of the intermittent turbulent vortical structures. Physically, these structures 

would continually be created, interact with the main flow and each other to be stretched, 

distorted, broken up to smaller scales and finally dissipated [76]. The dissipation is 

mainly carried out at the small scale level, i.e. it is performed by the SGS model. 

Consequently, numerical schemes for LES should ideally be free of dissipation in order 

to avoid any interference with the SGS term. Ghosal argued that a higher order scheme 

is necessary to achieve this [45]. In accordance with that study, there has been a growing 

trend in the LES community to implement fourth or sixth order accurate schemes [14, 26, 

128], even though there is no definitive proofthat the second order schemes predominant 

in the current generation of LES codes are unsuitable for such simulation [96]. As a 

short hand, in the rest of this chapter the term higher order scheme describes any 

spatial scheme that is higher than second order accurate. It is quite obvious that 

upwind schemes, whose leading truncation error term has a dissipative property, are 

deemed to be unsuitable for LES [12]. 

This chapter investigates the feasibility of implementing a high order scheme based 
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upon the Lele Pade compact scheme, henceforth simply called the compact scheme, 

in an unstructured solver. In one dimension, the scheme has been proved to have 

spectral method like resolution [67]. Whilst the three dimensional implementation in 

a structured mesh solver can be seen simply as an extension of the one dimensional 

formulation in three linearly independent directions [113], an unstructured mesh for

mulation is inherently multidimensional. Therefore, it is of particular interest to assess 

the practicality of implementing the compact higher order scheme on an unstructured 

mesh based solver. It must be noted that to this end the only work on a higher order 

LES code for unstructured mesh seems to the Spectral element method [60] that was 

essentially a Discontinuous Galerkin method. 

3.2 Linear Convective Term in one dimension 

To simplify the arguments, the linear wave equation (also known as linear Burgers 

equation) is used as a model in this section rather than the more complex system of 

equations that govern fluid flows as described in chapter 2. In one dimension, this 

equation reads 

8U 8U 
-=-c-
8t 8x 

(3.1) 

where c is the wave convection speed 

The conventional finite differencing technique employs an explicit formulation that 

is derived from the Taylor expansion of the dependent variables, U, at a stencil of 

neighbouring nodes. A second order accurate estimate of the first derivative at node i 

is obtained by utilising Taylor expansion from node i + 1 to i-I as follows: 

[
8U] = Ui+l - Ui-l + 0 (~x)2 
8x i 2~x 

(3.2) 

An explicit fourth order accurate estimate of the first derivative can be obtained by 

expanding the stencil to include nodes i - 2 and i + 2. 

(3.3) 

Alternatively, it is possible to write the Taylor expansion of the first derivative on 

the same uniform mesh as follows 

[
8U] [8U] [8

2
U] ~x2 [&U] ~x3 [fJ4U] 4 

8x i+l = 8x i +.6.x 8x2 i + 2! 8x3 i + 3! 8x4 i + 0 (~x) (3.4) 
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Upon scaling eq. 3.4 and 3.5 by a and adding them to eq. 3.2 one obtains an implicit 

scheme with fourth order accuracy for the first derivative. 

a [OU] +(1 _ 2a) [OU] +a [OU] = Ui+1 - Ui-I +f3t:J.x2 [o3~] +0 (t:J.x)4 (3.6) 
ox i-I ox i ox i+1 2t:J.x ox i 

where f3 = a -1/3! It can be seen clearly that setting a to 1/6 (hence f3 = 0) leads to a 

fourth order accurate implicit discretisation with a three point stencil rather than the 

five that was used by the explicit scheme of eq. 3.3. 

In ref. [67] Lele has employed this hermitian (Pade) methodology to devise a family 

of spatial derivative schemes that are widely known as compact schemes, which can be 

written using a set of parameters as follows: 

] Ui+1 - Ui-I Ui+2 - Ui-2 Ui+3 - Ui-3 
ao [oxUL_I + [oxU i+aO [oxU]i+1 = a 2t:J.x +b 4t:J.x +C 6t:J.x (3.7) 

Notice Ox signifies that a numerical approximation of %x has been used, hence there 

is no need to write the small error term. Here the fourth order accurate scheme reads 

(3.8) 

It must be noted that the saving that comes from having a smaller stencil is partly 

offset by the increase of of computational effort to solve the implicit formulation. 

Fourier analysis has become an important tool to analyse partial differential equa

tions, both in analytical and discrete forms. To simplify the current analysis, only the 

internal node discretisation is discussed in this thesis. Using a Fourier transform, U can 

be expressed as a complex number as follows 

U(x, t) = u(t)eiKx (3.9) 

where K is the wave number and j = A. In this format the first derivative can be 

written simply as 

oU 'K - = jKu(t)eJ x = jKU 
ox (3.10) 

Thus the linear wave equation can be written as 

oU . KU -=-)C 
ot (3.11) 
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In discrete form eq. 3.9 can be expressed as follows for node XQ and its neighbour, 

XQ + 6.x 

Uj = U(Xi, t) = u(t)ejKxo 

Uj+l = U(Xj+l, t) = u(t)dK(xo+box) 

(3.12) 

(3.13) 

Fourier transform of the second order accurate approximation of the first derivative 

can be obtained by inserting eq. 3.12 and 3.13 to 3.2. 

8 U; = u(t) (eiK(xo+boX) _ eiK(xo-boX») 
x I 26.x (3.14) 

Thus the discrete linear wave equation simply becomes: 

cu(t)e
jKxo 

jK (eiKbox _ e-jKbox) = -jcKUj sin (K6.x) = -jc* KU (3.15) 
K6.x 2 K6.x 

where c* is the discrete wave speed. The Euler formula [64] has been used to connect 

the exponential and trigonometric forms of the complex number. 

Comparison between the discrete second order first derivative of eq. 3.15 and its 

analytical form as defined byeq. 3.11 yields the following transfer function that relates 

the analytical wave speed to its numerical counterpart. 

c* sin (K 6.x) 
= ---'----'-

c K6.x 
(3.16) 

This function reflects how the discretisation error varies with the wave number. Sim

ilarly, the discretisation error for the explicit fourth order scheme can be analysed by 

performing the Fourier transform on eq. 3.3 and yields the following result 

c* 8 sin (K 6.x) - sin (2K 6.x) 
=-~~-~~~--~ 

c K6.x 
(3.17) 

whereas the explicit sixth order scheme yields 

c* 45 sin (K6.x) - 9 sin (2K6.x) + sin (3K6.x) 
=---~-~--~~-~--~-~ 

c K6.x (3.18) 

To carry out Fourier analysis on the fourth order accurate compact scheme, one 

starts by performing the Fourier transform on eq. 3.8 

8xUj (e- jK box + 4 + eiKbox ) = _ 3~~) (eiK(xo+boX) _ e-jK(Xo-boX») (3.19) 

Upon rearranging and manipulating eq. 3.19 using the Euler formula, the following 

expression for the discrete first order derivative is obtained 

3Uj sin (K6.x) 
(3.20) 

6.x [2 + cos (K6.x)] 
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Thus, the discrete linear wave equation can be expressed as 

. 3sin (K~x) 
DtUj = -JKUjc Kb:..x [2 + cos (Kb:..x)] (3.21) 

which yields the following discrete wave speed function 

c* 3 sin (K ~x) = ~~~~--~~~ 
Kb:..x [2 +cos(K~x)] c 

(3.22) 

For completeness, Fourier transform of the first order upwind scheme reads 

u(t)eiKxO (1 - eiK~x) . 1- cos (K~x) + j sin (Kb:..x) 
DtUj = -c b:..x = -JcKUj K~x (3.23) 

which yields the following transfer function 

C* sin (K ~x) - j [1 - cos (K ~x)] 
= 

C K~x 
(3.24) 

Even though the first order upwind scheme has a similar dispersion error to the second 

order scheme, it has an additional dissipation error from the leading error term that 

shows up as an imaginary component in the Fourier analysis. It must be mentioned 

that the Fourier transform of the discrete equation on a non uniform mesh always has 

the imaginary component that causes dissipative error. 

Figure 3.1 shows the resolution of numerical wave speed as a function of wave num

ber. Clearly the second order accurate scheme can only cope with low wave numbers 

and quickly suffers from dispersion error as the wave number increases whereas the 

explicit fourth order scheme is capable of dealing with larger wave numbers. It means 

that as the order of accuracy gets higher, the mesh can resolve a lot more information 

from the flow. In other words, a higher order scheme on a coarser mesh would produce 

similar accuracy to a lower order scheme on a finer mesh. It is also quite interesting to 

note that the Lele compact scheme yields lower dispersion error than its explicit scheme 

counterpart for the same order of accuracy. The Lele compact scheme is popular for 

this reason. Figure 3.1 also demonstrates that all of the centred schemes in uniform 

mesh does not have dissipation error. The figure also illustrates that the first order 

upwind scheme has identical dispersion error to that of second order centred scheme. 

But unlike the centred scheme, the first order upwind scheme has significant dissipation 

error. 
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Figure 3.1: Modified wave number for convective term in 1 dimension 
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3.3 Convective term in two dimensions 

The one dimensional analysis that has been shown previously can be easily extended to 

two dimensions, where the linear Burgers equation simply becomes 

au au. au - = -ccosO- - csmOat ax ay (3.25) 

where c is once again the wave convection speed and 0 is the direction of the convection 

relative to the x axis. As in one dimension, U can be expressed as a complex number 

as follows 

U(x, y, t) = u(t)eiK(xcos 8+y sin 11) 

In this format first derivatives can be written simply as 

au =jKcosOu(t)eiK(xcos8+ysinll) =jKUcosO aX 

au = jK sin Ou(t)eK(x cos 8+ysin 11) =jKUsinO ay 
Thus the linear wave equation can be written as 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

Unlike the one dimensional analysis that can only have one type of discretising 

mesh, in two dimensions there can be an infinite number of ways to do this. Despite 

this, the discretisation can always be cast along two linearly independent directions, i.e. 

the orthogonal x and y directions. By simple algebraic manipulation, the wave speed 

transfer function can be expressed generally as follows: 

c* DxUo cos 0 + DyUo sin 0 
~ = jKUo (3.30) 

where Uo is the value at the node of interest, which for the rectangular mesh would be 

recast as UI,J. The transfer function returns unity value when there is no error. In this 

section the analysis is performed only on a uniform rectangular mesh and a uniform 

equilateral triangular mesh. 

3.3.1 Uniform rectangular mesh 

Fig. 3.2 shows a uniform rectangular mesh which can be regarded as a prototype of a 

structured mesh with uniform spacing L. 
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,-- U1.J+1 

L 

U,,1,J U," U1+1.J 

T 
L 

• U,.>. 

Figure 3.2: Five point structured stencil 

For this mesh it can be shown that the Fourier Transform of the explicit second 

order accurate discretisation reads 

8x UI.J = jUI,J sin (K L cos B) 

8y UI,J = jUI,J sin (KL sin B) 

whereas the Fourier Transform of the fourth order Pade scheme returns 

8 Vi _ jUI,J3sin(KLcosB) 
x I,J - 2 + cos (KL cos B) 

, jUI,J3sin (KLsinB) 
u UI J = =--~-...,...::.,=--=-=-
y, 2 + cos (KL sin B) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

Figure 3.3 compares the polar plot of the transfer functions between the two dis

cretisation methods. The difference between the analytical convective speed c and its 

numerical counterpart c* is shown as deviation from a circle of unity radius. The fourth 

order compact scheme clearly demonstrates its ability in resolving higher wave numbers 

than its second order explicit counterpart. At very high wave number, two unit cell ~x 

per wavelength, both are noticeably directional with B = 45 deg being the preferential 

direction. 

3.3.2 A numerical experiment for a uniform rectangular mesh 

It must be said that the superior performance in dealing with linear convection problems 

does not always extend to non-linear problems such as the Navier-Stokes equations. For 

this reason the non-linear property is assessed here. 
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To demonstrate how the order of accuracy of spatial discretisation of the convective 

terms in the flow equations affects the flow structures, a simple numerical experiment 

was performed. To isolate the effect of the numerical scheme for the convective term, a 

single flow structure - namely a hypothetical vortex - was convected from one end of the 

computational domain to the other in an inviscid uniform flow. Figure 3.4 illustrates 

the basic set up of the experiment, notice that the observation line slices the domain at 

the position where the resultant velocity is more or less maximum. 

y 

0.5 solid wall bounda 

initial vortex posistion 

~h-0~.5~~--~----~--------------------------~3~.5~-X 

observation line (y=-O.084) 

inflow outflow 

0.5 solid wall boundary 

Figure 3.4: Computational set up for vortex convection 

A uniform flow-field with 10 units velocity along the x-axis, U 00 was used. The 

vortex was introduced by superimposing the following perturbation. 

by (-~) u = U. - -e 2 
00 R2 (3.35) 

bx (-~) v= -e 2 
R2 (3.36) 

b2 2 
T = T _ P r ( _r2

) (3.37) o 2R29t'j' e 

_ (T) ~:l P-Po -
To 

(3.38) 

P=Po (~) 7 (3.39) 



3.3 Convective term in two dimensions 

_ JX2 +y2 
r- R2 

40 

(3.40) 

where the vortex radius,R and strength, b, are 0.1 and 2.0 units, respectively. The fluid 

properties were assumed to be 1.4 for ,,(, and 10.0 units for 9t. The stagnation pressure, 

Po, temperature, To, and density, Po were 10000, 100 and 100 units, respectively. It 

must be emphasised that such a vortex is purely hypothetical as the rotation did not 

introduce any pressure difference perpendicular to the convection (Le. a radially sym

metric pressure disturbance is applied for the vortical structure). This particular set 

up was introduced to ensure that the structure moves mainly along a single direction, 

namely the x axis. A similar test has also been used by Smirnov et al. [113] 

Two uniform structured meshes were employed for this study: one served as a 

baseline mesh while the other was used for a refinement study. The baseline mesh was 

128 x 32 while the refined one was 256 x 64. Both were designed to be fine enough in 

resolving the vortex size to ensure that each cell only dealt with low wave numbers. 

For this experiment a second order accurate LES code [137], whose viscous terms 

have been disabled, has been employed as a reference. A simple structured code with 

low storage third order accurate Runge-Kutta time stepping has been written for the 

higher order convective scheme [126]. In all codes the time stepping was set at 1.0e-4 

units. 

Figures 3.5 and 3.6 show the vortex evolution indicated by the two numerical 

schemes. The fourth order compact scheme gives very small dispersion error so that the 

vortex distortion is virtually non existent within the time integration interval. It can 

be said that the high resolution property that has been seen in the linear analysis does 

extend to the non linear problem of flow computation in a uniform Cartesian mesh. 

The second order scheme clearly exhibits dispersion error that leads to phase lag of the 

high wave number components. Parts of the original vortex lag behind the rest of the 

structure being detached into ripples that follow the structure as it moves. The apparent 

decay of the peak of the instantaneous u-velocity indicates the gradual movement of the 

vortex along the y axis. Although this sideways motion is expected to occur due to the 

speed differential between the top and bottom part of the vortex, Smirnov et al. [113] 

did not report any significant sideways movement. As the fourth order scheme hardly 

shows the deviation, it suggest that the sideways movement observed in the second order 

computation is mainly caused by numerical error, possibly the pressure-velocity coupling 

employed by the modified LES code. By employing twice as many nodes along the x and 

y directions, Le. quadrupling the number of nodes, the second order results show more 
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Figure 3.5: Snap-shot of instantaneous perturbation speed at t=O.2 unit time. Consis

tent colour codes are used for the contour plots 
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comparable accuracy to t hat of the fourth order compact scheme. In this finer mesh, 

the sideways motion is much smaller than in the coarser mesh computation. Notice that 

the modified LES code (for the second order explicit scheme) employs staggered mesh, 

hence t he velocity is taken at slightly different location than the co-located code of the 

compact scheme, Hence t he discrepancy at the initial condition. 

For completeness, a result from the upwind bias scheme with the third order accurate 

MUSCL interpolation method [130] is also presented here. This scheme is employed in 

conjunction with Roe FDS scheme, and is described fully in section 4.4.1. Here, the 

upwinding effect is minimised by scaling down the Roe Dissipation to a quarter of 

its value and deactivating the limiter from the MUSCL interpolation. Figure 3.7(a) 

suggest that the sideways motion in this coupled solver is much smaller than that of 

second order modified LES code. Figure 3.7(b) shows that the rate of vortex strength 

decay during the computation. The plot suggests the kinetic energy is simply dissipated 

from the domain. In other word the scheme is not energy conserving. Such a behaviour 

is expected as a third order upwind scheme can be recast as fourth order scheme with 

numerical dissipation. Thus scaling down the numerical dissipation is indeed necessary 

to reduce the problem. 

3.3.3 Uniform equilateral triangular mesh 

As before, the theoretical study for the triangular mesh is centred on linear convection. 

Figure 3.8 describes the uniform mesh that is used for this analysis. It is clear from the 

diagram that the one dimensional treatment can not be extended directly, hence, the 

second order accurate spatial derivative is calculated using the Green-Gauss theorem [64] 

that has been widely used for unstructured mesh solvers , (e.g. ref. [50]) . It must be 

noted t hat in one dimension, the Green-Gauss theorem reverts to explicit second order 

finite difference formula. Thus, 

Vu, = L:i (Vo + V i ) . nOi SQi 

o 2fo (3.41 ) 

where f o is the area of the two dimensional median dual control volume, nOi is the unit 

vector of the control volume surface face with magnitude SOi . For the particular mesh 

shown in fig. 3.8 t he resulting spatial derivatives are 

o U, _ V3 - V6 V2 + V4 - VI - V5 
x 0 - 3L + 6L (3.42) 

(3.43) 
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(a) Snap-shot of instantaneous perturbation speed at t=O.2 unit time; Consistent colour code with 

the centred scheme contour plot are used. 

-..... 
c 
::l 

~ 
' (3 
0 
(j) 
2:-
::l 

25.0 

15.0 

10.0 

5.0 /::; - - -6 MUSCL_K1/3 (basel ine mesh) 
(7 - - ~ compact4 (baseline mesh) 

0.0 '--_~_~_~_.L...-_~_~_~_-'-_~_~_~_--' 
0.0 0.1 0.2 

t (time unit) 

(b) Decay of peak u-velocity along the observation line 
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Figure 3.8: Equilateral triangular stencil; shaded area is the median dual. 

Upon performing the Fourier transform and rewriting the exponential terms into sine 

and cosine functions, the following expressions are obtained. 

s: U, jUo [2 . (KL B) 2' (KLCOSB) (-I3KLsinB) ] 
U x 0 = 3L Sill cos + Sill 2 cos 2 (3.44) 

s: U, _ j-l3uo [2' (KL sinB) (-I3KL cOSB )] 
U y 0 - 3L Sill 2 cos 2 (3.45) 

Analogous to eq. 3.8, the fourth order compact scheme can be obtained by adding 

the derivative of the neighbouring nodes to the left hand side the Green-Gauss equation, 

thus 

(3.46) 

65 U, ~ 5 U. _ 2-13 (U4 + U5 - U1 - U2) 
yO+ L YJ- L 

j=l 

(3.47) 

Upon performing Fourier Transform and rewriting the exponential terms into sine and 

cosine functions, the following expressions are obtained. 

s: U, _ [5xUol order2 
Ux 0 - () 4 cos ( J( L ~os (} ) cos J3J( ~ si n (} 2 cos (K L cos B) + 6 

(3.48) 

s: U, _ [5yUOlorder2 
U

x 
0 - () 4 cos (J(L~os (} ) cos J3K~Sin!:l 2 cos (KL cos B) + 6 

(3.49) 
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where [JxUO]order2 and [JyUO]order2 are the explicit second order accurate approximation 

as given by eq. 3.44 and 3.45, respectively. This analysis is similar to that of Zingg and 

Lomax [144]. 

Figure 3.9 compares the polar plot of the transfer function between the two dis

cretisation methods on the uniform equilateral triangular mesh. Once again both are 

noticeably directional, for two cells per wavelength in particular, which shows periodic 

pattern at 60 deg interval. The compact scheme also exhibits better resolution for 4 and 

8 cells per wavelength. 

3.3.4 General unstructured mesh 

It must be noted that up to this point both the Fourier Analysis and numerical ex

periments involving a system of non-linear equation have been performed on uniform 

meshes. However, the real life applications of CFD are hardly ever carried out on such 

meshes. Since the unstructured mesh solver that is the main objective of this work 

usually has to deal with non-uniform cells, an analysis on a general unstructured mesh 

must be conducted. 

Zingg and Lomax [144] suggested that the compact formulation for a cluster of m 

vertices surrounding an arbitrary vertex 0 can be generalised into a family, very much 

like the Lele scheme [67], by introducing a parameter (3 as follows: 

(1 - (3) 'VUo + P... f 'VUi = L:i (Uo + Ui) . nOisOi 

m 2ro 
i=l 

(3.50) 

or alternatively 

(1 - (3) 'VUo + P... f 'VUi = L:i (Uo + Ui) . n Oi 
m . 2ro 

t=l 

(3.51 ) 

where the normal vector is used rather than the unit normal and face area. There is no 

reason why eq. 3.50 cannot be modified so that the right hand side expression is obtained 

from the Least squares method rather than the Green-Gauss theorem. However, in this 

section only the Green-Gauss gradient reconstruction is employed as it leads to a simpler 

analysis. 

At a glance such a formulation seems to be promising as it suggests that the higher 

order accuracy using the compact scheme that has been applied successfully in curvilin

ear structured meshes with mild stretching [113] could be implemented on unstructured 
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meshes as well . However, the one dimensional analysis implies that such a compact 

scheme is actually quite sensitive to the mesh smoothness. The analysis on the uniform 

mesh also suggests that the neighbouring nodes should be clustered in a radially sym

metric way to make sure that the imaginary component of the transfer function is zero. 

While smoothness is normally not a problem for a good quality unstructured mesh, the 

symmetry is rarely satisfied. 

Figure 3.10: A cluster of vertices surrounding an arbitrary vertex 0 

To illustrate the problem, consider fig. 3.10 that shows a typical stencil encountered 

in a computation on an unstructured mesh. From eq. 3.13 and 3.26 the discrete Fourier 

transform for a flow quantity U at neighbouring vertex i is defined as 

To simplify the notation, a complex number <POi = K(roix cos e + rOiy sin e) is introduced 

so that the discrete Fourier transform becomes 

(3.52) 

and 

(3 .53) 

Substitution of eq. 3.52 and 3.53 into eq. 3.51 and rearranging to collect Uo and \1Uo 

outside the bracket , yields 
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By recalling t hat the Euler formula for complex number gives ej z = cos z + j sin z; 

cos z = 1/ 2 (ej z + e-j z ) and j sin z = 1/ 2 (e j z - e-jz ) , it is easy to show that the 

summation can be rewritten as 
m 

L d 4>Oi = cos Z1 + cos Z2 + .. . + j (sin Z1 + sin Z2 + ... ) 
i=1 

From the defini t ion given by eq. 3.30, it is quite clear that the diffusion error that 

is associated with the imaginary component of the numerical wave number transfer 

function is zero when 

R e (f d 4>Oi ) = COSZ1 + cos Z2 + ... = 0 
t=1 

which can only be satisfi ed when m is even. Furthermore, rOi must be distributed in 

such a way that they can be paired to so t hat 

Im (f d 4>Oi ) = sin z1 + sin Z2 + .. . 
t=1 

is well defined . Unfortunately, these requirements are not generally satisfied by an 

unstructured mesh . To complicate the matter, failure to meet such a requirement leads 

to non-zero cross derivatives, which are not fo und in either uniform equilateral triangular 

or uniform rectangular mesh. This has not been taken into account in the previous 

analysis. It will be demonstrated on the later section that these cross derivatives will 

lead to undesirable results. 

3 .3 .5 A numerical experiment for unstructured meshes 

The second experiment has been designed to assess the suitability and ultimately the 

practicality of the unstructured mesh version of the compact scheme as suggested by 

ref. [144]. The parameter (3 is set at 0.5 since this will recover the fourth order accuracy 

on a uniform equilateral triangular mesh. At this stage, a linear double sine wave 

convection problem is considered. The convection is defined as 

(3.54) 

Notice that the convection velocity is unity along the x direction and two along the y 

direction. The initial scalar field <p describing the double sine wave is defined as follows 

{ 
- 0.5 ~ x ~ 0.5 

<p = sin(27rx) sin (27rY) 
-0.5 ~ y ~ 0.5 

(3.55) 
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Figure 3.11: Initial contour of U describing a double sine field 

which means that the computational domain has one wave length along both x and y 

directions as shown at fig . 3.11. 

Two anisotropic triangular meshes type are employed: triangulation of a uniform 

structured mesh, labelled U K - mesh; and a non-uniform mesh based on a Delaunay 

triangulation, labelled Dl - mesh, generated using the TRI8IT code [94]. Each type 

consists of a series of meshes with different numbers of node to assess the refinement 

effect. All of the meshes are intentionally made coarse to model real LES computations 

where many of the flow structures are of the same order of magnitude as the cell size. 

The baseline computations are carried out based on the derivative form of the gov

erning equation, thus the gradient is employed directly to solve the convection problem. 

These are labelled compact4 and explicit2. Another computation based on finite vol

ume formulation, labelled FV, is also presented for comparison since this technique is 

widely used in CFD. This is labelled explicit2(FV). The more detailed FV technique is 

described in section 4.4. 

Figures 3. 12, 3.13 and 3.14 suggest that some of the results simply show a phase lag 

whilst others show flow structure deformation in addition to the phase lag. It is quite 

clear that t he compact formulation only shows a clear advantage over the explicit scheme 

on the uniform anisotropic mesh, namely the U K - mesh. However this advantage 

quickly deteriorates when the more realistic Dl - mesh is employed. This finding is 

confirmed by table 3.1 that shows the actual accuracy based on the L1norm of the 
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Figure 3.12: U contour at the end of 1 period convection time using UK-mesh 
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error criterion. The table also shows that none of the schemes achieve the theoretical 

accuracy. This is because the mesh resolution for these computations lies on the limit 

of the numerical tolerance. 

I UK-mesh I Dl-mesh I 
compact4 3.40 1.30 

explicit2 1.79 1.12 

explicit2(FV) 1.47 1.14 

Table 3.1: Order of accuracy based on Ll-norm of the error 

3.4 Discussion 

The implementation of the compact scheme for a structured three dimensional CFD 

code, which is a pre-requisite for LES, is very straightforward. The implementation of 

a fourth order compact scheme in an unstructured code is attractive as it only requires 

the knowledge of the immediate neighbour of a node (or cell, depending on the vertex 

centred or cell centred formulation), which is compatible with typical data structures. 

Furthermore, just like Zing and Lomax[144] subsection 3.3.3 has shown that Fourier 

analysis of linear wave convection using such an unstructured formulation on a uniform 

equilateral triangular mesh is actually far less sensitive to the direction of the flow (i.e. 

multidimensional) in comparison to a uniform structured mesh. Closer inspections in 

subsection 3.3.4, however, revealed some major problems. If the domain is tessellated 

by a uniform but highly directional triangular mesh the Fourier transform also show a 

highly directional discretisation. Furthermore, when a typical triangulation algorithm 

is employed to generate the mesh, such as Delaunay triangulation, one cannot guarantee 

that all of the neighbouring nodes are equidistant and distributed radially symmetrical 

about the node of interest. The loss of these properties destroys the high resolution ca

pability of the compact scheme that has been suggested by Zingg and Lomax [144]. In 

such a case the two obvious alternative candidates to achieve higher order discretisation 

is either the Discontinuous Galerkin [22, 11] or the more conventional explicit differenc

ing with large stencil [9]. Both of these are significantly more expensive than second 

order discretisation on an unstructured mesh. The third candidate can be developed 

by modifying the unstructured mesh stencil. 

Observation of Lele's compact scheme, eq. 3.7, shows that the explicit term on the 
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Figure 3.15: Non uniform arbitrary triangular mesh 

right hand side consists of several nested stencils that have been utilised by Garnet et 

al [421 to discretise a non uniform structured mesh. In the light of these observation, 

the higher order scheme similar to that of Lele can be developed by decomposing the 

unstructured mesh shown in fig 3.15. into two components: primary and secondary 

neighbour shown in fig. 3.16 

u, 

(a) primary median dual (b) secondary median dual 

Figure 3.16: Decomposition of non uniform arbitrary triangular mesh of fig. 3.15 

In each stencil, the following scheme is applied to calculate the first derivative. 

8 U, "8 U,. - Al L:i (Uo + Ui) (nx)Oi SOi B1 L:k (Uo + Uk) (nx)Ok SOk 
x 0 + 0:1 L...J x I - 2f + 2f 

i 1 2 
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where rl is the area of median dual shown in fig. 3.16(a) and r2 are shown in fig. 3.16(b). 

It can be easily shown that the summation over the neighbouring nodes i around node 

o is Li (Uo + Ui) = Li Uj, hence the scheme becomes 

8 [J, + "8 U,. = Al Li Ui (nx)Qj SQj + BI Lk Uk (nx)Ok SOk 
x 0 al ~ x I 2r 2r 

. I 2 
I 

(3.56) 

(3.57) 

In two dimensions, the Taylor expansion can be expressed as 

[
8U A 8U A ] 2 [8U A 8U A ] 3 . _ . [8U 8U] 8x ~x + ay uY i 8x uX + ay uY i ... 

U'+1 - U.+ 8x ~x + 8y ~y i + 2! + 3! + (3.58) 

which shows the presence of secondary cross derivatives. In uniform mesh analysis in 

section 3.3, these derivatives are zero so that they do not play any part on the discretisa

tion, but this is not the case for arbitrary non uniform unstructured meshes. However, 

for simplicity, the cross derivative term is assumed to be negligible in comparison to 

the primary derivative. Thus, matching the Taylor expansion constants with that of 

eq. 3.56 for 8x Uo gives 

" _ Al Li (Xi - XO) (nY)Oi SOi BI Lk (Xk - XO) (nY)Ok SOk 
1 + ~ al - 2r + 2r 

i I 2 
(3.59) 

The y derivatives can be evaluated in similar manner. 

If the mesh consists of uniform equilateral triangles or rectangles, the constants of 

the 8;Uo terms are zero in both side of the equation. Thus the system of equations 

become overdetermined. In this case, al and a2 can be made equal and then used 

as a parameter, giving one degree of freedom to the system of equation that has been 

exploited by eq. 3.50. In ref. [1441, the parameter was chosen in such away that the 

condition for 8~Uo is satisfied, giving fourth order differencing as shown in eq. 3.46 and 

3.47. 
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For an arbitrary non-uniform mesh such as shown in fig. 3.15 the values for aI, AI. 

El are generally non zero to ensure fourth order accuracy in x derivatives and similarly 

a2, A2, E2 are non zero for y derivatives. In other words the stencil for a non-uniform 

mesh is necessarily larger than that of a uniform mesh. This reflects the findings of 

Gamet et al. [42] on a non-uniform structured mesh. Therefore the advantage of high 

order accuracy using a small stencil that underlines the compact scheme is not readily 

extensible to a non-uniform mesh. However, by considering t5xUo and t5;Uo one can 

drive the system to be overdetermined thus allowing B to be fixed at 0 and use al = a2 

as a parameter to obtain third order accuracy. Just as in the two previously mentioned 

schemes, this scheme also incurs significant additional cost that becomes more severe 

when a finite volume formulation is used due to the numerical integration on the control 

volume surface. 

Critical analysis of the simple experiments that have been conducted previously also 

reveal that in the event of the turbulent structures interactions (with each other), the 

ripple following the vortical structure that was shown by the lower order scheme becomes 

less important. Such interactions distort the large structures to the extent that they will 

be broken up to smaller ones within a relatively short period of time. Furthermore, the 

SGS term would damp the higher wave number. This explains the success of lower order 

LES codes [96]. The degree of mesh coarsening that has become possible because of the 

higher resolution of the higher order scheme, as demonstrated by Bassi and Rebay [11] 

for laminar flow, is ultimately limited by the turbulent scales that need to be resolve in 

the LES. This qualitative, and also intuitive, argument does suggest that for practical 

reason a second order scheme for performing LES on unstructured meshes should be 

acceptable. 

3.5 Closure 

It has been demonstrated, both theoretically and numerically, that high order numer

ical schemes for the convective term do have a high resolution property that leads to 

small dispersion error when an anisotropic uniform mesh is employed. As far as LES is 

concerned this property is very desirable as one can guarantee that the SGS model is 

not contaminated by the numerical error. The properties exhibited by Lele's compact 

scheme are particularly good so that one can argue it is worth the extra computing cost 

that arise from the implicit formulation. However, such an optimistic view is hardly 

applicable to a multidimensional formulation that is required by an unstructured flow 
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solver, where the higher order scheme can only be implemented at a significant addi

tional cost. Realising that the large number of cells that is coupled with a large number 

of iteration required for LES means that this additional cost can only be justifiable 

when access to high speed supercomputer is available. Even when such a machine is 

available, it seems to be more fruitful to exploit the computing power for solving a more 

realistic problem involving larger number of vertices using a lower order method rather 

than a higher order method on a simpler problem. 



Chapter 4 

Grid Transparent Numerical 

Method 

4.1 Introduction 

The general format of the fluid flow governing equations (2.1) (including the PDE of 

the turbulence model described by eq. A.15) can be written as follows 

where Q is the state vector, F is the inviscid flux vector, G is the viscous flux vector 

and S is the source term vector. It has been shown in Chapter 2 and Appendix A that 

in a conservative system, the source terms are non-zero only for the turbulence model. 

It has been argued in sections 3.3.4 and 3.4 that higher than second order scheme is 

impractical for CFD on a general unstructured mesh using finite volume technology, in 

spite of its potentially high resolution capability. Thus, a second order spatial scheme 

is employed for the present work. The second order approximation of a volume integral 

is evaluated using a single quadrature point located at the control volume centroid and 

the mean value of the property in the control volume. This is equivalent to the mass 

lumping technique in the finite element method. In a median dual cell, the vertices 

do not in general lie at the centroid of the dual cell. The problem can be reduced by 

carefully generating smooth unstructured meshes. 

The discretised governing equation integrated over a control volume with volume r 
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and m number of enclosing surfaces ar can be written as follows: 

m m 

DtQr + L F(Q) . narj + L G(Q) . narj = S(Q)r (4.2) 
j=l j=l 

where Dt is the time derivative operator. 

The discretised equation can be simplified further by grouping the fluxes and source 

term in a single residual matrix R to form a discrete ODE [57J. 

(4.3) 

where 

1 [ m m 1 R(Q) = r -~ F(Q) . narj - ~ G(Q) . narj + S(Q)r (4.4) 

4.2 Data Structure 

Figure 4.1 shows two adjacent primal cells, one is a tetrahedron formed by nodes 

v1-v2-v3-v4 and the other is a triangular prism formed by v1-v2-v3. v6-vS-v7. Cen

troids of the primal cells are at c1 and c2. fi,f2,f3,f4,and f5 are centroids of the faces 

of the primary cells. e12,e13,e14,e16 are midpoints of their respective edges. Two 

median dual components surrounding v1 that are contributed by the tetrahedron and 

triangular prism are drawn as two shaded hexahedra, v1-e12-f2-e13.e14-f1-c1-f3 

and v1-e12-f2-e13. e16-f4-c2-fS, respectively. If v1 is not a boundary node, it would 

be enclosed by an irregular polygon of the complete dual that is formed by contribution 

from all of surrounding cells. It can be seen clearly that each primal cell, independent 

of its geometric shape, contributes a hexahedron, formed by the vertex of interest, mid

points of the edges that emanate from the vertex, the centroid of the cell and their 

respective faces. This indicates a property of a median dual cell that can be exploited 

to obtain a grid-transparent method. It will be shown later that this property leads to 

a major simplification, that allows only an edge based data structure to be used 

In the edge based data structure, an array to store edge-to-vertices information, e2v 

is used. Any edge ie is defined as going from v1 to v2. 

e2v(i,ie) v1 

e2v(2,ie) v2 
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v4 

v5 

Figure 4.1: Median dual cell 

The bold edge between v1-v2 in fig. 4.1 is used as an illustration of how this data 

structure is formed in the following discussion. 

4.2.1 Surface of the Median Dual 

Recall that the discrete finite volume formulation (eq. 4.2) requires that each edge 

connecting two vertices can be associated to a median dual surface. Thus the surface 

information is stored in the following array that is linked to e2v. 

eface(1,ie) = Dijx 

eface (2, ie) = Dijy 

eface (3, ie) = Dijz 

Since the present method is designed to be second order accurate, the surface integral 

can be evaluated at a single quadrature point. Thus the facets surrounding an edge can 

be lumped together to save storage space. A linear approximation of the face normal 

associated to an edge U, Dij, is obtained by vectorial addition of all facet normals, Dik, 

that share the edge. Notice that the normals are defined pointing away from v1. The 

procedure is clearly shown by the two dimensional representation of figure 4.2 (a). The 
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2D sketch also illustrates the flux along edge vl-v2 would only see the projected area 

of the surface in the direction perpendicular to the edge, which is unchanged by the 

linear approximation. 

knG 
nij = Lnik 

k=l 

(4.5) 

In terms of the unit normal n and surface area s, the linear approximation is written 

as: 

knG 
nijSij = L nikSik 

k=l 

(4.6) 

In two dimensions, the normal of each segment can be obtained easily by rotating the 

edge vector through 90deg. 

(a) 

Figure 4.2: Surface of median dual cell about an internal edge 

In three dimensions, each of the facets has a quadrilateral topology irrespective of 

the primary cell's topology. Figure 4.1 illustrates part of this surface as a combination 

of two quadrilaterals cl-f2-e12-i1 and c2-f4-e12-f2. Figure 4.2 (b) shows a typical 

face surrounding an internal edge. To simplify the discussion, consider only the facet 
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that is contributed by the top tetrahedron. It is formed by connecting a midpoint edge 

(e), two centroid faces (!I and h) and the centroid of the tetrahedron cell (c). The 

normal of each segment is calculated by the cross product of its two diagonals, d~ and 
- - ---+ - ~ d2. For instance, at fig. 4.2 (b), nil is computed from dl = ec and d2 = iI12 as: 

(4.7) 

The quadrature point obtained from the above vector addition should be located at 

the median dual surface centroid, which is marked by "0" in fig 4.2. However, for 

convenience, it is approximated by the edge midpoint, which is symbolised "." in the 

illustration. Provided that cells surrounding the edge do not vary widely, the associated 

error should not be significant 

4.2.2 Volume of Median Dual 

In two dimensions, the dual area surrounding a vertex in a triangle is always a third of 

the total area of the triangles. For tetrahedra, it is a fourth of the volume. Unfortunately 

there is no such fixed ratio for quadrilateral and prismatic cell. Figure 4.3 shows an 

alternative method of computing the control volume by looping over the edges. The 

quadrilateral formed by two cell centroids and two vertices sharing an edge can be 

divided into two triangles (dark and light shade) with identical area (see fig.4.3 a). 

This can be generalised for two and three dimensional meshes easily. Upon inspection 

of fig.4.1 and 4.2, the median dual control volume can be approximated by a set of 

arbitrary polygonal cones associated to each edge. To illustrate this, the edge vl-v2 

of figure 4.2 and its associated surface is isolated in space. Two polygonal cones with 

identical bases can then be drawn by connecting all nodes of the median dual surface 

to the edge's end (see fig.4.3 b) 

The median dual control volume is therefore approximated as follows 

ieni 

Vi = L dVie (4.8) 
ie=l 

where in 2D the segment dVie is calculated as a quarter of the rectangle formed by the 

dot product of surface normal nij and edge i] vectors 

dV. = ~ (nij . i]) 
l.e 2 2 (4.9) 
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(b) 

,v2 

vI 

Figure 4.3: Component of median dual volume about an edge 

and in 3D the segment dVie is calculated as a sixth of the polygonal cylinders formed 

by the dot product of the surface normal nij and edge G vectors. 

dV = ~ (nij . G) 
l.e 2 3 (4.10) 

4.2.3 Median Dual Control Volume on the Domain Boundary 

Median dual control volumes are formed around each boundary nodes in a similar 

manner to those around internal nodes. Here, boundary fluxes are computed on the 

dual face about a boundary node. All boundary node indices are stored in a single array 

bVertices(l:bound_node_max). 

A second list is created to access data in bVertices using a CSR (Compact Sparse 

Row)-like technique [981. Variable vstart indicates a starting position ib value of a 

group of nodes listed within bVertices. Variable nverts indicates a jump to the the 

starting ib value of the next group. The boundary type, which will be shown later in 

detail, is defined by btype. 

DO indx = l,nboundary_region 

bRegion(l,indx) = btype 
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bRegion(2,indx) 

bRegion(3,indx) 

ENDDD 

vstart 

nverts 

DD ib=bRegion(2,indx),bRegion(2,indx)+bRegion(3,indx)-1 

bVertices(ib) = v 

ENDDD 

"14 

Figure 4.4: Median dual around a boundary node 

Figure 4.4 shows a median dual face about boundary node i. The bold lines indicate 

edges that connect surrounding nodes used to reconstruct the gradient at the boundary 

node using a least-squares method. The dashed lines are virtual wall edges to improve 

the gradient reconstruction. See section 4.4.3. 

Here, the face is constructed in similar way to section 4.2.1. The normal of the face, 

which points outside of the computational domain, is stored in the bNorm list which is 

linked to bVertices. 

bNorm(1,ib) = nix 
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bNorm(2,ib) = niy 

bNorm(3,ib) = niz 
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The technique illustrated by fig. 4.4 works well for any boundary surface with smooth 

curvature. However if anyone of the segments makes an acute angle to the others, 

such as in a wing trailing edge, a careful treatment is required. Although this is not 

normally a serious problem in viscous flows, it can be serious for inviscid flows with slip

wall boundary condition. This limitation will be illustrated by the inviscid calculation 

shown in chapter 5. 

4.2.4 Cyclic and Periodic Boundary Data Structure 

When two boundary surfaces are linked by a cyclic or periodic boundary, an additional 

data structure is provided to connect the two surfaces topologically. Thus, the boundary 

nodes on these surfaces in effect become internal nodes. The simplest, although not the 

cheapest, way to achieve this is by introducing virtual vertices and virtual edges around 

the boundary nodes. 

nv+l o nv+2 

i·······.. . .... 0 ..........•. " Shadow Cycll'c face i v4 ........ ~S····· YV 

Flow Outlet Periodic face -- v/3 no::.~...... vU v15 

nv+7 
0···........ v12 

vB ""----
v7 -----..v.9. ..... B"+B 

'v'j'~'/ 
Inlet Periodic ace vl 

~~--~~~~~--~~~~~ 
v3 

~ ........... ~······ ........ O'/ .. ·/ Primary Cyclic face 

nv+3 nv+4 nv+5 

Figure 4.5: Virtual cell and edges of cyclic and periodic boundaries 

Figure 4.5 illustrates the definition of virtual nodes and edges which are stored as an 

extension to the physical vertex list and e2v array. The normal vectors of the control 

volume surface associated to these virtual edges are also stored in an extension of the 

eface list. To simplify flux reconstruction, the virtual edge is arranged such that it goes 
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from the physical to the virtual node. An additional data structure is used to register 

the vertices pairing. 

00 indx = 1,nPC_region 

Aliasing(i,indx) PCtype 

Aliasing(2,indx) 

Aliasing(3,indx) 

ENOOo 

vstart 

nverts 

1* cyclic or periodic *1 

00 ib=bRegion(2,indx),bRegion(2,indx)+bRegion(3,indx)-1 

Alias ingV (i b, 1) 

AliasingV(ib,2) 

ENOOo 

v_primary_face 

v_shadow_face 

The strategy is similar to the data structure for other boundary conditions. AliasingV 

array lists all of the pairing vertices, whereas Aliasing array holds information on how 

to access the vertex list using CSR like method. 

4.3 Time Advancement technique 

The ODE of eq. 4.3 is solved by explicit time integration based on a low storage multi 

stage Runge-Kutta (RK) scheme [57]. Unlike the traditional m stage RK scheme that 

requires m-storage spaces for each variables at each node simultaneously [64], the low 

storage version only requires 2 storage spaces. This saving comes at the expense of 

accuracy. A 4 stage traditional RK scheme is 4th order accurate in time whereas the 

low storage counterpart that is widely used in CFD is only 2nd order. The low storage 

R-K scheme was used in conjunction with a local time step to accelerate the convergence 

of the steady solver. 

Q(!) = Qn + O.0833~tR(Qn) 

Q(2) = Qn + O.2069~tR(Q(1») 

Q(3) = Qn + 0.4625~tR(Q(2») 

Qn+1 = Qn + l.OOOO~tR(Q(3») 
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The above scheme originates from the precursor of the present work [50] and is 

retained for convenience. However as the work on the LES code started, it was found 

that a faster and higher order accurate RK scheme is readily available in the literature, 

namely the 3 stage RK scheme of Gottlieb and Shu[46], which is 3rd order accurate. 

Q(l) = Qn + ~tR(Qn) 

Q(2) = ~Qn + !Q(l) + !b.tR(Q(l)) 
4 4 4 

Qn+l = !Qn + ~Q(2) + ~b.tR(Q(2)) 
3 3 3 

4.4 Convective Numerical Schemes 

There are three main issues in handling a convective numerical scheme. Firstly, how 

to approximate the fluid properties on the control volume surface from the information 

stored at the control volume nodes. The second issue is the discrete convective flux 

approximation that ensure accuracy as well as robustness. The third issue is quadra

ture points to perform numerical integration over the surface. The last issue has been 

discussed earlier by employing a single quadrature point located approximately at mid 

edge since the present work is only 2nd order accurate in space. This section deals with 

the other two issues. 

4.4.1 Convective Flux 

The present work employs the Roe Flux Difference Splitting [97] approximate Riemann 

solver that has been widely regarded as a robust and accurate technique for RANS 

problems. The method is chosen because its strengths and limitations have been well 

documented [53]. 

At the face, left Qlf and right Q~ states are computed from extrapolation. The flux 

is then computed as an average of the flux computed from the left and right states and 

an artificial dissipation to provide upwind behaviour. 

1[ L R - R L] Fij ="2 F(Qij) + F(Qij ) -IAI(Qij - Qij) (4.11) 

where A = ~~ is the so called Roe matrix, that provides the artificial dissipation, and 

is calculated from characteristic waves. Since in multi dimensional problems there are 
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Figure 4.6: Reconstruction of variables on control volume surface 

an infinite number of such waves, it is a common practice in a finite volume method to 

consider only the wave that is normal to control volume surface (Le. the contravariant 

velocity component Un), thus the flux computation is treated locally one dimensionally. 

From linear algebra, the matrix A can be written in term of its right eigenvector 

a and its inverse that is usually called the left eigenvector a-I and a diagonal matrix 

consisting of its eigenvalues A. 

(4.12) 

Al 0 0 0 0 

0 A2 0 0 0 

A= 0 0 A3 0 0 (4.13) 

0 0 0 A4 0 

0 0 0 0 A5 

where 1~1,2,31 = Un, 1~41 = Un + a and 1:\51 = Un - a. 

By simplifying the contribution from the first three identical eigenvalues, the dissi

pation can now simply be written as follows 

(4.14) 
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where 

,A ,= ,3: ,.b.p ± 'jiC.b.Un 
4,5 4,5 2(i2 

1 o 
u .b.u - nx.b.Un 

v + P .b.v - ny.b.Un 
w .b.w - nz.b.Un 

~2 u.b.u + v.b.v + w.b.w - Un.b.Un 

1 

u±nxa 

v±nya 

w±nza 

h ± Una 
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(4.15) 

(4.16) 

where n is the face unit normal; a = R is the local sound speed; h = ~ ~ is the 

local enthalpy. The difference .b. and Roe averaged :- operators are defined as follows 

.b. = O~ - Off 

(.)T! UpT! + (.)!J- r:Rp!J-Cl = IJ V I-'ij IJ V I-'ij 

f;f+M 
Here the speed U is simply defined as U = u2 + v2 + w2 • The difference contravariant 

velocity is .b.U = .b.unx + .b.vny + .b.wnz. The Roe averaged contravariant velocity is 

U = unx + vny + wnz 

The Roe scheme was originally designed for Euler and RANS steady state compu

tation involving strong shock waves. As such, it may be too dissipative for LES and 

could cause excessive decaying of eddies. Based on numerical investigations of several 

compressible numerical schemes with numerical dissipation, Garnier et al. [43] suggests 

that a numerical switch that can distinguish between shock and turbulence is desir

able. Thus the Roe flux is modified by introducing a switch <P to control the artificial 

dissipation. 

(4.17) 

Yee et al [138] proposed a characteristic switch for <P based on the TVB formulation of 

Harten. The switch can be formulated quite easily and relatively cheaply in a struc

tured mesh. It was proposed to evaluate the switch only at the end of time step when 

multistage time stepping such as R-K is employed. However in an unstructured mesh 

the TVB switch becomes expensive, as it involves evaluation of R-l(Q~ - Qff). 
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Ducros et al. [29] who employ the scalar dissipation of the JST scheme [57] defined 

<I> as a scalar function that compares velocity divergence and vorticity. 

<I> = (V' . u)2 
(V' . u)2 + 0 2 + E 

(4.18) 

The rational is that in the neighbourhood of a shock wave, the velocity divergence 

will dominate the switch to recover the original artificial dissipation, whereas in the 

turbulence region, the vorticity will minimise the dissipation. E is a small number to 

prevent division by zero. Currently, it is set as 10-20. 

It is felt that the switch proposed in [29] is quite aggressive in the sense that dissipa

tion can be scaled down close to zero. Bui [17] has investigated that there is a minimum 

value that can be allowed to ensure stability in channel flow simulation. Thus for the 

present work (4.18) is modified as follows 

( 
(V' . u)2 ) 

<I> = max c, (V' . u)2 + 02 + E (4.19) 

where c is used to control the lower threshold value of the switch; when set to zero, the 

original switch is recovered. The switch can be easily modified to make it biased (.i.e. 

more sensitive) towards the vorticity as follows: 

( 
(V' . u)2 ) 

<I> = max c, (V' . u)2 + A02 + E ( 4.20) 

where A is an adjustable constant to set the vorticity weighting. The switch at edge U is 
calculated as <I>ij = max(<I>j, <I>j) since (4.19) is evaluated at the nodes rather than edges. 

Notice, the more elaborate gradient calculation for diffusive flux is not used here. 

As a shorthand for later discussions, the switch based on eq. 4.19 is called the 

O-switch at the remainder of the thesis. 

4.4.2 Reconstruction of flow property on control volume face 

In structured mesh methodologies, the Monotone Upstream-centred Schemes for Con

servation Laws (MUSCL) of van Leer [130] is generally regarded as a reliable way to 

perform higher order reconstruction. In this work the simplified version of MUSCL 

scheme that has been proposed by Barth and Jespersen [10], which is identical to the so 

called Fromm scheme in one dimension [130], is employed. Thus variable reconstruction 

on control volume surfaces is defined as follows: 

L 1 
Qij = Qi + V'Qj . '2 rjj (4.21) 
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(4.22) 

Notice that the left and right interpolation is actually defined by the direction of rij. 

The negative sign on the right hand side of eq. 4.22 is caused by the definition rij = -rji. 

This scheme is very attractive since it requires very small stencil, assuming the nodal 

gradients are known. To simplify the discussion, only a generic formula based on the 

left state reconstruction is used for the remainder of the chapter. 

Unfortunately, Godunov's Theorem states that only first-order scheme can be mono

tone [531. Therefore, it is necessary to introduce a non-linear gradient limiter function 

in order to force the reconstruction scheme to become first order around flow discon

tinuities whilst still producing higher order reconstruction everywhere else. Hence the 

MUSCL scheme is modified as follows 

(4.23) 

where Wi is the limit er function at node i. 

Venkatakrishnan's limiter function [1321 has been chosen for the present work since 

it does not enforce monotonicity too strictly. Like that of Barth and Jespersen [10], the 

limiter is multidimensional. Whilst this property is desirable for an unstructured mesh, 

it is rather expensive since additional interpolation is required to compute the limiter 

function. 

.6.1,max = CPmax - CPi 

.6.1,min = CPmin - CPi 

if .6.2 > 0 

if .6.2 < 0 

if .6.2 = 0 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 
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where 0 2 = (lCL)3, lC is an adjustable constant to tune the limiter sensitivity, and Lis 

the local mesh spacing. In the present work L is taken as the cube root of the control 

volume. 

This limiter function will only be applied for cases where robustness become a ma

jor issue as it can contaminate the solution field. This is particularly important for 

LES computation since the limiter function is known to be incapable of distinguishing 

between a high velocity gradient that is caused by flow discontinuity and vorticity [43]. 

4.4.3 Gradient Reconstruction 

There are two simple methods that can be used to reconstruct gradients for equa

tions 4.21 and 4.22 , namely the Green-Gauss theorem and the Least-Squares method. 

The former is analytical and can be reduced to second order central difference in one 

dimension. The later is heuristic as it is based on the following assumption : 

Vu n i (4.32) 

For an unstructured grid, such as illustrated in fig. 4.6, the above equation can be 

written in the following form: 

.6.Xli .6.Yli .6.z1i 

.6.x2i .6.Y2i .6.z2i 
(4.33) 

which can be recast as 

[A][x] = [h] (4.34) 

Since the matrix A is not square, this represents an overdetermined system, which 

can be solved in a Least-Squares approach, hence the name. To begin with, matrix A 

is decomposed into an orthogonal matrix Q and an upper triangular matrix R. 

[A] = [Q][R] (4.35) 

The solution of equation 4.34 can be written simply as 

(4.36) 



4.4 Convective Numerical Schemes 74 

It must be noted that [RP [QIT is actually a set of weighting functions. Thus the 

gradient computation at node i becomes as follows: 

The weighting function only depends on mesh geometry. Thus the weighting functions 

need to be calculated only once when stationary mesh is used. 

There are several QR decomposition methods that can be used here such as the 

Gramm-Schmidt or Householder algorithms. While the former is the simpler method 

of the two, the later is considered more robust [981. Since the matrix is not expected to 

be ill-defined, the simpler Gramm-Schmidt algorithm was chosen. Hence, the weighting 

functions are defined as: 

where 

T = T12 T23 - T13T22 

TUT22 

TU = 
N 

'""" b.x~ ~ JI 
j=l 

N 

L b.Xjib.Yji 

j=l 
T12=-----

N 

L b.Xjib.Zji 

j=l 
T13 = "'-----

T22 = t (b.Yji _ b.Xji T12) 2 

j=l TU 

(4.38) 

(4.39) 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

(4.44) 

(4.45) 
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(4.46) 

(4.47) 

Numerical studies by Anderson and Bonhaus [3] suggested that being based on 

an analytical method, the Green-Gauss gradient reconstruction is more accurate in 

approximating the derivative. However, they found that the linear reconstruction of 

equations 4.21 and 4.22 is more compatible to the Least-Squares method so that a more 

accurate reconstruction is obtained as a result. Haselbacher's studies [50] also supported 

these findings. 

Figure 4.4 illustrates the main drawback of the Least-Squares method in dealing with 

nodes on the non-slip wall boundary. In this situation the weighting would be biased 

toward the neighbouring nodes on the wall which have zero velocity. Hence the gradient 

on the wall would be underestimated. To alleviate the problem, it is common practice 

to introduce virtual wall edges [50]. It must be noted however that such a modification 

may improve the flux calculation, but still underestimates the wall gradient. 

4.5 Diffusive Fluxes 

It has been shown in chapter 2 that for a Newtonian Fluid, the viscous flux G, is 

proportional to the velocity gradient on the control volume surface (eq. 2.4 and 2.13). 

In computing the velocity gradient on the face, one has to remember that numerically the 

diffusive flux should have a stabilising effect, i.e. it must be positive. Haselbacher [50] 

has discussed extensively about issues regarding the diffusive term in the Navier-Stokes 

equations. The following scheme is employed to calculate the gradient at the control 

volume face. 

(4.48) 

where 

(4.49) 
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4.6 Boundary Conditions 

Boundary conditions are defined using the characteristic method. Supersonic bound

aries that require information from one side only are imposed using the strong form, 

whilst subsonic boundaries are defined using the weak form to take into account infor

mation from both sides of the boundary face. As shown in fig. 4.7, consistent with the 

internal faces, the left state vector is the internal information whose values are taken 

from the old variable values of the boundary vertices. The right state vector is specified 

according to the boundary condition type. 

outlet boundary 

Internal flow domain 

freestream boundary 

Figure 4.7: Inlet, outlet and free stream boundary conditions 

4.6.1 Inlet Boundary 

For a subsonic inlet, total pressure Po, total temperature To and the flow direction using 

unit velocity vector u are specified. Following Haselbacher [50], the right state vector 

R is defined using a backward-propagating Riemann invariant 

(4.50) 



4.6 Boundary Conditions 77 

and the total speed of sound 

L2 'Y- 1 L2 
ao = 'Y9\To = (ain) + -2-luinl (4.51) 

are used to formulate the right state speed of sound, which gives 

R 'Y- 1 [ ajn = - R_ - ( ) 2 () 2 1 + cos 4> 'Y - 1 cos + 
(-y - 1) cos

2 
() + 2 a& _ 'Y -2 1] (4.52) 

'Y - 1 R: 
where () is the angle between the left state velocity vector uf; and inward pointing unit 

normal vector at inlet plane -nin. 

For a wholly supersonic boundary, the incoming Mach number is prescribed to 

determine the right state vector. 

When perturbed boundary conditions are required, a modification is performed case 

by case. Hence the description is in the appropriate section defining the test case. 

4.6.2 Outlet Boundary 

For a subsonic outlet, the static pressure P~t is specified. Once again, following Hasel

bacher [50], the right state vector is calculated as 

R .! 

R L (Pout)-Y Pout = Pout ---y;---
Pout 

R L 2noutx ( L R ) 
Uout = Uout + --1 aout - aout 

'Y-

R L 2nouty ( L R ) 
Vout = Vout + --1 aout - aout 

'Y-

R L 2noutz ( L R ) 
Wout = wout + --1 aout - a out 'Y-

which has been based on the following Riemann invariants: 

R L (A) 2a~t 
+ = uout ' n + 'Y _ 1 

P Rs=-p'Y 

Rt = U· t 

(4.53) 

(4.54) 

(4.55) 

(4.56) 

where Rt stands for the tangential Riemann invariant and t is the appropriate tangential 

unit vector. 

For a supersonic outlet, the right state is specified to be the same as the left state. 

Consequently the Riemann solver is not required. 
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4.6.3 Free Stream Boundary 

The right state vector is simply taken from the specified free stream condition. Cur

rently, for lifting flow there is no far field lift correction implemented. Consequently the 

free stream boundary must be placed as far away as possible from the lifting body to 

minimise its influence on the boundary. 

4.6.4 Cyclic Boundary 

A cyclic boundary is used when the flow-field has repetition in the span-wise sense. 

Hence the two nodes that makes up an aliasing pair should be identical topologically. 

The extended data structure allows each node pair to be calculated separately. The 

pairing nodes should have identical value in the ideal condition (Le. computer round-off 

error is zero). As such an ideal condition does not exist the two values are averaged 

and then stored in each node to minimise the round-off error. 

4.6.5 Periodic Boundary 

A periodic boundary is used for flow with repetition along the stream-wise direction. It 

is normally used for a fully developed flow in a channel or pipe. It is assumed that such 

a flow is purely driven by pressure gradient to overcome wall friction. Thus a body force 

to model the pressure gradient is applied to eq. 2.7. The magnitude of the force must 

be estimated from a published data such as the Moody Chart or using the resistance 

law proposed by Blasius [135]. Having introduce the body force, all of the flow variables 

are treated in the same manner as for cyclic boundary. 

4.6.6 Slip Wall Boundary 

In a slip wall boundary condition, the flow is forced to be tangential to the wall. It 

is implemented in two stages. Firstly, the residual of the fluxes is calculated using the 

discrete form of eq. 2.3. Notice, the normal velocity Un is not assumed to be zero here. 

The second stage is velocity update at the end of each of the RK stage to ensure 

that it will be tangent to the wall. 

Uwall = Ut = U . t = U + (-u . il)il (4.57) 
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Figure 4.8: Calculation of tangential flow to node i that lies on a slip wall 

where i is the appropriate tangential unit vector. This vector operation highlight the 

dependency on proper wall normal estimation that is sketched in fig. 4.4. 

Although this treatment in general does not pose any problems for a slip wall bound

ary, it may not be applicable for sharp concave corner such as a trailing edge. It is ob

vious from fig. 4.4 that the approximation of the normal vector of the boundary nodes 

at the trailing edge is erroneous due to the discontinuity in the surface geometry. In 

turn, fig. 4.8 shows that such a normal is important to define the flow tangency, which is 

important for the Kutta condition. Therefore two possible modifications of the slip wall 

boundary condition are considered for the trailing edge problem. The first modification 

is to enforce the Kutta condition by simulating a stagnation condition at the trailing 

edge, i.e. zero velocity at the trailing edge vertices. The second modification is based 

on characteristic-type boundary condition that has been proposed by Anderson [2]. 

(4.58) 

Pwall - Paid 
Pwall = Paid + 2 (4.59) 

aald 

where subscript old indicates the values that have been obtained at from the previous 

stage of the RK solver. 
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4.6.7 Symmetry Wall Boundary 

Strictly speaking, symmetry boundary condition requires zero normal pressure gradient 

as well as tangential velocity on the surface boundary. The second requirement means 

that a symmetric boundary condition is very similar to a slip wall boundary. However 

the first requirement is rather complicated for an unstructured mesh. Since this bound

ary condition is less important for the current work it was felt that the normal pressure 

gradient obtain from the slip wall boundary was acceptable. Thus, in this thesis the 

symmetry boundary is treated identically to the slip wall boundary. 

4.6.8 No-slip Wall Boundary 

The most straight forward way of implementing adiabatic non-slip boundary condition 

is by setting velocity U equal to zero in equation 2.3. However, it was argued by 

Anderson and Bonhaus [3] that this simple implementation would enter a limit cycle, 

thus preventing convergence. They suggest an isothermal like no slip wall boundary 

condition where velocity is zero and temperature is defined by the following empirical 

formula: 

(4.60) 

Isothermal No-slip Boundary condition is virtually identical with the implementation 

of adiabatic no-slip wall boundary. The main difference is that the wall temperature T 

is specified as required, rather than using an empirical law. 

4.7 Implementation of Turbulence and Sub-Grid Scale 

Model 

All of the Sub-Grid Scale models that have been discussed in chapter 2 are based on 

the eddy viscosity hypothesis of Boussinesq, which is implemented by modifying the 

dynamic viscosity. For completeness the eddy viscosity based RANS turbulence model 

that is discussed in appendix A is also included. 
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4.7.1 Filter size 

The characteristic filter size is taken as the length of a cube with equivalent volume of 

the polygonal control volume, thus for a median dual control volume enclosing vertex 

o this is 

(4.61) 

This is similar to ~ = {jf5..x~y~z that is often employed for LES on structured 

meshes [35]. 

4.7.2 Distance to the Nearest Non-slip Wall 

Distance to the nearest wall is calculated by a simple method that relies on brute-force 

rather than the more efficient algorithm of Lohner [71]. In this approach, distances 

between every vertex to each non-slip wall boundary vertex is measured, thus a N v x Nb 

loop is required where N v is total number of vertices and Nb is total number of non-slip 

wall vertices. Fig. 4.9 illustrates how the nearest wall distance is calculated. 

4.7.3 Implementation of Spalart-Allmaras model 

Inspection at (A.20) shows that fw values will quickly approach a constant value as 

soon as one moves away from a wall. Although this value is of order 1, its calculation 

depends on evaluation of rand 9 at (A.22) and (A.21), respectively, both can quickly 

approaching computer floating point limits that might cause overflow. In fact Spalart 

and Allmaras suggest to limit the magnitude of r to 10 [116]. To reflect that 9 is negative 

for a small range of -r, the following modification is employed for the present code: 

r = sign(rorg)max(lrorgl, 10.0) 

where rorg is calculated using (A.22) 

(4.62) 

Unlike scalar convective schemes, such as that of Jameson [57] or Liou's AUSM

family [70], that can be used for any transport variable, the Roe scheme must be modified 

when a new variable, such as the modified turbulent viscosity of the S-A model, is used. 

Alternatively, a separate convective scheme must be designed for the turbulence variable. 

To ensure that the numerical method is stable, a first order upwind scheme is used.It 

is felt that the error coming from such a lower order scheme is not an important issue 

once the solution converge to a steady state. 
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a 

Figure 4.9: Nearest wall distance 
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4.8 Parallel Implementation 

Large Eddy Simulations require a large number of computational nodes to resolve suf

ficient range of turbulence scales and computation over a large number of time steps 

in order to obtain an accurate statistical mean of the fluctuation that is inherent in 

turbulent flows. To obtain the solution in a reasonable time scale on current computer 

technology, parallel computer is a necessity. 

4.8.1 Parallelisation Strategy 

Foster [37] suggests that there are two decomposition strategies that are suitable for 

parallel programming. The first one is a domain decomposition, which partitions the 

data into a number of subsets to be handled by separate processors. The other is a 

functional decomposition where each processor deals with a different task of the problem 

in a manner similar to a factory assembly line. The nature of the present program that 

only consist of a small number of subtasks made the second strategy impractical as only 

a small number of processors could be utilised. The first decomposition is well suited 

to the nature of the problem that is outlined at the beginning of this chapter. 

Currently there are a number of parallel computer architecture that are available, 

ranging from the vector machines such as CRAY to the Complex Instruction Set Chip 

(CISC)-based PC cluster. Hence portability is a desirable feature in building a parallel 

programme. As ANSI Fortran 77 and AN SI C had been used to write the sequential 

code to ensure portability, the MPI library, which has been in widespread use among the 

parallel computing community in recent years, has been chosen in spite of the fact that 

there are other libraries such as SHMEM that are potentially more efficient [72]. While 

the SHMEM library is only available for specific hardware, namely the CRAY vector 

machines and SeI machines, MPI implementations are available from both vendor's 

hardware and as open-source such as MPICH [47]. 

4.8.2 File input and output 

Parallelisation is achieved by partitioning the input mesh into several sub-meshes, each 

of which is assigned to a different processor. This strategy is closely linked to in

put/output file handling. Prior to the MPI-2 standard, which was agreed in 1997 by 

the MPI committee, there had been no standard way of handling input and output 
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files in a parallel machine environment, hence each vendor devised different methods 

in dealing with the issue. The simplest and safest way to handle input and output 

while still maintaining portability has been demonstrated by Hansen [48] who asked 

each processor to read and write from separate files. This strategy in effect requires 

knowledge of the number of processors prior to code execution as each mesh partition 

is read from a separate file. Furthermore, it means that there are at least as many 

output files as the number of processors involved. Although this is not an issue for a 

RANS calculation, in LES this would lead to large amount of data files as the flow field 

needs to be dumped relatively frequently to allow time-history post processing. Hence, 

the total number of output files would be m number of solutions multiplied by the n 

number of mesh partitions, which is rather impractical. 

master process 

distribute local nodes f- -.J 

!wait , 

I write solution flowfield 

process #1 process#n 

no i I max Iteration? I 
, ,I 
I ,yes t, 'yes 
------------ ___ -------------- _____ J 

Figure 4.10: Parallel flow solver 

In a multi-processor environment, the present code applies a master-worker 

paradigm. One processor (rank id 0) is designated as the master process while the 

rest are workers. The worker processes carry out the actual computation whereas the 
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master performs administrative task such as i/o, computing control volume surface area 

and volume and finally mesh partitioning right at the beginning of execution. This al

lows the number of processors to be decided by the user at run-time as well as keeping 

a single mesh file and output for each instantaneous flow-field. To ensure that the 

largest problem that can be handled is not limited by the memory availability in the 

master node 1, it was decided that the master node should not be loaded with vari

ables for computing the flow solution, hence it is not involved in the time-stepping 

stages. Figure 4.8.2 illustrates the present strategy with dash-dotted lines indicating 

communication between processors. An obvious consequence of the present strategy is 

that running the present code on two processors does not bring any benefit . In fact a 

request for two processors computation is currently undefined in the code. 

4.8.3 Domain D ecomposition 

The METIS 4.0 graph partitioning library [61] was used to decompose the unstructured 

mesh. From experiment it was found that the kV-METIS routine of the library gives the 

most balanced node distribution for this application. Figure 4.11 shows a typical mesh 

partitioning using kV-METIS for a RANS mesh around a two dimensional supercritical 

aerofoil. However, the load balancing is generally not optimum for mixed element 

meshes since the partitioning objective of the library is to balance the number of nodes, 

whereas the volume of work is a function of edges. 

0.3 

0.2 

0.1 

> 

0 

-0.1 

-0.2 

X 

Figure 4.11: kV-METIS domain decomposition. 

) A distributed memory machine is assumed 
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neighbour id (1) ... neighbour i d (n-nbor) 

comrn type(l) ... comrn type (n-nbor) 

send start (1) ... send start (n-nbor) 

send end(l) ... send end (n-nbor) 

recv start (1) ... recv start (n - nbor) 

recv end(l) ... recv end (n-nbor) 

comrn info (1) ... comrn info (n-nbor) 

Figure 4.12: A two dimensional array to store communication path 

4 .8.4 Point to Point Communication 

The most important part of parallelising a sequential unstructured code is providing 

point to point (processor to processor) communication. The first issue to be addressed 

is how a processor, which holds only part of t he decomposed mesh, recognises its neigh

bours. For t his purpose, a communicat ion array, called pat h, is defined in each proces

sor. Fig. 4. 12 shows a schematic diagram of the two dimensional array path for n-nbor 

neighbouring zones. ne i ghbour id holds the process number of the neighbouring zone. 

send st art and send end are pointers to the send buffer. r ecv s t art and recv end 

are pointers to the receive buffer. comm t ype and comm info are used when the zone 

boundary describes a periodic or cyclic boundary condit ion. 

Two buffer arrays are provided for each processor: qsend, which handles all of the 

variables to be send out , and qrecv, which handles every variable t hat a processor 

receive from its neighbours. The two of t hem must be synchronised. 

As shown in figure 4.13 qs end and qre cv are formed by elements of the flow-field 

variable q that is local to each processor. The first buffer is connected to the field 

through the sendli s t array that holds the vertex number of the flow-field whose data 

should be send out. The second buffer is connected to the halo cell through the r ecvlist 

array. The diagram illustrates processor # n sends data to processor # m. 

T he second issue that is MPI specific is deadlock. This may occur when t he two 
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process#n process#m 

neighbour id(i) = #m neighbour id (j) = #n 

end(j)) 

send buffer 

receive buffer 

Figure 4. 13: Point to point communication 
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communicating processes are trying to send information at the same time. For a regu

larly partitioned domain such as a structured mesh, it is possible to avoid deadlock by 

designing a communication whereby one processor sends information while the other 

receives the information, after which each of them change their role as receiver and 

sender [4] . For an unstructured mesh, such a strategy is impractical. It would be sim

pler if each processor tries to send and receive data regardless what the other is doing. 

Non-blocking sending and receiving MPI routines are employed to achieve this. The 

following algorithm illustrates how nsend (nrecv) data are sent (received) to (from) its 

neighbours. 

DO i = 1,n_nbor 

Nonblock_SENO(qsend(istart(i)),nsend(i),i,requestS(i)) 

Nonblock_RECV(qrecv(istart(i)),nrecv(i),i,requestR(i)) 

ENOOo 

00 i = 1,n_nbor 

Finish_SENO(requestS(i)) 

Finish_RECV(requestR(i)) 

ENODo 

During non-blocking communication, MPI defines that the processor can perform other 

tasks and determining later whether the communication has finished. If this is the 

case the communication process is terminated, otherwise the processor should wait. 

This interrogation and decision making is performed by the explicit termination call. 

During an MPI course run by EPCC [74], it has been suggested that the other task 

that a processor can do is another communication. Hence it is actually also possible 

to implement the communication as a pair of nonblocking send and standard blocked 

receive as follows: 

00 i = 1,n_nbor 

Nonblock_SENO(qsend(istart(i)) ,nsend(i),i,requestS(i)) 

ENOOo 

00 i = 1,n_nbor 

Standard_RECV(qrecv(istart(i)) ,nrecv(i),i,requestR(i)) 

ENOOo 

00 i = 1,n_nbor 

Finish_SENO(requestS(i)) 

ENDDo 
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4.9 Parallel P erformance 

Table 4.1 compares the execution time of the two communication models described in 

the previous section when the code is used to solve an 867k nodes problem for 100 

iterations on an Intel® Xeon 2.4 GHz based PC cluster. Model 1 is a pair of non

blocking send and receive, while Model 2 is a pair of nonblocking send and standard 

blocked receive. It is clear that the second model offers a very small improvement in 

term of execution time. 

worker Model 1 Model 2 

processes run time (s) speed up eff. (%) run time (s) speed up eff. (%) 

1 4432.07 - - 4367.64 - -

2 2292.17 1.934 96.70 2270.11 1.924 96.20 

4 1183.13 3.746 93.65 1179.91 3.702 92.55 

8 678.13 6.536 81.70 675.97 6.461 80.76 

15 416.25 10.648 70.99 414.92 10.526 70.41 

31 242.19 18.300 59.03 239.71 18.221 58.77 

Table 4.1: Parallel performance of Model 1 and 2 for a 867k nodes problem. 

4.10 Closure 

The present chapter described the numerical method for the compressible turbulent flow 

simulation using hybrid mesh in three dimension. The concept of mesh transparency 

based on edge data structure is developed, which is equivalent to a Petrov-Galerkin 

Finite element formulation [8]. This allow a post processing and solution method to be 

developed for a computational mesh consisting of arbitrary cell types. The parallelisa

tion of the method has also been described. The MPI library has been utilised for this 

purpose to ensure portability. 



Chapter 5 

Assessment of base solver for 

steady flow problems 

5.1 Introduction 

The numerical method for steady flow problems developed in chapter 4 is a three dimen

sional extension from the earlier work of Haselbacher [50]. Since the two dimensional 

performance of the base solver has been extensively assessed in the earlier work, this 

chapter is only concerned with the three dimensional flow verification of the present 

code. 

The convergence of the numerical method is not discussed here. Since the present 

work is ultimately designed for unsteady computation, namely LES, convergence is not a 

relevant property. Thus multi-grid convergence acceleration has not been implemented 

in the code. 

The following test cases are designed to assess the performance of the core algo

rithm in three dimensional problems. A secondary objective is to demonstrate the code 

capability in dealing with complex geometry, which will be absent from the later LES 

experiments for practical reasons. Since LES needs a fine mesh and long time integra

tion, complex geometry problems will be constrained by time and resources. For the 

rest of the chapter, results from the present code are labelled as Cirrus. 

The first test case is an inviscid flow about the DLR-F4 wing body configuration 

to represent a typical geometry found in aerospace industry applications. The inviscid 
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flow simulation has been chosen to assess the basic numerics free from any turbulence 

modelling issues. Unfortunately, such a flow will be physically incorrect; for example, 

the shock is situated downstream of the real viscous experiment. Since the lack of 

viscosity has prevented direct comparison to experimental data, a set of results from 

a validated code was used as a reference solution. The second order coupled upwind 

solver of Fluent v. 6.0 (subsequently simply referred to as Fluent) is employed for this 

purpose. It must be noted that direct comparison of numerical accuracy between the 

two CFD solutions is not possible since the primal cell employed by Fluent has a smaller 

control volume than the median dual control volume of Cirrus. In effect, Fluent has 

finer spatial resolution from the same mesh in comparison to Cirrus [90]. 

The second test case is a viscous flow calculation to demonstrate that the discrepancy 

with experimental data in an inviscid computation is not caused by problems in the 

present algorithm. Thrbulent flow over the ONERA M6 geometry was chosen for two 

reasons. Firstly, the relative simplicity of the geometry allows for relatively smaller 

mesh size than a viscous mesh over the DLR-F4 wing body configuration. Secondly, 

the test case is in widespread use in the CFD community for validation purposes [111], 

thus allowing for ease of comparison with other codes. 

5.2 Inviscid flow over DLR-F4 

The DLR-F4 wing body configuration was a generic subsonic transport type aircraft 

with a swept back wing of aspect ratio 9.5 [95]. Three sets of wind tunnel measurement 

were taken in the DRA (now QinetiQ) 8ft x 8ft Pressurised Subsonic/Supersonic Wind 

Thnnel, the NLR High Speed Wind Thnnel and the ONERA-S2MA Wind Thnnel. The 

wind tunnel results and half aircraft geometry for the present calculation were obtained 

from the AIAA drag prediction workshop which incorporated wing deformation due to 

aerodynamic forces [91]. 

5.2.1 Mesh and Boundary Condition 

Gambit v. 2.04 (subsequently referred to as Gambit) was employed to generate the 

computational mesh. It consisted of 138.6k nodes (732.9k pyramids and tetrahedra). 

Dense grid clustering was applied on the high curvature surfaces - such as the fuselage 

nose, tail cone, windshield and wing leading edge - as well as the upper wing surface 
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where a shock wave was expected to occur. To achieve this goal, the Gambit size function 

was employed. However, Gambit only worked best when the sources were oriented 

along the coordinate direction. For general orientation, the source was actually defined 

in steps rather than a straight line. As a result of this limitation, the mesh quality 

was compromised. This is quite evident on the wing as shown on figure 5.1. The wing 

leading edge of the present geometry had high curvature in the chord-wise direction and 

virtually linear (Le. negligible curvature) in the span-wise direction. Thus an anisotropic 

mesh would have been desirable. Since Gambit did not have such a functionality, the 

leading edge resolution was rather poor in comparison to the standard mesh of the 

workshop. 

The computational domain was defined as a hemisphere enclosing the half aircraft 

model, rather than the cuboid shape used for the workshop standard mesh. The shape of 

the outer boundary was chosen to avoid any discontinuity that arose when two boundary 

surfaces meet at a sharp angle. As shown by section 4.2.3, such a discontinuity would 

compromise the computation of a median dual surface normal. Following the standard 

computational domain for the AIAA workshop, the hemisphere was defined with a radius 

of 50 mean aerodynamic chords. Symmetric boundary were applied on the symmetry 

plane whereas a Riemann free stream condition was applied on the concave skin of the 

hemisphere. A Mach number 0.75 and 0.170 incidence was applied at the free stream 

boundary. This corresponds to the workshop test case with an experimental CL of 0.5 1. 

The slip wall boundary condition was applied on the wing-body surface. Unlike the 

outer boundary that was guaranteed to have a smooth surface due to the hemisphere 

domain, surface discontinuities could not be avoided on the wing trailing edge. Here, 

both modifications described in section 4.6.6 to deal with the trailing edge problem were 

tested. The stagnation condition to model the Kutta condition was labelled sT E. The 

correction of pressure and density was labelled cbw. Therefore, the pressure coefficient, 

Cp , at the trailing edge region was not expected to be correctly predicted by the present 

code in inviscid mode. 

5.2.2 Numerical Solution 

Following the findings of Pirzadeh and Prink [90] that showed an adverse effect of the 

flux limiter on their DLR-F4 problem, the present computation has been carried out 

1 Interpolation from experimental data published in [95] gave 0.177 0 incidence. 



Figure 5.1: Inviscid mesh around DLR-F4 wing body configuration. 
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without any limiter. The computation was performed using 15 CPUs of an Intel ® 

Xeon 2.4 GHz based PC cluster. The solution was stopped at 8000 iterations when 

the residual error flattened out. No observable changes were detected when further 

iterations were performed. 

In accordance with the common practice used in wind tunnel measurement, the 

coefficient of pressure Gp as a non-dimensional measure of relative pressure is used. For 

completeness, Gp is defined as: 

c - p- poo 
p - 1/2pluoo l2 (5.1) 

which means that negative values signified a lower pressure region than the ambient, 

i.e. suction region. Figure 5.2 shows the Gp distribution on the wing-body geometry as 

well as on the symmetry plane. The leading edge suction is clearly shown upstream of 

the shock bow at the front part of the wing suction surface. 

Figure 5.4 shows a comparison of the pressure coefficient at 7 semi-span stations, 

which are shown in figure 5.3. The present computation with stagnation condition at the 

trailing edge is labelled as cirrus+sTe, while the pressure - density correction is labelled 

as cirrus+cbw. As expected all of the inviscid solutions predict a shock location further 

downstream of the experiment. The discrepancy of this shock position means that the 

inviscid calculation will have significantly larger lift-due to larger wing suction area

than that of a wind tunnel measurement. 

The Gp plots show that the stagnation boundary condition at the trailing edge 

produces a closer shock location to the experiment than either Fluent or the corrected 

wall boundary calculation. The plots also shows that the pressure at the trailing edge 

for cirrus+sTe is close to the stagnation value. Although the trailing edge itself is 

behaving in accordance to inviscid aerofoil theory, severe non-physical behaviour is 

observed around it. On the other hand, cirrus+cbw and the Fluent boundary condition 

seem to mimic the viscous effect on the trailing edge. Thus, the pressure - density 

correction seems to be more preferable. 

In general the present code behaves similarly to the second order upwind inviscid 

coupled solver of Fluent, especially when the wall boundary correction to the density 

and pressure variables are applied. It must be noted that Fluent predicts a sharper 

shock since its mesh is effectively finer than that of cirrus. 
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Figure 5.2: Gp distribution on DLR-F4 wing body configuration. 
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5.3 Turbulent flow over ONERA M6 Wing 

Three-dimensional turbulent transonic flow about the ONERA M6 wing configuration 

was used to verify the steady viscous solver. ONERA M6 was an untwisted swept-back 

wing. It had a leading edge sweep angle of 30 0, an aspect ratio of 3.8 and a taper 

ratio of 0.562. The wing section was the symmetric conventional ONERA "D" aerofoil , 

which had 10% thickness-to-chord ratio. The numerical test was conducted at Mach 

0.84 and incidence of 3.06 ° (Test 2308). The nominal Reynolds number based on mean 

aerodynamic chord length, Rec in the experiment was 11.72 million. The wing transonic 

flow regime proved to be quite challenging due to the presence of a A-shock pattern on 

the suction surface. The complete description of the wing geometry and wind tunnel 

measurements can be seen in Schmitt and Charpin report [104J. 

The present RANS computation utilised the S-A turbulence model [116J. Since the 

test case was not intended as an exhaustive assessment of a turbulence model, flow with 

significant separation, such as Test 2564, was not chosen. 

5.3.1 Computational Mesh and Boundary Condition 

Due to symmetry, only a half wing needs to be simulated . A hemisphere with radius of 

20 root chords was employed for the outer free stream boundary of the computational 

domain. The wing root was attached to the circular plane of the hemisphere, which 

was defined as a symmetric boundary condition. Being viscous, the wing surfaces were 

defined as no-slip-wall boundaries. 

The computational grid consisted of 549.7k nodes (1.25M tetrahedra, pyramids and 

prisms), which were generated by Gambit. The lower surface was left much coarser than 

the upper surface as it was not expected to have significant flow features. See figure 5.5 

for illustration. This mesh was quite coarse on the leading edge whose semi-circular 

section was on average only resolved by 12 nodes along the chord-wise direction. In 

spite of this, the mesh still required a large number of nodes to cover the wing surface 

since Gambit only allows nearly isotropic cells for the surface mesh. Thus, 300 and 

200 nodes were used along the leading edge and trailing edge span, respectively. In 

contrast to this, the high aspect ratio cells of a structured mesh adopted by Slater [111J 

only used 33 nodes along the span with more than 20 nodes resolving the semi-circular 

leading edge along the chord . A size function was only used to control nodal clustering 
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around the rear shock on the upper surface. Rather than being designed for optimum 

node distribution, the grid was designed with simplicity in mind while maintaining a 

balance between number of cells and accuracy. 

upper surface lower surface 

Figure 5.5: Wing surface mesh. 

A prismatic region consisting of 25 layers was used to resolve the wing boundary 

layer. This region covers more than 75% of the nodes of the mesh. This was because the 

S-A model required the first node from the wall to be y+ ::; 5 away to resolve the viscous 

sub layer. It was estimated that y/croot = 6.25 x 10- 7 corresponds to y+ = 1 from the 

NPARC Alliance Validation Archive [111]. On the other hand, Gambit precision was 

limited at 1.0 x 10-6 . Considering that the computation was only performed at single 

precision, this limitation was deemed to be acceptable. To avoid any problem arising 

from Gambit resolution while satisfying requirement for the S-A model at the same 

time, the first node from the wall was placed at y/croot = 3.0 x 10-6 which corresponds 

to y+ = 4.8. To minimise the number of cell required to resolve the boundary, a rather 

large expansion factor of 1.4 was used at present. 

Figure 5.6 shows that the trailing edge was slightly rounded in the present computa

tion. This was needed to reduce the skewness of the prismatic cells around that region. 

In fact, Gambit produced very skewed prismatic cells with negative volumes when a 

sharp trailing edge was used in conjunction with the previously discussed y+ for the 

first node from the wall. 
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Figure 5.6: Mesh around wing trailing edge. 

5 .3.2 Numerical Solution 

The computation was performed using 15 CPUs of an Intel® Xeon 2.4 GHz based PC 

cluster. The solution was stopped at 12000 iterations when the residual error decreased 

by 4 orders of magnitude and did not change rapidly anymore. Unlike the previous 

inviscid computation the boundary layer mesh of t he present problem required t he 

limiter to be activated. A K value of 2.5 for the Venkatakrishnan limit er was used. 

As a reference solution, data from the NPARC Alliance Validation Archive [111] 

using the WIND code is employed to verify the present numerical solution. Figure 5.7 

shows Gp contours on the upper surface. The A-shock pattern that is reported in ref [111] 

is reasonably well resolved by the present simulation. 

Schmitt and Charpin [104] only published surface pressure distributions from 7 span

wise stations, shown in figure 5.8. Hence, this is t he only quantity that can evaluated 

here. Figure 5.9 shows a comparison of the Gp distribution along the chord at these 

span-wise stations between the present numerical solution, labelled cirrus, that of WIND 

and the experimental data. The vertical axis has been plotted such that negative Gp 

values lie above the origin. 

The present turbulent computation generally compares very well with the wind 



5.3 Turbulent flow over ONERA M6 Wing 101 

Figure 5.7: Gp contour on ONERA M6 wing surface; RANS calculation. 
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Figure 5.8: Pressure tapping locations on ONERA M6 wing. 
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tunnel measurement as well as the CFD result of WIND code [111]. At 80% semi span 

location the present code still resolves the two shocks whereas WIND only shows a 

single shock. However, the present code does tend to smear the shock, hence reducing 

its strength. Unlike the structured mesh used in [111], the triangular cell on the wing 

surface has added some amount of diffusion to that of the turbulence model across 

the shock that is generally not-aligned with the mesh. It is felt that this drawback is 

compensated by the increased geometric flexibility of the unstructured mesh approach. 

5.4 Closure 

Two test cases presented on this chapter have verify the capability of the core algorithm 

in resolving complex three dimensional flow. The first one is an inviscid flow around 

a generic wing body configuration while the second one is a turbulent flow around a 

simple wing geometry. The two test case shows that the core algorithm works well in 

dealing with steady flow. Thus, it gives confident in extending the present code for 

unsteady flows and ultimately LES computations. 



Chapter 6 

Validation of LES code for 

unsteady turbulent flow 

It has been shown in chapter 5 that the core numerical method developed in chapter 4 

has been able to deal with steady flow problems involving complex geometry. This 

chapter is focused on the verification of the unsteady extension of the numerical scheme 

of chapter 4 in handling intermittent structures in turbulent flows. Three test cases, 

which are considered as prototype turbulent flows in fluid mechanics, are considered 

here. The first is the interaction of a shock wave with a spatially developing mixing 

layer. As the test case is designed for the beginning of laminar flow transition to 

turbulence, it can be used to assess the numerics free from any kind of sub-grid scale 

modelling. The second test case is a turbulent free jet flow, which is not only important 

in its own right for practical applications but also serves as a prototype of separated 

turbulent flows. The last test case is a Large-Eddy Simulation of a low Mach number 

flow through a round pipe to assess the code capability in solving wall bounded turbulent 

flow flow problems. 

6.1 Shock Wave Impingement on Spatially Developing Su

personic Mixing Layer 

This two dimensional test case is designed to test the code behaviour for the interac

tion of a shock-wave and a laminar mixing shear layer at the beginning of transition to 

turbulence. The case is purely a test of numerics, and there is no experimental data 
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available. It was used originally by Yee et al. [138] to test their characteristics filter be

haviour, which was designed to give non-dissipative central schemes a shock capturing 

capability. The motivation is three-fold. Firstly, to validate the present unstructured 

upwind scheme, which is theoretically second order accurate in space, against the spa

tially fourth order scheme of Yee et al. [138]. Secondly, to investigate the effect of 

triangular meshes as compared to quadrilateral and hybrid meshes. The final motiva

tion is to assess the effect of the limiter as well as the scaling of the Roe Dissipation 

matrix that have been described previously. 

------
Expansion-waVe 

-----------------------

Figure 6.1: Shock-wave impingement on supersonic mixing layer 

Figure 6.1 sketches the basic set up of the test case. Two perturbed supersonic 

streams flow from left to right. The Mach numbers are 5.625 and 1.7647 for the upper 

and lower streams, respectively. The two flows have identical static pressure and total 

temperature, thus they have different density, static temperature and sound speed. An 

oblique shock wave with shock angle f3 = 12.0 0 emanates from the top left corner 

of the domain. The oblique shock wave is created by setting the upper boundary as 

another supersonic inlet with flow direction of 8 = 2.634 0
• As the shock wave reaches the 

density discontinuity, it is partially reflected upward as an expansion wave and refracted 

downward at a steeper angle. The refracted wave is eventually reflected upward by 

the solid boundary at the bottom of the domain. Meanwhile, the shock amplifies the 

disturbance of the mixing layer resulting in vortex structures being created downstream 

of the impingement point. Near the outlet region, the reflected shock merges with the 

vortex structure of the mixing layer. 

The Reynolds number of the flow is 500, based upon the average density of the two 

supersonic flows, their velocity jump, and the width of the mixing layer. The mixing 

layer width is defined as the distance between two inflexion points in the incoming 
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velocity profile that is sketched on the left hand side of fig. 6.1. 

6.1.1 Computational Mesh 

A rectangular domain was used for the present calculation with a non-dimensional 

length (along the horizontal x-axis) of 200 units and width (along the vertical y-axis) of 

40 units. Figure 6.2 shows a number of mesh topologies that were tested. The following 

meshes were named after the identification given in fig. 6.2. 

The first two meshes were uniform quadrilateral with 321 x 81 vertices (mesh a) 

and 641 x 161 vertices (mesh b). The coarser mesh, which had 26k vertices, served as 

the baseline mesh while the finer one that had 52k vertices was designed to study the 

refinement effect. Both were also used by Yee et al. Unless indicated, the baseline mesh 

is used for all of the calculations in this mixing layer study. 

Two purely triangular meshes were generated using Gambit. The first triangular 

mesh, mesh d, had relatively uniform cells. The cell area was roughly half of that in 

mesh a. As a result, the mesh had twice as many cells as mesh a whilst having a similar 

number of nodes. The second triangular mesh, mesh e, had a non uniform distribution. 

The mixing layer region had nearly twice as many cells as mesh d, similar numbers of 

cells at the oblique shock region, but coarser in the remaining regions; giving a similar 

number of nodes to that of mesh d. 

A hybrid mesh, mesh c, was also created using Gambit. Outside the mixing layer 

region, a similar strategy to mesh e was employed. The mixing layer itself was meshed 

by quadrilateral elements that were similar to mesh a, since this was where the most 

important flow features were expected. This mesh had a total of approximately 18k 

nodes, making it the most efficient mesh tested for this particular test case. 

6.1.2 Boundary Conditions and Non-Dimensionalisation 

The flow variables were non dimensionalised by upper stream density, temperature and 

sound speed. It must be noted that such a non-dimensionalisation was convenient for 

the present code even though it was different from that of Yee et al. [138]. Hence, 

the numerical quantities were redefined accordingly. Table 6.1 summarises the input 

values at the inlet and outlet boundaries. Inlet1 is the upper stream. and inlet2 is the 
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(a) part of quad mesh 321 x81 

(b) part of quad mesh 641x161 

(c) part of mixed mesh 

(d) part of unifonn triangular mesh 

(e) part non·unifonn triangular mesh 

Figure 6.2: Part of computational grid. Only cells around the oblique shock impinge

ment on mixing layer are shown 
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lower stream. The outlet boundary was not specified as the flow-field was completely 

supersonic within the computational domain. 

property 11 inlet! 1 inlet2 1 top BC 1 

u-velocity 5.6250 3.7502 5.5708 

v-velocity 0.0000 0.0000 -0.2563 

density 1.0000 0.2215 1.2887 

pressure 0.7143 0.7143 1.0207 

sound speed 1.0000 2.1250 1.0531 

Mach number 5.6250 1.7647 5.2956 

Table 6.1: Flow properties at inlet and upper boundary. 

The supersonic inlet velocity profile was specified as a hyperbolic tangent function 

defined as follows 

2.5 + 0.5tanh(2y) 
u=-----...:.......c:....:.. 

0.5333 (6.1) 

where the mixing layer was placed at y = 0.0. Fluctuations were added by introducing 

a perturbation perpendicular to the mixing layer, at the inlet using the following cosine 

bi-harmonic function. 

(6.2) 

with period T = 5.97, and b = 10. For k = 1, aI = 0.05 and <PI = 0, and for k = 2, 

a2 = 0.05 and <P2 = 7r /2. No perturbation was added to the stream-wise component. 

Since the investigation was centred on the mixing layer and its interaction with the 

shock, the wall at the lower edge of the computational domain was simply defined as a 

slip wall boundary. 

6.1.3 Results 

Here, only qualitative results are presented since Yee et al. did not provided any quan

titative data other than the maximum and minimum contour levels in their pressure 

and density plots. 

In ref. [138], Yee et al. labelled TVD22 and TVD44 for computation with second 

order and fourth order TVD schemes, respectively. ACM22 and ACM44 was used to 
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indicate second order and fourth order central schemes with characteristic filter to min

imise the artificial dissipation, respectively. For completion, their results are reproduced 

in fig. 6.3 and 6.4. All of the present results are plotted at the same instant as that 

of ref. [138]. Using the current non-dimensionalisation, this is 264 time units, which is 

equivalent to Yee et al. [138]'s non-dimensional time of 120 units. 

Effect of computational mesh topology 

Figure 6.5(a) and 6.6(a) show that the present computation using the baseline mesh, 

the 321 x 81 vertices, is capable of resolving the flow structures in the mixing layer, even 

though the Roe artificial dissipation is only scaled by 0.4 in the region. The resolution 

is significantly better than TVD22 and TVD44 results (fig. 6.3) and comparable to that 

in ACM22 and ACM44 (fig. 6.4). As expected, the finer quadrilateral mesh, fig. 6.5(b) 

and 6.6(b) produce a more well defined interaction between the shock wave and the 

vortical structure. It must be noted that an accurate comparison is difficult since the 

contour level used in ref. [138] is not given. The present density contours are plotted 

between 0.2 and 1.775 with 22 levels whereas the pressure is between 0.44 and 1.44 with 

21 levels. 

It is not surprising that both triangular meshes in fig. 6.5 and 6.6 give very diffusive 

results. However, they do not seem to be much worse than the TVD result shown in 

fig. 6.3. This enforces earlier work in section 3.3.5 (and also ref. [108]) which shows 

accuracy for time-dependent problems using a triangular mesh to be lower than an 

equivalent quadrilateral mesh. An improved result was obtained by clustering more 

nodes on the mixing layer region as shown in fig. 6.5(e) and 6.6(e). 

The hybrid mesh gives comparable results to the baseline quadrilateral mesh in the 

mixing layer region since both of them have identical vertex density in this region. In 

other regions where triangles are used to discretise the flow domain, diffusive results 

(similar to fig. 6.5(d) and 6.6(d)) are observed. This is particularly obvious across the 

shock region which is not aligned with the mesh. Since the objective of the numerical 

experiment is to capture a shock wave mixing layer interaction and its development, this 

is not felt to be a problem. In fact, the hybrid mesh has actually managed to achieve 

the objective with a significantly smaller number of vertices than the baseline mesh. 
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-~~~E-______________ ~~~ ____________ ~~ __ ~~ ____ ~L-~~ ____________ ~ 

Figure 6.3: TVD results presented by Yee et al. [138] 

Figure 6.4: Minimum dissipation filter, ACM, results presented by Yee et al. [138] 
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(a) baseline mesh: 321 x 81 vertices 

(b) 641 x 161 vertices 
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Figure 6.5: Comparison of density contours from 5 different meshes; Venkatakrisnan 

limiter K = 10 and O-switch with c = 0.4 
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(a) baseline mesh: 321 x 81 vertices 

(b) 641 x 161 vertices 
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Figure 6.6: Comparison of pressure contours from 5 different meshes; Venkatakrisnan 

limit er K = 10 and n-switch with c = 0.4 
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Effect of artificial dissipation scaling and flux limit er 

Comparisons of density plots shown in fig. 6.6(a) and fig. 6.7(b) shows that c can only 

assume a certain value before the odd-even oscillation takes place in the mixing layer 

in front of the shock impingement point. Although less obvious, such oscillation is also 

exhibited in the derisity field when comparing between fig. 6.5(a) and fig. 6.7(a) 

.200~------------~50~--------~-'1~OO~--~----~-'1~50'-----------~200 

X 

(a) density contour 

(b) pressure contour 

Figure 6.7: Odd-even decoupling on the density and pressure contour; unlimited; c = 

0.05 for D-switch 

Figure 6.8 shows the instantaneous contour plot of the dissipation switch. High 

values indicate that 'upwinding' becomes active. It must be noticed that the switch is 

also activated in the irrotational flow region as well as around the shock region. 

Unlike the artificial dissipation of the convective scheme, the effect of the flux limit er 

is hardly noticeable in fig. 6.9. However, the minor effect observed in fig. 6.9 does 

not necessarily mean that unlimited flux can be used in any flow problem. Thus, its 

application should be restricted to flow problems where robustness is important. 
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x 

Figure 6.8: Instantaneous contour of artificial dissipation switches for shock wave-mixing 

layer interaction 
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6.1.4 Closure 

All of the contour plots indicate that the present solutions capture the physics of the 

flow. The plots shows how the disturbance in the mixing layer is amplified by the shock 

and eventually develops into a vortical structure. The alternate maximum-minimum 

pressure regions along the mixing layer are also shown clearly in the pressure plots. 

The lower oblique shock and its reflection is only captured clearly on the pressure plot 

since the shock is too weak to show marked density changes for the chosen contour levels. 

These features are smeared in triangular meshes but can be observed very clearly when 

quadrilateral cells are used. Since the low quality resolution is acceptable in the less 

important region, a hybrid mesh offers the best compromise since the triangular cells 

can be generated easily. As shown by the experiment, the hybrid mesh uses a smaller 

number of nodes than the more rigid quadrilateral cells for the same resolution at the 

region of interest. Hence such a meshing strategy is preferred for the rest of the thesis . 
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6.2 Large-Eddy Simulation of Mach 0.9 Round Jet 

Turbulent jet flows are important from an engineering point of view as these have been 

long identified as a major contributor to aircraft noise. Thus any attempt to design a 

quiet aircraft inevitably needs better understanding of the noise generation mechanisms 

in a turbulent compressible jet. Moreover, from a fluid mechanics point of view, jet 

flows are often seen as a prototype for complex turbulent flows with swirl , separation, 

recirculation, curvature, body force etc. [87] 

The Mach 0.9 round jet is of particular interest here; this case is well documented and 

it allows the validation of the present code for a practical problem. Experimental results 

of Lau et al. [66], and Stromberg et al. [120] that have been conducted at Mach 0.9 serve 

as a reference. Each of the experiments were designed to investigate different aspects 

of the flow. The former was focused on the high Reynolds number aerodynamics whilst 

the latter was designed to study jet acoustics at a low Reynolds number (ReD = 3500) . 

For these problems, the jet Reynolds number is based on nozzle exit speed(U J) and 

diameter (D ). Being performed at low Reynolds number, the Stromberg experiment is 

particularly suitable for DNS as well as LES studies. 

Although some nozzle exit Mach number effects have been reported by Lau et al. [66] 

and Zaman [143] regarding the potential core length and mass flux variation of a fully 

expanded supersonic jet, they do not extend beyond the near nozzle flow field . As jet 

self-similarity is only observed further downstream, where the Mach number is much 

lower than the nozzle exit , the extensive incompressible jet measurement of Hussein et 

al. [56] and Panchapakesan and Lumley [87] have also been used as reference. Freund [38] 

has demonstrated this through his DNS work that was set to match the Stromberg 

experiment [120]. 

There have been a number of literature reports of LES computations of the Mach 

0.9 round jet using structured meshes. Ghosal's study of the interference between the 

convective numerical scheme and the SGS model [45] lead to the growing popularity 

of the higher order compact scheme of Lele [67]. Following this trend , Boersma and 

Lele [14] and Uzun et al. [128, 129] conducted their simulations using a sixth order 

numerical scheme for the convective terms with compact fi ltering to smooth out the 

velocity gradient for the strain computation. In addition, Uzun et al. [128] has also 

demonstrated the superiority of the sixth order compact scheme over its fourth order 

counterpart. This finding was merely a confirmation of the one dimensional Fourier 
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analysis such as presented in chapter 3. Apart from the standard Smagorinsky model 

in the earlier paper of Uzun et al. [128], these two studies have been quite similar, 

namely the application of dynamic Smagorinsky model [44] and ReD = 36000. The 

main difference between the two studies lies in the choice of mesh topology. Whilst 

Boersma and Lele conducted their computation on a circular cylindrical computational 

domain discretised by a single block curvilinear mesh (using a polar topology), Uzun et 

al. employed a single block Cartesian mesh for their square cylinder domain. Bogey et 

al. [15] also conducted an LES computation of the same jet problem using the high order 

Dispersion-Relation-Preserving (DRP) scheme of Tarn and Webb [121] . This was an 

attempt to perform both a turbulent flow simulation and an acoustic wave propagation 

in a single calculation. In all of these studies a velocity profile was defined at the inlet 

domain to model the jet exiting from the nozzle without including the nozzle itself. It 

is interesting to note that two compressible jet studies (not Mach 0.9) of Lupoglazoff 

et al. [73] and Shur et al. [107], who were motivated by the practical application of 

LES methods in aeronautical engineering, have chosen to employ a numerical scheme 

with scaled down upwinding , discarding the SGS model, but did include the nozzle 

geometry. 

At present, two SGS models have been implemented, namely the standard Smagorin

sky and the WALE model of Nicoud and Ducros [84]. Although the standard Smagorin

sky model is frequently considered to be unsuitable for jet flows, Uzun et al. [128] showed 

that this model performed reasonably well in comparison to that with the dynamic pro

cedure [129]. This result has also been supported by Bogey et al. [15]. Consequently, 

the constants for the standard Smagorinsky model have been utilised from Uzun et 

al. [128], C; = 0.018. Since the author is not aware of WALE model applications for jet 

flows, C~ = 0.25 has been applied for the WALE constant as recommended by Nicoud 

and Ducros [84] for generic applications. In both computations the compressibility cor

rection is taken from ref. [128], i.e. Cl = 0.0066. Following Boersma and Lele [14] and 

Uzun et al. [128], the present simulation was set at ReD = 36,000. 

6.2 .1 Computational Domain and Mesh 

The computational domain was simply a cylinder, with radius R = 8D, oriented along 

the x-axis (axial length 22.5D). Following Freund, robustness at the outlet region was 

ensured by creating a sponge zone at 22 .5D ~ x ~ 30D. To reduce the computational 

cost, instead of modelling the nozzle geometry, a velocity profile that accounted for the 
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Figure 6.10: Computational mesh for the turbulent round jet simulation 

nozzle effect was specified at the inlet plane. 

A hybrid mesh was generated using Gambit to discretise the computational domain, 

as shown in fig . 6.10. Such a simple computational domain could have been discretised 

rather easily by a curvilinear structured mesh, but a hybrid meshing has been chosen 

as it offered a more efficient mesh by employing a structured like hexahedral mesh in 

the jet region and a tetrahedral mesh, which could rapidly coarsen, at the far field and 

sponge region. Using a similar strategy to section 6.1, hexahedral cells were applied 

in the upstream shear layer region as well as the downstream jet region resulting in a 

comparable mesh resolution to that of Boersma and Lele [14]; whereas the tetrahedral 

cells outside this region lead to a noticeably coarser discretisation in the far-field region. 

As a result , the present mesh only requires 800k nodes as opposed to 1.6M in the struc

tured mesh of ref. [14]. It must be noted that the aggressive degree of coarsening in the 

far-field region shown in fig . 6.10 was possible since direct aeroacoustic computation was 

not the objective here. The singularity along the axis of the cylindrical computational 

domain was avoided by rearranging the hexahedral cell differently from that of the shear 

layer region (fig. 6.11). 
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Z/D 

Figure 6.11: Computational mesh around jet centre line 

6.2.2 Boundary Conditions and Computational Procedure 

Following, Boersma and Lele [14] (also Freund [38]) a profile similar to the mixing layer 

test case was specified at the inflow plane x = O. A hyperbolic tangent axial profile was 

superimposed with a harmonic function whose frequency matched that of the excitation 

in the Stromberg experiment , and was specified for u-velocity as follows: 

u = UJ [~ - ~ t anh (b (~ - ~) ) ] (1 + 13 sin (2nO.5t)) (6.3) 

where R = 1/ 2D was the jet radius, b was the mixing layer thickness and 13 was the 

amplitude of the harmonics. A random p erturbation was added to the circumferential 

(tangential) velocity component ru() to promote three dimensional flow as follows 

ru() = 0 .025Rand (e-3(1-r / R)2 ) (6.4) 

Notice that eq. 6.4 describes the tangential ru() rather than the angular u () velocity 

component. Obviously, rather than having a turbulent initial shear layer , the jet had 

a perturbed laminar layer whose result ing potential core length was affected by the 

choice of b and 13. Here, the thicker and more intensely perturbed layer of Uzun et 

al. [128] was chosen as oppose to that used Boersma and Lele [14] . Thus b = 3.125 

and 13 = 0.005. As a result, the potential core length in the present computation was 

markedly shorter than that of Boersma and Lele. This adjustment of the velocity profile 
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has lead some authors to argue that it is better to model the nozzle geometry and its 

delivery pipe [26], [73]. Since most jet experiment have not been conducted with a 

fully developed turbulent flow in the delivery pipe, they argued that no perturbation 

would have been necessary in the delivery pipe inlet. The main objective here is to 

demonstrate that the unstructured approach can produce solution of similar accuracy 

to an existing structured code, and so it was felt better to use the same velocity profile 

approach. Nevertheless, the unstructured approach makes it extremely simple to include 

the nozzle geometry (in contrast to Cartesian mesh solvers). 

Uzun et al. [128] and Boersma et al. 's DNS [13] indicates that the lateral boundary 

plays an important role in ensuring correct entrainment, which in turn affects the jet's 

axial velocity decay. This was particularly true since the application of eq. 6.3 as an 

inlet profile implies that the jet emanated from a wall. Consequently the flow entrain

ment only took place from the lateral boundary. Uzun et al.[128] found that the non 

reflective boundary condition that is often used for RANS simulations of jet flow (see 

[124] for instance) had been responsible for incorrect axial velocity decay. Hence, the 

lateral boundary was designed to act as subsonic inflow boundary (with ambient total 

pressure and temperature) if the flow tried to come into the domain and subsonic out

flow boundary condition (with ambient static pressure) otherwise. Such treatment was 

intended to ensure the correct flow entrainment in order to achieve a well behaved jet 

decay and spreading. A similar boundary condition was also employed by Lupoglazoff 

et al. [73]. 

The subsonic outlet boundary condition - with static pressure specified at the free 

stream value - were applied at the outflow plane x = 30D. It was realised that imposing 

static pressure at the outlet was not strictly correct since the outlet static pressure would 

not be uniform. However , the weak formulation of the boundary condition did allow 

some pressure variations on this plane. Furthermore, this boundary condition was felt 

to be compatible with the sponge zone whose main task was to make the flow behaved 

like a steady flow as much as possible by the time it reached the outflow plane. 

The LES computation was performed on an Intel® Xeon 2.4 GHz based PC cluster. 

As in the previous section, the timing of the parallelism was not considered to be 

an important issue. The computation was started from a uniform flow-field without 

superimposing any white noise since the non-linear disturbance was readily available 

from three sources: the inlet boundary, the Helmholtz instability in the shear layer, and 

perhaps most importantly from numerical point of view was the perturbation caused 
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by the initial vortex pair created when the high speed jet front advances through the 

quiescent fluid in the computational domain. No limiter has been applied in any of 

these computations. 

The time step was set to 0.005 time unit, which was comparable to ref. [14]. The 

statistics were not collected until statistically steady kinetic energy of the flow-field had 

been achieved. A further 100000 iterations were then performed to collect the statistics. 

6.2.3 Cylindrical Coordinate Post Processing 

Statistically averaged quantities in the round jet will be axisymmetric. Thus. to in

crease the effective number of samples when computing mean and fluctuating statistics, 

circumferential averaging is employed. Whilst this is straightforward for a cylindrical 

polar structured mesh, in the present work using unstructured mesh the averaging is 

performed over an annular stripe extracted from the cross sectional slices. Detail of the 

procedure is given in Appendix B. As a result fig . 6.16 only shows a few points coming 

from such slices to estimate the spreading rate. 

6.2.4 Results and Discussion 

Qualitatively, both the WALE and standard Smagorinsky computations display the cor

rect physics of a turbulent round jet. Fig. 6.12 shows instantaneous vorticity coloured by 

Wx direction for the WALE SGS solution. Blue stands for negative rotation (clockwise) 

and yellow for positive. Initially, the jet shear layer enters the domain in a laminar state. 

Eventually the instability in the shear layer causes vortical structures to be formed and 

transition to a turbulent shear layer commences. The thickening shear layers soon merge 

to end the potential core. 

The mean local Mach number profile is shown in fig. 6.13. The development of the 

jet from a top hat profile near the nozzle (fig. 6.13(a)) through the transition of the 

shear layer (fig. 6.13(b) to a fully developed turbulent flow 6.13(c)) is clearly shown. 

The potential core in both the Smagorinsky and WALE calculations are close to that 

of the Stromberg experiment [120]. The Smagorinsky computation shows a slightly 

longer potential core length suggesting that the shear layer is less energetic. Hence the 

standard Smagorinsky model with Cs 2 = 0.018 is more dissipative than the WALE 

model with Cw2 = 0.25. 
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It is important to mention that DeBonis and Scott [26], who included the nozzle 

geometry, found that their potential core length is shorter than experimental data. The 

same result had also been observed by Lupoglazoff et al. [73], who did not implement 

any explicit SGS model. On the other hand, potential core length tends to be over 

predicted when a prescribed velocity profile is used, This is not only found in LES 

computation (see Boersma and Lele, Garnet) but also in DNS (see Boersma et al. [13J 

and Freund [38]). This suggests that these low Reynolds number jet problems are 

sensitive to the state of the initial shear layer. This may be less important for high 

Reynolds number jets. 

The sensitivity to the inlet condition is also shown in fig . 6.14. Here the absence 

of turbulence fluctuation within the jet core at the inlet boundary condition of eq. 6.3 

and 6.4 manifests as zero RMS of axial and radial fluctuations around the inlet region of 

the jet centre line. When the turbulent shear layers merge, the fluctuation is observed 

on the jet centre line. However , the magnitude of the peak fluctuation and the rate of 

increase upstream of the peak suggests a higher turbulence level in the computation, 

which indicates that the break-up occurs at a faster rate than that of observed by Lau 

et al. [66J. From this it can be deduced that, while the experimental shear layer is 

turbulent , the LES computation is laminar and hence more susceptible to a disturbance 

that leads to shear layer break up. 

Experiments on high Reynolds number fully developed turbulent round jets [87J 

have shown that the inverse of axial velocity decay can be expressed as 

UJ 1 x - XQ 
---

Uc Bu D 
(6.5) 

where Uc is the local centre line axial velocity and XQ is the datum position of the decay. 

Figs. 6.15 show the U J jUc slope is 0.169 and 0.185 for WALE and standard Smagorinsky 

model, respectively. These values are within the range of experimental measurements 

which is 0.165 to 0.185 [87J . In term of decay constant Bu, these values are 5.92 

and 5.41 for WALE and Smagorinsky model, respectively, whereas the experimental 

range are 6.06 to 5.41. Figure 6.15 also indicate that xQ/ D = 1.59 for the WALE and 

xQ/ D = 2.8235 for the standard Smagorinsky models. 

Figure 6.16 shows the predicted spreading rate. The trend line is computed using 

linear regression while forcing the x-axis cross over point XQ to be identical to that 

obtained from fig. 6.15. The present spreading rates are 0.0979 and 0.1085 for the 

WALE and standard Smagorinsky models , respectively, which are slightly higher than 
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experimental data ranging from 0.086-0.096 [87]. However, this result is comparable to 

the LES computation of Uzun et al. [128] and the DNS computation of Freund [38]. 
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Figure 6.16: Comparison of spreading rate based on Tl /2, the radial coordinates where 

the velocity is half of that in the centre line 

Self-similarities are checked at three downstream stations, namely xl D = 10, 15 

and 20. At these stations the local Mach number has decayed to the extent that it 

is reasonable to compare it with the low speed experiments of Hussein et al. [56] and 

Panchapakesan and Lumley [87]. Figure 6.17 shows self-similarity of the mean velocity 

downstream of the shear layer merging point. Although Hussein et al. [56] and Pan

chapakesan et al. [87] did not start their measurements before xl D = 30 - 40, the 

present computation shows remarkably good self-similarity of the main flow as early 

as x I D = 10, which is similar to other LES computations. Similar to the findings 

of Uzun et al. [129], fig. 6.17 clearly shows that the present computations match the 

Panchapakesan et al. measurements [87] better than that of Hussein et al. [56]. 

Figure 6.18 shows Reynolds stress, non dimensionalised by the square of skin friction 
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velocity, at several axial stations typically reported by many other LES computations. 

Here, self-similarity is also observed for t he Reynolds stresses even though it is not as 

good as the mean velocity profile, indicating that the self similarity of the Reynolds 

stresses is only observed at further downstream region . In fact , Boersma et al. [13] 

identified that self-similarity of the mean flow should be observed from x I D = 10 

whereas that of Reynolds stress is observed much later at xl D = 30. Once again, the 

self-similari ty data shows a bet ter agreement with the Panchapakesan measurements [87] 

than that of Hussein et al. [56]. 

6.2.5 Closure 

In general the present code has captured the flow physics of the compressible turbulent 

jet flow well. Although some discrepancies are still observed, these are similar to other 

LES computations, typically based on higher order (fourth or sixth order accurate) 

spatial numerical schemes using structured meshes. This proves that the application of 

a hybrid unstructured mesh does not have any detrimental effect on the LES resolution 

in comparison to the more conventional structured mesh approach, in spite of the fact 

that the former employs a smaller number of nodes. 
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6.3 Large-Eddy Simulation of a low Mach number fully 

developed turbulent pipe flow 

In t he light of recent works published by Mossi and Sagaut [83], a Large-Eddy Simula

t ion of an infi nitely long pipe or channel flow is regarded as a good test case to validate 

t he capabilities of a numerical method to sustain turbulence. This is particularly rele

vant for the present code due to the inherent numerical dissipation of the base scheme. 

Numerically, such a simulation is carried out using a pair of periodic boundary condi

tions for t he inlet and outlet of the computational domain, thus the high strain rate 

near the wall is the sole mechanism of t urbulence generation. This means that such a 

flow is also useful in assessing the near wall behaviour of a SGS model. Whenever the 

numerical or SGS dissipation is too high, after some number of t ime steps the turbulence 

will dissappear completely as the flow re-Iaminarises numerically. 

A fully developed pipe flow is used to validate the present code for wall bounded 

t urbulent flow. Despite being not as popular for this task as a channel flow for LES 

computations, a large body of data on fully developed t urbulent pipe flow has recent ly 

been documented by an AGARD committee [82]. Interestingly, the report suggests 

that the popularity of the channel flow is mainly caused by difficulty in dealing with 

cylindrical coordinates and the consequent singularity at the centre line, when using a 

typical single block structured mesh. Furthermore, Eggels et al. [33] has shown that 

pipe and channel flows shared many similar characteristics. 

In this section, a test case similar to that of Nicoud and Ducros [84], which was 

carried out at a Reynolds number R eb = 10000 based on the bulk axial velocity Ub 

and pipe diameter. With t he absence of experimental measurement at this particular 

Reynolds number , Durst et al. [32] measurements, which were performed a R eb = 7442 

are used as a comparison . In spite of this, the higher Reynolds number experiments of 

Durst et al. [32] shows similar trend in velocities mean and RMS fluctuation profiles 

among the various Reynolds number data. Since Durst data is incompressible, t he 

present computation is designed to have nominal bulk Mach number Jvh = 0.25 , which 

is also used by ref. [84]. 
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6.3.1 Computational Mesh 

134 

A section of an infinitely long round pipe was modelled by a cylindrical computational 

domain of radius R length 4R, which was discretised by a hybrid mesh consisting of 

a hexahedral mesh to discretise an annulus near the wall region to capture the eddies 

in the turbulent boundary layer and triangular prisms in the core region where the 

eddy structure is less important. It must be noted that having triangular prisms in the 

core region has alleviated the severe time step restriction typically found in curvilinear 

structured meshes due to the small cell size along the centre line [122J. The hybrid 

mesh was generated using Gambit. Following the description given by Nicoud and 

Ducros [84], the interface between the annular hexahedral region and the cylindrical 

triangular prism region was placed at r=O. 7 R. The hexahedral cells were arranged in a 

structured manner, such that the pipe wall is discretised into 40 uniform cells along the 

pipe axis and 200 uniform cells along the pipe circumference. From the cylinder wall to 
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the interface, 25 non uniform cells were generated. The first four cell from t he wall had 

uniform distribution with a spacing of 0.0075R (6d+ = 2.4) whereas the others were 

stretched toward the pipe core. This radial coarsening was continued into the centreline. 

The resulting mesh consisted of 200k hexahedral and lOOk prisms giving a total of 260k 

vertices. Figure 6.20 shows that the computational mesh is relatively coarse. 

6.3.2 Boundary Condition and Computational Procedure 

The adiabatic non-slip wall boundary was applied for the pipe wall. Periodic boundaries 

were applied at the inlet and outlet region. It was assumed that the external force to 

overcome the skin friction was solely provided by the stream-wise pressure gradient. 

f 
- op _ ~pu; 

p x - ox - 2R 2 (6.6) 

whereas fy and fz were set to zero, and ), is approximated by Blasius ' resistance law [135] 

(6.7) 

as Reb was well below 105 , which is the upper limit of the Blasius law applicability. A 

similar strategy has also been applied in ref. [84]. 

The cut-ofl" level for the dissipation switch E was set at 0.05. For comparison pur

poses, the fixed 5% scaling of the Roe Matrix artificial dissipation prescribed by Bui [17] 

was also used. It must be noted that Nicoud and Ducros [84] employed a scalar dissipa

tion so that separate scaling for each equation of the Navier-Stokes system was possible. 

In their case, zero for the momentum equations and unity, hence full dissipation, for the 

continuity and energy equations . Such a separate scaling is hardly advisable for the Roe 

scheme whose dissipation is closely coupled together. In all of the previously mentioned 

computations, an unlimited MUSCL flux reconstruction based on eq. 4.21 and 4.22 has 

been used to ensure that the Roe dissipation matrix does not render the spatial scheme 

first order accurate. A further reference computation was also performed to mimic a 

centred second order accurate calculation typically found in structured mesh LES by 

employing a fixed zero scaling factor without any reconstruction. This was particularly 

relevant to assess the near wall behaviour that was discretised by hexahedral cells. 

Two SGS models described in chapter 2 were tested in this section, namely the 

WALE model and the Spalart-Allmaras based DES. Despite being the most popular 

SGS model for LES, the standard Smagorinsky model was not tested. The Van Driest 
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damping, that is needed by standard Smagorinsky model, requires a data structure to 

store a pairing between each internal node to the nearest node on the wall. In practical 

unstructured mesh geometries this can be an expensive and complex pre-processing step. 

This was felt to be a major drawback as compared to the WALE model. Following the 

suggestion that had been given by ref. [84], the WALE model was implemented with 

C; = 0.25. Because of the low Mach number , the compressibility correction in the 

SGS model was set to zero. DES computation was conducted with the commonly used 

CDES = 0.65. 

All of the computation were performed on 15 processors of an Intel® Xeon 2.4 

GHz based PC cluster resulting in rapid turn-around in this coarse mesh . A white 

noise superimposed on a Poiseulle solution was implemented as the initial flow field . 

The flow field was non-dimensionalised by sound speed, giving a non-dimensional Ub 

to be identical with Mach number. The time step was set to O.01R/a oo for the LES 

computations, which was comparable to ref. [84]. The DES computation required a 

smaller time step, i.e. 0.008R / aoo to ensure that the solution did not diverge. The 

statistics were not collected until statistically steady kinetic energy of the flow-field has 

been achieved . A further 100000 (120000 for DES) iterations were then performed to 

get the statistical data. 

6 .3 .3 Results and Discussion 

Computations performed in this section are summarised in table 6.2. The computations 

can be divided into three main groups. The first group have been performed with the 

O-switch to scale down the artificial dissipation of the Roe matrix. For this purpose 

the cut-off value € is set at 0.05 to ensure that the numerical dissipation is small for 

the majority of the flow. The baseline computation for this group has been carried out 

with the WALE SGS model (case WALE-<I». To isolate the upwind effect an embedded 

LES computation was performed by relying solely on the scaled down Roe dissipation 

(case MILES-<I». Another calculation with the modified O-switch, where the vorticity 

term is magnified 5 t imes to make the switch more sensitive in detecting the turbulence 

structure, with the WALE SGS model (case WALE-<I>s5) has also been performed. 

The second group has been performed with a scaling of the Roe matrix fixed to 0.05. 

Here, two SGS models described in chapter 2 are compared, namely the WALE model 

(case WALE-05) , and DES based on the Spalart-Allmaras t urbulence model (case DES

SA-05). The single computation of the third group is denoted as CENTR2 is based on 
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linear interpolation to the control volume face with the absence of numerical dissipation. 

This particular computation is perform only as a reference to the numerical behaviour 

to the fixed 5% numerical dissipation. 

case 11 recons. 1 SGS model ReT 

WALE-<I> MUSCL eq. 4.19; € = 0.05 WALE 327 

MILES-<I> MUSCL eq. 4.19; € = 0.05 (embedded) 315 

WALE-<I>s5 MUSCL eq. 4.20; € = 0.05 A = 5 WALE 328 

WALE-OS MUSCL 0.05 WALE 310 

DES-SA-05 MUSCL 0.05 DES 321 

CENTR2 - 0.0 - N/A 

Table 6.2: Pipe computations for nominal ReT ~ 320 based on friction velocity and 

pipe Diameter [84] 

There is no doubt that the numerical schemes described in chapter 4 are capable of 

sustaining the turbulence. Fig. 6.21 shows the instantaneous velocity field obtained from 

case WALE-<I> . Similar instantaneous turbulence in the velocity field are also observed in 

all other calculations. Furthermore, the familiar coherent structures near the wall with 

vortex stretching followed by ejection is observed to various degrees in all computations. 

Figure 6.3.3 shows instantaneous vortical structures (using Q criteria [55, 59]) from three 

selected cases: WALE-<I> , WALE-OS and DES-SA-05. The colouring indicates rotation 

about x-axis, with blue stands for negative rotation (clockwise) and yellow for positive. 

WALE-E05 shows more noise than the other two due to near wall oscillation that will 

be discussed later. DES-SA-05 shows unphysical structures that are longer and more 

widely spaced than has been reported previously by Bagget [5], probably due to the 

unsteady RANS that dominate the near wall behaviour. 

Fig. 6.23 shows that the mass flow rate obtained from the first group (and DES

SA-OS) of computations do not give the correct value. The plots are shown against 

wall distance d = R - r presented in wall units d+ = (Pwallutd) / IL , where the skin 

friction velocity is Ut = .j(Twall/Pwall)' For instance, rather than following the widely 

accepted empirical velocity distribution of 2.5In(d+) + 5.5, the velocity profile of case 

WALE-<I> actually follows 2.5In(d+) + 8 more closely. Other researchers, for instance 

Mossi and Sagaut [83], often express this phenomenon as lack of skin friction since the 

u+ velocity profile can indeed be made to follow the empirical law when a higher skin 

friction velocity is used. 
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Figure 6.21: Instantaneous velocity using D-switch with £=0.05 
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(a) WALE-~ 

(b) WALE-E05 

Figure 6.22: Instantaneous vortical structures based on Q = 0.25. 
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(c) DES-SA-05 

Figure 6.22: Instantaneous vortical structures (Cont'd) 
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Fig. 6.24 shows the variation of the RMS turbulence velocity against wall distance 

d+. As for the mean velocity profile, some discrepancies are also observed at the first 

group of computation (as well as DES-SA-05). It must be noted that the peak level 

value of Durst et al. [32] measurement lies on lower d+ since it has been taken at lower 

Reynolds number. 

+ 
:::J 

25.0 

20.0 

15.0 

10.0 

5.0 

o Durst et al. 
-- law of the wall 
----------- WALE-q, 
- - - - MILES-q, 

WALE-$sS 
WALE- 05 
DES- SA-OS 

Figure 6.23: Mean flow velocity profile normalised by skin friction velocity 

The switch actually scales down the artificial dissipation to 5% (the cut-off value €) 

in most of the field apart from the very few spots near the wall where rapid changes 

of the secondary flow direction, i.e. the fluctuations, causes the divergence of velocity 

\1 . u to be the same order of magnitude, if not higher, than the vorticity w. This in 

turn produces higher numerical dissipation that can be as high as 70%. Although those 

spots only affects very small region at any instant the effects is clearly very important 

as the fixed 5% scale (both with WALE and Smagorinsky models) actually predicts 

better mean velocity profiles. It is also easily seen that by biasing the switch toward 

vorticity, as in case WALE-<I>s5, the upwinding effect can be reduced so that the solution 

is driven towards the fixed small scale. Although Nicoud and Ducros [84] did not report 
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such problems, a series of LES computations on channel flow using upwind schemes 

conducted by Mossi and Sagaut [83] suggested that the present discrepancies are not 

an isolated incident. Due to their full scale upwinding (in some cases the flux limiter 

was also activated) , their results were generally worse than the present work. Bui [17] 

reports similar result when comparing the full upwinding of the Roe scheme against 

that of scaled by fixed 5% value. Furthermore, similar problems are also observed even 

using centred structured schemes, including the fourth order scheme with symmetric 

TVD-based characteristic filter of Yee et al. [138] . 

I 1 1 I; I 
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(a) WALE-<I> (b) WALE-05 

Figure 6.25: Secondary flow near wall . a) includes contour of cp 

Having laid out the detrimental effect that upwinding may have on the statistics of 

an LES computation, closer inspection at the near wall velocity flow-field tells a rather 

different story. Two cases, namely WALE-05, exhibit unphysical oscillations due to 

odd-even decoupling typically found in centred scheme near the wall region. When the 

O-switch is activated these oscillations triggered high dissipation spots (before spreading 

more widely as in fig 6.25), thereby removing the unphysical behaviour. The same 

oscillation can also be removed by introducing a wall function such as the (unsteady) 

RANS mode of the Spalart-Allmaras turbulent model in DES, which effectively increases 

the near wall dissipation. This indicates that the viscous numerical scheme employed by 

the present method (see section 4.5) does not seems to be able to remove the odd-even 
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decoupling phenomena of the centred scheme without resorting to numerical dissipation. 

Kravchenko and Moin [63] showed that the two most widely used discretisations 

of convective term, namely the divergence and skew symmetric forms can strongly 

affect the robustness of the computer code. Although the divergence form by definition 

retained the mass conservation law, it was found that its application to a second order 

finite difference scheme was only stable on a staggered mesh while the skew symmetric 

form was stable on both co-located and staggered meshes. Morinishi et al. [80] argued 

that the reason behind this different behaviour lay in the fact that the skew symmetric 

discretisation conserves the kinetic energy as well as momentum. Later, Ducros et 

al. [29] showed that in the flux evaluation of a control volume surface in a finite volume 

code, a divergence form is obtained when it is taken as the average of the fluxes from 

the two sides of the face, while the skew symmetric form is obtained when the flux is 

computed from the average of the primitive variables. Unsurprisingly, the divergence 

form is obtained when eq. 4.17 is employed to evaluate the flux in centred scheme mode 

as carried out in case CENTR2. As a result CENTR2 also suffers from the oscillation. 

In short the oscillation found in WALE-05 is not caused by the reconstruction, but the 

divergence form of the discrete convective flux evaluation. 

Generally speaking the discretised form of the convective scheme is rarely discussed 

in detail in compressible flow numerics such as those developed in refs. [57, 70, 97] since 

these oscillations are generally removed by the smoothing term in the numerical dissipa

tion. In agreement with the present finding as presented by WALE-<p, WALE-<Ps5 and 

WALE-05, full Roe upwinding has never been reported to produce any boundary layer 

oscillation in a steady viscous Navier-Stokes solver. Bui [17], did mention in passing the 

stability issue but did not mention whether such oscillation has been observed or not in 

his computation. On the other end of the spectrum, Mossi and Sagaut [83] implemented 

a full Roe upwinding with min-mod flux limiter resulting in a very dissipative numerical 

scheme such that the flow was actually beginning to re-Iaminarise. 

The consequence of the oscillation affects the behaviour of the SGS stress near the 

wall. From sections 2.3.1 and 2.3.2, it can be deduced that the SGS eddy viscosity should 

fluctuate when oscillation occurs in the flow. Fig. 6.26, demonstrates this unphysical 

behaviour, which in turn affects the shear stress distribution, which would otherwise 

show the correct behaviour. As a note, Bui [17] did not mention whether such oscillation 

had been observed, but stated the 5% numerical dissipation was employed to keep 

the solution robust. It is worth noting that the consequence of unphysical near wall 
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flow structures observed in fig. 6.22 (c) that has been noted by Bagget [5J manifest as 

extremely high SGS stress near the wall before settling to a lower value in the core flow . 

Consequently, the p eak resolved stress of the DES computation is significantly lower 

than the other LES computations. 

Bui [17], shows t hat the dissipative upwind-biased schemes tend to produce higher 

RMS of stream-wise velocity fluctuations than the centred scheme. The picture is 

reversed for the other velocity components, suggesting that the artificial dissipation 

actually redistributes the turbulence kinetic energy. Therefore it can be said that t he 

numerical dissipation is indeed behaving in a similar manner to an SGS model as claimed 

by the proponents of embedded SGS models. This view is reinforced by t he flow be

haviour when the code is operated in embedded SGS mode (case MILES-<I». This 

embedded LES computation behaviour agrees with the analysis by Drikakis [28J and 

results from other wall bounded flow such as Fureby and Grinstein channel flow [40J 

and Urbin and Knight boundary layer [127J. The DES computations with fixed scaling 

of the Roe matrix, case DES-SA-05, supported this view even further. However the 

numerical discrepancies observed from these schemes suggest that the embedded SGS 
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model may not behave accurately in modelling the flow physics. Similar conclusion has 

been reached by Garnier et al. [43] from their study on homogeneous turbulence decay. 

6.3.4 Closure 

The predictions shown here have demonstrated that the present code is capable of 

computing a pipe flow type problem where sustainance of the turbulence is normally 

an issue for a code with built in numerical dissipation. The resulting flow field behaves 

in similar manner to other works that has been based on coupled solver on structured 

mesh. Qualitatively, the worm vortices near the wall and their stretching and ejection 

towards the core region are captured very well. The high turbulent kinetic region near 

the wall due to stream-wise velocity fluctuations are also predicted without any serious 

problem. 

Quantitatively, the numerical dissipation has compromised the numerical accuracy 

of the mean flow . Removing the dissipation completely proved to be difficult as it 

promotes the odd-even decoupling near the wall. Despite this, the DES computation 

suggests that by appropriate use of wall functions these difficult ies could be reduced. 

6.4 Remarks on unsteady flow validation 

A distributed memory parallel code with a mesh-transparent algorithm for LES of com

pressible flow has been presented. As the present work is aimed at practical industrial 

applications, a second order accurate numerical scheme based upon a Roe scheme [97] 

has been modified in order to minimise the upwinding outside flow discontinuity re

gion. Qualitative study of the isolated numerical scheme using a spatially developing 

mixing layer indicates that the present method is comparable to the higher order nu

merical scheme with low dissipation property of Yee et al. [138] originally designed for 

LESjDNS computation using a structured mesh. Despite having similar resolution for 

the quadrilateral cells at the shear layer region, the triangles for the smooth flow region 

allows the hybrid mesh to employ significantly smaller numbers of nodes than that of a 

structured computation. LES computation for a compressible round jet has also been 

conducted. Once again the triangular cell for the far field has allowed smaller numbers 

of nodes than a structured mesh with similar resolution for the jet region. Comparison 

with Uzun et al. [128] who utilised a structured mesh with Lele's fourth order compact 
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scheme shows similar mean flow behaviour. These have given confidence in the present 

method for free turbulent flows . The present code still suffers from the small inherent 

dissipation that leads to quantitative discrepancy for wall bounded problems, although 

the qualitative flow physics has been captured well. Consequently, a more sophisticated 

scheme to control the level of upwinding in near wall region is required. Future re

search will be directed to tackle this problem, especially for hybrid unstructured mesh 

application. 



Chapter 7 

Unsteady impingement of a 

supersonic round jet on a flat 

plate 

It has been shown in the previous chapter that the computational procedure developed 

in this thesis is capable of capturing the physics of turbulence flows. The limitations 

that have been highlighted are typical of a LES code based on a compressible flow algo

rithm. With these in mind , the present chapter deals with the prediction of a supersonic 

jet impingement problem. Such a problem has many engineering applications. As illus

trated in Chapter 1, the new generation of STOVL aircraft operating in ground effect is 

a good example as the thrust requirement leads to highly under-expanded (supersonic) 

jet [65J . In industrial processing, the manufacturing of a quenched glass panel, typically 

used for vehicle wind screens, normally employ supersonic jet of cold air impinging on 

the heated glass to provide sudden cooling [lOOJ. In both cases the noise generated via 

a feed-back loop mechanism that is originally proposed by Powell [92J has become a 

major concern. 

A supersonic jet decelerates through a normal stand-off shock before impingement. 

Under certain conditions of nozzle pressure ratio (jet total pressure to ambient static 

pressure) and impingement height a very intense discrete tone can be produced [93J 

which may be 20 dB above the broadband noise. Henderson [52J observed that oscilla

tions of the stand-off shock were connected to the production of tones. Recently Hen

derson et al. [51J carried out a comprehensive experimental study using phase-locked 
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shadowgraph and phase averaged Digital Particle Image Velocimetry to observe the 

unsteady behaviour and postulated how this relates to noise production. Whilst exper

imental study of the unsteady jet impingement problem is widely available, numerical 

study has mainly centred on unsteady inviscid flows [100] . Hence, the LES computation 

presented in this chapter is a preliminary work in nature. 

The present study is based on the PIV measurements of Henderson et al. [51]. 

The nozzle pressure ratio is 4.0 and the impingement height is 2.02D in the experiment. 

They used a 25.4mm exit diameter nozzle giving a jet Reynolds number of approximately 

6.0 x 105 . In the experiment the tonal noise frequency was found around 10kHz. This 

corresponds to a Strouhal number of approximately 0.7 when the frequency was non

dimensionalised by the jet exit diameter and the speed of sound at the far field. 

To ensure that good spatial resolution can be achieved achieved for the present LES 

computation using reasonable computational resources, the Reynolds number is lowered 

by one order of magnitude. Clearly, this would lead to some inaccuracies and a finer 

grid would allow higher Reynolds numbers to be studied. 

7.1 Computational Domain and M esh 

A radially symmetric domain about x-Cartesian axis was created for the present com

putation. Figure 7.1 shows the x-y plane providing a cross sectional view of the com

putational domain (left ) and the close up of the computational mesh around the nozzle 

and jet region on the x-y plane (right). For convenience the unit length has been 

non-dimensionalised by the nozzle exit diameter. 

A generic conical nozzle with a 30° subtended angle was used for the present com

putation to model the external nozzle geometry used by ref [51]. In the absence of 

clear defini t ion of the inner nozzle geometry, the present computation employed nurbs 

curvature for the inner profile to represent the convergent nozzle. The impingement 

plate was also simplified. Rather than using a rectangular plate of the experiment , the 

present computation assumed an infinitely large plate so that it could be extended all 

the way to the outer boundary of the computational domain. 

A hybrid mesh, that was generated using Gambit, was used to discretise the flow 

domain. As shown at fig . 7.1 , structured like hexahedral cells were used to resolve the 

annular region of the jet shear layer. triangular prisms were used for the jet core as 
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Figure 7.1: Computational domain and mesh of supersonic impinging jet 
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well as the flat plate boundary layer. The axial distance between the nozzle lip and 

the flat plate was resolved by 86 vertices, 30 of them were used to resolve the flat plate 

boundary layer . The rest of the domain was discretised using tetrahedral with rather 

aggressive degree of coarsening. The resulting mesh consist of 820k nodes, most of them 

were used to resolve the main and wall jets. 

7.2 Boundary Condition and Computational Procedure 

A steady state inlet boundary condition based on Riemann characteristics as described 

in section 4.7 was used for this preliminary study. Unlike LES of shock-turbulence in

teraction in ref. [29] that seeded the upstream flow with turbulence, the present work 

relied on the ability of the numerical scheme to generate the disturbance via instan

taneous velocity strain and the feed back loop mechanism. Inlet boundary was also 

applied for the concave part of the outer domain whilst outlet boundary was applied 

for the cylindrical part. Obviously, the nozzle and flat plate surfaces are treated with 

non-slip wall boundary condition. 

Unlike LES computations that had been undertaken in the previous chapter , the 

presence of strong shock waves required the limiter to be active in this case. Here, 

Venkatakrishnan limiter (see chapter 4) with K = 0.2 was used to ensure monotonicity 

across the shock. As a result the computational time for each time step is nearly 

doubled. 

In consistent with the non dimensional mesh, other flow parameter were non

dimensionalised by the ambient density and sound speed as reference density and ve

locity. It must be noted that neither the density nor the temperature of the experiment 

had been reported. As a result , it would be impossible to get an exact match for the 

velocity magnitude that has been observed from the PIV since the choice of these refer

ence values could not be made to In non dimensional t ime units, a small t ime step value 

of 1.2 x 10- 4 has been applied. An init ial run of 100,000 time steps (around three plate 

shock oscillations from a converged RANS solution have been performed. A further 

244000 time steps were then carried out to collect approximately 32 time units worth 

of data which was sampled every 20 time steps. 
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7.3 Results and Discussion 

Figure 7.2- 7.5 are a series of still picture frames describing the unsteady turbulent 

flow in the highly under-expanded jet. Although 'streamlines' have been added to the 

Mach number plots , these are not valid in a time varying flow, they have merely been 

included to help highlight t he recirculation bubble in the impingement region. Since 

the Mach number is highest on the jet centreline and the stand-off shock is normal, the 

shock total pressure loss is greatest on the centreline. Consequently, the static pressure 

observed at the impingement point is lower than in an annular region on the plate 

around impingement . This creates a recirculation zone in which the flow is inboard 

towards the impingement point. This is most easily observed by the 'streamlines' in 

fig. 7.3. Animation of the time history of these contour plots shows that the recirculation 

bubble is unstable and grows and collapses in time. Henderson et al. [51] observed a 

contact surface between the recirculation zone and the fl ow downstream of the normal 

shock, the flow is then deflected around the recirculation zone and towards the shear 

layer. The stand-off shock and contact surface were seen to be moving with periodic 

collapses of the recirculation zone. The motion distorts the curved jet shear layer and 

large changes in velocity in the wall jet were observed at 2.6 jet radii from the centreline 

and this was postulated as a major source of noise. Similar behaviour is observed in the 

LES predictions with a peak velocity bubble occurring in the wall jet at 2 radii from 

the centre line which then convects outwards. Furthermore, the time history pressure 

contour plot (fig. 7.5) clearly demonstrates the perturbation of the jet near nozzle exit 

due to the feed back mechanism. 

An attempt has been made to compare directly the LES instantaneous velocity fi eld 

with the PIV data in figure 7.6. It is not possible to directly match the two sets of 

data for a given time in the periodic flow and so two arbitrary times have been chosen 

for the PIV and LES contours. Similarly, the colourmap used to present the PIV 

contours differs somewhat from the LES plots. However, reasonable agreement is still 

observed. The experiments tend to show the stand-off shock being at a slightly greater 

distance from the plate and the recirculation bubble to be larger (in the experiment '4' 

indicates the observed penetration of the recirculation bubble) . Indeed in figure 7.6(b) 

the recirculation bubble is absent . The LES predictions indicate higher peak velocities 

in the beginning of the wall jet and these are occurring in the region at 2.6 jet radii 

indicated by Henderson et al. 

An instantaneous plot of the vortical structures using the Q-criteria [55] is shown 
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(a) PIV (b) LES 

(c) PIV (d) LES 

Figure 7.6: Supersonic impinging jet comparison with PlV measurements [51] 



7.3 Results and Discussion 160 

in fig. 7.7. The characteristic helical nature of eddies in the jet shear layer and wall jet 

is observed. It can also be seen that the recirculation bubble that has been reported in 

the PIV study [51] consists of a number of separate dynamic structures that has been 

noted previously rather than a single annular structure. This is in agreement with the 

flow pattern that has been observed by Donaldson and Snedeker [27] . 

Figure 7.7: Instantaneous vortex structures around impingement point using iso-surface 

of Q 

Time histories of pressure were collected at various monitoring points that are shown 

in fig . 7.8. Four numerical probes were positioned in the jet. Ptl and Pt2 were placed 

on the wall diametrically opposite to each other at 0.7 jet radius from the centre line. 

Pt3 was located on the wall at 2.6 jet radius from centre line. Pt4 was placed in the jet 

shear layer upstream to the impingement shock. Far fi eld sound pressure level can not be 

extracted from the present computation since neither an acoustic code has been available 

nor that direct computation is possible as the mesh is not fine enough to propagate the 

pressure wave to a distant that can be considered far enough from the impingement 

point. Hence only the pressure fluctuation in the near field has been recorded. Pt5 

and P t6 were located close to the main and wall jet , respectively, whereas P t 9 was 



7.3 Results and Discussion 161 

situated close to the nozzle exit . It must be noted that these probes were located at 

the tetrahedral region of t he computational mesh. 
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Figure 7.8: Numerical pressure probes position 

Pt2 

Pressure fluctuations around the impingement point are obtained from Pt1 and 

Pt2. Figure 7.9 shows the correlation of the fluctuation measured by the two probes. 

The corelation exhibits axisymmetric mode of an impinging jet simulation (see fig. 7.10), 

which suggests that the qualitative behaviour of the impingement agrees with the widely 

accepted flow physics [65, 100]. 

Figure 7.11- 7.16 show the t ime history of the non-dimensional pressure fluctuations 

and the corresponding power spectra that have been obtained by all of the probes. The 

power spectra Ip'l are computed as 

Ip'l = pz . conj(P z) 
M 



7.3 Results and D iscussion 

3 

2.8 

-N 

8 2.6 111 
8 .s --N c.. 

2.4 

2.2 

Figure 7.9: Pressure correlation on impingement plate (Ptl and Pt2) 

Pi P2 

--+_ .. 

(<1) Steady i1()W (Ill Mode A (C) tvhk lA' 
(<lX ;.sY IlIlDCllic) IwhirlinM 

P2 

! 

(d) N')ll-J'c::gular 
(1<l ucrn 

Figure 7.10: Oscillation modes of impinging jet [100J 

162 



7.3 Results and Discussion 163 

Here, pz is a complex number array consisting of M number of sample data which are 

obtained from the following fast Fourier Transform using MATLAB v5.2: 

where Pd is the non-dimensional pressure fluctuation. It must be noted that the differ

ent cell size for each numerical probe means that the cut-off number of the numerical 

resolution are different. 

Four numerical probes, namely Ptl , Pt2 , Pt3 and Pt4, are used to investigate the 

pressure fluctuation inside the jet. The power spectra of the pressure oscillation of Pt1 

and Pt2 shows a peak at a Strouhal number of approximately 0.5, which correspond to 

the shock oscillation. Inspection of all other probes data also shows pressure oscillation 

at this frequency. Another peak at a Strouhal number of approximately 1.1 has also 

been observed very strongly at Pt3 and Pt4, which corresponds to the formation of the 

ring vortices (See fig. 7.7). Since the shock oscillation occurs downstream of Pt4, which 

is supersonic, the oscillation at St=0.5 indicates the disturbance of the main jet through 

Powell 's feedback-loop mechanism [92] that is illustrated by the contour plots (fig. 7.5). 

Observation of the pressure contour development suggests that only low frequency 

harmonics, thus the tonal sound , would have been distinctively propagated to the far 

field whereas the higher noise frequency would simply become broadband noise. This 

assessment is supported by the fact t hat the strength of the pressure fluctuation with a 

Strouhal number of 1.1 has decayed significantly in probes Pt6 and Pt9. An inspection 

of the time history fluctuation (See fig. 7.11(a) and the subsequent figures) suggests that 

the jet rotates slowly about its axis at approximately St=0.2. This confirm Sakakibara 

and Iwamoto observation of their three dimensional computation [100]. 

The power spectra suggest that the frequency of the present shock oscillation is lower 

than the tonal frequency observed by Henderson et al. [51], which was 0.7 as opposed to 

0.5. Although a similar discrepancy between experimental measurement and unsteady 

numerical simulation has also been reported by Sakakibara and Iwamoto [100] in their 

unsteady inviscid computation, further research to investigate the LES behaviour is still 

required. It has been noted earlier that the LES prediction of the recirculation bubble 

around the impingement point is smaller than the experiment. This indicates that the 

bubble (and the shock that is located upstream) is not as energetic as in the experiment. 

As such a phenomena normally suggest that the computation is too diffusive, there are 

two possible reason for this. Firstly, the lower Reynolds number used for the LES 

may allows molecular diffusion to play more significant role than that in experiment. 
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Secondly, the limiter t hat has been used to ensure monotonicity across t he shock may 

have produced too much numerical diffusion. 

7.4 Closure 

A preliminary study of a highly under expanded jet with promising results has been 

presented. This particular test case is of special interest since there is no known LES 

computation that has been published in t he literature. Qualitative analysis of the t ime 

dependent fluctuation in a highly under expanded supersonic jet has established the 

capability of the present LES methodology in capturing the important flow physics. 
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(a) time history 
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Figure 7.12: Pressure fluctuation at Pt3 
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Chapter 8 

Conclusion 

A parallel mesh transparent numerical method for Large-Eddy Simulation of compress

ible turbulent flow has been presented. The hybrid unstructured mesh method is de

signed to handle engineering flow problems involving complex geometry at reasonable 

computing time. The results are generally comparable to previously published works 

using structured meshes that involve a more complicated mesh generation process than 

unstructured meshes. 

The accomplishments and findings are presented in accordance to the objectives laid 

out in Chapter 1. Subsequently, further research works are recommended. 

8.1 Accomplishments and Findings 

Fourier analysis of the finite volume discretisation of a generic linear differential equation 

has been performed. Although it shows improvement can be gained from having a higher 

than second order compact scheme on a uniform triangular stencil, such improvement 

is not directly extendable to general triangulation. Hence, the application of the higher 

order scheme for a code aimed at solving practical flow problems is not felt justified. 

A second order accurate mesh-transparent method using a modified upwind scheme 

has been developed to perform LES and RANS computation of three dimensional com

pressible turbulent flow. A simple algebraic function is used to activate the upwinding 

only in the vicinity of a shock wave. The computer code has necessarily been paral

lelised so that an LES solution can be obtained within a reasonable time scale. The 
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MPI library has been used for the parallelisation to ensure that the code can be ported 

easily to either distributed or shared memory parallel machines. 

Validation of the basic numerics for steady flow using the mesh-transparent numer

ical method has been presented. The two steady flow cases illustrate the ability of the 

present code in handling complex 3D geometries typically found in practical engineering 

flow problems. 

The present unsteady algorithm has been assessed on three flow problems. The first 

test case is a purely numerical two dimensional test case of the interaction between an 

oblique shock wave and laminar mixing layer, where the unstructured method shows 

comparable resolution to a previously published computation using structured fourth 

order compact scheme method on identical quadrilateral mesh. The test case also high

lighted the substantial saving in computational nodes that can be gained from employing 

a hybrid mesh with quadrilateral cells in the mixing layer region and triangular cells 

for the region that is coarsened rapidly towards the far field boundary. The second test 

case is a turbulent round compressible free jet, where the hybrid meshing strategy has 

demonstrated that a solution of similar quality and resolution to an LES computation 

on structured mesh of 1.6M nodes can be obtained with only BOOk nodes. The third 

test case is a low Mach number turbulent flow through a round pipe, where the code 

exhibit results typical to LES methods that is based upon coupled solver technology. 

Having managed to reproduce the previously published LES computation, a sim

ulation of a turbulent flow with a shock wave that is still relatively rare for LES is 

attempted. A preliminary LES computation of a highly under-expanded impinging jet 

with unsteady impingement shock is used for this purpose. The results show that the 

present technique of localising numerical dissipation to shock region works reasonably 

well. In comparison to previous numerical computations on this problem which have 

been conducted inviscidly, the present method produces a much more complete picture 

of the flow physics. 

8.2 Further Works 

In general, research aimed at more practical problems such as aeroacustics and com

bustion can be developed as extensions to present code. 

The two jet test cases that have been used here highlight the need for a better inlet 
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condition that is more representative of the turbulent nozzle flow found in experiments. 

These cases also call for an extension of the present research in aeroacoustics field. Typ

ically a computational aeroacoustic problem only concerns with propagation of pressure 

wave to the far field, which is almost always a linear problem. However the mechanisms 

of noise production in the near field is highly non-linear. For noise generated by bluff 

bodies, such as aircraft landing gear, it is the flow separation involving highly non linear 

vortex shedding that is the most important factor. Thus, utilisation of LES (or even 

DNS) for generating the instantaneous turbulence fluctuation rather than the time in

dependent empirical model of RANS as a noise source has become increasingly popular 

in recent years. 

Despite being able to show reasonable flow physics around the impingement point, 

the preliminary solution of the highly under expanded impinging jet suggests that fur

ther research is indeed required to investigate the discrepancy of the frequency of the 

shock oscillation. 

Combustion, which involves appreciable change of density even when the fluid is 

confined in a closed chamber, is another area of research that the present code can be 

developed into. There has been clear evidence that the physics of combustion, notably 

the flame propagation, requires a non-linear approach rather than the linear one that 

is currently offered by many eddy viscosity based RANS. Thus, the extension of the 

present code would offer a more realistic combustion research capability that typically 

involves a rather complex combustor geometry such as those investigated by Moin and 

his co workers. 

The present works also provided a platform upon which a further research towards 

better sub-grid scale model can be aimed. There are few doubts that despite being very 

popular for LES computations, the standard Smagorinsky model has some inherent 

limitations. The WALE model that has been used for the present work does address 

the standard Smagorinsky problem near a solid wall, but it still requires fine mesh 

spacing near the wall. Here a hybrid RANS/LES approach such as DES that is based 

on non-physical turbulent viscosity or turbulent kinetic energy that has been proposed 

by some authors should be a particular interest. 



Appendix A 

Reynolds Averaged N avier Stokes 

Equations 

The Navier Stokes-Equations presented in eqns. 2.1, 2.2, 2.3, 204 can be written in 

differential form using vector notation as follows. 

The continuity equation: 

8p + V' . (pu) = 0 
8t 

The momentum equation: 

8pu 
at + " . (pu 0 u) + "p - \1 . 7' = 0 

The total energy equation: 

8~~ +" . [p(E + p)uJ - 7' : " . U + V'q = 0 

(A.I) 

(A.2) 

(A.3) 

where : is the scalar inner product of two symmetric tensors such that 7' : V' . u = 
8u' . 

TXiXj~'Z = 1,3 

RANS filtering is used to decompose the flow field into the time-averaged flow

field that is solved numerically and the fluctuating component that is to be modelled. 

Consider that field <p is a function of time t in the interval (t - T, t + T) as well as 

coordinate position ~. The filtering operation is defined by 

1 l.t+T 
<p(~) = T G(t)<p(~, t)dt 

2 t-T 
(AA) 
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where the convolution filter G is unity in the interval. 

Alternatively, RANS filtering can be performed over large number of N independent 

fields to obtain ensemble average as follows 

1 (N 
cp(~, t) = N lo G(n)cp(~, t, n)dn (A.5) 

where once again G is unity in (0, N) interval. If N approaches infinity, ergodic hy

pothesis renders the two filtering techniques identical [135]. 

Unsteady RANS (URANS) can be interpreted as having an ensemble average over N 

samples, which is large but not sufficiently large to satisfy the ergodic hypothesis. Thus, 

unlike time filtering, the filtered variables still retain some time dependent fluctuations, 

which in turn can be decomposed into a time averaged mean flow and a very large 

scale fluctuations that are often called coherent fluctuation (see ref [99]). Hence this 

simulation is also called Very Large-Eddy Simulation (VLES) by some authors [114] as 

the resulting simulation behaves as if a very coarse spatial filter had been employed. As 

in RANS, the random, high frequency part of the fluctuation is modeled. 

A density based averaging is then applied to the filtered equation to simplify the 

resulting RANS equations. The Favre averaging leads to the following decomposition: 

cp = cp + cp" 

where the first term on the right hand side is the filtered variable, i.e. the low 

frequency component of the flow variable. The second term is the high frequency com

ponent that is removed by the filter, hence its effect will be modelled. Generally speaking 

the modelled term of T and it are negligible. 

Applying the decomposition to continuity equation leads to 

Gp + yr . (pu) = 0 at (A.6) 

Thus filtering does not alter the continuty equation. However, the same can not be said 

for the other two equations. 

A.I Filtered Momentum Equations 

The decomposition of the convective term puu yields 

------ ------- - ___ - ___ 11 _ /1_ _ 11 /1 

PUiUj = PUiUj + PUiUj + pUi Uj + pUi u j 
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In RANS, the high frequency component, known as the turbulence fluctuation, has zero 

averaged value. This means that both the second and the third terms are zero. Thus 

the filtered convective term becomes 

--_- ____ _ 1111 

PUiUj = PUiUj + pUi uj 

Meanwhile the decomposition of the pressure gradient and the viscous flux terms 

simply yield 

Thus the filtered momentum equation can be written as follows: 

(A.7) 

A.2 Filtered Energy Equation 

It must be recalled that the total internal energy can be written in term of internal and 

kinetic energy (eqn. 2.8). Thus, filtering the convection of total internal energy yields 

As the time averaged of flucatuation quantities are zero, the above expression can be 

simplified as 

Notice that the filtered E can be written as follows 

Thus, the filtered energy equation is defined as follows 

where 
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It is common practice for RANS to neglect the last term, thus the final form of the 

filtered energy equation is simply 

apE a [(-- -) - (- --;;-;') -...,. ---;;--;, -"] (A) at + ax' pE + p Uj - T XjX; - PUk Uk Uj + qj + CvpT Uj + pUj = 0 .8 
J 

A.3 Eddy Viscosity Hypothesis 

In this thesis, the RANS turbulence model is based on eddy-viscosity hypothesis of 

Boussinesq. Hence it is assumed that the filtered kinematic viscosity 'i7 can be mimicked 

by an eddy viscosity Vt. Using analogy that kinematic viscosity and molecular viscosity 

J.L is related to J.L = pv, the eddy viscosity can be related to "turbulence viscosity" as 

Pt = pVt· Thus the turbulence fluctuation terms can be modelled as 

_ -;;-;, [_ (aUi aUj) _2 aUk 2_ -;;-;, ] 
pUi Uj = - pJ.Lt aXj + aXi - P'3J.Lt aXk Oij - '3PUkUkOij 

As shown by Warsi [13~he last term on the right hand side of eqn. A.9 involving tur

bulent kinetic energy, u~ u~, is required to give the correct trace of the Reynolds stress, 

which takes into account compressibility effect on the turbulence field. Consequently, 

this term is not significant on low turbulent Mach number, thus 

-;;-;, [ ( aUi aUj) 2 aUk ] pu.u. = - PPt - + - -P-Pt-Oi' 
l J aXj aXi 3 aXk J 

(A.9) 

As a result the viscous shear stress for RANS computation can be written as 

(A. 10) 

Similarly, the last two terms on the right hand side of eq. A.S is modelled as "tur

bulence conduction" 

- -----T" "+ -" _ PtCp aT 
PCv ui pUJ' - P a 

rt Xi 
(A.11) 

where turbulent Parndtl Number Prt is fixed at 0.9 for the present work. 

A.4 Spalart-Allmaras Turbulence Model 

The Spalart-Allmaras (S-A) model [116], which was based on a single transport equa

tion for modified turbulent viscosity is chosen for the present work as it offers good 
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compromise between accuracy and simplicity. While the fact that this model and its 

constants were developed from a dimensional analysis, Galilean invariance and selected 

empirical results rather than flow physics is acknowledged, the work of Bardina et al. [7], 

which suggested that the model performed reasonably well for a range of turbulent flows, 

should justify its application for the present work. Having said that, it must me noted 

that modified turbulent viscosity is not a physical quantity. 

The eddy viscosity is defined in term of the modified eddy viscosity variable i/ and 

viscosity function fvl as follows: 

Vt = i/fvI 

v 
x=v 

(A.I2) 

(A.I3) 

(A.I4) 

The incompressible non-conservative form of transport equation that was used in the 

original paper [116] is employed. Unless the main flow field is hypersonic, the turbulence 

Mach number is unlikely to be high enough to warrant a compressible turbulent model. 

:t ffl i/dV + fiar i/UndS - fiar (v + vd~V'i/· fLdS = Source (A.I5) 

Source = f f 1 [:bl (1 -/t2)i/n, + C!2 (V'i/ . V'i/) - ewdw (~) 2] dV 

production ~ '-v-' 
d~J JUSton destruction 

(A.I6) 

where d is the nearest distance to a wall, K, is Von Karman constant, and er is the Prandtl 

number. The transition trip term is not implemented in the present work, because it 

is difficult to define a trip location in a three-dimensional unstructured mesh. Here the 

magnitude of vorticity n with the summation convention implied is defined as follows 

(A.I7) 

The modified vorticity n is defined using the original formulation of Spalart-Allmaras 

model given in [116] 

- v 
n = n + /'i,2d2fv2 

X 
fv2 = 1 - 1 + Xfvl 

(A.I8) 

(A.I9) 



A.4 Spalart-Allmaras Turbulence Model 

The empirical functions for the no-slip wall effects are defined as follows 

_ (1 + C~3 ) 1/6 
fw - 9 6 + 6 9 Cw3 
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(A.20) 

(A.21) 

(A.22) 

The empirical constants that are suggested by Spalart and Allmaras are used for 

the present work without modification. The values are shown in table A.1 

I constant I value 

CbI 0.1355 

Cb2 0.622 

T 2/3 

K, 0.41 

Cw1 ~ + l+Cb2 
K er 

Cw2 0.3 

Cw3 2.0 

Cv1 7.1 

Table A.1: Empirical constants for Spalart-Allmaras model 



Appendix B 

Post processing the LES data 

B.l Transformation between Cartesian and Cylindrical 

Coordinates Systems 

The cylindrical nature of all the domain means that the cylindrical velocity components, 

rather than the Cartesian velocity components are more useful for the post processing. 

Since the present code is written in Cartesian system, transformation operator is needed 

to relate the two coordinates systems. 

The cylindrical coordinates system is oriented along the x-axis. Thus this chapter 

section with transformation between x - y - z and x - r - 8 coordinate systems. Using 

fig. B.I, the v and w velocities can be transfrom into its polar counterpart U r and rUIJ 

as follows: 

U r = vsin8 + wcos8 

rUIJ = -v cos 8 + w sin 8 

where 

• 11 Y 
Slnu = -

r 

z 
cos 8 = -

r 

(B.I) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 
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y-axis 

z-axis 

Figure B.l: Cartesian velocities and polar velocities 

-The transformation can also be applied to the Cartesian Reynolds stresses u" v" and ----- -----u"w" and their cylindrical counterpart u"ur" and u"ruo" since u can be regarded as a 

scalar multiplier. 

----- -----u" ur" = u" v" sin () + u" w" cos () (B.6) 

----- - -----u" ruo" = -u" v" cos () + u" w" sin () (B.7) 

However, the transformation of the Reynolds stresses associated with the square of the ----- -----fluctuation velocity, namely v"v" and w"w" is not trivial since such an operation lead to 

a positive definite Cartesian component in all of the four polar quadrant. This in turn 

removes any trace of the velocity direction, which is essential for the transformation 

defined previously. To overcome this problem, it is assumed that the ;?i;. and N 
retain the direction for v"v" and w"w", respectively. Therfore the transformation is 

modified as follows: 

ur"ur" = v"v" sin ()sign u"v" + w"w" cos ()sign u"w" ----- - (--) ----- (-) (B.8) 

u"ruo" = -v"v" cos ()sign u"v" +w"w"sin()sign u"w" ----- - (--) ----- (-) (B.9) 
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B.2 Turbulent statistics 

The mean value could be calculated by averaging all of the sample taken during the 

LES computation at post processing stage. 

- epI + ep2 + ... epn 
ep= 

n 
(B.IO) 

However, this would lead to enormous amount of data being stored. Although a snap

shot of the flow is inevitably dumped as the LES progress, its frequency is normally 

much less that that of sampling frequency necessary to obtain a good statistics. The 

most widely used alternative is to uroIling averaged, i.e. performing the averaging as 

the computation progresses: 

_ (n - l)CPn-I 
epn = 

n 
(B.ll) 

where n is number of samples when the roIling averages is performed. Thus only the 

mean values are stored. 

The second order statitics for the Reynolds stresses are computed in two stages. 

Firstly the rolling averaged of the product is computed as the simulation progresses 

(_) (n - 1) (W)n-I 
epep = 

n n (B.12) 

Secondly, the mean of the product of the fluctuation is calculated at the end of the 

simulation 

(B.13) 
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